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Abstract 

Using Raman lineshape analysis and dielectric relaxation techniques, the reori-

entation dynamics of single molecules in partially disordered phases is studied. 

Reorientational correlation functions for a prototypical isotropic liquid CS2  are 

presented over a broad temperature range. Calculated values of the integrated 

correlation time, rms intermolecular torque and collision frequency suggest the 

onset of substantial local structuring in the liquid phase on cooling to below 220K. 

An ab initio DFT computer simulation shows that the intermolecular torque arises 

from a strong dipole moment interaction created by the intra-molecular vibration. 

A solvation dynamics study of CS2  in cyclohexane provides the first observation 

of the free-volume effect occuring at the isotropic-plastic crystal phase transition. 

Reorientation correlation functions are presented for various members of the nCB 

[4-n-Alkyl-4'-Cyanobiphenyl] homologous series in the isotropic phase. Two dis-

tinct relaxation processes are observed, a very fast intra-molecular relaxation 

mechanism assigned to the flexibility of the anisotropic molecules, and a slow 

exponentially-decaying rotational-translational relaxation process with a complex 

temperature dependence. The results of dielectric relaxation studies under high 

pressure of two liquid crystals (6PCH [4-trans-4-n-Hexyl-Cyclohexyl-Benzonitrile] 

and 8CB) are presented. The extraction of reorientational activation parameters 

in the isotropic, nematic and smectic A phases allows the formulation of a reori-

entational model, in which steric effects play the predominant role. 

Single molecule reorientation dynamics is determined by a complex hierachy of 

relaxation processes. The extraction of realistic correlation functions allows for 

the identification and separation of different relaxation processes occurring on 

different timescales, and of different intermolecular interactions occurring over 

varying distance scales. The single molecule dynamics in a partially disordered 

system is highly dependent on the degree of local structuring. However, in a syn-

ergetic manner, it is apparent that the physical characteristics of the constituent 
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Chapter 1 

Introduction 

Molecular dynamics of condensed phases has been the subject of intense theoret-

ical and experimental research in the past fifty years. Not only do the details of 

molecular motion govern some of the most important physical properties of such 

systems, including phase stability, diffusion, viscocity and response to applied 

fields, they determine the complex and diverse variety of condensed phases. All 

condensed phases resemble each other in the property of cohesion; they main-

tain a boundary surface. In a molecular crystal, the cohesive forces are strong 

enough to prevent either translational or reorientational movements of the indi-

vidual molecules, which vibrate about equilibrium positions located on a three-

dimensional periodic lattice. In direct contrast, the molecules in an isotropic 

liquid possess enough kinetic energy to overcome the cohesive forces exerted by 

their neighbouring molecules, and the liquid state exhibits translational and ori-

entational disorder. 

There are, at present, two other groups of well-defined thermodynamic states in 

which the extent of molecular ordering lies between that of a solid, and that of 

an isotropic liquid. These so-called mesophases are known as plastic crystals and 

liquid crystals. Plastic crystals [1] are composed of globular molecules, for which 

the barriers of rotation are small relative to the lattice energy. Given enough 

thermal energy, the molecules are capable of overcoming the these rotational 

energy barriers, but are not sufficiently energetic to break up the lattice. The 

resulting phases exhibit substantial orientational disorder, but retain long-range 

translational order. 

Liquid crystalline mesophases [2] are generally composed of either elongated rod- 

like (calamatic) or disk-like (discotic) molecules. Despite the fact that these 

1 
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mesophases are fluid, that is to say that the molecules are not constrained to a 

lattice, they possess long-range orientational order due to the preferential align-

ment of the molecules parallel to some common axis, labelled by a unit vector (or 

director). Numerous liquid-crystalline phases have been identified, many of which 

possess partial translational order. Calamatic liquid crystals are divided into two 

broad classes: nematic and smectic. The nematic phase is the simplest of these 

orientationally ordered fluid phases as there is no long range correlation of the 

molecular centre of mass positions. The smectic mesophases have one degree of 

translational ordering, resulting in layered structures and as such can be regarded 

as quasi-one-dimensional solids, or quasi-two-dimensional liquids. There exists a 

large variety of smectic mesophases depending on the orientation of the director 

relative to the molecular layers and the ordering of the constituent molecules 

within the layers. Discotic liquid crystals are two-dimensionally ordered systems. 

They can be described as a two-dimensional array of liquid tubes and are called 

columnar phases. 

The particular condensed phases described above are depicted schematically in 

Figs. la and lb. There are far too many mesophases to discuss here, and the 

reader is referred to the references for more information. It is however clear 

from the above examples, that there exist numerous complex disordered and 

partially disordered systems. Indeed the structure of a liquid or mesophase on 

a molecular scale is considerably more difficult to visualise than the complete 

disorder which occurs in a gas, or the regular arrangement that is found in a 

crystal. Furthermore, it is apparent that there is an inextricable link between 

"structure" and dynamics in cohesive phases. Additionally, it appears that the 

molecular structure also plays an important role. Indeed, with the exception of 

some polymorphous smectics, there are no known substances that exhibit both 

plastic- and liquid-crystalline phases. 

These observations can best be understood by considering the energetics of the 

system in question. In any condensed phase, a molecule experiences a potential 

energy field due to the molecular interaction between itself and its environment. 

The extent to which this intermolecular potential controls the dynamics of the 

molecules depends on the kinetic energy of the molecules. At low temperatures 

the kinetic energy of the molecule is not great enough to overcome the inter-

molecular interaction, resulting in an ordered solid. At the other extreme, when 

the kinetic energy of the molecules is much greater than the mean interaction 

potential energy, the molecular motions are uncorrelated, which is the case of 
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a disordered gas. In a liquid or liquid crystal, for example, there is a delicate 

equilibrium: the kinetic energy of the molecules is not great enough to overcome 

the immediate local intermolecular interaction and the high packing density de-

termines the extent of local structure, but the kinetic energy is large enough to 

prevent long-range translational ordering. The nature of the local structure is 

determined by the form of the intermolecular interaction potential for the par-

ticular molecule. The shape, size and even chemical make-up of the individual 

constituent molecules could therefore affect the structure and macroscopic proper-

ties of the system. On this basis, the study of molecular motion liberates valuable 

information about the intermolecular interaction, the local molecular structure 

and consequently macroscopic properties of condensed phases. 

Unfortunately the study of molecular motion and. structure in partially disor-

dered phases is confronted with two substantial obstacles. The first is that of 

understanding the nature of molecular interactions. There exists considerable 

uncertainty over the validity and transferability of interaction potentials used to 

model soft condensed phases which are exacerbated by the coexistance of a wide 

variety of heirarchical interactions and highly directional forces. Generally speak-

ing these forces are considered to be repulsive for small molecular separations and 

become attractive at larger separations. However, the exact nature of intermolec-

ular forces in a given system is most certainly specifically defined by the physical 

characteristics of the consituent molecules, their anisotropy, flexibility and elec-

tronic charge distribution. The second fundamental problem is that of relating 

the bulk or macroscopic properties of a system to the microscopic or molecular 

properties. All experimentally determined properties are bulk properties which 

represent a combination or averaging of molecular properties. This unavoid-

able situation faced in all experimental measurements is particularly problematic 

when trying to determine the potential energy function which describes the way 

in which an isolated pair of molecules interacts. 

Molecular motion in partially disordered phases is the result of a complex interac-

tion of numerous underlying dynamic processes occuring across a broad range of 

time-scales. Each of these dynamic processes can therefore be associated with a 

characteristic relaxation time. In order to probe these dynamical properties a sta-

tistical description of the transport and other temporal phenomena is required. 

Central to this approach is the formulation of time correlation functions, the 

integrals of which over time describe the transport and dynamics of the ensem-

ble. These functions provide a concise method of expressing the degree to which 
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two dynamical properties are correlated as a function of time. In other words, 

they describe quantitatively how long some property of the system persists un-

til it is averaged out by thermal molecular motion. Whilst the determination 

of thermodynamic parameters and the analysis of x-ray diffraction and neutron 

scattering data provide an insight into the structural properties, it is spectro-

scopic techniques which yield information about the dynamics of soft condensed 

matter phases. All spectroscopic techniques use as a probe an external field which 

is weakly coupled to the system, and study the response of the system to that 

probe. The weak nature of the coupling ensures that the probe does not influence 

or obscure the dynamical behaviour of the ensemble. The response is described 

in terms of the time correlation functions of the dynamic properties. This process 

is commonly referred to as the action of atomism. The probing external field per-

turbs the system, which proceeds to relax on characteristic time-scales associated 

with the dynamic properties of the ensemble. Spectroscopic experiments are gen-

erally made in the frequency domain. The spectrum of frequencies, commonly 

known as lineshape is then transformed into the appropriate time correlation 

function. 

All spectroscopic techniques (both absorption and scattering) are associated with 

a their own particular correlation function. Indeed it is clear that no single ap-

proach could explain more than a small part of the entire picture of molecular 

motion, for a particular method observes accurately only those dynamical phe-

nomena which occur on the same time-scale of the measurements. This apparently 

obvious statement is nevertheless of immense importance. For example, the pre-

diction of momentary relative orientations between weakly interacting molecules 

cannot be obtained by the extrapolation of chemical shift data, as the time-scale 

of the orientational motion is approximately 10-8 - 10 12 sec, whilst the time-scale 

of the measurements is of the order of fractions of seconds. For a full clarifica-

tion of the complex molecular motion of the system it is therefore neccessary to 

combine the results of several different types of experiment. Table 1. indicates 

the variety of both absorption and scattering techniques frequently employed and 

the associated dynamical phenomena studied. 

In several cases the spectroscopic technique yields only the integrated correlation 

time, such as is the case for NMR studies of rotational-translational motions of 

molecules. This leads to the obvious disadvantage that the measurement is not 

sensitive to the detailed characteristics of the molecular motion. Additionally, 

some experimental measurements cannot isolate an individual dynamic process. 
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For example, in infra-red spectroscopy the time correlation function for the dipole 

moment describes how a vibrating dipole orientated in a certain direction at time 

t = 0 reorientates until as t approaches infinity, the correlation function tends 

to zero, signifying that there is no longer any correlation between the present 

and original dipolar positions. However, the molecule has not only undergone 

reorientational relaxation, but also vibrational relaxation, so-called vibrational-

dephasing. The correlation function in infra-red spectroscopy does not sepa-

rate these two dynamical processes, and therefore represents the combined roto-

vibrational relaxation of the dipole. In the present study, we are interested in 

the dynamical properties of single molecules in partially disordered condensed 

phases. The most suitable experimental technique for this purpose is Raman 

spectroscopy, which allows the separation and extraction of both reorientational 

and vibrational correlation functions. 

A knowledge of the functional form of the correlation function is of immense im-

portance. Whilst correlation times are characteristic of the time-scale of the re-

laxation process, they only give physically meaningful dynamic parameters when 

used in conjunction with a suitable reorientational model. Despite the fact that 

correlation functions occupy the realms of classical mechanics, their functional 

form is indicative of the type of reorientational diffusion proccess of the single 

molecules, which are subject to the laws of quantisation of angular momentum. In 

formulating a theoretical model, a plausible physical description of the dynamics 

of the system is produced, and the respective correlation function is computed, 

which in turn is compared to the experimental data. An explicit correlation 

function not only reveals the time-scale, but also the very nature of the dynamic 

proccess. 

In this study, we look at the the complex reorientational molecular motion of 

several partially disordered condensed phases. Chapter 2 contains the main the-

oretical discussion of reorientational correlation functions. In particular, the re-

lationship between the experimental Raman band the the correlation function 

is discussed. Within the mathematical formalism described in appendix A, the 

various reorientational models are presented, with their computed correlation 

functions. 

Raman spectroscopy, as with any other experimental technique used to determine 

the molecular dynamics of a system, is faced with one major draw-back. Such 

experimental techniques all study an entire system comprised of N component 

molecules, and all parameters obtained are time and orientation averages over all 
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of these N constituent molecules. It is not possible to extract information about 

the exact reorientational dynamics of a single molecule as a function of time using 

experimental techniques alone. It is for this reason that computer simulation 

has developed so rapidly in the last forty years. A combination of computer 

simulation and experimental results liberates a great deal more information about 

the dynamics of the system. In order to make the simulation as exact as possible 

on a molecular scale, it is necessary to resort to solving the exact poly-electronic 

quantum mechanical equations for the system, a so-called ab iriitio approach. 

Chapter 3 contains a discussion of the theory behind ab initio density functional 

computer simulation and its application to studying the orientational dynamics 

and interactions in partially disordered phases. 

Combining the theory developed in chapters 2 and 3, chapter 4 presents the 

results, both experimental and from computer simulation, of the study of a proto-

typical isotropic liquid: carbon disulphide. This study includes an analysis of the 

correlation times as a function of temperature, an investigation of the collision 

frequency and the nature of the intermolecular torques between the component 

molecules. In Chapter 5, carbon disulphide is used as a dopant to study the 

dynamics of a typical plastic crystal, cyclohexane. The results and discussion 

presented in chapter 5 include the direct observation of the free volume effect 

occurring at an isotropic-plastic crystal phase transition. 

Carbon disulphide is a small rigid linear molecule. Chapter 6 presents the work 

carried out to investigate the effect of internal degrees of molecular reorientation 

freedom (flexibility) on the molecular dynamics of a system. The study concen-

trates on the lower members of the liquid crystalline nCB homologous series in the 

isotropic phase. The results presented also reveal the reorientational dynamics of 

single anisotropic molecules in the pre-transitional phase. 

Another experimental technique commonly employed to analyse reorientation 

dynamics in partially disordered systems is dielectric relaxation. This technique 

involves placing a system comprised of polar molecules in an alternating electric 

field and measuring the variation in the dielectric constant, expressed as a complex 

permitivity, as a function of the field frequency. Chapter 7 provides an outline 

of the theory behind dielectric relaxation measurements, including a discussion 

of the relationship between the dielectric relaxation results and thermodynamic 

properties of the system of interest. Results of dielectric relaxation measurements 

for two liquid crystalline systems are presented in chapter 8. The results cover 

isotropic, nematic and smectic liquid crystalline phases and the single-molecule 
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reorientational dynamics is discussed in view of the degree of orientational order of 

the system using experimentally calculated thermodynamic parameters. Finally, 

there is a summary including conclusions and the discussion of future research in 

the field of reorientation dynamics. 
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Fig. la Condensed Matter Phases 
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Fig. lb Condensed Matter Phases Cont. 
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Chapter 2 

The Reorientational Correlation 

Function 

2.1 Introduction 

In this chapter we discuss the formulation of the reorientational correlation func-

tion. This chapter contains the body of the theory and includes all the formulae 

and models used in later chapters. All the mathematical foundations used here, 

such as the small Wigner rotation matrices and irreducible tensor notation are 

discussed in more detail in Appendix A, which provides an overall view of the 

basic concepts of quantisation of angular momentum. 

In general, the reorientational correlation function can be expressed mathemati-

cally as [3] 

C(t) Cf,MM,(t) = 	 - (D M )(D II) 	 (2.1) 

where the brackets ( ... ) denote an average over all molecular orientations, and 

a,8-y, the Euler angles which relate the laboratory fixed frame to the body 

fixed frame. As discussed in the appendix, the elements of the Wigner D-matrices 

in the above equation are used to express any orientation-dependent molecular 

property. First we will discuss how to obtain such a correlation function from a 

vibrational Raman band (or lineshape). This alone does not give an insight into 

the orientational motion of the individual molecules in a partially disordered sys- 

tem. To this end we next formulate several hypothetical models of reorientational 

dynamics and look at the functional form of their respective correlation functions. 

11 
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We then show how to combine the experimentally extracted correlation functions 

with a suitable theoretical model and discuss how statistical mechanics is used 

to obtain classical dissipative parameters such as rotation diffusion coefficients 

from time-dependent microscopic fluctuations of the constituent particles of the 

system. Finally, we show how the functional form of the correlation functions 

provides an insight into intermolecular interaction and allows the calculation of 

intermolecular torques. 

2.2 Obtaining Correlation Functions from Ra-

man Lineshapes 

Following the approach of Bartoli and Litovitz [4,5,6], using a semi-classical ex-

pression for the expansion of the electronic polarisability in terms of the normal 

coordinates of vibration, the expression for the intensity of scattered radiation as 

a function of frequency, w for a single isolated molecule is given by [7]: 

1(w) = A(w 	Wv) 4 	Pj 	I (f I e'
6i  Ii) 1 2  6(w+w1 —wi) 	(2.2) 

i 	f 

where w,, ,w and w1 denote the frequencies of the v 1h normal vibrational mode, the 

incident photon and the scattered photon respectively and w = w1 - w + w,,, and 
6i and ef are the polarisation vectors for incident and scattered light respectively, 

A is a constant of proportionality and p i  is a Boltzmann factor governing the 

population of initial translational-rotational states I i) which are assumed to 

form a complete set governed by the rotational-vibrational Hamiltonian. Notice 

that in this general expression, there is a summation over all initial and final , f), 
roto-vibrational states. R" is the Raman tensor for an isolated molecule whose 

symmetry axes correspond to the laboratory axes. For convenience the Raman 

tensor can be expressed in terms of the electronic polarisability tensor, a", and the 

vibrational coordinate Q". Defining I ) and  I as the eigenkets of the initial 

and final pure vibrational groundstate wavefunctions and using the subscripts j 

and k to define the polarisation directions of the incident and scattered photons: 

Rk 	 I 	 (2.3) 
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Using the above expression, equation 2 can be expanded as follows 

1(w) = A(w—w 0 )4  Pa 	Pi 	(f 6' 	i)( 	QV v) 1 2  8(w+w—w) 
a 	b i 	f 

(2.4) 

where a hot band summation over the initial vibrational states has been included. 

The vibrational and rotational line-broadening effects are separated by introduc-

ing an additional term, V' into the Hamiltonian of the system which operates on 

the vibrational wavefunctions, thereby perturbing the original vibrational energy 

levels, but does not operate on the electronic wavefunctions and so does not alter 

the electronic polarisability. The following expression is obtained after converting 

from the Schroedinger picture to the Heisenberg picture [8], 

1(w) = A(w - w)4 (2ir)' f.T,000  Ej  pi(i I [ef a' (0) . e'] [e' . av(t) . 6'] I 
X >apa(cb I Q'(0)Qt'(t) I /)exp(iwt)dt . 	 (2.5) 

The operators a' (t) and QV  (t) are now time dependent and are expressed as 

a"(t) = exp(iHt1 t/h)f exp (_iHtlt/h) 	 (2.6) 

and 
QV (t) = exp (iVvt/h)Qv exp(iV"t/h) . 	 (2.7) 

As the operator V" is a stochastic variable which is at least partially depen-

dent on the molecular environment, the time dependent normal mode vibration 

coordinate is averaged over the molecular ensemble. 

As a light scattering experiment, Raman spectroscopy possesses two polarisation 

components, which result in different Raman lineshapes. The incident and scat-

tered radiation can be polarised either parallel or perpendicular to one-another 

(see Fig. 2). To simplify the situation, it is assumed that there occurs no red-

shifting due to hot bands. The two spectral lineshapes for the two polarisation 

components are now: 

111(w) = A(w 2  - w)4(2ir) 1 j+,0/1 Ek[2ck(0)ayk(t)+ c(0)c4k(t)])jg  

x (Qv (0)Q"(t)) exp(iwt) 	(2.8) 
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1 	+oo/1 11 (w) = A(w 2  - w)4 (2ir) 	i_ s 	k[3ck(0)a7k(t) -kk 

x (Qt7(0)Qv(t))  exp(iwt) . 	(2.9) 

In the above equations, the indices of the polarisability tensor represent the molec-

ular axes, and averaging over all orientations is performed (represented by the 

brackets ( ... ) assuming that the molecules are orientated randomly with respect 

to the polarised incident and scattered radiation. The polarisability tensor is 

then separated into its spherical and non-spherical parts, 

o!2k(t) = at'83k + /3k(t) . 	 (2.10) 

The spherical part is orientationally independent and the trace of 0' (t) is zero: 

I (w) = A(w1-w)4(2ir)' 
f

00 

+0o 
((a  v)2+ 2  _Tr[/3v(0)./3(t)]) x (QV(0)QV  (t)) exp(iwt)

15  
(2.11) 

+001 

I(w) = A(w i  - W,)4 (27r)-1 f 00 (ThTr[13v(0) . /3V()J) x (Q(0)Qv(t))  exp(iwt) 

(2.12) 

The author points out that I (w) is now the intensity of the scattered radiation as 

a function of frequency for the case that the incident and scattered radiation are 

polarised parallel to one another, a spectrum referred to later as a VV spectrum. 

Similarly I-L (w) refers to the case where the incident and scattered radiation are 

polarised at ninety degrees to one another, which shall be called the VH spectrum. 

The separation of the translational-rotational and vibrational motion is achieved 

by invoking an isotropic spectral band as follows: 

4 +00 

Ij (w) = A(w i  - w)4(2ir)(&")2 f (Qv (o)Qv(t))  exp(iwt) 

(2.13) 

The perpendicular and isotropic spectra are normalised (I±,nt ,.m () = I±(w)/ f. 4  11 (w)dw) 

and the correlation functions for pure vibrational relaxation, total rotational and 

vibrational relaxation and pure reorientational relaxation of the system are ob- 

tained by Fourier transformation. 

+00 

CVb(t) 
= ' 

\
QJ

norm (0)Qo,.m(t)) 
= f 	Iiso ,norm (W) exp(-iwt)dw 	(2.14) 
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+00 

'norm / norm (t)) = f-00 I±,norm(W) exp(—iwt)dw Ct0t(t) = (Tr[/3,.m (0) 13orm(t)])( 	(J\Qv 
 

(2.15) 

	

JJ Ii,norm(W) exp( — iwt)dw 	f.~ (2.16) Crot(t) = (Tr[/3 pj,.(0) I3orm(t)1) = 	°° 1zso,norm (w) exp(—iwt)dw J -  

The above derivation is given in a generalised form to express the relationship be-

tween the Raman lineshape and the correlation function via a Fourier transform. 

It also serves to show how reorientational and vibrational dephasing can be sep-

arated by use of the different polarisability components in Raman spectroscopy. 

However, to extract useful information about the reorientational motion of the 

individual molecules it is necessary to analyse the reorientational correlation func-

tion more closely. 

2.3 Orientational Motion and the Selection of 

Raman Bands 

The lineshape of a Raman band is sensitive to the reorientational motion of the 

molecular system via the anisotropic part of the polarisability tensor 0. For a 

system with no optical rotatory power, this tensor is symmetric and has only 

five independent components. In the molecular frame (MF), 6. k are constants 

characteristic of the structure of the molecule. In spherical notation they are 

given by [9]: 

	

I3 ,  = [6'//2],8 	 (2.17) 

1611 = 1/2(/3 - i/3
liz, 
v 

' 	 (2.18) 

= 1/2(#,v, - liv ± j/3V
z'  

	

yy 	y
'1  (2.19) 

If the molecular frame is turned through an Euler angle ) to coincide with the 

laboratory frame, the 	components transform according to: 

#.v (Q) = E  D 2 (Q)/3(MF) 7 	 (2.20) 
m=-2 

where D are the rotational D matrices and /3(MF) are the spherical polaris-

ability elements in the molecular frame. 

A spectrum (VV, VH, HV or HH) selects a single element of the polarisability 
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tensor 8ivj 	in the laboratory frame. For example: 

= i[13 1 (1) + 3 1 (c)1, 	 (2.21) 

as 2,8+1J 
_.(_ Pv 	iI3 jV' zj and 2/3V=(Pt) — ii)• Now ' /-'xz  

	

= j[D(1Z) + D2im()1/3(MF) 	 (2.22) 

It follows that the reorientational correlation function becomes: 

(/3;' (c')3()) 	([D(c)+D im  (a')] x [D ()+D im (1)13 (MF)3 (MF)) . 	 . 	 .  

MM ,  
(2.23) 

All that remains is to evaluate the ensemble average, requiring the use of the 

single particle orientational probability density P(Ml, t), which is the probability 

density that at a time t a molecule will have turned through an angle between 

/M and AQ + 8LM, from its initial orientation Q. Integrating over Q and AQ 

and applying orthogonality conditions for the D matrices, the final expression for 

the reorientational correlation function is: 

m=+2 
(i3)) = Co  E I f3(MF) 12  f 2 (t) . 	(2.24) 

m=-2 

In the above equation, the spherical harmonic index has been fixed with I = 2 as 

we are dealing with a Raman transition, and m can take integer values between —1 

and +1. Co is simply a constant arising from the integration over all molecular 

orientations. The functions f (t) describe different aspects of reorientational 

motion. Light scattering experiments probe the I = 2 component of P(i.fl, t) 

and the functions f ml (t) describe a specific m component of the 1 = 2 correlation 

function. As an example, let us consider a symmetric top molecule (such that 

fm (t) = f m (t)) with the major symmetry axis being the z-axis in the MF. 

Now f (t) describes the 'tumbling' motion of the molecular symmetry axis only, 

whilst the functions f? (t) and f (t) will involve some combination of the tumbling 

motion and 'spinning' motion about the major axis of symmetry. In order to 

determine the combination of these two motions it is neccessary to resort to a 

reorientational model. 

The I 8(MF) 1 2  are coupling coefficients of the correlation function to each 
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f,(t). By choosing a vibration for which only one of these coefficients is non-

zero, it is possible to study each f (t) separately. The symmetry of the molecule 

allows us to do this as the form of the polarisability tensor 13'-'(MF) is completely 

determined by the symmetry of the vibration [10]. The functional form of each 

f,' . (t) allows us to analyse how the molecule undergoes reorientational motion (be 

it only tumbling or some combination of tumbling and spinning). The theoretical 

formulation of f,(t) requires the use of a reorientational model, which is the 

subject of the next section. 

2.4 Models of Reorientational Motion 

In the previous section it was apparent that it is possible to separate various 

modes of reorientation dynamics by analysing the polarisation components of 

Raman bands for a given molecular and vibrational symmetry. The functional 

forms of the resulting correlation functions gives an insight into the reorientation 

process of these different modes of reorientation dynamics. In an attempt to 

better understand these processes, it is necessary to formulate a series of models 

for molecular reorientational motion and predict the functional form of the cor-

responding correlation function. It is obvious that single molecule reorientation 

plays an important role and in the following subsections various reorientational 

models formulated to represent the rotation of a single molecule in the potential 

energy field of its neighbours will be presented. This is not to presume that cor-

related rotations do not occur, but the complexity of such correlated rotational 

motion has caused limited progress to be made in this particular field. In general 

the models can be divided into two distinctive groups: the inertial models, and 

the stochastic models. The stochastic models are based on the assumption that 

the reorientation occurs as a series of thermally activated jumps over a potential 

energy barrier. These models are special cases of Markov chains and involve many 

concepts originating from the ideas of classical probability theory operating in a 

limit where the time to make a jump is negligible to the time between jumps, 

which is similar to the theory used for the ideal gas. All stochastic models pre-

dict exponentially decaying reorientational correlation functions which are only 

concerned with the time dependence of orientations on a given intermolecular 

potential energy surface.The inertial models consider the temporal fluctuations 

of the angular momentum or combinations of the angular momentum and orien-

tation. These models are explicitly dependent on the symmetry of the molecular 
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system. The calculation of inertial models of reorientation is based on the solution 

to the well known equations of motion [11]: 

LX =  (- - 	+ N 	 (2.25) 

ily =  (- - —) LL + N 	 (2.26) 

LZ =  (-_ - - )L XL + N, 	 (2.27) 

where L is the angular momentum in the body fixed frame, N is the torque 

on the molecule and I is the moment of inertia. The simplest of the inertial 

models is that of the free rotor that considers the reorientation of an isolated 

non-interacting single molecule. This model can then be extended to account for 

intermolecular collisions and torques. 

2.4.1 The Free Rotor 

The dynamics of an ensemble of rigid non-interacting molecules of a particular 

symmetry is most practically solved by the use of the Liouville equation [12]: 

aw 
= —iiW 	 (2.28) 

where W(F(t), t, IT(0)) is the conditional probability density that a molecule will 

have rotational phase space variables I'(t) at time t if it was known to have 

variables JT(0) at time t = 0, and £ is the Liouville operator. The specific form of 

the Liouville operator depends on the choice of phase-space variables. There is 

no formal solution to the classical equations of motion for an antisymmetric top 

experiencing no intermolecular torques, so we concentrate here on the solutions 

for the symmetric top and linear molecule. In the case of a symmetric top 1,.., = 
I = I. Choosing the phase-space variables to be the Euler angles and the body-

fixed angular momentum, and working in a frame that precesses with respect to 

the body-fixed frame with angular velocity w, = (I;' - I')L, the explicit form 

of the Liouville operator is [12]: 

L = 	 (2.29) 



CHAPTER 2. THE REOPJENTATIONAL CORRELATION FUNCTION 19 

where L is the spherical component of L in the precessing frame and 1JL  is the 

body-fixed component of the quantum mechanical angular momentum operator. 

The formal solution for W(F(t), t, ['(0)) is: 

2J+1 
w(r(t), t, r(o)) = E E 	82  DRR,(S)f R,(L(t),t;L(0)) 	(2.30) 

J=O R,R'=-J 

where 

f R,(L(t),t;L(0)) = exp(—iR'b x L(0)t/I)exp(i(R— R')q5L(0)) x 

_ exp(iML(0)t/I)d M (OL  (0))d,M  (OL  (0)) 

X H_1 5(L(t) - L(0) exp(iub x L(0)t/I)) . ( 2.31) 

In the above equation q5L(0), OL( 0), L(0) are the spherical polar coordinates of the 

body-fixed L at t = 0 and b = (I - 

In a similar way, the Liouville operator can be expressed explicitly for a linear 

molecule [12]. In this case, it is mathematically more convenient to use the space-

fixed angular velocity, rather than the body-fixed angular velocity. The phase 

space variables are the magnitude and azimuthal orientation angle of the angular 

velocity w(t) at time t, w(t) and 0,(t) respectively and 8a, 50, the azimuthal 

and polar displacements of the molecule. The conditional distribution function 

is found to be 

2J 1 
W(F(t), t; ['(0)) = 	D(5a, 5/3, 0)f(w(t), t; w(0)) 	(2.32) 

R 

where 

fj(w(t), t; w(0)) = > exp(iMw(0)t)d'M ()d M () xexp[—iRqS(0)]5(w(t)—w(0)). 

(2.33) 

Such conditional distribution functions can be used to formulate correlation func-

tions with the general equation being [13]: 

C,-.t (t) = (D f1 (5)) = f Dfri (51)W(['(t), t; F(0))d['(t)W ° (r(0))dF(0) (2.34) 

where W°(F(0)) is the probability density for ['(0) at t = 0. The relevant initial 

probability distributions for the cases of the symmetric top and linear molecule 
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are Maxwellian distributions for angular momentum and angular velocity respec-

tively: 

f°(L(0))dL(0) = 	1 
1/2 expE-7T(1 + bcos2  OL( 0))] (27rkT) 3/2 II 

	

xd4L(0) sin GL (0)dOL(0)L 2 (0)dL(0) 	 (2.35) 

I  
f°(w(0))dw(0) 	

1w2(0) 

	

= 2kT 
exp[—  2kT ]d0,(0)w(0)dw(0) . 	(2.36) 

The above expressions are integrated over the phase space variables f(t). Notice 

that as the angular momentum and angular velocity are vectors the integration 

is performed over both the magnitude and the orientation angle. The resulting 

correlation functions are 

(D RI (6)) = f (fir,' (L(t), t; L(0)))L(t)f0(L(0))dL(0) 	(2.37) 

for the symmetric top, and 

________ 	 1w2(o) 
(D 	

- 
(5)) 8R',08R,O' 

f d 0 (w(0)t) exp[— 2kT ]w(0)dw(0) 	(2.38) 
kT 

in the case of the linear molecule. For the special case of a spherical top the 

correlation function has the form: 

	

(D,(81)) 
= 

6RR' 
2J + 1 > (1 - M

2t*2 ) exp [M2 t*2 /2] 	(2.39) 
M=-J 

where t*  is the time in reduced units, given by t = t(kT/I)'/ 2 . In the case of the 

dipole moment correlation function, the function becomes negative for a period 

of time, which is representative of the fact that the linear molecule has on average 

undergone a rotation through 180° [14]. 

2.4.2 Collisions in Condensed Phases 

There are two obvious deficiencies in the free-rotor model discussed above. First, 

the model takes no account of intermolecular torques. This problem alone is not 

of great significance, as even in dense phases, the torque will tend to zero as the 

intermolecular interaction potential approaches spherical symmetry. In the case of 

non-spherical molecules, the torque about any given high-symmetry axis is usually 

small enough as to have no major effect on the functional form of the correlation 

functions. The second deficiency is, however, of far greater concern: the free-rotor 
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model ignores all possible collisions between the constituent particles of a system. 

It is for this reason that, whilst the free-rotor model has been used with great 

success to analyse reorientational correlation functions in gases [12], it breaks 

down badly when applied to condensed phases. 

From the free-rotor models it is apparent that the representative motion of a 

molecule as a function of time is completely expressed by the given components 

of the small Wigner rotation matrices. In the case of the linear molecule, the 

only component of interest is d 0  (wt), which represents pure tumbling motion. If 

we consider the case for dipole moment correlation functions (the first spherical 

harmonic index) d 0 (wt) = cos(wt) = cos(9) where 0 is the angle between the unit 

dipole moment vector m(0) at time t = 0 and m(t) at time t = t. In this way, 

the dot product relationship (direction cosine) is immediately apparent. In the 

case of the fluctuations of a second rank tensor, d 0 (wt) = [cos2 (wt) - 11. The 

free-rotor correlation function is then obtained using a Boltzmann distribution 

and integration over the angular velocity. Following the work of Gordon [15], 

it is possible to formulate a hypothetical correlation function based on a model 

of successive reorientational steps each terminated by a collision. In the second 

harmonic index for a linear molecule, the first rotation step is given by d (wi t i ). 

Assuming that the collision which ended the first diffusion step occured at t 1 , 

the contribution to the correlation function from a molecule that has made two 

angular diffusion steps is: 

 t 
F2 (t) = f' d( 1 [t - t 1 ]) - d 0 (w it i )dt i 	(2.40)I 

As the collision which terminated the first diffusion step could have occurred at 

any time between 0 and t it is neccessary to perform the integration over t 1 . The 

rate of the rotational diffusion is determined by the collision frequency, 9, which 

is given by a Poisson distribution [16]. The number of molecules at a time t which 

are in their (n + 1)th diffusion step is then 1/n!(/3t) exp(—/9t). Extending the 

theory to account for molecules in the first, second,... (n + 1)th diffusion step the 

total correlation function is given by: 

3fl[Jdw[t - ta]) X f & -  tF(t) = exp(—t3) 	 tfl4( 	t_100 (w[t  

f dt 2&(w3 [t3  - t2]) x f2  dt1 d 0 (w2 [t2  - t 1 ])d 0 (w1 t 1 ) . 	(2.41) 

The above equation is the general diffusion formula for an ensemble of molecules 
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undergoing successive collisions of negligible duration compared to the time be-

tween collisions. The molecular motion between collisions is that of free rotation 

and, whilst the direction of the angular momentum vector is randomised after 

each collision, the molecular orientations upon entering and exiting a collision 

are unchanged. The exact definition of a collision is extremely tenuous, as it 

really refers to a change in the angular momentum, and not specifically to an 

event where two or more molecules actually collide with one-another. The gen-

eralised diffusion equation is not as yet complete as it still remains to define the 

angular velocity distribution function and to perform the necessary integration. 

Gordon [15] defined two limiting cases: in addition to randomising the direction 

of the angular momentum vector at each collision, the magnitude of L can also 

be randomised (J-diffusion) or can remain unchanged (M-diffusion). However, 

it is already apparent from the multiple integrations that appear in the gener-

alised equation, that a more tractable form is required if we are to formulate such 

models. 

2.4.3 The M-Diffusion Model 

In the M-diffusion limit, it is considered that w0  = w, = w2 ... = Wn in the 

generalised equation. Each collision therefore randomises the direction of the 

molecular angular momentum in the plane perpendicular to the axis of the linear 

molecule, though the magnitude remains constant. Averaging over a Boltzmann 

distribution of rotation velocities, the specific formula in reduced units is given 

by: 

Fm  (t) = f0wexp(w2) x exp(—t,8) 	0 /3fdt&00 (w{t - ta]) 

X J',' dt_1 &00 (w[t - t_1])... f3 dt2&00 (w[t3 - t2]) 

x fotl dt1d0(w[t2 - t1])d0(wti) . 	 (2.42) 

As d 0 (x) is the second Legendre polynomial with argument cosx, the above mul-

tiple integral expression can be expressed, and solved using Kummer's confluent 

hypergeometric function [17]. Using the free-rotor expression for F0  (t), 

fo 
F0(t) 

=

00 

cos(wt)wexp(— 
1 
 w 2 )dw, 	 (2.43) 
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all higher terms Fk(t)  are found by the recursion relationship 

Fk(t) = _t-2[F k_1 	
-2 

 'k-1) 

	

(k  - 1)!/(2k - 2)!], 	(2.44) 

and used in the series 

00 	 [(n+ 1 )]/2  
FM(t) = exp[-tf3] E (n + 1)(t/3/2)" x 	Fk (t)/2ck!(n + 1 - 2k)! . (2.45) 

n=O 	 k=O 

2.4.4 The J-Diffusion Model 

The explicit expression for the J-diffusion model is the multiple integral of the 

free-rotor over given time steps weighted by a Poisson distribution of the collision 

frequency, /3. The magnitude of angular momentum is randomised at each step: 

F(t) = exp(-t/3) E(J  /3°[f dtF0 (t - t) x J' dt_ 1 F0 (t - t_1)... 

X f3  dt2F0 (t3  - t2) x f2  dt1 F0 (t2  - t1 )F0 (t 1 )] . (2.46) 

Numerical calculation of the J-diffusion model can be achieved using a trapizoidal 

integration approach [18]. The required formula is: 

F(t) =exp(/3t)/3F(n± 1,t) . 	 (2.47) 

F(1, t) is the expression for the free-rotor for a linear molecule. Invoking a time-

step, A, and regarding v as an integer variable: 

F(1'  AV) = I 00 

dw 
1  
-[cos2 (wLv) - 1]wexp(-w2 /2) . 	(2.48) 

Jo 	2 

Using a recursion relationship it is then possible to generate all F(n,t) as follows: 

	

F(ri, Au) =d,,F(n - 1, 1v)F(1, 1u - AV) 	(2.49) 

where u is also an integer variable, and dv  has the value L/2 for v = 0 and v = 

otherwise d = A. 

Obviously such extended diffusion models can be calculated in any spherical har-

monic index, for any given molecular symmetry [19,20,21], as long as a numerical 

or analytical solution to the free-rotor for that system exists. We have con-

centrated here on the solutions in the second harmonic index for a rigid linear 
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molecule such as CS2 , which will be discussed in Chapter 4. 

2.4.5 The Stochastic Models: Small Step Rotation Diffu-

sion 

The extended diffusion models provide a much more accurate representation of 

reorientational diffusion in condensed phases than the free-rotor model. The ex-

tent to which the reorientational motion is hindered is determined by a single 

parameter, the collision frequency, 0. However, molecular reorientation in dense 

phases can be approached from a different perspective. In the case of highly 

hindered motion, we can regard reorientation to occur as a series of thermally 

activated jumps over given potential energy barriers. The molecules are now per-

manently experiencing each other's presence, and therefore it is only neccessary 

to consider the time dependence of the molecular orientations rather than the 

angular momentum. Using the ideas of classical probability theory, these models 

can be regarded as Markov chains. Furthermore the process can be simplified 

by assuming that the stochastic process is stationary. This means that the ori-

entational probability distribution is time independent and that the conditional 

probability distribution, defined earlier as W(r(t), t, r(t')), depends on the dif-

ference t - t' = r alone. It is therefore not neccessary to work with phase-space 

distribution functions, as a calculation of the partially averaged conditional prob-

ability density for reorientation W(SQ) suffices. W(6) can be regarded as the 

probability density for a reorientation 6Q in time t. A quasicontinuous set of 

orientation sites exists such that 6Q can be regarded as being made up of a set 

of infinitessimal increments in angle in Hubert space. Within this representa-

tion, we can solve W(1) using the transition density 'Ti(8Q; 51') that gives the 

probability of a change from 611' to 811 in unit time: 

ÔW(611)
= f (61l c511 W( ')dc5fl' 

at 	
. 	 (2.50) 

Asssuming that the reorientational steps are small, W(W) can be expanded in 

a Taylor series around W(81l). 

ow 1 ______ 
W(611) + 	 + 	 + ... (2.51) 

i,j=x,y,z 	 ftiav)j an i=x,y,z 
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where AV)i denotes a small rotation about the ith molecule-fixed axis. We for-

mulate the small step rotation diffusion model by stating that: 

f '(Ml; 61l')d8I' = 0 	 (2.52) 

and 
01'I'(cl; 5cZ')dScz' = Rij 	 (2.53) 

where 7, is an element of the rotation diffusion tensor. Choosing the molecular 

fixed axes such that R is diagonalised, the general equation becomes [22,23]: 

ow 02w 
-- 

= 	 . 	 (2.54) 
i=x,y,z 

The solutions to this second-order differential equation can be expanded as a 

complete set of functions 

J 
W(81l) = 	11RIDRI(81) 	 (2.55) 

J R,R'=-J 

where the expressions for the coefficients fAR'  depend on the nature of the rotation 

diffusion tensor. For the case when the rotational diffusion tensor is diagonal with 

principle elements R, R., R11 we obtain the well-known expression [24]: 

fiR' = 6ni' exp[—(J(J + 1)7Z + R2 (7Z11 - R ±)t]. 	(2.56) 

This is not the only derivation of the small-step rotation diffusion model. In-

deed, Debye [25] produced the same result by finding the conditional probability 

distribution as a solution of the diffusion equation: 

ow 
= —L R. [L + (LkBu(cl))]w 	 (2.57) 

where L is formally equivalent to the quantum mechanical angular momentum 

operator, a vector operator which generates infinitessimal rotations. kB is the 

Boltzmann constant and U(Q) is the orientational energy of a molecule as a func-

tion of the Euler angles. Obviously there are an infinite number of solutions to 

this equation depending on the symmetry of R and the choice of the potential 

function U. For the isotropic case U = 0. In this form, it is immediately appar -

ent that the symmetry of the molecule is no longer important compared to the 
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symmetry of the potential, in comparison to the inertial models. 

The small step rotation diffusion model is the most common of the stochastic mod-

els used. As with all stochastic models, it gives exponential correlation functions 

with a time exponent r related to the elements of the rotation diffusion tensor. 

The coefficients fAR' are directly comparable to those coefficients in equation 2.24 

when J=2andR=R'=m. 

2.5 Time and Distance 

The free-rotor and small-step rotation diffusion model are extreme limiting cases 

for the description of reorientational motion in condensed phases. As will be 

seen later, experimental correlation functions are neither perfect free-rotors nor 

exponentials. The extended diffusion models can be regarded as intermediates, 

but even these models possess two extreme limiting cases (J and M). Realistic 

correlation functions are likely to show aspects of all these models; in the very 

short time limit (less than 0. lps), the molecule behaves as a free-rotor, as the 

damping of reorientational motion due to intermolecular interaction is insignif-

icantly small in this time limit. Over the next few tenths of picoseconds, the 

effect of the intermolecular torques increases, slowing the reorientational relax-

ation. In condensed phases the molecule is likely to physically interact with other 

molecules situated around it, by means of collisions. The nature of the correla-

tion function in the first few picoseconds therefore is determined by the local 

structuring and environment in the system. At longer time-scales, the so-called 

hydrodynamic regime, the form of the correlation function depends on a hierachy 

of complex many-body long range interactions. Such a complex system cannot 

be modelled exactly. Using statistical mechanics the time-reversible microscopic 

orientational fluctuations of the single molecule can be related to macroscopic 

dissipative rotation diffusion coefficients. This is known as Kubo's fluctuation 

dissipation theorem [26]. At long time-scales the correlation functions decay ex-

ponentially. It is a commonly misunderstood concept that this exponential decay 

is indicative of small-step reorientation diffusion. All correlation functions in soft-

condensed phases will eventually exhibit exponential decay by virtue of the fact 

that all partially disordered systems are isotropic over large distance scales [27]. 

In this way correlation functions provide an inextricable link between time and 

distance. 
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2.6 Intermolecular Torques 

All models discussed in this chapter do not account for molecular flexibility, nor 

for the presence of intermolecular torques. Indeed attempts were made to include 

the effect of the intermolecular torque in the stochastic models. This was achieved 

by solving the rotational Langevin equation, which included an expression for the 

intermolecular torque as a function of the friction constant tensor. Two limiting 

cases were then invoked to calculate this friction constant tensor. In the 'stick' 

boundary condition [28,29], the friction constant tensor is estimated from the 

solutions of the Stokes-Einstein equation for the hydrodynamic drag of a body 

rotating in a viscous medium. Not surprisingly this model breaks down as it 

involves the use of the shear viscocity, a macroscopic hydrodynamic property, 

which cannot be used when considering the dynamics of a molecule. In the 'slip' 

boundary condition [30,31], the rotational resistance is considered entirely due 

to the fact that a non-spherical body must displace a certain amount of viscous 

fluid during rotation. Neither model proved successful and the reader is referred 

to the references [28-31] for further details. 

Although models involving the intermolecular torque have not proven to be suc-

cessful, it is possible to calculate the root mean square torque given a rotational 

correlation function [32,33,34]. The classical reorientational correlation function 

is a real, even function. of time. As such it may be approximated at short time 

by an even power series in time. In the case of a Raman spectrum: 

(a(0).o(t)) 
=o  j

[(c(0).c(t))to] 	 (2.58) 

where o is the transition polarisability. The coefficients in this time series may 

be identified with the frequency moments of the spectrum, M(k), which are the 

time derivatives of C(t) evaluated at t = 0. In the second harmonic, the moments 

expansion of a Raman spectrum for a classical linear molecule is given by: 

(it)Ic 	. k dkC(t) 
Crot(t) = > k' M(k)(z) 	dtk 1t0 

k=O 

(ii)t2 + [4(!1i) 2  + 	((OV) 2 )]t4  + ... 	(2.59) 

where ((OV) 2 ) represents the equilibrium average of the mean square torque. 

Noticeably, the second moment is independent of intermolecular torques, which 

first appear in the t4  term and have the effect of damping the decay of C,&(t) 
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with time. 

2.7 Summary 

In this chapter we have discussed the relationship between Raman lineshapes and 

correlation functions. We have seen how the functional form of the correlation 

function is dependent on reorientational motion and looked at the various stan-

dard models for reorientational relaxation. Additionally we have seen how it is 

possible to calculate intermolecular torques and rotation diffusion constants. All 

the theories discussed here will be used later in obtaining and analysing rotational 

correlation functions in partially disordered systems. 
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Fig. 2 Raman Lineshape Analysis 
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Chapter 3 

Ab Initio DFT Molecular 

Dynamics Simulation 

3.1 Introduction 

In the previous chapter we discussed the formulation of the reorientational corre-

lation function and how such correlation functions can be extracted from Raman 

lineshape analysis. In particular, it was shown that the specific functional form 

of the correlation function is dependent on the molecular reorientational relax-

ation process. It is clear from the previous discussion that reorientational corre-

lation functions are inherently classical, and are formulated as an average over 

all molecular orientations. There is to date no available experimental technique 

which allows us to specify an individual molecule in a macroscopic system and 

follow its reorientational motion as a function of time. The last forty years has 

seen a rapid development in the field of molecular dynamics computer simula-

tion techniques. Computer simulations generate at a suitable time interval the 

position coordinates of the constituent particles in a macroscopic system, and 

the forces acting on the particles. Computer simulation techniques are extremely 

useful when combined with experimental techniques to probe the dynamics of 

condensed matter systems. 

The most important aspect of any computer simulation technique is the definition 

of the interaction potential energy function. It is the accuracy with which we 

define the interaction potential that determines how realistic the simulation is. 

Let us consider classical MD simulation techniques, which are nowadays readily 

30 
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available [35]. In classical MD simulations, the constituent molecules in a system 

are considered to be rigid bodies with a simplistic symmetry, such as spheres or 

sphero-cylinders. A semi-empirical interaction function is then defined. There 

are a hierachy of semi-empirical interaction potentials available. For an isotropic 

liquid, the most common interaction potential is the Lennard Jones potential, 

which has the general form [36]: 

V = 4E[(cr1R)'2  - (ci/R) 6] 	 (3.1) 

where R is the inter-particle distance, and E and o are parameters defining the 

depth of the potential energy well and the inter-particle distance at V = 0 re-

spectively. For a given molecular system the parameters are determined from 

experimentally obtained average values. The potential is static: it does not 

account for molecular flexibility or changes in molecular conformation and vi-

brations which will act to break the symmetry of the molecular system. Having 

defined the specfic interaction potential and a given ensemble (that is to say, 

a given set of physical constraints, such as pressure, temperature and volume), 

the constituent particles are arranged randomly, yet realistically in an imaginary 

(periodically repeating) box. Using the interaction potential, the forces on the 

constituent particles are calculated. The classical equations of motion are then 

solved and the particles are allowed to move for a short period of time. Once the 

new position coordinates of the particles have been determined, the new forces 

are calculed and the procedure is repeated. In general, classical MD simulations 

deal with systems containing at least 150, 000 constituent particles. 

As the name suggests, classical MD allows the accurate computational analysis 

of classical dynamics, in particular dissipation parameters, such as translational 

and rotational diffusion constants in the hydrodynamic regime (i.e. dynamics at 

long timescales). However, due to the fact that the interaction potential com-

pletely ignores intra-molecular dynamics occuring at ultra-fast timescales, such 

as molecular vibrations and changes in the geometric molecular conformation, 

any information about the ultra-fast relaxation processes in condensed systems 

is lost. A higher level of computer simulation is required, which incorporates 

intra-molecular motion. The constituent molecules are no longer regarded as 

rigid bodies, but rather as a group of ions in an electron cloud. For a given set 

of ionic position coordinates, the polyelectronic wavefunction (which is paramet-

rically dependent on the position of the nuclear ions) is calculated. From the 

resulting potential energy surface it is then possible to calculate the forces acting 
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on the ions, and to formulate a Lagrangian which defines the dynamics of the ions 

and the electrons in the system. The intra- and inter-molecular interactions are 

therefore calculated simultaneously. This type of computer simulation is called 

ab initio as it involves the first principles calulation of the quantum mechanical 

electronic structure, rather than using an analytic interaction potential defined 

by experimentally obtained averaged parameters. 

There are two types of ab initio computer simulation techniques: Hartree Fock 

(HF) and Density Functional Theory (DFT), which are in many ways comparable, 

as they both attempt to solve exactly the same problem. In Chapter 4, results 

are presented for the study of the prototypical isotropic liquid CS2 using Raman 

lineshape analysis and ab initio DFT computer simulation. In particular the 

ultra-fast relaxation processes are investigated including the calculation of the 

intermolecular torque as a function of temperature. It is the purpose of this 

chapter to provide a general discussion of the ab initio DFT simulation technique 

used. It is not possible here to provide an exact in-depth discussion of all the 

aspects involved in the computer simulation and the author strongly refers the 

reader to the references provided for a more detailed discussion. The author makes 

particular reference to the paper by M.C. Payne et al. [37] which is concerned 

with the plane wave total energy pseudo-potential method, which is that used in 

the Cambridge-Edinburgh-Total-Energy-Package (CETEP) program employed in 

the simulation of CS2 in Chapter 4. 

3.2 An Overview of ab initio DFT Molecular Dy-

namics Simulation 

In this section the author provides an overview of the DFT simulation technique. 

In principle, all knowledge about a system can be obtained from the quantum 

mechanical wavefunction. This is obtained (non-relativistically) by solving the 

Schroedinger equation of the complete many electron system. However, in prac-

tice solving such an N-body problem proves to be impossible. Density Functional 

theory (DFT) was developed by Kohn and Sham based on the theory of Hohen-

berg and Kohn which is an exact ground state theory. As the name suggests, 

the fundamental function in DFT is the electron density rather than the elec-

tronic wavefunctions. In this formalism, the N-electron problem is expressed as 
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N one-electron equations (the Kohn-Sham equations), where each electron inter-

acts with all other electrons via an effective exchange correlation potential. These 

interactions are then calculated using the local density approximation (LDA) to 

exchange and correlation. Plane wave basis sets and the total energy pseudopo-

tential techniques are then used to solve the Kohn-Sham one-electron equations. 

The Hellmann-Feynman theorem is then used to calculate the forces required to 

integrate the ionic equations of motion within the Car-Parrinello molecular dy-

namics simulation [56]. The valence electron wavefunctions are expanded in a 

plane wave basis set and the electronic structure calculation proceeds via a pre-

conditioned conjugate gradients energy minimisation algorithm using the plane 

wave coefficients as variational parameters. After optimisation of the polyelec-

tronic wavefunction, the system is given a kinetic energy equivalent appropriate 

to the required temperature and the classical equations of motion are then inte-

grated with a timestep of 1.0f s, which ensures conservation of energy. 

In the remaining sections of this chapter we will discuss in more detail the 

exchange-correlation interaction between electrons, the solution to the poly-electronic 

problem: the Kohn-Sham equations and self-consistent field theory. We will also 

discuss the formulation of the poly-electronic wavefunctions, the local density 

approximation and the pseudopotential approximation, the Car-Parrinello La-

grangian and the Hellmann-Feynman theorem. 

3.3 Poly-electronic Interactions: The Exchange 

Correlation 

There are three types of electron-electron interaction. The coulombic repulsive 

interaction is intuitively obvious and has a classical analogue. However there are 

two other quantum mechanical interactions between electrons which do not have 

a classical analogue, these are the exchange interaction and electron correlation. 

It is the purpose of this section to show explicitly what exchange correlation is. 

Let us consider a system containing two electrons. The antisymmetry principle 

(also known as the Pauli exclusion principle) does not distinguish between identi-

cal electrons and requires that the electronic wavefunctions be antisymmetric with 

respect to interchange of space and spin coordinates of any two electrons. For 

the two-electron system we can express correctly antisymmetrised wavefunctions 



CHAPTER 3. AB INITIO DFT MOLECULAR DYNAMICS ... 	34 

in the form of the well-known Slater Determinant: 

%F(Xl,X2) = 2'/2(b(x1)t'3(x2) - 	 (3.2) 

where '/ represents a single-electron spin orbital and the coordinate x defines 

both the position and spin of electron n. Notice that the minus sign ensures that 

the wavefunction is antisymmetric with respect to interchange of the coordinates 

of electrons one and two. Let us now see how the antisymmetrisation affects the 

wavefunction. Let us assume that the electrons have opposite spins and occupy 

different spatial orbitals: 

	

= &(ri)a(wi) 	 (3.3) 

	

2(X2) = c2(r2)I3(w2) . 	 (3.4) 

Let P(r i , r2)dr1 dr2 be the probability of finding electron-one in dr1  and simulta-

neously electron-two in dr2 . This probability is obtained by taking the square of 

the wavefunction and integrating over the spins of the two electrons. The result 

for a system of two electrons with opposite spins is: 

P(r 1 ,r2)dri dr2 = fdw 1 dw2 Wj 2dr idr2 

= U01(r1)I2I2(r2)I2 + 11 (r2)I2I2(ri)I2]dridr2 . 	(3.5) 

The first term is the product of the probability of finding electron one in dr 1  at r1 

times the probability of finding electron-two in dr2 at r2 if electron-one occupies 

spatial orbital-one and electron-two occupies spatial-orbital-two. The second term 

has electron-one occupying spatial orbital-two and electron-two occupying spatial-

orbital-one. Since the electrons are indistinguishable, the correct probability is 

the average of the two terms as shown. The electrons are capable of exchanging, as 

the wavefunction is antisymmetric, however, the electrons are still uncorrelated. 

This is particularly obvious if spatial orbitals one and two are the same spatial 

orbital, in which case the probability P(r i , r 1 ) is not equal to zero. There is a 

finite probability of finding two electrons with opposite spins at the same point 

in space at the same moment in time. If the two electrons have the same spin 

(eg. 8), then we obtain: 

P(ri,r2) = (I01 (r1 )I 2 I 2 (r2 )I 2  + 101 (r2 )I 2 I2(r1) 2  

_[(r1 )2(rl)(r2)q5l(r2) + 1(r1)(r1)q52(r2)ø(r2)1) 	(3.6) 
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where we now have an extra cross term that ensures that the electrons are corre-

lated. This is exchange correlation between electrons of parallel spin. As we see, 

the probability of finding two electrons with parallel spin at the same point in 

space at the same time is zero. A Fermi hole is said to exist around an electron. 

In the Slater determinant the motion of electrons with parallel spins is correlated, 

but the motion of electrons with opposite spins is not. 

In summary, the antisymmetry of the polyelectronic wavefunction produces spa-

tial separation between electrons that have the same spin function, thus reducing 

the coulomb energy of the electronic system. This energy reduction due to anti-

symmetry is called the exchange energy. The calculation of the total electronic 

energy including the exchange energy is called the Hartree-Fock approximation. 

However, electrons of opposite spins are not correlated and therefore the exact 

many-body energy of an electronic system is greater than the energy of the sys-

tem calculated in the Hartree-Fock approximation. This energy difference is the 

correlation energy and is extremely difficult to calculate [38]. 

3.4 The Solution to the Polyelectronic Prob-

lem: The Kohn-Sham Equations and Self-

Consistent Field Theory 

In 1964 Hohenberg and Kohn [39] proved that the total energy of a homogeneous 

electron gas including exchange and correlation is a unique functional of the 

electron density. The minimum value of the total energy functional is the ground 

state energy of the system, and the density that corresponds to this minimum 

value is the exact single particle ground-state density. From this theory, Kohn 

and Sham formulated an expression for the total energy functional for a set of 

doubly occupied electronic states /'j in the presence of a set of static nuclei (using 

the Born-Oppenheimer approximation) [40]: 

E[ 1 ] = 2 > f b[— ] V2 &d3r + f Vj (r)n(r)d3r 

+ f n(r)n(r')d3rd3rl + Exc[n(r)] + E(R1) . 	(3.7) 
2 	1r-r'l 
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The first term represents the electron kinetic energy, V2  is the static total 

electron-ion potential, n(r) is the electron density given by: 

n(r) = 2 	1 b(r) 1 2 , 	 (3.8) 
I 

Exc[n(r)] is the exchange correlation functional and Ejon is the Coulomb energy 

associated with the interactions between the nuclei at positions R1. The exact 

calculation of the Coulomb energy of the ionic system is difficult as the Coulomb 

interaction is long-ranged in both real and reciprocal space. Ewald formulated 

• mathematical theory which expresses the total ion-ion coulomb interaction for 

• periodically repeating system of ions as the sum of two finite series. This is 

known as the Ewald sum [41]. 

The polyelectronic problem now reduces to finding the set of wavefunctions /.'j 

that minimise the Kohn-Sham energy functional, as it is at this minimum value 

that the Kohn-Sham energy functional is equal to the ground state energy of the 

system of electrons with the ions in positions R1 . These wavefunctions are given 

by the self-consistent solutions to the Kohn-Sham equations: 

—h 2  
[—V2  + V(r) + VH(r) + Vxc(r)](r) = e1 '(r) 	(3.9) 
2m 

where '/j is the wavefunction of electronic state i, Ej is the respective Kohn-Sham 

eigenvalue, and VH is given by: 

VH(r) - e2 f 
n(r') d

3r' . 	 (3.10) 
- 	Ir-r'I 

The exchange-correlation potential is given by the functional derivative: 

Vxc(r) - 
- SExc[n(r)] 	

(3.11) 
 ön(r) 

The Kohn-Sham equations map the interacting many-electron system onto a sys-

tem of non-interacting electrons moving in an effective potential due to all the 

other electrons in the system. Due to the presence of the ionic nuclei, the electron 

density is not homogeneous and an approximate expression for the exchange cor-

relation energy is required. This is the Local Density Approximation. In order to 

reduce the cpu time, the ion-electron interaction is also approximated by the use 

of pseudopotentials. LDA and the pseudopotential approximation are discussed 

in the next section. 
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The electronic wavefunction is expressed as a plane wave basis set expansion in 

reciprocal space: 
N 

=E C1exp[ikr] . 	 (3.12) 
j=1  

In the CETEP program, the calculation is performed for a periodically repeat-

ing supercell, and the actual plane wave basis sets used are the product of a 

cell-periodic function and a wavelike part as defined above [42]. For the exact 

plane-wave representation of the Kohn-Sham equations the reader is referred to 

the reference provided [42]. The author draws attention to the fact that there 

are a finite number of known basis set wavefunctions in reciprocal space. The 

variation parameters are the basis set coefficients. The electronic wavefunction is 

represented on a set of grid points in 3D k-space. The Kohn-Sham equations are 

solved self-consistently so that the occupied electronic states generate a charge 

density that produces the electronic potential that was used to construct the 

equations. A self-consistent field is achieved and simultaneously, the energy of 

the system is minimised. The iterative procedure is carried out by moving from 

reciprocal to real, to reciprocal space by means of a Fourier transform. 

3.5 LDA and the Pseudopotential Approxima-

tion 

In order to make the solutions to the Kohn-Sham equations mathematically 

tractable, two approximations are used. The simplest way of describing the ex-

change correlation energy of an electronic system is to use the Local Density 

Approximation (LDA) [40,43,44,45]. This approximation is almost universally 

used in total energy calculations. In the LDA, the exchange correlation energy 

of an electronic system is constructed by assuming that the exchange correlation 

energy per electron at a point r in the inhomogeneous electron gas is equal to the 

exchange correlation energy per electron in a homogeneous electron gas that has 

the same density as the inhomogeneous electron gas at point r. Mathematically 

this is expressed as: 

SExc [n(r)] - t9[n(r)exc (r)] 	
(3.13) 

Vxc(r) = ön(r) - 	an(r) 

with 

Exc(r) = eZj[n(r)] . 	 (3.14) 
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As the name suggests, the LDA regards the exchange correlation functional as 

being purely local. 

The pseudopotential approximation (PA)[46,47,48] plays a major role in total 

energy calculations. Its value is that it greatly reduces cpu time. The cpu time 

for the total electron calculation is dependent on the number of plane-wave basis 

sets. The number of basis sets depends on the number of electrons in the system, 

the size of the system (i.e. the size of the periodic supercell). However, as 

the electronic wavefunctions are formulated in k-space, the required number of 

basis functions is also very much dependent on the energy of the electrons. In a 

poly-electronic system, the true valence functions oscillate rapidly in the region 

occupied by the core electrons due to the strong ionic potential in this region. 

In the PA, the core electrons and the strong potential are removed and replaced 

by a weaker pseudopotential that acts on a set of pseudowavefunctions rather 

than the true valence wavefunctions. The properties of the pseudopotential for 

the pseudowavefunctions are identical to those of the ion and core electrons for 

the true valence wavefunctions. Outside the core-region, the pseudopotential and 

ion-core electron potential are identical, and therefore so are the pseudo- and true 

valence wavefunctions. At the periphery of the core region, the valence electron 

has a given potential energy. This is known as the energy cut-off, and explicitly 

determines the number of basis sets required. A hierachy of pseudopotentials have 

been developed and the reader is referred to the references [49,50,51,52,53,54,55] 

for more information. It is important to note that the energy cut-off in the PA 

is determined by the type of ions in the system. 

3.6 Car-Parrinello Molecular Dynamics and the 

Hellmann-Feynman Theorem 

The Car-Parrinello molecular dynamics approach exploits the quantum mechani-

cal adiabatic time-scale separation of fast electronic and slow nuclear motion, by 

transforming this separation into classical-mechanical adiabatic energy-scale sep-

aration in the framework of dynamical systems theory. The two-component quan-

tum/classical problem is mapped onto a two-component purely classical problem 

with two separate energy scales. In doing this the explicit time-dependence of 

the quantum subsystem dynamics is lost. The energy of the electronic subsystem 

evaluated with some polyelectronic wavefunction W, as discussed previously, is a 
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function parametrically dependent on the nuclear position coordinates. However, 

this energy can also be considered to be a functional of the polyelectronic wave-

function, and therefore also a functional of the set of single-electron orbitals lj, 

given by the Kohn-Sham equations, used to construct the polyelectronic wave-

function. In classical mechanics, the force on the nuclei is obtained as the deriva-

tive of a Lagrangian with respect to the nuclear positions. In a similar manner, 

a functional derivative with respect to the single electron orbitals, interpreted 

as classical fields, yields the force on the orbitals, given a suitable Lagrangian. 

Car-Parinello postulated a Lagrangian of the general form [56]: 

Lcp = 	MiIiI2 + 	Ai ('ibj  I b) - E[b, R1, a] + constraints. (3.15) 

The first two terms represent the kinetic energy of the electrons and the kinetic 

energy of the nuclei respectively. The third term represents the potential energy 

of the system, given by the Kohn-Sham energy functional. The constraints are 

incorporated in the molecular dynamics Lagrangian using the method of Lagrange 

multipliers and ensure that the electronic wavefunctions remain orthonormal. p is 

a fictitious mass associated with the electronic wavefunctions, R1 is the position 

of ion I, and an  define the size and shape of the unit cell. From this Lagrangian 

the Car-Parinello equations of motion are then found to be of the form: 

aEa 	 (3.16) MjbfRj(t) = - 	+ 	constraints 
OR1 OR1 

AA(t) = - SE + S-constraints . 	 (3.17) 
50i 	J0j  

As in all dynamics methods, an efficient means of calculating the forces acting 

on the nuclei is required. Numerical calculation of the derivative of the total 

energy of the system with respect to the position of the ion in terms of a finite 

difference approximation to the total electronic energy is too costly and inaccurate 

for dynamical simulations. On expanding the total derivative and calculating the 

gradients analytically, we observe that there are also contributions to the force 

from variations of the wavefunction. The force is only the partial derivative of 

the Kohn-Sham energy functional with respect to the position of the ion. If the 

wavefunction is an exact eigenfunction, or stationary state wavefunction, then 

the contributions due to variations of the wavefunction vanish. This is known as 

the Hellmann-Feynman theorem [57,58]. 
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Car-Parrinello molecular dynamics represents a breakthrough in the way in which 

quantum-mechanical calculations are performed. In combines the advantages of 

both Ehrenfest and Born-Oppenheimer molecular dynamics. In Ehrenfest molec-

ular dynamics [59], the time-step for integration is dictated by the dynamics of 

the electrons, which is much faster than the nuclear motion. The largest timestep 

possible is that which allows the integration of the electronic equations of mo-

tion. In Born-Oppenheimer molecular dynamics [60], no electron dynamics are 

involved, and so the time step for integration is given by the timescale of the nu-

clear motion. At each molecular dynamics step, the electronic structure problem 

must be solved self-consistently, a process avoided in Ehrenfest dynamics as the 

wavefunctions are allowed to propagate by applying the Hamiltonian to an ini-

tial wavefunction. For more details, the reader is referred to the references given 

[59-60]. Car-Parrinello molecular dynamics takes advantage of the smooth time-

evolution of the electronic subsystem, and yet integrates the equations of motion 

over a long timestep determined by the nuclear motion. In the Car-Parinello 

equations of motion, the nuclei can be considered to evolve in time at a certain 

instantaneous physical temperature, whilst the electronic degrees of freedom are 

associated with a fictitious temperature. The electronic subsystem is close to 

its instantaneous minimum energy, or the exact Born-Oppenheimer surface. The 

ground-state wavefunction optimised for the initial configuration of the nuclei 

remains close to its ground state during time-evolution. 

3.7 Problems and Errors Associated with ab mi-
tio DFT Simulation 

In addition to the Born-Oppenheimer approximation, the LDA, and the pseu-

dopotential approximation, there are obviously other intrinsic errors in DFT 

computer simulations. There are errors associated with using a finite plane-

wave basis set, and the formulation of the wavefunction on a finite set of FFT 

grid points in k-space. In addition there are computational rounding errors, and 

errors occurring in the calculation of the forces using the Hellmann-Feynman the-

orem. Most of these errors can be considered to be negligible. The main problem 

with ab initio DFT simulation is that, as it is an iterative procedure, it is ex-

ceedingly numerically intensive, leading to very large cpu times for even small 

systems comprising of less than 100 ions. Computer simulations are therefore 

severely limited in the size of the system that can be considered. For the case 
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of simulation of crystalline solids, in which the system is a periodically repeat-

ing unit cell, this problem is avoided. For the simulation of liquids and other 

partially disordered systems, the use of a periodically repeating supercell is inac-

curate and will lead to problems associated with finite size effects and artifacts 

due to periodic boundary conditions. For the case of the simulation of CS2, the 

useful information is collected for only the first picosecond and on comparing the 

results for supercells containing different numbers of CS 2  molecules, it appears 

that the finite size effects are negligible. 



Chapter 4 

Reorientation Dynamics in a 

Prototypical Isotropic Liquid 

4.1 Case Study of Carbon Disulphide 

In this chapter the results and analysis of an investigation into the reorientation 

dynamics of a prototypical isotropic liquid are presented, along with a comparison 

to an ab initio DFT molecular dynamics simulation. Carbon Disulphide was cho-

sen as the prototypical substance, as it is particularly suited to Raman lineshape 

analysis. A small rigid linear molecule, CS2 belongs to a well-defined symmetry 

group and is also a strong Raman active chromophore. With a freezing point of 

—111°C and a boiling point at 46°C, the isotropic liquid phase of CS 2  is easily 

experimentally accessible. Due to the fact that the molecule is so small, the re-

orientational relaxation is very fast and therefore the reorientational contribution 

made to line broadening is considerable. The theory, including specific equations 

relevant to the case of a linear molecule, has already been discussed in chapter 

2. It remains here to describe the details of the experimental set-up and the 

specific experimental parameters which need to be optimised. Indeed obtaining 

accurate correlation functions from Raman lineshapes is a difficult business. The 

mere observation of a Raman band does not suffice to produce accurate correla-

tion functions. In the next section we discuss in general the way to obtain good 

correlation functions, before proceeding to the specific case for CS 2 . 

42 
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4.2 Obtaining Accurate Correlation Functions 

Reorientation dynamics occurs over a timescale of picoseconds. The useful in-

formation to be obtained from analysing a Raman line is to be found in the 

extreme wings of the Raman band. Furthermore, as it is the lineshape that is 

of importance, the chosen Raman band must not only possess a good signal to 

noise ratio (SIN), but also be well isolated from all other Raman bands in the 

spectrum. Combination bands cannot be analysed accurately. Generally, the ex-

perimentalist analyses a Stokes-shifted Raman band, rather than its anti-Stokes 

equivalent, as the Boltzmann distribution over states predicts that the intensity 

of the Stokes-shifted band will always be greater than that of the anti-Stokes. 

The experimentalist can also improve the SIN ratio by choosing a high-frequency 

incident beam, as the Raman signal is proportional to the fourth power of the in-

cident frequency. A Raman band is considered to be completely symmetric, and 

in order to avoid the problems of apparent line-broadening due to red-shifting of 

the band, only the high-frequency side of the band needs to be analysed before 

symmetrisation. 

Having found a well-isolated, high intensity Raman band of the correct symmetry, 

it is necessary to define the spectral baseline (that is the functional form and 

magnitude of the noise), in order to accurately assess in the very far edges of the 

band, what is noise and what is the Raman signal. The technique developed by 

the author is as follows. The baseline is analysed over a spectral range of 300cm' 

on either side of the Raman band of interest. If found to be a slope, the baseline 

is immediately levelled. The Raman band of interest is then recorded over a large 

spectral range from the band centre, using several count times. The count time 

is the time over which scattered photons are counted by the spectrometer. The 

SIN ratio shows a square root dependence on the count time. By comparing the 

relative intensities at different frequency shifts from the centre of the band, for 

different count times, it is possible to determine whether the frequency shift is 

in the signal or the noise. Considering a hypothetical high frequency side of a 

Raman band and pinpointing three different frequency shifts, named A, B and C, 

let us now consider the relative intensities at A and B for different count times. 

If the relative intensities remain unchanged at different count times, then either 

A and B are both in the signal, or both in the noise. If the intensity relationship 

is found to be a function of the square root of the count time, then A is in 

the signal, whilst B is in the noise. Let us assume that it was found that the 

relative intensities of A and B were equal for different count times, but that the 
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relative intensities for B and C showed a square root dependence on the count 

time. This is indicative that both A and B are in the signal, whilst C is in the 

noise. It is apparent then that we need take spectral measurements only as far 

out as C, in order to be certain of analysing the whole Raman band. Obviously, 

if the substance fluoresces an accurate baseline correction is not possible. In this 

case, the experimentalist would have to resort to UV-Raman, and analyse an 

anti-Stokes band. 

It is well-known that the lineshape of an experimentally obtained Raman band 

is not the actual lineshape of the band, rather a convolution of the band and the 

instrumental slit function of the spectrometer [61]. By virtue of the fact that the 

Fourier transform of a function f, which is a convolution of two functions g and 

h, is just the Fourier transform of g multiplied by the Fourier transform of h [62], 

it is easy to correct the measured wavefunction, if the slit-function is known. This 

is only necessary if the slit width is greater than ten times the full-width-half-

height (FWHH) of the band. The author used a triangular slit function where 

appropriate [63]. 

In order to obtain good correlation functions it is imperative that the S/N ratio 

for all spectra (VV and VH) be at least 5 : 1, though in many cases it is ob-

served to be greater than 10,000 : 1. The only way of increasing the S/N is to 

increase the count-time. In the case of CS2 in particular it was found that the 

S/N ratio in the VH was very much smaller than in the VV spectrum. This is 

not problematic in the case of such a small molecule where the reorientational 

contribution to line broadening is so large compared to the vibrational contribu-

tion. In the case where the reorientational contribution is small, errors created 

due to large differences in the S/N ratios in the VH and VV spectra are much 

more significant, and a considerable difference in count-times for the VV and VH 

spectra is required. In such cases the VV and VH spectra are normalised relative 

to the respective count-times. In a similar manner the frequency step-size is also 

dependent not only on the absolute values of the FWHH for the spectra, but 

also on the difference between VV and VH FWHH, in order to achieve accurate 

separation of the vibrational and reorientational correlation functions. 

The above procedures were carried out for all Raman (VV and VII) spectra 

recorded and presented here. Having determined the baseline, each spectrum 

was first lowered onto the x-axis (zero-intensity), before formulating the isotropic 

and anisiotropic components of the Raman data, normalisation and Fourier trans-

formation to give the respective correlation functions (see chapter 2). 
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4.3 Experimental Procedure for CS2 

Raman spectra were taken of the CS 2  A 19  symmetric stretch at 655cm' with the 

incident and scattered radiation polarised parallel (VV) and perpendicular (VH) 

using polarisers with a dichroic ratio measured to be 10 3 . The incident beam 

at 647.1nm was obtained from a Krypton ion laser with a power of 200mW. A 

Coderg T800 triple-grating spectrometer was used in a 900  configuration. The 

slit size was set to 50gm allowing a spectral resolution better than The 

data was collected in steps of cm out to 45cm_' from the centre of the band 

with a count time of lsec for the VV and 20sec for the VH respectively. The 

baseline correction procedure described in the previous section was carried out 

on the VV and VH spectra and the high frequency side of the band was used to 

compute correlation functions. Not only does the use of the high frequency side of 

the band avoid complications arising from a bending mode overtone vibration on 

the redshifted side of the line, it also removes the artificial linebroadening arising 

from red-shifting as previously discussed. Correlation functions were obtained 

over a temperature range from 300K to 180K. The CS 2  was sealed in a 1mm 

diameter capillary tube, which was cooled using a gas-pumped cryostat. 

A series of figures is provided to show the fundamental steps in obtaining the 

correlation functions from the Raman spectra for a given sample of CS2 at 300K. 

The VV and VH spectra (Fig. 3a and 3b) are symmetrised and a baseline cor-

rection is performed, and the bands are then shifted onto the origin (Fig. 3c). 

The isotropic and anisotropic components are then computed and normalisation 

followed by Fourier transformation gives the reorientational, vibrational and total 

correlation functions (Fig. 3d). 

4.4 Determination of Experimental Errors 

The largest source of experimental error in obtaining the correlation functions 

comes from the accurate determination of the baseline correction. The baseline, 

which is the functional form and magnitude of the noise, is affected by fluores-

cence of the substance, weak spectral features, such as satellites and overtone 

bands, as well as signals from impurities present in the test substance. In the 

present work, the baseline was fitted to a fourth-order polynomial, the specific 

fit parameters being optimised using a least-squares regression fit program. The 
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baseline correction was performed over different spectral regions: the first baseline 

fit was performed using the background noise only over the first few wavenumbers 

on either side of the wings of the band. The most long-ranged baseline correc-

tion was performed by fitting to the background noise over a spectral region of 

150 wavenumbers from the wings of the band. The difference in the correlation 

times is particularly obvious. To show this, the author gives a specific example: 

the CS2 A 19  VII spectral band at 300K was used initially with a polynomial 

baseline correction performed by fitting to the background noise over lOcm' in 

the immediate vicinity of the bands. The resulting reorientational correlation 

function gives an integrated correlation time of 1.5ps [64]. This was an early 

initial prublication by the author. In the work here, the baseline correction has 

been performed over 300cm 1 , from 505cm' to 805cm 1 . The calculated re-

orientational correlation time obtained is then 0.78ps. Extending the fit for the 

baseline correction to an even broader spectral region produced no further change 

in the correlation functions, or correlation times. This example provides a good 

means of estimating the experimental error in the correlation time. At best, the 

author concludes that the reorientational correlation time for CS2 at 300K is 

1.2ps ± 0.3ps. 

The estimation of the magnitude of error in the correlation functions themselves 

is more complicated. The magnitude of error in the correlation functions at fast 

time-scales (i.e. the first 0.4ps) is small. This is because the information about 

the fast relaxation is contained in the far wings of the band, in very close proximity 

to the background noise used to perform the fit for the baseline correction. The 

uncertainty in the baseline correction is more predominant towards the centre of 

the Raman band. Furthermore, the correlation functions depend on the lineshape 

of the Raman band and, in particular, on the gradient of the lineshape. When the 

gradient of the Raman lineshape is steep, small changes in the baseline correction 

produce large changes in the gradient of the respective correlation function. It 

is seen that the gradient of the Raman lineshape is steepest towards the middle 

of the band and shallow in the far wings of the band. On comparing correlation 

functions obtained using baseline corrections performed over different spectral 

regions about the band, it was seen that the correlation functions were identical 

over short time-scales, but showed variations at longer time-scales (greater than 

0.5ps). The magnitude of error increases on going to longer time-scales and can be 

weighted with respect to the gradient of the Raman lineshape and the freqeuncy 

difference between the spectral data in the signal and the background noise. 
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For the purposes of the present work, the author has chosen to publish correla-

tion functions obtained when using a baseline correction fitted over the largest 

spectral region, 150cm' on both sides from the centre of the Raman band.These 

correlation functions show the fastest decay and do not change when going to 

baseline corrections fitted over larger spectral regions. The correlation functions 

at different temperatures are comparable, because the baseline correction was 

fitted over the same spectral region in each case. The error bars indicate to what 

extent the decay of the correlation functions decreases when performing the base-

line correction fit over a shorter spectral region. In the case where more than one 

correlation function is depicted on the same graph, only one set of error bars are 

shown, as the spectral region for baseline polynomial fit used when comparing 

correlation functions, and therefore the error estimation, is always the same. 

4.5 Results and Analysis 

Fig. 4 shows experimentally obtained correlation functions of CS 2  over a tem-

perature range from 180K to 300K. A monotonic temperature dependence at all 

time-scales is observed. The reorientational motion, and hence relaxation rate, 

decreases with the lowering of the temperature. However this relationship is not 

linear. This can best be seen by integrating the correlation functions, to obtain 

the correlation time T. Fig. 5 shows the correlation time as a function of temper-

ature. It can be seen that on cooling to below 240K, the correlation time starts 

to rise rapidly. Assuming that the motion is that of small step rotation diffusion, 

the simplest available model (but obviously from the non-exponential correlation 

functions invalid), the correlation time r is related to the rotation diffusion con-

stant D1  as -r = ---. So a dramatic increase in correlation time at temperatures 

lower than 240K suggests a significant reduction in reorientational freedom of 

the constituent molecules due to intermolecular interactions and collisions which 

hinder the reorientational relaxation of the system. The author points out that 

the correlation time of CS 2  at 300K as measured here is 0.78ps. This is much 

faster than previously reported values, including an initial publication by the au-

thor, which have reported the correlation time to be as slow as 1.5ps [65,4]. The 

author believes that this arises from the fact that previous authors have assumed 

the Raman band to be a Lorenzian (liberating an exponentially decaying correla-

tion function) and calculated the correlation times from the FWHH, rather than 

obtaining the realistic correlation function and performing the integration. In 
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view of the previous section, discussing the sources of error in the experimental 

correlation functions, it is more reasonable to conclude that the correlation time 

Of CS2 at 300K is 1.2ps ± 0.3ps. 

The experimentally obtained correlation functions do not decay exponentially, 

but can be best fitted to the M-diffusion model. Fig. 6 shows the variation 

in collision frequency as a function of temperature. Once again a non-linear 

relationship is observed and the collision frequency rises dramatically at temper-

atures lower than 240K. As discussed in Chapter 2, the term collision frequency 

is somewhat ambiguous, as it refers to deflections in angular momentum of the 

constituent particles which could arise from long or short range intermolecular 

interactions, as well as physical collisions between molecules. It can easily be 

envisaged that as the temperature of the system is reduced, the kinetic energy 

of the molecules decreases, causing the density of the system to increase. On 

a molecular scale, the constituent particles feel the presence of their immediate 

environment; that is to say that the extent of intermolecular interaction between 

neighbouring molecules increases as the temperature decreases, eventually leading 

to local ordering. There is a cross-over point, when intermolecular interactions 

are strong enough to overcome the thermal motion of the molecules, which her-

alds the onset of local structuring in the liquid state. It appears from the data 

analysed so far that this occurs at about 240K. 

The collision frequency provides us with an abstract, yet quantitative measure of 

the rate at which deflections in the angular momentum occur, however, it does not 

indicate the strength of the intermolecular interactions which cause changes in the 

directionality of the angular momentum vector. To this end a moments analysis 

was performed on the experimental correlation functions in order to measure the 

rms torque. Due to the high resolution and good S/N, it is possible to calculate 

very accurate values of the rms torque as a function of temperature. To the 

best knowledge of the author, such a thorough investigation into the strength of 

intermolecular interactions as a function of temperature has never been published 

before. An example of the fit-functions obtained is shown in Fig. 7 for CS2 at 

240K. The correlation function coincides with the free-rotor for the first O.lps 

before deviating. This is proof that the baseline correction and choice of spectral 

frequency range are correct. If the spectral frequency range was too short, the 

correlation function would lie above the free-rotor at all times. The second and 

fourth moment in the Taylor expansion provides an excellent fit over the first 
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0.25ps, when the correlation function has deviated substantially from the free-

rotor model. As previously discussed, the frequency moments expansion is only 

valid at very short time scales and eventually curves up (due to the 0 dependence 

of the fourth moment). Fig. 8 shows the calculated rms torque over the applicable 

temperature range. A dramatic increase in the rms torque is observed as the 

temperature is lowered below 250K, and by 220K no moments analysis is possible 

as even in the first Ups the experimental correlation function lies well above the 

free-rotor. This is best seen by comparing Fig. 7 (at 240K) and Fig. 9 (at 180K). 

This dramatic increase in rms torque cannot be explained solely by the change 

in density. It would be expected that a radial force would be highly dependent 

on the density of the system, yet the torque is a tangential force. Such behaviour 

is indicative of the fact that there is substantial local molecular structuring at 

temperatures lower than 220K, and the onset of this structuring begins when 

cooling to temperatures below 240K. Several experiments could be performed 

to confirm that structuring does occur including quadrupolar splitting in 13C 

NMR and measurements of the specific heat as a function of temperature. At 

temperatures greater than 260K the constituent CS2 molecules are considerably 

more rotationally mobile. This has already been confirmed by the fast relaxation 

times. The rms torque is surprisingly invariant over the higher temperature range, 

only decreasing from 1.33 x 10 20 J at 260K to 1.20 x 10 20 J at 300K. 

All the experimentally determined results are averages over time and molecular 

orientation. To increase our understanding of the nature of the intermolecular 

interactions in liquid CS 2  it is necessary to analyse the temporal motion and forces 

on a single molecule. Such information cannot be obtained experimentally and we 

resort to computer simulation techniques. To continue our study of CS2 we now 

progress to an ab initio computer simulation, which was done in collaboration 

with Dr. Stewart Clark. 

4.6 Ab Initio DFT Computer Simulation of CS 2  

The theory of DFT computer simulation has been discussed in Chapter 3. It 

remains here to define the specific parameters used. Ab initio molecular dynam-

ics calculations were performed within the generalised gradient approximation 

for the exchange and correlation interaction to periodic supercells containing 32 

CS2 molecules. Non-local pseudopotentials generated by the Q tuning method 

of Lin et al. [66] in Kleinman-Bylander form [67] are used for the electron-ion 
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interactions. As discussed previously the valence electron wavefunctions are ex-

panded in a plane wave basis set. The kinetic energy cut-off used for the basis 

set was set at 700eV, which converges the total energy of the system to bet-

ter than 0.001eV/atom/mol. The molecules were placed in a random starting 

configuration and allowed to come to thermal equilibrium before collecting the 

data. The electronic structure calculation proceeds via a pre-conditioned conju-

gate gradients energy minimisation algorithm using the plane wave coefficients as 

variational parameters. The Hellmann-Feynman theorem was used to calculate 

the forces on the individual atoms. The simulation was run at 300K and the sys-

tem was given the kinetic energy appropriate to this temperature. The classical 

equations of motion were then integrated with a time-step of 1.0fs which is faster 

than the time-scales of stretching and bending mode vibrations. The timestep 

was also small enough that the integration procedure conserves the total energy 

of the system without the need for a thermostat. 

In the molecular dynamics simulation, the coordinates of the molecules are known 

as a function of time. Therefore, the Raman rotational correlation function (i.e. 

that in the second spherical harmonics index) can be extracted directly from 

C,& (t) = (P2 {r(0) . r(t)]) 	 (4.1) 

where r is the intramolecular vector linking C and S atoms, the triangular brackets 

indicate that the ensemble average is taken, and P2  is the second Legendre polyno-

mial. The experimental and theoretical results displayed in Fig. 10 show excellent 

agreement. Whilst many attempts have been made in the past to calculate theo-

retical vibrational correlation functions and interaction-induced dipole correlation 

functions using classical MD and ab initio simulation techniques [68,69,70,71,72], 

this is the first time that a calculation of the reorientational correlation function 

has ever been performed using ab initio DFT Car-Parrinello molecular dynamics 

simulation. Performing a Fourier transform on the ionic velocity autocorrela-

tion function, we acquire the vibrational density of states. Despite the fact that 

the resolution is poor, as the simulation was only performed over half a picosec-

ond, the A 19  totally symmetric stretch at 655cm 1 , from which the experimental 

correlation functions were obtained, is already clearly visible (see Fig. 11). 

Of course at each timestep, that is every 1.0f s,  the simulation generates not only 

the ionic coordinates, but also the forces acting on each ion. It is therefore possible 

to calculate the torque as a function of time directly for any given molecule of 

CS2 in the simulation by calculating the change in the angular momentum as 
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a function of time. Fig. 12 shows the variation in root mean square torque 

experienced by a single molecule of CS2 as a function of time at 300K. The time-

averaged torque given by this method is in excellent agreement with the indirect 

experimental method. 

The magnitude of the torque varies dramatically. Performing a Fourier transform 

of Fig. 12, there appears to be two timescales of variation of the torque. The 

slower, on a timescale of 100f  produces the largest change in the magnitude 

of the torque. The smaller change in the magnitude of the torque variess much 

more rapidly, on a timescale of 10f s. The author believes that the slow variation 

is due to the bending mode vibration of the CS2 molecule which destroys the 

linear symmetry and results in the creation of a large dipole moment, whilst 

the fast variation is due to the high frequency anti-symmetric stretch, which 

also induces a net dipole moment in the molecule. Obviously any neighbouring 

molecule feels the effect of these transient dipole moments, which in turn cause 

a redistribution of the electronic cloud of the neighbouring molecules, whilst also 

inducing angular momentum. The net result is collective librational motion of 

the constituent molecules in the liquid, which has been experimentally observed 

by coherent time-resolved pump-probe experiments and found to have a very fast 

relaxation time [73]. This is the first time that this so-called dipole-induced-dipole 

(DID) effect has been explicitly observed in dynamics computer simulation. The 

author considers that these dipolar effects obscure the very much weaker effects of 

the quadrupolar moment. Despite the presence of DIDs, the computer simulation 

confirms that at 300K there is very little if any local structuring. This can best 

be seen from the partial and molecular radial distribution functions shown in 

Fig. 13. None of the radial distribution functions (dotted: C-S, dashed: S-S, 

full line: CS2) show any structuring over large intermolecular distances. The 

S-S distribution function displays a depletion zone, followed by a rise maximising 

at 3.5 As indicating that it is possible for neighbouring CS2 molecules to come 

into close proximity in the order of 0.5A, however the thermal motion of the 

molecules at 300K prevents the formation of local structuring and the system is 

highly disordered. 
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Fig. 4 Rotational Correlation Functions 
of CS2  at Various Temperatures 
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Fig. 10 Cs2  Correlation Function: Theory and Experiment 
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Fig. 11 CS2  Vibrational Density of States 
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Fig. 12 CS2  Intermolecular Torque at 300K 
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Chapter 5 

Solvation Dynamics: CS2 in 

Cyclohexane 

5.1 Introduction 

In the previous chapter, results were presented for the prototypical liquid sys-

tem, CS2 . As discussed CS2  lends itself well to Raman lineshape analysis, due 

to its size, rigidity and high degree of molecular symmetry. Unfortunately this is 

not true for all systems of interest. Larger molecular systems in general provide 

two intrinsic problems. Although the molecule might be a strong Raman chro-

mophore, the suitable vibrational band is often not isolated well enough from the 

rest of the spectrum to perform accurate lineshape analysis techniques. Secondly, 

larger molecular systems are more flexible with more than one possible geomet-

ric conformation. The molecular flexibility results in a coupling of the different 

modes of reorientation, in particular, spinning and tumbling, which makes the 

calculation of quantitative parameters, such as the intermolecular torque, impos-

sible. 

One means of probing the dynamics of more complex molecular systems is to 

use a dopant. In this chapter results are provided for the reorientational dy-

namics of CS2 molecules dissolved in cyclohexane, C6 H 12 , which undergoes a 

temperature-induced liquid to plastic crystal transition. The correlation func-

tions are compared to those of CS2 dissolved in n-propanol (which vitrifies at low 

temperatures). Whilst the correlation functions for CS2 as a dopant cannot be 

compared quantitatively to those in the previous chapter, due to differences in 
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the density of the system, it is the aim of this chapter to show how the func-

tional form of the correlation functions provides qualitatively an insight into the 

interactions and dynamics of the host system. 

5.1.1 The Physical Properties of Cyclohexane 

The molecular properties and phase diagram of cyclohexane are well established 

[74,75]. The cyclohexane molecule can exist in two possible molecular confor-

mations, the chair and boat conformations, of which the chair conformation is 

the most energetically stable. As such, the molecule exhibits D3h point group 

symmetry and is nearly spherical. The pure material at atmospheric pressure 

forms a plastic phase upon cooling at 279.8K and undergoes a second-order solid-

solid transition at 186.1K. The plastic crystal phase is face-centred-cubic with 

a = 8.76)1, which, asssuming close packing and spherical molecular units, gives 

an effective molecular diameter of 6.2)1. 

Due to the fact that cyclohexane exhibits an easily accessible liquid to plastic 

crystalline phase transition, there have already been several studies into the re-

orientation dynamics of the pure system. In a very early study by Bartoli and 

Litovitz [4], the symmetric stretch Raman band was fitted to a Lorenzian and the 

FWHH for the VV and VH spectra were calculated. This technique assumes that 

the correlation functions at all time scales are exponentials with a single time 

exponent and, like previous NMR studies [76], only give the integrated relax-

ation time. A more recent Raman study by Bansal and Roy [77] suggested that 

there was a monotonic slowing of the reorientational motion across the liquid-

plastic crystal transition, exhibiting no anomalous behaviour due to the onset of 

long-range positional order. However, it is impossible to draw unambiguous con-

clusions concerning the reorientational dynamics from this study because of the 

irregular shape and conformational freedom of the cyclohexane molecule which 

prevents the determination of the pure tumbling motion of the C 3  axis. 

5.2 Experimental Procedure 

The specific Raman experimental apparatus has already been described in the 

previous chapter. Pure liquid samples of C 6 H12  (>99%) and CS2  (>99.8%) were 

obtained from Fison and BDH respectively and used without further purification. 
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Solutions of 2 - 20% wt. CS2 in cyclohexane were prepared and sealed in 1mm 

diameter capillary tubes. Polarised Raman scattering spectra were collected in 

the 90° scattering geometry over the temperature range of 300K to 185K. The 

514.5nm line of an Argon ion laser was used as the excitation source with an 

estimated power at the sample of 250mW. Spectra were taken of the high energy 

side of the 655cm 1 A1 9  CS 2  symmetric stretch band out to 40cm' from the 

centre of the band with a step frequency of cm' and a slit size set to 100pm 

which provides a spectral resolution better than 0.9cm'. 

5.3 Results and Analysis 

Figures 14a and 14b show the CS2 reorientational correlation functions over the 

studied temperature range in the 20% solution. Differential Scanning Calorime-

try experiments of this system concluded that the liquid-plastic crystal transition 

occurs at 230K and the solid-solid transition occurs at 180K. It is at this stage 

not clear if this latter transition corresponds to the plastic to monoclinic crys-

tal transition, as observed in pure cyclohexane, or to some as yet unidentified 

phase transition. It is however clear that the temperature range studied here 

allows us to observe the reorientation dynamics across the liquid-plastic crystal 

transition. As the temperature is lowered in the liquid phase, the reorientational 

motion (not unexpectedly) slows down over the whole range of times probed in 

our experiments. At and just below the liquid to plastic crystalline transition, 

7;, however, we see that the reorientational motion in the short time limit speeds 

up relative to the liquid at temperatures just above the phase transition. At tem-

peratures well below the phase transition, continued cooling results in a slowing 

down of the short-time reorientational motion. At short time scales, the sys-

tem exhibits an anomalous non-monotonic temperature dependence. At longer 

timescales (t)0.5ps) the decay of the reorientational correlation function exhibits 

a near monotonic slowing down with decreasing temperature through the phase 

transition. The same trend was observed in the 2% solution, however, due to 

very weak scattering from the CS2 the effect is not as clearly observable as in the 

20% solution. 

In order to explain the long and short time-scale dynamics of this system it is 

necessary to formulate a suitable model. Widom [78] has discussed a model of 

the liquid state in which he argues that at that critical point the, attractive forces 

between molecules produce correlations that can propagate beyond the range 
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of the forces themselves and these are more significant than the short-ranged 

repulsive forces. However, as a liquid approaches its triple point, the correlations 

due to the short-ranged forces become more significant, which can be understood 

when one considers that the density of a liquid at its triple point is approximately 

three times greater than at its critical point. Widom then further argues that 

as the attractive forces between molecules are relatively weak and long ranged 

compared to the very steep repulsive forces, it follows that in a fluid as dense as 

a liquid at its triple point the attractive forces exerted on any molecule by its 

neighbours largely cancel, while the negative potentials largely add, so that each 

molecule in such a liquid may be thought of as a hard sphere in a deep but uniform 

negative background potential. The freezing transition of hard spheres is driven 

entirely by entropy: the densest random packing of hard spheres in 3D occurs at 

a volume fraction of 0 0.64 [79], while the densest crystalline packing occurs 

at 0 = 0.74. As the density of the system increases, there must come a 

point when the loss of (single particle) configurational entropy upon ordering is 

more than compensated for by the increase in local free volume (or many-body 

correlational entropy). This means that the volume accessible to each particle 

(i.e, the free volume) is greater in the hard sphere crystal at the melting density 

than in the hard sphere fluid at the freezing density [80]. 

We are now in a position to explain the unusual speeding up of the molecular 

reorientational motion at short times at the phase transition. Due to the compa-

rable size of the rotation spheres for CS 2  and C6H12 , we expect the dopant CS2 to 

be incorporated substitutionally into the cyclohexane plastic crystalline lattice. 

As has been discussed above, it can be proved rigorously that the free volume 

increases when hard spheres crystallise. Widom's arguments suggest that this 

likely to be true for the freezing of simple liquids far from criticality [78,81]; each 

particle is moving in an almost constant attractive potential well set up by its 

nearest neighbours, and experiencing nearly zero force, so that the entropic (or 

free volume) and dominant part of the free energy remain hard-sphere-like. For 

the first time, we observe experimentally direct evidence of the predicted increase 

in free volume as the cyclohexane freezes into the plastic crystalline phase. The 

dopant CS2  molecules in their substitutional sites are permitted to rattle more 

rapidly due to an increase in the extra local free volume at the plastic crystal 

phase transition, resulting in the observed speeding up of the reorientational cor-

relation function in the short-time limit. In the case of a perfectly spherical solute 

molecule, faster orientational relaxation would be observed over all time scales. 

However the CS 2  dopant molecules are structurally anisotropic. The presence of 
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an ordered lattice structure with finite rigidity and the anisotropic nature of the 

solute, means that the longer-time reorientation is slowed down because decor-

relating end-over-end rotations are surpressed. This accounts for the observed 

cross-over behaviour at about t = 0.4ps. 

In order to justify this explanation, we now compare the results to those for the 

system of 20% CS2 in n-propanol, which vitrifies. In this case we do not expect 

a discontinuity in the free volume across the glass transition temperature [82], 

and this is verified by the monotonic temperature dependence of the correlation 

functions at all time-scales (Fig. 15). 

5.4 Conclusions 

The correlation functions presented here provide, for the first time, direct evi-

dence for the increase in local free volume across a liquid to plastic crystal phase 

transition. The results are interpreted in terms of a model which involves both 

the changes in the local solvent structure at the freezing transition and the solute 

molecular shape, which appear to play competing roles in the molecular reori-

entation process. We observe a very complex behaviour in salvation dynamics 

correlation functions, particularly at the phase transition: the increase in free vol-

ume leads to less hindered motion of the solute resulting in faster reorientational 

motion at short times, whilst the solute anisotropy restricts the end-over-end 

motion, as signified by the slower orientational relaxation at longer times. Such 

behaviour has been observed in idealised rough hard sphere molecular dynamics 

simulations of plastic crystals [83]. 
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Chapter 6 

Reorientation Dynamics of Single 

Flexible Anisotropic Molecules 

6.1 Introduction 

The results presented in chapter 4 showed that the bending mode vibration in 

CS2  plays a major role in the intermolecular interactions and reorientation dy-

namics in partially disordered condensed matter phases, as the vibration destroys 

the linear symmetry of the molecule resulting in an intermolecular torque. In this 

chapter we investigate the effect of molecular flexibility in more detail by con-

sidering the single molecule reorientation dynamics of several members of the 

nCB (4-n-alkyl-4'-cyanobiphenyl) homologous series. The two phenyl rings and 

the cyano group act as a rigid rod and the variation in the flexibility of the ho-

mologues is provided by the differing lengths of the alkyl chain. Here we study 

the homologues 2CB, 4CB and 5CB. 5CB and all higher members exhibit liquid-

crystalline phase behaviour at easily accessible temperatures. Attention to the 

dynamics of anisotropic systems in general, and liquid crystals in particular can 

be partly ascribed to the many technical applications of mesophases, in particular, 

liquid crystal displays (LCD's). 

Computational advances have opened opportunities to expore the relationship be-

tween molecular structure and dynamics at many levels of sophistication ranging 

from ensembles of simple spherocylindrical particles to fully atomistic electronic 

structure descriptions of individual molecules [84-91]. There have as yet been 

very few experimental studies of reorientational dynamic processes in condensed 

71 
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phases of large flexible anisotropic molecules. The reason for this is two-fold. 

First, the anisotropy of the system complicates the execution and analysis of the 

most sensitive dynamical measurements, and secondly, the reorientational mo-

tion of large molecules, such as mesogens is very slow.This was first shown by 

Bulkin and Brezinsky [92], who concluded that vibrational dephasing is primarily 

responsible for the bandwidth and shape of Raman bands of mesogenic molecules 

in their isotropic and liquid crystalline phases, as well as in solutions. Fontana et 
al. [93,94] developed a small step diffusion model for molecular reorientational re-

laxation in a mean-field nematic orienting potential in order to probe the spinning 

and tumbling diffusion coefficients of various mesogens. Such a model suggests 

that the reorientational correlation function is a single exponential. More recent 

studies [95] definitively show that this is not the case. In fact defining a suitable 

model for the reorientation dynamics of large anistropic molecules is problem-

atic as the flexibility of the molecules means that no definable symmetry of the 

consituent molecules exists. 

Previous studies of liquid crystals in the isotropic phase have concentrated on the 

collective reorientation dynamics of the system [96]. It is now well understood 

that at temperatures above the nematic to isotropic phase transition there exists 

substantial local structural anisotropy. This temperature region, which is referred 

to by Fayer [96] as the pretransitional region, is characterised by the presence of 

pseudonematic domains, whose local order exists over a distance scale , the 

correlation length. On cooling towards the isotropic-nematic phase transition 

increases, before diverging at a specific temperature T just below the phase 

transition temperature 

The dynamics of the pseudonematic domains can be separated into two distinct 

time scales. The fast time-scale orientational relaxation (lps to ins) is attributed 

to intradomain dynamics which are temperature and viscosity independent, sug-

gesting that the local pseudonematic structures are preserved during the relax-

ation. The anisotropy of the domains themselves decays as a single exponential 

on a much longer time scale Gins) with a decay rate that is highly temperature 

dependent. This slow dynamical behaviour is well described by the Landau-de 

Gennes (LdG) theory. In a recent publication, Sengupta and Fayer [96] analysed 

such collective reorientational dynamics of the pretransitional region in terms of 

fluctuation modes of the pseudonematic domains. Using the Ising model and 

including critical correlations of fluctuations, this theory predicts a universal 

temperature-independent power law to describe the fast time-scale orientational 
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dynamics in the isotropic phase of liquid crystals. Transient grating optical Kerr 

effect (TG-OKE) experiments performed at various temperatures on the liquid 

crystals 5CB and MBBA in their isotropic phases supporteded the theories dis-

cussed above. In 5CB the pretransitional region extends approximately 300  above 

the nematic-isotropic transition temperature, T 2 . Above T i  + 30°, the slow dy-

namics start deviating from LdG theory as thermal fluctuations change the local 

structures and the overall domain relaxation. Simultaneously the collective in-

tradomain reorientation dynamics becomes temperature dependent. 

In this chapter we present for the first time a systematic study of single molecule 

reorientation dynamics in the nCB homologous series over a range of tempera-

tures including the pretransitional region. The main objectives are to understand 

how the reorienational dynamics varies with molecular structure and flexibility, 

to explore how the onset of orientational order influences the dynamics and to 

provide unambiguous data for comparison to computer simulations. 

6.2 Experimental Procedure 

The general procedure for obtaining good correlation functions has been dis-

cusssed previously in Chapter 3. Raman spectra (VV and VII) were taken of 

the 2225 cm 1  CN A 19  stretch of 2CB, 4CB and 5CB in the isotropic phase 

close to the respective phase transition [2CB and 4CB exhibit a solid-isotropic 

transition, whilst 5CB exhibits a solid-nematic transition]. The samples were ac-

quired from Merck, and loaded into 1mm diameter capillary tubes. The samples 

were initially heated to 60° above their respective melting points, and cooled to 

the phase transition. Temperature readings were accurate to within an error of 

0.1°. The incident beam at 514.5nm with a power of 240mW was obtained from 

an Argon ion laser. A Coderg T800 triple grating spectrometer was used in a 

90° configuration. The slit size was set to 50tm allowing a spectral resolution 

better than 1  cm 1  FWHH and the data was collected in steps of 1  cm 1  out 

to 85 cm 1  from the centre of the band. The typically observed FWHH was 

7-10 cm . Count times varied from 4sec per step to as much as 80sec per step 

according to the relative intensities of the VV and VH bands. In the case of such 

large anisotropic molecules, the reorientational contribution to line broadening is 

very small, and therefore differences in the S/N for VV and VII spectra can cause 

anomalies in the obtained correlation functions. It was observed whilst taking 

the spectra that the relative intensities (and hence the relative S/N) of the VV 
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and VH spectra changed as a function of temperature. Particularly for 4GB and 

5GB, the VH band intensity was seen to increase with decreasing temperature, 

whilst the VV band intensity was seen to decrease with decreasing temperature. 

This phenomenon is the result of an increase in the orientational anisotropy of 

the system. Each spectrum was taken three times, and the obtained correlation 

functions were averaged. 

At high temperatures all the nCB homologues studied here undergo a slow thermally-

activated irreversible reaction. The author assumes this to be thermal oxidation. 

Whilst the product of this reaction is unknown it manifests itself in Raman spec-

tra by raising the background signal as much as one-thousand-fold. This makes 

accurate baseline correction techniques and thereby the acquisition of realistic 

correlation functions at higher temperatures impossible. 

6.3 Results and Discussion 

6.3.1 Ramifications of the TG-OKE Experiments 

The nonlinear time-resolved spectroscopic results discussed in section 6.1 have 

very interesting ramifications. In this section we will discuss the results of the 

TG-OKE experiments performed by Fayer and Sengupter [96]. The TG-OKE 

response function is directly related to frequency domain dynamical light scat-

tering data via Fourier inversion. The OKE response function is therefore a 

direct measurement of the collective orientational relaxation of the system [97]. 

The susceptibility fluctuation due to the reorientational motion of the molecules 

in liquids generally has an exponentially decaying correlation function at suffi-

ciently long times, as described by the rotational diffusion equation. This results 

in an exponential decay of the OKE response in the long time scale: 

GQR(t) cx e(t) exp(—t/, j )[1 - exp(—t/r)] 	 (6.1) 

where 8(t) is the normalised step function and r is the collective orientational 

relaxation time. The ultra-fast nature of the response function is complicated by 

the finite decay rate of the molecular angular momentum, given by the relaxation 

time of the angular momentum, ri,, librational motion and interaction-induced 

(I-I) phenomena. The relation of r to the single-particle orientational relaxation 
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time is given by [98]: 

1c01 = (92/j)'Tr 	 (6.2) 

where 92  and 32  are the static and dynamic orientational correlation coefficients of 

the liquid, respectively. In the temperature range of the pretransitional region for 

5CB, the very slow hydrodynamic modes do decay as single exponentials. How-

ever, the faster, intradomain dynamics are not coupled to these hydrodynamic 

modes and the response function exhibits a power law decay: 

GQR(t) cx e(t)t -063 	 (6.3) 

suggesting that the dynamics are strongly influenced by the pseudonematic do-

main structure. The time scales for single molecule reorientation for a molecule 

the size of 5CB are of the same order as the time scales of these collective in-

tradomain dynamics. 

6.3.2 Results for 5CB 

Reorientational correlation functions for 5CB at different temperatures are pre-

sented in fig.16. It is evident from the data that there are two distinct dy-

namical regions: in the first 0.25ps the correlation functions decay rapidly and 

non-exponentially. This rapid decay is temperature independent, within exper-

imental error, close to the transition temperature, T - < 30K, and much 

faster than would be expected considering the moment of inertia for 5CB. At 

higher temperatures, T - T 2  > 35K, the initial decay of the correlation functions 

becomes temperature dependent, the rate of decay increasing with temperature. 

At time scales greater than 0.25ps the correlation functions decay as very slow 

single exponentials. The time exponent, r: 

C(t) rot, t>0.25ps  = A exp(t/r) 	 (6.4) 

has a complicated temperature dependence. As shown in Fig. 17, close to the 

transition temperature, the correlation time decreases slowly with increasing tem-

perature. At T - > 35K the correlation time is extremely temperature depen-

dent and decreases rapidly. This occurs with the onset of temperature dependence 

in the short time regime, (t < 0.25ps). At time-scales greater than ips, the to-

tal and vibrational correlation functions fall below 0.25. As the reorientational 

correlation function is given by the ratio of these two correlation functions, the 
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calculated data error increases rapidly at time scales greater than lps and the 

reorientational correlation functions become unreliable. 

On the basis of these results we conclude that the fast initial decay of the correla-

tion functions represents intra-molecular librational motion of a fragment of the 

flexible molecule in a cage formed by neighbouring molecules. The molecule is 

subject to strongly fluctuating intermolecular forces across the cage, which cause 

the conformational structure of the molecule to relax rapidly on a similar time-

scale. The molecular flexibility couples the rotations about different molecular 

axes, causing spinning and twisting motions to contribute to the tumbling mo-

tion. In the pretransitional region exhibited by 5CB, this response is temperature 

independent as the local pseudonematic structures are preserved, and the rate of 

decay is dependent on the force coefficient of the well potential representing the 

cage. When T - > 35K the pseudonematic domains start to break down 

and the fast relaxation becomes temperature dependent as the flexible molecule 

possess a greater degree of freedom. The slow single exponential decay observed 

at time-scales greater than 0.3ps is indicative of reorientation diffusion. Using 

the small-step reorientation diffusion model (SSRDM), reorientation diffusion co- 
 
- 

efficients, D1  for the tumbling motion of the molecule can be obtained simply 

as: 

D1  = 1/6T. 	 (6.5) 

For 5CB just above the transition temperature D1  = 3.47 x 10 9sec 1 . This value 

is much lower than one would expect by comparison to the results obtained for 

2CB taking into account the differences in the molecular mass and actual temper-

ature (the solid-isotropic transition temperature, T i  for 2CB is 340K whereas the 

nematic-isotropic transition temperature, T 2  for 5CB is 308K), and is also lower 

than other reorientation diffusion coefficients obtained from liquids comprising 

of non-liquid-crystalline molecules of comparable size. This is indicative of the 

presence of substantial local structural anisotropy. At high temperatures 5CB be-

haves as an isotropic liquid, the single molecule reorientation diffusion coefficient 

increases rapidly with temperature. Lowering the temperature to 340K, 5CB en-

ters the pretransitional region. At this point the single molecule reorientation is 

severely hindered by the formation of a localised structure, or pseudonematic do- 
 
- 

main, and the reorientation diffusion coefficient slowly decreases on cooling to the 

nematic-isotropic phase transition. This complicated temperature dependence 

may be entropically driven, suggesting that the dynamics of single molecules in 

the system are affected by long-range interactions over distances comparable to 
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C. Alternatively, single-molecule dynamics in the pretransitional region could be 

determined by short-range interactions which maintain an optimised local order 

in the system. There exists considerable evidence that the mesogen 5CB aligns 

in an anti-parallel configuration [99,100]. Intermolecular forces created, for ex-

ample, by dipole-induced dipoles (DID's) which relax on very fast time-scales 

(usually 100 - 8001 s) maintain the local structure and play a significant part in 

the dynamics of single molecules on much longer time-scales. Such intermolecular 

interaction manifests itself directly in Rayleigh light scattering and is referred to 

as an interaction-induced (I-I) phenomenon. Recent computer simulations show 

that considerable I-I phenomena exist in systems comprised of large molecules 

such as mesogens [101]. 

6.3.3 Results for 2CB 

In comparison to the data for 5CB discussed above, the reorientational correlation 

functions for 2CB show markedly different behaviour, (Fig. 18). There still 

exist two dynamical regions, yet, especially at higher temperatures, they are 

not so distinct. The initial fast decay is temperature-dependent across the entire 

temperature region studied. This fast decay is slower than that observed for 5CB. 

The 2CB molecules act as rigid rotors, which are subjected to a temperature-

dependent inter-molecular torque in the short time limit. The slower response 

is highly temperature dependent, and the respective correlation times decrease 

rapidly with increasing temperature. 

Due to the small degree of flexiblility, assuming that 2CB is linear, such corre-

lation functions can be interpreted in terms of extended diffusion models, such 

as the J-diffusion model using a large collision frequency parameter. This colli-

sion frequency parameter like the inter-molecular torque for the inflexible 2CB 

molecule are temperature dependent. 

6.3.4 Results for 4CB 

The dynamics of 5CB and 4CB are remarkably similar. The short-time behaviour 

of the correlation functions is temperature independent over a temperature range 

of 25K above the melting point, and this rapid decay is much faster than would 

be expected for a rigid rotor. The similarity between the data for 4CB and 5CB 

in this short-time region suggests that the two molecules possess a similar degree 
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of flexibility. 

On the grounds of the above discussion, the results for 4CB shown in Fig. 19 

suggest that, whilst not actually existing in a liquid-crystalline phase, this system 

exists over a temperature range of 25K above its melting point in a pseudonematic 

state. 

6.4 Summary 

The reorientation dynamics of mesogenic molecules in the isotropic phase is ex-

tremely complex. In the pretransitional region collective orientational relaxation 

of the pseudonematic domains occurs on time-scales greater than ins and is 

temperature/viscosity dependent, whilst the intradomain dynamics (lps to ins) 

are temperature/viscosity independent. The single-molecule reorientational re-

laxation shows two distinct time-scales. The fast initial non-exponential decay 

is temperature independent. This non-diffusional behaviour in the short time-

limit is a manifestation of the interaction between the intermolecular potential 

and molecular flexibility. Its temperature independence suggests the existance of 

significant local structural anisotropy in the pretransitional region. The slowly 

decaying single exponential component represents single-molecule reorientation 

diffusion. This component is weakly temperature dependent in the pretransi-

tional region. At temperatures greater than 343K the pseudonematic domains in 

5CB break down. The fast initial decay of the autocorrelation function becomes 

temperature dependent and reorientational diffusion increases rapidly. Decidedly 

different behaviour has been observed for 2CB. 

On the basis of these results, we conclude that local structural anisotropy is 

related to the complex dynamics in the short-time limit determined by rapidly 

decaying electronic interactions between molecules, such as DID's. This means 

that there exists a preferential local structure which optimises interaction be-

tween the molecules, thereby lowering the free energy of the system. Molecu-

lar flexibility enables the system to maintain local anisotropy despite thermal 

fluctuations by the rapid variation of the interaction potential between a single 

molecule and the cage around it. At a certain temperature, the kinetic energy 

of the molecules overcomes the potential energy well of the cage, local structural 

anisotropy breaks down and the reorientational autocorrelation function becomes 
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temperature dependent in the short-time limit, whilst at longer times the temper -

ature dependence of molecular motion is comparable to that of extended diffusion 

models. 

On cooling the system into and through the nematic phase, 6 grows, the order 

parameter increases rapidly and the long-range orientational correlation of the 

pseudonematic domains is maintained indefinitely. This occurs as the potential 

energy well of the cage becomes narrower and deeper. The interaction between 

the flexible molecule and the cage around it increases. Whilst the macroscopic 

structure of the system is now entropically driven, the dynamics of the system 

are determined by the fast relaxation of the molecule as it interacts with its 

neighbours. It is a tantalising prospect that this complex relaxation occurring 

over several hundred femtoseconds could determine the reorientational dynamics 

of the system at much longer time-scales. In the following chapters we concentrate 

on the dynamics of liquid-crystalline molecules in different mesophases. 
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Fig. 16 Reorientational Correlation Functions for 5CB 
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Fig. 17 Reorientational Correlation Times 
Long Time-scale Rotational Relaxation t>0.3ps. 
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Fig. 18 Reorientational Correlation Functions for 2CB 
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Fig. 19 Reorientational Correlation Functions for 4CB 

0 a 

- 	 0 	El 	 - 	0 

o 	o 0 0 	 0 

	

0 	O m 	 Q 

	

• 	0 0 0 

	

• 	0• 	0 

• o . 	0 	 0 

• 	0 •. 0 	 0 

• o • 0 	 0 

• 0 0 	 0 

50 • El 

• 00 . 	0 

so. o 

	

•o.o 	0 

	

QOUO 	0 

	

so. o 	0 

	

qO a 0 	0 

_so. 0 	0 

so. 0 o 
SOU 0 0 
•o 

0 

CIE 0 0 

0 

OCO 

co 0 

cEO 

a 

'1 	en 
CrN 	 CN 	CIA 	ON 	 ON 

O8T 4403 aayoa 

a' 

tn 

CID 

C' 



Chapter 7 

The Theory of Dielectric 

Relaxation 

7.1 Introduction 

The results from chapter 6 showed that, whilst Raman lineshape analysis is a 

good technique for isolating and analysing the reorientational correlation func-

tion in condensed matter systems, it is best suited to systems comprised of small 

rigid molecules, where the line broadening is dominated by reorientational rather 

than vibrational relaxation. In the case of large flexible anisotropic molecules, 

such as those higher members of the nCB homologous series, the reorientational 

line broadening is so small that obtaining reorientational correlation functions 

becomes increasingly more difficult. It is therefore unsuitable to use Raman line-

shape analysis to study the dynamics of the higher members of the nCB homol-

ogous series in the nematic and smectic liquid-crystalline phases, where the con-

tribution to reorientational line broadening is even smaller than in the isotropic 

phase. To this end we must use an alternative experimental technique. The most 

suitable technique for studying reorientational relaxation in polar mesogenic sys-

tems is that of dielectric relaxation, where we measure the frequency-dependent 

dielectric constant expressed as a complex permittivity, e  = 6' - ie". In the fol-

lowing section the theory of the static dielectric constant and dielectric relaxation 

is discussed and applied to the particular case of polar mesogenic systems. 

FIE 
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7.2 The Static Dielectric Constant 

The well-known Onsager theory [102,103,104] describes the static dielectric con-

stant, 68, of isotropic, non-associative, polar liquids. The theory does not take 

into account intermolecular interaction potentials and assumes the constituent 

molecules to be of spherical symmetry. Maier and Meier [105] extended the 

Onsager theory to describe the dielectric properties of uniaxial nematic liquid-

crystalline phases. In order to account for the orientational order observed in 

nematic mesogenic systems, they invoked a parameter called the nematic poten-

tial, q. It is considered that the potential energy of the molecule is lowest when its 

molecular long-axis lies either parallel or anti-parallel to the director, n. Whilst 

the order parameter, S provides a measure of the degree of molecular alignment, 

it is the nematic potential that defines the amount of energy the molecules need to 

overcome the reorientational potential energy barrier. The static dielectric con-

stant is expressed as a tensor. Assuming that the laboratory z-axis coincides with 

the director, n, the dielectric tensor has the form of a sphero-cylinder with the 

principle elements, e = e zz  and j.  =exx= efl,. Applying the incident electric 

field parallel or perpendicular to the director then yields e,11 or j respectively. 

The anisotropy of the dielectric, constant is defined as: 

I6s = 6s - 	. 	 (7.1) 

The magnitude and sign of the dielectric anisotropy are determined by the molec-

ular structure of the nematic phase. e 3  depends on the extent of orientational 

alignment of neighbouring molecules, and therefore on the order parameter S. 

As in the isotropic case, it is necessary to consider the induced and orientational 

polarisation. The induced polarisation is ostensibly due to the displacement of 

electrons in an external electric field. The orientation polarisation is concerned 

with the alignment of the permanent dipole moment of the constituent molecules 

in the direction of the incident electric field. Following the theory of Maier and 

Meier [106] we assume that the permanent dipole moment lies at an angle / to 

the molecular long-axis. The polarisability anisotropy, Aa, is comprised of a 

longitudinal part o and a transverse part o. In the microscopic molecular-fixed 

coordinate system, the components of the dipole moment are expressed as: 

p1=cos3 	 (7.2) 
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and 

pisinfl. 
	 (7.3) 

The aim is now to find expressions for the components a, a-. , pll and j, which 

refer to the laboratory fixed frame. These components are therefore dependent 

on the orientation of the molecular long-axis with respect to the z-axis of the 

laboratory-fixed frame and are naturally coupled to the order parameter S: 

(a11) = (aj(2S + 1) + at  (2 - 2S)) 	 (7.4) 

(a..L) = (aj(l - S) + at(2 + S)) 	 (7.5) 

	

= (p(2S + 1) + p(1 - S)) = it2 (1 —[1— 3cos 2/3]S) 	(7.6) 

 (4(1 S) + p(2 + 8)) = 2(i  + 	- 3cos2 3]S). 	(7.7)=  

Maier and Meier use the same assumptions as Onsager to simplify the problem. 

The molecules are considered to sit in spherical cavities with radius r, given 

by the molecular volume (M/p = 1rNAr 3 ). The so-called cavity-field factor is 

expressed as h = 3e/(2 + 1) with f, =(e311 + 26,_L ). The so-called reaction-

field is expressed as f = ( - 1) (27reor3  [2 +11). The resulting equations express 

the relationship between ESII  and 63j  and their dependence on the orientation 

polarisation and induced polarisation [106,107,108]. 

- 1 = (NhF/eo)((a11) + F(ujj)/(kT)) 

= (NhF/eo)(ä + LaS + (F(i2)/(1 - (1 - 3co82/3)S))1(3kT)) 	(7.8) 

- 1 = (NhF/Eo )((a±) + F(14)/(kT)) 

= (NhF/eo) ( + LaS + (F(u2)(1 + (1 - 3co82f3)S))1(3kT)) 	(7.9) 

LE = 	- 	= (NhF/eo )(La - (F(t2)(1 - 3c0s 2 9)S)1(2kT)) . 	(7.10) 

In the above equations F = 1/(1 - fa), La = at - at, a = Rat  + 2at ) and 

co  is the permittivity of free space. The last equation shows that the induced 

polarisation is proportional to the order parameter, whilst the orientation polar-

isation shows S/T dependence. In nematic liquid crystals composed of rod-like 
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molecules & is always greater than zero. The contribution of the induced polar-

isation to & is always positive. The contribution of the orientation polarisation 

depends on the size of the permanent dipole moment and the angle, 0, between 

the dipole moment vector p and the molecular long-axis. Only in the special 

case, where 3cos 2/3 = 1, (3 = 54.74°) is the contribution of p to q  and e the 

same. For an angle 8 < 54.74°, the contribution of the orientation polarisation 

to Ae is positive. Similarly the contribution of the orientation polarisation is 

negative for all angles /3 > 54.74°. It follows that the sign (+ or -) of the total 

dielectric anisotropy is determined by the relative magnitudes of the induced and 

orientation polarisation. In the case of molecules possessing a large dipole mo-

ment in the direction of the molecular long-axis, such as the case for para-cyano 

substituted mesogens, Le is positive. In some cases, particularly for substances 

with lateral dipolar moments, the negative part of the orientation polarisation 

dominates, which leads to a negative dielectric anisotropy. 

If averaged values are used for e and e,: ë =(eii  + 2e±); € 	n2  (&, is the 

high frequency dielectric constant, n is the refractive index), Onsager's equation 

for the isotropic phase is recovered and can be used to estimate the permanent 

dipole moment of the constituent molecules in the system: 

A 
9kTE oM(C - e)(2ë + E 0 ) 

NAPE'(EO + 2)2 
(7.11) 

In many cases (such as with the alkyl-cyanobiphenyls) the calculated dipole mo- 

ment is much smaller than expected, considering the polar nature of the con- 

stituent molecules. This is accounted for using a correlation factor g, such that: 

= gkp . 	 (7.12) 

This correlation factor gives an indication of the parallel or anti-parallel alignment 

of the constituent molecules [109]. In the case of the nCB homologous series,the 

anti-parallel correlations give a value of 9k  less than 1. For further discussions 

of the static dielectric constant, the reader is referred to the references provided 

[110,111]. 
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7.3 Dielectric Relaxation 

In a static electric field, the total polarisation is a combination of the induced 

and orientation polarisation. When the external field is removed, the relaxation 

of the induced polarisation occurs on a timescale faster than 10"s due to the 

high velocity of the electrons. In contrast to this, the reorientation of the dipole 

moments requires a finite time t. The macroscopic relaxation time T is defined as 

the time in which the orientation polarisation falls to 1/c of its initial value after 

removing the external electric field. The resulting dielectric correlation function 

of the orientation polarisation is then assumed to be an exponential. 

Dielectric relaxation measurements are usually performed in the frequency do-

main using an alternating electric field. There then exists a Fourier-transform 

relationship between the time-dependent correlation function and the dielectric 

data collected in the frequency domain. At sufficiently high frequencies, the 

orientation polarisation lags behind the external electric field, resulting in a de-

crease in the permittivity. The reduction of the static dielectric constant e to the 

high-frequency dielectric constant is described as dielectric relaxation. The 

dielectric relaxation is associated with a characteristic adsorbtion of energy. This 

energy adsorbtion is known as the dielectric loss and forms the imaginary part of 

the complex dielectric constant: 

= 	- ie"(w) . 	 (7.13) 

Obviously the functional forms of the real and imaginary parts of the complex 

frequency-dependent dielectric constant (dielectric relaxation and dielectric loss 

respectively) are dependent on the reorientation dynamics of the system. The 

models developed in chapter 2 are equally applicable to dielectric relaxation ex-

periments as to Raman experimental data. However, we should note that as 

dielectric relaxation is an absorbtion process, we are now working in the first 

spherical harmonics index (1 = 1). For the simplest case, of the small-step rota-

tion diffusion model with a single relaxation time T, the real and imaginary parts 

of the complex dielectric constant are given by the well-known Debye equations 

[112]: 

e
I
(w) —e =(7.14) 

e" (w) = 	600 w'r . 	 (7.15) - 

1 + w2r2 
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Figure 20 shows the typical functional form of the dielectric relaxation and di-

electric loss curves. The dielectric loss curve is completely symmetric with a 

maximum at w,, = 27r/7- . Usually, however, one finds that the loss curve is not 

completely symmetric. Such deviation is best shown by plotting e" against e', 

a 'Cole-Cole plot'. From the Debye equations it is apparent that the Cole-Cole 

plot should be a semi-circle: 

IE 	
E 	

+ lF2 
= [ ES_-  E0012 	

(7.16) 
2 

Deviation from the Debye relation results in a characteristic distortion of the 

semi-circle. Several equations [113] have been developed with variational param-

eters in order to describe these deviations. The Cole-Cole, Cole-Davidson and 

Havriliak-Negami equations describe both the real and imaginary part of the 

complex dielectric constant. The Havriliak-Negami equation is: 

E8+E00 	
(7.17) 

(1 + [iwr]')$ 

For the case that a = 0, 0 = 1 the above equation reduces to the Debye equation. 

The Cole-Cole equation is obtained for a 0 0,8 = 1 and the Cole-Davidson 

equation is given for a = 0,6 1. The Jonscher equation only describes the 

imaginary part of the dielectric constant expressed as: 

	

= 	
A 	

(7.18) 
(W/w)-m + ( w/w)' -n 

In the particular case that m = 1, n = 0 and w,, = 27r/'r the Jonscher equation 

is identical to the imaginary part of the Debye equation. The fit-parameters 

a,,8, A, m and n are sufficient to describe the observed dielectric loss curves, 

though their physical meaning is not well defined. In general, deviations from 

the Debye equation occur when there exists a distribution of relaxation times r, 

or when more than one relaxation process is occurring simultaneously. 

7.4 Thermodynamics 

The temperature and pressure dependence of the dielectric relaxation time 'r can 

be used to express reorientational activation parameters [114,115]. The activation 
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enthalpy is given by: 

OlflT 

IP 	 J = TLtVr1 1
r 	 (7.19) 

The activation energy is expressed as: 

LU = R[0* ,)  }v = tH T[LP 	(7.20) 

Similarly the activation volume is given by: 

tV = RT[ Olnr IT . 	 (7.21) 
op 

The activation volume can be understood as the excess volume a molecule re-

quires in order to rotate. Therefore this value is not dependent on the molecular 

volume, but rather on the molecular shape and rigidity, and the structuring of 

the local molecular environment. In a similar manner, the activation enthalpy 

and energy are measurements of the excess enthalpy and energy required for a 

molecule to rotate. The activation energy can only be calculated with the use 

of PVT data. By comparing the relative magnitudes of the activation enthalpy 

and energy it is possible to determine the extent steric hindrance plays in inter-

molecular interaction. All the activation parameters are based on Arrhenius-type 

relationships, assuming-that the partial derivatives remain constant. 

7.5 The Retardation Factor 

According to Maier-Saupe theory [116], when a nematic liquid crystalline molecule 

is aligned parallel to the director, it lies at an energy minimum on the potential 

energy surface. In order to rotate, the molecule must therefore overcome a po-

tential energy barrier, given by the nematic potential, q. It is not surprising that 

the tumbling motion of the molecule slows dramatically when crossing the tran-

sition point from the isotropic phase to the nematic phase. It is logical to assume 

that there exists a simple relationship between the degree to which the relaxation 

rate is lowered and the nematic potential q that hinders tumbling motion in the 

nematic phase. Maier and Saupe found that the retardation factor g11 = 

(r0  being the relaxation time at q = 0) is related to the nematic potential energy 
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barrier as: 
911= e° - 1 	

(7.22) 

where a = q/RT. To is estimated by extrapolation of the isotropic isotherm (see 

Fig. 21). Assuming Debye-type motion, it has been found that the presence of 

the nematic potential reduces the relaxation rate of the tumbling motion, whilst 

increasing the relaxation rate of the spinning motion such that 911 > 1,g < 1. 

More recently an exact analytic solution for the retardation factors as a function 

of the nematic potential has been derived by Coffey et al. [117,118,119]. To a 

close approximation, the exact solution for g1l can be written as: 

e°-1 	2 
g11 

= 	a 	+ 11a'"2 
+ 2)' . 	 (7.23) 

The retardation factors are related to the order parameter S as follows: 

gil = 
2S+1 
1-S 	

(7.24) 

2-25 
9-L = 2+S 	

(7.25) 

7.6 Summary 

Dielectric relaxation experiments provide not only information about the reorien-

tational relaxation times in liquid-crystalline systems, but also generate a wealth 

of information about the type and extent of intermolecular interaction and the 

thermodynamics and energetics of reorientational motion. Most importantly, the 

experiment also provides a means of calculating the order parameter S, which 

is the single most important parameter used to define liquid-crystalline systems 

as it is a measure of the degree of anisotropy. In the following chapters we use 

the theories discussed here to analyse the relationship between single molecule 

motion and orientational order in such systems. 
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Dielectric Studies on Liquid 

Crystals under High Pressure: 

Low Frequency Relaxation 

Processes in the Nematic Phase 

of 6PCH 

8.1 Introduction 

In this and the following chapter the results of dielectric studies on two liq-

uid crystalline materials under high pressure are, presented. It is the study 

of liquid crystals at both variable temperature and pressure, which allows the 

extraction of thermodynamic data.The two chosen prototypical liquid crystals 

are 6PCH (4-trans-4'-n-Hexyl-Cyclohexyl-Benzonitrile) and 8CB (4-n-Octyl-4'-

Cyanobiphenyl). Due to the substitution of a cyclohexyl ring for a phenyl ring 

- in the 6PCH, the two molecules are comparable in length. However the 6PCH is - 

much more flexible than the 8CB. In the present chapter the experimental proce-

dure is discussed followed by the presentation, discussion and analysis of results 

obtained for 6PCH, which exhibits a nematic liquid-crystalline phase. The the-

ories discussed in chapter 7 are used to calculate activation parameters and the 

order parameter. In the following chapter, results are presented for 8CB, which 

exhibits both a nematic and a smectic A phase. Comparisons are then made be-

tween 6PCH and 8CB in order to analyse the effect of rigidity on the structural 

anisotropy and reorientation dynamics in liquid crystalline phases. The work 

presented here was carried out at the Ruhr Universitaet Bochum, in Germany in 

collaboration with Prof. Wuerfiinger. 

94 
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8.2 Experimental Procedure 

An overview of the experimental apparatus is presented in Fig. 22. The autoclave 

is pressured with compressed oil via a spindle press up to a maximum pressure of 

300MPa. A heating and cooling jacket around the autoclave serves to adjust the 

temperature, which is calibrated using ice-water as a reference. The impedance 

is measured automatically with a Hewlett-Packard analyser HP 4192, controlled 

by a personal computer. The high-pressure vessel is made of copper beryllium 

alloy and closed by a Bridgeman piston with two bores for the electrical leads to 

the capacitor. Special care is taken to avoid short-circuits between the leads and 

the vessel. A detailed cross-section view of the measuring cell, which is housed 

in the autoclave is presented in Fig. 23. The measuring cell is cylindrical and 

made of stainless steel. It is approximately 5cm long with a diameter of 3cm. 

The outer electrode is separated from the stainless steel housing by a cylindrical 

Teflon spacer. There is a 2mm gap between the outer and inner electrodes, where 

the test substance is to be found. At the base of the measuring cell is a reservoir 

to hold the test substance. The filled measuring cell holds approximately 2cm 3  

of the sample. A special moving piston consisting of two parts separated by an 

indium seal transmits the pressure on the test substance in the reservoir, which 

can penetrate to the space between the two electrodes. 

The dielectric relaxation was measured in the frequency range between 1kHz 

and 13MHz. The low conductivity of the test samples allowed the use of a DC 

bias field E 300V/cm which was used to orient the sample in the nematic 

phase parallel to the measuring field. After filling the capacitor with the sample 

(at a temperature corresponding to the isotropic phase) the dielectric spectra 

under pressure were obtained by gradually decreasing the pressure at constant 

temperature, starting from state points close to the melting curve. The tem-

perature stabilisation was better than ±0.2K, and the accuracy for the pressure 

measurements was ±0.2MPa. All results were repeated to check reproducibility. 

8.3 Results for 6PCH 

The phase diagram for 6PCH is presented in Fig.24 [120]. As can be seen, 6PCH 

exhibits three distinct thermodynamic phases: isotropic liquid, nematic liquid 

crystal and the solid crystalline state. At higher temperatures the nematic phase 
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exists over a broader pressure range. An example of the static permittivity as 

a function of pressure for a given isotherm is presented in Fig.25. In the ne-

matic phase, the static permittivity is relatively large, indicating a large degree 

of molecular alignment. On reducing the pressure, the static permittivity slowly 

decreases. This can be attributed to fact that, as the density decreases at con-

stant temperature, the average intermolecular distance increases, thereby causing 

a reduction in the extent of intermolecular interaction, which leads to a relaxation 

in the molecular alignment. At 33MPa, the system reaches the nematic-isotropic 

phase transition and the static permittivity drops suddenly to a value of 9.5. Such 

a result is a distinct sign that a dramatic change in the structural anisotropy of 

the system has occurred. In the isotropic phase there is no orientational order (by 

definition, the order parameter is S = 0 in the isotropic phase). Due to the fact 

that the molecules in the nematic phase were aligned parallel to the electric field, 

it is the parallel component of the static permittivity that is being measured. 

Assuming the molecule to be a sphero-cylinder, the permittivity tensor can be 

assumed to be diagonal, with principle elements €, Ej, and fj.. . The static per-

mittivity in the isotropic phase can then be assumed to be the average of these 

three priciple elements. Decreasing the pressure further results in a negligible 

change in the static permittivity. This result was obtained for all experimentally 

investigated isotherms. In each case, the static permittivity well into the nematic 

phase has a value of 15, which gradually reduces until the phase transition occurs, 

causing the static permittivity to drop to 9.5, where it remains constant. This 

result is similar to other experimental results which probe anisotropic properties, 

in particular optical birefringence. 

In Fig.26 some examples of the frequency dependence of the real and imaginary 

parts of the complex permittivity measured at different pressures in the nematic 

and isotropic phases of 6PCH are presented. The maxima of the loss curves are 

shifted to higher frequencies with decreasing pressure. The loss curves were fitted 

to the Jonscher equation in order to calculate the dielectric relaxation time r11 from 

the frequency of maximum loss. It should be pointed out that it is only the low 

frequency relaxation that is being measured in the nematic phase (that is the 

end-over-end tumbling motion). The high frequency relaxation, representative of 

the spinning motion about the molecular long axis cannot be accessed due to the 

frequency limit of the impedance bridge at 13MHz. In the isotropic phase, the 

low and high frequency processes merge to give one broad relaxation spectrum, 

which can only be measured in part. The Cole-Davidson equation was employed 

with a fixed value for to fit the incomplete loss curves. 
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For each of the dispersion and dielectric loss curves at 337K presented in Fig.26, 

the equivalent Cole-Cole plots are presented in Fig.27. Well in the nematic phase, 

at 75MPa, the dielectric spectrum appears to obey a single Debye-type relaxation 

process very well, resulting in a near perfect semi-circular Cole-Cole plot. On 

decreasing the pressure, the functional form of the Cole-Cole plots deviates from 

this semi-circular form. In the isotropic phase the Cole-Cole plot is not semi- 

circular. 

The relaxation times calculated for all isotherms studied are presented in semi-

logarithmic form in Fig.28. The most distinctive feature in all isotherms is the 

dramatic reduction in correlation time at the nematic-isotropic transition. Partic-

ularly in the nematic phase, it is clear that the relaxation times are not a strictly 

exponential function of the pressure, and the 1r 11  vs. p curves deviate from a 

straight line, especially for the high-temperature isotherms. Fig.29 shows the 

activation volumes calculated for the nematic and isotropic phases of 6PCH as a 

function of temperature, using equation 7.21. For each semi-logarithmic isotherm 

shown in Fig.28, the gradient over the available pressure range has been calcu-

lated. For example, at 334K relaxation times were measured at 1OMPa, 15MPa, 

20MPa and 25MPa. Having taken the logarithm of these relaxation times and 

plotted them against the pressure (see Fig.28), we see that the four points lie, to 

a good approximation, in a straight line with a gradient of 0.22/15MPa. Taking 

this gradient and mutiplying by the gas constant, R, and the temperature, 334K 

(see equation 7.21) gives a value for the activation volume of 40.7cm3mol 1 , as 

shown in Fig.29. Due to experimental limitations, it was not possible to accu-

rately measure the relaxation time at 334K at pressures less than 1OMPa, and 

between 25MPa and 30MPa the 6PCH undergoes a phase transition to the ne-

matic phase. Similarly, activation volumes have been calculated for the other 

isotherms in the isotropic phase, but over different pressure ranges. The upper 

most pressure is determined for each isotherm by the phase transition to the 

nematic phase, whilst the lowest pressure for which a relaxation time could be 

experimentally measured is determined by the limitations of the experimental 

equipment. The highest frequency of the external alternating electric field that 

could be achieved was 13MHz. As the relaxation time increases, the maximum 

in the absorption curve shifts to higher frequencies. When the maximum in the 

absorption curve is greater than 13MHz no accurate determination of the relax-

ation time can be made. 
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In the case of the nematic phase, calculation of the activation energies is com-

plicated by the fact that the semi-logarithmic isotherms shown in Fig.28 are 

curved. In this case, the two slowest and fastest relaxation times were ignored, 

and the gradient was averaged over the remaining data. As an example, the 

activation volume for the 334K isotherm in the nematic phase was calculated 

over the pressure range 40MPa - 55MPa in 5MPa steps and then an average 

overthe calculated values was taken. From the variation in the activation volume 

as calculted for each 5MPa step, it was possible to determine the experimental 

error. In the same way, using the gradient of the semi-logarithmic isochores and 

equation 7.19, the activation enthalpy was calculated for the nematic phase as a 

function of pressure as shown in Fig.30. Due to inaccuracies in the estimation of 

the very fast relaxation times in the isotropic phase at low pressures, no accurate 

values of the isotropic activation enthalpy could be calculated. 

Using the theory discused in the previous chapter (see equations 7.22 and 7.24), 

the order parameter in the nematic phase of 6PCH was calculated from the retar-

dation factor as a function of pressure (Fig.31). The author points out, that as 

the order parameter is dependent on both the temperature and the pressure, in 

order to be able to compare the results for different isotherms, a physically mean-

ingful reference is required. For this reason the order parameter is plotted for each 

isotherm as a function p - p(NI), the pressure difference between the absolute 

pressure at which the order has been calculated and the nematic-isotropic phase 

transition pressure, which is obviously dependent on the temperature. This will 

be discussed in more detail in the next section. For all isotherms, the order param-

eter takes on values between 0.42 and 0.44 deep in the nematic phase. The order 

parameter decreases very slowly with pressure until the system is 25 - 30MPa 

above the nematic-isotropic phase transition, at which point the order parameter 

decreases rapidly as the transition pressure is approached. 

8.4 Analysis Of Results: Discussion of the Re-

orientation Dynamics and Molecular Inter-

actions in 6PCH 

The analysis of the reorientation dynamics and molecular interactions in 6PCH is 

complicated by the fact that, unlike in the case of Raman lineshape analysis, the 

dielectric relaxation experiments only give the correlation times, rather than the 
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correlation functions. If we are to formulate a model to describe the reorientation 

dynamics in the nematic phase, it must predict all our available data. In par-

ticular the model must explain the large difference in correlation times between 

the isotropic and nematic phases. It must also account for the non-exponential 

relationship between r and p, and the deviation from the Debye type motion 

as the system approaches the nematic-isotropic transition, indicated by the non-

semi-circular form of the Cole-Cole plots. Further, the model must account for 

the observed decrease in activation volume on increasing temperature, and the 

observed decrease in activation enthalpy with increasing pressure. 

Fig.31 shows the order parameter of 6PCH as a function of the pressure using 

the nematic-isotropic phase transition pressure as a reference. It is apparent 

that the order parameter for all isotherms increases with increasing pressure. 

However, taking a closer look, the order parameter is seen to be larger at higher 

temperatures for the same p - p(NI). As a specific example, the order parameter 

for the 340K isotherm at p - p(NI) = 50MPa is 0.415 ± 0.1, whilst the order 

parameter for the 352K isotherm at p - p(NI) = 50MPa is 0.435 ± 0.1. From 

the phase diagram of 6PCH, (Fig.24), the nematic-isotropic phase transition at 

340K occurs at 30MPa, whilst at 352K the phase transition occurs at 65MPa. 

In terms of absolute values, this means that the order parameter of 6PCH is 

0.435 ± 0.1 at 352K, 115MPa and 0.415 ± 0.1 at 340K, 80MPa. A change 

in temperature and pressure affect the molecular system in different ways. The 

effect of a change in pressure is to reduce the space available for the molecules to 

reorientate. A small change in the pressure applied to a system results in a large 

change in the density of the system. This steric interaction stabilises the system. 

It is observed that over the temperature and pressure ranges studied here, the 

change in pressure has a greater influence on the order parameter which suggests 

that collisions between molecules cause reorientational relaxation. 

The increase in the order parameter, and therefore the molecular alignment in 

the nematic phase on increasing the pressure is also observed when examining 

the effect of variation of pressure on the static dielectric constant (Fig.25). In the 

nematic phase the static dielectric constant increases with increasing pressure. 

This can be understood as an example of Le Chatelier's principle. In the case of 

an anisotropic system, such as a nematic liquid crystal, the easiest way to remove 

the constraint of applied pressure is to increase the molecular alignment. In the 

isotropic phase, an increase in presssure only results in a decrease of the average 

intermolecular distance, and so the static dielecric constant in independent of 
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pressure. 

It is unlikely that there is just a single mechanism which accounts for all the 

intermolecular interactions and reorientation dynamics. It is well understood that 

in mesogenic molecules possessing a cyano-group, there exists substantial dipole-

dipole moment interaction. The nematic phase has a high degree of long-range 

orientational order, but no long-range translational order. The strong dipole-

dipole moment interactions result in an anti-parallel alignment of the mesogenic 

molecules. Such strong molecular associations could lead to a monomer-dimer 

equilibrium, which will be temperature and pressure dependent. 

A second important factor is the flexibility of the 6PCH molecule. The 6PCH 

molecule is more flexible than the 5CB molecule, which, as we have already 

seen, exhibits very fast intra-molecular reorientational relaxation in the short-

time limit. The flexibility of the molecule couples the perpendicular and parallel 

reorientation diffusion coefficients, and thereby could facilitate the end-over-end 

tumbling motion of molecules in the nematic phase. The onset of molecular 

alignment and the increased density of the system in the nematic phase might 

however hinder the flexibility of the molecule. 

The dramatic decrease in the relaxation time on passing from the nematic to the 

isotropic phase can only be rationalised by considering a large change in density 

at this phase transition. This is visually observed: in the nematic phase, 6PCH 

is a viscous, opaque substance, whilst in the isotropic phase it is a transparent 

mobile fluid. It can therefore be argued that in the dense nematic phase, the 

intermolecular associations due to dipole-dipole moment interactions are very 

strong. Initially this would appear to be the case, as the activation volume de-

creases with increasing temperature: as the temperature increases, the molecules 

acquire more thermal motion, the intermolecular distance increases and the ex-

tent of molecular associations decreases. The molecules find that they have more 

volume in which to reorientate, and so the excess volume (the activation volume) 

decreases. Unfortunately this model must be relinquished as the activation en-

thalpy also decreases in the nematic phase as the pressure increases. Following 

a similar argument to before, an increase in pressure would cause the average 

intermolecular distance to decrease, and the extent of intermolecular associations 

would therefore also increase. In order to reorientate, the molecules must find the 

excess enthalpy to overcome the intermolecular interaction, and so the activation 

enthalpy would be seen to increase with pressure. This process might well occur, 

but it certainly isn't the predominent mechanism, as the activation enthalpy is 
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seen to decrease with increasing pressure. 

The flexibility of the molecule also fails to provide a suitable solution: as the pres-

sure increases, the flexibility of the molecule in the nematic phase decreases, and 

hence the molecule is less capable of bending round the neighbouring molecules 

in order to achieve reorientation. The less flexible the molecule, the more it must 

push the surrounding molecules out of its path in order to rotate, which would 

once again result in an increase in activation enthalpy with increasing pressure. 

Having dismissed the molecular flexibility and the diple-dipole molecular associa-

tion theories as the primary reorientation mechanism, only the argument based on 

collisions between molecules remains. It does not initially appear too promising, 

that as the pressure increases, the collision frequency decreases, resulting in the 

decrease of the activation enthalpy. However, it can be argued that an increase in 

the orientational alignment of the molecules facilitates reorientational motion: in 

a system where the constituent molecules are aligned, any molecule attempting 

to reorientate will be channelled between neighbouring aligned molecules. The 

effect of an increase in pressure, as previously discussed, is to increase the ori-

entational alignment, and hence the order parameter. As the order parameter 

increases, the reorientational motion of the constituent molecules is aided by the 

channelling effect and the activation enthalpy is seen to decrease with increasing 

pressure. 

In order to support the proposed model, it is necessary to justify the other ob-

served experimental results. The are two arguments to explain how the activation 

volume might decrease with an increase in temperature in the nematic phase. On 

the one hand we can argue that the increased thermal motion of the molecules 

reduces the extent of molecular alignment. Paradoxically, however, at the same 

time the average intermolecular distance increases, causing the molecular flexi-

bility to increase. The molecules can now bend around their neighbours thereby 

lowering the activation volume. However, the author prefers a more subtle argu-

ment as follows: at each subsequent value of the activation volume with increasing 

temperature, the absolute value of the pressure has also increased. As the or-

der parameter is more susceptible to increases in absolute pressure, rather than 

absolute temperature, the net effect is a very slight increase in the order pa-

rameter from one isochore to the next. Due to the increase in order parameter, 

the reorientational motion of the molecule, as previously discussed, is aided by a 

channelling effect, resulting in a decrease of activation volume with an increase 

in temperature. 
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It remains to discuss the non-exponential behaviour of the r vs. p graph and the 

deviations in the Cole-Cole plots. At very high pressures in the nematic phase, 

close to the respective freezing curve, the order parameter is (comparatively) very 

large. The molecules are well aligned and the system is dense. The individual 

molecules do not possess a high degree of flexibility and, due to molecular align-

ment, one molecule's immediate environment is fairly similar to any others. The 

molecular orientation is aided by the alignment of the molecules. The time-scale 

on which the each molecule rotates is similar, as any deviations are simply due to 

the orientational distribution of the surrounding molecules (as S is not at unity). 

There is therefore a single relaxation process with a single associated relaxation 

time, dependent on the extent of molecular alignment. The Cole-Cole plot shows 

Debye-type motion. As the pressure decreases, there is initially only a very small 

change in the order parameter. However, the average intermolecular distance 

increases and so does the molecular flexibility, whilst the the extent of dipole-

dipole interactions decreases. The combined effects of a decrease in density, a 

decrease in the extent of dipole-dipole interactions and an increase in the average 

intermolecular distance and the residual orientational order combine to give an 

increase in the reorientational relaxation time. As the distribution of molecular 

orientations has increased, the relaxation is now affected by several competing 

mechanisms. The Cole-Cole plot becomes increasingly skewed, as the relaxation 

time deviates from an exponential function of pressure. When the system reaches 

the nematic-isotropic phase transition, the density reduces dramatically, molec-

ular orientation is lost and the relaxation time falls steeply. The molecules in 

the isotropic state are extremely flexible and the average intermolecular distance 

very large, rendering the activation volume temperature independent. 

In the following chapter the proposed model will be applied to 8CB, a less flexible 

mesogenic molecule, and will be extended to include the reorientation dynamics 

in the smectic A phase. A summary of the discussion provided in this chapter 

will be presented in chapter 9, after comparing the results for 6PCH and 8CB. 
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Fig. 23 The Dielectric Mesuring Cell 

Cross-Section Of The Dielectric Measuring Cell 

• 	- 	 - 	• 	g 

a: Electrical Contacts, b: Flexible Insulated Connection Wires, C: Insulating Cap, 
d: Stainless Steel Casing of Cell, e: Stopper, f: Rubber Washer, g: Upper Teflon 
Insulating Cap, h: Teflon Insulator to separate Outer Electrode from Cell Casing, 
i: Outer Electrode, j: Inner Electrode, k: Lower Teflon Insulating Cap, 1: Cavity to 
hold Sample, m: Upper Part of Moving Piston, n: Indium Sealing, 0: Lower Part of 

Moving Piston. 
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Fig. 24 6PCH Phase Diagram 
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Fig. 31 6PCH Order Parameter 
as a Function of Pressure 
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Chapter 9 

Dielectric Relaxation Study of 

8CB 

9.1 Introduction 

In this chapter results are presented for dielectric relaxation studies on 8CB at 

variable temperature and pressure. The experimental apparatus and procedure 

have already been discussed in the previous chapter. The temperature range 

studied was from 305K to 361K, and the pressure range varied from 1MPa 

to 225MPa. Over such a temperature and pressure range measurements were 

obtained for the isotropic, nematic and smectic A phases as shown in Fig.32 

[121]. 8CB is the lowest homologue of the nCB homologous series to exhibit a 

smectic A phase. Despite the fact that it's molecular mass is different from that 

of 6PCH, the two molecules are comparable in terms of molecular length, but 

do not possess the same degree of flexibility. A direct comparison of the results 

obtained for 8CB and 6PCH allows an investigation into the effect of flexibility 

on the dynamics and structural anisotropy of molecular systems. Many of the 

phenomena observed in the results for 8CB in the nematic and isotropic phase 

are similar to those observed in 6PCH. The author therefore concentrates on the 

results obtained in the smectic A phase. At the end of the chapter, differences 

between the two mesogens are discussed. 

113 
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9.2 Results of Dielectric Studies on 8CB 

The static permittivity as a function of pressure for the 336K isotherm of 8CB is 

presented in Fig.33. As discussed for 6PCH the static permittivity in the isotropic 

phase is relatively low at a value of 9.5, and appears to be independent of pressure. 

There is a dramatic increase in the magnitude of the static permittivity observed 

in the nematic phase, qualitatively indicative of the presence of substantial struc-

tural anisotropy. At this point the author points out that the absolute value of 

the static permittivity in the nematic phase of 8CB cannot be compared directly 

to that in 6PCH in order to determine the relative degree of molecular ordering. 

The reason for this is that due to the anti-parallel packing arrangement seen in 

both nematogens, the effective dipole moment per molecule in the macroscopic 

system (which can be calculated from the experimentally obtained parallel com-

ponent of the static permittivity) is much lower than the actual dipole moment. 

The Kirkwood correlation factor g, for 8CB has been found to be 0.4 [122]. 

The magnitude of the static permittivity in the smectic A phase is lower than 

that in the nematic. Indeed there is a distinct kink in the static permittivity at 

the nematic-smectic A phase transition. This result is initially surprising as it 

suggests that the relative degree of molecular alignment in the smectic A phase 

is lower than that in the nematic phase. However, this unusual result can be 

explained by considering that the DC bias electric field used to align the molecules 

in the nematic phase parallel to the probing AC electric field is not strong enough 

to align the smectic A layers. Therefore, whilst the molecular alignment in the 

smectic A layers is greater than in the nematic phase, the layers themselves 

exist as undulating slabs, which sit at different angles relative to the probing AC 

electric field. The net result is that the (macroscopic) static permittivity is seen 

to decrease. 

In Fig. 34 the dispersion and dielectric loss curves for the 336K isotherm are 

presented in the isotropic, nematic and smectic A phases. The lower static per-

mittivity in the smectic A phase relative to the nematic phase is apparent from 

the dispersion curves even at higher field frequencies. Once again, the maxima 

of the loss curves are shifted to higher frequencies with decreasing pressure. The 

Jonscher equation was preferred for calculating the dielectric relaxation time TB 

from the frequency of maximum loss. Semi-logarithmic plots of the relaxation 

time versus pressure are shown for a large number of isotherms in Fig.35. It is 

immediately apparent that the increase in the dielectric relaxation time at the 
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smectic A-nematic phase transition is nowhere near as dramatic as the increase 

in relaxation time at the nematic-isotropic transition. Indeed, particularly for 

the higher temperature isotherms, the only precise way of experimentally observ-

ing the smectic A-nematic transition from dielectric measurements is to look for 

the kink in the static permittivity. PVT meaurements on 8CB have shown that 

the volume change associated with the smectic A-nematic transition is also very 

small compared to that observed at the nematic-isotropic transition [123]. This 

suggests that whilst the nematic-isotropic transition is most definitely first-order, 

the smectic A-nematic transition is either very weakly first-order or second-order, 

as is well known. The second point to make is that the increase in relaxation rate 

through the nematic phase on decreasing pressure is not as fast as that observed 

for 6PCH, and the T11 vs. p relationship can be much better fitted to that of an 

exponential. 

The respective Cole-Cole plots are presented in Fig.36. The Cole-Cole plot for 

the nematic shows an almost perfect semi-circular form, whilst the Cole-Cole 

plot for the isotropic phase is skewed. The smectic A phase Cole-Cole plot is 

not semi-circular, but slightly skewed. Activation volumes for all three phases 

are shown in Fig.37. The calculation of the activation volume from the semi-

logarithmic isotherms has been discussed in detail in the previous chapter. All 

three phases show decreasing activation volumes with an increase in temperature. 

The largest activation volumes are observed in the nematic phase, the smallest 

in the smectic A phase. Activation enthalpies for all three phases are shown in 

Fig. 38. The largest activation enthalpies are observed in the nematic, the smallest 

in the isotropic phase. With increasing pressure the nematic and smectic A acti-

vation volumes are observed to decrease, whilst the isotropic activation enthalpy 

increases rapidly. Due to the availability of pVT data for 8CB it is possible to 

calculate the activation energy (Fig. 39). (At the time of writing, no 6PCH pVT 

data is available.) The nematic phase shows the largest activation energy, the 

isotropic phase the smallest. The activation energy is seen to remain constant in 

all phases across the entire range of activation volumes. The temperature and 

pressure dependences of the activation parameters correspond well to previous 

results on other similar liquid crystals [124,125,126,127]. Such data will prove 

very important in the next section when extending our model mechanism to de-

scribe the reorientation dynamics in this system. Finally, the order parameter 

has been calculated for the nematic phase of 8CB for various isotherms (Fig. 40). 

Once again, the higher temperature isotherms exhibit greater order parameters, 

suggesting that the order parameter in this system is also more susceptible to 
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changes in the absolute pressure than the absolute temperature (a steric vs. kT 

argument.) This phenomenon has been rigorously argued in the previous chap-

ter. It can also be seen that the magnitude of the order parameter in the nematic 

phase for all isotherms is greater than that observed in the case of 6PCH. 

9.3 Discussion of Results and Comparison of 6PCH 

and 8CB 

In the previous chapter a model was proposed to describe the relaxation mech-

anism in the nematic phase of 6PCH. The author tentatively suggests that the 

predominent reorientation mechanism is that of steric interaction and that an 

increase in the molecular alignment facilitates reorientational relaxation via a 

chanelling effect. However, it did appear that other relaxation mechanisms, in-

cluding the effect of molecular flexibility were playing some role in the reorien-

tation dynamics. In 8CB the degree of molecular flexibility is much less than 

in 6PCH. In this chapter the author attempts to extend the model and describe 

the reorientational relaxation process in the smectic A phase. Comparison of 

experimental data from the two mesogens (8CB and 6PCH) allows us to try to 

interpret the effect of flexibility on the dynamics and structuring in these systems. 

Before beginning the discussion, the author points out that due to differences in 

density of the two systems, a direct comparison of the magnitude of the activa-

tion parameters is invalid. However, differences in the variations of the activation 

parameters as a function of temperature/pressure need to be explained. 

The activation volume in the nematic and isotropic phases of 8CB is seen to de-

crease with increasing temperature. For the case of the nematic phase, the author 

has already suggested that, despite the fact that the temperature is increasing, the 

order parameter is more susceptible to the increase in absolute pressure, so there 

is a net increase in molecular alignment, which facilitates reorientational motion, 

resulting in the observed decrease in activation volume. In the isotropic phase 

for 6PCH however, the activation volume appeared to be independent of tem-

perature. The author suggests that the flexibility of the 6PCH molecule means 

that it can bend around the neighbouring molecules even at relatively small in-

termolecular distances. The more rigid 8CB molecule cannot do this and so the 

activation volume is very much more dependent on the average intermolecular 

distance. This is a possible explanation for the marked temperature dependence 
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of the activation volume of 8CB in the isotropic phase. The activation volume 

of the smectic A phase over the entire temperature domain studied is seen to be 

lower than the respective activation volume in the nematic phase. The author 

suggests that as the molecular alignment in the smectic A phase is greater than 

that in the nematic phase, the reorientational motion is facilitated even further, 

resulting in lower values for the activation volume. 

Due to the extensive pressure range study of the 8CB it was possible to calculate 

activation enthalpies for the isotropic phase. In comparison to the nematic and 

smectic A phases, in the isotropic phase the activation enthalpy increases dramat-

ically with pressure. We can assume that as the pressure increases, the average 

intermolecular distance decreases dramatically. However, unlike in the nematic 

and smectic A phases, the increase in pressure does not result in an increase in 

the extent of molecular alignment (i.e.S = 0). As 8CB is not particularly flexi-

ble, the steric interaction between the rod-like molecules as they rotate increases 

with pressure, resulting in an increase in the activation enthalpy. In the nematic 

and smectic A phases, an increase in pressure results in an increase in molecular 

alignment facilitating molecular reorientation and decreasing the extent of steric 

hindrance resulting in a decrease in the activation enthalpy in these phases. How-

ever, the author notes that a difference of 20kJmol' between the nematic and 

smectic A activation enthalpies over the entire pressure range studied is too large 

to be explained purely in terms of the extent of molecular alignment. It appears 

that the layered structure in the smectic A phase increases the channelling effect, 

resulting in such a large difference in the activation volumes for the smectic A 

and nematic phases. 

For all activation volumes, the activation enthalpy in the smectic A phase is lower 

than that in the nematic phase. In general, the ratio of the activation energy to 

the activation enthalpy gives a quantitative measurement of the extent that steric 

hindrance plays in the reorientational motion. Due to the decrease in activation 

enthalpy with increasing pressure, steric hindrance in the smectic A phase is seen 

to account for 80% of the total activation enthalpy at higher pressures (compare 

Fig.38 and Fig.39). 

In comparison to 6PCH, 8CB is less flexible. This might be the reason why 

the r vs. p relationship in the nematic and smectic A phases of 8CB shows 

a much better fit to an exponential. However, it is surprising that the Cole-

Cole plot for the smectic A phase of 8CB is more skewed than the nematic. A 

possible explanation could be that the anti-parallel packing configuration of the 
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bilayer in the smectic A phase causes an increase in the repulsive CN dipole-dipole 

interaction, resulting in a secondary, less prominent reorientational relaxation 

mechanism. 

9.4 Summary 

From the dielectric relaxation results of 6PCH and 8CB, the author has pro-

posed a model for reorientational relaxation in liquid crystalline phases. It is 

suggested that the predominant relaxation mechanism is controlled by steric ef-

fects, whereby molecular alignment is seen to facilitate reorientational motion via 

a channelling effect. In both mesogens over the temperature and pressure ranges 

studied, the order parameter appears to depend more on changes in pressure 

than changes in temperature. However, molecular flexibility and dipole-dipole 

interactions also promote alternative relaxation mechanisms. The extent that 

these alternative relaxation mechanisms play in the reorientation dynamics varies 

through the smectic A, nematic and isotropic phases. In the smectic A phase, 

the layered structure and the anti-parallel packing configuration promote the CN 

dipole-dipole interaction. The molecular flexibility seems to play a greater role on 

the relaxation dynamics in the nematic and isotropic phases. As a general obser-

vation, at any given phase point relative to the nematic-isotropic phase transition, 

the order parameter in 8CB is always greater than that in 6PCH. This suggests 

that the rigidity of the molecule not only determines the magnitude of the order 

parameter, but also the stability of the nematic phase. 

The calculated activation parameters support the proposed model. By comparing 

values of activation energy to activation enthalpy, it appears that in all phases 

steric hindrance accounts for at least 50% of the total activation enthalpy. In the 

denser phases, such as the smectic A phase, the effect of steric hindrance increases 

to as much as 80% of the total activation enthalpy (compare Fig.38 and Fig.39). 

The observation that the activation volume in the smectic A and nematic phases 

decreases with increasing temperature is considered to support the argument that 

molecular alignment facilitates reorientational motion. 
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Fig. 32 8GB Phase Diagram 
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Fig. 40 8GB Order Parameter as a Function of Pressure 
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Chapter 10 

Conclusions 

The aim of this research project was to investigate the single molecule reorienta-

tion dynamics in partially disordered systems, in order to gain an understanding 

as to how the motion of constituent particles in such a system affects the local 

structuring and anisotropy of the system. The relationship that exists between 

single particle dynamics and macroscopic long-ranged orientational and positional 

ordering can be easily understood: on the one hand, the dynamics of a single par-

ticle is very much dependent on the particle's local environment, which determines 

the immediate potential energy surface. As the single particle relaxes, neighbour-

ing molecules notice a change in their immediate environment, and react to this 

correspondingly. The intermolecular forces produce correlations that can prop-

agate beyond the range of the forces themselves, and so these forces manifest 

themselves in the macroscopic properties of the system. However, the specific 

form of the intermolecular interaction potential is dependent on the physical and 

chemical properties of the individual molecules.On this basis, the work presented 

here is concerned with a much more general, fundamental area of contemporary 

science: the relationship between the macroscopic properties of a system given by 

statistical mechanics and the microscopic quantum mechanical properties of the 

constituent molecules, such as molecular size, shape, flexibility and even chemical 

make-up. 

Results have been presented for a series of systems, each displaying a different 

degree of orientational and positional order. For each given system a summary 

has been provided highlighting the phenomena of interest. The purpose of this 

chapter is to provide a more general overview and to discuss possible future work. 

The single-particle reorientational correlation function is extremely sensitive to 

128 
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changes in the local environment caused by varying the temperature or pressure 

of the system. This is in comparison to the single particle vibrational correlation 

function, which appears to be predominantly dependent on the molecular mass 

and the specific vibrational frequency. 

The most important general observation in this research project is that none of 

the observed reorientational correlation functions decay as true exponentials with 

a single time exponent over all timescales. Despite the fact that initial experi-

mental work on small molecular systems in the gas phase provided near perfect 

free-rotor correlation functions, early experimentalists working on Raman line-

shape analysis in condensed matter phases in the 1960s and 1970s assumed that 

the single molecule reorientation dynamics would be stochastic. Their argument 

was that due to the enormous range of directional forces acting on the single 

molecule in a condensed phase, reorientational motion could only be rationalised 

by probabilistic statistical models dependent on a single characteristic relaxation 

time. Raman bands were fitted to Lorenzians, or in many cases no line shape 

analysis was carried out at all, and only the FWHH measurements were taken. 

In this work, high resolution Raman spectroscopy combined with precise and 

intensive baseline correction and line shape analysis techniques has shown that 

accurate reproducible correlation functions can be extracted from Raman line-

shapes and the complexity of the functional form of these correlation functions 

is much greater than that previously assumed. 

It is not surprising that stochastic behaviour is not observed in the systems stud-

ied here. Only a system which is truly isotropic will give an exponentially decaying 

reorientational correlation function. The fact that these systems are only par-

tially disordered means that over some given distance scale the highly directional 

intermolecular interactions overcome thermal motion, thereby obtaining partial 

orientational and/or positional ordering, which breaks the isotropy. The value of 

accurate correlation functions is that they allow us to distinguish different means 

of reorientational relaxation that are occurring simultaneously, but on different 

timescales. Considering the results presented in this work we can assign, in gen-

eral, the different types of reorientational relaxation to their given timescales. In 

the first O.lps we observe intra-molecular reorientation due to molecular flexibil-

ity. This process could be interpreted by a site-site model, whereby the relaxation 

rate would be determined by the height of the energy barrier between orientational 

sites given by the torsional bond potential. However, torsional bond potentials 
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are very small, and the relaxation process is complicated by intermolecular in-

teractions such as dipole-induced-dipoles and Van-der-Waals interactions. Such 

behaviour was observed in the nCB homologous series. In the case of a rigid 

molecule, such as CS2, the correlation function is that of the free-rotor in the 

first 0. ips. On the timescale 0. lps —0. 5ps the reorientation process is dominated 

by the interaction between the molecule and its immediate local environment. In 

the case of CS2, we observed the temperature dependence of the intermolecular 

torque on the damped free-rotational behaviour in this regime. Qualitatively, the 

correlation function on this time-scale provides an insight into what the molecule 

experiences from its local environment. It is in this time-scale that the effect of 

an increase in the free-volume is observed as the cyclohexane/CS 2  solution under-

goes a liquid to plastic crystalline phase transition. At timescales greater than 

0.5ps we observe that the reorientational relaxation is dominated by collisions 

and the functional form of the correlation function can best be described by the 

or M-extended diffusion models with a characteristic collision frequency. On 

progressing to increasingly longer timescales, the correlation functions enter the 

hydrodynamic regime and tend to exponential decay. Following the discussion 

on the relationship between time and distance, this observation can easily be ex-

plained by considering that partially disordered systems are isotropic over large 

distance scales. 

The Raman lineshape analysis is not suited to the study of very slow dynami-

cal behaviour. At such long timescales alternative techniques such as dielectric 

relaxation are more favourable. The fact that dielectric relaxation only gives 

the integrated correlation time is of no particular significance as at such long 

timescales the molecular motion is hydrodynamic. In such cases it is more prof-

itable to look at the thermodynamic properties of the system as demonstrated 

for the chosen liquid crystals 6PCH and 8CB. However, Widom's argument, that 

partially disordered systems such as liquids reflect in their bulk properties the 

attractions and repulsions of their constituent particles, and Kubo's fluctuation-

dissipation theory, which defines the relation between microscopic fluctuations 

and macroscopic dissipative coefficients, such as the rotation diffusion coefficient, 

both suggest that the ultra-fast, short-time processes instill the basis of the dy-

namics at longer timescales. The information concerning the ultra-fast dynamics 

is contained in the very far wings of the Raman band where, unfortunately, the 

S/N ratio is very small and much of this useful information is lost. Recent devel-

opments in the generation of stable ultra-short laser pulses have made possible 

the direct observation of dynamical behaviour on the femtosecond time scale and 
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in the last ten years a hierachy of time-resolved pump-probe non-linear opti- 

cal experimental techniques [128-142] have been developed providing information 

complementary to that obtained via frequency domain inelastic light scattering 

techniques. 

Ostensibly, all time-resolved pump-probe experiments follow the same basic idea. 

A high intensity ultra-short linearly polarised excitation pulse brings the system 

into a coherent vibrationally excited state and simultaneously creates some net 

alignment of the molecules giving rise to orientational anisotropy. The decay of 

this orientational anisotropy and vibrational coherence is measured directly by 

the non-linear response intensity from a secondary probe pulse incident on the 

system at some variable delay time. The response function is therefore a combi-

nation of the collective reorientational relaxation and various vibrational relax-

ations, such as libration. The probe pulse can be tuned into a given vibrational 

frequency. Particularly for low frequency vibrations, the vibrational dephasing 

can be classified into homogeneous and inhomogeneous contributions [143,144]. 

The homogeneous contribution arises from a rapid perturbation by neighbouring 

molecules of the oscillator of interest, whilst the inhomogeous contribution arises 

from differences in the environment around the oscillator. These two contribu-

tions can thought of as single-molecule self-vibrational dephasing, and collective 

vibrational dephasing respectively. The important point to notice in these exper -

iments is that these collective relaxation processes occur on the same time-scales 

as the fast single-molecule dynamic processes reported in this work and there is 

therefore a coupling between single-particle and collective molecular motion in 

partially disordered phases. 

At the moment no models have been developed for collective reorientational mo-

tion, though it is clear that there is a strong connection between single-particle 

and collective reorientational dynamics. More recent time-resolved non-linear 

spectroscopic experiments have concentrated on deconvoluting the homogeneous 

and inhomogeneous contributions to the vibrational dephasing using multiple ex-

citation pulses and several time delays. In general the time-resolved non-linear 

experiments have two main advantages over frequency domain techniques. The 

use of multiple incident pulses allows the study of numerous possible polarisa-

tion components, in comparison to Raman spectroscopy where there are only two 

possible polarisation components (VV and VH). By comparing the response func-

tions from different polarisation components more information as to the specific 

dynamics of the system can be deduced. Secondly, the direct observation of the 
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time-domain response functions preserve any inherent temporal ordering which 

may be compromised by a diffusive relaxation treatment of light scattering data 

in the frequency domain. However, time-resolved non-linear optical techniques 

are expensive. In particular, the collection optics must be extremely sensitive, as, 

in general, an increase by one order of non-linearity results in a one-hundred-fold 

decrease in signal intensity. Obviously, the non-linear signal intensity is largest 

at very short delay times (several tenths of picoseconds). At longer delay times 

the non-linear signal intensity decreases as the system of interest relaxes. Despite 

the use of lock-in amplifiers and heterodyne amplification techniques [145], the 

collection of accurate response functions at long time delays is not possible. 

The fundamental problem with all experimental techniques is that the results 

are averages over all molecular conformations, orientations and positions in the 

system. There is no single experimental technique to date that allows the ex-

perimentalist to follow the specific motion of a given molecule in a macroscopic 

system. Furthermore there has also been no attempt as yet to look at the dynam-

ics at different positions in a given molecule. Such experiments involve tagging a 

molecule. The author provides here a few ideas for future experiments. 

Let us consider a liquid crystalline system, such as those studied here by dielectric 

relaxation. The model formulated suggests that the dynamics are dominated by 

steric effects (collisions). The immediate question is then: where in the molecule 

are most of these steric interactions occurring? By inserting an eximer (such as 

a pyrene molecule) at different positions along the length of the liquid crystalline 

molecule, it is possible to qualitatively determine as a function of the intensity of 

fluorescence where the steric interactions are most prominent: in the middle of 

the molecule, in the rigid rod, or at the end of the flexible molecular tail. This 

experiment provides information about the collisions between molecules. Another 

possible future experiment would be to chemically insert a specific Raman active 

chromophore, such as a silicon fluoride group, at different positions into a liquid 

crystalline molecule. Assuming that the vibration at this active chromophore 

is localised, correlation functions from this chromophore would give information 

about the difference between the dynamics of the rigid-rod section of the molecule 

and the flexible tail. For the case of a silicon fluoride chromophore, both tum-

bling and spinning correlation functions could be extracted. Both these examples 

involve the use of designer substances, specifically chemically synthesised for the 

study of reorientation dynamics and molecular interactions. In each case a par-

ticular position in the molecule is being tagged. This is not the only possible way 
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of tagging molecules. Let us consider an isotropic liquid system with an inter-

face (either liquid-liquid or liquid-gas). It would be of interest here to compare 

the dynamics of molecules in the bulk liquid with those at the interface. It is 

well known that any form of second harmonic generation (hyper-Rayleigh, hyper-

Raman) is only allowed in systems which do not possess an inversion centre. The 

bulk isotropic liquid possesses an inversion centre. However, the interface de-

stroys this symmetry. The extension of the theory for extraction of correlation 

functions from hyper-Raman or hyper-Rayleigh bands is simple. In this example 

the molecules at the interface are being tagged by virtue of the symmetry of the 

system. 

Computer simulation techniques play an increasingly important role in the study 

of dynamics in condensed phases. The level of computer simulation required de-

pends on the time-scale of the dynamics of interest. Classical MD simulations 

generate very good results for the dynamics of systems at long time scales. How -

ever, due to the use of a static interaction potential, classical MD techniques are 

not suitable for the study of ultra-fast dynamics occurring at timescales. similar 

to the fluctuations of the interaction potential due to changes in the molecular 

conformation and vibrations. It has been shown in this work that DFT ab mi-
tio computer simulation can successfully probe the dynamics of the system at 

ultra-fast time scales. However, ab initio techniques require a large amount of 

cpu time and simulations are restricted to a very small number of molecules in a 

periodically repeating super-cell. The author argues here that the ab initio sim-

ulation over very short time-scales (less than one picosecond) can be considered 

to be accurate. However, at longer timescales the DFT simulation is not real-

istic due to finite size effects and periodic boundary conditions. As computers 

become more and more powerful, ab initio simulation techniques can be extended 

to increasingly larger systems. In the meantime, results from present ab initio 

calculations could be used to formulate more accurate interaction potentials for 

classical MD simulations. 

In summary, we conclude that there is an intrinsic relationship between the struc-

ture and dynamics of a macroscopic condensed matter system and the dynamics of 

a single constituent molecule in that system. The single molecule reorientational 

relaxation is complicated: numerous relaxation processes occur simultaneously 

at different timescales and the motion of the molecule and its interaction with 

its local environment are highly dependent on the particular physical and chem-

ical molecular properties. The extraction of accurate correlation functions from 
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Raman lineshapes allows the separation and analysis of these different relaxation 

processes. In particular, the dynamics occurring at very fast timescales appears 

to play a significant role in determining the dynamics at longer timescales. These 

fast relaxation processes can be simulated using ab initio computer simulation 

techniques. Future work will involve combining frequency domain experiments 

with more recent time-domain experiments.. In general, the research will progress 

along two paths: 

Probing the relationship between homogeneous and inhomogeneous vibrational 

and reorientational relaxation, including in particular the development of models 

for collective reorientational relaxation. 

Developing new experimental techniques to tag molecules in condensed matter 

systems, and combining this research with 'computer simulation techniques in 

order to probe the dynamics of a specific molecule in a system over a given time 

period. 

This research will increase our understanding of the relationship between the 

macroscopic properties of a system and the microscopic physical and chemical 

properties of the constituent molecules. This will lead to the development of 

designer systems, whose constituent molecules are specifically chosen and syn-

thesised such that the macroscopic properties of that system are best suited to a 

particular industrial application. 



Appendix A 

Qu.antisation of Angular 

Momentum 

In order to establish a scientific representation of reorientation dynamics in con-

densed phases it is neccessary to formulate a quantum theory of angular momen-

tum to describe the orientational motion of the individual constituent components 

of a given system. What follows here is a brief introduction to the basis concepts 

of quantisation of angular momentum including the definition and formulism of 

the mathematical identities, which are used to define explicit forms of the corre-

lation function for different models of reorientational motion. 

To define the angular momentum operators [146,147], we first consider the ro-

tation of a coordinate system through an angle 0 about an axis defined by the 

direction n, a unit vector. The wavefunction in the original system is then 

related to the wavefunction ' in the rotated system by a unitary transformation: 

= R(ri, 9). 	 (A.1) 

R(n, 0) depends on three angles, two to define the direction of n and 0 which 

defines the magnitude of rotation. R(n, 9) tends to 1 as 9 tends to zero. In 

exponential form, we can now write: 

R(n, 9) = exp(—iS(n, 9)) . 	 (A.2) 
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As R is unitary, S is hermitian. Considering an infinitessimal unitary transfor-

mation, expanding exp(—iS(n, 9)) to the first power only: 

R(n, 0) = 1 - iS(n, 0) 	 (A.3) 

and 

	

Rib = (1— iS)'çb. 	 (A.4) 

Using the above formulae, and considering the case where the axis of rotation lies 

along one of the cartesian axes, x, y or z, we find: 

	

RV) - = i94h 	 (A.5) 

	

Rib - = i0J'b 	 (A.6) 

	

- = i940. 	
0 	

(A.7) 

J, J, and J are the three Hermitian operators for the three cartesian components 

of angular momentum. They are a complete set in so far that components formed 

in any other way are expressible as linear combinations of these three. The total 

angular momentum operator (three operators), i is defined more generally for 

any axis of rotation n as: 

RV) - = —i9(n 	 (A.8) 

for infinitessimal rotations. For finite rotations: 

R = exp(—iO(n . 	 (A.9) 

Similarly, the transformation of an arbitrary quantum operator O under an in-

finitessimal rotation has the the form: 

R6-6=—i0n[J,6]. 
	 (A.1O) 

The angular momentum thus determines the transformation properties of a sys-

tem or quantum operator under rotations of the coordinate system. Conversely, 

the angular momentum operator 1 (i.e the three operators i) can be de-

termined from the transformation properties of the system. 

Of course the explicit form of the total angular momentum operator is defined by 

the transformation properties of the particular system under consideration. As a 
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simple example, we concentrate on a wavefunction or state vector '(x, y, z) which 

transforms under rotation to a new wavefunction b(x', y', z'). For an infinitessimal 

rotation dO about the z-axis: 

x'=x+ydO 	 (A.11) 

y'=y—xdO 	 (A.12) 

ZI 
=

Z . 	 (A.13) 

Now 

(x', y', z') = io (x, y, z) - dG(yô/ôx - x8/Oy)b(x, y, z) . 	(A.14) 

However, from equation A.8 

R(x, y, z) = (1 - idOi)(x, y, z) . 	 (A.15) 

Therefore 

j. = —i(x/y - yO/Ox) L. 	 (A.16) 

Similarly 

= —i(y/z - z&/3y) 	 (A.17) 

= —i(z/x - xo/az) L. 	 (A.18) 

L, L and L z  are the three Hermitian operators for the three cartesian compo-

nents of orbital angular momentum. The total angular momentum is the sum 

of the orbital angular momentum operator L and the spin angular momentum 

operator S, 
(A.19) 

As the state vector / has no internal degrees of rotational freedom (no spinor 

index) there is no spin angular momentum and variation occurs only in the con-

figuration space coordinates. For our purposes we will deal only with systems 

possessing no internal degrees of freedom and therefore spin angular momentum 

will not be discusssed any further here. Orbital angular momentum is well un-

derstood in terms of its classical analogue: 

L = r x p 	 (A.20) 

where r is the position vector of the particle and p is its linear momentum. 

In quantum mechanics we obtain the orbital angular momentum operator by 

substituting r -+ I and p - , where 1 and 0 are the position and momentum 
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operators respectively. In the coordinate representation I = r, = —iV and the 

orbital angular momentum operator is given by 

	

14 = — i[r x V] . 	 (A.21) 

We now consider two consecutive finite rotations. In the first case we rotate a 

system through an angle dO about the x-axis, and then through an angle d9 

about the y-axis. In the second case we rotate the system through an angle d9 

about the y-axis, and then through an angle dO about the x-axis. Comparison of 

these two rotation operators shows that they are indeed not the same. Subtracting 

one from the other we arrive at the result: 

exp( — id9J) exp( — idOJ) — exp( — id9J) exp( — idOJ) = exp( — id9d9Jz ) 1. 

(A.22) 

It follows that 

	

d9d9(JJ - ii) = id9d94 	 (A.23) 

- 	 = iJ. 	 (A.24) 

This form of commutation is called cyclic commutation and similar commutation 

relations are obtained for combinations of the other components of the total 

angular momentum. Defining [3,J] - Jji ; (i,j = x,y,z): 

[ii , JI = -[Jr, 3] = ijy 	 (A.25) 

[3w , 41 = - [Jz, 	= 	 (A.26) 

All components commute directly with themselves and the square of the total 

angular momentum operator: 

	

[Jr, JI = [J, J] = [ii , Jz] = 0 	 (A.27) 

	

[.j2 ,jx ] = [. 2 ,i] = [j2 , j,~ ] =0. 	 (A.28) 

Such commutation relations mean that it is experimentally possible to measure 

or calculate both the square of the total angular momentum and a single carte-

sian component of the total angular momentum simultaneously. However it is 

not posssible to know simultaneously any more than one cartesian component of 

the total angular momentum. The cyclic commutation properties between com-

ponents of the total angular momentum operator play an important role in the 
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formulation of irreducible tensors. 

In order to describe the rotation of a system it is necessary to define two sets of 

coordinate axes, or frames. The first is a coordinate frame fixed in the system of 

interest, for example a molecule. The centre of this coordinate frame is found at 

the molecular centre of mass. This is called the body-fixed frame. The second 

coordinate frame is one fixed in space, and is called the laboratory frame, or 

space-fixed frame. Using the space-fixed frame as a reference, and rotating the 

body-fixed frame such that it coincides with the reference frame, it is possible to 

explicitly define a rotation of the system of interest. The representation of any 

property of the system with respect to the body fixed frame will remain constant 

under rotation due to the symmetry laws of rotation. However, the representation 

of a given property of a system, if non-spherical, will transform under rotation 

when measured in the space-fixed frame. 

We will now define explicitly the representation of the rotation matrix R for 

rotation in three dimensions. We consider the rotation of the body-fixed frame 

associated with a coordinate system S(x, y, z) -+ S(x', y', z'). Any such rotation 

in three dimensions may be considered as three successive rotations about the 

coordinate axes: first we transform the axes to new positions by rotating through 

an angle a(O < a < 27r) about the z-axis. This is followed by a rotation about the 

new y-axis through an angle /3(0 < 8 :5 ir). Finally we perform a third rotation 

about the new z-axis through an angle 'y(O 27r). The same rotation may 

be performed by another succession of rotations: a rotation through an angle 7 

about the original z-axis, then a rotation through an angle 8 about the original 

y-axis and finally a rotation through an angle a about the original z-axis. The 

angles a, /3,7 are called the Euler angles and completely define the rotation of 

the coordinate system. It should be noted that in the second approach, all three 

successive rotations are about the original axes in the body' fixed frame. We may 

express the rotation operator 15(a, /3,y)  as: 

15(a, /3,) = exp(—iaJz ) exp(—i/3J) exp(—i74). 	(A.29) 

Rotation defined by the Euler angles is shown illustratively in figure Al. 

Irreducible tensors occupy a central position in angular momentum theory [148,149]. 

Under rotations of coordinate systems these tensors transform in the same man-

n& as eigenfunctions of the angular momentum operator. An irreducible tensor 

Mj of rank J is defined as a set of 2J + 1 functions (components) MJM (where 
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M = -J, -J+1 . .....  J —1, J) which satisfy the following commutation rules with 

spherical components of the angular momentum operator: 

[J± , MJM] = 2_112 exp(±i6) x (J(J + 1) - (M(M ± 1) 112M JM±1  (A.30) 

[Jo , MJM] = MMJM. 	 (A.31) 

It follows that: 
[2 

 MJM] = J(J + 1)MJM. 	 (A.32) 

The quantity J which determines relative phases of different MJM  components is 

arbitrary. For our purposes and for simplicity we will define ö = 0, (exp(iö) = 1), 

and choose the positive sign of the square root. The linear equations define 

the components of the irreducible tensor MJM  within an arbitrary scalar factor, 

which is the same for all of the components. This factor can be real or complex. 

In the case of an integer rank J, as we will be considering, the overall phase of the 

MJM components is usually defined with the Condon-Shortley choice of phases 

[150], such that: 
(M JM)* = (_1)MMJ_M 	 (A.33) 

which coincides with that for spherical harmonics as shall be seen later. 

An irreducible tensor Mj of rank J can be expanded in a series based on a 

complex set of orthonormal irreducible tensors eJM  of rank J, 

M ej eJ'M' = UJJ'OMM', 

composed of basis functions. The expansion of Mj is written as 

MJ=>eY.MJM=.M' 	 (A.35) 
M 	 M 

where MJM  represents the covariant component of the tesnsor M.j and M 

denotes the contravariant component. These components are related by 

hAM_fAA \*_f ,\-MAA 
JVLJ - JVIJM) - 	1) ./VIJ_M (A.36) 

Under rotations of the coordinate system described by the Euler angles c, /3, 'y 

the components of irreducible tensors MJM  undergo linear transformation. The 
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coefficients of such transformations are the Wigner D-functions, defined by: 

MJM' = (a,/3,"y)MJM'[D(a,/3,y)]' = 	MJMDM,(0,/3,7). 	(A.37) 
M 

As seen above, the Wigner D-functions DJ m, (ce, /3,'y) may be defined as the 

matrix elements of the rotation operator in the JM-representation. Using the 

familiar Dirac bra-ket notation, we have 

	

(JM I 13(a,/3,'y)  I J'M') = öJJ'DM,(a,/3,7) . 	(A.38) 

The D-functions realise transformations of covariant components of any irre-

ducible tensor of rank J (e.g. the wavefunction bJM of a quantum mechanical 

system with total angular momentum J and its projection M) under coordinate 

rotations. If the basis vectors of the representation are chosen to be the eigen-

functions of J, the matrices simplify as follows: 

	

DN(o, /3, 'y) = (JM I exp(—iaf z ) exp(—i/3J) exp(—i'yl z ) 	I JN) 	(A.39) 

DN(a, /3,7) = exp(—i(cM + 'yN))(JM I exp(—i3J)  I JN) 	(A.40) 

D N (a,y)=exp(—i(aM+7N))dN(fi). (A.41) 

Phases of the rotation matrices depend upon the convention adopted for the Euler 

angles and of the choice of phases of the matrix elements i. With the Condon 

and Shortly choice of phases, the small Wigner rotation matrices dN are real 

and can be expressed explicitly as [151]: 

dN (/3) 	( 
- 1)t [(J+M)!(J—M)!(J+N)!(J—N)!}'12 

(J+M—t)!(J—N—t)!t!(t+N—M)! 

	

x (cos 012) 2J+M_N_21 (Sifl 012)2t+N_M 	(A.42) 

where the sum is taken over all values of t which lead to non-negative factorials. 

The Wigner D-functions represent wavefunctions of a rigid symmetric top. They 

are eigenfunctions of three operators; J = —iö/t9a, J' = —ia/&y and i 2  = 

—[ 2 //32  + cot/3ô/ô/3 + 1/sin 2   /3(82 /aa2  - 2 cos/3a/a&y + a2 /&y 2)].i is the 

total angular momentum operator of the top; J and ji are projections of J onto 

the z-axis of the rotating (body-fixed) and non-rotating (space-fixed) coordinate 
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systems respectively. The eigenvalues of these operators are defined by 

rJ 	1 	0 	 igriJ 	I 	0 D' 	abf, /Jbf, 7bf) = 1V1 -'MM'..bf ,  Pbf, 7bf 

bfjz 1 DM1(abf, fib!, "Ybf) = —M'DMI(abf, fibf, 'Yb!) 	(A.44) 

2D M, (ab!, fib!, 'Yb!) = J(J + 1)DM,  (abf, fibf, 'Yb!) 	(A.45) 

where the angles abf, Obi, 'Ybf now represent the orientation of the set of body-

fixed axes relative to the set of space fixed axes. For the sake of completeness, 

the symmetry and properties of Wigner D-functions are summarised below. 

Orthogonality: 

(2j + 1) f Di n *DMN  j  sin fid/3dad'y = öjJömM8nN81r2. 	(A.46) 

Summation: 

I DJ N  2= 1 . 	 (A.47) 
M 

Closure: 

D(a2, fi2, 'y2)D p(a1, flu, 'yl) = D(a, /3,'y) 	(A.48) 
N 

where (a, 3, '-y) represent the total orientation of first (al, /31,71) followed by 

(a2,02, -y2). 

Symmetry: 

DJI.N(a, 0 	= (_) M _N DJM  N(a, /3,7) = D4 M( — 'Y, -/3, —a). 	(A.49) 

Additionally there are several special cases, most notably for D 0 . Defining the 

spherical harmonics as: 

	

Ykq = [( 2k + 1)/47r] 1/2" 	 (A.50) 

where 

Ckq(9, ) = (—)[(k - q)!/(k + q)!] 1/2P(9) exp(iq) 	(A.51) 

then 

D0(a"6' -Y)  = c;m(fia). 	 (A.52) 
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Therefore 

D 0 (i3) = (—) M [(J - M)!/(J + M)!]"2Pj"(/3) 	(A.53) 

for M > 0. In its simplest form: 

00 
	Pj  (cos /3). 	 (A.54) 

In the above discussion we have outlined the general features of the quantum the-

ory of angular momentum. It is however useful to summarise the topics discussed 

within the framework of reorientation dynamics. The transformation properties 

of physical quantities with respect to rotations reveal themselves either through 

rotations of the given physical system relative to some fixed reference frame or 

through rotations of the coordinate axes relative to the physical system. Many of 

these physical quantities are invariants under coordinate rotations. In particular 

the properties of any closed system should be independent of rotations, as follows 

from the isotropy of space. As a consequence of this fundamental property of 

space, the total angular momentum of such a system is an integral of the motion. 

A quantum mechanical wavefunction b(r) of any closed physical system may be 

characterised by the eigenvalues of the four commuting operators: the Hamilto-

nian, the parity operator, the operator 2  of the square of the angular momentum 

and the operator J of the projection of this momentum onto a quantisation axis. 

For any given eigenvalue j of the total angular momentum, there exist 2j + 1 

wave functions which correspond to different m, where m is the eigenvalue of the 

azimuthal angular momentum (the projection of this momentum onto a quanti-

sation axis). These functions describe the quantum states of the system which 

differ only by the orientation of the angular momentum in space. Under co-

ordinate rotations these functions undergo linear mutual transformations whose 

transformation coefficients are called the Wigner D-functions. These are elements 

of the finite rotation matrix in the j-representation and depend on the Euler an-

gles a, /3, 'y  which describe the rotation. 

These wavefunctions with fixed j but different m constitute an irreducible tensor 

of rank j. Irreducible tensors can also be constructed from various physical quan-

tities: the dipole moment is a tensor of first rank (vector), whilst the polarisability 

is a tensor of second rank. All irreducible tensors transform under rotations of 

coordinate systems in the same manner as eigenfunctions of the angular momen-

tum operator, whereby the transformation coefficients are once again the Wigner 

D-functions. These physical properties, such as the polarisability tensor, are fixed 
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relative to the body-fixed frame. As the system of interest rotates, the transfor-

mations of these properties relative to the coordinate frame may be analysed, 

allowing the formulation of models of reorientation and extraction of correlation 

functions from spectroscopic experiments. 
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