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ABSTRACT 

The mouse major urinary proteins (MUP5) are encoded by a 

multigene family of about 35 genes. The majority of the genes belong 

to one of two groups, Group 1 and Group 2. The predominant 

arrangement of these genes is a 45-kb repeat structure containing, 

in divergent linkage, a Group 1 and a Group 2 gene. MU? genes are 

differentially regulated by various hormones in a variety of 

tissues. Therefore, a comparison of the pattern of expression with - 

the gene structure should allow their tissue-specific regulatory 

sequences to be identified. 

A study of the 5 1  end regions of the MU? genes is presented. 

The start site of transcription of the most abundantly transcribed 

MUD genes (the Group 1 genes) was determined. On the basis of two 

criteria, nuclease Si protection and primer extension analysis, the 

initiation site of transcription of the Group 1 genes is 31-bp 

downstream of the TATA box. To further characterize the 5' end 

regions of the genes the sequence structure of 8 MU? genes was 

collated from either the first intron or the second exon to about 

position -600. The implications of these data concern three 

important aspects of the structure and function of the genes. 1) 

Evolutionary implications: The sequenced Group 2 genes contain a 

common stop-codon within the first exon and have consequently arisen 

from a common ancestral pseudogene. The sequence data also suggest 

that homogenisation processes have occurred between members of a 

Group but not between Groups. Together these observations are in 

agreement with the proposal that the 45-kb unit is the basic unit of 
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MUp gene evolution. 2) Number of functional genes: The estimated 

number of Group 2 pseudogenes. is about 12. Taking into account other 

MU? pseudogenes that have been described, the total number of 

functional MUP genes is estimated to be around 20. This number 

agrees reasonably well with the total number of different MU? 

proteins that are synthesised amongst the various tissues. 3) 	- 

Identification of regulatory sequences: A simple short repetitive 

sequence mainly of A residues is situated upstream of position -SO 

in the MU? genes. This sequence varies strikingly in length and 

composition between the genes. This region contains the major 

sequence variation between the different MU? genes. Due to its 

proximity to the TATA box, it is proposed to have a major functional 

significance. A computer analysis of the 5' flanking regions of the 

I 

MU? genes identified various symmetries and putative cis-acting 

regulatory sequence motifs. In particular, sites for the binding of 

steroid hormone receptors and heavy-metal regulatory sequence motifs 

were found. 

Finally, an investigation of the promoter function of a Group 1 

promoter in rnulctk- fibroblast cells was undertaken. Data is 

presented on the transient expression in BHKTk- cells of constructs 

containing various MU? promoter sequences linked to the I-ISV-Tk gene 

in the presence of either the sv40 enhancer, or the Sv40 enhancer 

and early promoter sequences. These studies firmly demonstrate the 

enhancer activation of the MU? promoter in BHK cells. It is 

suggested that this enhancer dependence involves a deregulatory 

effect on the MU? promoter by the enhancer while the MU? promoter 

and associated sequences has a down regulatory effect on the SV40 

early promoter region. 
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THE MU? GENE FAMILY 

INTRODUCTION 

The major urinary proteins (MUP5) of the mouse are a family of 

closely related, small, acidic proteins that are synthesised in 

large quantities in the liver, secreted into the plasma and rapidly 

excreted into the urine. MU? genes are also expressed in the mammary 

(M), lachrymal (LM), submaxillary (SM), parotid (p) and sublingual 

(SL)( but at much lower levels than in the liver (Shaw et al, 

1983). In vitro translation of liver mRNA shows that there are at 

least twelve different MU? species expressed in this tissue 

(Clissold and Bishop, 1982; Shaw et al, 1983; Shahan and Derman, 

1984). The in vitro translation products of MU? mRNA from the SM, 

P, SL and M glands largely comprise different subsets of the liver 

products, while the 124 gland mRNA gives rise to a different set of 

MtJPs (Shaw et al, 1983). However, it is not known whether the LM 

products are members of the liver set which have been post- 	- 

transcriptionally modified, or products of a subset of liver genes 

with a different mode of transcription, or products of genes that 

are not active in the liver. In total approximately 20 different 

MUI's from these various tissues can be distinguished. The MtJPs are 

under multihormonal control and variation in hormonal responsiveness 

is detected between Mlii's that are expressed in the same tissue as 

well as between Mlii's that are expressed in different tissues. 

Thus the MU? genes are a highly tissue-specific family which are 

differentially regulated within and between different tissues. 



Sex Differences 

In BALE/c adult mice, MU? mRNA makes up about 8% of the total 

liver poly(A)+ mRNA, this level being five tines higher than that of 

adult female mice (Hastie and Held, 1978; Hastie et al, 1979). 

Female mice show a simpler liver MU? pattern than male mice, 

although treatment with testosterone induces a male-like pattern 

(Finlayson et al, 1965; Szoka and Paigen, 1978; Clissold et al, 

1984). whether the testosterone has a direct effect on the liver MU? 

mRNA is not known, although work by Norstedt and Palmiter (1984) on 

the growth hormone regulationof MU? expression in the liver 

suggests that the gonadal steroids may exert their effects either on 

the hypothalamus or directly on the pituitary. The LM gland, like 

the liver, shows sexual dimorphism, with the male having 

approximately five times as much MUp mRNA as the female (Shaw et 

al, 1983). The SM gland does not show sexual dimorphism with 

respect to MU? expression. 

Temporal Expression 

The expression of MU? in different tissues is under different 

developmental control. In the liver, MOP mRNA is first detected in 3 

week old male mice, full expression being reached only 6-7 weeks 

after, birth. Derman (1981) showed that the different levels of MOP 

mRNA in the livers of mice of different ages and sex are reflected 

in differences in the rate of transcription. The LM gland has adult 

MOP mENA levels at two weeks of age. This corresponds to the 



TABLE .1. Relative level of MOP mRNA in expressing tissues 

Tissue Max Level 
of MUP mRNA 

(copies per cell) 

Ho-rmonal 
Regulation 

Influencing 
Hormones 

First Detectable 
Time of 

Expression 

Liver 	(male) 30,000 + T, 	T4 , GM 3 weeks 
Lachrymal 	(male) 6,000 + T 2 weeks 
Submaxillary 
gland 1,250 - none 1 week 

Mammary gland 1,000 unknown 1st pregnancy 

(From 51mw et al., 1983). 

Li 



earliest time at which lachrymal glands can be identified for 

dissection. The SM gland shows first detectable levels of MU? mPNA 

at one week of age, maximal levels being achieved between 4 and 7 

weeks. MU? expression in the M gland is detected at the fikt 

pregnancy (Shaw et al, 1983, see Table 1). 

Hormonal Regulation 

The hormonal regulation of MUPs is different in the different 

tissues. Liver MU? mRNA is regulated by testosterone, thyroxine, 

growth hormone and, in some strains,, glucocorticoids (Knopf et al, 

1983; Norstedt and palmiter, 1984). Using thyroidectomised, 

hypophysectomised female mice and mutant mice (little male and 

tfm/y mice), Knopf et al (1983) have found that testosterone, 

growth hormone and thyroxine modulate MU? synthesis. Shaw et al 

(1983) have also found that different liver MU? components are 

regulated differently by testosterone, thyroxine and growth hormone. 

In the LM gland; testosterone induction of MU?s appears to be 

independent of growth hormone and thyroxine, while in the SM gland, 

MU? expression does not appear to be under hormonal regulation. The  

hormonal regulation of the mammary gland MtJPs has not yet been 

studied. However, it is not known whether the hormonal modulation of 

MUP5 is by direct or indirect action on the particular tissues (see 

section on the expression of MUPs in hepatocytes). 

MU? Gene Organisation 

The MUPs are encoded by a family of about 35 genes, tightly 



clustered on chromosome 4 (Bennett et al, 1982; Bishop et al, 

1982; Krauter et al, 1982). Most of the genes fall into two main 

groups, Group 1 and Group 2. Between 13 and 15 Group 1 genes and the 

same number of Group 2 genes are arranged pairwise in head-to-head 

configuration about 15-kb apart, forming a set of gigantic imperfect 

palindromes each about 45-kb in size (Clark et al, 1984b). The 

symmetrical regions in each palindrome include the genes themselves 

and extensive parts of their 5' and 3' flanking regions (Bishop et 

al, 1985). The Group 2 member of each pair of genes is a 

pseudogene while the Group 1 member is functional (Ghazal et al, 

1985). Thus the 13 to 15 45-kb palindromes contain 13 to 15 

pseudogenes and the same number of active Group 1 genes. Between 5 

and 9 genes do not fall into either Group 1 or Group 2 and appear 

not to be incorporated in palindromic structures. Of these at least 

3 are pseudogenes (Clark et al, 1982; Clark et al, 1984b; Al- 

Shawi, 1985). Thus the total number of active MU? genes is about 20, 

roughly the same as the number of different proteins synthesised in 

the liver and lachrymal glands together. 

Sequence homologies between the palindromes, on the basis of 

heteroduple,c formation, hybridization and sequence data, suggest 

they have arisen from a common ancestor. This implies that the 45-kb 

palindrome is not only the predominant unit of MU? gene organisation 

but also the unit of MU? gene evolution. It has been proposed that 

the contemporary array of MU? genes has arisen through the spread of  

the 45-kb palidrome, by replacement of an ancestral array brought 

about by a process of unequal crossing-over (Ghazal et al, 1985). 

S 



Ten different Group 1 genes, four Group 2 genes and a MUP15 

gene (a gene ouyhith both Group 1 and Group 2) have been isolated. A 

phylogenetic analysis based on restriction sites and small deletions 

or insertions in the genes and their flanking regions and on 

comparative sequence data indicates that the Group 1 genes fall into 

two main subgroups (Al-Shawi, 1985). 

MU? Gene Structure 

The transcription unit of MU? genes is 3.9-kb long, and contains 

seven exorts (Clark et al, 1984a). The first six exons contain the 

coding sequences, while the last exon consists entirely of non-

coding sequences. Three different splicing configurations have been 

found, which result from the presence of alternative splice sites 

within the untranslated region of exon 6 (Clark et al, 1984a and 

Clark et al, 1985b). The most abundant liver MU? transcripts 

contain part of exon 6 and all of exon 7. The less abundant (by a 

factor of about 10) and smaller liver MU? transcripts contain an 

extended exon 6 but completely lack exon 7. On the basis of 

hybridization most of the long transcripts belong to the Group 1 

genes while the shorter transcripts are predominantly derived from 

the Group 2 genes (Clark et al, 1984a). 

The mRNA-specifying sequence of four Group 1 genes and 

almost full length sequences of four Group 1 cDNA5 have been 

determined. These code for a signal peptide 18 amino acids long, 

and a mature protein 162 amino acids long. Although nucleotide 

homology between the different Group 1 sequences is on average 



99.7%; they nevertheless specify different proteins. At present it 

is not known which genes code for which protein. MtTPs generally have 

been found not to be glycosylated (Szoka and Paigen, 1978), although 

the sequence of MUP15 (cDNA) specifies a significantly different 

(31%) amino acid sequence, which in particular contains a potential 

N-linked glycosylation site. There is direct evidence that MtJP15 

specifies a minor glcosylated MU? protein in the urine of mice 

(Clark et al, 1985b; Kuhn et al, 1984). 

The transcription units both of a Group 1 gene (BS6) and of a 

Group ? pseudogene (BS2) have been sequenced. The sequence homology 

between the two genes is about 90%. The 5' flanking regions contain 

distinctive TATA boxes, and in general In—general are very similar 

except that about position -50 to the cap site the Group 1 gene 

contains a long A-rich sequence which is replaced in the Group 2 

pseudogene with a much shorter sequence. The upstream regions of 

five Group 1 and four Group 2 genes have also been sequenced (this 

Thesis). The major differences observed are in the length and 

composition of this A-rich tract. The upstream regions contain 

sequences that show homologies to sites known to bind trans-acting 

regulatory factors (this Thesis). 

Chromatin Structure 

The location of DNase I hypersensitive domains within the 45-kb 

duplication unit have been mapped in the liver and kidneys of male 

and female mice at various stages of development (J. Clark, 

unpublished results). No sites are developed in the kidneys, a 

tl 



tissue that does not express MU?. Ten hypersensitive sites are 

fully established in the liver of three week old nice, the time at 

which MU? mRNA synthesis is first observed. No differences are seen 

between male and females. Eight of the hypersensitive sites are 

arranged in similar positions around the Group 1 and Group 2 genes. 

These are present 0.5-kb 3' to the polyadenylation site and 0.75, 

2.25 and 7 kb 5' to the cap site of the genes. Two non-symmetrical 

hypersensitive sites are present 0.5 and 5.5 kb 5' to the cap site 

of the Group 2 genes. Nuclease hypersensitve domains, a 

characteristic of active chromatin, are believed to be regions of 

nucleosome-free DNA (Elgin, 1984) which are involved in interaction 

with specific trans-acting factors (Emerson et al, 1985). For 

this reason it is thought possible that these sites are involved in 

the liver-specific regulation of MU? gene expression. 

Expression of MUPs in Hepatocytes 

When liver cells are dissociated and plated (hepatocytes) 

transcription of the MU? genes is rapidly switched off. This results 

in a dramatic fall in the level of MU? mRNA to virtually zero in 

about four days (T. spiegelberg, unpublished results). During the 

same time period the level of transferrin mRNA rises by about two-

fold and alpha-fetoprotein nR}A appears de novo, showing that the 

integrity of the cells is maintained in culture during changes in 

expression which seem to mimic liver regeneration. It has been shown 

that growth hormone, thyroxine and insulin all retard the rate of 

decay of MU? transcription in cultured hepatocytes, and that growth 

hormone and thyroxine are synergistic CT. Spiegelberg, unpublished 



results). This suggests that growth hormone, thyroxine and insulin 

directly effect the expression of MUP5 in the liver. 

Proteins Evolutionarily Related to MUPs 

In the rat, a homologous gene family codes for the alpha-2u 

globulins (Kurtz, 1981a; Dolan et al, 1982). Alpha-2u globulins are 

synthesised in the liver of male rats (Laperche at al, 1983). 

Hepatic alpha-2u globulins are regulated by thyroxine, testosterone, 

glucocorticoids, growth hormone, insulin and oestrogen, unlike 

submaxillary alpha-2u globulin which does not appear to be under 

hormonal regulation (Motwani et al, 1980; Lynch et al, 1982; Rby 

et al, 1983; Laperche et al, 1983; Kulkarni et al, 1985). 

Dexamethasone-induced expression of these genes following their 

introduction into mouse fibroblast cells has been reported (Kurtz, 

1981b). However, there are reasons to believe that difficulties have 

been encountered in confirming this data. 

The alpha-2u globulins are encoded by a multigene family of 

about twenty genes (Kurtz, 1981b). Comparison of a rat alpha-2u 

globulin gene and a mouse Group 1 gene showed that the transcription 

units are similar in structure and that the exonic sequences are 

about 80% homologous. Furthermore, replacement sites (those at 

which mutations alter the amino acid that is coded) have occured 

less frequently between the genes than silent sites (those at which 

mutations do not change the amino acid that is coded). This suggests 

that the protein sequences are being conserved, while the genes are 

rapidly evolving (Clark at al, 1984a). 



Recently it has been found that MU? genes belong to a gene 

superfamily. Significant homologies have been detected between MU? 

and alpha-2u globulin; beta-lactoglobulin, a secretory protein found 

in the milk of ruminants; alpha-1 microglobulin, a low molecular 

weight human serum protein; human retinol-binding protein, a serum 

protein that binds retinoic acid; and human alpha-1-acid 

glycoprotein, a serum protein (pervaiz and Brew, 1985; .3.0. Bishop, 

unpublished). 

As yet the function of the mouse MUP5 is not known, although 

there is strong circumstantial evidence which suggests they may be 

involved in behavioural communication (vandenbergh et al, 1976 

and Shaw et al, 1983). Furthermore it has been proposed that the 

active component of these pheromonal effects mediated by MUPs is the 

first six N-terminal amino acids of the proteins (Clark et al, 1985b 

see Appendix). Experiments are currently in progress to ascertain 

whether or not this model is correct. However, preliminary 

observations in this laboratory indicate that MtJPs may be induced by 

exposure of heavy-metals (.3. Whitaker, unpublished and this Thesis). 

The corollary to this is that MtJPs may be involved in heavy-metal 

detoxification. These observations together raise the possibilty 

that the MUPs are bifunctional. 

10 



AIMS OF PROJECT 

The project described in this thesis is concerned with the 

characterization of the 5' end region of the MUP gene family. The 5' 

end regions of most if not all eukaryotic structural genes that have 

been studied are known to be necessary for expression. As discussed 

previously different members of the MU? gene family show temporally 

and hormonally different modes of expression within specific 

tissues. The main objective of this study is to explore the 

structure of the 5' flanking region of the MU? genes in relation to 

their regulated expression. 

As a first step, the start point of transcription of the most 

abundantly transcribed MU? genes (the Group 1 genes) was determined. 

Once this region had been defined the 5 1  flanking sequences of a 

number of MU? genes were collated. In the long term it is hoped that 

the protein products of various cloned MU? genes will be identified, 

or at least that their transcriptional products will be identified 

so that a direct comparison between their hormonal modulation and/or 

tissue-specific expression may be made with their 5' end sequence 

structure. Since the members of the MU? gene -family are structurally 

very homologous any differences seen at their 5' end will be 

significant. The corollary of these data has also lead to important 

observations regarding the structure and evolution of the MU? gene 

family. For example, it was found that most if not all the Group 2 

genes are pseudogenes. 

11 



Since it has not been possible to distinguish the various MU? 

12 

transcripts or to assign the cloned genes to their protein products, 

two approaches have been used to investigate the putative regulatory 

nature of this region. Firstly, a computer search of the 5' end 

sequence data for symmetries and known cis-acting regulatory 

motifs was done. The second approach was the axialysis of a MU? Group 

1 gene promoter region in tissue-culture cells. This involved the 

transient expression of various constructs containing the MU? 

promoter region linked to the SV40 early control region. This 

approach demonstrated that the MU? Group 1 promoter is functional 

under the control of the 5v40 enhancer. Furthermore, these 

expression studies demonstrated the utility of the constructs for 

the establishment of transgenic mice for the analysis of MU? gene 

expression. 



INITIATION OF TRANSCRIPTION IN THE GROUP 1 GENES. 

INTRODUCTION 

The synthesis of messenger RNA in eukaryotes is carried out by 

RNA polymerase II. The initiation of transcription occurs at a 

discrete site(s) on the DNA, the start site or cap site. According 

to the cap-promoter hypothesis of Ziff and Evans (1978), the 5' end 

of the mRNA delineates the start of transcription and therefore the 

proximity of the promoter. Evidence for this comes from the 

fingerprint analysis of the 5' end of nascent transcripts and is 

also supported by the Si mapping of precursor and mature mRNA 

(Weaver and Weissmann, 1979; Bunick et al, 1982). These 5' termini 

are modified with a 'cap' structure m7G(5 1 )ppp(5 1 )N. Recently 

Konarska et al (1984) have suggested that the cap structure 

plays an important role in splicing, since the addition of cap 

analogs to BeLa whole-cell extracts inhibits in vitro splicing 

of mRNA. The exact role of the cap structure in splicing is not 

known, although it does not appear to be related to mRNA stability. 

At the start point, there is no extensive homology of sequence, 

but there is a tendancy for the first base of mRNA to be an A, 

flanked on either side by pyrimidines (Breathnach and Chambon, 1981, 

Table 2). This consensus was collated from 22 genes and therefore 

due to the low number of genes compared is most probably biased. An 

almost ubiquitous sequence of 7-bp (TATAWAW), the TATA box, is 

located between 19 and 34-bp upsteam of the start site. (Table 2). 

13 



There are only a few exceptions known, for example, the HMG C0A 

reductase gene (Reynolds et al, 1984) and the sv40 Late Promoter 

(Brady et al, 1982). In most of these exceptional genes multiple 

initiation sites are present. Deletion of the TATA box usually 

results in transcriptional initiation at many points besides the cap 

site. This has lead to the proposal that the TATA box functions as a 

selector for the initiation site of transcription. Deletion of the 

TATA box or point mutations within it have also been shown to effect 

transcriptional efficiency (Dierks et al, 1983 and Grosveld et 

al, 1982). The Sv40 early region promoter seems to be an exception, 

for although deletion of its TATA box results in transcriptional 

initiation from multiple sites, transcriptional efficiency is not 

affected (Benoist and Chambon, 1981). This probably relates to the 

strong enhancing effect of the 72-bp repeats. 

In general the transcriptional organisation of polymerase II 

genes follows the 'one promoter one gene' rule. However, in some 

genes initiation of transcription may occur from alternate 

promoters, for example the discoidin-I gene of Dictyostelium 

(Jellinghaus et al, 1982); the alpha-amylase-I gene of the mouse 

(Young et al, 1981); and the human myosin gene (Nabeshima et 

al, 1984). 

Here, I have determined the precise point of initiation of 

transcription for the Group 1 MU? genes by mapping the 5' termini of 

Group 1 transcripts from the male mouse liver. 

14 



Si-MAPPING AND PRIMER EXTENSION OF GROUP 1 MUP mRNA FROM THE 

MOUSE MALE LIVER. 

on the basis of two criteria, Si nuclease protection and primer 

extension, the Group 1 mRNA cap site is located 31 +1-hp 

downstream from the TATA box (Figure 1). The Si protection probe was 

a 696-hp Alul fragment, extending from nucleotide +127 to 

nucleotide -568 in the MUP clone BS6 (Groupi gene) and cloned into 

the HinctI site of M13mp7. The single-stranded M13 clone was 

annealed to the sequencing primer and the strand complementary to 

MU? mRNA was uniformly labelled using the Klenow fragment of DNA 

polymerase I. The probe was excised and gel purified from the vector 

by digestion with EcoRI, retaining 15-hp of vector polylinker 

sequences on each side of the probe. This was hybridized to Poly(A)+ 

RNA from BALE/c mouse male liver and challenged with Si nuclease. 

Three protected fragment lengths of 127, 130 and 142 nucleotides 

were observed (Figure 1). The primer extension probe was the 93-bp 

Alul - Sau961 fragment between nucleotides +127 and +34 in the 

BS6 sequence. This was prepared and annealed to poly(A)+ RNA in 

essentially the same way as the Si protection probe and 	nfementary 

DNA was synthesised using ANy reverse transcriptase. One major 

extended product of 127 nucleotides is seen with the liver mRNA 

(Figure 1). Interestingly, the next largest band to 127 is a minor 

product of the reaction (122 nucleotides) which is also present in 

all of the control tracks and is most likely an artefact generated 

from the self extension of the primer. such anomalies of the primer 

extension method have been reported before (Lee and Roeder, 1981). 

15 
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FIGURE 1. 

Si protection and primer extension. 

Restriction map of the S. region of MUP BS6 showing its 

relationship to the probes used for Si protection and primer 

extension. Open and closed boxes show the untranslated regions 

and translated regions of exon i. 

Electrophoretic analysis of the products of Si protection 

and primer extension. Lanes G-C , sequence ladder of the Si 

probe used to provide MW markers; Lane 1, primer extension 

of liver poly(A)+ BRA; Lanes 3-5, primer extension controls-

kidney poly(A)+ BRA (3), no RNA (4), primer extension probe 

alone (5); Lane 6, Si protection of kidney poly(A)+ BRA. P 

is the primer extension probe. 

In the two tracks with liver poly(A)+ BRA both the Si 

analysis and the primer extension analysis yield bands 127-

128-bp long which positions the mBNA cap site 31 + 1-bp 

downstream from the TATA box. In lane 2 bands 142 and 130-bp 

are observed and are discussed in the text. 

Sequence of part of exon 1 and flanking sequences showing 

the 'rATA box, cap site and the various restriction cuts used 

for probe preparation. 
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The primer extension probe and Si protection probe have the same 

Alul cut at position +127 of BS6. Therefore, the extended and 

protected products should have the same fragment length. The only 

common fragment is the 127 nucleotide band which therefore probably 

delineates the initiation site of transcription. The 142 and 130 

nucleotide bands are exclusive to the Si mapping experiment. Careful 

consideration of the differences between the two techniques 

suggested two ways in which these bands could have arisen. The first 

is the possibility that they represent an alternative upstream exon. 

Alternatively, they may be artefacts generated from the Si 

protection probe. 

An Alternative First Exon 

Since the Si protection probe is uniformly labelled it is possible 

for it to detect an alternative first exon within its fragment 

length. This explanation would imply that the 127 nucleotide band 

represents a downstream exon 1 the sequence of which is complementary 

to both the primer extension probe and the Si protection probe. 

The 142.and/or 130 nucleotide bands would represent an upstream exon 

1 the sequence of which is complementary only to the upstream 

region of the Si protection probe. This possibility could be tested 

either by using an end-labelled 51 ptection probe, in which case 

only the 127 nucleotide band should be developed, or by using a 

uniformly-labelled probe that lacks the region of the downstream 

exon. In this case only the 142 and/or 130 nucleotide bands should 

be developed. The latter experiment was performed using a probe 

extending from the Sau961 site at +34 to the Alul site at -568. 
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The result of this experiment was negative (data not shown). 

However, it must be noted that the interpretation of a negative 

result is only that it does not offer any positive evidence for the 

presence of an alternative exon. 

An Artefact From The Si protection probe 

The second and less attractive explanation is that the 142 and 130 

nucleotide bands are artefacts produced by sequence homology 

between the 15 nucleotide polylinker extension at the 5' end of the 

probe and the MU? mRNA. Some homology is in fact present and is 

shown in Figure 2.C. Although the homology is present, it may not 

explain the observed results. Whether or not it does so can easily 

be tested by removing the polylinker sequences from the Si 

protection probe. This was done by cutting the probe with BanHI 

leaving only S nucleotides of polylinker sequence attached to the 5' 

end of the probe. When the Si protection experiment was repeated 

using the BamHI-cut probe, the 127 and 130 nucleotide bands were 

found but the 142 nucleotide band was absent (Figure 2.A). Thus the 

142 nucleotide band seems to be artef actual. 

The 142 and 130 nucleotide bands are more susceptible to Si 

nuclease attack than the 127 nucleotide band as shown in Figure 2.B. 

This suggests that not only the 142 but also the 130 nucleotide 

band is an artefact generated from the Si protection probe, and that 

there is a single transcription initiation point corresponding to 

the 127 nucleotide band. 
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FIGURE 2. 

Artefacts from the Si protection probe 

A and B, Electrophoretic analysis of Si protection probe. 

Lanes 1-4 and 1 1 -4', sequence ladders of previously characterized 

M13 clones used as MW markers. 

Lane RI, Si protection of liver poly(A)+ RNA with EcoRI cut 51 

probe; Lane HI, Si protection with BaffiHI cut Si probe; Lane CI, 

control for Si protections - no RNA. 

Lanes A-E, Si protection of liver poly(A)+ RNA with EcoRI cut 

Si probe, challenged with increasing amounts of Si nuclease. 100 u/ml 

(A), 250 u/rn]. (B), 500 u/ml (C), 750 u/ml (D) and 1000 u/ml (E). 

These show that the 142 and 130 bp bands are artefacts which result 

from partial homology of the MU? mRNA sequences immediately 3' to 

the Alut sequence to the polylinker region of M13 that is present 

in the Si probe. 

C, The probable sequence alignment between the MU? mRNA and the 

polylinker sequences of the Si probe cut with EcoRI or BanHI. 

The polylinker overhang is underlined and the arrows indicate the 

positions of the 51 protection products. 
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Table 2 . Comparison of the start site and TATA boxes of group 1 and group 2 MUP genes with the consensus TATA box and cap site. 

Position 	 1 	3 4 5 6 7 8 910 	22 	15 	 - +2 
Consensus from 60 genes 	6 - 6 1 A I A W A W - 8 - - 8 I_s Py - - - Py. A .Py Py Py Py Py 
(Breathnach & Chambon, 2981) 	 '9-17bp 

A 20 8 4 58 4 52 38 53 30 20 II 24 2 3 21 1 6 	3 3 4 

Base T 10 649 156 622 620 7 9 10 II 7 	0 7 7 	6 812 • Frequency 6 30 32 1 1 0 0 0 0 8 23 29 26 	i 3 I 	1 3 I 	0 3 3 
C 9 14 6 0 0 3 0 2 2 10 It 10 6 II 	0 II 8 13 8 4 

BS6, 	855, 811, 	851, 6 A 6 1 A I A I A A 6 6 A C A 	. _, 6 - - 	- 	1 	6 6 A 	6 1 6 

8S102-2, 8125 •. . , 14bp Group 	1 cap site • 	, 	B5109-1 6 A I I A I A I A A B 8 A C A 
852 6 A 6 I A I A 1 6 A 6 6 A C A 
:8S209.2 I A 6 1 A I A I A A 6 6 A C A 

0 



CONCLUSIONS 

The 127 nucleotiode fragment, common to both the 51 and primer 

extension analysis, maps the 5' end of the Group 1 genes to 100-bp 

upstream from the initiation codon and 31-bp downstream from the 

TATA box (Figure 1.C). Nine sequenced Group 1 genes (this Thesis 

and R. Al Shawi, 1985) are nearly all identical in this region. 

Hence, this transcriptional start site is likely to be 

representative of all the Group 1 genes. It is also positioned in 

the same region as the cap site of the rat genes homologous to the 

MUPs, the alpha-2u globulins. The sequence around the Group 1 cap 

site bears little resemblance to the consensus cap site of 

Breathnach and Chambon (1981), see Table 2. 

In addition this study has demonstrated the importance of using 

two independant techniques in determining the point of initiation of 

transcription. 
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SEQUENCE STRUCTURE OF THE 5' ENDS AND EVOLUTION OF THE MUP GENES. 

INTRODUCTION 

Many eukaryotic genes are members of gene families. Gene 

families constitute evolutionarily related genes that share common, 

although not necessarily identical, functions. Gene families vary 

considerably in size. They may be composed of two to three genes or 

several hundred genes. The size of a gene family may also vary 

considerably between different species. For example, thehistone 

gene family of xenopus contains 20 to 50 copies of its histone genes 

while the newt contains 600 to 800 copies (Hentschel and Birnstiel, 

1981). The members of a gene family may be linked and/or dispersed 

on different chromosomes. 

Some members of some gene families are pseudogenes. These are 

presumed to be evolutionary relics of once intact genes, which 

become selectively neutral with the occurence of a first deleterious 

mutation, for example, the rabbit pseudo-beta 2 globin gene (Lacy 

and Maniatis, 1980) and the human pseudo-alpha 1 41obin gene 

(proudfoot and Maniatis, 1980). Another type of pseudogene is the so-

called processed pseudogene. These lack the introns and promoter 

region found within other members of the family (Lee et al, 1983; 

Karin and Richards, 1982; Dudov and Perry, 1984). It has been 

suggested that such pseudogenes arose from retroviral reverse-

transcription of mRNA into cDNA and its insertion into the germ 

line. 



Members of a gene family often show homology in their flanking 

sequences. Barring deletions and disruptions caused by insertions, 

the extent of these homologies can be presumed to depend on the 

length of the segment of DNA initially duplicated. Linked genes 

produced by duplications or inversions are sometimes further 

amplified together. For example, this sequence of events seems to 

underly the organisation of the silkmoth chorion gene family (Jones 

and Kafatos, 1980; Iatrou and Tsitilou, 1983) and 	the 

amplification of the MCi? Group 1 and Group 2 genes (Clark et al, 

1984b; Bishop et al, 1985). 

The degree of homology between members of a gene family can be 
.4 

remarkably high within a species, while at the same time the same 

gene family shows substantial variation between species. For this 

reason it is thought that mechanisms must exist which lead to the 

homogenization of gene families within species. Two mechanisms of 

this sort have been proposed. One of these is unequal crossing-over 

(Smith, 1976). Multiple occurrences of unequal crossing-over would 

lead to sequence homogeneity because stochastically one nucleotide 

sequence would come to dominate the family. The seperate series of 

amplification events that occur in different related species can 

result in the replacement of an ancestral array by different sets of 

genes in each species. Another mechanism which may lead to gene 

homogenization is gene conversion. Gene conversion is non-reciprocal 

exchange between two homologous sequences. The phenomenon occurs 

when DNA strands from two allelic, or non-allelic but homologous 

genes, form a heteroduplex and correction of mismatched bases takes 
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place. The occurrence of gene conversion was first recognised in 

fungi at the genetic level between alleles on homologous chromosomes 

Madding, 1978). subsequently non-allelic conversion events were 

shown to occur between members of a gene family on sister 

chromatids, on the same chromatid or on different chromosomes 

(Jackson and Fink, 1981; Klien and petes, 1981; Scherer and Davis, 

1980). These non-allelic conversion •events are more significant in 

giving rise to the maintenance of sequence homogeneity among members 

of a family rather than allelic conversions. In mammals it has been 

suggested that non- allelic gene conversion has occured between 

globin genes (slightom et al, 1980), mouse MHC genes (Weiss et 

al, 1983; McIntyre and Seidman, 1984) and immunoglobulin genes 

(Bentley and Rabbitts, 1983; 011o and Rougeon, 1983). 

Limited sequence data often does not allow one to distinguish 

between the products of gene conversion and unequal crossing-over. 

Consequently, the term 'gene conversion' has often been loosely used 

to describe genetic exchange between non-allelic genes, where change 

in sequence length is not observed and where all the products of a 

single recombination event are not known. For example, sequence 

comparison of the H-2K '  gene with a mutant allele 

showed a total of seven nucleotide changes which are clustered in a 

13 nucleotide region of the H_2Kbh1l  gene (Weiss et al, 1983). 

Weiss et al (1983) suggested that these mutations have been 

introduced into the H2K '  gene by gene conversion-like events. 

However, since there is limited sequence data available for 

additional mutant and other H-2 genes they cannot exclude the 

possibility of an unequal crossing-over event with a non-allelic 
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gene. In addition, it is not formally excluded that the seven 

nucleotide changes seen are independent point mutations, or a hot 

spot of nucleotide substitutions. Nevertheless, since a H-2 class I 

(H_21,d) gene contains the amino acids found in the bml sequence 

in this region, it is considered that a gene conversion event is the 

most likely cause for this phenomenon, in which case the 	is 

the likely donor gene. 

In this chapter I describe the sequence structure of the 5' 

region of various members of the MU? multigene family, and relate 

the data to the evolution of the family. Part of this chapter is 

presented in the Appendix (see papers Ghazal et al, 1985 and Clark 

et al, 1985a). 
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SEQUENCING STRATEGIES. 

DNA sequencing has become one of the most important tools for 

the analysis of genes. There are two major methods for DNA 

sequencing, the Maxam and Gilbert method and the chain terminator 

method of Sanger. The former method is preferably used for small 

scale sequencing and is based on the base-specific cleavage of the 

DNA by chemical reagents. The chain terminator method is best used 

for large scale sequencing and capitalises on two properties of the 

Iclenow fragment of DNA Polymerase I. First, its ability to synthesi.e 

faithfully a complementary copy of a single-stranded template. 

Second, its ability to use 2' 3' dideoxynuleoside triphosphates as 

substrates. Once the 'dideoxy'analogue is incorporated the 3' end 

lacks a hydroxyl group and no longer is a suitable substrate for 

chain elongation; thus the growing DNA chain is terminated. 

Single-stranded DNA templates can easily be prepared from the single-

stranded (as) bacteriophage M13. 

In this study the sequencing of the 5' end region of eight 

different MUP genes was performed by the chain terminator method. A 

total of about 11-Kb of sequence data was thus collated. A brief 

description of the various strategies used will be given and why the 

chain terminator method was chosen will be discussed. 

Specific restriction fragmentth from lambda bacteriophage 

genomic clones or plasmid subclones of MU? genes (ES105A, BS109A, 

BS102A, BL25, B51, BrA, and BS5) were cloned into unique restriction 

sites of the replicative form (RF) of M13 mp8, mp9 and tg131, 
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genetically engineered versions of the as bacteriophage M13. A 

summmary of the cloning strategies is presented in Table (3) and a 

schematic representation of the region sequenced is shown in Figures 

3 and 4. 

The sequencing of the 5' end regions of the genes was performed 

primarily on one strand. A maximum of 450 nucleotides may be read 

from one sequencing reaction with a combination of gradient and 

'long run' gels (Biggin et al, 1983). Therefore, employing the 

strategy of 'clone-turn around' that is, cloning the restriction 

fragment in both orientations, the sequencing of a fragment as large 

as 800-bp is greatly facilitated (Winter and Fields, 1980). This is 

by far the simplest and quickest strategy for sequencing specific 

regions and was ideally suited for this study. A representative 

example of a sequencing gel is shown in Figure 5. 

Where an insert is larger than 800-bp but less than 1.5-kb the 

remaining unsequenced region may be obtained by restriction with an 

appropriate 4-bp cutter and randomly selected DNA fragments cloned 

into M13 (the 'shot-gun method'). The limitation of this approach is 

the presence of appropriately sized restriction cuts and the number 

of fragments generated. The first limitation relates to the non-

randomness of DNA sequences and the second to the selective 

screening potential for the desired clone. If a cloned fragment is 

already available from one gene then the homologous clone from other 

members of the family may be easily identified by hybridization to 

the existing clone and observing a shift in mobility of the hybrid 

on an agarose gel (Winter et al, 1981). However, selective 
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TABLE 3. 

cs...ora i sn srnnres I S 

READING OF RESTRICTION CUT SIZE $13 RESTRICTION 
GENE SUBCLONE SEQUENCE STRAND ENDS OF FRAGMENT (bp) VECTOR CUTS OF VECTOR 
89 109-2 

I090Pa Genie EcoRI/PvuII 1125 mp9 SuaIIIcoRl 
I09PRb Sense EcoRl/PwulI 535 epO Stil/EcoRl 
I09RPc Antisense fcoRIIPvuII 535 ep9 Sill/EcoRI 
I09PRd Antliense EC0RI/PvulI 1125 mp8 Suil/EcoRl 
109Sa Sense Sau3A 431 mpG SusHI 
1095b Sense S.u3A 140 mpG SusHI 
1095c Antisense Sau3A 140 mpG SusHi 
109Sd Antisense Suu3A 335 mpG SusHi 
1095e Antisense Suu3A 440 mpG StaHl 

89102-2 
102RPm Sense EcoRI/Pyuii 1123 up? Ssui/EcoRi 
IO2PRb Sense (coRI/PvulI 541 mpG $uuI/EcoRI 
IO2RPc Antisense EcoRl/PvuIl 541 •p9 Ssai/EcoRI 
IO2PRd Antisense EcoRI/PvciiI 1123 mpG SsaI/EcoRI 
102Sd Sense Sau3A 335 mpG - SnHI 

9125 
BED Antisense (coRl/SusHi 1279 upS EcoRi/SasHi 
(25 Antisense Hong 1114 
Eli Antisense Hong 943 
(IS Antisense Hong 439 
E14 Antisense Hong 375 
(12 Antisense Hong 255 

GSIO5A 
I05RDa Sense SusHi/EceRl 535 mp9 8ssHI/EcoRl 
105BRb Sense SasHi/EcoRi 1125 mpG BasHI/EcoRI 
105R8c Antisense BIsHI/IcoRl 1125 up? SasHI/EcoRi 
lOSBRd Antisense SasHIIEcoRI 535 mpG SasHi/EcoRl 
105Sa Sense Sau3A 160 ape SusHi 
105k Sense Sau3A 00 mpG SnHI 

851 
HI Sense lfsulII 153 up? Seal 
H2 Sense Huelli/SasHI 1140 up9 Sssl/8usHl 

Sense Ksni/SasHI 750 tgl3l EcoRY/BasHI 
ElM Antisense SusHI/HindlII 2400 up? SssHi/HIndIil 

811 
HFI Sense MisfIt 490 sp8 Saul 
EIH Antisense BasHI/Hisdlll 2400 mp9 SasHI/HisdIlI 

8s5 
H3 Sense Haelil/SasHI 775 mp9 Saul/BasH! 
EIH Antisense BasHl/Hir,dliI 2400 mp9 BtsHlIHindIlI 

95 109-I 
109-lAM Antisense £coRIIHisdliI 2200 up? EcoRl/Hi,,dIlI 

I blunt ended 



screening procedures depend on the availability of subclones and 

therefore, without specific probes screening can be tedious. ES105A, 

BS102-2, BS109-2, BS109-1, BS1, BL1 and BSS were, sequenced by using 

one or a combination of the above strategies. 

Where an insert is larger than 1-kb and no suitable restriction 

sites are available then a systematic sequencing strategy is best 

applied. (Poncz et al, 1982; Hong, 1982; Barnes et al, 1983; 

Henikoff, 1985). Such strategies are ideally suited for the chain 

terminator method where progressively shortened fragments are 

generated from the cloned insert. 8L25 was sequenced in such a 

manner using the method devised by Hong (1982).. This involves 

randomly nicking the RB with DNaseI in the presence of Mn++ to 

produce linear molecules. These are excised from an agarose gel, cut 

with a suitable restriction enzyme, religated and transfected. The 

sequence of each of these clones will originate at a random site 

within the insert. The second generation clones are screened by T 

tracking (that is only the chain termination for the '2 residues are 

analysed) and the choice of progressively shortened clones 

sequenced. This procedure requires a number of enzymatic steps, gel 

purification and a polyethylene glycol precipitation stage. 

Experience in this laboratory and others (Henikoff, 1985) have found 

variable success with this method. particular attention must be 

given to the polyethylene glycol precipitation stage where variable 

recoveries are the most likely cause of failure. More recently a 

method based on the unidirectional digestion of the insert with Exo 

III has been devised by Henikoff (1985). This procedure requires no 

gel fractionation or purification step and therefore avoids many of 

29 



30 

FIGURE 3 AND 4. 

Schematic Representation of Sequencing Strategies. 

Fig. (3) shows the stategies applied to BS105A and the 

Group 2 genes while Fig. (4) shows the stategies applied 

to the Group 1 genes. 

Arrowed lines indicate the sequenced regions and the dashed 

lines the unsequenced regions of the subclones. 

Black boxes refer to the coding sequences of the genes. 

The restriction nap of each of the genes covers the region 

sequenced and shows the sites employed for the M13 cloning; 

EcoRI; t, PvuII; ¶, Hindlil; T, BamHI; 5, Sau3A; 

H, HaeIII; Hf, Hinfl; x, XmnI. 
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the problems associated with the Hong method. Furthermore, the 

breakpoints within the insert can be controlled to some extent and 

mostly cluster within about 150-bp of the target. 

In conclusion, the chain terminator method is mainly chosen for 

large scale sequencing excerdises because of the fairly large 

repertoire of procedures available for generating and screening 

primary and secondary M13 recombinants. However, every technique has 

its drawbacks. An example in the present case is the inability of 

the polymerase to 'read through' certain regions of secondary 

structure. Although this problem may be overcome by using higher 

incubation temperatures during synthesis or by using reverse 

transcriptase, other problems related to the cloning steps sometimes 

arise. An example of this is a failure to clone a particular DNA 

sequence either in one or in both orientations, due to the ability 

of the insert to express beta-galactosidase A-donor activity, 

thereby producing only blue plaques (Close et al, 1983). In such 

uncommon situations it may be necessary to determine the sequence by 

the Maxam and Gilbert method. 

W,  
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FIGURE 5. 

A Representive Example of A  sequencing Gel. 

Sequencing reactions of three MU clones 

(109RPa, 109-1RH and 109PRd) were run on a 

non-gradient short run (2.5 hours) 6% Acrylamide 

8M Urea sequencing gel. The chain-terminators are 

indicated by G,A,T,C and the clones to which the 

sequences correspond to are indicated above the 

tracks. 
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COMPARISON OF GROUP 2 GENES 

Sequence data from about -1050 to +630 was collated from three 

Group 2 genes (B5109-2, BS102-2 and 8L25) and compared to B52, a 

Group 2 gene whose complete sequence is known (Clark et al, 1985a). 

This is shown in Figure (6) together with a table showing the 

frequencies of nucleotide differences between the genes. The Group 2 

genes are predomonantly organised in a head to head linkage with 

Group 1 genes 

Transcriptional Signals 

The cap site of the Group 2 genes is putatively placed 31-bp 

down stream from the TATA box. This position is identical to the 

Group 1 start site (see chapter 2). The TATA boxes of BL25 and BS102-

2 are identical to the Group 1 genes. However, BS2 and BS109-2 have 

point mutations around this region (Table 2). A comparison of the 

MU? gene TATA boxes with the consensus sequence TATAWAW drawn from 

60 eukaryotic genes (Breathnach & Chambon, 1981; Table 2) shows that 

the C residue in the ninth position of BS2 is absent from all the 

other genes while the T in the first position of 85109-2 is present 

in only ten of the genes. Point mutations within the TATA box have 

been found to result in a marked reduction in transcription 

efficiency (Dierks et al, 1983). Therefore, the transversion events 

of 852 and ES 109-2 may have a down regulatory effect on their 

transcriptional efficiency. Interestingly, hybridization of a Group 

2 probe under stringent conditions shows that Group 2 'like' 

transcripts are present in the low abundance short MU? mENA of the 
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male mouse liver (Clark et al, 1984a). The fact that Group 2 genes 

may be transcribed and correctly processed is also supported by the 

presence of a TATA box in these genes together with all the correct 

splice-donor acceptor sites of BS2 (Clark at al, 1985a; see 

Appendix). 

Translational Signals 

The initiation of translation in eukaryotic mRNA usually occurs 

at the first AUG codon that lies within a favourable sequence 

environment (Kozak, 1984a). A comparison of 211 mRNA leader sequences 

has revealed a conserved sequence immediately upstream of the AUG of 

the N-terminal methione. The consensus of this sequence is CCRCC 

where the B, usually an A at -3, is the most highly conserved 

residu&. Mutations at -3 have been shown to reduce the efficiency of 

translation (Kozak, 1984b). The sequence ACCI½.A immediatly 5' to AUG 

in BS2, BS109-2, and Bs102-2 has only one nucleotide in common with 

the consensus. Moreover the C at position -3 raises doubts as to 

whether these transcripts would effectively initiate translation. 

Note that 81.25 retains an A at positon -3 but has only this in 

common with the consensus sequence. 

Other translational differences seen are the.inframe increase 

in the length of the signal peptide. The shortest is 81.25 with 19 

amino acids and the longest with 25 amino acids of 85102-2. The 

sequence in this region is simple, suggesting that they may have 

been created by 'slippage' during DNA synthesis or repair (Ghosal & 
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Saedler, 1978) or by unequal crossing-Over. Finally, the most 

important observation is that all 4 group 2 genes share a common 

stop codon in the first exon (see Ghazal et al, 1985 and also the 

underlining in figure 6), suggesting that they have arisen from a 

common ancestral pseuene. Other genetic lesions are seen in BL25 

(Ghazal et al, 1985) and in 382 (Clark et al, 1985a; see Appendix). 

This data has been published and is presented as part of this 

chapter. A possible function for the truncated product of the Group 

2 genes is also postulated in Clark et al (1985a) (see Appendix). 

Evolutionary Implications 

All of the Group 2 sequences are closley related. The average 

divergence from the Group 2 consensus sequence is 1.4%. However, 

BL25 shows the highest divergence of 3.2 % while 382, BS102-2 and 

3S109-2 diverge by an average of 0.7 %. The greater divergence of 

BL25 may be explained by the model of MU? gene evolution presented 

in Ghazal et al (1985). This model proposes that rather than the 

individual genes the 45kb unit containing the head to head linkage 

of a Group 1 and a Group 2 gene is the major unit of organisation 

and evolution of the MU? gene family. It permits either or both of 

the two evolutionary mechanisms, unequal crossing over and gene 

conversion, which are proposed to homogenize the gene family. Thus 

3s2, 38102-2 and BS109-2 may be derived from a common ancestor by 

more recent duplications or replacements and may be related to 3L25 

by more remote events. 
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FIGURE 6. 

Sequence Comparison of Group 2 Genes. 

The 5' sequences of the Group 2 genes were 

aligned to maximize homology using the GAP 

programme of Devereaux et al (1984). 

The numbers represent distances, in bp, from 

the cap site. 

***, indicates the mapped position of 

nuclease hypersensitive domains (3. Clark 

unpublished). 

N, is an undetermined base. 

The TATA box and stop codons are underlined. 

The Table lists the frequency of base changes 

between the genes. 



-1051 	 -l00 	-151 	 -103 
882 	 A 	 C 	 852 
85102-2 	 101301 100*0 	 C 	 85102-2 
88109-2 	 10001 10411 	 C 	 V 	 85109-2 	 T 
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randomly distributed over the sequences that can be compared. At 10 

different sites within this sequenced region two different 

nuleotides are shared between the four genes. The pair of genes 

which have the same nucleotides are however different at the 

different sites. Therefore, this makes the construction of a simple 

pedigree relationship between the genes impossible. It is unlikely 

that such a distribution of nucleotides is due to independent random 

mutational events. In general, such observations are in agreement 

with the suggestion that Group 2 genes are related to each other 

through recent unequal crossing over or conversion events. 
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COMPARISON OF GROUP 1 GENES 

Sequence data from about -350 to about +280 was collated from 

four Group 1 genes (Esi, aLl, aSS and BS109-1) and compared to BS6, 

a Group 1 gene whose complete nucleotide sequence has been 

determined (Clark et al 1985a; see Appendix). This is shown in 

Figure 7. These genes are predominantly organised in a head to head 

linkage with Group 2 genes. 

Transcriptional Signals 

The cap site of the Group 1 genes is positioned 31-hp 

downstream from the consensus TATA box as previously determined. The 

TATA box region of all five genes is identical except for BS 109-1 

which has a T in position 3 of the consensus (see Table 3). This 

residue is a T in only 10% of the 60 genes compared by Breathnach 

and Chanthon (1981). Whether such a difference has an effect on 

transcriptional efficiency is not known. However, in general the 

Group 1 genes have a very good fit to the consensus TATA box. 

Further aspects of the promoter region are discussed in Chapter 4. 

Nevertheless, notice the variable A-rich region situated at about 

-SO and the asymmetric distribution of base changes. The divergences 

seen at the 5' end of these genes approach a similar frequency as 

those between the Group 2 genes (Table 4). such differences are 

speculated to be highly significant in consideration of the marked 

differences in expression of various NiP genes between and within 

secretory tissues. 
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FIGURE 7. 

Sequence Comparison of Group 1 Genes. 

The 5' sequences of the Group 1 genes were 

aligned using the GAP programme of Devereaux 

et al (1984). 

The numbers refer to distances, in bp, from 

the cap site and the dashed lines represent 

undetermined sequences. Dots represent the gaps 

introduced to maximize homolgy. The TATA box is 

underlined. 
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Translational Signals 

Several features which distinguish the Group 1 genes from the 

Group 2 genes suggest that they are the functional members of the 

family: 1) The sequence CCAAA found immediately 5' of the Group 1 

initiation codon shows good homology with the consensus CCRCC. 2) In 

sharp contrast to the Group 2 genes, the five Group 1 genes are 100% 

homologous within the first exon as well as part of the first 

intron, except for 8S109-1 which has two point mutations within the 

leader sequence. 3) The length of the Group 1 gene signal peptide 

region is conserved. 4) The exonic sequences of BS1, BS6, ELi and 

BS5 have been determined (Clark et al, 1985b). These data show a low 

frequency of base differences between the genes (within this 

region), on average about 0.3%, and most importantly that they code 

for full-length MU? polypeptides. 

Thus, it is argued that such features reflect selective 

constraints imposed on the Group 1 genes, in agreement with the 

suggestion that the Group 1 genes are the functional members of the 

MU? gene family. 

S 

Evolutionary Implications 

The frequency of base differences between the Group 1 genes are 

nonrandomly distributed over the sequence lengths that can be 

compared (Figure 7 and Table 4). As discussed previously the 

transcribed regions of these genes are highly conserved. However 

sequences upstream of the cap site, although markedly similar, have 



TABLE 4. 

Shows the frequency of nucleotide changes between 

the Group 1 genes. 

Percentage differehces observed between the total 

sequenced regions is shown on the right-hand side 

of the diagonal. 

The differences between the sequences 5' to the 

cap site is shown on the left-hand side of the 

diagonal. 

I 



8S5 	86109-1 
447 445 
0.4% 3.0% 
1.0% 4.5% 
0.7% 2.4% 
- 3.5% 

6.3% - 

Frequency of base changes between the 5' 	sequences 
of the Group I genes. 

Total Sequenced Region 

Gene 1 
Length—(bp)1 

8S6 
850 

861 
961 

BLI 
579 

BS6 568 	1 - 1.3% 0.6% 
Sequence 861 679 	1 3.0% - 0.6% 
Upstream BLI 297 	1 1.7% 1.7% - 

of the 865 165 	1 1.9% 5.0% 3.2% 
Cap Site 89109-1 280 	1 4.2% 6.0% 3.6% 



a higher frequency of base differences. This suggests that the Group 

1 genes are related to each other through recent unequal crossing 

over or gene conversion and that such events have occured more 

frequently within the transcription unit. Since the Group 1 genes 

are the predominant functional members of the family such 

conservation of the 'coding' sequences may reflect selective 

constraints imposed on these genes. 

43 



ry 

FIGURE 8. 

N-Terminal Sequences of BS6, MUP15 and BS105A. 

The translation products of the first and part 

/ 

og the second exons of BS6, MtJP15 and ES105A. 

is shown. The letters correspond to the IUB 

code for the amino acids. 



N-TERMINAL SEQUENCES OF 896, MUP15 AND BS105A 

Signal 	Peptide Mature MUP 
1 

856 M 	6 TG 	 E H DNNF 
69 

LLQH MUP15 LLLP 	 I S 	ME 	QSY FS AE 	YE S A 	NT BS105A ERQ 	 FCK T V 	HDN Consensus mk...,ljJ.1 	lcleltivcy ha eeass--r nfnveking- w-tiilasdkreicieehg_m r-fve-i-v 



COMPARISON OF 88105A WITH A GROUP 1 AND A GROUP 2 GENE. 

Part sequence data was obtained of the lambda clone ES105A 

which contains a MTJP gene that belongs neither to Group 1 nor to 

Group 2 and is therefore placed in a third, heterogenous gr6up of 

MU? genes, called Group 3. The comparison of the 5' end of BS105A 

with 886 (a Group 1 gene) and 882 (a Group 2 gene) is shown in 

Figure (9); also shown is the frequency of base changes between 

these genes. 88105-A is convergently linked to a truncated Group 1 

pseudogene. Its chromosomal environment is therefore different from 

the predominant MU? gene organisation. 

Primary Structure 

The sequences immediately 5' to the AUG initiation codon and 

the length of the signal peptide are identical to 886. The coding 

region sequenced (exon 1 and part of exon 2) contain no deleterious 

mutations . The translational product of the mature MU? does not 

correspond to any known sequenced MU? protein or gene. A list of the 

major N-terminal sequences is shown in Figure (8). Note that 

although the region around the TATA box was not sequenced 

accurately, approximate sequence data can be gained from the top of 

a sequencing gel. This data suggest that BS105A has a TATA box and a 

short poly A stretch (about .15-20 As and 1-2 Cs). 
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FIGURE 9. 

Sequence Comparison of ES105A with B56 and BS2. 

The sequences ofthe genes were aligned to maximize 

homology using the GAP programme of Devereaux et al 

(1984). 

The numbers refer to the distance, in bp, from the 

cap site. The stop codon and TATA box sequences are 

underlined. 

The Tables refer to the frequency of base changes 

between the genes. 
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Evolutionary Implications 

BS105A appears to be equally diverged from BS2 and BS6, 13.9% 

and 10.8% respectively. The Group 2 genes have several 

characteristic sequence differences which distinguish them from the 

Group 1 genes. 1) A stop codon in the first exon; 2) a longer and 

variable signal peptide sequence; 3) a two base pair 

insertion/deletion followed by 6-bp of Group 2 specific sequence, 

located in intrbn I, 20-bp downstream from the intron boundary; 4) a 

two base pair insertion/deletion 53-bp upstream from exon 2; and 5) 

two 1-bp insertion /deletion events within the promoter region 

(positions -520 and -181 in Figure 9). with respect to these 

distinguishing features BS105A is identical to the Group 1 genes. 

This suggests that BS105A has probably evolved from an ancestral 

Group 1 gene and at some point has been converted/exchanged with a 

Group 1 gene. Although the base changes that have occurred between 

these genes appear to be random, short stretches of sequence about 

20-bp in length are apparently more homologous with the •Group 1 

gene. These are indicated in Figure 9. Table B. This may represent 

a recent exchange with a Group 1 gene. However due to the 

divergences between these sequences and the shortness of these 

homologies, it is not possible to determine the significance Of 

these observations. Nevertheless, it is proposed that during the  

evolution of BS105A exchange with Group 1 and Group 2 genes has 

taken place. This would be consistent with the model of MU? gene 

evolution which holds that the Group 1-and Group 2 genes are 

constrained from exchanging with one another by the fact that they 

are tightly linked in a 45-kb unit. Those MU? genes with a different 



unit of organisation, such as BS105A, may be released from such a 

constraint and are able to exchange with the different groups of MU? 

genes. This has been suggested for the MU? gene corresponding to 

MUP15 (Clark et al, 1985b). 
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CONCLUSIONS 

-. 	Sequence data of the 5' end region of three Group 2 genes, four 

Group 1 genes and BS105A (a Group 3) gene has been determined. The 

sequence structure of these genes is consistent with the model of 

MU? gene evolution presented in Ghazal et al (1985) and Clark et al 

(1984b). The conservation of sequence that is observed within but not 

between the Groups of genes suggests that the 45-kb units of MU? 

gene organisation have evolved from a common ancestral 45-kb unit. 

Divergences between the Group 2 genes appear to have occured 

randomly, while those between the Group 1 genes have been nonrandom. 

The transcribed sequences of the Group 1 genes are more highly 

conserved than the 5' flanking sequences. This probably relates to 

selective constraints imposed on the genes. The greater divergences 

seen between the 5' flanking sequences of the Group 1 genes may 

reflect the differences seen in tissue-specific and hormonal 

regulation of these genes. 

Finally, the most striking observation to be made from these 

data is that the Group 2 genes have most likely arisen from a common 

ancestral pseudogene. This suggests together with those truncated 

MU? pseudogenes that have been described, at least three (Clark et 

al, 1982; Clark et al, 1984b; Al-Shawi, 1985); that the total number 

of functional members of the family of about 35 genes is around 20. 

This number agrees well with the total number of different MU? 

proteins synthesised in the liver and lachrymal glands together. 



STRUCTURAL CHARACTERIZATION OF THE MOP PROMOTER REGION. 

INTRODUCTION 

Viral enhancers and promoters have characteristic symmetries 

and repeated sequence motifs which are known to be important cis-

regulatory elements. For example, the 72 and the 21 bp repeats of 

the SV40 Early Promoter region; and the HSV TK gene distal and 

proximal promoter elements both contain the sequence CCGCCC but in 

opposite brientations (McKnight et al, 1984). 

Most if not all cellular Polymerase II genes which have been 

studied are also known to have multiple regulatory elements. For 

example, the promoter of the rabbit beta-globin gene contains a 

repeated 14 bp sequence, both copies of which are required for 

optimal transcription (Dierks et al, 1983); two copies of the heat 

shock regulatory site appear to be required for optimal induction in 

flies (Dudler and Prayers, 1984); two steriod receptor binding sites 

have been mapped in the 5' flanking DNA of the chicken lysozyme gene 

(Renkawitz et al, 1984); the mouse mammary tumour virus long 

terminal repeats contain multiple binding sites for glucocorticoid 

receptors (Scheidereit et al, 1983), and a 12 base pair DNA motif 

which is necessary for metal regulation is repeated several times in 

the metallothionein gene promoters (Stuart et al, 1984). In most of 

the cases mentioned above, such sequence motifs are known to bind 

regulatory protein factors. The best studied examples of this are 
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the 21-bp repeats of the SV40 early promotor and-its binding of SRI 

transcription factor; the Heat Shock Transcriptional Factor (HSTF) 

binding to the hsp70 gene (parker and Topoi, 1984; Wu, 1984); and 

the glucocorticiod hormone receptor complex and its binding to 

various viral and cellular promoters. 

In general therefore, cellular Polymerase II promotors appear 

to be activated (or repressed?) by the multiple binding of trans-

acting proteins/factors which recognize specific relatively short 

sequence motifs that are repeated several times within the 5' 

flanking regions of the genes. Thus, the analysis of the primary 

structure of a gene promotor may provide important clues as to the 

location and functionality of possible regulatory sequences. 

Futhermore, a search for those regulatory sequence motifs which have 

already been well characterized in other gene systems may provide 

insight into the regulation of the gene. 

In this chapter I shall discuss the primary structure, the 

symmetries and those regulatory sequence motifs found in the 5' 

flanking sequences of the MU? genes. 
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A HYPERVARIABLE REGION IN THE MU? PROMOTER 

A simple short repetitive sequence mainly of A residues is 

situated upstream of position -50 in the MU? genes and the alpha-2u 

globulin genes. This sequence varies strikingly in length and 

composition between 13 genes as is shown in Figure 10. The longest 

is the Esi sequence with 73 nucleotides of almost pure A residues 

while the shortest is the BS109-2 sequence with only 11 As. On a 

closer examination the majority of the sequences may be divided into 

two types. 1) Those with the structure Gn --- Aii 18Cn1• These are 

the Group 2 genes, ELi, CL8, CL11, and alpha-2u globulin. 2) The 

other type has the structure C 
n 	ni 	2-3 
---A (CA 	) n2 n3 

A ---C 
n4' 

 These are 

BL7, BSS, BS109-1, 856 and BS1. This is the major variability seen 

in the 5' flanking region of the MU? genes. Although the variability 

may have a trivial cause related to the repetitive nature of the 

sequence (see Chapter 3), the possibility that this region has a 

major functional significance is suggested by its close proximity to 

the TATA box. In this connection it is interesting to note the 

remarkable heterogeneity of the MU? gene family in tissue-specific 

expression and response to hormonal induction. Interestingly, three 

of the genes (856, BS109-1 and BL7) contain an enhancer core 

sequence within this region (CAAACaAC, see Table 5 site E-5). These 

three genes belong to Group 1 which contains the most abundantly 

transcribed MU? genes. 
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FIGURE 10. 

A-TRACT REGION 

Sequence alignment of the A-Tract region 

Group 1 Genes: 

8S6, BS109-1, BSS, BL7, ELi, CL8 and CL11. 

(BL7,CLB and CL11 were sequenced by R. Al-shawl). 

Group 2 Genes: 

85102-2, ES109-2 AND BL25. 

Rat gene: alpha-2u-globulin. 

A2u.91 (Kurtz, 1983). 



-31 
E461 	 GGGAAGAGG.ATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAACAAACAAACAAAAAAAAAAAAAAAAAAAAAAAAACCCACTGAACCCAGAGAGTATATAAGG  
E56 	 GGGAAGAGGG. AAAAAAAAAAAAACAAAACAAACAACAACAACAAAAAAAAAAAA ............................CCCGCTGAACCCAGAI3AGTATATAAGG 
IRS 109-1 	GG6AA6AGG. . . AACAAAAAACAACAACAACAACAACAACAACAAAAAAAA ATM ..............................CCGCTGAACTCAGASATTATATAAGG 
E455 	 GGGAAGMGGG. AAAAAAAAAACAAAACAAACAACAAGAACAACAAAAAAAAAA ..............................CCCSCTGAAACCAGAGAGTATATAAGG 
BL7 	 GGGAAGASGG. AAAAAAAAAAAAACAAMACAAACAACAMCAACAAAAAAAAA ..............................CCCCGCTGAACCCAGAGAGTATATAAG6 
BL 1 	 I36OAAGAOGG. AAAAAAAAAAAAAAAAAA ................................................ ........ C6CTI3AACCCABAGAGTATATAAGG 
CLB 	 G6GAAGAGGB. AAAAAAAAAAAAAAAAA .........................................................CGCTGAACCCAGAGAGTATATAA6G 
CLII 	GGGAAGAGGG. AAAAAAAAAAAAAAAA ........................................................CCCGCTGAACCCAGAGAGTATATAA6G 
B52 	 AGGAAG .....AAAAAAAAAAAAAAAA ........................................................CCCACTGAACCCAGASAf3TATATf3A66 
B51 02-2 	AGGAAG .....AAAAAAAAAAAA .............................................................CCACTGAACCCAGAGAGTATATAAGG 
85109-2 	AGGAAG .....AAAAAAAAAAA .............................................................CCCACTGAACCCAGATAGTATATAAG6 
8L25 	AGAMAG .....AAAAAAATAAAA .................................................. . ... ......CCCACTSAACCCAGABAGTATATAAGG 
42u. 91 	GAGAAGG.... AAAAAAAAACAC ................................................................CGAAACCCAGAGA6A6TATAAA6 
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Possible Functions For The A-Tract Region 

opening (Entry) Site for RNA Polymerase. 

RNA Polymerase requires strand separation in order to synthesise 

mRRA (Saucier and Wang, 1972; Chamberlin, 1974). Since the hydrogen 

bonding of A:T base pairs is weaker than that of G:C base pairs, 

separation will be facilitated in A-rich regions, other things being 

equal. The melting of the strand would thus be inversely related to 

the length of the A-tract. In this connection it is interesting to 

note that those MUP genes with the longest 'A-tract belong to the 

highly expressed Group 1 genes. 

Positioning of Regulatory Elements. 

The effectiveness of upstream regulatory elements is often 

dependent on their distance from the TATA box (McKnight, 1982). 

However, the variability in length of this region is not very large 

in relation to the amount of lateral displacement that most upstream 

promoter elements can tolerate (up to about 50 to 100 bp Mcknight, 

1982). It seems unlikely therefore that the function (if any) of, the 

variable region is related to this phenomenon. 

A Determinant For Nucleosome Phasing 

Active genes are believed to be associated with regions 

(usually 5' and 3' to the gene) which are depleted of the regular 

nucleosomal coverage of chromatin (Elgin 1984). There is evidence 



to suggest that factors binding to the 5' flanking sequences prevent 

the formation (in vitro) of nucleosomes around this region 

(Emerson & Felsenfeld 1984). This suggests that the positioning of 

nucleosomes around the initiation site of transcription may well be 

an important regulatory mechanism. Although it is clear that there 

is a nonrandom component in the location of nucleosomes relative to 

the DNA sequence, both the extent of the nonrandoiitness and the 

mechanism(s) underlying the formation of 'phased' nucleosomes are 

controversial. If specific sequences or factors influence the 

position of nucleosomes then ideally these would be at or near to 

DNA sites required for the initiation of transcription. Recently it 

has been proposed that a protein factor (alpha-protein) purified 

from monkey cells mediates the positioning of nucleosomes (Strauss 

and varshavsky, 1984). This protein is evolutionarily conserved and 

binds specifically to A, A+T rich (greater than 6-bp) double 

stranded DNA (Levinger and Varshavsky, 1982; Strauss and Varshavsky, 

1984; Solomon et al, 1986). It is therefore possible that the A-

tract region binds this alpha- protein. The proposed binding of this 

factor would be consistent with both positive and negative models of 

regulation of the MU? genes. According to the negative model the 

nucleosome would be so positioned as to prevent the binding of 

transcriptional factors. On the other hand the positive model 

proposes nucleosome positioning that would allow the interaction of 

transcriptional factors. Alternatively, although not exclusively 

distinct from the tissue-specific regulation, the length and 

composition of the A-tract region may determine the stoichiometry of 

binding such that this variability would relate to accessibility of 

the chromatin to various other transcriptonal factors. This would 
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suggest that the different genes are turned more on or more off 

because of the sequences. More importantantly the essence of this 

model suggests the establishment of two distinct states along a 

short stretch of chromatin, one signaling 'on', the other 'off'. 
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REPEATS AND PALINDROMES 

The direct repeats within the MU? Group 1 and Group 2 

sequences were analysed using the UWGCG program REPEAT. This program 

identifies repeats by aligning two regions of the same sequence to 

reveal possible homology. In  order to assess the significance of 

these repeats, two criteria were applied. Firstly, a direct repeat 

was considered significant only if two related sequences were not 

overlapping. This was to avoid including those repeats identified by 

the comparison of a sequence virtually with itself. Secondly, the 

direct repeat must be longer than that estimated to occur by chance 

alone, according to the statistics of Karlin et al (1983), 

including the standard deviation. This takes into consideration the 

length and nucleotide composition of the DNA sequence in question. 

From this analysis a direct repeat greater than 11-bp (9.4 + 1.1) 

and 12-bp (10.8 ± 1.1) are significant for the Group 1 and Group 2 

genes respectively. 

The presence of inverted repeat sequences, potentially capable 

of forming •stem and loop secondary structures was determined using 

the UWGCG program STEMLOOP. Stems over 12-bp in length and 

containing a maximum of 3 mismatches, were identified. 

Figure (11) lists the symmetries found within the S' flanking 

sequences of the MU? genes and Figure (12) shows the location of 

these on the mgi and B5109-2 sequence. Symmetries are conserved 

between Group 1 genes and between Group 2 genes, but not between 

genes of the two groups. 
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GROUP 1 GENES 

Direct Repeats 

Two interrupted direct repeats of 14-bp and 15-bp are situated 

between nucleotides-500 and -380; These repeats are conserved in 

the Group 1 genes with 13 out of 14 matches between the two 14-mers 

(except for ES1: 12/14) and 3 mismatches for the 15-mer. The Group 2 

genes show ii matches between the two 14-mets and 9 between the two 

15-titers. The upstream 14-bp repeats are displaced from one another 

by one helical turn. Thus the double-helix presents two identical 

steric patterns spaced apart by one turn of the helix. This may have 

biological significance if this repeat represents a protein binding 

site, since such a speculative interaction may involve binding a 

dimer of the protein or a monomer with a duplicated domain. There is 

no evidence that these repeats have any functional significance. 

However, in the rabbit beta-globin gene two 14-bp direct repeats are 

required for full expression (Dierks et al, 1983); also the human 

interferon alpha-1 gene contains four direct repeats of 6-8-bp 

within the upstream region responsible for viral induction (Ragg and 

Weissmann, 1983; Ryals et al, 1985). 

S 

Palindrome 

A 26-bp palindrome, a feature characteristic of many protein 

recognition sites on DNA, is situated at about nucleotide -300. The 

Group 1 genes show 11 out of 12 matches between the arms of the 

palindrome except for ES1 and BL1 which show 10 out of 12. The Group 



2 genes show 5 mismatches in the same regions. palindromes have been 

observed upstream of a number of eukaryotic promoters and are 

concurrent with important regulatory elements. For example, alpha-1 

globin genes have a 12-hp palindrome contained within a region known 

to be important for its expression (Mellon et al, 1981). The heat 

shock element (USE) is an example of a short 10- bp palindrome 

(Pelham, 1982; Pelham and Bienz, 1982). In fact, a common feature of 

the heat shock promoters is a larger inverted repeat associated with 

the heat shock palindrome, although the sequence of the former is 

itself not conserved. These are the genes for hsp 70 (10 out of 12 

bases form a dyad), hsp 83 (20 out of 24), hsp 22 (12 out of 16), 

hsp26 (12 out of 14), and hsp 27 (12 out of 16) (I-Iolmgren et al, 

1981). In the presence of the USE there seems to be no correlation 

between the size or position of the larger inverted repeat and the 

efficiency of heat induction. Moreover, studies have shown that 

disruption of the large palindrome in the hsp 70 gene does not 

abolish activity, (Pelham, 1982). These observations suggest that if 

there is any requirement for a palindrome , it need be no longer 

than 10-hp and that the sequence and exact position of the larger 

inverted repeats are unimportant. These studies involved the 

analysis of the Drosophila promoter in COS cells and the 

requirement for the larger palindrome may be too subtle to be 

revealed by this assay system. The presence of such, a feature in the 

same relative position in most of the Drosophila heat shock genes 

certainly suggests that it has some function in vivo. The 

metallothionein promoters contain a 25-hp palindromic sequence 

around position -50 in the mouse MT-I and the human MT-IIA genes .  

(Searle et al, 1984). It has been demonstrated that this 
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FIGURE 11. 

SYMMETRIES WITHIN THE MUP PROMOTER REGION 

Direct repeats and inverted repeats present within the 

Group 1 and Group 2 genes are shown. Subscript letters 

indicate those bases looped out from the alignment and 

the numbers refer to the position of these structures 

in the 356 (Groupi) and the 352 (Group 2) genes. 

Also shown is the mouse metallothionein I 

palindrome and its alignment with the Group 1 palindrome. 



GROUP 1 GENES 	 GROUP 2 GENES 

DIRECT REPEATS 	 DIRECT REPEATS 

-482 ATACACATGAAAAA 
,uuII,s,l,ul 	p 
puI,u,uIlu,i 	I 

-459 ATACACATGAAATA 

-437 TCTTTTGCAAAAATT 
III, 	11111 	III 
III' 	11111 	III 

-396 TCTTAAGCAAAGATT 

PALINDROME 

-318 AACCAGATCCAAI. 
III 
su 	p,. 	

I'' 
I 	III 	

III 

-293 TTGGTCTACGTT° 

-902 I3CAAATATI3ATTTG 
I,uu,u'I,II,I, 

-859 GCAAATATGATTTG 
C 

S 

-257 CAATCCAAAGGTG 

	

lull.,, 	'lull 

	

.1111111 	'III' 

-162 CAATCCATAGGTG 

INVERTED REPEATS 

-773 AAACAGTT6ATG 
 !MM  III 

 

-627 TTTGTCATTTAC 

-513 TGAACCTGTI3TCC 
u's 	•111t 	ii 
.dll 	Ills' 	II 

-420 ACATGGACTCAGG 
—r 

MT-I PALINDROME 

-67 CTGGGTGCAAAC 
I 	I I I 	I II 	I 
I 	Ill 	Ill!' 	C 

-43 GBCCCGCGTTTC 

GROUP 1 AACCAGATCCAAA GTTGCATCTGGTT 
I 	I 	I 	IlI• 	1111 	I 

I 	I 	'Ill 	I'll 	I 	11 
MT-I 	 CTGGGTGCAAA TTTGCGCCCI3G 

CCC 
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represents a heavy-metal-inducing element (Stuart et al, 1984). 

However, disruption of the palindromic structure does not abolish 

metal induction, indicating that a palindrome itself is not 

essential for metal regulation (Carter et al, 1984; Searle et 

al, 1985). Interestingly, the core of the Group 1 palindrome shares 

sequence homology with the mouse MT-I gene palindrome and is shown 

in Figure 11. This may have either evolutionary or functional 

implications. 

In conclusion, palindromic structures such as those so far. 

described appear not to be essential, although they are associated 

with important regulatory elements. In this connection it is 

interesting to note that the Group 1 palindrome not only shares 

homology with the MT palindrome and the Metal Responsive Sequence 

Element but also with the enhancer core sequence and the Nuclear 

Factor 1 binding sites. These sites will be dealt with in the next 

section. 

GROUP 2 GENES 

Direct Repeats 

The Group 2 genes. have two interrupted direct repeats, a distal 

14-bp and a proximal 13-bp repeat (Figure 11). The distal repeats 

are located within the nuclease hypersensitive domain present in 

both the Group 1 and the Group 2 genes. Whether these repeats are 

present in the Group 1 genes is not known since the sequence of this 

region has not been determined. The proximal repeats, only 



marginally represented in the Group 1 genes, flank the 5' end of two 

putative Nuclear Factor 1 binding sites (Figure 12). Additionally 

the upstream repeat is in the same relative position as the Group 1 

palindrome and contains a putatiye Metal Responsive Element, while 

the downstream repeat contains homology with the Enhancer Core 

Sequence (Figure 12). The association of these repeats with various 

potential regulatory sequence motifs may soggest a functional 

significance. 

Inverted Repeats 

The Group 2 genes also have two interrupted palindromes or 

inverted repeats within their 5' flanking sequences (Figure 11). 

The upstream 12-bp inverted repeats flank the 3' and 5' side of the 

upstream and Group 2 specific hypersensitive domains respectively. 

Since the known Group 1 sequences do not extend this far, the 

presence of these symmetries within the Group 1 genes is not known. 

The downstream 13-bp inverted repeats are situated 3' to the Group 2 

specific hypersensitive domain. The inverted repeat closest to this 

domain contains a Group 2 specific putative Glucocorticoid 

Responsive Element (GRE-1) (see Figure 12). The positon of these 

symmetries and their concurrence with known regulatory motifs 

suggests a possible significance for these sequences. 
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REGULATORY SEQUENCE MOTIFS? 

A model of gene regulation holds that proteins in the cell 

nucleus function together as a network to mediate the extent of gene 

expression. Evidence for this model has been accumulating over the 

last five years in which the interactions of specific trans-acting 

proteins with cis-acting regulatory sequences have been identified. 

However, little is known about the structure and organisation of the 

control network as a whole. The total number of different 

transcription factors in the cell remains uncertain and the gross 

structural organisation of active genes within the nucleus is only 

begining to be resolved. In this section I shall describe those DNA-

binding proteins that have been found to interact with polymerase II 

genes and their possible interactions with the MU? promoter 

sequences. 

The UWGCG program FIND was used to search for regulatory 

sequence motifs within the Group 1 and the Group 2 genes. In order 

to determine the significance of these finds their expected and 

observed frequencies of occurence in the complete sequences of ES6 

(4632-bp), BS2 (5023-bp) and pBR322 (4363-hp) were determined. 

A summary of all known sequence motifs and their presence or 

absence within the MUp gene familiy 5' flanking sequences is shown 

in Table 5. Also, these sites are indicated on the aligned sequences 

Of BS1 (Group 1 gene) and ES109-2 (Group-2 gene) in Figure 12. 



From this survey, P, lucocorticoid responsive elements, enhancer 

core sequences, nuclear factor 1 binding sites and metal responsive 

elements were identified. 

GLUCOCORTICOID CONSENSUS SEQUENCES 

Glucocorticoids and other related steroid hormones 

(progesterone, oestrogen, and testosterone) modulate the 

transcription of specific genes in target cells by the interaction 

of the steroid-receptor complex directly with specific DNA sequences 

adjacent to the promoter of responsive genes. This is particularily 

well established for the glucocorticoid-receptor complex. 

Furthermore, these sequences appear to have enhancer like properties 

(Chandler et al., 	1983). In all cases studied multiple sites are 

present. For example, the mouse MMTV has 4 sites (Scheidereit et 

al, 	1983), the rabbit uteroglobulin gene has 3 sites (Cato !! 

al, 1984), the chicken lysozyme and human MT-IA genes have 2 

sites each (Renkawitz et al, 	1984; Karin et al, 	1984). A 

computer search for homology in the MU? genes to the consensus 

sequences generated from 20 binding sites, SKKYWCMWYSTGTYCT (Dr. M. 

Beato, pers. communication), is shown in Table S. Since the TGTNCT 

hexanucleotide is the most highly conserved feature of this 

consensus sequence only those finds containing this were chosen. 

Three putative sites are seen at the S • end for each of the Group 1 

and Group 2 genes. The E52 gene (Group 2) contains an additional 

site at coordinate 3290, while no other sites are found in the BS6 

(Group 1) gene or in pBR322. This would suggest that these finds 

within 600-bp of 5' flanking sequences are significant. 
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TABLES 5 

A SUMMARY OF REGULATORY SEQUENCE MOTIFS FOUND 

WITHIN THE MU? PROMOTER REGION 

The approximate positions of these motifs refer 

to the 356 (Group 1) and the BS2 (Group 2) sequences. 

'rev') denotes the reverse sequence of the consensus 

and the lower case letters refer to mismatches 

with the consensus sequence. Subscripts below the 

motifs indicate those genes which differ from the 

sequence shown. 



APPROX APPROX 
rncriiaanTogv SEIB4fI cesis SITES SRthP 1 ONES POSIT ION GROUP 2 GENES POSITION 

Nuclear Factor I TBSN.-,KVCAN a flGcN4vCCA -305 GTGcCNvCCA -270 
(tEl) rev)KTGRMN-,.cCA b GTGfltN,.CCA -225 

c TGW4aTCAA -166 TSON..aTCAA -135 
d TGSN4.8CCAC 
• TGGNVGCCRC +240 
4 TTGAflNa,CCA +285 TTGt1..CtR +315 

Metal Responsive Element CVTTTGCRVVCS I a080atCRAAAG -710 
ry) CGRRY6CAAARO 2 aGI3ATGCccAGG -660 

3 cC9cTGCACCG -515 
(P.lindrom& 4 CGATcCAAABt -315 CC.aTGCATTaG 460 

C 	 flt eat • 	Ct_S CaCa 	 tt flt_fl 

- 5 a(3ttIOCAAASS 
t It nso-. 

195 CCGATCCAAAGI3 -280 

6 CTAATGCAtAGQ +430 

Enhancer Core Sequence GTBBNNM I CTATCCCC 	- -630 
(E) rev)DASCCAC 2 CACCAg 320 

3 CAAItCAt -220 CRATCCAt -165 
4 CATTCCAC -140 tATTCCRC -ISO 
5 CAAACaAC -75 

•, ant,t a.,sb. S., 

sat. nt_v a nso.-s 

Dl sicocorti cal d Rnponet ye S)OCVWDIWVSTSTVCT I tTGaACc-TBTGTCCT 535 
Eleerit rev)AGRACASRW(CWRMMS 2 CTaTACAtACtTGTCCT 380 CTaflrCAtACtTGTCCT -340 

() ° in 891 
3 C.GTTCA9TCTGTCCT p 	-360 
4 AGGACAaacaaAGggG -25 AGOACA.OcaaAGgAG 

a S., nt_as 
-25 

CCAAT box 8SYCAA1tT GaCCcAraCa -153 GaCCcAT.Ca 	 - -SI 

GlcthSn ganom RRCVYCACCC GA.aaCAttCC -147 OAaaatAttCC -105 
conserved -100 region. 
23-2!Sbp upetrna of 

AAT box 

Bpi KGS6CGORRY NONE - NONE 

Heat Shock El eeent CTNGPAFOITTCNAS NONE FCC 
(ICE) 

Ms 



Three of these sites GRE-1, GRE-2 and GRE-3 have good homology 

with the 16-bp consensus sequence, about 82%. In the highly 

expressed Group 1 genes GRE-2 and GRE-3, situated at about -380 and 

-360, are displaced from one another by one helical turn. The length 

of this displacement is a property characteristic of many of the 

Glucocorticoid Receptor binding sites, for example, Sites 2, 3 and 4 

of the MMTv promoter (Scheidereit, et al, 1983) and the two sites 

present in the human MT-IA gene (Karin et al, 1984). In these 

examples the proposed binding contacts of the receptor occur on the 

same face of the major groove of the DNA alpha helix. Such 

interactions may have a cooperative effect. In connection with this 

it is interesting to note that GRE-3 is totally absent in the Group 

2 genes. However, the poorly expressed Group 2 genes while losing 

site 3 have gained GRE- 1, which is located 20-bp downstream from 

the group 2 specific DNase I hypersensitive domain. GRE-4 shared 

between Group 1 and the Group 2 genes is juxtaposed to the 3' of the 

TATA box and shows around 63% homology with the 16-bp consensus 

sequence. 

Glucocorticoid regulation of MtJPs has been reported for some 

strains of mice (Knopf et al, 1983). Interestingly, the 

progesterone receptor complex has been shown to bind to the same 

sequences as the glucocorticoid receptor complex on the chicken 

lysozyme gene (Renkawitz et al, 1984). This suggests that the GRE. 

consensus sequence may be a general recognition sequence for steroid 

hormone receptor complexes. Therefore, the MU? GREs may be involved 

in regulation by other steroid hormones. 



ENHANCER CORE SEQUENCES 

Enhancers, cis-acting transcriptional control elements, have 

been described in both viral and cellular genes (Khoury and Gruss, 

1983). They influence transcription in a quantitative fashion, act 

over relatively large distances (several kilobases) and behave 

independently of their position and orientation. Enhancers have been 

described in immunoglobulin, chymotrypsin and insulin genes (Mercola 

et al, 1983; Gillies et al, 1983; Queen and Baltimore, 1983; 

Picard and Schaffner, 1984; Banerji et al, 1983, Neuberger, 1983; 

Queen and Stafford, 1984; walker et al, 1983. They bear little 

homology with each other except for an 8-bp 'consensus' core 

element, GTGGWWWG (Laimins et al, 1982 and Weiher et al, 1983), but 

even this element is sometimes non-homologous (Walker et al, 1983). 

I have searched for such an element in the MU? gene family. Allowing 

for a 1-bp mismatch 5 potential sites are seen within 600-bp of 5' 

flanking sequence. Only one of these in the Group 1 genes shows 100% 

homology to the consensus sequence. Counting the Ws as half sites, 

allowing for 1-bp mismatch and taking into account that the sequence 

may be represented on both strands, suggests on a random basis one 

enhancer core element every 205-bp. The observed frequency of this 

in the BS6, 3s2 and pBR322 sequences is one per 211, 200 and 273-bp. 

Therefore, the two to three sequences found within the 5' flanking 

sequences may have no special significance. Whether these sequences 

do have any significance must await a functional assay. However, the 

analysis of the MU? Group 1 promoter region by transient expression 

in fibroblast cells has shown that while the promoter alone is 

inactive it can be activated by linking in cis the SV40 enhancer 
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element (see chapter 5). This shows that the MU? promoter is 

responsive to enhancer sequences and suggests that the observed 

enhancer core motifs within the MU? promoter region, if they are 

functional, are part of a tissue-specific element that is regulated 

within this cell system. 

NUCLEAR FACTOR 1 BINDING SITES 

Nuclear Factor 1 is a eukaryotic nuclear protein that binds in 

vitro with high affinity to the specific nucleotide sequence, 

TGGN67KYCAM (Nagata et al, 1983; Rawlins at al, 1984; Siebenlist et 

al, 1984; Hennighausenet al, 1985, Borgmeyer et al, 1985). The 

protein was first identified as a component of a purified nuclear 

extract of uninfected Hera cells able to support the in vitro 

replication of Adenovirus DNA upon binding to a specific sequence in 

the terminal repeat (Nagata et al, 1983; Rawlins et al, 184). 

Nuclear Factor 1 activity has been detected in a wide variety of 

species (chicken, mouse, man and Drosophila) as well as in various 

tissues (B-lymphocytes, brain, kidney and liver) (Borgmeyer et al, 

1984; Hennighausen et al, 1985; and Rawlins et al, 1984). This 

wide range of incidence and likely conservation suggests that the 

protein has a fundamental function. A function other than its 

involvement in DNA replication has been proposed because the factor 

is found to bind close to regulatory sequences (Nowock et al, 

1985). For example, in the chicken lysozyme gene two binding sites 

have been found in the 5' flanking region. These coincide with a 

hypersensitive site found in active chromatin (Borgmeyer et al, 

1984). Recently the same workers have found that the region contains 
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FIGURE 12 

SEQUENCE STRUCTURE OF THE MUP PROMOTER REGION. 

Sequence alignment of BS109-2 (Group 2) and BS1 

(Group 1) genes is shown. 

**** denotes the nuclease hypersensitive domains. 

The upstream domain is common to both the Group 1 

and Group 2 genes while the downstream domain is 

present only in the Group 2 genes. 

Repeats are indicated by arrows above the sequences 

for the Group 1 genes and below for the Group 2 genes. 

Boxed sequences show the positions of regulatory 

motifs (see Table 5.) and the lower case letters 

mark those bases which differ from the consensus 

sequence. 
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a tissue-specific enhancer (Arolla workshop 1985). Two NFl sites are 

found 3' to the 1gM enhancer and two upstream of the human c-myc 

gene (Siebenlist et al, 1984). Additionally, recent observations 

in Dr. Hennighausen's laboratory suggest that NFl is involved in 

transcriptional activation (Dr. L. Hennighausen pers. 

communication). 

Allowing a 1-bp mismatch in the redundant sites of the 

consensus, three potential sites were found in the upstream region 

of each of the Group 1 and Group 2 genes (Table 5 and Figure 12). 

The expected frequency of occurence of the sequence on either strand 

of the DNA is one per 342-bp. The observed frequency in BS6, BS2 and 

pBR322 sequences is one every 260, 280 and 370-bp respectively. 

Therefore the frequency of its occurence in the 5' flanking 

sequences is not significantly different from random expectation. 

Furthermore, a cautionary note, which applies equally well to the 

other putative sequence motifs, is that even if a 100% fit to the 

consensus is seen it does not necessarily imply the binding of the 

factor. This is exemplified by the factors which bind to the chicken 

beta-globin gene. One or more partially purified protein factors 

isolated from adult chicken erythrocyte nuclei can interact 

specifically in vitro with the 5' end DNA fragments. These 

fragments contain the sequences that are nuclease hypersensitive 

in vivo (Emerson and Felsenfeld, 1984) and DNase footprinting 

reveals that the binding sites comprise two discrete regions, each 

about 25-bp long and separated by 15-bp. The 3' binding site 

contains a sequence that shares good homology to the NFl binding 

site consensus sequence. However, NFl has been shown conclusively 



not to be the protein involved in binding to this region (Emerson et 

al, 1985). This suggests that constraints other than the sequence 

motif are important in determining the specificity of binding. This 

point will be discussed later. Nevertheless, the fact that sequences 

containing homology with such consensus motifs occur within a 

potential control region of the genes suggests a possible 

significance. Confirmation of this would require binding studies as 

well as a functional assay system. 

METAL RESPONSIVE ELEMENTS 

A repeated sequence motif, CYTTTGCRYYCG, found within the 5' 

flanking sequences of the metallothionein genes is responsible for 

the heavy-metal regulation of these genes (Stuart et al, i984). A 

computer search of the 5' flanking sequences of the MU? genes 

revealed reasonably good fits to this consensus sequence. A maximum 

of 3 mismatches were allowed for the 12-bp motif. The expected 

random frequency of occurrence on either strand is once every 108-bp 

and the observed frequency in BS6, 352 and pBR322 is once every 260, 

260 and 190-bp respectively. Therefore the frequency of these sites 

within the 5' flanking sequences of the MU? genes is again not 

significantly different from random expectation. However, one of 

the sites (MRE-4) lies within the Group 1 palindrome which shares 

homology with the mouse MT-I palindrome. The fact that multiple 'MRE 

-like' motifs are found and the homology to the MT-I palindrome 

strongly suggests the that MU? genes may be regulated by heavy 

metals. Heavy-metal regulation of MUPs has not been reported. 

However, if MUP5 are controlled by heavy metals then they may have a 
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function other than as pheromonal carriers or agents. Since MTJPs are 

rapidly excreted into the urine a possible implication of these 

proteins in heavy-metal metabolism is very attractive. Testing the 

binding of heavy metals by MUPs and the induction of MUP 

transcription by heavy metals are relatively simple experiments 

which are currently in progress. Preliminary observations indicate 

that MU? mBNAs are indeed inducible by heavy-metals (3. Whitaker, 

unpublished) and implies that at least one of the TIREs identified is 

functional. 
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MULTIPLE SEQUENCE MOTIFS 

The structural organisation of many, if not all promoters 

recognised by RNA polymerase II involves multiple elements, usually 

located upstream of the start site, which are required for optimal 

and accurate initiation of transcription. These elements are in 

general relatively short nucleotide sequences of about 10-bp. Some 

of the elements occur only once and are position and orientation 

dependant, for example the TATA and CCAAT box sequences. Others, 

such as the Spi binding sites occur many times, perhaps 

necessarily, and are relatively position dependent but orientation 

independent. Also, there are regulatory elements which are both 

position and orientation independent. This class of regulatory 

elements have been termed enhancers. Within the MU? promoter region 

homologies to known regulatory sequence motifs are found to occur 

either once (these are the TATA box and a weak CCAAT box), or 

several times (these are the GREs, MRE5 and NN sites) while those 

motifs which are absent, Spl and USE, are not even poorly 

represented. Although one may not expect to find homology with the 

USE, the absence of Spi sites may reflect the tissue-specific nature 

of the MU? promoter. Those promoters that contain Spi recognition 

sites (Sv40 early promoter, HSV TK gene and the metallothionein 

promoter; see Sv40 early promoter in the introduction of Chapter 5) 

show little or no restriction of expression to particular cell 

types. Furthermore, housekeeping genes which contain a high CC 

content within their 5' flanking regions sush as the DI-IFR gene and 

the HMG Co-A gene contain multiple spi sites (Reynolds et al, 
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1984; Dynan et al, 1986). This implies that the Spi transcription 

factor is not a tissue-specific factor and seems to be associated 

with 'housekeeping' functions. 

one reason for the widespread multiplicity of regulatory 

sequences might be that duplication of the recognition sequence is a 

relatively simple evolutionary mechanism to increase the effect 

obtained with one copy. This could either be an additive effect if 

the regulatory proteins bind independently to the two sites, or a 

cooperative effect if binding of one regulatory protein facilitates 

binding of the second, perhaps by providing stabilising protein 

contacts or by creating a more favourable chromatin structure. 

Additionally, the presence of multiple elements might help keep a 

region of DNA accessible to RNA polymerase; thus, binding of a 

regulatory protein to one site might impose a particular phasing of 

nucleosomes, whereas binding to two appropiately spaced sites could 

exclude nucleosomes from the intervening DNA. The regulatory 

sequences that have been identified are relatively short and 

apparently fairly tolerant of nucleotide substitutions in several 

positions. Therefore, sequences able to bind the regulatory proteins 

would be expected to occur many times in the genome just by chance. 

Ensuring the specificity of transcriptional regulation must 

therefore involve other determinants or constraints. Such 

constraints might be imposed by a necessity for multiple regulatory 

proteins to be bound relatively closely together and in proximity to 

other promoter elements. Also, sequences around the recognition site 

may be important in determining the binding of a regulatory protein. 

In this case it is more likely the geometry of the DNA backbone that 
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plays a role, since other specific sequences would probably have 

been identified. Sequence specificity on the basis of contacts 

between the DNA phosphate backbone and the protein surface has been 

termed 'structural' recognition, rather than 'sequence' recognition 

by Lomonossoff et al (1981). 

In conclusion, the action of cis-acting regulatory sequences 

on gene expression may be determined by their interactions with one 

another, their binding of trans-acting factors, and the 

interactions between the bound trans-acting factors. 
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ENHANCER ACTIVATION OF THE MtJP PROMOTER 

INTRODUCTION 

A large number of eukaryotic structural genes have been cloned 

and the detailed structural organisation and nucleotide sequences of 

many mammalian genes is known. Investigations of regulatory 

mechanisms have largely concentrated on defining the limits of the 

primary transcripts and identifying sequences involved in the 

initiation or promotion of transcription. These investigations have 

been greatly facilitated by the approaches of reverse genetics, that 

is, the introduction of cloned genes into cells or whole animals, and 

by the development of in vitro transcription systems. In the long 

term these, together with the purification of transcription 

factors, should lead to the elucidation of the molecular mechanisms 

underlying gene expression. 

Expression of Genes in Tissue-Culture Cells 

In general, the already large and rapidly expanding number of 

gene promoters that have been studied dfplay a variety of native 

transcriptional activities. Such activity may be (1) highly tissue-

specific, as is the case for the globin and MUP gene families; (2) 

widely-expressed, as in the case of genes associated with 

housekeeping functions, for example the DHFR and HMG C0A reductase 

genes; (3) widely-expressed at low levels but showing increased 

expression within particular tissues, as in the case of the 
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metallothionein genes. Finally (4) some genes are induced by 

environmental or physiological signals, such as the metallothioneins 

genes to heavy-metal induction and the heat shock genes to 

temperature stress. A brief description of the expression of these 

various gene systems after transfection into tissue-culture cells 

will be given, followed by a discussion of the positive and negative 

regulation of eukaryotic genes. The Sv40 early promoter region is 

used in the analysis of the MU? promoter region (in this chapter) 

and is also the most intensively studied of the eukaryotic promoter 

regions. An outline description of this region is also presented 

below. 

Widely-Expressed Genes 

Genes that are natively widely-expressed have been shown to be 

actively expressed following transfection into many different cell 

systems. These are the cellular housekeeping genes such as the HMG 

CoA reductase gene (Osborne et al, 1985), the mouse HPRT gene 

(Melton et al, 1986) and some viral promoters such as the HSV-Tk 

promoter (McKnight, 1982) and the 3V40 early promoter. In some capes 

genes that are expressed in many different cell types are expressed 

more highly in a particular tissue. For example, the mouse 

metallothionein genes are maximally expressed in hepatic and renal 

tissues, while low levels of expression have been detected in many 

other tissues such as the spleen, intestine, heart, muscle, brain 

and testes (ournam and palmiter, 1981). Transfection of these genes 

into heterologous cell systems has shown that expression can be 

obtained but as yet throws no light on the tissue- specific nature 
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of their expression (Searle et al, 1984). 

Inducible Genes 

There are many eukaryotic gene 's which are expressed in 

differentiated cells and which are rapidly activated or shut off in 

response to environmental changes. Such inducible gene systems have 

proven to be readily amenable to experimental analysis. For example, 

regulation of the expression of transfected genes by glucocorticoids 

has been achieved in three cases: MMTV (Chandler et al, 1983), the 

chicken lysozyme gene (Renkawitz et al, 1984) and the human 

metallothionein hA gene (Karin et al, 1984). other examples are 

heavy- metal regulation of the human and mouse metallothionein 

genes, viral induction of the alpha- and beta- interferons and the 

induction of the heat shock genes of drosophila (Pelham, 1982). In 

all of these studies cis- acting DNA sequences other than the TATA 

box and within 250-bp of the cap site were implicated in the 

regulation of gene transcription. 

Tissue-Specific Genes 

Tissue-specific expression of a number of genes has been 

demonstrated in transfected tissue-culture cells. That is, the 

correct expression of the gene has been shown to be restricted to a 

particular cell type. Examples are: the immunoglobulin genes (Foster 

et al, 1985), insulin and chymotrypsin genes (Episkopou et al, 

1984; walker et al, 1983) and the alpha-1 antitrypsin gene 

(Ciliberto et al, 1985). In all of these cases the 5' end region 



has been shown to be important in conferring (at least in part) the 

tissue-specific expression of the genes. In some cases (such as the 

immunoglobulin genes (Banerji et al, 1983; Gilliès et al, 1983)) 

additional control sequences are found within the transcription 

unit. However, some highly tissue-specific genes may be expressed 

after transfection into heterologous cell systems. For example, 

short term experiments have shown that the alpha-globin gene 

promoter is functional at a low level upon transfection into 

fibroblast cells while the beta-globin gene promoter is essentially 

non-functional in such cells unless activated by, for example, a 

viral enhancer sequence linked in cis (Humphries et al, 1982; 

Banerji et al, 1981; Mellon et al, 1981). 

The major limitation to the analysis of inducible and tissue-

specific genes is that it is dependent on the availability of an 

appropriate cell line. A further complication is the fact that 

different inimortilized cell lines from a given tissue show 

considerable variability in their phenotypic expression. For example 

no two hepatomas are exactly identical in their pattern of gene 

expression. In general, correct expression of a transfected gene is 

observed only in cell lines which express the corresponding 

endogenous gene (Ott et al, 1984). Additionally, such cell lines 

are always different from their tissue of origin in that they are 

immortal and therefore doubts will always be present as to the 

validity of the results obtained with them. In some cases such 

limitations may be overcome by introducing genes into primary cells. 

For example Renkawitz et al (1982) have shown hormonal 

inducibility of the chicken lysozyme gene after direct injection 
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into chick primary oviduct cells. However, such experiments are 

difficult and very time consuming and further complicated by the 

fact that upon plating, changes in the pattern of gene expression 

may occur (Clayton and Darnell, 1983; see also 'MUP expression in 

hepatocytes' in the Introduction). In the long term transgenic 

animals will provide the solution to many of these limitations since 

from one animal it is possible to directly compare the tissue-

specificity of expression of the transfected gene. 

Positive Regulation 

All of the abovementioned systems conform to a positive model 

of gene regulation. For example, those trans-acting factors that 

have been purified, Spl, HSTF and steroid receptors, are positive 

transcription factors and have already been discussed in chapter 3. 

Indirect competition assays have also shown that positive trans-

acting factors are involved in the expression of genes transfected 

into tissue-culture cells (Seguin et al, 1984; Scholer and Gruss, 

1984). 

Negative Regulation 

There are several well documented examples of specific trans-

acting repressors: a fibroblast chromosome that turns off specific 

liver functions (Killary and Fournier, 1984); the adenovirus Ela 

gene product, which represses the Sv40 and polyoma enhancers 

(Borelli eta]., 1984; velcich and Ziff, 1984); the trans-acting 

negative regulation of viral enhancers (MSV) in undifferentiated 



embryonic stem cells (Gorman et al, 1985); and the T antigen 

repression of the SV40 early promoter (Tjian, 1981). In addition, 

Osborne et al (1985) have shown that 500-bp of sequence 5 1  to the 

HMG CoA reductase gene are necessary for constitutive expression in 

L cells as well as being responsible for cholesterol-mediated 

inhibition of transcription and suggest the possible involvement of 

sterol-binding repressor proteins. The increased expression of 

transiently expressed genes upon brief exposure to cycloheximide (an 

inhibitor of protein synthesis) also suggests the existence of a. 

labile repressor(s) (Ishihara et al, 1984). In summary it appears 

that there are cis-acting sequences which respond to negative 

controlling factors and that they are located in the same, or in 

close proximity to, essential cis- acting sequences which mediate 

the positive control of gene expression. 

The 3V40 Early Promoter Region 

Important cis-acting regulatory elements of the 5v40 early 

promoter have been mapped, and reconstituted in vitro 

transcription reactions have allowed specific cellular factors that 

recognise and bind to' the viral promoter to be identified and 

isolated. 

The early genes of simian virus 40 (8v40) are expressed shortly 

after infection, whereas the late genes are maximally activated only 

after the onset of viral DNA replication and the repression of viral 

early transcription byT antigen (Tooze, 1980; Tjian, 1981). There 

are two T antigen binding sites surrounding the origin of 
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replication and one that overlaps the first Spi binding site (see 

later). Mutational analysis of the viral transcriptional control 

sequences has revealed that the major early promoter consists of 

three 21-hp repeated elements preceded by a stretch of AT-rich 

sequences (TATA box), and early transcription has been shown to 

initiate from distinct sites located 20 to 30-hp downstream from the 

AT-rich region (Myers et al, 1981; Benoist and Chambon, 1981; 

Chosh et al, 1981). In addition, enhancer elements that 

stimulate SV40 early transcription in vivo are located within the 

72-hp repeated sequences, which lie 110 to 250-hp upstream from the 

early transcription start sites (Benoist and Chambon, 1981; Banerji 

et al, 1981; Gruss et al, 1981). These elements have been 

shown to interact with specific trans-acting factors (Scholer and 

Gruss,, 1984) and increase the rate of transcription initiation by 

RNA polymerase II within linked sequences (Preisman and Maniatis, 

1985;, Weber and Schaffner, 1985). Fractionation of crude HeLa cell 

extracts resulted in the identification of a transcription factor, 

Spl, that binds specifically to a hexanucleotide sequence, GCGCGG 

(CC-box), that is tandemly repeated six times in the 21-hp repeats 

of Sv40 (Dynan and Tjian, 1983; Gidoni et al, 1984). Recently, spl 

has been shown to activate transcription and bind to the CC-box 

sequences present in several other viral and cellular promoters, 

including the herpes virus IE-3, IE-4/5 and Tic promoters; the AIDS 

virus long terminal repeat (LTR); two monkey genomic promoters; and 

the human metallothionejn gene promoters (Dynan et al, 1985; Jones 

and Tjian, 1985; Jones et al, 1985). Cidoni et al (1985) have 

shown that the first three proximal CC-boxes (I, II, and III) are 

involved in Sv40 early RNA synthesis while spi binding to sites III, 



V 1  and VI mediate late gene transcription. In conclusion, the 

approximately 300-hp of the SV40 early promoter region is a mosaic 

of different regulatory elements, which interact with different 

trans-acting proteins, and which sometimes overlap. 

As discussed previously a large number of promoters work very 

weakly or not at all in some cell lines. However their activity can 

be forced to higher levels by linking enhancer sequences to them in 

cis. Examples are, the beta-globin, conalbumin and lysozyme 

promoters (Banerji et al, 1981; Wasylyk et al, 1983; Renkawitz 

et al, 1984). The SV40 enhancer, being one of the strongest 

enhancers and active in many cell types, is often chosen for this 

purpose. This chapter describes the activation of the MU? promoter 

by the sV40 enhancer element. Initially, J.O. Bishop had prepared 

constructs containing the MU? promoter with or without the SV40 

early promoter region. Expression was observed only when the SV40 

sequences where present. I shall describe in more detail the SV40 

enhancer dependence of the tissue-specific MU? promoter. 
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PLASMID CONSTRUCTIONS AND NOMENCLATURE 

A series of DNA constructs have been made in order to 

investigate the behaviour of the promoter region of one of the MU? 

genes. Each construction involves up to three components: (1) 

various 5' end regions of BS6 (a Group 1 gene), (2) the HSV 

thymidine kinase (Tk) gene as a reporter function, and (3) different 

regions of the sv40 early control sequences. The schematic 

arrangement of these structures is shown in Figure 13 and the 

specific sequence details of the regions are illustrated in Figures 

14 and 15. A descriptive nomenclature identifies the various 

components associated with each vector. These various components are 

linked as shown into a section of pBR322 (coordinates 2069 to 4363) 

containing the plasmid origin of replication and the beta-lactamase 

gene for selection of the recombinant. The pSVEP. series of 

recombinants were constructed by Dr. 3.0. Bishop, while I have 

prepared the pSVE. series by the in vitro manipulation of this 

series. The pSvEp. constructs contain the complete 5V40 early 

promoter region which retains the enhancer element (the 72-bp 

repeats), the upstream promoter region (the 21-bp repeats and TATA 

box) and 61-bp of leader sequence, including the origin of 

replication. Digestion of this region with the restriction enzyme 

FokI cleaves the enhancer from the early promoter leaving 14-bp of 

the promoter (containing hale of a 21-bp repeat). See Figure 15. 

This enhancer fragment (E) was cloned into the ECORV site of 

M13tg130. The structure of the recombinant was confirmed by DNA 
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FIGURE 13 

Schematic Representation of the Constructs 

The three major components of the constructs are 

shown. These are the SV40 early promoter region, 

the MU? promoter region and part of the HSV-Tk 

gene. 

The TATA boxes and ATG codons are indicated as 

well as the leader sequences (L). The arrows show 

the transcriptional start sites and the letters 

refer to the restriction enzyme sites used in 

the construction of the vectors. These are F, FokI; 

H, HindilI, Si, S2, Sau3A sites; X, xmnI and 

B, BamHI. 

The black boxes refer to the coding sequences in the 

MU? and HSV-Tk regions. The numbers refer to the 

nucleotide positions of the MUP sequences relative 

to its cap site. 
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sequencing, the RE was prepared and the fragment was gel purified 

from the vector after digestion with Smal and Mmdiii. 

Subsequently, the appropriate digestion of the pSVEP. vectors 

allowed the replacement of the EP sequences with the E fragment, 

thus generating the pSVE. series. The pSVEP. and pSVE. vectors are 

referred to as those constructs containing the Sv40 early promoter 

region and the SV40 enhancer, respectively. Briefly, psVE.XS2.Tk was 

simply prepared by deleting the sequences between the xmnI site 

and the Sau3A (Si site) of the 5152 fragment of BS6 in 

pSVEP.S1S2.Tk. The nomenclature adopted for the thymidine kinase 

gene and protein enzyme is Tk and tk respectively. 

This chapter would not have been completed in time without the 

help given by Melville Richardson and Ann Duncan. My thanks to 

Melville for maintaining the stocks of plasmids and the plasmid 

preparations of pSVE.HS2.Tk and pSVE.X52.Tk. Also many thanks to Ann 

for the preparation of RNA and their analysis on Northern blots. 
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FIGURE 14 and 15 

Sequence structure of 14) the 5' end region of the 

Group 1 gene BS6 and 15) The 5v40 early promoter region 

Underneath the sequences a schematic representation 

Of the cloned regions used in the vector constructions 

is shown. 

Arrows indicate those sequence symmetries found in B56. 

The TATh box is underlined and the various restriction 

enzyme sites used in the construction of the vectors are 

shown. 

The dashed lines indicate the symmetries within the 

SV40 early promoter region while the vertical lines 

show the early early transcription start sites. The 

restriction enzyme sites used in the cloning of this 

region are shown above the sequences. 

These diagrams were prepared by Dr. J. Bishop. 
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- 	- 
-300 ATCTQ6TTCC AGTTGSCAST TCTCTTGAAC ACCCACTGTT TIATTSSGAA 

> 	 $ 	-- 
-250 TATGITTTGA GTAACATAAG ATTACTAAAT CAATCCATAE GTTAT$AAAT 

-200 TGCCAAGTTT GCAAA6GGCA AGGAACAATT CTTG6CCTCT AATCAATAAA 
Xml 

-150 TI3AGAAAACA TTCCACAAAG CCTBACAGAG GTAGAGGABA CCCATAC666 

-100 A464666AAA AAAAAAAAAA CAAAACAAAC AACAACAACA AAAAAAAAAA 

-50 ACCCGCTBAA CCCA6AGA6I_ATATAA6GAC AAGCAAA666 6CTBOSGAGT 
Sau3A 

1 OGAGIGIACC CACOATCACA AGAAAGACGT GGTCCTGACA GACAGACAAT 

51 CCTATTCCCT ACCAAAATGA A$ATBCTGCT GCTGCTGTGT TT668ACT6A Exn I 

101 CCCTAGTCTG TBTCCATGCA GAAOAAGCTA GTTCTACGGG AAGGAACTTT 
Sau3A 

151 AATGTAGAAA AGGTATSATC ACT6AATA6T AGCTTCTGAC TCA6AAT6TG 

201 CTTTGGGGAA CTCTT6AAGC CAA6TAGBTC CTTTGAGBGG AT66GTATAS Intron I 
Ba,Hl 	- 	- 

251 TGCCCCAATC TCTTAGACAA ATGAAT66AT CC 

TATA ATG 

SiB 
-a 

- 	 S2B - a- 

5152 

X52, iØ 

HS2(2.2kb) 
p 



1/2 Pvull 
1 cIQTGGAATGTGTGTCAGTTA666TBT6GAAA6TCCcCA68,cTCCCCA6C 

51 AG6CAGAAGTATGCAAAGCATGCATCTCAATTA6TCABCAACCAGGT6T6 

101 6AAABTCCCCABGCTCCCCAGCAGGCAGAAGTATGCAAAGCATGCATCTC 

------ -- Fok I 
151 AATTA6TCA6CAACCATAGTCCCGCCCCTAACTCCGCCCATCCC6CCCCT 

I 	 I I 

201 AACTCCGCCCA6TTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTT 
I --------- - - -------- 

I 

II 	 III 
II 	 III 

251 TTATTTAT6CAGAGGCCGAGGCCGCCTCGI3CCTCTGABCTATTCCA6AAG 
> 

HIndIII 
301 TA6TGA66A6GCTTTTTTG6A66CCTAGOCTTTTGCAAAAA6CTT 

	

Pvu 	 Fok 	 Hind 
I 	 I 

	

-4 	E 

	

4 	 EP 
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ANALYSIS OF CONSTRUCTS. 

The transcriptional activity of the various constructs 

described above were examined with thymidine kinase transient 

expression analysis after transfection into baby hamster kidney 

(BHKtk-) cells. These are a fibroblast cell line which have a 

deficient Tk gene and are therefore tk- (see Methods). After 

transfection into the B}IKtk- cells and allowing a 20 hour adsorption 

period the cells were harvested, extracts was prepared and tk enzyme 

activity was determined. The time course of TMP synthesis was linear 

for 90 to 120 minutes. Each extract was sampled after 30, 60 and 120 

minutes of incubation and the one hour point was taken. The number 

of counts recorded for the mock transformation was subtracted and 

the tk activity was expressed as the number of picomoles of dTMP 

synthesised per minute per milligiam of soluble protein at 37 0C. 

In eac experiment enzyme activity was normalised to the activity of 

an extract of cells transfected with pSVEP.Tk included as a positive 

control. 

0 

An example is shown in the Methods section and a summary of the 

relative tk activities of cells transfected with the pSVEP. and the 

pSVE. series of constructs is shown in Table 6. Northern blot and 

nuclease 51 protection analysis of transcripts from selected 

constructs transiently expressed in BHlCtk- cells was performed. 



Translational Effects 

Reporter functions represent an indirect assay of the level of 

transcriptional activity. As well as transcriptional effects, post-

transcriptional, translational and other effects determine the 

overall outcome of the experiment. Such effects must be taken into 

account when comparing different transfected recombinants which 

generate transcripts with slightly different sequences. Even though 

in this case most of the transcripts generated from different 

transfected IJNAs are the same, other effects cannot be ruled out. 

Consequently, enzyme assays should only be used as indicators of 

potential effects. 

In this study a few of the transfected recombinants generate 

mRNA5 with different 5' sequences. Therefore, differences in their 

tk activities may be interpreted in terms of their different 

processing and translational efficiencies. These are the constructs 

with the S2B fragment of BS6 which contains the MU? first exon and 

about 100-bp of the first intron fused to the leader sequence of the 

HSV- Tk gene. A ten-fold reduction in tk activity is observed when 

the tk activity of cells transfected with these DNAs is compared 

with constructs which are identical except for the absence of the 

STh MU? fragment (compare pSVEP.Tk and pSVEP.S2B.Tk, and also 

pSVEP.S1S2.Tk and pSVEP.S1BTk in Table 6). Nuclease Si protection 

analysis of the transcripts generated from pSVEP.S2B.Tk and 

pSVEP.S1E.Tk show that they are not processed and therefore contain 

both the exonic and intronic sequences of the MU? gene (Figure 17). 

The MOP coding sequences read out of frame with the Tk coding 

1,I 
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FIGURE 16. 

Translation produàts of - the 5 1  end of 

pSVEP.S2B (or S1B).Tk Constructs. 

Lane c, is the MU? reading frame. 

Lane a, is the HSV-Tk reading frame. 

* denotes the stop codons. 

The underlined translation products 

show the open reading lengths. 



--MUP-SIGNAL PEPTIDE 	 -) 	 --MUP 
AISAA6ATGCTSCT6CTGCTGT6TTTSGGACTt3ACCCTAGTCTGTGTCCATGCAGAA6AA 

a 	* R C C C C C V W 0 * P * S VS MO K K 
b 	E DA A A A V F 61 D PS L C 	C 	RS 
c 	H K ML 	L 	L L CL G L T L 	CV MAE F 

MATURE PROTEIN---------> 	 I -----INTRON I --------> 
GCTA6TTC TA CS6SAA GSA ACTIT AAT6T A6AAA ASS IATGATCACT GAAA TAG TAGCTT 

a 	L 	L RE GIL N * KR V OH * N 5 	F 
b 	* F V 6K EL * C 	K GM I T 	I VAS 

A S ST 6 RN F NV £ K V * S L K * * L 

C T GAC TCA GAATG TSI6CTTIGG6 GAACTCT TO AAGC CAAGT ASGT CCI TIS ASS S6AT B 

a 	* L R MC AL 6 N S * 50 V 13 P L R G W 
b 	0 SEC V LW ST L E AK * V L * G 	6 

L TON V C F GEL LX PS R S F E GM 

-HSV Tk LEADER SEQUENCE 
SGTATAGI6CCCCAAICTCITAI3ACAAAIGAAISGATCTISGT66CGISAAACTCCCGCA 

a 	V * C P N L L D K * MDL 66W K L PH 
b 	VS API S * I N E W I L V A ft N S R 
c 	61W P0 
	

L A 0 H N 6, S H H A £ T P A 

> 	 -U MATURE PROTEIN ---------> 
CCTCT TI GGCAA SC BCCITGTAG AAGC SC ST AT GOCT TCSI ACC CCT GCCAT CAACACSC 

a 	L FGKA I. 	VEAAMASYPCHQHA 
b 	S LAS AL * KR V N L RI PAIN T  

Pt H Q A PC PS AVG F VP L 	PS IA 

ST C 16 C61 TC SAC C AG SC I SC SC ST I CT C BCGGCC AT ABC A A CCBACBTACGGCGT TGCB 

a 	SAFOOAAASRGHSNAATALA 
b 	L RSIRLRVLAA I 	A 	T D 	V R R 	C 	A 

VC V 	A P 6 C A F S A P * 	0 P T V 	6 V 	A 



sequence and introduce numerous stop codons within the MU? intronic 

sequences (Figure 16). Although eukaryotic ribosomes initiate 

translation predominantly from the first AUG internal AUGs maybe 

utilized if, irrespective of the frame of the upstream AUG, 

termination signals occur between the two starts (Kozak, 1984b; Liu 

et al, 1984; Hunt, 1985). This in some situations may results in 

a reduced translational efficiency of the message (Kozak, 1984c; Liu 

et al, 1984). The next start codon which reads in frame with the 

Tk coding sequences occurs 112-bp downstream from the first stop 

codon. Use of this start codon would result in a 20 amino acid 

extension of the amino-terminal end of tk. Such tk might have 

reduced enzymatic activity. These considerations suggest that the 

reduced tk activity of pSVEP.s2B.Tk compared with pSVEP.Tk, and also 

pSVE(P).S1B.Tk compared with pSVE(P).51S2.Tk may be due to the 

different translational efficiencies of their different mPNAs and/or 

to decreased activity of tk enzyme with a N-terminal extension. 

Those contructs which generate identical transcripts with 

respect to the 5' noncoding, coding, and Y noncoding sequences are 

presumed to be processed and translated identically. Differences in 

the tk activity of extracts of cells transfected with these various 

constructs are assumed to reflect differences in transcription. 



PROMOTER UTILIZATION IN BHKtk- CELLS 

pSVEP. Constructs 

The SV40 enhancer is known to stimulate proximal promoters in 

preference to distal promoters (Wasylyk et al, 1983). THerefore, 

in cells transfected with the pSVEP. constructs transcripts 

originating from the SV40 promoter would be expected to pre-empt and 

occlude transcription from the MU? TATA box, Surprisingly, Northern 

blot analysis (Figure 18 and J.O. Bishop unpublished) indicate that 

the transcription observed is exclusively from the MU? promoter. SI 

mapping of the 5' ends of transcripts synthesised from the pSVEP.Tk, 

pSVEP.S2B.Tk and pSVEP.518.Tk constructs transiently expressed in 

BHK cells, show that the SV40 early early promoter is used in 

pSVEP.Pk and pSVEP.S2B.Tk while pSVEP.S1B.Tk uses only the MU? 

promoter (Figure 17). These data show that the B56 MUP TATA box is 

functional and that it is the preferred promoter of transcription 

even though the Sv early promoter lies between it and the, enhancer. 

Since the only transcripts observed are initiated from the MU? 

promoter it may be concluded that these sequences 'turn off' the 

5V40 promoter. The possibility that some transcription is initiated 

from the Sv40 promoter under these circumstances cannot be ruled 

out. 'A formal confirmation might be obtained by means of run-on 

transcription experiments which would show the polymerase loading at 

the two promoter regions. This is however technically a very 

difficult experiment to perform (Treisman and Maniatis, 1985;, Weber 

and Schaffner, 1985). 
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FIGURE 17. 

51 ANALYSIS OF mRNA SYNTHESISED IN BIlK CELLS 

A schematic representation of the 51 probes is shown. 

The lines below the probes show the protected fragment 

length of the probe. The probes were cloned into M13tg130 

and uniformly labelled as described in Methods. 

Electrophoretic analysis of the Si mapping of the start 

sites of the SV40 early promoter of mRNA from cells 

transfected with pSVEP.Tk. Lanes 1 and 5 are markers 

(Sau3A digest of pBR322). 2, RNA from pSVEP.Tk 

transfected cells. 3, control - no RNA; 4, probe only (P). 

The arrows refer to the size of the protected fragments in  

lane 2 and map the 5v40 early early inittion sites. 

Electrophoretic analysis of 51 mapping of mRNA from BIlK 

cells transfected with various constructs. M, denotes the 

marker tracks (TaqI and Sau3A digests of pBR322); 

lanes 1, 2, 3, are the control tracks for 5, 6, 4, - no 

RNA; 4, RNA from pSVEP.Tk; 5, pSVEP.S1B.Tk; and 6, 

pSVEP.S2B.Tk transfected cells. The 368 and 635 arrows 

indicate the 51 protected fragment lengths corresponding 

to the Sv40 early promoter inpSVEP.Tk and pSVEP.S2B.Tk 

respectively. The 565 arrow indicates the protected 

fragment corresponding to the MU? promoter in 

pSVEP.S1B.'pk. This also shows that the MU? intronic 

sequences are not processed in PSVEP.S1B/S23.Tk 

transfected cells. 
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Interestingly, at position -156 to -151 of BS6 a very good 

consensus of, the polyadenylation signal (AATAAA) is present. This 

might argue that transcripts originating upstream of the MU? TATA 

box are terminated by processing. However, not all AATAAA sequences 

are functional and there is increasing evidence which suggests that 

the AATAAA motif is not the only signal .required for the 

cleavage/polyadenylation event (Gil and Proudfoot, 1984). Another 

sequence found to be important is a CIT cluster situated about 30-bp 
I 

downstream of the AATAAA signal (Eirnstiel et al, 1985). such a 

G/T cluster is not found in the vicinity of the -156 to -151 A.ATAAA 

motif of B56. This would suggest that the -156 to -151 AATAAA motif 

is non-functional. Northern blot analysis of pSVEP.HS2.Tk 

transcripts probed with the whole plasmid show only those 

transcripts expected from the MU? promoter (Figure 18). If 

transcripts were originating at the 5V40 promoter and terminating at 

-156 then a 2Ab  transcript specific to the HS2 fragment would be 

expected. In fact only a 1.3-kb transcript is observed as is 

expected from transcription initiated at the MU? promoter. 

pSVE. Constructs 

To investigate further whether the Sv40 promoter has any 

significant effect on the MU? promoter activity, the pSVE. series of 

constructs was prepared. These constructs lack the SV40 promoter 

region and therefore should not show any influence this has on the 

MOP promoter. Although the above observations on the pSVEP. series 

suggest that the sv40 promoter is not used, transcription may still 
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FIGURE 18. 

NORTHERN ANALYSIS OF mRNA. SYNTHESISED IN BHK CELLS 

A and B, are Northern blots of total mRNA synthesised 

in BHKtk- cells probed with Tk fragment (?stl - EcoRI) 

and pSVEP.HS2.Tk respectively. Markers are transferrin 

(2300), contrapsin (1670), alpha-1 antitrypsin (1400) 

and MU? (910). 

The lanes refer to RNA from cells transformed with 

A: 1, pSVEP.Tk; 2, pSVE.Tk; 3, pSVE.S23.Tk; 4, pSVE.5152.Tk; 

and 5, pSvE.xS2.Tk. B: 1, pSVEP.Tk; 2, pSVEP.HS2.Tk and 

3, pSVE.HS2.Tk. 

C, shows a table of the predicted sizes of transcripts 

from the various regions of the constructs and the 

estimated sizes. This shows that pSVEP.HS2.Tk, pSVE.HS2.Tk, 

pSVE.S1S2Tk and pSVE.X52.Tk appear to initiate transcription 

from the MU? promoter region. While pSVE.Tk and pSVE.S2B.Tk 

appear to initiate transcription close to the Sv40 enhancer 

region. 
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SIZES OF mRNA SYNTHESISED IN $HKtk- DURING TRANSIEN1 EXPRESSION 

CONSTRUCT Predicted Size Estimated Size 
SV-Region 	- PIUP Promoter 

pSVEP.Tk 1350 1320 

pSVE.Tk 1300 1300 

pSVE.S2B.Tk 1550 1570 

p5VEP.HS2.Tk 3650 1350 1320 

pSVE.HS2.Tk 3600 1350 1320 

pSVE.51S2.Tk 1600 1350 1320 

pSVE.XS2.Tk 1430 1350 1320 



occur upstream even when the promoter is removed. Several studies 

have shown that the Sv40 enhancer in the absence of its promoter can 

initiate transcription at random points just downstream from it and 

retain the same efficiency of transcription (Benoist and Chambon, 

1981; Wasylyk et al, 1983). In this study those constructs lacking 

a promoter but retaining the enhancer (pSvE.Tk and pSVE.S23.Tk) 

appear not to be an exception to this. Northern blot analysis 

indicates that transcription is initiated close to the enhancer 

element (Figure 18). Consequently, in cells transfected with the 

pSVE. constructs (containing the MtJP promoter region) transcripts 

originating from sequences in the immediate vicinity of the enhancer 

would be expected to pre-empt and occlude transcription from the MU? 

promoter. Therefore, although  comparison between the psvp. and 

pSVE. series may indicate possible effects between the two promoters 

the pSVE. series is potentially just as complicated as the pSVEP. 

series. However, Northern blot analysis of pSVE.HS2.Tk, pSVE.XS2.Tk 

and pSVE.S1S2.Tk indicate that transcription occurs exclusively from 

the MU? promoter (Figure 18). This further supports the suggestion 

that the MU? promoter is functional as a consequence of its 

activation by the Sv40 enhancer. 



TABLE 6. 

SUMPIMARY OF tk ASSAYS DURING TRANSIENT EXPRESSION IN SW 

BHK tk cells plated at 5 x too per 9cm dish and transfected with 10 

micrograms of Form 'I DNA. 	 - 	- 

• 	 Relative tk activity(over mock). 
• I 	7 	3 	4 	5 	6 	7 

CONSTRUCT 	 - 

pSVEP.Tk 	100 	100 	100 	100 	100 	lOG 	100 	100 100 	100 	100 

pSVE.XS2.Tk 	 IS 15 9 9 1 
12.0 

pSVF.S192.Tk 	 16 14 10 11 10 9 	15 16 	 S I 17 13 8 13 	12.3 

pSVE.HS2.Tk 	 10 10 	 là 13 	 12.3 

pSVEP.SIS2.Tk 	 5 6 	 4 6 	13 14 	 7 I 	 7.9 

pSVEP.HS2.Tk 	 it 11 	8 / 	 15 IS 	 12.0 

pSVE.Tk 	 30 34 	31 30 28 / 	 30.6 

pSVE.SIB.Tk 	 I I 	 I 1 - 	 2 	 1.3 

pSYE.S28.Tk 	14 8 	4 6 	 II II 	18 12 	15 / 	 11.0 

pSYEP.SIB.Tk 	0.1 0.5 	 0.5 0.5 	1.5 1.5 	 0.8 

pSVEP.92B.Tk 	15 10 5 6 	 14 / 	 14 16 	9 10 	- 	11.0 

T—TEST 

COMPARISON t 	value dE 	p 

pSVE/P.5lS2. 3.333 IS 	0.005 

pSVE/P.Sl8. 2.387 tO 	0.05 

pSVEP.H52/SIS2. 2.890 10 	0.025 
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COMPARISON OF tk ACTIVITIES 

Low Efficiency of the MU? promoter. 

The most striking observation to be drawn from Table 6 is the 

low efficiency of the MU? promoter under the effect of the 5V40 

control sequences. This efficiency compared to the SV40 early 

promoter (pSVEP.Tk) is one order of magnitude down and is specific 

to the MU? promoter sequences (compare pSVE(P).S2B.Tk with 

pSVE(P).S1B.Tk in Table 6). 

Removal of the Sv40 promoter. 

In most cases the tk activity of the same MUI'-reporter fragment 

is the same when associated with pSVEP. and pSvE., further 

supporting the suggestion that the SV40 promoter is not used. A 

slight drop in activity (a factor of 1.6) is observed when the SV40 

promoter is linked to the Si site of BS6 (compare pSVE.S18.Tk and 

pSVEP.S1B.Tk, and also pSVE.Si52.Tk and pSVEP.S152.Tk in Table •). 

The fact that pSVEP.H52.Tk and pSVE.HS2.Tk have equivalent levels of 

activity to pSVE.S152.Tk suggests that the drop in activity may be 

due to interference between the two promoters in such close 

proximity. 

These data clearly show that the MU? promoter is active even 

when in the presence of an additional promoter with a more 

favourable position relative to the enhancer. The tentative 
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suggestion that the MU? promoter 'switches off' the 5v40 promoter 

and the fact that the MU? promoter in the absence of the enhancer is - 

not functional, while in its presence it is used at a low efficiency, 

may implicate negative elements associated with the MU? promoter. 

The importance of negative regulation for the control of eukaryotic 

gene expression was discussed above. It may be argued that the 

MU? promoter is regulated in these cells and that the enhancer acts 

in some manner as an anti-repressor. The above data is consistant 

with this idea. However, it could be simply that cis-acting 

sequences necessary for the transcription in fibroblasts are not 

present within the MUp promoter region. 

Resection of the MU? promoter linked to the SV40 Enhancer. 

The distance between the enhancer and promoter may influence 

the enhancer effect (Wasylyk et al, 1984). However, resection of 

the MU? promoter from - 2140 to -142 show no significant changes in 

the level of tk expression (compare pSVE.HS2.Tk, pSVE.S1S2.Tk and 

pSVE.XS2.Tk in Table 6). If a negative sequence (silencer) is 

present within the MU? promoter region it must lie within the -142 

region, since the removal of such a sequence would result in relief 

of expression. In this connection the A-Tract region of BS6 may be 

such a silencer (see chapter 4). 	 - 

Preliminary observations involving indirect competition assays 

with the MU? promoter sequences as the competitor, cotransformed 

with constructs which include the 5V40 enhancer linked to the MU? 

promoter, show a two fold increase in expression of HSV-Tk. Although 



this is only a weak response it may imply the presence of a trans-

acting repressor (data not shown). 
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CONCLUSIONS 

A transient assay system for the MUp gene promoter functions in 

tissue culture cells has been developed. The system involves the 

transfection of rodent fibroblast cells (in this study BHKtk- cells) 

with constructs containing a MU? promoter (defined as the TATA box 

and associated sequences) which is linked to the HSV-Tk gene as the 

repdrter function. The transient expression of HSV-Tk is only 

detected when such constructs are linked to the SV40 enhancer region 

(defined as the 72-bp repeats) or with the Sv40 early promoter 

region (defined as the enhancer with the 21-bp repeats and TATA 

box). In the latter case transcription is only observed from the 

downstream MU? promoter and not from the SV40 early promoter. 

Removal of the Sv40 21-bp repeats and TATA box while retaining the 

enhancer, has little or no effect on the expression of HSV-tk. Thus 

it is suggested that the Sv40 early promoter may be switched off in 

the presence of the MU? promoter sequences. Resection of the MU? 

promoter, linked to the enhancer, from -2140 to -142 has no effect 

on the level of expression. However, the efficiency of these 

constructs is 10-fold down compared to that of the SV40 early 

promoter directly linked to the HSV-Tk gene. 

Together these observations may suggest some sort of down 

regulatory effect on the Sv40 early promoter by the MU? promoter 

while the 5v40 enhancer has a deregulatory effect on the MU? 

promoter. 
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METHODS 

Enzymes 

Enzymes were obtained from New England Biolabs, Bethesda 

Research Laboratories and Amersham. All enzymes were used according 

to the manufacturer's recommendations. 

Preparation of mouse male total mRNA 

Total cellular RNA was prepared using the methodology of 

Chirgwin etal (1979). Liver tissue (about 1 g) was homogenised in 

4 M guanidium thiocyanate, 0.5% w/v sodium N-lauryl sarcosinate, 25 

mM sodium citrate, 0.1% w/v Sigma antifoam A and 0.1 M beta-

mercaptoethanol in a Sorvall omnimix. The resulting solution was 

then centrifuged at 8k rpm, 10 0C for 10 minutes (Sorvall H84). 

The resulting pellet was discarded and the supernatant was layered 

onto 1.2 ml cushions of 5.7 M CsC1, 25 mM sodium acetate (pH 5) and 

centrifuged at 36k rpm, 20.0 for 12 hours (Beckman SWSO). The 

pelleted RN?. was recovered by first carefully removing most of the 

overlaying solution with a Gilson pipette, drawing off the remainder 

and redissolving the RN?. in 7.5 M guanidine HC1, 25 mM sodium 

citrate (p117), 5 MM DTT. The RN?. was then ethanol precipitated by 

the addition of 0.0025 volumes of acetic acid and 0.5 volumes of 

ethanol. 
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Fractionation of poly(A)+ RNA 

Poly(A)+ RNA was fractionated by two cycles of oligo-dT 

cellulose chromatography essentially as described by Aviv and Leder 

(1972). The loading buffer was 0.5 M NaCl, 20 mM Tris-HC1 pH7, 1 MM 

EDTA, 0.1% w/v SDS. Elution was in the same buffer without NaCl. RNA 

was recovered by ethanol precipitation. 

Preparation of Nuclease Si and Primer Extension Probes. 

Annealing Primer: 2.5 ug of single-stranded M13 clone A22 (Clark et 

al, 1985a; see appendix) was mixed with S ng of sequencing primer 

(17-mer) and heated at 70 °C for 7 minutes in  mM Tris-HC1 pH7.9, 

4 MM MgC1 2  and 20 MM NaCl in a total volume of 10 p1. This was 

allowed to cool for 30 minutes to room temperature in a beaker. 

Synthesis of complementary strand: The annealing mix was taken to a 

volume of 25 ul containing 50 MM TrisHCl pH7.9, 2 mM MgCl 2 , 10 nM 

DTT, 0.1 MM dGTP, dATP, dTTP, 40 uN dCTp, 10-20 pCi of alpha- 32P 

dCTP and 5-10 U of the Klenow fragment of DNA polymerase 

(Boehringer-Mannheim). The synthesis was carried out at 30 °C 

for 90 minutes. This was then taken to EcollI conditions and 

digested with EcoRI. The Si probe fragment was gel purified from a 

1.5% agarose gel. This was phenol extracted and stored under 

ethanol. 

Primer extension probe: The procedure for labelling the primer 

extension probe was essentially as described above except that the 
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clone used was 525 (see Clark et al (1985a) in the Appendix) and 

after the first extraction the probe was digested with Sau961 and 

the primer fragment gel purified on a 5% acrylamide gel. 

51 Mapping and Primer Extension of mPNA. 

This was essentially as described in Clark et al (1985a) in 

the Appendix. 

Cloning 

Ligation of inserts into recombinant vectors was carried out 

with T4 DNA ligase at 14 °C with a 3 molar excess of insert to 

vector DNA. 

DNA Sequencing 

DNA fragments to be sequenced were cloned into M13mp8 and 9 

(Messing and Vieira, 1982) and M13tg131 (Kieny et al, 1983). The 

dideoxynucleotide sequencing method of Sanger et al (1977) was 

used to sequence the single-stranded templates essentially as 

described by Coulson and Winter (1982) except that alpha- 32P dCTP 

was substituted for alpha- 32p dATP and the synthetic universal 

primer (17-iner) was purchased from Uniscience. The systematic 

sequencing approach of Hong (1982) was essentially as described. 

105 



106 

Plasmid DNA Preparations 

HB101 was transfected with recombinant plasmids and grown with 

the appropriate selecting antibiotic. Transfections and isolation of 

plasmid DNA were carried out as described by Bishop, 1979; Bishop 

and Davies, 1980, except that the plasmid was passed over a Sepharose 

28 (Pharmadia) column, developed with 0.3 M NaCl, 10 MM Tris-HC1 pH 

7.5, as a further purification step. 

TISSUE-CULTURE METHODS 

Cells and Media 

The cells used in the work described here were BHKtk- cells 

(Kidney, Syrian or Golden hamster, Mesocricetus auratus). The 

parent line of these cells was derived from the kidneys of five 

unsexed, one-day-old hamsters in March 1961 (Macpherson and Stoker, 

1962). The cells were grown in Dulbeccos Modified Eagle's medium 

(DMEM) supplemented with 10% foetal calf serum (Flow Laboratories), 

100 U/ml penicillin and 100 U/ml streptomycin (Gibco). Culture 

vessels were plastic flasks and Petri dishes (NUNC). Cells were 

given fresh medium or passaged once or twice per week and were 

detached. from the vessels by trypsinisation as described by 

Spandidos and Wilkie (1984). 
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Transfection of BT-flCtk- Cells 

The calcium phosphate precipitation procedure based on the 

method of Graham and van der Eb (1973) was used for introducing 

the DNA into the cells for the transient expression assays. 

The protocol described by Spandidos and Wilkie (1984) was used 

except for the following changes: 1) The cells were plated one day 

prior to transformation in 4.5 or 9 cm diameter Petri dishes at a 

density of 2 x 10 
5 
 or S x 10 

5 cells in 5 or 10 ml of medium. 

5 or 10 pg  of DNA was added per 4.5 or 9 cm plate respectively. 

Carrier DNA was omitted from the transfection. 4) After 20 hours 

contact with the precipitate the cells were harvested for tk assays. 

Replica transfections were done for each of the transfected 

recombinants. It was found that the level of tk expression after a 

20 hours adsorption period was the same as after a 48 hours period 

with a glycerol shock (data not shown). 

Thymidine Kinase Enzyme Assays 

24 heurs after the transformation stage, cells were washed 

twice with PBS and harvested by scraping into PBS. No detectable 

effects on tk activity were found when cells were left for up to 2 

hours in PBS prior to centrifugation (data not shown). The cells 

were pelleted by centrifugation (2 mm), washed in PBS and 

recentrifuged. The pellet was resuspended in 100 p1 of 50 MM Tris-

HC1 (pH 7.5), 5 mm 2- mercaptoethanol and 5 pm thymidine. The cells 

were disrupted by sonication in a water bath at 4 °C for 90 



minutes and the cell debris pelleted by centrifugation in an 

Eppendorf centrifuge for 10 minutes. 

The enzyme assay as described by Spandidos and Wilkie (1984) is 

based on measuring the conversion of radiolabelled thymidine to 

thymidine phosphate. The reaction conditions were the same as 

described by Spandidos and Wilkie (1984) except that 50 p1 of lysed 

cells and a final concentration of 50 pci/ml of tritium labelled 

thymidine was used. At 30, 90 and 120 minutes 25 x1  of the reaction 

was spotted directly onto whatman DE81 paper discs. These were 

washed in 3 changes of 10 mM Tris.HC1 p10.5 with shaking and dried 

under a vacuum at 80 °C for 40 minutes. The radioactivity on the 

filters was determined by liquid scintillation counting (scintillant 

was 5 gIl PPO, 0.3 gIl dimethyl POPOP in toluene). An example of an 

assay performed (Experiment 4, see Table 6) is shown in Figure 19. 

The soluble protein content of the cell extracts was estimated 

by the method of Bradford (1976) using the Bio-Rad protein assay 

system. This is a dye-binding assay based on the differential colour 

change of a dye in response to various concentrations of protein. 

Nuclease Si Protection Analysis of mRNA Extracted from Transfected 

Cells. 

Transfections were performed as described above except that the 

amount of DNA loaded per transfection was 20 pg per 9 c dish. Cells 

were harvested by scraping into 4 M guanidinium thiocyanate mix and 

total mpi.t prepared as described above (see preparation of mouse 

ME 
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FIGURE 19. 

Thymidine Kinase Activity from Cell Extracts 

Prepared from Transfected Cells. 

(Experiment 4). 	
Ii 

A plot of the time course of the cpm of dTMP 

synthesised for the respective transfected 

cell extracts is shown. The Table below 

shows the amount of soluble protein per 

reaction sample, the 60 minute time point 

and the calculated enzyme activity. An 

average of the pSVEP.Tk extract enzyme 

activity was taken and all the other 

activities were related to this.. 
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male total mRNA). 

Construction of Probes: pSVEP.Tk, pSVEP.S2B.Tk and pSVEP.S1B.Tk were 

digested with Avat and PvuII and the 'probe' fragment isolated 

for each of the respective recombinants (see Figure 17). Each of 

these fragments was cloned into M13mp8 digested with Smal and SstL 

The cloning of the probe fragments were confirmed by sequencing. 

Labelling of Probes: This was carried out essentially as described 

in Preparation of Nuclease Si and Primer Extension Probes. After 

synthesis of the complementary strand the probes were digested with 

EcoRI (present in the polylinker) and Ec0RV (present in the Tk 

gene). The Si probe fragments were then gel purified from a 1.5% 

gel, phenol extracted and stored under ethanol. 

Hybridization of Probes to mRNA: One sixth of the total cellular RNA 

extracted from the transfected cells was co-precipitated with 

100,000 cmp of probe. The conditions were the same as described in 

the Appendix (Clark et al, 1985a) except that the temperature of 

hybridization was 52 °C and the nuclease Si was used at a 

concentration of 500 U/ml. 
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A adenine 

Ad adenovirus 

AIDS autoimmune deficiency syndrome 

ATP adenosine 5' triphosphate 

bp base pair 

BH}C baby hamster kidney cells 

C cytidine 

cAMP cyclic (3' - 5') adenosine monophosphate 

cDNA DNA copy of RNA 
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dATP deoxyadenosine triphosphate 

dC'JIy deoxycytidine triphosphate 
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DHFR dihydrofolate reductase 

DNA deoxyribonucleic acid 

DNase deoxyribonuclease 

DPI dithiothreotol 

E enhancer core sequence 

EDTA diaminoethanetetra-acetic acid 

G guanine 

GH growth hormone 

GRE glucocorticoid responsive element 

HCl hydrogen chloride 

HMG CoA 3-hydroxy-3-methylglutaryl coenzyme A reductase 

HSE heat-shock element 
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ABSTRACT 	The family of mouse major urinary protein 
(MUP) genes has about 35 members, clustered together on 
chromosome 4. Most of the genes belong to two major 
subfamilies (group I and group 2) each with 12-15 members. 
Recently we showed that most of the group I and group 2 genes 
are arranged in pairs, each containing a group I and a group 
2 gene in divergent transcriptional orientation, with 15 
kilobases of DNA between the two cap sites. Here we present 
the nucleotide sequence of the first exon of six group I genes and 
four group 2 genes. The data confirm the close relationship of 
the genes within each group and the considerable divergence of 
the two groups from each other. The four group 2 genes all 
carry the same nonsense mutation in codon 7 of the sequence 
that specifies the mature protein. Thus, not only do these genes 
have a common ancestor, but also it seems that their amplifica-
tion followed the mutation of the ancestor to a pseudogene. 
Taking into account the 3' flanking regions of the two genes, the 
overall size of each gene-pair is about 45 kilobases. The 
sequencing data supports our earlier suggestion that this 45 
kilobase domain is the unit of Mup amplification. 

The mouse major urinary protein (MUP) is a family of closely 
related polypeptides that are synthesized and secreted by the 
liver and excreted in the urine (1. 2). MUP mRNA makes up 
about 5% by weight of male liver mRNA (3. 4). Smaller 
amounts of biologically active mRNA are found in the 
lachrymal, salivary, and mammary glands. In vitro transla-
tion of hybrid-selected MUP mRNA from the different 
tissues shows that each directs the synthesis of a different 
subset of MUP polypeptides (5). The level ofMUP mRNA in 
the liver is influenced by insulin, growth hormone, thyroxine, 
and testosterone (6). In vitro translation of mRNA from livers 
taken from mice maintained under different hormonal re-
gimes shows that different species of mRNA (directing the 
synthesis of different polypeptides) respond differently to the 
various hormones. Testosterone is known to increase the rate 
of synthesis of M UP mRNA (7). The mouse genome contains 
about 35 MUP genes, defined as sequences that hybridize 
with MUP-specific probes. Most of these can be assigned to 
two main groups, group 1 and group 2, by hybridization with 
two canonical group 1 and group 2 probes (8). Most of the 
group 1 and group 2 genes are arranged in head-to-head 
(divergently orientated) pairs (9). Each pair contains a group 
1 and a group 2 gene, homologous 5' flanking sequences (two 
of 5 kb). 3' flanking sequences (two of 11 kb) that contain 
regions of homology interspersed with nonhomologous re-
gions. and 6 kb of DNA (located between the homologous 5' 
flanking sequences) that is not duplicated within the pair. The 
overall size of the head-to-head pair, from the far end of one 
3' flanking sequence to the far end of the other, is about 45 
kb. We have argued that this is the principal unit of MUP gene 
organization and evolution (9). Here we show that four group 
2 genes are pseudogenes, in the sense that they contain at 
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least one stop codon in the MUP reading-frame (the read-
ing-frame of the group 1 genes). All of these genes contain the 
same stop codon in exon 1, showing that they are derived 
from a common ancestral pseudogene. 

MATERIALS AND METHODS 

The MUP genes studied here were isolated from genomic 
clones that have been described (8-10). Plasmid subclones 
and M13 mp8 and M13 mp9 suhclones were isolated by 
standard methods and sequenced as described (11). 

RESULTS AND DISCUSSION 

Four Group 2 MUP Genes Are Pseudogenes. The structure 
of the 45-kb gene pair is shown in Fig. 1A. Fig. lB shows the 
seven-exon structure (12) of the group 1 MUP genes. The 
nucleotide sequences of the first exon of nine different MUP 
genes are summarized in Fig. 2. All of these were isolated 
from nuclear DNA of inbred BALB/c mice and, therefore, 
are different members of the gene family rather than allelic 
variants. They are all known to be different genes either 
because their sequences differ or because the genes them-
selves or their flanking regions contain different restriction 
enzyme recognition sites or because of deletions or insertions 
in their flanking sequences (8-10). Three of the nine genes 
were taken from clones (BS102-2, BS109-1, and BS109-2) that 
contain the central portion of a 45-kb gene pair, including the 
5' end of a group 1 gene and its 5' flanking sequence and the 
5' end of  group 2 gene and its 5' flanking sequence (see Fig. 
1). Thus, these genes are definitely known to be part of the 
predominant 45-kb gene-pair organization (9). The other six 
genes are presumed also to be derived from 45-kb gene-pair 
units on the basis of restriction site homologies in their 
5'-flanking regions. 

Four of the five group igenes (from clones BSI, BSS. BS6. 
and BL1) have identical exon 1 sequences. The fifth, from 
clone BS109-1. differs from the others in only two nucleo-
tides, both in the leader sequence. Fig. 2 shows the sequence 
of the four identical group 1 genes and the deviations from 
that sequence found in the other genes. It is convenient to 
consider separately the leader sequence, the signal peptide 
region, and the remainder of e xon 1. the region coding for the 
first 14 amino acids of the mature group 1 protein. 

In the leader sequence, four of the five group 1 genes and 
three of the four group 2 genes are identical. These define 
group 1 and group 2 consensus sequences, which differ in 11 
nucleotides (11/65 = 17%). In addition, the group I consen-
sus sequence is 1 nucleotide longer than the group 2 consen-
sus. One of the group 1 genes, from clone BS109-1. differs 
from the consensus in two positions. Similarly, one group 2 
gene, from clone BL25, differs from the group 2 consensus in 
four positions and is the same length as the group 1 leader 
sequence, rather than 1 nucleotide shorter. 

Abbreviations: MUP, mouse major urinary protein: kb, kilobases. 
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Fm. 1. Organization and structure of MIJP genes. (A) The top 
line is a diagrammatic representation of the 45-kb unit. The group 1 
and group 2 genes are shaded. Open rectangles are regions of 
homology between the flanking regions of group I and group 2 genes. 
The homology is not continuous over the 11-kb 3' flanking region but 
rather is interrupted by regions of nonhomology. Restriction site 
maps of the genomic MUP clones used in this study are aligned with 
the diagram. Three small insertions and a 1.9-kb deletion are 
proposed in order to maximize the degree of restriction site homol- 
ogy between the clones. The isolation of these clones is described in 
refs. 8-10. (B) Structure of a group 1 MUP gene (12). Exons are 
shown as boxes, and introns, as lines. The coding region is shaded. 
The region of the homologous canonical group 1 and group 2 probes 
is shown. 

The nucleotide sequence of the signal peptide region is 
identical in all five group 1 genes and specifies a signal peptide 
18 amino acids long. In contrast, the signal peptide regions of 
the four group 2 genes (defined as the sequence from ATG to 
the NH, terminus of the mature group 1 protein) are all 
different. The signal peptides that they specify vary in length 
from 19 (clone BL25) to 25 (clone BS102-2) amino acids.. Most 
of the additional codons are CTG (leucine) codons that may 
have arisen from adjacent CTG codons by polymerase 
"slippage" during replication or by unequal crossing-over. 
To either side of the additional codons. two of the four group 
2 genes are identical and differ from the group 1 genes at two 
positions. BS109-2 and BL25 contain further nucleotide 
differences in the signal peptide region. 

In the third region of exon 1, which corresponds to the 
NH,-terminal 14 amino acids of the mature group 1 proteins, 
the group 1 genes are again identical. The group 2 genes show 
a clear consensus, which differs by five nucleotides from the 
group 1 sequence (5/42 = 12i). Clones BS102-2 and BL25 
each differ from the group 2 consensus in one position in this 
region. 

One of the differences between the group 1 and group 2 
consensus is between a glycine (GGA) in the group 1 
sequences and a stop codon (TGA) in the group 2 sequences 
(Fig. 2, amino acid 7, position 160). Thus, in the context of 
the group 1 genes, all four group 2 genes are pseudogenes and 
contain an identical lesion. Other lesions are also present. 
BL25 contains a stop codon in place of amino acid 2 of the 
mature protein (Fig. 2, position 145). and BS2 contains a 
second stop codon and a frameshift mutation (unpublished 
data). However, the stop codon that is common to the group 
2 genes is their most significant feature, implying as it does 
that it was present in an ancestral gene, which was therefore 
also a pseudogene and was ancestral to all four group 2 genes 
shown in Fig. 2. 

We identify group 1 and group 2 genes on the basis of their 
hybridization with two homologous genomic probes (8) that 
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contain exons 4, 5, and 6 (Fig. 1B). So far we have isolated 
only four group 2 genes that contain exon 1. Since all of these 
contain the common stop codon, it is likely that all of the 
approximately 12 group 2 genes in the BALB/c genome share 
this lesion and are descended from the same ancestral 
pseudogene. 

Evolutionary Divergence of Group I and Group 2 Genes. 
The complete nucleotide sequences of a group 1 gene (clone 
BS6) and a group 2 gene (clone BS2) have been determined 
(unpublished data). The coding regions (excluding the signal 
peptide region) have been identified and compared (13) with 
each other and with a homologous rat a 20-globulin gene 
(14-16). The replacement site divergence of the group 1 
(clone BS6) and group 2 (clone BS2) mouse genes is =10% 
(BS6 x BS2 = 10.3%) while the divergence of each mouse 
gene from the rat a 20-globulin (clone 207) gene is =20% (BS6 
x 207 = 19.1%; B52 x 207 = 22.4%). 

The evolution of a multigene family is more complex than 
the evolution of a unique gene. in the latter case, the 
divergence time of two contemporary genes in different 
species can be taken to be the time since the divergence of the 
two phylogenetic lines from their common ancestor. In the 
case of a multigene family, genes that already have diverged 
from each other coexist within the same genome. The 
contemporary MUP genes show many examples of this, with 
divergences that vary from 1% (different group 1 genes) to 
10% (group 1 genes compared with group 2 genes). Thus, 

extrapolating backwards in time, it is quite possible that 
genes ancestral to the group 1 genes, the group 2 genes, and 
the rat genes had already diverged from each other in the 
common ancestor of rats and mice. 

The members of a multigene family do not necessarily 
diverge within a species at rates comparable to the diver-
gence of single genes between species. Indeed, there is strong 
evidence to the contrary in the present case. A set of rat 
a2 ,,-globulin cDNA clones, which presumably represent the 
more abundantly transcribed genes of the rat multigene 
family, are all identical in sequence (14) and very similar to 
the corresponding regions of a gene (15). Similarly, the 
abundantly transcribed group 1 MUP genes are very closely 
related. The rat genes and the group 1 MUP genes must have 
arisen from a common ancestral gene, and yet they differ by 
about 20% in nucleotide sequence, while at the same time 
different rat genes differ from each other by only 1-2% and 
different group 1 MUP genes differ from each other to a 
similar extent. The group 2 MUP pseudogenes are a third 
reasonably homogeneous group of genes that differ from the 
rat genes by about 20% and from the group 1 MUP genes by 
about 10%. 

The explanation of this phenomenon presumably relates to 
the clustering (17, 18) of both the group 1 and the group 2 
MUP genes (8, 9) on mouse chromosome 4. One possibility 
is that the ancestor of rats and mice contained rather few 
urinary protein genes and that different members of that small 
set of genes were separately amplified, by tandem duplica-
tion. in the rat and mouse lines. According to this view, the 
group 1 and group 2 MUP genes would have been amplified 
together within the 45-kb unit ofgenomic organization. If the 
common group 2 nonsense mutation arose prior to or early in 
the course of this amplification, it could have been carried 
passively, so to speak, through the amplification process, in 
effect, as an inert DNA sequence within the 45-kb unit. 

However, it is unlikely that separate amplification pro-
cesses occurred independently in the rat and mouse lines. It 
seems more probable that the genes were already amplified 
in the common ancestor. If so, what we have to explain is an 
apparently concerted evolution of evolutionarily diverging 
arrays of genes in each of the two lines. One unavoidable 
implication of this model is that the ancestral gene array must 
have been lost or replaced in one or both of the descendant 
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Leader sequence 
Cap site 

10 	20 	30 	40 50 	60 
Gi—CON 
G1-109 C 	 T 

G2-1 A 	GAC 	C 	 C T 	T 	TAG 
G2-2 A 	GAC 	C 	 C T 	T 	TAG 
G2-3 A 	GAC 	C 	 C T 	T 	TAG 
G2-4 G 	AC 	C 	T 	 C T 	T 	T AG kA 

Signal peptide 
70 	 80 	 90 100 	 110 

Cl—CON A'I3 MG --- --- --- --- --- --- --- A'I 	CrC CrC CrC CTG TGT TTG  

G2-1 CAG --- CM CrC CrC CrC CrC C C 
C2-2 CAG CAG CrC CrC CG CrC CrC C C 
G2-3 CAG CAG --- --- CrC CTG CrC C C 
G2-4 A CCA --- --- --- --- --- --- C G 

End signal peptide 
120 	 130 	 140 150 

Cl—CON GGA CrC ACC CFA GTC TGT G 	CAT GCA 	GM GM GCT AGT rCT ACG 

C2—1 A G 	T 
G2-2 A G 	T 
C2-3 A 	T 	C G 	T 
C2-4 A 	AT T 	G 	T 

End exon 1 	Number of nucleotides 
160 	 170 	 180 	Leader Signal Reminder Total 

G1—CON cXA AGG MC ¶ITF MT GTA GM MC 	66 54 	42 	162 

G2-1 T 	 A 	A 	65 72 	42 	179 
G2-2 .T 	C 	 A 	A 	65 75 	42 	182 
G2-3 T 	 A 	A 	65 69 	42 	176 
G2-4 T 	 A 	A 	66 57 	42 	165 

FIG. 2. MUP gene exon I sequences. The complete sequence of exon I of nine MUP genes is shown. Above the dashed line, five group 
1 (GI) genes are shown: Four of these. clones BS1, BS5, BS6. and BL1, are identical in exon I and are shown as the sequence labeled GI-CON 
(for consensus). The fifth. G1-109. differs from the consensus in only two positions. Below the dashed line, the differences between four group 
2 (G2) genes and the group 1 consensus are shown. G2-1. G2-2. G2-3, and G24 are, respectively, clones BS2, BS102-2. BS109-2. and 131-25. 
The absence of a nucleotide relative to other sequences is signified by a dash. The G—T stop-codon mutation (nucleotide 160) is underlined. 
The cap site was defined by Si nuclease mapping and primer extension (unpublished data). 

lines. The contemporary arrays would have been developing 
at the same time. As in the case of the simpler model, the 
principal unit of MUP gene evolution would be the 45-kb gene 
pair. 

The urinary protein genes of rats and mice invite compari-
son with the rDNA of Xenop,is laetis and X. borealis. The 
spacer sequences of the tandemly arranged rDNA genes have 
diverged widely between the two species, but within each 
species they are relatively homogeneous (19). This has been 
explained by a model incorporating two main features: 
unequal sister-strand crossing-over within the tandem arrays 
and selective constraints on their size (20). Under these 
circumstances it can he shown that the entire contemporary 
array in a given species may he directly descended from a 
single member of the array at some past time. Thus, genetic 
drift can go hand-in-hand with the preservation ofhomogene-
ity within the array. The degree of homogeneity preserved 
will depend on the mutation rate, frequency of unequal 
crossing-over, selection pressure, and so on (21). At least 
some of the 45-kb MUP gene pairs are arranged tandemly and 
in direct orientation (9). If this arrangement were general, the 
unequal crossing-over model would provide a sufficient 
explanation for the replacement of the ancestral array with a 
new one. 

The phenomenon also can be explained on the basis of gene 
conversion (22. 23). Unequal crossing-over and gene conver-
sion were discussed previously in relation to MUP gene 
evolution (9). Ohta(21) has shown that unequal crossing-over 
and gene conversion can provide formally equivalent expla-
nations of the concerted evolution of a gene family. 

We have suggested two models to explain the contempo-
rary relationships of the rat genes and the group 1 and group 
2 MUP genes: U ) separate de novo amplification of different 
genes in the rat and mouse lines and (ii) the replacement of 
a preexisting array by a new one in each line by unequal 
crossing-over, gene conversion, or both. The idea central to 
both models, that the unit of MUP gene amplification is the 
45-kb gene pair, is suggested by the 10-15 copies of the gene 
pair that are present in the genome of the laboratory 
(BALB/c) mouse (9). The same idea also can explain the 
divergence of the group 1 and group 2 genes during it time 
period in which each group remained reasonably homogene-
ous. According to the models, the two main parts of the unit, 
the group 1 and group 2 genes and their respective flanking 
sequences, cannot replace each other and so would have 
been able to diverge. On the other hand, the 45-kb unit as a 
whole replaces other 45-kb units, and it is to this that we 
would attribute much of the uniformity of the 45-kb units and. 
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in particular, the uniformity of the group 1 and group 2 genes 
themselves. Thus, we would date the onset of divergence of 
the group 1 and group 2 genes to a time close to that at which 
the 45-kb unit originated (presumably by an inversion), 
whether in the mouse line or in a line ancestral to the 
divergence of mice and rats. 

The group 1 genes are more homogeneous than the group 
2 genes (ref. 8: Fig. 2). This can most easily be explained by 
supposing that selective constraints are superimposed on the 
amplification-replacement process. Selection acting against 
an unfavorable newly arisen group 1 gene would tend to lead 
to the elimination of the 45-kb unit within which it was 
located. Similarly, selection may have maintained the homo-
geneity of the group 2 genes up to the time at which the 
pseudogene mutation occurred but presumably did not oper-
ate on the pseudogene and its descendants. If so, mutational 
changes in the group 2 pseudogenes would have accumulated 
more rapidly. This raises the question as to why the group 2 
pseudogene mutation was tolerated in the first instance. The 
most satisfactory explanation is that the inversion and the 
pseudogene mutation arose at about the same time. If this is 
the case, we can view (i) the homogeneity of the group 2 
genes as a function of the concerted evolution of 45-kb units, 
driven by the group 1 genes, and (ii ) the inhomogeneity of the 
group 2 genes as a function of the underlying mutation rate, 
acting against the homogenization process but unaffected by 
selection. 

T. Ohta writes (personal communication): 

The theory of concerted evolution is already available and 
is applicable to the present data. Referring to Ohta (21). let us 
assume the following parameter values: n (no. of amplification 
units) = 10. N (effective population size) = 104 . v (mutation 
rate of nucleotides per generation) = 10, 0 (interchromo-
somal recombination rate between units) = 10 10, and 
A (rate by which a unit is replaced by another unit, or the rate 
of one cycle of unequal crossing-over or duplication-deletion) 

= 10-6. Then the average divergence between the nonallelic 
genes belonging to the family becomes about 1%. By using the 
same set of parameter values except that the mutation rate (v) 
is five times as large (S x  10Th, one gets an average 
divergence of about 4.5. The former is appropriate for group 
1, and the latter, for group II genes. 

The above application has several implications. (i) Even if 
tentative, the effective rate of unequal crossing-over is esti-
mated. (ii ) In the above model. nucleotide substitution is 
assumed to be selectively neutral. In view of available data, 
most nucleotide substitutions are neutral (Kimura (1983) The 
Neutral Theory of Molecular Evolution Cambridge Univ. 

Proc. Nat!. Acad. Sci. USA 82 (1985) 	4185 

Press, Cambridge, England], and the present case is not likely 
to be an exception. Group II genes are free to change and the 
rate is high. (iii) The time for spreading of a unit is estimated 
with the above set of parameters to be about iO generations 
(see Ohta, Genet. Res. 41, 47-55). 

This work was supported by the Medical Research Council and the 
Cancer Research Campaign. 
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Laboratory mouse strains carry 35 major urinary Protein 
(MUP) genes per haploid genome, tightly clustered together 
on chromosome 4. Most belong to two main groups (Groups 
1 and 2). The available evidence strongly suggests that the 
Group 1 genes are active while the Group 2 genes are pseudo-
genes. Here we present the complete sequence of a Group 
1 gene and a Group 2 gene and 700 bp of flanking sequence. 
The sequence of the Group 1 gene is consistent with its being 
active. The Group 2 gene contains two stop codons and a 
frame-shift mutation in the reading frame defined by the 
Group I gene, and would code for a signal peptide 25 rather 
than 19 amino acids long. The Group 2 gene differs from the 
Group I gene in other ways: a deletion upstream of the TATA 
box and another in intron 3, a base change in the TATA box 
itself, a 2 hp duplication at the splice acceptor boundary of 
intron 6, an altered poly(A) addition signal and a 1-base de-
letion 5' to the initiation codon. Some of these differences may 
explain the 10- to 20-fold higher level of Group I mRNA in 
mouse liver, and the fact that Group 1 and Group 2 tran-
scripts are mainly spliced differently. The presence of the stop 
codon means that the Group 2 gene is a pseudogene in the 
context of the Group 1 gene. However, there is some evidence 
that the mature hexapeptide that it would code for may have 
biological activity. The 12 acceptor splice sites of the two genes 
all contain the identical sequence ACAG at the exon bound-
ary. As a result this region shows an unusually high level of 
base-pairing homology with the splice donor site. A sequence 
showing a moderate to high homology with the sequence 
CT(;AC is found between 17 and 35 bp 5' to the acceptor 
site boundary in every intron. 
Key words: mouse/major urinary protein/pseudogene/sequence/ 
comparison 

Introduction 
The mouse major urinary proteins (MUPs) are a closely related 
group of small acidic proteins which are synthesised in the liver, 
secreted into the blood and subsequently excreted in the urine. 
There are 35 MUP genes in the mouse genome (Bishop ci al., 
1982). On the basis of nucleic acid hybridisation experiments 
the 35 genes can be subdivided into two groups (Group I and 
Group 2). each with - 15 members, and a small number of other 
genes not closely related to either group. The Group 1 and Group 
2 genes are part of large units of DNA organisation which are 

.45 kb long (Clark ci al., 1984b; Bishop et al.. 1985). Each 
unit contains one Group 1 gene and one Group 2 gene, IS kb 
apart, in a divergent transcriptional orientation (i.e., head-to-head 
organisation). Here we present the full sequence of the transcrip-
tion units of a Group 1 and a Group-) gene, and also some 7(0 hp 
of flanking sequence. We show that the Group 2 gene, with two 
stop codons and a frame-shift mutation, is a pseudogene in the 
context of the Group I gene. However, we cite evidence that 
raises the possibility that the hypothetical oligopeptide product 
of the Group 2 gene may have biological activity. Several other 
differences between the Group I and Group 2 genes were observ-
ed, some of which may impair the efficiency of transcription or 
translation of the latter. 

Results 
Figure IA shows the basic arrangement of Group I and Group 
2 genes and the regions of DNA sequenced. Figure I  and C 
shows M13 clones that were generated. respectively, from BS6 
(Group I) and B52,3 and sequenced. BS2.3 is the name given 
to a Group 2 gene which, with its flanking regions, is defined 
by two overlapping clones. In the case of BS6. 568 hp of 
5'-flanking sequence. the 3917 bp transcription unit and 136 bp 
of 3' flanking sequence were determined. Approximately 80% 
of the sequence was determined on both strands. The region of 
BS2.3 homologous to that determined for BSÔ was sequenced 
primarily on one strand. 

Determination of the Group I mRNA cap site 
We previously described the sequence of the combined CXOfl5 

of BS6. The gene encodes a short mRNA of —750 nucleotides 
within six exons and a long mRNA of 882 nucleotides within 
seven exons (Clark ci al., 1984a). The two forms are generated 
by different splicing events. The long mRNA is considerably 
more abundant. Previously we positioned the mRNA cap site 
provisionally. On the basis of two criteria. SI nuclease protec-
tion and primer extension, we now confirm that it is located 30 
± 1 bp downstream from the TATA box (Figure 2). 

Comparison of BS6 and BS2,3 
Figure 3 shows the sequences of BS6 and B52,3, aligned to maxi-
misc base-pairing homology between them. The boxes surround 
the exons previously defined for BS6 (Clark et al., 1984a). 

Insertions and deletions. The comparison shows that there are 
three large insertions or deletions (> 17 bp) and 20 smaller inser-
tions or deletions (<9 hp). Otherwise the two sequences are co-
linear over the entire sequenced region. The most 5' large inser-
tion or deletion occurs within a very A-rich tract located 50 hp 
5' to the start of each transcription unit. In BS6 this tract (pri-
marily A, occasionally interrupted by C) is 44 hp long, whereas 
it is only 16 bp long in BS2,3. To date, the corresponding regions 
of nine different MUP genes (live Group 1 and four Group 2) 
have been sequenced. Many show variation in the length of the 
A-rich tract, from a minimum of 11 bp to a maximum of 61 hp 
(P.Ghazal, unpublished observations). The second major inter-
ruption in the co-linearity of the two sequences occurs in the first 
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Fig. I. Sequencing strategy for 8S6 and BS2.3. A: The predominant arrangement of Group I and Group 2 genes and their flanking sequences in the BALBIc 
genome. Regions of inverted symmetry are shown as boxes with arrows above them. The Group 1 and Group 2 transcription units are marked as boxes 
Containing arrows which indicate the direction of transcription. The continuous lines below show the relationship of the lambda clones to the chromosome 
map. BS2,3 is a composite of two Group 2 lambda clones which overlap extensively and have identical restriction enzyme sites in this region of overlap. 
- Indicates the regions that were sequenced. B: Sequencing strategy for BS6. 	the plasmid subclones from which M13 clones were derived.}—[. M13 
clones which were cloned at specific sites: continuous line, region sequenced; broken line, remainder of the clone which was not sequenced. -. M13 clones 
for which the RF was prepared and the insert progressively shortened by the method of Hong (1982). Arrows indicate the regions sequenced. Arrowheads 
show the direction of sequencing. The restriction map covers the region sequenced and shows the sites employed for the Ml 3 cloning; S - Ba,nHi; 
C. EcoRI; C. Hindu!: A. Kpnl: C. Petit!; 7, PstI; o, A/will; U, SauIllA; • - A/ui. The numbered, open boxes show the positions of the exons, and 
the dashed extension of exon 6 shows the position of those sequences that are present in short MUP nRNA. C: Sequencing strategy for BS2,3. Symbols are 
the same as in B. The scale is the same for B and C. 

exon within the region which codes for the signal peptide. BS6 
has a 19 amino acid and BS2,3 a 25 amino acid signal peptide, 
the difference being due to a net insertion of six leucine residues 
(6 x CGT) in BS2,3. The length of this region is different in 
each of four Group 2 MUP genes. In contrast, the sequences 
of the entire signal peptide region of five Group I genes are ident-
ical (Ghazal etal., 1985). The third major insertion or deletion 
is in the third intron and occurs in a region of DNA that consists 
primarily of runs of GT and GTT. In BS6 this region (+ 1537 
to + 1633) is 97 bp long, whereas the homologous region in 
BS2,3 (+ 1542 to + 1557) is only 16 bp long. Comparable se-
quence data from other MUP genes are not available. However, 
restriction site mapping suggests that there are no large differences 
in length between different Group I genes or between different 
Group 2 genes. 

Transcription initiation signals. The DNA sequence signals which 
are presumed to be required for transcription are listed in Table 
I. There is a possible 'CAAT' box at —109 in BS6 and —77 
in BS2.3, although the sequences are considerably diverged from 
the published consensus, sharing only 5/9 positions, one of which 
is an unspecified pyrimidine in the consensus sequence. Both BS6 
and BS2,3 have a consensus 'TATA' box at —31. BS2,3, how-
ever, contains a G at a position normally occupied by an A (Table 
I). 

Splice sites. Table I also tabulates the donor and acceptor splice 
sites of the six introns of each gene. All 24 sites accord with 

the GT/AG rule and show a good agreement with the consensus 
sequences derived by Breathnach and Chambon (1981), In the 
six donor sites, BS6 and BS2,3 differ in a total of two positions 
(2/36 hp). Similarly the two genes differ by a total of two pos-
itions in five of the six acceptor sites (2/50 bp). The acceptor 
site in intron 6 of BS2,3 has a net insertion of 2 bp compared 
with BS6. The rnRNA transcribed from Group 2 genes is mainly 
of the short variety which lacks exon 7 and contains an extended 
exon 6, while the mRNA transcribed from the Group I genes 
is mainly the longer variant which contains the short exon 6 
spliced to exon 7 (Clark et al., 1984a). It seems possible that 
the net insertion of 2 bp in BS2 may underly this difference by 
partially inactivating the acceptor site of intron 6. 

Transcription termination signals. Most Group I MUP mRNA 
contain the 250 bp long untranslated exon 7. In this exon at 
+3895 there is a poly(A) addition signal (AATAAA). By com-
parison with the sequence of a number of MUP cDNA clones 
(Kuhn et al., 1984; Clark et al.. 1985) this sequence is found 
to be located 22 bp 5' to the beginning of the poly(A) tract. An 
identical poly(A) addition signal is present in the homologous 
position in the BS23 sequence. The less abundant short forms 
of Group 1 mRNA which terminate at the end of an extended 
exon 6 are polyadenylated at sites that relate to the rare poly(A) 
addition site ATTAAA at +2964 in the BSI sequence and the 
usual AATAAA site at +2979 (Clark et al.. 1984a). The se-
quence in BS2,3 that corresponds in position to the first of these 
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Sequence comparison of a MUP gene and pseudogene 

exon 7 is spliced into the mRNA may be due to differences in 
these internal' poly(A) addition signals rather than to the dif-
ferences in the splice sites described above. 

The coding region. The consensus sequence CCRCC has been 
shown to be conserved immediately 5' to the AUG of the N-
terminal methionine in a large number of eukaryote mRNAs and 
is proposed to he involved in ribosome binding (Kozak. 1984a). 
Within this consensus the R (usually A) at —3 from AUG is the 
most highly conserved residue, and its mutation to C in the rat 
pre-proinsulin gene dramatically reduced the efficiency of trans-
lation (Kozak. 1984b). The sequence immediately 5' to ATG in 
BS6, CCAAA, conforms reasonably well with the consensus. 
In BS2,3, however, a I bp deletion relative to BS6 brings a C 
into the —3 position, thus raising a question as to whether BS2,3 
transcripts would efficiently initiate translation. 

Group 2 genes are transcribed much less abundantly than Group 
1 genes (Clark ci al.. 1984a). The combined exonic sequence 
of BS2,3 could not code for a mature MUP protein because it 
has stop codons in exon I (+ 156) and exon 3 (-4- 1422) and a 
frame-shift mutation in exon 3 (+ 1472 to + 1473) which gener-
ates a stop codon at + 1482. In the other two frames BS2,3 con-
tains no long open reading frames. Thus BS2,3 is a MUP 
pseudogene in that it has three lesions which make it un-
translatable. We showed previously that three other Group 2 
genes share the same stop codon in exon 1 and that the mutation 
therefore is probably ancestral to the Group 2 lineage (Ghazal 
ci al.. 1985). 

Ed 
5,046* 

I rorar&,cn.cwrxucflz 

44 

*4 
'Ii. 

Fig. 2. SI protection and primer extension. A: Restriction map of the 5' 
region of MUP BSÔ showing its relationship to the probes used for SI 

protection and primer extension. Open and closed boxes show the 

untranslated and translated regions of exon I. B: Electrophoretic analysis of 

the products of SI protection and primer extension. Lanes 1 —4. sequence 

ladder of an M13 clone used to provide mol. wt. markers. Lane 5. primer 

extension of liver poly(A) r  RNA. Lane 6. St protection of liver poly(/ 

RNA. Lanes 7-9, primer extension controls: 7, kidney poly(A) RNA: 
8. no RNA: 9, primer extension probe alone. Lane 10. SI protection of 

kidney poly(A) RNA (SI protection control). The primer extension probe 

is 93 hp long see C). In the two tracks with liver poly(A) RNA. both the 

S  analysis and the primer extension analysis yield bands 127— 128 hp long 
which positions the mRNA cap site 30 hp± I bp downstream from the 

TATA box. An artilactual band at 144 bp is observed in lane 6 which 

results from partial homology of the MUP mRNA sequences immediately 3' 

to the .41uI sequences to the polylinker region of M13 that was present in 

the S  probe. C: The sequence from the TATA box through the cap site 11 

to beyond the A/ui site. The primer extension probe is the fragment from 
Sau96IA to Ad. 

is AATAAA (+2893) and to the second GATAAG (+2907) 
which has not been reported to he a poly(A) addition site. There 
are no other AATAAA or ATTAA sequences in the region of 
BS2,3 within which short mRNA terminates. The present results 
offer a second explanation of the preponderance of short rnRNA 
among the Group 2 transcripts: differences in the extent to which 

Discussion 
Splice sites and intronic sequences 
An interesting feature of the six acceptor sites in each of the genes 
is the absolute conservation of the four 3'-terminal hp. The splice 
acceptor site consensus sequence, derived from many genes. is 
NCAG. where A and G are absolutely conserved. C is present 
in 80% of cases, and N can be any base. In all six sites of both 
MUP genes this sequence is ACAG, the most notable feature 
being the conservation of the first A. The consensus NCAG is 
drawn from a large sample of different genes (Breathnach and 
Chambon, 1981), and would obscure such a feature of any single 
gene. We have therefore examined the acceptor sites of a number 
of genes that have multiple inlrons: mouse dihydrofolate reduct-
ase (Nunberg et al., 1980; Crouse ci al.. 1982: Simonsen and 
Levinson, 1983), alpha-fetoprotein (Law and Dugaiczyk. 1981: 
Eiferman ci al.. 1981: Gerin ci al.. 1981). alpha-amylase (Hagen-
buechie etal., 1981: Young etal., 1981). MHC genes 1-1-2 K-B 
(Weiss ci al., 1983) and H-2 L-D (Moore ci al., 1982; Evans 
etal.. 1982) and chicken alpha-2 collagen (Dickson etal.. 1981: 
Wozney eta!,. 1981). In all cases, the terminal AG of the ac-
ceptor is absolutely conserved, but only in the case of the MUP 
genes is either of the two preceding nucleotides absolutely con-
served. 

The conserved A and C residues are complementary to the 
absolutely conserved G and T of the splice donor sites. We there-
fore asked how many base pairs would he made between five 
bases at the donor site of each intron (GTNNN) and the sequence 
NNNAC of the same intron. In nine cases three and in two cases 
four base pairs could be made (Table H). The probability of this 
arising by chance is very small (3 x 10 - ). due almost entirely 
to the absolute conservation of the donor site I and G residues 
and the acceptor site A and C residues, This highly non-random 
complementarity between the two regions suggests that they may 
come together at some stage in the splicing process. To ask 
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Fig. 3. Sequence comparison of BS6 and 8S2.3. The sequences of BS6 (Group I) and BS2.3 (Group 2) were aligned to maximise homology using the GAP 
program of Devereux and Haeberli (1984). The BS6 sequence is presented in the top line of the comparison. The regions boxed by the continuous lines show 
exons 1 - 7 of the predominant 882-hp long form of MUP ITSRNA (Clark et al., 1984). The sequences boxed by the broken lines are those present in the 
shorter form of MUP mRNA. The numbers refer to the distance, in hp, from the cap site. 
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Table I. DNA sequence signals present in BS6 and BS2.3 

Signal 	Gene 	Sequence 	 Position 

Transcription BS6 GACCCATAC —109 

initiation 	BS2 GACCCATAC —77 
Consensus * GGYCAATCT —80 

BS6 GAGTATATAAGG —31 

BS2 GAGTATATGAGG —31 
Consensus* GNGTATAWAWNG —30 

Donor acceptor splice sites 

Intron I BSÔ GTATGA/TCTA1TACAG + 163/+500 

BS2 GTACGA/TCTACTACAG + 180/'+513 

Intron 2 BS6 6TAAGT/TGT1TFACA6 + 6351 + 1402 

BS2 GTAAGT/TG1TFTACAG +6481+1414 

lot ron 3 BS6 GTGAGTITCTTCCACAG +1477/+2113 

BS2 GTGTGT/TCCTCCACAG + 1488/ +2041 

Intron 4 BS6 GTAAAG/CTTCTCACAG +2225/+2565 

BS2 GTAANG/CUCTCACAG +2153/ +2493  

Intron 5 BS6 GTAAGT/CACACTACAG +26687+2830 

BS2 GTAAGT/CACACTACAG +25961+2760 

Intron 6 BS6 GTGGGC/TGGCTTACAG +2877/ +3667 

BS2 GTGGGCITGGCTACACAG +2806/ +3592 
Consensus* GTRAGTIYYYYYYXCAG 

Poly(A) addition signals 

Exon 5 BS6 	ATT'AAA. AATAAA +2964, -4-2979 

BS2 	AATAAA. GATAAG +2893. +2907 

Exon 7 BS6 	AATAAA +3895 

B52 	AATAAA +3819 
Consensus* 	AATAAA 

Translation BS6 	CCAAAATG +67 

initiation BS2 	ACCAAATG +66 

Consensus 	CCRCCATG 

Translation BS6 (exon 6) TGA +2854 

termination BS2 (exon I) TGA +156 

BS2 (exon 3) TAA +1422 

BS2 (exon 3) TGA +1482 

Consensus sequences were taken from Breathnach and Chambon (1981) (*) 
and from Kozak (1984a) 

whether complernentarity between these two regions of an intron 
is general, we examined the introns of the genes listed above 

and also those of the mouse metallothionein (Glanville et al.. 
198 1) and alpha (Mishioka and Leder, 1979) and beta Konkel 

ci al., 1979) glohin genes for evidence of complementarity be-

tween the first five bases of the donor site and the five bases 
before the AG of the acceptor site of the same intron. The average 

complementarity was 49% which, although less than the 68% 
found in the MUP introns, is also high. This is partly due to 

the absolute conservation of position 1 of the donor site and the 

80 17c occupancy of position —3 of the acceptor site by C'but 
also to the fact that donor site positions 3 —5 are nearly always 

purities while positions —5 to —7 of the acceptor site are nearly 
always pyrimidines. Thus elevated complernentarity between the 

two regions is very common. If they do associate during splicing, 

this could follow the association of the donor (Mount etal., 1983: 
Kramer etal.. 1984) and possibly also the acceptor sites (Lerner 

etal.. 1980; Rogers and Wall, 1980) with U  snRNP, but would 
presumably precede the formation of the G5'-2'A lariat junction 

20 or so bases upstream (Ruskin ci al.. 1984). 

Keller and Noon (1984) discovered the consensus CTGAC 
20-55 nucleotides from the acceptor site boundary in a number 

of introns. During the search, the A residue was required to be 

present because in some cases it is known to participate in the 

Table II. Base-pairing homology between the splice donor sites (GTNNN) and 
nucleotides —7 to —3 of the splice acceptor site (NNNAC) of the same intron 

Intron B56 B523 

NNNAC ATTAC 3 ACTAC 3 

NNNTG GTATG GCATG 

2 NNNAC TTTAC 4 TTTAC 4 

NNNTG 
IIII 

GAATG 
III 

GAATG 

3 NNNAC TCCAC 3 TCCAC 3 

NNNTG 
II 

GAGTG 
II 

GTGTG 

4 NNNAC CTCAC 3 CTCAC 

11 

3 

NNNTG 
I 	II 

AAATG 
I 

NAATG 

5 NNNAC ACTAC 3 ACTAC 3 

NNNTG 
III 

GAATG 
III 

GAATG 

6 NNNAC CTTAC 

1 	11 

3 TACAC 

111 

3 

NNNTG GGGTG GGGTG 

Table III. Potential splice lariat junctions in the introns of MUP genes BS6 and 
BS2.3 

Intron BS6 BS2,3 

Distance X \' 	Z Distance X Y Z 

from from 
junction junction 

1 21 CTTAA 3 4 	3 21 CTTAA 3 4 3 

2 24 CTTAC 4 5 	5 24 CTTAC 4 5 5 

3 22 CTGAG 4 3 	3 22 CTGAG 4 3 2 

4 17 CTCAC 4 4 	3 17 CTCAC 4 4 

5 24 CTGAA 4 3 	3 24 CTGAA 4 3 3 

6 30 ATGAA 3 2 	2 31 ATGAG 3 2 1 

X. Y and Z, number of positions agreeing with CTGAC. CTI'AC and with 
the complement to the splice donor site, respectively. 

junction point of the lariat splicing intermediate (Ruskin ci al., 

1984). It was suggested that during splicing a transient base-
pairing interaction occurs between this site and the splice donor 

site. We searched the MUP gene introns for three pentamer se-
quences. CTGAC itself. CTTAC which is the complement of 

the donor splice consensus, and the complement of the donor 

splice site of the intron under scrutiny. The most consistent results 
were obtained with CTGAC. in every intron. between nucleotides 

17 and 35, there is a sequence that matches CTGAC in either 

four (eight cases) or three (four cases) positions (Table III). 
Overall, the match of these sites to CTGAC (73%) is greater 

than to CTTAC (69%) or to the different donor sites of the 
separate introns (60%). Given the selection of the A residue, we 

would expect this degree of matching. or better, to occur in ran-
dom DNA once per 46 bases. We observe it once per 19 bases, 
which is not strikingly more frequent. It seems likely, never -

theless, that this technique identifies the A residue at the lariat 
junction in most if not all cases. 

Group 2 genes are pseudo genes in the context of Group I genes 

While the available evidence indicates that the Group 1 genes 

are true genes (see Clark etal., 1985), all of the Group 2 genes 
so far examined are putative pseudogenes. BS2.3 carries three 

lesions in its protein coding sequence and could not be translated 
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to yield a protein with the mol. wt. of MUP. Partial sequence 
analysis of three other Group 2 genes has shown that they all 
contain the same stop codon in exon I (Ghazal ci al., 1985). 
It is likely that all Group 2 genes in the BALB/c genome share 
this lesion, and are descended from the same ancestral gene. 
Other sequence differences between BS6 and BS2,3. most of 
which might affect transcription or translation, are (i) upstream 
and intronic deletions that may affect enhancer function. (ii) a 
substitution of G for A in the TATA box region that may affect 
the strength of the promoter. (iii) a small duplication in the 
splice-acceptor site of intron 6 that may favour the formation of 
the shorter form of mRNA, (iv) an alteration in one of the po-
ly(A) addition signals of short form mRNA (ATTAAA-. 
AATAAA) that also may favour the formation of the shorter 
mRNA, (v) an alteration in the translation initiation signal 
CCAAA-ACCAA that may impair the efficiency of transla-
tion and (vi) an in-frame increase in the length of the signal pep-
tide region. 

A possible firnction for the truncated product of the Group 2 gene 

Some Group 2 genes are probably transcribed to yield a short 
mRNA (Clark et al.. 1984a) although the steady-state mRNA 
level is much less than that observed for Group I genes (< 10%). 
If the Group 2 transcripts are translated and if the polypeptides 
are then processed, the products will be peptides six amino acids 
long with a mol. wt. of 630. Such small peptides would be rapidly 
excreted into the urine. 

Mouse urine contains androgen regulated agents that dramati-
cally accelerate the onset of puberty when administered to young 
females (Vandenbergh etal., 1975). One is probably a protein, 
with a mol. wt. > 12 000, i.e., consistent with the mol. wt. of 
MUP. The activity of this agent largely survives proteolysis, but 
becomes dialysable. The second agent has a mol. wt. of 860, 
and seems to be one or more of a mixture of oligopeptides 
(Vandenberg etal.. 1976). These apparently contradictory obser-
vations can be reconciled by a hypothesis based on the structure 
of the MUP genes. We suggest that the protein agent is MUP, 
the active part of the molecule being the six N-terminal amino 
acids, and that the dialysable agent is the hexapeptide coded for 
by the Group 2 genes. Proteolysis of the protein agent would 
release dialysable fragments containing the N-terminal hexapep-
tide. The sequences of the two hexapeptides are quite similar: 
Group 1, N-Glu-Glu-Ala-Ser-Ser-Thr: Group 2, N-Glu-Glu-Ala-
Arg-Ser-Met. 

Group 1 and Group 2 genes have randomly diverged 

BS6 and BS2,3 are members of the two major groups of MUP 
genes in the BALB/c genome. The numbers of Group I and 
Group 2 genes are approximately equal (Bishop et al., 1982). 
This is because the predominant organisation of the MUP locus 
is an array of 45 kb domains each containing a Group I and a 
Group 2 gene linked in a divergent orientation (Clark et al., 
1984b: Bishop et al., 1985). We have presented the sequence 
of BS6 and BS23 over a homologous region 4.5 kb in length 
that includes the entire transcription unit as well as 5' and 3' 
flanking sequences. The most obvious differences between the 
two sequences are the three long insertions/deletions. In each 
case these occur in regions of 'simple sequence' DNA suggesting 
that they may have been created by 'slippage' during DNA syn-
thesis or repair (Ghosal and Saedler, 1978). In general, the di-
vergence between the two sequences is uniformly spread across 
the region sequenced (Table IV). Thus no recent gene correc-
tion has occurred between the two genes such as has been observ-
ed between human G.y and A  globin genes (Slightom et al., 

Table IV. Divergence between BS6 and BS2.3 

Region 	 Divergence (%) 

Full length 13.4 

5' flanking region 11.1 

Transcription unit 12.6 

mRNA 13.1 

Translated mRNA 11.5 
Non-translated niRNA 15.5 
Intronic sequences 13.1 

3' flanking region 15.6 

The divergence between the two genes was estimated over the regions 

indicated. In this analysis each base change was scored as I. as was each 

insertionldeletion, irrespective of size. 

1980). The exons and introns of B56 and B52,3 have diverged 
to about the same extent. Comparisons between other active genes 
indicate that, in general, intronic sequences diverge more rapidly 
than exonic sequences (Perler ci al.. 1980: Efstratiadis et al.. 
1980) presumably because introns have lesser selective constraints 
acting on them. That this is not the case in the comparison of 
the two MUP genes possibly indicates that the ancestral BS2,3 
pseudogene was free to diverge at the same rate in both introns 
and exons. Group 2 genes, however, are reasonably well con-
served amongst themselves and we have drawn from this obser-
vation the conclusion that the 45-kb domain, rather than the 
individual MUP gene, is the unit of evolutionary change of the 
majority of MUP genes (Clark etal., 1984b: Bishop etal.. 1985). 

Materials and methods 
Cloned DNA 

The isolation of MUP genomic clones and subclones is described in Clark em 
al. (1982. 1984b) and Bishop et al. (1982). The propagation of bacteriophage 

and plasmid clones and the isolation of DNA were carried out as described (Clissold 
and Bishop. 1982: Clark ci al., 1982: Bishop ci al.. 1982). 

DNA sequencing 

To obtain the complete 4 kb sequences of BS6 and BS2,3, fragments of plasmid 

pBS6-2. pBS6-5, pBS6-I-1, pBS2-2 and pBS3B-3 were cloned into M13mp7, 

8 or 9 and sequenced by the dideoxy nucleotide method, essentially as described 
by Sanger ci al. (1977) and Anderson etal. (1980). Two main strategies were 
employed to ensure that continuous stretches of sequence would be generated. 

(i) The cloned fragments were digested with restriction enzymes that cleave 4 bp 
recognition sites and 'shotgunned' into M 13 vectors. (ii) Larger suhfragments 

were cloned into Ml 3mp8. replicative forms were prepared and a second gener-

ation of M 13 clones containing progressively shorter fragments was isolated by 
the method of Hong (1982). 

Si nuclease protection 

The probe was a 696 hp A/ui fragment. extending from nucleotide + 127 to 

nucleotide -568 in the BS6 sequence (Figure 3), and cloned at the Hinell site 
of M13mp7. The single-stranded Ml 3 clone was annealed to the sequencing primer 

and the strand complementary to MUP mRNA was uniformly labelled using the 

Klenow fragment of DNA polymerase I (Boehringer). The double-stranded region 
thus created was digested with EcoRl and the fragment lying between the two 
&oRl cloning sites of the vector(sp. act. I0- 108 c.p.m.Igg) was purified on 
a 5% polyaciylamtde gel. An aliquot of the probe (20 (XX) c.p.m.) was co-precipi-
tated with I jLg of total poly(A) °  RNA and redissolved in It) )Ll of 40 mM Pipes 

(pH 6.4), 1 mM EDTA. 0.4 M NaCl, 80% formarnide. Samples were denatured 

at 85°C for 15 min and incubated at 50°C for 4 h. Samples were digested with 
250 U/mI SI nuclea.sc (Sigma) at 37°C for I h in 100 Al of 0.28 M NaCl. 0.05 M 

NaAc (pH 4.6), 4.5 mM ZnCl 2  and 10 sg/ml single-stranded salmon sperm DNA, 

phenol extracted, precipitated twice with ethanol and resuspended in 3 zI of for-
mamidc dye mix. 

Primer extension from (jhosh ci (i!., 1981) 

The primer extension probe was the 93 bp ,4/uI-Sou961 fragment between nuc-

leotides +34 and + 127 in the BS6 sequence (Figure 3). This was prepared 

and annealed to poly(A) RNA in essentially the same way as the SI protec-

tion probe (above). Annealing was terminated by the addition of 250 pI ice-cold 
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0.3 M NaAc (pH 7.0) followed by two ethanol precipitations. The pellet was 
resuspended in 50 id 50 mM Tris-HCI (pH 8.3), 6 mM MgCl 2 , 40 mM HCI, 
10 mM Dli' with I mM of each deoxynucteotide triphosphate and I Unit of AMV 
reverse transcriptase was added. After equilibration on ice for 5- It) mm. the 
reaction mixture was incubated for 3 h at 37°C. NaOH was then added to 0.2 N 
and the incubation continued for a further I h. The reaction mixture was neutralised 
with 10 N HCI. phenol extracted, and ethanol precipitated twice. Pellets were 
resuspended in 3 l of formamide dye mix and loaded on 6% sequencing gels. 
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