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Abstract

In male mammals, the formation of the prostate gland is driven by androgens and 

involves cell-cell signalling between mesenchymal and epithelial cells. Gene profiling 

studies of prostate mesenchyme, using serial analysis of gene expression (SAGE), 

identified many transcripts that encode potential regulators of prostate development. The 

studies identified transcripts expressed in the ventral mesenchymal pad (VMP), a subset 

of the prostate mesenchyme known to express key growth factors and to regulate prostate 

organ development. These candidate mRNAs were used in a whole mount in-situ 

hybridisation (WISH) screen to identify those showing mesenchyme specific expression. 

The transcripts selected for WISH analysis were placed in three groups. The first group 

of transcripts were identified as enriched in the VMP based upon statistical analysis of 

their SAGE tag count. The second group of transcripts shared a SAGE tag count that was 

not statistically significant, and were a control for the first group. The third group 

encompassed transcripts that encoded either secretory or transmembrane proteins that 

were likely mediators of cell-cell communication. From 194 candidates, 30 were 

analysed by WISH and 13 were identified as mesenchymal. The tyrosine kinase receptor, 

EphB3, was selected from the WISH analysis and its role in prostate development was 

examined.

EphB signalling has been characterised as a chemotactic guidance cue in neuronal 

development and has also been implicated in organogenesis of the kidney, lung and 

colon. The Eph tyrosine kinase family is the largest of its type and is divided into two 

classes of receptor, Eph A and EphB. The EphB family has five receptors (EphB 1-4, B6) 

and three ligands (EphrinBl-3) in mammals. The EphrinB ligands are transmembrane 

proteins.

PCR analysis was used to examine the expression of the EphB and EphrinB transcripts in 

the developing rat prostate. The PCR analysis showed that mRNAs for the EphB2 and 

EphB3 receptors, and the EphrinB 1 and EphrinB2 ligands, were highly expressed in the



rat prostate compared with the other EphB and EphrinB family members. The PCR 

analysis did not establish whether EphB receptors or EphrinB ligands were expressed in 

epithelia, mesenchyme or both. The EphB2 and EphB3 receptors, and the EphrinB 1 and 

EphrinB2 ligands, were further characterised by WISH, quantitative real-time PCR and 

immunohistochemical analysis during prostate development. At both the mRNA and 

protein levels, EphB3 and EphrinB 1 were expressed in a restricted area of the prostate 

mesenchyme, in close association with the developing epithelial buds. The EphB3 and 

EphrinB 1 transcripts were detected by the SAGE analysis, suggesting that they were 

expressed in the mesenchyme. The EphB2 and EphrinB2 transcripts were not detected by 

the SAGE analysis, suggesting that they were expressed in the epithelium. The EphB2 

receptor and EphrinB2 ligand were predominantly expressed in the developing epithelial 

buds, as shown by immunohistochemical analysis. The SAGE analysis of VMP 

mesenchyme identified EphB3 and EphrinB 1 but not EphB2 and EphrinB2. This was 

consistent with their expression in mesenchyme or epithelium respectively.

The addition of EphB2-Fc and EphB3-Fc to in vitro organ cultures of neonatal prostates, 

acting as a ligand trap, decreased prostate growth. The addition of EphrinB 1-Fc and 

EphrinB2-Fc ligands increased prostate organ size. The addition of EphrinB 1-Fc and 

EphrinB2-Fc produced a significant increase in the mesenchymal and epithelial cell 

proliferation rates. This increase in cell proliferation in response to EphrinB 1-Fc and 

EphrinB2-Fc was consistent with the observed increase in prostate organ size. The 

addition of EphB2-Fc and EphB3-Fc produced no significant increase in the 

mesenchymal and epithelial cell proliferation rates. This lack of a significant increase in 

cell proliferation in response to EphB2-Fc and EphB3-Fc was consistent with the 

observed decrease in prostate organ size. These findings suggest a role for EphB 

signalling in the regulation of prostate growth.

The addition of either EphB-Fc or EphrinB-Fc proteins to in vitro organ cultures resulted 

in a decrease epithelial branching morphogenesis. Larger epithelial buds were observed 

in organs treated with EphrinB 1-Fc and EphrinB2-Fc, when compared to control organs. 

No visible change in the size of the epithelial buds was observed in response to EphB-Fc

9



treatment. Furthermore, p63 and Smooth Muscle Actin immunohistochemical analysis of 

EphrinBl-Fc and EphrinB2-Fc treated organs showed larger epithelial buds, and 

proliferation analysis showed greater epithelial cell proliferation in EphrinB-Fc treated 

organs. The increased size of each epithelial bud may be caused by the decreased 

epithelial branching and the increased epithelial proliferation rate, in response to the 

addition of EphrinB-Fc proteins. These findings suggest a role for EphB-EphrinB 

signalling in the regulation of prostate epithelial branching.

Collectively, we report the first reported functional link between EphB signalling and 

prostate development. EphB-EphrinB signalling may act as a novel juxtacrine or 

autocrine signal within the mesenchyme or as a novel paracrine signalling mechanism 

during prostate organogenesis.
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Chapter 1 Literature Review

Literature Review

1.1 Introduction

The prostate is a male sex-accessory gland found in mammals and its function is the 

secretion of seminal fluid components (Price 1961). The prostate gland is located at the 

base of the bladder, surrounding the urethra. Prostate development is reliant on two key 

events, exposure to androgens and the molecular interactions between the mesenchyme 

and epithelium (Cunha and Chung 1981). In the rat, androgens bind to the Androgen 

Receptor (AR) expressed in an area of condensed mesenchyme called the Ventral 

Mesenchymal Pad (VMP) (Timms et al., 1994; 1995). This initiates a series of 

interactions between the mesenchyme and the epithelium that regulates the growth of 

epithelial buds into the mesenchyme and subsequent branching morphogenesis. The 

solid epithelial cords differentiate and form a secretory lumen that secretes components 

of the seminal fluid (Sugimura, Cunha et al. 1986). The epithelium plays an essential 

role in differentiating the mesenchyme of the developing prostate into the smooth 

muscle of a fully formed prostate (Hayward, Haughney et al. 1998). Without androgen 

exposure the prostate does not develop. In females, androgen levels are low and the 

prostate does not develop despite the presence of the VMP.

There were two main aims of this thesis. Firstly, to identify mRNAs with prostatic 

mesenchyme specific expression. This expression analysis would be followed by a 

characterisation study for one or two of these mesenchymal transcripts in terms of 

prostate development. The EphB3 receptor was enriched in the prostatic mesenchyme. 

This receptor and a number of its family members have been characterised in terms of 

expression and distribution, at both the RNA and protein level, during rat prostate 

development. Additionally, by utilising an organ culture system and recombinant 

proteins, an insight into the function of the EphB protein family during rat prostate 

development has been obtained.



Chapter 1 Literature Review

This chapter is divided into two sections. Prostate development will be examined in 

depth including prostatic structure, function, androgens, mesenchymal-epithelial 

interactions and the molecules involved in this. Following this, the EphrinB ligand and 

EphB receptor tyrosine kinase family will be discussed. This will include their 

discovery, modes of action, and roles in other biological systems and disease.

1.2 Structure and Function of the Adult Prostate

The prostate gland is found only in male mammals and its function is to secrete 

components of the seminal fluid. Prostatic glands in adult male humans are compact 

glands, approximately the size of a walnut, found at the base of the bladder. The prostate 

gland surrounds the urethra and the terminal end of the ejaculatory duct. The structure of 

the human prostate is divided up into three distinct zones. These are termed the 

peripheral zone, the transition zone and the central zone (McNeal 1968). A diagram of 

the adult human prostate can be seen in Figure 1.1 A. In contrast, the adult rodent 

prostate has a lobular structure. The regions of the rodent prostate include the anterior, 

dorsal, lateral, and ventral lobes. The dorsal and lateral lobes are often considered as one 

(dorsolateral). A representation of the adult rat prostate can be seen in Figure 1.1B.

The human and rodent prostates are similar in that both undergo branching 

morphogenesis and function to secrete seminal proteins (Sugimura, Cunha et al. 1986). 

Additionally, the rat dorsolateral lobe has been described as homologous to the human 

peripheral zone. However, there is no straightforward comparison between the zones of 

the human prostate and the rodent prostatic lobes (Abate-Shen and Shen 2000).
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A

BLADDER
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ANTERIOR
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Figure 1.1. Diagrams of (A) the human prostate and (B) the rat 

prostate. (Adapted from McNeal 1968 and Thom son 2001, respectively)
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STROMA

BASAL LAMINA

BASAL
CELLS

NEUROENDOCRINE
CELLS

Figure 1.2. Labelled diagram of cellular organisation within prostatic 

epithelial ducts (Adapted from Abate-Shen et al., 2000).

Human Prostate Epithelial Structure and Function

The fully developed prostatic epithelial duct contains at least 3 types of epithelial cell. 

Each cell type is different in terms of frequency, function and morphology (Aumuller, 

1989). The lumen is lined with the largest cell type, the luminal secretory epithelial cell. 

This is the cell that is responsible for producing secretory proteins that form part of the 

seminal fluid. At the molecular level, the luminal cells are distinguished by their specific 

expression of cytokeratins 8 and 18. Morphologically, the luminal cells are tall and 

columnar. The basal epithelial cells form a relatively continuous layer around the 

luminal cells. The basal cells are much smaller and express cytokeratins 5, 14 and 19. 

Basal cells are not known to function as secretory cells (Bui and Reiter, 1998). 

Additionally, there is a basal lamina that separates the epithelial and stromal 

compartments.
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Neuroendocrine cells are rare and are located within the basal cell layer. 

Neuroendocrine, basal and luminal cells originate from a common endodermal 

pluripotent stem cell (Huss et al., 2004). In rodents, neuroendocrine cells secrete a 

number of neuropeptides and may have a role in regulating prostatic secretions through 

paracrine signalling (di Sant'Agnese, de Mesy Jensen et al. 1985).

Human Prostate Stroma Structure and Function

The prostatic stroma consists mainly of smooth muscle cells. The mesenchymal 

fibroblasts differentiate, under epithelial regulation, into myofibroblasts and eventually 

smooth muscle cells (Frid et al., 1992). The expression of the AR in SM cells is critical 

to its function in stromal to epithelial cell signalling. Studies have shown that smooth 

muscle cells in the prostate are AR positive in contrast to the AR heterogeneous 

fibroblasts (Shapiro et al., 1996). The main function of the prostate stroma in 

development is to regulate the growth and differentiation of the epithelium. In adult 

prostate, except from the structural function, the role of the stroma is to maintain the 

differentiated state of the secretory epithelial glands (Hayward et al., 1996).

1.3 Rat Prostate Development

The major changes that occur during rat prostate development are summarised in Table 

1.1. The prostate gland originates from the endodermal lineage, and develops from the 

urogenital sinus (UGS). The UGS develops from cloaca. During mid-gestation in 

rodents, the cloaca is split by the urorectal septum resulting in the UGS. The UGS is the 

developmental source of the bladder, the prostatic urethra and bulbo-uretheral gland in 

males, and the urethra and lower vagina in females (Staack, Donjacour et al. 2003). The 

UGS is comprised of the urogenital mesenchyme (UGM) and the urogenital epithelium 

(UGE). Correct development of the prostate is dependent on testosterone and molecular 

interactions between the UGM and UGE (Cunha and Chung 1981).

2 2
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The first urogenital structure can be observed at approximately at e l4.5 in rats. Solid 

cords of epithelium from the UGE penetrate the UGM at el 8.5 (Hayward, Baskin et al. 

1996). The homeobox transcription factor Nkx3.1 has been shown to be the first 

molecular marker of prostatic induction. In the mouse, NkxS.l expression is suggested to 

identify urethral epithelium that will become prostate. Furthermore, Nkx3.1 expression is 

far more localised at the tips of budding epithelium during postnatal development 

(Bhatia-Gaur et al., 1999; Sciavolino et al., 1997). The transcription factor FoxA2 is 

exclusively expressed in epithelial buds in the very early stages of murine prostate 

development. Therefore, it may be used as a prostate budding initiation marker similar to 

Nkx3.1. FoxA2 may be involved in regulating prostate bud formation in the UGS based 

on its embryonic expression pattern (Mirosevich et al., 2005). Another member of the 

FoxA family, FoxAl, is widely expressed in the developing epithelium and has a 

functional role in prostatic morphogenesis (Gao et al., 2005). Another transcription 

factor that has been shown to be an early marker of prostate epithelial buds in the rat is 

Sox9 (Thomsen et al., 2008).

Mesenchymal genes also have an influence in the process of rodent prostate 

development. A number of signalling molecules in the UGM have been examined in 

early rodent prostate development. The extracellular protein BMP4 appears to be a 

negative regulator of epithelial branching in the UGM. The expression of BMP4 is 

localised to the peri-epithelial mesenchyme after bud growth has begun (Lamm et al.,

2001). Another protein secreted from the UGM, Noggin, a BMP4 antagonist, has been 

reported to have a role in the epithelial patterning o f the ventral prostate (Cook et al.,

2007). More recently, the Wnt5a protein has been shown to be expressed in the 

mesenchyme during branching morphogenesis in the rat prostate. Wnt5a inhibits 

epithelial branching and decreases Shh expression in early development. Androgens 

decrease Wnt5a expression during early development. Collectively, these observations 

suggest Wnt5a is a mesenchymal regulator of early rat prostate development (Huang et 

al., 2009).
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The androgen sensitivity of the UGM is essential for rat prostate development. 

Androgens from the fetal testes bind to AR expressed in the UGM causing mesenchyme- 

epithelial interactions that initiates the UGE to bud into the UGM (Cunha and Lung, 

1978). These epithelial buds grow out into highly branched epithelial cords and 

subsequently canalise into ducts. This complete process occurs in a proximal to distal 

fashion from the urethra outwards to the ductal tips (Sugimura, Cunha et al. 1986). The 

paracrine interactions between the branching UGE and the UGM are critical for prostatic 

development. An important hypothesis in the field of prostate development is the 

‘andromedin’ hypothesis. This states that androgens acting on the UGM regulate the 

expression of mesenchymal paracrine factors that, in turn, affect epithelial growth and 

prostatic bud formation. Classic examples of potential andromedins are FGF7 and 

FGF10 (Yan et al., 1992, Lu et al., 1999). The FGF7 promotor has been demonstrated as 

androgen responsive in LNCaP (Fasciana et al., 1996) and prostate organ cultures 

(Thomson et al., 1997). FGF10 promotes prostate organogenesis through its role as a 

stromal derived paracrine factor but there is controversy over its potential function as an 

andromedin (Thomson and Cunha., 1999). Androgens may have a role in epithelial 

differentiation. Epithelial development results in a secretory luminal layer and a 

nonsecretory basal layer. These two layers exhibit distinct cytokeratin phenotypes once 

differentiation has occurred (Flayward, Haughney et al. 1998).
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T im e p o in t T is s u e D e v e lo p m e n ta l P ro c e s s A n d r o g e n  le v e l
E15.5 UGS U n d iffe re n tia te d 2 days exposure
E16.5 UGS U nd iffe re n tia te d 3 days exposure
E17.5 UGS Prosta te  buds Hiqh
E18.5 UGS B ranch ing  m orphoqenes is High
D ay 7 DLP, VP, AP B ranch inq  m orphoqenes is Low

Day 30 DLP, VP, AP P uberty V ery  Hiqh
Day 90 DLP, VP, AP A d u lt V e ry  Hiqh

Table 1.1 Summary of the major changes during rat prostate development

(Adapted from Pritchard and Nelson., 2008).

1.4 Endocrinology of Rat Prostate Development

Development of the prostate is principally driven by androgens. The primary function of 

androgens is to induce and regulate the male secondary sex characteristics. They are 

characterised as C19 steroids. The Leydig cells, part of the testes, are responsible for 

producing the main type of androgen, testosterone. Testosterone production is part of a 

much larger interaction of hormones and endocrine glands termed the hypothalamic- 

pituitary-gonadal axis (Figure 1.3). The Leydig cells are prompted to produce 

testosterone via Luteinising Hormone (LH) exposure. LH is secreted from the pituitary 

gland in response to Gonadatrophin Releasing Hormone (GnRH). GnRH is synthesised 

in the hypothalamus. Testosterone has a negative feedback influence on the pituitary 

gland, inhibiting LH production.
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HYPOTHALAM US

GnRH

PITU ITAR Y

T- LH + FSH +
IN H IB IN  +

Figure 1.3. The Hypothalamic-Pituitary-Gonadal Axis Gonadotrophin 
Releasing Hormone (GnRH) is released from the hypothalam us and acts 
on the pituitary gland. Luteinising Hormone (LH) and Follicle Stimulating 
Hormone (FSH) are released from the pituitary and act on the Leydig 
cells and Sertoli cells respectively. The Sertoli cells are stim ulated to 
release Androgen Binding Protein. The testosterone produced by the 
Leydig cells provides a negative feedback signal to the pituitary and 
stim ulates sperm production by the Sertoli cells. Additionally, the Sertoli 
cells produce Inhibin that has a negative feedback effect on the pituitary 
gland (‘Regulation o f FGF10 in Prostate Developm ent’ , Darren 
Tom linson PhD thesis., 2002).

Most of the testosterone present in the bloodstream is bound to albumin and other 

steroid binding proteins. For example, the endocytic protein megalin has been suggested 

to have a role in aiding testosterone entry into prostatic epithelial cells (Hammes et ah, 

2005). Only the small proportion of testosterone in the blood that is free is able to enter 

the cell. This free testosterone is therefore the biologically active form. Once inside the 

cell, the enzyme 5a-reductase, which has two isoforms, 1 and 2, converts most of the 

testosterone to dihydrotestosterone (DHT). DHT has great potency as an androgen and 

binds to the AR at an affinity that is five times higher than testosterone (Wilbert et ah, 

1983).
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Prostate organogenesis is not dependent on DHT 1 and 2 despite the fact it has a much 

higher AR binding affinity than testosterone. In vitro experiments using anterior prostate 

organ culture have shown androgens that cannot be metabolised to DHT also promote 

prostate organogenesis (Foster and Cunha., 1999). Furthermore, prostate development is 

not fully truncated by the inhibition of 5a-reductase 2 (Imperato-McGinley et al., 1992). 

This is because testosterone is sufficient for prostate development but DHT contributes 

to prostate development. This was discovered by targeting the 5a  -reductase genes in 

mice (Mahendroo et al., 2001).

Androgen levels in circulation are associated with prostatic organogenesis. In the rat, 

during the latter parts of gestation, androgen levels are high, then are reduced post-birth 

and rise again during puberty (Corpechot et al., 1981). Androgens are known to be 

responsible for stimulating the growth of epithelial buds into the inductive mesenchyme 

of el 7.5 embryos (Lasnitzki and Mizuno., 1980). Furthermore, androgenic action on the 

prostatic mesenchyme is essential for inducing correct epithelial proliferation (Shannon 

and Cunha., 1983; Takeda et al., 1985).

The VMP is present in e l 8.5 male and female rat embryos. This indicates VMP 

formation is independent of androgens. Androgen exposure of the female urogenital 

tract in vitro leads to prostate budding (Takeda et al., 1986). The VMP may induce 

epithelial branching through paracrine mechanisms. Many stromal derived factors, that 

are influential on the prostatic epithelium, have been identified. These include Insulin­

like growth factors I and II (Cohen et al., 1991), FGF7 (Yan et al., 1992), FGF10 

(Nakano et al., 1999), and SFRP1 (Joesting et al., 2008). These molecules are stromal 

paracrine effectors but there is still debate whether some of them are regulated by 

androgens (Thomson, 2001). Androgens have also been shown to decrease the 

expression of inhibitory stromal proteins such as TGFbeta (Itoh et al 1998; Tomlinson et 

al., 2004). This is true of another inhibitory protein, BMP4 (Lamm et al., 2001) that is 

downregulated by androgens in the rat ventral prostate (Pu et al., 2007).
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The smooth muscle (SM) layer is a barrier between the urethra and the VMP in rat 

urogenital tracts. There is evidence that androgens regulate prostatic development via 

the SM layer. At e20.5, the SM layer develops between the urethral epithelium and the 

VMP, but SM layer development does not occur in males (Thomson et al., 2002). In 

female reproductive tracts cultures, testosterone exposure results in a 2.4-fold reduction 

in thickness of the SM layer (Chrisman and Thomson., 2006). These observations led to 

the formation of the SM hypothesis - The SM layer acts as a barrier to epithelial 

branching into the VMP. Androgens may be responsible for the thinning of the SM layer 

in the male, allowing prostate development to occur.

The SM layer forms at e20 in rats. This time point is after the start of prostatic induction 

in terms of epithelial budding. This suggests the SM layer inhibits paracrine mechanisms 

involved in the prostate organogenesis, but not the initial induction. This hypothesis is 

supported by the association of the SM layer synthesis with the closure of a 

“programming window” (Cunha and Lung., 1978; Welsh et al 2007, 2008). The SM 

layer provides a newly proposed novel mechanism for androgens to regulate prostate 

organogenesis and offers an alternative to the andromedin hypothesis described earlier.

Oestrogens are the other major steroid hormone group that play a role in prostate 

development. The levels of circulating oestrogens in the male are much less than the 

female (Belanger et al., 1994; Ferrini and Barrett-Connor, 1998). However, a key 

enzyme involved in oestrogen synthesis, cytochrome P450 aromatase, is expressed in 

prostatic tissues (Matzkin and Soloway., 1992; Negri-Cesi et al., 1999; Ellem et al., 

2004). The prostate of Aromotase knockout mouse (ArKO) mice significantly reduced 

aromatase activity, which leads to prostate hypertrophy. These observations suggest 

correct oestrogen metabolism is crucial for normal prostate development (McPherson et 

al., 2006; Jarred et al., 2002; Simpson et al., 2004).

The two oestrogen receptors, ERa and ERP, are expressed in the rodent prostate. In 

early prostate development, ERa is detectable in the mesenchyme prior to being widely
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expressed in the developing gland. ERa expression is suppressed by androgens in later 

development. ERp is not expressed in early prostatic development (Cunha et al., 1987; 

Prins et al 2001). The expression patterns are reversed in adulthood (Makela et ah, 2000; 

Pelletier et ah, 2000; Omoto et al 2005). The presence of both ER types during prostate 

development combined with the observations from the ArKO mice indicate that 

oestrogen signalling, like androgens, have a role in rodent prostate development.

1.4 Stromal-Epithelial Interactions 

Mesenchymal-Epithelial Interactions during Development

The AR is essential for correct mesenchymal-epithelial interactions prostate 

development. During the initial stage of prostatic development, AR expression is 

confined to the mesenchyme. After the start of epithelial branching morphogenesis, AR 

expression can be found in the epithelium. All this suggests that prostate budding from 

the epithelium is mediated by androgen induced factors from the mesenchyme. The role 

of the AR in epithelial tissues is to regulate prostate control, by inhibiting epithelial 

proliferation and secretory activities, in the adult prostate gland (Wu et al., 2007).

The interactions between the mesenchyme and epithelium are essential for prostate 

development. The initial signalling stems from the UGM and these paracrine signals 

produce prostatic bud induction. The epithelium reciprocates the signalling by mediating 

the conversion of inductive mesenchyme into fibroblasts and smooth muscle. The 

spontaneous mutation that produced the androgen insensitive tfm (testicular feminised) 

mouse (Lyon and Hawkes., 1970) allowed elegant tissue recombination experiments to 

be conducted. By recombining wild type prostatic mesenchyme with tfm epithelium it 

was shown that the AR in mesenchyme, not epithelial, that was crucial for prostatic 

development (Cunha et al., 1980).
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The mesenchyme and epithelium tissues used for these recombination experiments were 

isolated using dissection and enzymatic digestion from the UGS and the other tissues. 

Tfm mice have no prostate so their tissues are very useful when used in conjunction with 

wild type tissues for recombination experiments (Figure 1.4). When tfm mesenchyme 

was recombined with either tfm or wild type epithelium, no prostatic structures 

developed. Flowever, when wild type mesenchyme was recombined with either tfm or 

wild type epithelium, prostatic structures formed. This shows that it is AR in 

mesenchyme, not epithelia, that is crucial for prostate development (Cunha and Chung., 

1981). When tfm epithelium was recombined with wild type mesenchyme, no secretions 

were observed from the luminal epithelium, although prostatic structures formed. This 

indicates that androgens induce luminal secretions via the epithelial AR later in 

development. The overall conclusions from the work by Cunha and colleagues are 

supported by AR expression studies (Hayward et al., 1996; Cooke et al., 1991) and 

investigations into androgen binding sites using autoradiographic techniques (Shannon 

and Cunha, 1983; Takedaand Mizuno, 1984; Takedaetal., 1985).
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MESENCHYME

Wild-type
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Wild-type
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77m mutant

EPITHELIUM

Wild-type

Tfm mutant

RESULTOF
RECOMBINATION

prostate form ation 
and prostatic secretions

prostate form ation but 
no prostate secretions

—  no prostate structures

Tfm mutant Tfm mutant

+ ¡S fÉ iM ìk
—  no prostate structures

Figure 1.4 Results summary of tissue recombination experiments. These 
were perform ed by Cunha et al 1978, utilising tfm  and wild type mice tissues.

Stromal-Epithelial Interactions during Adulthood

The stromal and epithelial cells that comprise the adult prostate interact in a state of 

homeostasis that regulates adult prostate function. These reciprocal interactions are the 

maintenance of SM differentiation by the epithelium and the SM in turn sustains the 

adult epithelial structure (Cunha et al., 1994; Cunha et al., 1996; Cunha et al., 2004; 

Hayward et al., 1998; Jin et al., 2004). One pathway that does not have a role in prostatic 

homeostasis is the mixed lineage kinases (Gao and Issacs., 2001). Much is unknown 

about the role of stromal-epithelial interactions in prostatic homeostasis in adults. 

However, the signalling pathways that have been characterised as having a role in
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prostate development may also have a role in prostatic maintenance, such as the FGF 

family (Cunha et al., 1996). FGF 10 plays a vital role in prostate development (Thomson 

and Cunha., 1999; Donjacour et al., 2003; Huang et al., 2005). FGF10 in the 

mesenchyme and FGFR2 in the epithelium represent one of the best-known mechanisms 

of stromal-epithelial interactions during prostate development.

Aberrant paracrine signalling in the prostate may have a role in prostate carcinomas 

(Flayward et al., 1997; Olumi et al., 1999; Barclay et al., 2005). The Notch signalling 

pathway has been characterised as having a role in prostate development, primarily 

through Notch 1 expression in the epithelium and Notch 1 knockouts result in epithelial 

hyperplasia (Wang et al., 2006). Furthermore, Notch2 signalling has a role in the 

prostate stroma development (Orr et al., 2008). As Notch signalling has a role in both 

development and disease of the prostate, it is likely it is needed for prostatic 

homeostasis.

The Secreted Frizzled-related Proteins (SFRPs) modulate of Wnt signaling through 

direct interaction with the Wnt proteins. SFRP1 has low expression in the adult rat 

prostate (Joesting et al., 2005). Overexpression of SFRP1 in the adult prostate of mice 

increases epithelial proliferation but decreases secretory gene expression (Joesting et al.,

2008). These observations suggest that Wnt signaling regulation has a role in the adult 

prostate. Members of the TGFp beta family are expressed in the adult rat prostate. PCR 

analysis has revealed that TGFP-13 is expressed in the epithelium and stroma and 

TGFP-1 is stroma in the adult rat prostate (Hayward et al., 1998). In aging rat prostates 

tissue, all three TGFp genes are expressed (Zhao et al., 2002). TGFP-1 regulates prostate 

development via FGF10 (Tomlinson et al., 2004). TGFp signaling may have a 

regulatory role in the maintenance of the adult prostate. BMP signaling represents 

another signaling system that may have a role in the adult prostate. BMP2, 3, 4 and 5 

mRNA have been detected in adult rat and human prostatic tissue. BMP4 was 

predominant in the human prostate (Harris et al., 1994). BMP7 is expressed in the adult 

prostate but this expression is lower in developing and neoplastic prostate tissue
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(Masuda et al., 2004). These observations suggest BMP signaling, likely involving 

BMP7, is involved in the maintenance of the adult prostate.

This thesis addresses the role of the EphB-EphrinB signalling pathway in prostate 

development. The next section will discuss the known expression and functions of 

EphB-EphrinB signalling in the development of other tissues and the role that EphB- 

EphrinB signalling pathway may play in disease.

1.6 Signalling families involved in rat prostate development

A number of signalling families have been reported as having a role in the development 

of the rat prostate, such as the FGF family. The FGF10 ligand is expressed in the 

prostatic mesenchyme whereas its receptor, FGFR2b, is restricted to the epithelium. This 

paracrine signalling mechanism is essential for normal prostatic organogenesis in an AR 

independent fashion (Thomson and Cunha., 1999; Lin et al., 2007). Conversely, an 

increase in FGF 10 mRNA has been reported in prostatic fibroblasts treated with 

testosterone (Lu et al., 1999).

The Sonic Hedgehog (Shh) ligand is expressed in the epithelial buds of the developing 

rat prostate. Conversely, the receptor Patched (/7c) is localised to the surrounding 

mesenchyme. Shh has been shown to regulate prostatic growth and epithelial 

differentiation (Freestone et al., 2003). It has been demonstrated that Shh signalling 

pathway is not required for prostatic induction because budding occurs in Shh mutant 

mice. Furthermore, after treating wild type urogential explants with the Shh inhibitor 

cyclopamine, prostatic epithelial budding was not truncated. However, the cyclopamine 

treatment did have an effect on epithelial duct morphology (Wang, Shou et al. 2004). 

These results suggest that Shh signalling does not have a role in prostate induction or 

budding. However, Shh signalling may have a function in prostatic duct patterning 

(Berman et al., 2004).
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The Notch 1 receptor is expressed in the basal epithelial cells of rat prostatic ducts. 

Additionally, it may function to define the progenitor cells of the epithelial lineage. 

Using a transgenic cell ablation approach, prostate branching morphogenesis and 

differentiation have been reported to be dependent on Notch 1 positive epithelial cells 

(Wang et ah, 2004, 2006). TheNotch2 receptor and the Delta-like 1 (D lkl) ligand have 

been reported as expressed in the peri-epithelial mesenchyme of the developing rat 

prostate (Orr et al., 2009). This suggests a role for Notch2 signalling within the prostatic 

mesenchyme in either an autocrine or juxtacrine manner.

Another signalling family reported to play a role in rat prostate development is the Wnt 

family. Wang et al (2008) show that Wnt signalling modulates prostatic epithelial 

branching morphogenesis and luminal epithelial cell differentiation. Rat ventral 

prostates were cultured in the presence of either the Wnt stimulating factor, Wnt3a, or an 

inhibitory factor, DKK1. Addition of Wnt3a increased cell proliferation and reduced 

luminal cell differentiation. Conversely, addition of DKK1 increased cell differentiation 

and decreased cell proliferation. These results suggest a regulatory role for Wnt 

signalling in rat prostate development. Furthermore, the gene Axin2 is a Wnt pathway 

transcriptional target. Axin2 was highly expressed in the developing prostate but down 

regulated in the adult prostate, further suggesting a developmental role for Wnt 

signalling.

Rat prostate development involves a plethora of different signalling pathways that have 

roles to play in the regulation of prostatic organogenesis. It is likely other known 

signalling pathways also have roles in the development of the prostate.

The prostate gland is an organ with highly specialized functional attributes that serves to 

enhance the fertility of mammalian species. Much of the information pertaining to 

normal and pathological conditions affecting the prostate has been obtained through 

extensive developmental, biochemical and genetic analyses of rodent species. Although 

important insights can be obtained through detailed anatomical and histological
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assessments of mouse and rat models, further mechanistic explanations are greatly aided 

through studies of gene and protein expression. RESULTS: In this article we 

characterize the repertoire of genes expressed in the normal developing mouse prostate 

through the analysis of 50,562 expressed sequence tags derived from 14 mouse prostate 

cDNA libraries. Sequence assemblies and annotations identified 15,009 unique 

transcriptional units of which more than 600 represent high quality assemblies without 

corresponding annotations in public gene expression databases. Quantitative analyses 

demonstrate distinct anatomical and developmental partitioning of prostate gene 

expression. This finding may assist in the interpretation of comparative studies between 

human and mouse and guide the development of new transgenic murine disease models. 

The identification of several novel genes is reported, including a new member of the 

beta-defensin gene family with prostate-restricted expression. CONCLUSIONS: These 

findings suggest a potential role for the prostate as a defensive barrier for entry of 

pathogens into the genitourinary tract and, further, serve to emphasize the utility of the 

continued evaluation of transcriptomes from a diverse repertoire of tissues and cell 

types.

A common approach used to identify genes involved in prostate development is gene 

profiling. Expressed Sequence Tags (ESTs) have been used to profile transcription 

within the mouse prostate (Abbott et al., 2003). Zhang et al (2005) used a serial analysis 

of gene expression (SAGE) approach that identified components of the Wnt signalling 

family in early prostate development. More recently, SAGE has been used to identify 

mRNAs localised to the VMP (Vanpoucke et al; 2007). Gene profiling is a quick method 

of identifying candidate genes and pathways involved in prostate development.
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1.7 The Eph-Ephrin Signalling Family 

Discovery and Organisation

The Eph receptor family is the largest receptor tyrosine kinase (RTK) family. To date,

16 receptors (14 found in mammals) and 9 ligands (8 in mammals) have been identified. 

The first member of the Eph family was identified and cloned from an Erytropoietin 

Producing Hepatocellular (Eph) carcinoma cell line (Hirai et al.. 1987). Various 

members of the Eph receptor and Ephrin ligand family were soon discovered and were 

all given different names. In 1997, the Eph Nomenclature Committee standardised the 

terminology (summarised in Table 1.2) The Eph family is separated into two classes, 

EphA and EphB. The main differences between the two classes are their ligand 

specificity. EphA receptors bind preferentially to EphrinA, and EphB receptors to 

EphrinB ligands (Himanen and Nikolov., 2003). However, some crosstalk can occur 

between the A and B classes. For example, receptor EphA4 and ligand EphrinA5 can 

interact with EphrinB2 and EphB2, respectively (Bouzioukh et al., 2007; (Himanen, 

Chumley et al. 2004).
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  EphA1
— EpnA2
— EphAS

— EphA7
— EphA3
—  EphA6
— EphA5

—  EpnA4 

Epntil

— EphB2
—  EphB3
  EphB5
 EphB6
  EphB4

ephrm-A 1 — 

ephrin-A3 

epnrin-A4 —

ephrm-A5 - 

ephrm-A2 

ephrm-B2 -  

ephrin-B l - 

ephrin-B3 -

Figure 1.5. Sequence Homology Trees for Eph receptors and Ephrin 

ligands (Adapted from Eph Nom enclature Com m ittee, 1997)

Receptors Llqands
N ew Name P re lvous Nam e N ew  Name P revious Nam e

È P h A l Eph. Esk E o rh ln A l 661. LERK-1, EEL-1
EpFiA2 Eck. Mvk2, Sek2 EohrlnA2 ELF-1, C e k M . LERK-6
EpF>A3 Cek4, Mek4. Hek, TvroR Ke:<4 E prh inA3 Ehkl-L, EFL-2, LERK-3
EohA4 Sek, S eki, Cek8, HekS. Tvro l EohrinA4 LERK-4; EFL-4
EpFiAS E hk l. Bsk. Cek?, Hek?, Ftek? EohrlnAB AL-1. RAGS: LERK-7. EFL-5
EphAfi- Ehk2. H ekl2
EohA7 M dkl, H e k li.  Ehk3, Ebk. C e k ll
EphA& Eek, Hek3

E p h B l Elk. Cek6, Net, Hek6 E o h rin S l LERK-2, Elk-L, EFL-3, Cek5-L. STRA-1
EpFlB2 CekS. Nuk. Erk. OekS, TvroS, Se;<3. HekS, Dr: Ephr!nB2 Htk-L, ELf-2, LERK-S, k LERK-1
EphB3 CeklO. Hek2. Mck5. ïv ro fi, Sek4 EohrlnS3 NLERK-2. El<-L3. EFL-6. ELF-3. LERK-8
EphB4 Htk. M vk l, T v ro ll ,  Mdk2
EphSS Cek9. Hek9
EphBS Mep

Table 1.2 Nomenclature for the Eph Receptor and Ephrin Families.

(Adapted from Eph Nom enclature Committee, 1997)
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Eph-Ephrin Structure

The Ephrin ligands are membrane bound proteins and consist of two groups. The 

EphrinA group is attached to the cell surface via a glycosylphosphotidylinositol (GPI) 

anchor. The EphrinB ligands are transmembrane proteins. The structure of the Eph 

receptor is displayed (Figure 1.6). The extracellular domain has many components. The 

globular domain functions as a ligand-binding domain. The rest of the extracellular 

domain is comprised of a cysteine rich region and two fibronectin type 111 repeats.

The intracellular component of the receptor has four main sections. The juxtamembrane 

contains two conserved tyrosine residues. The other three components are a protein 

tyrosine kinase domain, a sterile a-m otif (SAM) and a PDZ binding domain. The 

structure of the SAM domain suggests dimers and oligomers can form. Additionally, a 

consensus binding sequence exists in the PDZ binding domain that includes a 

hydrophobic residue at the very carboxyl terminus (Labrador et al., 1997; Himanen et 

al., 1998; Toth et al., 2001; Himanen et al., 2001).

EphA receptors bind EphrinA ligands and EphB receptors bind EphrinB ligands. 

However, exceptions have emerged in recent years. For example, EphrinA5 can activate 

the EphB2 receptor (Himanen et ah, 2004) and EphA3 and EphrinB2 can interact in 

vitro (Cerretti et ah, 1995; Lackmann et al., 1997). Therefore there is the potential for 

signalling of A and B class ligands through both A and B class receptors.
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Figure 1.6. General features of Eph receptors and ephrins. (Taken from 

K u llanderand  Klein., 2002).
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Eph-Ephrin Functions

The role of Eph as a chemotactic signal has been studied most extensive in neural and 

vascular development (Wilkinson et al., 2001 ; Adams et al., 2002; Poliakov et al., 2004). 

Other functions that the Eph family have roles in include cell-cell adhesion, modulating 

the actin cytoskeleton, intracellular junctions, and cell shape and movement (Pasquele 

2005; Egea and Klein., 2007; Himanen et al., 2007;). Eph function has also been 

implicated in developmental contexts. More specifically, these include EphB2 and 

EphrinB2 in urorectal development (Dravis et al., 2004), EphB2 and EphrinB2 in kidney 

homeostasis (Ogawa et al., 2006, Hashimoto et al., 2007) and EphrinB2 in lung 

development (Wilkinson et al., 2008). These examples are relevant to prostate 

development because the prostate is a urogenital organ that uses branching 

morphogenesis as a developmental mechanism, similar to the kidney and lung. 

Additionally, these examples relate to members of the EphB-EphrinB signalling family 

that are the focus of this thesis.

A unique feature of the EphB receptors and the EphrinB ligands are their capability to 

produce bidirectional signals that affect both receptor expressing cells and ligand 

expressing cells (Mellitzer et al., 1999). EphB receptor ‘forward’ signalling mediates the 

phosphorylation of other proteins in addition to the autophosphorylation of the receptor. 

These processes are dependent on the EphB receptor’s intracellular tyrosine kinase 

domain. The intracellular region of the EphrinB ligand provides the tyrosine 

phosphorylation that is essential for EphrinB ligand ‘reverse’ signalling. This is a signal 

from a receptor expressing cell influencing downstream gene transcription in a ligand 

expressing cell (Egea and Klein., 2007). This reverse signalling commences in EphrinB 

clusters via their phosphorylation by Src kinases (Holland et al., 1996). These supply 

docking sites for adaptor proteins such as Growth Factor Receptor-Bound protein 4 

(Grb4), for the initiation of signalling mechanisms that regulate the actin cytoskeleton
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(Cowan et al., 2001). The diverse functions and signal transduction mechanisms of Eph 

signalling will be discussed later.

EphB signalling and Prostate Cancer

There is evidence to suggest that EphB signalling has a role to play in prostate 

carcinogenesis. It has been shown that EphB2 may have a critical role in prostatic cell 

migration during cancer. The combined techniques of nonsense-mediated RNA decay 

microarrays and array-based comparative genomic hybridisation revealed, a biallelic 

nonsense mutation in the EphB2 gene of the DU145 prostatic cancer cell line. This 

Q723X amino acid change truncated the EphB2 receptor at the kinase domain leading to 

functional redundancy. Moreover, approximately 8% of primary and metastatic prostate 

cancers examined possessed the truncating mutation. Functional evidence for EphB2 

having a role in prostatic cell migration was shown when DU145, which lacks functional 

EphB2, was transfected with wild type EphB2. This transfection resulted in over 80% 

clonogenic growth reduction (Huusko et al., 2004). This data suggests EphB2 may be a 

tumour suppressor gene in prostate cancer.

Fox et al (2006) conducted an expression profile of EphB receptors and EphrinB ligands 

in normal prostate, primary prostatic tumours and invasive prostatic tumours. EphB2 

was found to have increased expression in the normal prostate and primary prostatic 

tumours compared to the invasive prostatic cell lines. This reinforces other evidence 

implicating EphB2 as a prostatic tumour suppressor gene (Hussko et al., 2004). The 

EphB3 receptor is expressed in normal prostate and invasive cell lines but not primary 

cancer samples. These observations suggest EphB3 maybe a tumour suppressor because 

it is downregulated in the primary cancer samples. However, as it expressed in the 

invasive cell lines, this suggestion may seem unlikely. The EphrinB 1 and EphrinB2 

ligands were expressed in normal prostate, primary tumours and invasive cell lines at 

similar levels (Fox et al., 2006). The metalloprotein, Azurin, is structurally similar to the 

EphrinB2 ligand and has been shown to preferentially enter cancer cells, and induce
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apoptosis. Azurin possesses a high binding affinity for the EphB2 receptor. In DU145 

cells with functional EphB2, azurin shows a cytotoxic effect whereas as the EphrinB2 

ligand increased cell proliferation (Chaudhari et ah, 2006). Collectively, this evidence 

suggests EphB signalling has a role in prostate cancer progression that has yet to be fully 

characterised.

1.8 EphB Signal Transduction and Intracellular Signalling

Eph receptors and Ephrin ligands on adjacent cells can dock with their amino-terminal 

domain to create dimers in addition to higher order clusters at the cell-cell interface 

(Himanen et ah, 2001). These higher order structures induced by Ephrin ligand binding 

autophosphorylates the Eph receptor cytoplasmic tyrosines (Kalo et ah, 1999). This 

autophosphorylation weakens the inhibitory interactions that exist between the kinase 

and juxtamembrane domains of the Eph receptor. This boosts kinase activity and 

produces docking sites for downstream signalling proteins with SH2 domains (Binns et 

ah, 2000). However, some essential protein interactions occur in the absence of Eph 

receptor autophosphorylation. These encompass interactions with PDZ domain 

containing-proteins and many guanine nucleotide exchange factors (GEFs) for Rho 

family proteins (Kullander and Klein., 2002).

Eph receptors have both kinase dependent and kinase independent functions mediated 

through relatively unknown mechanisms. This section will review the current level of 

understanding with regard to the signal transduction and intracellular signalling of the 

EphB-EphrinB interactions.
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EphB Signalling with Rho proteins

The major transducers of EphB forward (ligand to receptor) signalling are the small 

GTP-binding proteins of the Ras and Rho families (Noren and Pasquale., 2004). 

Activated Rho and Ras proteins bind to downstream effectors to promote pathways that 

regulate many cellular properties such as actin cytoskeleton organisation, cell migration 

and gene transcription. Two members of the Rho family are Racl and Cdc42. In 

hippocampal (forebrain) neurons EphB2 signals through these two proteins by 

associating with Intersectin and Kalirin, two exchange factors for Cdc42 and R acl, 

respectively. Intersectin binds to the EphB2 kinase domain regardless of receptor 

activation (Irie et al., 2002; Penzes et al., 2003). Neural Wiskott-Aldrich syndrome 

protein (N-WASP) acts with EphB2 to stimulate Intersectin. N-WASP is known to 

interact with Arp 2/3, an actin-polymerising complex; this gives direct connection from 

EphB forward signalling to actin filament regulation. Intersectin2 is also known to have 

a downstream function from Eph forward signalling (Schmidt and Hall., 2002; Cory et 

al., 2002).

Another EphB associated exchange factor is Kalirin. It is mainly expressed in the 

nervous system and has a role in spine morphogenesis (Penzes et al., 2001). EphrinB 1 

can activate EphB2 receptors in immature hippocampal neurons. This provides Kalirin 

recruitment at EphB2 clusters and positively regulates dendritic spine morphogenesis. 

Kalirin only binds to the activated form of EphB2 (Penzes et al., 2003). EphrinB 1 ligand 

exposure to hippocampal neurons increases Kalirin phosphorylation and upregulates Pak 

activation. Pak is a serine/threonine kinase and a downstream effector of Racl. Another 

example of Rho protein activity from EphB activation comes from Moeller et al (2006). 

Dendritic spine morphogenesis is regulated by EphB receptors. The downstream effect 

of the EphB receptors is FAK (Focal Adhesion Kinase) mediated RhoA activation that 

contributes to actin filament formation in dendrite spines.
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KALIRIN
INTERSECTIN

M ORPHO G ENESIS

Figure 1.7 GEFs that bind to EphB receptors. EphB receptors signal to Rac1 
and Cdc42 through Kalirin and Intersectin in hippocam pal neurons (Adapted 
from Noren and Pasquale., 2004).

EPHRIN-B

The Pak-interacting exchange factor, aPix, is an additional exchange factor for Racl and 

Cdc42. aPix may have a function in GTPase activation downstream of the EphB 

receptor (Yoshii et al., 1999). aPix is linked with activated EphB2 via an interaction 

with Nek, an adaptor protein (Holland et al., 1997). Pix and Pak both localise to focal 

adhesions, and maybe they modulate integrin activity downstream of EphB signalling.
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Racl is needed for cellular spreading and membrane ruffling in human aortic endothelial 

cells exposed to the ligand EphrinBl (Nagashima et al., 2002). Contact between EphB 

expressing cells and EphrinBl expressing cells leads to a process similar to localised 

phagocytosis and is reliant on actin polymerisation downstream of activated Racl 

(Marston et al., 2003; Zimmer et al., 2003). Ligand activation of EphB receptors in 

intestinal epithelial cells reduces Racl activity (Batlle et al., 2002). Therefore, the role of 

Racl is cell context dependent.

EphB Signalling with Ras proteins

The main Ras protein linked with EphB signalling is H-Ras. In its active form, H-Ras 

can activate a large number of serine/threonine kinase including Mekl and the MAP 

kinases, Erkl and Erk2 (Johnson et al., 2002; Campbell et al., 1998). The Eph receptors 

are part of a small group of signalling families that negatively regulate H-Ras and the 

MAP kinase pathway in different cells (Elowe et al., 2001; Miao et al., 2001). The 

pathways under the regulation of H-Ras are known to have influence on cell 

proliferation, adhesion and axon guidance (Forcet et al., 2002; Hughes et al., 1997).

Fluorescent energy transfer experiments have shown that EphB receptors, activated by 

EphrinBl ligand, in human aortic endothelial cells inhibit Ras activity. Ras/MAP kinase 

inhibition provides an explanation for the decrease in cell proliferation rate by Eph 

receptors (Nagashima et al., 2002). Eph receptors can also inhibit the Ras/MAP kinase 

pathway in hippocampal neurons (Grunwald et al., 2001).

Eph receptors can activate Ras pathways, not just inhibit them. Overexpression of EphB 

receptors in many cell types can activate Erkl and Erk2 MAP kinases (Grunwald et al., 

2001; Vindis et al., 2003). The EphB receptors have a role in the regulation of Ras 

family members other than the MAPK proteins. Integrin mediated adhesion is inhibited 

by EphB2 via tyrosine phosphorylation in the R-Ras effector domain (Zou et al., 1999). 

This phosphorylation curbs the capability of R-Ras to stimulate integrins.
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SHEP1 is a candidate signalling protein to link EphB2 to R-Ras. SHEP1 can bind 

directly to both EphB2 and R-Ras, indicating that SHEP1 localises R-Ras at sites of 

EphB2 activation (Dodelet et al., 1999). Rapl, related to R-Ras, may also be linked to 

EphB receptors through SHEP1 though a protein complex including the adaptor protein 

Crk. In response to EphrinBl stimulation, Rapl is activated at membrane ruffles of 

human aortic endothelial cells. This activation is Crk dependent. This provides evidence 

that Rapl interacts with EphB receptors (Nagashima et al., 2002).

To summarise, the major transducers of EphB forward (ligand to receptor) signalling are 

the small GTP-binding proteins of the Ras and Rho families (Noren and Pasquale., 

2004). GTPases are molecular switches that flux between the inactive GDP-bound state 

and the active GTP-bound state (Holland et al., 1996). The utilisation of GEFs allows 

the exchange of GDP for GTP. This exchange is inhibited by GTPase-activating proteins 

(GAPs), which mediates GTP hydrolysis to GDP. To complicate the picture further, 

Guanine nucleotide Dissociation Inhibitors (GDIs) have many functions such as 

membrane translocation regulation. These GDIs additionally negatively regulate Rho 

proteins (Bourne et al., 1991).

EphB Signalling and G protein coupled receptors (GPCRs)

EphrinB reverser signalling can regulate downstream signals of GPCRs. PDZ-RGS3 is a 

GTPase activating protein for GPCRs and the PDZ domain of this protein docks 

constitutively with the intracellular PDZ-binding domain of the EphrinBl ligand. 

Clustering of EphrinBl occurs at the EphB2 receptor in cerebellar granule neurons. 

Following this, PDX-RGS3 impairs chemoattraction via Stromal Derived Factor 1 

(SDF1). The chemokine SDF1 binds the CXCR4 receptor that is a GPCR. EphB 

receptor activation of EphrinBl affects cell migration in the cerebellum by making the 

neurons insensitive to SDF1 (Lu et al., 2001). This represents an example of EphrinB 

reverse signalling. More recently, EphrinBl reverse signalling has been shown to lead to
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STAT3 transcription in the nucleus mediated by the tyrosine kinase Jak2 (Bong et ah, 

2007). STAT3 plays important roles in development and tumourigenesis. The fact that 

EphrinB reverse signalling is responsible for its activation suggests EphrinB signalling 

has more roles in development that are yet to be elucidated.

EPHRIN B

CHEMOTAXIS

Figure 1.8 EphrinB signalling via PDZ-RGS3 inhibits Chemotaxis. SDF1 
binds to CXCR4 and activates intracellular signalling. PDZ-RGS3 binds 
constitu tively to the PDZ dom ain o f EphrinB and induces a reversal o f SDF1 
initiated signalling by inactivating the a  subunit of the protein com plex at CXCR4 
(Adapted from Noren and Pasquale., 2004).

Interestingly, SDF1 and CXCR4 have been shown to have a role in prostatic 

tumorigenesis in vitro and in vivo via crosstalk with the TGFß pathway. SDF1 is 

produced by Cancer Associated Fibroblasts (CAFs), and acts through the TGFß- 

regulated CXCR4 to stimulate the serine-threonine kinase, Akt. This Akt activation 

occurs in epithelial cells and promotes tumourigenesis. This means the inhibitory effects 

of TGFß become redundant (Ao et al., 2007). EphB receptors do appear to crosstalk 

with other signalling pathways.
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EphB Signalling Crosstalk with Cell Surface Receptors

A large number of reports have suggested interactions between Eph-Ephrin signalling 

and another large family of receptor tyrosine kinase (RTK), the FGF family. In Xenopus 

embryos, activated FGF receptor (FGFR) can bind to EphrinBl and inhibit its ability to 

induce blastomere dissociation (Chong et al., 2000). In eye field formation in Xenopus, 

FGF and EphB regulate eye fields access by modulating cellular movement (Moore et 

ah, 2004). These studies indicate an antagonistic interaction between Ephrin and FGF 

pathways.

RYK is a RTK that has an inactive tyrosine kinase domain. This inactive RTK has been 

shown to interact with EphB receptors directly, and activated EphB receptors can 

phosphorylate the tyrosine residues of RYK in the mouse. The recruitment of AF-6, a 

junction protein, to EphB receptors could mediate downstream effects (Halford et ah, 

2000). Additionally, the same direct interaction between EphB3 and RYK has been 

observed in rats. RYK regulates cell migration through binding to EphB receptors during 

rat cortical development. It was shown that RYK binds to EphB3 in particular in vitro 

(Kamitori et ah, 2005).

RYK is a receptor for Wnt proteins and an antagonistic association exists between 

Wnt/RYK and EphB-EphrinB signalling in retinotectal topographic mapping (Inoue et 

ah, 2004; Lu et ah, 2004; Schmitt et ah, 2006). Wnt3/RYK has a function as a lateral 

mapping force to counterbalance the medial mapping force of EphB-EphrinB signalling 

in the dorsal midbrain (Schmitt et ah, 2006).
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EphB Signalling Crosstalk with Adhesion Proteins

There is evidence to suggest the activation of EphB-EphrinB signalling increases 

integrin mediated cell adhesion (Huynh-do et al. 1999; Prevost et ah, 2004, 2005). 

Conversely, other reports show negative regulation of integrin mediated cell adhesion by 

EphB signalling (Zou et ah, 1999). These regulatory outcomes do not seem to be 

connected to a particular EphB receptor/Ephrin ligand binding pair. Contrasting effects 

of EphB signalling on integrins is likely due to different cellular contexts. The EphB and 

integrin interaction is at the level of intracellular downstream signalling. The signalling 

molecules involved are either cytoplasmic kinases such as FAK or MAPK or small 

GTPases such as Rac, Rho or Ras. There is only one report that indicates a direct 

association between an EphB receptor and an integrin (Prevost et al., 2005).

The Immunoglobin superfamily (IgSF) of proteins are involved in many developmental 

processes, such as chemotactic guidance, like the EphB family. WRK-1 is a C.elegans 

IgSF protein that associates with EphB signalling (Boulin et al., 2006). The axon 

guidance receptor, Robo, is a member of the IgSF family and is also involved in 

C.elegans midline guidance (Dickson and Gilestro., 2006). The C.elegans Robo 

homologue is sax-3 that associates with vab-1, an Eph receptor, to regulate axon 

guidance and morphogenesis. Direct binding between sax-3 and vab-1 has been shown 

using yeast two-hybrid and GST-pull down assays (Ghenea et al., 2005). Evidence for 

associations between EphB and IgSFs in higher order organisms is more lacking. The 

EphB2 receptor has been demonstrated to bind to the IgSF LI (Zisch et al., 1997). 

Additionally, neuronal growth cones exposed to endogenous LI became insensitive to 

EphB2 (Suh et al., 2004).

Claudins are a key component in tight junctions that are found in the lateral membrane. 

Tight junctions represent a partition that limits molecular movement between epithelial
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barriers (Hartstock and Nelson., 2007). Claudin-4 has been reported to bind to 

EphrinBl. This causes EphrinBl tyrosine phosphorylation that has downstream 

implications for cellular adhesion in mammalian epithelial cells (Tanaka et al., 2005). 

EphrinBl has additionally been reported to associate with Par6. This scaffold protein is 

required in the construction of tight junctions. The association between EphrinB 1 and 

Par6 is inhibited by EphrinBl cytoplasmic tyrosine phosphorylation. Furthermore, 

EphrinBl competes with Cdc42 for association with Par6. This competition can result in 

the loss of tight junction formation (Shuk-Lee et al., 2008).

EphB Signalling Crosstalk with Cell Surface Proteases

Presenilins are highly conserved transmembrane proteins that are the active component 

of y-secretase complexes (Takasugi et al., 2003). Through the action of an aspartate 

protease, the y-secretase complexes cleave single span transmembrane proteins to 

produce a separate intracellular domain (ICD). These ICDs have been reported to 

function as transcriptional activators (e.g. Notch and CD44) or repressors (Jagged and 

N-cadherin) within the nucleus (Reviewed in Kopan and Ilagan., 2004).

EphrinB ligand ICDs have been identified as components of EphrinB reverse signalling. 

EphB-EphrinB2 binding has been shown to promote the sequential processing of 

EphrinB2 by matrix metalloprotease (MMPs) and y-secretase to generate an EphrinB2 

ICD. This novel ICD binds to Src and removes a Src repressor named Csk, permitting 

Src activation. EphrinB2 ICD degradation has been shown to decrease Src activation 

(Georgakopoulos et al., 2006). Furthermore, an EphrinBl ICD has been reported to be 

involved in actin filament regulation (Tomita et al., 2006). These two examples 

implicate y-secretase in EphrinB reverse signalling. Other reports have shown that the 

cleaving of other domains may occur in EphB forward signalling as well.
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The EphB2 receptor has been shown to undergo proteolytic cleavage by two 

mechanisms, calcium influx and EphrinB2 ligand binding. The protease ADAM 10 was 

identified as the enzyme for calcium mediated processing of the EphB2 receptor 

extracellular domain. The interactions between EphB2 and EphrinB2 gave increased 

extracellular domain cleavage. This was subsequently followed by y-secretase activity 

and EphB2 ectodomain breakdown (Litterst et al., 2007). Proteolytic cleavage has roles 

in the transduction of both EphB forward and EphrinB reverse signalling.

1.9 EphB-EphrinB Functional Roles In Biological Processes 

Neuronal Development and Axon Guidance

EphB-EphrinB signalling modulates a number of cell-cell contact dependent processes 

in both the developing (Cooke and Moens, 2002; Poliakov et al., 2004) and mature 

(Murai and Pasquale., 2002; Yamaguchi and Pasquale., 2004) central nervous system 

(CNS). A repulsive response is the main function of the EphB signalling in neuronal 

movement. However, an attractive cue is another role for EphB-EphrinB signalling 

(Holmberg and Frisen., 2002; Eberhart et al., 2004).

EphB-EphrinB signalling is extremely well documented in the nervous system. Some of 

the neuronal process that EphB-EphrinB interactions regulate include neural crest cell 

migration (Krull et al., 1997; Santiago and Erickson., 2002; Davy et al., 2004), 

neuroblast migration (Conover et al., 2000), inner ear axon guidance (Cowan et al., 

2000; Brors et al., 2003), retinal ganglion cell axon guidance (Birgbauer et al., 2000; 

Mann et al., 2002; McLaughlin et al., 2003), and hippocampal axon bundling (Chen et 

al., 2004). In the spinal cord itself, the EphrinB ligands have been reported to have 

several roles. EphrinB3 has a repulsive function at the ventral midline of the developing 

mouse spinal cord (Imondi et al., 2000). EphrinB 1 and EphrinB2 are known to repel 

embryonic spinal motor axons in vitro (Wang and Anderson., 1997). Furthermore,
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EphrinB induced forward signalling is needed for murine spinal midline guidance 

decisions (Kadison et al., 2006).

Angiogenesis

Many o f the EphB-EphrinB family members are expressed in the cardiovascular system. 

However, the EphB4 receptor and the EphrinB2 have been the main research focus in 

the field. EphB4 expression is mostly venous-specific in contrast to the expression o f 

EphrinB2 that is largely restricted to arterial endothelial cells. Targeted inactivation of 

EphB4 and EphrinB2 has shown that they are crucial for angiogenic remodelling (Wang 

et al., 1998; Adams et al., 1999). EphrinB2 also has a critical role in blood vessel 

endothelial lining (Gerety and Anderson., 2002).

The Eph receptors and Ephrin ligands are involved in the regulation o f common 

developmental systems. The Notch pathway is responsible for modulating the 

simultaneous EphrinB2 up regulation and EphB4 down regulation in the arterial 

endothelium (Heroult et al., 2006). EphrinB2 activity is also increased by exposure to 

Vascular Endothelial Growth Factor (VEGF) (Gale et al., 2001). Although the genetic 

evidence for EphB involvement in angiogenesis is substantial, the mechanism by which 

they function has not been elucidated. Exposure o f cultured endothelial cells to EphB 

and EphrinB recombinant proteins stimulates branching angiogenesis (Palmer et al.,

2002). This suggests forward, reverse or both signalling directions are involved in the 

mechanism. EphB4 and EphrinB2 have been also been associated with the development 

o f the lymph system. It has been observed that EphB4 is expressed in the lymphatic 

vasculature and EphrinB2 in the endothelium of the collecting lymphatic vessels 

(Makinen et al., 2005). The EphB family clearly have a role to play in angiogenesis and 

vascular development but its mechanistic action is yet to be known.
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Immunology and Immunological Development

A number o f the Eph receptors and their respective ligands are expressed in immune 

cells, particularly during T-cell development (Gurniak and Berg., 1996). The kinase 

deficient EphB6 receptor is capable o f signalling in T-cells, likely through an adapter 

protein such as Cbl or Grb2 (Luo et al., 2001). These studies show that EphB signalling 

is both present and functional in T-cells. EphrinBl in particular has received much 

attention in the field o f immunology.

EphrinBl has been reported to stimulate T-cell proliferation. MAPK signalling is 

enhanced by EphrinBl-Fc exposure to cultured mice T-cells. Furthermore, EphrinB 1 

knockdown mice experience comprised T-cell development and function (Yu et al., 

2004). More recently it has been reported that EphrinBl mediated signalling has a 

crucial role in maintaining the organisation o f 3D epithelial structure that supports T-cell 

maturation in vivo. Additionally, EphB-Fc and EphrinB-Fc treatments reduce the extent 

of cell conjugations between thymocytes and thymic epithelial cells (Alfaro et al., 2007). 

It is clear that EphB-EphrinB interactions play a very active role in the immune system.

Stem Cell Niche Regulation

Stem cell proliferation is partly mediated by neighbouring cells that create the stem cell 

niche (Mikkers and Frisen., 2005). A number of studies have implicated EphB and 

EphrinB proteins as functional components in the regulation o f these niches. For 

instance, a number o f gain and loss o f function experiments revealed a role for EphB 

signalling in the intestinal stem cell niche. By using overexpression mutations in the 

EphrinB2 and EphB2 genes, it was concluded the enhanced EphB signalling increases 

intestinal progenitor cell proliferation. EphB2 and EphB3 knockout mice showed that
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these kinase dependent signalling receptors stimulate cell-cycle re-entry o f intestinal 

progenitor cells (Holmberg et ah, 2006).

Another example o f EphB involvement in stem cell biology comes from dental pulp 

stem cells (DPSCs). EphrinBl and EphrinB3 are expressed in the tissue surrounding the 

DPSC while most o f the EphB receptors themselves are expressed predominantly on the 

DPSC. The bidirectional signalling caused by the EphB-EphrinB interactions has been 

reported to inhibit cell spreading. The mechanism by which this was achieved was the 

MAPK pathway for forward signalling and Src phosphorylation for EphrinB reverse 

signalling. Forward signalling through the EphB receptors is also responsible for 

impairing DPSC migration (Stokowski et ah, 2007). EphB receptors have also been 

shown to have in vivo roles in hippocampal stem/progenitor cell regulation in the 

forebrain through interactions with EphrinB3 (Chumley et ah, 2007).

As EphB signalling has been reported to have functional roles in intestinal and dental 

stem cell regulation, they may have involvement regulating in stem cells in other organs.

Roles in Other Organs

The EphB-EphrinB signalling system has additionally been shown to have functions in a 

number o f other organs such as the kidney and lung. Both the kidney and lung develop 

through the mechanism o f branching morphogenesis like the prostate.

However it is in the adult kidney where EphrinBl and EphB2 have putative roles 

regulating the cellular architecture and spatial organisation o f renal tubules. These roles 

were elucidated in various assays utilising the EphrinB 1-Fc and EphB2-Fc recombinant 

proteins and the EphB2 antagonistic peptide, SNEW. Through the application o f a Rho 

kinase inhibitor, it was revealed the activation of the RhoA-ROCK intracellular pathway 

that modulates the EphB receptor effects on cellular morphology (Ogawa et al., 2006). 

RhoA proteins are known to mediate EphB downstream effects.
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EphB signalling has more recently been reported as having a functional role in the 

development o f the lung. More specifically, the ligand EphrinB2 has an essential role in 

postnatal alveolar development and elastic matrix integrity. Mice EphrinB2 knockouts 

display a near complete alveolar absence. Additionally, a mouse EphB3 knockout 

displays a reduced distribution o f the elastic matrix component fibrillin-1 (Wilkinson et 

ah, 2008).

EphB-EphrinB bidirectional signalling has been shown to have a role in urorectal 

development. The EphrinB2 ligand and the receptors EphB2 and EphB3 have cell 

adhesion roles that canalise the urethra and split the urinary and alimentary tracts. Mice 

that carry a mutation that specifically disrupts EphrinB2 reverse signalling develop 

hypospadia and incomplete cloacal septation. Furthermore, 25% o f mice with compound 

EphB2/EphB3 knockouts gave a hypospadia phenotype. This data indicates that both 

forward and reverse EphB-EphrinB signalling is required for correct urorectal 

development in the mouse (Dravis et ah, 2004).

EphB Signalling and Cancer

Epigenetic silencing o f Eph genes and somatic mutations within their DNA sequences 

has been discovered in many forms o f cancer. Evidence has come forward for EphB- 

EphrinB signalling involvement in both tumour suppression and promotion. It appears 

the role o f EphB-EphrinB interactions depends on tumour type and cellular context 

(Merlos-Suarez and Batlle., 2008).

The best-studied role o f EphB-EphrinB signalling in cancer is in colorectal cancer. 

During normal intestinal development, EphB2 and EphB3 signalling regulates the 

positioning o f cell types along the crypt-villus axis (Batlle et ah, 2002). In colorectal 

cancer, tumour cells that exhibit EphB receptors are unable to spread into EphrinBl 

positive areas o f the intestine, both in vivo and in vitro. This tumour
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compartmentalization leads to tumour suppression in the colon. The mechanism is 

dependent on the capability o f EphB signalling to maintain E-cadherin adhesion (Batlle 

et ah, 2005; Cortina et ah, 2007).

EphB signalling has been reported to play a role in breast cancer. In mammary 

carcinoma cells, the EphB4 receptor is known to induce an anti-oncogenic pathway 

consisting o f the Abl tyrosine kinases and the adapter protein Crk. The EphB4 receptor 

can act like a tumour suppressor in a mouse xenograft model o f breast cancer when 

stimulated by EphrinB2. The Abl-Crk pathway is likely to mediate the anti-neoplasic 

effects o f EphB4 activation (Noren et al., 2006). Furthermore, an Abl kinase inhibitor is 

capable o f impairing EphB4-induced tumour suppression. Collectively, this suggests the 

EphB4 receptor may function as a tumour suppressor gene in the context o f breast 

cancer.

The EphB2 receptor is mutated in approximately 10% of prostate cancer tumours. 

Additionally, the prostate cancer cell line DU 145 lacks functional EphB2. When DU 145 

cells are transfected with wild type EphB2, clonogenic growth is reduced (Huusko et al., 

2004). This data suggest a role as a tumour suppressor gene for EphB2 and its 

inactivation through mutation may affect prostate cancer phenotypes. These aspects 

include abnormal growth, invasion and metastasis. As with EphB4 in breast cancer, 

EphB2 is a candidate tumour suppressor in prostatic neoplasia.
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1.10 Summary

The presence o f androgens and correct mesenchymal-epithelial interactions are both 

vital for prostate development (Cunha et al., 1983; Tenniswood., 1986). Mesenchymal- 

epithelial interactions are vital in the development o f many other organs, for example the 

lung and kidney. Many different proteins and signalling pathways have been reported to 

be important in the regulation o f prostate organogenesis (Cohen et ah, 1991; Lamm et 

ah, 2001; Donjacour et ah, 2003; Pu et ah, 2004; Cook et ah, 2007). Despite this level 

o f knowledge o f prostate development, the picture is not complete. There are many 

genes and pathways that have a functional role in prostate development, which are yet to 

be discovered and characterised.

The EphB proteins are one o f the largest families o f tyrosine kinase receptors. Both the 

EphB receptors and their EphrinB ligands are transmembrane proteins that bind in a cell- 

to-cell contact dependent manner (Mellitzer et ah, 1999). The Rac and Rho proteins are 

the major transduction intracellular signalling mechanisms for EphB-EphrinB signalling 

(Groeger et ah, 2007). These intracellular mediators can be activated in both the receptor 

and ligand expressing cells through the bidirectional signalling nature o f the EphB 

family. The downstream effects o f EphB signalling include cell migration, proliferation 

and positioning. The downstream effects are well characterised in neural development 

(Wilkinson et ah, 2000). Elowever, EphB-EphrinB interactions have functions in other 

developmental systems such as lung and urorectal development (Wilkinson et ah, 2008; 

Dravis et ah, 2004).

Previously, a serial analysis o f gene expression (SAGE) identified 219 mesenchyme- 

enriched transcripts (Vanpoucke et al; 2007). Mesenchyme signalling molecules are 

known to play a key role in prostate development. A whole mount in-situ hybridisation 

analysis identified 13 mRNAs restricted to the mesenchyme, including a mRNA that
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encodes the EphB3 tyrosine kinase receptor. Following this, the EphrinB 1 ligand was 

shown as expressed in the prostate mesenchyme and the EphB2 receptor and EphrinB2 

ligand appeared to be epithelial specific. Functional analysis o f the EphB-EphrinB 

signalling family in vitro revealed possible mechanisms by which EphB-EphrinB 

regulates rat prostate development.

1.11 Thesis Objectives

The objectives o f this thesis were firstly to identify a number of transcripts with 

expression patterns restricted to the prostate mesenchyme using whole mount in-situ 

hybridisation (WISH). The candidate transcripts for this purpose came SAGE data 

examining transcript abundance in the neonatal rat prostate (Vanpoucke et al., 2007).

Following this, this project aimed to characterise a small number o f the mesenchymal 

transcripts, along with the transcript’s gene and gene product, in the context o f prostate 

development. Expression and functional analyses was conducted using a range o f 

different techniques including quantitative PCR, immunohistochemistry and in vitro 

organ culture.
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2 Materials and Methods
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2.1 Materials

2.1.1. Equipment

Agarose Gel electrophoresis was performed using Bio-Rad Equipment.

N ucleic acid concentrations were determined using a Nanodrop Spectrophotom eter ND- 

1000.

W hole m ount in-situ hybridisations were performed using an Invatis InsituPro VS robot 

and pictures taken using a Leica MZ95 microscope and camera.

PCR was perform ed using a PTC-200 Peltier Thermal Cycler DNA Engine from  M J 

Research and visualised on a Syngene Bio Imaging GeneFlash UV transilluminator.

Confocal M icroscopy was performed on Zeiss LSM 510 Laser Scanning microscope.

Paraffin em bedding was performed on a Leica TP 1050 and tissue sections were cut 

using the Leica M icrotom e RM2135.

Histological and Im m unohistological pictures were taken using an Olym pus Provis 

AX70 m icroscope and a Canon EOS 30D camera.

All quantitative PCR was perform ed using an Applied Biosystems 7900HT Fast Real 

Time PCR System.
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2.1.2 Computer Software

Gene sequences for PCR prim er design were obtained from the NCBI GenBank 

(http://w w w .ncbi.nlm .nih.gov/) and BLAST analysis was perform ed using NCBI 

BLAST (http://ww w.ncbi.nlm .nih.gov/BLA ST/). PCR primers were designed using 

Invitrogen V ector NTI software. Organ culture area and distal perim eter m easurem ents 

were m ade using NIH ImageJ software (http://rsb.info.nih.gov/ij/dow nload.htm l). All 

organ culture, in-situ hybridisation, immunohistochemical and histological images were 

prepared using Adobe Photoshop CS2. All graphs and statistics were produced and 

perform ed using Graphpad Prism 5. Statistical analysis used was the unpaired student T- 

test a confidence value o f  P=<0.05.

2.1.3 Enzymes

Platinum  Taq DNA Polymerase and Superscript II RNase H- Reverse Transcriptase 

were purchased from  Invitrogen. E coR l and N o tl  restriction enzymes were purchased 

from  Promega. S p e l  restriction enzyme and T3 and T7 RNA polym erases were 

purchased from  Roche. TURBO DNA-free™ DNAse was purchased from  Ambion. 

Proteinase K was purchased from  Sigma-Aldrich.

2.1.4 Nucleic Acids

1 kb DNA Ladder was purchased from Promega. 100 mM  dNTP Set (PCR Grade) was 

purchased from  Invitrogen. DIG RNA Labelling M ix was purchased from  Roche. 

Synthetic oligonucleotides were synthesised by M W G Biotech AG.
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2.1.5 Chemicals

Recom binant RNAase Inhibitor was purchased from Promega.

Chemicals for standard solutions were obtained from Sigma-Aldrich and were o f 

analytical grade.

2.1.6 Organ Culture Media, Reagents and Plastics

All plates and pipettes were purchased from  NUNC or Falcon.

DM EM /F12+Glutam ax-I organ culture media (Cat no 31331-028), Transferrin bovine- 

halo form  (Cat 11107-018), and Antibiotic/Antimycotic Solution (Cat no 15240-62) 

were purchased from  GIBCO/Invitrogen. Insulin solution with 25 m M  HEPEs (Cat no 

I0516-5M 0) were purchased from  Sigma-Aldrich.

4 well plastic culture plates (Cat no 176740) were purchased from  N U N C 1M. M illicell® 

CM culture plate inserts (Cat no PIC M 03050) were purchased from M illipore.

All recom binant proteins were purchased from  R&D Systems. EphB3-Fc (Cat num ber 

432-B2-200), EphB2-Fc (Cat number 467-B2-200), EphrinB l-Fc (Cat num ber 473-EB- 

200), EphrinB2-Fc (Cat number 496-EB-200), and Mouse IgG-Fc (Cat num ber 

4460M G).

Quantitative PCR were perform ed using M icro Amp Fast Optical 96-well reaction plate 

(Cat no. 4346906) and Optical Adhesive Film (Cat no. 4311971).

62



C hapter 2 M aterials and M ethods

2.1.7 Immunohistochemical and In-situ hybridisation reagents

Normal Goat and Rabbit serum were supplied by Diagnostic Scotland.

Table 2.1 P rim ary antibod ies used and the ir d ilu tions in Im m unoh is tochem istry

Antibody Source Species Specificity IH C
Dilutions Concentration

Anti-
Cytokerat in

S igma Aldrich 
(Cat no C2562)

Mouse Monoclonal 1 in 200 N/A

Ant i-B rd l l

Fitzgerald 
International, 

(Cat no 
20BS170)

Sheep Polyclonal 1 in 300 250pg/m l

Anti-p63

Santa Cruz 
B iotechnology 
(Cat no SC- 

8431)

Mouse Monoclonal 1 in 500 200pg/m l

Anti-
Smooth
Muscle
Actin

Sigma Aldrich 
(Cat no A2547) Mouse Monoclonal 1 in 5000 N/A

Ant i-D IG-AP
Roche (Cat no 

11787126)
Sheep Polyclonal 1 in 2000 750U/m l

Anti-
Eph r inB l

R&D System s 
(Cat no AF473)

Goat Polyclonal 1 in 250 lOOpg/ml

Anti-
EphrinB2

R&D System s 
(Cat no AF496)

Goat Polyclonal 1 in 200 100pg/ml

Ant i-EphB2
R&D System s 

(Cat no AF467)
Goat Polyclonal 1 in 100 100pg/ml

Anti-EphB3
R&D System s 

(Cat no AF432)
Goat Polyclonal 1 in 50 lOOpg/ml
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2.1.8 Kits

Qiaquick PCR Purification Kit (Cat no 28174), QIAprep Spin M iniprep Kit (Cat no 

27104), and the RNeasy Mini Kit (Cat no 74106) were all purchased from Qiagen.

TOPO TA Cloning K it for Sequencing Kit with pCR4-TOPO Vector and TOP 10 

Chemically Com petent E.coli (Cat no 45-0071) were purchased from Invitrogen.

TURBO DNA Free DNAse Kit (Cat AM I 907) was purchased from Ambion.

Pow erSY BR Green PCR M asterm ix (Cat no. 4367659) was purchased from Applied 

Biosystems.

2.1.9 Standard Solution (A-Z)

Bouin’s Fixative 75 ml saturated picric acid 

25 ml 40 % (v/v) Formaldehyde 

5 ml glacial acetic acid

Paraform aldehyde fixative 4 % (w/v) paraform aldehyde in PBS

PBS Phosphate buffered saline tablets supplied by 

Sigma®

SSC (20 X) 3 M NaCl, 0.3 M sodium citrate pH 7.0

TAE (50 X) 

TBST

2 M Tris acetate, 50 mM EDTA ph 8.0 

0.15 M sodium chloride
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0.1 % Polyoxyethylenesorbitan M onolaurate 

Tween20, in Tris pH 7.4

2.1.9 WISH Solutions (A-Z)

Antibody Solution 

Blocking Solution 

Hybridisation Solution

Anti-DIG (1/2000) in TBST with 1 % sheep serum

10 % sheep serum in TBST

50 % Formamide, 5XSSC, 2 % blocking powder, 

0.1 % Triton X I 00, 0.5 % CHAPS, 5 mM  EDTA, 

50 pg/ml, heparin, 1 mg/ml Yeast RNA

Hydrogen Peroxide 6 % Hydrogen Peroxide in PBST

NTM T 100 mM Tris-HCl pH9, 100 mM  NaCl, 50 mM  

M gCb, 0.1 % Tween20

Post -  fixation Solution 4 % Paraformaldehyde, 0.2 % Glutaraldehyde, 0.1 

% Triton X I00, in PBST

Proteinase K 20 pg/ml in PBST

Solution I 50 % Formamide, 5X SSC, 0.1 % Triton X I 00, 

0.5 % Tween20

Staining Solution 2 mM  Levamisole, NBT, BCIP in 10 ml NTM T
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2.2 Methods

2.2.1 Whole mount RNA ln-situ Hybridisations

All whole m ount in-situ hybridisations (W ISH) were performed using the Invatis AG 

Insitu Pro VS robot. A  universal protocol was devised for all W ISHs conducted using a 

hybridisation tem perature o f 65°C. Probes were heat denatured at 65 °C for 5 m inutes 

before being added to 750 pi Pre-hybridisation mix per well. Dehydrated tissues were 

placed in 700 pi o f  100 % methanol at the start o f each W ISH experiment. After the 

W ISH experim ent (as outlined in Table 2.2), each tissue sample was transferred from 

TBST solution to a fresh 24 well plate and incubated at 37°C for 2-8 hours in 1 ml 

N TM T staining solution prior to being photographed. Some tissue samples required 

exposure to the N TM T staining solution overnight at 4°C.

Tissue collection and fixation

All tissue was collected from  W istar Rattus norveguis rats at dO. The urogenital tract 

was m icro-dissected from  both males and females. Tissues were fixed in 4 % 

paraform aldehyde and stored in methanol. Tissues used in the experiments described in 

this thesis include, from  males: ventral prostate, anterior prostate, and entire male 

urogenital tracts and, from  females: entire female urogenitial tracts. The urogenital tracts 

m icro-dissected did not contain kidneys.
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Whole mount RNA ln-situ Hybridisation Treatments

Stage Treatm ent Number of Washes Length of Wash (mins) Temp (°C)
1 50% Methanol 2 40 Room Temp
2 PBST 3 40 Room Temp
3 6% H202 1 40 Room Temp
4 PBST 2 40 Room Temp
5 Prote inase K 1 60 Room Temp
6 PBST 1 40 Room Temp
7 Postfix Solution 1 20 Room Temp
8 PBST 1 20 Room Temp
9 PBST 40 Room Temp
10 Hyb Solution 1 40 Room Temp
11 Hyb Solution 1 40 65
12 Hyb Solution 1 120 65
13 RNA Probe 1 16 hours 65
14 Solution I 2 40 65
15 2X SSC/So lu t ion  I 2 40 65
16 2X SSC 3 40 65

17 0.2X SSC 3 40 65
18 TBST 2 40 Room Temp
19 Blockinq Solution 1 120 18

20 DIG Antibody 1 6 hours 18

21 TBST 1 40 Room Temp

22 TBST 3 60 Room Temp

23 TBST 3 90 Room Temp

24 TBST 2 120 Room Temp
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2.2.2. RNA probe production 

RNA Extraction and cDNA synthesis

All RNA extracted was obtained using RNeasy Mini Kits (Qiagen) and quantified using 

the Nanodrop Spectrophotometer ND-1000. cDNA synthesis was perform ed using 500- 

750 ng RNA per reaction. cDNA synthesis was conducted in a final volume o f  20 pi. 

RNA (made up to 10 pi with pure water) was incubated at 70 °C for 5 m inutes with 1 pi 

o f  10 m M  dNTPs and 1 pi Oligo DT (25 pmol/pl). A mixture o f 4 pi 5X First Strand 

Buffer (Invitrogen), 2 pi 0.1 M DTT (Invitrogen) and 1 pi RNAsin (Promega) was 

added to each reaction. Reactions were incubated at 42 °C for 50 minutes. After two 

m inutes, 1 pi Superscript II RNAse H- reverse transcriptase (Invitrogen) was added to 

each reaction. cDNA was diluted using RNAse free water to a final volume o f 100 pi 

per reaction.

Polymerase Chain Reactions (PCR)

All PCRs w ere perform ed using the Peltier Thermal Cycler PTC 200 (M J Research). All 

PCRs were conducted for 35 cycles. All PCR prim ers for SAGE derived m olecules were 

designed from  appropriate rat or mouse NCBI GenBank sequence using Vector NTI 

(Invitrogen) and ordered from MW G Biotech. All prim er sequences were checked using 

BLAST (http://www.ncbi.nlm .nih.gov/BLAST) to ensure no hom ology existed outside 

the intended sequence for amplification. PCRs were performed using Platinum  Taq 

polymerase (Invitrogen), 10 X buffer (200 mM Tris-HCl (pH 8.4), and 500 mM  KC1), 

10 m M  dNTPs, 50 m M  M g2+ (Invitrogen). PCR product purification was perform ed 

using the QIAquick PCR purification kit (Qiagen). The standard PCR thermal cycling 

conditions were as described below. The melting temperature varied between 58-62 C 

for all the prim er pairs.
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95 °C -  2 m inutes 

95 °C -  30 seconds

58-62 °C -  30 seconds x35 cycles 

72 °C -  45 seconds 

72 °C -  10 m inutes 

4°C -  oo

For PCR product visualisation, 5 pi o f each reaction was ran on a on 2 % agarose gels 

using IX  TAE Buffer. Gels were visualised using Syngene Bio Imaging GeneFlash UV 

transillum inator.

Table 2.3. Primer information for the Statistically Selected Transcripts.
The forw ard  prim er fo r each gene is in the firs t row and the reverse p rim er in the 
second row.

Gene
Unigene Primers GenBank File

PCR Product 
Size (b p )

T m
(o C )

RasD R n .11189 TCACAACGTCCAGGCACTGT NM_053338 456 59

GGGTTCAGGCTGCTCGGTAT

Nell2 R n .11567 TGAGTGCGACCCAAGGCTGA NM_031070 603 N/A

TCCGTAAGGTGATCCCAGGA

Cystatin Rn.9609 CTTGGCCTGCTCGCATTCTG NM_133566 489 60

TCATGACCCTGAGGTGCCTC

Glutamate 
Rich Protein Rn.33523 GGATGTCAACGTCATCAGTT NM_001012067 592 58

GCTCAGTCCAAATCATTAGA

ANP32A Rn .10123 GTGACCAACCTGAATGCCTACC NM_01293 460 61

TTTCGGGGGGCAGGAATAGG

Ubiquitin
Interacting

Protein
R n .103261 TCTC AGTCT CTT G G AG C AGT NM_001013884 423 60

ACATAAAAATCAGGGTGCTG

PDZ Ring 
Finaer 3 Rn.3111 TGAAGAGCGGAAGCTCATCC XM_232226 577 59

GAAGGCCATCCCATCATTCC

TRAF
Interacting

Protein
Rn.8891 GAT CACGAGCCTAAGAAAGA XM_345981.2 503 61
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C TG TA G G 11G G A T ü A A I I I I

Vaccina 
Related 
Kinase 3

Rn.6570 GATAACTAAGCAGAAGCAGA IMM_001005561 482 61

ACATCACAGGAAGGTCCTAT

EphB3 R n .131133 AGGATGTCATCAATGCCGTA NM _001105868 547 62

AGGCCAGGTATCCAAAAGTC

Table 2.4. Primer information for the Non-Statistically Selected 
Transcripts. The forw ard  prim er fo r each gene is in the firs t row and the reverse 
prim er in the  second row.

Gene Unigene Primers GenBank File

PCR
Product

Size
(b p )

T m
(o C )

SC43M1 Rn.35465 TGGTTACATCATGGACTGGC XM_230050.3 682 61

GCCCCTGGCTCTATGCATAC

CSC4 Rn.55346 GCAGGGATGCCTGGAGTAGA XM_342506.2 492 N/A

GACGTCTTCCTCTCCACCAT

NMB R n .13778 CTCTGGGAGACGATGCAAGC NM _133298 .1 593 60

GCATCCTCTCCCAGTTAACC

Nuclear
Enzyme Rn.6997 GTACTTCTGCGGGAGCATCC NM_133525 443 58

GAGGAAGCCGTCTTCTGAGG

Ras-related 
GTP Binding 

A
Rn.2816 ATG GTG GTCATGTCAGATCC NM_053973.2 371 61

CCCATACACACCACCTACTT

Cyclin G 
Associated 

Kinase
Rn.9560 CCTTCCTGCGCTGCTGCTTT XM_215403 613 N/A

TCCGGACTGCACTCGGGCTG

m a r c k s R n .11012 GAGCCTCTGAACAACTAAGG NM_031030 652 60

G ATG AATGCAGGG AT GATT G

CRIP2 Rn.94754 GCAGGAAAAATTTAGACAGC NM_177425.3 565 60

TGTGCTACACAGTGCTGAGT
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Acyl-CoA
Thioesterase

R n .11326 CAACTGGAAGAG CGAGTTCT NM_031315 504 N/A

CCTTACAGCACGGAGATTGA

ETL Rn.8731 CTGGTCTGCTCTATCATCGC NM_022294 514 60

ACATCCCTTGGAAAGCGTTG

Transcribed
Protein

Rn.25416 GGCACCATTCATTGAG 1 1 1 I NM_198771 487 61

TCAGTGATTGGCTCAATGAG

S m u l
Suppressor

Rn.54978 C AAG AT G G G C ATT AC ATTAT Nm_057195 592 62

AACCCGTAGCTACTGACTTA

Kruppel-Like 
Factor 5

Rn.8954 TGCCACTCTGCCAGTTAATT NM_022690 509 62

CAAAATGACCAAACACTTTG

Hypotheical
Protein

Rn.94991 CATGGCCATGTCTTGCATCG XM_215812 504 58

CCCACGACCACGAGGTGTAA

Bromodomain 
Containing 3

Rn .16796 CC AAT GG AC AT G G G G ACTATC XM_342396 534 N/A

AGTGATGGCGGACGTTGTGG

Bromodomain 
Containing 4 R n .12110 AAGCATCCGACCACCCCATC XM_343175.2 537 N/A

CTGCCGCCCCTAACACTATG

Tetraspanin 4 Rn.2146 AGATTCCGTGAAGTGTTTGC NM_001015026 509 61

TTT CTGT CATTTCCAACCAA

P3K Protein Rn.44193 AG AG ACTT ACG ATGG AT ATTT C BC099154 571 N/A

CATCATGGAGAAAAGGTTGA

Helicase DNA 
Binding 

Protein 4
Rn.63247 ATTGATGGTGGAATCACTGG XM_232354 547 N/A

TCAAATATTCATTCATG CC C

Initiation 
Factor 1A Rn.3361 TG ATC AA AATG CTG G G AA AC NM_001008773.2 534 62

CCAGAAGCACAAAGTGTTAA

Evectin 2 Rn.1410 TATGCTACACCGACCCCTGA XM_217372.3 551 61

CTG AACGGAAAATGCCCTTT

F Box Protein 
2 R n .103250 TGAGACATGGCTTGATAACA XM_231162 526 61

AACACACTGCCCTGTGCTTA

Myc Binding 
Protein 2 Rn.9802 CCGTTTAAATGTCTTCTGAT XM_214245.3 532 N/A

ATTCTCCTCTTCCTCCAAAC
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Laminin 2 Rn.21475 TAGAACAGGAAGCTGATCGG XM_219866 541 N/A

CCAACAAACAGCATT GCATT

Adrenal 
Gland Protein

Rn.56498 AGCACGCCTTCAATGAGCAC BC099150 599 62

TTGGAACTTGCCCACATAGA

SCC3 R n .101480 CAGCTCTTGTGCAGCAGGAAG XM_222279.3 523 60

AGGGCCTGCTGGGCTGACTT

Rbmsl Rn.98522 CACACCAT GT CACTACAACC NM _001012184 .1 455 60

GGGAACAGCTACTAGATGAA

PIK3ca Rn.44193 ATTTGGCTATAAACGGGAAC BC099154 523 61

TTCAATTATAGAGCACGTTG

Table 2.5. Primer information for the Intuitive Transcripts. The forw ard  
prim er fo r each gene is in the firs t row and the reverse prim er in the second row.

Gene Unigene Primers
GenBank

File

PCR 
Product 

Size (b p )

T m
(o C )

SPARC Rn.98989 CCCGAGACTTTGAGAAGAAC NM _012656 .1 518 60

AGGCTGTGGATAGGCTATGG

DECORIN R n .106103 CGAAGACACATCTGAAG GTG NM_024129.1 523 62

CAGTCAACTGCATCTGGATG

TSUKUSHI M m .25317 CCAAGCTCAAGTGGGCAG NM_001009965.2 503 62

GCATCGAAGTCCCTTTGC

SPRY1 Rn.27787 CAAGCCGTCATGACTTCTGG NM _001106427.1 535 62

GTGAATCCAGAGCTGTGTGC

NELL2 R n .11567 GGAAACCGTGTACAACAGCG NM_031070 514 60

GGTTTCCTCAGTGATGTTCC

SEMA6D Rn.8257 TTCTGCCACAGTGGCTGATT XM_230583 548 60

GCCI IGGI 1 1 I 'GGIACITTG

SORCS2 Rn.41133 GAGGAGCTACTAGTGACTGTG NM_001107225.2 564 59

GTGTGTCGTTCCAGCTGTAC

CMTM3 Rn .15322 AGGGGAAATAGAGAAGACAG XM_226200 538 59

AGTCAATGG CAAACACAATT
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ILGF1 Rn.6282 GTACCAAAATGAGCGCACCT NM_178866 547 60

CC ATCTCTG A A AT G GTATT G A ACTC

ILGF2 R n .118682 AGTCAGTTTGGCCAGATAAG X16703 531 N/A

TACTGG CTCTCGCTGGTATT

LTBP3 Rn.202129 GCGGGGCGGTATGCGAGTGT NM_008520 522 N/A

Table 2.6 Primer information EphB PCR Analysis. The forw ard  p rim er fo r 
each gene is in the firs t row  and the reverse prim er in the second row.

Gene Primer Sequence GenBank File
PCR Product 

S ize (bp)
EphB l F AACACCCTGGACAAGATGAT NM _001104528.1 561
EphB l R GTCTTT ATCGT C AAT C ATT ACG
EphB2 F CCCAAGTTCGGCCAGATCGT NM _001127319 527
EphB2 R GGTGACGGCTTGACTGGAGT
EphB3 F AGGATGTCATCAATGCCGTA NM_001105868.1 547
EphB3 R AGGCCAGGTATCCAAAAGTC
EphB4F ATGCTGGACTGTTGGCAGAA NM_010144.5 550
EphB4 R AATCCTGTGTCTCCGACCCC
EphB6F AGACACTTG GCAGAAGGACC NM _001107857.1 510
EphB6F GCTGGGTTTAATGTGGCAGG

EphrinB l F CAGCCG GCCAAGCAAAGAGT NM_017089.2 568

EphrinB l R GGGG AGAAAAG AG AGGCCAA
EphrinB2 F TAT AT CTACATCAAATG G GT C NM _010111 481

EphrinB2 R AGTCCTTAGCGGTATGATAA
EphrinB3 F GCCTAACCAGAGGCATGAAGGTGC NM _001100980.2 663

EphrinB3 R GCAAAGGGG GCCAAAGTCAT
GADPH F TTAGCACCCCTGGCCAAGG NM_002046 541

GADPH R CTTACTCCTTGGAGGCCATG
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Candidate specific cDNA sequence isolation

The purified PCR products used for RNA probe production were cloned into the pCR4- 

TOPO cloning vector (Invitrogen) and transformed into chemically competent TOP 10 

E.coli cells (Invitrogen). Ligation and transformation were conducted according to the 

m anufacturers protocols. Cells were grown on LB/Ampicillin plates overnight at 37 °C. 

One colony for each PCR product was picked and used to inoculate a 10 ml 

LB/am picillin broth culture incubated shaking overnight at 37 °C. Each pCR4-TOPO 

plasm id w ith insert was extracted using QIAprep Spin M iniprep Kit (Qiagen). Plasmid 

preparations were quantified using the Nanodrop ND-1000 UV/Vis spectrophotometer.

Restriction Enzyme (RE) digestions

pCR4-TOPO contains restriction enzyme sites for N ot I  and Spe I  on the 5 ' and 3 ’ sides, 

respectively, o f  the multiple cloning site (MCS). pCR4-TOPO also has Eco R 1 

restriction sites on both sides o f the MCS. N ot I  (Promega) and Spe I  (Roche) were used 

to linearise each plasm id preparation. The N ot I  digest contained the T3 RNA 

polym erase prom oter and the Spe I  digest contains the T7 RNA polymerase promoter. 

All digests were purified using the QIAquick PCR purification kit (Qiagen). Each RE 

reaction had varying final volumes. Between 1-2 pg DNA was used for each digest. 

Digests were incubated at 37 °C for 2-3 hours. An Eco R1 digest was also to confirm  

that the cloning had succeeded. For digest visualisation, 5 pi o f each N ot I/Spe I  reaction 

and all o f  each Eco R I  and was run on a 2 % agarose gel using IX  TAE Buffer and 

stained w ith ethidium  bromide. Gels were visualised using Syngene Bio Imaging 

GeneFlash UV transillum inator (Figure 2.1).
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Noti Spel EcoRl

Figure 2.1 Restriction Enzyme Digest Gel. The Not1 and Spe1 d igests show  
a linearised p lasm id w hereas E coR l has cut the insert out to g ive am insert 
(approx im ate ly  500bp).

DIG labelling In Vitro transcription

Each transcription reaction volume was 20 pil. Between 400-600 ng DNA was used per 

transcription. T3 RNA Polymerase (Roche) was used for N ot I  Digests and T7 RNA 

Polymerase (Roche) was used for Spe I  digest. Each transcription used 1 OX Roche 

transcription buffer, 2 pi DIG/NTP labelling mix (Roche) and 0.5 pi RNAsin (Promega). 

Reactions were incubated at 37 °C for 2 hours and then incubated with 2 pi DNAse 1 

(Promega) for a further 30 minutes. RNA probes were stored at -20 °C until use. For 

DIG labelled RNA probe visualisation, 2 pi o f each transcription reaction was run on a 

2% agarose gel using IX  TAE Buffer and stained with ethidium bromide. Gels were 

visualised using Syngene Bio Imaging GeneFlash UV transilluminator.
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2.2.3. In Vitro Organ Culture

VPs and APs were m icro-dissected from dO male Wistar rats and grown in serum -free 

organ culture m edia (DM EM /NUT.M IX F-12 supplemented with transferrin (20 pg ml" 

’), insulin (20 pg ml"1), and 1 X penicillin/streptomycin). VPs and APs were positioned 

in a drop o f  m edia on M illicell®  CM filters that were floated on 1 ml o f culture m edia in 

4 W ell N U N C LO N ™  plates. Organs were cultured at 37 °C in 5 % CO2 for six days. 

M edia (+/- treatm ents) was replaced every two days. Proliferation o f epithelial and 

stromal cells in VPs was examined by incorporation o f BrdU (0.1-0.2m g/m l) on day six 

o f culture. The BrdU incorporation involved incubation for 2 hours at 37 °C. VPs were 

imaged by light m icroscopy before fixation. To study the effect o f EphB2 and EphB3 

ligand trap on VP and AP area and the number o f epithelial buds, VP and AP organs 

were cultured in the absence or presence o f testosterone (10"8 M) and/or either EphB2-Fc 

(4 pg/m l), EphB3-Fc (4 pg/ml) or both. To study the effect o f EphrinB l and EphrinB2 

ligand addition on VP and AP area and the number o f epithelial buds, organ rudim ents 

were cultured in the absence or presence o f testosterone (1 0 8 M) and/or either 

E phrinB l-Fc (4 pg/m l) EphrinB2-Fc (4 pg/ml) or both. A control Fc (4 pg/ml) was also 

included in all experiments.

2.2.4. Quantitative RT-PCR

All RNA extractions and cDNA synthesis reactions were performed as described above. 

400ng total RN A was used for each cDNA synthesis reaction. The 20 pi cDNA reaction 

volume was diluted to a final volume o f  100 pi. 5 pi o f this 100 pi was made up to a 

final volum e o f  50 pi as a working stock. The quantitative PCR system used for all 

reactions was Pow erSY BR Green (Applied Biosystems) and results were norm alised to
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TATA Binding Protein (TBP). Each final primer concentration for each quantitative 

PCR reaction was 6.25pm ol/pl (1:4 dilution o f 25pm ol/pl working stocks). All PCR 

products were approxim ately lOObp in length. Table 2.7 contains all the prim er 

sequences used in all the quantitative PCR reactions. Each quantitative PCR reaction had 

a total volum e o f  lOpl and consisted o f the following:

2X PowerS YBR M asterm ix -5 pi 

Forward Prim er - 1 pi

Reverse Prim er - 1 pi

W ate r- 1 pi

cDNA - 2pl

A standard curve was determined for each gene analysed by quantitative PCR using the 

following dilutions o f  VP dO -  1:5, 1:25, 1:100, 1:500 and 1:1000. The therm al cycling 

conditions used for each reaction:

50 °C -  2 m inutes

95 °C -  10 m inutes

Then 40 cycles o f  the next two steps:

95 °C -  15 seconds 

60 °C -  60 seconds 

Then dissociation curve:

95 °C -  15 seconds 

60 °C -  15 seconds 

95 °C -  15 seconds
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Table 2.7 P rim ers used for quantita tive  PCR experim ents.

Prim er Prim er Sequence
E p h B 3 F GTGCCTCCCAGAGACTGACT
EphB3 R CAAGCATGTGCACAACACAC
E p h B 2 F CCGGCTTCACCTCTTTTGA
E p h B 2 R CCGCATCACCTGGATACTGT

Eph r inB l F CCCCCACTATGAGAAGGTGA
E ph r inB l R GGGCCCTCAGACCTTGTAGT
EphrinB2 F CCAAGAATTCAGCCCTAACC
EphrinB2 R GTTATCCAGGCCCTCCAAAG

TBP F CTGGAAGGCCTTGTGTTGAC
TBP R GGAGAACAATTCTGGGTTTGA

2.2.5. Immunohistochemistry (IHC)

Paraffin Embedding of Tissue

M icro-dissected tissue or cultured VPs were fixed in 4 % PFA, for W ISH, or Bouins 

fixative, for IHC, for 2 hr on ice. Tissue was stored in 70 % ethanol until processed. 

Dehydration and further processing was performed on a Leica T P  1050. Paraffin 

embedding was performed on the Tissue Embedding Center (Leica EG1160) and 5 /rm  

sections cut using a microtome (Leica RM2135).

Hematoxylin and Eosin Stain

Slides were washed twice in Xylene for 5 minutes to for de-waxing purposes. Slides 

were exposed to 20 second washes o f Absolute Alcohol, 95 % Ethanol, and 70 % 

Ethanol. Slides were then washed in water. Slides were then exposed to hem atoxylin for 

5 minutes. Slides were then washed in water. Slides were then exposed to Acid Alcohol
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for 20 seconds, Scott s Tap water for 30 seconds, and Eosin for 20 seconds with a water 

wash in-betw een each step. Slides where then exposed to treatm ents for 20 seconds 

each. These treatm ents were 70 % Ethanol, 80 % Ethanol, 95 % Ethanol, and Absolute 

Alcohol. Slides were then washed twice in Xylene for 5 minutes and mounted.

3,3’-Diaminobenzidine (DAB) based Immunohistochemistry

Slides were dewaxed in xylene for 10 minutes and rehydrated through an ethanol series. 

Slides were pressure cooked for 5 minutes in 0.1 M citrate buffer, cooled for 20 m inutes 

and washed twice in TBST on a platform shaker for 5 minutes. Slides were washed in 6 

% Elydrogen Peroxide in methanol solution for 30 m inutes on a platform  shaker to 

eliminate any endogenous peroxidase activity. Slides were washed twice in TBST on a 

platform  shaker. Slides were blocked in 20 % normal serum (serum o f  the host the 

secondary antibody was raised in) in TBST at room temperature for 60 minutes, 

followed by an overnight incubation at 4°C with the appropriate prim ary antibodies 

diluted in 20 % norm al serum in TBST. For a list o f all the prim ary antibodies used, see 

Table 2.1. Slides were washed three times for 5 minutes in TBST followed by 

incubation for 1 hr at room  temperature in the required IgG-biotinylated secondary 

antibodies diluted in 20 % normal serum in TBST. For a list o f  all the secondary 

antibodies used, see Table 2.8. Slides were washed twice for 5 m inutes in TBST and 

twice for 5 m inutes in PBS. Slides were then incubated for 60 m inutes with 

Horseradish Peroxidase Strepavidin (Vector Laboratories, Cat num ber SA5004) at 1 in 

1000 dilution in 20 % normal goat serum. Slides were washed twice in PBST on a 

platform  shaker and then stained using the DAB Substrate Chromogen System (Dako, 

Cat num ber K3468). Slides were observed under light microscopy until a brown stain 

developed. Slides were washed in water and counterstained with hem atoxylin and 

rehydrated through an ethanol series. Slides were visualized using an Olympus Provis 

AX70 m icroscope and pictures taken using a Canon EOS 30D camera.
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Table 2.8 S econdary  antibodies used and the prim ary antibod ies utilised w ith 

DAB based im m unohistochem istry.

P rim ary Secondary Source and Dilution
Anti-p63
Ant i-SM A

Rabbit Ant i-Mouse Biotinylated Dako (Cat E0464) 
1 in 500

An t i-E p h r inB l
Ant i-EphrinB2

Ant i-EphB2
Ant i-EphB3

Rabbit Ant i-Goat Biotinylated Vector Laboratories (Cat BA5000) 
1 in 500

Fluorescent Immunohistochemistry

Sections were dewaxed (in xylene) for ten minutes and rehydrated through an ethanol 

series. Sections were pressure cooked for 5 minutes in citrate buffer, cooled for 20 

m inutes and w ashed tw ice in TBST on a platform shaker. Sections were blocked in 20 

% normal serum (serum o f  the host the secondary antibody was raised in) in TBST at 

room  tem perature for 45 minutes, followed by an overnight incubation with the 

appropriate prim ary antibodies diluted in 20 % normal serum in TBST. For a list o f all 

the prim ary antibodies use, see Table 2.1. Slides were washed three times for 5 m inutes 

in TBST followed by incubation for 1 hr at room  temperature in Rabbit anti-Sheep 

biotinylated secondary antibody (Vector Laboratories, Cat num ber BA6000) diluted in 

20 % normal serum  in TBST. Slides were washed twice for 5 m inutes in TBST and 

twice for 5 m inutes in PBS. Sections were then incubated for 1 hours with either 

Strepavidin A lexaflour 488 at 1 in 200 dilution (Molecular Probes) or Goat anti-mouse 

CY5 at 1 in 60 dilution (Sigm a Aldrich) diluted in 5 % normal goat serum. Slides were 

kept in opaque box after this step, as the fluorescent detectors are light sensitive. Slides 

were washed in PBST overnight at 4°C. Nuclei were counterstained using 10 pg m l'1 

propidium  iodide in PBS for 45 minutes, followed by three washes in PBS for 5 m inutes
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each. Sections were visualised and imaged using confocal microscopy (Zeiss LSM  

500). The Fluorescent IHC protocol and the antibodies used are summarised in Table 

2.9.

Table 2.9 S um m ary of antibodies used in F luorescent Im m unoh istochem istry

IH C P rim a ry Secondary Detector

Pan- 
cytokeratin and 

BrdU

Anti-
cytokeratin

(pan)
1:200

Rabbit anti­
sheep 

biotinylated 
1:500

Goat anti­
mouse CY5 

1:60

Anti-BrdU
1:300

Streptoavidin 
alexafluor 
488 1:200
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3 Identification of Mesenchymally Expressed 

Transcripts using Whole mount In-Situ Hybridisation 

(WISH)

3.1 Introduction

The objective o f  this study was to identify genes expressed in the stroma o f the rat 

prostate and to elucidate their function. A  transcript profiling study using Serial Analysis 

o f Gene Profiling (SAGE) had been previously conducted with the aim o f  identifying 

molecules enriched in the ventral mesenchymal pad (VMP), an area o f  condensed 

inductive m esenchym e (Yanpoucke et ah, 2007), known to express key m orphogens 

(Thomson and Cunha., 1999) and possess prostate inductive activity (Timms et al., 

1995). The expression profile o f the VMP was compared with the VSU which 

encompassed the VM P, the SM layer and the urethral epithelium. This study revealed 

219 m RNAs upregulated in the VM P compared to the VSU. The SAGE analysis and its 

outcome are sum m arised in Figure 3.1. It is likely that some o f these 219 transcripts are 

involved either in paracrine signalling between the VM P and urethral epithelium  and 

smooth m uscle or juxtacrine signalling within the VM P itself. Both paracrine and 

juxtacrine signalling are known to have key roles in rat prostate development.
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vsu
^ 4  tissues: 70 ,395 tags 

w. _
1 tissue: 80,790 tags 

________ j
Tags showing statistical 
significant difference 
P< 0.05

219 VM P enriched tags

Figure 3.1 Summary of the SAGE analysis performed on the VSU and the

VMP (derived from  V anpoucke  et a l., 2007).

The SAGE analysis identified transcripts likely to be expressed in the VMP. Three 

groups o f  m RNA s were identified from the study for follow up. These three groups 

were to be exam ined using whole mount in-situ hybridisation (W ISH) to confirm  the 

VMP specific expression o f the transcripts. The difference between two o f the three 

groups was their statistical significance. The minimum threshold for statistical 

significance betw een the VM P and VSU m RNA tag counts was a ratio o f  5 (VMP) to 0 

(VSU). The 5:0 group was a subset o f the 219 list (53 transcripts in the 5:0 group). It was 

determined that all the transcripts with an expression ratio o f 5:0 would be included in 

the W ISH analysis and labelled the statistically selected group. As a control to the 

statistically selected group, all the transcripts that showed a ratio o f 4:0 were included in 

the W ISH analysis. As the 4:0 group did not show a statistically significant difference, 

this group o f  transcripts could be considered as a randomly selected group. The rationale 

behind the selection o f the two groups was that the WISH analysis o f the two groups
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would determ ine the efficiency of the SAGE analysis in identifying VM P specific 

transcripts. The third group to be included in the WISH analysis consisted o f  genes 

coding for either m em brane or secretory proteins. This third group was also a subset o f 

the 219 list and was term ed the intuitive list. The intuitive group were included as 

intercellular m olecules that are typically membrane proteins or secretory proteins. 

Transcripts for these may be found enriched in the VMP. The goal o f  W ISH analysis 

was to validate the SAGE data, to determine which mRNAs were genuinely enriched in 

the VMP.

This chapter discusses the W ISH analysis o f the three groups o f VM P candidates, the 

degree o f  success o f  this analysis, and the rationale for selecting a particular candidate 

for functional and expression analysis. The candidate genes in the three selected groups 

are shown below.

Table 3.1 Unigene IDs and gene descriptions for the Statistically Selected 
Transcripts. T hese  all show ed a tag frequency o f 5:0 in VM P: VSU list.

Unigene Description
56603 Am ine  oxidase, copper containing 3

1868 Beta-2 microglobulin

8046 Casein k inase 1, delta

9609 Cystatin  N

2342 Mannosyl G lycoprote in beta-1 ,2-N-acety lg lucosam inyltransferase

11567 Nel- l ike 2 homolog

99017 Pr2 protein

53915 PV-1

11189 Ras-re lated associated with diabetes

9560 Rat mRNA

16016 Eps protein (MGEPS) mRNA

33523 A301 protein (LOC308592)

16844 Am yotroph ic  lateral sclerosis 2 chromosome region candidate 9;

36521 FGFR1 oncogene partner (LOC365103)

52627 hypothet ica l protein (LOC366980)

61277 Hypothetica l protein D930024B17 (LOC303552)

2918 MUM2 protein (LOC287427)

100904 Pmcf-pending protein (LOC297342)

103261 Retinoid x receptor interacting protein (LOC290997)

103390 RIKEN cDNA 0610008A10 (TOC300802)
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8133

98420

3111

93304

6570

117190

116313

118492.

6532

27227

16544

29900

14510

8458

91975

17732

23241

1078

28360

41830

121231

103231

66545

62699

24283

8202

3455

131133

2528

10123

146652

103639

Identification o f  M esenchym allv  E xpressed  T ranscrip ts

RIKEN cDNA 1110038M16 (LOC313529)___________________________

RIKEN cDNA 1700027N10 (LOC316238I___________________________

Sem aphor in  cytoplasm ic domain-associated protein 3A____________

S im ila r  to TRAF-bindinq protein (LOC293571), mRNA______________

S im ila r  to vaccin ia related kinase 3 (LOC361565), mRNA__________

Transcribed sequence_____________________________________________

Hypothetica l protein DKFZp564D0372_____________________________

RS15_HUMAN 40S ribosomal protein S15 (RIG protein)____________

DNAJ domain-conta in ing__________________________________________

Apoptos is  regulator Bcl-2_________________________________________

Patched homoloq 1____________________________________

C b x l______________________________________________________________

Myelin protein zero-like protein 1__________________________________

Paired mesoderm  homeobox protein 1 (PRX-1)____________________

Phosphoinosit ide-3-kinase, class 2, beta polypeptide______________

Sox7_pred icted , 'SRY-box containing gene 7 (predicted)___________

GLI-Kruppe l fam ily  member HKR2 2_______________________________

Sp ind lin-1_________________________________________________________

ADAM -TS12_______________________________________________________

zinc f inger protein 236____________________________________________

cyclin M3_________________________________________________________

S cu b e l___________________________________________________________

Ple iomorph ic adenoma gene 1 (PLAG1)____________________________

Ras association (RalGDS/AF-6) and pleckstrin homology doma ins 1 
Amylo id  beta (A4) precursor protein-binding, fam ily  B, m em ber 2
( A p b b 2 ) __________________________________________________________

Ubiqu it in-conjuqatinq enzyme UBC7_______________________________

Poly (A) po lymerase alpha________________________________________

Eph receptor B3___________________________________________________

Cytochrome c oxidase subunit 1___________________________________

Acid ic leucine-rich nuclear phosphoprotein 32 fam ily  m ember A

S lit-2______________________ ______________________________________

GPR177 .______________________________________

Activat ing transcription factor 6 alpha_____________________________
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Table 3.2 Unigene IDs and gene descriptions for the Non-Statistically 
Selected Transcripts. These are transcrip ts tha t show ed no s ta tis tica l 
d iffe rence  betw een the VM P and VSU libraries. G enes w ith (PS) had only 
partia l s im ila rity  to a known putative gene.
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Unigene Description
5041 ATPase, Na+/K+ transporting, beta 3 polypeptide
3733 CD164

33804 CD74
10204 Cell divis ion cycle 2 homolog like 1
3974 CDC31
2819 Coron in, actin-binding protein, IB

93 CTD-binding SR-like rA l
11012 Cyclin G-associated kinase
94754 Cyste ine rich protein 2
11325 Cytoso lic  acy l-CoA th ioesterase 1
8731 ETL protein (EGF_TM7_Latrophilin Protein)

25416 FAM3C-like  protein
15845 Fc receptor, IgG, alpha chain transporter
13778 Glycoprote in (transmembrane) nmb
54978 Homolog of C. elegans smu-1
8954 Kruppe l- l ike  factor 5 (intestinal)

44193 Phosphatidylinosito l 3-kinase
1553 Pleiotrophin
6997 Putative c-Myc-responsive
2816 Ras-re lated GTP-binding protein ragA

94991 Hypothetica l LOC302941 (PS)
13437 53BP1 protein (PS)
16796 Brd3 protein (PS)
12110 BRD4 short var iant (LOC362844) (PS)
3424 cDNA sequence BC013529 (LOC361448) (PS)
7522 Cgi67 serine protease precursor (LOC309399) (PS)

63247 Chromodomain helicase DIMA binding protein 4 (PS)
11938 DNA-directed RNA polymerase II largest subunit (PS)

3361 EIF-1A (LOC317163) (PS)
2146 EST AI426782  (PS)
1410 Evect in-2 (PS)

103250 F-box protein FWD2 (PS)
55346 H63 breast cancer expressed gene isoform a (PS)

13538 Highwire; PAM; rpm 1 (PS)
58352 Hypothetica l protein (LOC305628) (PS)

17560 Hypothetica l protein (LOC361091) (PS)

4001 Hypothetica l protein 5832424M12 (LOC309129) (PS)

34037 Hypothetical protein FD 20522  (LOC288041) (PS)

41869 Hypothetical protein FU 32734  (LOC304509) (PS)

1698 Integral membrane protein CII-3 (LOC289217) (PS)

11970 KIAA0404 (LOC309180) (PS)

56498 Adrena l gland protein AD-005 (LOC291841) (PS)
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35504 KIAA1417 protein (LOC315858) (PS'l
21475 Lam in in-2  alpha2 chain precursor (1003093681 (PS)
101349 Low-density  lipoprotein receptor-related protein 10 (PS)
57349 Microtubule-actin crosslinkinq factor (LOC298511) (PS)

67 Mitochondrial ribosomal protein S14 (LOC289143) (PS)
35465 Prostate cancer overexpressed gene 1 (LOC311168) (PS)
76647 Protein k inase NYD-SP15 (LOC361052)
22892 W DC146 (LOC307524)
63701 Rab20 (LOC364641)
110990 RIKEN cDNA 1110021N07 (LOC362912)
39346 RIKEN cDNA 1600029D21(LOC363060)
49051 RIKEN cDNA 2310042P20 (LOC300189
7240 RIKEN cDNA 2510005D08 (LOC290279)

102152 RIKEN cDNA 6720485C15 (LOC360639)
98522 RNA binding motif, single stranded interacting protein 1
20004 SW I/SNF-re la ted matrix-associated protein
101480 SART3
54356 Lactose Operon Repressor Bound
21367 T46908  hypothetical protein DKFZp761G2423.1
21890 2115356A  p l5  protein [Flomo sapiens]
22689 Hypothetica l protein MGC2835 [Homo sapiens]
12247 BGAL_ECOLI Beta-galactos idase (Lactase)

119216 Heat shock protein HSP 90-alpha (HSP 86)
27753 2119399A  elongin B [Homo sapiens]
73738 BGAL_ECOLI Beta-galactos idase (Lactase)
73716 137273 highly charged protein
18093 JC5594 je rky  gene protein homolog
2173 Ubiqu it in- like, containing PHD and RING finger domains,

98457 Hypothetica l protein LQFBS-1
7210 Hypothetica l protein FU 10330  [Homo sapiens]
12638 Hypothetica l protein MGC2663 [Homo sapiens]
17190 M2A1 HUMAN A lpha-mannosidase II
3062 Ras-re lated protein Rab-43
6374 cDNA clone

24047 cDNA clone
15903 Rho-interacting protein 3
35112 CD262
3591 Nicotinam ide nucleotide transhydrogenase

18885 SKI- l ike
53944 cDNA clone
35247 Z inc f inger protein 367
12133 cDNA clone
11607 Bromodomain adjacent to zinc finger domain, 2A

92141 cDNA clone
39144 cDNA clone
21406 Trio: Trip le functional domain (PTPRF interacting)

122488 cDNA clone
12730 cDNA clone
46347 Z inc Finger Protein 618
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12316 cDNA clone
39271 Glyceronephosphate O-acy ltransferase (Gnpat)
24426 So lute carr ier fam ily  39 member 10
60107 Z inc finger, DHHC domain containing 21
19162 CG4768-PA  (predicted) (RGD1309748 predicted)
16328 Hypothetica l protein (RGD1562788)
22883 cDNA clone
19457 cDNA clone
1207 O lfactory receptor O lr l5 5 8
6495 cDNA clone

49716 cDNA clone
104274 GI: 13385412- l ike  protein splice form I
22598 Transcript ion factor 1
1292 Tyros ine 3-monooxygenase/ activation protein
2862 Ca lpa in-6
10495 LTC4 transporter

251774 Melanoma-associated antigen MG50
22518 Caveo lin-1
2875 Collagen alpha 2 type V

22164 ADAM metallopeptidase with thrombospondin type 1 motif, 4
Mmu.6701 Myosin regulatory light chain 2-B

154399 STAT5A
166161 Coiled-coil domain containing 64
197185 60S ribosomal protein L21
28146 D iphosphomeva lonate  decarboxylase
3997 proteasome (Psma3)
N/A Homeobox protein cut-like 1 (CDP1)

14280 Cytid ine monophospho-N-acety lneuram in ic  acid hydroxylase
218100 Z inc f inger protein basonuclin-2
32641 F-box and leucine-rich repeat protein 2
101908 SERTA domain containing 4
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Table 3.3 Unigene IDs and gene descriptions for the total number of 
Intuitive Transcripts. The tag frequencies in the VM P and VSU libraries are 
show n to  g ive an approxim ation  o f transcrip t abundance. G enes w ith (PS) 
had on ly partia l s im ila rity  to a known putative gene.

Uniqene VMP V S U Description
25124 6 0 Insulin like Growth Factor 1 (I lq f l)
964 124 34 Insulin like Growth Factor 2 (Ilgf2)

37338 14 4 Latent transform ing qrowth factor bindinq protein 3 (Ltbp3)
7961 49 15 Latent transform ing qrowth factor bindinq protein 4 (Ltbp4)
8672 10 1 Tuskush i

41133 10 2 Sort i l in-re lated VPS10 domain containinq receptor 2 (Sorcs2)
8257 11 1 Semaphorin6D
11567 5 0 Neural epidermal qrowth factor-like 2 (Nell2)
106103 362 258 Decorin
98989 236 142 Secreted protein, acidic, cysteine-rich (SPARC)
22767 8 1 S p ro u ty l
15322 11 2 CKLF- like  MARVEL transmembrane domain containinq 3 (cmtm3)
3733 6 2 CD164

64490 12 0
ADAM metallopeptidase with thrombospondin type 1 motif, 4 (ADAM- 
TS4)

15864 6 1 Fc fragment of IgG, receptor, transporter, alpha (FCGRT)
34782 6 0 Winqless-re lated MMTV integration site 4 (Wnt4)
2269 18 5 Basiqin

3.2 Results

3.2.1 General Outcome

A summary o f  the W ISH analysis is provided in Table 3.4. From all three groups 

combined, 193 transcripts were available for WISH analysis. 53 transcripts o f  the 193 

were selected to be analysed from all three groups by W ISH because those mRNAs had 

definite gene identities. O f the 53 transcripts with definite gene identity, 23 failed at the 

PCR, cDNA isolation or in vitro transcription stages o f the RNA probe production 

protocol. From  the 30 rem aining transcripts that were analysed by W ISH, 13 mRNAs 

were expressed in the mesenchyme.
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Table 3.4 Summary of the WISH analysis to confirm the transcripts stroma 
enriched status
Three g roups w ere  chosen fo r the analysis e ither based on the sta tis tica l 
analysis o f the  S AG E data  or w hether the gene product w as a secre ted or 
m em brane-associa ted  protein.

Groups

Statistically selected Non-Statistically selected Intuitive

Total Num ber of Transcrip ts 54 122 17
Transcripts to be analysed 10 28 15
Riboprobe production fa ilure 4 16 3
No strom al expression 4 8 5
Stromal expression 2 4 7

Various production issues arose during the RNA probe production process. For example, 

for all the transcripts o f all three groups to be analysed, 194 prim er pairs were required. 

Other stages o f  the RN A probe production method presented difficulties, such as the 

cloning o f  the PCR products into the pCR4 plasmid and the cloned product’s subsequent 

isolation. Additionally, the in vitro transcription reaction sometimes failed to produce the 

appropriate RN A  probe. Essentially, it was the coupling o f a problem atic RNA probe 

production m ethod, with a large-scale analysis, that resulted in the small num ber o f 

candidates being determ ined as enriched in the mesenchyme.

Thirteen transcripts were identified as showing a mesenchymal expression pattern, and 

are candidate strom al m ediators o f prostate growth. The expression o f these candidates 

was exam ined in both male and female UGTs in the W ISH analysis. Both sexes were 

used to control for high (male) and low (female) androgen environments. Additionally, 

the VM P represents a m odel o f prostatic mesenchyme that does not contain epithelia. 

The prostatic epithelium  in the male may affect the mesenchyme with regard to the 

expression o f  the transcripts in the three groups. Therefore it was important to examine 

the potential m esenchym e expression o f the transcripts in both sexes.
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3.2.2 Positive Control Transcripts

Prior to the start o f  this analysis, four transcripts from the 219 list had been determined 

as expressed in the m esenchyme by WISH. These transcripts were used as positive 

controls for this W ISH analysis. The positive control transcripts used were Slit2, R obo l, 

Scubel and N otch2 (Figure 3.2). At least one o f these transcripts was used for every 

individual W ISH experiment.
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Figure 3.2 Positive controls for the WISH analysis. Slit2, R o b o l and S c u b e l 
transcrip t express ion  are shown in dO m ale rat UGTs. The expression o f each 
control transcrip t can be seen in the m esenchym e o f the dorsa l-la te ra l and 
ventra l p rosta te  lobes. Notch2 expression is shown in a dO fem ale  rat UGT. The 
expression o f the  Notch2 m R N A can be observed in the VM P and in the sm ooth 
m uscle layer running surround ing the urethra. The 1mm scale bar is fo r the 
larger an tisense  hybrid ised UGTs only. The sense UGTs are show n to illustra te  
a negative s ignal and potentia l background staining. A t least one o f these
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transcrip ts  w as used in each W ISH experim ent. (D P=D orsa l P rostate; 
D LP =D orsa l-La te ra l Prostate; URE=Urethra; SV=Sem inal Vesic les; V P =V entra l 
Prostate; V M P =V en tra l M esenchym al Pad). The asterisk show s the  position 
w here  the  b ladde r w as rem oved.

The aim o f  the W ISH analysis was to identify mRNAs expressed in the mesenchyme. An 

epithelial control to show any prostatic epithelial transcript expression was not included, 

which was a lim itation o f  the W ISH analysis. RNA probes were designed for a num ber 

o f known prostatic epithelial markers including Nkx3.1, FoxA2, Sox9 and E-cadherin. 

None o f  the epithelial RN A probes provided epithelial specific expression. The reason 

for this was not determ ined but may be that epithelial specific probes require more 

perm eable specim ens.

3.2.3 WISH analysis of the Statistically Selected Transcript Group

There were 54 transcripts in the statistically selected group. 19 transcripts o f  the 54 had 

only a partial or no sim ilarity to an Ensembl file. I f  the transcript did not have reliable 

sequence inform ation, it would make it difficult to perform further characterisation. 

Therefore, any transcript with no reliable Ensembl data file was omitted from  the W ISH 

analysis. From  35 transcripts, the first 10 transcripts in the group were selected for RNA 

probe production. O f these 10, one transcript failed at the PCR stage, two failed at the 

specific cDN A isolation stage and one failed at the in vitro transcription stage o f  the 

RNA probe production protocol. Two transcripts did not produce a stromal expression 

pattern. Two transcripts from  the 54 in total produced a definite stromal expression 

pattern. The two stromal transcripts identified were the Ras GTPase, RRAD/RasD 

(Caldwell et al, 1996) and tyrosine kinase receptor, EphB3 (Bohme et al., 1993).
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Figure 3.3. WISH Identification of 2 transcripts from the Statistically 
Selected Group expressed in the stroma.
RR AD /R asD , a Ras related GTPase, and the receptor tyrosine kinase, EphB3, 
are restricted  to the m esenchym e in dO rat UGTs (n=3). EphB3 is expressed, 
p redom inantly  in the strom a, o f all the visib le prostate lobes and the SV. 
R R AD /R asD  is expressed  in the strom a o f the DLP and to a lesser exten t the  VP 
The 1mm sca le  bar is fo r the larger antisense hybridised UGTs only. The  sense 
UGTs are show n to illustra te  a negative sta in ing pattern and potentia l 
background sta in ing.

RRAD/RasD is an intracellular GTPase that is a member o f the Ras super family, which 

includes other GTPases families, Rho and Ral, involved in many intracellular signalling 

activities (Shou et al, 1992). RRAD/RasD also interacts with the calcium  influx 

regulator, calm odulin that suggests it is involved in a variety o f signalling roles. Calcium 

is one o f the m ost com m on signalling transducers (Chang, et ah, 2007).
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EphB3 is involved in cell-to-cell signalling. EphB3 is a transmembrane receptor and 1 o f 

5 m em bers of the EphB receptor tyrosine kinase family. The best characterised function 

o f the EphB3 receptor is as a chemotactic guidance cue, during the developm ent o f  the 

nervous system  (Jevince et al., 2006). It has additionally has been implem ented as being 

involved in organ developm ent (Pickles et al., 2002) and cancer (Cortina et al., 2007). 

There is evidence that suggests a functional association between EphB receptors and the 

Ras super family. Co-expression o f RasD and EphB3 may suggest a link between them  

which is discussed later in this chapter. EphB3 was chosen for further analysis and led to 

the EphB fam ily becom ing the focus o f this thesis.

3.2.4 WISH analysis of the Non-Statistically Selected Transcript 

Group

There were 122 transcripts in the non-statistically selected group. Seventy transcripts o f 

the 122 had a partial or no similarity to an Ensembl file. O f the rem aining 52 transcripts, 

the first 28 transcripts in the group were selected for RNA probe production. From the 

28, ten transcripts failed at the PCR stage and 6 failed at the specific cDNA isolation 

stage o f  the RN A probe production protocol. Eight transcripts did not produce a stromal 

expression pattern. Four transcripts from the 122 in total produced a stromal expression 

pattern.

Four transcripts from  the non-statistically group were determined as m esenchyme 

enriched by the W ISH analysis. These were ETL, CRIP2, LAT3, and RBMS1 (Figure 

3.5). ETL is a seven transmem brane receptor and a member o f the secretin family 

(Nechiporuk et al., 2001). CRIP2 is a zinc finger based transcription factor (Okano et al., 

1993). LAT3 is a transm em brane amino acid transporter that is upregulated in prostate 

cancer as determ ined by differential display analysis (Colea et al., 1998). RBMS1 is an 

RNA binding protein (Negishi et al., 1994). These 4 proteins are not well characterised 

in terms o f  function in the prostate. The purpose o f the non-statistically significant 

transcript group was as a control to the statistically significant transcript group. These 

two groups were designed to determine the efficiency o f the SAGE analysis in 

identifying strom al specific transcripts. 4 non-statistically significant transcripts were
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identified as strom al and 2 statistically significant transcripts were identified as stromal. 

This result suggests that statistics were not a completely reliable m ethod o f  identifying 

transcripts expressed in the stroma.

In the male UGT, the expression o f  these transcripts was predom inantly in the DLP. 

Only ETL and RBMS1 were expressed in the VP. CRIP2 and LAT3 both had no 

expression in the VP but show expression in the VMP (Figure 3.4 and 3.5). The 

differential expression betw een the male and female UGTs may be to be due to the effect 

o f the prostatic epithelial in the male UGTs or androgens. For example, CRIP2 was 

expressed in the fem ale VM P but not the male VP (Figure 3.4 and 3.5).

CRIP2

Figure 3.4 Stromal transcripts from the Non-Statistically Selected Group 
expressed in Female dO UGTs. O nly 2 o f the 4 transcrip ts deem ed strom al 
from  th is g roup  w ere  found to have any expression in the VM P (n=3). The 1mm 
scale bar is fo r the  larger antisense hybridised UGTs only. The sense UG Ts are 
shown to  illustra te  a negative signal and potentia l background staining.
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Figure 3.5 Stromal transcripts from the Non-Statistically Selected Group 
expressed in Male dO UGTs. All 4 transcrip ts are expressed In the DLP. ETL, 
CRIP2 and RBMS1 are expressed in DP. ETL and RBMS1 are expressed in the 
VP. LAT3 express ion  is restricted to the peri-epithe lia l m esenchym e in the DLP. 
There is no transcrip t expression  in the SV (n=3). The 1mm sca le  bar is fo r the 
larger an tisense  hybrid ised UGTs only. The sense UGTs are show n to illustra te  
a negative s ignal and potentia l background staining.
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3.2.5 WISH analysis of the Intuitive Transcript Group

There were 18 transcripts in the intuitive group. Fifteen transcripts were random ly 

selected to be analysed. From  the 15, two transcripts failed at the PCR stage and one 

failed at the specific cDNA isolation stage o f the RNA probe production protocol. Five 

transcripts did not produce a stromal expression pattern. Seven transcripts from  the 18 

produced a strom al expression pattern. These 7 transcripts were Semaphorin 6D 

(Sema6D), Secreted Protein, Acidic, Cysteine-Rich (SPARC), Decorin, Tsukushi, 

Sproutyl, Sortilin-Related VPS 10 domain Containing receptor 2 (Sorcs2), and Neural 

Epiderm al growth factor-like 2 (NELL2).

Sema6D is a transm em brane receptor that has been characterised in chemotactic 

guidance (Qu et al., 2002). Both SPARC and Decorin are proteoglycans and known 

extracellular m atrix components (Termine et al., 1981; Day et al., 1987). Tsukushi is a 

leucine rich secreted protein and a BMP inhibitor (Ohta et al., 2004). Sproutyl is a 

m em brane-associated protein and a FGF antagonist (Zhang et al., 2001). Sorcs2 is a 

VPS 10 dom ain containing receptor protein o f unknown function (Rezgaoui et al., 2001). 

NELL2 (neural epidermal growth factor-like like 2) is a secreted protein with many 

different functions (W atanabe et al., 1996).

Decorin, Sema6D and SPARC showed VM P expression, while Sema6D and SPARC 

showed expression in the SM layer (Figure 3.6). With the exception o f SPARC, the other 

six intuitive transcripts showed DLP and VP expression. SPARC was restricted to the 

DLP (Figure 3.7)
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SPARC

DECORIN

1mm

Figure 3.6 WISH analysis of transcripts from the Intuitive Group expressed 
in Female dO UGTs. 3 o f the 7 transcrip ts from  the Intuitive G roup show ed 
strom al express ion  in dO fem ale  UGT (n=3). The 1mm scale bar is fo r the la rger 
antisense  hybrid ised  UG Ts only. The sense UGTs are to illustrate a negative 
signal and potentia l background staining.
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SEMA6D

SPARC
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Identification  o f  M esenchvm allv  E xpressed  T ranscrip ts

Figure 3.7 Stromal transcripts from the Intuitive Group expressed in 
Male dO UGTs. 7 transcrip ts  from  the Intuitive G roup w ere  found to have 
s trom al express ion  in M ale dO UGTs (n=3). The 1mm scale bar is fo r the 
la rger an tisense  hybrid ised UGTs only. The sense UGTs are show n fo r to 
illustra te  a negative  s ignal and potentia l background staining.
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3.2.6 Selection of Transcripts for Further Analysis

Thirteen transcripts were expressed in the stroma from the three groups. The full name, 

cellular location and known functions o f these genes and their proteins are summarised 

in Table 3.5.

Table 3.5 Cellular location and functions of proteins encoded by the 13 

stromal transcripts provided by the WISH analysis.

Gene Description Functions Reference
Sema6D Transmembrane Various Toyofuku et al; 2004

SPARC Transmembrane Various Fukunaga-Kalabis and Herlyn 
2007

Decorin Extracellular Various Roughley and Lee; 1994
Tsukushi Secreted BMP inhibitor Ohta et al; 2004
Sproutyl M embrane FGF inhibitor Hanafusa et al; 2002

Sorcs2 Transmembrane
Neuropeptide

signalling Rezgaoui et al; 2001

Nell2 Secreted Cell adhesion Nelson et al; 2004

CRIP2 Cytoplasmic Cell proliferation Sun et al; 2008

LAT3 Transmembrane Amino acid transport Babu et al; 2003

ETL Transmembrane GPCR N echiporuk et al; 2001

RBMS1 Nucleus Nucleotide binding Negishi et al; 1994

RasD Intracellular Small GTPase Zhu et al; 1995

EphB3 Transmembrane Various Adams et al; 1999

The goal o f  the W ISH analysis was to identify mRNAs expressed in the stroma. A 

number o f  issues determ ined which candidate(s) should be analysed further in terms o f 

their role, i f  any, in rat prostate development. Firstly, the amount o f information already 

known about the candidate genes was one o f the main criteria to consider. The more that 

is known about a particular gene, the easier is it to predict what role it could play in the 

developm ent o f  the prostate. For example, a candidate may have a role in the 

development o f  another type o f  branching organ, such as the lung or kidney. This is
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evidence that the candidate has a greater probability o f  being involved in the prostate 

development. Another advantage o f an established gene in the literature is the greater 

number o f  gene specific research tools available. Such tools would include antibodies, 

recom binant proteins, small molecule inhibitors, and siRNAs.

The two m esenchym e-enriched transcripts considered for further were analysis were 

Sema6D and EphB3. Both genes encode cell-to-cell signalling receptors that have been 

characterised as m olecular guidance cues for axons, which have a role in cellular 

positioning. M any Sem aphorin family members have roles in organ development, such 

as the secreted protein Sema3A that inhibits ureteric bud branching m orphogenesis 

(Tufro et al., 2008). However, Sema6D itself is less well researched. Sema6D has been 

suggested to be involved in axon guidance (Qu et ah, 2002) and cardiac developm ent 

(Toyofuku et ah, 2004).

EphB3 has roles in a num ber o f biological systems. These include roles in anorectal 

m alform ations (Yucel et ah, 2007), urorectal development (Dravis et ah, 2004) neural 

stem cell m igration (Chum ley et ah, 2007), and colorectal cancer (Cortina et ah, 2007) 

Additionally, EphB3 and its immediate family members and respective ligands have 

comm ercial antibodies and recom binant proteins available. No recom binant proteins 

were com m ercially available for either Sema6D or its putative ligand, P lexinA l at the 

time this research was performed. Both EphB3 and Sema6D were expressed in the 

stroma o f  both male and female dO UGTs. Therefore the data reported from  the W ISH 

analysis alone could not be used to distinguish which receptor protein should be 

characterized further in rat prostate development.

EphB3 was chosen for further investigation because it was it is a signaling receptor 

specifically expressed in the mesenchyme. Additionally, EphB3 had many research tools 

available which allowed expression and functional analysis in terms o f rat prostate 

development.
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3.3 Discussion

Three groups o f  transcripts were included in a WISH analysis to identify mRNAs 

expressed in the prostatic mesenchyme. The first group consisted o f  transcripts identified 

by statistics as enriched in the mesenchyme. The second group consisted o f  transcripts 

not identified by statistics as enriched in the mesenchyme. The rationale behind the 

selection o f  these two groups was that the WISH analysis would determine the efficiency 

o f the SAGE analysis in identifying VMP specific transcripts. Additionally, a third group 

o f transcripts which encode membrane proteins and secretory proteins was included as 

an intuitive group.

From 30 transcripts assayed across all three groups, 13 were determined as expressed in 

the m esenchym e. These 13 transcripts were candidates for further analysis. Nine 

transcripts identified as expressed in the mesenchyme were statistically significant 

transcripts, and four transcripts identified as expressed in the m esenchyme were non- 

statistically significant. As four non-statistically significant transcripts were identified as 

expressed in the mesenchyme, this suggests the statistics were not an absolute indicator 

o f m esenchym e expression. Despite this, the number o f  candidates analysed was too 

small to definitely to determine if  there was a real difference between the groups in terms 

o f reliably predicting m esenchyme expression. The absence o f  a positive epithelial 

control was a lim itation for the W ISH analysis as it m eant that epithelial expressed 

transcripts could not be identified. However, this lim itation did not invalidate any 

stromal transcripts identified, though some transcripts identified as stromal may show 

both stromal and epithelial expression upon further analysis.

From the statistically selected group, two transcripts from the 54 transcripts produced a 

stromal expression pattern. The two stromal transcripts discovered were the Ras GTPase, 

RRAD/RasD (Caldwell et al, 1996) and tyrosine kinase receptor, EphB3 (Bohme et al., 

1993). The RRAD/RasD is an intracellular signalling protein and the EphB3 receptor is 

involved in cell-to-cell signalling. EphB3 was selected for further analysis.
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There is evidence to suggest that members o f the Ras family, such as RRAD/RasD, are 

downstream  intracellular mediators o f  EphB-EphrinB signalling. From studies using 

human um bilical vein endothelial cells, it has been proposed that EphrinB2-EphB 

interactions signal through the Ras/M APK cascade (Kim et ah, 2002). The colon cell 

line DLD1, that expresses the EphB2 receptor, responds to EphrinB l stim ulation by 

activating the small GTPases Rho and Ras (Riedl et al., 2005). This suggests an 

association betw een EphB signalling and Ras intracellular signalling mediators. 

Furthermore, the EphB2 receptor inhibits cell adhesion by phosphorylating the effector 

domain o f  R-Ras, As well as inhibiting R-Ras activity through phosphorylation, EphB 

receptors decrease R-Ras activity via a GTPase-activating protein (Dail et ah, 2006).

There were 122 transcripts in the non-statistically selected group. Four transcripts from 

the 122 produced a stromal expression pattern. From the 4 transcripts, ETL and LAT3 

are interesting candidates because ETL and LAT3 are cell surface proteins and may be 

involved in paracrine or juxtacrine cell signalling during prostate development. The non- 

statistically selected group o f  transcripts were included in the W ISH analysis as a 

random control group. The function o f  the non-statistically selected group and 

statistically selected group o f  transcripts was to determine the efficiency o f the SAGE 

analysis in identifying VM P specific transcripts. From the statistically selected group, 

two transcripts produced a stromal expression pattern. The WISH analysis identified 4 

mRNAs that were not statistically significant in SAGE terms, but are expressed in the 

mesenchyme.

From the Intuitive Transcript Group, 7 transcripts were identified as stromal in either 

male or female UGT from  the W ISH analysis. The 7 transcripts came from the intuitive 

group, com prised o f  mRNAs that encode transmembrane and secreted proteins. More 

stromal transcripts were identified from the intuitive group than either o f the other 

groups combined. So in terms o f the identifying stromal mRNAs that are involved in 

signalling, the best criteria for selecting candidate mRNAs maybe the type o f  protein a 

particular transcript encodes or the cellular location o f a particular encoded protein. 

These 7 transcripts m ake stromal candidates for further analysis. The intuitive group
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provided a receptor (Sorcs2) and a secreted protein (Nell2) with little known about their 

functions. Additionally, the group provided extracellular proteins (SPARC and Decorin) 

and a receptor (Sem a6D) that have been characterised in a num ber o f  biological systems 

and processes, but have not been explored in prostate development.

To summ arise, 13 transcripts from the 194 mRNAs that comprise the three groups were 

identified stromal in either male or female rat dO UGTs. Two o f the transcripts, Sema6D 

and EphB3, were considered for further analysis. EphB3 was selected because this gene, 

its im m ediate fam ily m em bers and putative ligands were more thoroughly characterised 

in other biological m odels in the scientific literature. Furthermore, the EphB fam ily had 

more analytical tools available. The rest o f this thesis will cover the investigation o f the 

EphB-EphrinB signalling family and its role, if  any, in prostate development.
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4 Expression of the EphB receptors and EphrinB 
ligands during Rat Prostate Development

4.1 Introduction

The WISH study identified expression of the EphB3 receptor in the VMP and prostate 

mesenchyme. The aim o f this chapter was to determine which members o f the EphB- 

EphrinB family were expressed during rat prostate development. 5 EphB receptors 

(EphB 1, B2, B3, B4 and B6) and 3 Ephrin ligands (EphrinB 1-B3) have been identified 

in mammals (Egea and Klein; 2007) EphB5 is not found in mammals but has been 

identified in the chicken (Soans et al., 1996). WISH, PCR and Immunohistochemistry 

were used to examine the expression o f EphB receptors and EphrinB ligands at the 

mRNA and protein level during rat prostate development.

EphB receptors and EphrinB ligands are expressed in many biological systems. These 

include the brain (Willson et al., 2006), nervous system (Song et al., 2008) and blood 

vessels (Gale et al., 2001). EphB-EphrinB interactions have been shown to have a role in 

processes such as T-cell development (Alfaro et al., 2007) angiogenesis (Foo et al., 

2006), and branching organ development such as the kidney (Ogawa et al., 2006).

EphB3 and EphrinB 1 were identified as expressed in the mesenchyme by SAGE and 

WISH analysis. PCR was used to investigate whether the other transcripts o f the EphB 

and EphrinB families were expressed in the developing prostate. The PCR analysis was 

essential because SAGE may have missed the expression o f other EphB and EphrinB 

transcripts, especially if they were expressed in the epithelium (see Table 4.1). Since we 

observed EphB3 and EphrinB 1 expression in the developing prostate we hypothesised 

that EphB-EphrinB interactions may have a role in the rat prostate development.
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Table 4.1 SAGE tag counts of EphrinB ligands and the EphB receptors.

The E ph rinB I ligand and EphB3 receptor are the only mem bers of the EphB- 

EphrinB fam ily  to be detected in the SAGE libraries. This data was taken from 

Vanpoucke et al 2007.

VMP VSU
E p h rin B I 3 2
EphrinB2 0 0
EphrinB3 0 0

E p h B l 0 0
EphB2 0 0
EphBB 5 0
EphB4 0 0
EphB6 0 0

4.2 Results

4.2.1 EphB and EphrinB mRNA Expression in dO rat UGTs

PCR analysis was performed to determine which EphB and EphrinB mRNAs were 

expressed in male and female dO UGT. VMP and VSU were included as these were the 

two tissues used in the SAGE analysis o f prostatic transcript expression. Two primary 

rat cell types were also included. Ventral Mesenchyme Pad Cells (VMPC) are derived 

from the VMP o f dO female rat UGT, and Urogenital Stromal Cells (URSC) are derived 

from the SM and urethral mesenchyme from dO female rat UGTs (Tomlinson et al., 

2004). These primary cells were used as a comparison for the VMP and VSU tissues to 

help determine whether transcripts were expressed through out the stroma or particularly 

in VMP or SM compartments. From the literature, it is known that EphB and EphrinB 

are expressed in the rat brain and kidney (Willson et al., 2006, Ogawa et al., 2006). The 

lung, like the kidney, is a branching organ that has similar development mechanisms to 

the prostate. Lung, kidney and brain cDNA were used as positive controls. However, as
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can be seen in Figure 4.1, the lung was an ineffective positive control. A no reverse 

transcriptase control from the VP cDNA synthesis was used as a negative control.

The PCR analysis o f EphB and EphrinB expression is shown in Figure 4.1. The ligands, 

EphrinBl and EphrinB2 were expressed in all the tissues except the lung. The EphrinB3 

ligand was expressed in the brain and weakly expressed in the VMP and VSU. The 

EphBl and EphB6 receptors were not expressed anywhere except in the brain. The 

EphB2 and EphB3 receptors were expressed in all tissues except the lung. The receptor 

EphB4 was weakly expressed in the VP, VMP and VSU. Both the EphB2 and B3 

receptors and EphrinB 1 and B2 ligands were observed in both the brain and the kidney. 

There are reports o f EphB and EphrinB genes being expressed in the kidney (Takshashi 

et ah, 2001) and the brain (Willson et ah, 2006).

The receptors EphB2, EphB3, and ligands EphrinBl and EphrinB2 were expressed in all 

prostatic tissues. These four genes were selected for further characterisation. EphB3 

was not expressed in the VMPC and URSC primary cell cultures. This suggests the 

EphB3 expression may have been lost in primary cell culture, possibly due to a 

requirement for cell-to-cell contact, in vivo microenvironment or due to the selective 

growth o f subpopulations in vitro. VMPCs and USRCs were not a good model for 

examining the role o f EphB3 signalling in rat prostate development.
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VMP  VMPC URSC Brain Luna Kidney -RT

Figure 4.1. PCR analysis of EphB and EphrinB family members in dO rat 
tissues. cDNA from the following tissues were used to establish w hether the 
EphB and EphrinB mRNAs were expressed: Ventral Prostate (VP), Ventral 
M esenchym al Pad (VMP), VMP, smooth muscle and urethral epithelium  (VSU), 
two prim ary rat cell cultures; Ventral M esenchymal Pad cells (VMPC) and 
Urethral S trom al cells (URSC). Brain, Lung and Kidney were included as 
positive controls. No Reverse Transcriptase (-RT) was included as a negative 
control (-RT). GAPDH was used as a loading control. PCR was repeated on 
three independent samples. For PCR product sizes, see Table 2.6 in the 
M ethods and Materials.

Next, the expression o f EphB2, EphrinB 1, and EphrinB2 was examined by WISH to identify 

which might show mesenchymal expression and establish the spatial distribution. The EphB2 

and EphrinB2 WISH did not show any stromal expression in either male or female dO UGTs. 

These negative results may suggest that EphB2 and EphrinB2 are expressed in the 

epithelium. The EphrinB 1 WISH result can be seen in Figure 4.2 which shows that EphrinB 1 

mRNA is expressed in the stroma. EphB3 and EphrinB 1 are expressed in the mesenchyme of 

the DLP, VP and VMP. Therefore, a putative receptor (EphB3) and ligand (EphrinB 1) 

binding pair are both expressed spatiotemporally in the prostate stroma. This results in a 

number o f  signalling possibilities. The EphrinB 1 ligand may act on the epithelium, within

109



Chapter 4__________________________________ Expression and Distribution o f EphB Signalling

the mesenchyme or have a signalling role in both. The EphB3 receptor may receive signals 

from within the mesenchyme, from the epithelium or be involved in signalling from both.

EphrinBI

Figure 4.2. Expression of the EphB3 receptor and the ligand EphrinBI in dO 
male and female rat UGT. The EphB3 W ISH is from the W ISH analysis as 
described in C hapter 3. EphB3 and EphrinB I are expressed in the m esenchym e of 
the VP and DLP on the males and the VMP in the females. The 1mm scale bar is 
for the larger antisense hybridised UGTs only. The sense UGTs are shown for 
control purposes (n=3)
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4.2.2 mRNA Ontogeny of EphB receptors and EphrinB ligands in VP 

development

WISH analysis identified expression o f EphB3 receptor mRNA and EphrinBI ligand 

mRNA in the mesenchyme o f dO male and female rat urogenital tracts. The temporal 

expression o f the receptors EphB2 and EphB3, and the ligands EphrinBI and EphrinB2 was 

examined from e l 7 to adult (3 months) in the VP using quantitative PCR. The EphB2 

receptor and EphrinB2 ligand were included in the quantitative PCR analysis as they were 

expressed in the VP, VMP and VSU (Figure 4.1).

EphB2 expression decreased from approximately 4-fold over TBP at e 17 to approximately

2.5 fold over TBP by dO. This decrease in relative expression continued to approximately 1- 

fold over TBP by dlO. The expression level of 1-fold over TBP continued until adulthood 

(Figure 4.3).

From e l7  until dlO, the EphB3 expression was steady at approximately 4-fold over TBP. 

Flowever, at d35 EphB3 expression increased to 12.5 fold over TBP and then was reduced to 

approximately 5 fold over TBP by maturity (Figure 4.4).

EphrinBI expression fluctuated between 6 and 8 fold over TBP between e l 7 and dlO. There 

was then a reduction to approximately 1 fold over TBP by d35 followed by an increase to 

approximately 2.5 fold over TBP by adulthood (Figure 4.5).

EphrinB2 expression decreased from approximately 9 fold over TBP at e l 7 to approximately 

4 fold over TBP by dO. This decrease in relative expression continued to approximately 1- 

fold over TBP by d35 and into adulthood (Figure 4.6).
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Figure 4.3 EphB2 Ontogeny during VP development. Expression of 
EphB2 decreased from the level at e17and there was no further decrease 
a fter d10. m RNA expression was normalised to TBP expression, “a” 
represents a statistically significance difference from e17, “b” represents a 
statistica lly significance difference from dO, “c” represents a statistica lly 
s ign ificant d ifference from d10, “d” represents a statistica lly significant 
d ifference from d35, “e ” represents a statistically significant d ifference 
from  Adult. These letters represent statistically sign ificant d ifferences. All 
the bars on each column represent the standard error for each tim e point. 
All statistica l d ifferences were calculated using Students t test at P = 
<0.05. All the data shown here represents the results from 3 independent 
experim ents from 3 separate tissue extractions (n=3).
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Figure 4.4 EphB3 Ontogeny during VP development. mRNA 
expression was normalised to TBP expression. Expression o f EphB3 was 
sim ila r at e17, dO and d10 but showed a peak o f expression at d35 that 
returned to levels sim ilar to e17 by adulthood, “a” represents a statistica lly 
s ign ificance difference from e17, “b” represents a statistica lly significance 
d ifference from  dO, “c” represents a statistically significant d ifference from 
d10, “d ” represents a statistically significant d ifference from d35, “e ” 
represents a statistica lly significant difference from Adult. These letters 
represent statistica lly significant differences. All the bars on each column 
represent the standard error for each time point. All statistical d ifferences 
were calculated using Students t test at P = <0.05. All the data shown 
here represents the results from 3 independent experim ents from 3 
separate tissue extractions (n=3).
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Figure 4.5 EphrinB I Ontogeny during VP development. mRNA 
expression was normalised to T BP  expression. EphrinBI mRNA was 
abundant at e17 and expression remained high until d35 when EphrinBI 
mRNA levels decreased rapidly but then increased again by adulthood “a” 
represents a statistically significance difference from e17, “b” represents a 
statistically significance difference from dO, “c” represents a statistically 
significant difference from d10, “d” represents a statistically significant 
difference from d35, “e ” represents a statistically significant difference 
from Adult. These letters represent statistically significant differences. All 
the bars on each column represent the standard error for each time point. 
All statistical differences were calculated using Students t test at P = 
<0.05. All the data shown here represents the results from 3 independent 
experiments from 3 separate tissue extractions (n=3).
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Figure 4.6 EphrinB2 Ontogeny during VP development. mRNA  
expression was normalised to T BP  expression. Expression of EphB2 was 
high at e17 but by dO was decreased and continues to decrease at d35 
into adulthood, “a” represents a statistically significance difference from 
e17, “b” represents a statistically significance difference from dO, “c” 
represents a statistically significant difference from d 10, “d” represents a 
statistically significant difference from d35, “e ” represents a statistically 
significant difference from Adult. These letters represent statistically 
significant differences. All the bars on each column represent the 
standard error for each time point. All statistical differences were 
calculated using Students t test at P = <0.05. All the data shown here 
represents the results from 3 independent experiments from 3 separate 
tissue extractions (n=3).
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4.2.3 EphB Receptor and EphrinB Ligand Protein Expression in dO rat 

UGTs

To localise the expression of EphB2, EphB3, EphrinB 1 and EphrinB2 proteins in the 

prostate, IHC was performed upon dO male and female rat UGTs using antibodies specific 

for the four proteins.

The EphB3 protein was predominantly expressed in the stroma of the male UGT, 

particularly in the DLP and VP. There was very little EphB3 staining in the DLP and VP 

epithelium, suggestive of background staining (Figure 4.7). These observations are 

consistent with the WISH data for EphB3 (Figure 4.2).

In the dO female UGT, EphB3 protein was expressed in the stroma and especially in the 

VMP and the SM layer (Figure 4.8). However, there was a weak level of EphB3 staining in 

the urethral epithelium in the female dO UGT. The EphB3 staining in the urethral epithelium 

may be due to background staining. The SAGE data suggests that there was no EphB3 

expression in the VSU because no EphB3 transcript tags were detected in the VSU library 

(Table 4.1). Furthermore, the WISH data showed no strong EphB3 transcript expression in 

the urethral epithelium (Figure 4.2).
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A EphB3

Figure 4.7 Expression of EphB3 protein in UGT o f dO male rat. A. dO
male UGT showing EphB3 staining in the mesenchyme. B and C. 
Magnified images of the DLP showing the mesenchyme expression of 
EphB3. The arrows indicate the peri-epithelial region. D and E. Magnified 
images of the V P  showing the mesenchyme expression of EphB3. The 
arrows indicate the peri-epithelial region. DLP=Dorsal-Lateral Prostate, 
DP=Dorsal Prostate, E=Epithelium, M=Mesenchyme, SV=Seminal 
Vesicle, VP=Ventral Prostate (n=3).
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A , EphB3

Figure 4.8 Expression o f EphB3 protein in UGT of dO female rat. A. dO
female UGT showing EphB3 staining in VMP, SM layer and urethral epithelium. 
B and C. Magnified images of the VM P and SM layer expression of EphB3. 
SM=Smooth Muscle, URE=Urethra, VMP=Ventral Mesenchymal Pad (n=3).

The EphB2 receptor protein was predominantly expressed in the prostatic epithelial buds in 

the VP, DLP and DP in the male dO UGT. Conversely, the EphB2 protein was weakly 

expressed in the surrounding stroma, as seen in Figure 4.9. In the female UGT, EphB2 was 

expressed in the VMP, SM layer and the urethral epithelium (Figure 4.10). In contrast to the
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EphB3 staining (Figure 4.8), the EphB2 staining in the urethral epithelium is likely to be 

genuine as no EphB2 transcript tags were detected in the SAGE data. This suggests EphB2 

is expressed in the epithelium (Table 4.1).
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Figure 4.9 Expression of EphB2 protein in UGT o f dO male rat. A. dO
male UGT showing EphB2 staining in the in the epithelium. B and C. 
Magnified images of the DLP showing the epithelial expression of EphB2. 
D and E. Magnified images of the V P  showing the epithelial expression of 
EphB2. DLP=Dorsal-Lateral Prostate, DP=Dorsal Prostate, E=Epithelium, 
M=Mesenchyme, SV=Seminal Vesicle, VP=Ventral Prostate (n=3).
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Figure 4.10 Expression o f EphB2 protein in UGT o f dO female rat. A.
dO female UGT showing EphB2 staining in VMP, SM  layer and urethral 
epithelium. B and C. Magnified images of the VM P and SM layer 
expression of EphB2. SM=Smooth Muscle, URE=Urethra, VMP=Ventral 
Mesenchymal Pad (n=3).

EphrinBl was expressed in the mesenchyme in both male and female dO UGTs. The 

expression of EphrinBl was restricted to the peri-epithelial stroma surrounding the 

branching epithelial buds of all the prostatic lobes in the male. EphrinBl was expressed 

in the peri-epithelial areas of the mesenchyme. Additionally, EphrinBl expression was 

concentrated around the distal tips of the VP and DLP (Figure 4.11). In the female UGT, 

EphrinBl was expressed in the VMP but was also expressed in the urethral epithelium 

(Figure 4.12). The EphrinBl protein expression in the female urethral epithelium (Figure

4.10) is supported by the presence of two EphrinBl SAGE tags in the VSU library
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(Table 4.1). These two observations taken together suggest EphrinBl is expressed in the 

female urethral epithelium. However, no EphrinBl mRNA expression can be seen in the 

dO female UGT using WISH (Figure 4.2). EphrinBl protein was not expressed in either 

the urethral or prostate epithelium in the male dO UGT (Figure 4.11).
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Figure 4.11 Expression o f E phrinB l protein in UGT o f dO male rat. A.
dO male UGT showing EphrinBl staining in the in the peri-epithelial 
mesenchyme. B and C. Magnified images of the DLP showing the peri- 
epithelial mesenchyme expression of EphrinBl. D and E. Magnified 
images of the V P  showing the peri-epithelial mesenchyme expression of 
EphrinBl DLP=Dorsal-Lateral Prostate, DP=Dorsal Prostate, 
E=Epithelium, M=Mesenchyme, SV=Seminal Vesicle, VP=Ventral 
Prostate (n=3).
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Figure 4.12 Expression of EphrinBI protein in UGT o f dO female rat
A. dO female UGT showing EphrinBI staining in VM P, SM  layer and 
urethral epithelium. B and C. Magnified images of the VM P and SM  layer 
expression of EphrinBI. SM=Smooth Muscle, URE=Urethra, 
VMP=Ventral Mesenchymal Pad (n=3).

EphrinB2 was expressed in the VP and DLP epithelium of the male dO UGT (Figure 4.13). 

In the female UGT, EphrinB2 was expressed in the VMP, SM layer and the urethral 

epithelium (Figure 4.14). The EphrinB2 staining in the urethral epithelium is likely to be 

genuine as no EphrinB2 transcript tags were detected in the SAGE data that suggests that 

EphrinB2 is expressed in the epithelium of the female UGT (Table 4.1).
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Figure 4.13 Expression o f EphrinB2 protein in UGT o f dO male rat. A. dO
male UGT showing EphrinB2 staining in the in the epithelium. B and C. 
Magnified images of the DLP showing the epithelial expression of EphrinB2. D 
and E. Magnified images of the V P  showing the epithelial expression of 
EphrinB2. DLP=Dorsal-Lateral Prostate, DP=Dorsal Prostate, E=Epithelium, 
M=Mesenchyme, SV=Seminal Vesicle, VP=Ventral Prostate (n=3).
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Figure 4.14 Expression of EphrinB2 protein in UGT o f dO female rat.
A. dO female UGT showing EphrinB2 staining in VMP, SM layer and 
urethral epithelium. B and C. Magnified images of the VM P and SM layer 
expression of EphrinB2. SM=Smooth Muscle, URE=Urethra, 
VMP=Ventral Mesenchymal Pad (n=3).
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4.3 Discussion

Expression and Distribution of EphB Signalling

The WISH analysis described in Chapter 3 identified EphB3 as expressed in the 

mesenchyme and lead to the analysis of the EphB family in the developing prostate. EphB3 

has been characterised in other developmental systems and has a large number o f specific 

research tools available. In mammals, the EphB family has 5 known receptors and 3 ligands. 

PCR analysis (Figure 4.1) revealed the receptors EphB2 and EphB3 and the ligands 

EphrinBl and EphrinB2 were expressed in the rat prostate. The ligand EphrinB3 and the 

receptor EphB4 had very weak bands in the VP, VMP, and VSU lines, suggesting low 

expression levels or expression in small subset of cells. The receptor EphBl was not 

expressed in any of the prostatic tissues (Figure 4.1). The EphrinBl and EphrinB2 ligands 

and the EphB2 and B3 receptors were selected for further analysis.

The EphB3 transcript was detected by the SAGE analysis (Table 4.1), suggesting that it was 

expressed in the mesenchyme. WISH showed EphB3 as expressed in the VP and DLP 

mesenchyme of the male dO urogenital tract. Additionally, EphB3 expression was restricted 

to the VMP in the female dO urogenital tract (Figure 4.2). The EphB3 protein expression 

was consistent with the mRNA expression pattern and showed that EphB3 protein was 

expressed in the mesenchyme. However, there was a small level of EphB3 staining in the 

urethral epithelium in the female dO UGT (Figure 4.8). The EphB3 staining in the urethral 

epithelium may of been non-specific staining. No EphB3 transcript tags were detected in the 

VSU SAGE library suggesting that there was no EphB3 expression in the VSU (Table 4.1). 

Furthermore, the WISH data showed no strong EphB3 transcript expression in the urethral 

epithelium (Figure 4.2). EphB3 is expressed predominantly in the mesenchymal tissues 

during chicken development (Baker et al., 2001).

EphB3 expression during rat VP development was approximately constant between el7  and 

postnatal dlO but increased by d35 before the levels decreased by adulthood (Figure 4.4). 

The increase in EphB3 mRNA levels at d35 is unusual when compared to the ontogeny of 

the other EphB-EphrinB family members examined in this thesis. The mRNA levels of
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EphB2, EphrinB 1 and EphrinB2 were approximately equal at d35 (Figures 4.3, 4.5 and 4.6).

The EphB3 receptor may have an unknown ligand at d35 that is not one of the established 

EphrinB ligands. EphrinA ligands are known to interact with EphB receptors (Cerretti et ah, 

1995; Lackmann et ah, 1997; Flimanen et ah, 2004). No investigation into the role of EphB3 

signalling during VP development at d35 was conducted. Since EphB3 is expressed in the 

mesenchyme it may mediate signalling from Ephrins expressed in the epithelium, 

mesenchyme or both. The EphB3 expression data taken together suggests that EphB3 is 

involved in either paracrine signalling with the epithelium or has a role in intra-stromal 

autocrine / juxtacrine signalling during rat prostate development.

The EphB2 receptor protein was expressed in the male UGT epithelium (Figure 4.9) The 

EphB2 transcript was not detected by the SAGE analysis (Figure 4.1), which suggests 

epithelial expression as there was little epithelium in the SAGE libraries. These observations 

are in agreement with the epithelial specific expression of EphB2 in the developing ear 

epithelium (Cowan et ah, 2000) and in vascular development (Salvucci et al., 2006).

EphB2 expression is sexually dimorphic in mouse genital tubercle development (Lorenzo et 

al., 2003). This suggests that EphB2 is a candidate androgen regulated gene in mouse 

genital development. However, the EphB2 receptor is expressed in both the male and female 

dO UGTS (Figures 4.9 and 4.10) although this evidence is observational not quantitative. 

This may suggest that EphB2 is not an androgen-regulated gene in rat prostate development.

The EphB2 mRNA expression during VP development (Figure 4.3) decreased between e l7 

and adulthood. This suggests any cell-to-cell signalling through the EphB2 receptor, 

expressed on either the stroma or epithelium, is occurring pre-natally. This is in an inverse 

correlation with androgen levels, further suggesting that EphB2 is not an androgen-regulated 

gene in rat prostate development.

EphrinB 1 expression was restricted to the mesenchyme of the dO male and female rat UGT 

at both the mRNA (Figure 4.2) and protein levels (Figures 4.11 and 4.12). In the dO male 

UGT, EphrinB 1 is expressed in the peri-epithelial mesenchyme. The EphrinB 1 transcript
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was detected by the SAGE analysis (Table 4.1), suggesting that it was expressed in the 

mesenchyme. EphrinBl is expressed in the mesenchyme surrounding of other developing 

organs, such as the spinal cord (Jevince et al., 2006). Additionally, EphrinBl is expressed in 

the mesenchyme during developmental processes such as corneal angiogenesis (Kojima et 

ah, 2007). Collectively, this data suggests EphrinBl-EphB signalling is active during rat 

prostate development either in a paracrine (EphrinBl-EphB2), juxtacrine/autocrine 

(EphrinBl-EphB3) manner, or a combination of both.

The EphrinBl expression pattern during VP development from e l 7 to adulthood (Figure 

4.5) is similar to EphB2 (Figure 4.3). Both EphrinBl and EphB2 mRNA expression 

decreased from e l 7 to adulthood. EphB2 was expressed in the epithelium and EphrinBl 

expressed in the stroma. Collectively, these observations suggest that EphB2 and EphrinBl 

interact in a paracrine fashion as a mechanism of stromal-epithelial interaction during rat VP 

development.

In the male dO UGT, EphrinB2 was expressed in the epithelium (Figure 4.13). In the female 

UGT, EphrinB2 was predominantly expressed in the SM layer but was also expressed in the 

urethral epithelium and the VMP (Figure 4.14). The EphrinB2 transcript was not detected by 

the SAGE analysis (Figure 4.1), which suggests epithelial expression as there was little 

epithelium in the SAGE libraries. EphrinB2 was expressed in different tissue types in other 

developing biological systems. It is seen in the epithelium and mesenchyme during 

angiogenesis in the mouse (Adams et al., 1999; Korff et al., 2006). This data suggests that 

EphB-EphrinB juxtacrine signalling is active within the epithelium as EphrinB2 and the 

receptor EphB2 are expressed in the epithelium. Furthermore, EphrinB2 may interact with 

EphB3, expressed in the mesenchyme, creating a paracrine signalling mechanism between 

the mesenchyme and epithelium. The mRNA expression patterns of EphrinB2 (epithelium) 

and EphB3 (mesenchyme) were not similar during rat VP development. However, both 

EphrinB2 and EphB3 were expressed at relatively high levels from el7  to dlO postnatal. 

EphrinB2 mRNA expression decreased from e!7 by maturity (Figure 4.6). This suggests any
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juxtacrine or paracrine signalling involving EphrinB2 in VP development is important before 

dlO.

To summarise, EphB3 and EphrinBl were expressed in the prostate stroma whereas EphB2 

and EphrinB2 were predominantly expressed in the prostate epithelium. Two paracrine 

mechanisms are possible. Firstly, signalling from receptor EphB2 (epithelium) to EphrinBl 

(mesenchyme) is possible. Additionally, paracrine signalling from the receptor EphB3 

(mesenchyme) to the ligand EphrinB2 (epithelium) is possible. Furthermore, juxtacrine 

signalling is possible between EphB3-EphrinBl is possible in the mesenchyme and between 

EphB2-EphrinB2 in the epithelium. The expression patterns of these ligands and receptors 

during rat UGT development make it clear that EphB-EphrinB signalling has a role in rat 

prostate development. The next chapter attempts to elucidate the function of EphB-EphrinB 

signalling in rat prostate development.
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5 Functional Analysis of the EphB Signalling in Rat 

Prostate Development

5.1. Introduction

The EphrinBl ligand and EphB3 receptor were identified as expressed in the 

mesenchyme o f the developing rat prostate. Additionally, the EphrinB2 ligand and 

EphB2 receptor appeared to be expressed in the epithelium o f the developing rat 

prostate. EphB signalling is involved in the regulation o f migration and cell adhesion 

during development. Processes influenced by EphB regulation include cell fate, 

morphogenesis and organogenesis (Merlos-Suarez and Batlle, 2008)

The aim o f the research described in this chapter was to elucidate the function o f EphB- 

EphrinB signalling in rat prostate development. The in vitro model used for this purpose 

was organ cultures o f the VP (Sugimura et ah, 1986; Lipshutz et ah, 1997; Foster et al., 

1999) and AP (Aboseif et ah, 1997, Foster and Cunha., 1999) o f dO male rat prostate.

In vitro assays using the VP and AP cultures were performed. One assay used the 

EphrinBl-Fc and EphrinB2-Fc proteins whereas the other assay used the EphB2-Fc and 

EphB3-Fc proteins. The rationale for adding the EphB2-Fc and EphB3-Fc receptor 

proteins was that that they would competitively bind EphrinB ligands and inhibit the 

endogenous receptor-ligand interactions. This ‘ligand trap’ would result in a loss o f Eph 

signalling activity. The receptor proteins were added as three separate treatment groups, 

EphB2-Fc, EphB3-Fc, and a combination of the two. The proteins were added at a 

concentration o f 4pg/ml. Other studies have used much greater concentrations o f EphB- 

Fc and EphrinB-Fc recombinant proteins in cultures such as at 5pg/ml in primary 

hippocampal neurone cultures (Hoogenraad et ah, 2005) and lOpg/ml in in rat 

embryonic statacoustic ganglion cell culture (Bianchi and Gray; 2002) and mouse fetal
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thymus organ culture (Alfaro et a l, 2007). 4pg/ml was deemed sufficient for rat VP and 

AP organ culture. The unit of protein concentration, pg/ml, was used as opposed to 

molarity, as this was the conventional method of stating the protein concentration in the 

literature, as shown by the examples above.

The other assay used EphrinBl-Fc and EphrinB2-Fc proteins. The rationale for adding 

the EphrinBl-Fc and EphrinB2-Fc ligand recombinant proteins was that the added 

ligand would result in maximum levels of EphB signalling in the EphB receptor 

expressing cells. The ligand proteins were added as three separate treatments, EphrinBl- 

Fc, EphrinB2-Fc, and a combination of the two.

The assays were conducted in the presence and absence of testosterone (1(F8 M). The 

concentration of testosterone was described in molarity as this is the convention in the 

literature (Sugimura et al., 1986; Freestone et al., 2003; Tomlinson et al., 2004). The 

presence of testosterone (T) in culture makes the assay more physiologically accurate. 

Any effect the EphB-Fc or EphrinB-Fc proteins may have on the organ culture may be 

masked by the presence of the T, hence the inclusion of the organ culture in the absence 

of testosterone. A control Fc treatment group was also included in every experiment to 

ensure that any biological effect on the organ was due to the Eph or Ephrin protein and 

not the Fc tag.

The effects of stimulation or inhibition of Ephrin signalling were measure in two ways. 

Firstly, the 2D area of each individual organ was measured after 6 days of culture 

(Sugimura et al., 1986; Lipshutz et al., 1997; Foster et al., 1999). The area measurement 

was used as an indicator of organ size. Secondly, the numbers of epithelial tips at the 

distal perimeter were counted and the distal perimeter itself was measured for each 

individual organ. Each tip count was divided by the perimeter distance. This resulting 

number was used to compare the degree of epithelial branching between each organ. 

These two different measurements, area and tip count, provided an insight into how the 

EphB-EphrinB proteins might affect organ growth and epithelial branching.
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At the end of the organ culture period, the VP organs were treated with BrdU. Using 

fluorescent IHC, the amount of BrdU incorporated into proliferating cells was measured 

and used as a proliferation gauge in both stromal and epithelial cells. Co-staining with an 

epithelial marker enabled the calculation of epithelial and stromal proliferation rates. 

The stromal and epithelial cells were distinguished by using an anti-pan cytokeratin 

antibody to mark the epithelial cells. The number of total stromal and epithelial cells was 

counted in three random distal areas of ventral prostate for each organ. The total number 

of proliferating stromal and epithelial cells was calculated from these cell counts. All of 

the areas counted were adjacent to the edge of the organ. This ensured ail the cell counts 

were representative of the distal part of each organ. The AP organs are much smaller 

than the VP organs, and were too small for reliable histology and IHC analysis of cell 

proliferation. Therefore it was only the VP organs that were used in the proliferation 

analysis and any other downstream IHC analyses.

VP grown in vitro and treated with EphB-Fc and EphrinB-Fc proteins were examined by 

histology and IHC to look at effect upon the epithelium and mesenchyme morphology 

and composition. Antibodies against specific marker proteins used for each tissue type. 

The basal epithelial marker p63 was used as a marker for epithelial differentiation. It is a 

transcription factor (Signoretti et al., 2000) and is expressed in undifferentiated 

epithelium at the growing tips of buds. Upon canalisation, p63 expression becomes 

restricted to the basal cells. Smooth Muscle Actin (SMA) is a stromal marker that was 

used as a marker for the smooth muscle surrounding the branching epithelia (Mitchell et 

al., 1990).

131



Chapter 5

5.2 Results

Functional Analysis of EphB Signalling

5.2.1 The Effect of EphB-Fc Proteins on VP organs grown in vitro

The addition of the receptor protein, EphB2-Fc and EphB3-Fc, had an effect on the VP 

organs (Figure 5 .1 A). The addition of the receptor proteins decreased the area of VP 

organs grown in the presence of testosterone (+T+EphB2-Fc 34.7% decrease compared 

to +T, Students t test P=0.0057 at 95% confidence; +T+EphB3-Fc 26.3% decrease 

compared to +T, Students t test P=0.0108 at 95%) as shown in Figure 5 .IB. This was 

expected, as if EphB signalling had a role in VP development, the exogenous EphB2-Fc 

and EphB3-Fc proteins would bind to and saturate the endogenous EphrinB ligands. 

This would result in the endogenous receptor proteins being unable to bind to the 

endogenous EphrinB ligands. The addition of both EphB2-Fc and EphB3-Fc together to 

a single culture produced no significant effect on VP size (Figure 5 .IB). Exposure to 

EphB2-Fc induced a significant decrease in the degree of epithelial branching in VP 

organs (+T+EphB2-Fc 36% decrease compared to +T, Students t test P=0.0088 at 95% 

confidence.) as shown in Figure 5.1C. However, the treatments of EphB3-Fc and both 

proteins together had no significant effect on the degree of epithelial branching in VP 

organs (Figure 5.1C). It could be expected that a compound effect would be seen 

resulting in a greater decrease in area as both EphB2-Fc and EphB3-Fc might function 

additively. However, the presence of both EphB2-Fc and EphB3-Fc in culture had no 

effect on VP organ size.

No EphB-Fc receptor experiment produced a statistically significant result in the 

absence of testosterone. This could suggest that EphB signalling is androgen dependent 

during its mediation of VP development. However, the more likely explanation is that 

VP organs not exposed to testosterone during growth do not grow at a rate great enough 

for any effect of EphB signalling to be detected. Essentially, the assay involving the
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Figure 5.1. The Effect o f EphB-Fc proteins on VP organ size and epithelial 
branching. Day 0 rat V P  organs were cultured for 6 days in the presence and 
absence of testosterone (10’8M) and/or Fc control, EphB2-Fc, EphB3-Fc, or both 
(4pg/ml). The data represents a minimum of 2 organs from each treatment 
group from at least 3 independent experiments. All images taken at X4 
magnification. Asteriks on graphs indicate statistical significance (* = P<0.05; 
**=P<0.01) A. Representative pictures of VP  organ cultures. B. The 2D V P  
organ area was measured using Image J  software from NIH. Area units were 
measured as pixels. Addition of EphB2-Fc and EphB3-Fc to V P  organ cultures 
in presence of T resulted in a significant reduction in area (+T+EphB2-Fc 34.7%  
decrease compared to +T, Students t test P=0.0057 at 95% confidence; 
+T+EphB3-Fc 26.3% decrease compared to +T, Students t test P=0.0108 at 
95%) confidence. C. The number of epithelial tips around the distal perimeter 
from each treatment were counted and displayed as the ratio of tip number to
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perimeter distance. Addition of EphB2-Fc to VP  organ cultures in the presence 
of T resulted in a significant reduction in epithelial tip number (+T+EphB2-Fc 
36% decrease compared to +T, Students t test P=0.0088 at 95% confidence.)

5.2.2 The Effect of EphB-Fc Proteins on Cell Proliferation in the VP

The EphB2-Fc and EphB3-Fc treatments reduced VP organ size. Therefore, the 

proliferation rates of both epithelial and stromal cells in the VP were measured. The 

proliferation rates were measured using BrdU and pan-cytokeratin 

immunohistochemistry. The number of BrdU positive cells was counted in each tissue 

type from randomly selected areas of the VP periphery.

Representative fluorescent immunohistochemical images used in these experiments can 

be seen in Figure 5.2A. The addition of the EphB2-Fc and EphB3-Fc treatments had no 

significant effect on either VP epithelial or stromal proliferation when compared to the 

controls in the presence of testosterone (Figure 5.2B and C). In the absence of 

testosterone, no effect was observed on the number of proliferating epithelial cells. 

Conversely, the number of stromal cells in the VP organs treated with EphB2-Fc 

increased compared to the number of stromal cells o f -T  treated VP organs (-T+EphB2- 

Fc 35% increase compared to -T, Students t test P=0.0045 at 95% confidence) as shown 

in Figure 5.2C. There was a 35.9% increase in the number of proliferating epithelial 

cells between the +T+EphB2-Fc and the +T+IgFc control (Students t test P=0.0375 at 

95% confidence). However, as there was no significant difference between the 

+T+EphB2 and +T control (Figure 5.2B). Additionally, There was a 54% increase in 

the number of proliferating stromal cells between +T+EphB2-Fc and +T treated organs 

(Students t test P=0.0272 at 95% confidence). However, as there was no significant 

difference between the +T+EphB2 and +T+Fc control (Figure 5.2C).
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Figure 5.2. The Effect of EphB-Fc proteins on proliferation of epithelial and 
strom al cells in the distal region o f VP organs cultured fo r 6 days. Day 0 rat
V P  organs were cultured for 6 days in the presence and absence of testosterone 
(10"8M) and/or Fc control, EphB2-Fc, EphB3-Fc, or EphB2-Fc and EphB3-Fc 
(4pg/ml). All images taken at X40 magnification. Asteriks on graphs indicate 
statistical significance (* = P<0.05; **=P<0.01) A. BrdU incorporation in distal 
regions to the urethra was detected by IHC (green, yellow when co-localised to 
nuclei) and epithelial cells were distinguished by IHC for pan-Cytokeratin (blue). 
Nuclei were counterstained with propidium iodide (red). B. Data representing 
epithelial cell proliferation taken from a minimum of 2 organs from each 
treatment group from at least 3 independent experiments. Addition of EphB2-Fc 
to V P  organ cultures in the presence of T resulted in a significant increase in 
proliferation (-T+EphB2-Fc 44% increase compared to -T+lgFc, Students t test 
P=0.0375 at 95% confidence) C. Data representing stromal cell proliferation
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taken from a minimum of 2 organs from each treatment group from at least 3 
independent experiments. Addition of EphB2-Fc to V P  organ cultures in the 
absence of T resulted in a significant increase in proliferation (-T+EphB2-Fc 
35% increase compared to -T, Students t test P=0.0045 at 95% confidence). 
Addition of EphB2-Fc to V P  organ cultures in the presence of T resulted in a 
significant increase in proliferation (-T+EphB2-Fc 36% increase compared to -T, 
Students t test P=0.0272 at 95% confidence).

5.2.3 The Effect of EphrinB-Fc Proteins on VP organs grown in vitro

The addition of EphrinB-Fc proteins to VP organ cultures resulted in a significant 

increase in the VP organ size in the presence of testosterone (+T+EphrinBl-Fc 24.2% 

increase compared to +T, Students t test P=0.0406 at 95% confidence; +T+EphrinB2-Fc 

24.75% increase compared to +T, Students t test P=0.0309 at 95% confidence) as shown 

in Figure 5.3B. Addition of both ligands together did not increase organ size. No 

significant change in organ size was observed between when the EphrinB ligands were 

added in the absence of testosterone (Figure 5.3B).

Both EphrinB 1-Fc and EphrinB2-Fc treatments resulted in a -30%  decrease in epithelial 

branching. Furthermore, the addition of both ligands together provided a 46% decrease 

in the degree of epithelial branching (+T+EphrinBl-Fc 32.7% decrease compared to +T, 

Students t test P=0.0127 at 95% confidence; +T+EphrinB2-Fc 29.5% decrease compared 

to +T, Students t test P=0.0347 at 95% confidence; +T+EphrinBl and B2-Fc 46% 

decrease compared to +T, Student’s t test P=0.0003) as shown in Figure 5.3C. No 

statistically significant differences were observed in the absence of testosterone. The 

overall effect of EphrinB-Fc protein treatment on VP organs was increased organ size 

and a decreased degree of epithelial branching. These observations may have been due 

to larger epithelial buds.
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Figure 5.3. The effect o f EphrinB-Fc Proteins on VP organ size and 
epithelial branching. Day 0 rat V P  organs were cultured for 6 days in the 
presence and absence of testosterone (10"8M) and/or Fc control, EphrinB1-Fc, 
EphrinB2-Fc, or EphrinB1-Fc and EphrinB2-Fc (4pg/ml). Organs were imaged 
under 40X magnification using light microscopy before fixation. The data 
represents a minimum of 2 organs from each treatment group from at least 3 
independent experiments. All images taken at X4 magnification. Asteriks on 
graphs indicate statistical significance (* = P<0.05; **=P<0.01, ***=P<0.001) A. 
Representative pictures of V P  organ cultures. B. The 2D V P  organ area was 
measured using Image J  freeware from NIH. Area units were measured as 
pixels. Addition of EphrinB1-Fc and EphrinB2-Fc to V P  organ cultures in the 
presence of T resulted in a significant increase in area (+T+EphrinB1-Fc 24.2%  
increase compared to +T, Students t test P=0.0406 at 95% confidence; 
+T+EphrinB2-Fc 24.75% increase compared to +T, Students t test P=0.0309 at 
95% confidence. C. The number of epithelial tips around the distal perimeter 
from each treatment were counted and displayed as the ratio of tip number and 
perimeter distance. Addition of EphrinB1-Fc, EphrinB2-Fc, and EphrinBI and 
B2-Fc together to V P  organ cultures in presence of T resulted in a significant 
decrease in epithelial tip number (+T+EphrinB1-Fc 32.7% decrease compared

+EphrinB1-Fc

+EphrinB2-Fc

+EphrinB1-Fc 
and EphrinB2-Fc
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to +T, Students t test P=0.0127 at 95% confidence; +T+EphrinB2-Fc 29.5%  
decrease compared to +T, Students t test P=0.0347 at 95% confidence; 
+T=EphrinB1 and B2-Fc 46% decrease compared to +T, Student’s t test 
P=0.0003).

5.2.4 The Effect of EphrinB-Fc Proteins on Cell Proliferation in the 

VP

The number of epithelial cells proliferating in the VP organ cultures increased by 28% 

after exposure to individual EphrinBl-Fc and EphrinB2-Fc treatments in the presence of 

testosterone (+T+EphrinBl 28.06% increase compared to +T, Student’s t test P=0.0191 

at 95% confidence; +T+EphrinB2-Fc 28.04% increase compared to +T, Student’s t test 

P=0.0109 at 95% confidence) as shown in Figure 5.4B. The EphrinB-Fc proteins had no 

effect on the number of proliferating epithelial cells in the absence of testosterone.

In the VP, the combined treatment of EphrinBl-Fc and EphrinB2-Fc increased the 

number of proliferating stromal cells in the presence of testosterone (+T+EphrinBl-Fc 

and EphrinB2-Fc 48.6% increase compared to +T, Students t test P=0.0009 at 95% 

confidence) as shown in Figure 5.4C. Neither of the individual treatments of EphrinB-Fc 

produced a significant effect upon the number of proliferating stromal cells. The 

EphrinB-Fc proteins had no effect on the number of proliferating stromal cells in the 

absence of testosterone.
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Figure 5.4 The Effect o f EphrinB-Fc Proteins on proliferation o f epithelial 
and strom al cells in the distal region o f VP organs cultured fo r 6 days. Day
0 rat V P  organs were cultured for 6 days in the presence and absence of 
testosterone (10_8M) and/or Fc control, EphrinB1-Fc, EphrinB2-Fc, or EphrinBI- 
Fc and EphrinB2-Fc (4pg/ml). All images taken at X40 magnification. Asteriks on 
graphs indicate statistical significance (* = P<0.05; **=P<0.01) A. BrdU 
incorporation in distal regions to the urethra was detected by IHC (green, yellow 
when co-localised to nuclei) and epithelial cells were distinguished by IHC for 
pan-Cytokeratin (blue). Nuclei were counterstained with propidium iodide (red).
B. Data representing epithelial cell proliferation taken from a minimum of 2 
organs from each treatment group from at least 3 independent experiments.
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Addition of EphrinB1-Fc to V P  organ cultures in the absence of T resulted in a 
significant increase in epithelial proliferation (+T+EphrinB1 34% increase 
compared to +T, Student’s t test P=0.0141 at 95% confidence). Addition of 
EphrinB1-Fc and EphrinB2-Fc individually to V P  organ cultures in the presence 
of T resulted in a significant increase in epithelial proliferation (+T+EphrinB1 
28.06% increase compared to +T, Student’s t test P=0.0191 at 95% confidence; 
+T+EphrinB2-Fc 28.04% increase compared to +T, Student’s t test P=0.0109 at 
95% confidence). C. Data representing stromal cell proliferation taken from a 
minimum of 2 organs from each treatment group from at least 3 independent 
experiments. Addition of both EphrinB1-Fc and EphrinB2-Fc together to V P  
organ cultures in the presence of T resulted in significant increase in stromal 
proliferation (+T+EphrinB1-Fc and EphrinB2-Fc 48.6% increase compared to 
+T, Students t test P=0.0009 at 95% confidence).

5.2.5 The Effect of EphB-Fc Proteins on AP organs grown in vitro

AP organ cultures treated with EphB3-Fc produced a 47% decrease in AP organ size 

after 6 days of culture in the presence of testosterone (+T+EphB3-Fc 47% decrease 

compared to +T, Students t test P=0.0027 at 95% confidence). No effect was observed 

with regard to either EphB2-Fc or EphB2-Fc and EphB3-Fc compound treatments on 

AP cultures in the presence of testosterone. Furthermore, no effect was observed in the 

absence of testosterone in response to any of the treatment groups (Figure 5.5B). No 

significant effect was observed in terms of epithelial branching in the AP (Figure 5.5C).

5.2.6 The Effect of EphrinB-Fc Proteins on AP organs grown in vitro

The addition of EphrinB-Fc ligand proteins did not have a significant effect on AP organ 

size or epithelial branching, in either the presence or absence of testosterone (Figures 

5.6B and C).
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Figure 5.5. The Effect o f EphB-Fc Proteins on AP organ size and epithelial 
branching. Day 0 rat A P  organs were cultured for 6 days in the presence and 
absence of testosterone (10"8M)) and/or Fc control, EphB2-Fc, EphB3-Fc, or 
EphB2-Fc and EphB3-Fc (4pg/ml). Organs were imaged under 4X magnification 
using light microscopy before fixation. Asteriks on graphs indicate statistical 
significance (* = P<0.05). The data represents a minimum of 2 organs from each 
treatment group from at least 3 independent experiments. A. Representative 
pictures of A P  organ cultures. B. The 2D A P organ area was measured using 
Image J  freeware from NIH. Area units were measured in pixels. Addition of 
EphB3-Fc to A P  organ cultures in presence of T resulted in a significant 
decrease in area (+T+EphB3-Fc 47% decrease compared to +T, Students t test 
P=0.0027 at 95% confidence). C. The number of epithelial tips around the distal 
perimeter from each treatment were counted and displayed as the ratio of tip 
number and perimeter distance.
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Figure 5.6. The effect o f EphrinB-Fc Proteins on AP organ size and 
epithelial branching. Day 0 rat A P  organs were cultured for 6 days in the 
presence and absence of testosterone (10"8M) and/or Fc control, EphrinB1-Fc, 
EphrinB2-Fc, or EphrinB1-Fc and EphrinB2-Fc (4pg/ml). Organs were imaged 
under 4X magnification using light microscopy before fixation. The data 
represents a minimum of 2 organs from each treatment group from at least 3 
independent experiments. A. Representative pictures of A P  organ cultures. B. 
The 2D A P  organ area was measured using Image J  freeware from NIH. Area 
units were measured in pixels. C. The number of epithelial tips around the distal 
perimeter from each treatment were counted and displayed as the ratio of tip 
number and perimeter distance.
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5.2,7 VP Organ Culture Histology

The organs from the VP organ culture experiments (Figures 5.1 A and 5.3A) were fixed, 

sectioned, and stained with haematoxylin and eosin (H+E). Images of H+E stains of the 

VP organs from the EphB-Fc (Figure 5.7) and EphrinB-Fc (Figure 5.8) experiments are 

shown.

The histological analysis of VP organs showed no differences in cellular morphology or 

organisation between the control and recombinant protein treated organs. No histological 

difference was observed between VP organs cultured in the presence or absence of 

testosterone (Figures 5.7 and 5.8). The histology showed no difference in epithelial bud 

size between the control and EphB-Fc and EphrinB-Fc treated organs. This observation 

is in contrast with data from the IHC analysis of these VP organs.
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Figure 5.7 Histology o f the EphB-Fc treated VP organ cultures. The
organs from the V P  organ culture were fixed, sectioned, and stained with 
haematoxylin and eosin. This was a repeated at least 3 times using the 
slides from 3 or more different experimental repeats. The scale bar only 
applies to the 20X images not the 4X inset images. M=Mesenchyme, 
E=Epithelium.
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Figure 5.8 H istology o f the EphrinB-Fc treated VP organ cultures.
The organs from the V P  organ culture were fixed, sectioned, and stained 
with haematoxylin and eosin. This was repeated at least 3 times using the 
slides from 3 or more different experimental repeats. The scale bar only 
applies to the 20X images not the 4X inset images. M=Mesenchyme, 
E=Epithelium.
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5.2.8 p63 IHC analysis of VP organ cultures

Histological sections from the control and treatment groups from the VP organ culture 

experiments underwent IHC using an anti-p63 antibody (Figures 5.9 and 5.10).

The protein p63 is expressed in basal epithelial cells. The organs treated with 

testosterone produced more epithelial branching than the organs not treated with 

testosterone (Figures 5.9 and 5.10). The EphB-Fc experiments had no effect on epithelial 

organisation within the developing VP (Figure 5.9). However, the EphrinB-Fc 

experiments had a biological effect. The EphrinB-Fc treated VP organs had larger 

peripheral epithelial buds (Figure 5.3A) but a reduced number of peripheral epithelial 

buds (Figure 5.3C) compared to the control VP organs in the presence of testosterone. 

Additionally, EphrinBl and EphrinB2 ligand treatments significantly increased the 

number of proliferating epithelial cells in the presence of testosterone (Figure 5.4B).

The EphrinB-Fc proteins had observable effects on the VP organ cultures. These effects 

were an increase in epithelial bud size (Figure 5.3A), a decrease in the frequency of 

epithelial buds (Figure 5.3C), and an increase both the proliferation of epithelial (Figure 

5.4B) and stromal (Figure 5.4C) cells. EphrinB 1 is expressed in the stroma and 

EphrinB2 is expressed in the epithelium. From these data, two possible rationales from 

for the observed effects are possible. Either the EphrinB 1 signal from the stroma or 

EphrinB2 signalling from within the epithelium has a positive effect on the epithelium. 

The p63 positive epithelial buds are much larger in the EphrinB2-Fc and EphrinB 1-Fc 

and EphrinB2-Fc treated VP organs as indicated by the black arrows (Figure 5.10).

146



Chapter 5 Functional Analysis ofEphB Signalling

—1100(jM

+igFc

+EphB3-Fc

+EphB2-Fc 
and EphB3-Fc

Figure 5.9 p63 IHC analysis o f the EphB-Fc Proteins on VP organ 
cultures. The organs taken from the repeats of the experiment shown in 
Figure 5.1A were fixed and sectioned onto slides and examined using 
p63 IHC. The brown stained areas are the basal cells of the branching 
epithelial buds. This was a repeated at least 3 times using the slides from
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3 or more different experimental repeats. The scale bar only applies to 
the 20X images not the 4X inset images. M=Mesenchyme, E=Epithelium.
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Figure 5.10 p63 IHC analysis of the EphrinB-Fc Proteins on VP organ 
cultures. The organs taken from the repeats of the experiment shown in 
Figure 5.3A were fixed and sectioned onto slides and examined using 
p63 IHC. The brown stained areas are the basal cells of the branching
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epithelial buds. The epithelial buds in the EphrinB2-Fc and both EphrinBI 
and EphrinB2-Fc treated VP  organs are larger than the controls in the 
presence of testosterone. This was a repeated at least 3 times using the 
slides from 3 or more different experimental repeats. The scale bar only 
applies to the 20X images not the 4X inset images. M=Mesenchyme, 
E=Epithelium.

5.2.9 Smooth Muscle Actin (SMA) IHC Analysis of VP organ cultures

Slides from the VP organ culture experiments underwent IHC using an anti-SMA 

primary antibody (Figures 5.11 and 5.12). The anti-SMA antibody marks the SM. The 

EphB-Fc experiments had no effect on the organisation of the SM surrounding the 

epithelial buds within the developing VP (Figure 5.11). Furthermore, the EphrinB-Fc 

treatments had no effect on the stromal organisation of the VP around the branching 

epithelial buds (Figure 5.12). The epithelial buds appeared larger in the EphrinB2-Fc 

and EphrinBI-Fc and EphrinB2-Fc treated VP organs when compared to the controls, as 

indicated by the black arrows (Figure 5.12).
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Figure 5.11 SMA IHC analysis o f the EphB-Fc Proteins on VP organ 
cultures. The organs taken from the repeats of the experiment shown in 
Figure 5.1A were fixed and sectioned onto slides and examined using 
SM A IHC. The brown stained areas are the areas of smooth muscle 
surrounding the branching epithelial buds. This was a repeated at least 3 
times using the slides from 3 or more different experimental repeats. The
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scale bar only applies to the 20X images not the 4X inset images. 
M=Mesenchyme, E=Epithelium.
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Figure 5.12 SMA IHC analysis of the EphrinB-Fc Proteins on VP 
organ cultures. The organs taken from the repeats of the experiment 
shown in Figure 5.3A were fixed and sectioned onto slides and examined 
using SM A IHC. The brown stained areas are the areas of smooth
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muscle surrounding the branching epithelial buds. This was a repeated at 
least 3 times using the slides from 3 or more different experimental 
repeats. The scale bar only applies to the 20X images not the 4X inset 
images. M=Mesenchyme, E=Epithelium.

5.3 Discussion

We suggest EphrinB-EphB signalling has a role in VP development and may have a role 

in AP development. The addition of EphB2-Fc and EphB3-Fc to VP organs inhibited VP 

development (Figure 5.1). Both EphB2-Fc and EphB3-Fc treatments reduced VP organ 

size and the number of ductal tips in the presence of testosterone, though only EphB2-Fc 

had a significant effect with regard to the epithelial branching (Figure 5.1). When 

EphB2-Fc and EphB3-Fc were added together to VP organs no effect was observed on 

either area or epithelial branching. It could be expected that a compound effect would be 

seen resulting in a greater decrease in area as both EphB2-Fc and EphB3-Fc might 

function additively. However, the presence of both EphB2-Fc and EphB3-Fc in culture 

had no effect on VP organ size and the reason for this is not clear.

EphB-Fc addition had little effect upon VP cellular proliferation although EphB2-Fc did 

increase stromal proliferation by 35% in the absence of testosterone (Figure 5.2C). The 

EphB2-Fc and EphB3-Fc proteins were not membrane bound. The addition of the 

EphB2-Fc and EphB3-Fc proteins probably inhibited EphB signalling because most of 

the endogenous EphrinB ligands were likely bound by the EphB-Fc proteins. 

Furthermore, addition of the EphB2-Fc and EphB3-Fc proteins probably stimulated 

EphrinB reverse signalling as all endogenous EphrinB ligands were likely bound to an 

EphB-Fc protein. Decreased organ size, decreased epithelial branching and probable 

increased cell proliferation were the changes observed from the addition of the EphB-Fc 

proteins to VP organ cultures. The likely mechanisms which caused these observed 

changes was a decrease in EphB forward signalling, an increase in EphrinB reverse 

signalling or a combination of the two. Additionally, EphrinB 1 is expressed in the

152



Chapter 5__________________________________ Functional Analysis of EphB Signalling

stroma and EphrinB2 is expressed in the epithelium. Therefore it is likely that both the 

epithelia and the stroma are affected as both express different EphrinB ligands.

The reduced organ size and level of epithelial branching and the trend increase in the 

number of proliferating stromal and epithelial cells appear to contradict each other. This 

may suggest that another factor, not the number of proliferating cells, is responsible for 

the decrease in organ size and epithelial branching of the EphB-Fc treated VPs. 

Additionally, only the cells at the distal perimeter of the VP organs was measured, 

ignoring the proximal cells. The increase in the number of proliferating epithelial and 

stromal cells not being statistically significant in the presence of testosterone is 

important (Figures 5.2B and C). Given that the organ size and degree of epithelial 

branching decrease after EphB2-Fc and EphB3-Fc treatment, it is likely that the number 

of proliferating epithelial and stromal cells would be less. However, a trend increase in 

both numbers of proliferating epithelial and stromal cells was observed. This increase 

was not significant; with the exception of the effect of EphB2-Fc upon the number of 

proliferating VP stromal cells, in the absence of testosterone (Figure 5.2C). Therefore, 

apart from this exception, the cellular proliferation data only partially contradicts the 

decrease in VP organ size and degree of epithelial branching as no overall statistically 

significant increase in the number of proliferating VP cells was observed. Another 

possible explanation for observed trends in VP organ size, epithelial branching and 

cellular proliferation would be smaller individual cells. However, there is no evidence 

for this in the histology or the IHC data.

The addition of EphrinB ligands to VP organ culture increased organ size, reduced 

epithelial branching and increased cell proliferation. EphrinB 1-Fc and EphrinB2-Fc 

treatments increased VP organ size (Figure 5.3B) and decreased VP epithelial branching 

(Figure 5.3C). The EphrinBl-Fc and EphrinB2-Fc treatments increased the level of VP 

epithelial cell proliferation (Figure 5.4B). The increase in the number of proliferating 

epithelial cells reinforces the concept that EphrinB 1 (expressed in the stroma) mediates a 

paracrine signal from the stroma to the epithelium and that EphrinB2 (expressed in the
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epithelia) mediates a juxtacrine signal within the epithelium. These ligands may act 

together as positive regulators of VP development. The increase in the number of 

proliferating epithelial cells may account for the increased size of the epithelial buds in 

the EphrinB-Fc treated organs (Figure 5.3A). The individual EphrinB ligand treatments 

produced a statistically significant increase in the number of VP epithelial cells but the 

combined EphrinB ligand treatment did not. The individual EphrinB ligand treatments 

produced no effect on the number of proliferating VP stromal cells whereas the 

combined treatments gave a statistically significant increase in the number of 

proliferating VP stromal cells. Taken together, these results suggest VP epithelial 

proliferation is increased via EphB2 forward signalling in response to EphrinB 1 or 

EphrinB2 stimulation. Furthermore, increased VP stromal cell proliferation appears to 

result from combined EphrinB 1 and EphrinB2 stimulation of EphB3 forward signalling.

The epithelial buds of the EphrinB-Fc treated VP organs appear larger than the epithelial 

buds of control VP organs (Figure 5.3A) Furthermore, the p63 IHC of the EphrinB-Fc 

addition treatments (Figure 5.10) and the SMA IHC of the EphrinB-Fc addition 

treatments (Figure 5.12) also showed enlarged epithelial buds. These enlarged epithelial 

buds could explain the decreased degree of epithelial branching in response to 

EphrinB 1-Fc, EphrinB2-Fc, and addition of both treatments. If there were larger 

individual buds, then there would be less space for epithelial branching in the stroma, 

assuming there was no change in stromal area. However, these observations were not 

quantified. EphrinB 1 paracrine signalling from the stroma to the epithelium or EphrinB2 

juxtacrine/autocrine signalling from within the epithelial itself are the two likely 

mechanisms to regulate in the increased epithelial bud size. EphrinB 1-Fc and EphrinB2- 

Fc addition would affect the levels of EphB signalling in the VP in two ways. Either by 

binding to the EphB3 receptor expressed in the stroma or the EphB2 receptor expressed 

in the epithelia. Altered levels of EphB2 signalling in the epithelium could be directly 

responsible for the enlarged epithelial buds or an indirect effect from increased levels of 

EphB3 signalling in the stroma. Alternatively, both signalling mechanisms could be 

involved and each is partially responsible for the enlargement of the epithelial buds.
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The recombinant EphrinBl-Fc and EphrinB2-Fc proteins, added exogenously, probably 

stimulated EphB forward signalling because most of the endogenous EphB receptors 

were likely bound by the EphrinB-Fc proteins. Furthermore, addition of the EphrinBl- 

Fc and EphrinB2-Fc proteins probably inhibited EphrinB reverse signalling as all 

endogenous EphB receptors were likely bound to an EphrinB-Fc protein. Increased 

organ size, decreased epithelial branching and probable increased cell proliferation were 

the changes observed from the addition of the EphrinB-Fc proteins to VP organ cultures. 

The likely mechanisms which caused these observed changes was an increase in EphB 

forward signalling, a decrease in EphrinB reverse signalling or a combination of the two. 

Additionally, EphB2 is expressed in the epithelia and EphB3 is expressed in the stroma. 

Therefore it is likely that both the epithelia and the stroma are affected as both express 

different EphB receptors.

The AP organ culture system provided a second primary organ in vitro model to 

elucidate the functions of particular proteins. A limitation of the AP culture system was 

the technical difficulty of obtaining histological sections on a microtome due to the 

small size of the organs.

AP organ size decreased by 47% in response to EphB3-Fc in the presence of 

testosterone (Figure 5.5B). This suggests EphB-EphrinB signalling role has a role in AP 

development mediated via the EphB3 receptor. The decrease in AP organ size in 

response to EphB3-Fc is consistent with the reduction in VP organ size in response to 

EphB3-Fc treatment (Figure 5 .IB). This suggests that EphB3 has a role in the growth of 

both VP and AP.

None of the EphrinB-Fc ligand treatments produced an effect in the AP organ culture, as 

these ligand treatments did in the VP organ culture. It an EphB receptor has a critical 

role, then one of its ligands is likely to also have a role in AP development. Another 

Ephrin ligand, not EphrinB 1 or EphrinB2, may be responsible. EphB receptors can
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sometimes bind to the EphrinA ligands. For example, it is well-known receptor EphA4 

and ligand EphrinA5 can interact with EphrinB2 and EphB2, respectively (Bouzioukh et 

ah, 2007; Himanen et al., 2004) The EphA-EphrinA family were not examined in this 

study.

Histological and IHC analysis were used to determine if the EphB-Fc and EphrinB-Fc 

recombinant protein experiments had an effect on the VP cellular morphology and 

organisation. The structure of the developing VPs was examined using H+E staining 

followed by the epithelial and stroma being investigated individually using epithelial and 

stromal markers. From the H+E analysis (Figures 5.7 and 5.8) no effect on the cellular 

morphology and organisation of the VP was observed. Additionally, the EphB-Fc 

treatments appeared to have no effect on VP cellular morphology and organisation 

(Figures 5.9 and 5.11). However, in response to EphrinB-Fc ligand treatment there 

appeared to be an increase in the size of individual buds as shown by p63 and SMA 

immunohistochemical analysis in Figures 5.10 and 5.12.

The EphB receptors and EphrinB ligands are best characterised as chemotactic guidance 

cues in neuronal development (Hinck, 2004) and as signalling molecules in 

organogenesis (Merlos-Suarez and Batlle., 2008). The experiments described here show 

that EphB and EphrinB proteins have a role in prostate organogenesis. The role of 

EphB-EphrinB signalling in the prostate has not been researched as thoroughly as other 

growth factors such as Fibroblast Growth Factor 10 (FGF10) and Transforming Growth 

Factor P (TGFP). FGF10 is a known mesenchyme paracrine regulator of epithelial 

growth in the prostate and seminal vesicle (Thomson and Cunha, 1999), and TGFP has 

an effect on the growth of the rat prostate epithelium (Tomlinson et al., 2004). These are 

examples of potent secreted growth factors that affect cell positioning and organisation. 

The members of the EphB signalling system are not secreted but act as extracellular 

signals in cell-cell interactions and have a role in rat prostate development.
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As an overview, the addition of EphB-Fc receptor proteins to VP cultures decreased the 

organ size (Figure 5.1A and B) whereas the addition of EphrinB-Fc ligand proteins 

increased the organ size (Figure 5.3A and B). The number of VP peripheral epithelial 

tips decreased in response to both EphB-Fc receptor proteins (Figure 5.1C) and 

EphrinB-Fc ligand proteins (Figure 5.3C).

Furthermore, the addition of both types of protein increased the overall cellular 

proliferation rates of VP epithelial and stromal cells (Figures 5.2 and 5.4). The EphrinB- 

Fc ligand proteins appeared to increase the size of the VP epithelial buds (Figures 5.3A, 

5.10, and 5.12). The addition of EphB-Fc receptor proteins to AP cultures decreased the 

organ size (Figure 5.5A and B).
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Discussion

6.1 The Identification of transcripts expressed in prostate mesenchyme

A whole mount in situ hybridisation (WISH) analysis was conducted to identify transcripts 

with expression patterns restricted to prostate mesenchyme. The candidates came from a 

SAGE transcript profile of the VMP (Vanpoucke et al., 2007). For a transcript to be included 

in the WISH analysis; it required both a putative NCBI Nucleotide sequence file and the 

preparation of a good quality RNA probe. 194 transcripts were selected for the WISH 

analysis and were divided into three groups of transcripts. These were the statistically 

selected group, the non-statistically selected group and the intuitive transcript group. The 

statistically selected group encompassed the transcripts from the SAGE data that had a VMP 

to VSU ratio of 5:0. This ratio was the minimum for a statistically significant difference 

between the VMP tag count and the VSU tag count. In contrast, and as a control to this 

statistically selected group, the non-statistically selected group encompassed the transcripts 

with a VMP to VSU ratio of 4:0. As this ratio was less than 5:0, it was not statistically 

significant, but could be suggested to show a trend towards VMP enrichment. In addition to 

these two groups, the intuitive transcript group consisted of genes that expressed either 

membrane or secretory proteins with a statistically significant VMP to VSU ratio (i.e. greater 

than 5:0). The criteria described above removed 164 of the 193 transcripts from the WISH 

analysis. From the remaining 30 transcripts that were analysed, 13 transcripts were identified 

as mesenchyme enriched.

There were 54 transcripts in the statistically selected group (Table 3.1). WISH analysis of the 

statistically selected group was expected to determine what proportion of these mRNAs 

showed VMP/mesenchymal expression. We hoped to define the exact number of 

mesenchyme expressed mRNAs in this group, to determine how efficient the SAGE and
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statistical analysis was. From the 54 transcripts, 19 transcripts did not have a NCBI 

Nucleotide sequence file. Of the remaining 35 transcripts, 10 transcripts were randomly 

selected for WISH analysis. Of these 10 transcripts, 4 did not a have a good quality RNA 

probe. From the remaining 6 transcripts, 2 transcripts were identified as stromal. The two 

stromal transcripts discovered were the Ras GTPase, RRAD/RasD (Caldwell et al, 1996) and 

tyrosine kinase receptor, EphB3 (Bohme et al., 1993) (Figure 3.3).

The non-statistically selected group of transcripts provided randomly selected controls for 

finding mRNAs in the mesenchyme. However, the SAGE tag frequency of 4:0 (VMP:VSU) 

shows a trend towards VMP enrichment. In the non-statistically selected group, there were 

122 transcripts (Table 3.2). 94 transcripts did not have a NCBI Nucleotide sequence file 

leaving 28 transcripts to be analysed by WISH. Of these 28 transcripts, 16 did not a have a 

good quality RNA probe. From the remaining 12 transcripts, 4 transcripts were identified as 

stromal. These were ETL (Nechiporuk et al, 2001), CRIP2 (Karim et al., 1996), LAT3 (Babu 

et al., 2003), and RBMS1 (Negishi et al., 1994) (Figures 3.4 and 3.5).

The intuitive transcript group consisted of a subset of the 219 list and the statistically 

selected group contained mRNAs that encoded membrane bound and secreted proteins. 

Transcripts that encode such proteins make for interesting paracrine factor candidates. There 

were 17 transcripts in total in the intuitive transcript group (Table 3.3). 2 transcripts did not 

have a NCBI Nucleotide sequence file leaving 15 transcripts to be analysed by WISH. Of 

these 15 transcripts, 3 did not a have a good quality RNA probe. From the remaining 12 

transcripts, 7 transcripts were identified as stromal. These were Sema6D (Qu et al., 2002), 

SPARC (Mason et al., 1986), Decorin (Day et al., 1986), Tsukushi (Ohta et al., 2004), 

Sproutyl (Gross et ah, 2001), Sorcs2 (Rezgaoui et al., 2001) and Nell2 (Watanabe et al.,

1996) (Figures 3.6 and 3.7).

In total, 13 transcripts were identified as expressed in the mesenchyme by WISH. The WISH 

analysis lacked a transcript with a RNA probe that could be used as a reliable epithelial 

control. Examining frozen cross-sections of the whole mounts exposed to potential epithelial
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RNA probes may have provided more insight into why the RNA probes did not work. 

However, this was not done at the time the experiments were conducted. Furthermore, an 

epithelial RNA probe may have been obtained from a laboratory that had examined epithelial 

transcripts using WISH (Thomsen et ah, 2008). The absence of an epithelial control RNA 

probe was a limitation of the WISH analysis since the epithelium could not be identified by 

this WISH analysis. However, this limitation did not invalidate the mesenchymal transcripts 

that were identified as a result of the WISH analysis.

It could be argued that the 13 transcripts that were identified by WISH as mesenchymal 

produced so non-specific binding as well. Due to the PCR products not being sequenced at 

the time of synthesis, it was impossible to determine if the hybridisation is 100% specific 

(Figures 3.2-3.7). However, as the PCR primers underwent homology checks and the PCR 

products were examined to ensure they were the correct size prior to cloning then the 

chances of the hybridisation not being specific was highly unlikely. Nevertheless, an 

additional method that would have ensured the hybridisation specificity was Northern 

blotting which would have identified the exact binding specificity of each RNA probe. 

Additionally, immunohistochemistry (IHC) could have been performed to examine the 

expression of the proteins that the 13 transcripts encode. This would have provided more 

information about the expression pattern of each WISH result. Being able to compare and 

contrast the expression patterns of both the RNA (WISH) and protein (IHC) would have 

been very insightful in the analysis of all 13 mRNAs.

4 out of 12 transcripts from the non-statistically selected group were identified as enriched in 

the mesenchyme compared to 2 out of 6 transcripts from the statistically selected group. 

Therefore the proportion of mesenchyme enriched transcripts in each group was similar, 

suggesting that statistics were not effective. However, this conclusion is not reliable as too 

few transcripts were examined in each group. A contributory factor to the small number of 

transcripts being analysed was the technical issues involved in the RNA probe production. If 

there were less technical issues for one particulai group, that would have a bearing on the 

number of RNA probes available for the WISH analysis for that particular group. For
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example, the statistically selected group experienced RNA probe production issues for 4 

transcripts. Conversely, the non-statistically selected group experienced RNA probe 

production issues for 16 transcripts. These problems led to too few transcripts being analysed 

to determine if groups showed different proportions o f mesenchyme enriched transcripts.

13 transcripts were identified as expressed in the mesenchyme. Few signalling pathways 

have previously been reported as restricted to the prostatic mesenchyme, although one 

example includes the Notch2/Dlkl pathway (Orr et al., 2009). Two transcripts considered for 

further analysis, these were for the transmembrane receptors Sema6D and EphB3. Both o f 

these receptors are members o f large signalling pathway families. EphB3 and its family 

members are thoroughly characterised in more biological models in the scientific literature 

than Sema6D. Furthermore, the EphB family had more antibodies and recombinant proteins 

available. EphB3 was selected as the candidate transcript to further characterise in the 

developing rat prostate.

The tyrosine kinase receptor, EphB3, was chosen as a candidate for expression and 

functional analysis in rat prostate development because it is a signalling receptor that was 

enriched in the prostate stroma via WISH. The EphB family has 5 known receptors and 3 

ligands in mammals. To establish if any other EphB family members were expressed in 

different rat urogenital tissues, PCR analysis was performed. The EphB2 and EphB3 

receptors and the EphrinBl and EphrinB2 ligands were strongly expressed in prostatic 

tissues. The EphB4 receptor and the EphrinB3 ligand were weakly expressed in the VP, 

VMP, and VSU tissues. However, these bands were less intense than the bands for the 

EphrinBl/B2 ligands and the EphB2/B3 receptors. Thus, EphrinB3 ligand and EphB4 

receptor were not investigated further. It is possible EphrinB3 and EphB4 play a role in 

prostate development but this would require much further investigation. No EphBl 

expression was reported (Figure 4.1). Due too their expression in the prostate (Figure 4.1), 

the EphrinB 1 and EphrinB2 ligands and the EphB2 and B3 receptors were examined further.
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6.2 EphB receptor and EphrinB ligand expression in the developing 

prostate

The EphB3 transcript was detected by the SAGE analysis (Table 4.1), suggesting that it was 

expressed in the mesenchyme. The EphB3 expression data in the male rat urogenital tracts 

suggested it was stromal. WISH showed EphB3 expressed in the mesenchyme of the VP 

and DLP, parts of the male dO urogenital tract. In the female dO urogenital tract, EphB3 

mRNA was exclusively expressed in the VMP mesenchyme (Figure 4.2). The EphB3 

mRNA and protein expression patterns were consistent with each other. The EphB3 protein 

was expressed in the mesenchyme but there was weak EphB3 mRNA expression in the 

urethral epithelium in the female (Figure 4.8). Consistent with these findings, EphB3 is 

expressed in the mesenchymal tissues during chicken development (Baker et al., 2001) and 

in murine palatal mesenchyme (Risley et al., 2008).

The temporal expression pattern of EphB3 mRNA was examined by quantitative real time 

PCR during VP development. Between el7 and postnatal dlO, EphB3 receptor expression 

was approximately constant at 5 fold over TBP. The level of EphB3 expression increased to 

approximately 12.5 fold over TBP by d35 prior to the levels decreasing to approximately 1 

fold over TBP by adulthood (Figure 4.4). The increase to 12.5 fold over TBP in EphB3 

mRNA levels at d35 is unusual when compared to the expression patterns of the other 

EphB-EphrinB genes investigated in this study. The EphB2 receptor and EphrinB 1/B2 

ligand mRNA levels were approximately 1 fold over TBP at d35 postnatal (Figures 4.3, 4.5 

and 4.6). It is possible that EphB3 may have a novel ligand at d35 that is not an EphrinB 

ligand. EphrinA ligands are known to interact with EphB receptors (Himanen et al., 2004) or 

perhaps a non-Ephrin ligand interacts with EphBj at dj5. The role of EphBj signalling 

during VP development at d35 was not investigated. Alternatively, the high expression of 

EphB3 at d35 and the low expression of EphrinB 1 at d35 may represent a repulsive 

juxtracrine mechanism within the stroma. Although there is no direct evidence for it, this
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potential EphB3-EphrinBl repulsion within the stroma may be androgen drive. It occurs at 

d35 which is when testosterone levels are very high in the bloodstream during puberty. 

More work would need to be conducted to see if EphB3 or EphrinB 1 are androgen 

responsive. Collectively, the EphB3 expression data suggests that EphB3 is involved in 

either paracrine signalling in partnership with the epithelium or has a role in intra-stromal 

juxtacrine or autocrine signalling during rat prostate development.

The EphB2 protein was expressed in male UGT epithelium (Figure 4.9). Moreover, the 

EphB2 transcript was not detected by the SAGE analysis (Table 4.1), suggesting that it was 

expressed in the epithelium. These observations suggested that EphB2 expression was 

restricted to the epithelium. These observations were consistent with the epithelial specific 

expression of EphB2 in the developing ear epithelium (Cowan et al., 2000) and vascular 

endothelial cells (Salvucci et al., 2006). During VP development, the level of EphB2 mRNA 

(Figure 4.3) decreased from approximately 4 fold over TBP at e l7 to approximately 1 fold 

over TBP by adulthood. This suggests any cell signalling through the EphB2 receptor, 

expressed predominantly in the epithelium, is pre-natal.

In genital tubercle development of the mouse, the expression pattern of EphB2 has been 

reported to be sexually dimorphic (Lorenzo et al., 2003). EphB2 is expressed is restricted to 

the male but is observed in female genital tubercles after exposure to dihydrotestosterone 

(DHT) in culture. This suggests that EphB2 is a candidate androgen-regulated gene in mouse 

genital development. EphB2 protein is predominantly epithelium in the male dO UGT 

(Figure 4.9) but is also expressed in the stromal and epithelial compartments of the female dO 

UGT (Figure 4.10). This suggests EphB2 has differential expression, regulated by the 

differences in the levels of circulating testosterone, therefore supporting EphB2 as a 

candidate androgen regulate gene in prostate development. Conversely, EphB2 was 

expressed in both male and female dO UGTs (Figure 4.9 and 4.10) and there has been no 

difference in prostate size reported between wild type and EphB2 knockout mice (Yucel et 

al., 2007). These observations suggest EphB2 is not androgen regulated in the prostate and 

not essential to mouse prostate development. Furthermore, the addition of EphB2-Fc to VP
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organs resulted in a significant increase in the percentage of proliferating stromal cells in the 

absence of testosterone (Figure 5.3C). The addition of EphB2-Fc to VP organs was the only 

treatment that had a positive effect on the percentage of proliferating VP stromal cells in the 

absence of testosterone. This observation suggests EphB2 does not require testosterone to be 

present to elicit a biological effect. The possible androgen regulation of EphB2 in rat prostate 

development was not investigated.

EphrinBl mRNA (Figure 4.2) and protein (Figures 4.11 and 4.12) expression was restricted 

to the mesenchyme. EphrinBl was restricted to the peri-epithelial mesenchyme in the dO 

male UGT. Moreover, the EphrinBl transcript was detected by the SAGE analysis (Table 

4.1), suggesting that it was expressed in the mesenchyme. EphrinBl is expressed in the 

mesenchyme surrounding other developing organs such as the spinal cord (Jevince et ah, 

2006) and in the mesenchyme during developmental processes such as corneal angiogenesis 

(Kojima et al., 2007). Furthermore, EphrinBl is restricted to the mesenchyme of terminal 

end buds during murine mammary branching morphogenesis, as shown by in-situ 

hybridisation (Kouros-Mehr and Werb., 2006). The EphrinBl is clustered around the EphB2 

positive epithelial buds and co-localises with EphB3 in the peri-epithelial mesenchyme, 

especially in the DLP and VP (Figure 4.11). This co-localisation reflects the fact that EphB- 

EphrinB interactions are highly clustered and dependent on close cell-to-cell proximity for 

the EphB mediated signal to be transmitted (Davis et al., 1994). EphrinBl is a ligand for 

both the EphB2 and EphB3 receptors. EphB3 was expressed in the mesenchyme and EphB2 

in the epithelium during rat prostate development. Taken together, this data suggests 

EphrinBl-EphB signalling occurs in a paracrine fashion (via EphB2) to the epithelium 

and/or a juxtacrine/autocrine fashion (via EphB3) within the mesenchyme.

EphrinBl expression during VP development was similar to EphB2. At e l 7, the EphrinBl 

mRNA level at el7  was approximately 7 fold over TBP that decreased to 2 fold over TBP. 

At e l 7, the EphB2 mRNA expression level was approximately 4 fold over TBP and 

decreased to approximately 1 fold over TBP by adulthood. The EphrinBl ligand was 

expressed in the stroma and the EphB2 receptor in the epithelium. This expression data
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taken together suggests that EphrinBl and EphB2 interact in a paracrine fashion as a 

mechanism of stromal-epithelial interaction during rat VP development.

EphrinB2 protein was expressed in the epithelium of the male dO UGT (Figure 4.13). In the 

female UGT, EphrinB2 was predominantly expressed in the SM layer with a degree of 

expression in the urethral epithelium and the VMP (Figure 4.14). The EphrinB2 transcript 

was not detected by the SAGE analysis (Table 4.1), suggesting that it was expressed in the 

epithelium. Furthermore, EphrinB2 expression was restricted to the epithelium in other 

tissues including the intestine (Hafner et al., 2005) and pulmonary vasculature (Schwarz et 

ah, 2009). However, EphrinB2 was expressed in different tissue types in the development of 

other biological systems. During angiogenesis in the mouse, EphrinB2 was expressed in the 

epithelium and mesenchyme (Adams et ah, 1999; Korff et ah, 2006). Collectively, this data 

suggests that EphB2-EphrinB2 juxtacrine/autocrine signalling is active within the 

epithelium. Moreover, it is possible than EphrinB2 associates with the mesenchymal EphB3, 

providing a paracrine signalling mechanism between from epithelium to the mesenchyme.

EphrinB2 was expressed in the epithelium and EphB3 in the mesenchyme in the male rat dO 

UGT. This is not the only difference between this ligand and receptor in terms of expression. 

The expression of EphrinB2 mRNA during VP development greatly decreased between e l 7 

and maturity (Figure 4.6), therefore EphrinB2 is unlikely to be the ligand that may interact 

with the EphB3 receptor at d35 (Figure 4.4.). There was no increase at d35 in EphrinB2 

expression like EphB3 during VP development. Therefore, it is likely that any signalling 

involving EphrinB2 in VP development is active at either prenatal or early postnatal time 

points.
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6.3 The function of EphB receptors and EphrinB ligands in the 

developing prostate

VP development was inhibited in response to EphB2-Fc and EphB3-Fc proteins. VP organ 

size was significantly reduced by both EphB2-Fc and EphB3-Fc treatments in the presence 

of testosterone. EphB2-Fc decreased the epithelial branching morphogenesis significantly 

after six days of in vitro culture (Figure 5.1). These observations suggest EphB2 signalling 

has a function in rat VP development. No effect on VP organ size or epithelial branching 

morphogenesis was observed when EphB2-Fc and EphB3-Fc were added to the VP cultures 

together. A synergistic effect may have been expected, resulting in a greater reduction in area 

as both EphB2-Fc and EphB3-Fc decrease VP organ size individually. The two EphB-Fc 

proteins may interfere with each others binding the endogenous EphrinB ligands in some 

way. It could be suggested that antibodies, raised against the appropriate EphB receptors and 

EphrinB ligands, could be used instead of recombinant EphB-Fc and EphrinB-Fc to 

determine the functionality of EphB signalling in prostate development. The organ culture 

experiments performed as part of this thesis used recombinant proteins for two reasons. 

Firstly, using recombinant protein is the conventional experimental practice when 

investigating the role of EphB-EphrinB signalling in vitro culture assays (Kayser et al., 2006; 

Alfaro et al., 2007; Kojimo et al., 2007). Secondly, an antibody would not elicit the same 

biological effect as a recombinant protein in terms of downstream intracellular signalling 

because the binding affinity would not be as high as a recombinant protein. This would be a 

feature of the exogenous reagent that would be desirable in a functional experiment. For this 

reasons, EphB and EphrinB recombinant proteins were used in these organ culture 

experiments as opposed to antibodies. The negligible differences in the molecular weights of 

the four exogenous recombinant proteins probably had little effect on the experimental 

outcome.

EphB2-Fc and EphB3-Fc gave a trend increase in the percentage of proliferating VP 

epithelial and stromal cells in the presence of testosterone (Figure 5.2B). EphB2-Fc and
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EphB3-Fc may bind to endogenous EphrinBl in the stroma, and EphrinB2 in the epithelium, 

to increase in the percentage of proliferating VP epithelial and stromal cells. This is similar 

to mesenchyme-epithelial EphB-EphrinB interactions during murine cardiovascular 

development (Adams et al., 1999). The EphB2-Fc and EphB3-Fc proteins can affect both 

EphrinB reverse signalling and EphB forward signalling. Therefore, the mechanisms by 

which the observed effects of decreased organ size, decreased epithelial branching 

morphogenesis and trend increase in the percentage of proliferating cells could be explained 

is a change in the level of EphrinB reverse signalling, EphB forward signalling or both.

The decreased organ size and level of epithelial branching, and the increase in epithelial and 

stromal proliferation were contrasting observations. The decrease in VP organ size and 

epithelial branching morphogenesis in the EphB2-Fc treated VP organs is not due to stromal 

and epithelial cell proliferation. The increase in the percentage of proliferating epithelial and 

stromal cells was not statistically significant in the presence of testosterone (Figures 5.2B 

and C). It would be likely that the percentage of proliferating cells would be less than the 

controls, given that the organ size and degree of epithelial branching morphogenesis 

decreased after EphB2-Fc and EphB3-Fc treatments. However, a trend increase in both the 

percentage of proliferating epithelial and stromal cells rates in the presence of testosterone 

was observed. Similarly contrasting observations have been reported before when 

recombinant TGFbetal was added to VP cultures (Tomlinson et al., 2004). The varying level 

of cellular differentiation may have been the cause of the contrasting observations. A 

decreased level of apoptosis at the periphery may of been another cause however this was not 

investigated. Peripheral cells are undifferentiated as opposed to the more differentiated cells 

at the centre of the VP. The percentage of proliferating VP cells was measured at the 

periphery of the organs where most of the cell proliferation was occurring. VP organ area 

includes the whole organ and the degree of epithelial branching is dependent the individual 

bud size not just the number of the epithelial buds. These differences may account for the 

contrasting observations of decreased VP organ size, decreased degree of epithelial 

branching and increased cellular proliferation. Decreased apoptosis

167



Chapter 6 Discussion

Individual EphrinBl-Fc and EphrinB2-Fc ligand treatments significantly increased VP organ 

size (Figure 5.3B), significantly reduced VP epithelial branching (Figure 5.3C), and 

significantly increased the percentage of VP proliferating epithelial cells (Figure 5.4B). 

Individual EphrinBl-Fc and EphrinB2-Fc treatments did not affect the percentage of VP 

proliferating stromal cells (Figure 5.4C). Combined EphrinBl-Fc and EphrinB2-Fc 

treatments did not affect VP organ size (Figure 5.3B) but did significantly decrease the 

degree of VP epithelial branching (Figure 5.3C). Combined EphrinBl-Fc and EphrinB2-Fc 

treatments did not affect the percentage of proliferating VP epithelial cells (Figure 5.4B), but 

did significantly increase the percentage of VP proliferating stromal cells (Figure 5.4C).

There was no synergistic effect on VP size or epithelial branching morphogenesis when 

EphB2-Fc and EphB3-Fc were added together (Figure 5.1). Similarly, there was no 

synergistic increase in either VP organ size (Figure 5.3B) or percentage of VP epithelial cells 

(Figure 5.4B) when EphrinBl-Fc and EphrinB2-Fc were added together. A synergistic effect 

may have been expected, resulting in a greater increase in VP area and percentage of 

proliferating VP epithelial cells since both EphrinBl-Fc and EphrinB2-Fc significantly 

increased VP organ size and percentage of proliferating VP epithelial cells individually. The 

two EphrinB-Fc proteins may interfere with each others binding the endogenous EphB 

receptors in some way.

EphrinBl-Fc and EphrinB2-Fc may bind to endogenous EphB2 in the epithelium and EphB3 

in the stroma to increase in the percentage of proliferating VP epithelial and stromal cells. 

This is similar to mesenchyme-epithelial EphB-EphrinB interactions during murine 

cardiovascular development (Adams et ah, 1999). The EphrinBl-Fc and EphrinB2-Fc 

proteins can affect EphB forward signalling and EphrinB reverse signalling. Therefore an 

alteration in the levels of these two signalling mechanisms may account for the observed 

effects of increased organ size, decreased epithelial branching and increase in the percentage 

of proliferating VP cells.
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The distal epithelial buds of the EphrinB-Fc treated VP organs appeared larger in size than 

the control distal epithelial buds of the VP organs (Figure 5.3A). Moreover, the p63 (Figure

5.10) and the SMA (Figure 5.12) IHC of the EphrinB-Fc treated VP organs both show 

enlarged epithelial buds. A decreased degree of epithelial branching morphogenesis in 

response to EphrinBl-Fc, EphrinB2-Fc, and both treatments was observed (Figure 5.3C). 

The enlarged epithelial buds may explain the observations from Figure 5.3C. There would be 

a smaller degree of epithelial branching in the available stroma if there were larger individual 

buds.

The two probable mechanisms to cause the increased epithelial bud size are either EphrinBl 

paracrine signalling from the stroma to the epithelium, or EphrinB2 juxtacrine/autocrine 

signalling in the epithelium. The level of EphB signalling in the VP could be affected by the 

EphrinBl-Fc and EphrinB2-Fc proteins binding to the EphB3 receptor expressed in the 

stroma or binding to the EphB2 receptor expressed in the epithelia. Changes in the level of 

EphB2 signalling in the epithelium may have caused the enlarged epithelial buds. 

Alternatively, an indirect effect from increased levels of EphB3 signalling in the stroma may 

have been responsible for the epithelial bud size increase via a paracrine stroma to 

epithelium, EphB3 mediated mechanism. A third possibility is that both signalling pathways 

may be involved and each was partially responsible for the likely enlargement of the 

epithelial buds.

An anterior prostate (AP) organ culture system was additionally used to investigate the role 

of EphB-EphrinB signalling in prostate development. The EphB3-Fc treatment, in the 

presence of testosterone, significantly decreased AP organ size by 47% after 6 days of 

culture (Figure 5.5B). This observation suggests a role for EphrinB signalling in AP 

development mediated by EphB signalling, perhaps via the EphB3 receptor. The decrease in 

AP organ size was consistent with the VP organ size reduction in response to EphBj-Fc 

treatment (Figure 5.IB). Collectively, these observations suggest that EphB3 has a role in 

prostate organogenesis.
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The observation that neither of the EphrinB-Fc ligand treatments produced an effect in the 

AP organ culture was surprising as these treatments did in the VP organ culture (Figure 5.3) 

If an EphB receptor has a role in AP development, then one of its ligands may have a role in 

AP development. It is possible that another Ephrin ligand, maybe EphrinB3, is responsible. 

EphAl and EphrinBl are restricted to the epithelium and mesenchyme respectively during 

mammary branching morphogenesis (Kouros-Mehr and Werb., 2006). It is possible the 

EphA-EphrinB paracrine crosstalk occurs during branching morphogenesis in the 

development of organs such as the mammary gland and prostate. Furthermore, EphB 

receptors can bind to the EphrinA ligands. For example, EphA4 and EphrinA5 can interact 

with EphrinB2 and EphB2, respectively (Bouzioukh et al., 2007; Himanen et ah, 2004). The 

EphB-Fc and EphrinB-Fc proteins may have inhibited any EphA signalling that was 

occurring in the VP and AP organs. However, EphA and EphrinA expression in the 

developing rat prostate was not investigated and any role for EphA signalling in rat prostate 

development was not examined.

Histological and immunohistochemical (IHC) analysis were used to ascertain if the addition 

of EphB-Fc and EphrinB-Fc proteins to VP organ cultures had an effect on the VP cellular 

morphology. The structure of the developing VPs was investigated using H+E staining. The 

epithelium and stroma were individually examined using the tissue specific markers, p63 

(epithelium) and SMA (stroma). There was no effect on VP cellular morphology seen after 

H+E treatment (Figures 5.7 and 5.8) Furthermore, the EphB-Fc treatments appeared to have 

no effect on VP cellular morphology as revealed by p63 and SMA immunohistochemical 

staining (Figures 5.9 and 5.11). However, as a response to EphrinB-Fc ligand treatment, 

there appeared to be an increase in the size of individual buds as observed in the p63 and 

SMA immunohistochemical analysis (Figures 5.10 and 5.12).
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6.4 The mechanisms of EphB-EphrinB signalling in the developing 

prostate

EphB receptor and EphrinB ligands were expressed in stromal and epithelial compartments 

during prostate organogenesis. Furthermore, the functional analysis of EphB signalling 

during rat prostate development suggests it has a regulatory role. During the WISH analysis, 

a potential EphB signalling mediator showed a mesenchyme expression pattern, RasD. The 

intracellular signalling mechanisms by which the EphB-EphrinB interactions transmit these 

effects have not been determined by this study. The identification of an effector of EphB 

signalling supports the idea that EphB signalling is active during prostate development. 

RasD is part of a protein family that may act as intracellular mediators of EphB-EphrinB 

signalling. In human umbilical vein endothelial cells, the Ras/MAPK cascade can mediate 

the intracellular signal downstream from EphrinB2-EphB interactions (Kim et al., 2002). The 

EphB2 positive DLD1 colon cell line, when stimulated with EphrinB 1, activates Rho and 

Ras downstream (Riedl et ah, 2005). These two studies suggest an association between EphB 

signalling and the Ras intracellular signalling. However, this association may be 

organspecific. However, restricted stromal expression of RasD in the prostate supports the 

notion that Ras GTPases mediate EphB signals in the stroma, during rat prostate 

development. Additionally, EphB2 can phosphorylate the R-Ras effector domain that 

directly inhibits cell adhesion (Dail et ah, 2006). Thus, some effects of EphB signalling on 

prostate growth may be via cell adhesion.

An intracellular signalling mechanism that may be involved in EphrinB reverse signalling in 

the developing prostate are y-secretase complexes, which produce a separate intracellular 

domain (ICD). ICDs have been reported to function as transcriptional activators or repressors 

in the nucleus (reviewed in Kopan and llagan., 2004). An EphrinB2 ICD is generated by a 

matrix metalloprotease (MMPs) and y-secretase after binding to EphB2. The EphrinB2 

activates Src by removing a repressor named Csk (Georgakopoulos et ah, 2006).
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Furthermore, the EphrinBl ligand also has an ICD and is reported to have a role in F-actin 

regulation (Tomita et al., 2006). EphB receptors also undergo proteolytic cleavage. The 

extracellular domain of the EphB2 receptor is cleaved by calcium mediated ADAM 10 

protease cleavage. The EphB2 extracellular domain cleavage is enhanced by EphrinB2 

binding (Litterst et ah, 2007). The proteolytic cleavage of EphrinBl and EphrinB2 ICDs 

may occur in prostate development. Although there is no direct evidence for it, EphrinBl/B2 

ICDs may translocate to the nucleus of stromal (EphrinBl) and epithelial (EphrinB2) 

prostate cells. This could provide an additional intracellular mechanism for EphB-EphrinB 

signalling in prostate development. Antibodies raised against the EphrinBl and EphrinB2 

could be used in immunohistochemical approaches to investigate the possibility of EphrinB 

ICDs in prostate development.

Proteins that are phosphorylated by EphB receptors include adaptor proteins (Holland et ah,

1997), R-Ras (Zou et ah, 1999), the transmembrane proteoglycan syndecan-2 (Ethell et ah, 

2001), and the Rho-GEF Kalirin (Penzes et ah, 2003). More recently, EphB4 signalling gas 

been reported to influence RhoA-mediated actin cytoskeleton reorganisation, which aids 

invasive melanoma cell migration in the mouse (Yang et ah, 2006). EphB receptors have 

been shown to regulate the action cytoskeleton in spine formation (Henkemeyer et ah, 2003). 

All the aforementioned molecules participate in the regulation of the actin cytoskeleton. The 

main cellular responses to EphB-EphrinB signalling are changes in cell morphology and 

positioning. Differences in cell shape are mediated by changes in the actin cytoskeleton. 

Taken together, this data suggests that EphB-EphrinB signalling during rat prostate 

development may elicit its effects via changes in the actin cytoskeleton.

Activation of the Eph receptors activation relies on ligand binding and dimerization. 

Therefore, Eph receptor tyrosine phosphorylation requires Ephrin ligands in either clustered 

or membrane-attached forms (Davis et ah, 1994). Conversely, there is evidence to suggest 

that Eph receptor clustering, for example EphA3, does not require Ephrin ligand contact 

(Wimmer-Kleikamp et ah, 2004). Given that two EphB receptors and two EphrinB ligands 

are expressed in prostate development, it is possible that the clustering of the EphB
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receptors, dependent or not on EphrinB contact plays a role in their functionality. No 

experimental approach was taken as part of this thesis to determine if EphB/EphrinB 

clustering is required for correct prostate development.

Different splice variants of the EphB receptors and EphrinB ligands may play different roles 

with in the development of the prostate. Many members of the EphrinA ligand family have 

been reported to have splice variants, such as EphrinA 1, A3, and A5 (Lai et al., 1999; Finne 

et al., 2004). EphB2 has been reported to have three different transcripts of in three sizes of 

approximately 4, 5, and 11 kb. The variety EphB2 splice variants may represent its 

functional heterogeneity in different tissues (Tang et al., 1998). It is unclear which of the 

EphB2 splice variants plays a role, if any, in prostate development as no experimental 

approach was undertaken with regards to splice variants. Additionally, the SAGE data in 

Figure 4.1 revealed no information with regards to the abundance of an EphB2 transcript in 

prostatic tissues. It is possible the high levels of EphB2 mRNA seen in Figures 4.1 and 4.3 

contained more than one EphB2 mRNA, based on the evidence from the Tang paper.

The EphB and EphrinB genes maybe targets for other signalling pathways. The Notch 

pathway is important in prostate organogenesis with regard to both the epithelium (Wang et 

al., 2006) and the mesenchyme (Orr et al., 2009). EphrinB2 is a direct Notch target during 

ventricular myocardium development (Grego-Bessa et al., 2006). Notch signalling may 

regulate the expression of EphrinB2 or other EphB-EphrinB genes in the developing 

prostate. Members of the FGF family, such as FGF7 (Sugimura et al., 1996) and FGF10 

(Thomson and Cunha., 1999) are important for prostate organogenesis. Furthermore, the 

FGF receptor activates EphrinB 1 in Xenopus embryos (Chong et al., 2000) and FGF 

signalling modulates EphrinB 1 signalling in retinal progenitor cells (Moore et al., 2004). As 

FGF and EphrinB 1 signalling both have functions in rat prostate development, they may 

interact.
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Figure 6.1 EphB receptor and EphrinB ligand expression in the rat ventral 
prostate during development and possible mechanisms o f action. Both 
paracrine and autocrine EphB-EphrinB interactions are possible due to the 
expression patterns of the EphB2/B3 receptors and the EphrinB1/B2 ligands. RasD  
is expressed in the stroma. It is possible that this intracellular mediator is part of the 
EphB forward signalling pathway. Any small GTPases could mediate EphB-EphrinB 
signalling in the epithelium. Alternatively, the intracellular domains (ICD) of the 
EphrinB1/B2 ligands may be responsible for the transmission of the EphrinB reverse 
signal. The most likely mechanism effected used to elicit the influence of EphB- 
EphrinB signalling on prostatic cell proliferation and positioning is the regulation of 
the actin cytoskeleton.

All of the EphB-EphrinB expression data, possible interactions and intracellular mediators 

are summarised in Figure 6.1. The role of EphB-EphrinB signalling in the prostate has been 

discussed under the context of development. There may be role for EphB-EphrinB signalling 

in prostate cancer.
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6.5 EphB-EphrinB signalling in prostate carcinogenesis

A nonsense mutation in the EphB2 gene has been reported in the DU 145 prostate cancer cell 

line. This mutation truncated the kinase domain of the EphB2, and produced a non-functional 

receptor. When the DU 145 cell line was transfected with wild type EphB2, an 80% decrease 

in clonogenic growth was reported. Furthermore, 8% of prostate cancer samples examined 

displayed the nonsense mutation. Collectively, this data suggests EphB2 is a potential 

tumour suppressor (Huusko et al., 2004). An expression profile of EphB receptors and 

EphrinB ligands in normal prostate, primary prostatic tumours and invasive prostatic 

tumours was conducted. This study reported a large degree of differential expression 

between normal prostate, prostate cancer lines and primary prostate tumours. EphB2 is 

expressed at similar levels in normal prostate and primary prostatic tumours but was 

downregulated in four prostate cancer cell lines. EphB3 was expressed in normal prostate but 

not in primary tumours. However, EphB3 expression was upregulated in four prostate cancer 

cell lines suggesting EphB3 may have a role in more advanced prostate cancer. This could 

suggest epithelial-mesenchymal transition (EMT) since EphB3 is expressed in the 

mesenchyme. EphrinB 1 was expressed in normal prostate, primary tumours and two prostate 

cancer cell lines at similar levels. EphrinB2 expression was similar in normal prostate and 

primary tumours but was downregulated in three prostate cancer cell lines (Fox et ah, 2006). 

These observations suggest EphB signalling has a function in the progression of prostate 

cancer. The study discussed here did not attempt to investigate any role of EphB-EphrinB 

signalling in prostate carcinogenesis.
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6.6 Summary

A WISH analysis found that 13 mRNAS were expressed in the mesenchyme of the rat 

prostate during development. One of these transcripts encodes the EphB3 receptor. 

Furthermore, the EphrinBl ligand was determined to be expressed in the mesenchyme during 

rat prostate development. The EphB2 receptor and the EphrinB2 ligand were predominantly 

expressed in the epithelium in rat prostate development. Both receptors and ligands were 

expressed at their most abundant levels in the VP during prenatal and early postnatal 

development. Using in vitro VP organ cultures and exogenous recombinant protein 

treatments, it was determined that increased EphrinB reverse signalling, decreased EphB 

forward signalling or a combination of both decreased VP organ size. Conversely, it was 

determined that decreased EphrinB reverse signalling, increased EphB forward signalling or 

a combination of both increased VP organ size. These observations show that EphB- 

EphrinB signalling was involved in the regulation of rat prostate development. The results 

observed from the addition of EphrinB-Fc to the VP cultures suggest EphB-EphrinB 

signalling could regulate the size of developing VP epithelial buds. This regulatory signalling 

could come from either epithelium in a juxtacrine/autocrine manner or by paracrine 

signalling from the stroma. These pathways are likely to affect the actin cytoskeleton, and 

consequently change the cell morphology and positioning of the prostate epithelium and 

stroma.

This thesis determined the members of the EphB receptor and EphrinB ligand families were 

expressed in both the mesenchyme and epithelium of the rat prostate during development. 

Furthermore, functional evidence was ascertained to suggest a regulatory role for EphB- 

EphrinB signalling in rat prostate organogenesis.
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