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PART I. 

INTRODUCTION, 



INTRODUCTION. 

1. Arrangement of the thesis. 

The present thesis consists of three parts. In 

the first part we give a brief historical outline of the 

most important results that have been obtained in the 

theory of axially symmetric gravitational fields. Parts 

II and III are devoted to two contributions by the writer 

to this branch of the general theory of relativity. A 

bibliography of papers dealing with the subject is given 

at the end. This bibliography has been arranged in chrono- 

logical order, and references to it are made by quoting 

the authors name followed by the year of publication. 

2. Statement of the problem. 

The general theory of relativity is a more com- 

prehensive theory than Ill Newton's theory of gravitation. 

Nevertheless in so far as it replaces newtonian theory, it 

is legitimate to concentrate attention on the narrower 

aspect of the general theory of relativity as a theory of 

gravitation. Comparing from that point of view the gene- 

ral theory of relativity with newtonian theory, we notice 

that the main trend of researches carried out in the two 

theories is very different. While in the general theory 

of relativity the interest is mainly concentrated on 
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cosmological solutions, in newtonian theory the object 

of research is the gravitational field of a finite dis- 

tribution of matter, leading to a boundary condition 

problem. The reason is not far to seek, for one of the 

defects of newtonian theory is the absence of cosmological 

solutions other than the trivial solution of an empty 

universe , namely three dinensinal space and universal 

time. The interest of the new theory is ofcourse greatest 

in those fields uncovered by the older newtonian theory. 

In the present thesis however we are concerned 

with that aspect of the general theory of relativity 

which is parallel to the classical newtonian theory of 

gravitation. We are not concerned with the homogeneous 

cosmological solutions but with non -homogeneous solutions 

involving boundary conditions. 

Corresponding to any newtonian gravitational 

field there exists an einsteinian gravitational field. The 

correspondence is not unique, for the newtonian statement 

of the problem is not sufficiently explicit. In the gene- 

ral theory of relativity it is not enough to define the 

shape and density of the matter producing the gravitatio- 

nal field, we must also state the nature of the internal 

stresses and strains in the matter, before the problem of 

determining the field becomes definite. If we suppose 
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this is done for any newtonian gravitational field, then 

we are presented with the problem of determining the exact 

solution of Einstein's gravitational equations correspon- 

ding to this field. The boundary conditions that we lay 

down in this problem are that the fundamental form must 

nowhere be singular and that the coefficients of the 

fundamental form and their first derivatives must be con- 

tinuous throughout the field. We do not lay down the con- 

dition that the field must tend to be galilean at infinity 

corresponding to the newtonian boundary condition of the 

vanishing of the potential at infinity, for in part II an 

of a field will be given in which the above boundary con- 

ditions determine the coefficients uniquely, but which is 

not galilean at infinity. 

This problem has been solved exactly in only 

a very small number of cases. There is first of all the 

Schwarzschild solution, corresponding to the newtonian Xh 

theory of an attracting particle, the problem having been 

made definite by supposing the attracting mass to be a 

spherically symmetric homogeneous incompressible liquid. 

In part II another solution of this type is given, cor- 

responding to the newtonian sad:aft= theory of the attrac- 

tion of an infinite cylinder. Here the problem has been 

made definite by supposing the cylinder to be a liquid, 

rotating with just that angular velocity which reduces 

the pressure everywhere to zero. The present writer is 



not aware of any other non -homogeneous solution of 

Einstein's gravitational equations. 

In the case of the Schwarzschild solution 

the gravitational equations were found to be soluble 

owing to the great simplicity introduced by the assumption 

of spherical symmetry. In looking therefore for more gene- 

ral solutions it is obviously indicated to attempt to 

introduce a measure of symmetry less than that of complete 

spherical symmetry. One is thus led to the study of 

axially symmetric solutions of the gravitational equations. 

The definition of axial symmetry is not as simple as that 

of spherical symmetry. Though there has been no disagree - 

ment among different investigators about the canonicali- 

sat ion of the fundamental form appropriate to the case of 

axial symmetry, no very satisfactory definition of the 

conception has been given. A geometrical definition has 

been attempted by the writer in the second paragraph of 

part II. 

In the case of spherical symmetry it is a 

consequence of the gravitational equations that space -time 

is of the normal statical type. By a static solution we 

mean one in which the line -element can be put in the form 

(2.1) 

where 

d/X GÚX (01 _ , z,3) 



and where all the 
gis 

are independent of t 

In the case of axial symmetry this is not so, and con- 

sequently we have statical and stationary axially sym- 

metric fields. In the stationary case the coefficients 

are also independent of t , but the line- element cannot 

be reduced to the form (2.1). 

3. Statical solutions. 

Weyl and independently Levi-Civita (151y), 

obtained the general solution for a static axially sym- 

metric gravitational field in a region where the energy 

tensor vanishes. The solution may be expressed as follows. 

The line -element is given by 

(3.1) cLs-L, 

where 
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The equation (3.2) is seen to be the condition of in- 

tegrability of (3.3) and (3.4), and hence we have field 

satisfying the gravitational equations corresponding to 

any solution of (3.2). The equation (3. 2) is seen to be 

Laplace's equation in cylindrical coordinates, with the 

term äßz missing. 

The axis of symmetry is given by f = 0 , and 

if this axis is not to be a singular line in the geometry 

of space -time, we must have _ 0 on the axis. This 

is easily seen by considering a small circle round the 

axis in a z- plane, ana determining whether the ratio of 

its circumference to its radius approaches 277 as r 

approaches zero. 

Levi -Civita (1913) applied the theory to 

obtain the field of an infinite cylinder. Assuming V to 

be a function of r gnly, he found 

`` `I 
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He also showed that in this field the gravitational 

force varies proportionally to the power oC of the 

geodesic distance from the axis,where 

(3.7) + 
- 

To obtain further cases of his general solution, Weyl 

introduced an auxiliary, space by interpreting z, 2,)4( 



 

as cylindrical coordinates in a euclidean space. Given 

a particular distribution of matter in the auxiliary 

space, we find the ordinary newtonian potential and this 

gives an exact solution when substituted in (3.1). 

Weyl's solution is the most general one for 

this type of field, and hence must contain the Schwarz - 

schild solution as a particular case. Weyl showed that 

the Schwarzschild solution is obtained by considering 

the potential of a uniform bar along the z -axis in the 

auxiliary space. Analytically this is expressed as 

follows. If we transform (3. 1) with. the transformation 

(3.7) t + C. z- a c aL + 

then the function Y giving rise to the external 

Schwarzschild solution is 

Several investigators have applied themselves 

to the problem of determining the field due to two spheres. 

It is obvious that a statical solution of this type does 

not exist, and the problem therefore is of rather academic 

interest, but we can give it a certain measure of physical 

interest by supposing the spheres to be kept at rest by a 

rigid structure of negligible mass. 



The basis of these attempts has been the generalisation 

of the preceding result. The field of one mass centre is 

given by the potential of a uniform bar in the auxiliary 

space. This suggests finding the line -element arising from 

two uniform bars in the imaxamizai simpl auxiliary space. 

Three arbitrary constants will appear m m , and d, 

which are to be interpreted as the masses and the distance 

between them. Solutions have been given by Bach (1322), 

Palatini (1323), and Chazy (1324), kW of which Bach's 

solution appears to be the best. 

Bach obtains the form (3,1) where 

a k+jC;), 0$14 4)- °R21-. e = 

and 

2Y 
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and where r1, r1,, r5, r,, are the distances of the point 

r, z, 
l" 

, to the extremities of the two bars in the 

canonical space. The two bars. are situated on the z -axis 

the first bar between z,4nd z, , the second bar between 

z and z e We see that on the axis % - o for z 2 z or 

z 4. z y but on the stretch z 2 7 43 , 

has a constant value 
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and hence the line -element is singular at all points on 

the axis between the mass centres. 

Weyl (1922), in an addition to Bach's paper, 

supposed that the singularity was removed by filling the 

region in the neighbourhood of the portion of the axis be- 

tween the masses with a medium capable of retaining them 

in equilibrium, with suitable stresses. Calculating the 

flux of force across a surface normal to the axis between 

the masses, he found for the force of attraction K between 

them the formula 

(3.12) 
0A-k, 

}.00 

If 2d is much greater than m or m2,, this gives& 

approximately 

(3.13) 

the correct newtonian expression, if 2d is the distance 

between the masses. 

Other papers dealing with Weyl's theory are 

not of very much interest. Chou (1931) has attempted to 

apply Weyl's theory to obtain the field of a spheroidal 

homeoid. Chou himself however remarks that the line- 
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element which he obtains can be transformed into the 

Schwarzschild form, but making the observation that 

"the interpretation of the coordinates is not the same ". 

Further we may mention three papers by Straneo (1924), 

devoted to a discussion of certain difficulties which 

appear to have occurred to the writer in connection with 

Weyl's theory. 

An excellent review of the development of the 

subject up to 1927 will be found in La.rmoie' article in 

the Memorial des Sciences Mathematiques (1927). 

4. Stationary solutions. 

The stationary case differs from the static 

case in the presence of an additional coefficient in the 

canonical form of the line-element. A general exact 

solution of the gravitational equations for the stationary 

case was obtained by Lewis. This solution contains Weyl's 

solution as a particular case, but unlike Weyl's solution 

it is not the most general solution. A simple derivation 

of Lewis' solution is given in paragraph 5 of part II. 

Lewis used his solution to obtain the external field of 

a rotating cylinder. The gravitational equations in the 

interior of rotatating non -interacting matter, are con- 

sidered by the present writer in part II. A general exact 

solution is found, and the field in the interior of an 



infinite rotating cylinder are deduced as a particular 

case. Associating the internal solution thus obtained 

with Lewis' external solution, the problem of the field 

of a rotating cylinder can be completely solved, the boun- 

dary conditions determining uniquely the arbitrary con- 

stants occurring in the solution in terms of the physica 1 

dimensions of the system. 

Exact solutions in the case of a rotating liquid 

have not so far been obtained. In this case we must content 

ourselves with approximate solutions. 

The external field of a rotating sphere was first 

investigated by Lense and Thirring (1918). They used their 

result to Maxiit determine the effect of the rotation of 

a central body on the advance of the perihelion of a 

planetary body. They found a slight increase in the advance 

of the perihelion but below the limit of observation. 

Second approximations to the field of a rotating 

sphere were obtained by Bach (1922) and by Lewis (1932). 

A second approximation to the more general case of the 

field of a rotating MacLaurin ellipsoid was obtained by 

Akeley (1531). 

In part III of this thesis the ganmaai problem 

of the gravitational field of a general rotating liquid 

is discussed, and the general solution given correct to 

the second order. 

The theory is applied to determine the field 
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of a slowly rotating sphere. Comparison of the results 

here obtained with those of Bach and Lewis is not easy, 

as these writers were not able to express the arbitrary 

constants occurring in their solutions in terms of the 

physical dimensions of the system. The result we obtain 

is however checked by comparison with the Schwarzschild 

solution, to which it must ofcourse tend when tne angular 

velocity tends to zero. 
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IX. -The Gravitational Field of a Distribution of Particles 
Rotating about an Axis of Symmetry. By W. J. van 
Stockum, Mathematical Institute, University of Edinburgh. 
Communicated by Professor E. T. WHITTAKER, F.R.S. 

(MS. received July 2, 1936. Revised MS. received December 9, 1936. 
Read November 2, 1936.) 

§ I. INTRODUCTION. 

THE generalisation to the stationary case of the solution given by Weyl 
(1918) of Einstein's gravitational equations in a statical axially symmetric 
universe, has been attempted by various writers. It has not, however, 
so far been possible to reduce the equations to linear form and thus to 
find the most general solution. A set of special solutions has been 
obtained by Lewis (1932), valid in a region free of matter, which contain 
Weyl's solution as a particular case. They depend upon an arbitrary 
solution of the equation 

a2v a2v I aV 
aY2 + aZ2 + Y aY 

=0. 

In the first part of the present paper the gravitational equations are 
considered in the interior of an axially symmetric distribution of particles 
rotating with constant angular velocity about its axis of symmetry. 
Solutions of the equations are found depending upon an arbitrary solution 
of the equation 

82V a2V r aV 
áY2 + áZ2 - Y ar 

=0. 

In the second part the field of an infinite rotating cylinder is considered, 
and the internal solution obtained by the method of the present paper 
is associated with the external solution given by Lewis. The boundary 
conditions, namely the continuity of the coefficients of the fundamental 
form and their first derivatives across the surface of the cylinder, determine 
uniquely the constants occurring in Lewis's solution in terms of the 
physical dimensions of the system. It appears that there are two essen- 
tially different types of external field of a rotating cylinder, according 
as the radius of the cylinder is less or greater than a certain critical value. 
In the first case, the geodesic planes normal to the axis of symmetry are 
infinite and tend to euclidean planes at infinity; in the second case, 
these planes are finite and closed. The external field of a rotating 
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cylinder given by Lewis corresponds to the case where the radius is less 
than the critical value. 

2. DEFINITION OF AXIAL SYMMETRY. 

It is customary to define stationary axially symmetric space -time to 
be such that by a suitable choice of co- ordinates the fundamental form 
assumes a certain simple expression. As however, in what follows, we 
shall allow ourselves to be guided by geometrical intuition in defining 
the energy tensor of a rotating system of particles, it may be more con- 
sistent to give a geometrical definition of axial symmetry, and to deduce 
the particularisation of the fundamental form from our definition. 

Stationary axially symmetric space -time we define as follows. The 
universe contains a privileged observer O, whose world -line is a time - 
like geodesic g. The observer O separates space -time into space and 
time by referring to the 3- spaces S formed by all geodesics at O normal 
tog as space and to some suitably chosen parameter t defining his position 
on g as time. The universe is said to be stationary if with the passing 
of time the observer O detects no change in the intrinsic geometry of the 
space S. If the parameter t is used as one of the co- ordinates, it follows 
that the coefficients of the fundamental form must be independent of t. 
We now say that, in addition to being stationary, the universe is axially 
symmetric if at any instant there exists in S a privileged geodesic a, 
passing through O, which is such that at any point of it all directions 
in S normal to a are intrinsically indistinguishable. We have then at 
every point of g a privileged geodesic a normal to it. We shall now 
show that it follows from the definition of axial symmetry that the unit 
tangent vectors at g to the geodesics a are parallel in Levi -Civita's sense. 
For suppose this is not the case; then selecting the S, passing through 
the point O on g, we obtain a cone of directions at O by propagating the 
unit tangent vectors to the geodesics a parallelly along g to O. Con- 
sidering the geodesics in S defined by this cone of directions, we obtain 
a surface in S, containing the privileged geodesic a of S. But this surface 
would define, at all points of a, privileged directions in S normal to a, 
namely those tangent to the surface, which contradicts the assumption 
of axial symmetry. 

We may now choose a system of co- ordinates as follows. At an 
arbitrary point of g we select two unit vectors in S which, with the unit 
tangent vector to a, form an orthogonal triad. We can use the triad to 
set up in this S a system of geodesic polar co- ordinates, r being the length 
of the geodesic joining an arbitrary point to O, O the angle between the 
tangent to this geodesic and the tangent to a at O, and sd the azimuthal 
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angle. Propagating the triad parallelly along g, we have defined a triad 
in every S and r, B, 0, t, can now be used as co- ordinates of space -time. 
From the definition of axial symmetry it follows at once that the coefficients 
of the fundamental form must be independent of 51.. We can show that 
in the present system of co- ordinates the t -lines will be normal to the 
r- lines. This is seen by noting that the t -line of a point, the r, O, 0 
co- ordinates of which are kept fixed, is described by propagating the 
geodesic radius vector, which is normal to g, parallelly along it, and it is 
well known that its extremity then describes a curve which is at all points 
normal to the geodesic radius vector. It can further be shown to follow 
from the definition of axial symmetry that the t -lines are normal to the 
0-lines. Consider the surface E in S formed by all the points geodesically 
equidistant from O, and let this surface intersect a in a point P. The 
directions of the t -lines at points of S can be projected on to S. Suppose 
this is done at all points of S lying on E. Then since the t -lines are 
normal to the r -lines the projections will lie in E, forming a congruence 
on E. Now, since all directions at P in E must be equivalent, this con- 
gruence must lie symmetrically about P, and hence must cut the 0-lines 
orthogonally. It follows that the t -lines are normal to the 0-lines. From 
these last two results it follows that the product terms drdt and dûdt 
are absent in the fundamental form, which will then be of the form 

ds2 = dr2 + AdO2 +Bdç2 + Cdq dt + Ddt2 
where the coefficients are functions or r and O only. 

3. CALCULATION OF RICCI TENSOR. 

For analytical purposes the co- ordinate system established in the 
preceding section is not the most convenient. We therefore apply the 
transformation 
(3.I) . . x1 =x1(r, O), x2 =x2(r, O), x3 =0, x4 =t, 
thus obtaining the slightly more general form 

(3.2) . . ds2 = gapdxadxF +g,nndxmdxn, 
a, ß = I, 2 

m, n =3, 4) 
where the gap and the gmn are functions of the co- ordinates 
only. In what follows, unless the contrary be explicitly stated, it will 
be understood that Greek indices are to have the range 1, 2 and Roman 
indices the range 3, 4. The summation convention is adhered to, with 
the understanding that repeated Greek and Roman indices are to be 
summed through the ranges 1, 2 and 3, 4 respectively. 

We note that the transformation (3.1) can always be chosen so that 
If we suppose this to have been done, we may 

x1 and x2 

g11 =g22 and g12 = o. 
write (3.2) 
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(3.3) ds2 = e24,(dxldx1'+ dx2dx2) + Zdx3dx3 + 2 mdx3dx4 -fdx4dx4. 

It will be convenient first of all to obtain the expressions for the com- 
ponents of the Ricci tensor of the form (3.2), in tensor form with regard 
to transformations of the type (3.1). We notice that with respect to this 
group of transformations the functions g,nn, gmn, D, where D is defined by 

D2 = - I gmn I, 

transform like invariants, and that their partial derivatives transform 
like vectors in the (x', x2)- surfaces. We denote partial differentiation by 
small Greek suffixes. These suffixes can then be raised and lowered in 
the usual way with respect to the form 

(3.4) da2 = ga,dxadxß. 
Covariant derivation with respect to (3.4) we denote by a comma pre- 

ceding the suffix, or alternatively by the symbol . For the Christoffel 

symbols of the form (3.2), containing the indices 3 or 4, we have the formula 

{mn } -o, {}-° {}-° , (3.5) 

l nI = Egmsgnsa, 
I m92 f 2gmn 

Substituting these values in the usual 
«l 

expressions for the components 
of the Ricci tensor in terms of the Christoffel symbols, we obtain, after 
some simplification, the following formula for the non -vanishing com- 
ponents 

1Rß = K; + D-1D" - D-1DnDo - 
6 (3) 8 (g D m 1 ms a 

n = 2 
8xa 

gns f 

where Kß is the Ricci tensor of (3.4). Writing these formula explicitly 
for the form (3.3), we obtain 

-V(- g)Rß =Dt b8s +Da,0- 4D -1(1 fp +lpfa +2mamß), 

1/ 3 
I Ó rfla +mmal (- g)R3 -2 ex "L D j' 
I ô m m f 

j (3.7) 
1/(- g)R4 =2 ôxa 

f 

mn 
gmngß 

4 I ôarmla-1mal 
`1/(g)Ra=2 ôx Lr D J 

I a 1fa+mma (v(_gvel_ 
2 ax" L D ' 

1/( -g)(14+ RI) =OD, 

where A is the ordinary Laplacian operator in the variables x' and x2. 
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§ 4. THE ENERGY TENSOR. 

We consider now the energy tensor of a distribution of particles 
rotating round the axis of symmetry. We suppose that from the point 
of view of the observer O of § 2, the particles are describing the 
0 -lines in the space S. It follows then that the first two components 
of the unit tangent vector to their world -lines vanish. We furthermore 
suppose that the particles are describing their paths without mutual 
interaction, the world -line of each particle being a geodesic in space - 
time. The energy tensor of such a system of particles is of the form 

T; = 1.ArA., (r, s = I, 2, 3, 4) 

where p, is the density of the particles and Ar is the unit tangent vector to 
their world -lines. In order to satisfy the condition of axial symmetry, 
it is of course necessary that the density µ be a function of x1 and x2 
only. In the present case we have Ai = X12 =o. If we write S2 = ñ2 /A4, 

we find for the components of the unit tangent vector 

SZ - 
-V(Í- 2S2m - S22l) 

A4_ 
V(f -2S2m -5121) 

We obtain for the non -vanishing components of the energy tensor the 
expressions 

(4i) 

S22l+ S2m 
23 - 

µf - 2S2m 

171 
S2Z+m 

3 S22m - S2f 
T4- ill- 2S2m- fr/ ' 

4 S2m -f 
T4-f-2S2m-S221 

The vanishing of the divergence of the energy tensor gives the equations 

(4.2) TTS, = ax Ar As + pa. 3A8 + µArñs 8 = o. (r, s = I, 2, 3, 4) 

Since A =o, andar=o, the first term in (4.2) disappears. Using the 

fact that A" =A =o and that Am is a function of x1 and x2 only, we find that 
Am'n A', 

Am - 1 

(4.3) 'a - ax" an an J } , 

{mn }An. 
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Substituting from (4.3) in (4.2), the latter reduce to the two equations 

(4.4) 
a 

µ o 
mn Ámñn= 

which, using (3.5), may be written 

(4.5) . F".( fa - aS2ma - S221) = o. 

We now suppose that S2 is a constant, and that µ o, then the equations 
(4.5) can be integrated at once, giving 

(4.6) . f - 2)m - 5221= constant. 

It is important to notice that the equation (4.6) holds only when µ o. 
We now adopt a new system of co- ordinates with the transformation 

(4.7) xl = x1, x2 =x2, 3 = x3 - S2x4, x4 = x4. 

This transformation constitutes a change to a rotating system of reference, 
relative to which the matter is at rest. If the bars be omitted, which 
may be done without danger of ambiguity, the fundamental form becomes 

(4.8) . ds2 = e2'`(dxldx1 + dx2dx2) + Ldx3dx3 + 2111dx3dx4 - Fdx4dx4, 

where 
L =1, 

(4.9) M =m +S21, 

F= f -2S2m -5221. 

If we denote the components of the energy tensor in the new system of 
co- ordinates by accented letters, we find 

'71=71- S273, 
'T4 = S2T3 + T4 - S22T3 - SIT!, 

3- 3, 

'T4 = ShT3 + T4i 
the remaining components being zero as before. If we now substitute 
from (4.1), using (4.9), we find that the quantity 1-2 disappears from the 
expressions, and we obtain, finally, 

'73 =o, 'T4 =o, 
(4.ii) {.'71- M, =µ' T44 = -µ. 

(4.io) . 

The equation (4.6), yielded by the vanishing of the divergence of the 
energy tensor, becomes in the present system of co- ordinates 

(4.12) . . F= constant. 
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§ 5. THE GRAVITATIONAL EQUATIONS. 

Since the fundamental form (4.8) is of exactly the same type as (3.3), 
we obtain the expressions for the components of the Ricci tensor in the 
system of co- ordinates of § 4, by writing F, L, M, for f, 1, m, in (3.7). 
We write the gravitational equations in the form 

(5.I) Rj= -K(T1-2T6), (i,j=I, 2, 3, 4) 

where we may, without ambiguity, omit the accents relating to the present 
system of co- ordinates. We have, from (4.1 i), 

T =T4= -it, 

and hence we deduce from (5.1), 

.14+.11=o, 

and this gives, by (3.7), 

(5.2) . OD = o. 

On the basis of this equation we may proceed with the introduction of 
Weyl's canonical co- ordinates, the application of which to the stationary 
case was first noted by Lewis (loc. cit.). We define a transformation 

(5.3) r=D, z=D', 

where D' is a function of xl and x2 such that 

D + iD' = f (x1 + ix2), 

which, if (5.2) is satisfied, is always possible. This transformation leaves 

the fundamental form of the (x1, x2)- surfaces in the isothermal form, and 
hence occasions no change in the expressions for the Ricci tensor. We 
suppose the transformation to the co- ordinates r, z to have been effected, 
but we will retain the indicial notation whenever convenient, suffixes r 

and 2 referring to differentiation with respect to r and z respectively. 
We may then put D=r in all formula. thus far calculated. For De,, 

we have 

(5.4) Dl, 1= -11(1) D1, 2 = - 02, D2, 2 = 1 
Considering now the remaining gravitational equations, if we substitute 
from (3.7), (4.11), and (5.4) in (5. I), and write for convenience p = sq. \/( -g), 
we obtain after some simplification: 

(5.5) oO=r2(L1F1+LzF2+Mi+ -P, 
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(5.6) . 01= - 
47 

(L1F1 + Mi - L2F2 - M2), 

(5.7) = - 
47 

(L1F2 + L2F1 + 21111M2), 

ôxaLFMß r 
MFa - o (5.8) 

ô [FL,,-LF 
(59) 8x" r 

2P, 

(5.10) . 

ô riwz -LMa M 
ô el_ r 

- 
2p F 

6. SOLUTION OF THE GRAVITATIONAL EQUATIONS. 

We first of all remark that the equations (5.8) to (5.10) are not inde- 
pendent; (5.10) may be deduced from (5.8) and (5.9). To obtain the 
general solution of the equations we make use of the relation 
Putting 

(6.1) . F= I, 

the equations (5.5) to (5.9) become 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) . 

. i=4r2(Mi+M2) - P 

_ 
- 

I M2 
- 

(M 
1 

2 

02= - MIM2, 
zr 

I 

M11+M22--M1=o, 
r 

I 
L11+L22--L1= -2rp. r 

(4.12). 

We notice that the equation (6.5) expresses the condition of integrability 
of the equations (6.3) and (6.4). We may therefore attempt to obtain 
solutions of the equations by choosing a function M satisfying (6.5). 
The equations (6.3) and (6.4) being integrable then determine 0. We 
are then left with the equations (6.2) and (6.6) to determine L and p. 
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The functions L and M, however, are not independent. Owing to the 
particular choice of the co- ordinate system we have from (5.3) 

(6.7) 

and hence by (6.i) 

(6.8) 

r2 = FL + M2, 

L=r2-M2. 

Substituting from (6.8) in (6.6), and using the fact that M satisfies (6.5), 

the equation (6.6) becomes 

(6.9) . . Mi +M; = rp. 

We may consider this equation to define the density distribution, and 
then the equations (6.3) to (6.6) are all satisfied. If we now calculate 
6,0 from (6.3) and (6.4), and substitute the result in (6.2), this equation 
becomes identical with (6.9), so that it also is satisfied. We have there- 
fore shown that the general solution of the equations depends upon an 
arbitrary solution of the equation (6.5). 

If we write =x2, ct =x4, we have for' the fundamental form 

(6. I o) . ds2 = e2 '(dr2 + dz2) + (r2 - M2)dç 2 + 2Mcdçdt - c2dt2, 

where M is any solution of (6.5), 0 is determined from (6.3) and (6.4), 
and where the density is given by the equation 

I 
2 2 2 Kµ=y2E- (M1+M2). 

We cannot deduce solutions for the external field from the present solution 
by putting µ =o, for we then see from (6.11) that this implies M= constant, 
and the resulting solution is trivial, space -time being then galilean. The 
reason is that the equation (6.1) was deduced from the vanishing of the 
divergence of the energy tensor on the supposition µ o o, and hence does 
not necessarily hold when the energy tensor vanishes. 

§ 7 THE FIELD OF AN INFINITE ROTATING CYLINDER. 

We now consider the particular solution of the equations which is 

obtained by supposing M to be a function of r only. The equation 
(6.5) then reads 

M11--M1=0, 
Y 

and this yields on integration 

(7.I) . M =are, 



144 W. J. van Stockum, 

where a is a constant of integration. Determining the function Ik from 
(6.3) and (6.4), we find 

e2 =e- Or. 

The equation (6.1i) for the density now reads 
2 

We obtain therefore the fundamental form 

(7.3) 

where 

(7.4) 

. ds2 = H(dy2 + dz2) + Ldrk2 + zMdcfidt - Fdt2, 

H=é a 2 r 2 L=r2(1 -a2r2), 
M= acy2, F=c2. 

The present system of co- ordinates constitutes, as we have seen, a system 
of reference relative to which the matter composing the cylinder is at 
rest. We define the angular velocity of the cylinder to be the angular 
velocity relative to a non -rotating system of reference associated with 
an observer on the axis of symmetry, using Walker's definition of non - 
rotating (1935). Walker defines a non -rotating system of reference for 
an observer to be such that in it the acceleration of a free isolated particle 
in the neighbourhood of the observer is independent of its velocity. This 
clearly corresponds to what is meant by a non -rotating system of reference 
in Newtonian dynamics. We may call such a system a dynamical rest 
frame. for the observer. Walker has shown that for such a system the 
unit tangent vectors in the direction of the space axes must be defined 
by Fermi -transport along the world -line of the observer, which, since 
the world -line in the present instance is a geodesic, reduces to ordinary 
parallel transport. 

Let us denote the unit tangent vector to the r -lines by ÿi (1= I, 2, 3, 4). 
Then if ei is transported parallelly along the world -line the observer 
the equations 

(7.5) 
aei dxa dxb - 
axa ds + ab 

e6 
ds = o 

(2, a, b = r, 2, 3, 4) 

must be satisfied at the origin. We have 

ei = (H- , e, o, o), 
(7.6) . dxa - 

ds 
=(o, o, o, F4). 

Substituting from (7.6) in (7.5), and using (3.5), we obtain the two 
equations 

(7.7) D- 2(FiW1- 111F1)H - -4F-} =0, 

(7.8) D -2(MM1 + LF1)H- -1-F4 = o. 
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We now apply the transformation (4.7), where we write Q' instead of Q, 

to the form (7.3), and calculate the expressions on the left -hand side 
of (7.7) and (7.8) for this new form, obtaining the equations 

(7.9) 

(7.10) . 

. r(c - aS2'r2) = o, 

SZ' + ac 
2a2rn' + a3r3C 1fr2 = O. 

r 

These equations are satisfied at the origin only if 

(.7.11) . S2' = -ac. 

It may be shown similarly that the unit tangent vector to the z -lines is 

propagated parallelly along the world -line of the observer, independent 
of the value of Q'. We therefore obtain the expression for the fundamental 
form in a non -rotating system of co- ordinates, by applying the transforma- 
tion (4.7), where we substitute for Q the value given by (7.11). When this 
is done we obtain the form (7.3), where 

IH=e- a2r2, 
L =r2(i -a2r2), 

(7.12) 1M= F =c2(1 +a2r2 +a4r4). 

§ 8. INTERPRETATION OF THE SOLUTION. 

We see from (7.11) that the angular velocity w of the cylinder is 
given by 
(8.1) . to =ac. 

If we denote the density of the cylinder on the axis of symmetry by ta,o, 

we find from (7.2), if we substitute for K its value in terms of Newton's 
gravitational constant y, that 
(8.2) . a2r2 = 2Tryµ0, 

and hence we have for the angular velocity 

(8.3) . CO = V 27TytA,o. 

If we suppose the cylinder to be of the density of water on the axis of 
symmetry, so that 11,0 = 1, the period of rotation of the cylinder is approxi- 
mately 2 hours 42 minutes. If we denote by R the value of r on the 
boundary of the cylinder, then we see from (7.12) that we must have 

aR <1, 
otherwise the coefficient of tick' in the fundamental form is negative in 
the interior of the cylinder. For a cylinder of given density therefore 
there is an upper limit for the radius. Since co =ac, the inequality may 
also be written 

wR<c, 
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so that the upper limit of R is the same as the upper limit of the radius 
of a rotating cylinder in the special theory of relativity. The quantity 
R, however, is not the radius of the cylinder but connected with it by 
the equation 

rR 
R' = 

J 
e tQ'r2dr, 

0 

where R' denotes the radius. If µo =1 we find that the maximum radius 
is approximately 3.5 x 108 K.M. 

We now consider with what angular velocity a particle is to describe 
a ck-line if its world -line is to be a geodesic in space -time. We write 
the equations of the geodesics in the Lagrangian form 

d aT âT 
ds ax' 

o, 

where 

(1=1, 2, 3, 4) 

T= H(y2 +z'2) +L9V2 +211296't' -Ft'2, 
dashes denoting differentiation with respect to the arc s. We attempt 
to satisfy these equations by putting r = constant, z = constant. The 
only pertinent equation is then seen to be 

d aT ôT -- =o 
dsbr' 8r ' 

which gives a quadratic for dç6/dt, namely 

(8.4) . . . 
L1dck2 + 2Midçdt - F1dt2 = o. 

Substituting from (7.12) in (8.4), and solving the quadratic, we obtain 
the roots 

(8.5) w1= ac, 

(8.6) . 

I + 2a2r2 
w2 ac. 

I - 2a2r2 

The first root gives the angular velocity of the cylinder, verifying that 
the world -lines of the particles composing the cylinder are geodesics. 
If we suppose a thin tube hollowed out in the cylinder along a 0 -line, 
the second root gives the angular velocity with which a particle must 
be endowed in order to traverse the tube in a sense contrary to the sense 
of rotation of the cylinder. 

The unit tangent vectors to the world -lines of the particles composing 
the cylinder must always be time -like. To investigate whether this is 

the case, we consider the null- directions in the (0, t)- surfaces. These 
are given by 

(8.7) . Ld72 + 2M4dt - Fdt2 = o. 
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Solving this quadratic we obtain the values of dç /dt corresponding to 
the null- directions. They are found to be 

I - a3r3 ac 
(8.8) . 8.s SZ 1-I -a 2 r 2 ar' 

(8.9) 
I +a3r3 ac 

S22 
I - a2r2 or' 

We see from (8.8) that, for all values of r, we have S21 > ac, and hence 
the tangent vectors to the world -lines of the particles are always time - 
like. Comparing (8.6) and (8.9), we see that when ar = ¡, we have 
S22= w2. Hence when ar -> , the velocity with which a particle must 
be projected in order to describe a 0 -line, in a sense opposite to the sense 
of rotation of the cylinder, tends to the velocity of light. At points 
where r exceeds this value it will be impossible for a particle to describe 
a 0 -line in this sense. If we consider the case of a cylinder whose density 
and radius are such that aR = 2, then on the boundary a light signal sent 
out in the direction of a 0 -line, and in a sense opposite to the sense of 
rotation of the cylinder, will travel along the 0 -line. An observer there- 
fore on the surface of the cylinder will be able to look right round the 
cylinder. Assuming p = I, we find that if the observer is at rest on the 
surface of the cylinder, a ray of light sent out by him returns in approxi- 
mately 40 minutes. 

Returning to equation (8.6), we see that when ar= 
1/2=, 

the angular 

velocity w2 becomes infinite. The 0 -line is then a space -like geodesic. 
The length Z of a 0 -line is given by 

211- 

Ì= 
J 

r(I - a2r2)+d(¢ = 2717(I - a2r2)+, 
o 

and we see that Z is a maximum when ar= ç = As r increases beyond 

this value the length of successive 0 -lines diminishes. When ar -}I the 
length of the corresponding ç- line --+o. If the cylinder is such that 
aR = I, then all geodesics issuing from the origin in the planes z= constant, 
meet again on the boundary, which then reduces to a line, the antipodal 
line of the axis of symmetry. We will return to this point when we 
consider the external solution. 

Before proceeding to the question of the external field and boundary 
conditions, we may consider the Newtonian analogue of the present 
solution. If in Newtonian potential theory an infinite liquid cylinder 
of uniform density is endowed with ä constant angular velocity S2, there 
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exists a definite value for S1, which will reduce the pressure everywhere 
to zero. Ifµ is the density of the cylinder and y the gravitational con- 
stant, we find for S2 the value 

67rµ7. 

The present paper is concerned with the gravitational field of such a 
cylinder according to the general theory of relativity. We see that we 
obtain the same value for the angular velocity, but in the present case 
the density is not constant, it decreases with increasing distance from 
the axis. If the radius of the cylinder is small, however, the density 
does not vary very much from its value on the axis of symmetry. 

9. LEWIS'S SOLUTION FOR THE EXTERNAL FIELD. 

In order to complete the solution we must now consider the external 
field and the boundary conditions. We make use of Lewis's solution 
for the external field of a rotating cylinder (Lewis, 1932). The form 
in which Lewis gives this solution is not a convenient one from the point 
of view of determining the constants occurring in it by means of the 
boundary conditions. We will therefore here obtain this solution by 
a different method, and in a form more convenient for our purposes. 

We return to the equations (5.5) to (5.1o), where we put p =o. With 
Lewis, we remark that the conditions of integrability of (5.6) and (5.7), 
and the condition of compatibility of these equations with (5.5), are con- 
tained in the system (5.8) to (5.1o). These last three equations are not 
independent, any one being a consequence of the remaining two. We 
consider (5.9) and (5.1o), and make the substitution 

F M 
u =L, v 

Using the relation (6.7), the equations (5.9) and (5.1o) become 

rua â rva 
(9.2) 

Óxa[u + v2] - 0' ôxa[u + v21 
-o. 

We attempt to obtain solutions of these equations by putting 

(9.3) u= 0a(u +v2), va= e1a(u +v2). 

Substituting from (9.3) in (9.2), we see that the functions 0 and must 
satisfy the equation 

(9.4) 
I 

011+02S+-01=0. 
r 

Choosing two arbitrary solutions of this equation, we now attempt to 
obtain u and y from the system of equations (9.3). This system of first 
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order partial differential equations is complete, that is to say, the con- 
ditions of integrability are identically satisfied if 

0102 - 02 «1= 0, 

as may easily be verified. This relation involves 

=f(0), 
and since O and ' are both solutions of (9.4), it is easily seen that we have 

=AO +B, 

where A and B are constants. It is then evident from (9.3) that this 
implies 

(9.5) . v =Au +B. 

The two sets of equations in (9.3) are then equivalent, and they reduce to 
an ordinary differential equation which may be written 

(9.6) . 

du 

A2u2 + (2AB + I)u +B2 

In the integration of (9.6) three cases arise, according as 4AB +I is >, 
= or < o. In the case 4AB + 1 < o, we obtain, introducing different 
constants, 

= d0. 

- 2L = a2 + ß2 + 2a/3 coth 2 0, 
-v=a coth 20+ß, 

and these give 
T 

r-1L = -sink 20, 
a 

-1 - (9.7) . r-1.1/1.= cosh 20 -- sinh 20, 
a 

2 

r-1F= - 2ß cosh 20 
a2+ 

h3 sinh 20. 
a 

Substituting from (9.7) in (5.6) and (5.7) we obtain for t/r the equations 

(9.8) 1= - 4r 
+r(O1 - Oá), 

2/12= 2r0102. 

In the case 4AB +I < o, we have similarly 

T 

cos 20, 
a 

(9.9) r1M =sin 20 -ß cos 20, 
a 

a2 -ß2 
r-1F= 2ß sin 20 + cos 20. 

a 
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The equations for 0 are now 

1 I 

2 w2 i/f1 = - - - "(01 02) 

102 = - 2"0102. 

The case 4AB + I =o does not, in the present instance, require separate 
treatment. 

§ io. BOUNDARY CONDITIONS. THE CASE aR < 2. 

The external field of the cylinder is now obtained by choosing a 
solution of (9.4) which is a function of r alone. We find 

(-r ), (10.I) . 0 = n log 

We consider first of all the solution given by (9.7). Obtaining 0 from 
(9.8), we find for H 

(10.2) . H =k (R . 

We suppose that on the boundary of the cylinder we have r =R. We 
write 20 = 00+0, where 

(10.3) 

00 = zn log (R) , 
"0 

0= 212 log 
(R), 

so that 0 =o on the boundary. Substituting in (9.7) we equate the values 
of the coefficients on the boundary with the internal boundary values 
given by (7.4). 

(10.4) 

If we write for convenience ct =x4, we obtain the equations 

sinh 00 =R2(I - a2R2), 
a 

a - cosh 00 - sinh 00 = aR, 

a2 +ß2 
- 2ß cosh 00 - sinh 00=R-1-. 

a 
We now calculate the derivatives of the coefficients of the form and equate 
their values on the boundary, obtaining the equations 

- 
a 

(sinh 00+2n cosh 00) = 2R(I - 2a2R2), 

(10.5) -(cosh 00 +2n sinh 00) - -(sinh 00 +2n cosh 00) =2aR, 

- zß(cosh 00 + zn sinh 00) 
a2 

+ß2(sinh 00 + zn cosh 00) = o. 
a 
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rc2 sinh (E - B) 
(10.14) . - 

R sinh e 
and where B is defined by 

-/ (I0.15) . . 9= V (I - 4.ä2R2) log ye'. 

The present system of co- ordinates is, as we have seen, to be interpreted 
as a rotating system. In order to obtain the field in a system of co- ordinates 
which is a dynamical rest frame for the observer on the axis of symmetry, 
we must apply the transformation (4.7) where SZ = - ac. When this is 
done it will be found that for sufficiently great values of r, the coefficient 
of dt2 changes its sign. This does not mean that the fundamental form 
changes its signature, for by (6.7) the determinant of the quadratic (8.7) 
is positive for all values of r, and hence, as long as L is positive a trans- 
formation of the type (4.7) can always be found which will transform the 
quadratic into the difference of two squares. We see, however, that the 
unit tangent vector to the world -line of a particle with fixed space co- 
ordinates in Walker's dynamical rest frame is space -like at sufficiently 
great distances from the axis of symmetry. The separation of space - 
time into space and time by means of Walker's rest frame therefore holds 
only in the neighbourhood of the observer. We can, however, find 
a system of co- ordinates in which the coefficient F remains positive 
throughout space. We apply the transformation (4.7), where we put 

c sinh E +cosh E 
(Io.16) . - 2 cosh E. 

R sinh 3E + cosh 3E 

We then obtain the form (7.3), where His given by (io.I t) and 

2 
sinh 3 E 3E r 1+2n sinh 3E -cosh 3E Y 

L =R [ sinh 2E cosh e (R) + 4 sinh 2E cosh E R. J' 
Re r 1-2n 

sinh 3E +cosh 3E R/ 

F 4 sinh 2E y I -2n 

sinh 3E +cosh 3E R ' 

and where n is defined by (10.7). We easily verify that in the present 
system of co- ordinates the cosine of the angle between the 0 -lines and 
the t -lines tends to zero as r tends to infinity. Furthermore the angular 
velocities with which a particle must describe a 0 -line in order that its 
world -line may be a geodesic in space -time, tend to become equal and 
opposite and both tend to zero as r tends to infinity. Hence the present 
system of co- ordinates may be described as one which is not rotating 
with respect to the fixed stars. We call the present system of co- ordinates 
an astronomical rest frame for the observer on the axis of symmetry. 

(10.17) . 
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The angular velocity w' with which the cylinder is rotating in the present 
system of co- ordinates is obtained from (10.16). Expressing w' in terms 
of R by using (I 0.10) we obtain 

/ ac 
w' = 

2a4R4 
- 2a2R2 - "V (i - 4a2R2)], 

(ro.i8) . = ac(I +2a2R2 +Ioa4R4+ . . .). 

Comparing (10.18) and (8.1), we see that Walker's dynamical rest frame 
rotates with an angular velocity w" relative to the astronomical rest 
frame, where w" is given by 

(I0.19) . . w "= 2a2R2(I +5a2R2+ 

If aR is small compared with unity, so that the radius of the cylinder 
is small compared with its maximum permissible value, then w" will 
be very small compared with w'. If we suppose the cylinder to be of the 
density of water on the axis of symmetry, and its radius to be that of the 
earth, then Walker's system of reference will complete a revolution 
relative to the fixed stars in 7.7 X 105 years. 

I I. BOUNDARY CONDITIONS. THE CASE aR > 
The equations (10.8) and (10.9) show that the solution of the preceding 

section for the external field is valid only if aR < II, otherwise the constants 
occurring in the solution are imaginary. The external field in the case 
aR = 2 is simply obtained from the equations (IO. i i) to (10.14) by a 
limiting process. We find 

H-e i1 RJ-1' 

\ 
L = 4Rr(3 + log , 

M= 2rc I +log - 
R 

ITS \ F R(i- logR/I 

To obtain the external field in the case aR > 2, we return to the solution 
(9.9). Proceeding exactly as before, we find 

2a'It' 
H =e 

sin (3e + B) 
L =Rr , 

2 Sill 2E cos e 

sin (E + 9) 
M =rc 

Sin 2E 

rc2 sin (6-0) 
F R sin e 
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where 
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r 
(I1.3) . B =1/(4a2R2 - I) log 

(11.4) . . tan E _ /(4a2R2 I). 

The present solution only holds when aR > 
We see from (I 1.2) that L, the coefficient of dç2 in the fundamental 

form, is zero when 
(II.5) 3E+e =1T. 

Denoting the value of r at this point by r', we find 

r_ 3 tan- 1i/(4a2R2 I)] 
J 

(I I.6) r' =R exp 
1/ ( 4a 2R° - I) 

When r > r' the coefficient of 4.2 becomes negative and the fundamental 
form changes its signature. It is easy to show, however, that all geodesics 
in the surfaces z= constant, issuing from the origin, meet again at the 
point r =r'. It follows that these surfaces are closed, the point r =r' 
being the antipodal point of the origin. We see from (I1.6) that when 

then r' --+ oo and hence the external region becomes infinite 
as the radius of the cylinder approaches its critical value. When aR-->- I 

it is seen that r' --> R. Hence as the radius of the cylinder increases, 
the external region diminishes and finally vanishes when the radius reaches 
its maximum value. The cylinder then fills space completely. We see 
from (8.5) and (8.8) that both col and S1, remain finite when aR --> 1. 

It follows that the world -lines of the particles on the antipodal line are 
null geodesics. Hence as I, the velocity of the particles on the 
boundary tends to the velocity of light. The cylinder can therefore 
never fill space completely, there must always remain a small filament 
of empty space surrounding the cylinder. 
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PART III, 

THE GRAVITATIONAL FIELD OF A ROTATING LIQUID, 



THE GRAVITATIONAL FIELD OF A ROTATING LIQUID. 

1. Introduction. 

The gravitational field of a rotating liquid was 

first investigated by Lense and Thirring (1918). These 

writers obtained a first approximation to the external 

field of a slowly rotating sphere by using Einstein's 

method of the retarded potential for the approximate 

solution of the gravitational equations. Each (1922) and 

Lewis (1932) have attempted to obtain closer approximations 

to the external field by direct analysis of the equations 

To a first approximation the fields of Bach and Lewis 

agree and are identical with that obtained by Lense and 

Thirring. The second approximations do not however agree. 

Lewis accounts for the discrepancy by observing that 

owing to a different choice of coordinate system, Bach's 

definition of a sphere does not correspond exactly with 

his own. Doubt has been thrown on the validity of Bach's 

second approximation by Akely (1931), who calculated the 

internal field corresponding to Bach's external solution 

and found that the boundary conditions could not be satis- 

fied. The second approximation obtained by Lewis does not 

appear to be free from criticism either, like Bach's 

method it suffers from the disadvantage of concentrating 

attention exclusively on the external field. In these 

methods a point is ultimately reached where a solution of 

a patial differential equation must be chosen, and in 



the case of general relativity no less than in newtonian 

potential theory, the gravitational equationsd do not 

determine the solution uniquely without reference to the 

boundary conditions. 

The more general problem of the gravitational field 

of a rotating liquid in the internal and external case has 

been treated by Akely (1331). The method adopted by 

Akely consists in assuming expansions of the type 

() T f°` co" 
a 

where `l' is one of the coefficients of the fundamental 

form, 
P 

is the density and w the angular velocity. These 

series are then substituted in the gravitational equations 

for the internal case, and equations for the different 

coefficients y.L are obtained. Solutions of 
J 

these equations are than chosen which satisfy the necessary 

boundary conditions. 

While no criticism is trade of the validity of 

Akely's process, it appears to the writer to be unnecessari- 

ly labor1o. s and not in a form which admits a simple state- 

ment of the results of the analysis. Each particular figure 

of equilibrium requires independent investigation and the 

resulting formulae are extremely complicated. 

From the point of view of the present writer how- 

ever there is another objection to the methods so far dis- 

cussed. It appeared in part II of this thesis that in the 

case of a rotating cylinder there were two essentially 



6. 
different non -rotating systems of reference, which we 

refferred to as the dynamical and the astronomical rest 

frame, and we obtained the relative angular velocity of 

these two frames. We are therefore naturally led to ask 

the question whether triìs phenomena is associated parti- 

cularly with the case of an infinite cylinder or whether 

it is of more universal interest. The present writer there- 

fore proposed to investigate whether the two frames were 

distinct in the case of a rotating sphere and, if so, to find 

the formula for the relative angular velocity of the two 

frames. 

Now none of the preceding methods is adapted to 

the solution of this problem, for the relation between the 

two frames is obtained through the boundary conditions, and 

consequently it is necessary to have a method by means of 

which the boundary conditions can be easily dealt with. 

The method adopted by the present writer consists 

in attempting to reduce the gravitational equations to 

linear equations. When this has been achieved tree question 

of satisfying the boundary conditions reduces to a well - 

known type of problem, which can, in certain cases at any 

rate, be solved. 

It is wel -known that to a first approximation 

the gravitational equations reduce to Poisson's equation. 

It is here shown that to a second approximation the gravi- 

tational equations reduce to Poisson's equationw and three 

further linear partial differential equations. The explicit 
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expression of the coefficients of the fundamental form in 

term of these four potentials is given. We thus obtain a 

general result applicable to all figures of equilibrium. 

The question of non -rotating frames of reference is then 

discussed and it is shown that the dynamical and the astro- 

nomical rest frames are distinct and the general formula 

for the relative angular velocity of the two is given. We 

next proceed to the case of a slowly rotating sphere. 

There is a point of difference between the results here 

obtained and those of Bach and Lewis, for though it appears 

that the eccentricity may be neglected in calculating the 

second order terms, regard must be had to the terns arising 

out of the eccentricity in the first order terms. Both 

Bach and Lewiss neglect the eccentricity altogether. 

The angular velocity of the dynamical rest frame 

relative to the fixed stars is calculated for the case of 

the earth. It is found to be very small, amounting to 

about lmin. 5 sec. of arc per century. One of the physi- 

cal interpretations of this result is that the invariable 

plane of a Foucauld pendulum suspended at the North Pole 

precesses with that angular velocity relative to the fixed 

stars. Theoretically this furnishes another test of the 

general theory of relativity. 

It is quite clear that to a first approximatirn 

the results here established agree with newtonian analysis, 

it is desirable however to test the accuracy of the second 

order terms. To this end the value we obtain for the pres- 
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rr-e sure in the interior of the Schwarzschild solution and it 

is shown that when the angular velocity tends to zero 

the two formulae agree to the required degree of approx- 

imation. 

2. Energy tensor of a rotating liquid. 

As in part II we assume for the fundamental form 

the two alternative expressions 

(2.1) as1 GÚC( GC C GIC 

or 

(2.2) GSL = e(d)c, G Z1 + L + 2 1n -- 1, 

where we adopt the same convention about Greek and Roman 

indices. 

The energy tensor of a perfect fluid in the general 

theory of relativity is of the form 

38. 

TS =. +-C1 s= I,2,3, 

where h is the density, /6 the pressure and the 

unit tangent vector to the world -lines of mean motion 

of the particles composing the liquid. We suppose that 

1,A is a constant, so that the liquid is homogenous and 

incompressible. As in (II,3) the particles composing the 
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liquid are describing the y -lines of the space associated 

with an observer on the axis of symmetry. We have then 
i Z 

(2.3) 

, and writing 

n_ 

--spei 

we find 

(f - 2 Si, rn1 - Sl' Q 

We obtain then for the non -vanishing components of the 

energy tensor the expressions 

3 

- P ) 

AI( -F T3 
= 

kt - _ _ 
(2.4) T , 

%A. 

Ty = ( 

_Asti f `N^ 

_S`' 

-- 

1 

The vanishing of the divergence of the energy tensor 

gives the equations 

tis T 
.1S - áXCi+°) 

(2 s) 
)\'` ( µ 4,) + ( X'; XS.,S 

tS 

-`h- 
s C' 

_ O k)S = 1,2,0 



yU, 

Now we have 

(2.6) 
% 

OA. 
_ c 

m, 
^^ 

_ 
i $ 

Substituting from (2.4) in (2.3) and using the fact that 

/- 
is a constant and p a function of x and x only, 

we obtain 

. d ^" '1t. 

(2.7) _ ,(+ 
C qM X ñ 4- --- o . 

Which becomes in the notation of (2.2) 

(2.8) 
1 f22L 

- SL w, a - 2 o- 

f--SZ1-e µ+ 
Integrating this equation we have 

(2.9) -2 'Iv -' , 
1.1 L _ ( 

where k is a constant of integration. We now transform to 

a rotating system of coordinates with the transformation 

)(_ = X x _ X 

(2.10) -y_ 3 

3 - )CS' , X - 
)C 

The fundamental form then becomes, ommitting the bars which 

may be done without danger of ambiguity, 

zH 

(2.11) cl.52 = + ( 4 . Z ) 4- t.,, + - 2 H ( 4 - di1, 



where 

(2. 12) 

, 

M rnti+. 
F -2alu__A2 

Denoting the components of the energy tensor in the new 

system of coordinates by accented letters, we find 

(2. 13) 
1, 3 

a 

r---r 3 

( y o 

171-' 
3 

) ft 

The equation (2.9) , derived from the vanishing of the 

divergence of tine energy tensor now reads 

(2.14) 
F 

If the system of coordinates is such that F - c" on the 

bounding surface of the liquid where p o , then 

(2.15) F= 
(1,0- 1 

y) 

The equation (2.15) holds in a system of coordinates relati- 

ye to whigh the liquid is at rest. As a particular case 
it must therefore hold for the Schwarzschild 



internal solution, and it may easily be verified to be 

true for that case. 

3. The gravitational equations. 

As in part II we find for the components of the Ricci 

tensor of the form (2,11) the expressions 

a Iì 
d@ 

+ - (Ljp+-L0Fd + z ti, Mr), 

3 
a FL.( +hth( 

3 , Z Fh,-hF. 
(3.1) (, Ry = 

2x°` 
' 

\r(y_ , á M.-LH. 
z 

¡ 
3 áx l -JD 

,^ 
R F 

4 

_ 
1 áx 

We write the gravitational equations in the form 

(3.2) (T`i - T. L C j 1,1) 3, 4) 

Substituting in (3.2) from (2.13) and (3.1) and taking 

simple linear combinations of the equations we obtain 

(3.3) 4 D O N+ o D- vp", t- h,l'+ L , FL 

+11 i) _-2 1` t. 42.5, 

hl 



(3.4) D - - 2 N =D l-F +- 1111.- L, Fl - Mn) 

(3.5) - N _ L + L1 F, + z rt M,> 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

1N 
L\ --D z 

_ h Fd. 

(FLQ(_L F\ 
_ - Kµ- e ) ' 

h QFi M 

ax -D I 1 F 

The equations (3.7) to (3.9) are not independent, (3.3) 

can be deduced from (3.7) and (3.8) . The system therefore 

reduces to the six equations (3.3) to (3.8). We see that 

we cannot here proceed with the introduction of Weyl's 

canonical coordinates, for their admissibility depends 

on the equation AD = o , which , as (3.6) shows , is 

not satisfied in the present case. Exact solutions of 

the above system of equations being very hard to obtain 

we now proceed to the discussion of approximate solutions. 



4. Approximate solutions. 

The case we investigate is that of a finite quan- 

tity of incompressible liquid of uniform density, rotating 

with constant angular velocity about an axis of symmetry. 

If d be the greatest linear dimension and /-c the den- 

sity of the liquid, we shall attemptv to find approximate 

solutions of the gravitational equations, on the assumption 

that the dimensionless quantity 

(4.1) t _ tk, << 
G, 

is small compared with unity. In the case of the sun we 
_y 

have _ .. o s x 10 so that the theory will apply to 

rotating masses of liquid comparable in size and density 

with the sun. We call a quantity of the order of magnitude 

of E a quantity of the first order, one of the order of 

magnitude E of the second order, and so on. 

If we assume for the fundamental form of such a field 

the expression 

where 

J 
I, 2 , 3, 4 ) 

then, as is well- known, the quantities yc4. are of the 

first or higher orders of magnitude. We will suppose that 



the are expressible as series, each temm in the lJ 
series being of a higher order by one than the preceding 

term. We then attempt to determine the first two terms in 

each of these series. The method applies ofcourse equally 

well to a system of coordinates which instead of being 

approximately cartesian, is approximately cylindrical. 

We therefore assume the field to be given by the funda- 

mental form (2.11) , where we put 

F = I -z 
small Roman letters on the right hand sides of (4.2) to 

(4.4) denoting quantities of the first order and small 

Greek letters denoting quantities of the second order. 

The question of the proper assumption to be made in the 

case of M requires some discussion. The present system 

of coordinates is one relative to which the liquid is at 

rest. To obtain a non -rotating system of coordinates we 

apply the transformation (2.10), where we change the sign 

of .Ç'L , the transformation here proceeding in the revese 

direction. The new system of coordinates is then non- 



rotating (in Walkers sense), if the unit tangent vectors 

to the coordinates lines at the origin are paralelly 

propagated along the world -line of the origin. If now by 

the same method that was used in (II,7) , we investigate 

when this is the case, it will be found that the trans- 

formed coefficient of 45 d± must not contain powers 

of r less than r3 . But after the transformation we 

find for the the coefficient of 40 

M = M L M_ of >.1 

It is clear therefore that M must contain the term S A1-, 

otherwise the transformed coefficient will contain a 

power of r less than r3. We therefore assume for M the 

expression 

( 4. 5 ) M _ 612 t ( -t- i ?k t z V 

where m is a quantity of the first order and v a 

quantity of the sedond order. 

We consider now the order of magnitude of the 

angular velocity of the liquid. There is ofcourse a relation 

between the angular velocity and the density of a rotating 

liquid. The solution of part II may clearly be regarded 

as the limiting case of a rotating liquid, move rapid 

rotation being impossible without the pressure becoming 

negative in the interior of the liquid, and we there ob- 



tained the formula 

which may be written 

(4.ó) 

tk 

In the present case therefore the quantity "T, is of 

the order 2 or higher. 

The order of magnitude of the pressure may be sim- 

ply obtained by comparing (2.15) and (4.4). We obtain from 

(2.15) 

(4.7) F = C1<1 - 

approximately, and hence we see 

We deduce 

(4.8) 

0 C 
/C`- 

C- 

`1 
= K G( . , - CC-) 

In what follows it will not always be convenient to write 

the equations in such a way that only dimensionless quan- 

tities occur, and hence we may occasionally loosely refer 

to the equations (4.1), (4.6) and (4.8) by saying that 



W is of the order i, K/ of the order 1, and kt 

of the order 2. It will always however be easy to justify 

the argument by a rearrangement of the equation. 

5. First approximation. 

We now proceed to the approximation by substituting 

from (4.2) to (4.5) in the gravitational equations. It 

will be convenient for the purposes of calculation to 

choose a time unit so that c = 1 . We begin by neglec- 

ting terms of the second order and higher, but retaining 

terns of the order 1 . We have then 

(5.1) 

where 

(5.2) a - 
W t 

- 

Then we have 

(5.3) 

and 

(5.4) F2 L t hi i _ o 

F, L,, 1 L, t - 



We write for convenience 

(5.5) 
- -L) 

Now substituting from (5.1) to (5.4) in the equations (3.3) 

to (3.8), remembering that k p is of the second order, 

these become respectively 

(5.6) + 

(5.7) 

(5.8) 

(5.9) 

( 

(6.1o) 

(5.11) 

11 

f -1K + 

2 - 2 = -1z-(14-) 

(Y).1 ti + 'nit 1.1.. 

+ Te. = - 3 

} 7t. 11'1. (.J 11 + 1 y \t/ ° 

al I 
_ C t-t . 

The condition of integrability of the equations (5.7) and 

(5.8) is found to be 

1111, + L1.1 
t t 

9 = 

and is therefore satisfied by (5.9). Calculating 1Lf. 

from (5.7) and (5.8) we find 

= I I( +11 



Substituting this value of o in (5.6) we obtain 

(5.12) (e" + ti ') _ +sz+ sZ- Kfrt 
J 

rD 

and using (5.5) this equation is easily seen to be equi- 

valent (5.11). We now choose a particular solution of(5.93 

mane ly 

(5.13) 

The equations (5.7) and (5.8) then give 

(5.14) 

while (5.12) becomes 

(5.15) + ly + t ' - - 2 

If we write m = t +11, and substitute in (5. 10) and 

use (5.15), we obtain for 'n, the equation 

(5.16) ` Il +" 1t. 

For the first approximation we obtain therefore 

(5.17 ) 

H 

L tlo+Lni 
M _ Stil (t +2Q +- 2(K> 

F -2 - 
where arid It satisf/e the equations (5.15) and 



(5.le). Although the terms involving the pressure have 

been omitted in the gravitational equations, we can use 

the formula (4.7) to obtain an approximation to the press- 

ure. Comparing (4.7) with the expression for F in (5.17) 

we see that 

(5.18) 

The first approximation gives therefore the newtonian 

expression for the pressure. 

6. Second approximation. 

To obtain the second approximation we now put 

(6.1) L = + + 

M = 
1ti(I 

+ zn +2))), 

F = i-- h1' -1i- 
When these quantities are substituted in the gravitational 

equations, it will be found that 1) is a gnantity of the 

second order. The resulting term in the expression for M 

is therefore of the order 1 and since in the present 

investigation we neglect q»antities of higher order than 

the second, we may neglect v 

Considering now the right hand sides of the ! èquations 



(3.3) to (3.8), in calculating these correct to the second 

order, we use the equation (5.18) giving a first approx- 

imation for the quantity . This approximation is 

clearly sufficiently good to obtain these expressions 

correct to the second order, the quantity n always oc- 

curring multiplied by a quantity of the first order. 

We find from (6.1) 

(6.2) - 3 ) = i + X-1 -L - 1e + Z_a1ic,1 

the first order terms in the expression for D cancell* 

ing. It will be convenient to introduce three new quantities 

all of the second order, defined by 

oL_ - r_ slti 
2Sl'h- 

(6.3) () - - e, 
+ 2 .5f . 

We have then 

qri 

(6.4) 

We may note the following formulae 

+ 
h,z 

yb - - ¿, - 7 , - p 
L1FL+ hti 

(6.5) 
ya 

L1FL+LJt 
_._----4 

0 

_2h, - 16z. 



The equation (3.3) then becomes 

y7Qt4 f 4t (i) f (c4 fo( t,/,) ji) { y_ 't (6,26 

or using (5.15) 

(6.6) f t s (d 4c/13 f(e; 

The equations (3.4) and (3.5) become after some rearrang- 
ement 

(6.7) _ + 
- 

(6.8) 
4), - (12_ 

From (3.6) we obtain 

(6.9) o( 4 04 

o( 11) + ` ( , _ 

+ 

c,) 

The equation (3.7) is satisfied if we neglect v . The 

reduction of equation (3.8) is a little laborious. We 

first of all note the formulae 

(6.10) 

Fl,- L n 
4./r, -2y k (2), +zz1/1 +4at11.3rn1 -yaYP, 

Flt -Lcz 
7e&2 12 y 2 + 2 rz t 4Se. 7 34n,, - 4-Rt 3 t`, 

Substituting from (6.10) in (3.8) and using (5, 10) and 



J-y 

(5.15) the equation becomes 

(6.11) + s 

The condition of integrability of the equations (6.7) and 

(6.8) is found to be 

(6.12) d + 0(11 
// pp 

f'2(14 1t"e, 

and is easily seen to be satisfied by using (5.15) and 

(6.9 ). Calculating v 4 from (6.7) and (6.8) we obtain 

6 13 Y Q 
0(/ (/ n ( . ) 

+ 11. - z (" , +"` iti - + < -l.l'` _ 1-Q,- 

Substituting this expression for A 4' in (6.6) it is 
found that (6.6) becomes identical with (6.11). The system 

of equations therefore reduces to the two equations (6.9) 

and (6.11) to determine 1(, 
I- 

, r , only two of these three 

quantities being independent by (6.4). Having determined 

functions of and p satisfying these equations, then the 

equations (6.7) and (6.8) are integrable and determine iV 

The quantities X and 11 are then obtained in terms of 

04, 
f 

), from (6.3). 

If in (6.9) we write of - Y and eliminate the 

quantity 2 from the resulting equation and ( 6.11) we 

obtain I 

1 t ,1* _- i< 



(5.15) the equation becomes 

(6.11) ())01,,,,, +r+'i, _ -3 - tt 
The condition of integrability of the equations (6.7) and 
(6.8) is found to be 

(6.12) chX11 +111 + `c 
0(11 + ti ¿ ( ,, 4-LA + -et) 0 

and is easily seen to be satisfied by using (5.15) and 

(6.9) . Calculating v W from (6.7) and (6.8) we obtain 

(6.13) 
- +0( - + (-(11.-f 

Substituting this expression for o 4' in (6.6) it is 

found that (6.6) becomes identical with (6. 11) . The system 

of equations therefore reduces to the two equations (6.9) 

and (6.1.1) to determine ( 
1- 

, r , only two of these three 

quantities being independent by (6. 4). Having determined 

functions D4 and 
/" 

satisfying these equations, than the 

equations (6.7) and (6.8) are integrable and determine W 

The quantities X and are than obtained in terms of 

04 
i from (6.3). 

If in (6.9) we write of = 
1 

- r and eliminate the 

quantity from the resulting equation and (6. 11) we 

obtain 

iz + r, _- zl<1. 



ss 

The solution for the second approximation depends therefore 

on the two linear partial differential equations (6.9) and 

(6.14), together with the system (6.7) and (6.8) to 

determine y . 

The coefficients of the fundamental form may now be 

expressed in terms of -i n , t r We find 

H - 2e +24) 

L (i +2._e 2.<+2-0> 
(6.15) 

H ( t - + z 11) 

F -- z -e _ + zt ,2.nl70- _ 4a1 --r 

We now re- introduce the ordinary time unit, and substi- 

tute for is its value in terms of Newton's gravitational 

constant, namely 

(6.16) Ic _ 
ó iî 

If we make the substitution 

(6.17) 

92 _ cl SI/ 

Q = / = cf 

cf 

and write 

(6.18) air 

then, remembering (5.2), the equations (5.15), (5.16) 



(6.9) , (6.14) and (6.7) , (6.8) become respect ive ly 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

Cr) 

f V11 A. V = g TT as t 

z1. +- 'L. _ I( îi a' ÎU + 8 ï w ti1 
, 

Q 
I - _ 1D îl Cr v _ 14 TST (..).1k2 

t 2 1t,,> -1- `( V'- `ry;, 
) 

+ C-Pt, t zit V, U2 

Substituting from (6.17) and (6.15) in (2.11), we obtain 

the fundamental form 

(6.25) GtS2- = K a4 + L dAr -++ Ili - F 

where 

(6.2.() 

K i+ 1.1). 
+ 

. Z Ur- +- z W 

, 
C...y 

L _ y1-1C 
le. f zUyt o +-2Q 
C1 c 9 

P'1 - wt-L1lI + 
21S ±2V 

, 
c. 

F 2Q -2U + 4wN-V 

cy 
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"''e may now obtain a second approximation to the pressure 

in the interior of the liquid by using equation (2.15). 

We find 

(6.27) F=c1(i-z- -P 
% 

c 
, 

4 
ti i- 3 

C 

Comparing (6.26) and (6.27) , we find 

(6.28) _ t 1wtilV'tiwtLt 
if 

4 _ 
V t- W4, i µ 

The actual determination of the field in any particular 

case now proceeds as follows. The rotating liquid divides 

the r,z plane into two regions, which we call the inter- 

nal and the external regions ivqqAm04.q4e4,5k If we suppose 

the bounding curve of the liquid as given,then the equa- 

tion (6.19) determines uniquely , apart from an additive 

constant, two functions U¿, and Uc, which together with 

their first derivatives are continuous across the bounding 

surface, and such that U , satisfies (6.19) in the inter- 

nal region and UE satisfies the same equation,where we 

put cr= o in the external region. The function U 

having thus been determined, we obtain solutions V:, Ve, 

PL, Pc ; Q, Qe of the equations (6.20) to (6.22) res- 

pectively inthe same way and satisfying the same condit- 

ions. Substituting the values of the functions thus ob- 

tained in (6.25) , we obtain the coefficients of the fun- 
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damental form Kc, Ke, ; Le., L etc. From the condit- 

ions which we have imposed on the solutions U, V, P, Q, 

it is clear that the taaaxlipiamt& internal values of the 

coefficients of the fundamental form together with their 

first derivatives will be continuous across the surface 

of the liquid with their external values, 

In order that the solution thus obtained may cor- 

respond with an equilibrium configuration it is ofcourse 

necessary that when the solutions that have been obtained 

for U, V, Q ase substituted in (6,28),ít is found that the 

pressure vanishes on the bounding surface of the liquid. 

There is nothing to guide us in our original choice of a 

bounding surface of the liquid, only by trial can we 

determine whether the chosen configuration is actually 

an equilibrium configuration. The same difficulty exists 

in the ordinary newtonian analysis of the rotating liquid. 

The results of newtonian analysis can clearly be used in 

the present investigation to ensure at least first order 

vanishing of the pressure on the bounding surface. 

7. Non- kotating frames of reference. 

The formulae (6.26) give the field in a system of 

coordinates relative to which the liquid is at rest. In 

order to obtain tie field in a non -rotating system of co- 

ordinatesw we apply the transformation (2.10), where we 

change the sign of , as the transformation is here 



proceeding in the reverse direction, so that we write 

(7.1) 

l 1 ._. L a 
)( = C c. 77_ JC 

, ) 

s _ X 
X. _ -3 + XY, K - 

J 

After this transformation we have that the new coefficient 

of jfia is given by 

(7.2) - S1 L 

In order that the frame of reference may be a dynamical 

rest frame, it is necessary, as we have already noted, that 

M does not contain any powers of r less than the third. 

The functions 14212,U,V,P,Q are determined uniquely 

by the conditions of the problem apart from an arbitrary 

additive constant. We may choose if we like solutions 

which are zero at infinity, but this is not always the 

most convenient choice. For the present however we sup- 

pose that the solution of V which has been chosen iris 

such that V = o at infinity. In this case the func- 

tion V will not in general be zero at the origin, it will 

contain a constant term which we denote by Va . 

Substituting from (6.26) in (7.2) we have 

(7.3) r1= C2-+-Zv _Sti1+ILL) 
C1- Ci- L 

If we now determine so that at the origin the terms 

involving disappear we find 



(7.4) _a_ _. cAJ ( I f a ) 

The formula (7.4) now gives the angular velocity of the 

liquid relative to the dynamical rest frame. We must now 

find the interpretation of the quantity w . Let us apply 

the transformation (7.1) where we put -SL w . In that 

case the transformed coefficient M is given by 

(7.5) -1\-/ 

6o 

and as we have chosen V so as to be zero at infinity we 

see that in the present system M , 0 at infinity. This 

clearly a frame of reference relative to which the fixed 

stars are at rest and is the frame which we called the 

astronomical rest frame in part II. It is seen therefore 

that in order to be able to interpret the constant w 

as the angular velocity relative to the astronomical 

rest frame it is necessary to obtain a solution V which 

which venishes at infinity. 

We see now that in the case of a general rotating 

liquid we have the same situation as in the case of a 

rotating cylinder,_there are two essetially different non- 

rotating frames of reference, the dynamical and the astro- 

nomical rest frame. The relative angular velocity of 61)1 2/ 

the two frames is given by 

( 7. 6 ) w ,L = it) f _ -- Z V0 . 0 



We obtain the actual expressions of the coefficients of 

the fundamental form in the astronomical rest frame by 

carrying out the transformation (7.1) where-we write 

We find 

K= I+ 2--Y 4- 
z. 

c.y 

¡ 2.-ut 4. a 
+_ 

1, 

(7.7) = z` 2c + a 

\ _ 
C- 

F: = ct1,1 -1 -- 
2Q- 2U1. 

- . 
Cy 

6/. 

The formula (6.28) for the pressure is ofcourse unaltered 

by the transformation. 

The formulae (7.7) will give the expression for the 

coefficients of the fundamental form in the dynamical 

rest frame if we choose a solution V which is zero at 

the origin. We see therefore that the interpretation of 

the constant w depends on the particular solution cho- 

sen for V. The relative angular velocity of the two frames 

is however quite independent of the arbitrary additive 

constant in V. For an arbitrary choice of this constant 

the equation (7.6) must be written,as is easily seen, 

(7.8) w = ? Vo - Vt), 

and we see that w' is independent of this constant. 
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7. The field of a rotating sphere. 

We now apply the results obtained to determine 

correct to the second order the field of a slowly rotating 

sphere. We suppose that the bounding surface of the liquid 

is given by 

(8.1) 
2 ti 

1 i- -- 
.G 

We suppose further that the shape of the liquid is so 

nearly spherical that we may neglect higher powers than 

the second of the eccentricity e of the conic (8.1). 

The equation of the bounding surface may then be written 

correct to this order 

(8.2) 

where we write 

(8.3) 

RI.- á e(--- u-`) 

R' 

We determine first of all the solution of (6.19) appro- 

priate to the present assumptions. This is given by the 

ordinary classical potential theory. We have 
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where LA..0 for U`, and u is the positive root of 
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int the case of Ue. Writing 

W = +- 

and neglecting higher powers of e than the second, the 

equation (8.4) becomes 
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where u. = á int the case of U z, and 
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in the case of UJ. Calculating the definite integrals in 

(8.6) and adding a constant so as to make the term 

in the expression for U which is independent of eL 

vanish on the boundary, we obtain 
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The condition that 



on the boundary, gives a relation between the angular 

velocity and the eccentricity. This is easily seen to be 

(8.10) . 
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Hence we may write (8.8) and (8.5) 
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Proceeding now to the solution of the equations (6.20) 

to (6.22), we remark first of all that in calculating 

the second order terms we may neglect the angular vel- 

ocity. The formulae were calculated on the assumption 

that the angular velocity is of the order one half. Here 

we suppose that the angular velocity is small compared 

with its maximum permissible value for a rotating liquid. 

We therefore assume that i") is of the order one or higher 

and it is easily seen that the terms involving w in the 

second order terms are then really of the third order at 

least, and may therefore be neglected. 

We transform the equations (6.20) to (6.22) into 

polar coordinates, with the transformation 
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The solutions of these equations which we require will be 

functions of R only, hence we may omit the terms arising 

from differentiation with respect to 9 in the trans- 

formed equations, and we obtain 
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We choose a solution of (8.14) which tends to zero as 

R tends to infinity and has no singularities and which 

together with its first derivative is continuous across the 

surface iL = a . The solution is then unique and is easily 

found to be given by 

7T - 6' a1r (8.17) v: = s 3 
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We obtain solutions P and Q of the equations (8.15) 

and (8.16) satisfying the same conditions, but we deter- 

mine the additive arbitrary constant so that ? = 0 and 



on the boundary. We find. 
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To obtain the function W we transform the equations 

(6.23) and (6.24) to polar coordinates, obtaining 
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Solving these we find 
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Substituting the values we have found for U,V,W,P,Q, in 

(7.5) , we have the expression for the internal and exter- 

nal field of a slowly rotating sphere, correct to the 



second order. 

We may now find the relation between the astro- 

nomical and the dynamical rest frame in the case of a 

rotating sphere. Substituting from (8.17) in (7.4), we 

find 
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Hence we see that the dynamical rest frame is rotating 

slowly relative to the fixed stars, in the same direction 

as the rotating sphere. 

The formula (8.27) furnishes theoretically another 

test of the truth of the general themry of relativity. 

Consider a Foucault pendulum suspended at one of the poles 

of the earth. Such a pendulum, being a small dynamical 

system in the neighbourhood of the observer at the origin 

is exactly the kind of system which the observer uses to 

specify the dynamical rest frame. We now see that this plane 

is rotating relatively to the fixed stars. As the pendulum 

is not at the centre of the earth the angular velocity 

is not given by the formula (8.27), but by the formula 

(8.28) z(-4.) No -Vt. 

where Vt. is the value of V at the point where the 

the pendulum is suspended. Hence we find in the case of 
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a pendulum suspended at the surface of the earth 
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This clearly is a result which, theoretically at any 

rate is capable of verification. Actually the angular 

velocity w'is far too small to be observed, but the 

formula (8.25) nevertheless appears to the writer to be 

of some interest in giving a better insight into the 

question of rotation in general relativity. 

Calculating the value of ' for the case of the 

earth, we find that the plane of a Foucault pendulum 

rotates through an angle of about 26 sec. of arc per 

century. The effect is ofcourse very much larger in 

the case of the sun. Assuming the sun to rotate through- 

out with its equatorial angular velocity, we find that 

the plane of the pendulum in the case of the sun will 

rotate through about 52 min. per century. 

Another physical consequence of the theory is 

that derived from a consideration of planetary motion 

round a rotating sphere. Consider the orbital plane of 

the planet. From the definition of the dynamical rest 

frame, it is evident that this plane is fixed relative 

to the dynamical rest frame. It follows therefore that 

the orbital plane will rotate relative to the fixed stars. 



If the plane is inclined to the axis of rotation this 

rotation will be observable. The angular velocity will 

be given by the formula (8.28). Substituting from (8.1.8) 

we find 
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In the case of the system formed by the moon and the eartì 
_y 

we find on calculation that w' is about 1.2. x 10 secs. 

of arc per century. This is far belon the limit of obser- 

vation. In the case of the planet mercury and the sun w' 
-3 

is about S.3 x io secs, of arc per century. This again 

is fax too small to be observable. 

Somewhat better values are found in the case of 

some of the satellites. We see from (8.30) that the 

effect varies as the inverse cube of the distance of the 

planetary body from the rotating sphere. The greatest 

effect will therefore be found in cases where the 

planetary body is near the rotating sphere. As another 

example we take the satellite Minas of Saturn. The 

orbital plane of this satellite is inclined at an angle 

of 1 deg. 36 min. to the equator of Saturn, The distance 

of Mimas Is from Saturn is only about three times the 

radius of Saturn. On calculation we find that the orbital 
10 

plane of Minas rotates through about 15 secs. of arc 

per century. 



A still greater effect is obtained in the case of Jupiter 

V, but it would be more difficult of observation as the 

angle which the plane of the orbit makes with the equa- 

torial plane of Jupiter is only 27 min. On calculation 

we find that the orbital plane rotates through an angle 

of 59 secs, per century. 

9. Comparison with the Schwarzschild solution. 

In order to check the accuracy of the second 

order terms calculated by the present method, we will 

now compare the formulae which we have obtained for the 

pressure with that given by the Schwarzschild solution, 

and show that as the angular velocity tends to zero our 

formula agrees to the required degree of accuracy with 

the Schwarzschild formula. 

Substituting from (8.11) and (8.20) in (6.28), 

we obtain for the pressure in the interior of a slowly 

rotating sphere, the formula 
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Now in the Schwarzschild solution we have the fundamental 
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and the pressure is given by 
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Calculating this formula correct to the first order, and 

expressing the result in terms of Newton's gravitational 

constant, we obtain 
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Comparing (3.4) and (9.1), we see that for 0 0, the fore 

mulae are not quite identical. The reason is that the 

quantities r and R occurring in the formulae are not 

the same to a first approximation. If we transform the 

form (9.2) with the transformation 

(9.5) 3 c 

then the form (3.2) becomes to a first approximation 
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and hence :;omparing with (7.5), we see that now , to 



a first approximation 
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Substituting from (9.5) in (9.4), we obtain , noting 

that io 
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Now comparing (9.8) and (9.1) , we see that the formula 

we have obtained for the pressure in the interior of a 

rotating sphere agrees with the Schwarzschild expression 

to the required degree of accuracy, in the case of zero 

angular velocity. 
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