

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429719175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Heterogeneous Processor Composition:

Metrics and Methods

Erik-Arne Tomusk

Doctor of Philosophy

Institute for Computing Systems Architecture

School of Informatics

University of Edinburgh

2016

c© 2016 Erik-Arne Tomusk

Abstract

Heterogeneous processors intended for mobile devices are composed of a number of

different CPU cores that enable the processor to optimize performance under strict

power limits that vary over time. Design space exploration techniques can be used

to discover a candidate set of potential cores that could be implemented on a hetero-

geneous processor. However, candidate sets contain far more cores than can feasibly

be implemented. Heterogeneous processor composition therefore requires solutions

to the selection problem and the evaluation problem. Cores must be selected from

the candidate set, and these cores must be shown to be quantitatively superior to

alternative selections. The qualitative criterion for a selection of cores is diversity.

A diverse set of heterogeneous cores allows a processor to execute tasks with varying

dynamic behaviors at a range of power and performance levels that are appropriate for

conditions during runtime.

This thesis presents a detailed description of the selection and evaluation prob-

lems, and establishes a theoretical framework for reasoning about the runtime behavior

of power-limited, heterogeneous processors. The evaluation problem is specifically

concerned with evaluating the collective attributes of selections of cores rather than

evaluating the features of individual cores. A suite of metrics is defined to address the

evaluation problem. The metrics quantify considerations that could otherwise only be

evaluated subjectively. The selection problem is addressed with an iterative, diversity-

preserving algorithm that emphasizes the flexibility available to programs at runtime.

The algorithm includes facilities for guiding the selection process with information

from an expert, when available. Three variations on the selection algorithm are defined.

A thorough analysis of the proposed selection algorithm is presented using data

from a large-scale simulation involving 33 benchmarks and 3000 core types. The three

variations of the algorithm are compared to each other and to current, state-of-the-

art selection techniques. The analysis serves as both an evaluation of the proposed

algorithm as well as a case study of the metrics.

iii

Lay Summary

The technological developments that have led to the heterogeneous processor compo-

sition problem share many similarities with the growth of a small business. A small

business might start with only one or two people, and each person must perform a broad

range of tasks. The same person might work on a product on Monday, file taxes on

Tuesday, fix IT issues on Wednesday, write a press release on Thursday, and mop the

floor on Friday. As the business grows, people with more specialized skills are hired.

There are two reasons for this: First, it is not cost-effective for a business to employ

many people who have the broad skill sets of the business’s founders. Such versatile

people expect high salaries in line with their abilities, but most of their abilities will be

wasted as they focus on a small set of tasks. Second, people with narrow, specialized

skill sets are likely to be more efficient in their areas of expertise. An accountant might

only need to come in one day a week, for example.

A similar specialization over time can be seen in processors. A processor handles

all the calculations and logic operations in a computer. Up until the early 2000s, the

majority of processors contained a single, general-purpose “worker,” or CPU core.

Technological advances had been increasing the performance of the core, but there had

always been one core. As further increases to performance became more difficult

to achieve, processor designers began to focus on increasing the number of cores

on a processor instead of increasing the performance cores. This resulted in dual-

core processors, and eventually quad-core and six-core processors. The first wave

of multicore processors were homogeneous—all cores were identical. To extend the

above analogy, this is comparable to a small group of entrepreneurs working together.

As above, there are two problems with increasing the number of identical cores on

a processor: First, high-performance cores are very expensive in terms of their power

consumption. A large fraction of the processor market is made up of mobile processors

intended for smartphones, where power is at a premium. Second, it is often the

case that there is not enough work for all the cores. If all cores are identical, some

computational resource is wasted. These considerations have led researches to study

heterogeneous processors, where cores are specialized to different types of tasks and

are used only when required.

Selecting cores for a heterogeneous processor and selecting employees for a busi-

ness have common questions that must be answered: How much work will each worker

perform? Is it better to have a few workers with many duties, or many workers with

v

a few duties? How good is the division of labor, and can it be improved? This thesis

presents a description of these problems for power-limited, mobile processors. It then

contributes a suite of metrics for evaluating selections of heterogeneous CPU cores,

and an algorithm for selecting cores. The metrics and selection algorithm focus on

providing a processor with the flexibility to maximize performance for a range of

different tasks even as operating conditions change.

vi

Acknowledgements

I would first like to thank my academic advisers, Prof. Michael O’Boyle and Dr.

Christophe Dubach, for their advice and insight over the past four years. A thank you

also goes to the members of the CArD group for the discussions, and for the chit-chat.

To all the people in Edinburgh and beyond who have shared their time, shared their

friendship, opened their homes, shared a meal: The things that might seem small are

the things that make the biggest difference.

vii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Erik-Arne Tomusk

ix

Publications

Some of the contents of this thesis have appeared previously in the following

publications:

• Erik Tomusk, Christophe Dubach, and Michael O’Boyle. Diversity: A design

goal for heterogeneous processors. Computer Architecture Letters, 2015. DOI:

10.1109/LCA.2015.2499739.

—Chapter 5 is an extension of this publication.

• Erik Tomusk, Christophe Dubach, and Michael O’Boyle. Four metrics to

evaluate heterogeneous multicores. ACM Transactions on Architecture and

Code Optimization (TACO), 12(4), Nov. 2015. DOI: 10.1145/2829950.

—Chapter 6 is an extension of this publication.

• Erik Tomusk, Christophe Dubach, and Michael O’Boyle. Measuring flexibility

in single-ISA heterogeneous processors. In Proceedings of the International

Conference on Parallel Architectures and Compilation Techniques (PACT).

ACM, 2014. DOI: 10.1145/2628071.2628125.

—This publication contains early versions of section 6.6.3 and section 6.7.

• Erik Tomusk and Michael O’Boyle. Weak heterogeneity as a way of adapting

multicores to real workloads. In Proceedings of the 3rd International Workshop

on Adaptive Self-Tuning Computing Systems (ADAPT). ACM, 2013. DOI:

10.1145/2484904.2484909.

—Section 5.6.2 is motivated by this publication.

xi

http://dx.doi.org/10.1109/LCA.2015.2499739
http://dx.doi.org/10.1109/LCA.2015.2499739
http://dx.doi.org/10.1145/2829950
http://dx.doi.org/10.1145/2628071.2628125
http://dx.doi.org/10.1145/2484904.2484909
http://dx.doi.org/10.1145/2484904.2484909

Soli Deo Gloria

Table of Contents

1 Introduction 1

1.1 Problem Summary . 1

1.2 Contributions . 3

1.3 Thesis Structure . 4

1.4 Acknowledgements . 5

2 Background 7

2.1 Introduction . 7

2.2 Evaluation . 7

2.2.1 Physical Quantities . 8

2.2.2 Rates . 9

2.2.3 Summary Metrics . 10

2.2.4 Benchmarking . 10

2.3 Processor Hardware . 11

2.3.1 Architecture . 11

2.3.2 Microarchitecture . 12

2.3.3 Models . 13

2.3.4 Software Considerations . 14

2.4 Summary . 15

3 Related Work 17

3.1 Introduction . 17

3.2 Architecture . 18

3.2.1 Microarchitecture . 18

3.2.2 Dynamic Voltage and Frequency Scaling 19

3.2.3 Homogeneous Architectures 21

3.2.4 Heterogeneous Architectures 21

xv

3.2.4.1 Single-ISA Architectures 22

3.2.4.2 Multiple-ISA Architectures 24

3.2.4.3 Reconfigurable Architectures 26

3.3 Models . 28

3.3.1 Analytical Models . 28

3.3.2 Simulators . 29

3.3.3 Simulation Techniques . 30

3.3.4 Power Models . 31

3.4 Benchmarking . 31

3.5 Metrics . 32

3.5.1 Energy-Aware Metrics . 32

3.5.2 Throughput Metrics . 33

3.5.3 Uniformity Metrics . 33

3.5.4 Metrics from Statistics . 34

3.6 Design Process . 34

3.6.1 Design Space Exploration 35

3.6.2 Core Selection . 36

3.7 Summary . 37

4 Infrastructure 39
4.1 Introduction . 39

4.2 Software Tools . 39

4.2.1 gem5 Simulator . 40

4.2.2 McPAT Power Model . 40

4.2.3 Simulation Scripts . 40

4.2.4 R Analysis . 41

4.3 Experiment Methodology . 41

4.3.1 Benchmarks . 41

4.3.2 Design Space . 42

4.3.3 Discussion . 44

4.4 Summary . 47

5 Technical Motivation 49
5.1 Introduction . 49

5.2 Flexibility: A First-Order Requirement 50

5.3 Obstacles to Diversity . 52

xvi

5.3.1 Design Flow . 52

5.3.2 Selection Problem . 53

5.3.3 Evaluation Problem . 55

5.3.4 Program Diversity . 56

5.3.5 Tool Unreliability . 58

5.4 A Power-Constrained Runtime Model 58

5.5 Intuitive Diversity Considerations 60

5.5.1 Spread . 61

5.5.2 Uniformity . 61

5.6 Limitations of Current Metrics . 62

5.6.1 Throughput Metrics . 63

5.6.2 Summary Metrics . 64

5.6.2.1 ED2 Limitations 64

5.6.2.2 General Limitations 67

5.6.3 Diversity Metrics . 68

5.7 Limitations of Current Selection Techniques 69

5.7.1 Max Selection . 69

5.7.2 Max-Budget Selection . 70

5.7.3 GA Selection . 70

5.7.4 Clustering Selection . 71

5.8 Summary . 71

6 Metrics for Sets of Heterogeneous Cores 73

6.1 Introduction . 73

6.2 Motivating Goals . 75

6.3 Assumptions . 78

6.4 Example Data . 78

6.5 Basic Metrics . 80

6.5.1 Minimum . 80

6.5.2 Maximum . 80

6.5.3 Spread . 80

6.5.4 Budgeted Minimum and Maximum 81

6.6 Uniformity . 81

6.6.1 Intuition . 81

6.6.2 Kolmogorov-Smirnov Test 82

xvii

6.6.2.1 Application to Uniformity 82

6.6.2.2 Example: Evaluating Diversity 83

6.6.3 Localized Non-Uniformity 84

6.6.3.1 Definition . 84

6.6.3.2 Discussion . 85

6.6.3.3 Example: Identifying Redundancy 86

6.6.4 KS Test and Localized Non-Uniformity 87

6.6.5 Localized Non-Uniformity and Related Metrics 88

6.7 Gap Overhead . 88

6.7.1 Intuition . 89

6.7.2 Definition . 90

6.7.3 Discussion . 91

6.7.4 Example: Adding Core Types 92

6.8 Set Overhead . 93

6.8.1 Intuition . 93

6.8.2 Definition . 94

6.8.3 Discussion . 95

6.8.3.1 Set Overhead and Speedup 96

6.8.3.2 Comparison to Gap Overhead 96

6.8.3.3 Power Range Considerations 97

6.8.4 Example: Comparing Selections 97

6.8.5 Example: Comparing DVFS and Heterogeneity 98

6.9 Availability . 100

6.9.1 Intuition . 100

6.9.2 Definition . 101

6.9.3 Discussion . 102

6.9.4 Example: Comparing Availability 102

6.10 Effective Speed . 103

6.10.1 Intuition . 103

6.10.2 Definition . 104

6.10.3 Discussion . 105

6.10.4 Example: Comparing Throughput 106

6.11 Generality . 106

6.11.1 Intuition . 107

6.11.2 Definition . 107

xviii

6.11.3 Discussion . 108

6.11.4 Example: Generality of Selections 109

6.12 Monotonicity . 110

6.12.1 Intuition . 110

6.12.2 Definition . 111

6.12.3 Discussion . 111

6.12.4 Example: Workload Divergence 112

6.13 Power PDF Considerations . 113

6.14 Summary . 115

7 The LUCIE Algorithm for Core Selection 117
7.1 Introduction . 117

7.2 LUCIE Overview . 118

7.3 Algorithmic Considerations . 119

7.4 Selection Space Normalization . 121

7.5 Basic LUCIE . 122

7.5.1 Definition . 122

7.5.2 Example . 124

7.6 Biased LUCIE . 126

7.6.1 Definition . 126

7.6.2 Example . 128

7.7 Weighted-Biased LUCIE . 129

7.7.1 Definition . 130

7.7.2 Example . 131

7.8 Pinning Cores . 132

7.8.1 Maximization Example . 132

7.8.2 Incremental Design Example 134

7.9 Applying a Power PDF . 134

7.10 Summary . 136

8 LUCIE Evaluation & Metrics Demonstration 139
8.1 Introduction . 139

8.2 Selection Algorithm Implementations 140

8.3 Selected Cores . 141

8.4 Summary Metrics . 146

8.5 Spread . 148

xix

8.6 Availability . 151

8.7 Localized Non-Uniformity . 152

8.8 Set Overhead . 155

8.9 Effective Speed . 157

8.10 Scalability . 160

8.10.1 Gap Overhead . 161

8.10.2 Generality . 162

8.10.3 Monotonicity . 164

8.11 Selection with a PDF . 165

8.12 Conclusion: The Best Algorithm . 167

8.13 Summary . 167

9 Conclusions 169
9.1 Contributions . 169

9.1.1 Motivating Framework . 169

9.1.2 Evaluation Metrics . 170

9.1.3 Core Selection . 170

9.2 Critical Analysis . 171

9.2.1 Motivating Framework . 171

9.2.2 Evaluation Metrics . 172

9.2.3 Core Selection . 174

9.3 Future Work . 175

A Design Space 179

Bibliography 225

xx

Chapter 1:

Introduction

Advances in semiconductor fabrication technology are continuing to increase the

amount of logic that can be implemented on a chip. The almost inevitable consequence

of this trend has been the proliferation of multicore processors. There are diminishing

returns to ever larger processor cores, and it is much easier to make effective use of

the additional logic by increasing the number of processing cores than by increasing

the size of a single core. However, there are also diminishing returns to increasing the

number of cores on a processor. This is partly because there are few computational

problems that can effectively utilize a large number of cores, and partly because

problems that can utilize many cores run up against power and thermal limits of

processors. There is little reason to include more identical cores on a processor

than can be used at once, but if the cores are different, then there is no need for

all cores to be usable simultaneously. In a heterogeneous processor, different types

of cores can be powered on demand, as required by software. The maximum

power consumption of the processor could far exceed physical limits, but since only

a fraction of the processor is powered at any given time, power budgets are not

exceeded. Heterogeneous processors can use information that is only available at

runtime to determine the number and types of active cores. This allows heterogeneous

processors to accommodate various types of computational problems and to work

under various runtime limits and requirements.

1.1 Problem Summary

A processor should be designed for a given problem space—the software that the

processor must run, and the set of conditions under which the processor must operate.

In an ideal world, it would be possible to tune a multicore processor to exactly the

1

2 Chapter 1. Introduction

requirements of a given problem space. Some computational problems might have

very little variation, and would be best served by a homogeneous multicore processor

that only implements one type of core. Some computational problems might have high

variation, and would benefit from many different types of cores. Some processors

might be subject to a broad range of external conditions, and would require the ability

to run the same tasks in different ways. Some computational problems might exhibit

well-defined, regular behavior, and would be able to make effective use of highly

specialized hardware accelerators.

Tuning a processor would involve first determining the best set of computational

resources for the given problem, and then determining the best balance of resources.

In the case of a homogeneous processor, this would involve determining whether

there should be many small cores, a few large cores, or some option in between. In

the case of a processor with many accelerators, this would involve determining the

balance between general-purpose and specialized hardware, the capabilities of each

accelerator, etc. A large body of research addresses various, specific instances of the

design problem, and many of the relevant works are discussed in chapter 3. However,

a general, universally applicable, methodology for tuning processors appears to be far

beyond the current capabilities of the architectural community.

Not only is it currently impossible to determine the best processor architecture for

a problem space, but there is also very little agreement on what best even means in this

context. I.e., in addition to a severe lack of rigorous design methodologies, there is also

a lack of evaluation methodologies. The design problem is, in fact, dependent on the

evaluation problem: Because the standards by which processors should be evaluated

are unclear, it is difficult to develop design methodologies to meet those standards.

The general processor design problem is intractable with currently available tech-

niques. This thesis simplifies the design problem in the following four ways: First,

the problem is limited to power-constrained mobile devices. Heterogeneity is known

to be beneficial for mobile devices, but rigorous design methodologies are still in their

infancy. This is in contrast to server processors, where questions have been raised

regarding the benefits of heterogeneity. Second, the problem is limited to CPU core

selection rather than the design of an entire processor. Current research struggles to

differentiate between effects from cores and effects from the rest of the processor.

The focus on selection is intended to clarify the issue. Third, the problem is limited

to only one instruction set architecture (ISA)—GPUs (graphics processing units) and

hardware accelerators are explicitly excluded. Fourth, the problem is limited to only

1.2. Contributions 3

determining which types of cores a processor should implement; the number of each

type of core is not considered. The problem of selecting single-ISA core types must

be solved before multiple ISAs and multiple instances of a core can be considered.

Later chapters will show that even this small subset of the design problem is poorly

understood and largely unaddressed.

1.2 Contributions

This thesis makes two types of contributions. The first type consists of the technical

methods for evaluating and selecting cores. The technical methods are dependent

on the second type of contribution—the theoretical framework for reasoning about

the design problem. As described above, the multicore processor design problem

is notoriously complex. A substantial part of this thesis is devoted to thoroughly

describing the problem and establishing a set of assumptions that can be used to

address it. In addition to enabling evaluation and selection methods, a well-defined

framework for addressing the problem improves the interpretability of results and

motivates future work. Clear assumptions aid in determining the significance of results.

Future work can modify the known assumptions and extend the technical methods to

other problems.

The primary contributions of the thesis are as follows:

1. Core selection is identified as a problem independent from design space explo-

ration. As described in the previous section, the selection problem is reduced

to a manageable size. Current research often attempts to solve versions of the

design problem that are too large, leading to results that are difficult to interpret

and generalize.

2. A novel model is proposed for reasoning about the runtime behavior of het-

erogeneous processors. The model is based on a probabilistically determined

available runtime power distribution, and enables analyses that were previously

impossible.

3. Cores are selected and evaluated based on measurable features rather than im-

plementation details. This ensures that the proposed methods are portable to

different problem spaces.

4 Chapter 1. Introduction

4. A set of eight metrics are defined for evaluating heterogeneous selections of

cores under probabilistically varying power budgets.

5. An algorithm is defined for selecting cores to maximize the runtime flexibility

of a heterogeneous processor for a given set of tasks under a probabilistically

varying power budget.

1.3 Thesis Structure

The structure of the thesis is as follows:

Chapter 2 presents a basic overview of processor evaluation and architecture concepts,

with a focus on the terminology used throughout the thesis.

Chapter 3 builds on the background information in chapter 2 by reviewing related

work and the current state of the art in processor architecture, design, modeling, and

evaluation.

Chapter 4 describes the infrastructure used to generate an example dataset. The

example dataset is based on the microarchitectural considerations and software tools

introduced in the two preceding chapters, and forms the basis for the analyses in later

chapters.

Chapter 5 provides a thorough description of the heterogeneous processor compo-

sition and evaluation problems. It is shown that the current state of the art does

not adequately address the requirement for runtime flexibility in power-constrained,

mobile devices. The chapter defines the difference between design space exploration

and core selection, and establishes a theoretical framework for reasoning about the

runtime behavior of selected cores.

Chapter 6 defines eight new metrics for evaluating selections of heterogeneous cores.

The metrics are designed for power-limited mobile devices. Each metric is illustrated

with examples drawn from the example dataset, and is accompanied by a discussion of

its potential uses.

Chapter 7 presents the LUCIE algorithm for heterogeneous core selection. LUCIE

selects cores by iteratively removing the least useful core from a candidate set. Three

variations of the LUCIE algorithm are defined.

1.4. Acknowledgements 5

Chapter 8 compares the LUCIE algorithm to state-of-the-art selection algorithms

using the metrics defined in chapter 6. Selection is carried out on the example dataset.

LUCIE is shown to be more appropriate for mobile devices than current techniques. In

addition to evaluating LUCIE, this chapter serves as a case study of the application of

the metrics.

Chapter 9 concludes the thesis. A critical analysis of results is presented, and avenues

for future work are discussed.

Appendix A contains the microarchitectural configurations of the processor cores in

the example dataset.

1.4 Acknowledgements

The following people are acknowledged for their contributions to specific sections of

the thesis. Peter Henderson made his collection of CPU utilization data available for

section 8.11 (p. 165). The anonymous reviewers of PACT 2014 suggested ANOVA

analysis, which has been included in section 4.3.3 (p. 44). The anonymous reviewers

of SIGMETRICS 2015 recommended the KS test as a statistical technique similar in

intent to the localized non-uniformity metric. The two are discussed in section 6.6
(p. 81).

Chapter 2:

Background

This chapter presents fundamental concepts and terminology required for understand-

ing processor evaluation techniques and processor architectures. Later chapters assume

this background knowledge when addressing the problems of heterogeneous processor

composition and evaluation.

2.1 Introduction

Composing a heterogeneous processor from a collection of CPU cores requires meth-

ods for selecting cores and metrics for evaluating selections. This chapter is concerned

with summarizing basic background information and defining a consistent set of terms

for later chapters to use when addressing processor evaluation and design; the next

chapter reviews the literature in these areas. Background information is presented

on the two themes of this thesis: evaluation of hardware and hardware design. The

section on evaluation techniques deliberately precedes the section on hardware. While

it may seem intuitive to first design hardware and then evaluate it, the reality is that the

design process must be informed by the evaluation goals. Targets must exist before a

processor can be designed to meet those targets.

Modern processors are designed by large groups of people. The following sections

and the remainder of this thesis use designer as shorthand for the design team and its

EDA (electronic design automation) tools.

2.2 Evaluation

A rigorous evaluation of a processor always requires metrics—quantitative figures of

merit that can be analyzed. Once one or more metrics are chosen, the processor can be

7

8 Chapter 2. Background

optimized for those metrics. There is a potentially infinite number of processor features

that could be quantified, and the choice of metrics used is therefore fundamental to the

design of a processor. Any design process involves trade-offs, where improving one

metric deteriorates some other metric. If the metrics that deteriorate are unimportant

for the particular processor, then this is not an issue. The problem arises if important

metrics are not evaluated, either due to an oversight, or due to a misunderstanding

of design requirements and metrics. For example, a designer could invest substantial

effort into optimizing a processor for a given metric, only to realize that the processor

must perform well at a subtly different metric. Consequently, great care must be taken

to ensure that metrics are understood, and that they match design requirements.

The ultimate goal of a metric is to understand the complex behavior of a processor

in simple terms. There is, however, a perverse trade-off between understanding a met-

ric and understanding a processor. A simple metric can be easy to apply and can have

an obvious interpretation, but it may completely fail to provide insight into the behavior

of a processor. A complex, abstract metric might accurately capture a fine detail of

a processor, but the metric’s overall significance might be difficult to determine. A

complex metric could also hide important details (either on accident or intentionally).

The following three sections discuss common metrics in order from the obvious to the

abstract. The metrics are classified into the somewhat subjective categories of physical

quantities, rates, and summary metrics. A fourth section discusses the benchmarking

aspect of evaluation.

2.2.1 Physical Quantities

The most basic metrics are physical, measurable quantities. Execution time—how

long a task takes to complete—has historically been the most important metric. Time

is sometimes also called delay, and is usually measured in seconds. Executing a task

is not without cost. The most obvious cost is the required energy, usually measured in

joules (J) or kilowatt-hours (kWh). Energy translates directly into a monetary cost, as

the electrical energy used for execution must be paid for. Energy is particularly impor-

tant for mobile devices, as batteries store a limited amount. Total energy consumption

is important, but so is instantaneous energy, or power. Power is measured in Watts

(W). It limits processors in two ways: First, only a finite amount of power can be made

available to a processor. Second, the power that a processor uses is dissipated as heat.

Power has a large effect on a processor’s temperature. As temperature increases, the

2.2. Evaluation 9

risk of physical failure also increases. A final physical quantity is area—the amount

of silicon space that a processor requires. Area is usually measured in mm2. More

complex processors require more area. Area can be combined with power to measure

power density, the amount of power dissipated per unit of silicon area. Processors with

lower power densities are easier to cool.

Superficially, evaluation is simply a question of the speed of a processor, as well

as how much the processor costs to design and operate. The complexity is in the

details. While it is not particularly difficult to determine, e.g., how quickly a processor

completes a task, determining why the task uses the given amount of time can be

much more involved. Processor design is dependent on understanding why a processor

behaves as it does. This requires more detailed metrics that can also be less obvious.

2.2.2 Rates

Rates can offer more insight into a processor than simply measuring execution time,

energy consumption, etc. One of the most obvious rate metrics is IPS—instructions per

second. Comparing the execution time of two different tasks is not meaningful, as the

tasks can have very different behaviors and lengths. Instead, the rates at which the tasks

complete instructions can be used to compare their execution speeds. IPS measures

speed, but it does not help explain what causes a given speed. IPC—instructions

per (clock) cycle—is much more helpful in this regard, as it separates the processor

architecture from the clock speed. A faster clock can increase IPS but not IPC, and

IPC therefore aids in determining whether a performance improvement is due to the

architecture or the clock speed. The inverse of IPC, CPI, is also used.

EPI (energy per instruction) provides a similar insight into energy consumption as

IPC provides for speed. Simplistically, if there are no memory bottlenecks and there is

no leakage power, then the execution of a task on a processor requires a fixed amount

of energy. EPI can be used to measure the energy cost of instructions, and energy cost

can then be compared across processors. Increasing the clock rate increases IPS. More

power is consumed because more instructions are completed every second, but EPI

remains constant.

Throughput metrics are some of the more involved rate-based metrics. They are

used in situations where a number of tasks are competing for resources on a single

processor. In such scenarios, the overall throughput of the processor is important, but

10 Chapter 2. Background

so are the individual execution rates of tasks. Throughput metrics are the subject of

ongoing research, and are covered in more detail in section 3.5.2 (p. 33).

2.2.3 Summary Metrics

There are two ways in which metrics can be summarized. The first way involves

averaging many results together. For example, a designer might execute many different

tasks on a processor and calculate the average IPC. Averages produce a single figure of

merit, but this necessarily hides variations in the data. It can be helpful to reintroduce

some of the lost information by reporting the standard deviation or the range of values,

etc. When calculating averages, it is important to use the correct mean. IPC is best

summarized with the harmonic mean, since it is effectively a frequency metric that

measures the number of events in a unit of time. CPI measures the duration of an event,

and should use the arithmetic mean. When the metric is a normalized frequency, like

IPC normalized to a baseline, then the geometric mean is the best option.

The second way of summarizing metrics involves combining more than one metric

into a single figure of merit. Many authors define summary metrics to establish a value

relationship between metrics that cannot otherwise be exchanged. This allows authors

to claim that two different processors are equally “good.” These metrics often involve

energy and delay, and are intended to measure efficiency. An extreme example is by Li

et al. [110], who define the EDA2P metric—energy-delay-area-squared product. This

metric evaluates processors in the nearly incomprehensible units of seconds-Joules-

mm2×2. The metric states, for example, that doubling a processor’s execution speed is

as valuable as reducing its area by 29%. While such metrics are useful for academic

optimization algorithms, it is unlikely that the design cost, practical usefulness, or

commercial value of a processor has anything to do with these metrics. One of the

themes of this thesis is to argue that multiplying unrelated metrics together leads to

metrics that are too abstract to be usable practically. The issue is revisited in more

detail in section 5.6.2 (p. 64).

2.2.4 Benchmarking

Metrics are normally evaluated while running benchmarks—well-defined, repeatable

tasks that represent an activity that a real user would perform with the processor.

Benchmarking can take the evaluation process full circle back to physical quantities. A

designer might optimize a processor’s clock frequency, IPC, EPI, memory bandwidth,

2.3. Processor Hardware 11

and any number of other metrics. Eventually, though, the designer will need to evaluate

whether the processor executes real tasks sufficiently quickly using an acceptable

amount of energy while maintaining a reasonable temperature, etc. From a design

perspective, questions of how and why a processor behaves as it does are crucial,

whereas from a product perspective, overall behavior when running real tasks is far

more important than implementation details.

2.3 Processor Hardware

The metrics used to evaluate a processor define the important features of the processor.

The individual components of a processor must be designed such that their collective

behavior optimizes the desired metrics. The following sections present background

information and terminology for key features of processor architectures, microarchi-

tectures, and models. Relevant software terminology is also introduced.

2.3.1 Architecture

For the purposes of this thesis, processor is synonymous with central processing unit

(CPU). On the most basic level, a CPU contains hardware logic for executing a se-

ries of instructions. Execution is normally performed by means of an instruction

pipeline, which processes instructions in stages. A standard pipeline includes stages

for fetching instructions from memory, decoding instructions, executing instructions,

writing results to memory, and committing completed instructions. The execution

stage uses functional units (FUs) that perform actions dictated by instructions. The

most basic type of FU is an ALU, an arithmetic and logic unit. All computations

can be mapped to a series of ALU operations, but most processors contain additional

FUs for performing some operations more efficiently. The set of instructions that a

processor can execute defines an instruction set architecture (ISA). Some ISAs support

instruction set extensions, or ISEs, that can be used to add more functionality to a

processor.

A CPU with one instruction pipeline can be said to have one processing core.

Many modern processors are multicores or manycores, and have more than one CPU

core. An entire computer is sometimes referred to as a system. A system can con-

tain GPUs (graphics processing units), DSPs (digital signal processors), and other

peripherals. GPUs and DSPs are beyond the scope of this thesis. A system-on-

12 Chapter 2. Background

chip (SoC) is a physical semiconductor chip that contains a processor and various

peripherals. A multiprocessor system-on-chip (MPSoC) contains a multicore processor

and potentially other processing units, like GPUs and DSPs. Communication among

the components on an MPSoC often takes place through a network-on-chip (NoC).

NoCs and peripherals are referred to as uncore components of MPSoCs. Whether

GPUs and DSPs are uncore components is open to debate.

Processors are run at a given frequency, and electricity is provided to a processor

at a given voltage. The voltage and frequency of a processor can be changed at run-

time. This is called dynamic voltage and frequency scaling (DVFS). Increasing voltage

causes circuits to operate faster, but also increases power consumption. Decreasing

voltage reduces power consumption, but must be accompanied by a frequency reduc-

tion to avoid timing violations. DVFS has a strong effect on CPU-bound tasks. When

the CPU is the bottleneck to completing a task, then DVFS can increase or decrease

execution time. The effects of DVFS on memory-bound tasks are much weaker. If

execution is dominated by the CPU waiting for data from memory, then DVFS can

be used to slow down the CPU without affecting execution time. Some power can

be saved in the process. Multicore processors often have more than one voltage and

frequency domain, and the voltage and frequency of components in each domain are

independent of the voltages and frequencies of components in other domains.

2.3.2 Microarchitecture

The architecture of a core is dictated by the ISA—the set of instructions that must be

supported. There are, however, many possible ways of implementing an ISA. These

implementation details make up the microarchitecture of a core.

Caches can either be part of a processor’s architecture or a core’s microarchitecture,

depending on whether the cache is shared among cores or used exclusively by one core.

Caches store local copies of data from memory for fast access. The first level of on-

core cache is usually split into instruction cache and data cache. The former stores

instructions; the latter stores the data that is being worked on. Caches have a number

of design parameters, including size, associativity, physical area, access time, etc.

One of the most significant microarchitectural features of a core is whether execu-

tion is in-order (IO) or out-of-order (OoO). An IO core can only execute instructions

in the order in which they appear in the program. An OoO core can reorder instructions

during runtime to work around cache misses and other contentions for resources. OoO

2.3. Processor Hardware 13

cores can also speculate—they can perform some actions before it is known whether

the actions are correct and necessary. If the actions turn out to be incorrect, then they

must be rolled back. OoO cores are substantially more adept at extracting instruction

level parallelism (ILP) from tasks than IO cores—i.e., they are better at determining

which instructions are independent and can be executed in parallel. OoO functionality

requires a number of microarchitectural bookkeeping structures, which substantially

increases the complexity of the core.

Some of the most significant microarchitectural structures are registers, queues,

and branching logic. The ISA defines a fixed number of registers that a core must have,

but an OoO core often contains more physical registers. The core renames registers on

the fly to make use of the full physical register file, which allows for greater ILP.

An OoO core also makes extensive use of queues. Memory requests wait in a load

queue and a store queue until they can be serviced. Instructions wait in an issue queue

until they can be dispatched to functional units. A reorder buffer tracks all in-flight

instructions. Branching logic includes branch predictors—tables that predict whether

a given control flow branch will be taken or not. Branch predictors are often paired

with branch target buffers. These are tables that predict the next instruction after a

branch.

If all the cores on a multicore processor implement the same ISA, then all cores

can execute the exact same tasks. If the cores all have the same microarchitecture, then

the processor is homogeneous. If the cores have different microarchitectures, then the

processor is a single-ISA, heterogeneous processor. Different cores might be tuned to

different types of tasks or optimized to different metrics. A processor with multiple

ISAs is also possible. Such processors are discussed in section 3.2.4.2 (p. 24).

2.3.3 Models

Processors are often studied using configurable software models, since implementing

real processor hardware is prohibitively expensive and time-consuming. Simulators

describe processor hardware in software to varying degrees of accuracy. A processor

can be simulated by executing the simulator. Hardware is naturally parallel—various

hardware components can perform their activities independently and at the same time.

Software is much more serial. A simulator must therefore serialize parallel hardware

activity. Simulators are inevitably slower than hardware, largely due to the parallelism

issue. A second cause of low simulation speed is that simulators execute hardware

14 Chapter 2. Background

descriptions—while hardware simply behaves the way it does, simulators must evalu-

ate a model of hardware behavior.

Simulators can be augmented with power models. A power model estimates the

energy cost of actions that take place in hardware. For example, reading a cache line

or writing a value into the store queue both cost a certain amount of energy. Based on

activity counters from a simulator, a power model can evaluate total energy, average

power, etc.

Processors are usually designed on the register transfer level (RTL) using a hard-

ware description language. RTL is synthesized down to circuits that are then fabricated.

RTL can also be simulated, but RTL is rarely used as an exploratory design tool.

An RTL description contains details of all the logic of a processor, which makes

modifications difficult and simulation extremely slow.

2.3.4 Software Considerations

All processor hardware exists to run software. Given the large variety of software in

existence and the numerous ways in which software is analyzed, there exists a broad

set of terminology for describing software. This thesis uses program and application to

refer to a complete, self-contained piece of software that a user runs from start to finish.

A program is made up of one or more threads, or series of instructions. Multithreaded

programs have more than one thread that can run in parallel, potentially on different

cores or even different processors. Some CPU cores support SMT (simultaneous

multithreading), where a single core executes more than one thread in parallel. The

threads can be from the same or different programs. A thread can be divided into one

or more phases. The behavior of the thread is similar for the duration of a phase and

distinct from the behavior of other phases. This thesis uses task as a generic term for a

series of instructions. A task might be an entire, single-threaded program; one thread

in a multithreaded program; or one phase of a thread. Job refers to a set of programs

that are run in parallel, possibly on a compute cluster.

The most fundamental piece of software running on a device is normally the oper-

ating system (OS). The operating system provides services to software, like enabling

access to various hardware peripherals. A crucial component of an OS is the scheduler.

The scheduler controls which thread executes on which core at any given time, and can

choose to pause threads or migrate them to other cores. The scheduler might work in

tandem with a DVFS governor. The governor sets DVFS levels. One useful definition

2.4. Summary 15

of task is the series of instructions that fits into a scheduling interval. The scheduling

interval is the amount of time that a thread has to execute on a core before the scheduler

pauses or migrates it. In some circumstances, the OS must be aware of a program’s

deadline—the time by which the program is required to finish—and the scheduler and

governor must respond accordingly.

2.4 Summary

This chapter has presented basic processor evaluation and architecture principles. Stan-

dard metrics have been defined, and an overview of processor hardware has been given.

The remainder of this thesis uses the terminology established here. The next chapter

builds on this background information by summarizing the state-of-the-art research in

processor design and evaluation.

Chapter 3:

Related Work

The problem of heterogeneous processor composition is largely unaddressed in current

literature. Heterogeneous processor composition is, however, a natural extension of the

existing body of research on processor design. This chapter summarizes the state of

the art in research relevant to heterogeneous processors.

3.1 Introduction

Heterogeneous processor composition is dependent on five areas of research. The

first is the physical architecture of processor hardware—the methods of executing

instructions, the methods of storing data, the number of CPU cores, the amount of

heterogeneity, etc. The second area is models for analyzing potential hardware be-

fore it is implemented. Hardware development is prohibitively expensive and time-

consuming, and models must be used to evaluate designs before the investment is

made to implement them. The third area is benchmarking. All processor hardware

exists to perform some type of computation. The computation can have any number

of purposes, from scientific calculations to simply entertaining the user. Regardless of

what the purpose is, if the purpose can be expressed as a set of well-defined tasks, then

hardware can be designed and benchmarked against these tasks. Benchmarking leads

directly to the fourth area: metrics. Metrics are required to quantitatively evaluate how

well a processor performs at its intended tasks. The final, perhaps most important, area

is the design process—the methods employed to turn the theoretical space of potential

processors into one, real processor that has the desired performance on the intended

tasks as measured by the metrics. This chapter summarizes the current state of the art

in these five areas of research.

17

18 Chapter 3. Related Work

3.2 Architecture

There are four topics in architecture research that are relevant to heterogeneous proces-

sors. The first of these is processor microarchitecture. Modern processors in general,

and heterogeneous processors in particular, are subject to strict power and performance

requirements. The microarchitecture of CPU cores determines the speed and power

of execution. Heterogeneous processors implement different types of cores, where

each type has its own microarchitecture. The second topic is dynamic voltage and

frequency scaling (DVFS). DVFS is a method of adjusting the power and performance

of a core at runtime, and shares many of the goals of heterogeneity. The third topic

is homogeneous multicore architectures—processors that implement more than one

core, but only one type of core. Heterogeneous multicore processors directly follow

from homogeneous multicores. The fourth topic is heterogeneous architectures, which

includes research on the different types of heterogeneity and how they can be used.

3.2.1 Microarchitecture

Complex, out-of-order (OoO) cores can execute instructions out of program order.

Instructions can also be executed speculatively—i.e., before it is known whether the

instructions must be executed. These advanced capabilities require a number of mi-

croarchitectural structures, which causes the design space of cores to explode in size.

Kim and Lipasti [92] describe a number of mechanisms used by cores to replay mis-

speculated instructions. Mutlu et al. [128] allow execution to continue speculatively

in the presence of long stall events. While the speculatively executed instructions

must be replayed when the stall event completes, the speculatively executed code

prefetches instructions and data, speeding up execution later. Kaynak et al. [89] share

prefetched instructions among the cores of a server processor on the premise that

different threads of a program are likely to require the same instructions. McFarlin

et al. [122] attempt to determine which features of an OoO core are responsible for

performance improvements. They argue that most of the performance is due to simply

rearranging the order of instructions, and that scheduling around long stall events is

only of secondary significance. Czechowski et al. [38] study the sources of perfor-

mance and efficiency improvements of OoO cores across technology generations. They

find that microarchitectural improvements are the major contributor to performance,

while the physical scaling of silicon technology is the major contributor to efficiency.

3.2. Architecture 19

Reddi et al. [148] study the processor features required by a search engine, and argue

that a processor with a sufficient number of smaller, more efficient cores can compete

with a processor with fewer, faster cores. The authors also argue that a heterogeneous

processor is not a good solution for search, as it is not clear when code should run on

different types of cores. Rivers et al. [150] explore ways of increasing the bandwidth

of caches to support large, OoO cores. Yasin [193] uses hardware event counters to

understand where bottlenecks occur in the microarchitecture when executing various

tasks.

A more complex microarchitecture has more concurrent activity, and, conse-

quently, higher power consumption. Since modern processors are power-limited,

there is considerable research effort into reducing power. Flautner et al. [58] decrease

the voltage of individual cache lines to reduce leakage power. Similarly, Homayoun

et al. [81] add extra resistance into the clock tree network to reduce leakage current.

Ratković et al. [147] study the power, performance, and efficiency trade-offs in adder

circuits. Gavin et al. [60] introduce logic to intelligently avoid unnecessary accesses to

microarchitectural units in the fetch phase of the instruction pipeline. Liu et al. [113]

attempt to determine the amount of energy consumed by individual tasks running on a

multicore processor. Arora et al. [6] compare heuristics for determining when a core

should go into a low-power state.

The heterogeneous design space used in this thesis is derived from varying the

microarchitectural parameters of OoO cores.

3.2.2 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) is used to adjust the power and per-

formance of a processor during runtime. An overview of DVFS is found in Burd and

Brodersen [20]. An early work on DVFS is by Gebotys and Gebotys [62], who set

different voltage levels for different components of what is effectively a simple data-

flow processor. The aim is to slow down computation that is not on the critical path to

lower power consumption.

A number of papers have considered whether “sprinting” or “pacing” is

preferable—i.e., whether it is better to quickly finish a task and then power down the

processor, or whether it is better to run a task slowly while still meeting deadlines.

Choi et al. [31] and Efraim et al. [47] propose DVFS governors to minimize energy.

Le Sueur and Heiser [104] describe conditions under which sprinting is preferable

20 Chapter 3. Related Work

to pacing. Raghavan et al. [146] find that sprinting is generally preferable. Dhiman

et al. [43] come to the same conclusion, and note that this is because modern processors

effectively implement low-power states. Wang et al. [189] attempt to optimize the

DVFS levels of cores when running multithreaded programs, but it is unclear whether

the benchmarks used exhibit sufficiently divergent thread behavior to justify the use of

different DVFS levels on different cores.

DVFS is often used as a method for controlling the runtime power and temperature

of a processor. Su et al. [170] predict the power, energy, and execution time of

a running task at different DVFS levels to help determine whether the DVFS level

should be changed. Similar approaches could be used to help schedule heterogeneous

processors. Pagani et al. [137] determine the amount of power a core can consume

based on the amount of power consumed by neighboring cores. If a core’s neighbors

are not powered, then the core can consume more power without causing a thermal

emergency. Cebrián et al. [24] propose several microarchitectural techniques that can

be used in conjunction with DVFS to further reduce power and eliminate power spikes.

Providing different voltage levels to a processor is a challenging problem due

to the limited number of electrical contacts on a chip. Kim et al. [93] argue for

on-chip voltage regulators to increase the number of voltage domains. Mehta and

Amrutur [124] suggest using DVFS and also dynamically applying a biasing voltage

to the chip bulk silicon to save further power.

The future viability of DVFS is unclear. As transistors continue to scale down in

size, the range of usable voltages shrinks. The minimum voltage is expected to stag-

nate [34], while maximum performance is achieved at ever lower maximum voltages.

This trend is observed by Le Sueur and Heiser [103]. Etinski et al. [51] also note

the diminishing returns from DVFS, but the reasons for the diminishing returns are

not thoroughly explained. From first principles, a heterogeneous processor should be

more energy-efficient than a homogeneous processor with DVFS, since heterogeneous

cores can be carefully tuned to various performance levels. The intuition is supported

by Lukefahr et al. [115]. However, some of the contributions of this work are difficult

to apply more broadly, as the authors make optimistic assumptions about both hetero-

geneity and DVFS. The authors also find a trade-off between performance and energy,

which contradicts earlier work from the same group showing that energy is minimized

when performance is maximized (“sprinting” [146]).

Due to modeling difficulties and the diminishing benefits of DVFS, DVFS is not

included in the design space used by this thesis.

3.2. Architecture 21

3.2.3 Homogeneous Architectures

Homogeneous processors implement duplicates of the same core to increase through-

put without increasing the performance of individual cores. Hill and Marty [80] con-

sider the effects of increasing the number of cores on a processor, and come to the

fairly obvious conclusion that more research is required on parallelizing programs and

increasing the performance of individual cores.

Despite the homogeneity, scheduling tasks to a homogeneous multicore is not

necessarily trivial. Bitirgen et al. [13] study the intelligent allocation of CPU, cache,

and bandwidth resources to different, concurrently running programs. Ding et al. [45]

determine the number of cores that should be allocated to a program and the DVFS

level the cores should be set to maximize efficiency. Chen et al. [28] argue that the

threads of a multithreaded program running on different cores should consume similar

amounts of power. In later work, Chen et al. [29] design logic to determine which

sections of parallel programs cause some cores to consume more power than others.

There is a marked difference between homogeneous and heterogeneous processors,

as the required design effort increases for every type of core implemented. Eyerman

and Eeckhout [53] study whether heterogeneity is required at all. They find that if

parallel, scientific programs are used; and if only the throughput of the system must

be optimized; and if the processor supports SMT (simultaneous multithreading); then

homogeneity is sufficient. Many usage scenarios, including those considered in this

thesis, do not match these assumptions.

3.2.4 Heterogeneous Architectures

Heterogeneous multicore processors are a natural extension of homogeneous mul-

ticores. Motivators for heterogeneity include the better efficiencies of specialized

hardware, the limitations of DVFS noted in section 3.2.2 above, and, perhaps most

significantly, the dark silicon problem. The dark silicon problem, as described by

Esmaeilzadeh et al. [50], is simply that according to current technology trends, tran-

sistor size is shrinking faster than transistor power consumption. As a result, processor

power density is increasing, and the amount of processor logic that can be powered

simultaneously is decreasing. This trend undermines homogeneous processors, since

there is little benefit to implementing more identical cores on a processor than can be

used concurrently.

22 Chapter 3. Related Work

Heterogeneous processors work around the problem by having different cores that

are not all used at once. There are a number of ways of implementing heterogeneity.

The following sections discuss research on single-ISA heterogeneity, multiple-ISA

heterogeneity, and reconfigurable processors. The first two types of heterogeneity are

heterogeneous in space. Reconfigurable processors are heterogeneous in time, and

potentially also in space. While reconfigurable processors are often studied separately

from heterogeneity, they face many similar difficulties as fixed heterogeneous proces-

sors. The discussions on multiple-ISA heterogeneity and reconfigurability are included

for completeness. The technical contribution of this thesis relates primarily to single-

ISA heterogeneity, as even this simplest case is poorly understood.

3.2.4.1 Single-ISA Architectures

A single-ISA heterogeneous processor is one where all core types implement the same

instruction set architecture (ISA), and the same, unmodified programs can run on all

cores. One of the first works on single-ISA heterogeneous processors is by Kumar

et al. [96], who use four generations of Alpha cores and run memory-bound workloads

on the slower ones. Ren et al. [149] use heterogeneity to minimize energy in server

workloads, and argue that the difference between the lowest-power and fastest core

types should be maximized. The authors propose a scheduling policy whereby a task

begins executing on a low-power core, and is migrated to increasingly faster cores

as the task’s deadline approaches. Najaf-abadi et al. [133] study a heterogeneous

processor composed of identical nodes, where each node contains different types of

cores. At any given time, only one core is active per node. While the node-based

approach may simplify processor organization, it also severely limits the fraction of

the computational resource of the processor that can be used simultaneously.

Single-ISA heterogeneous processors that have two types of cores are sometimes

called asymmetric processors. A common use case for an asymmetric processor is

to use a fast core for serial phases of a program, and several slow cores for parallel

phases. An example of this is found in Morad et al. [127]. Grochowski et al. [70]

argue that EPI (energy per instruction) should be varied during program execution

using a combination of asymmetric cores and DVFS. EPI should be higher in a serial

program phase and lower in a parallel phase. In a parallel phase, less energy can be

expended on each instruction, because many instructions are executed at once. The

work is extended by Annavaram et al. [5], who use the processor’s power budget to

determine what the power and performance difference between slow and fast cores

3.2. Architecture 23

should be. Van Craeynest and Eeckhout [182] study the trade-off between overall

system throughput and the turnaround time for individual programs. They find that a

processor needs only to implement two types of cores to achieve any optimal trade-off

point between throughput and turnaround time, though the core types vary depending

on which trade-off point is required. This work argues strongly for asymmetric pro-

cessors, and a superficial reading may lead one to believe that no more than two types

of cores are ever required. However, the design space used for the work only contains

five heterogeneous cores, and the work does not consider power or energy. Broadly

applicable conclusions are therefore difficult to draw.

Most commercially available asymmetric processors implement ARM’s

“big.LITTLE” technology [69]. These include processors from Samsung [152]

and Qualcomm [143]. An early asymmetric processor from Nvidia implements cores

with identical microarchitectures, but manufactured with different processes [136].

MediaTek has announced plans to add a third core type to a big.LITTLE system [123].

Intel sells an x86-based accelerator under the “Xeon Phi” brand name, which can be

used make an asymmetric x86-based system.

Asymmetric processors are monotonic, as one core type is always faster and con-

sumes more power than the other. Najaf-abadi and Rotenberg [132] consider running

the same task simultaneously on more than one non-monotonic core. In this case,

different cores maximize performance for different program phases. Cores that lag

behind can receive completed instructions from faster cores instead of computing them

locally. The approach wastes a substantial amount of power, but can take advantage of

fine-grained variations in program behavior to increase performance. Another method

of taking advantage of fine-grained variations is proposed by Lukefahr et al. [114],

who suggest hybrid “composite cores.” The cores have both low-power, in-order fetch

logic, and high-power, out-of-order fetch logic. Depending on the type of program

phase, the in-order logic can be used to save power without significantly affecting

performance. The authors do not, however, satisfactorily address whether the added

hardware complexity can be justified, given the area overhead and the associated ef-

fects on timing.

Saripalli et al. [155] and Swaminathan et al. [173] consider implementing het-

erogeneous cores using completely different technologies. They study using low-

power cores based on TFET technology along with cores based on standard MOSFET

technology.

24 Chapter 3. Related Work

Scheduling tasks to a heterogeneous processor requires more knowledge of the

processor and software than scheduling to a homogeneous processor. Kumar et al. [98]

study the scheduling problem for an asymmetric processor. Balakrishnan et al. [9]

show that heterogeneity can lead to unpredictable performance if scheduling is poor.

Sondag and Rajan [167] analyze compiled binaries of programs for phase behavior

and determine whether phases should be run on slower or faster cores. Shifer and

Weiss [161] study the scheduling problem for cores that can use either a simple, low-

power instruction pipeline, or a complex, high-performance pipeline. Alsafrjalani

and Gordon-Ross [4] propose a scheduling algorithm that schedules work based on

behavior observed during a learning phase. Challen and Hempstead [25] describe a

completely heterogeneous device with two processors, two types of radio, two types

of hard disk, etc., and use the flexibility provided by the heterogeneity to adjust which

system components use the most power at any given time.

3.2.4.2 Multiple-ISA Architectures

When the cores on a heterogeneous processor are not limited to implementing the same

ISA, the number of possible designs for a processor grows considerably. There are

several streams of research within multiple-ISA heterogeneity. This area of research

is still in the early stages, and it is not clear when the added complexity of supporting

different ISAs can be justified.

The simplest multiple-ISA processor is one where cores have partially overlapping

ISAs. The instruction sets are identical, except that some cores support additional

instructions. Li et al. [111] study how an operating system can make use of a processor

with partially overlapping ISAs. When a core encounters an instruction that it does not

support, the task is migrated to a core that does support the instruction. Georgakoudis

et al. [63] propose dynamically rewriting a program to operate on a given core to

avoid the need to migrate the program to another core that supports more instructions.

The work leaves unclear what benefits of partially overlapping ISAs can justify the

complexity of dynamic binary translation.

Processors with partially overlapping ISAs make use of some cores that support

additional instruction set extensions (ISEs). There is a large body of research that

blurs the line between ISEs and hardware accelerators. Borkar and Chien [16] argue

that increasing power densities require processors with specialized accelerators that

are only used when needed. Bingham and Greenstreet [11] suggest finding common

dataflow patterns from programs that can then be accelerated with specialized hard-

3.2. Architecture 25

ware, but include few details. Shao and Brooks [158] search for sections of programs

to accelerate in an ISA-independent IR (intermediate representation). Chien et al. [30]

describe the “10x10” project, a project to identify common functionality in programs

and to implement that functionality in accelerators. Guha et al. [72, 73] cluster inner

loops together based on similarities in the mix of instructions to find code that could

potentially be accelerated by the 10x10 project. A limitation of this approach is that

there is no guarantee that sections of code with similar instruction mixes can be accel-

erated by the same accelerator, or that the code can be accelerated at all. Venkatesh

et al. [184, 185] describe workflows for extracting frequently used functionality from

programs and generating accelerators for that functionality. Goulding-Hotta et al. [68]

attempt to develop accelerators for widely-used functionality in the Android operating

system. González-Álvarez et al. [67] find commonality between sections of code by

expressing the code algebraically. A common limitation of all these works is that the

large efficiency improvements announced in headline figures require large numbers of

accelerators, but the authors demonstrate their proposals with only a few accelerators.

As of yet, there is insufficient evidence to claim that enough code can be accelerated

to make these approaches worthwhile.

Some types of operations are known to be common among different programs.

For example, Targhetta et al. [174] study hardware for low-power cryptographic op-

erations. Wernsing and Stitt [191] propose software libraries that can run code on

accelerators when available. Farmahini-Farahani et al. [57] consider the effects that

using CPU cores and accelerators together has on cache behavior.

Some authors consider using two different ISAs together on a processor. Wu

et al. [192] suggest a processor with a VLIW (very long instruction word) core that

functions as an accelerator. Binary translation is used at runtime to run code on the

VLIW core when possible. The authors argue that the VLIW core can save energy,

but the focus of the paper is on code generation rather than on the hardware. DeVuyst

et al. [42] show that it is possible to migrate code between a core that implements the

ARM instruction set and one that implements the MIPS instruction set, but there does

not appear to be any benefit from using these two ISAs together on a processor. Blem

et al. [14] compare ARM and x86 cores, and argue that the choice of ISA does not

affect power, energy, or performance.

“Invasive computing,” a scheduling methodology for manycore processors, is de-

scribed by Teich [176] and Teich et al. [177]. The methodology can theoretically

26 Chapter 3. Related Work

make use of many different types of hardware accelerators. Lari et al. [101] discuss

controlling power with invasive computing.

There has been considerable research into scheduling work to MPSoCs (multipro-

cessor systems-on-chip). MPSoCs are systems with many components, like CPUs

and various accelerators [118, 140, 144]. These works normally map an audio or video

codec, or similar algorithm, to the various components of an MPSoC. It is generally un-

clear what the significance of this is to real-world problems, since specialized hardware

accelerators for codecs are already common. Chandramohan and O’Boyle [26, 27]

partition parallel OpenMP programs for an MPSoC, and schedule the partitions to

optimize various metrics. Wang et al. [188] determine how much power should be

allocated to a CPU and how much should be allocated to a GPU when optimizing the

throughput of an OpenCL program.

3.2.4.3 Reconfigurable Architectures

The underlying design goal for reconfigurable processors is the same as the goal for

all processors—matching the computational hardware to the computational problem

that must be solved. Processors that can be reconfigured at runtime can be more

accommodating to the requirements of various types of programs, but this comes at

the expense of additional hardware complexity. Kumar et al. [97] study the possibility

of sharing caches and floating-point units among cores. While not strictly reconfigura-

tion, the sharing theme is common in later works on reconfigurable processors. DEC

and AMD have attempted to share floating-point units between cores in production

processors, but AMD has recently moved away from this type of architecture [22]. İpek

et al. [85] propose an architecture where smaller, slower cores can be fused together

to make larger, faster cores. The intended use case is the same as that assumed by

some works on asymmetric processors (section 3.2.4.1)—to provide many cores to

parallel program phases, and a single, fast core to serial phases. Zhong et al. [195]

describe a similar approach of combining small cores into a large core, and develop

a compiler to both detect the amount of parallelism available and to control which

processor configuration should be used. Gupta et al. [75, 76] propose a processor that

contains modular instruction pipeline stages. These are composed into cores during

runtime. Research into these types of reconfigurable architectures has stagnated in

recent years. This is most likely due to the complexity of reconfiguring hardware

combined with the fact that dark silicon makes it possible to simply implement many

different cores.

3.2. Architecture 27

There is ongoing research into dataflow architectures—processors that take advan-

tage of data dependencies in software algorithms and can run independent sections of

code in parallel. Nagarajan et al. [130] reconfigure a pool of ALUs (arithmetic and

logic units) to match the data flow graph of a program. One of the most widely known

dataflow architectures is “TRIPS.” In an early work, Sankaralingam et al. [153] use a

large TRIPS core that can be reconfigured to function like many smaller cores. Later,

Kim et al. [91] use a TRIPS-like architecture where small cores can be reconfigured

into a single, large core. Burger et al. [21] describe how TRIPS can be used to execute

dataflow graphs. Desikan et al. [41] use TRIPS for speculative execution. Smith

et al. [164] present a compiler for TRIPS. Gebhart et al. [61] evaluate an implemen-

tation of TRIPS in silicon. Sankaralingam et al. [154] present low-level details of

the TRIPS microarchitecture. Putnam et al. [142] describe the “E2” architecture, a

successor to TRIPS. Taylor et al. [175] present the “Raw” architecture, which has

similar reconfiguration goals as TRIPS, but exposes even more reconfigurability to

software.

Rather than configuring cores together in various ways, some works propose spe-

cialized, reconfigurable functional units for use within the instruction pipeline. Bauer

et al. [10] use such reconfiguration to accelerate a video codec. Cong et al. [35]

evaluate a similar architecture for medical imaging applications. Efthymiou and Gar-

side [48] dynamically change the number of stages in an instruction pipeline.

A number of authors have suggested reconfiguring individual structures within

a CPU core during runtime. Bahar and Manne [8] adjust the issue width of the

instruction pipeline and the number of clock-gated functional units. Zhang et al. [194]

similarly adjust the instruction pipeline width to control execution speed and energy

consumption. Huang et al. [84] and Sundararajan et al. [171] study cache reconfigu-

ration at runtime. Dubach et al. [46] use a machine learning model to predict optimal

sizes for reconfigurable microarchitectural structures. The crucial question with these

works is whether the reported benefits of reconfiguration can be realized, given the

hardware complexity of reconfiguration. To fully capitalize on the power benefits

of resizable structures, the structures must be partitioned, and it must be possible

to power-gate individual partitions to eliminate leakage power. This increases the

complexity of power delivery circuits and potentially introduces the need for more

power domains. Additional logic is also required at partition boundaries and to track

which partitions are usable at any given time. The logic used to access the structure

must be provisioned such that all partitions can be used. It is unclear if the benefits

28 Chapter 3. Related Work

of reconfigurability outweigh the power and area overheads. Given the complexity of

reconfiguration, reconfigurability must necessarily be coarse-grained, and it may be

both cheaper and more efficient to simply implement a few different, static cores.

Some works consider using re-programmable logic along with fixed cores.

Dales [39], and Panneerselvam and Swift [138] describe the operating system support

required for using reconfigurable logic. Göhringer et al. [65] consider a highly

reconfigurable MPSoC that could be implemented on an FPGA (field-programmable

gate array). Kumar et al. [95] automate the generation of MPSoCs for an FPGA.

3.3 Models

The general area of architectural modeling can be divided into four research top-

ics. The first is analytical models. These are models that describe the architectural

space in terms of high-level, mathematical functions. The second topic is simulators.

Simulators model the functionality of hardware in software. Simulators tend to be

substantially slower than hardware, because a description of the hardware is evaluated

in software. Consequently, the third topic is simulation techniques used to accelerate

simulation. The final topic is power models, as power consumption is a top priority for

modern processors.

3.3.1 Analytical Models

Analytical models can be orders of magnitude faster than simulators, since the hard-

ware is modeled using mathematical functions rather than software descriptions of

hardware. Zyuban and Strenski [199] derive equations to relate the energy and delay

of CPU core circuits. Lee and Brooks [106] train linear regression models to predict

the power and performance of cores. Later, the same authors show that regression

models can be used to study the design space of cores [107], and use their models

to study regions of the microarchitectural design space where small changes in the

size of a structure have large effects on power and performance [105]. Karkhanis

and Smith [88] develop analytical models to approximate the Wattch power model.

Azizi et al. [7] develop models to study energy-performance trade-offs. This work

is one of the few to use hardware models written in a hardware description language

(Verilog) in addition to software power models. Blem et al. [15] use first principles

to model the theoretical upper-bound of multicore processor performance. Van den

3.3. Models 29

Steen et al. [183] build an analytical model to predict power and performance from the

Sniper simulator and McPAT power model.

While significant effort has been invested into these analytical models, their ul-

timate usefulness is somewhat questionable. The state-of-the-art analytical models

are, to a greater or lesser extent, all tuned to software power models like Wattch or

McPAT, which are, in turn, based on the CACTI cache model. The most difficult

to model component of a CPU core is not cache-like structures, but pipeline logic.

Current power models take a naïve approach to modeling pipeline logic, and as a result,

there is no evidence that existing analytical models are even capable of modeling real

hardware. One might argue that analytical models at least provide a speed-up over

simulators and power models, but it is unclear whether this is genuinely beneficial.

Analytical models cannot, by definition, model the complex interactions of microarchi-

tectural structures, and they therefore cannot replace detailed simulation. The McPAT

power model spends most of its execution time searching the design space of caches.

However, the search must only be carried out once per cache configuration, as the

results can then be stored in a database. This substantially reduces McPAT’s runtime,

thereby reducing the evaluation speed benefits of analytical models. Finally, analytical

models are presented as alternatives to simulation-based design-space exploration, but

the models must first be tuned with simulation results. It is therefore unclear whether

analytical models reduce the amount of work required for design space exploration.

In light of these considerations, the data used in this thesis is taken directly from

simulation without relying on analytical models.

Some authors use analytical models for purposes other than extrapolating simula-

tors and power models. Chung et al. [33] use power, area, and bandwidth models to ar-

gue that heterogeneity and accelerators can reduce power, but will not improve perfor-

mance over a fast CPU. Eyerman et al. [54] study existing x86 processors to determine

to what extent various microarchitectural structures affect performance. Nilakantan

et al. [135] model the bandwidth requirements of accelerators to determine how much

processor area should be allocated to them.

3.3.2 Simulators

There exist a number of microarchitectural simulators. These are often called cycle-

accurate simulators, as they attempt to model real processors accurately down to

the clock cycle. gem5 [12] is potentially the most widely-used research simulator

30 Chapter 3. Related Work

currently available, and is used to generate the data described in section 4.3 (p. 41).

Zoni et al. [197] combine gem5 with several other software tools to model systems-

on-chip (SoCs). Gutierrez et al. [78] modify gem5 to be more similar to an ARM

development board. Nachiappan et al. [129] build on gem5 to simulate a mobile SoC

that also contains accelerator hardware. MARSS [139] is a widely-used x86 simulator

that supports heterogeneous multicores. multi2sim [181] simulates both CPUs and

GPUs, and can run OpenCL code.

3.3.3 Simulation Techniques

Since cycle-accurate simulation is prohibitively slow, considerable effort has been

invested into methods for speeding up simulation. Most such methods leverage regu-

larity in program behavior, identify distinct program phases, and selectively execute a

subset of a given program. Dhodapkar and Smith [44] compare various phase detection

techniques. Marculescu and Iyer [117] use detailed simulation to determine the behav-

ior of a program phase, and then use faster, more approximate simulation to quickly

finish simulating the phase. A common simulation approach is “SimPoint” [159, 160].

SimPoint analyzes a program in terms of basic blocks—sections of code with one entry

and exit point. A series of instructions executed at runtime can be expressed in terms

of the constituent basic blocks, and similarities can be identified between different

sections of programs. One limitation of SimPoint compared to, for example, the work

of Guha et al. [72] in section 3.2.4.2 above is that SimPoint does not have visibility

into basic blocks. SimPoint cannot determine the similarity between the behaviors

of basic blocks. Wenisch et al. [190] use statistical sampling to speed up simulation.

Jiang et al. [86] use sampling intervals derived from a fractal, but it is unclear why

fractal-based sampling is superior to statistical sampling.

Hoste et al. [83] depart from statistical sampling, and instead use program sim-

ilarity to predict performance. A program’s performance is estimated based on its

similarity to programs with known performances. Eklov et al. [49] build statistical

models of cache miss rates to predict program performance. Leupers et al. [109]

present an overview of a number of techniques for speeding up simulation.

These advanced simulation techniques can substantially reduce the amount of time

spent on cycle-accurate simulation. Depending on how the experiments are designed,

the techniques can also have a positive or negative effect on the statistical significance

of results. While the amount of time required for the simulations used by this thesis is

3.4. Benchmarking 31

large, it is not prohibitive. In light of the increased complexity and risk of statistical

simulation, the experiment methodology (section 4.3 (p. 41)) does not use statistical

sampling.

3.3.4 Power Models

Simulators predict the performance of a given program on a given hardware config-

uration, but power models are required to estimate power and energy consumption.

One of the most widely used power models is the CACTI cache model [178]. CACTI

forms the basis of the Wattch power model [19], as well as the more recent McPAT

power model [110] used in chapter 4. Spiliopoulos et al. [168] use data from McPAT

to model DVFS with the gem5 simulator. Keckler et al. [90] study the energy cost of

GPU calculations and memory accesses. Shye et al. [162] use smartphone usage data

to predict where the device spends its power and where power consumption can be

reduced.

3.4 Benchmarking

There are two aspects to benchmarking: benchmark suites and benchmarking tech-

niques. One of the most widely used benchmark suite in the microarchitectural com-

munity is the SPEC CPU suite [169]. While SPEC is not necessarily suitable for

academic research [79], it continues to be a crucial component of evaluation method-

ologies. Newer benchmark suites, like EEMBC [141] and BBench [77] have been

created to evaluate mobile processors. The data set in section 4.3 (p. 41) uses SPEC

and EEMBC benchmarks.

A number of works consider the best way to benchmark processors. Hoste and

Eeckhout [82] analyze static benchmark features to identify unique and redundant

benchmarks. Meanwhile, Najaf-abadi and Rotenberg [131] argue that excluding

benchmarks from a suite based on benchmark similarity can harm the processor being

designed. Breughe and Eeckhout [17] study various ways of selecting which dataset to

use with a benchmark. Gupta et al. [74] suggest a method for evaluating the CPU usage

of individual programs running together on a multicore processor. Curtsinger and

Berger [37] randomize the layouts of benchmarks in memory to increase confidence

that benchmarking results are statistically significant.

32 Chapter 3. Related Work

3.5 Metrics

There is a large body of research considering the best metrics for evaluating various

aspects of processors. In some cases, the question of the correct metric to use is a

matter of ongoing debate. New metrics are defined when quantities like performance,

energy, and other measurable features do not provide sufficient insight. More complex

metrics attempt to quantify more complex features of processors. There is always a

level of subjectivity involved in defining metrics, and consequently, there is an almost

inevitable debate regarding whether a given metric truly measures the concept it is

intended to measure, and whether the concept is truly worth considering in the design

of a processor. The following sections summarize work on energy-aware metrics,

throughput metrics, uniformity metrics, and statistical techniques.

3.5.1 Energy-Aware Metrics

Some of the most common metrics measure efficiency using an energy-delay product.

The intuition behind these metrics is fairly obvious: Fast processors—ones with low

delay—are desirable, as are processors that consume little energy. Multiplying energy

and delay together and optimizing the product allows the two quantities to be traded

off and balanced. Gonzalez and Horowitz [66] are possibly the first to suggest the

energy-delay product metric (ED). Brooks et al. [18] suggest variations on ED. These

include the power-delay product, which is mathematically equivalent to energy, and

ED2, a metric that gives a double weight to delay. Martin et al. argue forcefully

for the ED2 metric [119, 121]. ED2 emerged during the design of an asynchronous

processor [120]. As also noted by Brooks et al. [18], ED2 is voltage-invariant—it is

independent of supply voltage for CPU-bound tasks on normal processors, and for

asynchronous circuits. Some authors use IPS3/W (instructions-per-second-cubed per

Watt) [46, 71, 107, 134]. IPS3/W is inversely proportional to ED2. Alioto et al. [3]

use energy-delay metrics with a number of different weights for the energy and delay

terms.

Since energy-delay metrics were first proposed in the 1990s, they have become

some of the most widely used metrics in the literature [7, 17, 23, 25, 27, 30, 45, 53,

58, 59, 84, 96, 103, 110, 147, 155, 161, 170, 173, 174, 178, 184, 185, 194, 198, 199].

Energy-delay metrics are not, however, without complications. Sazeides et al. [157]

show that optimizing ED or ED2 on a program phase granularity can lead to sub-

3.5. Metrics 33

optimal global results. Energy-delay metrics also implicitly assume that there is a

trade-off between energy and delay, but sometimes the fastest option also minimizes

energy [31, 38, 64, 146]. Section 5.6.2 (p. 64) argues that energy-delay metrics are not

an appropriate choice for heterogeneous processors.

Another common energy metric is EPI—energy per instruction [5, 88]. EPI can

often be easier to interpret than energy-delay metrics, as it simply evaluates the energy

cost of executing the average instruction. EPI can be combined with performance

metrics, like IPS (instructions per second), to understand both execution speed and

energy cost. EPI and IPS multiplied together produce runtime power [70].

3.5.2 Throughput Metrics

Most modern processors can execute multiple tasks in parallel by using SMT, by using

multiple cores, or by using both. This has led to the definition of throughput metrics

to evaluate performance. Snavely and Tullsen [165] define the weighted speedup

metric to measure the throughput of single-core processors with SMT. In a later paper,

Snavely et al. [166] evaluate the throughput of various thread scheduling policies for

SMT processors. Optimizing for throughput maximizes the total work completed

by a processor, but can have negative effects on individual tasks. Luo et al. [116]

evaluate both the throughput and fairness of SMT thread scheduling. Eyerman and

Eeckhout [52] rename the weighted speedup metric to STP (system throughput), and

introduce ANTT (average normalized turnaround time). STP and ANTT are intended

for multicore processors. ANTT is a fairness metric to counterbalance STP, since

increasing the overall throughput of a processor also increases the average execution

time seen by individual programs. Eyerman et al. [55] define several throughput met-

rics that are applicable to various types of experiments. Michaud [125] discusses some

of the pitfalls of throughput metrics, and shows that some definitions of throughput

lead to inconsistencies. Throughput metrics are appropriate for servers and other fully

subscribed processors, but less applicable to mobile devices (see section 5.6.1 (p. 63)).

3.5.3 Uniformity Metrics

Processor design involves trading off various quantities. A number of metrics have

been defined by researchers in the field of multiobjective optimization to evaluate

points sampled from optimal trade-off curves. The relevance of these metrics to het-

erogeneous processors is discussed in detail in section 6.6.5 (p. 88). Sayın [156]

34 Chapter 3. Related Work

defines ε-coverage error, δ-uniformity, and cardinality metrics. Laumanns et al. [102]

define ε-dominance. Farhang-Mehr and Azarm [56] use entropy to measure diversity.

Deb et al. [40] define a crowding distance metric and the ∆-nonuniformity metric.

Ackerman and Ben-David [1] study “clusterability.” While not directly relevant to

multiobjective optimization, “clusterability” evaluates how well points have been clus-

tered, and is related to uniformity and diversity metrics.

3.5.4 Metrics from Statistics

A number of statistical techniques are relevant to processor design in general, and

the composition of heterogeneous processors in particular. Conover [36] presents

nonparametric statistics, including Spearman’s ρ and the KS test. These are used

in chapter 6. Rutherford [151] gives a thorough overview of analysis of variance

(ANOVA) techniques. Vinh et al. [186] summarize a number of variations of the

mutual information metric. Vuduc et al. [187] define an early stopping criterion that

can be used to evaluate the quality of a random search of a design space. Chapter 4
makes use of ANOVA, mutual information, and Vuduc’s criterion.

3.6 Design Process

There are two aspects to heterogeneous processor design: design space exploration

(DSE) and core selection. DSE methods are used to characterize the space of possible

CPU cores and to find cores that could be used on a heterogeneous processor. Core

selection is used to determine which cores should be used on the processor. The

difference between DSE and selection is largely unrecognized in the literature. DSE

has received significant research interest, while selection is often ignored and generally

not even identified as a problem. This may be because of an implicit assumption that

in an academic context, DSE methods are a sufficiently significant contribution, and

that core selection is not possible without access to restricted, industrial information.

The premise of the current thesis on heterogeneous processor composition is that

this assumption is untrue, and that more progress can be made on the core selection

problem using only freely available data.

3.6. Design Process 35

3.6.1 Design Space Exploration

In an early work, Zyuban and Kogge [198] study performance-energy trade-offs for

out-of-order processors. The authors suggest that the trade-offs allow one to select

the fastest core given a power budget. Since the work does not attempt to define a

power budget but assumes that one is provided, the work, by itself, cannot be used to

select a core. Similar assumptions are present in many later works—it is often assumed

that there exist criteria external to the DSE process that are theoretically knowable but

unknown to the researchers, and that these criteria can be used to easily select cores

from the characterized space. For research on DSE methods to be practically useful

in the absence of core selection methods, this assumption must be true. However, few

works, if any, address the assumption.

Kang and Kumar [87] use machine learning to reduce the number of simulations

required for design space exploration. Turakhia et al. [180] search the design space

of heterogeneous cores using multithreaded benchmarks. Sunwoo et al. [172] present

a method of searching the design space of a smartphone processor using graphical

benchmarks. Lee et al. [108] propose a DSE method that can model the perfor-

mance of many different cores based on results gathered during only one simulation

run. Choudhary et al. [32] describe the FabScalar infrastructure of out-of-order core

components. Unlike most simulators, FabScalar is based on RTL models that can be

synthesized to hardware. As a result, FabScalar can enable more accurate DSE. Liu

et al. [112] describe a method of DSE that relies on repeatedly synthesizing a given set

of hardware components.

Some authors have explored the design space of entire systems-on-chip (SoCs)

rather than just the space of possible cores. Cassidy et al. [23] design an analytical

model to predict the fraction of a processor’s area that should be used for cores,

the fraction for caches, and the fraction for interconnects. Givargis et al. [64] pro-

pose a DSE method for SoCs that quickly prunes configurations that are not power-

performance optimal. Mishra et al. [126] explore the space of heterogeneous networks-

on-chip (NoCs) for use with SoCs.

Design space exploration is a special case of multiobjective optimization. A pro-

cessor designer prefers cores that are fast, consume little power, require a small amount

of silicon area, etc., but many such requirements are mutually exclusive. Multiobjec-

tive optimization algorithms search for the Pareto optimal trade-offs between compet-

ing objectives—i.e., the solutions where no objective can be further improved without

36 Chapter 3. Related Work

another objective deteriorating. Kursawe [100] motivates multiobjective optimiza-

tion by arguing that in many cases, there is no function that can combine multiple

objectives into a single objective, and all possible trade-offs between the objectives

are therefore potentially useful. This observation is particularly relevant to DSE for

CPU cores: There is, for example, no objectively correct equation for trading power

for performance. Metrics like IPS3/W assume that performance is three times more

valuable than power. This assumption is arbitrary, and some cores may require other

trade-offs. The designer should be aware of all possible trade-offs between power and

performance, not just the one that optimizes IPS3/W. I.e., the designer should have

access to the power-performance Pareto-optimal set of cores.

A number of algorithms have been proposed to efficiently find Pareto-optimal sets.

Zitzler and Thiele [196] present an overview of multiobjective evolutionary algorithms

(MOEAs) and define the SPEA optimization algorithm. Knowles and Corne [94]

define the PAES algorithm, and Deb et al. [40] define the NSGA-II algorithm. Adra and

Fleming [2] present modifications to NSGA-II to increase the diversity of the solution

set.

This thesis does not attempt to add to the work on DSE. Chapter 7 only assumes

that a processor designer has access to a method of design space exploration.

3.6.2 Core Selection

A number of authors select heterogeneous cores to optimize a single metric. Kumar

et al. [99] select cores to optimize performance using an exhaustive evaluation of all

possible sets containing a given number of cores. Lee and Brooks [107] select cores to

optimize IPS3/W and then reduce the number of selected cores to the desired number

using clustering. Navada et al. [134] use a genetic algorithm to search a design space

and select a given number of cores to optimize performance. All three works include

the option of selecting cores to meet a given power budget. Singh et al. [163] also

perform selection, but do so for an MPSoC that is specialized for audio and video

applications.

The work of Guevara et al. [71] is unique in the literature, as the authors select

cores to implement different power-performance points instead of optimizing a single

metric. Similar cores are clustered together, and the most consistent core is selected

from each cluster. Various consistency metrics are considered. Selection methods that

optimize for one metric result in non-monotonic heterogeneity, whereas the method

3.7. Summary 37

of Guevara et al. [71] is possibly the only published work to select monotonically

heterogeneous cores from a large candidate set. As a result, the selected cores can run

tasks at various power-performance points. Chapter 8 evaluates this “Clustering” core

selection strategy.

3.7 Summary

Heterogeneous processors contain CPU cores with different microarchitectures and

potentially even different architectures. During the design process, processors must be

modeled, benchmarked, and evaluated. This chapter has summarized current research

in these and related areas.

Chapter 4:

Infrastructure

This chapter describes the software tools that generate the example dataset used to

demonstrate the techniques in later chapters. The experimental methodology underly-

ing the dataset is part of the infrastructure.

4.1 Introduction

Methods for composing and evaluating heterogeneous processors should be decou-

pled from the specific implementation details of the processor being designed. Such

methods cannot be too closely related to any particular processor design space or

application space, lest they lose their applicability to other design and application

spaces. This chapter describes one particular software infrastructure that is used to

generate an example dataset. The selection and evaluation techniques in later chapters

are demonstrated with this dataset. The later chapters are not, however, dependent on

this specific infrastructure. A different, equally valid dataset could be generated by

changing any number of parameters in the experimental methodology, or exchanging

any of the software tools for other tools.

There are two components to the infrastructure: the software tools used to generate

the dataset and the experimental methodology by which the dataset is generated. The

following sections discuss these in turn.

4.2 Software Tools

The infrastructure is based on four software tools: the gem5 cycle-accurate simulator,

the McPAT power model, the wrapper scripts that run simulations, and the R statistical

package. Each tool is described below.

39

40 Chapter 4. Infrastructure

4.2.1 gem5 Simulator

gem5 is a highly configurable, cycle-accurate microarchitectural simulator [12]. The

example dataset uses development version 9351:4229aedfdd09 of gem5. gem5 is built

for the ARM ISA and run in system call emulation mode (SE). The “arm_detailed”

out-of-order CPU core model forms the basis of the simulations. gem5’s standard sim-

ulation scripts are modified such that microarchitectural parameters can be overridden

by a user-specified file.

4.2.2 McPAT Power Model

The McPAT power model [110] is largely an interface to CACTI cache models [178].

The example dataset uses version 0.8 of McPAT. McPAT is configured through an XML

interface [179]. The configuration is adjusted to match gem5’s “arm_detailed” model

as closely as possible. McPAT is run with the “optimize for clock” option for a 28nm,

low-power process technology.

4.2.3 Simulation Scripts

Each run of gem5 and McPAT is launched from a perl script. gem5 is run on a

compute cluster as an array job. The cluster scheduler invokes the simulation script

once for each index in the job array. The simulation script generates a configuration

file from the array index and launches gem5. The simulation script is configured such

that each benchmark is run with the same gem5 configurations, but the configurations

are randomly sampled from a large space of microarchitectures. One gem5 run can

take anywhere from a few minutes to a few hours, depending on the benchmark.

McPAT is run separately from gem5 using the simulation data generated by gem5.

McPAT has a fixed runtime of a few seconds, which is not dependent on the length

of gem5 simulations. For a large experiment, gem5 requires compute-years of time,

but McPAT only requires compute-days. Consequently, the McPAT script is run on a

single machine, and McPAT is invoked for each simulation result in series.

Once gem5 and McPAT have run, a final script parses the logs and output files, and

builds a table of results. The table is then loaded into R for analysis.

4.3. Experiment Methodology 41

SPECint 2006

astar h264ref omnetpp

bzip2 hmmer perlbench

gcc libquantum sjeng

gobmk mcf xalancbmk

Table 4.1: SPECint 2006 benchmarks [169]

EEMBC

aes mp3player qos

cjpegv2 mpeg2decode rgbcmykv2

des mpeg2encode rgbhpgv2

djpegv2 mpeg4decode rgbyiqv2

huffde mpeg4encode routelookup

ip_pktcheck nat rsa

ip_reassembly ospfv2 tcp

Table 4.2: EEMBC benchmarks [141]

4.2.4 R Analysis

All analysis is carried out using the R statistical package [145]. Unless otherwise

noted, algorithms and mathematical functions are implemented in R. All standard

statistical techniques use the implementation in R where available. Figures showing

quantitative data are also generated using R.

4.3 Experiment Methodology

The example dataset contains data on a set of benchmarks that have been simulated

on a set of cores. The benchmarks and the design space of cores are described first,

followed by a discussion on the dataset.

4.3.1 Benchmarks

The example dataset uses two benchmark suites: the SPEC 2006 integer benchmarks,

listed in table 4.1, and the EEMBC benchmarks, listed in table 4.2. The EEMBC suite

combines the EEMBC DENBench (digital entertainment) and the EEMBC Network-

42 Chapter 4. Infrastructure

ing 2.0 benchmarks. The EEMBC suite contains smaller benchmarks that represent

common tasks on mobile devices. The SPEC suite contains more demanding scientific

benchmarks. The two suites are always analyzed independently of each other.

All benchmarks are compiled for the ARM ISA using gcc with the -O3 option.

Benchmarks are linked statically as required by gem5’s system call emulation mode.

SPEC benchmarks use the “training” datasets. EEMBC benchmarks are simulated in

detail for one billion instructions or until completion, whichever comes first. EEMBC

benchmarks have small memory footprints, with median instruction and data cache

miss rates of <0.1% and 1% respectively. To reduce simulation time, they are simulated

without an L2 cache. For the much larger SPEC benchmarks, the first two billion

instructions are fast-forwarded. There is a warm-up period of ten million CPU cycles,

followed by one billion cycles of detailed simulation. Data is only collected for the

one billion cycles of detailed simulation. To reduce runtime, the SPEC benchmarks

use a check point saved at two billion instructions. SPEC benchmarks have median

instruction and data cache miss rates of 2% and 5% respectively, and are run with

a 2MB, 8-way L2 cache. The total gem5 runtime for the example dataset is seven

compute-years for the EEMBC suite and nine compute-years for the SPEC suite.

There is endless debate regarding which benchmark suites are the “correct” ones to

use in a given setting. Ultimately, a good benchmark suite is one that is representative

of the full range of applications that will be run on the processor that is being designed.

Representative can mean many different things, but will likely include considerations

like instruction mix, memory behavior, the relative frequency of different types of

computation, etc. Workload characterization is beyond the scope of this thesis, and

it is simply assumed that the SPECint 2006 suite and the EEMBC suite are each

representative of some application space. Two different suites are used to demonstrate

that the techniques in later chapters react to differences in application spaces.

4.3.2 Design Space

The example dataset contains data for a design space of 3000 different CPU cores. The

data includes the execution time and runtime power (combined dynamic and leakage)

for each of the 33 benchmarks in section 4.3.1. The design space is a randomly

sampled subset of a microarchitectural space containing over 30 billion permutations

of cores. It would be possible to use a more intelligent sampling method than ran-

dom. However, random sampling has two advantages: First, it avoids any (potentially

4.3. Experiment Methodology 43

Parameter Values

Data Cache
Size 16, 32, 64 kB

Associativity 1, 2, 4

Instruction Cache
Size 4, 8, 16, 32, 64 kB

Associativity 1, 2, 4

Registers
Integer 50, 64, 96, 128, 256

Floating Point 96, 128, 256

Queue Entries

Issue 16, 32, 64

Load 8, 32, 64

Store 8, 16, 32, 64

Reorder Buffer 16, 32, 40, 64, 128

Branch Predictor

Global Counter Bits 1, 2, 3

Global Entries 210, 211, 212, 213, 214

Local Counter Bits 1, 2, 3

Local History Bits 10, 11, 12

Local History Entries 29, 210, 211

Choice Counter Bits 1, 2, 3

Choice Entries 210, 211, 212, 213, 214

Branch Target Buffer
Entries 210, 211, 212, 213, 213

Tag Bits 16, 18, 20

Table 4.3: Summary of microarchitectural parameter values used in the example design

space

unknown) biases in a sampling algorithm that could affect later results. Second, by

including simulation data on even some very poor cores, random sampling provides a

more complete picture of the microarchitectural space. This makes drawing statisti-

cally significant conclusions about the design space simpler, and aids later analysis on

selection algorithms (chapter 8).

Of the 3000 cores in the design space, 266 are power-performance Pareto-optimal

for at least one SPEC benchmark, and 363 are Pareto-optimal for at least one EEMBC

benchmark. The set of 266 cores and the set of 363 cores are candidate sets. Chapter 7
and chapter 8 consider the problem of selecting cores from these candidate sets.

The microarchitectural parameters that are varied in the design space are listed in

table 4.3. The complete list of all 3000 simulated cores is in appendix A. Cores are

44 Chapter 4. Infrastructure

Sampling Confidence
(SPECint 2006 — 2% Tolerance)

Benchmark Confidence Benchmark Confidence
Speed Power Speed Power

astar 1.00 1.00 libquantum 1.00 1.00

bzip2 1.00 1.00 mcf 1.00 1.00

gcc 0.86 1.00 omnetpp 0.95 1.00

gobmk 0.95 1.00 perlbench 0.86 1.00

h264ref 0.99 1.00 sjeng 0.63 1.00

hmmer 1.00 1.00 xalancbmk 1.00 1.00

Table 4.4: Confidence that the best power and performance discovered by random

sampling is within 2% of the best possible power and performance available in the entire

microarchitectural space of 30+ billion permutations (SPECint 2006 benchmarks).

numbered from #1 to #3000, but as the configurations are randomly sampled, a core’s

number has no relationship to its microarchitectural parameters. The microarchitec-

tural space only contains parameters that can be reliably adjusted in both gem5 and

McPAT. McPAT’s modeling of some parameters, like issue width, is extremely poor.

McPAT relies on CACTI cache models, but the issue pipeline stage and similar struc-

tures are dominated by logic rather than storage. This makes comparisons among cores

with different issue widths highly suspect. Issue width and other such parameters are

consequently excluded from the space, along with parameters that cannot be changed

in both gem5 and McPAT. McPAT is also unable to model DVFS, so voltage-frequency

levels are excluded from the design space. All cores are clocked at 1GHz.

4.3.3 Discussion

Two questions must be addressed regarding the experimental methodology: The first

is whether the design space of 3000 randomly sampled cores is sufficiently large,

given that out of the microarchitectural space of billions of permutations, fewer than

one core for every million is included in the design space. The second question is

the significance of the microarchitectural parameters. The design space includes all

parameters that can be varied reliably in both gem5 and McPAT, but an adjustable

parameter is not necessarily a significant one.

4.3. Experiment Methodology 45

Sampling Confidence
(EEMBC — 2% Tolerance)

Benchmark Confidence Benchmark Confidence
Speed Power Speed Power

aes 0.86 1.00 mpeg4encode 1.00 1.00

cjpegv2 1.00 1.00 nat 1.00 1.00

des 1.00 1.00 ospfv2 1.00 1.00

djpegv2 1.00 1.00 qos 1.00 1.00

huffde 1.00 1.00 rgbcmykv2 1.00 1.00

ip_pktcheck 1.00 1.00 rgbhpgv2 1.00 1.00

ip_reassembly 1.00 1.00 rgbyiqv2 1.00 1.00

mp3player 1.00 1.00 routelookup 1.00 1.00

mpeg2decode 1.00 1.00 rsa 1.00 1.00

mpeg2encode 1.00 1.00 tcp 1.00 1.00

mpeg4decode 0.99 1.00 - - -

Table 4.5: Confidence that the best power and performance discovered by random

sampling is within 2% of the best possible power and performance available in the

entire microarchitectural space of 30+ billion permutations (EEMBC benchmarks).

Random sampling. If the sample of 3000 randomly selected cores is sufficiently

large to be representative of the microarchitectural space of 30+ billion permutations,

then sampling and simulating more cores from the microarchitectural space will not

improve the quality of the sample. Conversely, if sampling more cores increases the

quality of the sample, then the sample of 3000 is not sufficiently large. The problem

of determining how many random samples are enough is addressed by Vuduc’s early

stopping criterion [187]. The criterion estimates the likelihood that further random

sampling will lead to a better result based on the distribution of existing samples.

Table 4.4 and table 4.5 list confidence values from Vuduc’s criterion for the 2% margin

of performance and power for each benchmark. I.e., this is the confidence that the best

(fastest) performance and best (lowest) power of the 3000 sampled cores are within

2% of the best possible in the entire microarchitectural space. For most benchmarks,

the confidence values are 1.0 or very close. It is very unlikely that a better result could

be found in the microarchitectural space. Exceptions are the performance confidence

values for aes, gcc, perlbench, and sjeng. sjeng has a particularly low confidence, at

46 Chapter 4. Infrastructure

Average Normalized Power

A
vg

. N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

●

● ●
●

● ●

●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●●

●

●
●

●●
●

●

●

● ●
●●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●
●

●
●

●
●

●
●

●

●

●

●●
●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●● ●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

● ●
● ●

●

●

●

●

●

●
●

●

●

● ●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●● ●

●●

●

●

●
● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●●

●

●●
● ●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

● ●
●

●

●

●
●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●●

●

●

●●

● ●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●●
●

● ●

●

●

●

●

●

● ●

●●
●

●

●

●

● ●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●●

● ●

●

●

●

●

●
●

● ●

●

●
●

●

●● ●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●
●●

●
●

●

●

●

●
● ●

●

●
●

● ●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●●
●

●●

●

●

● ●

●

●

●

●

●

●

●
●● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ● ●●

●●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●●
●●

●

●

● ●

●●
●●

●
●

●

●
●

●

●

●

●

● ●

● ●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●
●

●●

● ●●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●●

●

●
●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●
●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●
● ●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●●

●

●

●

●

●

● ●

●

●● ●

●

●

●
●

● ●

●
●

●●

●●●

●

●

●

●

●
●

●

●

●●● ●
●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●
●

●
●

●
●

●

●
●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

● ●

●
●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●

● ●

●
●

●●

●

● ●
● ●

●●

●
●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
● ●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●● ● ●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●

●●

●

●

●
● ●● ●

●

●

●

●
● ●

●

●
● ●

●

●
●●

●
●

●

● ●

●

●●●
●

●

●
●

●●

●

●●

● ●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●
●

●

●●●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

● ●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

● ●

●
● ●

●
●

●●

●

●●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●● ●

●

●
●

●

●●

●

●

●

●

●●

●

●

● ●

●
●

●
●

●

●
●

●

●●

● ●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●●
●

●

●

●

●

●

●
● ●

●

●

●●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●

●●

●

●
●
●

●

●●
●
●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●●

●
●

●
●●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●
●

●●
●
●

●
●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●

●

●

●● ●

●

●

●●
●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●
●●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●●●
●●●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●
●

●

●
●●

● ●
●

●
●

●●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●
●●●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●
●

●
●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●
●

All Cores
Optimal Cluster

Figure 4.1: Most power-performance Pareto-optimal cores are clustered into one

region of the microarchitectural space. Data is for the EEMBC suite.

only 0.63—there is 37% chance that the best performance in the design space is not

within 2% of the best performance possible in the microarchitectural space. However,

confidence is low not because the sample of 3000 is too small, but because a 2%

margin is a high standard. For a 5% margin—the likelihood that best performance is

within 5% of the best possible—confidence values for the four benchmarks increase to

1.00, 0.95, 1.0, 1.0, respectively. It can be concluded that the random sample of 3000

cores provides statistically significant coverage of the microarchitectural space for all

benchmarks, and for most benchmarks, confidence is well above a 5% margin.

Parameter analysis. All the analysis in this thesis is based on the power and

performance of cores relative to other cores. None of the analysis is dependent on how

the cores at various power-performance points are implemented—the analysis is iso-

lated from implementation details, and treats the implementation as a black box. This

ensures that all techniques are portable to other design spaces and are not dependent

on the correctness of any particular set of tools. If gem5 and McPAT are found to

have fundamental modeling flaws, for example, then the flaws can be fixed or the tools

can be replaced without affecting the analysis techniques. It is helpful, however, to

understand the features of the example dataset, as this provides further insight into the

selection algorithms in chapter 7 and chapter 8.

Figure 4.1 plots average power and performance for all 3000 cores for the EEMBC

suite. The results are largely the same for the SPEC suite. For parameter analysis

purposes, the significant feature is the power-performance Pareto-optimal cluster at

the left of the plot. Mutual information [186] can be used to show that this cluster

is completely explained by three microarchitectural parameters: data cache size, data

cache associativity, and integer register file size. The necessary and sufficient features

4.4. Summary 47

that cause a core to be in the optimal cluster are a 16kB or 32kB data cache, a 1-way

or 2-way data cache, and an integer register file with 128 or fewer entries. If the data

cache is larger, if it is 4-way associative, or if the integer register file has 256 entries,

then the core becomes substantially more complex and requires much more power.

Some cores that are not in the optimal cluster are power-performance Pareto-optimal

for a few benchmarks, but the number of benchmarks that can effectively use the largest

microarchitectural structures is small.

ANOVA (analysis of variance) [151] can be used to determine which microarchi-

tectural parameters control the power-performance trade-off within the optimal clus-

ter. The integer register file has the largest effect, as it is instrumental in exposing

instruction-level parallelism (ILP). Other parameters have less consistent effects. For

example, for the aes benchmark, when there are 64 integer registers, then instruction

cache size has the second-greatest effect, but with 96 integer registers, the number of

local history table entries has the second-greatest effect. Queues tend to also have a

large effect, while most of the branch predictor parameters have statistically insignifi-

cant effects.

4.4 Summary

The crucial component of the infrastructure is the example dataset that is used as a basis

for demonstrations throughout the remainder of the thesis. This chapter has described

the software tools, benchmarks, and microarchitectural space used to generate the

dataset.

Chapter 5:

Technical Motivation

The heterogeneous CPU core selection and evaluation problems form a barrier between

design space exploration and the production of a heterogeneous processor. The signifi-

cance and difficulty of the two problems are widely overlooked by current literature—

it is often assumed that only trivial effort is required to transform the results of a

design space exploration into a heterogeneous processor. This chapter establishes

a theoretical framework for reasoning about the selection and evaluation problems

by defining requirements for power-limited, heterogeneous processors; describing a

runtime model for analyzing processors; and demonstrating the deficiencies of current

techniques in meeting the requirements.

5.1 Introduction

The closely related problems of selecting and evaluating sets of heterogeneous cores

introduce a number of considerations that must be addressed. Some of these considera-

tions appear trivial, but substantially complicate the selection and evaluation problems.

Other considerations appear intractable at first, but can be surmounted using correctly

chosen simplifying assumptions. This chapter lays the groundwork for solving the

selection and evaluation problems for mobile devices by establishing the significance

of the problems and detailing the shortcomings of existing solutions.

The motivation for the selection and evaluation problems is presented in six parts.

First, runtime flexibility is established as the ultimate goal for a heterogeneous pro-

cessor. A heterogeneous processor has the potential to achieve flexibility through

microarchitectural diversity. Second, the problems associated with diversity are de-

tailed. These are related to both selecting a diverse set of heterogeneous cores, as

well as evaluating the diversity of a set of cores. The major complicating factor

49

50 Chapter 5. Technical Motivation

to diversity in the processor hardware is correctly handling the diversity in software

behavior. Third, a theoretical runtime model is described. This model forms the basis

of a framework that enables the analysis of even very large heterogeneous processors

with many cores and many tasks running in parallel. Fourth, it is argued that while

diversity is intuitively obvious, it cannot be readily evaluated mathematically. Fifth,

metrics currently available for evaluating processors are discussed. It is shown that

these metrics do not adequately evaluate diversity. A substantial component of the

discussion is devoted to energy-delay summary metrics, as these are widely used and

often misused by the architectural community. Sixth, existing core selection techniques

are summarized. These techniques are shown to not provide a satisfactory level of

flexibility.

5.2 Flexibility: A First-Order Requirement

Mobile processors must perform well on many different types of programs while being

constrained to strict power budgets. Since mobile devices depend on a battery and

generally use passive cooling, the amount of power that a program can be allowed to

consume is limited, and varies depending on battery charge, ambient conditions, and

other running programs. Unlike a server, a modern eight-core mobile device is likely

to be under-subscribed. Despite these considerations, users of mobile devices have

high expectations for performance. If a processor is flexible, then the operating system

scheduler can run a given program with the best possible performance, taking into

account the program’s priority, thermal considerations, the charge left in the battery,

etc. Traditionally, the flexibility to choose between high-performance or low-power

operation has come from DVFS (see section section 3.2.2 (p. 19)). However, since

each core in a heterogeneous processor is tuned to a particular power-performance

point, heterogeneity has the potential for greater flexibility and better energy efficiency

than DVFS [115]. Furthermore, DVFS becomes increasingly difficult to implement as

silicon technology scales [103]. Heterogeneity can be combined with DVFS, but due

to power model limitations (see section 4.2.2 (p. 40)), this discussion only considers

heterogeneous cores without DVFS. The discussion remains valid if it is applied to

power-performance points derived from a combination of heterogeneity and DVFS

rather than just heterogeneity.

In the case of a homogeneous processor, the designer considers a number of dif-

ferent CPU core designs with different power-performance trade-offs, and chooses

5.2. Flexibility: A First-Order Requirement 51

Figure 5.1: Cores selected for flexibility (circles) implement diverse power-performance

points, ranging from low power (LP) to high performance (HP). If cores have similar

power-performance points (squares), then there is little flexibility available at runtime.

to implement one of them. In this case, the scheduler has access to only limited

flexibility through DVFS. In contrast, in the case of a heterogeneous processor, the

designer selects more than one power-performance point (more than one type of core)

to implement. The designer leaves it to the scheduler to make the final choice about

which CPU core is best, because the scheduler has more information about what is

required of the CPU at a given time. This is the underlying goal of heterogeneity—to

give the scheduler more choice (flexibility) at runtime using a diverse set of cores.

A crucial observation is that not all selections of heterogeneous cores are diverse.

As an example, figure 5.1 contains six cores that are all power-performance Pareto-

optimal—each core implements a unique power-performance point, and no core has

both better power and better performance than any of the others. Runtime flexibility

is maximized if the processor designer implements all six cores, but this may not

be possible. If the three “diverse” cores are implemented, then the selection is still

flexible, as there are diverse power-performance points. If, instead, the “clustered”

cores are implemented, then the selection is not flexible. If only the “clustered” cores

are implemented, then the scheduler can only choose a high-performance core; there

is no low-power option.

Based on this description, it is obvious that greater microarchitectural diversity

in the set of cores provides the scheduler with greater flexibility. The next section

elaborates the intuitive notion of a diverse set of cores.

52 Chapter 5. Technical Motivation

5.3 Obstacles to Diversity

For a heterogeneous processor to provide flexibility at runtime, the set of cores imple-

mented by the processor must be diverse. While diversity is an intuitively obvious idea,

it is difficult to quantify. Ideally, a processor would contain many cores that are tuned

to different types of programs and that range from low power to high performance.

This would allow the scheduler to maximize performance for all types of programs in

all circumstances. However, a maximally diverse processor might contain hundreds of

types of cores, while a real processor can only implement a few different core types.

In the following, five sub-components of the diversity problem are discussed. First,

a generic view of heterogeneous processor design is introduced. If used correctly,

this design flow can lead to a diverse set of cores. Second, the problem of selecting

cores for diversity is presented. Third, the problem of evaluating the diversity of a

set of cores is described. Fourth, the complicating effects of application diversity are

discussed. Finally, the issue of unreliable software tools is considered and mitigated.

5.3.1 Design Flow

Figure 5.2 shows a generic design flow for a heterogeneous processor. The design

process begins with a design space containing all possible cores. The space is searched

for cores that could potentially be implemented—the candidate set. This search step is

often called DSE (design space exploration). Then, a selection step is used to determine

which cores in the candidate should be implemented on the processor.

Figure 5.3 illustrates the design flow using the aes benchmark and the example

design space described in section 4.3.2 (p. 42). For this example, the design space

contains 3000 cores, which are shown using gray points. Most of these cores have

such poor power and performance characteristics that they should never be considered

for implementation. DSE can be used to search the space for the candidate set of

power-performance Pareto-optimal cores, shown with black points. Any core in the

candidate set could be implemented, but since there are tens of candidate cores, not all

of them can be. A selection step must be used to choose a small number of candidate

cores for implementation. One possible selection of four cores is shown using open

circles.

If the final set of cores is to be diverse, both the DSE and selection steps must

behave correctly. If the DSE step does not find a diverse candidate set of cores, then

5.3. Obstacles to Diversity 53

Design Space

Search

Selection

Cores

Candidate Set

Figure 5.2: Both search (DSE) and selection steps are required to reduce a large

design space to a small number of core types that can be implemented on a

heterogeneous processor.

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

●

● ●
●

●

●

●
●

●●

●

●

●●●●

●

●

●
● ●

●

● ●
●

●

●
●

● ●

●
●

●

●●

●

●
●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●●

●

●

●
●

●
●

●

●
●

●

●

● ●

●
●

●

●

●●

●●
●

●

●

●●
●

●

●●

●●

●

●

●●

●

●● ●●

●
●

●
●

●

●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●●

●
●

●
●●

●
●

●
●

●

● ●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●
●●

●

●
●●

●●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●

●

● ●

●

●●

●
●● ●

●

●

●
●

●● ●

●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●
●

●

●●

●

●

● ●
●

●
●

●

● ●

●
●

●

● ●

●

●●

●

●

●

●

●
●

●

● ●

●

●

● ●
●

●
●

●

●●
●

●

●

●

●

●
●

●

● ●●●● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
● ●

●
●

●

●

●●

●
● ●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●●
●

● ●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
● ●● ● ● ●●

●
●●

●

●

●

●

●

● ●
● ●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●
● ●

●
●

●

●
●

●●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

● ●

●

●●
●●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●●
●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●●
●

●
● ●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●
● ● ●

●

●
●

●

● ●

●

●

●

●
●

●
●
●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●
●

● ●
●

●●

●
●●

●

●

● ●●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●
●●
● ●

● ●

●
●

●

● ●● ●

●

● ●

●

●

●

●●

●●●●
●

●

●

●

● ●
●

●
●

●●

●

●

●

●

●●

●
●
●

●

● ●
●

●● ●

●
●

●

●

●

● ●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

● ●
●

●

●

●● ●
●

●

●

●

● ●

●

●

●

● ●

●

●

●
●
●

● ●

●

●

●
●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●

●

●

●
●●

●

● ●

●

●

●

●

●
● ●

●●

●
●

●●
●

●

● ●

●

● ●
●

●

●

● ●
●

●
●

●
●

●
●

●

●
●

●

●

●

●●

●
●

●

●
● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●● ●●●

●

●●

●

●
●

●

●
● ●

●

●
●

●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●
●

●

●●●

●●

●
●

● ●●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●●
●● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●●
●

●● ●●

●

● ●●

●

●

●

●

●●

●

●
● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

● ●●

●
●●

●

●
●

● ●

●
●

●
●●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●●

●●
●● ●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●
●

●
●●

●●

●

●

●

●

●

●
●

●

●●
●

●●

●

●
●

●
● ●●

● ●●

●

●● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●● ●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●●

●
●

● ●
●●

●

●

●

●

●

●

●

●

● ●●

●●

●●

● ●

●

●

●●
●

●

●

●●

● ●

●
●●●

●

●
●

● ●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●●
●

●●

●●

●

●

●
●●

●
●

●

●

● ●

●

●● ●

●

●
●

●

●
●

●

●

●●

●●
●●

●

●
●

●

● ●
●

●

●

●
●

●

●●
●●

●

●●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

● ● ●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●●

●

●

●

●●
●●

●

●

●

●● ●●
●

● ●
●

●

● ●●
●

●

●●● ●

●

●●
●

●

●
●●

●

●●

●
●

●

●

●

●
●●

●

●

●

●● ●

●

●●

●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●

●

●

●

●●●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●●

●
●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●
●

●●

●

●

●

●●

●
●

● ●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●
●

●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●
●

● ●
●

●

●
●

●

●

●
● ●

●

●

●

●

●

●
●●●

●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●●
●

●

●
● ●●

●
●

●●
●

●
● ● ●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●
●

●

●
●

●

●
●

● ●

●

●

●
●

●
●

●

●

●● ●

●

●
●

●
●

●● ●● ●

●

●

●
●●

●

●

● ●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

All Cores
Pareto−Optimal Cores
Selected Cores

Figure 5.3: All cores, the candidate set (Pareto-optimal cores), and selected cores,

shown for the aes benchmark (see section 4.3.1 (p. 41)). Smaller is better on the axes.

it is impossible for the the selection step to select a diverse set of cores. Even if the

DSE step finds a diverse set of cores, it is still possible for the selection step to choose

a set of cores that is not diverse, because the candidate set normally contains many

more cores than can be selected. As detailed in section 3.6.1 (p. 35), there has been

substantial research on DSE. DSE research rarely addresses the selection problem,

however, the implicit assumption being that a designer with domain knowledge can

readily transform DSE results into a selection of cores. The following sections show

this assumption to be untrue. Since the focus of this thesis is on selection and not on

DSE, random sampling and Pareto-optimality is used instead of a DSE method (see

section 4.3.2 (p. 42)).

5.3.2 Selection Problem

Intuitively, the problem of selecting cores is similar to the problem of selecting a team

of people for a competition. It is not necessary for each team member to be better

at a task than the corresponding member of the opposing team. It is only necessary

54 Chapter 5. Technical Motivation

that the team is collectively superior to the opposing team. The composition and

evaluation of teams is difficult in any context, be it sports or office management. This

section considers the problem of selecting a set of cores; the next section considers the

evaluation of sets.

A prerequisite to DSE and core selection is a set of benchmarks that is represen-

tative of the types of applications that will be run on the final processor. A processor

will necessarily be targeted at the types of applications that are used to tune it during

design. The flexibility of a heterogeneous processor is maximized when it implements

the most diverse set of cores possible—all cores that are Pareto-optimal for at least one

representative benchmark. There can, however, be hundreds of such cores. Assuming

that DSE is able to find a sufficiently diverse candidate set, enabling flexibility requires

the designer to select a small number of cores from the candidate set that preserves the

diversity of the candidate set.

The selection problem is non-trivial, because any subset of cores selected from the

candidate set must inevitably approximate some aspects of the candidate set, and will

inevitably lose some of the diversity of the candidate set. If a selection method is to

reduce a candidate set of hundreds of cores down to a number that can reasonably be

designed and implemented, it must make value judgments, and must prioritize some

features of the candidate set over others. The problem is further complicated by the

fact that the effect a given core has on the diversity of a selection is not an intrinsic

feature of the core, but is instead dependent on how the core relates to other selected

cores—whether a core is selected is dependent on which other cores are selected.

For a selection method to prioritize features of sets of cores, there must exist

features that can be prioritized. Current literature recognizes very few such features.

A common, first-order feature of heterogeneous processors is monotonicity (see sec-
tion 3.2.4.1 (p. 22)). A monotonic selection of cores is one where the cores have a

clear ordering. The set of cores can be ordered by, for example, speed, such that each

core is faster than the previous, regardless of which benchmark is considered. That

is, a monotonically heterogeneous processor does not attempt to take advantage of

variations in benchmark behavior, and it is reasonable to run any benchmark on any

core, subject only to runtime requirements for power, speed, etc. A non-monotonic

selection of cores is one where there is no such ordering. Each core optimizes a

metric (e.g., speed) for one or more benchmarks, and each benchmark will perform

sub-optimally if run on the wrong core. Monotonic heterogeneity emphasizes runtime

flexibility with respect to changing external conditions—sometimes an application

5.3. Obstacles to Diversity 55

must be run with more or less speed or power, depending on user expectations and the

environment (e.g., ambient temperature). Non-monotonic heterogeneity emphasizes

runtime flexibility with respect to application behavior—each core will be optimal

for different applications. A set of heterogeneous cores can combine aspects of both

monotonic and non-monotonic heterogeneity. Based on the accepted definition of

monotonicity, monotonic heterogeneity is better suited to provide the flexibility re-

quired by mobile devices. However, section 6.11 (p. 106) and section 6.12 (p. 110)

show that even monotonicity is, in fact, an imprecise blend of two distinct features.

In summary, solving the selection problem requires knowing what the desirable

features of a set of cores are. Very few such features exist in current literature. The

most common one is monotonicity, but monotonicity is poorly defined.

5.3.3 Evaluation Problem

The evaluation problem is closely coupled to the selection problem. For any selection

of cores, it must be possible to show whether the selection is better or worse than

another selection. If it is not possible to compare two selections, then it is impossible

to decide which one should be implemented. It is therefore also impossible to compare

and improve upon selection methods.

During the design process, the processor designer could potentially make a small

number of intuitive evaluations about sets of cores. However, the design process

may require the evaluation of billions of permutations of core types for hundreds of

benchmarks. Performing evaluations consistently at this scale requires well-defined

metrics. Metrics exist for comparing individual cores and for evaluating system-level

throughput (see section 5.6 below), but there has been little work on comparing sets

of heterogeneous cores intended for consumer devices. For example, it is simple

to compare cores in terms of speed and power consumption, but if there are two

processors, one with a slow and a fast core, and the other with a slightly slower

and a slightly faster core, it is not clear what metric will adequately compare the

two. The second processor has a higher peak performance and lower minimum power

consumption, but the first processor might be more appropriate to an average usage

scenario.

56 Chapter 5. Technical Motivation

5.3.4 Program Diversity

The selection problem is complicated by the fact that each program interacts differently

with each core’s microarchitecture. Figure 5.4 illustrates this using two hypothet-

ical benchmarks from a processor designer’s representative benchmark suite. Each

benchmark could be an entire program, a program phase, or a thread from a multi-

threaded program. The examples use a trade-off between power and execution time.

Power is a hard, physical limit that cannot be exceeded due to thermal and electrical

considerations. Execution time should be minimized to increase user satisfaction.

Figure 5.4 (top) shows eight cores, A-H, that the designer can select from. In this

example, the designer has selected a diverse set of cores: A, B, D, and H. These cores

are Pareto-optimal for benchmark 1—each core is at an optimal power-performance

point, ranging from low power to high performance. The selection is flexible for

benchmark 1, because the scheduler can run it at a wide range of performance levels.

Figure 5.4 (bottom) shows the same cores for benchmark 2. For this benchmark,

core H is no longer Pareto-optimal, since core D is both faster and consumes less

power. Core E is Pareto-optimal, but has not been selected for the processor. Cores A

and B have almost identical behavior. It can be seen that the same set of cores provides

much less flexibility to the scheduler when running benchmark 2—benchmark 2 can

be run at effectively two power-performance points (A or B, and D).

There are any number of interactions between program behavior and core microar-

chitecture that could cause a core to be Pareto-optimal for one benchmark but not

another. For example, consider the problem of selecting a fast core for a heterogeneous

processor using two benchmarks. One benchmark has a large working set, and the

other has high ILP. A core with a large data cache will speed up the first benchmark, but

the additional, unused cache will only waste power for the second benchmark. A core

with a large instruction window will speed up the second benchmark, but the larger

instruction window will waste power for the first benchmark. In this case, each core

is Pareto-optimal for one benchmark but not the other. A core with both a large data

cache and a large instruction window will waste power for both benchmarks, and will

not be Pareto-optimal for either. It is not immediately obvious which core the designer

should select, as this depends on how many cores can be selected, the relative priorities

of the benchmarks, and any other cores that have also been selected. In summary, a

set of cores that is diverse for one benchmark is not necessarily diverse for another,

5.3. Obstacles to Diversity 57

Figure 5.4: (Top) Four selected cores, A, B, D, and H provide a range of power-

performance points to benchmark 1, ranging from low power (LP) to high performance

(HP). (Bottom) The same four cores are not as diverse for benchmark 2. H is not even

Pareto-optimal. E is Pareto-optimal, but is not selected.

because flexibility is dependent on the interaction between a core’s microarchitecture

and a program’s behavior.

As noted in section 3.5.3 (p. 33), the problem of selecting points from a Pareto

frontier also appears in the context of elitist genetic algorithms. However, these meth-

ods do not apply to the core selection problem. In the case of genetic algorithms, only

one Pareto frontier is sampled. In the case of core selection, there is a different Pareto

frontier of cores for each benchmark, but one set of cores must be selected to represent

all of these frontiers.

58 Chapter 5. Technical Motivation

5.3.5 Tool Unreliability

The final complication of the diversity problem is the reliability of software tools—

simulators and power models (see section 4.2.1 (p. 40) and section 4.2.2 (p. 40)). If

selection and evaluation methods are coupled too closely to a particular set of tools,

then they may not work as intended when used with other tools. For example, if a

selection method assumes that the possible range of power values for cores is between

250mW and 2W, but the method is used on a range of power values between 1W

and 10W, then the selection method might only select cores in the 1W to 2W range.

This is an issue of particular concern, as the intended user of selection and evaluation

methods is an industrial processor designer, but industrial design tools are generally

not available outside industry.

The key to ensuring that selection and evaluation methods are transposable to

different modeling ecosystems is to make the assumptions underlying the methods

as broad as possible. In the following chapters, the only assumption made regarding

tools is that there exists a trade-off between power and performance. This behavior is

observed in gem5 and McPAT, is supported by countless studies, and directly follows

from first principles: To make a CPU core faster, it must perform more work in parallel.

If more work is performed in parallel, more circuits are active, and more power is

consumed. Section 6.2 (p. 75) considers the problem of evaluation reliability in greater

detail.

5.4 A Power-Constrained Runtime Model

A major roadblock to the development of heterogeneous processors is in analyzing

their behavior. The problem is particularly acute for mobile devices, where the CPU

shares a power supply and thermal capacitance with a multitude of other components.

At any given time, there could be any number of tasks running on the CPU, all com-

peting for access to a limited amount of power. In addition, factors external to the

processor can affect how much power the CPU can use. For example, if a smartphone

is in a noisy radio environment, power to the antenna may need to be increased, which

can reduce power available to the processor. Alternatively, the processor may need to

run slower on a very warm day, because there is less thermal headroom to dissipate the

heat produced by the processor. The competing priorities and requirements of tasks

on the CPU, compounding factors from elsewhere on the device, and factors external

5.4. A Power-Constrained Runtime Model 59

to the device all taken together can make analyzing and optimizing a heterogeneous

processor appear to be an intractable problem.

The runtime model suggested here and used in the following chapters solves the

intractability of the analysis by eschewing a global view of a mobile device in favor of

a task-local view. For a mobile device, the single, first-order requirement is to maintain

a power budget. If the power budget is broken, then there is a risk of physical damage

due to excessive temperature, excessive electrical current, etc. The power budget for

the entire device may vary with time depending on external factors, such as ambient

temperature. The second-order requirement for the device is to maximize performance

to satisfy the user, while staying within the transient power budget. The device may

have other, third-order requirements, but these are ignored for the purposes of the

model. Based on these two requirements, the runtime model simply states that when

a task is to be run, there is some amount of power available to it, and the execution

speed of the task must be maximized without exceeding the available power. Rather

than attempt to determine how much power is available to a task at a given time by

modeling everything else taking place on the device, the runtime model represents

available power as a probability density function (PDF). In one instance when a task is

run, there may be a large amount of power available, while in another instance, there

may be only little available power. The processor is evaluated with respect to the given

task and the probability distribution of available power.

The runtime model is based on the following specific assumptions:

Assumption 1: Power is limited
There is a hard limit on the amount of power that the processor can consume.

Assumption 2: An intelligent scheduler exists
There is an intelligent scheduler either in the OS or in middleware that controls

on which core each task is executed.

Assumption 3: There is prior knowledge on power
The scheduler has prior knowledge of the power consumption of each task on

each type of core. This could be from off-line profiling or learned at runtime.

Assumption 4: Available power is measurable
There are monitoring circuits to determine how much power is available and how

much is being used (see, e.g., Liu et al. [113]).

60 Chapter 5. Technical Motivation

Assumption 5: Maximum available power per task is capped
The processor is designed to accommodate the most power-hungry task-core

combination. The scheduler will never give a task more power than this.

Assumption 6: Task migration between cores can be ignored
Short tasks finish quickly and do not benefit from migration. Long-running

programs can be treated as a series of tasks, where the scheduling of each task is

determined independently of the previous one.

Assumption 7: The required core is always available
Dark silicon predicts that processors will have many more cores than can be

powered simultaneously [50]. The runtime model assumes that if there is enough

power available for a task to use a given type of core, then an instance of that

core is free and can be used.

The runtime model requires a scheduler that allocates power to each task based

on factors such as the task’s priority, the amount of power available to the processor,

the temperature of the processor, remaining charge in any batteries, etc. When such a

scheduler is assumed, then the performance of any given task can be analyzed based

solely on the power PDF—the amount of power that the task is likely to receive. This

allows the designer to analyze a processor on a benchmark by benchmark basis rather

than attempting a global analysis.

5.5 Intuitive Diversity Considerations

The discussion in the preceding sections leads to an intuitive conception of diversity. A

diverse selection of cores should have good spread—the cores should enable both low-

power and high-performance operation. The selection should also have uniformity—

the cores between the extremes should be evenly spaced. Furthermore, the selection

should have good spread and uniformity for all benchmarks in the representative set.

While spread and uniformity are intuitively simple, they are difficult to optimize objec-

tively, and the following will show that there are non-trivial problems associated with

achieving each.

5.5. Intuitive Diversity Considerations 61

5.5.1 Spread

Spread simply describes how far the lowest-power and highest-performance cores are

from each other. For an example, see the power-performance point scale in figure 5.4.

If the amount of power the scheduler can make available to a task is less than the power

required to run the task on any core, then the task cannot run. Therefore, extending the

spread of cores in the low-power direction increases the likelihood that the processor

will be available to do work. Similarly, if the scheduler has large amounts of power

available, it must have access to high-performance cores to convert the available power

into user satisfaction. Extending the spread of cores in the high-performance direction

increases peak performance. Given these observations, the immediate intuition may

be to maximize diversity by maximizing spread. However, this will not guarantee

a good selection of cores. At the low-power and high-performance extremes of the

Pareto-optimal set of cores, tiny gains in one metric are made at the expense of large

losses in the other. For example, re-architecting the lowest-power core to consume

1% more power may lead to a 10% increase in performance, and re-architecting the

fastest core to slow it down by 1% may lead to a 10% reduction in power. While

this reduces spread, it may nevertheless be desirable: The slight power increase at

the low-power end might have an insignificant effect on the processor’s availability,

while noticeably improving performance when power is tightly constrained. The slight

performance reduction at the high-performance end might have an insignificant effect

on performance, while noticeably increasing the chance that the fastest core can be

used. It can be concluded that while a broad spread of cores is necessary for diversity,

maximizing spread is not guaranteed to be a good design decision.

Achieving spread is complicated by diversity in program behavior. As already

noted in section 5.3.4, increasing the size of a given microarchitectural structure in a

core can increase the performance of the core for one benchmark, but it might only

increase the power consumption of another benchmark. A selection of cores should

provide a fair spread of power-performance points to all benchmarks in the representa-

tive suite, but this leads to a combinatorially complex problem where increasing spread

for one benchmark can decrease it for another.

5.5.2 Uniformity

A set of cores enables flexibility if the cores are uniformly distributed in the design

space. Cores that have similar behavior, like the clustered set in figure 5.1, limit

62 Chapter 5. Technical Motivation

flexibility at runtime since the scheduler can only choose from a small range of power

and performance levels. While uniformity is an intuitively obvious concept, it is

difficult to define. Existing uniformity metrics depend on carefully defined constants,

and it is therefore difficult to determine whether the metrics are measuring uniformity

or their own tuning parameters (see section 5.6.3 (p. 68)). Even if uniformity can be

defined precisely, uniformity alone does not guarantee a diverse selection of cores. If

spread is poor, then diversity will be poor regardless of uniformity. Even if spread is

good, uniformity can be poor. Similarly to spread, cores that are uniformly spaced for

one benchmark may be clustered together for another. For example, if there are several

cores with varying instruction window sizes, then for a benchmark with high ILP, the

cores implement different power-performance points. In contrast, for a benchmark

with low ILP, the cores have similar performance, but some will consume more power

and will not be Pareto-optimal.

5.6 Limitations of Current Metrics

If microarchitectural diversity were measurable, then methods for improving diversity

could be developed. Metrics used to evaluate heterogeneous processors must take

into account the diversity of cores and the consequent flexibility at runtime. Without

a diversity metric, it is impossible to objectively compare selections of cores, and

it is therefore impossible to compare the efficacy of competing selection methods.

Simple measurement techniques, such as evaluating power and performance, are not

sufficiently descriptive for heterogeneous processors, since heterogeneous processors

contain many types of cores that operate at many power and performance levels. The

most common metrics currently used to evaluate heterogeneous processors fall into

two general categories: throughput metrics and summary metrics. Metrics in these

two categories are inadequate for evaluating heterogeneous processors, because the

features they measure are (sometimes subtly) different from features that are desirable

in heterogeneous processors. A third category of metrics—diversity metrics—comes

from research into multiobjective evolutionary algorithms (MOEAs). While the diver-

sity preservation components of MOEAs have an intent similar to core selection for

diversity, core selection places stricter requirements on metrics that MOEA metrics

cannot meet. The limitations of the three categories of metrics are detailed below.

5.6. Limitations of Current Metrics 63

5.6.1 Throughput Metrics

There has been significant research into metrics for evaluating the throughput of pro-

cessors. This area of research became relevant when processors gained the ability to

run multiple threads in parallel, either using SMT (simultaneous multi-threading) or

by implementing multiple cores. Throughput metrics are used to evaluate the total

work completed by a processor. The metrics are sometimes coupled with fairness

metrics to ensure that increases in throughput are fairly distributed among threads,

and sometimes with turnaround time metrics to evaluate the average execution time of

tasks (see section 3.5.2 (p. 33)). Since heterogeneous processors are also multicore

processors, they are sometimes evaluated with the same throughput metrics used for

homogeneous multicores.

Throughput metrics are compelling, because the concept of total work completed

is intuitively obvious. However, throughput is only rarely useful for evaluating hetero-

geneous processors in mobile devices. The user of a mobile device is not interested in

maximizing the number of instructions executed by several parallel threads in, e.g., a

24-hour period. Most of the cores on a mobile device will be idle most of the time, and

when the cores are used, the user requires responsiveness and a short turnaround time

for tasks, even if these lower the overall throughput of the processor. Van Craeynest and

Eeckhout [182], for example, observe a trade-off between system-level throughput and

the turnaround time of individual tasks, which suggests that optimizing mobile devices

for throughput produces the opposite of the desired effect.

Throughput and other similar metrics are based on average execution speed, which

hides variations in speed. If a task runs very slowly for a minute, and then very

quickly for another minute, then the throughput may be acceptable, but the user is

likely to be unhappy with the uneven performance. To avoid this averaging behavior,

the runtime model (section 5.4) assumes that a task has exclusive access to a CPU core,

ensuring that the task has constant performance. The metrics proposed in chapter 6
primarily operate on a task-level granularity, and there is therefore no way to hide

uneven performance. (Note that a task is not necessarily an entire program, but may

be a program phase.)

For the avoidance of doubt, throughput metrics are valid for evaluating throughput-

oriented, fully subscribed processors where turnaround time is of secondary impor-

tance. Mobile processors simply do not fit into this category.

64 Chapter 5. Technical Motivation

5.6.2 Summary Metrics

As described in section 2.2.3 (p. 10), a summary metric is a metric that combines two

or more other metrics into a single figure of merit. A summary metric can potentially

help manage a trade-off between metrics, as different combinations of values for the

underlying metrics can have the same overall figure of merit. There are obvious

parallels between summary metrics and the selection problem. A solution to the

selection problem requires a set of cores that implement different trade-offs between

power and performance. If a summary metric could combine power and performance

such that a slow, low-power core; a fast, high-power core; and cores at various points

in between have the same value for the metric, then the summary metric could be used

to select at least a preliminary set of cores from a candidate set. Each selected core

would have a different power and performance, but they would all be equally “good”

with respect to the summary metric.

The most common summary metric used for evaluating processors is ED2—

energy-delay-squared product. ED2 is equivalent to PD3 (power-delay-cubed product),

and is inversely proportional to IPS3/W (instructions-per-second-cubed per Watt).

I.e., ED2 evaluates a trade-off between power and performance. In the following, it is

first shown that ED2 cannot be used to select heterogeneous cores for diversity. It will

then be argued that summary metrics in general fail to select for diversity.

5.6.2.1 ED2 Limitations

The ED2 metric is a measure of efficiency—it takes into account both the speed of

execution and the associated energy cost. A recurring theme in microarchitecture

research is that a CPU core should be energy efficient—regardless of its speed, the

core should maximize the amount of useful work performed with the energy that is

consumed. An example of this is found in Zyuban and Kogge [198], who coin the term

energy-efficient architecture. ED2 was originally proposed by Martin et al. [121] as a

voltage-invariant method of evaluating circuits in an asynchronous processor. While

the energy and delay of a circuit are both dependent on voltage, the ED2 of the circuit

is not. ED2 has since been used to evaluate all types of processors (see section 3.5.1
(p. 32)).

For a compute-bound workload running on a core with DVFS, ED2 can be ex-

pected to be roughly constant across all DVFS levels. This can lead the designer of a

heterogeneous processor to assume that ED2 should also be constant for a diverse set

5.6. Limitations of Current Metrics 65

Figure 5.5: The black lines show constant energy efficiency (ED2) from low power to

high performance. Ideally, low-power and high-performance cores would have equal

efficiency, but this is difficult to achieve in practice.

of heterogeneous cores. One core might consume very little energy, but would be slow.

Another core might be fast, but would consume large amounts of energy. Together, the

cores would span a diverse set of power-performance points.

Selecting cores with similar, optimal ED2 values is, however, an unreliable se-

lections methodology, as it is unlikely that different microarchitectures with different

power-performance characteristics can actually be implemented with equally good

ED2. This has been shown quantitatively by Azizi et al. [7]; an intuitive explanation

is given in figure 5.5. Each black line in the figure is a constant ED2 value. A, B,

and C are cores. B corresponds to an in-order or simple out-of-order core. The high

efficiency (work per unit of energy) of B makes it a good fit for battery-operated devices

and throughput-oriented data centers. C corresponds to a wide, out-of-order core with

aggressive prefetching and speculation. Cores like C are used for applications where

latency is more important than efficiency (e.g., gaming). Finally, A is an extremely

low-power core. There are fewer examples of such cores in the market. Cores like A

might be used when strict thermal limits are in place, and low-power operation is more

important than speed or efficiency.

If cores A, B, and C in figure 5.5 could be designed to have equal efficiency, then

ED2-optimization could be used to make at least a preliminary selection of diverse

cores. However, the energy spent on aggressive speculation in C makes it inevitable

that some energy will be wasted and ED2 will be worse than for B. Similarly, the long

66 Chapter 5. Technical Motivation

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.1 1.2 1.3 1.4 1.5 1.6

1.
0

2.
0

3.
0

4.
0

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

++ ++

●
●
+

Candidate Set
Baseline Selection
ED2 Selection

Figure 5.6: The ED2-optimized selection has a favorable mean normalized ED2 (1.1),

but the cores do not give good coverage of the design space. The Baseline selection

contains both low-power and high-performance cores and covers the design space, but

its mean normalized ED2 is poor (10.0). The candidate set is shown for reference. The

data is for the aes benchmark.

execution time of A gives it a lower efficiency than B. More broadly, the ED2 metric is

premised on the observation that the speed of a circuit increases linearly with voltage,

and the energy consumption of a circuit increases with the square of voltage. To apply

ED2 to a space of heterogeneous cores is to assume that microarchitectural changes

that increase speed increase energy consumption by the square of the speed increase.

However, microarchitectural changes alter the structure of circuits, rather than the

applied voltage. A CPU core contains a large number of microarchitectural struc-

tures that are all interdependent, but have different functions, different performance

characteristics, and different interactions with workloads. It is therefore obvious that

the squared relationship between speed and energy cannot be assumed to hold, and that

the ED2 metric cannot be used to select cores for diversity. Intuitively, as illustrated

by figure 5.1, a processor with cores like A, B, and C is more diverse than a processor

with only cores like B. However, average ED2 is optimized by a processor with only

type B cores.

Figure 5.6 shows the limitations of the ED2 metric using data from the example

dataset (see section 4.3 (p. 41)). The gray points make up the candidate set—all the

power-performance Pareto-optimal cores in the space. Two sets of cores are manually

selected from the candidate set. The cores in the Baseline selection are selected to

emphasize diversity, and the cores in the ED2 selection are selected to minimize ED2.

The Baseline selection contains a broad spread of cores, ranging from low-power to

high-performance. This selection can run tasks quickly when there is a large amount

of power available to the processor, and it can continue running tasks on the slower

5.6. Limitations of Current Metrics 67

cores even when power is tightly constrained. For this particular design space, ED2

is minimized at the high-power end of the candidate set. It is clear from inspection

that the ED2-optimized selection does not offer the same flexibility as the Baseline

selection. If power is limited even slightly, then none of the cores in the ED2 selection

can be used.

Despite the obvious limitations of the ED2 selection, the average normalized ED2

of the four cores in the ED2 selection is only 1.1—10% worse than the best ED2

possible in the design space. The average ED2 for the cores in the Baseline selection

is 10.0. This is 900pp (percentage points) worse than the best possible, or 9× worse

than the ED2 selection. Again, this demonstrates that the features that make for good

aggregate ED2 efficiency are likely to result in a poor set of heterogeneous cores.

5.6.2.2 General Limitations

The previous section argued that an ED2-optimization approach cannot lead to a di-

verse selection of cores, because ED2 is minimized at one point in the design space,

but a diverse set of cores must span a range of points in the design space. While ED2

and the inversely proportional IPS3/W are some of the most widely used summary

metrics in computer architecture, other metrics of the general form EiD j have also

been used. However, adjusting the weights of the E and D terms simply shifts the

point in the design space where the metric is minimized; it does not introduce a spread

of points. These limitations of summary metrics have previously been studied in the

context of MOEAs (see, e.g. Kursawe [100], Zitzler and Thiele [196]), and apply

equally to using summary metrics to select diverse cores.

Some authors consider using a set of EiD j-type summary metrics to capture a

spread of points across the design space, where each pair of i- j values emphasizes

a different point in the space [3]. This also does not help solve the selection or

evaluation problems; it simply transforms the problem of selecting cores into a problem

of selecting pairs of i and j values. The more general limitation of EiD j metrics, as

noted by Azizi et al. [7], is that all pairs of i and j values are arbitrary—there is no

good reason to think that any given trade-off between i and j is better than another.

There are even situations where energy and delay are directly correlated and cannot be

traded off (see section 3.5.1 (p. 32)).

The fundamental problem with summary metrics is as follows: A summary metric

assumes a fixed exchange rate between the underlying metrics—in the case of ED2,

speed is worth twice as much as energy. The real microarchitectural design space

68 Chapter 5. Technical Motivation

is unlikely to follow any fixed exchange rate, and a summary metric will therefore

preclude diversity by valuing one point in the design space more highly than others.

However, if a designer wishes to include some regions of the design space and exclude

others, this should be done explicitly, rather than implicitly through summary metrics.

Even if a summary metric could be devised such that it exchanges the underlying

metrics in exactly the same way as the real microarchitectural design space, it would

not help solve the selection and evaluation problems. A summary metric that perfectly

matches the design space would hide diversity. All selections of cores, whether diverse

or clustered, would have the same average score with respect to the summary metric.

Ultimately, when selecting cores, the designer should ensure that the candidate

set of cores is Pareto-optimal for power and performance and that the selected cores

are appropriately spaced in the design space. EiD j-type metrics cannot contribute to

either of these goals. It is obvious why considerations like power, energy, speed, and

throughput are potentially interesting to a designer or user, but it is not at all clear what

additional information summary metrics contribute or why they should be optimized.

5.6.3 Diversity Metrics

Heterogeneous core selection can be simplistically viewed as a type of multiobjective

optimization problem—the set of selected cores must optimize the inversely propor-

tional quantities of power and execution time. Elitist MOEAs keep a running list of top

(elite) solutions. The set of elite solutions is of finite size and must provide coverage of

the entire Pareto-optimal solution set (see, e.g., Zitzler and Thiele [196]). The problem

of selecting some elite solutions to represent the solution set is similar to the problem

of selecting some cores from a candidate set.

Despite the apparent similarity, selecting elite solutions is a fundamentally different

problem from selecting cores; while techniques used to evaluate elite solutions can

inspire techniques for evaluating selections of cores, they cannot be guaranteed to be

usable in their original form for evaluating heterogeneous sets of cores. This is because

in general, selecting elite solutions is a simpler problem than selecting cores, and

because specific metrics that have been developed for use in MOEAs have limitations

that make them difficult to apply to sets of cores. Selecting elite solutions is the simpler

problem for three reasons: First, as already noted in section 5.3.4, one selection of

cores must approximate many, different Pareto-optimal frontiers, one per benchmark.

A set of elite solutions need only sample one Pareto frontier. Second, elite solutions

5.7. Limitations of Current Selection Techniques 69

exist only to guide an algorithm, while selected cores will be implemented. There

is therefore a greater correctness requirement for core selection methods. Third, the

number of elite solutions can be substantially larger than the number of selected cores.

100 elite solutions is common [40]; current heterogeneous processors implement two

types of cores [69]. Core selection must achieve much more with far fewer data points.

In addition to the above general differences, various diversity metrics that have

been used with MOEAs have features that make them difficult to use consistently for

evaluating sets of cores. The most common such feature is that many diversity metrics

require tuning—they are dependent on constants that must be set correctly for the

metric to function. The tuning requirement makes it difficult to interpret metrics and

compare studies. This issue is discussed further in section 6.2 (p. 75) and section 6.6.5
(p. 88), and is also raised by Deb et al. [40].

5.7 Limitations of Current Selection Techniques

The central benefit of single-ISA heterogeneity is that it is able to shift some design-

time decisions to runtime. A designer strategically selects a set of cores to implement

so as to enable flexibility later. The final decision regarding which core a task is run on

is made at runtime with the benefit of runtime information. Despite the advantages of

heterogeneity, there has been next to no research into strategies that the designer can

employ to select a flexible set of cores. The following sections discuss four selection

methods and their limitations. The first two are naïve approaches, and are included

for completeness. The final two have been developed for server processors, and are

not applicable to mobile processors. Multiobjective optimization techniques are not

discussed, as they do not address the selection problem (see section 3.6.1 (p. 35)).

5.7.1 Max Selection

Max selection is a strategy that selects cores to maximize a single metric, like per-

formance or efficiency. It can potentially lead to as many selected cores as there

are benchmarks used to tune the processor, as a different core might maximize the

metric for each benchmark. Lee and Brooks [107] use Max selection, and then use

clustering to reduce the number of core types down to the required number. The

primary limitation of a Max selection strategy is that it can only lead to non-monotonic

heterogeneity, and it therefore cannot provide flexibility between low power and high

70 Chapter 5. Technical Motivation

performance execution. It is also not clear whether and under what circumstances can it

be justified that many cores are used to optimize just one metric. Lee and Brooks [107]

observe average ED2 improvements of up to 30% when using cores selected for ED2

with a Max selection strategy instead of the best single core. However, performing Max

selection for ED2 for the EEMBC benchmarks using the infrastructure in section 4.3
(p. 41) leads to an insignificant ED2 improvement of 4% over the single, best core.

5.7.2 Max-Budget Selection

Max-Budget selection is a natural extension of Max selection that adds a budget for

some resource. Resources that can be budgeted include power and silicon area—a

Max-Budget selection strategy might seek to maximize performance within a given

power budget, for example.

The underlying limitation of a Max-Budget strategy is that hard limits on resources

are external to the design space and are imposed on the design space without insight

into the features of the space. As such, hard limits can lead to poor trade-offs. An ex-

treme example is a design space with two competing cores, where one core consumes

50% more power and is 0.1% faster than the other. If performance is to be optimized,

and if the faster core fits in the power budget, then the faster core will be selected

despite the fact that trading 50% in power for 0.1% speed is generally unreasonable.

The converse is also possible: There could exist a core that both requires marginally

more power than allowed for by the budget and is significantly faster than any core

within the budget. A Max-Budget selection strategy would exclude such a core even

though a designer could make allowances for it.

Similarly to Max selection, Max-Budget selection can only select non-monotonic

cores. It may be suggested that different power budgets can be used to select cores at

a range of power-performance points. However, this approach suffers from the same

problem described above—an unfavorable core could be just within one of the power

budgets, and a favorable core could be just above a budget. Furthermore, while the

highest power budget could be determined from physical power or thermal limits, the

other budgets will be arbitrary.

5.7.3 GA Selection

One of the more sophisticated core selection strategies is by Navada et al. [134], who

use a genetic algorithm (GA) to intelligently perform both design space exploration

5.8. Summary 71

and core selection in one step. This GA selection strategy is a form of Max selection

and Max-Budget selection. The genetic algorithm performs two functions: It searches

the design space, and it handles the combinatorial complexity of selecting a few cores

for many benchmarks. The genetic algorithm can either attempt to find the fastest set

of cores, or the fastest set of cores under a power budget. GA selection is evaluated in

chapter 8.

While the GA selection strategy solves the complexity problem of the Max-Budget

selection strategy, it still only selects a non-monotonic set of cores. As such, the

cores do not offer flexibility between low power and high performance, and are only

appropriate for high-performance computers, not mobile devices. The GA could be

used to select cores under a range of power budgets, but as already noted in the previous

section, these power budgets will inevitably be arbitrary.

5.7.4 Clustering Selection

The state of the art in heterogeneous core selection is the Clustering selection strategy

by Guevara et al. [71]. The Clustering strategy selects cores from a candidate set

by grouping similar cores together using k-means clustering, and then selecting a

representative core from each cluster. This leads to low-power cores, high-performance

cores, and cores in between, as required by mobile processors. The processor designer

defines how many different types of cores are needed by setting the number of clusters

that k-means should produce.

The Clustering strategy is evaluated in chapter 8. It’s main limitation is that it

attempts to minimize runtime risk in server processors. While the Clustering strategy

is relevant to mobile devices, its conservative nature prevents it from taking advantage

of some of the specialization possible with heterogeneous processors.

5.8 Summary

Bridging the gap between design space exploration and a heterogeneous processor

requires solutions to the selection and evaluation problems. DSE methods produce

candidate sets of cores, but they offer no means of choosing cores from candidate sets.

The key requirement for a selection of cores is microarchitectural diversity that leads

to an acceptable level of runtime flexibility for all relevant types of programs. Existing

72 Chapter 5. Technical Motivation

selection methods cannot provide this diversity, and existing evaluation methods

cannot measure it.

Chapter 6:

Metrics for Sets of
Heterogeneous Cores

Heterogeneous processors enable flexible execution under variable power budgets

through microarchitectural diversity. Traditional, homogeneous processors require

one, well-designed CPU core that can be instantiated many times. Heterogeneous

processors require many, well-designed cores, with the additional requirement that the

cores also perform well together. The need for collective optimization of cores is a

marked complication over the pattern established by homogeneous processors. This

chapter introduces a suite of quantitative metrics for evaluating a range of features

exhibited by sets of heterogeneous CPU cores. These metrics lay the groundwork for

rigorous heterogeneous processor design, evaluation, and analysis.

6.1 Introduction

A significant component of heterogeneous processor design is the evaluation problem,

as described in section 5.3.3 (p. 55). To design a heterogeneous processor, it must

be possible to quantify features of the processor rigorously and at scale. It would be

unreasonable to base design decisions solely on a processor designer’s intuition. The

CPU core selection problem (section 5.3.2 (p. 53)) is combinatorially complex, with

a nearly infinite number of potential core combinations that could be implemented.

Even if a human designer could consistently offer unbiased evaluations of sets of cores,

the sheer number of evaluations required by the design process demands well-defined

metrics so that evaluation can be automated. Cost-benefit analyses are also dependent

on rigorous metrics. Each design decision has a monetary design and fabrication cost.

73

74 Chapter 6. Metrics for Sets of Heterogeneous Cores

Without quantifying a decision’s effects, it cannot be determined whether the decision

is a correct one for the processor.

When evaluating heterogeneous processors, it is crucial to be precise about what

features, exactly, are being evaluated. It is easy to conflate two related, but distinct

concepts, and it is easy to define summary metrics that hide the true features of pro-

cessors. For example, a recent work [182] performs design space exploration (DSE) to

optimize a heterogeneous processor for STP (system throughput) and ANTT (average

normalized turnaround time) (see section 3.5.2 (p. 33)). The authors find that Pareto-

optimal points in the trade-off between the two metrics can be achieved with just

two core types—i.e., they find that only minimal heterogeneity is required. This may

lead a reader to conclude that minimal heterogeneity is sufficient in all circumstances.

However, because the chosen metrics operate on the system level, it is not possible to

determine why the system cannot take advantage of more than two types of cores. It

may be that the memory bandwidth and area budget used in the experiments inhibited

heterogeneity; it may be that the candidate set of cores used to compose the processor

was too small; it may be that when STP and ANTT are the optimization targets,

then two core types will always be sufficient; it may even be that two core types are

universally sufficient for all heterogeneous processors; or it may be due to a com-

pletely different reason. The system-level metrics are simply not descriptive enough to

draw general conclusions. Furthermore, while system-level metrics are applicable to

heavily utilized server processors and similar problems, they are inadequate for under-

subscribed, mobile, consumer devices. The average throughput of a smartphone, for

example, is completely irrelevant if the throughput swings wildly between low and

high values—the user will be displeased by the performance variation even if average

performance is acceptable.

This chapter contributes to the solution of the evaluation problem by defining eight

new metrics for evaluating sets of heterogeneous cores. I.e., the metrics evaluate the

behavior of a selection of cores collectively rather than the features of any single

core, and the metrics consider the types of cores, not the number of each type. These

eight metrics are not necessarily exhaustive—there may be other, as yet unidentified,

features of sets of cores that could be optimized. The metrics are independent—

a designer can choose not to use some of the metrics if they quantify features he

is not interested in. Crucially, the metrics are tools that provide the designer with

information and insight to aid in making intelligent design decisions; they are not

interchangeable quantities that can simply be traded off via a cost model. The metrics

6.2. Motivating Goals 75

are not intended to evaluate considerations such as uncore components (e.g., networks-

on-chip or NoCs), whole systems, scheduling algorithms, or even the business case for

heterogeneity. If a designer finds benefits from, e.g., eight core types, but then finds that

the NoC hides these benefits, then this should motivate NoC research. Similarly, if an

operating system designer struggles to schedule to several core types, this demonstrates

the need for better scheduling algorithms. The engineering cost of many different cores

might be prohibitive in a given market, but this can change quickly as markets change

and design automation improves. A designer must understand the effects of each

system component to be able to draw valid conclusions about system design. These

eight metrics evaluate one part of the system—the set of cores—thereby enabling a

more rigorous approach to the selection and evaluation problems. The metrics are

summarized in table 6.1.

The remainder of this chapter is arranged as follows: The second section describes

the motivating goals that guide the form that the metrics take. The third section in-

troduces the assumptions that underlie the metrics. The fourth section considers some

basic metrics—naïve metrics that are included for completeness and to support later

discussion. The following seven sections each discuss one of the eight metrics, except

for the section on uniformity, which contains two metrics. Each metric is introduced

with an intuitive description, followed by a numerical definition and example use cases.

The metrics are all premised on the runtime model described in section 5.4 (p. 58). The

final section considers the implications of the runtime model’s available power PDF on

the formulation of the metrics.

6.2 Motivating Goals

As described above, the overall goal of the metrics is to provide a set of tools that can

be used to aid the design of heterogeneous processors. Beyond this general theme,

there are four principles that guide the way in which metrics should be defined. These

four principles, or goals, are listed here and described below.

Goal 1: Avoid constants and tuning

Goal 2: Use relative instead of absolute values

Goal 3: Have no dependence on a baseline architecture

Goal 4: Have an intuitive interpretation

76
C

hapter6.
M

etrics
forS

ets
ofH

eterogeneous
C

ores

Name Feature Optimization Per-Benchmark /
All Benchmarks

Optimal Cores /
All Cores

Summary
Function

KS Test Standard statistical technique.

Used here to measure

uniformity

Smaller-is-better Per-benchmark Optimal cores Arithmetic

mean

Localized
Non-Uniformity

Uniformity Smaller-is-better Per-benchmark Optimal cores Arithmetic

mean

Gap Overhead Slowdown over ideal set with

all cores

Smaller-is-better Per-benchmark Optimal cores Arithmetic

mean

Set Overhead Slowdown over a different set

of cores

Smaller-is-better Per-benchmark Optimal cores Arithmetic

mean

Availability Likelihood that the set of cores

can be used

Larger-is-better Per-benchmark Optimal cores Arithmetic

mean

Effective Speed Average speed of a set of cores Larger-is-better Per-benchmark Optimal cores Harmonic

mean

Generality Amount of per-benchmark

specialization in a set of cores

N/A All benchmarks All cores N/A

Monotonicity Dependence of core ordering on

benchmark

N/A All benchmarks All cores N/A

Table 6.1: Summary of metrics. Metrics applied on a per-benchmark basis can be summarized for a set of cores using a summary function.

Per-benchmark metrics are only applied to cores in the selection that are Pareto-optimal for the benchmark.

6.2. Motivating Goals 77

Goal 1: If one must choose values for constants or perform some other tuning

on a metric, then one can never be certain whether the metric is actually evaluating

the processor, or whether it is only evaluating its own tuning. This severely limits

the ease of use and applicability of a metric. The user of the metric must prove that

constants have been given correct values, even though there is no single, well-defined

definition for “correct.” This, in turn, makes comparing results from two different

studies difficult, because both must tune the metric similarly. Tunable constants in

metrics also make it easier for users of the metric to doctor results. Finally, since

metrics are used during design as well as for evaluation, a poorly tuned metric can

direct the design process in the wrong direction.

Goal 2: Processor design is reliant on simulators and power models, since design

precedes implementation. Modeling tools that are fast enough to be used for design

space exploration can generally be assumed to produce output that is accurate in rela-

tive terms, but not in absolute terms. E.g., if the size of a microarchitectural structure

is doubled, then the relative power for the core can be expected to track appropriately

(as reported by a tool like McPAT). The absolute power in Watts is implementation-

dependent, however, and is difficult to predict across a design space. Goal 2 states

that metrics should not rely on the absolute correctness of a number from a tool, but

should only assume relative correctness. As a consequence, metrics that meet this goal

can only report relative results—a metric can report a 10% improvement in execution

speed, for example, but not a 10 second improvement in speed.

Goal 3: Goal 3 follows from goal 2. For metrics to be relative, they must compare

against some baseline. Works on homogeneous processors generally use a baseline

architecture. In the heterogeneous case, it is unclear what a baseline architecture

should be, as there is no accepted, generic, heterogeneous processor, and there are

a nearly infinite number of possible ways of composing a heterogeneous processor.

The metrics in this chapter and the algorithms in chapter 7 use the whole design space

as a baseline, and report quantities relative to the design space. For example, the power

consumption of a benchmark on a core is reported relative to the power of the given

benchmark when running on its lowest-power core. The definitions later in this chapter

will further clarify this approach. Section 7.4 (p. 121) revisits this goal in the context

of a selection algorithm.

Goal 4: Finally, goal 4 states that metrics should be intuitive to understand. While

the formulation of a metric may be involved, it should be easy to understand what

the resultant number represents. As systems become more complicated, greater effort

78 Chapter 6. Metrics for Sets of Heterogeneous Cores

must be made to ensure that humans can continue to reason about the processors being

designed and to sanity-check the algorithms used during design.

6.3 Assumptions

A small number of assumptions underlie the metrics defined in this chapter. The most

significant of these is the runtime model and its associated assumptions, described in

section 5.4 (p. 58). While many of the runtime model’s assumption are not satisfied

by current mobile devices, all of them are within reach of current or near-future tech-

nology.

The runtime model assumes a scheduler that schedules tasks based on an available

power probability density function (PDF). The metrics in this chapter are therefore

dependent on an intelligent scheduler that has knowledge of power PDFs. While this is

a non-trivial dependency, it means that the metrics inherit the versatility of the runtime

model. For example, if a task is a single-threaded, high-priority application, then the

scheduler will tend to make more power available to it, and the evaluation will be with

respect to a PDF that is skewed toward high power. Conversely, a task might be just

one thread in a multi-threaded application. In this case, the scheduler can only make

small amounts of power available to the task, since the task always runs concurrently

with other tasks. Evaluation will be with respect to a PDF that is skewed toward low

power. For simplicity, the metric definitions in this chapter assume a flat PDF—all

values of available power between the minimum usable power and maximum possible

power are equally likely. Real PDFs could be determined empirically or by modeling

usage scenarios, for example. Section 6.13 describes applying the metrics to cases

where the PDF is not flat.

Finally, as noted in section 6.1, the metrics consider the selection of cores. The

metrics therefore assume that uncore components can be designed to fully take advan-

tage of the heterogeneity provided by the cores.

6.4 Example Data

Each of the metrics in this chapter is demonstrated using examples. For consistency,

the demonstrations make use of the same four selections of cores where possible. The

cores are manually chosen from the example dataset described in section 4.3.2 (p. 42).

The complete list of cores in the design space is in appendix A. The Baseline selection

6.4. Example Data 79

Normalized Power
N

or
m

al
iz

ed
 T

im
e

1.0 1.1 1.2 1.3 1.4 1.5 1.6

1.
0

2.
0

3.
0

4.
0

●

●●

●

+

+

+
+

●
+

Baseline Selection
Alternative Selection

Figure 6.1: The Baseline and Alternative selections, shown for bm1.

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.1 1.2 1.3 1.4 1.5 1.6

1.
0

2.
0

3.
0

4.
0

●

●●

●

+

+

●
+

Baseline Selection
2−Core Selection
8−Core Selection

Figure 6.2: The Baseline selection, and 2- and 8-Core selections, shown for bm1.

is intended to be a reasonably good set of four heterogeneous cores. It contains cores

#60, #671, #1731, and #2367. The Alternative selection of cores is similar to, but

intuitively worse than the Baseline selection. It contains cores #417, #713, #1065, and

#2027. The Baseline and Alternative selections are used with metrics that compare

different selections that contain the same number of cores each. The 2-Core selection

contains only two cores—#60 and #671 from the Baseline selection. The 8-Core

selection contains all four cores from the Baseline selection, as well as cores #597,

#1546, #2524, and #2804. The 2-Core, Baseline, and 8-Core selections are used with

metrics that evaluate the effects of increasing the number of cores in a selection.

Rather than use all benchmarks from section 4.3.1 (p. 41), this chapter illus-

trates metrics with five benchmarks from the EEMBC suite: aes, cjpeg, huffde,

mpeg4encode, rgb2cmyk. For brevity, these are referred to as bm1-5. Figure 6.1
shows the Baseline and Alternative selections for bm1. Figure 6.2 shows the 2-Core,

Baseline, and 8-Core selections for bm1. Figures in this chapter plot cores by power

and execution time, normalized to the best power and best execution time for the given

benchmark by any core in the design space.

80 Chapter 6. Metrics for Sets of Heterogeneous Cores

6.5 Basic Metrics

This section describes four naïve metrics: minimum, maximum, spread, and minimum

or maximum with budget. There is nothing intrinsically incorrect about these metrics,

nor is there anything particularly novel about them. The metrics quantify obvious

features of a selection of cores and can be useful during the design process. However,

due to their simplicity, these metrics have very little descriptive power, and cannot be

used to guide the selection of cores. The metrics have a close correspondence to some

of the existing selection strategies described in section 5.7 (p. 69).

6.5.1 Minimum

The minimum (min) of a physical quantity for a selection of cores is simply the

minimum of that quantity achievable with that selection. For example, a designer

may be interested in determining what the minimum possible execution time is for a

benchmark when given a set of cores. A particularly important feature of a selection

of cores is its minimum operating power. The available power PDF and its dependent

metrics are only useful when there is enough power to use at least one core. If the

amount of power available to a task is less than the minimum operating power of the

set of cores, then the task cannot be run, and little further analysis is possible (see the

availability metric, section 6.9, and the PDF discussion, section 6.13).

6.5.2 Maximum

The maximum (max) of a physical quantity for a selection of cores is the maximum

of that quantity achievable with that selection. For example, the maximum amount of

power that a task can consume when running on a selection of cores has consequences

on thermal design and power delivery.

6.5.3 Spread

The spread of a given physical quantity for a selection of cores is simply the range

between the minimum and maximum. As described in section 5.5.1 (p. 61), spread is

a necessary but insufficient condition for enabling runtime flexibility. Spread is impor-

tant, because a designer may well wish to fix the minimum and maximum acceptable

levels of power consumption, and only select and evaluate cores in the fixed range.

6.6. Uniformity 81

6.5.4 Budgeted Minimum and Maximum

Budget-based metrics evaluate the minimum or maximum of one physical quantity

when another physical quantity is constrained. For example, a designer may wish

to find the minimum execution time of a task on a set of cores given a maximum

power budget, or he may wish to find the minimum power consumption of a task

given a maximum time budget (i.e., a deadline). As described in section 5.7.2 (p. 70)

and section 5.7.3 (p. 70), a budgeted metric can be a sufficient design criterion for

homogeneous processors and some server-oriented heterogeneous processors, but is

inadequate for evaluating the runtime flexibility demanded by mobile processors.

6.6 Uniformity

The first two metrics quantify uniformity—how evenly the selected cores cover the

candidate set. Section 5.5 (p. 60) argued that a heterogeneous mobile processor must

be diverse to enable runtime flexibility. Diversity is maximized when the selected cores

provide uniform coverage of the candidate set. The candidate set may be clipped to a

range of power values (the required spread). An intuitive description of a uniformity

metric is presented first. Uniformity can be evaluated using either the KS test or

the localized non-uniformity metric. The two approaches are described in turn and

then compared. It is argued that the localized non-uniformity method is more robust.

Finally, the localized non-uniformity metric is compared to various diversity metrics.

6.6.1 Intuition

Figure 6.3 shows the Baseline selection of four power-performance Pareto-optimal

cores described in section 6.4. Assume that the processor designer has the option of

adding a fifth core to the selection: either core #2416 or core #1188. The two options

for the fifth cores are plotted with crossed circles, and the complete candidate set of

Pareto-optimal cores is shown in gray for reference. The cores are plotted for bm1. The

axes are normalized power and execution time. 1.0 on the power axis is the minimum

power consumed by any core in the design space when executing bm1. 2.0 on the

power axis is twice that amount. Since normalization involves a division, the values

have no units. The normalization procedure is identical for the time axis.

Intuitively, there are two reasons to select core #1188 over core #2416. The first

is flexibility at runtime. Core #1188 roughly bisects the gap between core #2367

82 Chapter 6. Metrics for Sets of Heterogeneous Cores

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.1 1.2 1.3 1.4 1.5 1.6

1.
0

2.
0

3.
0

4.
0

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●
●

●
●

●

#2416
#1188

#60

#2367

#1731
#671

●
●
●

Candidate Set
Baseline Selection
Possible 5th Core

Figure 6.3: Non-uniformity helps determine that core #1188 is a better addition to the

Baseline selection than core #2416 when considering benchmark bm1. The dashed

line shows Euclidean distance between cores.

and core #1731. The runtime scheduler can trade off power and performance in

regular increments, leading to a smoother user experience. In contrast, there is a large

performance drop between core #1731 and core #2416, and only a small drop between

core #2416 and core #2367. The second reason is engineering effort. Core #2416

almost duplicates core #2367. If core #2416 is implemented, then there is only a low

likelihood that there will be enough power for core #2367 but not enough for core

#2416. Core #2367 will be nearly redundant.

The intuition, then, is that a metric is required for measuring whether cores are

uniformly spaced along the Pareto-optimal frontier, or whether the cores appear in

clusters. The metric should consider worst-case behavior, such as the gap between

core #60 and core #2367. It cannot, however, be dominated by worst-case behavior,

because then it cannot help select between core #2416 and core #1188.

6.6.2 Kolmogorov-Smirnov Test

The two two-sided, two-sample Kolmogorov-Smirnov test (KS test) is a statistical

technique used to determine whether two sets of sampled points are drawn from differ-

ent, unknown distributions [36, p.456]. The following sections describe and demon-

strate the use of the KS test to quantify uniformity.

6.6.2.1 Application to Uniformity

The KS test reports the T1 metric. T1 ranges from 0.0 to 1.0. If T1 is close to 0.0, then

it is very likely that two sets of sampled points are drawn from the same underlying

distribution. The process of evaluating uniformity with T1 is as follows: T1 is evaluated

6.6. Uniformity 83

on a per-benchmark basis using power values. For this metric, it does not matter

whether the power values are normalized. The first set of sampled points contains

those cores from the candidate set that are Pareto-optimal for the given benchmark.

The second set of sampled points contains the cores from the selection that are Pareto-

optimal for the benchmark. Since the test is only applied to Pareto-optimal points,

results are identical when using time instead of power.

In this application, it is already known that the two sets of sampled points come

from the same underlying distribution—a distribution determined by the microarchi-

tectural design space of cores. Calculating T1 allows one to determine how much the

selection of cores “looks like” the candidate set—how representative the selected cores

are. A representative selection captures most of the diversity of the Pareto-optimal set,

while a selection that is not representative is not diverse. An advantage of the KS test

is that it favors selections that cover the entire range of cores even if the candidate set

contains clusters of cores that skew the distribution.

6.6.2.2 Example: Evaluating Diversity

A small-scale example of the KS test is shown in figure 6.4 and table 6.2. The example

contains a small candidate set composed of eight types of cores. This set is different

from the 8-Core selection described in section 6.4 above, and has been manually

selected from the complete candidate set to illustrate the KS test. Figure 6.4 plots

the eight cores for three benchmarks, bm1-3. The cores’ locations in the power-time

space vary depending on the benchmark as a result of behavioral differences among

benchmarks (see section 5.3.4 (p. 56)). Two sets of three cores each are manually

selected from the small candidate set. The Clustered selection looks intuitively poor—

all cores are toward the high-performance end of the space, and there is little diversity.

The Diverse selection looks intuitively good—the cores are more evenly spaced and

cover the full range of the candidate set. The Diverse and Clustered selections are

better and worse selections, but not necessarily the best and worst selections of three

cores from the small candidate set of eight.

Table 6.2 shows T1 for both selections, and demonstrates that the T1 metric corre-

sponds to intuition. T1 between the candidate set and itself (“All Cores”) is obviously

0.0. T1 for the Clustered selection is noticeably worse than T1 for the Diverse selec-

tion. It can be seen that it is possible to use T1 to report the diversity of a selection of

cores.

84 Chapter 6. Metrics for Sets of Heterogeneous Cores

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0

1.
0

2.
0

3.
0

4.
0

●

Potential Cores (bm1)
Potential Cores (bm2)
Potential Cores (bm3)
Clustered Selection
Diverse Selection

Figure 6.4: Eight cores with increasing cache sizes and instruction windows, shown for

bm1-3. Some selections of three cores enable flexibility; others do not.

Selection T1

bm1 bm2 bm3

All Cores 0.0 0.0 0.0

Diverse 0.33 0.33 0.33

Clustered 0.83 0.67 0.67

Table 6.2: T1 values for selections of cores in figure 6.4 (smaller is better)

6.6.3 Localized Non-Uniformity

Localized non-uniformity measures how well a selection of cores covers a candidate

set, and is similar in intent to the application of the KS test described above. Informally,

it can be said to measure “clumpiness”—how clustered the selection of cores is. The

following provides the mathematical definition for the metric and demonstrates one

possible use case with an example.

6.6.3.1 Definition

Localized non-uniformity is measured over a 1-dimensional distribution of points on

a per-benchmark basis using the selected cores that are Pareto-optimal for the given

benchmark. The metric begins with the coordinates of the points in 2-dimensional,

normalized, unit-less space. I.e., the power and time axes are normalized to the lowest

possible power and lowest possible execution time for that benchmark. The 2-dimen-

sional space is flattened to one dimension using Euclidean distance—the points are

ordered by one of the axes, and the first point becomes the 1D origin. Since the points

are Pareto-optimal, it does not matter which axis is chosen for ordering. The Euclidean

6.6. Uniformity 85

distance between the first and second point is measured. This distance becomes the 1D

offset for the second point. The Euclidean distance in the 2-dimensional space between

the second and third point becomes the 1D distance between the second and third

points, and the process continues until all points have been flattened. The dashed lines

in figure 6.3 show the Euclidean distance between cores. Localized non-uniformity

is represented by the Hebrew |כ (kaph) as a mnemonic for the c in “clumpiness.” It is

defined in equation 6.1.

bm|כ =
(u1−Rmin)+(Rmax−uN)+∑

N−1
i=2 di

Rmax−Rmin
di =

∣∣∣∣ui−
ui−1 +ui+1

2

∣∣∣∣ (6.1)

bm|כ is localized non-uniformity for benchmark bm.

N is the number of points.

ui is the 1-dimensional coordinate of point i, where i is in the range [1,N].

Rmin is the lower-bound of the range over which |כ is calculated.

Rmax is the upper-bound of the range.

di is the distance from point i to the midpoint between its two neighbors.

The value of bm|כ is guaranteed to fall in the range [0,1], where 0.0 is a perfectly

uniform distribution, and 1.0 is a single, tight cluster of points. The range that bm|כ is

calculated over is defined separately from the points, as u1 and uN are not necessarily

the smallest and largest possible values for u. I.e., the first point to be flattened is

the 2-dimensional lower-bound of the range over which |כ is calculated. This point,

when flattened, becomes Rmin. The last point to be flattened is the upper-bound of the

range, and becomes Rmax. Rmin and Rmax will often correspond to the lowest-power

and highest-performance cores for bm in the candidate set. If these cores are also part

of the selection, then Rmin is equal to u1, and Rmax is equal to uN .

6.6.3.2 Discussion

As the name suggests, localized non-uniformity measures how far points are from

being uniformly distributed, but it does so by taking into account only a point’s neigh-

bors and not the entire distribution. Equation 6.1 calculates how far the first point

is from the start of the range and how far the last point is from the end. For every

other point, it calculates how far it is from being uniformly distributed with respect to

its two neighbors (how far it is from the midpoint). The most noteworthy aspect of

this formulation is that it is easy to normalize—the sum of all the distances will never

86 Chapter 6. Metrics for Sets of Heterogeneous Cores

be greater than the size of the full range. The formulation also ensures translation-

invariance—a set of points will continue to have the same |כ value even if it is shifted

within the range [Rmin,Rmax]. Finally, whether points appear clustered or uniformly

distributed depends on how large the range [Rmin,Rmax] is, and equation 6.1 reflects

this.

Localized non-uniformity is most useful for ranking different selections of the same

number of core types in preparation for further analysis. For example, taking the four

cores plus core #2416 in figure 6.3 gives |כ = 0.39. If core #1188 is used instead of

core #2416, |כ = 0.33.

6.6.3.3 Example: Identifying Redundancy

Section 6.6.1 above argued that closely clustered cores are redundant—there is little

benefit to designing two different cores with almost identical power and performance.

The localized non-uniformity metric, ,|כ can be used to quickly identify the worst cases

of redundancy. As an example, figure 6.5 shows |כ for the Baseline selection and

the Alternative selection for all five benchmarks. |כ is different for each selection-

benchmark combination, as each benchmark interacts differently with each core’s

microarchitecture. The Baseline selection has a |כ less than 0.33 for all benchmarks.

This gives the designer confidence that if the Baseline selection is sufficiently uniform

for, e.g., bm1, then it is sufficiently uniform for other benchmarks as well. (See

figure 6.1 for the Baseline and Alternative selections plotted for bm1.)

The Alternative selection has better uniformity than the Baseline selection for bm1,

bm2, and bm4. However, |כ for bm3 and bm5 on the Alternative selection is particularly

poor—0.42 and 0.38, respectively. The designer will wish to investigate why non-

uniformity is so high for these benchmarks, and whether the use of the Alternative

selection in a processor is justified. Figure 6.6 shows the Baseline and Alternative

selections for bm3. The reason for the high non-uniformity value is obvious: The two

fastest cores in the Alternative selection have almost identical behavior, and bm3 is

therefore not receiving the full flexibility benefits of heterogeneity. Ideally, with four

different cores, a workload could be run at four different power-performance points,

but the Alternative selection can run bm3 at only three power-performance points. This

result can help the processor designer choose between the Baseline and Alternative

selections. It may be the case that bm3 must have access to four distinct power-

performance points, or it may be that the processor’s priorities are elsewhere and the

Alternative selection is sufficient for bm3.

6.6. Uniformity 87

Baseline Selection
Alternative Selection

Benchmark

N
on

−U
ni

fo
rm

ity
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

bm1 bm2 bm3 bm4 bm5

Figure 6.5: Localized non-uniformity, ,|כ

shows that clustering behavior is worst

for benchmark bm3 when running on the

Alternative selection of cores.

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.1 1.2 1.3 1.4

1.
0

1.
4

1.
8

2.
2

●

●●

●

+

+
+

+

●
+

Baseline Selection
Alternative Selection

Figure 6.6: Baseline and Alternative

selections for benchmark bm3. The two

fastest cores in the Alternative set have

almost identical behavior.

Given only two sets of cores and only five benchmarks, a designer could find the

worst-case clustering of cores simply by visual inspection. However, as the number of

selections and benchmarks increases, a human designer will quickly be overwhelmed,

while the localized non-uniformity metric can easily scale to any number of bench-

marks, any number of cores in a set, and any number of sets.

6.6.4 KS Test and Localized Non-Uniformity

The KS test and localized non-uniformity are very similar in intent, though substan-

tially different in formulation. While the KS test is an accepted statistical technique, it

has a significant shortcoming that makes localized non-uniformity the better of the two

metrics for evaluating selection of cores. Specifically, the KS test is a function of the

largest gap between two points (cores). In the example in figure 6.3 for example, the

KS test evaluates the selection based solely on the distance between core #60 and core

#2367. T1 is 0.35 regardless of whether core #2416 or core #1188 is added. In contrast,

the localized non-uniformity metric evaluates all cores with respect to their neighbors,

and all distances between cores have an effect on .|כ This is helpful for a designer,

because the designer may have good reasons for maintaining a large gap between cores.

In the case of figure 6.3, T1 can only be improved by adding a core between core #60

and core #2367. However, it might be the case that a new core between core #60 and

core #2367 is physically or financially infeasible, and the designer’s only options are

core #2416 or core #1188.

88 Chapter 6. Metrics for Sets of Heterogeneous Cores

6.6.5 Localized Non-Uniformity and Related Metrics

There are a number of techniques that aim to quantify concepts similar to the |כ metric.

As noted in section 5.6.3 (p. 68), many of these metrics require tuning, and therefore

fail to meet the first goal for metrics (section 6.2). In contrast, neither the KS test nor

localized non-uniformity contain tunable constants.

In addition to the tuning problem, these metrics have other shortcomings. The

ε-coverage error and δ-uniformity metrics by Sayın [156] are both dependent on min

and max operators. As a result, they are liable to the same masking problem as the KS

test (see section 6.6.4 above). |כ has a further advantage over the ε and δ pair in that |כ is

only one quantity and therefore much easier to optimize. The entropy-based diversity

metric by Farhang-Mehr and Azarm [56] requires the user to tune a grid size and a

density function. The metric is also not normalized and does not have a well-defined

range of values, which makes it difficult to use in comparisons. ∆-nonuniformity,

defined by Deb et al. [40], is most similar to localized non-uniformity. If |כ is a

“local” metric, then ∆ could be considered a “global” metric. However, ∆ is not

normalized and can exceed 1.0 for extreme distributions. As demonstrated by the

example in section 6.6.3.3, stability under extreme conditions is perhaps the most

important feature of a metric used to evaluate selections of cores.

Uniformity has similarities with “clusterability”—how readily can points be placed

into clusters. Ackerman and Ben-David [1] evaluate “clusterability” by first clustering

points, and then measuring the quality of the clusters. Given that clustering is an NP-

hard problem, this is an exceptionally inefficient approach. It should not be necessary

to find the cluster that each data point belongs to only to determine whether the data

even contains clusters. Since evaluating the uniformity of a selection of cores does not

require finding specific clusters, the localized non-uniformity metric is both an efficient

and a sufficient tool for the processor designer.

6.7 Gap Overhead

Gap overhead is a metric for quantifying how wasteful a selection of heterogeneous

cores is on average. The uniformity metrics in the previous section measured how

regular the gaps between selected cores are. Gap overhead measures the average effect

of the gaps between cores. The intuition behind the metric is described first, followed

by its definition, a discussion, and an example of its use.

6.7. Gap Overhead 89

Normalized Power
N

or
m

al
iz

ed
 T

im
e

1.0 1.1 1.2 1.3 1.4 1.5 1.6
1.

0
2.

0
3.

0
4.

0

1 2 3 [4]

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●●

W
as

te
d

T
im

e

Transient
power budget

●
●
●

Pareto−Optimal Cores
Baseline Selection
Ideal 5th Core (not implemented)

Figure 6.7: If the amount of runtime power available to bm1 is at the dashed vertical

line, then execution must take place on the slowest core. The difference in execution

time between the ideal, unimplemented core and the slowest core is overhead. Intervals

(i in equation 6.2) are shown along the top.

6.7.1 Intuition

One of the primary motivators for heterogeneity is the ability to select an appropriate

power-performance point for a task at runtime. If a task has a high priority, then it

can be allocated a large amount of power so that it can run quickly. Often, however, it

will be the case that only a limited amount of power is available to a task, since there

may be other tasks running, the task might have a low priority, or the processor may be

close to its thermal limit, etc. In such cases, it is desirable to run the task as quickly as

possible without exceeding the amount of power that the scheduler is willing to make

available to it. It is highly unlikely that a heterogeneous processor contains a core that

can execute the given task using exactly the amount of power available. In most cases,

the task must drop down to a slightly slower core, which incurs a slowdown in addition

to the slowdown created by the power limit. Gap overhead quantifies this additional

slowdown.

Figure 6.7 illustrates gap overhead with bm1 and the Baseline selection of four

cores. In this particular instance, it so happens that there is a small amount of power

available to bm1, the transient power budget. The ideal core for bm1 (the crossed

circle) is not implemented, and execution must drop to a lower-power core, as shown

with the arrow. As a result, bm1 runs slower than it ideally would, thereby wasting

time. Gap overhead averages this wasted time for all possible transient power budgets.

90 Chapter 6. Metrics for Sets of Heterogeneous Cores

6.7.2 Definition

Gap overhead (GO) is measured on a per-benchmark basis using the selected cores that

are Pareto-optimal for the given benchmark. Equation 6.2 gives the definition of GO.

GO is based on the intervals between cores, as shown in figure 6.7. It is evaluated with

respect to a pair of resources—physical quantities that should be minimized. The

X-resource is the constrained resource. At a given time, the constrained resource

cannot exceed a given value. The Y-resource is the wasted resource. The effect of

the gaps between cores is quantified as overhead with respect to the Y -resource. In

this particular application, the constrained resource is power, as it represents a limit

that cannot be exceeded. The wasted resource is time, as the gaps between cores lead

to a slowdown. It is conceivable, however, that GO could be used with other pairs of

measured quantities (e.g., power and energy).

GObm =
N

∑
i=1

αi

(
max(Yi)−Yi

Yi

)
αi =

max(Xi)−min(Xi)

Xmax−Xmin
(6.2)

GObm is gap overhead for benchmark bm.

X is the constrained resource (power in this case).

Y is the wasted resource (time in this case).

min(Xi) is the minimum value of X in interval i. I.e., it is the power of the left-

bound core of i.

max(Xi) is the maximum value of X in interval i. I.e., it is the power of the right-

bound core of i.

max(Yi) is the maximum value of Y in interval i. I.e., it is the time of the left-bound

core of i.

αi is a weighting factor for interval i.

Xmin is equivalent to min(X1)—the lower bound of the range over which gap

overhead is calculated.

Xmax is the upper bound of the range over which gap overhead is calculated. See

below for details.

Yi is an estimate for the average of resource Y in interval [min(Xi),max(Xi)]

(or [min(XN),Xmax] for the final interval). See below for details.

N is the number of intervals between the core types that are Pareto-optimal

for bm, plus a final interval [XN ,Xmax].

6.7. Gap Overhead 91

GObm calculates how much of the Y -resource is wasted in each interval in the

average case, and takes a weighted average across all intervals. It is calculated using

absolute values for X and Y (X and Y are not normalized). GObm uses only those cores

in the selection that are Pareto-optimal for bm. The division by Yi removes the units

and makes the overhead relative (goal 2, section 6.2). Yi is an estimate for the average

value of the wasted resource in interval i. It is here defined as the arithmetic mean

of the Y values of all known Pareto-optimal cores in interval i, even if they are not

part of the set of selected cores. Yi could also be determined by extrapolation or from

first principles, but care must be taken to avoid compromising goal 1. αi provides a

weight for each interval. The range over which GO is calculated is [X1,Xmax]. Xmax

is the maximum amount of power that will ever be available. It is here defined as the

maximum power consumed by any benchmark on the most powerful selected core, but

a designer will likely be able to use known physical limits instead.

6.7.3 Discussion

Gap overhead measures how much extra time execution takes on average because all

possible cores cannot be implemented. It helps answer the question, “How much

would the average case benefit if another core were added; i.e., should another core

be added?” For the example in figure 6.7, gap overhead is 0.25—assuming that bm1

can happen to have any amount of power available to it within the valid range, and

assuming all power values are equally likely, then on average, bm1 will take 25%

longer to execute than it would in the ideal case. If the fifth core shown in figure 6.7
were also implemented, gap overhead would drop to 0.15. By measuring gap overhead,

a designer can determine the average benefit of adding another core type, and whether

the engineering effort of another core can be justified.

One should be aware of two considerations when using gap overhead: First, when

evaluating the effects of adding cores, the minimum power core must stay constant.

Otherwise, the range over which gap overhead is calculated changes, breaking com-

parability. Second, gap overhead measures the average case, and is therefore not as

sensitive to extremes as localized non-uniformity. For example, returning to figure 6.3,

gap overhead is 0.26 regardless of whether A or B is chosen. Gap overhead and non-

uniformity should be used together: GO works best when comparing different numbers

of cores; |כ works best when comparing different selections of the same number of

cores.

92 Chapter 6. Metrics for Sets of Heterogeneous Cores

2−Core Selection
Baseline Selection
8−Core Selection

Benchmark

G
ap

 O
ve

rh
ea

d
0%

25
%

50
%

75
%

10
0%

bm1 bm2 bm3 bm4 bm5 MEAN

Figure 6.8: When moving from two

to four to eight cores (figure 6.2), the

average amount of time wasted (gap

overhead) decreases from 58% to 19%

to 6%.

Number of Core Types

G
ap

 O
ve

rh
ea

d

2 3 4 5 6 7 8

0%
20

%
40

%
60

%
80

%

●

●

●
● ●

●
●

●

●
● ●

●
●

●

●
●

●

●
●

●

● ● ●
● ●

●
● ● ●
● ●

●
●

● ●
●

● ●

●
● ●

●
●

●

●
● ●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

● ●

●

●
●

●

●
●

+

●

+
●

2−Core Selection
Baseline Selection
8−Core Selection

Figure 6.9: Adding Pareto-optimal core

types always reduces gap overhead

(GO), but some core types reduce over-

head more than others. GO is shown for

bm1.

6.7.4 Example: Adding Core Types

Gap overhead, GO, measures how much more time execution takes because a pro-

cessor cannot implement cores at all possible power-performance points to match all

possible transient power budgets at runtime. GO can be used to determine when

to stop adding cores—if an extra core would only marginally reduce gap overhead,

then the designer may decide that the engineering effort required to implement the

core outweighs its benefits. As an example, figure 6.8 shows gap overhead for the

2-Core, 4-Core (Baseline), and 8-Core selections from figure 6.2. With two cores,

gap overhead is quite high—execution of bm1 and bm4 takes nearly 80% longer than

theoretically possible. Moving to four and then eight cores, GO drops significantly,

and average GO at eight cores is only 6%. The benefit of using four core types rather

than two is obvious, but there are diminishing returns to using eight types rather than

four. It is up to the designer to determine when the effort to engineer an additional

core is no longer justified by a reduced GO. It is expected that the designer would

use a weighted average of GO values, and would give benchmarks that represent high-

priority or frequently executed tasks a higher weight, as the time wasted by these tasks

is more important.

GO can also be used to determine which cores to add to a set and in what order.

Figure 6.9 shows GO for the 2-, 4-, and 8-Core selections, as well as for intermediate

numbers of cores. For example, there are two paths between the 2-Core and 4-Core

6.8. Set Overhead 93

selections, depending on the order that cores are added to the 2-Core set. One of these

paths is clearly better. One 3-core selection has a GO of 51%, while for the other,

GO is 33%. Similarly, for five cores, GO ranges from 15% to 22%. This information

is useful to a designer for two reasons: First, the designer may simply wish to use

GO to select a core to add to a set. Second, the designer may have already decided

to implement, e.g., a 4-core processor, but wishes to ship a 3-core processor as an

intermediate product while the fourth core is being finalized. GO helps determine

which core best complements an existing set and should therefore be designed first.

6.8 Set Overhead

Set overhead extends gap overhead to measure how much slower one set of heteroge-

neous cores is compared to another. Conversely, set overhead can also be interpreted

as speedup—how much faster the faster set of cores is. The intuition behind the metric

is described first, and the definition is then presented. An extended discussion details

considerations that should be made when using set overhead. The section finishes with

two example use cases of set overhead.

6.8.1 Intuition

Gap overhead from the previous section quantifies how much of a resource, such as

time, is wasted because a heterogeneous processor cannot implement all possible cores.

Set overhead extends this concept to compare the cores on two (potentially completely)

different heterogeneous processors. Assume, for example, two competing algorithms

that both select four core types to implement. The first algorithm picks the cores in

the Baseline selection, and the second algorithm makes an Alternative selection (see

section 6.4). When a task is to be run, the probabilistic runtime model (section 5.4
(p. 58)) will make some amount of power available to the task. Since the two selections

contain different cores, one will run the task slower—i.e., with more time wasted—

than the other. This quantity is set overhead.

Figure 6.10 demonstrates set overhead. For the demonstration, it is assumed that

the hypothetical algorithm that made the Alternative selection was based on a DSE

method that was not able to find cores as close to the Pareto frontier as the algorithm

used for the Baseline selection. The amount of power available to bm1 at a given

time is shown by the dashed line. The ideal, but unimplemented core for the given

94 Chapter 6. Metrics for Sets of Heterogeneous Cores

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.1 1.2 1.3 1.4 1.5 1.6

1.
0

2.
0

3.
0

4.
0

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

+

+

+
+

Transient
power budget

●●

1 2 3 4 5 6 [7]

●
●
+
●

Pareto−Optimal Cores
Baseline Selection
Alternative Selection
Ideal 5th Core
 (not implemented)

Figure 6.10: Set overhead compares two selections of cores. If the amount of runtime

power available to bm1 is at the dashed vertical line, execution will take place on the

cores indicated by the arrows. For the power budget shown, the Alternative selection

wastes more time than the Baseline selection. Intervals for equation 6.3 are shown

along the top.

power budget is shown using the crossed circle. From inspection, it can be seen that in

this case, the core in the Alternative selection is slower, and the Alternative selection

wastes more time than the Baseline selection. Set overhead quantifies this additional

waste across the range of transient power budgets that is common between the two

selections.

6.8.2 Definition

Set overhead (SO) is measured on a per-benchmark basis for two competing sets of

cores. From each set, only the cores that are Pareto-optimal for the given benchmark

are used. Set overhead is defined similarly to gap overhead, and makes the same

assumptions about constrained and wasted resources (see section 6.7.2). SO replaces

the comparison to the complete Pareto-optimal set used in GO with a comparison to

another selection of cores.

SObm =
N

∑
i=1

αi

(
max(YA,i)−max(YB,i)

Yi

)
αi =

max(Xi)−min(Xi)

Xmax−Xmin
(6.3)

SObm is set overhead for benchmark bm.

X is the constrained resource (power in this case).

Y is the wasted resource (time in this case).

min(Xi) is the minimum value of X in interval i.

6.8. Set Overhead 95

max(Xi) is the maximum value of X in interval i.

max(YS,i) is the maximum value of resource Y for selection S for interval i.

S is a selection of cores (in this case, either the Baseline selection B, or the

Alternative selection A).

αi is a weighting factor for interval i.

Xmin is the lower bound of the range over which set overhead is calculated. It

is given by max(XB,1,XA,1).

Xmax is the upper bound of the range over which set overhead is calculated.

Yi is an estimate for average Y in interval i.

N is the number of intervals between cores, taking both sets into account.

See below for details.

Like gap overhead, SObm uses absolute (not normalized) X and Y values, and is

calculated for each interval between cores, where the intervals are weighted using

α and then summed. The definitions of min(Xi), max(Xi), Xmax, and Yi are also

identical. The differences are in how the intervals are defined, the definition of Xmin,

and the overhead calculation before the multiplication with α. For set overhead, the

intervals are calculated with respect to all core types, regardless of which selection

a core belongs to. If the minimum power values for the two selections B and A are

not identical, the first interval is discarded (see figure 6.10). In this interval, only

one processor can run a workload, and a comparison is therefore undefined. The

subtraction (max(YA,i)−max(YB,i)) evaluates for each interval how much more time

one selection of cores takes compared to the other. This is then expressed relative to the

ideal time estimate, Yi. Since intervals are defined by two sets of cores, either max(YB,i)

or max(YA,i) will always fall outside i. In figure 6.10, for example, if available power

is in i = 3, then the usable core from the Alternative selection (A) is the lower-bound

of interval i = 2.

6.8.3 Discussion

The relationship between set overhead and speedup, the differences between set over-

head and gap overhead, and the range of power values over which set overhead is

calculated all require further discussion.

96 Chapter 6. Metrics for Sets of Heterogeneous Cores

6.8.3.1 Set Overhead and Speedup

Set overhead measures slowdown—if set overhead is 0.50, for example, then the slower

selection of cores requires, on average, 50% longer to complete a task. Set overhead

can also be interpreted as speedup. If SO = 0.50 and a task takes 1.0 seconds on

the faster selection, then it will take 1.5 seconds on the slower selection. The faster

selection is 1.5× faster (1.5/1.0), or has a speedup of 50% ((1.5/1.0− 1.0)× 100).

The faster selection will require 33% less time to complete ((1.0−1.0/1.5)×100) the

task.

6.8.3.2 Comparison to Gap Overhead

It is important to note that set overhead is not just a difference of gap overhead values.

Set overhead compares two selections, whereas gap overhead compares a selection

to the limit set containing all Pareto-optimal cores. For the example in figure 6.10,

the Baseline GO is 0.25, the Alternative GO is 0.26, but set overhead is 0.03—in

the average case, the Alternative selection is 3% slower than the Baseline for bm1.

From inspection, one might expect SO to be larger. However, the Alternative selection

compensates for its slower cores with better coverage of the lower half of the power

range, and the speed difference between the sets is negligible in interval 1.

Strictly speaking, gap overhead is a subset of set overhead where on of the sets

contains all Pareto-optimal cores. There are four reasons for defining GO and SO

separately: The first reason is that the questions, “Should a core be added?” (GO), and

“Is one set better than another?” (SO) are substantially different in nature, even though

the metrics use similar methods for answering both. Gap overhead measures how close

a set of cores is to the ideal (but unrealistic) limit. Set overhead measures how close

one reasonable set of cores is to another.

The second reason is the frequency of use cases. It is expected that a designer

will frequently need to determine the benefits of adding one more core (GO), but

some designers may never need to determine if a (potentially completely) different

set of cores is better (SO). It is therefore reasonable to define a simpler and more

specific metric for the more common problem, and keep the more complicated and

more general metric for the rarer problem.

The third reason is interpretability. Using set overhead to measure the difference

between, e.g., a four-core and a five-core set provides less information than doing the

same with gap overhead, because gap overhead is more closely related to the ideal

6.8. Set Overhead 97

limit. For example, set overhead for a 4-core and a 5-core set may be 10%, but it is not

clear whether this is significant or how much room there is for further improvement. If,

however, adding the fifth core reduces gap overhead from 100% to 93%, then it is clear

that the core makes very little difference, and there is still plenty of room to improve.

If adding the core reduces gap overhead from 12% to 1%, then it is a very effective

core, and there is no further room to improve.

Finally, it is possible that the designer will define Yi differently for GO and SO, and

keeping the two metrics separate helps avoid confusion. An example of using GO and

SO together with differently derived Yi values is in section 6.8.5 below.

6.8.3.3 Power Range Considerations

When interpreting SO values, the designer must remember that SO is evaluated only

over the common power range. If the lowest-power core in each selection has a differ-

ent power consumption (if XA,1 6= XB,1), then there is a region of power values where

only one processor can execute a benchmark, and a comparison between selections

in this region is undefined. If this were not the case, then at low levels of available

power, one set of cores would complete a task in finite time, while the other set would

require infinite time. SO would also be infinite. The processor that can execute in the

undefined interval is somewhat disadvantaged, because in interval i = 1, it competes

using a core with a lower X and possibly a higher Y value. A designer could well be

interested in the fact that one selection has a lower minimum operating power than the

other, but this is orthogonal to SO and better evaluated with either the minimum or

spread basic metrics.

6.8.4 Example: Comparing Selections

To demonstrate set overhead, the Alternative selection is compared to the Baseline

selection (both shown in figure 6.10). A visual inspection suggests that the Alterna-

tive selection is slower, but for the designer to be able to perform an informed cost-

benefit analysis, it is important to know how much better the Baseline selection is.

Figure 6.11 shows the set overhead of using the Alternative selection instead of the

Baseline selection for the five example benchmarks. SO ranges from less than 5% up

to 13%, with an average of 6%. I.e., on average, the average task will only be 6%

slower on the Alternative selection than on the Baseline selection, but bm2 will be 13%

slower. If bm2 represents a low-priority task and the Alternative selection is cheaper

98 Chapter 6. Metrics for Sets of Heterogeneous Cores

Benchmark
S

et
 O

ve
rh

ea
d

0%
5%

10
%

15
%

bm1 bm2 bm3 bm4 bm5 MEAN

Figure 6.11: Set overhead (time wasted) for bm1-5 when using the Alternative selection

instead of the Baseline selection (both shown in figure 6.10).

to implement, then it may be possible to use the Alternative selection and save on

engineering effort. If bm2 represents an important task, then the Alternative selection

of cores can be ruled out.

6.8.5 Example: Comparing DVFS and Heterogeneity

Set overhead can also be used to evaluate completely different technologies. This

example demonstrates how a designer can use GO and SO together to choose whether

to implement a heterogeneous processor or a homogeneous processor with DVFS.

DVFS is a more mature technology than heterogeneity, but heterogeneity has the

potential to be more effective.

The example assumes that a designer must choose between implementing a het-

erogeneous processor and implementing a homogeneous processor with DVFS. Fig-
ure 6.12 shows the cores for these two alternatives for benchmark bm2. The first

alternative contains three heterogeneous cores from the candidate set (cores #319,

#963, and #2778). The second alternative is the highest-power core, core #319, with

DVFS applied. The DVFS data is extrapolated from the voltage and frequency data

published by Lukefahr et al. [115]. Ten DVFS levels are assumed, as shown by the

black dots along the dashed line.

The first step in the comparison is to measure gap overhead for the two alternatives.

Since different technologies are used, the Yi estimates are defined differently. For the

heterogeneous case, the complete set of Pareto-optimal cores is used to determine Yi.

For the DVFS case, Yi is calculated from first principles. The heterogeneous selection

has a gap overhead of 8%; the DVFS core’s gap overhead is 2%. Gap overhead

6.8. Set Overhead 99

Normalized Power
N

or
m

al
iz

ed
 T

im
e

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
1.

0
1.

2
1.

4
1.

6
1.

8
2.

0

●
●

●

●●
●

●
●

●
●

●

●

●

Heterogeneous GO:
DVFS GO:

SO:

8%
2%
7%

Set Overhead

●
●

Heterogeneous Selection
Homogeneous DVFS

Figure 6.12: Set overhead can be used to measure how much faster, on average, a

heterogeneous set of cores is compared to a fast, DVFS-enabled core.

Available Power (Normalized)

S
lo

w
do

w
n

1.5 2.0 2.5 3.0 3.5 4.0 4.5−1
0%

10
%

30
%

50
%

Figure 6.13: The slowdown of the DVFS core over the heterogeneous selection varies

depending on how much power is available. See figure 6.12.

quantifies what is in this case obvious from visual inspection: that the ten DVFS levels

closely approximate an infinite number of DVFS levels, while the three heterogeneous

cores are not as close an approximation of the complete Pareto-optimal set of cores.

Gap overhead does not, however, help determine which alternative the designer

should choose to implement. Gap overhead is lower for the DVFS core even though

the heterogeneous set is visibly faster. Instead, comparing the two alternatives requires

set overhead. In this case, Yi in the SO equation is based on the complete set of cores.

SO shows that on average, the DVFS core wastes 7% more time than the heterogeneous

set. The shaded region in figure 6.12 illustrates set overhead.

Set overhead measures the average slowdown across the entire range of power

values. Figure 6.13 shows the slowdown of the DVFS core over the heterogeneous

selection at several discrete power levels. If there is enough power to run on the

fastest core, then the heterogeneous selection and DVFS core are equally fast. If

100 Chapter 6. Metrics for Sets of Heterogeneous Cores

available power (normalized) is 4.0, then slowdown is −9%—the DVFS core is faster

than the heterogeneous selection. However, as available power decreases, the relative

performance of the heterogeneous selection improves considerably. When only very

little power is available, DVFS can be 40% slower than the heterogeneous selection.

The example shows that GO and SO are complementary. Knowing the above

results, the designer can reason about the costs and benefits of implementing either

option. If the processor is intended for a power-limited setting, then the heterogeneous

option is preferable. While this example compares heterogeneity and DVFS, a designer

could also evaluate a heterogeneous processor with DVFS by suppling the metrics with

a combinations of core types and DVFS levels.

6.9 Availability

Availability measures the likelihood that a selection of cores will be available to do

work. I.e., it measures the probability that a given task can be run at all. The gap

overhead metric only considers the available power PDF in the range where there is

sufficient power to run the given benchmark on at least one core. GO is undefined at

power levels that are below the power consumption of the lowest-power core, since the

given task cannot be run at all. The availability metric quantifies this undefined range.

The intuition behind the availability metric is described first, followed by its definition,

a discussion, and an example of its use.

6.9.1 Intuition

Availability measures the likelihood that a set of cores can even run a task. For exam-

ple, assume that the available power PDF ranges from the lowest-power benchmark-

core combination to the highest-power benchmark-core combination. I.e., the sched-

uler will never make less power available to a task than is required to run the lowest-

power task on the lowest-power core, and the scheduler will never make more power

available to a task than is used by the most power-hungry task on the highest-power

core. This guarantees that the lowest-power task can always run. However, due

to behavior variations among tasks, other tasks will require more power, and will

sometimes be unable to run. An example of this is shown in figure 6.14 for the Baseline

selection of cores. bm5 requires more power to run on the lowest-power core than other

benchmarks. For bm5, the available power PDF falls in the normalized power range

6.9. Availability 101

Normalized Power
N

or
m

al
iz

ed
 T

im
e

1.0 1.1 1.2 1.3 1.4 1.5

1.
0

1.
5

2.
0

2.
5

3.
0

Power PDF Range

●

●

●

●
● ●

●

●

●

●
●

●●
●●●

●

●

●●
●

●

●

●

●●

●

●
●

●● ● ●
●

●●

●

●
●●●

●

●●

● ●●

●

●

●

●

●

●

●●

●

●
●

Pareto−Optimal Cores
Baseline Selection
Unavailable Region

Figure 6.14: At some power levels, bm5 cannot be run at all on the Baseline selection,

while other benchmarks can still be run. For bm5, the power PDF falls in the normalized

power range [0.98,1.52].

[0.98,1.52], whereas for bm1, the same power PDF falls in the normalized power range

[1.0,1.56]. Recall that a normalized power of 1.0 is the least amount of power required

to run the benchmark on any core in the design space. The availability of the baseline

selection is 100% for bm1, but only 96% for bm5.

6.9.2 Definition

Availability, Av, is measured on a per-benchmark basis. It is a function of the power

PDF and the lowest-power core in the selection.

Avbm =
Pmax−P1

Pmax−Pmin
(6.4)

Avbm is the availability of the set of cores for benchmark bm.

Pmin is the minimum amount of power that could ever be allocated to a workload.

Pmax is the maximum amount of power that could ever be allocated to a workload.

Pi is the power consumption of bm on the ith core in the selection, ordered by

increasing power.

The availability of a selection of cores for benchmark bm is simply the fraction

of the available power PDF that is greater than the power consumption of the lowest-

power core for bm. If Avbm = 0.9, then 10% of the time, there is insufficient power to

run bm.

102 Chapter 6. Metrics for Sets of Heterogeneous Cores

2−Core Selection
Baseline Selection
8−Core Selection

Benchmark

A
va

ila
bi

lit
y

90
%

95
%

10
0%

bm1 bm2 bm3 bm4 bm5 MEAN

Figure 6.15: The 2-Core, Baseline, and

8-Core selections all have the same

availability, as all have the same lowest-

power core.

Baseline Selection
Alternative Selection

Benchmark

A
va

ila
bi

lit
y

80
%

85
%

90
%

95
%

10
0%

bm1 bm2 bm3 bm4 bm5 MEAN

Figure 6.16: The lowest-power core of

the Alternative selection consumes more

power than the lowest-power core on the

Baseline selection, giving the Alternative

selection a lower availability.

6.9.3 Discussion

The availability metric is heavily influenced by the available power PDF, and is particu-

larly sensitive to the lower-bound of the PDF. The intuition section above optimistically

assumed for the sake of example that there will always be enough power to at least

run the lowest-power task on the lowest-power core. On a real mobile processor,

the probability that no new tasks can be run could be quite high. Availability would

therefore be much lower. It is also possible that some tasks are so important that the

scheduler will always make enough power available to them, potentially at the expense

of other tasks. Availability for these tasks would be high, as the tasks would see a

favorable power PDF.

6.9.4 Example: Comparing Availability

Figure 6.15 shows the availability of the 2-Core, Baseline, and 8-Core selections for

the example set of five benchmarks. Av is the same for all three selections, since the

metric is a function of only the lowest-power core. As can be seen in figure 6.2, all

three selections share the same lowest-power core.

Figure 6.16 shows the availability of the Baseline and Alternative selections. The

lowest-power core in the Alternative selection consumes more power than the lowest-

power core in the Baseline selection (see figure 6.1). As a result, the Baseline selection

has better overall availability.

6.10. Effective Speed 103

Normalized Power
N

or
m

al
iz

ed
 T

im
e

1.0 1.1 1.2 1.3 1.4 1.5

1.
0

2.
0

3.
0

Power PDF Range

●

●

●

●
● ●

●

●

●

●
●

●●
●●●

●

●

●●
●

●

●

●

●●

●

●
●

●● ● ●
●

●●

●

●
●●●

●

●●

● ●●

●

●

●
●

●

●

●●

●

4% 24%

28%

22% 22%

●
●

Pareto−Optimal Cores
Baseline Selection
Unavailable Region

Figure 6.17: Each core in the selection can be used a fraction of the time based on

the power PDF, as indicated by the ranges and arrows. ES averages execution speed

across all cores. The unavailable region lowers ES. Data is for bm5 and the Baseline

selection.

6.10 Effective Speed

Effective speed measures the average throughput of a set of cores under an available

power PDF. The metric is formulated similarly to the overhead metrics, but it is a

throughput metric rather than a turnaround time metric. As such, it suffers from the

same shortcomings as existing throughput metrics (see section 5.6.1 (p. 63)). The

intuition for the metric is given first, followed by its definition. A discussion expands

on the interpretation and shortcomings of effective speed. The section concludes with

an example.

6.10.1 Intuition

Existing metrics for measuring the throughput of a processor, such as STP (system

throughput [52]), are independent of the amount of power that a processor consumes.

These metrics can be used to measure maximum throughput or throughput under a

fixed power budget. In contrast, the gap and set overhead metrics are turnaround time

metrics that are based on a probabilistic model of the amount of power available at

runtime. Sometimes it may be necessary to use a metric that is based on an available

power distribution, but measures throughput. Effective speed is such a metric. Given

a power PDF, each core in a selection can be used a certain percentage of the time.

This is illustrated in figure 6.17 with percentage ranges and arrows. At times, there is

so little power available that the task cannot be run at all. Effective speed calculates

the average speed over time for a selection of cores. Note that two of the cores in

104 Chapter 6. Metrics for Sets of Heterogeneous Cores

figure 6.17 appear behind the set of Pareto-optimal cores, since the Baseline selection

is selected from the candidate set, but not all cores in the candidate set are Pareto-

optimal for bm5.

6.10.2 Definition

Effective speed, ES, is measured on a per-benchmark basis using only the cores from

the selection that are Pareto-optimal for the given benchmark.

ESbm =

(
Tbm×

1
Avbm

)−1

Tbm =
TN× (Pmax−PN)+∑

N−1
i=1 Ti× (Pi+1−Pi)

Tmin× (Pmax−P1)
(6.5)

ESbm is the effective speed of the set of cores for bm.

Avbm is the availability of the set of cores for benchmark bm.

Tbm is the weighted average scaled execution time of bm on the set of cores.

Pmin is the minimum amount of power that could ever be allocated to a task.

Pmax is the maximum amount of power that could ever be allocated to a task.

Tmin is the minimum possible execution time for bm.

Pi is the power consumption of bm on the ith core in the set, ordered by increasing

power.

Ti is the execution time of bm on the ith core in the set, ordered by increasing

power.

N is the number of cores in the set.

ES uses absolute (not normalized) power and time values. There are no obvious

applications of ES beyond evaluating performance with respect to power, so the metric

is defined in terms of power and time rather than the more general X and Y used in

the overhead metrics. The first component of the ES equation is Tbm, which quantifies

how long bm will take to run if there is enough power to run it on at least one core

type. It is a normalized quantity—if Tbm = 2.0, then bm will take twice as long to run

on average, than it would on the fastest possible core. Tbm is the weighted average of

each core’s execution time. The weight for core i is the likelihood that there is enough

power to use core i, but not enough power to use core i+1. Tbm is itself weighted with

the availability of the selection. For example, if Avbm = 0.5, then bm will not run at all

for half of the time, and the effective speed is cut in half.

Effective speed is the rate of execution expressed relative to the fastest possible

core for the benchmark. I.e., it quantifies how fast the benchmark can run in reality,

6.10. Effective Speed 105

relative to how fast it would run if it had access to unlimited power. For example,

ESbm = 0.5 means that on average, the set of cores will run bm at half the maximum

possible speed.

6.10.3 Discussion

While effective speed is a throughput metric, it is not a replacement for the STP metric

(see section 3.5.2 (p. 33)). ES is still based on the runtime model that approximates

the system with a power PDF, and it is evaluated for one task rather than for the entire

system. I.e., in the nomenclature of Eyerman and Eeckhout [52], it is a user-oriented

metric rather than a system-oriented metric.

The major limitation of effective speed is the difficulty of determining a good value

of ES. For GO and SO, the best value possible is 0.0. A GO of 0.0 means that the

selection of cores perfectly represents the set of all possible cores. An SO of 0.0 means

that two selections have identical behavior on average. When GO or SO is greater than

0.0, it quantifies for the designer how much longer execution will take in the average

case. In contrast, it is difficult to determine a good value of ES. The best possible value

of ES is 1.0, which indicates that there is always enough power to run on the fastest

core. However, if this is the case, then there is no need for heterogeneity. If ES is low, it

could indicate that the processor can operate across a broad range of power values—a

desirable feature—or that there are too few fast cores—an undesirable feature.

A second limitation of ES is that since it averages performance across cores, it hides

performance variations. For example, the ES for a task alternating between running on

a slow core and a fast core, and the ES of the task running on a medium core could

be the same. However, a user is likely to be much more satisfied with the consistent

performance of the latter. The overhead metrics assume that cores are exclusively

allocated to tasks (which may be program phases) for the duration of the task. This

guarantees consistent performance for the duration of the task, and provides a stronger

foundation for user satisfaction studies.

The positive aspects of ES are its simplicity and flexibility. While ES is more

difficult to interpret than other metrics, the concept of effective speed is intuitively

obvious, and may therefore be more helpful for communicating results than other

metrics.

106 Chapter 6. Metrics for Sets of Heterogeneous Cores

2−Core Selection
Baseline Selection
8−Core Selection

Benchmark

E
ffe

ct
iv

e
S

pe
ed

0.
0

0.
5

1.
0

bm1 bm2 bm3 bm4 bm5 HMEAN

Baseline Selection
Alternative Selection

Benchmark

E
ffe

ct
iv

e
S

pe
ed

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

bm1 bm2 bm3 bm4 bm5 HMEAN

Figure 6.18: Effective speed, ES, for the 2-Core, Baseline, and 8-Core selections (left),

and the Baseline and Alternative selections (right). Larger ES values are better. ES

correlates with GO (figure 6.8) and SO (figure 6.11)—more core types improve speed,

and the baseline selection is faster than the alternative selection.

6.10.4 Example: Comparing Throughput

Figure 6.18 shows effective speed for the 2-Core, Baseline, and 8-Core selections,

a comparison with increasing number of cores, and for the Baseline and Alternative

selections, a comparison between two independent selections. This example assumes

that the available power PDF is flat and ranges from the power consumption of the

lowest-power benchmark-core combination to the power consumption of the highest-

power benchmark-core combination, plus 10%. Since ES is a rate, it is summarized

with the harmonic mean. Similarly to gap overhead, ES demonstrates that under tight

power constraints, more core types enable faster execution (i.e., there is less time

wasted). Moving from two to four to eight cores, ES increases from 0.40 to 0.58 to

0.66. Similarly to set overhead, ES demonstrates that the baseline selection is slightly

faster than the alternative selection (ES = 0.58 and ES = 0.55, respectively).

6.11 Generality

Generality evaluates the extent to which core types are specialized to only some work-

loads, or are generally applicable to all workloads. The intuition behind the metric is

described first, followed by its definition, a discussion, and a usage example.

6.11. Generality 107

Normalized Power
N

or
m

al
iz

ed
 T

im
e

1.0 1.1 1.2 1.3 1.4 1.5 1.6

1.
0

2.
0

3.
0

4.
0

●

●
●

●

●

●●
●

● bm1
bm3
Pareto Frontier

Figure 6.19: Cores in the 8-Core selection, plotted for bm1 and bm3. All cores in the

selection are Pareto-optimal for bm1, but only six are Pareto-optimal for bm3.

6.11.1 Intuition

The uniformity, gap overhead, set overhead, availability, and effective speed metrics

are all applied on a per-benchmark basis, and only consider those cores in the selection

that are power-performance Pareto-optimal for the given benchmark. If a core in a

selection is not Pareto-optimal for a given task, then it should never be used for that

task, as there will be another core that is both faster and consumes less power. The

variability in task behavior means that it is inevitable that not all cores in a selection

can be Pareto-optimal for all types of tasks when the size of the selection is non-trivial

(see section 5.3.4 (p. 56)). An example of this is shown in figure 6.19. The cores in the

8-Core selection are all Pareto-optimal for bm1, as they are all on the Pareto frontier.

Only six of the cores in the selection are Pareto-optimal for bm3, since two of the cores

are behind the Pareto frontier. This shows that bm3 does not benefit from the eight

cores as much as bm1. (The selection also has poor spread and uniformity for bm3,

but these are orthogonal issues.) The generality metric measures the extent to which

all types of tasks—all benchmarks in the representative suite—can take advantage of a

selection of cores.

6.11.2 Definition

Generality is measured once for all benchmarks for a given selection of cores. It is

represented by the Cyrillic� (dje).

108 Chapter 6. Metrics for Sets of Heterogeneous Cores

�=
1

W

W

∑
i=1

|po(K , i)|
N

(6.6)

� is the generality of the set of cores.

W is the number of workloads, or benchmarks.

K is the selection of cores.

po(S , i) returns the cores in set S that are power-performance Pareto-optimal for

benchmark i.

N is the number of cores (N = |K |).

Generality is the fraction of cores in a selection that the average task can potentially

use. It simply calculates the fraction of cores in a selection that are Pareto-optimal for

each benchmark, and then takes the average. Generality falls in the range [N−1,1.0].

If the cores are generally applicable, then �= 1.0. When �= N−1, then each core is

specialized to only one benchmark—an unlikely, extreme outcome.

6.11.3 Discussion

Metrics like GO, SO, and ES encourage increasing the number of core types. At worst,

they will show that adding a core has no effect, but in general, they will tend to show

improvement with more core types. � counteracts the drive for more cores. As cores

are added to a selection, the generality of the selection decreases, and each additional

core benefits a smaller subset of benchmarks. The designer must decide whether the

engineering effort required to add additional cores is justified when each additional

core improves the processor by an ever smaller amount.

When generality is interpreted, it must be with consideration for the processor’s

target use case and the total number of core types, N. For example, if there are only

four benchmarks in the representative suite used to design the processor (W = 4), if

there are four core types (N = 4), and if � = 1.0, then the set of cores is a good

candidate for a mobile processor. Each of the four cores is usable by all benchmarks.

Which core is used at runtime is determined by runtime requirements, such as the

amount of available power. If, on the other hand, � = 0.25, then each core is usable

by only one benchmark—each core’s microarchitecture is specialized to the specific

behavior of each benchmark. Which core is used at runtime is determined by the task,

without regard for runtime power constraints. Such a set of cores does not offer the

runtime flexibility required by a mobile processor, though it could be appropriate for

6.11. Generality 109

Number of Core Types

G
en

er
al

ity

2 4 8

0%
25

%
50

%
75

%
10

0% + ●

+
●

2−Core Selection
Baseline Selection
8−Core Selection

Figure 6.20: As the number of core types increases, their generality—the number of

cores each task can use—decreases. Data is shown for the 2-Core, Baseline, and

8-Core selections and benchmarks bm1-5.

a processor that can be guaranteed to always have a large amount of power available

(e.g., some server processors). Finally, if W = 4, N = 16, and � = 0.25, then the

set of cores could be appropriate for a mobile device, as each benchmark has, on

average, four core types it can use. The core that is used is again dependent on

runtime requirements. There is still substantial specialization to different tasks, but

the number of cores ensures flexibility. Whether such a processor is physically or

financially feasible is a separate issue. This example demonstrates that � must not

necessarily be minimized or maximized; a good value of � is determined by other

design requirements.

Generality also has an effect on scheduling. If a set of cores has low generality,

then a more intelligent scheduler is required to determine which cores any given task

can be run on.

It should be noted that when existing literature discusses monotonicity (see sec-
tion 3.2.4.1 (p. 22) and section 5.3.2 (p. 53)), often the concept under consideration is,

in fact, generality. Monotonicity is subtly different from generality, but it can often be

used as a proxy for generality. The next metric measures monotonicity.

6.11.4 Example: Generality of Selections

An example of generality is shown in figure 6.20 for the 2-Core, Baseline, and 8-

Core selections and the five example benchmarks, bm1-5. The 2-Core and Baseline

selections are applicable to all benchmarks, but a few of the cores in the 8-Core

selection should not be used by some benchmarks. Even for the 8-Core selection,

110 Chapter 6. Metrics for Sets of Heterogeneous Cores

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.1 1.2 1.3 1.4 1.5 1.6

1.
0

2.
0

3.
0

4.
0

●

●
●●

#60

#777

#1030
#671

●
bm1
bm2

Figure 6.21: Four cores are plotted by power and time for bm1 (triangles) and also

for bm2 (circles). The ordering of cores changes depending on the benchmark, as

identified by the black lines. Power and time are normalized to each benchmark’s best

value.

� is quite high. This is because of the small number of example benchmarks and

because the selections of cores have been carefully selected by hand.

6.12 Monotonicity

Monotonicity evaluates how dependent the ordering of cores is on the type of task being

executed. It is closely related to the generality metric. Monotonicity has implications

for scheduling, and as described in section 5.3.2 (p. 53), affects whether a selection of

cores is applicable to a mobile processor. The intuition behind the metric is described

first, followed by its definition, a discussion, and a usage example.

6.12.1 Intuition

Figure 6.21 shows four cores plotted for bm1, and the same four cores plotted for bm2.

These cores are neither the Baseline nor Alternative selections, but have been chosen

specifically for this example. It can be seen that the order of cores is dependent on

the benchmark. Core #1030 consumes more power than core #777 for bm1, but the

roles are reversed for bm2. For this example, all cores are Pareto-optimal for both

benchmarks—for the four cores and two benchmarks, � = 1.0. The monotonicity

metric measures the extent to which the order of cores is benchmark-dependent.

6.12. Monotonicity 111

6.12.2 Definition

Monotonicity is measured once for all benchmarks for a given selection of cores.

It is derived from Spearman’s rank correlation coefficient (Spearman’s ρ; see e.g.,

Conover [36, p. 314]), and is represented with the Hebrew ר (resh). The implementa-

tion of ר in this thesis is based on the R implementation of ρ [145].

ר =
1

W (W −1)/2

W−1

∑
i=1

W

∑
j=i+1

ρ

(
o(Xi),o(X j)

)
(6.7)

ר is monotonicity.

W is the number of workloads, or benchmarks.

Xi is the set of constrained metric values (power values in this case) when the

core types execute workload i.

o(S) returns the permutation that will sort the elements in set S into ascending

order.

ρ(P1,P2) measures Spearman’s rank correlation coefficient between permutations

P1 and P2.

For each benchmark, core types are ordered by increasing power, and ρ is calcu-

lated for all pairwise combinations of benchmarks. ρ compares the order of items in

two sets. It ranges from 1.0 when the order is the same, to −1.0 when the order is

reversed. For ,ר ρ values are summed and divided by the number of comparisons.

When ר = 1.0, the processor is monotonic. As the order of cores becomes more

benchmark-dependent, ר decreases.

6.12.3 Discussion

When existing literature discusses monotonicity, it is often referring to generality (see

section 3.2.4.1 (p. 22) and section 5.3.2 (p. 53)). The two concepts are closely related

but subtly different. A generality of less than 1.0 is often associated with a monotonic-

ity less than 1.0, because if one benchmark’s interaction with cores’ microarchitectures

causes the order of cores to change compared to the order for another benchmark, then

it is likely that the benchmark’s behavior also causes some cores to fall behind the

power-performance Pareto frontier. However, as demonstrated by figure 6.21, this is

not necessarily the case. Monotonicity is a reasonable proxy for generality, but the two

do not correlate exactly.

112 Chapter 6. Metrics for Sets of Heterogeneous Cores

Monotonicity has a similarly dampening effect on the drive to add core types as

generality. Whereas a decrease in generality shows a designer that some cores are no

longer useful to some types of tasks, a decrease in monotonicity highlights an increased

scheduling complexity. As ר decreases, it becomes increasingly unclear which cores

consume less power and which cores consume more. It therefore becomes increasingly

difficult for a scheduler to schedule a task to a core that consumes an acceptable amount

of power based on runtime requirements.

Sets of cores that have been dubbed monotonic in existing literature can more

precisely be defined as sets where � = 1.0 and ר = 1.0. I.e., all cores can be used by

all types of tasks, and the order of cores is always the same. The use of non-monotonic

in existing literature is less clear. It tends to describe sets of cores where generality is

minimal, regardless of monotonicity. I.e., if each type of task can only be run on one

type of core, then the power order of the cores is irrelevant.

Availability, generality, and monotonicity used together can be a powerful combi-

nation. Availability ensures that the selection of cores is usable in a sufficiently broad

set of circumstances. Generality ensures that a sufficiently large number of tasks can

use each core. Monotonicity ensures that scheduling is sufficiently simple. Once these

requirements are met, localized non-uniformity can be used to ensure coverage of the

candidate set, gap overhead can be used to determine how many total cores there should

be, and set overhead can be used to show that the selection is better than alternative

selections (e.g., from competitors).

6.12.4 Example: Workload Divergence

The monotonicity metric, ,ר compares the ordering of cores. If ר is less than 1.0, it

indicates to the designer that benchmark behavior has diverged, and different bench-

marks are responding differently to the various core types. As an example, for the

2-Core and 4-Core (Baseline) selections from figure 6.2, ר = 1.0, but for the 8-Core

selection, ר = 0.76. This shows that it is difficult to select eight cores that all have a

consistent power order—with eight cores, it is almost inevitable that some benchmarks

will cause changes in the core orders.

Monotonicity can be used to gauge how difficult a set of cores is to schedule for. If

ר is 1.0, then the runtime scheduler will always know the order of cores from low

power to high performance, because the order is the same for all workload types.

As ר decreases, it will be increasingly difficult for a scheduler to determine where

6.13. Power PDF Considerations 113

=1.00

=1.00

=0.76

2 Cores

4 Cores

8 Cores

1 8

5 7 8

1

5 6 7 8

56 7 81 2 3 4

5 6 7 81 2 3 4

1

1 2 3 4

Core type

Increasing Power

Figure 6.22: The 2-Core and Baseline (4-Core) selections can be ordered by

increasing power. For eight cores, there are three possible orderings, depending on

the benchmark. ר evaluates the divergence in the orderings. See figure 6.2 for cores.

For brevity, cores are labeled 1-8.

to schedule tasks. Figure 6.22 illustrates this for the 2-, 4-, and 8-Core sets from

figure 6.2. For brevity, the cores are simply labeled 1-8. Core numbers are given in

section 6.4. In the 2- and 4-Core cases, there is only one way to order cores from low

power to high performance, regardless of which benchmark is considered. In the 8-

Core case, there are three possible orderings, depending on which benchmark is used.

If, for example, a task running on the 6th core must be moved to a less power-hungry

core, then it is not immediately obvious whether the 5th core should be considered. For

some benchmarks, the 5th core consumes less power than the 6th core, but for others,

it consumes more. This does not mean that a processor where ר < 1.0 should never

be designed, but it indicates to the designer that more effort will be required from the

operating system developers to take advantage of the processor.

6.13 Power PDF Considerations

The runtime model in section 5.4 (p. 58) described a probabilistically varying available

power distribution, which forms the basis for the metrics presented in this chapter.

Given that different types of tasks have different priorities and requirements, it is

likely that in a final product, the distribution of power values that a scheduler makes

available to a given task will be dependent on the task. For simplicity and consistency,

114 Chapter 6. Metrics for Sets of Heterogeneous Cores

the metric definitions in this chapter have assumed a flat power distribution. This

section considers how a known, non-flat distribution can be applied to the metrics. The

distribution could be derived empirically or from first principles.

The shape of the power PDF does not affect the generality and monotonicity met-

rics, or the KS test. Generality evaluates the number of cores that are Pareto-optimal

for a given benchmark, and Pareto optimality is independent of the probability density

of power values. Monotonicity is based on ordinal numbers through Spearman’s ρ,

and is similarly unaffected by the PDF. The KS test compares the distribution of the

selection to the distribution of the candidate set. A PDF applied to the selection would

also be applied to the candidate set, and the two would cancel out.

The application of a non-flat PDF to gap overhead, set overhead, availability, and

effective speed is trivial. For the two overhead metrics, the α value (equation 6.2 and

equation 6.3) controls the weight of each interval. Applying the PDF is simply a case

of setting α to the integral of the PDF in the relevant range, keeping in mind that the

PDF must be normalized such that it is zero in the undefined region below the lowest-

power core. For effective speed, the PDF similarly adjusts the weight of each core (the

power subtraction term in the summation of equation 6.5). In the case of availability,

availability is the integral of the PDF greater than the power of the lowest-power core.

For these four metrics, applications of the PDF are benchmark-specific.

The application of a PDF to the localized non-uniformity metric is more involved,

because the method of application is dependent on the precise feature the designer

wishes to measure. For localized non-uniformity, the PDF is also applied on a per-

benchmark basis. The definition in section 6.6.3.1 assumed that the cores would be

flattened to one dimension using Euclidean distance. This is a natural default option,

since |כ then measures how good the coverage of the candidate set is. However, a

designer may, instead, choose to apply |כ to just the time coordinates of cores. This

would help the designer evaluate how gracefully performance can change—large gaps

between time values lead to large changes in performance that are jarring to the user.

Similarly, the designer could choose to apply |כ to just the power coordinates. When

cores provide a more uniform selection of power values, then it is easier for a scheduler

to allocate available power. Since cores follow a trade-off curve, more uniformity along

one axis inevitably leads to less uniformity along the other. The flattened Euclidean

approach is a middle ground. If the designer chooses to apply |כ to just the power

axis, he could further choose to apply the power PDF to the axis. In this case, a

low |כ value would mean that under the power PDF, each core sees a similar level of

6.14. Summary 115

utilization. Finally, the designer could apply the power PDF to the power axis, and

also use Euclidean flattening. |כ would then evaluate a combination of core utilization

rate and the gracefulness of performance changes. If |כ is evaluated using only the time

axis, then the application of a power PDF has no effect.

6.14 Summary

To evaluate heterogeneous processors, it must be possible to quantitatively evaluate

the selection of CPU core types implemented on the processor. Traditional techniques

can evaluate individual cores, but new metrics are required to evaluate sets of cores

as they operate under the volatile power budgets of heterogeneous processors. This

chapter began with a set of goals and a small number of assumptions based on which

it is possible to define such metrics. After clarifying some basic evaluation methods,

metrics were defined for quantifying: the diversity of sets of cores, the performance

of sets of cores relative to an ideal limit, the performance of sets relative to other sets,

the availability of sets, the effective throughput of sets, and the general applicability

and monotonicity of sets. Each metric was introduced with an intuitive description

and demonstrated using example simulation data. Without quantitative metrics, the

designer of a heterogeneous processor is effectively blind, relying solely on intuition

to select cores. This collection of metrics forms a set of tools that allows the designer

to quantify intuition and approach the heterogeneous core selection problem with

mathematical rigor.

Chapter 7:

The LUCIE Algorithm for
Core Selection

Converting a candidate set of potential CPU cores into a heterogeneous processor

requires a solution to the selection problem. Most cores in the candidate set must

be discarded; only a small number can be selected for implementation. This chapter

describes the LUCIE algorithm, a selection strategy that iteratively removes cores from

the candidate set while preserving diversity and thereby enabling flexibility for a set of

representative benchmarks. There are three variations to LUCIE and two mechanisms

for providing LUCIE with prior knowledge from an expert.

7.1 Introduction

The demand for heterogeneity in the mobile space is driven by the need for runtime

power flexibility. Mobile devices cannot consume large amounts of power, yet users

still desire high performance. A heterogeneous processor implements a diverse selec-

tion of cores, and has the potential to provide the best performance to a given task

within the amount of power that is available at a given time.

To design a heterogeneous processor, the designer must solve the selection prob-

lem—the designer must choose which different types of CPU cores should be imple-

mented on the processor. As described in section 5.3.1 (p. 52), the selection problem

is distinct from design space exploration (DSE). DSE is used to find a potentially large

set of cores that could be implemented. Core selection is used to choose which cores

from DSE should be implemented. Some existing selection methods were summarized

in section 5.7 (p. 69).

117

118 Chapter 7. The LUCIE Algorithm for Core Selection

The selection problem is particularly difficult for mobile devices. A mobile proces-

sor must implement cores ranging from low-power to high-performance so that it can

be fast when possible, and operate at low power when required. It is not sufficient to

select cores that only maximize the performance of different types of programs, as done

by the GA selection strategy (section 5.7.3 (p. 70)); mobile devices also require low-

power cores. Neither is it sufficient to select cores to maximize consistency, as done

by the Clustering strategy (section 5.7.4 (p. 71)); a selection technique that maximizes

consistency necessarily precludes taking advantage of program diversity.

The LUCIE selection algorithm addresses the problem of selecting cores for mobile

devices. The algorithm is presented in the current chapter and evaluated in chapter 8.

The remainder of this chapter is arranged as follows: Section 7.2 gives a high-level

overview of the LUCIE algorithm. Section 7.3 describes the significant characteristics

of the algorithm. A selection algorithm could be formulated in any number of different

ways; this section justifies the specific formulation of LUCIE. Section 7.4 defines the

coordinate space in which LUCIE operates. The following three sections present three

variants of the LUCIE algorithm in order of increasing sophistication. These are basic

LUCIE, biased LUCIE, and weighted-biased LUCIE, or E-LUCIE, BE-LUCIE, and

WB-LUCIE for short. Each variant builds on the previous one. The subsequent section

describes core pinning. The processor designer can use core pinning to force LUCIE to

select specific cores. Finally, the possibility of using a power PDF (probability density

function) is introduced. A PDF directs LUCIE to select cores to conform to a known

available power distribution (see the runtime model in section 5.4 (p. 58)). As LUCIE

is a selection algorithm, this chapter does not consider DSE, but uses the candidate set

described in section 4.3.2 (p. 42).

7.2 LUCIE Overview

Section 5.2 (p. 50) identified runtime flexibility as the primary motivation and jus-

tification for heterogeneity. Section 5.5 (p. 60) identified spread and uniformity as

the two qualitative features a selection of heterogeneous cores must possess to enable

runtime flexibility. Section 5.3.2 (p. 53) defined the selection problem as a problem

of maintaining as much of the diversity of the candidate set as possible with the

number of cores that the processor designer is willing to implement. Based on this

problem description, the LUCIE algorithm has two related goals: to select cores at

a variety of power-performance points ranging from low power to high performance,

7.3. Algorithmic Considerations 119

and to ensure that different types of programs (different benchmarks) have access to

a range of power-performance points. Since the power and performance of a core

are dependent on the characteristics of the program being run, it is crucial that a

selection algorithm considers how each of the representative benchmarks performs

on each core. A core that is fast and power-hungry for one benchmark might be slow,

yet power-hungry for another. LUCIE also attempts to avoid disproportionately high-

power and disproportionately slow cores for reasons described in the spread discussion,

section 5.5.1 (p. 61).

LUCIE stands for Least Useful Configuration Iterative Elimination. As described

in section 5.3.4 (p. 56), program behavior can have a significant effect on a core’s

power and execution speed. The LUCIE algorithm is based on the insight that maxi-

mizing performance on power-constrained, mobile devices requires taking advantage

of the task-dependent performance variations of cores. (This is the opposite of the

approach adopted by the Clustering selection strategy [71], which selects cores for

server processors and prioritizes consistency in each cores’ behavior.) The underlying

contribution of the LUCIE algorithm is recognizing that one core can fulfill different

roles for different types of benchmarks. A core might provide relatively high perfor-

mance at a high power cost to one benchmark, it might provide moderate performance

at a moderate cost to another benchmark, and it might not even be Pareto-optimal for a

third benchmark. LUCIE selects cores based on the significance of their contribution

to each benchmark, as compared to the significance of other cores.

The LUCIE algorithm treats the complete candidate set of cores as the gold stan-

dard for diversity. The candidate set comes from a design space search (see figure 5.2
(p. 53)). LUCIE considers all relevant benchmarks, finds the core that contributes least

to diversity, removes it from the set, and repeats until the desired number of cores

remains. I.e., it is a subtractive rather than an additive selection strategy. The metrics

defined in chapter 6 can be used to evaluate various features of sets of cores selected

by LUCIE or by other algorithms. However, for reasons described in the next section,

LUCIE only optimizes these metrics indirectly.

7.3 Algorithmic Considerations

The significant feature of LUCIE is that it is not a multiobjective optimization algo-

rithm (MOA) in the traditional sense. While the selection problem resembles a multi-

objective optimization problem, there are key differences between the two. An MOA

120 Chapter 7. The LUCIE Algorithm for Core Selection

attempts to efficiently traverse a solution space to find non-dominated solutions—

points that are Pareto-optimal for the objectives that must be optimized. MOAs are

based on the observation that there might not be an objective function that can combine

all the multiple objectives into a single figure of merit, so the algorithms must return

a population of non-dominated solutions rather than a single solution. Since CPU

cores attempt to maximize performance while minimizing power, MOAs are a good

option for design space exploration. The selection problem is, however, a problem of

selecting a complementary set of non-dominated solutions (cores in the candidate set)

for a processor. An MOA cannot differentiated among the cores in the candidate set,

because by definition, they are all non-dominated and equally “good.”

A naïve approach would be to turn the selection problem into a separate multiob-

jective optimization problem that attempts to optimize the selection of cores using, for

example, the metrics in the previous chapter. While this is possible, it is unwise and

unhelpful to the processor designer. Chapter 6 presented eight metrics. Excluding the

KS test, which is superseded by ,|כ and SO, which is a comparison to another selection,

there are six metrics that could be optimized. However, ,|כ GO, Av, and ES operate

on a per-benchmark basis. The number of objectives is therefore multiplied by the

number of benchmarks. For even the trivial set of five benchmarks in chapter 6, there

would be 22 objectives (4×5+2). For the full set of benchmarks from section 4.3.1
(p. 41), the number objectives is 134. The developer of an MOA may believe that he

is doing a good deed by finding the don-dominated solution set in an objective space

with 134 dimensions. However, by doing so, he assumes that the processor designer

can choose one of the solutions from the 134-dimensional objective space. The de-

signer’s choice would be dependent on a long series of impossible to conceptualize

trade-offs, such as determining whether trading a 10% increase in |כ for benchmark 1

(bm1) is counterbalanced by a 3% decrease in GO for bm4. Applying an MOA to

the selection problem transforms the problem of selecting some power-performance

Pareto-optimal cores into a problem of optimizing potentially hundreds of objectives,

a farcical increase in complexity.

There is the further issue that the metrics in chapter 6 are designed to offer insight

and enable detailed analysis of a selection of cores—they are intended to increase

the amount of information known about a selection. Using the metrics as black-box

quantities turns the insight into uninformative noise.

The LUCIE algorithm avoids the difficulties of an MOA by using a subtractive

selection methodology. An additive selection methodology would require an algorithm

7.4. Selection Space Normalization 121

that repeatedly selects and evaluates cores. This would be combinatorially complex

and would require an MOA or similar approach. In addition to the problems noted

above, an MOA would use randomness in the selection, leading to non-determinism.

The non-determinism can, in turn, lead to an endless cycle of rerunning the algorithm

with tweaked parameters in the hope of finding a better solution. Rather than select

which cores in the candidate set should be used, LUCIE iteratively selects which

cores should not be used. The cores that remain comprise the selection. A subtrac-

tive approach allows LUCIE to be deterministic while avoiding the complexities of

multiobjective trade-offs.

7.4 Selection Space Normalization

LUCIE performs core selection in a normalized, unit-less metric space that is identical

to the one used by the |כ metric (section 6.6.3.1). Power and execution time are

expressed as multiples of lowest power and shortest execution time to account for

variations among benchmarks. For each core-benchmark combination, power and

execution time are divided by the best power and the best execution time for that

benchmark by any core in the design space, as shown in equation 7.1. Normalization

is carried out once on a dataset before the LUCIE algorithm is run.

Pc,b =
Praw(c,b)

min
(

Praw(C ,b)
) Tc,b =

Traw(c,b)

min
(

Traw(C ,b)
) (7.1)

Pc,b is the normalized (unit-less) power of core c executing benchmark b.

Tc,b is the normalized (unit-less) execution time of core c running bench-

mark b.

Praw(c,b) is the power consumption of benchmark b on core c in Watts, as reported

by a power model.

Traw(c,b) is the execution time of benchmark b on core c in seconds, as reported by

a simulator.

C is the complete set of cores.

min(S) returns the minimum of set S .

Power and time are normalized to enable fair comparisons between cores. As an

example, knowing that benchmark bmA draws 500mW on a core and that benchmark

bmB draws 1W on the same core is not particularly informative. Knowing that bmA

122 Chapter 7. The LUCIE Algorithm for Core Selection

Algorithm 1 E-LUCIE (basic LUCIE) using default C and E
while |C |> N do

for all c in C do
C(c) . Equations 7.2, 7.3, 7.4

end for
c← FINDMINCOSTCORE(C)

remove c from C
for all b in Bc do

cm← argmin
k

E(c,k,b) . Equation 7.4

append b to list for cm if not present

end for
end while

runs at 2.0× its minimum power and bmB runs at 1.1× its minimum power on the

core suggests that the core has good power characteristics for bmB but not for bmA,

despite the fact that the absolute power for bmB is greater than for bmA. The remainder

of this chapter uses normalized power and time instead of absolute values. Average

normalized power and average normalized time summarize the normalized power

and time of a given core across all benchmarks using the arithmetic mean. Average

normalized time is therefore equivalent to the ANTT metric [52]. Normalization aids in

interpreting power and time values and provides a level of robustness against unreliable

tools (see section 5.3.5 (p. 58) and section 6.2 (p. 75)).

7.5 Basic LUCIE

This section defines the baseline version of the LUCIE algorithm, E-LUCIE. Later

sections add improvements to the basic algorithm. The definition is followed by an

example.

7.5.1 Definition

E-LUCIE is shown in algorithm 1. The algorithm begins with the set of cores, C ,

where every core in C is power-performance Pareto-optimal for at least one bench-

mark. I.e., C is the candidate set. The candidate set comes from a design space

exploration (DSE), see figure 5.2 (p. 53). An oracle candidate set is assumed here,

7.5. Basic LUCIE 123

as described in section 4.3.2 (p. 42). N is the number of different cores LUCIE should

select. It is set by the designer. Each core in C has a list of one or more benchmarks

for which it is Pareto-optimal. The length of this list is the core’s affinity—if a core is

optimal for many benchmarks, then it has a high affinity, and if it is optimal for a few,

then it has a low affinity. The affinity of a core is distinct from the generality metric,

�, which is only calculated for the final selection of cores. LUCIE first iterates over

all cores in C , and calculates each core’s cost (defined below). It then finds the core

with the minimum cost, core c, and removes it from set C . Finally, it iterates over all

benchmarks that were associated with core c—the set Bc. For each benchmark, b, in

Bc, it finds a destination core, cm, and adds b to the benchmark list for core cm. cm is

the core nearest to c for benchmark b based on a distance metric, E. If b was already

associated with cm, then the benchmark list for cm is unchanged. Otherwise, b is added

to the list for cm, and the affinity of cm increases. The process repeats until the desired

number of cores remain.

The cost of core c, C(c), is given in equation 7.2. For each benchmark, b, asso-

ciated with core c, the cost, D, of displacing the benchmark from c is calculated. The

total cost of core c is the sum of the individual displacement costs. A core can have a

high cost if there are many benchmarks associated with it, or if a few benchmarks have

a large displacement cost (i.e., if the core is very important to a few benchmarks).

C(c) =
Bc

∑
b

D(c,b) (7.2)

Equation 7.3 defines the displacement cost, D(c,b). This is a measure of how

useful core c is to benchmark b. If D is large, then core c occupies a unique position

in the design space for the benchmark. If it is small, then there exists another core that

has a similar power-performance trade-off for b. If core c is to be removed, b should

be displaced to the nearest core. The distance metric, E, is used to find the distance

between two cores for benchmark b. The closest core to core c for benchmark b is

defined as core cm. The displacement cost is the cost of moving benchmark b from c

to cm.

D(c,b) = E(c,cm,b)

cm = argmin
k

E(c,k,b)
(7.3)

Finally, equation 7.4 defines the distance, E, between core c1 and core c2 for

benchmark b. E is simply Euclidean distance in normalized power-performance space.

124 Chapter 7. The LUCIE Algorithm for Core Selection

Since no two benchmarks have exactly the same power-performance behavior, each

benchmark has a different E for the same pair of cores. E uses the quantities ∆P and

∆T in equation 7.5. ∆P is the difference between core c1 and core c2 for benchmark b

along the normalized power axis; ∆T is the difference along the normalized time axis.

A positive ∆P or ∆T means that moving from c1 to c2 is an improvement for b. Since

the cores in C follow a Pareto frontier, a positive ∆P will generally be paired with a

negative ∆T, and vice-versa.

E(c1,c2,b) =
√

∆P(c1,c2,b)2 +∆T(c1,c2,b)2 (7.4)

∆P(c1,c2,b) = Pc1,b−Pc2,b

∆T(c1,c2,b) = Tc1,b−Tc2,b

(7.5)

7.5.2 Example

Figure 7.1 shows the progression of the LUCIE algorithm as it eliminates cores. This

example uses results from the 12 SPECint 2006 benchmarks (see section 4.3.1 (p. 41)).

The candidate set in this case contains 266 different cores. Cores are plotted by average

normalized power and time. Since averages hide per-benchmark variations, gray boxes

in the final plot show the full range of power and time values for each of the four cores.

The right edge of each gray box is the highest (normalized) power consumption of any

benchmark on the given core, etc. This illustrates that a core’s behavior is dependent

on the type of program being run.

The candidate set contains two clusters of cores that clearly fall onto the power-

performance Pareto frontier, and an additional cluster of high-power cores. The high-

power cores achieve a short execution time (are Pareto-optimal) for only a few bench-

marks, and their affinity is therefore low. Since figure 7.1 is averaged across all

benchmarks, the high-power cores appear above the Pareto frontier. These fast cores

are undesirable for two reason: First, there are cores with similar speed characteristics

but much lower power consumption. Second, a heterogeneous processor can only

implement a limited number of core types, and in general, it is therefore better for

cores to be broadly applicable. Equation 7.2 ensures that the low-affinity cores have a

low cost and are removed.

Figure 7.1 (bottom-right) shows that LUCIE thins the large candidate set down

to four, roughly evenly spaced cores that approximate the original Pareto frontier. If

7.5. Basic LUCIE 125

A
ve

ra
ge

 N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●●
●

●

● ●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●

● ●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●
●●●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●●

●
●
●
●

●●

●
●●

●●

●

●

●

●

●

●●●

●

●

●
●

●●●
●
●

●
●

●

●●
●

●

●

●

●
●

●

●●

●
●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●●
●
●

●

●
●

●●

●
●

● ●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●
●

●
●●

●●

266 Cores
(Candidate Set)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

●

●

●

●

●

●

●● ●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●
●

●
●●

●

●
●

●

●

●
● ●

●
●●

●●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●
●

●
●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●●

128 Cores

0%

100%

Benchmark
Affinity

A
ve

ra
ge

 N
or

m
al

iz
ed

 T
im

e

1.0 2.0 3.0 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

●●●● ●

●

●

●●

●

●
●
●

●
●

●

16 Cores

1.0 2.0 3.0 4.0

●● ●

●

●

●

●

●

8 Cores

Average Normalized Power
1.0 2.0 3.0 4.0

●

●

●

●

4 Cores

Figure 7.1: LUCIE approximates the candidate set with an ever decreasing number of

cores. Gray boxes show the full power and time range of the final four cores. Results

are for E-LUCIE and SPECint 2006.

LUCIE is allowed to select eight or sixteen cores, then the Pareto frontier is covered

more densely, and some low-affinity cores are included.

LUCIE approximates the full, Pareto-optimal set with a small number of cores,

while balancing the competing demands of design space coverage and per-benchmark

specialization. When four cores are selected, the cores are effectively general-

purpose—they all have a high affinity. When the number of cores increases to eight

and beyond, some low-affinity cores appear. These provide significant benefits to only

a few benchmarks. LUCIE does not have a stopping criterion, but can be run until only

one core remains. It is up to the designer to decide how many core types should be

implemented, as this will depend on the specific design space, the target benchmarks,

available engineering effort, etc.

126 Chapter 7. The LUCIE Algorithm for Core Selection

Figure 7.2: E-LUCIE only considers distance when displacing benchmarks. If the

square core were to be removed, benchmarks would be displaced to core 1. BE-LUCIE

also considers improvement along the axes, making displacement to core 2 a possibility.

7.6 Biased LUCIE

One of the shortcomings of E-LUCIE is that it only considers distance to the nearest

core when it evaluates a core’s cost. The candidate set can contain many cores that

are Pareto-optimal for only a few benchmarks. It is therefore possible that when a

core is removed, a benchmark associated with the core is displaced to a core that

was not originally Pareto-optimal for the benchmark. While this is not necessarily

undesirable, it creates the possibility that as the number of cores in the set decreases,

the selection drifts away from the Pareto frontier. The issue is illustrated in figure 7.2.

If the square core is to be removed, E-LUCIE will displace the benchmark to the closest

core, core 1. However, this increases both power consumption and execution time for

the benchmark. In contrast, biased LUCIE (BE-LUCIE) is aware of the direction of

the displacement, and will sometimes find that displacing the benchmark to core 2 is

a better option. The details of the modified version of LUCIE are described below,

followed by an example.

7.6.1 Definition

BE-LUCIE is shown in algorithm 2. It is identical to the basic version in algorithm 1,

except that it uses a biased Euclidean distance function, BE, instead of the regular

Euclidean distance function, E.

The biased distance function is Euclidean distance multiplied by a biasing factor.

BE is defined in equation 7.7. The biasing factor is based on ∆P and ∆T, the power

7.6. Biased LUCIE 127

Algorithm 2 BE-LUCIE (biased LUCIE) using default C and biased distance BE
while |C |> N do

for all c in C do
C(c) . Equations 7.2, 7.6, 7.7

end for
c← FINDMINCOSTCORE(C)

remove c from C
for all b in Bc do

cm← argmin
k

BE(c,k,b) . Equations 7.7, 7.4

append b to list for cm if not present

end for
end while

and time changes that result from displacing a benchmark from a core. Recall that

positive values of ∆P and ∆T signify an improvement. Since the cores follow a Pareto

frontier, a situation where both are positive is unlikely. If, while LUCIE is running, the

situation does arise where both ∆P and ∆T are positive, then this indicates that moving

benchmark b from c1 to c2 improves both power and execution speed. The biasing

factor becomes less than one, reducing the cost of c1 and making its removal more

likely. If the move from c1 to c2 greatly reduces ∆P at a small detriment to ∆T, or vice-

versa, then the biasing factor also becomes less than one and favors the move. This

would improve the likelihood of a move to core 2 in figure 7.2. If ∆P and ∆T are both

negative, then the biasing factor will be greater than one, and will increase the cost

of the move. This would decrease the likelihood of the move to core 1 in figure 7.2.

For most Pareto-optimal cores, the ∆ values will have similar magnitudes but opposite

signs, and the biasing factor’s effect will be negligible.

D(c,b) = BE(c,cm,b)

cm = argmin
k

BE(c,k,b)
(7.6)

BE(c1,c2,b) = E(c1,c2,b) ×
(

1 −
(
∆P(c1,c2,b) + ∆T(c1,c2,b)

))
(7.7)

The biasing factor has two purposes. First, since C contains Pareto-optimal cores

for all benchmarks, the biasing factor discourages, but does not prevent, displacing

128 Chapter 7. The LUCIE Algorithm for Core Selection

a given benchmark to a nearby core that is not Pareto-optimal for the benchmark.

Second, the biasing factor also directs LUCIE away from extreme cores—cores that

trade substantial increases in power for marginal performance increases, and cores

that trade marginal power reductions for substantial performance reductions. I.e., the

biasing factor helps avoid an unnecessarily broad spread (see section 5.5.1 (p. 61)).

∆P and ∆T are both normalized values that have no units, and they can therefore

be summed. As more and more cores are removed, the gaps between remaining cores

become larger, and it is possible for the biasing factor to become negative. There is

no particular significance to a negative biasing factor. Since the costs of all cores are

evaluated relative to each other, it is not even problematic if the costs of some cores

become negative. Using a biasing factor that sometimes prefers further away cores over

nearby cores may seem counterintuitive. However, most cores in a candidate set must

eventually be removed, and selecting against cores that implement extreme power-

performance trade-offs and against cores that are behind the Pareto frontier improves

the quality of the set of remaining cores.

7.6.2 Example

Figure 7.3 shows the progression of the BE-LUCIE algorithm as it removes cores.

Notable differences between this example and the E-LUCIE plots in figure 7.1 are the

reduced number of low-affinity cores in the 128-core selection and the smaller spread

in the final, 4-core selection. Both can be explained by the biasing factor. The cluster

of low-affinity, high-power cores in the candidate set contains cores that should not be

implemented under normal circumstances. These cores provide a speed improvement

to very few benchmarks, the improvement is marginal, and is expensive in terms of

power. The disproportionate power consumption of these cores causes the biasing

factor to lower their costs, and they are quickly removed.

Similarly, the biasing factor reduces the spread of the selection. One must compare

figure 7.3 to figure 7.1 to see the benefit of this. Of the two lowest-power cores

selected by E-LUCIE, the slower one is substantially slower, but uses only marginally

less power. It is unlikely that this core would be used sufficiently frequently to justify

its inclusion. Of the two highest-power cores selected by E-LUCIE, the faster one is

only marginally faster, but consumes considerably more power. It is unlikely that a

power-constrained device will be able to use this core frequently. BE-LUCIE avoids

7.7. Weighted-Biased LUCIE 129

A
ve

ra
ge

 N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●●
●

●

● ●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●

● ●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●
●●●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●●

●
●
●
●

●●

●
●●

●●

●

●

●

●

●

●●●

●

●

●
●

●●●
●
●

●
●

●

●●
●

●

●

●

●
●

●

●●

●
●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●●
●
●

●

●
●

●●

●
●

● ●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●
●

●
●●

●●

266 Cores
(Candidate Set)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

●

●
●
●●

●

●●●

●

●
●
●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●●

●

●

●
●

●
●
●
●●

●

●

●

●
●
●

●

●●
●

●●

●

●

●

●

●

●
●
●●

●

●●

●

●

●●
●
●

●●
●

●

●
●
●

●

●

●
●
●
●

●

●

●

●

●

●

●●

●●
●

●

●
●
●

●
●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●●

●
●

●

●

●
●

●●●●

●
●
●

128 Cores

0%

100%

Benchmark
Affinity

A
ve

ra
ge

 N
or

m
al

iz
ed

 T
im

e

1.0 2.0 3.0 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

●
●

●●

●

●

●
●

●
●●●

●

●
●
●

16 Cores

1.0 2.0 3.0 4.0

●

●

●

●

●

●
●
●

8 Cores

Average Normalized Power
1.0 2.0 3.0 4.0

●

●
●
●

4 Cores

Figure 7.3: BE-LUCIE is more effective than E-LUCIE at removing cores with low

affinities and at removing extreme cores. Results are for SPECint 2006.

these extreme cores. If extreme cores are required, then core pinning (section 7.8) and

power PDFs (section 7.9) provide the designer with the means of including them.

7.7 Weighted-Biased LUCIE

A feature of both the basic and biased versions of LUCIE is how they handle outlier

benchmarks. If a core in the candidate set has a very low affinity—if it is Pareto-

optimal for very few benchmarks—then it will have a low cost and will be eliminated.

This is the intended behavior, but the behavior can lead to benchmark traveling. If a

benchmark is an outlier and its behavior is significantly different from that of other

benchmarks, then it is possible for there to be a region of the candidate set with many

cores that are Pareto-optimal for only the one benchmark. As each core is eliminated,

the benchmark is displaced to a neighboring core. Since the entire region of the design

space is useful to only one benchmark, the benchmark can “travel” across all the cores

until they are all eliminated, and the benchmark loses access to the region of the space.

130 Chapter 7. The LUCIE Algorithm for Core Selection

Algorithm 3 WB-LUCIE (weighted-biased LUCIE) using C with move counter and

biased distance BE
while |C |> N do

for all c in C do
C(c) . Equations 7.8, 7.6, 7.7

end for
c← FINDMINCOSTCORE(C)

remove c from C
for all b in Bc do

cm← argmin
k

BE(c,k,b) . Equations 7.7, 7.4

append b to list for cm if not present

mcm,b← mcm,b +mc,b +1

end for
end while

Other benchmarks are unaffected by this, but the one benchmark’s runtime flexibility

can be hampered substantially by the loss of an entire region of its Pareto-optimal

frontier.

The traveling problem is an inevitable consequence of the LUCIE algorithm at-

tempting to represent a candidate set of cores with a small selection. If, for example,

four cores are selected, but there are 100 representative benchmarks, then it is unrea-

sonable to reserve one core for the exclusive use of one benchmark. However, there can

be benefits to adding awareness of the traveling problem into the LUCIE algorithm.

The weighted-biased version of LUCIE, WB-LUCIE includes some “stickiness” to

counteract traveling. The modified algorithm is defined below, followed by an ex-

ample.

7.7.1 Definition

WB-LUCIE is shown in algorithm 3. It is identical to the biased version in algo-
rithm 2, except that it uses the modified cost function in equation 7.8 and it includes

a move counter, mc,b. Each benchmark, b, in the affinity list of each core, c has an

associated move counter, mc,b. The move counter has an initial value of 0. When

a core is removed and each benchmark associated with the core is displaced, then

each benchmark’s move counter is incremented and added to the destination core’s

move counter. If the benchmark was not already associated with the destination core,

7.7. Weighted-Biased LUCIE 131

A
ve

ra
ge

 N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●●
●

●

● ●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●
●●

●

●

●

● ●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●●
●

●

●
●

●

●

●

●

●

●
●●●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●●

●
●
●
●

●●

●
●●

●●

●

●

●

●

●

●●●

●

●

●
●

●●●
●
●

●
●

●

●●
●

●

●

●

●
●

●

●●

●
●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●●
●
●

●

●
●

●●

●
●

● ●

●

●
●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●
●

●
●●

●●

266 Cores
(Candidate Set)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

●

●
●●
●

●

●
●●

●

●

●

●

●
●
●
●

●
●

●
●
●

●
●

●

●
●●

●

●
●●

●
●●

●●●

●

●

●
●

●
●
●

●●

●
●

●
●

●

●

●
●

●

●

●
●
●●

●

●●

●

●

●●●

●

●

●

●
●
●
●

●

●

●●
●●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●●

●
●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●●●

●
●
●

128 Cores

0%

100%

Benchmark
Affinity

A
ve

ra
ge

 N
or

m
al

iz
ed

 T
im

e

1.0 2.0 3.0 4.0

1.
0

1.
5

2.
0

2.
5

3.
0

●
●

●●

●●

●

●
●

●

●●

●
●●
●

16 Cores

1.0 2.0 3.0 4.0

●

●
●

●
●

●
●

●

8 Cores

Average Normalized Power
1.0 2.0 3.0 4.0

●

●

●
●

4 Cores

Figure 7.4: WB-LUCIE places a stronger emphasis on per-benchmark specialization

than BE-LUCIE, which leads to two high-performance cores. Results are for SPECint

2006.

then the destination core’s move counter for the benchmark is first initialized to 0.

The move counter is used in the modified cost function, equation 7.8, to increase

the displacement cost. If a benchmark has already been displaced many times, then

its move counter will be large, and the cost of the core will be greater. This adds a

measure of “stickiness” to the LUCIE algorithm. An outlier benchmark can only lose

a limited number of cores before other benchmarks must also lose cores.

C(c) =
Bc

∑
b

D(c,b)× (mc,b +1) (7.8)

7.7.2 Example

Figure 7.4 shows the progression of the WB-LUCIE algorithm. WB-LUCIE is visu-

ally similar to BE-LUCIE in figure 7.3. One notable difference is that in the 4-core

selection, the weighted version selects two high-performance cores. This is because

132 Chapter 7. The LUCIE Algorithm for Core Selection

benchmarks on all the high-performance, low-affinity cores converge to this region

and bring along their large move counters. Note that the cores are plotted by average

normalized power and time—two cores that appear to overlap in the averaged space

do not necessarily overlap in each core’s own power-performance space. A minor dif-

ference is the inclusion of a fourth high-power core in the selection of 128 cores. This

is also the effect of the move counters, which have responded to traveling behavior.

However, these high-power cores have such low affinities and such disproportionate

power consumption that even with move counters, they are rightly eliminated.

7.8 Pinning Cores

By default, the LUCIE algorithm eliminates cores that are Pareto-optimal for only a

few benchmarks, and cores that trade disproportionately large amounts of power for

marginal performance improvements (or vice-versa). The underlying assumption is

that these cores are a waste of silicon resources—cores that are optimal for only a

few benchmarks will only rarely be required, and cores that consume large amounts of

power will only rarely be usable in a power-limited device. In some cases, however, a

designer might have good reason to force LUCIE to select a core that would normally

be excluded. This is referred to as core pinning. A core, c is pinned by setting its cost,

C(c), to infinity. LUCIE is run normally, benchmark affinities are calculated even

for the pinned cores, but the pinned cores are never removed. Two use cases for core

pinning are described below: maximizing best-case execution speed and incrementally

designing processors. It should be noted that core pinning is possible because of the

subtractive selection strategy employed by LUCIE. Pinning is not possible for some

competing selection algorithms, like the Clustering strategy [71].

7.8.1 Maximization Example

LUCIE assumes that the power available to a program can vary, but some types of pro-

grams might be so important that the device will always make enough power available

to run them as fast as possible (by, e.g., pausing other running programs, turning off

radio interfaces, dimming the screen, etc.). For such a device, the designer may choose

to pin a fast, high-power core. This can be demonstrated by using WB-LUCIE to

select four cores for the SPECint 2006 benchmarks. In the first case, WB-LUCIE

simply selects four cores. In the second case, a fast core (core #518) is pinned,

7.8. Pinning Cores 133

WB−LUCIE
WB−LUCIE with Pinning

Benchmark

N
or

m
al

iz
ed

 T
im

e
1.

00
1.

05
1.

10
1.

15

astar
bzip2

gcc
gobm

k

h264
hm

m
er

quant

m
cf

om
net

perl
sjeng

xalan
AMEAN

Figure 7.5: Pinning a fast core increases speed for most benchmarks in situations

where power is not limited. Averaged normalized time is 1.06 without pinning, 1.02 with

pinning (smaller is better). Data is for SPECint 2006 benchmarks.

WB−LUCIE
WB−LUCIE with Pinning

Benchmark

E
ffe

ct
iv

e
S

pe
ed

0%
25

%
50

%
75

%
10

0%

astar
bzip2

gcc
gobm

k

h264
hm

m
er

quant

m
cf

om
net

perl
sjeng

xalan
HMEAN

Figure 7.6: Pinning a fast core slightly reduces the ES of benchmarks, because fast

cores require more power and can be used less frequently. Average ES is 88% without

pinning, 87% with pinning (larger is better). Data is for SPECint 2006 benchmarks.

and WB-LUCIE selects three more cores. The fast core is chosen because of its

large caches and integer register file, and because it is Pareto-optimal for half of the

SPEC benchmarks (most fast cores are optimal for fewer benchmarks). The minimum

normalized execution times for the two selections are shown in figure 7.5. This is the

best-case execution time when power is not limited. The average improvement from

pinning is nearly 4%. The pinned core is not able to run libquantum faster than any of

the cores normally selected by WB-LUCIE.

Pinning is not, however, an unqualified improvement, but a trade-off between best-

case and average performance. Pinning a fast core can reduce the speed of a processor,

because the fast core requires more power and can be used less frequently. Figure 7.6
shows that for this example, pinning causes only a 1% reduction in effective speed, as

134 Chapter 7. The LUCIE Algorithm for Core Selection

Average Normalized Power

A
vg

. N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

●

●
●
●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●

●
●●●

●

●
●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●●
●

●●

●

●

●

●

●
●

●●
●
●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●●●
●

●

●

●
●●
●

●
●

●●

●

●
●

● ●

●

●●

●

●

●
●
●●●

●

●
●

●
●●

●

●
●

●

●

●
●

●● ●

●

●

●

●●

●
●
●
●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●

#1681

#1339

#671
#518●

●

●

●

●
●
●

Candidate Set
Pinned Cores
Selected Cores

Figure 7.7: When a slow and a fast core are pinned, WB-LUCIE selects cores in the

middle. Cores are selected for SPECint 2006 benchmarks.

the selections of cores are not substantially different. The side effects of pinning will

be more drastic if a core with a very low affinity is pinned, or if more core types are

pinned.

7.8.2 Incremental Design Example

A second use of core pinning is when the designer has already implemented some cores

(for, e.g., a previous product), and wishes to select additional cores to complement

the existing ones. In this case, the designer simply pins the existing cores and runs

LUCIE as normal. Two cores are pinned in figure 7.7, core #518 and core #1681.

The performance difference between the pinned cores is approximately 2.0×, which

is similar to the performance difference between core types in ARM’s “big.LITTLE”

configuration [69]. With the two cores pinned, WB-LUCIE selects core #671 as the

third core. Adding core #671 leads to a speedup of 56% compared to the 2-core case,

as measured by set overhead. If WB-LUCIE is allowed to select a fourth core, core

#1339 is selected. This increases the speedup to 61% over the 2-core case.

7.9 Applying a Power PDF

In some circumstances, a designer might wish to guide the selection process without

pinning specific cores. For example, the designer might know that real usage patterns

emphasize a specific region of the design space. By using an available power PDF

(probability density function), it is possible to increase the cost of cores in impor-

tant regions of the space. If used, the PDF would be the same one described in

7.9. Applying a Power PDF 135

the runtime model (section 5.4 (p. 58)) and used by metric weighting (section 6.13
(p. 113)). LUCIE still selects cores for power flexibility and to balance the needs of all

benchmarks, but it places a greater emphasis on the important regions.

The available power PDF is used as follows: The PDF applies a factor, f (c,b), to

the displacement cost function, D(c,b), as shown in equation 7.9. The factor can be

used with either the Euclidean distance function, E, or the biased Euclidean distance

function, BE. The PDF modifies the cost of displacing core c for each benchmark

b. f (ci,b) is defined in equation 7.10. It is the integral of the PDF function for

benchmark b from the midpoint between core ci and its neighbor on the left to the

midpoint between ci and its neighbor to the right. Cores are ordered by increasing

power. The integration range for the first and last core begins at the lower-bound of

the PDF and ends at the upper-bound of the PDF, respectively. Integrating with respect

to a core’s neighbors ensures that the PDF in a given region of the design space is

divided among the cores in that region. As cores are removed, the remaining cores

gain an increased benefit from the PDF. This prevents tight clusters of cores forming

in regions of the design space with a high probability density.

D(c,b) = f (c,b)×BE(c,cm,b)

cm = argmin
k

BE(c,k,b)
(7.9)

f (ci,b) =
∫ l2

l1
PDFb

l1 =
Praw(ci−1,b)+Praw(ci,b)

2

l2 =
Praw(ci,b)+Praw(ci+1,b)

2

(7.10)

The application of a power PDF is demonstrated in figure 7.8. The top plot

shows five cores selected by BE-LUCIE for the entire EEMBC suite. The bottom plot

shows an empirical distribution of CPU load data collected from a modern Android

smartphone. I.e., it shows how likely the phone is to experience a given load. This

previously unpublished load data was collected by Peter Henderson as part of an MSc

project at the University of Edinburgh. It is simplistically assumed that the amount of

power available to the CPU correlates with the load—if the load is low, it is because

there is insufficient power to run a greater load. In reality, determining the source

136 Chapter 7. The LUCIE Algorithm for Core Selection

A
ve

ra
ge

 S
ca

le
d

T
im

e

1.0 1.5 2.0 2.5 3.0
1.

0
1.

5
2.

0
2.

5

●

●

●

●

●
0%

100%

Benchmark
Affinity

CPU Load
0% 20% 40% 60% 80% 100%

10
%

20
%

30
%

40
%

P
ro

ba
bi

lit
y

Average Scaled Power

A
ve

ra
ge

 S
ca

le
d

T
im

e

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

●●

●

●

●

Figure 7.8: (Top) Five cores selected by BE-LUCIE. (Bottom) Five cores selected by

BE-LUCIE when the design space has empirical CPU load data applied to it (gray).

Selection is for the complete set of 21 EEMBC benchmarks.

of CPU load is far more complicated. However, the load distribution is a reasonable

example of the amount of power that a scheduler may make available to a task, and

is sufficient for illustrating the application of a power PDF. The PDF is approximately

scaled to the power axis using the range of power values in the candidate set.

The smartphone CPU spends much of its time at 0%-30% load, and also at 90%-

100% load. Given the above assumption, this informs LUCIE that cores that can

operate at below 30% of full power and at 90% of full power are more useful than other

cores. The effect is that during selection, LUCIE discards the second lowest-power

core, keeps the three medium cores, and introduces a high-power core. Note that the

PDF only steers LUCIE—it does not completely dominate. The trade-off mechanisms

in LUCIE still apply, and LUCIE still selects against cores with disproportionately

high power for their performance.

7.10 Summary

The complexity of the selection problem lies in the fact that a small number of cores

must be used to provide multiple power-performance points to tasks that can poten-

7.10. Summary 137

tially have very different behaviors. The LUCIE algorithm uses the candidate set

of cores as the basis for determining the maximum theoretical diversity available to

each benchmark in a representative set. LUCIE does not evaluate the average features

of cores—cores are not considered to be “generally high-performance,” or “generally

low-power,” etc. Instead, cores are evaluated based on their contribution to diversity

as seen by each benchmark. A given core might be the fastest option for one bench-

mark, while offering only moderate performance to another benchmark with different

microarchitectural requirements. As long as the core is Pareto-optimal (or nearly so)

for both benchmarks and offers both benchmarks a unique power-performance point,

it is considered useful.

This chapter has been limited to a subjective evaluation of the spread and unifor-

mity produced by the three versions of the LUCIE algorithm. The next chapter per-

forms a thorough, quantitative analysis on LUCIE and competing selection strategies.

Chapter 8:

LUCIE Evaluation &
Metrics Demonstration

Once a processor designer has arrived at a set of heterogeneous cores, the set must be

evaluated. Evaluation exists to determine the quality of the selection of cores, and, by

extension, the quality of the algorithm that performed the selection. Evaluation itself is

non-trivial—it requires a correct application and interpretation of metrics. This chapter

evaluates LUCIE from chapter 7 and two competing selection algorithms, and serves

as a case study of the usage of the metrics defined in chapter 6.

8.1 Introduction

The problem of selecting a diverse set of heterogeneous cores is particularly relevant

to mobile processors, as they must maximize performance for a range of tasks under

a range of power budgets. This chapter evaluates the three versions of LUCIE from

chapter 7, the GA selection strategy [134], and the Clustering selection strategy [71].

The three versions of LUCIE are basic LUCIE (E-LUCIE), which uses Euclidean

distance; biased LUCIE (BE-LUCIE), which uses biased Euclidean distance; and

weighted-biased LUCIE (WB-LUCIE), which uses biased distance and a move counter

to weight cores.

The five algorithms are used to select a set of cores for the SPECint 2006 bench-

mark suite, and an independent set of cores for the EEMBC benchmark suite (see

section 4.3.1 (p. 41)). The majority of the chapter uses selections of four cores. This is

within reach of current commercial technology, and it is a number commonly used in

existing literature [96, 134]. The selection strategies select cores from the design space

139

140 Chapter 8. LUCIE Evaluation & Metrics Demonstration

of 3000 cores described in section 4.3.2 (p. 42). The complete list of cores is included

in appendix A. Cores are numbered from #1 to #3000.

The implementation details of each algorithm are presented first, followed by a

qualitative section describing the selected cores. A section on summary metrics is

included to demonstrate their limitations and the need for more descriptive metrics.

This is followed by another qualitative section on the spread of the selected cores.

The availability, uniformity, set overhead, and effective speed of the selections are

then evaluated. The GA selection strategy only selects high-performance cores that

have very low availability and are not suitable for mobile devices. This strategy is

not considered after the availability section. A section on scalability evaluates gap

overhead, generality, and monotonicity when the selection algorithms are used to

select fewer or more than four cores. The final evaluation applies set overhead to a

scenario where cores are selected using a non-flat power probability density function

(PDF). The chapter ends with a concluding discussion on selection algorithms. The

three versions of LUCIE are found to produce comparable results, and to consistently

outperform the Clustering strategy.

8.2 Selection Algorithm Implementations

The analyses in this chapter evaluate up to five different core selection strategies.

These are E-LUCIE, BE-LUCIE, WB-LUCIE, GA selection, and Clustering selection.

The three versions of LUCIE were defined in chapter 7. The GA selection strategy

by Navada et al. [134] and the Clustering selection strategy by Guevara et al. [71]

represent the current state of the art in heterogeneous core selection. The two strategies

were qualitatively critiqued in section 5.7.3 (p. 70) and section 5.7.4 (p. 71). This

section describes the implementations of each strategy.

The three versions of LUCIE are implemented using a perl script. The version of

LUCIE that should be used is selected with command line options.

The GA selection method is based on a genetic algorithm (GA) that combines

both design space exploration and core selection into one step. The algorithm selects

cores to optimize execution speed. Navada et al. [134] use a design space with over

13,000 cores. Since the example design space used in this chapter is much smaller at

3000 cores, the GA selection method is approximated with a hill-climbing search that

optimizes speed. The search is implemented in R [145].

8.3. Selected Cores 141

The Clustering selection algorithm is implemented in R using the default R imple-

mentation of k-means clustering. Cores are clustered based on the BIPS3/W efficiency

metric. BIPS3/W—billions of instructions per second per Watt—is inversely propor-

tional to ED2. The representative core from each cluster is selected to minimize the

coefficient of variation (CoV) of BIPS3/W . Guevara et al. [71] find these clustering

and selection criteria to lead to the best results.

When running on a modern Intel processor, both LUCIE and the Clustering strategy

require only a few seconds to select cores from a candidate set. It should be noted,

however, that since the Clustering strategy is based on k-means clustering, it is non-

deterministic. K-means can sometimes fail to find good clusters, in which case the

Clustering strategy will fail to select a diverse set of cores. The GA strategy runs in

under two hours. It is much slower both because it traverses the entire design space

rather than just the candidate set, and because R is not conducive to tasks with a large

proportion of control flow operations.

8.3 Selected Cores

This section contains a qualitative analysis of the features of the selection algorithms.

The differences between the three versions of the LUCIE algorithm have already been

described in chapter 7, so this section only considers WB-LUCIE, the GA strategy,

and the Clustering strategy. While the specific cores selected by the algorithms are

different for the SPEC and EEMBC suites due to differences in benchmark features,

the underlying behaviors of the algorithms are independent of the benchmark suite.

The focus will be on the cores selected for the SPEC suite; the discussion is largely

identical for the EEMBC suite.

Table 8.1 lists the four cores selected for the SPECint 2006 benchmark suite by

each of the five selection strategies, and table 8.2 lists the cores selected for the com-

bined EEMBC suite. Figure 8.1 and figure 8.2 plot the selections, omitting the basic

and biased versions of LUCIE for visual clarity. The behavioral differences of the three

algorithms are obvious from inspection of figure 8.1. The GA strategy optimizes for

performance and selects four fast, high-power cores. The Clustering strategy divides

the candidate set into four regions and selects a core from each region. The LUCIE

strategy avoids extremes and selects cores around the knee of the candidate set. As

noted in section 7.7.2 (p. 131), cores that appear close together in the average space

142 Chapter 8. LUCIE Evaluation & Metrics Demonstration

SPECint 2006 Cores

E-LUCIE Selection #142 #1288 #1449 #518

BE-LUCIE Selection #1181 #2417 #1631 #1449

WB-LUCIE Selection #2761 #1339 #1449 #671

Clustering Selection #1981 #2288 #2145 #319

GA Selection #1165 #518 #969 #319

Table 8.1: Four cores selected by each algorithm for the SPECint 2006 benchmark

suite. Cores are ordered from low to high power. Core configurations are in table 8.3,

table 8.4, table 8.5, and appendix A.

Average Normalized Power

A
vg

. N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

1.
5

2.
0

2.
5

●

●
●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●

●
●●●

●

●
●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●●
●

●●

●

●

●

●

●
●

●●
●
●●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●●●●
●

●

●

●
●●
●

●
●

●●

●

●
●

●●

●

●●

●

●

●
●
●●●

●

●
●

●
●●

●

●
●

●

●

●
●

●● ●

●

●

●

●●

●
●
●
●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●●

●

●

●

SPECint 2006
●

●

Candidate Set
GA Selection
Clustering Selection
WB−LUCIE Selection

Figure 8.1: Four cores selected by the GA strategy, the Clustering strategy, and the

WB-LUCIE strategy for the SPECint 2006 suite. Configurations of the cores are shown

in table 8.3, table 8.4, and table 8.5. Note that the GA and Clustering strategies select

the same highest-power core.

are not necessarily close together in any benchmark’s individual power-performance

space.

All of the selection strategies are oblivious to how the cores are implemented; they

only rely on measurable features of cores. The GA strategy uses execution speed,

the Clustering strategy uses efficiency, and LUCIE uses a power-performance trade-

off. However, studying the microarchitectural features of the cores selected by each

algorithm leads to a greater insight into the algorithms’ behaviors. In the example

design space, power and performance are primarily controlled by the data cache (d-

cache) and the integer register file (IR). Both of these structures are key to extracting

instruction level parallelism (ILP), but their size and complexity also makes them

significant consumers of power. At larger sizes, these structures become particularly

8.3. Selected Cores 143

EEMBC Cores

E-LUCIE Selection #142 #1546 #1297 #161

BE-LUCIE Selection #156 #1056 #2416 #671

WB-LUCIE Selection #1056 #821 #1766 #2525

Clustering Selection #2836 #671 #95 #1984

GA Selection #2503 #518 #732 #319

Table 8.2: Four cores selected by each algorithm for the EEMBC benchmark suite.

Cores are ordered from low to high power. Core configurations are in appendix A.

Average Normalized Power

A
vg

. N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.
0

1.
5

2.
0

2.
5

●●

●

●

●
●

●

●

●

●
●

●
●●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●
●
●●

●

●

● ●
●● ●

●

●

●
●●
●

● ●
●

●

●

●
●

●

●

●●

●
●
●

●

●
●

●● ●

●

●●●

●

●

●
●

●

●

●
●●

●
●

●●

●

●

●●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●
●●

●

●
●

●

●
●

●●

●

●

●●

●

●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●
●●
●●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●●

●

● ●

●

●
●

●●
● ●

●

●
● ●

●

●
●

●
●

●
●
●

●

●

●●●●

●

● ● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●
●● ●

●

●

●●

●

●

●

EEMBC
●

●

Candidate Set
GA Selection
Clustering Selection
WB−LUCIE Selection

Figure 8.2: Four cores selected by the GA strategy, the Clustering strategy, and the

WB-LUCIE strategy for the EEMBC suite. Cores are listed in table 8.2.

expensive due to the additional complexity required to meet timing. The instruction

cache (i-cache) is not nearly as significant as the data cache, since the i-cache has only

one hardware port compared to the two in the d-cache. Floating point registers are not

as significant as integer registers, because the benchmarks perform few floating point

operations. After the d-cache and IR, the queues also have a significant effect on power

and performance. While queues consume little power themselves, they enable greater

ILP and greater power consumption throughout the core. The branch predictor has little

to no impact on benchmark performance. This has also been noted elsewhere [172],

and may be due to the gem5 implementation of branching logic.

The differences between the algorithms are most obvious in the selected cores’

d-cache sizes (DS) and IR sizes. The microarchitectural parameters for the four

SPEC cores selected by the WB-LUCIE strategy, the Clustering strategy, and the GA

strategy are listed in table 8.3, table 8.4, and table 8.5, respectively. Recall that the

LUCIE strategy approximates the power-performance Pareto-optimal frontier for all

144
C

hapter8.
LU

C
IE

E
valuation

&
M

etrics
D

em
onstration

WB-LUCIE Core Configurations

(SPECint 2006)

Caches Registers Queues Branch Predictor BTB

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT

#2761 16kB 1 8kB 1 96 128 16 16 16 16 2 214 2 12 210 2 212 212 18

#1339 16kB 2 32kB 4 96 128 16 64 16 128 3 214 1 11 29 1 214 210 20

#1449 32kB 2 64kB 4 96 256 32 32 64 40 3 214 2 11 211 2 212 213 16

#671 32kB 2 32kB 4 128 96 64 32 32 128 2 213 1 12 210 2 213 210 20

Table 8.3: Configurations of the four cores selected by the WB-LUCIE strategy for the SPECint 2006 benchmark suite. Cores are ordered by

increasing average normalized power and plotted in figure 8.1. The design space parameters are listed in table 4.3 (p. 43).

Clustering Core Configurations

(SPECint 2006)

Caches Registers Queues Branch Predictor BTB

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT

#1981 16kB 2 64kB 4 50 128 16 16 16 32 1 214 1 12 211 3 213 210 18

#2288 16kB 1 64kB 1 64 128 16 32 32 16 1 210 2 10 211 2 214 211 20

#2145 32kB 1 64kB 2 256 256 64 64 32 128 3 213 3 11 210 3 214 211 18

#319 64kB 1 32kB 4 256 256 64 64 32 128 3 214 1 10 211 2 213 212 20

Table 8.4: Configurations of the four cores selected by the Clustering strategy for the SPECint 2006 benchmark suite. Cores are ordered by

increasing average normalized power and plotted in figure 8.1. The design space parameters are listed in table 4.3 (p. 43).

8.3.
S

elected
C

ores
145

GA Core Configurations

(SPECint 2006)

Caches Registers Queues Branch Predictor BTB

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT

#1165 16kB 4 4kB 1 256 128 64 64 64 128 1 210 2 10 210 2 214 210 16

#518 64kB 2 64kB 2 128 256 32 64 32 64 2 214 2 12 211 2 210 213 18

#969 64kB 4 32kB 1 128 128 32 64 64 128 2 214 2 12 210 1 211 213 16

#319 64kB 1 32kB 4 256 256 64 64 32 128 3 214 1 10 211 2 213 212 20

Table 8.5: Configurations of the four cores selected by the GA strategy for the SPECint 2006 benchmark suite. Cores are ordered by increasing

average normalized power and plotted in figure 8.1. The design space parameters are listed in table 4.3 (p. 43).

146 Chapter 8. LUCIE Evaluation & Metrics Demonstration

benchmarks using just a few cores. In contrast, the Clustering strategy clusters cores

by efficiency, and then selects from each cluster the core that is most consistent (has the

lowest coefficient of variation, CoV) for efficiency across all benchmarks. The crucial

limitation of the Clustering approach is that maximizing consistency is equivalent to

taking the lowest common denominator—there is no scope for taking advantage of

behavioral differences among benchmarks if cores must have similar efficiency for all

benchmarks. For example, the slowest core selected by the Clustering method has 50

IR entries, whereas none of the cores selected by WB-LUCIE have fewer than 96. For

the IR, the power difference between 50 and 96 entries is insignificant. The Clustering

method uses a core with 50 IR entries because this creates an artificial bottleneck that

keeps all benchmarks at a certain power and performance level. A larger IR would

accelerate some benchmarks more than others, thereby decreasing consistency. Similar

behavior can be observed with the largest core selected by the Clustering method,

which contains both a 64kB d-cache and a 256-entry IR. None of the cores selected

by WB-LUCIE contain a data cache or integer register file this large. These over-sized

structures ensure that this largest core consistently consumes substantial power for all

benchmarks, even though some benchmarks do not benefit from such large structures.

The GA strategy exacerbates the problems of the Clustering strategy by selecting

only consistently fast cores. Of the four selected cores, all have large or very large

IRs, and three have large d-caches. Even the one core with a small d-cache, #1165,

consumes large amounts of power because of the complexity necessitated by the highly

associative d-cache (DW) and the IR size. The selections are guaranteed to consume a

disproportionate amount of power, and the lack of low-power cores precludes runtime

flexibility.

8.4 Summary Metrics

Before proceeding to analyze the selections of cores with the metrics presented in

chapter 6, it is necessary to confirm that existing metrics cannot accurately evaluate

the selections. A major motivator for the metrics and the LUCIE algorithm is the in-

ability of summary metrics to evaluate the diversity of a selection of cores. An intuitive

description of this problem is in section 5.6.2 (p. 64); the following demonstrates the

problem with the example dataset.

The GA selections in figure 8.1 and figure 8.2 show that selecting cores for a

single metric—performance—leads to a tightly clustered selection rather than a diverse

8.4. Summary Metrics 147

Average Normalized Power

A
vg

. N
or

m
al

iz
ed

 T
im

e

1.1 1.2 1.3 1.4 1.5
1.

0
1.

2
1.

4
1.

6
1.

8

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

● ●●

●
●

●

●
●

●

●

●

●

●

●●●

●
●

●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●
●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●
● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Candidate Set
GA−ED2 Selection
WB−LUCIE Selection

Figure 8.3: Cores selected for ED2 cluster in one region of the design space, whereas

cores selected by LUCIE offer diversity. Results are shown for the EEMBC suite.

Benchmark

N
or

m
al

iz
ed

 E
D

2
1.

0
8.

0
16

.0

aes

cjpeg

des

djpeg

huffde

m
p2d

m
p2e

m
p3

m
p4d

m
p4e

nat

ospf

pktc

qos

rsm
bly

cm
yk

hpg

yiq

route

rsa

tcp

A
M

E
A

N

GA−ED2 Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.4: Average normalized ED2 for each selection of four cores. When ED2 is

optimized (GA-ED2), the average ED2 across all benchmarks is 1.13. For the other

selections, average ED2 values are 4.47, 7.34, 3.10, and 2.36 respectively. Results are

for the EEMBC suite. Smaller values are better.

selection. Selecting cores for a summary metric that attempts to balance competing

metrics does not correct this. Figure 8.3 shows the four cores that the GA strategy

selects when it optimizes the ED2 efficiency metric (GA-ED2) instead of performance.

The GA-ED2 cores offer very little runtime flexibility compared to the diverse WB-

LUCIE selection. Diversity requires a range of cores, but only one point in the design

space minimizes ED2.

Figure 8.4 shows normalized ED2 for each EEMBC benchmark averaged across

the four cores in each selection. Intuitively, the diversity of the GA-ED2 selection

is considerably worse than the diversity of the other selections, but the ED2 of the

GA-ED2 selection is consistently better. It can be concluded that optimizing for ED2

148 Chapter 8. LUCIE Evaluation & Metrics Demonstration

Average Normalized Power

A
vg

. N
or

m
al

iz
ed

 T
im

e

1.1 1.2 1.3 1.4 1.5

1.
0

1.
2

1.
4

1.
6

1.
8

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

● ●●

●
●

●

●
●

●

●

●

●

●

●●●

●
●

●
●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●
●

●

●● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●
● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

Candidate Set
GA−ED Selection
WB−LUCIE Selection

Figure 8.5: Cores selected for ED cluster in one region of the design space, whereas

cores selected by LUCIE offer diversity. Results are shown for the EEMBC suite.

does not lead to the diverse selections required by mobile devices, and that diverse

selections are unlikely to optimize ED2.

The issue is not specific to ED2, but applies to all summary metrics—using a differ-

ent metric simply shifts the optimal point in the design space. Figure 8.5 shows four

cores selected by the GA strategy to optimize ED, the energy-delay product. Reducing

the weight of the delay term shifts the selection of cores, but the cores still provide

only a narrow range of power-performance points. It is clear that summary metrics are

generally not sufficiently informative for evaluating heterogeneous processors.

8.5 Spread

The spread of a selection of cores is a qualitative feature loosely related to diversity. As

described in section 5.5.1 (p. 61), a flexible selection of cores must have some spread,

but maximally spread out cores do not necessarily provide maximal flexibility.

Figure 8.6 shows the spread of power values achieved by each algorithm for the

SPEC 2006 integer suite. The chart follows directly from the descriptions of each

selection strategy in section 8.3 above and in chapter 7. The cores selected by the GA

strategy always consume large amounts of power. The Clustering strategy offers the

maximal amount of spread, since cores are selected for consistency—the lowest-power

core contains bottlenecks that prevent power consumption, and the highest-power core

contains large structures that always consume large amounts of power. E-LUCIE has

a comparable spread to the Clustering strategy, but it avoids the highest-power cores.

BE-LUCIE and WB-LUCIE have much lower maximum power consumptions, since

8.5. Spread 149

1.
0

2.
0

3.
0

4.
0

5.
0

6.
0

Benchmark

N
or

m
al

iz
ed

 P
ow

er

astar
bzip2

gcc
gobm

k

h264
hm

m
er

quant

m
cf

om
net

perl
sjeng

xalan

GA Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.6: Spread of normalized power values for SPECint 2006 benchmarks on the

five selections of cores. Smaller values are better. Cores for each selection are listed

in table 8.1.

1.
0

2.
0

3.
0

4.
0

5.
0

Benchmark

N
or

m
al

iz
ed

 T
im

e

astar
bzip2

gcc
gobm

k

h264
hm

m
er

quant

m
cf

om
net

perl
sjeng

xalan

GA Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.7: Spread of normalized time values for SPECint 2006 benchmarks on the

five selections of cores. Smaller values are better. Cores for each selection are listed

in table 8.1.

they use a biasing factor that selects against extremely high-power cores. WB-LUCIE

has a slightly higher maximum power owing to its use of a move counter—the large

number of low-affinity cores in the design space pulls the maximum power of WB-

LUCIE slightly higher than that of BE-LUCIE. All versions of LUCIE along with the

Clustering strategy are able to operate at very low levels of power, as is often required

by mobile devices.

Despite the small spread and low maximum power of the LUCIE selections, the

LUCIE algorithm provides substantial runtime flexibility. The only justification for

high-power cores is fast execution. Figure 8.7 shows the spread of the five selections

along the time axis. It can be seen that for most benchmarks, the cores selected by

150 Chapter 8. LUCIE Evaluation & Metrics Demonstration

1.
0

2.
0

3.
0

4.
0

5.
0

Benchmark

N
or

m
al

iz
ed

 P
ow

er

aes
cjpeg

des
djpeg

huffde

m
p2d

m
p2e

m
p3

m
p4d

m
p4e

nat
ospf

pktc
qos

rsm
bly

cm
yk

hpg
yiq route

rsa
tcp

GA Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.8: Spread of normalized power values for EEMBC benchmarks on the five

selections of cores. Smaller values are better. Cores for each selection are listed in

table 8.2.

1.
0

2.
0

3.
0

4.
0

5.
0

Benchmark

N
or

m
al

iz
ed

 T
im

e

aes
cjpeg

des
djpeg

huffde

m
p2d

m
p2e

m
p3

m
p4d

m
p4e

nat
ospf

pktc
qos

rsm
bly

cm
yk

hpg
yiq route

rsa
tcp

GA Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.9: Spread of normalized time values for EEMBC benchmarks on the five

selections of cores. Smaller values are better. Cores for each selection are listed in

table 8.2.

LUCIE offer maximum performance that is nearly indistinguishable from that of the

other selection strategies. Exceptions are the hmmer and libquantum benchmarks,

where the fastest core selected by BE-LUCIE is noticeably slower than the fastest

cores of other selections. The move counter in WB-LUCIE remedies this problem.

Power and performance spreads for the EEMBC benchmark suite are shown in

figure 8.8 and figure 8.9 respectively. The selection behavior evident for the SPEC

benchmarks is also evident for EEMBC benchmarks: The LUCIE selections have

a narrower power range and a lower maximum power, but the effect on maximum

performance is small. There is, however, a greater effect from LUCIE on maximum

performance for the EEMBC suite than the SPEC suite. This is because the EEMBC

8.6. Availability 151

suite contains more benchmarks—21 compared to the 12 in SPEC—which makes it

more difficult to select cores that are applicable to all benchmarks. The tcp benchmark

in particular is an outlier, and only the GA strategy with its four high-performance

cores can afford to select a core to maximize tcp performance.

These figures show qualitatively that while some amount of spread is required,

maximizing spread is not necessary. An analysis of spread is helpful for understanding

the trade-off between power and performance in a selection of cores. Spread does

not, however, translate directly into performance. For example, a selection of cores

with inferior spread may perform better than a selection with superior spread if there

is not enough power to use the faster cores in the latter selection. The next sections

perform quantitative analysis to better understand features of selection algorithms and

selections of cores.

8.6 Availability

The availability, Av, of a selection of cores is the likelihood that at least one core in the

selection can be used. Av is defined in section 6.9 (p. 100). Availability is evaluated

over the range of power values from the power of the lowest-power benchmark-core

combination in the design space to the power of the highest-power benchmark-core

combination of any of the five selections. The power PDF is assumed to be flat,

and is assumed to be zero outside the evaluation range (see section 5.4 (p. 58) and

section 6.13 (p. 113)).

Figure 8.10 shows the availability of the selections for the SPEC suite. The GA

selection has an average availability of 71%. Highest availability is for mcf at 81%;

lowest availability is for hmmer at 31%. The other four selection strategies have nearly

indistinguishable availabilities, with the average availability ranging from 97% to 99%.

BE-LUCIE and WB-LUCIE have marginally lower availabilities than the Clustering

and E-LUCIE strategies, because the former use a biased distance metric to avoid

disproportionately low-power cores.

The availability comparison is similar for the EEMBC suite, as shown in fig-
ure 8.11. The Clustering and LUCIE strategies all have an average availability in

the 97%–99% range. The availability of the GA selection is even lower for EEMBC

than for SPEC, at an average of 59%.

The Av metric shows that the Clustering and LUCIE strategies lead to comparable,

highly available selections. In contrast, the GA strategy makes selections of cores

152 Chapter 8. LUCIE Evaluation & Metrics Demonstration

Benchmark

A
va

ila
bi

lit
y

(%
)

0
25

50
75

10
0

astar
bzip2

gcc
gobm

k

h264
hm

m
er

quant

m
cf

om
net

perl
sjeng

xalan
AMEAN

GA Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.10: Availability of the five selections of cores for the SPECint 2006 suite.

Average availabilities for the selections are 71%, 99%, 99%, 98%, 97%, respectively.

Larger values are better.

Benchmark

A
va

ila
bi

lit
y

(%
)

0
25

50
75

10
0

aes

cjpeg

des

djpeg

huffde

m
p2d

m
p2e

m
p3

m
p4d

m
p4e

nat

ospf

pktc

qos

rsm
bly

cm
yk

hpg

yiq

route

rsa

tcp

A
M

E
A

N

GA Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.11: Availability of the five selections of cores for the EEMBC suite. Average

availabilities for the selections are 59%, 98%, 99%, 97%, 97%, respectively. Larger

values are better.

that are unusable under any but the most optimistic power budgets. The GA strategy

cannot select cores that enable runtime flexibility in mobile devices. Consequently, the

remaining evaluations in this chapter do not consider GA selection.

8.7 Localized Non-Uniformity

Localized non-uniformity, ,|כ evaluates how evenly cores are distributed. It is defined

in section 6.6.3 (p. 84). The non-uniformity of each selection-benchmark combination

is evaluated over its individual power-performance range. The lower-bound of the

range (Rmin in equation 6.1 (p. 85)) is based on the power of the lowest-power core

8.7. Localized Non-Uniformity 153

Benchmark

N
on

−U
ni

fo
rm

ity
0.

00
0.

25
0.

50
0.

75
1.

00

astar
bzip2

gcc
gobm

k

h264
hm

m
er

quant

m
cf

om
net

perl
sjeng

xalan
AMEAN

Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.12: Localized non-uniformity for the SPECint 2006 suite. Average |כ values

are 0.22, 0.15, 0.21, 0.23, respectively. Smaller values are better.

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●

●

●
●

●●

●●
●

●

GOBMK
●

●

Pareto−Optimal
Clustering
WB−LUCIE

Figure 8.13: Cores selected for the SPECint 2006 suite by the Clustering and WB-

LUCIE strategies, shown for the gobmk benchmark. Dashed boxes illustrate the

bounding boxes of the selections. The highest-power core from the Clustering strategy

is not Pareto-optimal for gobmk.

and the speed of the slowest core in the given selection. The upper-bound (Rmax in

equation 6.1 (p. 85)) is based on the highest-power core and the fastest core. I.e., the

range is computed using a bounding box.

Figure 8.12 shows localized non-uniformity for SPEC benchmarks. The four

algorithms provide comparable uniformity to the benchmarks. E-LUCIE has the best

average |כ at 0.15; the other two versions of LUCIE sacrifice some uniformity to

avoid extreme cores. Based on its clustering and variation minimization approach,

one would expect the Clustering strategy to have particularly low non-uniformity. This

is generally the case, but figure 8.12 shows that the Clustering selection has three

outliers: gobmk, sjeng, and xalancbmk. Figure 8.13 illustrates the source of these

outliers with the gobmk benchmark. The most powerful core selected by the Clustering

154 Chapter 8. LUCIE Evaluation & Metrics Demonstration

Benchmark

N
on

−U
ni

fo
rm

ity
0.

00
0.

25
0.

50
0.

75
1.

00

aes

cjpeg

des

djpeg

huffde

m
p2d

m
p2e

m
p3

m
p4d

m
p4e

nat

ospf

pktc

qos

rsm
bly

cm
yk

hpg

yiq

route

rsa

tcp

A
M

E
A

N

Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.14: Localized non-uniformity for the EEMBC suite. Average |כ values are 0.38,

0.17, 0.19, 0.21, respectively. Smaller values are better.

strategy is marginally slower than the second most powerful core for gobmk, and is

therefore not Pareto-optimal. The range over which |כ is calculated is determined by

the bounding box of the selected cores, but |כ is only calculated using Pareto-optimal

cores (since other cores should not be used). As a result, the selected cores offer uneven

coverage of the range. The WB-LUCIE selection similarly only has three cores that

are Paret-optimal for gobmk. However, these three cores are evenly distributed and

provide even coverage of the space.

Figure 8.14 shows localized non-uniformity for EEMBC benchmarks. Select-

ing cores for the larger EEMBC suite is more difficult than selecting for the SPEC

suite, and as a result, there are more outliers. The Clustering strategy in particular

has severely degraded uniformity, as the highest-power core it selects only benefits

few benchmarks. Despite the outliers, the average non-uniformity values of LUCIE

selections degrade only marginally compared to the non-uniformity values for SPEC

selections. The uniformity of the WB-LUCIE selection is worst for the huffde bench-

mark. For this selection, huffde suffers from the opposite problem as the Clustering

selection—as can be seen in figure 8.15, the slowest core does not offer lower power

than the second-slowest core. Furthermore, two of the other cores have very similar

behavior and are partially redundant.

The |כ metric helps identify cases where some benchmarks receive less of the

benefits of heterogeneity than others, and cases where selected cores are (partially)

redundant. For the SPEC suite, |כ shows that the Clustering algorithm produces uni-

formity comparable to that produced by LUCIE. For the EEMBC suite, however, |כ

demonstrates that the strategy of selecting consistently high-power cores employed

8.8. Set Overhead 155

Normalized Power

N
or

m
al

iz
ed

 T
im

e
1.0 1.5 2.0 2.5 3.0 3.5

1.
0

1.
5

2.
0

2.
5

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●
●

●

●
●●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●●●

●

●●

● ●
●

●

●

●●
●

●

●

●

●●
●

●

●
●●

●

●

HUFFDE ●

●

Pareto−Optimal
Clustering
WB−LUCIE

Figure 8.15: Cores selected for the EEMBC suite by the Clustering and WB-LUCIE

strategies, shown for the huffde benchmark. The slowest core selected by WB-LUCIE

is not Pareto-optimal for huffde, increasing .|כ

by the Clustering algorithm begins to break down. Uniformity deteriorates because

disproportionately high-power cores are selected.

8.8 Set Overhead

Set overhead, SO, measures the relative slowdown caused by using the “wrong” set of

cores. It is defined in section 6.8 (p. 93). This section evaluates set overhead for the

Clustering, BE-LUCIE and WB-LUCIE selections using E-LUCIE as the baseline. For

this analysis, the available power PDF is assumed to be flat, and the maximum amount

of power ever available is taken to be the power of the highest-power benchmark-core

combination of any of the four selections. Since the GA selection is not included, its

cores are not used to determine maximum power.

Figure 8.16 shows SO for the SPEC suite. On average, cores selected by the

Clustering strategy are 11% slower than cores selected by E-LUCIE. Cores selected

by BE-LUCIE are an average 3% slower than cores selected by E-LUCIE. WB-LUCIE

provides a 3% speedup over E-LUCIE. The selections are particularly interesting for

the libquantum benchmark, as the Clustering and E-LUCIE selections have nearly

identical behaviors (SO < 0.2%), while WB-LUCIE is 26% faster than E-LUCIE.

Figure 8.17 shows the cores selected by E-LUCIE, WB-LUCIE, and the Clustering

strategy for libquantum. The two lowest-power cores selected by E-LUCIE and the

Clustering strategy are almost identical. While the two highest-power cores in the

E-LUCIE selection are slower than the two highest-power cores in the Clustering

selection, the former also require much less power. The overall result is that for

156 Chapter 8. LUCIE Evaluation & Metrics Demonstration

Benchmark

S
et

 O
ve

rh
ea

d
−3

0%
−1

5%
0%

15
%

30
%

astar

bzip2

gcc

gobm
k

h264

hm
m

er

quant

m
cf

om
net

perl

sjeng

xalan

A
M

E
A

N

Clustering BE−LUCIE WB−LUCIE

Figure 8.16: Set overhead relative to the E-LUCIE selection for the SPECint 2006

suite. Average SO values are 11%, 3%, and -4%, respectively. Smaller values are

better.

Normalized Power

N
or

m
al

iz
ed

 T
im

e

1.0 1.5 2.0 2.5 3.0 3.5

1.
0

2.
0

3.
0

4.
0

5.
0

●

●

●

●
●●

●

●●
●

●

●

●●
●●●

●

●●
●
●●

●
●

●

●●●
●

●

●

●●
●●●

●

●
●

●●

●

●

●
●

●

●
●●●

●●●●

●

●●
●

●

●

●

●
●

●

LIBQUANTUM
●

●

Pareto−Optimal
Clustering
E−LUCIE
WB−LUCIE

Figure 8.17: Cores selected for the SPECint 2006 suite by the Clustering, E-LUCIE,

and WB-LUCIE strategies, shown for the libquantum benchmark.

libquantum, the Clustering and E-LUCIE selections behave similarly. There are two

reasons that WB-LUCIE has such good SO for libquantum. First, its fastest core

is almost as fast as the fastest cores in the Clustering selection while consuming far

less power. Second, its slowest core is noticeably faster than the slowest cores in the

Clustering and E-LUCIE selections.

Figure 8.18 shows SO for the EEMBC suite. The differences in the selection algo-

rithms are less pronounced than for SPEC owing to the larger number of benchmarks

that must be satisfied by the cores. The Clustering selection is only 1% worse than

E-LUCIE. While the best selection strategy for SPEC is WB-LUCIE, for EEMBC,

BE-LUCIE is, on average, 3pp (percentage points) better. This is caused by a side

effect of the move counter in WB-LUCIE. The highest-performance core selected by

8.9. Effective Speed 157

Benchmark

S
et

 O
ve

rh
ea

d
−3

0%
−1

5%
0%

15
%

30
%

aes

cjpeg

des

djpeg

huffde

m
p2d

m
p2e

m
p3

m
p4d

m
p4e

nat

ospf

pktc

qos

rsm
bly

cm
yk

hpg

yiq

route

rsa

tcp

A
M

E
A

N

Clustering BE−LUCIE WB−LUCIE

Figure 8.18: Set overhead relative to the E-LUCIE selection for the EEMBC suite.

Average SO values are 1%, -6%, and -3%, respectively. Smaller values are better.

BE-LUCIE is the fastest core in the knee of the Pareto-optimal frontier, and is nearly as

fast as the cores in the high-power, low-affinity cluster. In the case of WB-LUCIE, this

core is surrounded on either side by cores with large move counters, and is removed

early. (See figure 7.3 (p. 129) and figure 7.4 (p. 131).) Since only four cores can be

selected, WB-LUCIE eventually removes all cores in the low-affinity cluster, and is

left with a slightly slower fast core than BE-LUCIE.

As noted in section 6.8.3.3 (p. 97), set overhead is evaluated over the common

power range of the given two selections. For most benchmarks, the SO metric shows

the WB-LUCIE selections to be faster than the E-LUCIE selections. However, the

E-LUCIE selections have marginally higher availabilities than WB-LUCIE selections

(see figure 8.10 and figure 8.11). This raises the issue of whether one should prefer

a slower selection with higher availability, or a faster selection with lower availability.

In some cases, the differences will be so small as to be inconsequential, and in other

cases, the processor’s design goals will provide the answer. There can, however, be

cases where the differences are significant, and there is no prior guidance as to which

option a designer should prefer. The effective speed metric in the next section can help

clarify the problem.

8.9 Effective Speed

Effective speed, ES, evaluates the average throughput of a set of cores under a proba-

bilistically varying power budget. It is defined in section 6.10 (p. 103). ES incorporates

158 Chapter 8. LUCIE Evaluation & Metrics Demonstration

Benchmark

E
ffe

ct
iv

e
S

pe
ed

0%
25

%
50

%
75

%
10

0%

astar
bzip2

gcc
gobm

k

h264
hm

m
er

quant

m
cf

om
net

perl
sjeng

xalan
HMEAN

Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.19: Effective speed for the SPECint 2006 suite using a high maximum power.

Average ES values are 77%, 85%, 84%, and 89%, respectively. Larger values are

better.

availability and measures the overall throughput of a selection, but as a consequence

of using availability, ES hides the amount of time that a task is stalled due to a lack of

power. ES is evaluated over the range of power values from the power of the lowest-

power benchmark-core combination in the design space to the power of the highest-

power benchmark-core combination of any of the four selections. The power PDF is

assumed to be flat.

Figure 8.19 shows the effective speed of the SPEC benchmarks on each selection

of cores. WB-LUCIE has the best average performance across all benchmarks, with

an ES of 89%. Compared to the other versions of LUCIE, the move counter in WB-

LUCIE leads to the inclusion of a slightly faster core that improves average speed.

Average ES for the Clustering strategy is 77%. The greatest difference between ES for

the Clustering selection and the WB-LUCIE selection is for the hmmer benchmark.

WB-LUCIE provides an ES of 80%; the ES for the Clustering strategy is only 54%.

Figure 8.20 plots the two selections for hmmer. There is nothing unusual about hmmer

that is causing the disparity in ES. hmmer simply has a very large operating range along

both the power and time axes (as can also be seen in figure 8.6 and figure 8.7). The

result is a substantial slowdown for the Clustering algorithm when there is not enough

power to run on the two fastest cores. WB-LUCIE performs much better due to the

concentration of cores around the knee of the Pareto-optimal frontier.

The analysis in figure 8.19 is quite generous to the Clustering strategy, since the

Clustering strategy selects the highest-power core and therefore sets the maximum

8.9. Effective Speed 159

Normalized Power

N
or

m
al

iz
ed

 T
im

e
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

1.
0

2.
0

3.
0

4.
0

5.
0

●

●●

●
●

● ●

●

●

●●
●

●
●●

●
●
●●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●

●●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

● ●

●

●
●

●

●●

●●

●
●

●

HMMER
●

●

Pareto−Optimal
Clustering
WB−LUCIE

Figure 8.20: Cores selected for the SPECint 2006 suite by the Clustering and WB-

LUCIE strategies, shown for the hmmer benchmark. The second core in the Clustering

selection is hidden behind the lowest-power WB-LUCIE core.

Benchmark

E
ffe

ct
iv

e
S

pe
ed

0%
25

%
50

%
75

%
10

0%

astar
bzip2

gcc
gobm

k

h264
hm

m
er

quant

m
cf

om
net

perl
sjeng

xalan
HMEAN

Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.21: Effective speed for the SPECint 2006 suite using a low maximum power.

Average ES values are 71%, 81%, 83%, and 87%, respectively. Larger values are

better.

power available to the processor. This is somewhat unfair to the LUCIE strategies,

which select cores that consume far less power. Figure 8.21 shows effective speed

for the SPEC suite when maximum available power is based on the highest-power

benchmark-core combination using only LUCIE selections. ES for WB-LUCIE is

reduced by only two percentage points (2pp) from 89% to 87%, while ES for the Clus-

tering selection is reduced by 6pp to 71%. This again demonstrates the effectiveness

of the LUCIE algorithm for selecting cores for power-constrained devices.

Figure 8.22 shows effective speed for the EEMBC suite. The results for EEMBC

are very similar to SPEC results. The significant difference is that for the EEMBC

suite, BE-LUCIE performs marginally better than WB-LUCIE—average ES is 2pp

160 Chapter 8. LUCIE Evaluation & Metrics Demonstration

Benchmark

E
ffe

ct
iv

e
S

pe
ed

0.
00

0.
25

0.
50

0.
75

1.
00

aes

cjpeg

des

djpeg

huffde

m
p2d

m
p2e

m
p3

m
p4d

m
p4e

nat

ospf

pktc

qos

rsm
bly

cm
yk

hpg

yiq

route

rsa

tcp

H
M

E
A

N

Clustering E−LUCIE BE−LUCIE WB−LUCIE

Figure 8.22: Effective speed for the EEMBC suite using a high maximum power.

Average ES values are 82%, 83%, 89%, and 87%, respectively. Larger values are

better.

greater for BE-LUCIE. This is due to the same move counter side effect described

above in section 8.8.

By incorporating availability and performance, effective speed helps clarify the

problem of choosing between a selection with better performance but lower availabil-

ity, and a selection with worse performance but higher availability (see section 8.8).

For the SPEC suite, WB-LUCIE provides greater throughput, but for the EEMBC

suite, BE-LUCIE provides greater throughput. It should, however, be noted that due

to the considerations described in section 6.10.3 (p. 105), ES cannot be used as a

replacement for Av and SO.

8.10 Scalability

The preceding sections have considered selections of four heterogeneous cores. This

section evaluates the scalability of the selection algorithms—how the algorithms be-

have as the number of selected cores increases. While current technology and design

methodologies allow for only a small number of heterogeneous cores on a processor,

the number will inevitably increase as technology progresses. Scalability is analyzed

using gap overhead, monotonicity, and generality, three metrics that evaluate how

selection algorithms respond to increasing core counts.

8.10. Scalability 161

8.10.1 Gap Overhead

Gap overhead, GO, evaluates how close the performance of a selection of cores is to

an ideal selection containing all cores in the candidate set. It is defined in section 6.7
(p. 88). To ensure that the GO evaluation is comparable across different selections, the

core in the candidate set with the minimum average power (core #988) is pinned. Max-

imum power is set to be the power of the highest-power benchmark-core combination

in any selection of 16 cores for any version of LUCIE. The power PDF is assumed

to be flat. The Clustering strategy is excluded form this comparison, as it does not

support core pinning.

Figure 8.23 shows the minimum, maximum, and average GO for the SPEC bench-

mark suite as the number of selected cores increases from two to 16. At two cores,

average GO for E-LUCIE is 23%. At four cores, this has dropped to 6%, and at eight

cores, to 3%. BE-LUCIE and WB-LUCIE start with lower average GO values—10%

and 11% respectively. However, at four cores, both have a GO of 8%, and at eight

cores, GO is 3% and 4%, respectively. E-LUCIE starts out with a high GO value that

gradually decreases and converges at a lower value than GO for either BE-LUCIE or

WB-LUCIE. The rate of GO decrease for BE-LUCIE and WB-LUCIE is also less

regular than the decrease for E-LUCIE. Up until eight cores, worst-case GO is better

for BE-LUCIE and WB-LUCIE than for E-LUCIE.

The differences between E-LUCIE, and BE-LUCIE and WB-LUCIE can be ex-

plained by the biased distance metric used in the latter two. The biased distance

metric emphasizes cores in the knee of the power-performance trade-off curve. This

approach is particularly effective for approximating the candidate set with very few

cores. However, as the number of cores increases, the potential for performance in the

knee region is quickly exhausted. E-LUCIE selects cores with a broader spread (see

figure 8.6), and can sometimes outperform BE-LUCIE and WB-LUCIE in terms of

gap overhead. As the number of selected cores increases, all selections will eventually

converge on the candidate set.

The gap overhead results in this section are not directly comparable to the earlier

analyses in this chapter, since gap overhead is evaluated with a pinned core and a

maximum available power based on 16 selected cores. GO results are similar for the

EEMBC suite, but since there are more EEMBC benchmarks, more core types are

required before GO plateaus.

162 Chapter 8. LUCIE Evaluation & Metrics Demonstration

Number of Core Types

G
ap

 O
ve

rh
ea

d

2 4 6 8 10 12 14 16

0%
20

%
40

%
60

%
80

%

min

mean

max E−LUCIE

Number of Core Types

G
ap

 O
ve

rh
ea

d

2 4 6 8 10 12 14 16

0%
20

%
40

%
60

%
80

%

min
mean

max

BE−LUCIE

Number of Core Types

G
ap

 O
ve

rh
ea

d

2 4 6 8 10 12 14 16

0%
20

%
40

%
60

%
80

%

min
mean

max

WB−LUCIE

Figure 8.23: Gap overhead as the three versions of the LUCIE algorithm select

increasing numbers of cores for the SPECint 2006 suite. Smaller values are better.

8.10.2 Generality

The generality metric, �, evaluates the average fraction of cores that are useful to

a given benchmark. It is defined in section 6.11 (p. 106). Figure 8.24 plots the

generality for cores selected by the three versions of LUCIE and the Clustering strategy

for the SPEC suite as the number of selected cores increases from two to 16. The

versions of LUCIE all have similar generality, while � for the Clustering strategy is

marginally lower. While it is expected that � will decrease as the number of cores

increases, and while there is nothing intrinsically wrong with a low � value, the

fact that the Clustering strategy has a � value less than 1.0 at two cores illustrates

8.10. Scalability 163

Number of Core Types

G
en

er
al

ity

2 4 6 8 10 12 14 16
0%

25
%

50
%

75
%

10
0% ● ●

● ● ● ● ● ●
● ● ● ● ● ● ●

●

Clustering
E−LUCIE
BE−LUCIE
WB−LUCIE

Figure 8.24: Generality as the four algorithms select increasing numbers of cores for

the SPECint 2006 suite.

Number of Core Types

G
en

er
al

ity

2 4 6 8 10 12 14 16

0%
25

%
50

%
75

%
10

0% ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●

Clustering
E−LUCIE
BE−LUCIE
WB−LUCIE

Figure 8.25: Generality as the four algorithms select increasing numbers of cores for

the EEMBC suite.

a weakness in the strategy. It indicates that even when only two cores are selected,

some benchmarks cannot use all cores—i.e., the selection is effectively homogeneous

for those benchmarks. This behavior of the Clustering strategy is even more evident for

the EEMBC suite, as shown in figure 8.25. � for the Clustering strategy is consistently

over 10pp (percentage points) lower than � for any of the LUCIE selections. LUCIE

selects cores that are more broadly applicable than cores selected by the Clustering

algorithm, which is particularly important for general-purpose, consumer processors

with only a few types of heterogeneous cores.

The low generality of the Clustering strategy is explained by its preference for

disproportionately high-power cores, such as core #319. These cores do not provide a

performance advantage to all benchmarks. They are therefore not Pareto-optimal for

all benchmarks, and lower the generality of the selection. For LUCIE algorithms, as

164 Chapter 8. LUCIE Evaluation & Metrics Demonstration

the number of cores increases, E-LUCIE maintains the highest�, and WB-LUCIE has

the lowest. This is because BE-LUCIE and WB-LUCIE focus cores near the knee of

the power-performance trade-off. For larger numbers of cores, the cores are in a tighter

cluster, and there is a greater chance of shadowing, where for a given benchmark, a core

will have both better power and better performance than another core. If a designer is

implementing a large number of cores, then this per-benchmark specialization may be

a desirable feature.

8.10.3 Monotonicity

The monotonicity metric, ,ר evaluates how dependent the ordering of cores is on the

task being executed. It is defined in section 6.12 (p. 110). Figure 8.26 plots the

monotonicity for cores selected by the three versions of LUCIE and the Clustering

strategy for the SPEC suite as the number of selected cores increases from two to

16. The Clustering strategy has a consistently high ר relative to the LUCIE strategies.

BE-LUCIE has a particularly low .ר While a low monotonicity is not intrinsically

problematic, it indicates that scheduling can be difficult.

The high monotonicity of the Clustering algorithm is the result of its strategy of

maximizing consistency—cores that have more consistent behaviors across bench-

marks tend to also have more consistent orderings across benchmarks. LUCIE does

not consider consistency, which makes it more likely that two similar cores are selected

if that benefits the benchmarks. When cores are similar, per-benchmark behavior vari-

ations can easily cause the order of the cores to switch. BE-LUCIE and WB-LUCIE

have lower monotonicities than E-LUCIE for the same reason that they have lower

generalities. The two strategies focus cores on the knee of the power-performance

trade-off, and since the cores are closer together, there is a greater chance that their

orderings will change.

Figure 8.27 shows monotonicity for the EEMBC suite. The monotonicities are

even more varied for BE-LUCIE and WB-LUCIE than for SPEC, but the underlying

reason is the same: These two variants of LUCIE focus cores in the knee of the power-

performance trade-off, and given the 21 benchmarks in the EEMBC suite, there is a

high chance of core orderings changing.

8.11. Selection with a PDF 165

Number of Core Types

M
on

ot
on

ic
ity

2 4 6 8 10 12 14 16
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0 ● ●

●

●
● ●

●

● ●

● ● ●
● ● ●

●

Clustering
E−LUCIE
BE−LUCIE
WB−LUCIE

Figure 8.26: Monotonicity as the four algorithms select increasing numbers of cores for

the SPECint 2006 suite.

Number of Core Types

M
on

ot
on

ic
ity

2 4 6 8 10 12 14 16

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ● ●

●

●

●

●
●

●

● ●

●
● ●

●

●

●
Clustering
E−LUCIE

BE−LUCIE
WB−LUCIE

Figure 8.27: Monotonicity as the four algorithms select increasing numbers of cores for

the EEMBC suite.

8.11 Selection with a PDF

Section 7.9 (p. 134) described how a power probability density function can be used

to direct LUCIE to select cores from more important regions of the design space.

Section 6.13 (p. 113) described using the same PDF to weight metrics and evaluate

selections of cores that target a weighted space. This section uses set overhead to eval-

uate cores selected for the EEMBC suite using the PDF shown in figure 7.8 (p. 136).

Figure 8.28 graphs the results of selecting four cores with the Clustering strategy, four

cores with WB-LUCIE, and four cores with WB-LUCIE that is guided by the PDF.

Cores selected by WB-LUCIE (with PDF) are listed in table 8.6. SO is calculated

using the same PDF. Maximum power is the power of the highest-power benchmark-

core combination of any of the four selections. The baseline selection is the set of four

166 Chapter 8. LUCIE Evaluation & Metrics Demonstration

Benchmark

S
et

 O
ve

rh
ea

d
−3

0%
−2

0%
−1

0%
0%

10
%

aes

cjpeg

des

djpeg

huffde

m
p2d

m
p2e

m
p3

m
p4d

m
p4e

nat

ospf

pktc

qos

rsm
bly

cm
yk

hpg

yiq

route

rsa

tcp

A
M

E
A

N

Clustering WB−LUCIE WB LUCIE (PDF)

Figure 8.28: Set overhead relative to the E-LUCIE selection for the EEMBC suite. SO

is improved when WB-LUCIE has access to the power PDF. Average SO values are

-3%, 0%, and -2%, respectively. Smaller values are better.

EEMBC Cores

WB-LUCIE Selection (PDF) #1056 #821 #424 #671

Table 8.6: Four cores selected by WB-LUCIE for the EEMBC benchmark suite given

the power PDF in figure 7.8 (p. 136). Cores are ordered from low to high power. Core

configurations are in appendix A.

cores selected by E-LUCIE without access to the PDF—i.e., the same baseline as in

section 8.8.

For this particular PDF, WB-LUCIE cores are effectively identical to E-LUCIE

cores. The PDF has a large high-power component, and as a result, the Clustering

strategy with its extreme cores substantially improves performance for some bench-

marks. Most notably, rgbhpgv2 is 22% faster than on E-LUCIE. Improvements from

WB-LUCIE (PDF) are smaller, but more consistent. On average, Clustering and WB-

LUCIE (PDF) selection improve performance by 2% and 3%, respectively.

There is no mechanism to communicate a power PDF to the Clustering strategy.

The Clustering strategy happens to perform well for this particular PDF, but the re-

sult is not guaranteed for all PDFs In contrast, LUCIE is guided by the PDF, so the

improvements in this example are transferable to other PDFs.

8.12. Conclusion: The Best Algorithm 167

8.12 Conclusion: The Best Algorithm

This evaluation chapter has had two purposes: to demonstrate the usage of the metrics

defined in chapter 6, and to evaluate the LUCIE algorithm defined in chapter 7.

The demonstration aspect of the chapter is obvious—each metric can be used to gain

new insight into a selection of cores. The question of identifying the “best” selection

algorithm is not immediately clear, however. The GA strategy can be discarded due to

the low availability of its selections. The cores are not appropriate for mobile devices,

though there may be other devices for which the GA strategy works well. The Clus-

tering strategy produces sets of cores with surprisingly good characteristics, given that

the algorithm is designed for use with server processors. Nevertheless, cores selected

by the Clustering strategy provide consistently slower speed than cores selected by

LUCIE, as can be seen from the set overhead and effective speed evaluations. The

Clustering strategy is also unwieldy and lacks flexibility—it is non-deterministic, and

there is no facility to either pin cores or to provide a power PDF.

None of the three versions of the LUCIE algorithm are consistently superior to

the other two. For example, for the EEMBC suite, set overhead shows that a biased

distance metric without a move counter (BE-LUCIE) leads to the best results. In

contrast, for the SPEC suite, biased distance hurts performance unless it is coupled with

a move counter (WB-LUCIE). It is possible to create an endless series of variations on

the LUCIE algorithm with different types of distance metrics, different handling of the

move counter, and other modifying features. The consistency of the LUCIE results,

and the fact that LUCIE is consistently superior to the current state-of-the-art GA

and Clustering strategies, demonstrates that the underlying iterative core elimination

mechanism is sound. In some cases, the processor designer will have insight into

the behavior of the representative suite of benchmarks, and will be able to use the

most appropriate version of LUCIE. Barring any further insights, WB-LUCIE is the

recommended version of the algorithm. It focuses cores to the knee of the power-

performance trade-off, thereby maximizing flexibility, while using a move counter to

avoid too many cores in the knee.

8.13 Summary

Using both qualitative and quantitative evaluations, this chapter has shown that current

state-of-the-art core selection algorithms either cannot select cores for diversity, or

168 Chapter 8. LUCIE Evaluation & Metrics Demonstration

cannot take advantage of variations in task behavior. In contrast, the LUCIE algorithm

produces highly available selections of cores that maximize performance under strict

power limits. By evaluating cores based on their contributions to individual tasks,

LUCIE is able to select a small number of generally applicable cores, or a larger

number of more specialized cores.

Chapter 9:

Conclusions

Heterogeneous processor design is dependent on methods of evaluation and methods

of core selection. Chapter 5 motivated the evaluation and selection problems for

single-ISA heterogeneous processors, and established a theoretical framework for rea-

soning about the problems. Chapter 6 defined a series of metrics for evaluating sets

of heterogeneous cores under a probabilistically varying power budget. Chapter 7
defined the LUCIE algorithm for core selection. Chapter 8 demonstrated the metrics

by comparing LUCIE to state-of-the-art selection algorithms. The contributions of

these technical chapters are summarized in greater detail below. This is followed by

a critical analysis of the contributions, and an introduction of potential avenues for

further research.

9.1 Contributions

This thesis has made contributions in three general areas: The first is the definition of a

theoretical framework and set of assumptions required for addressing the evaluation

and design problems. The second is a set of metrics for evaluating selections of

heterogeneous cores. The third is an algorithm for selecting cores from a candidate

set. The contributions in these areas are summarized in turn.

9.1.1 Motivating Framework

Chapter 5 contributed a detailed problem description and a runtime model. These two

form a framework for solving the evaluation and selection problems. It was argued

that the crucial feature of a processor intended for a power-constrained device is a

set of cores the enable the flexibility to run tasks under various power budgets. In a

heterogeneous processor, runtime flexibility is provided by a diverse selection of cores.

169

170 Chapter 9. Conclusions

It was further argued that current evaluation techniques cannot adequately measure

diversity or performance under a varying power budget, and that current selection tech-

niques do not adequately select for diversity. To address the evaluation and selection

problems, chapter 5 defined a set of assumptions about runtime behavior—the runtime

model. The runtime model represents the combined behavior of an entire device with

an available power probability density function (PDF). By evaluating selections of

cores with respect to a power PDF, it is possible to analyze even very complex devices.

The evaluation and selection methods in later chapters are based on a power PDF.

9.1.2 Evaluation Metrics

Chapter 6 defined eight new metrics for evaluating selections of heterogeneous cores.

The metrics assume a mobile device where performance must be maximized under

a strict but variable power budget. The uniformity of a selection can be measured

with the KS test and the localized non-uniformity metric. Gap overhead measures

slowdown over an ideal selection of cores. Set overhead measures slowdown over

a different selection of cores. Availability measures the likelihood that a selection

is available to do work. Effective speed measures the average speed of a selection.

Generality measures the extent to which cores are specialized to specific benchmarks,

and monotonicity measures how dependent the order of cores is on the benchmark.

The metrics comprise a set of tools that can be used to analyze various features

of selections of cores. One, some, or all metrics can be used, as dictated by the

requirements of the processor. The metrics are oblivious to the implementation details

of cores, and are only based on the power and performance of cores. This ensures that

the metrics are portable to different design spaces and use cases.

9.1.3 Core Selection

Chapter 7 defined three variations of the LUCIE algorithm for selecting cores, and

chapter 8 compared LUCIE to state-of-the-art selection methods. LUCIE uses the

set of power-performance Pareto-optimal cores in a design space as the standard for

maximum diversity, and approximates the optimal set using a small set of cores. The

LUCIE algorithm is unique in that it optimizes for the runtime flexibility seen by

individual benchmarks. As a consequence, it allows cores to fulfill different roles for

different benchmarks. LUCIE addresses the requirements of power-limited devices by

selecting diverse cores but avoiding extreme cores. LUCIE supports core pinning, can

9.2. Critical Analysis 171

optionally use an available power PDF to direct selection, and unlike existing selection

methods, is deterministic.

9.2 Critical Analysis

The general multicore processor design problem described in section 1.1 (p. 1) is

intractable with current techniques. By limiting the problem to only selecting core

types and to only a single ISA, this thesis has been able to suggest solutions to both the

evaluation and design aspects of the problem. The following sections present a critical

analysis of the proposed theoretical framework, metrics, and selection algorithm.

9.2.1 Motivating Framework

The purpose of the motivating framework is to reduce the general processor design

problem to a manageable size. Reducing the design problem to CPU cores of only one

ISA is a somewhat limiting, but justifiable decision. There are no compelling reasons

for including cores that implement different, general-purpose CPU ISAs on a single

processor. The benefits of including GPUs, DSPs, and other accelerators have been

studied extensively. However, the use of specialized hardware does not negate the

need to understand the benefits of microarchitectural heterogeneity in CPU cores.

Reducing the design problem to selecting cores rather than designing entire pro-

cessors is necessary for understanding the limits of the benefits that single-ISA het-

erogeneity can deliver. It must be possible for a designer to determine the best set

of heterogeneous cores to meet a processor’s design requirements. However, it is

conceivable that once uncore components are factored in, the best set of cores will

be practically indistinguishable from another heterogeneous set. For example, the best

set might contain four different cores, but once memory bottlenecks are introduced, the

behavior of the set of four could be indistinguishable from the behavior of a set with

only three core types. Analysis of the selection of cores will still be valuable, because

it helps the designer find bottlenecks in the processor. In some cases, though, it might

not be possible to remove the bottlenecks, and the full benefits of heterogeneity as

predicted from the set of cores might not be realizable.

The example dataset further reduces the design problem to only out-of-order cores.

This reduction is due to limitations in the gem5 and McPAT models, rather than a need

to manage the design and evaluation problems. The metrics and the LUCIE algorithm

172 Chapter 9. Conclusions

can be applied without modification to a design space that contains in-order and out-

of-order cores or even just in-order cores.

The runtime model in section 5.4 (p. 58) is based on several assumptions. The

most significant of these is the oracle scheduler. The scheduler is assumed to have

prior knowledge about the power consumption of all tasks on all cores, and is assumed

to be able to fairly partition power among tasks. A processor in the near future could

well have the ability to monitor each core’s power consumption, which would enable

a scheduler to learn the possible power-performance trade-offs for tasks. However,

the power and performance of a task on a core can also be dependent on input from

the user, and this is much more difficult to predict. Similarly to uncore components,

prediction error and imperfect fairness in the scheduler may mask some of the benefits

of heterogeneity

9.2.2 Evaluation Metrics

Five aspects of the evaluation metrics benefit from further attention. These are de-

scribed in turn.

Multiple ISAs. While the example dataset and runtime model do not explicitly

consider multiple ISAs or accelerators, most of the metrics can be easily extended

beyond the single-ISA case. The eight metrics in chapter 6 are all based on the

power and performance of cores and not on implementation details—i.e., the metrics

are oblivious to the ISA. If, for example, a task can run on a GPU as well as on the

CPU, then the power and performance of the task on the GPU need only be added to the

set of possible power-performance points, and the metrics can be evaluated normally.

The exceptions are the uniformity metrics. While CPU cores can be expected to be

roughly uniformly distributed in the power-performance space, the gap between CPU

cores and a GPU is likely to be large. The KS test will be dominated by this gap, and

will not provide useful information about the selection of CPU cores. The localized

non-uniformity metric continues to be sensitive to small gaps in the presence of large

gaps, but when a large gap is inevitable, greater care must be taken in interpreting the |כ

value. Similar considerations apply to processors that have instruction set extensions,

DSPs or other specialized accelerators, or even multiple CPU ISAs.

DVFS. The example dataset excludes DVFS. Since DVFS is simply a way of ad-

justing a core’s power and performance, the metrics can handle DVFS in the same way

as they handle accelerators. I.e., the metrics can be used to evaluate all Pareto-optimal

9.2. Critical Analysis 173

power-performance points for a task, regardless of whether the points are provided

by different DVFS levels applied to the same CPU core, different CPU cores, or spe-

cialized hardware. Care must be taken when analyzing the localized non-uniformity,

generality, and monotonicity of sets of cores with DVFS. When cores are not uniformly

spaced, not general, or not monotonic, then these are significant features of which the

designer must be aware. It is a far less significant issue when high non-uniformity,

low generality, or low monotonicity are caused by DVFS levels. It may be better to

evaluate these three metrics using, for example, only the lowest and highest DVFS

levels of each core.

Contention. The metrics assume that there is no contention for cores. That is,

it is assumed that when there is enough power to use a core, then the core can be

used. A processor in the dark silicon regime can have many more cores than can be

powered at a time, so this assumption is not unrealistic. However, any real scheduler

must inevitably handle contention. There will be times when there is enough power

for a core, but the core will not be available for work because it is busy. This has a

complicating effect on metrics. The metrics, as defined, assume a fixed set of cores

and a variable power budget. If core contention is added to the runtime model, then the

metrics must handle both a probabilistic power budget and a probabilistic set of cores.

While this is possible, it adds both an extra dimension of complexity to the metrics and

a another potential source of errors.

Available power range. The available power assumptions of the runtime model

can have large, non-obvious effects on the gap overhead, set overhead, availability, and

effective speed metrics. For example, if the maximum available power is increased

while the selection of cores is unchanged, then availability increases. This is because

the fraction of the power PDF above the power of the lowest-power core increases.

The dependence on the available power range is not a weakness of the metrics—the

metrics function precisely as intended. However, care must be taken to ensure that the

power PDF is defined correctly.

Ideal performance estimate. The gap and set overhead metrics assume that the

designer has access to Yi, an estimate of the best possible performance in a power range.

In some circumstances, it may be difficult to determine Yi. In these cases, GO and SO

will continue to be accurate in relative terms, but can be wrong in absolute terms. For

example, if Yi is optimistic, then GO will be pessimistic, and will overestimate how far

the selection is from the ideal.

174 Chapter 9. Conclusions

9.2.3 Core Selection

The LUCIE selection algorithm departs from the common processor design approach

of using a linear cost model. A cost model allows the configurations of various compo-

nents to be traded off to arrive at an optimal processor. Some of the problems with these

optimization techniques are described in section 2.2.3 (p. 10), section 3.3.1 (p. 28), and

section 5.6.2 (p. 64). Fundamentally, the cost models assume that it is possible to trade

off various metrics using continuous functions. This assumption is highly suspect. It

is often assumed, for example, that delay is twice as valuable as energy. However,

if a real processor’s delay reaches a certain level, the processor will be commercially

unviable regardless of how low its energy consumption. Similarly, microarchitectural

structures can only be set to discrete sizes. Data cache size serves as an example (see

section 4.3.3 (p. 44)). Increasing data cache size by one increment from 32kB to 64kB

results in a substantial increase in power consumption. A few benchmarks receive

performance benefits from the increase; most do not. Only one of the two sizes can

be chosen—there is no way to interpolate a compromise size between a low-power,

32kB cache and a high-power, 64kB cache to provide some performance benefit to

benchmarks that can use the larger cache without increasing the other benchmarks’

power consumptions too much. In short, linear models assume a continuous design

space that does not correspond to reality.

Linear models do have their advantages, in that they can trade off disparate quan-

tities. A linear cost model could help determine, for example, whether to add a

DVFS level to a core or to add an additional core type to a processor, whether to

use a large amount of silicon area for a single GPU or to use the same area for

several CPU cores, and whether to add another instance of an existing core or a

new core type. The LUCIE selection algorithm does not use a standard cost model,

and is therefore incapable of making these types of trade-offs. Instead, LUCIE se-

lects power-performance points and assumes that cores implementing those points

are interchangeable in terms of cost—implementing one power-performance point

instead of another will not have a significant effect on silicon area, engineering effort,

manufacturing costs, etc. While this assumption is approximately correct when the

cores in the candidate set are similar, it becomes increasingly tenuous as more exotic

options are included. Implementing some power-performance points with DVFS is

relatively easy and cheap; implementing power-performance points with specialized

accelerators could be much more involved. This leaves the processor designer with a

9.3. Future Work 175

difficult choice. On the one hand, he could use LUCIE to select cores, but LUCIE is not

aware of the relative cost differences of more interesting, exotic components. On the

other hand, he could devise a linear model that can optimize all manner of components.

However, as already noted, such a model cannot capture a real design space. A further

issue is that even if a processor’s design space were linear, it seems unlikely that the

true trade-offs between components could be described accurately and consistently.

For example, determining whether a processor should contain an additional core or

an additional accelerator is dependent on the respective speed, power, and area of the

core and accelerator; how frequently the accelerator can be used; how many other

cores there are of the same type as the given core; how many cores of other types

there are; etc. It is unclear how functions to describe these relationships could be

defined with enough precision to make accurate design decisions. It may be possible

to extend LUCIE to better handle more exotic scenarios, but it is most likely impossible

to shoehorn a discrete processor design space into a linear model.

Linear models and other core selection methods optimize a single metric. For ex-

ample, the GA selection strategy optimizes speed, and the Clustering selection strategy

optimizes consistency. LUCIE does not optimize a single metric. Instead, it attempts

to evaluate the relative significance of cores to the power-performance trade-off, and to

select the most significant ones. This can make LUCIE somewhat difficult to analyze,

since there is no single figure of merit against which it can be evaluated. For example,

chapter 8 showed that LUCIE is clearly superior to competing selection algorithms.

It is less clear which of the three versions of LUCIE is best. Each version has a

slightly different definition of significance, and it is not obvious whether one definition

is always better than the others. This is ultimately because there is no single, universal

figure of merit that a processor must unqualifiedly optimize. Without such a “gold

standard,” there will always be some ambiguity in evaluating selections.

9.3 Future Work

There are several possible avenues for extending the material presented in this the-

sis. These include runtime analysis, trade-off analysis, further work in selection, and

further work in evaluation.

Runtime analysis. The runtime model and metrics provide a unique opportunity

for studying quality-of-service (QoS) and user satisfaction issues. If a task frequently

switches between running quickly and slowly, it could have acceptable average perfor-

176 Chapter 9. Conclusions

mance, but a user would be dissatisfied with the slow phases and uneven performance.

This could happen if, for example, a game is repeatedly switched between a power-

hungry core when the processor is cool, and a low-power core when the processor

heats up. The runtime model guarantees constant performance for the duration of a

scheduling interval, so an empirically determined available power PDF can be used to

calculate the potential variation in behavior across scheduling intervals. The scheduler

could then be tuned to minimize the amount of time that the task spends on a core that

is faster than required, so that heat and power consumption are reduced, and the amount

of time that the task must spend on a core that is too slow is also minimized. Using

the runtime model, a set of available power PDFs for various tasks, and metrics like

set overhead, a designer can optimize a selection of cores and a scheduler to provide

adequate QoS in various usage scenarios. A QoS study could further be extended to

explore how close realistic schedulers can come to the oracle scheduler assumed in this

thesis.

Trade-off Analysis. While all the discussions and examples in this thesis have

used a power-performance trade-off, this is not the only trade-off possible. The LUCIE

algorithm and many of the metrics could be used with any pair of quantities that are

inversely correlated. A particularly interesting option is a power-energy trade-off.

Many authors have observed that computational sprinting is preferable to pacing—

energy is minimized when tasks are executed quickly at high power, since cores can

then enter low-power states sooner (see section 3.2.2 (p. 19)). This observation has

consequences for mobile processor design. Mobile devices must minimize power

due to thermal considerations, and they must minimize energy consumption due to

battery considerations. A power-energy trade-off suggests that tasks should be run as

quickly as possible within thermal limits to maximize battery life. The exception is

tasks where the execution time is not directly dependent on the performance of a core.

For example, a video will take the same amount of time to watch regardless of whether

a low-complexity or a high-complexity version is viewed. The low-complexity version

is likely to consume less power, and since the execution time is constant, less energy.

Selection. The LUCIE algorithm treats each core-benchmark combination as

a single point in the power-performance space, and operates only on cores that are

Pareto-optimal for at least one benchmark. However, it is possible to adjust a core’s

power and performance using DVFS. It is also conceivable that in some cases, a good

core is not Pareto-optimal for any benchmark, but is a compromise between several

optimal cores. Future work could extend LUCIE to treat each core as a set of power-

9.3. Future Work 177

performance points, where each point corresponds to a DVFS level. The distance

metric could then be adjusted to evaluate a core based on, for example, how far its

furthest DVFS level is from any other core’s DVFS levels. LUCIE could also be

seeded with both Pareto-optimal cores and nearly Pareto-optimal cores from the design

space exploration stage. This approach may result in slightly better, compromise cores,

though LUCIE would require modifications so that it does not immediately eliminate

cores with an affinity of 0.0.

Evaluation. Finally, there is scope for further research on evaluation techniques,

particularly on metrics for uncore components and entire processors. An optimistic

goal is the universal metric noted in the previous section—a metric that all processors

must maximize. If such a metric were to exist, then all processors and all processor

design techniques could be compared unambiguously. Based on the range of metrics

discussed in the literature as well as the contributions of this thesis, the existence of a

grand, unified metric appears highly improbable. In the absence of a universal metric,

the best a designer can do is carefully consider design methodologies and carefully

weigh a range of metrics. Metrics and methodologies that oversimplify the design

problem will mask important details, and metrics and methodologies that reveal too

many details can paralyze the design process with information overload.

Appendix A:

Design Space

Table A.1 lists the configurations of all 3000 cores in the example dataset. The exam-

ple dataset is described in section 4.3 (p. 41). The set of values that each microarchi-

tectural parameter can take is listed in table 4.3 (p. 43). The dataset contains simulated

power and performance data for each core when running each of 33 benchmarks. For

cores that are referenced in the body of the thesis, the first reference is listed in the

“Page” column.

Table A.1: List of all cores in the example dataset.

Caches Registers Queues Branch Predictor BTB
Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page

#1 64kB 2 4kB 4 128 96 32 32 8 64 3 210 2 11 22 1 212 213 18

#2 32kB 2 64kB 2 96 128 64 64 8 128 1 211 3 12 22 3 213 210 20

#3 64kB 2 4kB 4 256 128 32 32 16 32 2 211 1 10 211 3 210 212 20

#4 64kB 1 64kB 4 64 96 64 64 64 64 1 213 1 12 22 3 210 212 18

#5 16kB 1 64kB 1 96 256 32 8 8 64 1 212 2 10 210 1 211 211 20

#6 64kB 4 4kB 1 96 256 32 64 32 16 3 214 1 11 22 1 211 211 20

#7 64kB 1 64kB 2 96 96 32 64 16 32 2 213 1 10 210 1 210 213 16

#8 32kB 4 32kB 2 96 128 64 16 32 128 3 211 1 10 210 2 212 212 18

#9 16kB 2 32kB 4 256 256 32 16 8 16 3 214 2 11 211 2 210 211 16

#10 32kB 1 32kB 1 128 256 64 8 8 16 3 211 1 12 211 3 214 213 20

#11 16kB 2 4kB 1 96 128 32 16 64 16 1 211 2 12 211 3 214 210 16

#12 64kB 1 32kB 2 96 256 32 16 32 64 3 213 3 11 22 3 213 210 16

#13 32kB 2 32kB 2 50 128 64 16 16 40 2 213 1 10 22 1 210 213 20

#14 64kB 1 4kB 4 256 256 64 16 8 32 1 213 1 10 22 3 212 213 20

#15 16kB 1 32kB 1 50 256 32 16 8 64 2 211 1 10 22 1 214 211 16

#16 16kB 4 64kB 4 64 128 32 8 64 128 2 211 1 12 22 1 213 210 18

#17 32kB 4 16kB 2 64 128 16 32 64 40 2 210 1 10 22 3 210 213 16

#18 32kB 2 16kB 2 64 96 32 32 16 40 3 210 3 12 210 1 211 212 20

#19 32kB 4 4kB 4 256 96 64 32 16 16 1 214 1 11 22 1 213 212 16

#20 64kB 1 16kB 4 256 96 16 32 8 40 1 214 3 10 22 2 214 213 18

#21 32kB 1 16kB 2 50 256 32 64 64 128 3 214 2 10 22 1 211 210 16

#22 16kB 4 8kB 2 128 96 32 8 64 16 2 213 2 12 22 1 211 211 16

#23 16kB 4 32kB 1 50 96 64 64 32 16 3 211 2 10 210 1 213 213 18

#24 16kB 2 4kB 4 256 128 64 16 8 64 2 214 1 12 211 2 213 212 16

#25 32kB 4 4kB 1 256 96 64 32 16 64 2 212 3 10 22 1 210 212 20

#26 32kB 1 32kB 2 96 96 64 16 64 40 1 211 3 11 210 2 210 211 20

#27 32kB 1 32kB 2 64 128 16 8 64 128 2 212 1 12 211 1 212 213 18

#28 64kB 1 4kB 4 50 96 16 64 8 16 3 214 3 10 22 2 214 211 20

#29 64kB 2 16kB 4 128 96 64 8 32 40 2 211 2 10 211 3 211 211 20

#30 16kB 2 32kB 4 128 96 64 64 8 16 1 213 1 12 22 2 212 211 16

#31 32kB 4 16kB 4 96 96 32 16 16 64 2 211 2 11 210 2 213 210 20

#32 16kB 1 8kB 1 256 256 64 32 8 64 2 210 2 10 210 1 212 211 18

#33 64kB 1 16kB 2 256 96 16 8 16 40 1 212 2 10 210 1 214 212 18

Continued on next page.

179

180 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#34 16kB 4 16kB 1 64 256 64 8 16 32 3 212 2 11 210 1 214 210 20

#35 16kB 2 32kB 1 256 256 32 32 8 16 3 212 2 12 211 1 213 210 20

#36 64kB 4 8kB 2 256 96 64 32 64 64 3 213 2 12 22 1 212 212 20

#37 16kB 1 8kB 2 256 128 32 16 32 128 3 211 1 10 22 2 213 212 18

#38 16kB 2 8kB 1 256 128 16 16 8 64 1 212 1 10 210 1 211 213 18

#39 64kB 2 16kB 2 64 128 32 32 16 128 2 214 1 10 211 3 212 212 16

#40 16kB 1 8kB 1 256 128 16 64 32 128 2 212 2 10 211 1 212 212 16

#41 32kB 1 32kB 4 96 96 64 32 32 64 3 212 3 12 211 1 213 211 20

#42 64kB 2 8kB 2 96 128 64 64 8 64 3 211 1 12 22 1 213 212 20

#43 64kB 4 64kB 2 64 256 32 64 32 16 2 214 3 11 210 2 213 213 18

#44 16kB 4 8kB 2 50 128 32 64 16 16 2 210 3 11 210 1 212 213 18

#45 16kB 1 64kB 1 50 96 32 16 64 40 1 210 2 12 211 3 211 210 16

#46 16kB 1 8kB 2 50 256 32 16 16 128 1 210 3 11 210 1 210 212 18

#47 64kB 1 4kB 1 64 256 16 32 32 16 3 212 3 10 211 3 212 213 16

#48 16kB 1 16kB 1 256 96 32 32 8 40 1 211 1 11 22 2 212 212 16

#49 32kB 1 32kB 4 64 128 16 64 64 128 3 213 1 12 22 3 210 211 16

#50 64kB 1 64kB 2 64 96 32 16 64 64 3 210 2 10 211 1 211 210 16

#51 64kB 2 64kB 1 64 256 32 32 32 16 3 214 2 12 22 1 214 212 20

#52 32kB 2 64kB 4 128 96 16 16 8 32 1 210 3 11 210 3 212 213 18

#53 32kB 4 16kB 4 50 128 64 8 64 128 2 213 3 10 210 2 214 212 16

#54 32kB 1 8kB 1 64 128 16 8 8 128 2 212 3 10 22 3 210 212 20

#55 16kB 2 16kB 2 64 128 16 64 8 64 3 214 3 10 210 2 214 211 20

#56 16kB 2 16kB 1 256 96 64 8 16 128 2 213 1 12 211 3 212 213 20

#57 16kB 1 16kB 4 96 128 32 32 16 40 1 211 1 10 22 1 211 211 18

#58 32kB 1 8kB 2 50 256 32 16 8 40 3 214 3 12 210 1 212 211 18

#59 64kB 1 4kB 4 128 96 64 16 16 16 3 211 2 12 210 1 212 212 20

#60 16kB 2 4kB 1 50 128 16 32 16 16 3 210 1 11 22 1 211 213 18 p. 79

#61 64kB 1 64kB 1 128 256 64 16 32 16 2 212 2 12 210 3 210 212 20

#62 64kB 4 16kB 1 128 256 64 16 64 32 3 212 2 12 210 3 212 213 20

#63 32kB 1 8kB 1 64 256 32 16 64 40 1 210 2 11 211 1 210 212 18

#64 32kB 1 32kB 1 128 128 16 32 8 64 1 212 2 11 22 2 212 210 16

#65 16kB 2 4kB 4 64 128 16 32 64 16 2 212 3 11 210 2 212 213 16

#66 32kB 4 16kB 4 64 96 16 64 32 16 1 212 2 12 22 2 213 212 16

#67 64kB 1 32kB 4 128 256 32 64 16 64 1 210 3 11 211 1 214 210 16

#68 32kB 4 8kB 4 96 256 32 16 16 32 1 210 3 11 22 1 210 213 18

#69 64kB 2 32kB 4 50 96 16 32 8 64 2 214 3 12 211 3 213 212 16

#70 32kB 2 16kB 1 128 128 16 8 16 32 3 214 1 11 211 1 211 212 18

#71 64kB 2 8kB 4 50 96 64 8 8 16 3 214 2 10 211 3 214 210 16

#72 64kB 2 8kB 4 64 256 64 16 16 16 3 213 3 10 211 1 213 212 16

#73 16kB 2 4kB 2 50 128 32 16 64 32 2 214 3 11 22 1 212 212 16

#74 32kB 4 16kB 4 256 256 64 8 64 32 2 210 1 11 22 3 214 212 16

#75 64kB 2 64kB 1 96 256 16 64 64 32 2 212 1 10 211 3 211 211 18

#76 32kB 4 4kB 1 64 96 16 64 32 64 2 213 1 10 210 1 213 210 16

#77 16kB 2 16kB 4 128 96 16 64 32 40 3 213 2 10 211 1 214 213 16

#78 64kB 1 4kB 4 96 96 32 16 64 32 1 210 1 10 211 3 211 211 16

#79 32kB 2 32kB 4 128 128 32 8 16 64 3 210 2 11 211 2 212 210 20

#80 64kB 4 4kB 2 256 256 64 32 16 16 1 212 2 11 211 2 214 212 20

#81 64kB 4 4kB 4 50 128 32 32 8 64 2 211 1 12 210 2 210 211 18

#82 32kB 1 8kB 1 64 256 16 32 16 128 2 211 2 12 22 3 214 213 16

#83 64kB 2 8kB 1 128 256 32 64 32 16 1 211 1 12 22 1 212 211 16

#84 16kB 1 4kB 1 64 256 16 32 8 128 2 211 3 12 22 1 210 212 18

#85 32kB 2 16kB 2 128 128 16 8 8 128 1 211 3 11 22 2 211 210 20

#86 64kB 4 16kB 1 128 96 32 8 32 16 1 213 3 12 211 1 210 211 16

#87 32kB 4 32kB 1 96 128 32 64 32 128 1 211 2 12 210 1 210 210 20

#88 32kB 4 4kB 2 256 128 64 64 32 40 1 213 1 12 211 2 210 210 16

#89 16kB 4 8kB 1 96 256 16 16 16 16 3 212 3 10 210 1 212 213 18

#90 16kB 1 16kB 1 64 96 64 32 32 16 1 212 3 11 22 3 211 213 20

#91 64kB 4 64kB 4 96 256 64 16 8 40 3 213 1 11 22 3 212 210 16

#92 64kB 2 64kB 4 128 128 16 32 8 64 2 211 2 12 22 2 214 213 20

#93 16kB 2 8kB 2 128 256 16 16 16 16 2 213 2 12 210 1 214 211 16

#94 32kB 4 4kB 1 64 96 16 32 16 32 1 210 1 12 211 3 212 213 20

#95 32kB 2 32kB 2 256 128 64 32 32 128 3 213 1 10 211 1 214 213 16 p. 143

#96 64kB 4 64kB 4 50 256 16 16 8 40 1 212 2 11 211 1 210 211 18

#97 16kB 2 16kB 4 128 96 64 16 32 64 1 210 2 12 210 1 212 213 16

#98 64kB 2 4kB 4 256 128 32 64 8 40 1 212 1 12 211 1 211 212 18

#99 16kB 2 32kB 2 64 128 16 32 64 32 1 211 3 10 22 2 211 212 20

#100 16kB 4 64kB 2 96 128 16 16 32 64 2 214 1 12 22 3 211 210 20

Continued on next page.

Appendix A. Design Space 181

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#101 16kB 4 64kB 2 96 256 16 64 8 16 1 210 3 12 211 2 213 212 20

#102 16kB 1 64kB 2 64 256 16 16 64 64 3 213 2 10 210 1 211 211 18

#103 32kB 2 32kB 2 256 96 16 8 64 16 3 214 3 12 210 1 214 212 18

#104 32kB 4 64kB 1 128 96 16 64 32 40 1 212 1 10 210 2 211 213 16

#105 16kB 2 16kB 4 96 96 16 8 32 64 1 212 3 11 211 1 212 213 16

#106 64kB 2 64kB 2 64 128 32 8 16 64 3 212 2 11 210 3 213 211 20

#107 64kB 2 64kB 2 256 96 64 64 16 32 1 212 2 10 210 3 212 210 16

#108 16kB 4 16kB 1 128 96 64 32 32 128 3 211 2 10 22 2 210 212 20

#109 64kB 1 32kB 4 96 128 16 16 64 32 2 211 1 10 210 3 214 211 16

#110 64kB 2 8kB 1 96 96 64 8 16 40 1 211 1 12 211 2 212 210 20

#111 32kB 4 64kB 2 256 128 16 8 64 64 2 211 3 12 211 3 210 213 18

#112 16kB 1 64kB 2 64 256 32 64 16 32 1 210 2 10 211 2 210 212 16

#113 32kB 4 16kB 2 256 96 16 64 8 16 2 211 2 10 210 1 214 213 18

#114 64kB 1 16kB 2 128 96 16 8 8 40 3 213 1 12 211 3 211 210 16

#115 32kB 4 32kB 4 256 96 16 8 64 64 2 213 1 12 22 3 212 210 20

#116 16kB 1 64kB 4 50 96 16 32 64 128 2 214 1 12 22 3 213 213 20

#117 32kB 1 4kB 2 128 256 64 64 8 128 3 211 1 11 210 3 213 212 16

#118 64kB 1 16kB 1 128 128 16 32 64 64 1 213 3 12 211 2 214 210 18

#119 32kB 1 64kB 4 128 256 32 8 64 32 3 213 2 11 22 2 212 210 16

#120 32kB 2 64kB 4 64 256 16 8 64 128 1 212 1 10 210 3 213 210 18

#121 16kB 4 8kB 2 64 96 32 8 64 32 2 213 3 10 210 2 211 211 16

#122 32kB 1 4kB 1 64 128 64 32 64 32 1 212 1 10 210 2 214 210 18

#123 32kB 2 4kB 4 50 96 16 16 16 16 1 211 3 10 210 3 214 211 20

#124 64kB 2 4kB 4 50 128 32 32 8 32 1 212 3 10 210 2 212 211 16

#125 64kB 1 4kB 2 64 256 32 32 8 40 3 212 2 12 22 3 213 212 20

#126 64kB 4 8kB 1 128 96 32 8 64 64 1 210 1 10 210 3 211 213 16

#127 32kB 2 16kB 4 50 96 64 64 8 128 2 213 1 10 210 1 213 211 16

#128 64kB 1 8kB 2 256 96 32 32 8 32 2 210 2 10 211 2 213 213 16

#129 64kB 2 64kB 1 64 128 16 32 8 40 2 211 1 10 22 3 210 213 16

#130 16kB 4 32kB 4 50 128 64 16 8 64 3 213 1 12 210 2 212 210 18

#131 64kB 1 4kB 1 96 96 32 8 64 16 2 214 3 11 210 3 212 212 20

#132 16kB 4 8kB 1 256 96 32 16 32 64 1 211 3 11 22 3 214 212 20

#133 64kB 4 64kB 1 50 256 64 64 8 32 3 213 3 11 210 3 212 213 20

#134 64kB 4 64kB 4 256 256 64 16 16 16 2 212 3 12 211 3 211 212 20

#135 16kB 2 8kB 4 128 128 16 8 16 128 2 214 1 11 211 3 212 211 16

#136 32kB 1 64kB 2 128 96 16 64 32 64 1 212 3 12 210 3 212 213 20

#137 16kB 2 16kB 4 64 96 16 64 64 32 1 210 1 11 211 2 210 213 18

#138 64kB 2 16kB 1 50 256 64 8 32 64 2 211 2 11 210 2 213 213 16

#139 64kB 4 16kB 4 50 256 64 16 32 64 2 210 1 10 210 3 213 212 16

#140 32kB 2 8kB 1 128 256 16 16 32 64 2 210 1 11 22 1 212 212 18

#141 16kB 2 64kB 4 50 256 64 8 32 40 1 213 2 12 211 1 212 212 20

#142 16kB 1 4kB 1 50 96 16 32 8 64 3 210 3 10 210 3 211 212 18 p. 142

#143 64kB 1 32kB 1 256 128 64 32 8 64 2 210 1 10 210 2 214 211 20

#144 16kB 4 64kB 2 64 128 16 32 16 128 2 211 2 12 210 3 213 211 16

#145 32kB 1 4kB 1 256 128 32 32 64 32 3 214 2 10 22 1 214 210 18

#146 64kB 2 4kB 4 50 256 16 16 16 128 2 211 1 12 22 2 214 212 16

#147 16kB 1 16kB 4 50 256 16 8 64 128 1 212 1 10 22 3 211 211 16

#148 16kB 1 64kB 2 64 128 16 32 8 16 2 213 3 11 22 1 212 210 18

#149 64kB 4 8kB 4 64 256 16 32 64 128 1 210 1 12 210 2 214 213 18

#150 32kB 1 4kB 1 50 96 64 64 64 16 2 214 2 10 210 2 210 211 20

#151 16kB 2 8kB 4 96 128 32 8 32 32 3 213 2 10 22 1 211 210 20

#152 64kB 4 64kB 2 50 256 16 8 32 32 1 214 2 11 210 3 211 210 16

#153 32kB 4 64kB 2 50 96 64 32 32 32 2 212 2 10 210 2 214 210 20

#154 16kB 4 64kB 1 128 96 64 32 32 40 3 210 3 11 210 1 214 212 18

#155 16kB 2 16kB 1 50 256 32 32 8 128 3 214 2 11 22 3 210 213 16

#156 16kB 1 8kB 2 64 256 32 8 8 32 3 212 2 12 210 3 213 211 16 p. 143

#157 64kB 2 8kB 2 50 256 32 32 16 16 1 210 1 11 22 1 214 211 18

#158 16kB 2 8kB 2 256 96 64 64 64 128 1 213 3 12 210 1 211 212 18

#159 32kB 2 64kB 4 64 128 16 16 64 40 3 210 2 12 210 3 213 213 18

#160 32kB 4 16kB 4 128 256 32 16 8 64 2 213 3 12 210 3 211 210 18

#161 32kB 4 64kB 2 128 96 32 64 32 128 2 210 3 11 211 3 214 212 20 p. 143

#162 64kB 2 32kB 1 128 96 32 64 8 16 1 214 3 10 210 3 213 211 16

#163 16kB 2 8kB 2 128 128 16 32 8 40 3 212 1 12 211 1 214 211 18

#164 32kB 2 32kB 4 96 96 16 8 64 64 3 211 1 10 210 1 210 211 18

#165 64kB 4 16kB 1 64 128 64 64 64 16 2 214 3 11 211 1 213 210 20

#166 64kB 2 32kB 1 128 256 16 32 16 16 1 211 2 10 210 1 210 210 18

#167 16kB 2 32kB 4 50 128 16 8 32 64 3 214 1 12 210 2 213 210 20

Continued on next page.

182 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#168 64kB 2 16kB 1 64 256 32 16 8 128 3 213 3 11 211 1 210 212 20

#169 64kB 2 16kB 4 256 96 64 64 16 64 3 213 2 11 211 1 210 213 16

#170 64kB 1 16kB 1 128 128 64 8 32 16 1 213 3 10 210 2 212 211 16

#171 64kB 1 8kB 4 96 96 32 64 16 64 1 211 3 12 22 2 212 211 20

#172 32kB 1 8kB 2 64 128 32 8 8 128 1 212 3 11 211 1 212 213 16

#173 32kB 4 16kB 4 64 256 32 64 8 40 1 214 1 11 210 2 214 213 20

#174 32kB 2 32kB 2 50 96 32 64 16 64 1 212 1 10 211 1 211 211 18

#175 32kB 4 4kB 2 256 128 64 32 8 16 2 212 2 11 22 3 211 212 20

#176 16kB 1 64kB 4 256 128 64 32 8 128 3 212 3 12 210 3 210 211 20

#177 16kB 1 16kB 1 128 128 64 8 64 16 1 212 1 11 211 3 210 211 18

#178 64kB 4 8kB 4 128 96 16 8 16 128 2 212 1 11 210 1 213 212 20

#179 32kB 1 4kB 1 50 96 32 32 32 128 3 211 1 11 22 2 213 212 18

#180 64kB 4 4kB 1 96 96 32 32 32 32 2 210 2 11 22 3 210 212 16

#181 64kB 2 32kB 2 96 128 64 32 64 40 2 213 2 12 210 3 210 213 20

#182 32kB 2 32kB 2 128 96 16 64 32 40 1 214 1 12 210 1 211 211 20

#183 32kB 2 16kB 4 256 96 32 32 16 16 1 210 3 12 210 1 214 212 18

#184 16kB 1 4kB 1 256 96 64 64 64 64 3 212 3 11 211 1 213 213 16

#185 32kB 1 4kB 2 96 96 16 32 32 40 3 211 3 12 211 2 211 210 16

#186 16kB 4 4kB 1 64 128 32 64 16 32 3 213 3 12 22 3 213 210 16

#187 64kB 1 16kB 1 64 128 32 32 8 32 2 212 3 11 22 1 212 212 16

#188 16kB 4 32kB 4 256 128 64 32 32 16 1 214 2 12 22 3 210 210 20

#189 64kB 2 8kB 2 128 96 64 64 64 32 2 210 1 10 22 1 211 211 16

#190 64kB 1 16kB 4 64 256 64 64 8 128 1 214 1 12 210 2 213 210 16

#191 16kB 4 8kB 4 64 96 32 8 64 64 3 214 3 12 211 2 210 213 16

#192 32kB 4 16kB 2 50 96 64 64 32 40 3 213 2 12 22 1 210 211 20

#193 32kB 1 4kB 2 256 128 16 16 64 32 2 210 3 12 211 1 210 211 18

#194 16kB 1 8kB 1 64 96 16 64 32 16 2 210 2 11 211 3 211 211 20

#195 64kB 1 16kB 2 256 128 32 16 16 32 1 211 2 12 211 3 214 212 20

#196 16kB 4 64kB 1 96 128 64 64 8 64 3 211 3 11 211 1 213 212 16

#197 16kB 2 64kB 4 50 256 64 64 64 40 1 211 1 10 211 3 213 211 16

#198 16kB 2 4kB 1 256 256 16 16 8 64 3 211 3 10 22 3 214 211 18

#199 16kB 4 32kB 2 64 96 64 32 8 128 1 212 1 11 22 1 213 210 16

#200 32kB 1 4kB 1 64 96 16 32 64 40 1 210 2 12 210 1 214 210 16

#201 32kB 1 32kB 1 128 256 64 32 8 32 2 211 2 10 211 2 213 211 18

#202 16kB 2 8kB 2 64 128 16 16 64 64 1 214 1 12 22 1 210 213 16

#203 64kB 1 64kB 2 50 256 64 8 16 16 3 211 1 11 210 1 210 213 20

#204 16kB 4 8kB 2 64 128 64 64 16 40 2 213 2 11 210 3 214 211 18

#205 16kB 2 4kB 1 64 256 64 16 8 40 3 214 2 12 211 1 214 213 16

#206 32kB 4 16kB 4 256 96 16 32 8 64 1 213 1 11 22 1 210 211 18

#207 32kB 1 64kB 4 64 128 64 64 8 128 2 214 1 11 210 2 213 211 16

#208 32kB 4 16kB 2 128 96 32 16 32 64 2 212 1 10 210 1 214 212 16

#209 16kB 2 8kB 1 64 128 64 64 64 16 3 212 2 12 22 1 214 210 16

#210 16kB 4 32kB 2 128 96 16 8 64 32 3 213 1 10 211 1 214 212 18

#211 32kB 2 8kB 4 96 128 32 64 64 40 1 210 1 11 22 1 212 211 18

#212 32kB 4 16kB 4 50 96 16 8 32 32 2 213 2 10 22 3 212 213 18

#213 32kB 1 64kB 2 128 96 64 16 32 40 2 212 1 10 211 2 213 210 18

#214 32kB 2 64kB 1 50 256 64 32 64 64 1 212 1 10 22 2 211 213 20

#215 16kB 1 32kB 2 256 128 64 32 16 16 3 212 2 12 210 3 213 212 16

#216 32kB 2 64kB 1 256 256 32 8 32 40 1 214 1 11 211 2 214 211 20

#217 64kB 2 64kB 4 96 128 16 16 8 16 2 211 2 10 210 2 211 210 16

#218 64kB 2 16kB 1 64 96 16 8 8 40 3 212 1 10 210 2 213 213 18

#219 32kB 1 8kB 2 128 256 32 8 8 40 2 210 1 12 210 1 212 213 20

#220 32kB 2 4kB 4 96 128 16 16 32 40 2 214 2 10 210 2 212 210 16

#221 32kB 4 64kB 4 128 128 64 8 32 32 2 211 3 12 210 2 214 213 16

#222 64kB 1 16kB 2 96 96 32 64 16 64 3 214 2 10 210 2 211 210 18

#223 16kB 4 32kB 1 256 96 16 32 64 40 1 213 2 10 22 1 212 210 16

#224 32kB 2 4kB 2 64 256 32 32 8 128 3 213 3 11 211 1 211 211 18

#225 16kB 4 16kB 4 256 96 32 16 16 40 1 213 3 11 210 2 210 213 20

#226 64kB 4 16kB 2 256 128 32 16 64 64 3 214 3 10 22 1 210 213 20

#227 16kB 2 4kB 1 64 96 16 8 16 128 3 212 1 11 22 3 212 213 20

#228 64kB 4 64kB 4 128 256 64 16 32 32 1 213 1 10 211 3 212 212 18

#229 64kB 2 32kB 1 128 128 16 8 16 16 1 213 2 11 210 2 212 210 20

#230 16kB 2 4kB 4 64 128 16 8 64 128 2 210 1 10 211 2 211 210 20

#231 16kB 4 64kB 2 50 96 32 32 8 128 2 214 3 11 210 2 212 213 16

#232 16kB 2 16kB 4 128 96 64 8 32 64 1 210 1 12 210 3 212 212 16

#233 64kB 2 4kB 4 128 128 16 16 16 40 3 214 3 10 22 2 213 213 18

#234 64kB 2 64kB 2 50 128 32 32 16 64 3 214 1 12 210 3 212 212 18

Continued on next page.

Appendix A. Design Space 183

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#235 64kB 2 8kB 4 64 128 16 64 8 128 3 210 3 12 22 2 213 210 16

#236 64kB 2 4kB 4 50 96 16 8 32 64 2 211 1 10 211 3 210 211 18

#237 16kB 1 8kB 4 96 96 16 64 8 64 3 212 1 12 210 1 211 210 18

#238 64kB 2 8kB 1 256 128 64 64 16 128 3 214 3 10 22 2 211 212 18

#239 32kB 2 4kB 4 50 128 16 32 64 16 1 210 1 10 211 1 212 210 16

#240 32kB 2 16kB 4 256 256 64 32 16 40 2 213 3 11 210 3 210 213 18

#241 32kB 4 16kB 2 50 96 16 32 32 64 3 211 3 10 211 1 211 210 20

#242 32kB 4 8kB 1 64 256 32 8 16 16 1 212 2 11 210 2 213 213 20

#243 64kB 4 8kB 1 128 128 64 64 64 40 2 214 2 12 22 3 212 213 18

#244 32kB 4 32kB 4 96 128 16 64 32 40 1 213 1 10 211 1 213 210 18

#245 16kB 1 16kB 2 256 256 16 16 16 128 3 210 3 10 22 2 214 210 16

#246 32kB 4 8kB 1 256 256 16 64 32 64 2 213 3 12 211 2 211 212 16

#247 32kB 2 16kB 2 128 96 32 16 16 16 3 213 2 12 22 3 210 212 16

#248 64kB 4 64kB 4 96 128 32 64 8 32 2 212 3 11 211 3 213 212 18

#249 16kB 1 8kB 4 256 256 32 64 8 16 2 211 3 11 210 2 214 211 20

#250 16kB 4 4kB 1 256 128 32 16 16 40 1 212 2 12 22 3 212 211 18

#251 64kB 2 64kB 2 96 96 64 32 64 32 1 213 2 12 22 3 213 212 18

#252 32kB 2 16kB 2 50 256 32 16 8 32 1 210 2 12 211 1 211 210 18

#253 16kB 4 16kB 2 96 128 64 8 16 32 2 213 2 11 211 3 211 211 18

#254 64kB 1 8kB 1 128 128 16 32 16 64 1 210 1 12 210 2 214 212 20

#255 32kB 4 4kB 4 128 128 16 32 32 32 2 214 1 12 211 3 213 212 16

#256 32kB 1 4kB 4 256 128 32 64 64 16 3 214 1 12 211 2 214 212 18

#257 32kB 1 4kB 1 50 128 64 16 16 16 3 214 2 10 210 1 212 212 18

#258 16kB 2 8kB 2 128 96 32 32 16 64 2 212 2 11 211 2 213 210 18

#259 32kB 4 64kB 2 256 128 16 16 16 32 2 210 2 12 211 1 211 210 18

#260 64kB 1 16kB 4 50 128 64 32 16 16 2 210 2 10 210 2 214 211 20

#261 64kB 2 32kB 1 50 128 16 64 8 32 3 210 3 12 211 2 213 210 18

#262 32kB 1 64kB 2 128 96 16 16 16 128 1 214 1 11 211 3 210 211 20

#263 16kB 4 64kB 2 64 128 64 16 32 64 3 210 3 10 210 3 213 210 20

#264 16kB 2 16kB 4 64 96 64 64 16 128 1 212 2 12 22 2 211 211 20

#265 16kB 2 32kB 4 50 128 16 64 64 64 3 211 1 10 211 2 212 211 18

#266 16kB 4 16kB 1 96 128 32 64 16 128 2 214 2 11 211 1 211 212 16

#267 16kB 1 8kB 2 50 96 16 64 16 40 1 214 2 11 211 2 211 212 20

#268 64kB 1 4kB 4 64 256 32 8 64 40 3 210 1 10 22 2 213 213 18

#269 32kB 4 64kB 1 50 96 16 8 32 128 1 213 3 12 22 3 214 212 20

#270 64kB 2 16kB 2 256 256 64 32 32 16 2 214 3 10 211 2 212 212 18

#271 64kB 4 4kB 1 64 96 32 16 32 128 1 210 3 11 22 2 214 212 16

#272 32kB 4 4kB 1 128 128 32 32 32 128 3 214 3 11 211 1 211 210 20

#273 32kB 4 64kB 2 256 96 32 64 16 40 3 214 2 11 210 3 210 213 18

#274 32kB 4 4kB 4 96 128 16 8 32 128 3 211 1 12 22 1 210 210 16

#275 64kB 2 8kB 2 50 256 64 32 64 16 1 210 1 10 211 1 212 213 20

#276 16kB 1 64kB 1 96 128 64 16 64 128 1 214 2 11 210 1 211 212 18

#277 64kB 1 32kB 2 128 256 32 32 64 64 2 211 1 10 22 3 212 213 16

#278 16kB 2 8kB 4 256 256 32 32 32 32 1 212 2 11 22 2 210 210 20

#279 32kB 1 64kB 4 64 96 32 8 16 40 1 214 3 10 210 3 211 213 18

#280 16kB 2 32kB 2 128 256 64 32 64 16 3 210 1 11 22 3 214 212 20

#281 32kB 1 16kB 1 96 128 16 8 64 32 3 211 3 11 210 1 210 211 16

#282 64kB 1 32kB 1 96 256 16 16 8 32 2 214 1 12 211 1 211 210 20

#283 32kB 4 8kB 2 256 128 16 64 16 128 1 214 1 11 210 1 214 212 20

#284 32kB 1 32kB 2 96 128 32 64 8 40 1 214 2 11 210 2 214 210 20

#285 16kB 1 16kB 2 128 128 16 32 64 16 1 213 3 12 211 2 210 211 20

#286 64kB 1 16kB 1 256 128 64 8 32 128 1 211 2 10 22 3 211 213 16

#287 32kB 4 64kB 1 50 128 32 64 64 16 2 212 3 11 210 3 212 210 20

#288 16kB 2 16kB 1 256 128 16 32 32 64 1 211 2 12 211 2 213 212 16

#289 64kB 2 32kB 4 50 96 64 64 64 32 3 210 2 11 211 1 214 210 16

#290 32kB 4 16kB 1 256 128 16 8 64 40 1 210 3 11 210 3 211 211 20

#291 16kB 1 8kB 2 96 96 16 32 32 16 2 210 1 12 211 2 214 211 16

#292 64kB 1 64kB 1 50 256 32 8 16 40 3 212 3 12 210 1 212 210 16

#293 16kB 1 8kB 1 96 96 16 16 64 40 3 213 2 10 210 1 211 210 20

#294 64kB 2 64kB 2 50 256 16 32 16 32 2 210 1 10 210 3 211 213 18

#295 64kB 1 4kB 4 128 256 32 32 8 64 1 213 3 12 211 2 210 210 20

#296 16kB 1 64kB 4 64 128 32 16 32 16 2 212 1 10 211 2 212 210 20

#297 32kB 2 64kB 4 256 128 32 8 64 16 1 212 2 10 210 3 214 213 16

#298 16kB 4 64kB 4 50 96 64 32 8 128 3 210 3 10 210 1 213 211 20

#299 64kB 4 4kB 2 50 256 32 16 8 128 2 210 2 10 210 1 214 211 18

#300 64kB 1 32kB 1 96 128 16 64 16 64 1 213 3 10 210 3 212 210 16

#301 64kB 1 4kB 1 64 256 16 32 16 32 3 211 1 11 22 1 210 213 18

Continued on next page.

184 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#302 64kB 4 64kB 4 128 128 32 8 16 128 1 214 3 12 210 3 214 210 20

#303 32kB 2 64kB 4 64 96 32 64 64 128 1 213 2 12 210 2 213 210 16

#304 64kB 4 32kB 1 256 256 64 8 64 16 2 213 1 10 22 3 211 210 20

#305 32kB 4 32kB 1 64 256 32 8 16 128 2 212 3 10 22 2 214 210 16

#306 16kB 4 16kB 4 256 128 64 8 64 64 1 210 2 11 22 2 212 211 16

#307 64kB 2 64kB 1 50 128 32 8 8 64 2 212 1 12 210 1 214 211 16

#308 64kB 1 16kB 4 50 256 16 8 64 40 2 211 3 12 210 3 214 210 18

#309 32kB 4 64kB 2 256 128 16 32 32 128 1 211 2 10 210 1 211 211 20

#310 64kB 2 8kB 2 50 128 16 16 32 16 2 210 2 12 210 1 210 211 16

#311 64kB 4 8kB 4 64 128 64 64 32 40 2 211 3 12 22 2 213 211 20

#312 32kB 4 32kB 4 96 256 64 32 32 16 2 213 3 10 22 2 212 212 16

#313 64kB 4 64kB 2 96 96 32 16 8 64 2 212 3 11 211 3 212 210 16

#314 64kB 4 32kB 2 50 96 64 32 16 64 1 213 3 10 211 2 212 213 20

#315 32kB 1 4kB 2 96 128 32 16 32 32 3 212 3 12 210 1 211 211 18

#316 32kB 4 16kB 4 50 256 64 16 8 32 3 211 2 12 210 2 211 210 20

#317 64kB 4 8kB 1 256 96 32 32 32 32 3 212 1 10 22 1 214 211 16

#318 32kB 2 16kB 2 128 128 32 32 32 16 3 212 1 11 211 1 214 210 20

#319 64kB 1 32kB 4 256 256 64 64 32 128 3 214 1 10 211 2 213 212 20 p. 98

#320 16kB 1 32kB 2 128 128 64 32 64 64 1 211 2 10 22 3 213 213 16

#321 32kB 1 4kB 4 50 128 16 64 16 40 3 211 3 10 22 3 212 211 16

#322 16kB 2 8kB 2 128 128 16 8 64 32 1 213 1 12 22 1 214 213 16

#323 16kB 1 4kB 1 128 256 16 32 64 32 1 214 1 12 211 2 212 210 16

#324 16kB 2 32kB 4 50 96 64 8 32 128 3 211 3 10 22 3 213 211 18

#325 64kB 2 8kB 1 96 96 32 32 16 40 2 210 2 10 22 1 214 213 16

#326 32kB 4 32kB 4 128 96 64 64 16 64 2 214 2 10 22 2 211 213 18

#327 64kB 1 8kB 1 64 96 64 64 16 40 1 210 1 11 22 2 211 212 20

#328 64kB 4 4kB 2 50 128 64 8 64 16 2 214 2 11 22 3 211 211 18

#329 32kB 4 16kB 4 64 128 16 8 8 40 2 210 3 12 22 2 213 213 20

#330 64kB 2 32kB 4 256 128 32 16 8 32 3 210 1 10 22 2 212 213 18

#331 16kB 1 32kB 4 50 96 64 32 16 40 2 213 2 12 22 2 210 210 18

#332 32kB 4 8kB 4 64 128 64 8 64 40 3 214 1 11 22 1 214 212 20

#333 64kB 2 32kB 2 256 96 16 64 16 64 1 212 3 11 210 3 213 210 16

#334 64kB 1 4kB 1 128 96 16 32 16 64 1 212 1 10 210 2 214 210 20

#335 32kB 2 64kB 1 128 256 32 64 64 32 2 211 2 10 210 1 214 212 20

#336 16kB 2 16kB 4 64 128 16 8 16 40 3 210 2 10 211 3 214 211 20

#337 32kB 4 8kB 1 256 96 16 64 16 128 3 210 1 12 211 2 211 213 20

#338 16kB 2 64kB 2 50 128 32 8 32 16 1 214 2 12 22 1 213 212 18

#339 64kB 2 64kB 2 96 128 64 32 64 64 1 210 3 12 211 1 213 212 18

#340 16kB 2 8kB 4 256 96 64 16 16 32 1 214 3 11 211 3 213 212 18

#341 16kB 2 4kB 1 256 96 16 16 8 64 3 211 2 11 210 1 214 211 18

#342 32kB 4 4kB 2 256 128 64 16 32 64 3 211 2 12 210 1 213 211 18

#343 64kB 2 4kB 1 96 96 16 32 8 64 1 214 3 11 22 1 212 211 20

#344 32kB 2 32kB 1 256 256 32 8 8 32 3 214 2 11 210 1 211 213 18

#345 64kB 1 8kB 4 128 128 64 64 32 16 2 213 3 11 210 2 212 211 18

#346 32kB 2 8kB 2 64 96 16 32 16 32 3 210 3 10 22 2 213 210 20

#347 32kB 2 32kB 4 96 128 32 64 64 128 1 210 3 12 22 1 214 213 16

#348 64kB 2 32kB 1 128 128 64 32 64 16 3 213 1 12 211 1 214 212 20

#349 32kB 2 64kB 2 50 256 32 16 8 128 1 210 3 11 22 3 214 213 16

#350 64kB 1 8kB 1 128 128 32 32 16 40 2 213 1 10 211 2 213 213 20

#351 16kB 1 32kB 4 50 128 64 16 16 128 2 214 1 12 22 2 212 211 18

#352 64kB 4 64kB 2 128 128 16 64 32 40 1 211 1 10 211 1 210 213 20

#353 64kB 1 32kB 2 128 256 16 32 16 32 3 212 2 10 211 1 212 210 16

#354 32kB 2 4kB 2 96 128 64 32 64 16 2 214 2 10 211 3 214 210 18

#355 64kB 2 4kB 4 128 256 16 32 8 64 1 211 3 12 22 2 210 210 20

#356 64kB 4 4kB 2 64 256 32 16 16 40 3 211 2 11 210 3 213 211 18

#357 16kB 1 32kB 4 64 96 16 64 16 32 2 214 1 10 211 2 211 211 16

#358 32kB 2 16kB 2 50 96 16 32 16 32 3 214 3 12 22 3 212 210 18

#359 16kB 2 64kB 2 128 128 32 16 16 128 1 210 1 12 211 1 211 211 16

#360 64kB 1 8kB 2 256 256 32 8 16 64 3 213 2 10 210 2 211 210 18

#361 64kB 2 4kB 2 50 96 16 64 8 32 1 213 1 10 22 3 213 210 18

#362 32kB 4 8kB 4 256 128 32 16 8 128 2 214 3 12 22 3 214 211 18

#363 32kB 1 8kB 2 256 128 64 8 8 32 1 212 1 10 211 3 213 213 20

#364 32kB 1 32kB 4 256 128 64 16 64 32 3 214 1 11 22 3 214 211 20

#365 16kB 1 8kB 1 50 96 64 32 32 40 2 214 1 11 211 1 213 212 18

#366 32kB 2 8kB 1 50 256 16 64 16 32 1 211 3 12 210 2 212 212 20

#367 32kB 2 16kB 2 128 256 16 32 64 32 3 211 3 11 210 2 211 213 16

#368 32kB 1 32kB 2 50 256 16 64 8 40 2 211 2 11 211 1 211 212 16

Continued on next page.

Appendix A. Design Space 185

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#369 16kB 1 32kB 4 64 256 32 8 8 16 2 212 2 12 211 3 210 210 16

#370 64kB 2 16kB 4 64 96 32 8 8 64 3 210 3 12 22 1 211 211 20

#371 64kB 2 64kB 1 96 96 32 16 8 32 3 210 2 11 22 1 213 213 20

#372 64kB 2 64kB 2 50 96 32 8 8 40 1 210 3 10 22 1 212 210 16

#373 16kB 4 4kB 1 256 96 32 32 64 128 3 214 3 12 210 2 214 211 18

#374 32kB 1 64kB 4 96 256 32 64 8 32 1 214 3 11 210 3 214 210 18

#375 32kB 1 32kB 2 128 96 64 16 32 40 2 213 1 10 22 1 211 211 16

#376 64kB 1 64kB 4 128 256 32 16 8 32 2 213 2 11 22 3 211 213 20

#377 16kB 4 32kB 2 64 128 64 16 8 16 1 210 2 12 211 3 214 212 16

#378 32kB 1 32kB 2 256 128 64 16 16 128 3 214 3 11 211 2 214 213 20

#379 64kB 1 32kB 1 50 256 32 32 32 32 3 212 3 11 210 1 212 211 16

#380 32kB 2 64kB 4 64 256 64 64 64 16 2 210 1 10 210 1 214 210 16

#381 64kB 4 32kB 2 96 96 16 64 32 64 3 211 3 12 211 1 213 211 20

#382 64kB 4 8kB 4 96 128 32 64 8 64 1 211 3 11 211 3 210 210 18

#383 32kB 2 16kB 2 128 256 32 8 32 128 1 210 1 11 210 3 210 213 20

#384 16kB 4 4kB 4 50 96 16 64 64 128 1 212 3 12 211 1 212 210 18

#385 32kB 1 16kB 1 64 256 32 16 16 128 3 213 3 10 210 2 211 211 18

#386 32kB 4 16kB 2 256 256 64 32 64 40 1 210 2 10 22 1 212 211 18

#387 32kB 2 8kB 4 128 256 64 64 8 40 2 214 3 11 210 1 210 210 18

#388 64kB 1 8kB 4 96 128 32 64 64 32 2 214 2 11 210 1 213 213 16

#389 64kB 1 32kB 2 256 128 64 16 64 16 3 213 1 10 211 3 213 213 16

#390 64kB 4 64kB 2 128 128 64 16 16 40 1 211 3 11 211 2 210 210 20

#391 64kB 4 16kB 2 256 256 16 32 32 16 2 211 1 12 22 2 210 211 18

#392 16kB 2 32kB 2 50 96 32 16 8 32 1 211 1 11 210 3 212 210 20

#393 64kB 2 32kB 2 64 256 16 8 32 32 3 212 2 12 22 2 210 212 16

#394 32kB 2 4kB 4 256 256 32 8 64 64 1 212 2 11 210 2 213 212 20

#395 64kB 4 8kB 4 128 96 32 32 8 16 3 210 1 10 22 1 214 213 20

#396 64kB 1 4kB 1 64 256 16 64 32 40 2 211 1 12 22 3 210 210 16

#397 32kB 2 16kB 1 64 128 32 32 16 40 1 212 3 10 210 3 214 211 18

#398 16kB 4 8kB 2 128 128 64 16 32 64 2 213 2 12 210 1 212 210 20

#399 16kB 1 8kB 4 256 96 64 8 8 128 3 214 3 10 22 2 214 212 18

#400 16kB 1 64kB 2 256 128 16 8 8 32 3 214 1 11 210 3 210 212 20

#401 32kB 4 32kB 2 64 128 32 16 16 16 2 211 3 11 22 2 211 213 16

#402 16kB 4 4kB 4 256 128 64 16 16 32 3 214 2 10 210 3 214 213 18

#403 32kB 1 4kB 2 64 128 64 8 64 40 3 213 2 12 22 1 212 211 20

#404 64kB 4 16kB 1 256 96 32 16 32 32 2 213 1 10 22 1 210 211 18

#405 32kB 1 16kB 4 256 128 32 16 32 32 3 211 1 12 211 1 212 211 20

#406 16kB 1 4kB 2 256 96 64 16 16 16 3 211 1 12 211 1 212 210 20

#407 64kB 4 64kB 1 64 128 16 16 16 64 3 212 1 11 22 1 211 213 16

#408 64kB 1 16kB 4 64 96 32 32 16 64 3 210 2 11 210 3 213 210 18

#409 32kB 2 16kB 1 256 128 16 64 64 16 2 214 3 12 210 1 211 213 16

#410 64kB 4 8kB 4 96 96 64 64 8 32 2 212 1 11 210 1 212 213 20

#411 16kB 2 8kB 1 128 256 32 32 8 32 3 211 2 11 211 3 212 211 16

#412 16kB 1 4kB 2 256 128 64 32 8 32 2 214 1 12 22 1 212 212 18

#413 16kB 2 64kB 1 128 128 32 8 8 32 3 211 2 10 22 2 213 210 16

#414 64kB 2 4kB 1 128 128 64 64 16 32 1 214 2 10 210 3 213 213 16

#415 32kB 4 8kB 4 50 128 16 16 32 16 3 210 3 12 22 2 212 213 16

#416 32kB 4 32kB 4 256 128 16 8 8 32 1 212 3 12 211 2 214 212 16

#417 32kB 2 4kB 1 50 256 64 8 32 32 3 214 3 10 211 1 210 212 20 p. 79

#418 16kB 1 16kB 4 50 96 16 32 32 16 1 211 2 10 210 1 214 210 18

#419 64kB 4 4kB 4 256 96 32 64 32 128 2 211 1 10 210 3 212 211 18

#420 32kB 4 64kB 1 96 256 16 64 32 16 3 212 2 10 22 3 212 211 16

#421 64kB 2 64kB 1 128 128 32 8 16 40 3 214 2 12 211 3 212 211 18

#422 32kB 4 16kB 4 256 128 16 64 32 64 3 211 3 10 22 3 213 211 16

#423 32kB 2 8kB 1 50 128 16 8 64 32 2 213 3 12 22 2 210 210 18

#424 32kB 2 16kB 4 96 128 32 16 32 40 2 210 2 12 210 1 213 212 18 p. 166

#425 64kB 1 16kB 4 50 256 64 64 8 40 2 210 3 12 211 3 211 212 16

#426 16kB 2 4kB 4 50 96 16 16 8 64 1 211 2 11 22 1 213 210 16

#427 16kB 4 4kB 2 128 256 64 8 16 32 2 214 3 11 210 1 213 212 16

#428 64kB 4 8kB 4 128 256 16 16 8 40 2 214 1 10 22 3 211 211 20

#429 32kB 4 8kB 2 256 128 64 16 8 128 2 210 2 12 211 3 211 212 16

#430 16kB 4 8kB 1 128 96 64 32 16 128 1 210 2 11 211 2 212 212 18

#431 32kB 2 64kB 1 50 128 16 8 16 16 3 214 1 11 211 2 210 212 20

#432 16kB 4 64kB 1 256 128 32 8 8 16 3 211 2 10 210 1 214 212 16

#433 32kB 2 4kB 2 96 256 64 32 8 40 3 211 1 11 22 1 212 212 16

#434 32kB 4 32kB 2 50 256 32 16 8 40 3 214 2 10 210 1 214 210 18

#435 32kB 2 64kB 1 256 96 64 64 32 32 1 212 1 11 210 1 210 213 20

Continued on next page.

186 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#436 16kB 1 16kB 1 64 256 64 64 64 32 3 212 2 12 211 3 210 213 16

#437 32kB 4 32kB 1 256 128 64 32 16 128 2 210 3 10 22 1 214 210 20

#438 32kB 2 8kB 2 64 256 64 32 8 32 2 210 3 11 22 3 213 213 20

#439 16kB 1 8kB 1 50 128 32 16 16 128 1 211 3 10 210 2 212 213 16

#440 16kB 2 64kB 1 96 96 16 16 16 128 3 213 1 12 22 1 212 210 18

#441 32kB 2 8kB 1 256 96 64 64 64 64 1 212 3 11 211 3 211 211 20

#442 16kB 2 8kB 2 64 256 64 8 16 16 3 211 3 12 22 3 210 212 16

#443 16kB 4 16kB 2 128 256 32 32 8 32 2 210 2 12 210 2 213 211 16

#444 64kB 4 8kB 2 50 256 32 64 64 128 2 210 1 10 210 2 210 213 20

#445 16kB 4 64kB 1 256 128 16 8 16 128 3 214 1 11 211 2 213 213 18

#446 64kB 2 4kB 4 96 256 64 16 64 16 1 211 1 12 211 1 210 210 16

#447 32kB 4 32kB 1 96 128 16 16 16 64 3 213 1 10 211 1 213 212 20

#448 16kB 1 16kB 1 64 256 64 64 8 16 2 214 1 11 211 2 213 212 16

#449 64kB 4 8kB 1 64 256 32 32 32 32 1 211 3 12 211 3 213 213 20

#450 32kB 1 8kB 1 256 128 64 8 64 40 3 211 3 12 211 3 210 212 18

#451 16kB 4 4kB 1 96 96 16 64 16 128 2 213 3 11 211 1 213 211 18

#452 32kB 1 4kB 1 256 96 64 64 32 40 2 210 1 12 22 3 210 212 18

#453 32kB 4 4kB 2 50 256 64 16 8 40 2 213 2 10 210 1 213 213 16

#454 16kB 2 16kB 2 128 128 64 32 32 128 3 212 1 11 22 3 210 210 18

#455 32kB 2 64kB 4 64 96 16 64 32 40 2 213 1 10 210 3 214 211 16

#456 32kB 2 16kB 2 128 128 64 16 8 128 2 210 1 10 211 2 210 210 20

#457 32kB 1 8kB 2 64 256 16 32 32 128 1 212 2 10 22 2 211 211 16

#458 64kB 2 8kB 1 256 256 32 64 8 40 3 214 2 11 22 1 214 211 16

#459 16kB 1 4kB 1 256 256 32 64 8 16 1 212 1 10 210 3 211 213 18

#460 16kB 2 8kB 4 64 256 32 8 32 40 3 214 3 10 22 2 213 210 20

#461 16kB 4 8kB 1 64 128 32 8 64 40 2 214 3 10 211 2 212 213 20

#462 64kB 2 16kB 2 50 96 64 16 16 32 3 212 1 12 22 1 210 210 18

#463 64kB 2 32kB 2 50 256 16 16 8 40 3 214 2 11 210 2 213 213 18

#464 16kB 2 64kB 1 64 256 16 8 64 32 3 210 3 10 211 1 213 210 16

#465 32kB 2 8kB 4 256 256 64 32 8 64 3 211 1 12 210 2 213 212 20

#466 64kB 4 64kB 1 128 256 32 16 64 40 2 210 3 11 210 1 210 213 20

#467 32kB 2 4kB 1 50 128 16 8 16 40 2 211 1 12 211 3 210 212 16

#468 64kB 4 4kB 1 96 96 64 16 64 40 1 213 2 11 210 2 212 210 20

#469 16kB 2 32kB 1 50 128 32 64 32 32 1 213 1 12 210 2 213 212 16

#470 64kB 2 8kB 2 256 128 64 8 8 64 3 213 3 10 211 3 214 212 20

#471 16kB 1 4kB 4 50 96 64 32 64 16 1 213 2 10 22 3 213 213 20

#472 64kB 1 32kB 1 50 128 32 32 64 64 3 213 1 11 22 1 213 210 18

#473 16kB 1 4kB 1 50 128 32 64 8 64 3 212 3 12 211 3 212 211 16

#474 16kB 4 8kB 2 256 256 16 8 32 16 3 213 2 12 211 1 212 211 20

#475 32kB 4 64kB 2 256 96 16 8 8 64 1 212 2 11 22 1 212 211 16

#476 32kB 2 4kB 4 64 256 16 32 16 32 3 212 3 12 22 3 211 213 20

#477 32kB 1 16kB 4 50 128 64 8 64 64 3 212 1 10 210 2 212 210 20

#478 32kB 4 4kB 2 96 96 64 16 8 40 3 213 2 10 211 3 212 210 16

#479 32kB 1 4kB 1 128 128 64 8 16 128 3 213 1 10 211 3 212 210 20

#480 64kB 2 8kB 1 256 256 64 8 64 16 1 211 3 12 22 2 213 210 20

#481 32kB 2 32kB 2 64 256 16 16 64 128 1 213 3 12 22 2 210 210 20

#482 64kB 2 64kB 1 96 256 64 8 32 64 2 213 2 10 22 2 212 212 20

#483 32kB 4 8kB 1 64 96 64 8 64 32 2 213 1 10 22 3 212 213 16

#484 64kB 1 32kB 2 256 256 32 32 16 40 2 214 1 11 211 3 213 210 16

#485 64kB 4 32kB 4 96 128 16 64 8 64 1 213 2 11 210 3 213 210 20

#486 16kB 2 16kB 1 64 256 16 8 32 40 1 214 3 12 211 2 213 210 18

#487 16kB 2 8kB 2 128 96 64 16 16 64 3 210 2 10 211 2 211 210 20

#488 64kB 1 16kB 4 64 128 16 16 64 64 3 210 1 11 22 1 213 211 20

#489 16kB 4 16kB 4 96 96 64 32 32 32 2 210 1 12 210 1 210 211 18

#490 32kB 1 4kB 2 64 96 64 16 16 40 2 213 1 12 211 1 212 211 20

#491 32kB 4 8kB 1 64 96 32 16 64 40 3 214 1 11 22 2 213 213 16

#492 32kB 1 4kB 1 96 96 32 8 64 32 3 214 3 10 210 1 210 213 18

#493 32kB 4 4kB 1 96 128 16 16 32 64 1 212 1 10 211 1 212 213 16

#494 32kB 4 32kB 1 96 256 64 32 16 40 1 212 3 12 211 2 210 213 18

#495 16kB 2 32kB 1 128 96 64 32 16 128 2 210 2 10 210 3 212 210 16

#496 16kB 1 32kB 2 50 96 32 16 16 128 1 214 2 11 210 1 210 213 20

#497 16kB 1 32kB 1 128 128 16 64 32 128 1 210 1 11 210 1 211 212 18

#498 64kB 4 32kB 1 64 128 16 8 8 16 1 212 3 12 211 3 213 211 18

#499 16kB 4 64kB 4 64 96 32 64 16 40 2 214 3 12 211 2 211 211 18

#500 64kB 4 8kB 1 128 256 16 8 8 32 2 211 1 11 22 1 214 211 18

#501 64kB 1 8kB 2 64 256 64 8 64 128 2 211 1 12 210 1 214 213 18

#502 32kB 2 16kB 2 256 128 32 64 8 64 2 214 2 12 211 2 211 210 16

Continued on next page.

Appendix A. Design Space 187

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#503 64kB 1 4kB 1 256 256 16 32 8 40 1 210 3 10 22 3 210 213 18

#504 16kB 1 64kB 1 64 128 64 32 32 128 3 211 2 11 211 3 210 211 18

#505 32kB 2 64kB 4 50 96 64 16 16 64 2 214 1 12 211 1 214 211 16

#506 16kB 2 4kB 1 64 256 32 32 32 128 1 210 1 10 22 1 210 210 20

#507 64kB 4 16kB 1 128 96 32 64 16 128 1 214 3 11 210 1 214 213 20

#508 16kB 1 32kB 1 96 128 64 8 8 40 3 210 3 11 22 2 213 213 16

#509 32kB 1 4kB 4 96 256 32 64 64 32 2 213 3 11 211 2 210 213 20

#510 16kB 2 64kB 1 96 96 32 8 16 64 2 213 2 12 211 3 212 211 18

#511 64kB 2 64kB 4 50 256 32 32 16 64 1 213 2 10 210 2 213 212 18

#512 64kB 4 4kB 2 64 256 32 8 64 16 2 212 3 11 211 3 210 210 20

#513 64kB 2 4kB 1 256 128 16 32 16 32 2 213 1 10 22 1 212 212 16

#514 64kB 1 32kB 2 64 256 16 64 32 40 3 212 1 11 22 3 212 212 20

#515 64kB 2 4kB 4 128 128 16 16 8 16 1 211 2 12 22 2 213 212 16

#516 64kB 1 64kB 1 128 256 16 64 16 16 3 210 2 10 22 1 211 211 20

#517 16kB 4 64kB 4 50 128 64 32 16 16 1 212 2 10 22 2 212 210 18

#518 64kB 2 64kB 2 128 256 32 64 32 64 2 214 2 12 211 2 210 213 18 p. 132

#519 32kB 2 4kB 4 64 128 16 16 8 128 3 213 2 12 210 2 210 210 20

#520 32kB 2 16kB 2 50 128 16 8 32 16 1 213 1 11 210 2 210 211 16

#521 32kB 4 8kB 1 128 96 64 8 8 40 3 214 2 11 210 2 210 213 16

#522 64kB 4 4kB 1 128 128 64 64 32 32 2 214 1 12 211 2 214 211 18

#523 32kB 1 16kB 1 256 96 32 16 64 16 1 211 1 11 22 2 214 210 20

#524 32kB 2 8kB 2 64 128 64 32 8 64 3 211 1 12 211 1 214 211 20

#525 64kB 2 16kB 2 64 256 16 64 8 128 3 213 2 11 210 3 211 213 18

#526 32kB 1 16kB 4 128 256 64 32 8 40 1 210 3 11 211 1 211 213 18

#527 16kB 2 32kB 4 64 96 32 64 8 32 2 210 3 12 211 2 210 212 16

#528 64kB 4 8kB 2 256 128 16 16 32 40 3 212 1 12 211 3 214 211 20

#529 64kB 1 8kB 4 50 256 16 16 64 128 1 214 1 11 211 2 212 213 16

#530 32kB 1 4kB 2 96 256 32 8 32 40 3 212 3 10 210 3 212 213 16

#531 16kB 4 8kB 1 50 96 32 16 8 32 2 210 1 11 210 3 211 211 20

#532 32kB 2 32kB 4 96 256 16 32 16 40 2 211 2 12 22 2 210 210 20

#533 16kB 2 32kB 1 96 96 16 64 64 40 2 210 2 12 22 2 212 212 18

#534 16kB 4 16kB 1 64 128 32 32 64 128 2 214 3 10 211 3 214 211 18

#535 32kB 1 8kB 4 128 96 32 64 8 16 1 214 1 12 211 3 213 212 20

#536 64kB 4 8kB 2 96 128 16 32 64 16 2 212 3 12 211 3 211 213 20

#537 32kB 1 4kB 1 256 128 32 64 64 16 2 213 1 11 22 1 213 212 18

#538 64kB 1 32kB 1 96 96 64 64 64 64 2 214 1 10 22 2 213 210 20

#539 32kB 4 8kB 2 50 256 64 8 16 128 3 212 3 12 210 2 211 213 20

#540 16kB 2 16kB 4 96 96 16 64 8 16 2 210 1 11 22 3 213 211 20

#541 16kB 4 4kB 4 128 128 16 8 8 64 2 213 3 12 211 3 210 213 18

#542 64kB 2 16kB 1 96 256 64 16 8 64 1 212 1 11 210 3 214 211 18

#543 32kB 4 64kB 4 128 256 16 32 32 128 3 210 1 12 210 1 210 210 18

#544 64kB 4 16kB 4 128 256 64 8 8 128 3 211 2 10 22 2 212 211 16

#545 64kB 2 8kB 2 128 96 32 64 8 40 1 213 2 10 211 3 210 212 16

#546 16kB 4 64kB 4 128 96 32 32 64 32 2 212 2 12 211 1 212 211 18

#547 64kB 2 4kB 2 96 128 32 8 64 40 2 214 3 10 210 2 212 210 18

#548 32kB 2 8kB 4 64 96 64 64 16 16 2 212 2 11 211 1 213 213 18

#549 64kB 1 64kB 1 96 256 32 16 64 16 2 212 1 12 210 1 212 211 20

#550 32kB 1 8kB 4 50 256 64 8 32 128 1 214 3 10 210 1 214 213 16

#551 32kB 4 4kB 2 128 128 64 16 8 128 3 213 3 11 210 2 211 211 20

#552 64kB 1 32kB 4 96 128 16 32 32 32 2 214 3 10 22 1 213 211 18

#553 64kB 1 64kB 2 64 256 64 64 8 64 3 214 2 12 211 1 213 212 16

#554 16kB 4 64kB 1 128 128 64 32 64 32 1 211 2 12 210 1 214 212 16

#555 16kB 4 16kB 2 256 96 32 8 16 32 3 211 1 11 22 2 214 210 20

#556 16kB 1 64kB 1 128 256 16 8 32 16 2 212 1 11 211 1 212 212 20

#557 32kB 2 8kB 2 128 96 64 16 8 32 1 212 3 12 210 1 211 211 18

#558 32kB 2 16kB 4 256 128 32 64 64 64 1 214 1 10 22 2 210 211 16

#559 32kB 4 32kB 1 256 128 32 32 32 128 3 213 2 12 210 1 210 212 18

#560 64kB 2 8kB 1 64 256 64 32 32 32 3 214 3 12 211 3 211 213 20

#561 32kB 2 4kB 4 50 256 16 8 8 128 1 213 3 11 211 3 213 210 20

#562 16kB 1 32kB 1 256 256 32 8 8 64 2 214 3 10 211 3 210 212 20

#563 32kB 2 32kB 2 96 256 64 32 16 40 3 212 3 11 22 1 214 211 16

#564 64kB 4 64kB 2 50 128 64 64 32 40 3 212 3 10 211 1 212 210 16

#565 16kB 4 32kB 2 256 96 32 8 8 32 2 210 1 10 211 1 211 210 20

#566 32kB 4 32kB 1 50 96 32 16 16 40 2 212 1 11 210 1 214 210 20

#567 64kB 1 4kB 1 128 96 64 64 64 16 3 214 1 10 22 3 212 213 20

#568 64kB 4 32kB 2 64 128 32 64 8 128 2 213 1 11 211 2 212 212 20

#569 32kB 4 64kB 2 256 96 16 16 16 64 1 210 2 11 210 2 212 210 20

Continued on next page.

188 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#570 64kB 2 8kB 2 50 128 64 16 8 16 2 212 3 10 210 2 211 210 18

#571 64kB 2 4kB 2 64 96 64 32 8 32 2 214 3 10 210 2 214 211 18

#572 64kB 4 16kB 4 96 256 16 64 16 64 2 213 3 11 22 2 213 210 20

#573 64kB 2 8kB 4 64 128 32 8 8 64 2 214 2 10 210 2 213 213 20

#574 32kB 2 32kB 4 256 256 32 32 8 16 2 213 1 12 210 3 212 213 18

#575 64kB 1 16kB 1 96 128 32 64 8 128 2 210 3 12 22 3 211 213 20

#576 32kB 1 64kB 2 64 128 16 16 16 16 2 214 1 11 211 3 212 213 20

#577 32kB 4 8kB 4 256 96 16 64 8 128 2 211 1 10 210 1 212 213 16

#578 32kB 4 4kB 1 50 96 64 16 32 64 3 214 3 11 22 1 210 213 18

#579 32kB 4 32kB 2 256 128 64 8 32 64 3 214 1 10 210 2 212 212 20

#580 16kB 2 32kB 4 64 128 16 8 8 128 2 211 3 11 211 1 211 212 16

#581 64kB 1 16kB 4 256 128 64 32 32 128 1 213 3 12 210 1 213 212 20

#582 16kB 2 4kB 4 96 96 32 64 16 32 1 210 1 11 211 1 214 211 18

#583 64kB 2 8kB 4 128 256 32 64 8 64 3 214 2 10 211 3 212 211 18

#584 64kB 2 64kB 4 96 128 32 32 64 40 2 212 3 10 22 3 212 211 18

#585 32kB 4 8kB 4 256 128 64 8 64 64 2 213 2 10 22 2 211 210 18

#586 64kB 4 32kB 2 256 96 16 32 8 128 2 210 2 11 210 3 214 213 16

#587 32kB 2 32kB 2 96 256 16 8 32 40 2 212 2 10 22 3 212 211 16

#588 16kB 1 4kB 2 64 128 64 16 32 32 3 210 3 12 211 3 211 212 16

#589 16kB 4 32kB 4 64 256 32 16 16 128 1 214 2 10 210 2 212 212 16

#590 64kB 2 8kB 1 50 96 64 64 16 32 2 212 1 10 210 2 212 213 20

#591 16kB 4 4kB 2 96 96 32 8 32 64 1 210 3 10 211 3 212 213 16

#592 32kB 4 4kB 2 50 256 16 64 64 40 2 210 2 10 211 1 213 212 16

#593 16kB 2 4kB 2 128 96 32 64 16 32 2 210 2 11 22 1 210 212 18

#594 16kB 1 8kB 2 96 96 16 8 64 64 3 211 3 11 210 2 212 213 16

#595 32kB 4 16kB 2 50 128 16 8 64 64 1 211 3 12 211 2 213 212 20

#596 32kB 4 64kB 1 64 128 32 32 16 40 2 210 3 12 210 3 213 212 18

#597 16kB 1 16kB 4 96 128 16 32 16 64 3 210 3 10 210 3 212 211 16 p. 79

#598 64kB 1 4kB 4 128 128 16 16 64 40 3 210 2 11 210 1 212 212 18

#599 16kB 1 8kB 4 64 128 16 8 16 128 1 210 2 12 22 1 211 210 16

#600 16kB 4 32kB 4 50 128 16 16 32 40 2 214 2 12 210 1 212 212 16

#601 32kB 1 64kB 4 256 128 32 8 32 32 1 213 1 11 210 3 211 211 20

#602 64kB 2 16kB 2 96 96 16 16 32 128 3 214 3 11 211 1 213 213 16

#603 32kB 2 8kB 2 256 128 16 8 8 16 3 211 3 11 22 3 212 211 18

#604 16kB 1 32kB 1 96 128 16 32 16 16 2 213 2 10 211 2 211 210 18

#605 32kB 1 8kB 2 256 128 16 32 16 16 1 213 2 12 211 2 210 211 20

#606 32kB 4 8kB 2 64 96 16 8 16 16 1 210 3 10 210 1 212 212 18

#607 64kB 1 64kB 4 50 128 32 32 32 40 2 212 1 10 210 3 212 210 16

#608 64kB 4 16kB 1 128 128 32 8 64 128 2 212 3 11 211 1 214 211 16

#609 16kB 4 16kB 2 256 128 64 32 64 16 3 213 3 11 22 3 211 212 18

#610 64kB 4 16kB 1 256 96 16 8 64 40 3 210 2 12 211 2 210 213 18

#611 64kB 1 8kB 1 50 96 32 32 64 40 2 214 1 11 211 3 214 211 20

#612 32kB 2 8kB 2 256 96 16 64 32 16 3 214 3 10 22 2 213 212 16

#613 64kB 1 16kB 1 96 256 16 16 64 64 1 213 1 11 211 3 211 211 16

#614 64kB 4 32kB 4 256 256 64 32 32 32 2 212 3 11 22 3 211 212 20

#615 16kB 1 64kB 1 96 256 16 32 16 32 3 212 3 12 211 1 211 212 18

#616 64kB 4 32kB 1 96 96 64 32 8 128 3 213 2 11 210 3 210 211 16

#617 64kB 1 4kB 1 64 96 32 64 32 40 3 211 3 10 210 2 213 211 20

#618 64kB 4 32kB 1 64 128 32 32 64 16 3 214 1 10 22 1 214 211 18

#619 32kB 4 4kB 4 256 256 16 32 16 128 3 214 3 11 210 2 212 211 18

#620 16kB 2 4kB 1 128 96 64 8 16 64 2 211 1 10 22 3 213 211 16

#621 64kB 2 32kB 1 64 128 32 64 8 32 1 214 3 11 22 3 212 212 18

#622 64kB 4 16kB 4 96 96 16 8 16 40 2 214 3 11 210 3 214 213 16

#623 16kB 1 32kB 2 96 128 64 64 8 40 3 212 2 10 211 1 214 210 16

#624 32kB 2 32kB 2 50 256 32 8 8 64 1 210 2 12 210 3 214 210 18

#625 16kB 4 4kB 2 256 128 16 64 64 40 1 211 3 10 210 2 214 210 18

#626 16kB 1 8kB 1 128 96 32 64 64 32 2 211 3 12 22 3 210 210 16

#627 32kB 2 64kB 4 256 128 16 32 8 128 1 211 1 10 22 1 214 213 18

#628 16kB 1 8kB 4 64 96 32 64 8 32 1 210 1 10 210 3 211 211 18

#629 16kB 1 4kB 2 128 128 64 32 32 16 2 212 1 10 210 2 213 212 18

#630 64kB 2 32kB 2 128 128 16 16 32 64 1 210 1 10 211 1 213 212 16

#631 16kB 4 8kB 2 256 96 32 16 8 128 1 214 3 11 22 3 214 213 20

#632 32kB 2 8kB 4 50 128 64 8 8 64 1 211 2 11 211 2 211 213 16

#633 16kB 2 4kB 2 50 96 32 8 16 128 1 210 1 11 211 3 214 213 18

#634 16kB 2 64kB 1 128 128 16 16 64 40 3 210 1 11 211 2 213 213 20

#635 64kB 2 32kB 4 96 128 64 32 8 16 3 213 3 10 22 1 211 210 18

#636 32kB 2 8kB 2 50 256 16 8 8 64 1 213 3 12 22 3 212 213 16

Continued on next page.

Appendix A. Design Space 189

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#637 32kB 1 32kB 2 128 96 64 64 32 16 2 210 1 11 211 2 210 213 16

#638 16kB 2 4kB 1 50 256 32 32 64 40 2 214 1 12 22 3 214 210 16

#639 64kB 4 4kB 1 96 96 32 64 8 128 2 212 3 10 22 1 210 213 18

#640 16kB 2 4kB 4 50 128 16 64 8 64 3 214 1 12 210 3 211 210 16

#641 16kB 4 32kB 1 96 128 64 16 8 128 1 214 3 11 211 3 214 213 16

#642 16kB 1 16kB 2 50 128 16 16 64 40 2 211 3 11 210 1 212 211 20

#643 64kB 4 8kB 2 256 256 64 8 16 32 2 214 2 12 211 3 211 212 20

#644 32kB 2 64kB 1 256 256 32 32 16 64 2 212 1 12 22 2 212 212 20

#645 16kB 1 16kB 1 128 256 16 32 16 128 3 214 1 11 22 3 213 210 16

#646 64kB 1 32kB 1 128 96 32 32 32 128 2 211 3 12 22 2 210 213 20

#647 64kB 1 32kB 4 50 96 32 32 8 128 1 214 1 11 211 3 212 211 18

#648 32kB 2 4kB 1 128 96 16 16 64 64 2 210 3 11 211 1 211 210 20

#649 16kB 4 16kB 2 50 96 64 8 64 128 1 214 1 11 211 3 212 213 20

#650 32kB 4 32kB 1 64 96 16 64 16 16 1 214 1 11 211 3 212 213 16

#651 32kB 4 32kB 4 128 128 32 16 8 16 3 213 3 12 22 2 211 210 20

#652 32kB 2 4kB 2 96 128 32 8 32 64 2 214 3 11 210 2 213 211 20

#653 16kB 4 8kB 2 96 256 32 16 64 64 2 214 3 10 22 3 214 211 20

#654 64kB 1 16kB 2 128 256 32 16 32 16 1 211 2 10 22 2 210 212 16

#655 64kB 2 16kB 2 256 256 64 32 16 40 3 210 3 12 210 2 211 212 20

#656 64kB 2 16kB 1 128 256 64 32 32 128 2 211 2 10 211 3 213 211 18

#657 64kB 1 32kB 1 64 128 64 8 8 64 2 214 2 10 211 2 214 211 16

#658 64kB 2 32kB 2 256 128 64 64 16 32 3 210 1 11 22 3 210 211 18

#659 16kB 2 64kB 4 256 128 16 16 64 64 1 211 3 11 22 1 212 211 18

#660 32kB 1 4kB 4 50 128 16 64 16 128 2 210 3 11 22 1 212 212 18

#661 16kB 4 32kB 4 256 256 64 64 32 16 1 213 2 11 211 2 213 210 18

#662 64kB 1 8kB 4 64 96 32 64 8 32 1 213 1 11 211 1 211 211 16

#663 32kB 1 16kB 2 128 128 16 64 16 32 1 211 3 10 210 1 214 212 20

#664 64kB 4 32kB 1 256 128 64 64 32 40 1 212 3 12 22 1 210 211 18

#665 16kB 1 32kB 4 96 96 16 16 32 128 2 213 1 11 22 1 211 213 20

#666 16kB 1 8kB 2 50 128 32 32 8 32 3 212 3 11 210 2 211 212 16

#667 32kB 2 8kB 2 128 256 32 32 16 128 3 212 2 11 210 2 210 211 18

#668 16kB 4 8kB 2 64 128 32 64 16 16 2 212 2 10 210 3 211 211 18

#669 32kB 1 16kB 1 50 128 64 64 8 40 2 212 2 11 22 1 214 212 20

#670 32kB 1 16kB 2 128 128 64 64 8 128 1 210 1 11 210 3 213 212 16

#671 32kB 2 32kB 4 128 96 64 32 32 128 2 213 1 12 210 2 213 210 20 p. 79

#672 16kB 1 64kB 1 64 256 32 32 32 16 3 213 3 11 210 2 214 212 16

#673 16kB 2 8kB 4 256 128 16 64 8 64 1 210 3 12 210 3 212 212 20

#674 32kB 1 64kB 2 64 96 32 64 64 32 2 210 1 11 211 3 213 210 18

#675 64kB 1 32kB 4 96 128 32 8 8 16 1 213 3 12 210 1 211 212 16

#676 32kB 2 8kB 4 256 128 16 32 64 64 1 214 1 10 22 2 211 212 20

#677 32kB 4 64kB 2 128 96 64 8 64 16 1 210 2 12 210 3 213 212 20

#678 16kB 1 8kB 1 128 96 16 8 16 32 1 213 2 11 210 2 210 213 20

#679 64kB 2 4kB 2 50 256 32 16 16 128 2 211 3 11 210 1 211 211 20

#680 32kB 1 16kB 1 128 128 32 64 8 32 3 211 1 12 210 1 213 212 18

#681 32kB 1 4kB 2 50 128 32 16 32 32 2 210 3 10 22 2 211 212 20

#682 16kB 1 8kB 2 256 128 64 8 64 64 1 211 3 11 210 3 210 210 18

#683 64kB 1 64kB 4 256 256 32 32 8 32 2 213 1 12 210 2 214 211 16

#684 16kB 1 8kB 1 128 96 32 8 16 64 2 211 3 11 211 2 214 213 18

#685 64kB 4 16kB 4 128 256 32 32 16 40 1 214 2 10 211 3 212 213 20

#686 64kB 1 16kB 4 96 256 16 16 64 128 1 210 3 11 210 3 211 211 20

#687 16kB 2 64kB 4 96 128 64 32 8 128 1 211 3 10 211 1 211 210 20

#688 32kB 1 64kB 2 50 128 16 16 32 64 1 212 2 12 211 2 213 210 18

#689 32kB 1 32kB 4 96 128 64 16 8 40 3 210 1 12 211 3 213 210 18

#690 32kB 1 64kB 4 64 96 32 64 16 128 1 212 3 11 211 1 211 211 18

#691 16kB 4 32kB 1 256 96 64 32 8 16 3 210 3 11 22 1 213 212 18

#692 64kB 4 64kB 4 96 96 32 8 32 128 3 212 2 12 211 1 214 212 18

#693 16kB 4 64kB 1 256 96 16 64 64 40 2 213 2 11 22 2 210 211 20

#694 64kB 2 32kB 2 256 96 64 64 8 32 3 211 1 10 211 3 210 213 20

#695 16kB 1 8kB 2 256 256 32 64 32 16 1 211 1 12 211 2 211 212 16

#696 64kB 4 64kB 2 256 128 64 64 16 40 2 214 2 11 22 3 213 210 20

#697 64kB 4 64kB 1 96 128 16 32 64 32 1 211 2 12 210 3 211 213 20

#698 16kB 1 64kB 1 64 256 16 8 16 128 2 210 3 12 211 1 213 211 20

#699 32kB 2 32kB 1 128 128 64 16 16 40 1 211 1 11 210 3 214 211 20

#700 64kB 4 16kB 1 50 96 32 64 16 32 2 214 1 11 22 2 210 212 20

#701 64kB 1 8kB 2 64 128 32 64 16 40 2 213 1 10 211 1 212 211 16

#702 16kB 4 64kB 2 64 96 32 8 32 32 3 212 3 10 211 2 210 210 20

#703 16kB 2 32kB 1 256 256 64 64 32 40 3 214 2 11 211 3 211 211 18

Continued on next page.

190 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#704 16kB 1 64kB 2 50 96 16 8 64 128 1 212 1 11 211 2 211 212 20

#705 32kB 1 16kB 2 50 96 64 16 64 32 2 213 1 11 211 2 211 211 18

#706 32kB 4 64kB 1 256 256 32 16 32 32 1 214 3 11 22 2 210 210 20

#707 32kB 2 16kB 4 256 96 32 64 8 128 3 214 1 10 210 3 211 211 20

#708 64kB 4 32kB 1 64 128 64 8 8 64 3 212 2 12 210 3 211 211 16

#709 16kB 2 64kB 1 64 128 16 16 16 128 2 214 1 12 22 3 210 211 16

#710 16kB 4 8kB 4 96 96 32 16 64 40 2 214 3 11 211 3 214 210 18

#711 64kB 2 16kB 4 50 256 64 32 8 64 1 210 3 11 22 1 214 211 20

#712 16kB 2 16kB 4 64 128 32 64 32 64 3 212 3 12 210 1 212 210 16

#713 32kB 2 16kB 2 128 256 32 64 64 128 1 212 3 12 211 3 210 210 18 p. 79

#714 32kB 1 8kB 1 128 256 32 16 32 40 3 210 3 11 210 3 214 212 16

#715 64kB 2 8kB 4 96 128 32 32 8 16 1 214 3 12 210 1 214 210 18

#716 32kB 1 4kB 1 50 128 32 8 64 128 1 212 1 10 211 3 214 212 18

#717 16kB 4 8kB 4 96 256 16 64 64 32 3 213 2 11 211 1 210 210 16

#718 64kB 4 64kB 1 128 128 64 32 32 32 3 214 1 12 210 1 213 212 18

#719 32kB 1 64kB 2 96 128 16 32 8 64 3 211 2 12 22 1 212 211 20

#720 32kB 1 8kB 4 128 256 16 8 64 40 1 211 1 11 210 2 212 213 18

#721 16kB 1 8kB 4 256 128 64 8 32 128 3 213 3 12 211 1 211 212 16

#722 64kB 4 16kB 4 128 96 32 16 8 40 1 211 2 10 210 2 210 211 20

#723 64kB 4 8kB 4 128 256 32 8 16 40 3 213 3 11 22 1 211 213 20

#724 32kB 1 32kB 4 50 128 32 64 16 128 3 211 1 10 210 1 214 210 20

#725 64kB 2 64kB 4 256 96 32 16 32 40 3 212 2 12 22 3 210 212 16

#726 16kB 1 16kB 4 64 128 16 32 64 64 1 210 3 10 22 1 210 213 18

#727 64kB 1 64kB 1 64 256 16 8 32 128 1 214 2 12 211 3 214 213 20

#728 64kB 1 64kB 1 64 128 64 32 16 40 2 213 3 10 211 3 211 212 20

#729 32kB 4 8kB 4 128 96 16 64 8 32 2 213 1 10 22 3 210 212 18

#730 16kB 2 32kB 4 64 96 16 32 8 64 1 210 3 12 22 3 214 212 16

#731 16kB 4 64kB 2 64 128 32 16 16 128 3 212 1 10 210 3 212 210 20

#732 64kB 4 16kB 4 128 128 64 32 64 64 2 212 3 12 211 3 211 213 20 p. 143

#733 16kB 4 32kB 2 128 256 32 8 8 128 1 210 1 11 22 1 213 213 18

#734 16kB 4 16kB 2 96 256 32 16 8 128 1 214 2 12 210 1 212 213 20

#735 32kB 1 4kB 2 128 96 16 16 32 32 3 212 1 12 211 1 211 213 18

#736 32kB 4 32kB 1 128 96 32 16 32 40 1 214 1 10 210 3 213 210 16

#737 16kB 2 8kB 1 50 96 32 16 16 32 2 213 2 12 22 1 212 210 18

#738 32kB 4 16kB 2 96 128 32 64 64 16 2 211 3 10 22 2 210 212 18

#739 16kB 2 16kB 1 96 128 32 8 16 32 3 212 2 11 210 3 210 213 16

#740 64kB 4 8kB 1 64 256 16 8 32 128 1 212 2 11 22 3 214 211 18

#741 64kB 4 64kB 4 64 256 64 32 64 16 3 210 3 10 211 1 212 213 18

#742 16kB 2 32kB 4 256 128 64 64 32 40 3 212 2 10 211 1 213 210 16

#743 32kB 4 32kB 1 50 256 16 32 16 64 2 213 2 12 22 2 214 211 18

#744 32kB 2 16kB 2 96 128 32 16 64 32 2 210 2 12 211 3 210 211 20

#745 16kB 1 64kB 2 96 128 16 32 16 16 1 213 3 10 210 3 211 211 16

#746 64kB 2 4kB 4 96 128 32 32 16 64 3 210 3 12 210 3 212 211 18

#747 32kB 2 4kB 4 64 96 32 32 32 16 1 213 2 11 22 3 213 210 20

#748 16kB 2 32kB 1 50 128 64 16 16 128 2 212 3 10 211 3 214 211 16

#749 64kB 4 32kB 2 64 96 16 16 32 16 3 210 2 10 210 2 213 213 16

#750 32kB 1 4kB 1 50 128 32 32 64 32 1 212 3 12 22 3 214 211 16

#751 64kB 2 16kB 2 256 256 16 64 16 16 1 212 1 11 211 1 213 211 16

#752 16kB 4 32kB 1 50 128 32 64 32 40 1 214 2 12 210 1 212 211 16

#753 64kB 1 32kB 1 96 128 16 32 8 32 2 214 1 12 211 1 212 210 18

#754 32kB 1 8kB 2 128 256 16 8 16 64 2 212 3 12 210 1 210 213 20

#755 16kB 2 8kB 4 96 256 16 8 16 32 3 211 3 11 210 2 210 210 20

#756 64kB 2 16kB 2 128 128 16 32 8 16 1 212 1 10 22 1 210 213 16

#757 64kB 4 16kB 1 256 128 64 32 8 32 2 210 1 12 210 3 211 212 16

#758 32kB 2 32kB 4 96 128 64 16 16 64 2 212 2 12 211 1 213 212 18

#759 16kB 2 4kB 1 64 256 16 64 16 40 1 211 3 12 210 3 211 213 20

#760 64kB 4 16kB 2 256 256 32 8 16 40 2 214 2 11 22 1 210 211 20

#761 64kB 1 16kB 4 128 128 64 32 64 64 1 212 1 11 211 1 212 210 18

#762 32kB 2 32kB 2 96 256 16 8 64 40 2 212 2 11 210 1 211 213 20

#763 16kB 1 32kB 4 64 128 16 32 8 128 2 213 3 11 22 2 214 213 18

#764 16kB 1 4kB 2 96 96 64 64 64 64 2 214 1 10 22 1 212 212 20

#765 64kB 4 8kB 4 64 256 16 8 16 16 3 212 2 10 210 2 212 212 16

#766 16kB 2 16kB 4 256 256 16 8 8 40 3 213 1 12 22 1 211 210 18

#767 16kB 4 16kB 2 64 256 16 32 16 16 1 211 3 11 22 1 210 212 16

#768 32kB 1 64kB 4 96 96 64 32 32 16 3 211 1 10 22 2 214 213 16

#769 32kB 2 4kB 4 128 96 32 16 64 40 2 213 3 10 22 2 211 212 16

#770 16kB 1 4kB 4 256 128 32 8 8 128 3 210 1 12 210 1 212 210 18

Continued on next page.

Appendix A. Design Space 191

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#771 16kB 4 32kB 2 64 96 32 64 32 64 1 214 1 10 211 1 212 210 16

#772 64kB 1 4kB 2 256 256 64 32 32 64 1 214 3 12 210 1 210 213 20

#773 32kB 1 4kB 1 256 128 16 32 8 40 1 212 2 12 211 3 210 210 18

#774 64kB 2 8kB 2 50 128 64 8 64 40 2 214 3 10 211 3 213 212 18

#775 32kB 1 32kB 2 64 96 64 16 16 16 3 212 1 11 22 2 213 213 18

#776 64kB 4 64kB 2 128 96 32 16 8 16 2 214 2 10 210 2 212 213 18

#777 32kB 2 64kB 2 96 96 16 16 8 32 3 214 2 11 211 1 212 211 18 p. 110

#778 64kB 4 4kB 4 256 256 64 32 8 32 1 210 2 10 210 2 210 210 16

#779 16kB 4 4kB 2 50 256 32 64 64 64 1 212 2 10 211 3 212 211 16

#780 32kB 4 64kB 4 96 256 16 8 16 16 1 210 3 12 210 1 214 211 20

#781 64kB 1 16kB 2 128 96 32 32 8 128 1 210 1 12 210 3 210 213 16

#782 16kB 2 64kB 1 64 256 64 64 32 40 2 212 1 11 211 2 212 210 16

#783 64kB 4 4kB 4 256 256 32 64 64 16 3 212 1 10 211 3 212 212 16

#784 16kB 4 64kB 4 128 256 16 8 8 16 2 212 3 11 22 2 210 212 20

#785 16kB 4 32kB 4 64 256 32 64 32 32 2 212 3 11 210 2 213 213 18

#786 32kB 4 8kB 4 96 96 64 32 64 128 1 211 1 11 22 2 214 213 20

#787 16kB 1 8kB 4 256 96 32 8 64 32 1 211 1 10 211 3 211 213 20

#788 16kB 4 4kB 2 256 128 32 16 8 40 1 211 3 12 210 3 210 211 16

#789 64kB 2 8kB 4 64 96 64 8 8 128 1 210 2 12 22 3 210 210 16

#790 16kB 1 4kB 4 96 96 32 32 16 64 1 214 2 10 210 1 211 210 20

#791 16kB 1 4kB 1 128 256 16 16 32 128 2 210 2 10 22 1 212 213 20

#792 64kB 4 8kB 4 256 128 32 32 32 64 1 213 1 12 210 3 214 211 16

#793 64kB 2 4kB 1 50 96 64 8 16 16 3 214 3 12 211 1 210 211 18

#794 32kB 2 16kB 2 64 128 64 8 8 32 2 213 2 10 211 2 211 210 20

#795 64kB 4 16kB 1 256 256 64 16 64 40 2 213 3 12 22 3 214 210 16

#796 32kB 1 32kB 1 50 128 64 16 8 16 3 210 1 12 210 2 211 213 16

#797 64kB 4 32kB 4 96 96 16 32 8 128 3 211 2 12 211 1 210 213 16

#798 32kB 4 4kB 4 50 96 16 32 32 32 3 211 1 12 211 2 213 212 18

#799 64kB 2 8kB 4 64 128 16 32 32 32 2 213 2 11 210 1 210 212 20

#800 64kB 4 8kB 4 256 96 64 16 16 128 3 211 1 10 211 1 210 210 20

#801 32kB 2 4kB 2 256 128 16 64 8 64 1 214 1 10 210 3 214 213 20

#802 32kB 1 16kB 1 50 128 16 32 64 32 2 212 2 12 211 1 214 211 18

#803 64kB 2 16kB 1 64 128 64 64 32 16 3 210 2 11 211 3 210 213 20

#804 64kB 4 64kB 1 96 96 32 32 8 128 1 212 1 11 210 3 213 213 16

#805 64kB 1 16kB 2 96 128 32 16 32 64 2 210 2 12 22 1 211 213 20

#806 32kB 1 32kB 2 50 128 32 32 16 16 2 214 2 11 22 3 212 213 18

#807 32kB 4 4kB 4 64 256 64 8 8 128 3 213 2 10 211 1 214 212 18

#808 64kB 2 64kB 1 96 128 64 64 16 32 1 213 3 11 210 2 214 212 16

#809 32kB 1 32kB 4 64 256 16 16 8 64 3 211 2 10 210 3 211 213 18

#810 32kB 1 32kB 1 64 128 32 8 64 32 1 211 2 10 211 3 211 210 20

#811 64kB 1 16kB 2 64 96 32 8 64 128 1 210 1 10 22 2 210 211 18

#812 64kB 2 32kB 2 50 128 32 32 16 32 2 214 1 12 210 3 214 210 16

#813 32kB 4 64kB 2 256 96 16 32 64 64 3 213 2 12 22 2 211 210 18

#814 32kB 2 32kB 2 96 128 64 64 32 16 3 212 3 11 22 3 212 213 16

#815 64kB 2 16kB 2 128 128 32 16 8 64 2 213 2 10 210 2 211 210 20

#816 32kB 2 8kB 1 50 96 64 8 16 64 1 214 3 11 22 2 214 210 20

#817 16kB 1 32kB 2 64 128 64 64 8 16 2 210 3 10 22 2 214 211 18

#818 32kB 4 64kB 2 256 256 32 16 64 40 1 213 3 11 211 2 214 212 16

#819 32kB 2 8kB 2 128 128 64 32 8 128 2 214 1 10 22 3 214 213 18

#820 32kB 1 4kB 4 50 256 64 8 32 64 2 210 1 12 210 2 214 210 20

#821 32kB 2 32kB 1 64 128 32 32 32 40 2 210 2 11 210 3 210 211 18 p. 143

#822 32kB 2 4kB 4 64 256 64 8 64 128 2 214 2 10 210 3 211 212 20

#823 16kB 2 4kB 1 64 128 32 8 64 64 1 214 1 10 210 3 211 213 20

#824 32kB 1 64kB 4 128 128 64 16 32 16 1 211 3 12 22 1 214 213 20

#825 16kB 2 64kB 4 96 96 64 64 16 32 3 212 2 10 211 2 214 210 18

#826 64kB 1 64kB 4 128 96 32 8 16 128 2 210 2 11 210 3 212 212 18

#827 32kB 1 64kB 2 50 96 64 16 32 16 2 214 2 12 211 2 211 212 18

#828 32kB 4 32kB 1 64 128 16 32 16 40 1 212 1 10 22 2 214 210 16

#829 32kB 4 64kB 4 64 96 16 16 16 16 1 213 3 12 210 3 213 210 20

#830 64kB 1 64kB 2 50 128 32 32 16 32 1 213 1 12 22 2 213 212 20

#831 32kB 1 16kB 1 256 96 32 16 64 40 1 213 1 11 22 2 210 211 18

#832 64kB 4 4kB 2 50 128 16 64 64 16 3 212 2 11 22 3 210 211 16

#833 16kB 4 64kB 4 96 96 64 8 32 40 1 210 3 12 211 2 212 211 16

#834 64kB 4 64kB 4 64 256 16 32 8 40 3 214 1 10 22 2 211 211 20

#835 64kB 1 32kB 4 50 256 32 32 32 32 3 210 1 11 211 1 211 213 18

#836 32kB 1 4kB 2 96 128 64 8 16 64 1 212 3 10 210 3 212 211 16

#837 64kB 1 8kB 4 64 96 32 64 8 64 2 210 2 11 211 3 212 211 16

Continued on next page.

192 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#838 16kB 2 64kB 2 256 128 64 64 32 64 1 214 3 12 22 1 211 213 18

#839 32kB 2 4kB 2 64 128 16 16 64 64 2 210 3 12 211 3 213 213 18

#840 64kB 2 32kB 4 128 128 64 64 32 128 1 211 2 12 211 1 211 213 16

#841 64kB 2 16kB 1 128 128 64 16 64 16 3 214 3 10 211 3 211 210 18

#842 64kB 1 32kB 2 50 256 16 8 64 64 2 211 2 10 22 1 214 213 16

#843 16kB 1 32kB 4 256 256 16 64 16 32 3 211 3 10 210 1 214 213 16

#844 64kB 4 8kB 2 96 256 32 32 32 32 1 212 3 10 211 2 213 212 20

#845 64kB 4 32kB 4 96 256 32 8 64 40 1 212 1 11 210 2 213 213 18

#846 16kB 4 16kB 2 50 96 32 8 16 40 1 211 3 12 210 1 212 210 16

#847 16kB 2 32kB 4 256 96 32 32 32 64 3 211 2 12 22 3 214 212 18

#848 32kB 4 8kB 4 96 96 32 64 16 32 2 213 3 11 210 2 210 211 20

#849 16kB 4 8kB 2 96 96 32 32 16 16 2 212 1 11 22 3 214 212 18

#850 32kB 4 32kB 2 96 256 64 64 16 16 3 210 2 12 211 1 211 210 16

#851 32kB 2 32kB 2 128 96 32 16 16 128 3 214 1 12 210 1 211 213 16

#852 32kB 4 8kB 2 128 128 32 16 16 40 1 211 3 12 210 1 211 211 16

#853 16kB 2 8kB 1 96 256 64 32 32 128 3 213 2 11 22 3 212 213 18

#854 32kB 4 64kB 4 64 128 64 8 8 64 1 211 1 12 211 3 213 211 16

#855 32kB 1 8kB 2 96 256 64 32 8 16 3 214 1 12 211 3 210 210 16

#856 64kB 4 16kB 1 128 128 64 8 16 16 2 210 2 12 211 3 214 210 16

#857 64kB 2 64kB 2 96 128 32 16 8 32 1 213 2 11 210 1 214 213 18

#858 16kB 4 64kB 4 64 256 32 64 8 40 2 214 2 12 22 3 214 211 18

#859 16kB 4 4kB 4 64 96 16 16 16 16 2 214 1 12 22 3 212 213 16

#860 16kB 4 64kB 4 128 96 32 32 64 128 1 210 1 10 211 3 213 210 18

#861 64kB 1 16kB 1 50 128 32 32 32 64 3 213 1 10 211 1 211 210 16

#862 64kB 2 16kB 1 128 96 64 16 32 40 3 210 1 12 210 3 211 212 18

#863 16kB 2 16kB 4 256 128 32 8 16 16 2 213 1 11 211 3 214 210 20

#864 64kB 4 16kB 4 96 128 16 16 16 128 2 214 1 11 22 2 213 211 18

#865 64kB 1 4kB 1 256 128 16 8 8 64 3 213 2 11 210 2 211 210 18

#866 64kB 4 16kB 4 50 256 16 32 8 16 2 211 2 11 211 1 214 212 16

#867 64kB 2 4kB 4 256 96 32 16 32 64 1 214 3 12 211 3 212 210 16

#868 64kB 4 64kB 2 96 96 32 64 64 128 3 210 2 12 22 2 214 210 20

#869 16kB 2 64kB 2 96 256 16 8 64 64 1 210 1 12 210 3 214 212 16

#870 64kB 2 64kB 2 96 96 64 64 64 64 1 210 2 10 211 2 212 211 16

#871 32kB 4 8kB 1 256 128 64 32 8 128 1 210 1 10 22 3 211 212 16

#872 64kB 1 16kB 4 96 96 64 32 8 16 3 212 2 12 22 3 214 211 18

#873 16kB 4 16kB 1 50 256 16 32 64 64 2 211 2 11 210 3 213 211 20

#874 64kB 1 32kB 4 96 96 32 16 8 128 2 210 3 12 210 1 214 213 20

#875 32kB 4 64kB 4 256 96 16 32 16 16 2 212 2 11 22 3 210 211 16

#876 16kB 2 64kB 2 256 128 16 32 64 40 1 213 1 12 211 1 213 212 18

#877 64kB 2 8kB 4 50 96 64 16 64 128 2 211 2 11 22 1 212 213 16

#878 16kB 1 16kB 2 256 128 16 32 32 40 1 211 3 12 210 1 211 210 16

#879 64kB 2 16kB 2 64 96 32 64 64 16 2 210 3 12 210 2 214 212 18

#880 32kB 2 16kB 1 96 96 64 64 64 40 1 212 2 12 210 2 210 210 20

#881 32kB 1 32kB 1 50 256 64 64 64 40 3 212 1 11 210 3 213 213 18

#882 64kB 4 4kB 1 96 96 64 32 16 16 2 212 1 10 211 3 210 211 18

#883 64kB 1 8kB 4 128 256 16 32 16 128 3 212 3 11 211 2 210 210 16

#884 32kB 1 4kB 4 256 256 16 32 32 32 3 212 2 12 211 3 211 213 18

#885 16kB 2 64kB 2 128 256 64 64 32 40 3 214 3 12 211 2 212 210 20

#886 32kB 1 4kB 4 64 96 16 32 16 40 1 214 2 12 211 2 210 211 16

#887 16kB 1 64kB 1 96 256 32 8 64 128 2 211 2 10 22 1 210 213 16

#888 32kB 4 4kB 1 128 96 64 16 8 32 1 212 3 10 22 2 213 210 18

#889 16kB 1 4kB 4 96 128 32 8 32 32 2 213 1 12 211 1 211 211 18

#890 32kB 2 8kB 1 64 256 16 64 32 32 3 212 1 11 210 3 214 210 20

#891 64kB 2 32kB 1 128 256 32 32 8 128 3 211 3 10 211 3 211 210 20

#892 32kB 2 4kB 4 256 128 32 8 16 40 1 211 2 11 211 2 213 212 16

#893 32kB 4 32kB 2 50 128 16 64 16 32 1 212 3 10 211 3 211 210 16

#894 32kB 4 4kB 1 50 256 32 32 8 40 3 212 1 11 22 2 214 211 18

#895 64kB 1 4kB 1 64 128 32 64 32 40 2 213 3 11 22 3 211 213 20

#896 32kB 2 32kB 2 128 128 32 8 64 40 1 210 2 10 22 1 213 210 16

#897 16kB 1 64kB 2 64 96 16 32 32 16 3 213 2 10 22 2 210 213 20

#898 16kB 2 4kB 2 128 96 32 64 16 128 1 213 3 12 211 1 212 212 16

#899 32kB 4 64kB 4 50 256 16 64 64 128 3 212 3 11 211 1 210 210 16

#900 16kB 1 4kB 4 50 128 64 64 8 32 1 210 3 11 211 3 211 210 20

#901 16kB 1 64kB 4 256 96 32 16 32 40 2 211 1 12 210 3 210 213 16

#902 32kB 1 8kB 2 96 96 16 32 64 16 1 212 1 12 210 1 210 212 16

#903 32kB 2 4kB 2 96 256 16 64 32 16 1 213 2 10 22 1 210 210 18

#904 32kB 2 32kB 2 96 256 16 64 32 40 3 211 2 11 211 2 211 212 18

Continued on next page.

Appendix A. Design Space 193

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#905 64kB 4 16kB 1 128 256 64 16 8 16 3 211 2 12 210 3 214 210 20

#906 32kB 1 64kB 4 96 96 16 16 64 32 1 213 2 12 22 2 210 210 18

#907 64kB 1 8kB 4 50 256 32 16 64 40 1 210 2 12 211 3 213 210 18

#908 64kB 4 16kB 1 128 128 16 8 8 40 1 210 2 11 211 2 210 213 16

#909 16kB 4 64kB 2 96 128 32 16 64 64 1 210 1 11 211 1 212 212 18

#910 32kB 1 8kB 1 256 128 64 32 16 32 1 213 3 12 210 3 213 211 16

#911 16kB 1 32kB 4 50 96 32 16 8 64 1 212 2 11 22 1 211 211 18

#912 64kB 2 16kB 4 96 128 32 8 64 128 2 211 3 10 210 2 210 211 20

#913 32kB 2 8kB 1 64 128 16 64 32 128 2 210 2 10 211 1 213 211 18

#914 64kB 1 16kB 2 96 96 32 16 8 16 3 214 2 10 211 2 212 211 20

#915 16kB 4 32kB 4 50 96 64 8 16 64 3 213 2 10 211 3 210 210 16

#916 16kB 4 64kB 4 96 128 16 64 16 40 3 214 2 10 211 3 212 212 16

#917 64kB 1 4kB 2 96 96 64 16 64 64 1 213 1 12 22 2 210 210 18

#918 16kB 2 16kB 1 50 256 32 32 16 128 2 214 3 11 22 2 212 212 20

#919 32kB 2 8kB 4 64 256 32 16 8 16 1 211 1 11 211 3 210 210 18

#920 16kB 4 8kB 1 256 128 16 16 16 128 1 214 3 12 22 2 214 213 18

#921 16kB 1 32kB 2 50 128 16 8 64 64 1 210 1 10 22 1 213 213 18

#922 64kB 1 64kB 2 96 128 64 64 64 64 2 211 1 11 22 3 211 212 18

#923 16kB 1 64kB 4 96 256 32 8 8 128 2 212 1 12 22 2 212 210 20

#924 64kB 4 64kB 4 50 96 64 64 8 32 1 214 2 11 211 2 210 210 16

#925 32kB 1 4kB 4 50 96 16 16 16 64 2 211 1 11 210 3 214 213 20

#926 16kB 4 4kB 4 64 96 64 16 32 128 1 212 1 10 210 2 214 212 18

#927 16kB 4 16kB 1 50 256 32 16 8 128 1 214 3 10 211 1 213 212 18

#928 16kB 1 4kB 1 256 256 64 8 8 32 3 212 1 10 211 3 210 213 16

#929 16kB 1 64kB 1 50 96 64 16 64 128 1 214 3 12 22 3 214 210 18

#930 16kB 2 64kB 2 128 128 64 16 16 128 2 214 3 12 22 3 213 211 18

#931 64kB 4 16kB 1 64 128 32 8 32 32 2 212 2 10 22 2 210 213 18

#932 16kB 1 32kB 2 256 256 64 8 8 32 3 214 2 11 22 3 212 211 18

#933 16kB 2 4kB 2 96 96 16 32 8 32 1 214 3 10 210 1 213 211 18

#934 64kB 4 16kB 4 256 96 32 64 64 40 3 212 1 12 22 1 212 212 16

#935 32kB 1 32kB 1 50 96 32 32 32 40 3 210 3 12 22 2 213 211 18

#936 64kB 4 32kB 4 50 256 32 16 32 32 2 212 1 11 211 2 210 210 20

#937 32kB 4 8kB 1 50 256 64 16 16 40 2 211 3 12 211 1 212 210 20

#938 16kB 2 32kB 4 256 256 32 16 16 64 2 211 3 11 211 1 214 210 16

#939 32kB 4 8kB 1 128 128 16 16 64 64 3 211 2 12 22 2 212 210 18

#940 32kB 4 32kB 4 256 128 64 16 32 64 3 210 2 12 22 1 214 212 20

#941 64kB 1 8kB 1 50 128 32 64 8 16 2 211 1 10 210 2 210 213 16

#942 64kB 1 64kB 4 50 96 16 64 8 32 3 214 1 11 22 1 214 212 18

#943 32kB 2 4kB 1 96 128 32 64 32 64 2 212 1 12 210 2 211 213 16

#944 64kB 1 16kB 4 256 96 32 16 8 128 1 213 2 10 210 2 211 212 20

#945 32kB 1 32kB 1 256 256 16 16 64 40 3 214 1 10 211 1 213 213 18

#946 16kB 2 4kB 2 128 128 64 64 8 64 1 210 2 12 211 1 211 213 16

#947 32kB 4 32kB 4 256 256 64 64 8 40 3 213 2 10 211 3 213 210 18

#948 64kB 4 32kB 2 50 128 64 64 32 16 1 213 2 11 210 2 213 210 20

#949 64kB 1 8kB 4 96 128 64 8 32 64 3 212 1 11 211 1 210 212 16

#950 32kB 2 16kB 2 50 96 16 16 32 16 2 210 1 12 22 1 210 213 18

#951 16kB 1 8kB 1 256 256 16 8 8 16 1 210 1 10 210 1 211 213 20

#952 32kB 4 64kB 2 64 96 16 32 8 64 2 214 1 11 22 3 213 213 16

#953 16kB 2 8kB 4 50 128 64 16 16 16 2 212 2 10 210 2 214 210 18

#954 32kB 4 64kB 2 128 96 64 8 32 32 1 212 3 11 210 2 213 213 16

#955 32kB 4 64kB 1 64 96 16 32 64 128 3 210 1 12 22 2 210 210 16

#956 16kB 1 8kB 4 96 256 32 64 32 16 3 210 2 12 22 1 211 212 20

#957 16kB 2 32kB 2 256 96 16 8 64 32 1 214 2 10 22 3 214 211 18

#958 64kB 4 16kB 1 256 128 64 32 8 128 3 213 2 10 22 3 213 213 20

#959 16kB 2 16kB 2 64 128 64 32 16 128 1 212 1 11 211 3 212 213 18

#960 32kB 2 8kB 1 256 256 64 8 16 32 2 212 3 10 22 3 210 213 18

#961 32kB 4 16kB 4 256 128 32 8 16 16 2 213 1 10 22 3 210 210 18

#962 64kB 4 4kB 4 96 128 64 16 32 40 2 211 3 11 210 3 213 213 18

#963 16kB 2 16kB 4 128 96 64 32 16 40 2 212 2 12 22 2 214 213 18 p. 98

#964 16kB 1 32kB 1 64 256 16 8 64 16 1 213 3 11 22 3 213 210 18

#965 16kB 2 16kB 1 128 128 16 32 64 128 3 213 2 11 211 1 211 213 20

#966 64kB 2 8kB 1 50 256 64 64 64 32 1 212 1 12 211 1 211 210 16

#967 16kB 2 32kB 4 64 96 64 8 8 64 3 210 2 11 22 1 214 212 20

#968 32kB 4 32kB 2 256 96 32 32 32 64 2 214 3 10 210 1 211 212 20

#969 64kB 4 32kB 1 128 128 32 64 64 128 2 214 2 12 210 1 211 213 16 p. 142

#970 16kB 1 8kB 2 128 96 16 16 32 128 1 214 3 10 211 1 210 212 20

#971 16kB 2 8kB 1 50 256 32 64 64 64 1 212 3 11 22 3 210 212 16

Continued on next page.

194 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#972 64kB 4 32kB 2 256 96 64 64 8 16 1 210 2 12 211 3 210 211 16

#973 32kB 1 8kB 4 256 256 32 16 8 32 2 214 1 10 210 3 210 212 18

#974 32kB 1 32kB 4 128 256 64 64 64 32 1 214 2 12 22 1 214 212 20

#975 16kB 2 16kB 4 256 256 64 16 32 32 2 213 1 11 210 1 212 211 16

#976 32kB 4 32kB 2 96 256 32 32 8 40 2 213 1 11 211 1 214 212 18

#977 64kB 4 32kB 2 64 256 32 8 32 40 1 212 2 10 211 1 212 212 16

#978 32kB 1 8kB 1 50 128 32 16 64 40 3 211 3 10 210 1 214 212 16

#979 64kB 2 4kB 2 256 128 64 16 64 64 2 214 2 10 211 1 213 213 20

#980 16kB 2 4kB 1 96 256 32 16 64 40 2 213 2 11 210 2 213 212 16

#981 16kB 2 32kB 2 128 128 32 64 8 40 3 214 2 11 22 1 213 211 16

#982 64kB 1 8kB 1 64 96 32 8 16 40 2 213 3 10 22 1 210 212 16

#983 16kB 4 8kB 4 128 128 32 32 16 40 2 212 3 10 210 1 214 213 16

#984 64kB 2 32kB 1 256 256 16 8 32 40 3 210 2 10 210 1 211 211 16

#985 64kB 1 64kB 4 128 256 32 8 8 64 3 210 3 11 22 2 211 210 18

#986 16kB 1 8kB 2 128 96 64 32 16 64 2 213 2 10 211 2 211 212 20

#987 16kB 4 4kB 2 256 128 64 8 16 32 3 214 1 10 22 3 212 211 16

#988 16kB 2 4kB 4 50 128 16 8 8 40 1 210 3 12 22 2 210 211 18 p. 161

#989 32kB 4 32kB 1 128 128 64 32 16 64 3 211 2 12 210 2 213 211 20

#990 16kB 1 16kB 1 96 128 16 8 8 16 1 214 2 11 211 3 211 210 16

#991 64kB 4 4kB 4 96 256 16 32 8 40 3 211 3 10 210 2 213 211 20

#992 32kB 4 64kB 1 256 96 64 64 16 128 2 214 3 12 211 1 210 213 20

#993 16kB 1 64kB 1 96 256 16 8 16 64 1 210 3 11 22 3 212 211 18

#994 64kB 2 64kB 4 256 96 64 8 16 32 2 213 2 12 22 1 212 211 18

#995 16kB 4 4kB 2 64 128 64 8 32 16 3 210 2 12 22 1 214 213 16

#996 32kB 2 16kB 1 64 256 64 16 8 32 2 212 3 10 210 3 212 212 18

#997 16kB 2 16kB 4 64 96 64 16 8 40 2 213 1 10 211 3 210 211 16

#998 32kB 2 4kB 1 96 128 32 16 8 64 3 212 1 11 22 3 212 212 20

#999 16kB 2 32kB 1 50 96 64 8 32 32 3 211 2 10 210 3 214 212 18

#1000 32kB 1 8kB 1 256 128 32 64 32 40 2 214 1 11 22 1 212 212 18

#1001 32kB 1 32kB 1 50 128 16 32 64 32 2 212 1 11 211 2 212 212 20

#1002 16kB 1 16kB 1 50 128 32 16 16 128 3 212 1 12 22 2 214 210 16

#1003 16kB 1 32kB 2 64 96 64 16 8 40 1 214 1 10 211 1 213 211 18

#1004 64kB 2 8kB 4 96 256 32 32 32 40 1 212 1 10 210 2 214 212 18

#1005 16kB 2 64kB 4 128 96 64 16 32 40 2 210 3 10 22 1 213 212 16

#1006 16kB 2 16kB 1 128 256 64 64 16 32 3 212 1 10 211 1 210 212 16

#1007 32kB 4 32kB 4 64 128 32 16 8 40 1 211 1 10 22 3 210 213 16

#1008 16kB 1 4kB 1 256 96 32 32 16 32 3 212 1 12 210 2 213 210 18

#1009 64kB 2 8kB 2 50 96 16 32 8 128 1 210 1 10 22 3 212 210 18

#1010 32kB 2 16kB 1 128 256 16 8 32 64 1 214 3 11 211 3 210 211 20

#1011 16kB 4 16kB 2 50 256 64 8 32 32 1 213 2 10 211 2 213 212 16

#1012 16kB 1 16kB 1 96 256 64 16 64 64 1 211 1 12 211 2 213 211 16

#1013 32kB 2 8kB 2 64 128 16 8 8 32 1 211 2 12 211 3 211 213 20

#1014 16kB 2 64kB 1 256 128 32 16 64 32 1 210 2 10 210 1 211 212 18

#1015 64kB 2 32kB 1 128 128 16 16 64 128 2 214 1 10 22 3 212 211 16

#1016 64kB 2 64kB 4 96 96 16 32 8 16 3 214 3 12 22 3 212 211 16

#1017 16kB 2 16kB 1 96 128 16 32 8 40 3 213 3 12 22 1 210 211 16

#1018 32kB 4 16kB 2 64 256 64 8 8 128 3 211 2 12 22 3 213 210 20

#1019 32kB 1 4kB 4 128 256 32 64 64 64 1 212 3 12 210 3 212 210 20

#1020 16kB 4 16kB 4 50 256 16 16 32 128 1 210 1 12 22 3 210 211 16

#1021 16kB 1 4kB 2 128 128 32 32 8 128 1 210 1 10 210 1 214 213 18

#1022 32kB 1 8kB 1 64 128 16 64 64 64 1 210 3 10 22 1 210 212 18

#1023 64kB 2 32kB 4 64 128 32 64 8 64 1 210 2 10 22 2 213 211 20

#210 32kB 1 32kB 4 50 96 32 16 32 32 2 212 3 10 211 3 214 211 16

#1025 16kB 4 32kB 4 50 96 16 16 64 64 3 210 2 10 211 3 212 212 18

#1026 32kB 2 32kB 4 256 256 64 32 8 16 3 213 2 12 210 3 213 210 18

#1027 64kB 4 32kB 4 128 96 64 16 16 16 3 213 3 10 22 3 214 210 18

#1028 16kB 4 16kB 4 256 128 32 64 64 16 1 212 3 10 22 2 213 212 16

#1029 32kB 4 4kB 4 64 256 64 64 32 32 3 213 1 11 22 1 213 210 16

#1030 16kB 1 8kB 2 96 128 16 32 16 128 1 212 1 12 211 2 213 211 18 p. 110

#1031 32kB 4 8kB 1 256 128 32 16 32 128 3 214 3 12 210 2 210 213 20

#1032 16kB 1 4kB 1 64 256 32 8 32 128 1 212 2 11 211 2 214 210 18

#1033 64kB 2 32kB 4 96 128 64 32 8 64 2 213 1 11 22 2 210 211 18

#1034 16kB 1 64kB 1 50 96 64 32 32 40 3 210 2 12 211 2 214 211 18

#1035 64kB 2 32kB 4 256 256 16 16 8 64 3 214 1 10 210 1 213 210 20

#1036 32kB 2 8kB 4 256 256 64 64 64 128 3 213 3 10 22 3 212 210 18

#1037 64kB 1 8kB 2 96 256 32 16 8 32 1 210 3 11 22 2 214 213 16

#1038 16kB 2 32kB 2 256 256 16 64 16 40 1 211 2 12 211 1 214 212 20

Continued on next page.

Appendix A. Design Space 195

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1039 32kB 2 16kB 1 64 128 64 16 16 32 1 214 2 12 210 3 212 212 20

#1040 64kB 1 64kB 4 64 256 32 16 32 32 3 212 2 10 211 2 213 210 20

#1041 16kB 4 16kB 1 50 256 32 8 16 32 2 211 3 10 211 2 214 211 18

#1042 16kB 2 8kB 1 64 96 64 16 64 40 2 211 2 11 22 3 213 212 20

#1043 32kB 1 4kB 4 64 256 32 32 16 32 3 213 2 10 210 2 212 210 18

#1044 32kB 1 8kB 1 128 96 64 8 32 32 3 213 1 10 22 1 211 213 16

#1045 32kB 4 4kB 2 128 96 64 64 16 128 3 214 2 12 211 3 212 210 18

#1046 64kB 2 32kB 4 96 96 32 64 8 32 2 210 2 12 211 2 210 212 16

#1047 16kB 4 64kB 4 64 96 32 64 16 64 2 214 2 11 210 2 213 212 16

#1048 32kB 1 64kB 1 128 128 32 16 32 16 1 210 3 12 22 2 213 213 18

#1049 16kB 1 4kB 1 256 128 32 64 64 40 3 213 3 11 210 2 214 212 16

#1050 32kB 1 4kB 4 50 256 32 64 64 40 2 210 2 10 210 3 214 212 16

#1051 16kB 4 32kB 1 64 96 64 8 32 64 1 210 2 11 22 1 210 210 18

#1052 32kB 4 64kB 2 256 96 16 16 16 128 2 214 3 10 211 2 214 210 18

#1053 32kB 4 32kB 2 50 128 16 32 64 16 1 211 1 10 22 2 211 210 20

#1054 32kB 2 16kB 2 96 256 32 64 32 16 1 213 2 11 210 3 210 212 18

#1055 32kB 2 4kB 2 128 256 32 64 32 40 1 210 2 11 211 2 214 210 16

#1056 16kB 2 8kB 1 64 256 16 32 16 16 3 214 1 11 210 2 212 210 20 p. 143

#1057 64kB 1 16kB 1 64 128 64 8 32 128 3 213 3 12 211 3 214 212 18

#1058 32kB 1 32kB 4 50 128 64 16 16 64 1 212 1 11 210 3 213 211 16

#1059 16kB 1 16kB 4 128 256 16 16 64 128 3 214 3 10 211 2 213 210 18

#1060 16kB 4 4kB 4 96 256 64 16 32 128 2 212 3 11 22 1 210 210 18

#1061 16kB 4 4kB 2 256 128 16 64 8 16 3 213 1 10 210 1 213 211 20

#1062 32kB 1 16kB 1 64 96 16 64 64 64 3 210 2 12 22 1 214 210 20

#1063 16kB 1 32kB 1 64 128 32 32 32 128 2 212 2 11 210 2 213 213 18

#1064 64kB 4 64kB 4 128 96 32 64 8 128 1 212 2 10 22 2 213 211 20

#1065 32kB 2 4kB 4 128 128 64 8 64 16 2 213 2 11 22 2 210 213 18 p. 79

#1066 64kB 2 4kB 4 64 128 32 64 8 128 1 210 2 10 210 2 211 210 16

#1067 64kB 2 8kB 4 64 96 64 16 32 64 1 211 2 10 211 3 210 213 20

#1068 16kB 2 64kB 2 128 256 32 16 64 40 1 214 1 10 210 1 214 211 20

#1069 32kB 4 8kB 1 128 128 64 32 16 32 2 210 2 10 210 3 211 210 16

#1070 64kB 2 64kB 4 50 128 16 16 32 16 3 212 2 11 210 3 212 213 20

#1071 64kB 2 8kB 2 256 96 32 16 32 40 3 210 2 10 210 3 210 210 16

#1072 16kB 2 32kB 2 128 96 64 16 64 64 1 211 3 10 22 2 212 213 16

#1073 16kB 2 16kB 2 50 256 64 16 64 64 3 211 2 11 22 2 214 212 20

#1074 16kB 4 4kB 4 50 96 64 16 8 64 1 212 1 10 211 3 210 211 20

#1075 16kB 2 64kB 2 256 96 16 16 16 64 1 214 2 12 211 2 210 211 18

#1076 64kB 1 16kB 4 128 96 64 64 8 64 3 212 2 10 210 1 212 210 16

#1077 32kB 4 64kB 2 64 96 16 64 64 16 3 211 1 11 211 1 214 212 18

#1078 64kB 4 32kB 2 128 128 32 16 16 64 1 214 1 12 22 2 210 212 18

#1079 64kB 2 16kB 2 256 256 64 32 64 16 3 213 2 11 22 1 211 212 16

#1080 64kB 4 32kB 1 96 256 64 16 64 40 3 213 2 12 22 2 210 213 20

#1081 32kB 2 4kB 4 128 256 16 32 8 40 3 212 1 12 22 1 211 212 16

#1082 32kB 1 8kB 1 256 128 32 64 32 64 2 210 3 10 22 1 214 210 20

#1083 16kB 4 8kB 4 256 128 16 64 16 32 3 210 1 12 210 1 213 211 18

#1084 32kB 4 8kB 1 96 96 64 32 64 128 3 212 1 11 211 2 211 210 18

#1085 32kB 1 8kB 2 96 256 32 64 16 64 1 210 3 10 211 2 211 213 20

#1086 32kB 4 8kB 2 50 256 16 64 64 128 2 212 3 12 22 1 214 211 16

#1087 16kB 2 32kB 4 128 128 16 64 8 64 2 213 1 10 22 3 210 213 20

#1088 32kB 2 32kB 4 128 128 64 8 32 16 3 213 3 10 210 2 212 211 18

#1089 32kB 1 4kB 4 256 128 64 64 64 32 1 212 1 10 210 3 210 213 20

#1090 64kB 2 16kB 4 96 128 16 16 16 40 3 213 3 10 22 1 214 212 20

#1091 32kB 4 64kB 1 96 256 16 16 64 16 3 211 3 12 210 3 214 213 16

#1092 64kB 4 32kB 1 256 128 32 16 32 64 1 211 1 12 22 2 214 210 18

#1093 32kB 2 4kB 1 128 96 64 8 16 16 1 213 3 10 211 3 214 211 16

#1094 32kB 2 32kB 4 64 128 16 64 32 16 1 213 3 10 210 1 212 212 16

#1095 16kB 4 16kB 2 128 256 32 16 8 32 1 210 1 12 211 1 213 212 16

#1096 16kB 4 32kB 4 96 96 32 64 64 16 1 212 3 12 211 1 210 210 18

#1097 16kB 1 4kB 2 128 256 16 8 64 32 1 213 3 10 211 1 213 213 18

#1098 32kB 4 8kB 4 96 128 64 16 8 128 2 214 1 11 211 3 213 213 20

#1099 64kB 2 32kB 4 64 128 64 8 8 128 3 213 1 11 211 3 211 212 16

#1100 64kB 4 32kB 2 64 128 64 16 64 128 1 213 3 11 210 1 213 212 16

#1101 64kB 1 16kB 1 128 96 32 8 16 64 3 212 1 10 211 2 212 213 18

#1102 32kB 4 16kB 2 256 256 64 16 8 16 2 214 1 12 22 1 213 213 20

#1103 64kB 1 64kB 1 96 128 32 16 8 64 3 210 1 12 211 3 213 212 20

#1104 64kB 2 4kB 1 128 96 16 16 32 16 1 212 3 11 211 1 213 211 16

#1105 32kB 2 8kB 1 96 256 32 64 8 32 3 212 1 12 210 2 212 213 20

Continued on next page.

196 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1106 32kB 1 4kB 4 50 256 32 64 32 16 1 211 1 12 211 3 213 213 18

#1107 16kB 1 8kB 2 256 96 64 64 64 16 2 210 2 10 210 3 210 211 16

#1108 64kB 2 32kB 1 64 128 32 64 64 128 1 214 3 10 210 2 213 212 18

#1109 32kB 4 32kB 4 256 128 16 32 32 64 3 213 2 10 211 1 212 213 20

#1110 16kB 2 16kB 1 96 96 64 8 8 128 1 214 1 11 22 2 214 212 18

#1111 16kB 1 32kB 2 256 96 32 8 16 128 2 211 3 11 22 3 211 212 18

#1112 64kB 2 4kB 1 256 96 16 32 64 64 3 212 3 11 211 1 212 212 20

#1113 64kB 1 16kB 1 256 96 32 32 64 64 3 214 2 10 210 2 212 211 18

#1114 64kB 4 4kB 4 64 96 64 16 16 32 3 213 2 10 22 3 211 213 18

#1115 64kB 4 8kB 1 50 256 64 8 32 32 2 213 2 10 211 2 214 210 20

#1116 32kB 4 4kB 2 50 96 16 8 16 128 3 211 2 11 210 2 214 211 16

#1117 32kB 1 64kB 4 96 96 64 64 32 128 3 212 3 11 210 1 210 212 16

#1118 64kB 1 4kB 1 50 96 32 16 16 32 3 211 3 11 210 1 213 213 20

#1119 32kB 1 32kB 4 96 256 32 8 16 40 2 211 2 10 210 3 211 213 16

#1120 16kB 1 32kB 1 64 96 16 64 32 16 1 211 2 12 211 1 213 213 16

#1121 64kB 2 32kB 1 256 256 64 64 8 32 1 212 2 11 211 1 210 211 16

#1122 16kB 2 8kB 1 256 128 64 64 32 32 3 213 1 10 210 1 210 213 20

#1123 32kB 2 32kB 2 128 96 32 8 32 40 3 211 2 12 210 2 213 212 18

#1124 16kB 4 64kB 4 64 128 32 8 8 16 1 210 3 11 22 3 211 211 18

#1125 16kB 4 8kB 2 256 128 32 8 64 64 3 212 3 12 210 3 210 211 18

#1126 16kB 4 4kB 1 50 96 64 64 64 64 1 212 2 12 211 2 211 210 18

#1127 16kB 4 64kB 2 96 256 64 8 32 40 1 212 2 10 22 2 211 211 18

#1128 64kB 4 8kB 2 64 96 16 8 64 16 1 213 2 12 211 2 212 212 18

#1129 32kB 2 32kB 2 128 256 32 8 8 40 2 212 3 11 22 1 211 210 20

#1130 32kB 1 8kB 4 256 256 32 64 16 128 1 213 1 12 210 1 211 211 16

#1131 64kB 1 64kB 2 128 256 32 32 64 40 2 212 1 11 210 1 212 210 18

#1132 16kB 2 64kB 2 96 128 32 16 32 64 3 211 3 12 22 2 210 210 18

#1133 16kB 1 32kB 1 256 256 16 16 64 64 1 211 1 12 211 1 210 213 16

#1134 64kB 1 8kB 1 256 128 32 8 32 16 1 210 1 11 22 3 211 212 18

#1135 16kB 1 32kB 1 64 256 32 64 64 32 2 210 1 11 22 1 210 210 18

#1136 64kB 2 8kB 1 96 128 16 32 16 40 1 212 2 11 210 3 211 212 18

#1137 64kB 4 8kB 1 96 128 16 32 32 32 1 210 3 11 210 3 213 213 16

#1138 16kB 2 32kB 1 50 96 16 64 8 64 3 214 2 12 211 3 214 212 18

#1139 32kB 4 16kB 2 96 128 32 32 8 64 2 213 2 10 211 1 214 210 18

#1140 64kB 4 64kB 4 64 128 16 16 16 128 3 213 1 11 210 2 212 212 20

#1141 32kB 2 4kB 1 96 96 64 64 8 64 1 212 3 11 210 1 211 211 16

#1142 32kB 4 16kB 1 128 96 64 8 8 40 1 212 1 11 210 1 211 210 20

#1143 32kB 1 64kB 2 128 256 32 16 32 64 3 212 1 11 211 2 211 210 18

#1144 16kB 1 8kB 2 96 128 64 64 8 32 2 210 3 12 22 1 214 212 20

#1145 32kB 1 4kB 1 64 96 64 64 64 64 2 214 2 11 211 2 214 212 18

#1146 16kB 4 16kB 1 128 128 16 64 16 16 1 213 2 11 211 1 213 211 16

#1147 64kB 4 16kB 1 96 128 16 16 64 128 2 213 1 12 210 2 213 211 18

#1148 16kB 4 32kB 4 256 256 64 16 64 32 2 214 2 10 211 3 213 210 16

#1149 16kB 4 64kB 2 96 128 64 32 16 64 1 214 3 11 22 1 210 213 18

#1150 16kB 4 4kB 2 256 128 32 32 8 40 3 212 3 10 210 1 210 210 16

#1151 64kB 4 32kB 4 64 128 16 16 32 128 2 210 3 11 22 1 210 210 20

#1152 32kB 4 8kB 2 256 256 32 16 64 64 1 211 3 12 211 1 213 211 20

#1153 16kB 4 8kB 4 64 96 64 8 64 128 3 212 1 10 211 2 214 213 18

#1154 32kB 1 8kB 4 50 96 32 32 64 64 1 212 3 10 210 2 212 210 20

#1155 16kB 2 4kB 4 64 256 16 64 32 32 2 210 3 11 22 1 213 212 16

#1156 32kB 4 4kB 1 50 128 64 64 32 40 1 210 2 10 210 2 213 212 18

#1157 32kB 4 8kB 2 256 96 64 8 64 128 2 211 2 10 211 1 211 211 20

#1158 16kB 1 32kB 1 64 96 16 64 64 64 2 212 3 12 210 3 212 213 18

#1159 16kB 2 8kB 4 64 256 32 16 16 40 2 214 2 10 211 1 213 210 18

#1160 32kB 2 8kB 4 128 256 64 8 64 16 1 214 3 12 211 2 214 212 16

#1161 32kB 4 8kB 4 128 96 16 64 32 16 3 210 3 12 210 3 213 211 20

#1162 64kB 4 8kB 4 50 256 32 8 64 16 2 213 1 12 22 3 213 212 18

#1163 32kB 1 8kB 1 64 96 32 8 64 40 1 211 1 12 211 2 213 212 16

#1164 16kB 4 8kB 1 96 128 32 32 32 16 2 212 1 10 22 1 213 211 16

#1165 16kB 4 4kB 1 256 128 64 64 64 128 1 210 2 10 210 2 214 210 16 p. 142

#1166 32kB 1 16kB 4 64 96 32 8 16 16 3 210 3 11 211 2 212 210 16

#1167 64kB 4 4kB 4 50 128 32 16 64 128 1 210 1 11 211 1 211 212 16

#1168 16kB 4 64kB 1 128 256 32 32 16 64 1 212 3 11 211 1 211 212 18

#1169 64kB 4 32kB 4 50 256 64 32 64 128 2 213 1 10 210 1 214 212 20

#1170 32kB 1 8kB 2 64 96 64 32 32 32 3 210 1 11 22 2 212 210 16

#1171 16kB 4 8kB 4 64 128 16 64 64 40 3 211 2 12 22 3 214 213 20

#1172 16kB 4 8kB 4 64 128 16 32 64 32 3 210 1 11 22 3 213 211 18

Continued on next page.

Appendix A. Design Space 197

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1173 64kB 1 8kB 1 96 256 32 32 16 32 2 210 1 11 22 1 211 212 16

#1174 64kB 2 64kB 2 50 96 64 32 8 64 1 213 3 12 22 3 211 211 18

#1175 64kB 2 64kB 2 50 96 16 32 16 64 3 213 3 10 211 2 214 211 16

#1176 16kB 4 4kB 4 50 128 32 16 32 32 2 211 3 10 211 2 212 213 16

#1177 64kB 4 4kB 1 256 128 32 8 16 32 3 214 1 12 210 1 214 212 20

#1178 32kB 2 16kB 1 96 256 64 64 32 32 2 213 2 10 22 1 211 210 18

#1179 64kB 4 16kB 1 128 256 16 32 64 40 3 211 1 12 210 2 211 210 20

#1180 16kB 4 16kB 4 128 96 32 32 8 16 1 211 3 10 210 2 214 213 18

#1181 32kB 1 4kB 1 64 128 16 16 8 40 1 211 3 10 211 2 212 211 18 p. 142

#1182 64kB 1 16kB 4 50 256 64 32 16 32 3 212 2 11 210 1 210 213 20

#1183 16kB 4 32kB 2 128 256 64 16 16 40 3 213 1 11 22 1 213 213 20

#1184 64kB 4 8kB 1 64 96 16 32 16 32 3 212 2 12 210 3 210 213 16

#1185 64kB 2 4kB 4 96 128 16 32 64 16 2 213 1 10 211 3 211 212 18

#1186 64kB 2 32kB 4 96 96 16 16 32 40 3 213 1 12 22 1 210 210 18

#1187 32kB 1 8kB 4 128 128 16 32 32 128 1 212 2 12 22 1 214 213 20

#1188 16kB 2 16kB 4 96 96 16 64 64 64 3 210 3 10 211 3 212 213 16 p. 81

#1189 32kB 2 16kB 1 128 256 64 64 64 40 1 213 1 12 211 1 210 213 20

#1190 16kB 4 16kB 1 256 256 16 64 16 32 1 213 2 12 210 2 214 210 20

#1191 32kB 4 4kB 1 256 96 32 32 16 16 1 211 2 12 22 1 214 211 18

#1192 16kB 2 32kB 2 64 256 16 64 32 128 1 211 2 10 22 2 210 211 16

#1193 16kB 4 32kB 4 96 96 16 64 64 40 2 210 3 10 211 3 211 210 16

#1194 32kB 1 64kB 1 64 96 16 8 8 16 3 213 2 12 211 3 210 210 16

#1195 64kB 1 8kB 4 256 96 16 8 8 40 2 212 3 12 211 3 212 210 16

#1196 64kB 2 4kB 1 50 256 32 8 16 64 3 212 3 10 22 2 210 211 16

#1197 16kB 2 32kB 4 128 128 64 8 16 64 2 213 2 10 211 2 211 213 18

#1198 16kB 1 16kB 2 256 256 16 8 32 40 3 210 1 12 211 3 212 213 18

#1199 32kB 4 8kB 1 128 256 32 16 16 32 3 212 1 11 211 1 211 213 16

#1200 16kB 4 16kB 4 64 256 32 8 8 16 1 214 1 11 210 2 210 213 18

#1201 16kB 1 4kB 1 96 128 64 16 64 64 2 213 2 12 210 3 211 210 18

#1202 32kB 4 64kB 2 96 256 16 16 64 128 2 212 1 10 22 2 212 212 18

#1203 16kB 2 8kB 1 96 256 16 32 8 64 2 214 3 10 210 3 210 213 18

#1204 32kB 1 4kB 1 256 96 32 64 32 128 1 211 2 11 211 3 211 212 20

#1205 64kB 4 8kB 2 50 96 32 32 16 128 3 212 2 11 22 1 213 210 18

#1206 64kB 2 4kB 4 256 128 32 64 32 128 2 210 3 10 22 2 214 213 20

#1207 64kB 4 8kB 1 50 128 16 8 32 16 3 214 1 11 211 1 211 212 18

#1208 32kB 1 8kB 4 128 96 64 8 32 64 3 211 1 10 210 1 213 212 18

#1209 16kB 2 32kB 2 96 128 32 8 8 128 2 211 3 11 211 1 213 212 18

#1210 64kB 1 8kB 4 96 128 32 64 8 32 1 211 2 12 210 1 212 211 20

#1211 32kB 4 32kB 2 64 128 64 16 64 16 1 210 3 12 210 3 210 212 20

#1212 16kB 4 8kB 2 128 96 64 8 8 128 1 211 1 11 210 3 214 213 18

#1213 32kB 4 16kB 2 96 256 32 64 16 40 3 214 1 11 210 1 212 212 16

#1214 32kB 4 16kB 1 64 96 32 16 32 64 2 213 3 11 211 1 214 211 16

#1215 64kB 2 4kB 2 50 128 16 16 16 32 1 211 2 12 210 2 212 211 20

#1216 64kB 4 64kB 2 128 256 64 32 32 16 1 214 2 11 22 2 210 211 18

#1217 16kB 2 32kB 2 64 256 32 16 32 40 1 212 3 11 211 2 214 210 18

#1218 16kB 4 8kB 2 50 128 16 16 64 16 2 214 2 11 210 1 210 213 18

#1219 64kB 1 16kB 2 256 96 32 16 16 16 3 211 2 10 22 2 214 212 18

#1220 64kB 4 64kB 1 50 128 32 32 32 16 1 211 2 12 22 1 211 211 16

#1221 16kB 1 4kB 4 128 128 16 16 8 128 1 212 1 12 211 2 213 212 16

#1222 32kB 4 8kB 1 96 256 64 32 8 40 1 211 1 12 211 2 214 211 20

#1223 32kB 1 32kB 1 96 256 16 64 8 128 1 211 2 12 211 2 212 210 16

#1224 64kB 1 32kB 1 50 256 16 32 64 32 2 211 3 12 210 3 214 210 16

#1225 32kB 2 64kB 1 256 128 32 8 16 32 3 211 3 11 210 2 213 212 16

#1226 32kB 2 4kB 4 128 256 32 16 8 64 3 211 3 12 211 3 211 210 16

#1227 64kB 1 4kB 2 256 96 16 8 64 32 3 214 2 12 22 2 211 211 16

#1228 64kB 1 32kB 4 50 96 32 64 32 64 3 212 3 12 211 1 214 212 20

#1229 16kB 1 64kB 1 128 128 16 32 64 32 1 213 3 11 22 2 213 210 18

#1230 32kB 1 16kB 2 64 256 16 64 16 128 2 211 2 12 211 1 210 210 20

#1231 32kB 4 4kB 1 128 128 64 32 16 64 1 213 1 11 211 2 211 211 18

#1232 32kB 2 32kB 4 50 96 64 32 16 32 1 210 1 10 210 2 212 210 16

#1233 64kB 1 4kB 1 128 128 16 32 32 64 2 212 1 12 211 1 212 210 16

#1234 16kB 4 16kB 2 50 256 16 32 32 32 3 214 2 10 22 2 210 212 18

#1235 16kB 2 4kB 2 50 128 16 32 8 128 2 210 1 12 22 1 214 211 16

#1236 16kB 4 32kB 4 64 256 32 64 32 32 1 210 3 12 211 1 214 212 20

#1237 32kB 2 64kB 4 128 128 64 16 64 16 2 210 2 12 22 3 212 210 20

#1238 16kB 1 32kB 2 64 128 64 32 32 16 2 210 2 11 211 3 213 210 16

#1239 16kB 4 16kB 2 256 128 32 64 8 40 2 211 2 11 211 2 212 211 18

Continued on next page.

198 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1240 64kB 1 32kB 1 50 256 64 8 64 64 2 212 3 11 22 3 214 211 16

#1241 32kB 2 16kB 1 256 256 32 32 64 40 3 214 3 12 210 2 213 211 16

#1242 64kB 4 64kB 4 128 256 64 64 8 64 3 212 2 10 22 1 213 211 18

#1243 32kB 4 32kB 1 128 128 16 64 64 40 1 212 2 12 22 1 214 212 18

#1244 16kB 1 8kB 1 128 256 64 8 64 32 2 210 2 10 210 2 213 213 18

#1245 16kB 4 64kB 4 50 256 64 64 16 40 2 212 1 11 211 3 211 211 20

#1246 64kB 4 32kB 1 96 256 16 64 16 40 3 210 2 10 22 1 213 213 18

#1247 32kB 4 8kB 1 128 256 32 16 32 32 2 211 3 10 210 3 210 212 16

#1248 16kB 2 8kB 4 256 256 32 64 32 16 3 212 1 11 211 3 214 211 20

#1249 32kB 1 16kB 2 96 128 16 8 16 32 3 213 2 11 22 2 212 212 18

#1250 32kB 1 64kB 1 50 256 64 32 32 40 2 210 3 10 210 1 212 210 18

#1251 64kB 1 4kB 4 128 96 64 64 64 128 2 210 3 10 211 1 210 212 16

#1252 16kB 1 8kB 1 128 128 64 64 8 40 2 212 1 11 22 1 212 213 18

#1253 32kB 2 4kB 1 256 256 64 16 16 16 3 211 2 12 211 2 214 211 18

#1254 64kB 4 8kB 1 96 128 64 32 16 32 3 212 3 12 22 1 212 210 20

#1255 64kB 2 64kB 1 256 96 16 8 64 16 2 212 1 12 210 1 213 211 16

#1256 16kB 4 32kB 2 128 96 16 8 64 128 1 213 1 10 210 3 211 212 20

#1257 32kB 1 64kB 4 128 96 32 8 8 64 1 213 1 10 210 3 213 210 16

#1258 64kB 1 4kB 4 256 256 16 16 64 64 1 211 1 10 210 2 211 211 20

#1259 16kB 1 8kB 1 128 256 64 8 8 128 1 213 3 11 210 2 211 211 16

#1260 16kB 2 32kB 2 50 256 32 8 8 16 3 211 2 11 22 1 210 212 18

#1261 32kB 4 4kB 2 96 256 64 16 64 16 3 212 2 11 211 3 214 210 16

#1262 32kB 2 64kB 4 96 256 16 16 32 32 2 210 2 12 22 1 210 212 16

#1263 16kB 1 8kB 2 96 256 64 32 16 16 2 210 2 11 22 1 212 210 16

#1264 32kB 1 16kB 4 256 96 16 16 16 64 2 213 1 12 211 1 210 213 18

#1265 16kB 4 32kB 2 128 96 64 8 8 32 3 213 3 12 210 1 210 210 16

#1266 16kB 4 16kB 4 64 256 16 8 32 128 1 211 2 10 211 3 210 212 18

#1267 32kB 2 8kB 4 128 256 16 32 64 16 1 210 1 10 210 1 213 213 18

#1268 64kB 4 4kB 4 256 256 32 64 16 40 2 211 2 12 211 2 213 213 16

#1269 64kB 2 8kB 4 64 96 64 16 64 16 2 213 2 10 210 3 214 212 18

#1270 16kB 1 32kB 1 50 256 64 64 8 16 2 211 2 10 211 3 211 212 16

#1271 16kB 1 32kB 2 64 128 64 16 32 128 1 213 1 12 210 3 212 210 20

#1272 64kB 4 64kB 2 64 96 64 8 8 32 2 211 1 12 211 2 214 210 18

#1273 16kB 1 4kB 1 256 128 64 8 8 40 1 214 1 10 22 3 213 213 16

#1274 64kB 4 64kB 1 64 96 64 16 32 16 2 214 3 12 210 3 210 212 18

#1275 16kB 4 32kB 1 128 256 16 16 64 40 2 210 3 12 210 1 210 210 20

#1276 64kB 4 4kB 4 50 96 64 64 8 128 2 211 2 10 22 2 212 212 16

#1277 32kB 4 8kB 1 64 96 32 64 64 32 2 214 3 11 210 3 211 210 20

#1278 64kB 1 32kB 2 128 128 32 8 8 32 2 212 2 10 211 3 210 211 16

#1279 32kB 2 64kB 4 256 128 32 32 16 128 3 211 2 10 210 3 211 211 18

#1280 16kB 1 16kB 4 64 256 16 32 32 64 2 214 2 11 211 2 214 212 20

#1281 64kB 1 4kB 2 256 256 32 32 8 32 3 214 1 10 22 1 211 211 18

#1282 32kB 2 4kB 1 128 96 16 32 8 40 2 211 1 11 22 2 211 210 20

#1283 16kB 2 4kB 4 96 96 32 32 8 40 2 211 2 10 211 1 210 212 16

#1284 16kB 2 64kB 4 96 96 64 64 8 16 3 213 3 11 210 1 212 211 20

#1285 64kB 4 64kB 4 128 96 64 16 8 64 3 210 1 10 22 3 213 213 18

#1286 32kB 2 16kB 1 64 256 16 16 64 16 1 213 2 10 22 1 211 212 16

#1287 16kB 1 8kB 1 256 128 16 16 64 64 3 213 3 11 22 2 214 210 20

#1288 16kB 1 4kB 4 64 96 32 8 8 16 2 213 2 12 210 3 211 212 18 p. 142

#1289 64kB 1 32kB 4 50 128 64 32 64 128 3 214 2 10 210 3 214 210 18

#1290 32kB 1 8kB 2 128 128 16 16 64 40 1 211 2 10 22 1 210 212 20

#1291 64kB 2 8kB 1 64 96 64 32 64 40 2 211 1 11 210 3 211 211 20

#1292 32kB 2 4kB 2 96 256 32 16 16 40 1 210 3 12 22 1 210 210 20

#1293 32kB 1 4kB 2 96 256 32 8 8 16 1 214 2 12 211 1 211 210 20

#1294 64kB 2 64kB 4 128 128 32 32 16 128 1 213 3 12 210 2 214 211 18

#1295 32kB 2 64kB 4 64 128 16 32 32 16 2 213 3 11 210 1 211 210 20

#1296 32kB 1 8kB 1 128 128 16 32 16 32 2 214 2 11 210 2 213 212 20

#1297 16kB 2 32kB 2 96 96 16 32 32 40 1 214 3 12 211 2 210 213 20 p. 143

#1298 32kB 4 64kB 2 96 256 16 64 8 64 3 213 1 11 210 3 211 211 16

#1299 64kB 2 8kB 4 50 96 16 16 64 40 2 211 2 10 211 1 212 211 16

#1300 32kB 1 16kB 1 64 96 32 8 32 64 1 213 2 11 22 1 213 212 18

#1301 16kB 1 64kB 1 128 256 64 64 8 32 1 212 2 10 211 1 211 211 18

#1302 64kB 4 64kB 4 50 96 16 8 8 16 1 213 2 11 211 1 213 212 20

#1303 16kB 2 4kB 2 256 256 32 64 32 32 3 210 1 11 22 3 213 210 20

#1304 32kB 4 16kB 2 256 128 32 8 32 64 3 210 1 10 211 2 211 212 18

#1305 16kB 4 64kB 2 50 128 32 32 8 128 2 214 1 12 211 3 210 212 20

#1306 16kB 2 4kB 2 128 128 64 8 8 32 1 213 1 12 211 3 212 212 18

Continued on next page.

Appendix A. Design Space 199

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1307 16kB 4 4kB 4 64 96 64 32 64 16 3 213 3 12 22 2 210 210 18

#1308 32kB 2 8kB 4 96 128 64 16 32 128 1 214 3 10 22 3 210 210 16

#1309 32kB 1 8kB 1 96 256 16 16 8 128 3 210 1 11 211 3 213 213 20

#1310 64kB 4 4kB 1 96 128 16 16 16 128 3 212 2 12 211 1 210 211 20

#1311 64kB 2 4kB 4 64 128 32 16 64 40 1 212 3 10 211 2 214 212 16

#1312 16kB 1 4kB 2 256 256 64 16 64 40 3 210 3 10 210 2 212 211 20

#1313 16kB 2 8kB 2 96 256 64 64 32 40 3 213 1 12 211 3 213 211 20

#1314 32kB 1 8kB 4 50 128 32 32 16 40 1 214 1 11 22 3 213 213 20

#1315 16kB 4 32kB 2 64 96 64 8 8 64 2 211 2 12 210 3 213 212 16

#1316 32kB 2 32kB 1 128 256 32 16 16 16 3 211 1 12 22 3 211 212 16

#1317 64kB 1 16kB 2 64 256 16 64 64 16 3 211 2 11 22 1 211 213 20

#1318 16kB 1 16kB 2 128 256 32 64 8 32 3 211 3 12 210 1 214 213 18

#1319 32kB 4 64kB 4 128 128 32 16 32 32 1 210 3 11 211 1 210 211 16

#1320 32kB 4 4kB 1 128 128 32 64 16 32 3 212 1 10 211 2 213 212 16

#1321 32kB 4 8kB 4 128 256 64 32 16 64 1 210 2 12 210 3 213 211 18

#1322 32kB 2 32kB 4 96 96 64 16 8 16 2 211 1 12 210 3 213 211 16

#1323 64kB 4 8kB 4 96 128 16 8 64 32 3 211 1 12 211 2 211 211 16

#1324 16kB 4 4kB 2 256 96 16 8 8 128 1 211 2 10 22 1 212 211 18

#1325 64kB 1 32kB 2 96 128 64 64 64 64 1 210 3 10 22 1 210 210 16

#1326 16kB 4 4kB 1 128 256 16 32 8 16 3 210 2 12 210 2 213 210 16

#1327 16kB 2 64kB 4 128 128 32 32 64 32 2 213 3 10 211 2 214 213 20

#1328 64kB 2 32kB 2 256 128 64 32 16 32 3 211 1 12 211 2 210 210 18

#1329 16kB 4 64kB 2 256 96 32 32 8 128 3 214 1 10 211 2 212 211 18

#1330 16kB 1 8kB 1 256 96 16 8 64 64 1 212 2 11 210 1 213 211 20

#1331 16kB 4 64kB 4 64 96 64 8 8 40 2 213 3 12 210 3 213 210 20

#1332 64kB 1 32kB 1 64 128 64 8 64 40 3 212 2 12 22 3 210 211 16

#1333 32kB 2 8kB 1 50 96 16 16 8 40 2 213 2 11 211 3 212 212 18

#1334 64kB 2 32kB 4 64 96 32 32 16 40 2 213 2 11 210 3 214 210 20

#1335 32kB 2 32kB 1 50 96 64 16 32 40 3 212 1 10 210 3 211 211 16

#1336 32kB 4 16kB 4 64 256 16 64 8 16 2 210 3 11 22 2 214 211 18

#1337 64kB 4 64kB 4 96 128 16 8 32 16 2 213 2 10 211 1 212 213 20

#1338 16kB 4 16kB 1 96 96 32 8 8 16 1 211 2 12 210 1 210 213 18

#1339 16kB 2 32kB 4 96 128 16 64 16 128 3 214 1 11 22 1 214 210 20 p. 134

#1340 16kB 4 16kB 2 96 256 64 16 16 16 2 210 3 11 210 2 212 210 20

#1341 32kB 1 4kB 4 96 96 32 32 32 16 2 210 2 12 211 2 214 213 16

#1342 16kB 1 64kB 2 50 128 32 64 16 64 3 211 2 12 210 3 212 213 20

#1343 32kB 4 32kB 2 96 256 64 64 64 32 3 213 1 10 211 3 211 211 20

#1344 16kB 1 16kB 4 96 128 16 32 8 16 1 211 3 10 22 2 212 211 18

#1345 16kB 2 64kB 1 96 96 16 64 8 16 3 210 1 12 210 2 213 210 16

#1346 16kB 1 8kB 4 64 128 32 64 8 128 1 212 2 10 211 2 213 213 16

#1347 64kB 2 4kB 1 64 96 64 32 16 64 1 212 3 11 22 1 213 210 20

#1348 16kB 1 16kB 4 50 128 32 8 32 16 1 214 3 10 210 3 211 211 20

#1349 32kB 1 4kB 2 50 128 16 8 16 40 1 211 1 10 22 1 213 212 16

#1350 32kB 4 4kB 2 256 256 16 32 8 32 3 214 1 10 22 2 214 211 18

#1351 64kB 2 4kB 2 50 96 32 64 32 32 2 214 3 10 211 2 213 211 18

#1352 32kB 4 4kB 4 64 256 32 8 16 40 3 211 3 11 210 3 212 213 16

#1353 32kB 1 4kB 1 128 256 16 8 8 32 2 214 3 11 22 1 211 210 18

#1354 64kB 2 32kB 1 128 128 32 8 8 16 2 212 3 12 22 1 212 210 20

#1355 16kB 2 8kB 4 50 256 16 16 16 16 1 211 3 11 210 2 213 210 20

#1356 64kB 1 16kB 1 64 96 16 16 32 16 2 213 3 11 210 2 210 213 16

#1357 64kB 1 32kB 4 50 256 16 16 16 40 2 211 3 11 210 2 210 212 20

#1358 32kB 4 32kB 4 128 96 16 32 32 32 3 212 1 11 211 1 212 213 20

#1359 32kB 1 64kB 2 50 128 32 16 64 40 3 212 1 10 211 1 214 212 18

#1360 32kB 1 4kB 2 128 96 32 32 64 16 2 210 2 11 210 3 210 212 16

#1361 64kB 4 4kB 1 64 256 64 64 32 40 3 214 1 10 211 1 210 212 16

#1362 32kB 1 64kB 2 128 128 32 64 8 128 1 212 2 10 210 3 210 213 18

#1363 64kB 4 32kB 1 256 256 16 64 32 64 2 210 2 12 22 1 212 212 16

#1364 16kB 4 32kB 1 50 256 32 8 16 40 1 211 2 10 210 2 210 213 20

#1365 64kB 2 32kB 4 256 96 64 8 64 40 3 213 3 12 211 3 211 212 20

#1366 16kB 4 8kB 4 128 96 32 32 16 64 3 213 1 11 211 1 212 211 18

#1367 64kB 2 32kB 1 128 96 32 8 32 16 2 214 1 10 210 3 212 211 20

#1368 32kB 4 32kB 4 96 128 64 8 32 128 1 214 2 11 210 2 214 212 20

#1369 64kB 1 16kB 1 128 96 64 8 64 40 2 212 1 12 211 2 213 211 20

#1370 32kB 4 4kB 2 96 256 16 8 64 128 2 213 3 11 211 2 211 211 18

#1371 32kB 1 8kB 4 256 256 16 32 8 40 1 211 2 10 22 2 212 213 20

#1372 16kB 2 16kB 1 256 256 16 8 16 64 2 210 3 10 210 1 213 210 20

#1373 16kB 1 64kB 4 96 96 16 64 32 64 1 214 1 12 210 1 212 210 18

Continued on next page.

200 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1374 64kB 1 4kB 2 96 96 64 64 64 16 3 213 1 11 211 2 210 210 20

#1375 16kB 1 64kB 4 64 256 32 64 64 64 1 212 2 10 22 1 214 210 20

#1376 64kB 2 16kB 1 128 96 64 64 64 32 2 212 2 12 211 1 210 213 18

#1377 64kB 4 4kB 2 96 128 32 8 64 128 3 214 1 12 22 1 213 210 18

#1378 64kB 1 32kB 1 50 256 64 16 32 32 1 211 2 10 211 1 210 210 16

#1379 32kB 4 4kB 2 50 96 16 32 32 40 1 212 2 11 210 2 211 210 18

#1380 64kB 1 16kB 4 128 96 16 8 64 40 3 211 3 11 22 1 211 210 20

#1381 32kB 1 16kB 2 128 128 64 16 16 64 1 214 2 11 210 1 210 212 20

#1382 64kB 2 32kB 1 256 96 16 32 64 128 3 210 3 11 210 1 210 213 16

#1383 64kB 2 64kB 2 128 128 16 8 16 16 1 214 2 11 211 3 213 211 20

#1384 32kB 1 8kB 2 64 128 64 16 8 128 2 212 2 11 211 3 211 211 16

#1385 16kB 2 32kB 2 64 256 32 8 32 64 1 213 3 10 22 2 212 212 16

#1386 32kB 1 32kB 2 50 128 64 32 8 32 3 214 3 12 210 3 211 211 18

#1387 64kB 4 4kB 4 96 96 32 64 8 40 3 211 1 12 210 1 212 212 20

#1388 64kB 4 16kB 2 64 128 32 64 8 16 3 212 2 10 211 1 210 213 20

#1389 32kB 4 8kB 1 50 96 32 8 64 40 3 210 1 11 210 2 213 213 20

#1390 16kB 4 32kB 4 96 96 16 32 64 32 3 211 2 11 211 1 210 210 20

#1391 64kB 4 8kB 2 64 256 64 64 8 16 2 213 1 10 210 3 212 210 16

#1392 32kB 2 32kB 1 50 96 64 64 16 64 2 210 2 12 22 3 212 212 16

#1393 32kB 2 32kB 2 96 128 64 64 8 32 1 212 3 11 210 1 214 211 20

#1394 64kB 4 64kB 4 50 128 32 32 8 128 1 210 1 12 211 2 210 211 16

#1395 64kB 2 16kB 1 128 96 16 64 8 128 3 214 2 11 211 3 211 211 18

#1396 64kB 4 32kB 1 50 128 64 8 16 16 2 210 3 11 22 2 213 211 20

#1397 16kB 2 64kB 4 96 96 64 16 32 16 2 211 1 12 210 2 213 211 18

#1398 32kB 2 4kB 1 96 128 16 8 64 128 1 214 3 12 22 2 211 210 16

#1399 16kB 1 64kB 2 64 256 64 32 64 40 1 214 1 12 22 3 214 212 20

#1400 64kB 2 64kB 4 50 128 64 8 64 40 2 212 2 12 211 3 214 212 18

#1401 64kB 2 8kB 4 64 96 16 32 32 128 1 212 1 12 211 2 211 213 16

#1402 32kB 4 32kB 1 256 128 64 32 32 32 1 210 2 11 211 3 210 213 20

#1403 64kB 2 4kB 1 256 96 32 8 16 128 3 213 1 10 210 2 213 210 18

#1404 16kB 2 16kB 4 256 96 16 32 8 128 1 213 2 11 210 1 213 211 20

#1405 64kB 2 8kB 2 256 128 16 32 32 40 1 210 3 12 22 2 210 210 18

#1406 16kB 1 32kB 4 64 128 32 64 32 128 3 210 2 10 211 2 211 210 16

#1407 64kB 2 16kB 2 50 128 16 16 64 16 2 214 3 10 210 1 212 212 18

#1408 16kB 4 32kB 2 96 256 64 64 8 16 1 214 3 12 22 1 212 211 18

#1409 64kB 4 8kB 2 128 128 16 8 32 32 1 213 2 10 22 1 214 210 20

#1410 16kB 2 4kB 2 50 256 32 16 8 32 2 213 3 10 22 3 211 213 20

#1411 32kB 1 64kB 4 256 256 16 8 32 40 1 212 3 10 211 1 212 212 16

#1412 16kB 1 4kB 4 50 256 16 32 8 128 1 214 3 12 210 2 211 212 20

#1413 16kB 4 4kB 1 128 96 64 32 64 128 3 213 3 12 210 3 214 212 16

#1414 64kB 1 16kB 2 256 96 32 64 8 16 2 214 3 11 211 1 213 211 16

#1415 32kB 1 16kB 2 128 128 16 8 64 32 1 213 3 12 22 3 213 213 16

#1416 64kB 1 16kB 1 96 128 32 8 16 16 3 210 1 11 211 2 212 211 20

#1417 32kB 4 4kB 4 64 128 16 16 16 16 2 213 1 10 22 2 214 210 16

#1418 16kB 4 64kB 2 96 256 64 64 8 16 3 211 3 10 211 2 211 210 18

#1419 16kB 2 8kB 4 50 128 32 64 16 128 1 214 1 10 22 3 210 210 20

#1420 32kB 2 64kB 1 128 256 16 16 8 128 3 211 3 12 210 3 210 213 20

#1421 64kB 1 8kB 1 50 128 16 16 16 40 3 212 1 10 22 2 213 212 18

#1422 16kB 1 8kB 1 50 96 16 8 16 40 3 210 3 12 211 1 210 213 16

#1423 32kB 4 8kB 1 50 96 32 16 64 128 1 212 2 11 210 3 213 212 20

#1424 32kB 1 32kB 1 128 128 64 8 16 16 2 212 1 12 210 2 211 212 18

#1425 16kB 4 64kB 4 128 128 32 64 64 16 1 210 3 10 211 2 212 211 18

#1426 16kB 1 4kB 4 96 256 64 32 32 16 1 211 3 12 211 2 210 213 20

#1427 32kB 4 16kB 4 128 96 64 8 32 16 3 210 3 10 22 2 210 211 20

#1428 16kB 2 64kB 4 256 96 16 8 16 16 2 212 3 12 210 2 210 213 18

#1429 32kB 1 16kB 2 50 96 16 32 16 40 1 212 2 10 210 3 210 211 20

#1430 64kB 2 16kB 1 256 96 64 16 8 64 3 211 2 10 210 2 212 210 20

#1431 64kB 1 64kB 4 256 128 16 64 8 40 3 211 2 12 210 2 211 211 20

#1432 32kB 2 32kB 1 96 96 16 64 64 64 3 210 2 11 211 1 211 210 16

#1433 16kB 2 64kB 1 128 96 64 8 8 64 2 210 1 11 210 2 212 212 20

#1434 64kB 2 64kB 4 128 96 32 8 8 40 2 213 2 12 211 1 214 211 16

#1435 16kB 1 64kB 1 128 256 16 8 32 64 2 210 2 12 211 3 212 210 18

#1436 32kB 4 4kB 4 256 256 32 64 8 32 1 213 3 11 22 1 213 211 20

#1437 16kB 4 8kB 4 64 96 32 16 32 40 2 214 3 11 211 1 212 210 18

#1438 16kB 2 8kB 2 50 128 64 64 8 16 3 210 2 11 210 3 214 212 20

#1439 32kB 2 16kB 1 128 96 64 64 8 16 3 211 3 12 211 3 211 210 18

#1440 64kB 1 4kB 2 128 256 16 8 8 40 3 214 2 11 210 2 212 213 18

Continued on next page.

Appendix A. Design Space 201

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1441 64kB 2 64kB 4 64 256 64 8 32 128 2 213 1 10 22 2 214 211 20

#1442 32kB 1 4kB 2 96 96 64 32 8 32 1 211 3 12 22 2 214 212 18

#1443 16kB 4 4kB 1 50 256 64 8 32 128 2 210 2 12 210 1 214 212 20

#1444 64kB 1 32kB 4 128 128 32 64 64 32 1 213 2 11 210 1 213 213 16

#1445 16kB 1 64kB 2 64 256 64 16 16 128 1 212 1 11 211 1 213 210 20

#1446 64kB 4 8kB 4 50 96 64 32 32 32 2 213 2 12 22 3 214 211 16

#1447 16kB 4 4kB 1 50 256 32 16 8 64 3 211 3 10 22 3 214 211 18

#1448 64kB 1 4kB 4 256 128 64 32 8 32 1 213 1 12 22 3 211 210 20

#1449 32kB 2 64kB 4 96 256 32 64 64 40 3 214 2 11 211 2 211 213 16 p. 142

#1450 16kB 1 32kB 2 128 256 16 16 64 16 3 214 2 11 210 2 212 211 18

#1451 16kB 4 4kB 2 256 256 64 8 32 16 1 214 3 11 210 2 210 212 18

#1452 16kB 2 16kB 4 64 256 16 32 16 40 3 214 1 11 210 3 211 211 18

#1453 16kB 2 8kB 4 96 256 64 16 8 40 1 211 3 12 22 1 210 210 20

#1454 64kB 1 16kB 1 256 256 64 8 32 40 2 213 1 12 22 1 213 212 16

#1455 64kB 1 4kB 2 128 128 16 8 64 32 1 212 1 11 22 1 213 212 20

#1456 16kB 1 4kB 2 128 96 64 64 32 32 3 214 2 11 210 1 214 210 16

#1457 64kB 1 32kB 2 128 96 32 32 32 32 3 212 1 11 211 1 213 211 16

#1458 16kB 2 64kB 4 96 96 32 16 32 64 2 212 2 12 22 1 212 212 18

#1459 64kB 2 64kB 2 50 128 32 64 64 16 2 212 2 11 210 1 210 213 16

#1460 32kB 4 32kB 2 128 96 64 32 16 64 3 211 1 12 211 2 211 212 18

#1461 32kB 1 16kB 4 50 256 16 32 8 40 2 210 1 12 22 1 210 211 16

#1462 16kB 2 64kB 2 128 128 16 32 32 32 1 212 2 10 211 2 213 213 18

#1463 64kB 1 16kB 4 128 128 64 16 32 16 1 210 3 12 211 3 214 213 20

#1464 64kB 1 32kB 1 256 128 64 16 64 64 2 210 1 12 210 2 213 211 18

#1465 64kB 4 32kB 2 128 96 32 64 16 16 1 214 1 11 210 2 210 211 20

#1466 32kB 1 4kB 1 64 128 16 64 32 16 2 213 3 10 22 2 210 212 20

#1467 32kB 2 64kB 1 256 256 32 32 16 64 3 213 3 12 210 2 214 211 18

#1468 32kB 4 16kB 4 256 128 32 32 64 64 1 210 3 12 22 3 212 213 16

#1469 64kB 4 64kB 4 128 96 32 8 16 64 3 211 3 11 211 1 210 212 16

#1470 16kB 2 4kB 2 64 256 32 8 32 32 2 210 3 12 211 2 212 211 16

#1471 16kB 2 4kB 2 64 128 32 32 16 64 2 210 3 12 22 3 214 212 18

#1472 64kB 2 64kB 4 64 96 16 64 64 40 2 214 3 12 22 2 211 211 20

#1473 64kB 2 64kB 1 256 96 16 32 16 32 3 212 1 10 211 2 210 210 16

#1474 16kB 2 4kB 2 64 96 16 16 16 64 1 212 2 11 22 1 212 212 16

#1475 16kB 2 64kB 2 50 128 32 64 16 32 1 214 1 10 22 1 213 212 18

#1476 64kB 2 64kB 2 128 96 64 16 64 64 2 211 2 11 211 3 211 213 18

#1477 32kB 4 8kB 2 50 256 32 8 16 40 1 213 1 10 210 1 214 210 16

#1478 32kB 1 16kB 4 64 256 64 16 32 16 1 213 2 11 210 2 213 211 18

#1479 16kB 4 64kB 4 256 128 32 16 64 16 2 213 1 12 211 3 213 211 20

#1480 64kB 2 16kB 4 256 96 32 32 8 128 3 212 1 11 211 2 213 211 18

#1481 32kB 2 32kB 4 128 256 32 64 32 16 1 212 3 11 22 1 210 210 16

#1482 32kB 4 64kB 4 50 96 64 16 16 32 2 212 3 12 211 3 210 210 16

#1483 32kB 2 16kB 2 50 128 32 32 16 32 2 210 1 10 22 2 214 212 16

#1484 64kB 4 8kB 1 96 256 64 32 64 40 3 214 2 11 22 3 210 213 18

#1485 64kB 2 4kB 2 128 96 64 32 32 64 3 214 2 10 211 1 211 212 18

#1486 16kB 4 8kB 4 256 96 32 64 32 40 3 212 1 11 210 3 210 212 18

#1487 64kB 2 32kB 1 128 256 32 8 64 64 1 211 3 10 210 3 211 211 16

#1488 64kB 1 64kB 2 256 256 64 64 32 16 1 213 1 12 210 1 214 213 20

#1489 32kB 1 16kB 1 256 256 16 16 16 40 1 213 1 11 210 3 214 213 16

#1490 64kB 1 4kB 4 64 128 16 8 32 40 3 212 2 11 22 1 212 213 20

#1491 64kB 4 64kB 1 96 96 64 32 16 128 2 213 2 10 22 1 210 213 16

#1492 64kB 4 16kB 4 50 128 16 64 64 40 2 211 1 11 211 1 210 210 16

#1493 32kB 4 64kB 1 50 128 32 16 16 32 3 214 3 12 22 3 211 213 20

#1494 16kB 2 64kB 1 64 256 64 8 64 16 1 210 3 11 211 3 212 213 20

#1495 64kB 1 8kB 4 256 96 32 64 16 128 3 212 3 12 211 2 211 213 16

#1496 64kB 1 4kB 2 128 128 16 64 16 128 2 211 2 12 210 3 211 210 20

#1497 64kB 1 32kB 4 128 256 16 8 64 128 1 213 2 11 210 1 214 213 20

#1498 32kB 4 4kB 2 256 256 32 16 16 40 2 210 2 12 210 2 213 212 16

#1499 64kB 1 16kB 1 128 96 32 8 64 32 1 211 1 11 211 3 212 212 20

#1500 16kB 4 8kB 2 64 256 64 32 8 128 3 212 2 12 211 3 210 211 18

#1501 16kB 1 64kB 1 50 128 32 64 64 40 1 212 3 11 22 3 212 213 18

#1502 64kB 4 4kB 1 96 128 32 32 16 40 3 214 2 10 211 3 213 212 18

#1503 64kB 4 32kB 2 64 128 32 64 8 16 2 212 1 11 211 2 212 212 20

#1504 64kB 2 16kB 2 50 96 16 32 16 128 2 211 2 11 22 3 210 210 16

#1505 32kB 1 16kB 2 256 96 64 16 32 16 2 214 1 11 210 2 212 213 16

#1506 16kB 2 16kB 4 128 128 64 64 8 32 3 212 2 12 211 2 210 212 16

#1507 64kB 1 64kB 4 128 128 64 16 8 16 2 210 1 10 211 2 211 211 20

Continued on next page.

202 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1508 16kB 1 4kB 1 256 256 32 64 64 40 1 210 1 10 210 3 211 213 18

#1509 64kB 2 4kB 4 96 128 16 64 16 128 3 210 3 10 22 1 210 210 20

#1510 64kB 4 64kB 2 128 96 32 32 32 40 1 212 2 10 210 2 213 212 20

#1511 32kB 1 8kB 4 128 256 64 32 32 32 3 210 3 11 22 2 213 213 20

#1512 64kB 1 8kB 2 256 128 64 16 16 64 2 210 2 10 211 1 213 213 20

#1513 32kB 1 64kB 4 128 128 16 8 16 128 3 214 1 10 22 2 210 213 16

#1514 32kB 2 16kB 4 96 96 32 8 16 16 3 210 1 11 210 2 214 213 16

#1515 64kB 1 8kB 4 256 128 16 32 16 16 3 213 2 10 22 2 214 213 16

#1516 32kB 1 4kB 4 128 96 64 64 64 32 1 211 3 12 210 3 214 213 18

#1517 16kB 2 64kB 1 64 256 16 8 16 16 2 211 3 11 22 3 211 212 18

#1518 64kB 4 8kB 1 256 256 32 16 8 128 3 211 1 10 210 3 212 213 18

#1519 64kB 1 64kB 1 256 128 64 64 16 16 3 211 3 12 211 3 213 213 18

#1520 32kB 1 64kB 1 96 256 16 64 16 64 3 211 1 11 22 1 213 210 18

#1521 16kB 4 64kB 4 64 256 16 16 32 128 2 213 2 10 22 1 211 211 20

#1522 16kB 1 32kB 1 64 128 32 8 64 32 3 210 1 11 210 3 210 210 20

#1523 64kB 2 4kB 4 256 256 32 8 8 128 3 213 3 12 22 2 213 211 18

#1524 32kB 1 64kB 2 50 128 64 16 64 40 3 212 2 12 22 3 210 213 18

#1525 16kB 1 16kB 1 256 96 64 32 8 40 3 212 3 10 22 2 210 211 16

#1526 32kB 1 64kB 4 128 256 64 32 16 40 2 210 2 12 22 2 211 211 18

#1527 64kB 1 8kB 2 256 256 64 16 32 40 1 210 3 11 22 2 212 210 20

#1528 32kB 2 4kB 1 96 256 32 32 32 32 1 212 1 10 210 1 211 210 18

#1529 64kB 4 16kB 4 64 128 32 16 16 16 3 213 2 11 22 3 210 213 18

#1530 16kB 2 64kB 2 64 256 32 64 8 40 3 211 1 12 211 1 212 212 16

#1531 16kB 4 8kB 1 50 96 64 16 32 16 2 212 2 11 211 2 211 213 20

#1532 16kB 1 4kB 2 128 96 16 8 64 16 2 210 3 12 211 1 214 213 18

#1533 64kB 4 64kB 4 96 96 64 32 32 16 1 211 3 11 211 2 213 213 18

#1534 32kB 4 8kB 2 64 96 16 16 32 16 3 214 3 10 210 3 211 210 16

#1535 64kB 4 64kB 2 128 128 16 64 64 16 1 213 2 12 210 2 213 213 16

#1536 32kB 1 32kB 1 256 128 64 32 64 64 3 210 1 10 211 3 210 211 18

#1537 32kB 1 64kB 2 96 128 64 8 64 32 3 211 3 11 22 2 213 211 18

#1538 32kB 2 32kB 2 96 256 64 16 16 128 1 213 3 11 210 3 214 210 18

#1539 32kB 1 32kB 1 96 128 64 8 8 32 2 213 2 12 22 1 213 211 16

#1540 64kB 1 16kB 4 96 256 32 8 16 64 1 210 1 11 211 2 210 210 18

#1541 64kB 1 8kB 4 128 96 64 16 16 40 1 214 3 10 210 3 212 213 20

#1542 64kB 4 4kB 2 50 128 16 16 8 40 1 212 1 12 22 3 214 212 16

#1543 16kB 1 32kB 1 256 256 16 16 32 32 3 213 2 12 210 3 210 212 20

#1544 64kB 4 8kB 2 256 96 64 8 8 16 2 213 2 10 22 2 213 213 16

#1545 64kB 2 64kB 4 64 256 64 32 64 40 3 214 2 12 211 1 213 211 20

#1546 16kB 2 4kB 1 64 96 32 8 8 16 1 211 3 12 22 3 212 212 16 p. 79

#1547 16kB 4 64kB 4 128 128 64 32 64 32 1 213 3 10 22 1 213 211 18

#1548 32kB 4 8kB 2 256 128 64 32 16 16 3 210 2 10 22 1 211 213 20

#1549 64kB 2 8kB 1 96 96 16 32 8 16 3 214 2 10 210 1 212 211 20

#1550 32kB 2 32kB 4 96 96 16 16 32 16 2 210 3 11 211 1 214 213 20

#1551 32kB 2 8kB 2 128 96 32 16 64 128 3 214 3 11 210 3 210 213 20

#1552 32kB 1 8kB 4 256 256 16 64 32 16 3 214 2 10 22 1 212 210 18

#1553 32kB 1 4kB 2 256 256 32 64 8 64 3 214 1 10 211 2 212 213 20

#1554 32kB 2 4kB 4 64 96 16 64 16 32 2 210 1 10 22 2 214 210 16

#1555 16kB 2 64kB 4 50 96 16 32 32 40 1 213 2 10 210 3 211 211 16

#1556 32kB 4 8kB 1 50 256 64 32 8 16 3 213 2 10 210 2 214 212 16

#1557 32kB 4 8kB 4 96 96 64 64 16 40 3 214 2 10 211 1 213 212 20

#1558 32kB 1 64kB 2 50 96 16 16 8 64 1 213 2 11 210 3 211 211 16

#1559 16kB 2 8kB 4 50 96 16 8 16 32 2 212 1 11 210 1 214 210 20

#1560 32kB 1 8kB 1 256 96 32 32 8 40 3 214 2 11 210 3 212 211 18

#1561 32kB 4 4kB 1 96 256 32 64 8 40 3 214 1 10 211 3 213 213 20

#1562 64kB 4 8kB 4 50 96 64 8 64 32 3 211 1 10 22 1 214 213 16

#1563 32kB 2 8kB 4 128 96 32 16 64 16 1 213 3 10 211 2 211 213 18

#1564 64kB 2 32kB 2 128 96 64 16 32 40 2 212 2 10 22 1 212 212 16

#1565 32kB 2 32kB 1 64 96 16 8 16 40 3 211 1 12 210 1 213 212 20

#1566 16kB 2 16kB 2 96 256 16 16 16 40 3 211 3 10 210 1 211 212 18

#1567 32kB 1 16kB 2 64 256 64 8 16 64 1 214 3 10 211 3 213 212 20

#1568 64kB 4 32kB 2 128 256 64 8 16 16 3 212 2 12 22 3 214 213 18

#1569 16kB 1 4kB 1 64 256 32 8 16 64 2 210 3 10 211 2 211 213 16

#1570 32kB 1 4kB 1 64 256 32 16 16 128 2 212 3 12 211 1 213 212 20

#1571 64kB 2 16kB 2 128 128 32 32 32 32 2 212 3 10 22 1 214 211 20

#1572 16kB 4 32kB 4 256 96 64 32 64 16 2 210 2 12 22 2 213 212 16

#1573 32kB 4 32kB 4 64 96 32 8 16 128 1 214 2 10 211 1 211 213 16

#1574 16kB 2 16kB 4 128 96 64 8 64 64 1 210 1 12 210 1 211 210 16

Continued on next page.

Appendix A. Design Space 203

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1575 64kB 4 8kB 1 128 128 32 8 32 40 3 213 1 12 210 1 213 213 18

#1576 16kB 2 8kB 1 64 128 16 8 32 40 1 214 1 10 22 3 210 211 18

#1577 64kB 1 32kB 2 64 128 64 8 16 40 2 211 3 10 211 1 214 211 18

#1578 16kB 1 64kB 1 128 128 16 32 8 32 3 214 2 12 211 1 213 212 20

#1579 32kB 2 64kB 2 50 256 16 8 16 64 2 212 1 10 210 3 212 212 16

#1580 16kB 4 16kB 2 50 256 16 64 64 128 3 211 3 12 210 3 212 210 20

#1581 16kB 4 64kB 4 50 128 16 8 64 32 2 211 2 11 211 1 214 212 18

#1582 16kB 1 8kB 4 64 128 32 8 16 32 3 210 3 12 22 3 214 213 16

#1583 32kB 4 16kB 2 96 128 32 8 32 32 1 214 2 10 22 3 211 211 18

#1584 16kB 4 32kB 1 96 256 32 8 8 32 2 210 3 11 22 1 212 210 18

#1585 64kB 2 4kB 2 256 128 64 16 32 128 1 210 3 12 210 2 212 213 16

#1586 16kB 4 8kB 2 128 96 64 16 32 32 3 211 3 11 210 2 213 212 16

#1587 32kB 4 64kB 2 128 96 64 8 8 16 1 212 1 10 210 2 211 211 18

#1588 32kB 2 64kB 2 50 96 64 64 32 40 3 210 1 11 210 3 214 212 20

#1589 16kB 4 64kB 1 96 256 16 64 32 32 2 211 3 11 210 2 211 210 18

#1590 64kB 2 16kB 1 50 128 32 32 8 128 1 214 1 10 22 1 210 211 18

#1591 32kB 2 8kB 1 256 96 64 32 64 16 2 213 1 12 22 3 212 213 16

#1592 32kB 2 8kB 2 50 96 16 8 8 32 3 214 3 12 211 1 210 213 16

#1593 32kB 4 64kB 4 50 256 64 8 8 32 1 214 2 11 210 2 212 210 20

#1594 32kB 2 8kB 2 64 96 64 64 32 32 1 211 2 11 210 1 210 211 20

#1595 64kB 2 16kB 4 64 256 64 16 16 40 3 213 2 12 211 3 214 210 20

#1596 16kB 4 8kB 2 128 96 16 32 64 128 1 210 1 10 22 1 210 210 16

#1597 32kB 4 16kB 2 128 96 32 8 64 40 3 210 2 10 22 2 214 212 18

#1598 32kB 4 16kB 2 50 128 16 8 16 64 3 212 1 12 210 2 211 210 16

#1599 64kB 1 4kB 1 128 256 16 32 32 128 1 211 1 10 22 1 213 213 16

#1600 16kB 2 64kB 4 64 128 16 32 32 128 3 211 1 11 211 2 211 213 16

#1601 32kB 2 64kB 1 64 96 32 16 32 64 2 212 1 10 211 1 210 212 18

#1602 16kB 2 32kB 1 64 128 64 16 8 40 1 214 3 11 211 1 214 213 16

#1603 16kB 4 32kB 1 50 96 64 32 16 32 2 210 1 12 22 1 210 212 20

#1604 16kB 1 64kB 4 50 128 64 32 8 16 1 210 3 12 210 2 214 213 20

#1605 16kB 2 4kB 1 64 256 16 16 64 40 2 213 2 10 211 3 212 212 16

#1606 32kB 2 16kB 4 128 96 32 32 32 128 1 210 1 12 211 2 212 212 18

#1607 64kB 2 64kB 4 96 256 16 32 64 128 1 213 2 12 211 2 213 213 18

#1608 32kB 4 64kB 2 128 96 64 64 16 32 1 211 3 12 22 2 211 211 16

#1609 16kB 2 4kB 4 128 256 64 16 64 16 1 213 1 12 210 2 210 212 20

#1610 64kB 4 32kB 4 96 128 32 16 32 16 2 213 1 11 22 3 214 213 16

#1611 16kB 1 64kB 4 64 128 16 64 32 128 3 210 3 12 22 3 214 213 20

#1612 16kB 4 64kB 2 256 128 64 8 64 32 2 212 3 10 22 3 210 210 18

#1613 32kB 4 32kB 4 50 256 16 16 32 40 2 210 3 11 210 1 213 213 16

#1614 64kB 2 4kB 2 256 256 32 8 64 128 3 214 3 10 211 1 214 211 18

#1615 64kB 2 32kB 2 64 256 32 8 64 32 1 210 2 12 22 1 213 210 20

#1616 32kB 1 64kB 1 64 256 16 8 8 32 3 210 2 12 22 2 214 212 18

#1617 64kB 4 32kB 2 50 128 32 8 8 128 1 212 1 11 210 2 211 211 16

#1618 32kB 2 16kB 4 96 256 16 32 8 64 2 210 2 10 211 3 210 210 20

#1619 64kB 2 32kB 4 256 256 64 8 8 16 1 212 2 11 211 2 213 211 20

#1620 64kB 1 64kB 1 96 96 64 64 8 40 3 214 1 10 210 3 210 212 20

#1621 32kB 4 16kB 2 96 256 32 16 32 128 3 213 2 10 210 2 211 211 18

#1622 16kB 2 4kB 2 50 256 64 8 16 40 3 212 1 10 211 2 211 213 20

#1623 64kB 4 16kB 4 96 96 64 16 64 32 1 212 2 11 210 2 210 210 20

#1624 32kB 2 32kB 1 64 96 64 64 8 16 2 212 1 10 211 3 210 212 18

#1625 64kB 1 8kB 4 50 96 16 64 16 128 3 210 2 12 22 3 211 211 20

#1626 32kB 2 32kB 4 96 96 16 32 32 40 1 213 1 10 22 2 212 213 20

#1627 64kB 2 16kB 1 64 128 32 8 8 32 1 211 3 11 210 2 211 210 18

#1628 16kB 4 16kB 4 96 96 32 64 8 40 2 210 3 11 22 1 210 213 18

#1629 16kB 2 16kB 4 50 128 64 16 16 128 2 211 2 11 211 2 214 213 16

#1630 32kB 4 16kB 4 64 256 64 32 64 16 3 210 1 11 210 3 213 210 20

#1631 16kB 1 32kB 4 96 128 16 64 32 128 1 213 3 11 210 3 213 211 20 p. 142

#1632 32kB 4 32kB 2 64 256 32 8 32 32 3 214 3 11 211 2 213 213 16

#1633 16kB 4 16kB 2 128 256 32 16 16 128 1 214 1 12 211 1 214 213 18

#1634 32kB 2 8kB 2 96 96 64 8 16 64 1 213 1 11 211 1 212 211 20

#1635 16kB 4 16kB 4 256 256 16 32 64 32 2 212 1 10 211 2 214 212 18

#1636 32kB 4 16kB 4 96 256 32 8 16 64 1 214 3 10 210 1 214 210 20

#1637 64kB 2 16kB 4 96 256 16 8 64 64 2 213 3 11 211 1 212 210 16

#1638 16kB 1 32kB 1 96 128 64 64 8 32 2 212 3 10 211 3 210 213 18

#1639 64kB 4 4kB 1 50 128 64 16 32 128 3 210 1 10 22 2 214 210 18

#1640 64kB 1 64kB 1 128 128 64 8 16 40 3 212 3 12 211 3 211 210 20

#1641 64kB 1 16kB 1 64 96 64 64 64 40 3 210 1 11 210 3 211 213 16

Continued on next page.

204 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1642 32kB 2 16kB 1 96 128 64 8 64 32 3 211 2 10 210 1 212 213 20

#1643 16kB 4 4kB 1 50 96 64 8 32 16 1 212 2 10 211 3 214 210 18

#1644 64kB 1 8kB 4 50 128 16 8 64 64 2 210 1 10 210 2 212 212 18

#1645 32kB 1 32kB 4 256 256 32 8 16 40 3 212 2 11 211 3 210 213 16

#1646 32kB 2 16kB 4 50 96 64 8 8 40 3 213 1 11 210 3 214 213 18

#1647 16kB 4 16kB 4 64 256 16 16 32 16 3 213 2 11 22 3 211 213 16

#1648 64kB 4 16kB 2 64 128 16 8 64 128 1 212 1 12 210 1 214 211 18

#1649 32kB 2 8kB 2 96 256 16 16 8 64 2 211 2 11 22 2 211 211 20

#1650 64kB 4 8kB 1 96 128 64 8 16 32 2 212 1 12 22 2 211 212 18

#1651 16kB 2 8kB 4 256 96 64 16 8 128 1 212 2 12 22 3 213 211 18

#1652 16kB 4 8kB 2 128 128 16 8 16 64 2 214 1 12 22 2 213 211 16

#1653 32kB 1 32kB 4 50 128 64 8 8 40 3 212 3 10 22 3 211 211 16

#1654 64kB 1 16kB 2 128 256 32 16 16 128 2 213 3 11 211 1 212 210 16

#1655 32kB 2 32kB 2 50 96 32 64 16 64 2 211 2 11 211 3 211 213 18

#1656 64kB 1 32kB 2 128 256 16 8 8 32 2 212 1 10 22 2 214 210 20

#1657 16kB 4 4kB 1 50 128 16 8 64 128 3 213 3 10 210 1 210 210 18

#1658 16kB 1 32kB 2 256 96 64 8 16 40 2 213 1 11 22 2 214 211 20

#1659 32kB 2 8kB 2 128 128 64 16 8 64 3 214 2 12 211 1 213 212 20

#1660 32kB 4 16kB 1 96 96 16 16 32 128 3 213 3 11 211 3 211 210 18

#1661 16kB 1 4kB 2 50 128 64 8 32 32 1 210 2 10 210 3 212 213 20

#1662 32kB 2 64kB 4 96 128 64 32 32 64 1 212 1 10 22 1 210 211 20

#1663 32kB 2 64kB 2 128 128 16 32 32 32 3 210 2 12 211 1 211 211 20

#1664 32kB 1 16kB 1 256 128 64 16 16 128 3 214 3 10 210 1 211 213 16

#1665 32kB 2 64kB 2 256 128 64 8 32 16 1 213 2 11 210 1 210 212 16

#1666 64kB 1 32kB 1 256 128 64 16 8 64 2 212 1 11 211 1 211 211 18

#1667 64kB 2 4kB 4 50 256 64 32 64 16 1 210 3 12 210 1 211 210 16

#1668 64kB 1 16kB 1 50 128 32 16 16 32 1 212 3 11 211 1 214 211 20

#1669 16kB 2 64kB 2 50 128 32 64 8 16 3 210 3 12 22 3 214 212 20

#1670 16kB 2 16kB 2 50 256 16 32 8 128 1 214 3 10 22 3 212 212 16

#1671 32kB 4 64kB 2 128 96 32 64 64 32 1 213 3 12 210 3 210 210 18

#1672 32kB 1 4kB 2 96 256 16 16 8 32 3 213 2 10 210 3 211 210 16

#1673 16kB 4 8kB 1 256 256 64 8 16 64 2 213 1 12 211 1 211 212 16

#1674 64kB 2 16kB 1 64 128 16 16 16 40 2 213 1 12 211 3 210 211 20

#1675 32kB 2 16kB 2 256 128 32 8 32 32 3 214 1 10 210 3 214 213 20

#1676 32kB 2 8kB 4 50 128 32 16 64 64 3 212 1 10 210 3 212 213 20

#1677 16kB 4 32kB 4 50 256 32 32 64 40 3 212 1 12 211 1 212 211 20

#1678 64kB 2 4kB 2 64 256 32 64 32 40 1 212 2 12 22 2 210 210 20

#1679 64kB 1 64kB 2 256 128 16 8 8 64 3 210 1 11 22 2 211 213 16

#1680 16kB 2 64kB 1 50 96 64 8 32 128 3 211 3 12 210 3 212 210 16

#1681 32kB 1 4kB 1 64 96 16 64 8 16 3 212 1 10 211 3 214 211 18 p. 134

#1682 64kB 1 16kB 2 96 128 64 64 8 40 1 211 2 12 22 1 213 212 16

#1683 16kB 2 16kB 2 50 96 16 32 8 40 1 211 2 11 22 2 214 211 16

#1684 16kB 2 4kB 4 64 96 32 64 32 16 1 211 3 10 210 2 212 210 20

#1685 32kB 2 64kB 1 96 256 16 64 32 16 1 211 3 11 22 1 214 213 18

#1686 64kB 2 16kB 4 128 128 32 64 64 40 2 211 1 10 211 2 210 213 20

#1687 16kB 4 16kB 4 50 128 32 16 32 64 3 211 1 10 210 2 211 210 16

#1688 16kB 2 4kB 4 128 128 64 16 8 16 1 210 1 11 211 2 210 212 20

#1689 32kB 2 32kB 2 96 96 16 8 64 16 1 212 2 11 211 3 214 210 20

#1690 16kB 2 4kB 2 256 256 16 32 16 64 2 214 1 12 22 1 214 212 20

#1691 16kB 1 64kB 1 256 128 16 16 32 32 3 212 1 10 22 1 212 213 20

#1692 16kB 1 32kB 2 128 96 64 64 8 40 1 214 1 12 22 1 210 210 16

#1693 64kB 1 8kB 1 96 128 16 16 64 16 2 212 2 12 210 3 212 213 16

#1694 64kB 4 32kB 1 50 256 16 32 8 40 3 211 3 11 211 2 213 211 16

#1695 64kB 4 16kB 4 64 128 64 16 8 32 2 210 3 10 211 2 211 212 20

#1696 16kB 1 4kB 4 50 128 16 64 32 32 1 211 1 10 211 2 212 211 18

#1697 64kB 2 4kB 4 64 96 64 16 8 40 1 213 1 12 210 3 210 210 18

#1698 32kB 2 16kB 1 128 96 64 8 16 32 3 211 3 11 210 2 211 212 20

#1699 32kB 4 4kB 2 96 96 16 32 8 64 1 212 1 12 210 1 211 212 20

#1700 32kB 1 8kB 1 64 256 16 16 8 64 1 211 3 10 211 2 213 210 16

#1701 16kB 4 4kB 4 64 256 32 8 8 128 2 211 2 12 211 1 212 211 18

#1702 64kB 2 16kB 4 50 256 16 16 64 32 1 213 1 12 211 3 211 213 20

#1703 16kB 2 4kB 2 64 256 16 16 16 128 2 211 3 10 210 3 214 212 20

#1704 64kB 1 64kB 2 96 96 32 8 32 64 2 214 1 10 210 2 210 213 20

#1705 64kB 2 4kB 1 64 256 32 64 16 32 1 212 1 12 22 3 213 210 18

#1706 16kB 2 8kB 2 128 128 64 8 64 40 3 211 3 11 210 2 211 211 18

#1707 16kB 2 32kB 4 50 256 16 64 8 40 3 213 2 10 210 1 210 211 16

#1708 64kB 1 32kB 1 64 128 64 8 16 64 2 214 2 10 211 1 212 211 18

Continued on next page.

Appendix A. Design Space 205

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1709 64kB 4 8kB 4 256 96 64 16 64 32 3 214 1 11 210 3 211 213 20

#1710 16kB 1 64kB 1 96 96 32 64 8 128 1 210 2 10 211 3 210 213 20

#1711 32kB 1 8kB 4 96 256 64 64 32 40 3 211 3 12 210 1 211 213 20

#1712 32kB 2 16kB 4 256 96 16 32 64 128 1 212 3 11 210 1 214 213 18

#1713 64kB 1 32kB 1 64 96 16 32 32 40 1 210 1 10 210 2 214 211 16

#1714 64kB 1 8kB 1 96 128 32 8 16 16 1 214 1 10 210 2 211 212 18

#1715 16kB 2 32kB 4 64 256 32 32 64 40 2 212 3 10 211 2 210 213 18

#1716 64kB 2 32kB 1 128 96 64 8 64 40 3 210 2 12 22 3 212 211 16

#1717 16kB 1 8kB 2 50 96 16 16 64 64 1 211 3 11 210 1 211 212 20

#1718 16kB 1 4kB 4 256 128 16 32 16 64 1 212 3 11 22 1 211 210 16

#1719 32kB 2 16kB 2 256 96 64 64 16 128 2 213 2 12 211 2 214 210 20

#1720 16kB 2 8kB 1 256 256 16 8 16 40 1 213 1 12 22 2 210 210 18

#1721 16kB 4 64kB 4 64 256 16 32 8 128 2 210 3 12 22 3 211 212 16

#1722 64kB 1 8kB 1 96 128 16 32 32 40 2 212 3 11 210 3 211 211 18

#1723 16kB 2 64kB 2 128 96 32 8 64 32 3 212 1 12 210 2 213 212 18

#1724 32kB 2 4kB 1 256 96 16 32 32 40 3 212 3 10 211 2 214 212 20

#1725 64kB 4 32kB 2 64 256 16 32 64 128 3 210 1 11 211 3 212 213 18

#1726 64kB 4 16kB 4 256 96 64 16 8 16 3 212 2 11 22 2 214 211 20

#1727 32kB 4 64kB 2 128 128 32 8 32 32 2 211 1 10 22 2 211 212 16

#1728 64kB 4 8kB 4 64 96 32 8 8 16 2 210 1 10 210 3 210 211 16

#1729 16kB 4 64kB 2 128 256 32 8 32 16 3 212 3 12 210 3 210 213 20

#1730 32kB 2 32kB 1 64 256 32 8 16 16 1 213 3 12 210 2 210 212 20

#1731 32kB 2 64kB 2 96 128 32 32 16 64 3 210 3 11 22 2 214 210 16 p. 79

#1732 16kB 4 8kB 2 64 128 64 64 32 32 3 212 2 10 22 3 214 212 16

#1733 32kB 4 32kB 4 50 96 32 32 8 40 3 214 2 10 211 3 213 213 20

#1734 16kB 2 64kB 2 256 96 64 64 16 64 2 210 1 10 22 1 210 211 20

#1735 32kB 1 8kB 4 256 128 32 32 16 16 3 213 3 11 211 1 213 210 18

#1736 64kB 2 4kB 2 50 256 16 16 64 16 3 213 3 12 210 1 212 213 16

#1737 16kB 4 32kB 4 50 96 16 8 16 40 2 213 3 12 22 3 210 212 18

#1738 16kB 4 4kB 1 256 128 16 8 16 40 1 212 2 12 211 2 213 211 18

#1739 32kB 1 4kB 2 128 96 32 64 16 40 1 214 3 11 210 1 211 213 20

#1740 64kB 2 32kB 2 64 96 64 64 8 64 3 213 1 12 211 3 213 212 20

#1741 64kB 2 4kB 2 50 128 16 16 16 32 2 211 3 11 211 1 213 211 16

#1742 64kB 1 16kB 1 256 96 32 64 16 128 3 211 1 11 22 1 210 212 18

#1743 16kB 1 16kB 2 64 96 64 16 8 40 3 214 3 11 211 3 212 210 20

#1744 32kB 4 4kB 4 128 96 16 32 16 40 3 212 3 10 22 2 211 211 18

#1745 16kB 1 16kB 2 64 256 32 32 64 32 3 213 2 11 210 2 211 213 18

#1746 32kB 2 8kB 4 96 96 16 64 16 128 1 214 3 11 22 3 211 212 20

#1747 32kB 2 16kB 1 64 128 64 64 32 64 2 210 3 12 22 3 212 210 16

#1748 16kB 2 16kB 4 128 256 64 32 64 16 2 214 2 11 22 3 212 211 20

#1749 64kB 2 8kB 1 50 96 16 64 8 40 3 213 2 12 210 3 212 211 16

#1750 16kB 4 8kB 2 96 256 64 64 8 32 1 211 1 10 22 2 212 213 18

#1751 64kB 2 64kB 4 64 128 16 8 16 64 3 211 3 10 210 1 213 212 16

#1752 64kB 2 64kB 1 128 128 64 32 8 128 3 212 3 12 211 3 211 213 16

#1753 64kB 4 4kB 4 256 256 32 8 64 128 2 213 3 11 22 1 212 210 16

#1754 32kB 1 64kB 2 256 256 64 8 64 128 3 212 3 11 211 3 210 213 16

#1755 16kB 2 32kB 2 256 256 32 32 16 40 1 212 3 11 210 1 214 212 20

#1756 32kB 1 16kB 1 50 256 32 32 8 16 2 211 2 10 22 2 214 211 18

#1757 16kB 1 16kB 1 50 128 32 8 32 40 2 214 2 11 210 1 214 211 16

#1758 64kB 2 64kB 2 128 96 32 16 16 40 1 214 3 10 22 1 214 213 18

#1759 32kB 4 32kB 4 50 256 16 8 64 32 2 212 2 12 22 3 212 212 16

#1760 64kB 2 8kB 1 64 128 32 8 16 128 2 211 2 10 22 2 211 211 18

#1761 64kB 1 64kB 2 50 128 16 8 16 32 1 210 2 10 210 1 213 210 20

#1762 16kB 4 8kB 4 256 96 16 16 32 40 2 211 3 10 22 3 210 213 16

#1763 16kB 4 16kB 4 96 128 16 8 32 40 1 214 1 11 211 2 211 212 18

#1764 64kB 1 32kB 4 256 128 64 64 16 40 1 213 1 12 211 2 213 210 18

#1765 64kB 4 32kB 1 256 256 64 8 32 16 3 212 2 12 22 3 211 212 20

#1766 32kB 2 64kB 2 96 256 32 32 32 64 2 212 1 12 211 3 211 213 18 p. 143

#1767 16kB 1 32kB 4 50 128 32 64 32 40 1 212 3 12 22 1 211 211 16

#1768 16kB 1 64kB 4 50 128 32 8 8 40 2 214 2 10 211 2 211 212 20

#1769 16kB 4 8kB 4 96 128 16 8 16 40 2 213 1 10 22 1 210 211 20

#1770 32kB 4 32kB 2 64 128 64 8 16 128 3 211 1 12 210 3 213 212 16

#1771 64kB 1 4kB 2 128 256 32 16 8 32 2 211 1 10 210 1 213 211 20

#1772 16kB 4 64kB 2 64 256 32 32 16 64 3 211 3 11 22 1 211 210 16

#1773 16kB 1 64kB 4 256 128 32 8 8 40 2 210 2 10 22 2 211 213 18

#1774 16kB 4 16kB 4 96 256 32 8 8 128 1 213 3 11 211 3 212 211 20

#1775 64kB 4 32kB 2 256 128 64 8 16 128 3 210 1 11 210 3 213 211 18

Continued on next page.

206 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1776 64kB 1 4kB 2 64 128 64 32 32 128 1 211 3 12 22 2 210 213 16

#1777 16kB 2 4kB 4 64 128 16 16 8 128 2 211 2 10 22 3 212 212 20

#1778 64kB 1 32kB 1 50 128 64 32 16 64 1 213 3 10 22 1 210 210 16

#1779 16kB 4 16kB 4 50 256 64 64 8 16 2 214 1 11 211 3 214 211 18

#1780 64kB 1 16kB 1 50 128 16 64 16 32 2 210 2 12 211 3 213 210 20

#1781 16kB 2 32kB 1 50 128 32 64 64 40 2 210 3 10 210 3 213 211 16

#1782 64kB 1 8kB 2 64 96 64 8 8 64 3 213 3 10 22 3 213 211 16

#1783 16kB 1 16kB 2 64 256 32 8 16 16 2 212 1 12 211 3 210 212 18

#1784 64kB 2 64kB 1 50 256 64 16 64 64 1 210 2 11 210 2 214 210 16

#1785 16kB 2 16kB 1 256 96 32 16 16 64 3 214 1 12 210 3 211 211 20

#1786 32kB 4 64kB 4 64 128 16 8 32 32 2 210 2 11 22 1 213 210 18

#1787 16kB 4 64kB 4 50 128 64 8 16 32 3 213 3 11 22 1 212 210 16

#1788 64kB 4 8kB 2 64 128 16 64 64 40 2 214 2 12 210 1 210 210 18

#1789 32kB 4 64kB 4 64 128 32 32 8 32 2 213 1 12 211 2 212 212 16

#1790 16kB 4 16kB 4 96 96 32 64 64 128 2 213 2 11 211 2 212 211 16

#1791 64kB 4 8kB 1 256 256 64 8 32 32 2 212 1 11 22 2 210 213 16

#1792 64kB 2 64kB 4 96 96 64 64 8 128 1 210 2 12 210 2 211 210 18

#1793 64kB 4 8kB 1 96 96 64 16 8 16 1 212 3 12 210 2 210 213 20

#1794 16kB 2 32kB 2 64 128 16 64 64 16 3 210 1 10 210 3 210 212 18

#1795 16kB 2 16kB 4 128 96 16 8 64 32 2 211 3 12 210 2 211 213 18

#1796 16kB 4 4kB 1 96 96 16 8 64 32 3 210 2 10 22 3 214 212 20

#1797 64kB 1 4kB 4 128 256 16 8 16 40 3 213 2 12 210 2 212 211 20

#1798 16kB 1 16kB 4 128 256 64 16 8 16 2 211 3 11 211 1 213 212 16

#1799 64kB 2 8kB 2 96 256 16 8 64 32 1 212 2 10 211 3 212 213 18

#1800 64kB 2 8kB 2 128 128 64 32 16 16 3 212 1 11 211 1 214 213 20

#1801 64kB 4 4kB 1 96 128 16 32 16 64 3 212 1 12 22 3 214 210 16

#1802 32kB 2 64kB 1 128 128 32 32 32 64 2 210 1 11 210 3 210 213 20

#1803 64kB 1 64kB 4 256 256 64 16 8 16 3 211 1 10 22 2 210 212 16

#1804 64kB 2 32kB 4 96 128 32 16 8 16 2 211 2 10 210 1 214 213 20

#1805 64kB 1 8kB 2 50 256 32 16 8 40 1 210 2 12 211 2 214 213 20

#1806 32kB 2 4kB 2 96 256 16 32 16 16 1 211 1 10 210 2 214 211 16

#1807 64kB 1 8kB 1 96 128 16 64 32 128 2 212 3 10 22 3 212 210 16

#1808 16kB 1 32kB 2 50 128 32 8 8 32 3 214 1 12 211 3 214 213 18

#1809 16kB 1 8kB 4 96 128 32 32 16 40 2 213 2 10 22 3 212 211 20

#1810 16kB 2 4kB 4 256 96 64 8 64 128 3 210 1 11 210 3 210 212 16

#1811 64kB 4 8kB 1 256 256 32 8 8 32 3 211 2 10 210 3 213 212 20

#1812 64kB 4 8kB 1 50 256 32 64 64 40 2 214 1 12 210 3 210 212 16

#1813 64kB 1 64kB 4 256 256 64 8 64 16 1 212 1 12 210 1 211 212 16

#1814 32kB 4 8kB 1 64 256 16 32 32 16 3 211 2 12 210 2 211 211 20

#1815 64kB 1 8kB 2 96 96 32 64 8 16 2 212 1 10 22 2 214 210 20

#1816 32kB 4 64kB 1 256 256 64 16 32 64 1 212 1 12 22 3 210 213 18

#1817 64kB 4 8kB 1 96 128 64 8 64 64 1 213 3 12 211 2 211 213 20

#1818 32kB 4 4kB 1 64 256 16 8 64 16 3 212 3 10 211 1 213 211 18

#1819 32kB 2 4kB 1 96 96 16 16 8 128 1 212 2 11 211 1 214 213 18

#1820 16kB 1 8kB 1 96 96 32 32 32 40 3 211 1 11 211 1 214 211 20

#1821 64kB 1 16kB 2 64 128 32 64 32 40 2 210 1 11 210 2 210 213 20

#1822 64kB 1 64kB 4 128 96 32 64 16 40 1 212 3 11 211 3 213 211 20

#1823 64kB 4 64kB 4 256 128 16 32 16 32 3 214 2 11 210 1 211 211 20

#1824 64kB 4 16kB 1 50 128 16 8 16 40 2 213 2 10 210 2 210 212 18

#1825 32kB 4 16kB 1 50 96 32 32 32 64 1 213 2 11 211 2 211 210 20

#1826 32kB 4 64kB 1 256 128 16 16 64 16 1 214 2 12 211 3 212 212 20

#1827 16kB 2 16kB 1 64 96 16 64 32 40 1 211 3 10 210 3 211 213 18

#1828 32kB 2 8kB 1 64 96 32 16 32 128 1 214 3 11 22 2 210 213 20

#1829 32kB 2 32kB 2 256 128 16 64 16 32 1 212 2 11 210 3 214 212 16

#1830 32kB 1 4kB 1 128 96 64 32 32 16 1 214 3 12 210 3 211 213 16

#1831 32kB 2 16kB 2 128 96 16 16 8 128 1 214 2 11 211 3 213 212 16

#1832 64kB 1 8kB 1 50 256 32 16 16 16 1 213 1 11 211 2 214 211 16

#1833 64kB 1 16kB 2 96 128 32 64 8 40 2 214 3 10 210 2 210 210 20

#1834 16kB 1 64kB 2 128 96 16 32 8 32 2 213 2 12 22 1 210 211 18

#1835 64kB 2 4kB 4 256 128 64 16 8 40 2 212 2 12 210 2 212 210 18

#1836 32kB 2 8kB 4 64 96 64 64 32 64 1 212 2 12 22 2 214 212 18

#1837 32kB 1 32kB 2 96 96 64 8 16 40 1 210 1 10 210 1 211 212 20

#1838 16kB 2 8kB 4 64 256 16 16 8 64 3 213 2 12 22 2 213 210 20

#1839 32kB 2 4kB 2 64 128 16 32 64 128 2 214 3 11 22 2 213 210 20

#1840 64kB 2 32kB 1 64 128 64 8 16 16 3 213 2 12 211 3 210 210 16

#1841 16kB 4 4kB 4 96 96 32 64 32 16 3 213 3 12 22 2 212 213 16

#1842 16kB 4 64kB 1 50 96 64 8 8 32 1 210 3 10 22 2 211 211 18

Continued on next page.

Appendix A. Design Space 207

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1843 64kB 2 8kB 1 64 128 32 16 8 40 2 214 3 10 210 1 212 213 20

#1844 64kB 1 64kB 1 64 256 64 64 32 128 2 210 1 11 211 3 210 211 16

#1845 32kB 4 16kB 1 128 256 32 16 8 64 2 213 1 11 210 3 211 210 16

#1846 16kB 1 4kB 2 64 96 32 32 16 40 3 212 2 10 22 3 213 212 16

#1847 64kB 1 16kB 1 96 128 64 8 16 64 1 213 3 11 22 2 214 213 20

#1848 32kB 4 32kB 1 50 128 16 32 32 128 1 211 1 11 211 2 214 213 18

#1849 64kB 1 4kB 4 64 96 16 16 64 40 3 213 3 12 211 1 210 211 20

#1850 16kB 4 64kB 2 96 96 64 16 16 32 3 213 2 10 210 3 211 210 18

#1851 16kB 1 64kB 4 128 128 64 16 64 16 2 211 1 12 211 1 210 213 20

#1852 32kB 1 8kB 4 256 96 32 64 8 40 1 212 2 10 22 3 214 211 20

#1853 32kB 1 4kB 1 128 96 32 64 8 40 2 212 2 10 211 1 213 213 18

#1854 16kB 4 32kB 2 50 128 16 32 8 32 1 211 1 12 22 2 212 211 20

#1855 16kB 4 64kB 1 50 96 64 64 32 16 1 214 2 12 22 1 212 211 16

#1856 64kB 1 16kB 2 96 256 16 8 16 64 1 213 1 12 22 2 214 213 18

#1857 16kB 4 32kB 1 96 128 32 8 32 16 3 214 1 12 211 3 214 210 18

#1858 64kB 1 8kB 1 128 256 64 32 32 64 2 211 2 11 210 3 213 212 16

#1859 64kB 1 32kB 1 128 96 16 64 16 64 2 210 3 12 211 3 212 211 16

#1860 16kB 2 32kB 4 64 96 32 64 16 32 2 213 1 10 211 1 214 212 18

#1861 16kB 2 8kB 4 50 128 32 8 64 40 1 211 1 10 210 3 211 213 18

#1862 16kB 2 4kB 1 64 256 32 64 16 40 2 214 1 11 210 2 212 212 20

#1863 32kB 4 16kB 1 64 128 16 16 64 32 3 213 1 11 22 3 214 213 20

#1864 16kB 4 4kB 1 64 96 16 32 32 32 3 210 1 12 22 2 212 211 20

#1865 16kB 2 8kB 2 50 256 32 8 32 16 3 210 2 11 211 3 210 212 18

#1866 16kB 2 8kB 1 128 128 16 64 16 16 3 212 3 11 22 1 211 213 16

#1867 64kB 4 16kB 2 128 128 64 8 8 128 3 212 1 11 211 1 214 213 18

#1868 32kB 1 4kB 1 50 96 64 8 8 16 1 210 2 12 210 2 212 213 16

#1869 16kB 2 64kB 2 128 128 32 16 64 128 1 210 1 12 211 1 211 213 18

#1870 32kB 2 64kB 2 128 128 64 16 32 64 3 211 2 11 211 3 211 210 18

#1871 16kB 2 64kB 1 96 256 16 16 8 64 1 213 1 10 211 1 214 211 20

#1872 64kB 1 32kB 2 50 128 64 64 64 32 1 212 3 10 22 3 214 210 20

#1873 32kB 1 16kB 4 64 256 64 64 16 64 2 212 2 11 211 3 212 212 20

#1874 64kB 2 16kB 2 64 128 32 64 64 32 2 210 1 11 210 2 210 211 16

#1875 32kB 4 64kB 4 64 128 16 8 16 128 1 211 3 10 22 3 210 210 20

#1876 32kB 4 32kB 2 256 128 64 8 64 64 3 210 1 10 22 2 214 213 16

#1877 16kB 4 8kB 4 50 96 64 64 64 64 1 214 2 11 211 1 211 212 18

#1878 32kB 4 8kB 1 96 96 64 8 64 16 1 213 3 10 210 1 210 212 16

#1879 16kB 1 32kB 1 50 96 64 8 8 64 2 213 3 11 22 3 210 211 20

#1880 16kB 2 8kB 4 256 256 32 8 32 64 3 210 1 12 210 3 212 210 18

#1881 64kB 2 8kB 2 50 128 64 64 32 64 1 214 2 10 22 1 214 211 16

#1882 16kB 1 8kB 1 128 256 16 16 16 16 3 211 3 12 210 1 214 210 18

#1883 64kB 2 8kB 2 50 96 32 32 64 64 1 210 2 11 210 2 213 210 16

#1884 64kB 2 16kB 4 50 96 16 16 16 32 1 214 3 10 210 2 210 212 20

#1885 64kB 1 4kB 2 128 128 16 8 8 64 3 211 2 11 22 3 212 210 16

#1886 64kB 4 8kB 4 256 128 16 16 64 128 1 211 2 10 211 2 213 212 18

#1887 32kB 4 4kB 1 96 128 16 64 64 64 3 210 3 10 211 1 211 213 18

#1888 16kB 4 32kB 2 128 128 64 32 32 40 2 211 2 12 210 3 213 210 16

#1889 16kB 4 32kB 4 256 128 32 16 8 16 1 210 3 10 211 1 210 212 20

#1890 32kB 2 8kB 2 50 256 16 64 8 128 2 210 1 12 22 2 214 213 20

#1891 32kB 4 64kB 1 256 128 16 32 16 128 2 210 3 12 22 1 211 211 20

#1892 64kB 2 32kB 4 96 128 32 64 64 32 3 210 2 12 210 3 212 211 16

#1893 64kB 4 8kB 1 64 128 32 16 8 32 3 210 3 10 210 3 212 210 18

#1894 32kB 4 4kB 4 96 128 16 8 32 64 2 212 3 11 22 2 214 212 18

#1895 64kB 2 16kB 4 256 256 64 32 32 64 3 210 3 12 22 3 212 210 20

#1896 16kB 2 4kB 4 256 256 16 32 16 40 2 211 2 11 211 2 213 210 20

#1897 16kB 1 64kB 4 64 128 64 64 8 32 3 210 3 12 211 3 212 210 16

#1898 32kB 4 16kB 2 96 96 16 8 8 128 3 214 1 12 211 1 210 212 16

#1899 64kB 4 32kB 4 256 128 64 8 32 16 2 213 2 12 22 1 214 213 18

#1900 16kB 2 8kB 2 50 96 32 64 8 64 2 214 3 10 210 1 212 213 16

#1901 32kB 4 8kB 1 256 96 16 16 8 40 2 211 2 11 211 2 212 212 18

#1902 32kB 1 8kB 1 64 128 64 16 32 64 3 212 1 12 211 2 212 211 18

#1903 16kB 4 64kB 1 96 256 64 8 8 64 2 210 2 11 22 2 210 211 16

#1904 32kB 4 32kB 4 96 96 32 8 32 16 3 213 1 11 211 1 212 213 16

#1905 16kB 2 4kB 4 128 128 64 16 16 64 3 213 2 10 22 3 210 211 18

#1906 16kB 4 4kB 2 64 96 16 64 16 32 1 211 1 11 22 3 213 211 18

#1907 16kB 4 64kB 1 128 96 32 16 64 32 2 213 2 10 22 2 212 211 20

#1908 32kB 2 4kB 4 50 96 64 16 32 128 3 211 3 10 22 1 214 211 18

#1909 32kB 1 4kB 2 96 96 32 64 32 40 2 211 1 10 22 1 212 210 20

Continued on next page.

208 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1910 32kB 2 64kB 4 128 256 32 16 16 40 2 213 2 12 211 1 212 212 16

#1911 32kB 1 8kB 2 50 256 16 8 16 128 3 210 1 12 211 2 213 211 16

#1912 64kB 4 16kB 1 50 128 64 32 64 64 2 210 2 11 211 2 212 213 18

#1913 16kB 1 32kB 2 256 128 32 16 64 16 2 214 2 11 211 2 212 211 20

#1914 32kB 1 64kB 2 96 128 16 8 16 64 1 214 3 11 22 1 210 210 20

#1915 16kB 4 32kB 2 50 96 16 8 16 64 3 210 1 12 22 2 214 210 18

#1916 64kB 1 4kB 1 128 96 32 16 8 32 2 210 1 11 22 3 212 213 20

#1917 64kB 2 8kB 2 128 96 32 64 8 40 1 212 1 11 22 1 212 212 18

#1918 64kB 1 4kB 2 50 256 16 32 32 16 3 211 2 10 211 1 214 212 16

#1919 16kB 1 64kB 2 64 256 16 64 64 40 2 212 2 11 210 3 211 210 16

#1920 32kB 2 64kB 2 50 256 64 16 16 32 3 211 3 11 211 3 210 211 18

#1921 16kB 1 64kB 4 50 96 16 16 8 32 3 213 1 10 211 3 210 210 20

#1922 64kB 2 64kB 1 50 96 16 64 8 128 2 213 1 11 210 3 214 211 16

#1923 64kB 2 16kB 2 64 128 16 8 64 128 3 210 2 10 211 3 212 210 20

#1924 16kB 2 4kB 1 96 96 64 64 64 32 1 211 3 10 22 1 210 212 16

#1925 16kB 1 4kB 2 128 128 16 32 8 32 2 211 3 11 210 3 211 212 20

#1926 64kB 4 64kB 1 256 128 32 32 16 128 1 210 1 10 210 1 213 212 16

#1927 64kB 2 16kB 2 64 96 16 8 8 64 1 212 1 12 22 3 211 210 20

#1928 32kB 2 32kB 4 96 96 64 64 16 16 2 213 1 10 22 1 212 211 16

#1929 16kB 4 32kB 1 50 96 16 64 8 16 1 211 3 12 210 1 211 213 20

#1930 64kB 4 64kB 4 50 256 64 32 8 128 2 212 3 12 211 2 211 213 20

#1931 64kB 4 4kB 2 96 96 64 16 8 64 2 213 3 11 211 1 214 211 20

#1932 64kB 2 4kB 1 50 256 16 64 8 128 1 213 1 10 211 1 213 210 20

#1933 32kB 1 4kB 4 50 128 64 8 64 128 3 213 3 12 211 3 214 212 16

#1934 32kB 2 64kB 2 50 128 64 8 16 128 2 213 2 11 22 2 214 213 16

#1935 16kB 2 16kB 1 64 256 64 32 64 64 3 211 1 10 211 1 214 213 20

#1936 32kB 4 4kB 1 96 256 64 16 32 64 1 213 2 11 22 1 212 211 16

#1937 16kB 4 8kB 2 128 96 64 64 32 16 3 210 3 11 22 1 214 213 16

#1938 16kB 2 64kB 1 128 128 16 64 64 40 3 212 2 10 22 3 211 213 18

#1939 16kB 2 4kB 4 256 128 32 64 32 128 3 211 1 10 210 2 214 210 16

#1940 16kB 2 64kB 4 128 256 16 16 16 32 2 214 1 12 22 3 213 211 16

#1941 32kB 2 16kB 4 64 96 64 64 16 32 2 213 2 11 210 2 210 213 16

#1942 64kB 1 64kB 4 50 128 64 64 32 128 3 214 3 12 210 1 213 211 16

#1943 64kB 1 4kB 2 96 96 64 8 16 16 3 212 2 11 210 1 213 212 16

#1944 16kB 2 4kB 2 128 256 64 8 8 64 1 211 3 10 22 3 212 211 20

#1945 64kB 2 4kB 1 50 128 16 8 64 32 2 211 3 12 22 1 213 211 18

#1946 32kB 2 4kB 1 50 96 64 64 64 40 3 210 1 12 22 3 214 211 20

#1947 64kB 4 8kB 1 96 128 32 8 16 16 1 212 2 11 210 1 213 210 16

#1948 32kB 1 4kB 1 256 256 32 64 32 128 1 210 1 12 22 3 211 211 20

#1949 64kB 4 64kB 4 128 256 32 16 64 40 2 213 2 12 211 2 212 210 18

#1950 16kB 2 32kB 1 128 256 16 64 32 64 2 213 3 12 22 1 213 210 18

#1951 16kB 4 16kB 4 96 128 16 32 16 16 2 214 2 12 210 2 212 210 16

#1952 16kB 4 8kB 4 50 128 16 64 64 32 1 210 1 10 22 1 210 212 18

#1953 32kB 1 16kB 1 50 256 16 16 16 40 2 213 2 12 22 1 210 213 20

#1954 32kB 2 4kB 2 128 256 16 16 16 128 2 212 3 11 211 3 213 210 20

#1955 32kB 1 64kB 1 128 96 16 32 64 32 2 213 1 11 22 2 211 212 20

#1956 32kB 4 64kB 2 96 96 64 32 32 64 3 213 1 12 210 1 212 211 20

#1957 16kB 4 16kB 1 50 96 64 16 8 32 2 211 1 12 210 3 214 211 20

#1958 32kB 2 16kB 1 128 256 64 8 32 128 3 214 1 11 211 3 210 211 20

#1959 64kB 4 16kB 1 96 128 16 64 32 32 1 214 2 12 210 2 213 210 16

#1960 64kB 2 8kB 4 64 128 64 8 64 32 1 211 2 11 210 1 210 212 20

#1961 16kB 1 16kB 4 64 256 16 16 64 64 3 214 2 11 22 2 212 211 20

#1962 64kB 2 64kB 1 256 256 32 32 16 128 1 213 1 12 22 2 210 211 20

#1963 32kB 2 32kB 2 64 96 64 32 8 128 1 213 3 12 22 2 213 212 20

#1964 32kB 1 64kB 2 256 96 32 16 32 40 1 211 1 11 22 3 212 211 20

#1965 64kB 4 4kB 1 128 256 64 64 64 128 2 210 2 10 211 1 211 211 20

#1966 16kB 1 16kB 1 128 96 16 32 8 16 3 213 2 10 22 2 213 210 16

#1967 32kB 2 8kB 1 128 96 32 8 16 40 2 210 3 10 210 2 210 211 18

#1968 32kB 2 16kB 4 128 128 16 8 32 32 1 211 2 12 22 1 211 212 20

#1969 64kB 4 32kB 1 64 256 64 8 64 16 2 214 2 11 210 1 210 213 16

#1970 64kB 2 32kB 1 64 96 64 16 32 128 3 214 2 11 211 1 214 210 16

#1971 16kB 4 16kB 1 128 96 32 8 8 16 1 214 3 11 22 3 213 212 20

#1972 64kB 4 4kB 1 128 128 64 64 16 16 3 210 2 10 210 2 210 212 16

#1973 16kB 4 32kB 2 96 96 64 32 16 64 3 213 3 12 210 1 211 212 18

#1974 32kB 4 8kB 1 256 96 32 16 64 64 1 211 2 11 210 3 210 210 16

#1975 64kB 1 64kB 2 256 128 64 8 32 32 3 211 1 12 210 3 214 210 20

#1976 64kB 4 32kB 1 50 96 16 32 16 128 2 212 2 12 22 3 210 211 16

Continued on next page.

Appendix A. Design Space 209

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#1977 32kB 1 32kB 2 64 96 32 64 16 40 2 211 1 11 211 3 213 210 20

#1978 32kB 4 64kB 2 64 256 32 16 64 32 2 210 1 11 211 1 211 213 18

#1979 32kB 1 4kB 1 128 96 32 16 16 128 1 211 2 10 211 3 211 210 16

#1980 32kB 1 32kB 2 50 256 32 16 8 40 2 212 3 11 22 2 211 211 20

#1981 16kB 2 64kB 4 50 128 16 16 16 32 1 210 1 12 211 3 213 210 18 p. 142

#1982 64kB 1 8kB 4 128 96 32 64 32 64 2 212 1 10 211 2 210 212 20

#1983 32kB 4 64kB 2 128 96 32 16 8 32 2 210 2 10 211 2 210 212 16

#1984 64kB 2 8kB 2 256 96 64 64 64 128 2 214 2 12 210 1 211 210 20 p. 143

#1985 64kB 2 16kB 2 96 96 64 16 8 40 1 210 3 10 22 3 213 212 18

#1986 16kB 4 8kB 4 64 96 64 16 32 16 1 210 2 12 22 2 211 212 16

#1987 16kB 4 32kB 1 64 96 16 64 16 16 3 213 2 12 211 3 210 210 16

#1988 64kB 1 64kB 2 96 96 32 16 16 64 2 210 2 11 211 3 213 212 20

#1989 32kB 2 64kB 4 256 128 64 8 8 128 2 211 2 11 211 1 210 210 18

#1990 32kB 4 64kB 1 128 128 32 64 64 40 1 211 2 12 22 2 214 210 16

#1991 16kB 1 4kB 2 256 96 64 64 8 128 3 210 3 12 211 2 212 210 18

#1992 32kB 1 32kB 2 64 256 16 8 64 32 3 211 2 12 210 1 212 213 16

#1993 32kB 1 4kB 1 256 96 64 8 32 16 1 210 1 11 22 3 214 213 16

#1994 64kB 2 64kB 1 64 96 32 64 32 128 3 210 2 10 211 1 213 212 16

#1995 64kB 1 4kB 4 64 128 32 64 64 40 2 210 2 11 210 1 211 211 16

#1996 16kB 4 4kB 1 50 128 32 32 8 40 2 210 2 11 210 2 211 213 16

#1997 16kB 1 32kB 2 128 96 16 64 64 128 1 211 2 10 210 1 212 212 20

#1998 32kB 1 64kB 2 50 96 32 32 8 16 2 211 2 11 211 3 213 212 18

#1999 16kB 2 4kB 1 64 128 32 8 32 32 3 214 3 12 22 1 212 210 20

#2000 16kB 4 8kB 2 50 128 16 32 32 32 2 211 2 11 22 1 214 210 20

#2001 32kB 2 4kB 4 96 128 32 64 16 32 2 210 2 12 22 1 212 213 18

#2002 64kB 1 4kB 1 128 96 16 16 8 32 1 210 3 11 210 1 212 210 16

#2003 16kB 4 8kB 4 128 256 16 32 64 128 3 210 1 12 210 2 210 213 18

#2004 32kB 2 64kB 4 64 256 64 32 64 32 2 213 3 11 22 1 212 213 18

#2005 32kB 4 16kB 4 256 96 32 32 16 32 2 210 1 11 22 1 213 210 20

#2006 16kB 2 4kB 4 50 96 32 32 16 64 2 214 1 10 211 3 214 212 20

#2007 64kB 4 64kB 1 50 96 32 8 64 32 2 210 1 12 22 2 212 211 16

#2008 32kB 1 32kB 2 256 128 32 8 32 128 1 213 3 11 22 1 211 213 16

#2009 16kB 2 64kB 2 128 96 32 64 8 64 2 212 2 11 211 2 210 213 20

#2010 32kB 4 16kB 4 64 96 32 8 64 128 1 210 2 11 210 1 211 212 18

#2011 32kB 4 4kB 2 256 96 64 32 32 32 3 214 2 12 22 1 211 211 16

#2012 64kB 2 32kB 1 96 128 32 16 8 16 2 212 2 12 210 1 213 210 18

#2013 32kB 1 32kB 2 64 128 64 64 8 32 1 213 2 12 22 2 212 213 18

#2014 16kB 1 64kB 1 64 256 16 32 8 32 2 214 1 12 210 2 211 212 18

#2015 16kB 1 64kB 2 50 128 32 16 16 16 1 211 3 11 211 1 214 211 20

#2016 64kB 2 64kB 4 128 96 16 16 32 128 3 213 2 11 210 2 210 211 20

#2017 64kB 2 16kB 2 128 128 64 8 32 128 1 214 2 10 210 1 213 213 20

#2018 32kB 2 4kB 1 256 256 32 16 16 16 1 212 3 12 211 3 213 211 16

#2019 64kB 1 16kB 4 96 96 16 64 8 16 1 212 1 11 211 2 210 212 20

#2020 64kB 1 64kB 1 50 128 32 64 16 40 2 210 3 12 22 2 214 210 18

#2021 64kB 2 64kB 2 128 96 64 32 32 40 3 213 1 10 22 2 213 210 16

#2022 32kB 1 64kB 1 64 96 64 16 64 64 1 213 2 10 22 3 213 210 20

#2023 16kB 2 64kB 1 50 256 32 32 64 64 2 210 3 10 210 1 212 211 16

#2024 64kB 4 64kB 4 96 256 64 16 64 128 3 213 3 10 22 2 214 212 18

#2025 16kB 1 4kB 4 50 96 16 32 64 64 1 213 1 12 210 3 214 212 20

#2026 16kB 2 64kB 1 96 256 64 32 16 40 2 210 1 10 22 1 214 211 20

#2027 32kB 2 4kB 4 96 128 64 16 32 128 2 213 1 10 22 3 211 213 18 p. 79

#2028 32kB 4 16kB 4 128 128 16 64 32 128 1 211 1 12 22 1 211 211 18

#2029 32kB 4 4kB 1 96 256 64 16 32 128 2 211 1 12 22 3 211 210 16

#2030 64kB 2 8kB 4 64 128 32 64 8 128 3 211 3 11 210 3 212 210 16

#2031 32kB 4 8kB 2 50 96 64 32 32 64 3 212 2 11 210 3 211 213 18

#2032 64kB 2 64kB 4 64 256 32 64 32 32 3 214 2 11 210 1 214 210 18

#2033 32kB 4 16kB 2 96 128 16 16 8 40 2 211 3 11 211 2 210 211 16

#2034 16kB 2 64kB 4 50 256 32 32 64 40 1 214 2 11 210 1 211 210 16

#2035 64kB 2 4kB 2 256 96 16 8 16 128 2 212 1 11 22 3 214 211 18

#2036 64kB 2 8kB 1 128 128 32 16 32 40 2 214 2 10 211 3 214 210 18

#2037 32kB 2 16kB 1 50 256 64 16 64 128 3 212 3 12 210 3 212 213 16

#2038 32kB 1 32kB 1 128 128 16 32 64 64 2 212 3 12 22 2 211 213 16

#2039 64kB 2 16kB 4 96 96 16 64 8 64 1 213 2 10 22 1 211 212 20

#2040 16kB 4 8kB 1 96 256 64 8 64 16 3 210 1 11 210 3 210 212 16

#2041 32kB 2 16kB 4 64 128 32 32 64 32 3 214 3 11 22 1 212 211 20

#2042 64kB 4 64kB 2 96 96 64 32 16 128 2 213 1 12 211 2 211 210 20

#2043 32kB 1 4kB 1 96 96 16 8 32 40 1 211 3 11 211 2 212 210 16

Continued on next page.

210 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2044 32kB 1 16kB 2 64 256 32 8 32 32 3 214 2 11 211 2 212 211 18

#2045 16kB 1 16kB 2 256 96 64 8 32 64 3 213 2 10 211 3 210 213 20

#2046 32kB 1 32kB 4 64 128 64 32 8 16 2 214 2 12 22 2 214 210 20

#2047 32kB 4 4kB 4 128 128 64 64 32 40 2 213 2 11 22 3 212 210 20

#211 16kB 1 8kB 2 50 256 16 64 64 40 3 214 2 12 210 2 211 213 20

#2049 16kB 1 16kB 1 128 96 16 64 64 32 2 213 1 12 22 2 213 211 16

#2050 16kB 4 16kB 4 64 128 32 32 16 16 1 210 1 11 211 3 210 212 20

#2051 16kB 4 32kB 1 64 128 32 8 8 128 2 213 3 10 210 2 212 213 18

#2052 32kB 1 4kB 1 64 128 32 8 64 128 3 214 2 12 22 1 211 211 18

#2053 64kB 1 4kB 1 64 96 16 64 32 16 3 213 1 10 211 3 214 213 20

#2054 32kB 1 16kB 2 96 128 16 64 32 128 3 213 1 12 210 1 214 213 16

#2055 16kB 1 32kB 2 50 256 64 64 16 32 3 211 2 11 22 1 212 211 16

#2056 16kB 2 16kB 2 256 96 32 16 8 128 1 210 1 12 211 2 212 211 16

#2057 64kB 1 64kB 1 96 96 64 16 16 64 1 212 3 11 211 2 210 210 16

#2058 16kB 2 64kB 4 256 128 32 16 32 64 3 212 1 11 22 3 211 211 18

#2059 16kB 1 32kB 1 128 96 64 32 64 64 3 212 1 12 210 2 214 210 16

#2060 16kB 1 4kB 4 50 256 16 8 32 32 1 214 3 11 211 3 212 212 16

#2061 32kB 1 8kB 1 64 96 16 64 32 40 2 212 1 10 211 3 211 211 16

#2062 64kB 4 8kB 2 50 128 32 64 8 32 1 210 1 11 210 2 213 211 20

#2063 64kB 1 64kB 4 50 96 32 64 16 40 3 212 1 12 22 3 212 211 16

#2064 16kB 4 32kB 4 96 128 16 32 64 40 3 213 3 12 210 1 213 212 20

#2065 32kB 1 64kB 4 64 96 32 32 32 16 3 214 3 10 22 1 213 210 16

#2066 32kB 2 32kB 1 96 96 32 16 16 16 3 211 1 11 210 1 213 212 18

#2067 64kB 2 64kB 4 96 128 64 32 16 40 2 211 2 10 22 1 211 212 20

#2068 64kB 4 64kB 4 256 128 32 16 16 128 1 213 3 12 210 2 212 211 20

#2069 32kB 4 64kB 4 64 96 32 64 64 32 3 213 2 11 210 3 214 212 20

#2070 64kB 4 32kB 1 128 128 64 32 32 16 1 214 2 10 210 2 214 212 20

#2071 16kB 1 64kB 1 64 128 16 64 16 16 2 212 3 11 22 1 214 213 16

#2072 16kB 2 32kB 4 96 96 16 16 8 16 3 210 3 11 22 2 210 213 18

#2073 64kB 2 64kB 1 256 128 16 16 64 128 2 212 3 11 210 1 214 213 20

#2074 16kB 2 64kB 4 64 96 16 64 8 64 3 213 1 12 210 3 213 211 20

#2075 32kB 4 32kB 1 128 256 64 32 8 16 1 210 3 11 22 3 210 211 18

#2076 16kB 1 4kB 2 64 256 64 64 32 128 2 210 3 12 210 3 211 212 18

#2077 16kB 4 4kB 4 64 96 64 64 16 16 2 211 3 11 210 3 214 210 20

#2078 16kB 1 32kB 1 256 128 64 64 32 40 1 212 2 11 22 1 213 210 16

#2079 32kB 4 8kB 4 128 96 64 32 16 128 3 213 1 11 22 1 212 212 20

#2080 64kB 2 64kB 4 64 128 16 32 8 32 2 213 2 11 22 1 214 210 20

#2081 16kB 1 4kB 1 96 96 32 16 16 128 3 212 2 11 210 2 211 213 20

#2082 64kB 4 8kB 4 64 256 64 32 32 128 3 211 3 10 211 3 212 212 20

#2083 16kB 1 16kB 4 64 256 64 16 8 16 2 214 3 11 211 3 213 212 20

#2084 32kB 2 32kB 4 50 128 16 64 32 32 3 213 3 12 211 1 214 211 20

#2085 64kB 1 4kB 4 128 96 16 64 32 128 2 213 1 12 210 1 214 210 16

#2086 32kB 2 4kB 2 96 128 16 8 16 32 2 213 1 11 22 3 213 211 16

#2087 16kB 1 32kB 1 128 128 16 32 16 16 2 214 2 11 211 1 212 210 16

#2088 32kB 1 4kB 2 96 128 64 64 8 32 3 213 3 11 22 3 210 213 16

#2089 16kB 4 4kB 4 256 96 16 16 32 16 1 211 2 11 22 1 210 212 18

#2090 16kB 2 8kB 4 256 96 16 8 32 64 1 213 3 11 210 2 213 210 16

#2091 32kB 4 4kB 1 64 128 32 64 16 64 3 213 2 10 22 2 214 212 20

#2092 32kB 1 4kB 1 256 128 32 64 32 128 1 210 3 11 22 1 210 211 20

#2093 32kB 4 16kB 4 96 256 32 32 32 64 1 213 1 11 22 3 213 211 16

#2094 16kB 1 16kB 2 256 96 16 8 16 32 1 210 1 10 22 3 212 211 20

#2095 32kB 1 32kB 1 96 96 16 32 16 32 1 214 2 10 211 1 212 213 20

#2096 64kB 2 16kB 2 256 256 16 32 64 16 3 214 3 12 22 2 214 213 18

#2097 32kB 1 64kB 4 256 256 64 64 8 128 3 214 2 10 210 1 212 211 16

#2098 64kB 2 16kB 1 256 96 64 16 32 16 2 213 1 12 211 2 212 212 18

#2099 64kB 2 32kB 1 128 128 32 8 32 16 3 213 2 10 211 2 214 211 16

#2100 32kB 1 16kB 4 256 96 64 16 16 40 2 213 2 10 211 2 211 210 18

#2101 32kB 4 4kB 1 96 128 64 32 64 40 2 212 2 12 22 3 212 211 16

#2102 16kB 4 32kB 4 96 128 16 64 8 16 2 210 1 11 211 2 212 212 20

#2103 64kB 2 16kB 2 256 256 16 32 32 40 2 213 3 12 210 2 214 213 18

#2104 16kB 2 4kB 4 256 128 32 8 32 128 3 213 2 11 22 3 212 211 18

#2105 32kB 2 4kB 2 50 96 32 16 32 16 1 210 1 12 22 3 214 212 20

#2106 16kB 2 16kB 1 128 128 64 16 32 40 1 210 1 12 22 2 212 213 18

#2107 32kB 4 16kB 2 256 128 32 16 16 128 2 214 2 10 22 2 210 211 18

#2108 64kB 4 8kB 2 128 256 16 32 8 40 3 211 1 11 210 3 211 212 20

#2109 64kB 1 4kB 1 128 256 32 8 16 128 2 210 1 11 211 2 212 212 16

#2110 64kB 1 4kB 2 64 128 32 64 8 64 2 213 2 10 211 1 210 210 18

Continued on next page.

Appendix A. Design Space 211

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2111 64kB 2 8kB 1 256 128 32 64 64 128 1 211 3 10 211 2 212 212 18

#2112 16kB 1 32kB 4 128 96 32 32 8 16 3 214 3 12 22 3 211 211 16

#2113 16kB 1 32kB 4 64 128 32 64 16 64 1 214 2 10 210 1 214 213 18

#2114 32kB 1 32kB 2 128 256 32 8 64 64 3 213 3 11 210 3 212 213 16

#2115 32kB 1 8kB 1 64 256 16 16 32 64 1 210 3 12 211 1 212 211 20

#2116 64kB 2 16kB 1 50 128 64 16 32 40 3 214 3 10 211 1 214 211 20

#2117 64kB 1 32kB 4 64 96 64 16 64 40 2 212 3 10 22 3 210 213 20

#2118 32kB 1 32kB 2 256 128 64 64 32 128 1 214 1 12 210 1 213 210 16

#2119 32kB 1 32kB 2 64 128 32 32 32 32 3 211 1 12 211 2 213 210 18

#2120 64kB 1 64kB 2 128 96 16 8 64 64 1 212 2 10 211 2 211 213 18

#2121 64kB 1 64kB 1 128 96 16 64 8 40 2 213 3 11 210 2 210 212 16

#2122 64kB 2 8kB 1 50 128 32 16 16 128 2 211 2 12 210 3 212 213 16

#2123 64kB 2 16kB 2 50 128 32 16 64 16 2 210 3 10 211 1 213 213 16

#2124 32kB 4 64kB 2 256 96 32 64 32 16 3 213 1 10 22 3 214 210 16

#2125 64kB 1 32kB 1 256 96 64 32 16 64 3 213 1 12 22 2 214 210 16

#2126 64kB 4 32kB 2 96 96 32 32 8 32 1 212 3 12 22 2 213 212 16

#2127 64kB 2 8kB 4 50 96 64 8 8 128 1 210 2 12 22 2 210 211 20

#2128 64kB 2 8kB 1 50 256 32 8 64 64 1 212 1 12 211 2 214 210 16

#2129 32kB 4 32kB 4 128 256 32 64 16 32 3 212 2 12 210 2 212 212 16

#2130 16kB 2 16kB 4 96 256 16 16 32 128 3 214 2 10 211 2 210 210 20

#2131 64kB 1 32kB 2 50 256 64 32 64 16 3 210 3 12 211 2 213 211 20

#2132 32kB 2 64kB 2 50 96 32 8 32 16 2 211 2 12 211 2 212 210 20

#2133 64kB 4 64kB 2 64 256 16 64 16 40 2 210 1 10 210 2 214 210 18

#2134 32kB 4 16kB 1 128 256 16 32 32 64 3 210 1 11 211 2 214 213 20

#2135 64kB 4 16kB 4 256 256 16 8 8 32 1 210 1 10 22 3 210 212 16

#2136 64kB 1 64kB 1 128 96 32 32 8 40 3 211 3 11 211 3 213 213 18

#2137 32kB 4 4kB 1 96 256 16 8 16 16 3 210 2 12 210 2 210 210 16

#2138 64kB 2 64kB 4 96 128 16 8 16 32 1 210 3 12 210 3 212 211 20

#2139 32kB 2 32kB 4 50 96 64 16 8 40 2 214 3 11 22 3 212 210 16

#2140 32kB 4 64kB 1 96 256 32 32 8 32 3 210 2 11 210 1 213 210 18

#2141 32kB 1 16kB 4 50 128 64 64 32 32 3 213 2 12 210 1 213 210 16

#2142 64kB 1 4kB 1 64 96 16 16 16 32 1 213 2 11 22 3 214 213 20

#2143 16kB 2 4kB 1 128 128 64 8 32 16 3 214 3 12 22 3 212 211 18

#2144 32kB 4 4kB 2 96 256 16 8 8 32 2 211 2 12 211 2 214 210 20

#2145 32kB 1 64kB 2 256 256 64 64 32 128 3 213 3 11 210 3 214 211 18 p. 142

#2146 64kB 1 32kB 1 128 128 64 16 32 32 2 214 3 10 210 3 213 210 18

#2147 16kB 4 64kB 1 50 96 16 32 8 64 2 210 2 10 210 2 214 210 18

#2148 32kB 4 32kB 1 96 128 16 32 8 40 3 210 1 12 211 2 213 212 20

#2149 64kB 2 4kB 1 96 96 16 32 16 128 2 210 2 11 22 1 210 212 16

#2150 32kB 1 4kB 1 128 256 32 16 8 32 3 211 3 10 210 1 214 210 16

#2151 16kB 4 32kB 1 256 128 16 8 16 64 1 213 1 11 210 1 213 212 16

#2152 16kB 4 8kB 2 96 96 16 16 64 64 1 212 2 12 210 1 210 211 16

#2153 32kB 1 32kB 4 96 96 16 32 32 16 1 212 2 12 211 3 213 213 18

#2154 64kB 2 64kB 1 256 128 16 64 64 16 2 211 3 11 211 3 214 210 20

#2155 16kB 2 32kB 2 96 128 64 8 8 32 3 212 3 10 211 3 212 213 16

#2156 16kB 4 8kB 2 50 128 16 8 32 32 2 210 3 11 211 3 214 213 16

#2157 64kB 1 16kB 1 50 128 32 64 64 128 2 213 3 12 22 3 212 212 18

#2158 16kB 4 32kB 2 64 96 64 64 16 16 1 211 1 11 210 2 212 213 18

#2159 16kB 4 8kB 2 64 96 64 8 8 32 3 213 2 12 211 1 214 212 18

#2160 64kB 1 4kB 4 256 256 32 32 32 40 3 214 1 11 210 2 212 212 16

#2161 32kB 4 16kB 2 128 128 16 8 64 128 2 213 2 10 210 2 210 213 16

#2162 64kB 2 4kB 1 96 128 16 8 64 32 2 210 1 11 211 3 213 212 20

#2163 32kB 1 16kB 4 64 256 16 8 32 40 3 212 1 11 22 1 211 211 16

#2164 32kB 4 8kB 2 96 256 16 32 64 128 1 210 3 10 211 3 210 212 20

#2165 32kB 1 64kB 4 64 256 64 8 32 128 3 211 3 10 211 3 213 212 18

#2166 16kB 4 8kB 1 64 256 16 64 16 32 3 212 2 11 211 2 210 212 16

#2167 32kB 2 64kB 4 64 96 16 64 16 40 1 214 1 10 22 2 210 210 16

#2168 64kB 4 4kB 1 64 96 64 16 64 32 2 212 1 12 211 2 211 212 20

#2169 64kB 2 8kB 1 256 128 32 8 8 64 3 214 2 10 22 2 210 210 18

#2170 16kB 2 4kB 2 128 128 64 64 64 40 1 212 2 11 211 3 214 213 16

#2171 64kB 1 4kB 4 96 128 64 16 64 128 2 210 3 11 22 2 211 212 20

#2172 32kB 1 32kB 2 128 96 64 16 8 64 3 211 1 11 22 2 212 211 16

#2173 16kB 4 16kB 2 256 128 64 64 16 16 2 214 2 11 210 1 211 213 18

#2174 16kB 1 32kB 1 256 128 32 32 32 40 3 214 3 12 22 2 213 211 18

#2175 64kB 2 8kB 2 64 96 64 64 16 40 2 213 1 11 211 3 212 213 16

#2176 64kB 4 32kB 1 256 128 32 8 8 64 3 211 3 10 211 2 212 212 20

#2177 16kB 1 16kB 1 50 128 16 64 32 32 1 211 3 12 211 2 211 211 20

Continued on next page.

212 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2178 64kB 2 8kB 4 50 128 64 8 32 40 1 211 2 10 22 2 210 211 18

#2179 16kB 4 8kB 4 64 96 64 8 8 40 2 214 1 12 210 2 212 212 16

#2180 64kB 1 16kB 1 50 96 32 8 32 40 3 213 1 10 210 1 212 210 18

#2181 32kB 4 64kB 2 256 128 64 16 16 128 2 213 3 11 22 3 213 211 18

#2182 32kB 2 16kB 2 50 96 32 16 8 16 3 214 2 10 22 1 213 213 16

#2183 16kB 4 8kB 1 128 256 16 64 16 40 3 212 1 11 211 1 214 212 16

#2184 32kB 2 8kB 2 64 256 64 32 64 32 2 214 3 10 22 2 212 213 16

#2185 32kB 4 64kB 1 256 128 32 64 8 40 2 213 3 10 210 2 210 210 20

#2186 64kB 4 32kB 2 128 128 32 32 32 64 2 211 2 11 211 2 211 211 16

#2187 32kB 2 32kB 1 128 128 32 32 8 40 3 212 3 12 210 1 211 212 16

#2188 32kB 4 8kB 1 128 128 64 8 32 16 2 214 3 10 210 3 214 213 18

#2189 16kB 1 32kB 1 128 256 32 32 32 40 2 210 2 10 210 2 210 211 16

#2190 64kB 4 4kB 1 128 96 32 8 16 32 1 210 3 11 211 3 213 212 16

#2191 16kB 1 4kB 1 128 128 16 32 32 32 3 210 3 11 22 3 213 210 20

#2192 32kB 4 8kB 1 256 128 32 64 64 32 2 212 3 11 211 2 213 212 20

#2193 16kB 4 16kB 1 128 128 32 64 16 40 3 210 2 12 210 3 213 210 18

#2194 16kB 2 4kB 2 256 96 16 64 64 32 3 214 3 10 210 1 211 212 16

#2195 32kB 4 4kB 4 128 96 64 8 64 128 3 212 3 12 22 2 213 212 20

#2196 64kB 2 4kB 1 128 256 64 8 16 32 3 212 1 11 210 2 211 210 20

#2197 64kB 2 16kB 4 64 128 32 64 16 128 3 211 1 11 211 2 213 211 16

#2198 16kB 1 64kB 2 50 256 16 32 8 32 3 212 3 12 22 1 210 213 20

#2199 32kB 2 8kB 1 256 96 64 64 8 16 1 210 2 10 210 1 214 212 16

#2200 16kB 2 32kB 1 128 256 64 16 8 128 2 212 3 11 210 2 213 210 20

#2201 16kB 1 16kB 1 64 128 32 64 32 40 1 214 1 12 210 1 210 212 16

#2202 16kB 1 16kB 4 50 96 16 64 64 64 2 214 3 11 210 1 214 211 16

#2203 16kB 1 4kB 1 64 96 16 16 64 40 1 214 3 11 211 1 212 210 16

#2204 16kB 4 4kB 2 50 128 32 16 16 16 2 212 3 11 22 2 210 213 20

#2205 16kB 4 32kB 2 256 96 16 32 8 40 1 212 3 12 211 3 213 211 20

#2206 64kB 2 8kB 4 256 128 32 16 8 40 1 210 2 12 22 1 214 210 16

#2207 64kB 2 16kB 1 96 256 16 16 8 40 1 214 2 11 211 2 213 210 18

#2208 32kB 1 64kB 1 50 96 32 32 32 32 2 213 1 10 211 2 211 213 16

#2209 32kB 4 64kB 2 96 128 64 64 8 40 2 214 2 12 22 2 211 210 16

#2210 16kB 2 64kB 4 50 96 16 32 16 32 1 214 1 10 22 3 214 210 18

#2211 32kB 1 16kB 2 128 256 64 64 64 16 2 213 2 11 211 3 214 210 16

#2212 32kB 1 64kB 4 96 128 16 16 8 64 3 214 1 12 22 2 211 213 20

#2213 16kB 4 8kB 2 128 96 16 64 32 128 2 210 1 12 210 1 212 211 20

#2214 16kB 1 16kB 4 50 96 64 64 64 128 3 212 3 11 211 3 210 213 18

#2215 16kB 4 32kB 1 256 256 32 32 8 40 1 210 3 11 22 1 211 212 16

#2216 64kB 1 32kB 1 96 128 16 64 32 40 2 214 3 11 211 3 212 211 18

#2217 16kB 2 64kB 2 50 128 32 16 16 64 2 213 1 11 211 3 214 213 20

#2218 32kB 2 64kB 1 256 128 32 8 32 32 3 211 2 11 22 1 213 213 18

#2219 64kB 2 32kB 1 128 256 64 64 8 32 3 210 3 10 210 3 211 211 20

#2220 16kB 4 64kB 4 64 96 32 8 16 64 1 210 2 11 210 2 214 210 20

#2221 64kB 4 16kB 1 128 128 32 32 64 32 1 213 1 11 22 1 211 211 16

#2222 32kB 1 8kB 2 256 96 16 32 32 64 1 212 1 12 22 2 211 211 20

#2223 16kB 2 4kB 4 96 128 16 16 32 128 3 211 3 11 210 1 210 211 20

#2224 32kB 1 64kB 2 256 128 16 32 32 32 1 212 1 10 22 3 210 210 16

#2225 16kB 1 16kB 4 128 256 16 16 32 32 1 214 3 10 210 3 213 211 20

#2226 16kB 1 32kB 4 64 96 16 8 64 40 3 213 1 12 210 2 212 211 16

#2227 32kB 2 8kB 2 64 128 32 16 32 32 1 211 1 11 22 3 212 212 18

#2228 32kB 2 4kB 1 64 128 64 16 32 64 2 214 3 12 211 1 210 213 20

#2229 32kB 4 4kB 2 50 128 64 16 8 32 2 213 2 12 210 3 210 210 16

#2230 64kB 2 8kB 1 256 128 32 32 32 64 3 210 3 11 22 1 214 212 16

#2231 32kB 1 16kB 2 64 256 64 64 32 64 3 214 1 10 22 2 211 211 20

#2232 32kB 2 8kB 2 256 128 32 8 32 64 3 212 1 12 210 2 211 210 16

#2233 16kB 1 32kB 2 128 256 32 8 8 128 1 211 2 12 211 1 210 212 20

#2234 16kB 2 4kB 4 96 256 16 8 16 40 3 214 1 11 210 2 210 211 16

#2235 32kB 4 32kB 4 128 96 64 8 64 16 3 214 2 10 22 1 212 210 18

#2236 64kB 2 4kB 2 256 96 16 8 32 16 1 210 1 11 210 2 212 212 20

#2237 32kB 4 16kB 2 96 256 32 64 64 40 3 211 2 12 210 2 212 213 16

#2238 16kB 2 32kB 2 256 96 16 8 16 128 3 214 2 12 210 2 210 210 20

#2239 64kB 4 64kB 1 256 256 64 16 64 16 2 210 2 10 22 1 213 211 18

#2240 64kB 2 16kB 1 128 96 64 64 32 32 2 211 3 11 22 2 210 212 20

#2241 16kB 2 4kB 4 50 128 64 16 8 128 1 213 2 11 210 3 210 211 18

#2242 32kB 1 16kB 2 50 128 32 8 16 64 2 212 2 10 210 3 213 212 18

#2243 16kB 2 4kB 4 64 256 64 16 32 64 3 211 1 11 210 1 210 213 16

#2244 16kB 1 32kB 1 50 256 16 8 16 40 3 210 2 11 211 2 214 211 18

Continued on next page.

Appendix A. Design Space 213

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2245 32kB 1 8kB 1 96 96 64 32 8 64 3 210 2 12 210 2 213 213 16

#2246 64kB 2 16kB 4 256 128 64 8 8 16 1 213 2 12 210 1 214 213 20

#2247 16kB 4 16kB 4 128 96 32 32 16 64 1 211 3 11 210 1 214 212 20

#2248 64kB 4 32kB 4 128 96 16 32 8 128 1 210 2 12 211 1 211 212 16

#2249 32kB 4 64kB 2 50 96 32 64 32 32 2 214 3 11 22 1 212 213 18

#2250 32kB 2 8kB 4 50 128 32 16 32 40 2 210 1 12 22 3 212 212 16

#2251 64kB 4 16kB 4 64 96 64 16 32 16 1 214 2 10 211 2 213 212 16

#2252 32kB 2 4kB 4 96 96 16 64 16 64 1 214 3 10 22 3 210 211 18

#2253 16kB 2 32kB 2 50 256 32 16 64 16 3 212 2 11 22 2 210 212 16

#2254 16kB 2 4kB 4 64 128 16 64 16 32 3 214 3 11 22 2 214 213 20

#2255 32kB 2 8kB 1 96 128 16 8 16 32 3 210 1 11 22 2 210 213 18

#2256 32kB 1 4kB 1 64 96 16 32 16 64 2 211 1 10 210 3 210 212 20

#2257 32kB 1 8kB 4 128 128 64 16 64 128 3 210 2 12 22 3 210 212 18

#2258 16kB 2 4kB 1 256 96 32 32 64 64 2 210 2 11 210 3 214 213 18

#2259 32kB 1 8kB 2 256 128 16 16 8 32 3 213 3 11 22 1 210 211 18

#2260 32kB 4 8kB 1 64 128 64 32 64 40 3 214 3 10 22 1 212 213 16

#2261 32kB 2 4kB 2 96 256 16 8 32 64 3 210 1 10 210 3 212 210 16

#2262 32kB 2 4kB 4 64 128 32 64 64 64 3 210 1 10 211 2 213 211 18

#2263 32kB 1 64kB 4 96 128 32 8 8 40 3 213 3 12 22 1 212 211 16

#2264 64kB 4 64kB 1 128 256 32 64 64 40 1 211 2 11 210 2 212 211 16

#2265 16kB 4 8kB 1 256 128 16 8 16 40 3 210 3 11 22 1 214 211 18

#2266 32kB 4 4kB 1 128 256 16 32 64 128 3 211 2 11 210 3 211 210 16

#2267 32kB 1 32kB 4 96 96 16 16 8 128 3 212 3 12 22 1 211 213 16

#2268 16kB 1 8kB 4 64 96 64 16 8 32 3 214 3 12 210 3 214 212 20

#2269 16kB 1 8kB 1 50 96 32 16 16 64 1 211 2 12 22 2 211 212 18

#2270 64kB 1 32kB 1 96 96 32 8 16 32 2 211 3 11 210 2 214 211 16

#2271 32kB 1 16kB 1 50 128 16 32 8 16 3 213 2 12 22 1 211 210 18

#2272 32kB 2 8kB 1 50 128 32 64 16 16 1 212 2 11 211 3 212 211 16

#2273 16kB 1 16kB 2 128 128 16 32 8 16 3 213 1 12 210 1 213 213 16

#2274 64kB 4 32kB 1 64 96 32 32 8 128 2 214 2 11 210 2 210 210 20

#2275 32kB 2 4kB 2 50 128 16 32 8 16 1 211 3 10 210 3 210 211 16

#2276 32kB 2 8kB 4 50 96 32 8 8 64 3 214 1 11 211 1 210 210 16

#2277 32kB 2 4kB 1 128 256 64 8 32 32 3 210 3 10 211 3 213 211 16

#2278 16kB 1 64kB 4 50 128 16 8 32 40 2 210 1 11 210 2 213 210 16

#2279 64kB 1 4kB 2 128 96 64 32 16 32 2 212 3 10 22 1 214 212 20

#2280 16kB 1 64kB 4 50 256 64 32 32 64 2 212 1 11 210 3 210 211 18

#2281 32kB 1 4kB 2 50 96 64 8 32 16 2 213 2 10 211 3 211 211 16

#2282 64kB 1 64kB 4 96 256 32 32 64 16 2 210 3 11 210 1 211 212 16

#2283 16kB 1 64kB 4 96 128 64 64 64 64 2 213 1 11 211 1 211 211 20

#2284 64kB 2 64kB 1 64 96 64 16 64 40 1 212 3 10 211 2 211 210 16

#2285 32kB 4 8kB 2 128 128 32 64 8 32 1 213 3 10 210 3 210 213 16

#2286 32kB 1 64kB 4 50 128 16 8 64 64 3 210 2 10 210 1 212 212 16

#2287 32kB 4 32kB 4 96 96 64 64 16 16 2 214 2 11 22 2 212 210 18

#2288 16kB 1 64kB 1 64 128 16 32 32 16 1 210 2 10 211 2 214 211 20 p. 142

#2289 16kB 4 64kB 2 256 96 64 16 16 40 3 214 2 11 22 2 211 212 18

#2290 64kB 2 8kB 4 256 256 16 8 64 64 3 210 1 11 211 1 211 210 16

#2291 16kB 4 64kB 4 64 96 64 32 8 32 3 210 3 11 210 1 212 211 20

#2292 32kB 2 8kB 1 96 128 32 16 32 64 2 214 2 11 22 2 210 210 16

#2293 32kB 1 16kB 4 128 96 64 64 8 40 1 213 3 11 210 2 212 213 18

#2294 16kB 2 8kB 4 128 96 16 16 8 32 1 211 2 10 211 3 211 212 18

#2295 64kB 2 8kB 4 50 128 64 16 64 16 1 214 1 10 22 2 212 212 20

#2296 32kB 4 8kB 4 50 256 64 32 32 64 1 214 2 11 211 2 214 213 20

#2297 64kB 1 64kB 4 96 256 32 64 64 16 3 214 2 11 210 1 214 212 20

#2298 32kB 1 64kB 4 96 256 32 16 64 64 1 211 3 11 211 2 214 213 16

#2299 16kB 2 32kB 2 128 256 16 8 16 40 3 210 1 11 210 2 213 212 18

#2300 32kB 4 32kB 2 128 128 64 64 32 128 1 214 3 12 210 2 212 211 20

#2301 32kB 2 32kB 4 256 256 32 32 16 16 3 213 2 12 22 2 211 211 16

#2302 16kB 2 32kB 2 256 96 32 64 8 40 3 213 2 10 22 2 210 211 20

#2303 16kB 4 16kB 4 256 128 64 8 64 128 3 210 2 12 211 1 210 211 20

#2304 16kB 4 16kB 4 256 256 64 32 16 128 2 213 1 10 22 1 213 210 16

#2305 64kB 1 16kB 4 128 128 64 64 64 40 3 210 1 11 211 2 214 210 20

#2306 32kB 1 8kB 4 50 256 16 64 32 128 3 211 3 12 210 1 211 210 20

#2307 32kB 2 64kB 1 64 256 16 8 64 40 3 211 2 11 210 1 213 211 20

#2308 32kB 2 8kB 4 128 96 16 16 64 64 2 214 2 12 211 3 213 211 18

#2309 32kB 1 4kB 1 96 128 16 8 16 32 3 214 3 10 210 3 210 213 20

#2310 64kB 4 16kB 2 128 256 16 16 16 128 2 210 3 12 211 1 214 210 18

#2311 64kB 1 8kB 2 50 128 16 16 8 32 2 214 3 12 211 2 210 210 18

Continued on next page.

214 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2312 32kB 4 8kB 4 50 256 64 32 32 64 3 212 2 12 210 1 213 212 18

#2313 16kB 1 16kB 2 96 96 32 8 8 32 1 214 1 11 211 3 213 212 20

#2314 64kB 4 32kB 4 256 96 16 64 8 128 1 212 1 11 22 2 213 212 16

#2315 16kB 2 64kB 1 64 256 32 16 64 32 1 211 1 11 211 2 210 212 16

#2316 32kB 1 32kB 4 128 128 32 8 64 64 3 213 1 11 211 3 212 210 16

#2317 16kB 1 8kB 2 96 256 32 32 16 32 1 210 2 10 210 2 212 213 20

#2318 16kB 2 4kB 4 50 96 64 16 64 128 1 210 3 10 211 3 211 212 20

#2319 16kB 1 16kB 1 96 96 32 32 32 40 1 213 1 12 22 1 214 212 18

#2320 32kB 4 8kB 2 128 256 32 8 16 64 1 214 3 10 22 1 212 212 20

#2321 32kB 2 16kB 1 64 256 64 8 64 64 2 212 2 11 211 2 214 213 20

#2322 32kB 2 32kB 4 96 96 16 8 64 64 1 214 3 11 211 2 212 210 18

#2323 16kB 4 32kB 1 50 128 64 8 8 32 2 212 3 12 210 2 212 210 20

#2324 16kB 2 8kB 1 96 96 64 64 32 128 3 211 2 11 211 3 214 210 18

#2325 16kB 2 32kB 4 50 96 32 16 8 32 3 211 3 10 211 1 212 212 16

#2326 32kB 1 16kB 2 50 128 32 64 16 32 1 213 3 12 211 1 214 210 18

#2327 64kB 2 8kB 1 256 96 16 16 32 40 3 214 1 10 211 1 213 213 18

#2328 64kB 1 4kB 1 96 128 64 32 64 64 2 212 1 10 22 3 214 212 20

#2329 16kB 1 8kB 4 256 96 32 32 16 128 1 212 2 12 211 1 212 212 16

#2330 32kB 2 64kB 1 64 256 16 8 16 128 2 212 3 11 211 1 211 211 16

#2331 32kB 4 64kB 1 128 128 32 16 16 128 2 212 1 12 22 1 211 212 20

#2332 32kB 2 32kB 2 64 256 32 16 64 40 2 212 2 11 210 3 213 210 18

#2333 32kB 4 8kB 2 256 256 16 64 32 64 1 210 1 12 22 3 211 213 16

#2334 16kB 4 16kB 4 96 128 16 8 32 40 3 210 3 11 210 2 211 210 20

#2335 16kB 2 32kB 1 96 96 32 32 16 128 1 210 1 11 210 3 212 213 20

#2336 64kB 4 16kB 1 96 96 64 8 16 40 3 214 3 12 22 3 210 212 20

#2337 32kB 2 4kB 2 256 128 16 64 64 32 1 212 1 10 22 3 214 212 18

#2338 32kB 1 16kB 1 256 96 32 32 16 40 3 213 2 10 211 2 210 211 20

#2339 32kB 2 64kB 1 64 96 16 64 8 16 1 210 2 11 210 3 212 210 16

#2340 32kB 1 4kB 4 96 96 32 16 16 16 3 214 1 12 22 3 214 213 18

#2341 32kB 2 32kB 2 256 128 64 16 64 32 1 211 1 10 211 3 212 211 18

#2342 64kB 1 8kB 4 128 96 16 8 8 128 1 214 3 10 22 3 214 211 20

#2343 16kB 4 8kB 4 128 256 16 32 8 64 1 213 1 10 22 2 212 210 18

#2344 64kB 4 8kB 4 128 256 16 16 16 16 1 214 1 10 210 3 211 211 18

#2345 16kB 1 32kB 1 96 256 16 8 32 64 3 212 3 12 22 2 210 212 18

#2346 64kB 2 8kB 4 64 128 16 16 32 40 1 213 3 12 22 3 210 213 18

#2347 32kB 2 16kB 4 96 128 16 32 32 64 2 211 1 11 211 3 213 213 18

#2348 16kB 2 4kB 1 96 128 16 64 64 64 2 210 1 10 22 2 213 211 20

#2349 16kB 4 4kB 2 50 96 32 32 8 32 2 212 3 10 22 3 210 213 16

#2350 64kB 1 16kB 4 64 96 64 64 64 16 2 213 1 10 210 3 211 213 20

#2351 64kB 2 16kB 1 256 128 16 8 8 40 2 214 1 12 210 2 212 212 20

#2352 32kB 2 16kB 2 96 96 16 64 16 128 1 210 3 12 211 2 213 213 18

#2353 64kB 1 16kB 4 256 256 64 8 64 16 1 213 1 12 22 3 210 212 18

#2354 16kB 4 32kB 2 50 128 64 8 16 40 2 212 3 10 211 2 213 211 18

#2355 32kB 1 64kB 4 50 96 16 32 8 128 3 210 2 10 211 3 212 210 16

#2356 16kB 4 4kB 2 64 128 64 64 32 16 3 211 1 12 211 2 214 211 18

#2357 32kB 2 64kB 2 128 128 16 16 64 128 2 212 3 12 210 1 210 210 16

#2358 32kB 4 64kB 2 64 128 64 64 64 32 2 214 1 10 22 3 211 211 16

#2359 32kB 2 32kB 1 50 96 16 16 32 40 3 212 2 10 210 2 214 213 16

#2360 32kB 2 32kB 2 96 128 16 64 16 128 2 214 2 11 210 1 210 210 16

#2361 32kB 4 16kB 1 256 128 32 32 32 64 3 211 3 11 22 3 214 211 18

#2362 16kB 1 64kB 1 128 96 64 32 8 128 3 214 3 10 211 1 210 213 18

#2363 16kB 1 64kB 4 64 256 64 8 64 16 1 210 1 10 211 2 211 212 20

#2364 16kB 1 32kB 1 64 96 32 8 8 16 1 210 1 12 22 3 213 213 20

#2365 32kB 2 16kB 2 256 256 64 32 32 128 3 212 3 12 210 1 213 213 20

#2366 16kB 4 16kB 4 128 96 64 16 16 16 3 212 1 11 210 3 211 213 16

#2367 16kB 2 64kB 1 96 128 16 64 8 40 2 210 3 10 211 2 214 210 16 p. 79

#2368 32kB 1 16kB 4 64 96 16 16 64 16 2 214 2 10 211 3 214 211 20

#2369 32kB 4 4kB 1 96 128 32 32 16 128 1 214 3 12 211 3 211 211 18

#2370 16kB 2 64kB 1 256 256 64 32 16 16 2 214 1 12 22 3 211 213 20

#2371 32kB 1 4kB 1 64 96 32 8 32 128 3 210 1 11 210 3 212 211 18

#2372 16kB 1 8kB 4 256 256 64 32 32 32 2 214 3 12 211 2 214 213 16

#2373 32kB 2 64kB 1 128 128 16 32 16 40 2 210 3 12 22 3 214 210 20

#2374 64kB 1 8kB 4 64 128 32 16 64 32 1 211 2 10 211 1 211 211 16

#2375 64kB 1 4kB 2 96 256 64 64 32 16 1 213 1 11 22 1 210 211 20

#2376 16kB 4 16kB 2 96 128 32 16 16 32 2 212 2 11 210 1 214 211 18

#2377 16kB 1 64kB 2 64 96 64 8 8 32 1 211 1 12 210 1 214 210 20

#2378 64kB 1 4kB 2 128 96 16 16 32 32 1 211 2 11 211 2 210 210 18

Continued on next page.

Appendix A. Design Space 215

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2379 64kB 1 16kB 2 256 128 64 8 64 16 2 210 1 10 210 1 214 210 18

#2380 32kB 1 32kB 1 128 128 16 16 8 16 2 210 3 10 22 3 213 211 20

#2381 64kB 2 32kB 1 256 256 32 32 32 128 2 214 2 10 211 2 211 212 20

#2382 16kB 1 32kB 1 96 128 32 8 8 128 2 214 3 11 211 3 210 210 20

#2383 16kB 1 8kB 2 128 96 32 16 16 64 1 212 2 11 211 3 213 212 20

#2384 64kB 1 8kB 1 96 128 32 64 32 128 2 210 3 10 22 2 214 210 16

#2385 32kB 4 16kB 2 256 128 64 8 32 40 3 211 1 11 22 1 214 210 18

#2386 64kB 2 8kB 4 96 96 64 8 8 128 1 214 1 11 210 2 213 210 18

#2387 64kB 2 64kB 2 96 128 32 32 32 40 3 210 3 12 210 3 214 210 20

#2388 32kB 4 64kB 1 256 96 32 16 32 64 3 211 2 10 211 2 211 210 20

#2389 32kB 1 16kB 2 64 128 64 64 8 32 3 212 2 10 211 1 210 213 18

#2390 32kB 2 64kB 1 256 128 64 32 16 64 3 213 1 10 210 3 210 212 16

#2391 64kB 2 8kB 2 256 128 16 8 32 40 1 213 2 11 211 2 212 212 16

#2392 16kB 1 8kB 1 50 96 32 8 64 128 1 212 3 11 211 1 210 213 18

#2393 64kB 4 8kB 4 128 128 16 16 32 128 1 213 1 12 22 1 211 210 18

#2394 64kB 2 64kB 1 96 256 32 8 64 64 1 214 2 12 211 1 211 212 20

#2395 64kB 1 16kB 4 50 96 32 8 8 16 1 214 1 10 22 1 211 212 16

#2396 64kB 1 16kB 1 256 256 16 32 32 40 1 211 1 10 22 2 213 210 18

#2397 16kB 2 16kB 2 64 96 64 64 64 128 3 210 1 11 210 2 212 212 16

#2398 16kB 1 4kB 1 50 96 32 64 8 128 2 210 3 10 211 2 212 213 16

#2399 32kB 2 4kB 4 64 256 32 16 16 40 1 210 1 12 211 1 210 211 20

#2400 16kB 2 16kB 2 64 128 32 16 64 16 1 214 1 12 22 1 210 210 18

#2401 16kB 2 8kB 4 50 96 16 8 64 64 2 211 1 12 210 1 211 212 16

#2402 64kB 1 16kB 4 50 256 16 32 32 64 1 214 1 11 22 3 210 213 16

#2403 16kB 2 4kB 4 96 128 32 64 64 128 2 213 1 11 22 3 212 211 16

#2404 16kB 2 4kB 2 256 96 16 8 32 16 2 214 2 10 211 1 211 213 18

#2405 32kB 1 64kB 1 50 256 64 64 64 40 3 214 1 10 22 1 210 210 18

#2406 16kB 1 64kB 1 64 256 64 8 32 64 2 211 3 10 211 3 211 212 20

#2407 32kB 2 32kB 2 256 128 64 16 8 32 1 211 2 10 211 1 214 213 18

#2408 32kB 1 8kB 2 96 256 64 64 8 40 3 213 2 10 210 3 214 212 20

#2409 64kB 4 16kB 4 96 128 16 8 8 32 2 214 2 11 210 2 211 211 18

#2410 64kB 2 4kB 2 50 256 32 8 64 128 2 213 3 10 210 1 214 210 16

#2411 32kB 1 16kB 4 256 96 64 32 64 64 3 213 2 10 211 3 211 210 16

#2412 32kB 2 4kB 2 256 96 32 64 16 64 2 212 3 10 211 1 213 213 20

#2413 32kB 2 64kB 2 256 96 16 64 32 32 3 210 1 10 211 3 211 210 18

#2414 64kB 1 4kB 2 96 128 32 64 8 40 1 212 1 10 211 1 210 210 18

#2415 64kB 2 4kB 1 256 96 64 64 8 64 2 213 1 11 22 1 214 211 20

#2416 16kB 2 16kB 1 96 128 16 32 64 40 3 211 1 11 211 2 211 210 16 p. 81

#2417 16kB 2 32kB 1 64 128 16 16 32 64 1 214 2 12 211 3 211 211 18 p. 142

#2418 32kB 1 32kB 1 50 256 16 64 64 128 3 210 1 11 22 3 214 211 18

#2419 32kB 1 8kB 2 50 96 16 64 8 64 3 213 2 12 210 3 210 210 16

#2420 32kB 2 64kB 1 64 96 16 64 16 32 2 213 2 12 211 3 214 211 16

#2421 64kB 4 16kB 2 64 96 16 8 16 128 2 212 1 11 210 3 210 211 20

#2422 32kB 1 64kB 2 64 96 64 8 64 128 3 212 2 11 210 3 210 213 16

#2423 16kB 1 8kB 4 256 128 64 64 32 32 1 213 1 12 210 3 212 213 16

#2424 64kB 4 64kB 1 50 128 32 16 32 40 1 213 3 12 211 2 213 213 16

#2425 16kB 4 32kB 4 128 128 32 16 8 16 2 211 2 10 210 3 214 212 20

#2426 16kB 2 64kB 1 128 128 32 16 8 64 1 212 1 11 22 2 210 212 16

#2427 64kB 1 8kB 4 128 96 64 32 32 16 1 210 3 11 211 3 210 213 18

#2428 32kB 1 32kB 1 128 256 64 16 32 16 1 210 1 10 22 3 213 213 18

#2429 16kB 4 16kB 4 128 128 64 16 16 16 1 210 2 11 211 1 210 211 18

#2430 64kB 1 8kB 1 50 128 64 8 64 64 1 210 3 12 211 1 213 211 18

#2431 16kB 2 32kB 4 96 256 64 64 32 16 3 214 2 12 22 1 210 211 18

#2432 64kB 4 16kB 2 50 96 32 32 32 40 1 214 2 12 22 3 210 210 16

#2433 64kB 1 16kB 2 128 96 32 8 8 40 3 214 1 10 211 2 214 210 18

#2434 16kB 1 64kB 4 128 256 16 16 16 16 1 211 1 10 22 3 210 212 20

#2435 64kB 1 64kB 2 64 256 64 8 32 40 1 213 2 10 22 3 211 213 16

#2436 64kB 2 8kB 2 64 96 32 32 64 16 2 212 3 11 210 3 213 212 16

#2437 16kB 2 4kB 1 128 96 16 64 16 16 2 211 2 11 210 1 211 213 20

#2438 32kB 4 4kB 2 128 128 64 64 8 64 1 211 3 11 211 2 212 213 20

#2439 64kB 1 64kB 4 128 128 16 8 8 32 2 212 3 11 22 3 213 212 20

#2440 32kB 4 4kB 4 50 96 16 16 8 64 3 211 1 12 211 2 211 211 16

#2441 32kB 2 32kB 1 128 128 16 64 16 16 1 213 1 11 22 2 213 212 20

#2442 32kB 4 8kB 1 256 96 16 16 64 128 1 210 2 12 22 2 210 212 20

#2443 32kB 1 16kB 1 96 256 16 32 64 64 2 212 3 12 22 3 214 213 18

#2444 64kB 4 32kB 4 256 256 64 32 16 16 3 210 3 11 22 2 214 213 16

#2445 16kB 2 16kB 2 256 128 32 64 32 16 3 210 1 12 22 3 214 212 18

Continued on next page.

216 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2446 16kB 2 4kB 2 50 128 32 32 8 64 2 211 2 11 210 2 212 210 16

#2447 16kB 2 4kB 4 64 128 16 32 16 32 1 212 1 10 211 1 212 212 16

#2448 32kB 4 16kB 1 96 96 32 8 8 128 1 210 3 12 22 2 210 211 20

#2449 32kB 2 16kB 2 128 128 32 64 8 64 3 210 2 12 22 2 213 212 20

#2450 16kB 4 4kB 2 64 128 16 8 16 64 3 210 3 11 22 3 212 213 20

#2451 32kB 2 4kB 2 64 128 64 8 32 40 1 211 3 11 22 3 214 211 16

#2452 16kB 1 16kB 1 128 96 64 8 8 64 1 210 3 12 210 1 214 213 18

#2453 16kB 1 8kB 2 256 96 32 8 16 128 3 212 1 10 211 3 213 210 20

#2454 16kB 2 64kB 1 256 96 64 32 32 40 3 212 3 12 210 3 212 211 16

#2455 32kB 1 64kB 2 50 128 16 32 64 128 1 213 1 12 210 2 210 213 16

#2456 64kB 2 64kB 1 50 96 32 16 64 128 2 213 2 10 22 1 212 211 18

#2457 64kB 2 32kB 2 256 256 16 16 32 64 3 211 1 12 211 1 212 210 20

#2458 32kB 4 64kB 4 256 256 16 16 16 32 1 214 1 10 22 1 212 210 16

#2459 32kB 1 4kB 2 256 96 32 16 8 64 3 212 2 10 210 3 213 213 16

#2460 32kB 2 8kB 2 96 128 32 16 32 128 1 211 2 11 22 3 213 211 18

#2461 16kB 2 32kB 4 128 128 16 32 64 128 1 212 1 11 210 3 214 211 16

#2462 32kB 1 8kB 2 96 96 16 16 16 16 2 212 2 11 210 2 212 210 16

#2463 64kB 2 4kB 1 256 256 16 64 16 40 3 212 1 12 211 3 211 213 16

#2464 32kB 2 64kB 4 50 128 32 64 8 16 2 211 2 11 22 2 213 210 16

#2465 32kB 2 4kB 4 50 128 32 64 8 40 2 213 1 11 22 3 212 213 16

#2466 64kB 4 4kB 1 64 96 32 64 8 32 1 213 1 12 211 1 211 213 16

#2467 16kB 2 32kB 2 64 96 64 64 16 32 1 213 3 10 22 2 213 212 18

#2468 64kB 2 32kB 2 50 128 64 8 16 128 2 214 2 11 22 1 214 212 16

#2469 64kB 1 16kB 2 128 256 32 32 16 64 2 212 1 10 210 3 214 213 18

#2470 32kB 1 64kB 2 64 96 16 16 64 16 2 211 1 11 210 3 212 212 20

#2471 64kB 2 16kB 2 64 256 16 16 64 40 3 213 1 11 211 2 214 213 16

#2472 16kB 4 8kB 1 96 128 64 64 64 32 2 210 1 11 210 3 211 210 16

#2473 16kB 4 4kB 1 64 96 64 16 64 40 1 212 1 11 22 3 210 213 16

#2474 32kB 1 4kB 2 64 128 16 16 16 16 2 214 2 10 210 1 210 213 20

#2475 64kB 4 4kB 1 96 96 32 8 8 16 3 212 1 11 22 2 210 212 18

#2476 64kB 4 32kB 2 50 128 32 16 16 128 3 212 1 10 210 1 212 213 18

#2477 16kB 4 64kB 2 64 256 64 64 8 128 3 212 1 11 211 2 214 210 16

#2478 32kB 4 8kB 4 64 96 32 64 64 40 1 211 1 11 210 1 211 212 20

#2479 64kB 4 8kB 4 256 256 64 64 8 128 1 212 3 11 22 1 214 213 18

#2480 32kB 2 64kB 1 96 96 32 16 32 32 3 214 2 11 210 2 211 211 18

#2481 16kB 2 4kB 1 50 256 32 16 16 128 3 212 1 10 211 2 213 211 18

#2482 16kB 4 32kB 1 256 256 64 32 16 128 2 210 3 11 210 1 212 210 20

#2483 32kB 1 16kB 2 128 96 32 64 64 64 2 212 2 11 22 1 212 213 16

#2484 16kB 1 64kB 1 50 128 16 32 16 64 3 211 3 11 210 1 211 212 20

#2485 32kB 1 4kB 4 128 128 16 64 16 40 3 213 1 12 211 2 210 211 18

#2486 64kB 1 64kB 4 128 96 32 16 32 64 1 210 1 11 211 3 213 210 20

#2487 32kB 1 64kB 4 96 128 16 16 32 64 2 212 3 11 211 1 213 211 18

#2488 16kB 4 32kB 1 128 128 16 8 32 64 1 212 2 11 211 3 213 210 16

#2489 64kB 4 16kB 4 128 256 64 16 64 64 2 211 1 11 211 1 214 212 20

#2490 64kB 2 64kB 1 64 256 32 32 8 128 3 210 2 11 211 2 212 210 16

#2491 16kB 4 32kB 4 64 256 32 8 16 40 2 211 2 10 22 3 210 211 18

#2492 16kB 1 32kB 4 256 128 64 32 16 40 1 212 1 11 22 2 211 212 16

#2493 32kB 1 8kB 4 50 256 32 16 32 128 2 211 3 11 210 1 212 212 16

#2494 64kB 2 64kB 2 64 96 64 64 8 16 1 210 3 11 22 3 211 211 16

#2495 64kB 1 64kB 4 50 256 16 64 16 32 1 214 2 12 211 3 210 211 16

#2496 64kB 1 8kB 1 128 128 32 64 32 32 1 213 2 12 22 1 214 210 20

#2497 32kB 4 32kB 1 64 256 64 8 16 40 2 212 2 11 210 1 214 210 16

#2498 32kB 4 32kB 4 64 128 16 32 16 128 2 212 3 12 22 3 211 212 20

#2499 32kB 2 32kB 4 256 128 16 8 8 32 1 213 2 11 210 3 212 213 16

#2500 32kB 1 4kB 1 256 96 64 32 64 16 3 214 3 10 210 1 213 210 20

#2501 64kB 4 16kB 1 96 96 32 64 64 32 3 214 2 10 22 2 212 212 18

#2502 64kB 4 32kB 4 64 256 16 8 32 128 2 211 1 10 210 1 212 213 16

#2503 64kB 2 32kB 2 128 128 32 32 32 64 3 212 3 12 22 3 213 213 20 p. 143

#2504 32kB 1 32kB 2 50 96 32 8 64 128 1 212 2 11 22 1 210 213 16

#2505 32kB 2 8kB 4 64 96 32 8 8 128 3 214 2 12 22 1 211 211 20

#2506 64kB 2 4kB 1 50 96 64 64 64 40 3 210 2 12 211 3 210 210 20

#2507 64kB 1 8kB 1 50 128 64 64 8 32 1 214 3 12 210 1 212 213 20

#2508 64kB 4 4kB 1 96 96 32 32 32 16 3 212 2 10 210 3 211 211 20

#2509 64kB 1 64kB 4 256 128 16 64 8 128 1 213 3 11 211 3 212 210 20

#2510 16kB 1 32kB 2 256 256 32 64 16 64 2 210 2 10 22 3 214 213 16

#2511 16kB 2 32kB 1 50 128 32 64 32 32 1 210 1 10 22 3 213 211 20

#2512 16kB 1 32kB 2 64 96 64 8 8 32 1 211 1 12 210 3 213 210 18

Continued on next page.

Appendix A. Design Space 217

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2513 32kB 4 64kB 4 96 96 32 8 16 32 1 213 2 12 211 1 212 211 20

#2514 64kB 4 64kB 4 96 256 64 8 8 40 1 214 2 11 211 2 213 210 20

#2515 64kB 2 4kB 2 256 256 32 32 32 64 1 213 3 12 22 2 212 210 18

#2516 32kB 2 32kB 4 256 96 32 64 8 128 2 210 1 12 211 2 212 212 16

#2517 32kB 4 4kB 4 256 256 16 16 16 128 2 211 2 10 22 3 212 210 18

#2518 32kB 4 16kB 4 96 128 32 32 32 64 1 210 3 10 210 1 211 210 18

#2519 16kB 4 8kB 1 96 128 32 64 8 40 1 210 3 11 210 1 214 213 20

#2520 16kB 4 64kB 1 64 128 16 32 32 40 3 214 1 12 211 3 211 211 16

#2521 32kB 4 4kB 1 64 256 32 64 16 32 1 213 3 12 211 1 210 210 16

#2522 64kB 4 32kB 1 256 128 32 8 64 128 1 210 3 10 210 3 211 213 16

#2523 32kB 2 16kB 1 64 256 32 8 8 64 1 213 2 12 210 2 210 213 16

#2524 16kB 2 8kB 2 64 128 16 16 32 32 1 214 2 11 22 2 210 210 18 p. 79

#2525 16kB 1 8kB 2 96 128 32 16 16 32 1 210 1 11 211 3 210 213 18 p. 143

#2526 64kB 2 64kB 2 64 96 16 8 16 40 1 211 2 10 22 3 211 213 18

#2527 16kB 4 32kB 2 96 256 64 8 16 40 2 210 3 10 211 1 214 213 20

#2528 16kB 4 16kB 1 50 96 16 16 16 128 3 211 1 11 210 1 212 211 16

#2529 16kB 2 64kB 1 128 256 16 8 8 16 2 213 3 12 210 3 213 211 16

#2530 64kB 2 16kB 4 96 256 32 16 64 64 3 211 3 12 210 2 212 210 16

#2531 32kB 2 32kB 2 256 256 16 8 8 128 2 213 3 12 211 2 210 212 16

#2532 64kB 1 16kB 2 96 128 32 64 64 16 2 211 3 11 22 1 210 213 18

#2533 32kB 2 16kB 1 256 128 32 32 8 16 2 212 3 11 210 1 211 212 16

#2534 16kB 2 64kB 1 96 128 64 16 64 16 2 211 2 10 22 3 212 210 18

#2535 64kB 1 32kB 1 64 128 32 16 16 40 2 213 2 11 210 1 211 210 16

#2536 16kB 1 8kB 1 128 128 64 8 16 32 3 214 1 11 210 2 212 210 20

#2537 64kB 2 64kB 1 50 96 64 8 64 128 2 212 1 12 22 3 214 210 18

#2538 64kB 4 64kB 4 128 128 32 32 16 16 3 212 1 10 211 3 214 213 20

#2539 16kB 2 4kB 2 50 128 64 64 32 32 1 213 1 11 210 1 212 211 20

#2540 16kB 1 8kB 1 256 256 64 16 64 64 1 210 3 12 211 2 211 210 20

#2541 16kB 2 64kB 4 256 256 64 64 64 128 1 213 1 11 210 1 210 210 16

#2542 16kB 2 8kB 1 50 256 64 32 32 16 3 212 2 11 22 2 213 212 18

#2543 16kB 2 16kB 1 96 256 16 8 64 40 3 214 2 11 210 3 211 210 20

#2544 16kB 4 8kB 2 96 96 16 32 16 32 2 213 3 12 210 2 210 211 18

#2545 16kB 2 32kB 1 96 256 64 16 64 64 2 214 2 11 211 1 211 211 16

#2546 64kB 4 8kB 1 64 128 16 64 32 64 2 213 2 10 22 1 211 213 18

#2547 32kB 4 32kB 4 128 256 64 8 16 16 2 210 2 10 22 2 210 210 20

#2548 16kB 1 16kB 2 96 256 64 64 16 64 3 213 1 12 22 1 212 210 18

#2549 32kB 2 64kB 2 50 96 32 32 8 40 3 211 3 12 211 1 214 211 20

#2550 64kB 1 64kB 4 128 128 16 64 16 40 3 213 3 10 210 1 213 213 18

#2551 16kB 1 4kB 1 128 96 16 8 16 40 3 214 1 12 22 2 213 210 16

#2552 32kB 1 32kB 1 256 128 16 16 16 16 3 212 1 11 22 3 211 212 16

#2553 32kB 4 64kB 4 128 96 32 16 64 40 1 214 1 11 210 2 212 213 20

#2554 64kB 1 64kB 1 256 128 16 32 16 16 2 214 1 11 211 3 214 211 18

#2555 32kB 4 8kB 4 128 128 64 32 64 32 1 213 1 12 22 3 210 212 20

#2556 64kB 2 8kB 4 64 96 64 8 64 16 3 211 3 11 22 2 214 211 16

#2557 16kB 4 32kB 4 64 128 64 32 64 40 1 212 1 11 210 2 212 213 16

#2558 64kB 2 8kB 4 256 128 64 8 32 16 2 210 1 10 211 2 213 210 20

#2559 16kB 1 32kB 1 50 256 16 32 16 32 1 212 3 12 211 2 211 212 16

#2560 64kB 1 32kB 2 64 128 64 64 32 64 2 214 1 10 211 3 213 210 18

#2561 32kB 4 8kB 1 128 96 16 16 64 40 3 213 1 10 210 1 210 212 20

#2562 64kB 1 64kB 1 50 256 64 8 8 32 3 210 1 10 22 3 211 211 18

#2563 32kB 2 4kB 1 50 96 64 16 8 40 1 213 1 12 22 1 214 213 18

#2564 16kB 1 32kB 4 50 96 32 16 8 32 1 214 1 12 22 3 214 212 20

#2565 16kB 4 64kB 2 256 128 32 16 64 40 2 210 1 10 22 2 213 211 18

#2566 16kB 4 32kB 4 128 128 64 64 64 40 1 212 3 11 210 1 210 211 16

#2567 64kB 2 32kB 4 256 256 16 16 64 32 3 210 2 11 210 1 210 211 18

#2568 64kB 4 8kB 1 96 96 64 32 16 128 3 213 3 10 22 1 212 213 18

#2569 64kB 2 32kB 4 50 256 16 64 8 40 3 211 1 12 22 2 212 212 20

#2570 32kB 4 16kB 2 64 128 32 64 8 40 2 212 3 10 211 1 213 212 16

#2571 64kB 2 16kB 2 50 96 32 32 16 16 3 211 1 10 211 3 212 210 16

#2572 32kB 1 64kB 2 64 128 64 32 16 128 1 210 1 12 210 2 213 213 18

#2573 16kB 1 64kB 4 96 96 32 32 64 32 2 210 1 11 211 2 210 212 18

#2574 32kB 2 8kB 1 50 256 16 16 8 64 1 212 2 10 210 1 214 211 20

#2575 32kB 1 64kB 2 64 128 32 16 64 64 3 210 1 11 211 3 213 213 16

#2576 64kB 1 8kB 2 96 128 32 32 16 64 3 210 1 11 22 2 214 211 18

#2577 64kB 2 32kB 4 96 128 64 16 32 16 3 214 1 11 22 1 210 210 18

#2578 16kB 2 64kB 1 50 128 16 32 8 64 1 212 2 12 22 3 211 210 16

#2579 64kB 1 4kB 2 96 256 32 8 16 40 1 214 3 11 210 1 211 212 18

Continued on next page.

218 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2580 64kB 4 8kB 2 96 96 16 8 32 32 1 212 2 12 211 2 214 212 18

#2581 64kB 1 8kB 4 96 96 32 8 8 40 3 211 2 11 210 2 213 213 16

#2582 64kB 2 8kB 4 96 128 16 8 8 16 1 212 3 12 211 3 212 210 16

#2583 32kB 2 32kB 1 256 128 16 64 8 64 2 212 1 11 22 1 211 210 16

#2584 32kB 1 4kB 2 50 256 32 64 32 16 2 212 1 12 210 3 211 210 16

#2585 16kB 2 32kB 1 96 128 64 64 16 64 1 213 2 11 210 2 210 210 16

#2586 64kB 1 8kB 2 64 96 32 16 64 128 3 212 1 11 22 1 213 213 18

#2587 64kB 2 32kB 2 64 256 16 8 64 64 1 213 2 11 210 2 213 212 20

#2588 64kB 2 8kB 4 50 256 64 64 64 40 3 212 3 12 211 2 214 213 16

#2589 64kB 1 64kB 2 64 256 32 16 64 128 3 213 1 12 22 2 210 212 20

#2590 32kB 4 16kB 1 128 256 16 16 32 128 3 212 2 12 22 3 210 210 20

#2591 64kB 4 32kB 1 64 96 16 8 8 32 2 213 2 11 22 3 211 212 20

#2592 64kB 1 32kB 2 50 256 16 64 16 64 2 211 2 12 210 3 214 212 20

#2593 64kB 2 32kB 4 128 128 64 16 8 16 3 210 1 11 22 1 213 210 20

#2594 64kB 2 4kB 4 256 256 32 32 64 128 2 210 1 12 210 2 211 210 18

#2595 64kB 2 16kB 4 64 256 32 16 8 16 2 214 1 12 210 2 210 212 18

#2596 16kB 4 4kB 4 64 256 64 16 8 40 2 212 3 11 210 1 212 210 18

#2597 32kB 2 8kB 4 128 96 32 32 32 16 3 212 2 10 210 2 211 210 16

#2598 32kB 4 4kB 2 128 96 32 16 16 32 1 212 1 11 211 3 214 211 18

#2599 64kB 4 4kB 1 96 256 32 8 8 128 1 214 3 11 211 3 214 211 18

#2600 16kB 4 4kB 2 50 96 16 32 64 128 3 211 2 10 22 2 212 210 20

#2601 32kB 4 32kB 4 256 256 16 64 32 16 2 214 1 10 211 1 212 212 18

#2602 32kB 1 16kB 1 50 96 64 16 16 128 3 214 3 11 211 3 213 212 16

#2603 64kB 2 16kB 1 256 128 32 16 64 40 2 214 2 12 210 2 210 211 16

#2604 64kB 4 32kB 2 256 256 16 32 16 40 3 214 2 12 211 3 214 212 16

#2605 16kB 1 32kB 1 256 96 32 16 32 32 2 210 2 10 211 2 213 211 18

#2606 16kB 2 32kB 4 128 128 64 64 64 64 3 211 3 11 22 1 213 212 18

#2607 64kB 2 64kB 1 96 96 16 32 16 32 3 212 1 11 211 2 211 210 16

#2608 64kB 1 32kB 4 96 256 64 64 16 128 1 214 3 10 210 3 214 213 18

#2609 64kB 2 32kB 2 128 256 16 16 32 16 2 210 3 12 210 1 211 211 16

#2610 64kB 1 16kB 4 256 256 16 32 64 32 3 210 3 11 22 2 214 213 20

#2611 32kB 2 64kB 2 256 96 32 32 16 40 3 213 3 10 22 1 210 210 16

#2612 16kB 4 32kB 2 96 96 64 16 8 32 1 211 1 11 22 3 211 211 20

#2613 64kB 2 32kB 4 50 96 32 64 32 64 1 214 3 12 210 1 211 210 20

#2614 16kB 4 8kB 4 96 96 32 32 32 128 1 210 1 12 210 1 213 212 16

#2615 32kB 4 64kB 2 256 128 32 64 16 16 3 211 1 12 210 2 212 210 20

#2616 32kB 4 32kB 4 50 96 64 64 32 16 2 210 3 10 210 3 213 212 16

#2617 16kB 4 16kB 1 50 96 16 64 64 40 1 212 1 10 210 1 210 213 20

#2618 32kB 1 16kB 4 128 128 32 16 8 64 1 214 2 11 22 3 212 211 18

#2619 32kB 2 8kB 4 96 96 64 16 64 64 2 210 3 10 210 2 214 213 16

#2620 32kB 4 64kB 4 256 256 16 64 64 128 2 214 1 10 22 1 211 212 20

#2621 32kB 2 8kB 1 256 256 16 16 64 40 3 210 2 12 211 3 211 210 20

#2622 16kB 2 16kB 4 50 96 16 32 8 64 3 214 2 11 22 2 211 210 16

#2623 32kB 4 8kB 2 50 256 16 16 64 16 1 214 3 12 22 2 213 212 20

#2624 16kB 4 8kB 2 128 96 16 32 8 32 3 211 1 11 210 3 212 210 18

#2625 16kB 4 4kB 4 50 128 32 8 8 32 2 214 2 10 210 2 210 210 18

#2626 16kB 4 4kB 2 64 96 64 64 32 16 3 211 1 10 210 2 213 212 16

#2627 64kB 4 8kB 1 96 256 64 16 32 64 1 212 3 11 22 3 211 213 16

#2628 64kB 2 32kB 1 256 128 64 8 32 64 3 213 1 12 22 2 214 210 18

#2629 32kB 4 16kB 1 96 96 16 16 16 32 3 212 1 11 210 2 214 212 20

#2630 16kB 2 4kB 1 64 128 32 8 32 16 2 213 2 11 210 2 210 210 16

#2631 32kB 4 8kB 4 50 256 16 64 32 40 3 210 2 10 210 1 212 212 18

#2632 64kB 4 8kB 4 96 256 16 64 64 128 3 212 3 12 211 1 210 213 20

#2633 64kB 2 32kB 4 50 256 32 32 32 40 1 211 3 12 210 1 210 211 20

#2634 16kB 4 64kB 1 50 96 16 8 16 40 2 211 2 10 210 2 211 212 18

#2635 64kB 2 32kB 1 64 96 16 32 64 40 2 211 3 12 210 1 212 210 20

#2636 64kB 4 8kB 4 128 256 16 32 64 32 2 214 2 12 22 3 214 212 20

#2637 32kB 2 8kB 1 96 96 32 32 16 16 1 210 2 10 210 1 210 211 20

#2638 64kB 2 64kB 2 50 256 64 32 8 16 3 214 1 11 210 3 210 210 18

#2639 64kB 2 8kB 2 128 128 64 64 32 16 1 212 1 11 210 2 213 212 18

#2640 32kB 4 4kB 1 64 128 32 16 8 64 3 214 3 11 211 3 212 210 16

#2641 64kB 2 8kB 1 256 128 16 32 8 40 2 213 1 12 22 1 213 213 18

#2642 64kB 2 4kB 1 64 96 16 16 64 40 2 213 2 11 210 1 212 213 20

#2643 16kB 4 32kB 2 64 256 64 16 64 128 3 214 3 10 211 3 213 213 20

#2644 16kB 4 16kB 4 64 128 64 16 8 64 2 211 3 12 210 3 211 211 18

#2645 64kB 1 8kB 4 50 128 64 64 8 40 1 213 3 10 210 1 211 213 20

#2646 32kB 1 4kB 2 128 128 32 8 64 128 3 213 1 10 22 2 213 212 18

Continued on next page.

Appendix A. Design Space 219

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2647 32kB 1 64kB 1 64 256 16 8 16 32 3 212 1 10 22 3 211 212 16

#2648 32kB 1 16kB 2 64 128 16 8 8 32 3 212 1 12 211 2 214 210 20

#2649 32kB 4 64kB 1 64 256 32 8 8 16 3 212 3 12 22 2 214 210 16

#2650 32kB 2 4kB 2 64 128 16 8 8 40 2 211 3 10 210 3 210 213 20

#2651 32kB 2 32kB 2 256 256 16 64 8 32 2 214 1 11 210 1 211 213 18

#2652 32kB 1 32kB 1 128 256 16 16 16 40 3 214 1 11 210 3 214 213 16

#2653 32kB 2 16kB 2 64 96 64 16 16 64 1 211 1 11 22 2 212 210 18

#2654 16kB 2 64kB 2 256 256 64 32 16 64 1 210 2 12 22 2 213 212 20

#2655 16kB 4 32kB 1 64 128 32 16 16 128 1 212 3 11 211 1 210 213 20

#2656 16kB 2 32kB 2 256 128 16 32 8 40 3 214 1 10 211 3 212 212 20

#2657 64kB 1 8kB 2 50 256 64 64 16 32 3 212 3 12 210 1 213 210 18

#2658 32kB 4 16kB 4 96 128 16 8 64 64 2 211 1 12 22 1 211 211 20

#2659 32kB 1 8kB 4 96 128 32 32 64 40 3 212 3 10 210 1 211 213 20

#2660 16kB 2 8kB 1 256 96 16 32 64 128 2 213 1 12 211 2 212 212 18

#2661 16kB 1 64kB 1 64 128 64 8 16 64 2 213 1 10 211 2 211 212 16

#2662 16kB 1 32kB 2 50 256 32 8 32 32 3 211 3 10 210 1 213 211 18

#2663 64kB 1 4kB 2 64 256 32 16 32 40 2 214 1 11 210 1 211 212 16

#2664 64kB 2 32kB 4 128 128 32 32 8 40 1 214 1 10 210 3 212 210 18

#2665 64kB 4 32kB 4 128 128 64 8 8 64 2 213 2 12 210 1 214 211 16

#2666 64kB 1 8kB 2 64 256 64 64 32 32 1 210 3 10 211 1 214 212 20

#2667 64kB 2 8kB 1 96 96 16 8 8 64 2 214 1 11 211 1 211 211 16

#2668 32kB 2 4kB 4 128 256 32 64 32 128 1 214 1 10 211 2 213 211 16

#2669 16kB 4 32kB 4 64 96 32 8 32 16 1 214 1 11 210 1 210 210 18

#2670 64kB 1 64kB 1 128 128 32 16 32 16 2 212 2 10 211 3 213 211 16

#2671 16kB 4 8kB 4 128 96 64 64 64 64 1 214 2 11 210 1 211 211 18

#2672 64kB 1 64kB 2 64 128 64 64 16 16 3 210 2 11 210 2 210 211 16

#2673 64kB 2 64kB 1 256 128 16 32 8 64 3 213 2 11 211 3 214 212 16

#2674 64kB 2 64kB 2 50 96 32 64 64 40 1 214 1 10 211 3 213 212 20

#2675 64kB 1 16kB 1 64 128 64 64 64 32 1 212 1 10 211 1 210 211 20

#2676 16kB 4 4kB 1 96 256 32 8 8 40 2 212 1 10 22 1 214 212 20

#2677 16kB 2 4kB 4 256 256 32 32 64 128 3 211 1 10 22 1 211 212 20

#2678 16kB 4 64kB 2 128 96 16 16 64 40 3 214 1 11 210 3 214 210 16

#2679 16kB 1 8kB 2 256 96 32 8 32 16 2 210 3 12 211 3 213 213 16

#2680 16kB 1 64kB 1 64 256 64 32 16 16 1 214 3 10 210 2 213 211 20

#2681 32kB 1 32kB 1 96 256 32 16 32 64 2 212 3 10 210 1 212 211 16

#2682 16kB 2 16kB 1 96 96 64 64 32 16 2 212 3 10 211 1 210 212 18

#2683 32kB 4 64kB 4 96 256 64 64 8 64 1 213 3 11 22 1 211 211 20

#2684 16kB 4 16kB 2 64 96 16 64 8 16 2 214 2 10 210 1 210 213 18

#2685 64kB 4 4kB 4 64 96 64 64 16 40 1 212 3 11 210 1 212 211 18

#2686 32kB 4 32kB 4 128 128 32 32 64 40 1 210 2 10 22 3 211 213 20

#2687 32kB 4 64kB 1 50 256 64 16 64 32 2 212 1 12 22 3 211 211 20

#2688 16kB 4 8kB 4 128 128 16 16 16 40 1 210 2 11 22 1 212 212 18

#2689 64kB 2 8kB 2 96 256 64 64 32 40 1 212 2 12 210 3 214 210 20

#2690 32kB 1 8kB 2 256 96 32 32 64 128 1 211 1 12 22 3 210 210 18

#2691 16kB 1 64kB 4 64 96 16 32 8 64 3 211 2 11 210 2 214 211 18

#2692 64kB 4 4kB 1 64 128 64 32 8 64 2 211 1 11 22 1 213 213 16

#2693 64kB 1 64kB 2 50 256 16 64 8 40 1 212 1 10 210 3 211 212 16

#2694 64kB 2 16kB 4 256 96 32 16 64 16 1 212 3 10 211 3 214 211 16

#2695 64kB 4 8kB 1 256 96 16 8 8 16 3 213 3 10 211 1 214 213 18

#2696 64kB 1 32kB 1 64 128 32 32 64 64 3 212 3 12 211 3 211 212 20

#2697 16kB 4 16kB 1 96 128 32 32 16 128 1 214 1 12 211 1 212 213 18

#2698 64kB 1 16kB 4 50 96 16 16 8 128 1 212 2 10 211 3 213 211 18

#2699 32kB 1 4kB 2 96 96 16 64 64 128 2 212 2 12 210 3 213 210 18

#2700 16kB 2 16kB 4 50 256 32 16 32 128 3 214 1 10 210 2 210 210 20

#2701 16kB 1 4kB 1 96 256 16 32 8 40 3 212 3 12 210 2 213 210 18

#2702 32kB 1 32kB 1 128 128 64 8 32 128 1 211 2 10 211 3 210 212 18

#2703 64kB 4 32kB 1 50 96 16 64 64 32 3 210 1 10 22 3 212 212 18

#2704 32kB 1 8kB 4 128 96 32 8 8 64 3 212 3 11 22 1 213 212 16

#2705 16kB 1 32kB 2 50 256 64 32 8 128 2 214 3 10 210 3 210 210 18

#2706 32kB 1 8kB 4 64 96 32 16 32 32 2 214 3 10 211 1 212 210 16

#2707 32kB 4 4kB 4 50 96 32 32 8 128 2 213 3 12 22 2 211 213 20

#2708 64kB 1 32kB 4 256 96 32 16 8 64 1 214 3 12 22 3 212 212 16

#2709 64kB 4 64kB 1 256 256 64 8 16 64 3 211 3 11 211 2 211 211 18

#2710 16kB 4 16kB 1 256 96 64 8 32 40 2 211 1 11 210 3 213 213 20

#2711 32kB 2 16kB 4 50 128 64 16 32 64 1 213 3 11 22 1 211 213 18

#2712 32kB 2 32kB 2 64 96 16 16 8 40 1 214 3 11 210 3 212 212 20

#2713 64kB 1 16kB 4 128 96 32 16 8 64 1 210 1 12 210 3 213 212 18

Continued on next page.

220 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2714 16kB 4 32kB 4 64 128 32 64 8 32 1 211 3 11 210 3 210 210 18

#2715 64kB 2 32kB 1 128 96 32 64 64 32 3 213 3 12 211 3 211 212 16

#2716 16kB 1 16kB 2 50 256 32 8 8 16 1 214 2 12 211 2 210 210 18

#2717 16kB 2 4kB 2 50 128 16 16 32 128 2 214 1 11 211 1 211 212 18

#2718 32kB 4 8kB 1 50 128 32 8 16 128 3 211 3 12 210 2 212 210 20

#2719 32kB 1 8kB 4 256 256 32 32 32 32 2 210 2 11 211 3 211 212 18

#2720 16kB 4 16kB 1 256 128 16 64 8 128 2 210 2 11 210 2 210 211 20

#2721 16kB 1 8kB 1 128 256 64 16 64 16 2 212 1 11 22 3 212 210 20

#2722 16kB 4 8kB 4 128 96 32 64 64 16 3 212 3 10 211 2 211 213 16

#2723 16kB 2 8kB 2 256 96 64 64 16 128 2 213 2 11 22 1 212 212 18

#2724 16kB 1 16kB 4 96 128 32 16 64 64 1 212 1 12 22 3 212 210 20

#2725 32kB 2 16kB 1 96 128 16 64 16 128 3 214 3 10 22 1 210 210 20

#2726 64kB 1 4kB 4 256 128 16 64 16 64 2 211 1 11 211 2 211 212 20

#2727 64kB 4 4kB 4 50 256 32 16 16 64 2 212 2 10 210 1 212 212 18

#2728 32kB 1 64kB 1 128 128 16 64 8 128 1 214 3 12 22 1 212 212 18

#2729 64kB 4 16kB 4 64 96 64 16 32 40 1 211 2 10 22 2 213 213 20

#2730 16kB 1 8kB 1 128 256 32 32 32 128 3 210 1 10 22 3 212 213 20

#2731 64kB 1 64kB 2 64 128 16 16 8 16 2 210 2 10 210 1 212 213 16

#2732 16kB 1 16kB 2 64 96 16 8 32 128 1 213 3 10 22 2 214 211 18

#2733 16kB 1 32kB 2 128 256 32 32 64 64 1 210 1 10 22 1 214 212 20

#2734 64kB 4 16kB 2 50 96 32 64 16 16 1 212 3 12 211 3 210 210 18

#2735 64kB 2 64kB 1 50 96 16 16 16 128 1 210 2 10 211 3 212 212 18

#2736 64kB 1 64kB 4 64 96 32 16 8 16 2 213 1 11 211 1 212 210 20

#2737 64kB 4 16kB 4 96 128 64 16 16 64 3 214 3 11 210 3 211 212 18

#2738 32kB 2 4kB 4 50 256 16 64 32 128 3 213 3 12 210 1 214 213 18

#2739 64kB 1 4kB 1 128 256 64 8 32 40 3 212 2 12 211 3 211 210 18

#2740 32kB 2 8kB 4 256 128 32 64 32 128 2 211 3 10 22 1 213 211 20

#2741 16kB 1 8kB 2 64 128 64 32 16 128 3 210 3 11 22 2 210 212 16

#2742 32kB 4 4kB 4 96 96 64 32 8 128 1 211 3 11 22 3 211 212 20

#2743 32kB 1 4kB 2 50 256 16 32 32 40 3 214 3 11 210 1 214 213 16

#2744 64kB 1 4kB 1 128 256 64 32 32 128 3 214 3 12 210 1 214 211 16

#2745 16kB 1 64kB 2 50 128 32 8 32 64 2 211 2 10 211 3 213 213 16

#2746 64kB 1 4kB 4 256 96 32 8 16 16 2 212 2 10 211 3 211 211 18

#2747 64kB 2 16kB 4 64 256 32 16 32 64 2 210 1 12 210 3 213 210 16

#2748 64kB 4 4kB 1 256 96 64 8 8 128 2 213 3 12 211 3 211 210 16

#2749 64kB 1 4kB 1 50 128 64 64 64 16 1 212 1 10 210 1 213 213 16

#2750 16kB 4 4kB 4 256 128 16 32 32 40 2 212 2 11 22 3 214 210 16

#2751 16kB 1 4kB 2 64 256 64 32 64 40 3 214 3 12 22 2 211 212 18

#2752 32kB 1 64kB 4 96 256 16 8 16 128 1 210 2 11 22 2 213 210 20

#2753 64kB 4 16kB 1 96 96 64 8 16 64 1 211 3 10 210 2 212 210 16

#2754 64kB 1 64kB 1 128 128 32 32 32 128 3 214 1 10 210 1 210 213 20

#2755 16kB 2 4kB 1 256 256 32 64 64 16 2 212 2 12 211 1 211 210 20

#2756 64kB 1 8kB 4 256 96 32 32 32 16 3 213 2 10 22 3 211 213 18

#2757 32kB 1 16kB 4 256 256 32 32 16 128 2 211 3 10 22 1 214 212 18

#2758 16kB 4 64kB 1 64 96 16 32 8 128 1 213 2 11 22 3 212 212 16

#2759 16kB 4 32kB 1 256 128 32 32 32 32 2 210 1 11 210 3 213 210 18

#2760 16kB 2 64kB 2 64 96 64 16 8 64 1 214 2 10 210 3 213 213 18

#2761 16kB 1 8kB 1 96 128 16 16 16 16 2 214 2 12 210 2 212 212 18 p. 142

#2762 64kB 4 32kB 1 128 96 16 16 16 40 2 214 2 12 211 2 210 213 16

#2763 16kB 1 4kB 4 128 256 64 8 32 40 1 211 1 11 22 3 213 210 16

#2764 16kB 4 64kB 4 128 256 32 8 16 64 1 212 3 11 211 2 213 213 18

#2765 64kB 4 8kB 2 64 256 64 32 16 16 2 213 3 10 22 3 211 213 16

#2766 32kB 2 64kB 4 128 128 64 32 64 16 2 210 3 12 210 3 212 211 16

#2767 32kB 4 32kB 4 128 96 32 8 8 32 2 210 1 11 211 1 211 210 18

#2768 64kB 1 32kB 2 96 96 32 64 32 32 3 210 1 12 22 3 211 213 20

#2769 32kB 2 16kB 4 256 96 64 64 8 16 2 213 3 10 22 3 211 213 18

#2770 16kB 2 64kB 4 256 128 16 64 16 128 2 214 1 11 210 1 213 213 18

#2771 64kB 2 4kB 1 96 128 32 8 8 32 2 213 1 12 22 1 212 210 20

#2772 32kB 1 32kB 4 256 256 64 16 8 40 1 211 2 11 210 1 214 210 18

#2773 32kB 1 8kB 1 256 256 32 16 64 32 1 214 1 11 210 1 212 210 18

#2774 16kB 1 64kB 1 50 128 32 32 8 128 1 214 2 11 22 3 212 211 16

#2775 16kB 2 64kB 4 64 96 64 64 32 16 2 212 1 10 22 2 213 210 18

#2776 16kB 2 16kB 1 96 128 32 8 32 32 2 211 1 10 211 1 214 210 20

#2777 16kB 4 4kB 2 256 96 32 64 64 16 2 211 3 11 210 1 210 211 16

#2778 16kB 2 8kB 4 64 96 16 64 8 16 3 214 2 12 211 2 213 211 18 p. 98

#2779 64kB 2 32kB 2 64 256 32 8 32 40 2 211 3 11 22 2 213 212 20

#2780 32kB 4 32kB 4 50 128 64 8 16 128 1 214 2 12 22 2 211 213 18

Continued on next page.

Appendix A. Design Space 221

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2781 32kB 4 4kB 4 256 256 64 32 8 16 2 211 2 10 211 2 213 212 20

#2782 16kB 4 32kB 4 50 256 64 8 8 64 2 212 1 12 22 1 211 212 18

#2783 64kB 2 64kB 4 50 128 32 16 16 40 1 211 1 10 210 3 211 212 18

#2784 64kB 1 16kB 2 50 128 16 8 64 64 1 214 3 12 210 3 213 213 16

#2785 32kB 1 4kB 1 96 256 16 16 64 40 2 213 1 11 211 1 213 211 18

#2786 32kB 1 64kB 4 128 256 16 64 32 128 1 213 3 12 22 2 210 213 16

#2787 16kB 2 32kB 2 96 96 32 8 64 40 1 213 2 12 211 2 213 211 16

#2788 16kB 1 4kB 4 128 256 64 64 32 40 2 214 2 12 210 3 213 212 16

#2789 32kB 1 8kB 1 256 128 64 8 32 128 2 214 1 12 211 2 210 213 18

#2790 64kB 2 32kB 1 128 256 32 32 8 16 2 214 2 12 22 1 213 211 18

#2791 64kB 4 8kB 2 128 96 16 16 64 40 1 214 1 10 211 1 214 211 16

#2792 16kB 4 16kB 1 96 96 64 64 64 128 1 214 1 12 211 2 211 210 16

#2793 16kB 4 16kB 1 128 128 64 8 64 32 1 213 3 11 211 3 213 210 18

#2794 16kB 4 64kB 1 64 256 32 16 16 16 2 211 1 11 211 1 210 210 20

#2795 16kB 1 4kB 2 128 256 64 64 32 128 3 212 1 12 211 1 214 213 20

#2796 16kB 2 64kB 2 128 128 32 8 8 32 2 212 2 12 211 1 213 213 16

#2797 32kB 2 32kB 2 96 256 32 16 8 32 2 211 1 10 22 2 212 211 18

#2798 16kB 1 32kB 1 128 96 32 8 16 64 2 213 3 10 22 2 210 211 18

#2799 32kB 4 8kB 1 64 96 16 32 16 128 1 214 1 10 211 2 214 211 16

#2800 64kB 2 32kB 4 128 256 16 8 32 16 2 211 3 12 210 2 211 213 16

#2801 16kB 2 32kB 4 50 96 16 8 8 16 2 213 1 11 210 3 212 213 16

#2802 64kB 1 16kB 4 50 256 32 32 16 128 2 211 2 11 210 1 211 212 16

#2803 16kB 2 16kB 4 64 256 16 16 32 32 1 212 3 11 22 2 212 213 20

#2804 16kB 2 4kB 2 64 96 16 32 32 16 2 210 1 12 210 1 210 212 18 p. 79

#2805 16kB 2 16kB 2 256 128 16 16 16 32 1 210 1 10 211 3 213 210 20

#2806 16kB 4 32kB 2 256 128 32 16 32 32 3 210 1 12 211 2 213 213 20

#2807 16kB 1 16kB 2 64 256 32 8 64 64 3 213 2 12 22 3 212 212 20

#2808 64kB 1 32kB 4 50 96 32 64 8 64 3 211 2 11 211 1 212 210 16

#2809 16kB 4 16kB 2 128 96 64 8 64 40 3 210 3 11 22 2 210 213 16

#2810 64kB 2 4kB 4 64 128 64 64 32 64 1 214 2 11 211 1 211 211 16

#2811 64kB 1 64kB 2 256 96 64 32 64 32 2 211 3 11 211 1 214 212 16

#2812 32kB 4 4kB 2 64 256 16 64 64 40 2 212 3 12 22 3 210 212 16

#2813 64kB 2 32kB 1 50 256 32 64 8 40 3 214 3 10 210 3 213 210 18

#2814 16kB 2 32kB 1 64 256 16 8 8 40 1 214 3 11 210 2 214 211 18

#2815 32kB 2 4kB 4 256 128 64 64 32 40 2 211 1 12 211 3 210 213 20

#2816 32kB 1 16kB 4 96 256 64 8 8 16 3 213 2 12 22 2 211 210 18

#2817 64kB 2 32kB 4 64 256 64 64 32 64 3 212 2 12 210 3 214 210 18

#2818 32kB 2 16kB 1 64 128 64 16 64 32 2 211 2 11 210 2 214 210 20

#2819 16kB 2 16kB 4 50 128 64 8 64 64 2 212 2 10 22 2 210 213 20

#2820 64kB 1 16kB 4 128 128 64 8 8 128 1 213 2 12 22 3 213 211 20

#2821 64kB 2 8kB 2 64 256 32 64 64 64 2 210 2 12 210 1 210 213 20

#2822 64kB 2 8kB 1 128 96 64 64 64 16 2 214 3 12 211 3 210 210 18

#2823 32kB 1 32kB 4 256 256 16 32 8 16 2 213 2 12 22 2 213 212 18

#2824 64kB 2 16kB 4 128 96 64 64 32 40 3 212 3 11 211 2 210 212 18

#2825 32kB 2 8kB 1 96 256 32 64 16 32 3 211 1 10 22 2 214 212 16

#2826 64kB 2 8kB 2 64 96 64 8 8 40 2 214 3 11 211 1 213 213 20

#2827 16kB 4 16kB 2 64 96 64 8 64 64 2 214 3 12 211 1 211 210 18

#2828 32kB 1 8kB 2 64 256 32 32 16 64 1 211 2 11 210 1 213 211 20

#2829 16kB 2 16kB 4 96 96 32 8 64 32 3 214 1 12 22 2 212 213 20

#2830 64kB 2 16kB 4 50 256 32 8 16 16 2 211 2 11 22 3 214 210 16

#2831 16kB 2 16kB 1 256 128 16 8 8 32 3 212 2 12 211 2 213 212 16

#2832 64kB 2 32kB 2 256 256 64 32 64 16 3 210 3 12 211 1 212 212 16

#2833 32kB 2 4kB 2 256 256 64 64 8 16 2 214 1 11 210 2 212 210 16

#2834 64kB 2 16kB 1 128 96 16 32 32 40 3 214 3 12 210 1 213 212 18

#2835 64kB 4 64kB 4 50 128 16 32 16 64 3 214 2 10 210 2 212 210 16

#2836 32kB 2 64kB 2 50 128 32 64 64 64 2 214 1 11 210 1 211 212 18 p. 143

#2837 64kB 1 64kB 2 50 256 16 32 8 40 1 213 1 12 211 3 213 212 20

#2838 64kB 4 32kB 2 50 96 64 16 16 16 2 214 2 12 211 2 212 210 18

#2839 16kB 1 64kB 2 50 128 64 32 32 40 1 214 3 10 22 1 210 211 20

#2840 32kB 4 32kB 4 50 128 32 16 16 40 1 212 1 12 210 1 210 210 18

#2841 32kB 1 4kB 1 96 256 64 64 16 32 1 213 2 12 210 1 211 211 16

#2842 16kB 1 8kB 4 64 96 64 32 64 16 1 212 1 12 22 1 212 211 16

#2843 64kB 1 32kB 2 64 128 32 16 32 32 1 214 2 10 210 3 212 210 16

#2844 32kB 1 4kB 2 64 128 64 32 8 40 1 210 3 10 22 2 211 213 16

#2845 16kB 4 16kB 1 96 96 32 64 16 128 3 212 2 12 211 1 212 210 16

#2846 16kB 2 4kB 2 128 128 64 64 64 16 2 211 2 10 210 3 211 210 20

#2847 32kB 4 8kB 1 128 96 16 8 64 128 3 214 1 10 211 3 212 212 20

Continued on next page.

222 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2848 16kB 2 32kB 1 96 96 64 32 8 16 3 214 1 11 211 2 214 213 20

#2849 32kB 2 64kB 2 64 96 32 64 32 40 2 213 1 12 210 3 210 211 16

#2850 16kB 4 4kB 1 128 96 16 32 32 64 2 214 2 12 22 2 210 213 16

#2851 64kB 1 32kB 2 256 256 32 8 32 16 1 214 1 10 211 3 212 211 18

#2852 16kB 4 4kB 2 50 128 16 8 8 32 1 212 3 12 22 1 213 211 16

#2853 32kB 4 16kB 4 50 128 32 8 32 40 2 210 2 10 210 3 214 212 18

#2854 16kB 4 32kB 1 96 256 64 16 32 128 2 211 1 10 22 3 211 210 18

#2855 64kB 2 4kB 2 96 128 64 32 8 40 1 214 3 12 211 3 213 211 16

#2856 32kB 2 4kB 4 64 96 64 64 64 32 2 212 1 10 211 3 214 212 18

#2857 32kB 2 4kB 2 50 128 16 8 8 128 2 214 1 10 22 2 214 211 20

#2858 16kB 1 16kB 2 64 256 16 64 32 128 1 210 2 11 210 1 211 211 18

#2859 64kB 2 32kB 4 256 256 32 64 16 64 3 213 2 10 211 2 214 213 18

#2860 64kB 2 8kB 2 50 128 64 8 32 16 3 214 3 12 211 1 212 212 20

#2861 64kB 2 16kB 2 256 256 32 32 8 16 1 212 3 12 211 3 210 213 18

#2862 32kB 2 32kB 4 128 256 16 64 16 16 3 211 2 12 210 3 211 211 20

#2863 64kB 4 64kB 4 64 128 64 64 8 64 3 212 3 10 210 2 212 210 18

#2864 32kB 2 16kB 4 50 256 32 8 32 40 3 210 2 11 210 1 212 211 18

#2865 64kB 4 64kB 2 64 128 16 64 8 64 3 212 2 10 22 1 210 213 20

#2866 64kB 1 8kB 2 128 128 64 8 64 16 2 212 3 12 210 3 210 213 18

#2867 32kB 1 16kB 4 256 96 32 8 32 64 2 211 3 11 22 1 210 212 16

#2868 32kB 4 16kB 2 50 128 64 64 16 128 2 210 3 11 211 1 211 213 16

#2869 16kB 4 32kB 1 96 128 64 8 64 16 1 212 1 11 211 1 213 210 18

#2870 16kB 2 4kB 1 50 256 32 8 8 40 3 210 1 12 210 1 213 213 20

#2871 32kB 4 32kB 4 64 256 32 32 8 16 3 211 1 11 211 2 211 213 20

#2872 64kB 4 32kB 1 64 96 64 16 16 32 1 212 2 11 211 1 214 213 16

#2873 16kB 4 4kB 4 256 256 32 32 16 128 2 214 1 12 211 2 211 210 16

#2874 16kB 1 16kB 1 256 128 64 32 32 64 2 211 3 11 211 1 211 212 16

#2875 64kB 4 16kB 4 96 128 64 16 32 64 3 213 2 10 210 3 213 213 16

#2876 64kB 1 64kB 1 256 128 32 16 16 64 2 212 2 10 211 1 213 212 16

#2877 16kB 4 64kB 2 64 96 16 8 64 64 2 214 1 12 22 3 213 212 16

#2878 64kB 1 32kB 2 256 128 16 16 64 16 3 210 3 10 22 2 210 210 18

#2879 64kB 4 32kB 1 256 128 16 32 32 32 2 212 3 10 210 1 210 212 20

#2880 32kB 2 64kB 4 96 96 32 16 16 32 1 210 2 12 210 2 212 212 20

#2881 64kB 4 64kB 2 50 128 16 8 32 32 2 211 1 11 211 3 213 212 20

#2882 32kB 4 8kB 1 256 256 32 16 64 32 3 213 2 11 211 1 214 213 16

#2883 16kB 1 16kB 2 256 256 16 16 64 128 1 212 1 11 211 1 214 210 18

#2884 16kB 4 64kB 1 50 128 32 16 32 128 3 214 2 10 211 1 214 210 18

#2885 16kB 4 16kB 2 128 96 64 32 8 40 2 211 2 12 211 2 212 212 16

#2886 32kB 1 16kB 2 64 128 16 32 16 16 3 210 2 11 211 1 211 210 18

#2887 16kB 1 64kB 2 256 128 64 16 8 64 3 211 3 11 210 3 213 212 16

#2888 32kB 1 8kB 1 64 96 64 8 64 64 2 214 3 11 210 1 214 212 16

#2889 64kB 2 16kB 4 256 96 32 32 16 40 2 210 3 10 211 3 213 213 20

#2890 32kB 4 64kB 2 64 96 16 64 64 32 3 212 1 10 211 2 214 213 16

#2891 64kB 2 16kB 4 96 96 32 32 16 64 2 211 2 12 210 3 210 213 18

#2892 16kB 1 64kB 4 96 128 16 8 8 128 2 210 3 12 211 2 212 213 18

#2893 16kB 4 4kB 4 96 128 16 64 32 128 3 214 2 10 210 3 210 211 16

#2894 16kB 2 32kB 4 128 128 16 32 64 32 1 213 1 12 22 1 214 213 18

#2895 16kB 4 16kB 2 50 128 16 8 8 128 2 211 1 11 210 3 210 210 18

#2896 64kB 4 32kB 2 50 128 64 64 32 64 2 212 3 11 22 1 214 211 16

#2897 64kB 1 16kB 1 128 96 32 16 64 16 2 210 2 11 22 2 214 213 18

#2898 32kB 1 4kB 2 64 256 32 8 16 32 1 214 2 12 22 2 213 212 20

#2899 32kB 2 4kB 4 96 256 16 64 8 128 2 213 1 11 210 1 214 211 18

#2900 32kB 4 16kB 4 96 128 16 16 16 64 3 210 3 12 210 3 211 212 18

#2901 32kB 2 4kB 2 256 128 64 16 32 128 3 210 3 11 210 3 212 213 20

#2902 16kB 2 64kB 2 50 256 64 8 8 128 1 210 1 11 22 2 211 213 18

#2903 16kB 2 16kB 1 128 128 16 64 64 128 3 213 2 11 211 1 210 211 18

#2904 64kB 2 64kB 4 50 256 16 8 64 40 1 212 2 12 22 2 211 210 16

#2905 16kB 2 64kB 2 50 128 16 32 16 40 2 212 1 12 22 1 210 210 16

#2906 16kB 4 4kB 1 256 96 64 16 64 64 1 210 1 12 22 1 210 210 20

#2907 16kB 2 8kB 2 256 256 16 8 16 40 3 213 1 11 22 2 213 212 16

#2908 64kB 4 32kB 1 96 96 32 32 64 32 3 212 3 11 22 3 213 212 16

#2909 16kB 4 32kB 2 50 128 32 16 8 64 1 214 1 11 210 1 213 212 16

#2910 64kB 1 64kB 1 64 256 64 8 16 64 3 213 1 11 22 2 213 210 20

#2911 32kB 4 32kB 1 256 96 32 64 8 32 2 210 2 12 210 2 210 211 16

#2912 32kB 2 16kB 2 256 128 16 16 32 32 1 211 2 12 22 2 211 211 16

#2913 32kB 4 64kB 2 50 256 16 32 32 64 2 211 1 11 22 2 214 211 16

#2914 64kB 2 16kB 4 256 256 32 32 16 40 1 214 1 10 211 2 213 212 20

Continued on next page.

Appendix A. Design Space 223

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2915 64kB 2 32kB 1 50 96 16 32 64 32 3 213 3 10 22 2 214 210 20

#2916 64kB 2 16kB 2 64 96 32 32 64 64 1 212 1 12 22 2 212 210 18

#2917 32kB 2 16kB 2 128 128 32 8 64 40 1 210 1 10 211 1 212 212 20

#2918 32kB 4 4kB 2 50 96 64 8 64 32 1 211 3 10 211 3 211 213 18

#2919 32kB 4 16kB 1 50 96 32 8 64 16 1 213 2 12 22 1 214 212 20

#2920 64kB 4 64kB 4 96 96 32 8 32 128 3 212 2 11 211 1 212 210 18

#2921 64kB 4 64kB 4 96 96 64 16 8 40 1 214 3 11 211 2 212 210 18

#2922 64kB 2 4kB 2 128 256 64 8 64 32 1 210 2 10 22 3 214 213 16

#2923 32kB 2 64kB 2 128 128 64 32 16 128 3 213 3 12 22 2 214 210 20

#2924 64kB 1 8kB 2 128 96 64 16 8 16 1 213 2 10 210 1 210 213 20

#2925 16kB 2 8kB 2 96 128 32 8 16 32 1 213 3 10 211 3 212 212 20

#2926 64kB 4 4kB 2 256 128 32 16 32 16 2 214 3 10 210 3 214 210 18

#2927 64kB 2 64kB 1 96 96 16 16 16 128 1 213 3 11 22 2 213 213 16

#2928 32kB 2 4kB 4 64 256 16 16 32 16 1 213 2 10 211 3 211 211 18

#2929 32kB 1 8kB 2 96 128 32 16 64 16 3 214 3 10 210 1 212 210 18

#2930 16kB 4 8kB 4 256 128 16 8 16 128 1 212 3 11 22 1 210 212 18

#2931 64kB 2 32kB 1 50 256 32 8 8 32 1 211 1 11 210 2 211 213 20

#2932 64kB 4 8kB 4 50 128 32 32 64 32 3 211 3 12 210 1 212 213 18

#2933 64kB 1 32kB 2 256 256 32 16 16 40 2 213 3 10 22 1 210 210 16

#2934 32kB 1 8kB 1 128 256 32 16 32 32 2 211 3 11 211 1 213 212 16

#2935 64kB 2 32kB 1 128 96 32 8 8 40 2 212 1 11 211 1 210 211 20

#2936 64kB 2 4kB 2 256 128 16 64 64 64 2 211 1 12 22 1 214 212 16

#2937 64kB 4 32kB 4 256 96 16 16 64 128 2 213 3 12 211 1 213 211 18

#2938 16kB 1 32kB 1 256 96 64 64 32 64 3 212 1 12 22 3 210 213 18

#2939 32kB 1 16kB 4 96 96 64 16 8 16 1 211 2 11 22 3 214 210 16

#2940 64kB 2 4kB 2 64 256 64 8 32 64 3 210 3 12 211 3 214 212 20

#2941 32kB 2 4kB 4 256 256 16 16 32 40 1 213 2 12 22 2 213 210 16

#2942 64kB 2 8kB 1 64 128 64 16 64 64 3 211 1 10 211 3 211 212 16

#2943 64kB 4 4kB 4 256 128 32 8 8 40 2 210 3 12 210 2 211 213 18

#2944 16kB 1 4kB 4 96 256 32 16 32 16 3 214 2 10 22 2 212 211 16

#2945 16kB 2 32kB 4 96 96 64 16 32 64 2 214 3 12 210 2 210 210 20

#2946 16kB 2 64kB 2 256 256 16 64 16 32 2 210 3 10 210 2 214 213 18

#2947 16kB 4 32kB 1 96 256 64 16 64 128 2 210 2 10 211 2 213 211 18

#2948 16kB 2 64kB 1 64 96 64 32 16 32 1 212 1 10 210 3 213 211 16

#2949 16kB 4 32kB 2 256 96 16 16 16 16 3 210 1 12 211 2 210 212 16

#2950 32kB 4 64kB 1 96 256 64 16 64 64 2 213 1 10 210 2 212 210 18

#2951 32kB 4 8kB 1 50 256 32 16 16 64 1 210 1 12 211 3 210 210 16

#2952 16kB 1 16kB 4 50 128 32 32 16 40 2 212 1 10 210 1 211 212 18

#2953 16kB 1 8kB 1 96 256 16 32 64 64 1 211 1 10 22 3 210 212 16

#2954 16kB 4 4kB 4 128 96 16 64 32 128 3 210 1 12 210 2 213 211 18

#2955 64kB 4 16kB 4 96 96 64 32 16 128 3 212 3 12 210 1 213 213 20

#2956 32kB 4 16kB 4 64 256 64 64 64 32 3 211 1 12 210 2 214 212 20

#2957 32kB 1 16kB 2 64 128 16 8 16 128 1 213 1 12 210 3 213 213 16

#2958 64kB 4 64kB 1 96 256 16 64 8 32 1 211 1 12 22 3 213 211 16

#2959 64kB 4 64kB 4 256 96 16 64 8 128 1 212 1 11 210 1 214 212 16

#2960 16kB 2 16kB 2 128 128 32 32 64 40 2 213 1 12 211 3 214 213 18

#2961 64kB 2 8kB 4 256 256 64 32 16 16 2 212 1 12 211 1 212 210 18

#2962 16kB 1 64kB 1 128 96 32 32 8 64 3 212 2 11 22 2 214 212 16

#2963 16kB 2 4kB 2 96 96 32 64 64 64 3 211 3 10 22 1 210 213 20

#2964 32kB 1 64kB 2 50 128 32 16 32 32 1 212 1 12 211 3 212 213 20

#2965 16kB 2 32kB 2 256 128 64 8 8 16 2 214 2 12 211 3 212 212 20

#2966 32kB 2 16kB 4 64 128 32 8 64 128 2 211 2 12 211 2 214 211 16

#2967 32kB 4 8kB 4 96 128 64 32 16 64 3 213 2 12 210 2 210 213 16

#2968 32kB 4 4kB 1 64 256 32 64 32 16 3 210 3 12 22 1 213 211 16

#2969 64kB 1 32kB 4 256 96 64 8 32 64 1 214 1 10 211 2 212 211 16

#2970 16kB 1 8kB 2 64 256 16 16 64 128 3 210 1 12 211 3 213 212 16

#2971 64kB 4 64kB 1 128 128 64 16 64 16 2 214 1 10 210 1 213 213 16

#2972 64kB 4 16kB 2 96 96 16 32 16 40 3 214 1 12 211 3 211 210 18

#2973 32kB 1 4kB 1 128 96 32 64 64 32 1 213 2 11 22 1 212 212 20

#2974 32kB 4 32kB 4 50 256 32 64 64 128 1 212 3 11 22 2 210 213 20

#2975 64kB 1 32kB 2 64 96 64 8 8 128 3 212 2 12 22 2 214 213 20

#2976 16kB 4 8kB 2 128 256 32 32 8 64 3 214 3 11 22 2 212 213 20

#2977 32kB 1 64kB 4 128 128 64 8 8 40 3 210 2 11 210 3 213 211 20

#2978 64kB 1 32kB 1 50 96 32 8 16 64 3 213 2 11 211 2 213 213 18

#2979 64kB 2 64kB 4 128 96 16 64 32 32 2 212 2 11 211 3 210 213 16

#2980 16kB 2 32kB 1 256 128 16 16 32 40 2 214 2 11 210 3 210 211 16

#2981 64kB 4 64kB 2 96 96 32 32 64 32 1 210 2 10 211 3 210 212 16

Continued on next page.

224 Appendix A. Design Space

Core DS DW IS IW IR FPR IQ LQ SQ ROB GCB GE LCB LHB LHE CCB CE BE BT Page
#2982 64kB 4 8kB 4 50 256 16 64 8 64 1 210 1 12 22 3 214 211 18

#2983 32kB 2 8kB 2 96 256 32 16 16 40 1 211 1 12 210 3 210 211 20

#2984 32kB 2 16kB 4 256 256 16 16 16 40 3 213 1 11 210 1 213 210 18

#2985 16kB 2 64kB 1 64 128 16 16 8 16 3 212 2 12 22 1 210 211 16

#2986 16kB 4 32kB 4 128 96 32 64 8 32 2 211 2 12 210 3 211 211 16

#2987 64kB 1 16kB 1 50 128 32 32 16 40 2 211 3 10 211 3 211 210 20

#2988 32kB 4 8kB 1 50 96 64 8 16 32 3 211 3 10 211 2 214 210 16

#2989 64kB 2 4kB 1 256 96 16 16 64 128 1 211 1 12 22 1 214 211 16

#2990 64kB 2 16kB 2 256 256 32 8 64 32 1 214 2 11 22 2 212 212 20

#2991 32kB 1 32kB 4 64 128 64 8 16 40 1 210 3 11 22 2 211 211 16

#2992 32kB 2 8kB 2 96 96 32 64 64 64 1 211 1 12 210 1 210 213 20

#2993 32kB 1 32kB 1 64 96 16 64 32 64 3 213 1 12 210 2 212 210 16

#2994 16kB 1 4kB 2 64 96 64 32 8 16 1 210 2 12 211 2 210 212 20

#2995 16kB 2 64kB 1 50 96 64 8 16 16 3 213 3 12 22 2 211 211 16

#2996 64kB 4 4kB 2 64 256 16 32 64 16 1 213 2 11 210 2 214 213 16

#2997 64kB 4 32kB 1 256 128 64 64 8 64 3 214 1 11 211 3 213 211 16

#2998 32kB 4 8kB 2 96 96 64 32 32 16 1 214 3 12 211 2 213 213 18

#2999 64kB 1 8kB 4 256 128 64 32 8 128 3 212 3 11 211 1 213 211 20

#3000 64kB 4 8kB 1 128 128 64 32 64 32 1 212 1 12 22 1 214 212 18

Bibliography

[1] Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical
study. In Proceedings of the 12th International Conference on Artificial
Intelligence and Statistics (AISTATS), 2009. Available: http://www.jmlr.
org/proceedings/papers/v5/ackerman09a.html.

[2] Salem F. Adra and Peter J. Fleming. Diversity management in evolutionary
many-objective optimization. IEEE Transactions on Evolutionary Computation,
15(2):183–195, Apr. 2011. DOI: 10.1109/TEVC.2010.2058117.

[3] Massimo Alioto, Elio Consoli, and Gaetano Palumbo. From energy-
delay metrics to constraints on the design of digital circuits. International
Journal of Circuit Theory and Applications, 40(8):815–834, 2012. DOI:
10.1002/cta.757.

[4] Mohamad Hammam Alsafrjalani and Ann Gordon-Ross. Dynamic scheduling
for reduced energy in configuration-subsetted heterogeneous multicore systems.
In Proceedings of the 12th International Conference on Embedded and Ubiqui-
tous Computing (EUC). IEEE, Aug. 2014. DOI: 10.1109/EUC.2014.12.

[5] Murali Annavaram, Ed Grochowski, and John Shen. Mitigating Amdahl’s Law
through EPI throttling. In Proceedings of the 32nd International Symposium on
Computer Architecture (ISCA), 2005. DOI: 10.1109/ISCA.2005.36.

[6] Manish Arora, Srilatha Manne, Yasuko Eckert, Indrani Paul, Nuwan Jayasena,
and Dean Tullsen. A comparison of core power gating strategies implemented
in modern hardware. In Proceedings of the SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems. ACM, 2014.
DOI: 10.1145/2591971.2592017.

[7] Omid Azizi, Aqeel Mahesri, Benjamin C. Lee, Sanjay J. Patel, and Mark
Horowitz. Energy-performance tradeoffs in processor architecture and circuit
design: A marginal cost analysis. In Proceedings of the 37th Annual
International Symposium on Computer Architecture (ISCA). ACM, 2010. DOI:
10.1145/1815961.1815967.

[8] R. Iris Bahar and Srilatha Manne. Power and energy reduction via pipeline
balancing. In Proceedings of the 28th International Symposium on Computer
Architecture (ISCA), 2001. DOI: 10.1109/ISCA.2001.937451.

225

http://www.jmlr.org/proceedings/papers/v5/ackerman09a.html
http://www.jmlr.org/proceedings/papers/v5/ackerman09a.html
http://dx.doi.org/10.1109/TEVC.2010.2058117
http://dx.doi.org/10.1002/cta.757
http://dx.doi.org/10.1002/cta.757
http://dx.doi.org/10.1109/EUC.2014.12
http://dx.doi.org/10.1109/ISCA.2005.36
http://dx.doi.org/10.1145/2591971.2592017
http://dx.doi.org/10.1145/1815961.1815967
http://dx.doi.org/10.1145/1815961.1815967
http://dx.doi.org/10.1109/ISCA.2001.937451

226 Bibliography

[9] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, and Konrad Lai. The
impact of performance asymmetry in emerging multicore architectures. In
Proceedings of the 32nd International Symposium on Computer Architecture
(ISCA), Jun. 2005. DOI: 10.1109/ISCA.2005.51.

[10] Lars Bauer, Muhammad Shafique, Simon Kramer, and Jörg Henkel. RISPP: Ro-
tating instruction set processing platform. In Proceedings of the 44th Design Au-
tomation Conference (DAC). ACM, 2007. DOI: 10.1145/1278480.1278678.

[11] Brad D. Bingham and Mark R. Greenstreet. Computation with energy-
time trade-offs: Models, algorithms and lower-bounds. In Proceedings of
the International Symposium on Parallel and Distributed Processing with
Applications (ISPA), Dec. 2008. DOI: 10.1109/ISPA.2008.127.

[12] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt,
Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna,
Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator. ACM
SIGARCH Computer Architecture News, 39(2):1–7, Aug. 2011. DOI:
10.1145/2024716.2024718.

[13] Ramazan Bitirgen, Engin İpek, and José Martínez. Coordinated management
of multiple interacting resources in chip multiprocessors: A machine learning
approach. In Proceedings of the 41st International Symposium on Microarchi-
tecture (MICRO). IEEE, Nov. 2008. DOI: 10.1109/MICRO.2008.4771801.

[14] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. Power
struggles: Revisiting the RISC vs. CISC debate on contemporary ARM and
x86 architectures. In Proceedings of the 19th International Symposium on
High Performance Computer Architecture (HPCA). IEEE, Feb. 2013. DOI:
10.1109/HPCA.2013.6522302.

[15] Emily R. Blem, Hadi Esmaeilzadeh, Renée St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Multicore model from abstract single core
inputs. Computer Architecture Letters, 12(2):59–62, Jul. 2013. DOI:
10.1109/L-CA.2012.27.

[16] Shekhar Borkar and Andrew A. Chien. The future of microproces-
sors. Communications of the ACM, 54(5):67–77, May 2011. DOI:
10.1145/1941487.1941507.

[17] Maximilien B. Breughe and Lieven Eeckhout. Selecting representative
benchmark inputs for exploring microprocessor design spaces. ACM Trans-
actions Architecture and Code Optimization (TACO), 10(4), Dec. 2013. DOI:
10.1145/2555289.2555294.

[18] David M. Brooks, Pradip Bose, Stanley Schuster, Hans M. Jacobson, Prabhakar
Kudva, Alper Buyuktosunoglu, John-David Wellman, Victor V. Zyuban, Manish
Gupta, and Peter W. Cook. Power-aware microarchitecture: Design and

http://dx.doi.org/10.1109/ISCA.2005.51
http://dx.doi.org/10.1145/1278480.1278678
http://dx.doi.org/10.1109/ISPA.2008.127
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/MICRO.2008.4771801
http://dx.doi.org/10.1109/HPCA.2013.6522302
http://dx.doi.org/10.1109/HPCA.2013.6522302
http://dx.doi.org/10.1109/L-CA.2012.27
http://dx.doi.org/10.1109/L-CA.2012.27
http://dx.doi.org/10.1145/1941487.1941507
http://dx.doi.org/10.1145/1941487.1941507
http://dx.doi.org/10.1145/2555289.2555294
http://dx.doi.org/10.1145/2555289.2555294

Bibliography 227

modeling challenges for next-generation microprocessors. IEEE Micro, 20(6):
26–44, Nov. 2000. DOI: 10.1109/40.888701.

[19] David M. Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. In Proceedings of
the 27th International Symposium on Computer Architecture (ISCA), Jun. 2000.
DOI: 10.1109/ISCA.2000.854380.

[20] Thomas D. Burd and Robert W. Brodersen. Design issues for dynamic voltage
scaling. In Proceedings of the International Symposium on Low Power Elec-
tronics and Design (ISLPED). ACM, 2000. DOI: 10.1145/344166.344181.

[21] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Michael Dahlin,
Lizy Kurian John, Calvin Lin, Charles R. Moore, James H. Burrill,
Robert G. McDonald, and William Yode. Scaling to the end of silicon
with EDGE architectures. IEEE Computer, 37(7):44–55, Jul. 2004. DOI:
10.1109/MC.2004.65.

[22] Graeme Burton. AMD to design new micro-architecture for 2015 launch under
chip guru Jim Keller, May 2014. Available: http://www.computing.co.
uk/ctg/news/2344223/amd-to-design-new-micro-architecture-for-
2015-launch-under-chip-guru-jim-keller. Accessed 2016-02-29.

[23] Andrew Cassidy, Kai Yu, Haolang Zhou, and Andreas G. Andreou. A high-
level analytical model for application specific CMP design exploration. In
Proceedings of the Design, Automation, and Test in Europe Conference (DATE),
Mar. 2011. DOI: 10.1109/DATE.2011.5763180.

[24] Juan M. Cebrián, Juan L. Aragón, José M. Garcia, Pavlos Petoumenos, and
Stefanos Kaxiras. Efficient microarchitecture policies for accurately adapting
to power constraints. In International Symposium on Parallel Distributed
Processing (IPDPS). IEEE, May 2009. DOI: 10.1109/IPDPS.2009.5161022.

[25] Geoffrey Challen and Mark Hempstead. The case for power-agile computing. In
Proceedings of the 13th USENIX Workshop on Hot Topics in Operating Systems
(HotOS), May 2011. Available: https://www.usenix.org/conference/
hotosxiii/case-power-agile-computing.

[26] Kiran Chandramohan and Michael F. P. O’Boyle. Partitioning data-parallel
programs for heterogeneous MPSoCs: Time and energy design space explo-
ration. In Proceedings of the SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES). ACM, 2014. DOI:
10.1145/2597809.2597822.

[27] Kiran Chandramohan and Michael F. P. O’Boyle. A compiler framework
for automatically mapping data parallel programs to heterogeneous MPSoCs.
In Proceedings of the International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems (CASES). ACM, 2014. DOI:
10.1145/2656106.2656107.

http://dx.doi.org/10.1109/40.888701
http://dx.doi.org/10.1109/ISCA.2000.854380
http://dx.doi.org/10.1145/344166.344181
http://dx.doi.org/10.1109/MC.2004.65
http://dx.doi.org/10.1109/MC.2004.65
http://www.computing.co.uk/ctg/news/2344223/amd-to-design-new-micro-architecture-for-2015-launch-under-chip-guru-jim-keller
http://www.computing.co.uk/ctg/news/2344223/amd-to-design-new-micro-architecture-for-2015-launch-under-chip-guru-jim-keller
http://www.computing.co.uk/ctg/news/2344223/amd-to-design-new-micro-architecture-for-2015-launch-under-chip-guru-jim-keller
http://dx.doi.org/10.1109/DATE.2011.5763180
http://dx.doi.org/10.1109/IPDPS.2009.5161022
https://www.usenix.org/conference/hotosxiii/case-power-agile-computing
https://www.usenix.org/conference/hotosxiii/case-power-agile-computing
http://dx.doi.org/10.1145/2597809.2597822
http://dx.doi.org/10.1145/2597809.2597822
http://dx.doi.org/10.1145/2656106.2656107
http://dx.doi.org/10.1145/2656106.2656107

228 Bibliography

[28] Jie Chen, Guru Venkataramani, and Gabriel Parmer. The need for power
debugging in the multi-core environment. Computer Architecture Letters, 11
(4):57–60, Jul. 2012. DOI: 10.1109/L-CA.2012.1.

[29] Jie Chen, Fan Yao, and Guru Venkataramani. Watts-inside: A hardware-
software cooperative approach for multicore power debugging. In Proceedings
of the 31st International Conference on Computer Design (ICCD). IEEE, Oct.
2013. DOI: 10.1109/ICCD.2013.6657062.

[30] Andrew A. Chien, Allan Snavely, and Mark Gahagan. 10x10: A
general-purpose architectural approach to heterogeneity and energy ef-
ficiency. Procedia Computer Science, 4:1987–1996, 2011. DOI:
10.1016/j.procs.2011.04.217.

[31] Kihwan Choi, Wonbok Lee, Ramakrishna Soma, and Massoud Pedram.
Dynamic voltage and frequency scaling under a precise energy model con-
sidering variable and fixed components of the system power dissipation. In
International Conference on Computer Aided Design (ICCAD), 2004. DOI:
10.1109/ICCAD.2004.1382538.

[32] Niket Kumar Choudhary, Salil V. Wadhavkar, Tanmay A. Shah, Hiran Mayukh,
Jayneel Gandhi, Brandon H. Dwiel, Sandeep Navada, Hashem Hashemi Najaf-
abadi, and Eric Rotenberg. FabScalar: Composing synthesizable RTL designs
of arbitrary cores within a canonical superscalar template. In Proceedings of the
38th Annual International Symposium on Computer Architecture (ISCA). ACM,
2011. DOI: 10.1145/2000064.2000067.

[33] Eric S. Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Single-chip
heterogeneous computing: Does the future include custom logic, FPGAs, and
GPGPUs? In Proceedings of the 43rd International Symposium on Microarchi-
tecture (MICRO). IEEE, Dec. 2010. DOI: 10.1109/MICRO.2010.36.

[34] Patrick Cogez, Mart Graef, Bert Huizing, Reinhard Mahnkopf, Hidemi Ishiuchi,
Junji Shindo, Siyoung Choi, JaeSung Roh, Carlos H. Diaz, Burn Lin, Bob
Doering, Paolo Gargini, and Ian Steff. International technology roadmap
for semiconductors, 2011 Edition, chapter Process Integration, Devices, and
Structures. ITRS, 2011.

[35] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian,
and Glenn Reinman. CHARM: A composable heterogeneous accelerator-
rich microprocessor. In Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED). ACM, 2012. DOI:
10.1145/2333660.2333747.

[36] W. J. Conover. Practical nonparametric statistics. Wiley series in probability
and statistics: Applied probability and statistics section. John Wiley & Sons,
Inc., 3rd edition, 1999.

http://dx.doi.org/10.1109/L-CA.2012.1
http://dx.doi.org/10.1109/ICCD.2013.6657062
http://dx.doi.org/10.1016/j.procs.2011.04.217
http://dx.doi.org/10.1016/j.procs.2011.04.217
http://dx.doi.org/10.1109/ICCAD.2004.1382538
http://dx.doi.org/10.1109/ICCAD.2004.1382538
http://dx.doi.org/10.1145/2000064.2000067
http://dx.doi.org/10.1109/MICRO.2010.36
http://dx.doi.org/10.1145/2333660.2333747
http://dx.doi.org/10.1145/2333660.2333747

Bibliography 229

[37] Charlie Curtsinger and Emery D. Berger. STABILIZER: Statistically sound
performance evaluation. In Proceedings of the 18th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2013. DOI: 10.1145/2451116.2451141.

[38] Kenneth Czechowski, Victor W. Lee, Ed Grochowski, Ronny Ronen, Ronak
Singhal, Richard Vuduc, and Pradeep Dubey. Improving the energy efficiency
of big cores. In Proceedings of the 41st International Symposium on Computer
Architecture (ISCA). IEEE, June 2014. DOI: 10.1109/ISCA.2014.6853219.

[39] Michael Dales. Managing a reconfigurable processor in a general purpose
workstation environment. In Proceedings of the Design, Automation, and Test
in Europe Conference (DATE), 2003. DOI: 10.1109/DATE.2003.1253732.

[40] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolu-
tionary Computation, 6(2):182–197, Apr. 2002. DOI: 10.1109/4235.996017.

[41] Rajagopalan Desikan, Simha Sethumadhavan, Doug Burger, and Stephen W.
Keckler. Scalable selective re-execution for EDGE architectures. In
Proceedings of the 11th International Conference on Architectural Support
for Programming Languages and Operating Systems, (ASPLOS), 2004. DOI:
10.1145/1024393.1024408.

[42] Matthew DeVuyst, Ashish Venkat, and Dean M. Tullsen. Execution mi-
gration in a heterogeneous-ISA chip multiprocessor. In Proceedings of
the 17th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM, 2012. DOI:
10.1145/2150976.2151004.

[43] Gaurav Dhiman, Kishore Kumar Pusukuri, and Tajana Rosing. Analysis of
dynamic voltage scaling for system level energy management. In Proceedings of
the USENIX Workshop on Power Aware Computing Systems (HotPower), 2008.
Available: http://dl.acm.org/citation.cfm?id=1855610.1855619.

[44] Ashutosh S. Dhodapkar and James E. Smith. Comparing program
phase detection techniques. In Proceedings of the 36th International
Symposium on Microarchitecture (MICRO). IEEE, Dec. 2003. DOI:
10.1109/MICRO.2003.1253197.

[45] Yang Ding, Mahmut Kandemir, Padma Raghavan, and Mary Jane Irwin.
A helper thread based EDP reduction scheme for adapting application
execution in CMPs. In Proceedings of the International Symposium on
Parallel and Distributed Processing (IPDPS). IEEE, Apr. 2008. DOI:
10.1109/IPDPS.2008.4536297.

[46] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael F. P.
O’Boyle. A predictive model for dynamic microarchitectural adaptivity control.
In Proceedings of the 43rd International Symposium on Microarchitecture
(MICRO). IEEE, Dec. 2010. DOI: 10.1109/MICRO.2010.14.

http://dx.doi.org/10.1145/2451116.2451141
http://dx.doi.org/10.1109/ISCA.2014.6853219
http://dx.doi.org/10.1109/DATE.2003.1253732
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1145/1024393.1024408
http://dx.doi.org/10.1145/1024393.1024408
http://dx.doi.org/10.1145/2150976.2151004
http://dx.doi.org/10.1145/2150976.2151004
http://dl.acm.org/citation.cfm?id=1855610.1855619
http://dx.doi.org/10.1109/MICRO.2003.1253197
http://dx.doi.org/10.1109/MICRO.2003.1253197
http://dx.doi.org/10.1109/IPDPS.2008.4536297
http://dx.doi.org/10.1109/IPDPS.2008.4536297
http://dx.doi.org/10.1109/MICRO.2010.14

230 Bibliography

[47] Rotem Efraim, Ran Ginosar, Uri Weiser, and Avi Mendelson. Energy aware
race to halt: A down to EARtH approach for platform energy management.
Computer Architecture Letters, 13(1):25–28, Jan. 2014. ISSN 1556-6056. DOI:
10.1109/L-CA.2012.32.

[48] Aristides Efthymiou and Jim D. Garside. Adaptive pipeline depth control
for processor power-management. In Proceedings of the 20th International
Conference on Computer Design: VLSI in Computers and Processors (ICCD).
IEEE, 2002. DOI: 10.1109/ICCD.2002.1106812.

[49] David Eklov, David Black-Schaffer, and Erik Hagersten. StatCC: A statistical
cache contention model. In Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT). ACM, 2010. DOI:
10.1145/1854273.1854347.

[50] Hadi Esmaeilzadeh, Emily Blem, Reneé St. Amant, Karthikeyan Sankar-
alingam, and Doug Burger. Dark silicon and the end of multicore scaling.
In Proceedings of the 38th International Symposium on Computer Architecture
(ISCA), Jun. 2011. DOI: 10.1145/2000064.2000108.

[51] Maja Etinski, Julita Corbalán, Jesús Labarta, and Mateo Valero. Understanding
the future of energy-performance trade-off via DVFS in HPC environments.
Journal of Parallel and Distributed Computing, 72(4):579–590, 2012. DOI:
10.1016/j.jpdc.2012.01.006.

[52] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics for
multiprogram workloads. IEEE Micro, 28(3):42–53, May 2008. DOI:
10.1109/MM.2008.44.

[53] Stijn Eyerman and Lieven Eeckhout. The benefit of SMT in the multi-
core era: Flexibility towards degrees of thread-level parallelism. In
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 2014. DOI:
10.1145/2541940.2541954.

[54] Stijn Eyerman, Kenneth Hoste, and Lieven Eeckhout. Mechanistic-empirical
processor performance modeling for constructing CPI stacks on real hard-
ware. In Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, Apr. 2011. DOI:
10.1109/ISPASS.2011.5762738.

[55] Stijn Eyerman, Pierre Michaud, and Wouter Rogiest. Multiprogram throughput
metrics: A systematic approach. ACM Transactions on Architecture and Code
Optimization (TACO), 11(3), Oct. 2014. DOI: 10.1145/2663346.

[56] Ali Farhang-Mehr and Shapour Azarm. Diversity assessment of Pareto
optimal solution sets: An entropy approach. In Proceedings of the
Congress on Evolutionary Computation (CEC). IEEE, May 2002. DOI:
10.1109/CEC.2002.1007015.

http://dx.doi.org/10.1109/L-CA.2012.32
http://dx.doi.org/10.1109/L-CA.2012.32
http://dx.doi.org/10.1109/ICCD.2002.1106812
http://dx.doi.org/10.1145/1854273.1854347
http://dx.doi.org/10.1145/1854273.1854347
http://dx.doi.org/10.1145/2000064.2000108
http://dx.doi.org/10.1016/j.jpdc.2012.01.006
http://dx.doi.org/10.1016/j.jpdc.2012.01.006
http://dx.doi.org/10.1109/MM.2008.44
http://dx.doi.org/10.1109/MM.2008.44
http://dx.doi.org/10.1145/2541940.2541954
http://dx.doi.org/10.1145/2541940.2541954
http://dx.doi.org/10.1109/ISPASS.2011.5762738
http://dx.doi.org/10.1109/ISPASS.2011.5762738
http://dx.doi.org/10.1145/2663346
http://dx.doi.org/10.1109/CEC.2002.1007015
http://dx.doi.org/10.1109/CEC.2002.1007015

Bibliography 231

[57] Amin Farmahini-Farahani, Nam Sung Kim, and Katherine Morrow. Energy-
efficient reconfigurable cache architectures for accelerator-enabled embedded
systems. In Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, Mar. 2014. DOI:
10.1109/ISPASS.2014.6844485.

[58] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and Trevor
Mudge. Drowsy caches: Simple techniques for reducing leakage power. In
Proceedings of the 29th International Symposium on Computer Architecture
(ISCA), May 2002. DOI: 10.1109/ISCA.2002.1003572.

[59] Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kappiah, Rob
Springer, Barry Rountree, and Mark E. Femal. Analyzing the energy-time
trade-off in high-performance computing applications. IEEE Transactions
on Parallel and Distributed Systems, 18(6):835–848, Jun. 2007. DOI:
10.1109/TPDS.2007.1026.

[60] Peter Gavin, David Whalley, and Magnus Själander. Reducing instruction fetch
energy in multi-issue processors. ACM Transactions on Architecture and Code
Optimization (TACO), 10(4), Dec. 2013. DOI: 10.1145/2541228.2555318.

[61] Mark Gebhart, Bertrand A. Maher, Katherine E. Coons, Jeffrey R. Diamond,
Paul Gratz, Mario Marino, Nitya Ranganathan, Behnam Robatmili, Aaron
Smith, James H. Burrill, Stephen W. Keckler, Doug Burger, and Kathryn S.
McKinley. An evaluation of the TRIPS computer system. In Proceedings
of the 14th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM, 2009. DOI:
10.1145/1508244.1508246.

[62] Catherine H. Gebotys and Robert J. Gebotys. Power minimization in
heterogeneous processing. In Proceedings of the 29th Hawaii Interna-
tional Conference on System Sciences (HICSS). IEEE, Jan. 1996. DOI:
10.1109/HICSS.1996.495478.

[63] Giorgis Georgakoudis, Dimitrios S. Nikolopoulos, Hans Vandierendonck, and
Spyros Lalis. Fast dynamic binary rewriting for flexible thread migration
on shared-ISA heterogeneous MPSoCs. In Proceedings of the International
Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS). IEEE, Jul. 2014. DOI: 10.1109/SAMOS.2014.6893207.

[64] Tony Givargis, Frank Vahid, and Jörg Henkel. System-level exploration
for Pareto-optimal configurations in parameterized systems-on-a-chip. In
Proceedings of the International Conference on Computer Aided Design
(ICCAD). IEEE, Nov. 2001. DOI: 10.1109/ICCAD.2001.968593.

[65] Diana Göhringer, Michael Hübner, Volker Schatz, and Jürgen Becker. Runtime
adaptive multi-processor system-on-chip: RAMPSoC. In Proceedings of the
International Symposium on Parallel and Distributed Processing (IPDPS).
IEEE, Apr. 2008. DOI: 10.1109/IPDPS.2008.4536503.

http://dx.doi.org/10.1109/ISPASS.2014.6844485
http://dx.doi.org/10.1109/ISPASS.2014.6844485
http://dx.doi.org/10.1109/ISCA.2002.1003572
http://dx.doi.org/10.1109/TPDS.2007.1026
http://dx.doi.org/10.1109/TPDS.2007.1026
http://dx.doi.org/10.1145/2541228.2555318
http://dx.doi.org/10.1145/1508244.1508246
http://dx.doi.org/10.1145/1508244.1508246
http://dx.doi.org/10.1109/HICSS.1996.495478
http://dx.doi.org/10.1109/HICSS.1996.495478
http://dx.doi.org/10.1109/SAMOS.2014.6893207
http://dx.doi.org/10.1109/ICCAD.2001.968593
http://dx.doi.org/10.1109/IPDPS.2008.4536503

232 Bibliography

[66] Ricardo Gonzalez and Mark Horowitz. Energy dissipation in general purpose
microprocessors. IEEE Journal of Solid-State Circuits, 31(9):1277–1284, Sep.
1996. DOI: 10.1109/4.535411.

[67] Cecilia González-Álvarez, Jennifer B. Sartor, Carlos Álvarez, Daniel Jiménez-
González, and Lieven Eeckhout. Accelerating an application domain with
specialized functional units. ACM Transactions on Architecture and Code
Optimization (TACO), 10(4), Dec. 2013. DOI: 10.1145/2555289.2555303.

[68] Nathan Goulding-Hotta, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia,
Joe Auricchio, Po-Chao Huang, Manish Arora, Siddhartha Nath, Vikram Bhatt,
Jonathan Babb, Steven Swanson, and Michael Bedford Taylor. The GreenDroid
mobile application processor: An architecture for silicon’s dark future. IEEE
Micro, 31(2):86–95, Mar. 2011. DOI: 10.1109/MM.2011.18.

[69] Peter Greenhalgh. Big.LITTLE processing with ARM Cortex-A15 & Cortex-
A7. White paper, ARM Ltd., Sep. 2011.

[70] Ed Grochowski, Ronny Ronen, John Shen, and Hong Wang. Best of both latency
and throughput. In Proceedings of the International Conference on Computer
Design (ICCD). IEEE, 2004. Available: http://dl.acm.org/citation.
cfm?id=1032648.1033367.

[71] Marisabel Guevara, Benjamin Lubin, and Benjamin C. Lee. Strategies for
anticipating risk in heterogeneous system design. In Proceedings of the
20th International Symposium on High Performance Computer Architecture
(HPCA). IEEE, Feb. 2014. DOI: 10.1109/HPCA.2014.6835926.

[72] Apala Guha, Pietro Cicotti Allan, and Andrew A. Chien. The
10x10 foundation for heterogeneity: Clustering applications by compu-
tation and memory behavior. Technical report, University of Chicago,
Jan. 2012. Available: http://newtraell.cs.uchicago.edu/research/
publications/techreports/TR-2012-01.

[73] Apala Guha, Yao Zhang, Raihan ur Rasool, and Andrew A. Chien. Systematic
evaluation of workload clustering for extremely energy-efficient architectures.
ACM SIGARCH Computer Architecture News, 41(2):22–29, May 2013. DOI:
10.1145/2490302.2490307.

[74] Anshuman Gupta, Jack Sampson, and Michael Bedford Taylor. Quality
time: A simple online technique for quantifying multicore execution ef-
ficiency. In Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, Mar. 2014. DOI:
10.1109/ISPASS.2014.6844481.

[75] Shantanu Gupta, Shuguang Feng, Amin Ansari, Ganesh Dasika, and Scott
Mahlke. CoreGenesis: Erasing core boundaries for robust and configurable
performance. In Proceedings of the 19th International Conference on Parallel
Architectures and Compilation Techniques (PACT). ACM, 2010. DOI:
10.1145/1854273.1854357.

http://dx.doi.org/10.1109/4.535411
http://dx.doi.org/10.1145/2555289.2555303
http://dx.doi.org/10.1109/MM.2011.18
http://dl.acm.org/citation.cfm?id=1032648.1033367
http://dl.acm.org/citation.cfm?id=1032648.1033367
http://dx.doi.org/10.1109/HPCA.2014.6835926
http://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2012-01
http://newtraell.cs.uchicago.edu/research/publications/techreports/TR-2012-01
http://dx.doi.org/10.1145/2490302.2490307
http://dx.doi.org/10.1145/2490302.2490307
http://dx.doi.org/10.1109/ISPASS.2014.6844481
http://dx.doi.org/10.1109/ISPASS.2014.6844481
http://dx.doi.org/10.1145/1854273.1854357
http://dx.doi.org/10.1145/1854273.1854357

Bibliography 233

[76] Shantanu Gupta, Shuguang Feng, Amin Ansari, and Scott Mahlke. StageNet:
A reconfigurable fabric for constructing dependable CMPs. IEEE Transactions
on Computers, 60(1):5–19, Jan. 2011. DOI: 10.1109/TC.2010.205.

[77] Anthony Gutierrez, Ronald G. Dreslinski, Thomas F. Wenisch, Trevor N.
Mudge, Ali G. Saidi, Christopher D. Emmons, and Nigel C. Paver. Full-
system analysis and characterization of interactive smartphone applications.
In Proceedings of the International Symposium on Workload Characterization
(IISWC). IEEE, Nov. 2011. DOI: 10.1109/IISWC.2011.6114205.

[78] Anthony Gutierrez, Joseph Pusdesris, Ronald G. Dreslinski, Trevor N. Mudge,
Chander Sudanthi, Christopher D. Emmons, Mitchell Hayenga, and Nigel C.
Paver. Sources of error in full-system simulation. In Proceedings of the
International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, Mar. 2014. DOI: 10.1109/ISPASS.2014.6844457.

[79] John Hennessy, Daniel Citron, David Patterson, and Gurindar Sohi. The use
and abuse of SPEC: An ISCA panel. IEEE Micro, 23(4):73–77, Jul. 2003. DOI:
10.1109/MM.2003.1225977.

[80] Mark D. Hill and Michael R. Marty. Amdahl’s law in the multicore era. IEEE
Computer, 41(7):33–38, Jul. 2008. DOI: 10.1109/MC.2008.209.

[81] Houman Homayoun, Shahin Golshan, Eli Bozorgzadeh, Alexander Vei-
denbaum, and Fadi J. Kurdahi. On leakage power optimization in
clock tree networks for ASICs and general-purpose processors. Sus-
tainable Computing: Informatics and Systems, 1(1):75–87, 2011. DOI:
10.1016/j.suscom.2010.10.005.

[82] Kenneth Hoste and Lieven Eeckhout. Comparing benchmarks using key
microarchitecture-independent characteristics. In Proceedings of the Interna-
tional Symposium on Workload Characterization (IISWC). IEEE, Oct. 2006.
DOI: 10.1109/IISWC.2006.302732.

[83] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges,
Lizy Kurian John, and Koen De Bosschere. Performance prediction based on
inherent program similarity. In Proceedings of the 15th International Conference
on Parallel Architectures and Compilation Techniques (PACT). ACM, 2006.
DOI: 10.1145/1152154.1152174.

[84] Michael C. Huang, Jose Renau, and Josep Torrellas. Positional adaptation
of processors: Application to energy reduction. In Proceedings of the 30th

International Symposium on Computer Architecture (ISCA). IEEE, Jun. 2003.
DOI: 10.1109/ISCA.2003.1206997.

[85] Engin İpek, Meyrem Kırman, Nevin Kırman, and José Martínez. Core fusion:
Accommodating software diversity in chip multiprocessors. In Proceedings
of the 34th International Symposium on Computer Architecture (ISCA). ACM,
2007. DOI: 10.1145/1250662.1250686.

http://dx.doi.org/10.1109/TC.2010.205
http://dx.doi.org/10.1109/IISWC.2011.6114205
http://dx.doi.org/10.1109/ISPASS.2014.6844457
http://dx.doi.org/10.1109/MM.2003.1225977
http://dx.doi.org/10.1109/MM.2003.1225977
http://dx.doi.org/10.1109/MC.2008.209
http://dx.doi.org/10.1016/j.suscom.2010.10.005
http://dx.doi.org/10.1016/j.suscom.2010.10.005
http://dx.doi.org/10.1109/IISWC.2006.302732
http://dx.doi.org/10.1145/1152154.1152174
http://dx.doi.org/10.1109/ISCA.2003.1206997
http://dx.doi.org/10.1145/1250662.1250686

234 Bibliography

[86] Chuntao Jiang, Zhibin Yu, Hai Jin, Cheng-Zhong Xu, Lieven Eeckhout, Wim
Heirman, Trevor E. Carlson, and Xiaofei Liao. PCantorSim: Accelerating
parallel architecture simulation through fractal-based sampling. ACM Transac-
tions on Architecture and Code Optimization (TACO), 10(4), Dec. 2013. DOI:
10.1145/2541228.2555305.

[87] Sukhun Kang and Rakesh Kumar. Magellan: A search and machine learning-
based framework for fast multi-core design space exploration and optimization.
In Proceedings of the Design, Automation, and Test in Europe Conference
(DATE). ACM, 2008. DOI: 10.1145/1403375.1403721.

[88] Tejas S. Karkhanis and James E. Smith. Automated design of application
specific superscalar processors: An analytical approach. In Proceedings of the
34th International Symposium on Computer Architecture (ISCA). ACM, 2007.
DOI: 10.1145/1250662.1250712.

[89] Cansu Kaynak, Boris Grot, and Babak Falsafi. Shift: Shared history
instruction fetch for lean-core server processors. In Proceedings of the 46th

International Symposium on Microarchitecture (MICRO). ACM, 2013. DOI:
10.1145/2540708.2540732.

[90] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and
David Glasco. GPUs and the future of parallel computing. IEEE Micro, 31(5):
7–17, Sep. 2011. DOI: 10.1109/MM.2011.89.

[91] Changkyu Kim, Simha Sethumadhavan, M.S. Govindan, Nitya Ranganathan,
Divya Gulati, Doug Burger, and Stephen W. Keckler. Composable lightweight
processors. In Proceedings of the 40th International Symposium on Microarchi-
tecture (MICRO). IEEE, Dec. 2007. DOI: 10.1109/MICRO.2007.41.

[92] Ilhyun Kim and Mikko H. Lipasti. Understanding scheduling replay schemes.
In Proceedings of the 10th International Conference on High-Performance Com-
puter Architecture (HPCA), Feb. 2004. DOI: 10.1109/HPCA.2004.10011.

[93] Wonyoung Kim, Meeta S. Gupta, Gu-Yeon Wei, and David Brooks. System
level analysis of fast, per-core DVFS using on-chip switching regulators. In Pro-
ceedings of the 14th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, Feb. 2008. DOI: 10.1109/HPCA.2008.4658633.

[94] Joshua D. Knowles and David Corne. Approximating the nondominated front
using the Pareto archived evolution strategy. Evolutionary Computation, 8(2):
149–172, 2000. DOI: 10.1162/106365600568167.

[95] Akash Kumar, Andreas Hansson, Jos Huisken, and Henk Corporaal. An FPGA
design flow for reconfigurable network-based multi-processor systems on chip.
In Proceedings of the Design, Automation, and Test in Europe Conference
(DATE), Apr. 2007. DOI: 10.1109/DATE.2007.364577.

http://dx.doi.org/10.1145/2541228.2555305
http://dx.doi.org/10.1145/2541228.2555305
http://dx.doi.org/10.1145/1403375.1403721
http://dx.doi.org/10.1145/1250662.1250712
http://dx.doi.org/10.1145/2540708.2540732
http://dx.doi.org/10.1145/2540708.2540732
http://dx.doi.org/10.1109/MM.2011.89
http://dx.doi.org/10.1109/MICRO.2007.41
http://dx.doi.org/10.1109/HPCA.2004.10011
http://dx.doi.org/10.1109/HPCA.2008.4658633
http://dx.doi.org/10.1162/106365600568167
http://dx.doi.org/10.1109/DATE.2007.364577

Bibliography 235

[96] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan,
and Dean M. Tullsen. Single-ISA heterogeneous multi-core architectures:
The potential for processor power reduction. In Proceedings of the 36th

International Symposium on Microarchitecture (MICRO). IEEE, Dec. 2003.
DOI: 10.1109/MICRO.2003.1253185.

[97] Rakesh Kumar, Norman P. Jouppi, and Dean M. Tullsen. Conjoined-core chip
multiprocessing. In Proceedings of the 37th Annual International Symposium
on Microarchitecture (MICRO), Dec. 2004. DOI: 10.1109/MICRO.2004.12.

[98] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Norman P.
Jouppi, and Keith I. Farkas. Single-ISA heterogeneous multi-core architec-
tures for multithreaded workload performance. In Proceedings of the 31st

International Symposium on Computer Architecture (ISCA), Jun. 2004. DOI:
10.1109/ISCA.2004.1310764.

[99] Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. Core architecture
optimization for heterogeneous chip multiprocessors. In Proceedings of the 15th

International Conference on Parallel Architectures and Compilation Techniques
(PACT). ACM, 2006. DOI: 10.1145/1152154.1152162.

[100] Frank Kursawe. A variant of evolution strategies for vector optimization. In
Proceedings of the 1st Workshop on Parallel Problem Solving from Nature.
Springer Berlin Heidelberg, 1991. DOI: 10.1007/BFb0029752.

[101] Vahid Lari, Shravan Muddasani, Srinivas Boppu, Frank Hannig, and Jürgen
Teich. Design of low power on-chip processor arrays. In Proceedings of the
23rd International Conference on Application-Specific Systems, Architectures
and Processors (ASAP). IEEE, July 2012. DOI: 10.1109/ASAP.2012.10.

[102] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. Combin-
ing convergence and diversity in evolutionary multiobjective optimization. Evo-
lutionary Computation, 10(3), 2002. DOI: 10.1162/106365602760234108.

[103] Etienne Le Sueur and Gernot Heiser. Dynamic voltage and frequency scaling:
The laws of diminishing returns. In Workshop on Power Aware Computing
and Systems (HotPower), Oct. 2010. Available: https://www.usenix.org/
legacy/events/hotpower10/tech/full_papers/LeSueur.pdf.

[104] Etienne Le Sueur and Gernot Heiser. Slow down or sleep, that is the question.
In Proceedings of the USENIX Annual Technical Conference (USENIXATC).
USENIX Association, 2011. Available: http://dl.acm.org/citation.cfm?
id=2002181.2002197.

[105] Benjamin C. Lee and David Brooks. Roughness of microarchitectural design
topologies and its implications for optimization. In Proceedings of the
14th International Symposium on High Performance Computer Architecture
(HPCA), Feb. 2008. DOI: 10.1109/HPCA.2008.4658643.

http://dx.doi.org/10.1109/MICRO.2003.1253185
http://dx.doi.org/10.1109/MICRO.2004.12
http://dx.doi.org/10.1109/ISCA.2004.1310764
http://dx.doi.org/10.1109/ISCA.2004.1310764
http://dx.doi.org/10.1145/1152154.1152162
http://dx.doi.org/10.1007/BFb0029752
http://dx.doi.org/10.1109/ASAP.2012.10
http://dx.doi.org/10.1162/106365602760234108
https://www.usenix.org/legacy/events/hotpower10/tech/full_papers/LeSueur.pdf
https://www.usenix.org/legacy/events/hotpower10/tech/full_papers/LeSueur.pdf
http://dl.acm.org/citation.cfm?id=2002181.2002197
http://dl.acm.org/citation.cfm?id=2002181.2002197
http://dx.doi.org/10.1109/HPCA.2008.4658643

236 Bibliography

[106] Benjamin C. Lee and David M. Brooks. Accurate and efficient regression
modeling for microarchitectural performance and power prediction. In
Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 2006. DOI:
10.1145/1168857.1168881.

[107] Benjamin C. Lee and David M. Brooks. Illustrative design space studies with
microarchitectural regression models. In Proceedings of the 13th International
Symposium on High Performance Computer Architecture (HPCA). IEEE, Feb.
2007. DOI: 10.1109/HPCA.2007.346211.

[108] Jaewon Lee, Hanhwi Jang, and Jangwoo Kim. RpStacks: Fast and accurate
processor design space exploration using representative stall-event stacks.
In Proceedings of the 47th International Symposium on Microarchitecture
(MICRO). ACM, Dec. 2014. DOI: 10.1109/MICRO.2014.26.

[109] Rainer Leupers, Lieven Eeckhout, Grant Martin, Frank Schirrmeister, Nigel P.
Topham, and Xiaotao Chen. Virtual manycore platforms: Moving towards 100+
processor cores. In Proceedings of the Design, Automation, and Test in Europe
Conference (DATE), Mar. 2011. DOI: 10.1109/DATE.2011.5763121.

[110] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd

International Symposium on Microarchitecture (MICRO). ACM, Dec. 2009.
DOI: 10.1145/1669112.1669172.

[111] Tong Li, Paul Brett, Rob Knauerhase, David Koufaty, Dheeraj Reddy, and Scott
Hahn. Operating system support for overlapping-ISA heterogeneous multi-
core architectures. In Proceedings of the 16th International Symposium on
High Performance Computer Architecture (HPCA). IEEE, Jan. 2010. DOI:
10.1109/HPCA.2010.5416660.

[112] Hung-Yi Liu, Ilias Diakonikolas, Michele Petracca, and Luca Carloni. Super-
vised design space exploration by compositional approximation of Pareto sets.
In Proceedings of the 48th Design Automation Conference (DAC). ACM, 2011.
DOI: 10.1145/2024724.2024818.

[113] Qixiao Liu, Miquel Moreto, Victor Jimenez, Jaume Abella, Francisco J.
Cazorla, and Mateo Valero. Hardware support for accurate per-task energy
metering in multicore systems. ACM Transactions on Architecture and Code
Optimization (TACO), 10(4), Dec. 2013. DOI: 10.1145/2541228.2555291.

[114] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M. Sleiman,
Ronald Dreslinski, Thomas F. Wenisch, and Scott Mahlke. Composite
cores: Pushing heterogeneity into a core. In Proceedings of the 45th

International Symposium on Microarchitecture (MICRO). IEEE, Dec. 2012.
DOI: 10.1109/MICRO.2012.37.

http://dx.doi.org/10.1145/1168857.1168881
http://dx.doi.org/10.1145/1168857.1168881
http://dx.doi.org/10.1109/HPCA.2007.346211
http://dx.doi.org/10.1109/MICRO.2014.26
http://dx.doi.org/10.1109/DATE.2011.5763121
http://dx.doi.org/10.1145/1669112.1669172
http://dx.doi.org/10.1109/HPCA.2010.5416660
http://dx.doi.org/10.1109/HPCA.2010.5416660
http://dx.doi.org/10.1145/2024724.2024818
http://dx.doi.org/10.1145/2541228.2555291
http://dx.doi.org/10.1109/MICRO.2012.37

Bibliography 237

[115] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Ronald Dreslinski Jr.,
Thomas F. Wenisch, and Scott Mahlke. Heterogeneous microarchitectures
trump voltage scaling for low-power cores. In International Conference on
Parallel Architectures and Compilation Techniques (PACT). ACM, Aug. 2014.
DOI: 10.1145/2628071.2628078.

[116] Kun Luo, Jayanth Gummaraju, and Manoj Franklin. Balancing thoughput and
fairness in SMT processors. In Proceedings of the International Symposium on
Performance Analysis of Systems and Software (ISPASS). IEEE, 2001. DOI:
10.1109/ISPASS.2001.990695.

[117] Diana Marculescu and Anoop Iyer. Application-driven processor design
exploration for power-performance trade-off analysis. In Proceedings of the
International Conference on Computer Aided Design (ICCAD). IEEE, Nov.
2001. DOI: 10.1109/ICCAD.2001.968638.

[118] Giovanni Mariani, Prabhat Avasare, Geert Vanmeerbeeck, Chantal Ykman-
Couvreur, Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. An
industrial design space exploration framework for supporting run-time re-
source management on multi-core systems. In Proceedings of the Design,
Automation, and Test in Europe Conference (DATE), Mar. 2010. DOI:
10.1109/DATE.2010.5457211.

[119] Alain J. Martin. Towards an energy complexity of computation.
Information Processing Letters, 77(2–4):181–187, 2001. DOI:
10.1016/S0020-0190(00)00214-3.

[120] Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nyström, Paul I. Pénzes,
Robert Southworth, and Uri Cummings. The design of an asynchronous MIPS
R3000 microprocessor. In Proceedings of the 17th Conference on Advanced Re-
search in VLSI (ARVLSI), Sep. 1997. DOI: 10.1109/ARVLSI.1997.634853.

[121] Alain J. Martin, Mika Nyström, and Paul I. Pénzes. Et2: A metric for time
and energy efficiency of computation. In Robert Graybill and Rami Melhem,
editors, Power Aware Computing, Series in Computer Science, pages 293–315.
Springer, 2002. DOI: 10.1007/978-1-4757-6217-4.

[122] Daniel S. McFarlin, Charles Tucker, and Craig Zilles. Discerning the dominant
out-of-order performance advantage: Is it speculation or dynamism? In
Proceedings of the 18th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 2013. DOI:
10.1145/2451116.2451143.

[123] MediaTek Inc. MediaTek launches the MediaTek Helio X20, May 2015.
Available: http://www.mediatek.com/en/news-events/mediatek-
news/mediatek-launches-the-mediatek-helio-x20-the-worlds-
first-mobile-soc-featuring-tri-cluster-cpu-architecture/.
Accessed 2015-05-18.

http://dx.doi.org/10.1145/2628071.2628078
http://dx.doi.org/10.1109/ISPASS.2001.990695
http://dx.doi.org/10.1109/ISPASS.2001.990695
http://dx.doi.org/10.1109/ICCAD.2001.968638
http://dx.doi.org/10.1109/DATE.2010.5457211
http://dx.doi.org/10.1109/DATE.2010.5457211
http://dx.doi.org/10.1016/S0020-0190(00)00214-3
http://dx.doi.org/10.1016/S0020-0190(00)00214-3
http://dx.doi.org/10.1109/ARVLSI.1997.634853
http://dx.doi.org/10.1007/978-1-4757-6217-4
http://dx.doi.org/10.1145/2451116.2451143
http://dx.doi.org/10.1145/2451116.2451143
http://www.mediatek.com/en/news-events/mediatek-news/mediatek-launches-the-mediatek-helio-x20-the-worlds-first-mobile-soc-featuring-tri-cluster-cpu-architecture/
http://www.mediatek.com/en/news-events/mediatek-news/mediatek-launches-the-mediatek-helio-x20-the-worlds-first-mobile-soc-featuring-tri-cluster-cpu-architecture/
http://www.mediatek.com/en/news-events/mediatek-news/mediatek-launches-the-mediatek-helio-x20-the-worlds-first-mobile-soc-featuring-tri-cluster-cpu-architecture/

238 Bibliography

[124] Nandish Mehta and Bharadwaj Amrutur. Dynamic supply and threshold
voltage scaling for CMOS digital circuits using in-situ power monitor. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 20(5):892–901,
May 2012. DOI: 10.1109/TVLSI.2011.2132765.

[125] Pierre Michaud. Demystifying multicore throughput metrics. Computer
Architecture Letters, 12(2):63–66, Jul. 2013. DOI: 10.1109/L-CA.2012.25.

[126] Asit K. Mishra, N. Vijaykrishnan, and Chita R. Das. A case for heteroge-
neous on-chip interconnects for CMPs. In Proceedings of the 38th Annual
International Symposium on Computer Architecture (ISCA). ACM, 2011. DOI:
10.1145/2000064.2000111.

[127] Tomer Y. Morad, Uri C. Weiser, Avinoam Kolodny, Mateo Valero, and Eduard
Ayguadé. Performance, power efficiency and scalability of asymmetric cluster
chip multiprocessors. Computer Architecture Letters, 5(1):14–17, Jan. 2006.
DOI: 10.1109/L-CA.2006.6.

[128] Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead
execution: An alternative to very large instruction windows for out-of-
order processors. In Proceedings of the 9th International Symposium
on High-Performance Computer Architecture (HPCA), Feb. 2003. DOI:
10.1109/HPCA.2003.1183532.

[129] Nachiappan Chidambaram Nachiappan, Praveen Yedlapalli, Niranjan
Soundararajan, Mahmut T. Kandemir, Anand Sivasubramaniam, and Chita R.
Das. GemDroid: A framework to evaluate mobile platforms. In Proceedings of
the SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems. ACM, 2014. DOI: 10.1145/2591971.2591973.

[130] Ramadass Nagarajan, Karthikeyan Sankaralingam, Doug Burger, and
Stephen W. Keckler. A design space evaluation of grid processor architectures.
In Proceedings of the 34th International Symposium on Microarchitecture
(MICRO), Dec. 2001. DOI: 10.1109/MICRO.2001.991104.

[131] Hashem H. Najaf-abadi and Eric Rotenberg. Configurational workload
characterization. In Proceedings of the International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). IEEE, April 2008. DOI:
10.1109/ISPASS.2008.4510747.

[132] Hashem H. Najaf-abadi and Eric Rotenberg. Architectural contesting. In Pro-
ceedings of the 15th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, Feb. 2009. DOI: 10.1109/HPCA.2009.4798254.

[133] Hashem H. Najaf-abadi, Niket K. Choudhary, and Eric Rotenberg. Core-
selectability in chip multiprocessors. In Proceedings of the 18th International
Conference on Parallel Architectures and Compilation Techniques (PACT), Sep.
2009. DOI: 10.1109/PACT.2009.44.

http://dx.doi.org/10.1109/TVLSI.2011.2132765
http://dx.doi.org/10.1109/L-CA.2012.25
http://dx.doi.org/10.1145/2000064.2000111
http://dx.doi.org/10.1145/2000064.2000111
http://dx.doi.org/10.1109/L-CA.2006.6
http://dx.doi.org/10.1109/HPCA.2003.1183532
http://dx.doi.org/10.1109/HPCA.2003.1183532
http://dx.doi.org/10.1145/2591971.2591973
http://dx.doi.org/10.1109/MICRO.2001.991104
http://dx.doi.org/10.1109/ISPASS.2008.4510747
http://dx.doi.org/10.1109/ISPASS.2008.4510747
http://dx.doi.org/10.1109/HPCA.2009.4798254
http://dx.doi.org/10.1109/PACT.2009.44

Bibliography 239

[134] Sandeep Navada, Niket K. Choudhary, Salil V. Wadhavkar, and Eric Rotenberg.
A unified view of non-monotonic core selection and application steering in
heterogeneous chip multiprocessors. In Proceedings of the 22nd International
Conference on Parallel Architectures and Compilation Techniques (PACT).
IEEE, 2013. Available: http://dl.acm.org/citation.cfm?id=2523721.
2523743.

[135] Siddharth Nilakantan, Steven J. Battle, and Mark Hempstead. Metrics for
early-stage modeling of many-accelerator architectures. Computer Architecture
Letters, 12(1):25–28, Jan. 2013. DOI: 10.1109/L-CA.2012.9.

[136] NVIDA Corporation. Tegra 3 multi-core processors, n.d. Available: http:
//www.nvidia.com/object/tegra-3-processor.html. Accessed 2014-02-
17.

[137] Santiago Pagani, Heba Khdr, Waqaas Munawar, Jian-Jia Chen, Muhammad
Shafique, Minming Li, and Jörg Henkel. TSP: Thermal safe power—Efficient
power budgeting for many-core systems in dark silicon. In International Con-
ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
Oct. 2014. DOI: 10.1145/2656075.2656103.

[138] Sankaralingam Panneerselvam and Michael M. Swift. Chameleon: Operating
system support for dynamic processors. In Proceedings of the 17th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS). ACM, 2012. DOI: 10.1145/2150976.2150988.

[139] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. MARSS: A full
system simulator for multicore x86 CPUs. In Proceedings of the 48th Design Au-
tomation Conference (DAC). ACM, 2011. DOI: 10.1145/2024724.2024954.

[140] Nam Khanh Pham, Amit Kumar Singh, Akash Kumar, and Khin Mi Mi Aung.
Incorporating energy and throughput awareness in design space exploration
and run-time mapping for heterogeneous MPSoCs. In Proceedings of the
Euromicro Conference on Digital System Design (DSD), Sep. 2013. DOI:
10.1109/DSD.2013.61.

[141] Jason A. Poovey, Markus Levy, Shay Gal-On, and Thomas M. Conte. A
benchmark characterization of the EEMBC benchmark suite. IEEE Micro, 29
(5):18–29, Sep. 2009. DOI: 10.1109/MM.2009.74.

[142] Andrew Putnam, Aaron Smith, and Doug Burger. Dynamic vectorization in
the E2 dynamic multicore architecture. ACM SIGARCH Computer Architecture
News, 38(4):27–32, Jan. 2010. DOI: 10.1145/1926367.1926373.

[143] Qualcomm Inc. Qualcomm Technologies announces world’s first commercial
64-bit octa-core chipset with integrated 5 mode global LTE, Feb. 2014.
Available: http://www.qualcomm.com/media/releases/2014/02/24/
qualcomm-technologies-announces-worlds-first-commercial-64-
bit-octa-core. Accessed 2014-02-25.

http://dl.acm.org/citation.cfm?id=2523721.2523743
http://dl.acm.org/citation.cfm?id=2523721.2523743
http://dx.doi.org/10.1109/L-CA.2012.9
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html
http://dx.doi.org/10.1145/2656075.2656103
http://dx.doi.org/10.1145/2150976.2150988
http://dx.doi.org/10.1145/2024724.2024954
http://dx.doi.org/10.1109/DSD.2013.61
http://dx.doi.org/10.1109/DSD.2013.61
http://dx.doi.org/10.1109/MM.2009.74
http://dx.doi.org/10.1145/1926367.1926373
http://www.qualcomm.com/media/releases/2014/02/24/qualcomm-technologies-announces-worlds-first-commercial-64-bit-octa-core
http://www.qualcomm.com/media/releases/2014/02/24/qualcomm-technologies-announces-worlds-first-commercial-64-bit-octa-core
http://www.qualcomm.com/media/releases/2014/02/24/qualcomm-technologies-announces-worlds-first-commercial-64-bit-octa-core

240 Bibliography

[144] Wei Quan and Andy D. Pimentel. An iterative multi-application mapping
algorithm for heterogeneous MPSoCs. In Proceedings of the 11th Symposium
on Embedded Systems for Real-time Multimedia (ESTIMedia). IEEE, Oct. 2013.
DOI: 10.1109/ESTIMedia.2013.6704510.

[145] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2013. Available: http:
//www.R-project.org/.

[146] Arun Raghavan, Laurel Emurian, Lei Shao, Marios Papaefthymiou, Kevin P.
Pipe, Thomas F. Wenisch, and Milo M. K. Martin. Computational sprinting
on a hardware/software testbed. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM,
2013. DOI: 10.1145/2451116.2451135.

[147] Ivan Ratković, Oscar Palomar, Milan Stanić, Osman S. Ünsal, Adrian Cristal,
and Mateo Valero. On the selection of adder unit in energy efficient vector
processing. In 14th International Symposium on Quality Electronic Design
(ISQED), March 2013. DOI: 10.1109/ISQED.2013.6523602.

[148] Vijay Janapa Reddi, Benjamin C. Lee, Trishul Chilimbi, and Kushagra Vaid.
Web search using mobile cores: Quantifying and mitigating the price of
efficiency. In Proceedings of the 37th International Symposium on Computer
Architecture (ISCA). ACM, 2010. DOI: 10.1145/1815961.1816002.

[149] Shaolei Ren, Yuxiong He, and Kathryn S. McKinley. A theoretical foundation
for scheduling and designing heterogeneous processors for interactive appli-
cations. In Proceedings of the 28th International Symposium on Distributed
Computing (DISC), 2014. DOI: 10.1007/978-3-662-45174-8_11.

[150] Jude A. Rivers, Gary S. Tyson, Edward S. Davidson, and Todd M. Austin. On
high-bandwidth data cache design for multi-issue processors. In Proceedings of
the 30th International Symposium on Microarchitecture (MICRO). IEEE, Dec.
1997. DOI: 10.1109/MICRO.1997.645796.

[151] Andrew Rutherford. ANOVA and ANCOVA, chapter Traditional and GLM
Approaches to Independent Measures Single Factor ANOVA Designs, pages
17–52. John Wiley & Sons, Inc., 2011. DOI: 10.1002/9781118491683.ch2.

[152] Samsung Electronics Co. Ltd. Samsung Exynos, n.d. Available:
http://www.samsung.com/global/business/semiconductor/minisite/
Exynos/products5octa_5420.html. Accessed 2014-02-17.

[153] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu
Kim, Jaehyuk Huh, Doug Burger, Stephen W. Keckler, and Charles R. Moore.
Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture. In
Proceedings of the 30th International Symposium on Computer Architecture
(ISCA), Jun. 2003. DOI: 10.1109/ISCA.2003.1207019.

http://dx.doi.org/10.1109/ESTIMedia.2013.6704510
http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1145/2451116.2451135
http://dx.doi.org/10.1109/ISQED.2013.6523602
http://dx.doi.org/10.1145/1815961.1816002
http://dx.doi.org/10.1007/978-3-662-45174-8_11
http://dx.doi.org/10.1109/MICRO.1997.645796
http://dx.doi.org/10.1002/9781118491683.ch2
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/products5octa_5420.html
http://www.samsung.com/global/business/semiconductor/minisite/Exynos/products5octa_5420.html
http://dx.doi.org/10.1109/ISCA.2003.1207019

Bibliography 241

[154] Karthikeyan Sankaralingam, Ramadass Nagarajan, Robert G. McDonald, Ra-
jagopalan Desikan, Saurabh Drolia, M. S. Govindan, Paul Gratz, Divya Gulati,
Heather Hanson, Changkyu Kim, Haiming Liu, Nitya Ranganathan, Simha
Sethumadhavan, Sadia Sharif, Premkishore Shivakumar, Stephen W. Keckler,
and Doug Burger. Distributed microarchitectural protocols in the TRIPS
prototype processor. In Proceedings of the 39th International Symposium on Mi-
croarchitecture (MICRO). IEEE, Dec. 2006. DOI: 10.1109/MICRO.2006.19.

[155] Vinay Saripalli, Guangyu Sun, Asit Mishra, Yuan Xie, Suman Datta, and
Vijaykrishnan Narayanan. Exploiting heterogeneity for energy efficiency in chip
multiprocessors. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 1(2):109–119, Jun. 2011. DOI: 10.1109/JETCAS.2011.2158343.

[156] Serpil Sayın. Measuring the quality of discrete representations of efficient sets
in multiple objective mathematical programming. Mathematical Programming,
87(3):543–560, 2000. DOI: 10.1007/s101070050011.

[157] Yiannakis Sazeides, Rakesh Kumar, Dean M. Tullsen, and Theofanis Constanti-
nou. The danger of interval-based power efficiency metrics: When worst is best.
Computer Architecture Letters, 4(1), Jan. 2005. DOI: 10.1109/L-CA.2005.2.

[158] Yakun Sophia Shao and David Brooks. ISA-independent workload character-
ization and its implications for specialized architectures. In Proceedings of
the International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, Apr. 2013. DOI: 10.1109/ISPASS.2013.6557175.

[159] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications. In
Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2001. DOI: 10.1109/PACT.2001.953283.

[160] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Au-
tomatically characterizing large scale program behavior. In Proceedings
of the 10th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS). ACM, 2002. DOI:
10.1145/605397.605403.

[161] Eran Shifer and Shlomo Weiss. Low-latency adaptive mode transitions
and hierarchical power management in asymmetric clustered cores. ACM
Transactions on Architecture and Code Optimization (TACO), 10(3), Sep. 2008.
DOI: 10.1145/2499901.

[162] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: Studying
real user activity patterns to guide power optimizations for mobile architectures.
In Proceedings of the 42nd International Symposium on Microarchitecture
(MICRO). ACM, 2009. DOI: 10.1145/1669112.1669135.

[163] Amit Kumar Singh, Akash Kumar, and Thambipillai Srikanthan. A design
space exploration methodology for application specific MPSoC design. In

http://dx.doi.org/10.1109/MICRO.2006.19
http://dx.doi.org/10.1109/JETCAS.2011.2158343
http://dx.doi.org/10.1007/s101070050011
http://dx.doi.org/10.1109/L-CA.2005.2
http://dx.doi.org/10.1109/ISPASS.2013.6557175
http://dx.doi.org/10.1109/PACT.2001.953283
http://dx.doi.org/10.1145/605397.605403
http://dx.doi.org/10.1145/605397.605403
http://dx.doi.org/10.1145/2499901
http://dx.doi.org/10.1145/1669112.1669135

242 Bibliography

Proceedings of the Computer Society Symposium on VLSI (ISVLSI). IEEE, Jul.
2011. DOI: 10.1109/ISVLSI.2011.44.

[164] Aaron Smith, Jon Gibson, Bertrand A. Maher, Nicholas Nethercote, Bill Yoder,
Doug Burger, Kathryn S. McKinley, and James H. Burrill. Compiling for
EDGE architectures. In Proceedings of the 4th International Symposium
on Code Generation and Optimization (CGO). IEEE, Mar. 2006. DOI:
10.1109/CGO.2006.10.

[165] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simultane-
ous multithreaded processor. In Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2000. DOI: 10.1145/378993.379244.

[166] Allan Snavely, Dean M. Tullsen, and Geoff Voelker. Symbiotic jobscheduling
with priorities for a simultaneous multithreading processor. In Proceedings of
the SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems. ACM, 2002. DOI: 10.1145/511334.511343.

[167] Tyler Sondag and Hridesh Rajan. Phase-based tuning for better utilization
of performance-asymmetric multicore processors. In Proceedings of the 9th

International Symposium on Code Generation and Optimization (CGO). IEEE,
Apr. 2011. DOI: 10.1109/CGO.2011.5764670.

[168] Vasileios Spiliopoulos, Akash Bagdia, Andreas Hansson, Peter Aldworth, and
Stefanos Kaxiras. Introducing DVFS-management in a full-system simulator.
In Proceedings of the 21st International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), Aug.
2013. DOI: 10.1109/MASCOTS.2013.75.

[169] Standard Performance Evaluation Corporation. SPEC CPU 2006, Aug. 2015.
Available: https://www.spec.org/cpu2006/. Accessed 2016-03-01.

[170] Bo Su, Junli Gu, Li Shen, Wei Huang, Joseph L. Greathouse, and Zhiying Wang.
PPEP: Online performance, power, and energy prediction framework and DVFS
space exploration. In Proceedings of the 47th International Symposium on Mi-
croarchitecture (MICRO). IEEE, Dec. 2014. DOI: 10.1109/MICRO.2014.17.

[171] Karthik T. Sundararajan, Timothy M. Jones, and Nigel P. Topham. The smart
cache: An energy-efficient cache architecture through dynamic adaptation.
International Journal of Parallel Programming, 41(2):305–330, 2013. DOI:
10.1007/s10766-012-0220-y.

[172] Dam Sunwoo, William Wang, Mrinmoy Ghosh, Chander Sudanthi, Geoffrey
Blake, Christopher D. Emmons, and Nigel C. Paver. A structured approach
to the simulation, analysis and characterization of smartphone applications.
In Proceedings of the International Symposium on Workload Characterization
(IISWC). IEEE, Sep. 2013. DOI: 10.1109/IISWC.2013.6704677.

http://dx.doi.org/10.1109/ISVLSI.2011.44
http://dx.doi.org/10.1109/CGO.2006.10
http://dx.doi.org/10.1109/CGO.2006.10
http://dx.doi.org/10.1145/378993.379244
http://dx.doi.org/10.1145/511334.511343
http://dx.doi.org/10.1109/CGO.2011.5764670
http://dx.doi.org/10.1109/MASCOTS.2013.75
https://www.spec.org/cpu2006/
http://dx.doi.org/10.1109/MICRO.2014.17
http://dx.doi.org/10.1007/s10766-012-0220-y
http://dx.doi.org/10.1007/s10766-012-0220-y
http://dx.doi.org/10.1109/IISWC.2013.6704677

Bibliography 243

[173] Karthik Swaminathan, Emre Kultursay, Vinay Saripalli, Vijaykrishnan
Narayanan, Mahmut Kandemir, and Suman Datta. Improving energy efficiency
of multi-threaded applications using heterogeneous CMOS-TFET multicores.
In International Symposium on Low Power Electronics and Design (ISLPED).
IEEE, Aug. 2011. DOI: 10.1109/ISLPED.2011.5993644.

[174] Andrew D. Targhetta, Donald E. Owen Jr., and Paul V. Gratz. The design
space of ultra-low energy asymmetric cryptography. In Proceedings of the
International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE, Mar. 2014. DOI: 10.1109/ISPASS.2014.6844461.

[175] Michael Bedford Taylor, Walter Lee, Jason E. Miller, David Wentzlaff, Ian
Bratt, Ben Greenwald, Henry Hoffmann, Paul Johnson, Jason Sungtae Kim,
James Psota, Arvind Saraf, Nathan Shnidman, Volker Strumpen, Matthew
Frank, Saman P. Amarasinghe, and Anant Agarwal. Evaluation of the Raw
microprocessor: An exposed-wire-delay architecture for ILP and streams. In
Proceedings of the 31st International Symposium on Computer Architecture
(ISCA), Jun. 2004. DOI: 10.1109/ISCA.2004.1310759.

[176] Jürgen Teich. Invasive algorithms and architectures (invasive algorithmen und
architekturen). IT - Information Technology, 50(5):300–310, 2008. DOI:
10.1524/itit.2008.0499.

[177] Jürgen Teich, Jörg Henkel, Andreas Herkersdorf, Doris Schmitt-Landsiedel,
Wolfgang Schröder-Preikschat, and Gregor Snelting. Invasive computing: An
overview. In Michael Hübner and Jürgen Becker, editors, Multiprocessor
System-on-Chip: Hardware Design and Tool Integration, pages 241–268.
Springer New York, 2011. DOI: 10.1007/978-1-4419-6460-1_11.

[178] Shyamkumar Thoziyoor, Naveen Muralimanohar, and Norman P. Jouppi.
CACTI 5.0. Technical report, HP Laboratories, Oct. 2007. Available: http:
//www.hpl.hp.com/techreports/2007/HPL-2007-167.pdf.

[179] Erik Tomusk. Practicalities of design space exploration with gem5 and McPAT.
Presentation at the HiPEAC Computing Systems Weak, Oct. 2012. Available:
http://old.hipeac.net/system/files/csw-2012a-tomusk.pdf.

[180] Yatish Turakhia, Bharathwaj Raghunathan, Siddharth Garg, and Diana Mar-
culescu. HaDeS: Architectural synthesis for heterogeneous dark silicon chip
multi-processors. In Proceedings of the Design Automation Conference (DAC).
IEEE, May 2013.

[181] Rafael Ubal, Dana Schaa, Perhaad Mistry, Xiang Gong, Yash Ukidave,
Zhongliang Chen, Gunar Schirner, and David R. Kaeli. Exploring the
heterogeneous design space for both performance and reliability. In Proceedings
of the 51st Annual Design Automation Conference (DAC). ACM, 2014. DOI:
10.1145/2593069.2596680.

http://dx.doi.org/10.1109/ISLPED.2011.5993644
http://dx.doi.org/10.1109/ISPASS.2014.6844461
http://dx.doi.org/10.1109/ISCA.2004.1310759
http://dx.doi.org/10.1524/itit.2008.0499
http://dx.doi.org/10.1524/itit.2008.0499
http://dx.doi.org/10.1007/978-1-4419-6460-1_11
http://www.hpl.hp.com/techreports/2007/HPL-2007-167.pdf
http://www.hpl.hp.com/techreports/2007/HPL-2007-167.pdf
http://old.hipeac.net/system/files/csw-2012a-tomusk.pdf
http://dx.doi.org/10.1145/2593069.2596680
http://dx.doi.org/10.1145/2593069.2596680

244 Bibliography

[182] Kenzo Van Craeynest and Lieven Eeckhout. Understanding fundamental
design choices in single-ISA heterogeneous multicore architectures. ACM
Transactions on Architecture and Code Optimization (TACO), 9(4), Jan. 2013.
DOI: 10.1145/2400682.2400691.

[183] Sam Van den Steen, Sander De Pestel, Moncef Mechri, Stijn Eyerman,
Trevor E. Carlson, David Black-Schaffer, Erik Hagersten, and Lieven Eeckhout.
Micro-architecture independent analytical processor performance and power
modeling. In Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, Mar. 2015. DOI:
10.1109/ISPASS.2015.7095782.

[184] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vla-
dyslav Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford
Taylor. Conservation cores: Reducing the energy of mature computations.
In Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 2010. DOI:
10.1145/1736020.1736044.

[185] Ganesh Venkatesh, Jack Sampson, Nathan Goulding-Hotta, Sravanthi Kota
Venkata, Michael Bedford Taylor, and Steven Swanson. QsCores: Trading dark
silicon for scalable energy efficiency with quasi-specific cores. In Proceedings
of the 44th International Symposium on Microarchitecture (MICRO). ACM,
2011. DOI: 10.1145/2155620.2155640.

[186] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic
measures for clusterings comparison: Variants, properties, normalization and
correction for chance. Journal of Machine Learning Research, 11:2837–2854,
Dec. 2010. Available: http://dl.acm.org/citation.cfm?id=1756006.
1953024.

[187] Richard Vuduc, James W. Demmel, and Jeff Bilmes. Statistical models
for empirical search-based performance tuning. International Journal of
High Performance Computing Applications, 18(1):65–94, Feb. 2004. DOI:
10.1177/1094342004041293.

[188] Hao Wang, Vijay Sathish, Ripudaman Singh, Michael J. Schulte, and Nam Sung
Kim. Workload and power budget partitioning for single-chip heterogeneous
processors. In Proceedings of the 21st International Conference on Parallel
Architectures and Compilation Techniques (PACT). ACM, 2012. DOI:
10.1145/2370816.2370873.

[189] Xiaohang Wang, Zhiming Li, Mei Yang, Yingtao Jiang, Masoud Daneshtalab,
and Terrence Mak. A low cost, high performance dynamic-programming-
based adaptive power allocation scheme for many-core architectures in the
dark silicon era. In Proceedings of the 11th Symposium on Embedded
Systems for Real-Time Multimedia (ESTIMedia). IEEE, Oct. 2013. DOI:
10.1109/ESTIMedia.2013.6704504.

http://dx.doi.org/10.1145/2400682.2400691
http://dx.doi.org/10.1109/ISPASS.2015.7095782
http://dx.doi.org/10.1109/ISPASS.2015.7095782
http://dx.doi.org/10.1145/1736020.1736044
http://dx.doi.org/10.1145/1736020.1736044
http://dx.doi.org/10.1145/2155620.2155640
http://dl.acm.org/citation.cfm?id=1756006.1953024
http://dl.acm.org/citation.cfm?id=1756006.1953024
http://dx.doi.org/10.1177/1094342004041293
http://dx.doi.org/10.1177/1094342004041293
http://dx.doi.org/10.1145/2370816.2370873
http://dx.doi.org/10.1145/2370816.2370873
http://dx.doi.org/10.1109/ESTIMedia.2013.6704504
http://dx.doi.org/10.1109/ESTIMedia.2013.6704504

Bibliography 245

[190] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia
Ailamaki, Babak Falsafi, and James C. Hoe. SimFlex: Statistical sampling
of computer system simulation. IEEE Micro, 26(4):18–31, Jul. 2006. DOI:
10.1109/MM.2006.79.

[191] John Robert Wernsing and Greg Stitt. Elastic computing: A framework
for transparent, portable, and adaptive multi-core heterogeneous comput-
ing. In Proceedings of the SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems (LCTES). ACM, 2010. DOI:
10.1145/1755888.1755906.

[192] Youfeng Wu, Shiliang Hu, Edson Borin, and Cheng Wang. A HW/SW
co-designed heterogeneous multi-core virtual machine for energy-efficient
general purpose computing. In Proceedings of the 9th International Sym-
posium on Code Generation and Optimization. IEEE, Apr. 2011. DOI:
10.1109/CGO.2011.5764691.

[193] Ahmad Yasin. A top-down method for performance analysis and counters
architecture. In Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, March 2014. DOI:
10.1109/ISPASS.2014.6844459.

[194] Wei Zhang, Hang Zhang, and John Lach. Adaptive front-end throttling
for superscalar processors. In Proceedings of the International Symposium
on Low Power Electronics and Design (ISLPED). ACM, 2014. DOI:
10.1145/2627369.2627633.

[195] Hongtao Zhong, Steven A. Lieberman, and Scott A. Mahlke. Extending
multicore architectures to exploit hybrid parallelism in single-thread appli-
cations. In Proceedings of the 13th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, Feb. 2007. DOI:
10.1109/HPCA.2007.346182.

[196] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach. IEEE Transactions
on Evolutionary Computation, 3(4), Nov. 1999. DOI: 10.1109/4235.797969.

[197] Davide Zoni, Simone Corbetta, and William Fornaciari. HANDS: Het-
erogeneous architectures and networks-on-chip design and simulation. In
Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED). ACM, 2012. DOI: 10.1145/2333660.2333721.

[198] Victor Zyuban and Peter M. Kogge. Optimization of high-performance super-
scalar architectures for energy efficiency. In Proceedigns of the International
Symposium on Low Power Electronics and Design (ISLPED), Jul. 2000. DOI:
10.1109/LPE.2000.155258.

[199] Victor Zyuban and Philip Strenski. Unified methodology for resolving
power-performance tradeoffs at the microarchitectural and circuit levels. In

http://dx.doi.org/10.1109/MM.2006.79
http://dx.doi.org/10.1109/MM.2006.79
http://dx.doi.org/10.1145/1755888.1755906
http://dx.doi.org/10.1145/1755888.1755906
http://dx.doi.org/10.1109/CGO.2011.5764691
http://dx.doi.org/10.1109/CGO.2011.5764691
http://dx.doi.org/10.1109/ISPASS.2014.6844459
http://dx.doi.org/10.1109/ISPASS.2014.6844459
http://dx.doi.org/10.1145/2627369.2627633
http://dx.doi.org/10.1145/2627369.2627633
http://dx.doi.org/10.1109/HPCA.2007.346182
http://dx.doi.org/10.1109/HPCA.2007.346182
http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1145/2333660.2333721
http://dx.doi.org/10.1109/LPE.2000.155258
http://dx.doi.org/10.1109/LPE.2000.155258

246 Bibliography

Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED). ACM, 2002. DOI: 10.1145/566408.566451.

http://dx.doi.org/10.1145/566408.566451

	cover sheet
	Tomusk2016
	Abstract
	Lay Summary
	Acknowledgements
	Declaration
	Publications
	Table of Contents
	1. Introduction
	1.1. Problem Summary
	1.2. Contributions
	1.3. Thesis Structure
	1.4. Acknowledgements

	2. Background
	2.1. Introduction
	2.2. Evaluation
	2.2.1. Physical Quantities
	2.2.2. Rates
	2.2.3. Summary Metrics
	2.2.4. Benchmarking

	2.3. Processor Hardware
	2.3.1. Architecture
	2.3.2. Microarchitecture
	2.3.3. Models
	2.3.4. Software Considerations

	2.4. Summary

	3. Related Work
	3.1. Introduction
	3.2. Architecture
	3.2.1. Microarchitecture
	3.2.2. Dynamic Voltage and Frequency Scaling
	3.2.3. Homogeneous Architectures
	3.2.4. Heterogeneous Architectures
	3.2.4.1. Single-ISA Architectures
	3.2.4.2. Multiple-ISA Architectures
	3.2.4.3. Reconfigurable Architectures

	3.3. Models
	3.3.1. Analytical Models
	3.3.2. Simulators
	3.3.3. Simulation Techniques
	3.3.4. Power Models

	3.4. Benchmarking
	3.5. Metrics
	3.5.1. Energy-Aware Metrics
	3.5.2. Throughput Metrics
	3.5.3. Uniformity Metrics
	3.5.4. Metrics from Statistics

	3.6. Design Process
	3.6.1. Design Space Exploration
	3.6.2. Core Selection

	3.7. Summary

	4. Infrastructure
	4.1. Introduction
	4.2. Software Tools
	4.2.1. gem5 Simulator
	4.2.2. McPAT Power Model
	4.2.3. Simulation Scripts
	4.2.4. R Analysis

	4.3. Experiment Methodology
	4.3.1. Benchmarks
	4.3.2. Design Space
	4.3.3. Discussion

	4.4. Summary

	5. Technical Motivation
	5.1. Introduction
	5.2. Flexibility: A First-Order Requirement
	5.3. Obstacles to Diversity
	5.3.1. Design Flow
	5.3.2. Selection Problem
	5.3.3. Evaluation Problem
	5.3.4. Program Diversity
	5.3.5. Tool Unreliability

	5.4. A Power-Constrained Runtime Model
	5.5. Intuitive Diversity Considerations
	5.5.1. Spread
	5.5.2. Uniformity

	5.6. Limitations of Current Metrics
	5.6.1. Throughput Metrics
	5.6.2. Summary Metrics
	5.6.2.1. ED2 Limitations
	5.6.2.2. General Limitations

	5.6.3. Diversity Metrics

	5.7. Limitations of Current Selection Techniques
	5.7.1. Max Selection
	5.7.2. Max-Budget Selection
	5.7.3. GA Selection
	5.7.4. Clustering Selection

	5.8. Summary

	6. Metrics for Sets of Heterogeneous Cores
	6.1. Introduction
	6.2. Motivating Goals
	6.3. Assumptions
	6.4. Example Data
	6.5. Basic Metrics
	6.5.1. Minimum
	6.5.2. Maximum
	6.5.3. Spread
	6.5.4. Budgeted Minimum and Maximum

	6.6. Uniformity
	6.6.1. Intuition
	6.6.2. Kolmogorov-Smirnov Test
	6.6.2.1. Application to Uniformity
	6.6.2.2. Example: Evaluating Diversity

	6.6.3. Localized Non-Uniformity
	6.6.3.1. Definition
	6.6.3.2. Discussion
	6.6.3.3. Example: Identifying Redundancy

	6.6.4. KS Test and Localized Non-Uniformity
	6.6.5. Localized Non-Uniformity and Related Metrics

	6.7. Gap Overhead
	6.7.1. Intuition
	6.7.2. Definition
	6.7.3. Discussion
	6.7.4. Example: Adding Core Types

	6.8. Set Overhead
	6.8.1. Intuition
	6.8.2. Definition
	6.8.3. Discussion
	6.8.3.1. Set Overhead and Speedup
	6.8.3.2. Comparison to Gap Overhead
	6.8.3.3. Power Range Considerations

	6.8.4. Example: Comparing Selections
	6.8.5. Example: Comparing DVFS and Heterogeneity

	6.9. Availability
	6.9.1. Intuition
	6.9.2. Definition
	6.9.3. Discussion
	6.9.4. Example: Comparing Availability

	6.10. Effective Speed
	6.10.1. Intuition
	6.10.2. Definition
	6.10.3. Discussion
	6.10.4. Example: Comparing Throughput

	6.11. Generality
	6.11.1. Intuition
	6.11.2. Definition
	6.11.3. Discussion
	6.11.4. Example: Generality of Selections

	6.12. Monotonicity
	6.12.1. Intuition
	6.12.2. Definition
	6.12.3. Discussion
	6.12.4. Example: Workload Divergence

	6.13. Power PDF Considerations
	6.14. Summary

	7. The LUCIE Algorithm for Core Selection
	7.1. Introduction
	7.2. LUCIE Overview
	7.3. Algorithmic Considerations
	7.4. Selection Space Normalization
	7.5. Basic LUCIE
	7.5.1. Definition
	7.5.2. Example

	7.6. Biased LUCIE
	7.6.1. Definition
	7.6.2. Example

	7.7. Weighted-Biased LUCIE
	7.7.1. Definition
	7.7.2. Example

	7.8. Pinning Cores
	7.8.1. Maximization Example
	7.8.2. Incremental Design Example

	7.9. Applying a Power PDF
	7.10. Summary

	8. LUCIE Evaluation & Metrics Demonstration
	8.1. Introduction
	8.2. Selection Algorithm Implementations
	8.3. Selected Cores
	8.4. Summary Metrics
	8.5. Spread
	8.6. Availability
	8.7. Localized Non-Uniformity
	8.8. Set Overhead
	8.9. Effective Speed
	8.10. Scalability
	8.10.1. Gap Overhead
	8.10.2. Generality
	8.10.3. Monotonicity

	8.11. Selection with a PDF
	8.12. Conclusion: The Best Algorithm
	8.13. Summary

	9. Conclusions
	9.1. Contributions
	9.1.1. Motivating Framework
	9.1.2. Evaluation Metrics
	9.1.3. Core Selection

	9.2. Critical Analysis
	9.2.1. Motivating Framework
	9.2.2. Evaluation Metrics
	9.2.3. Core Selection

	9.3. Future Work

	A. Design Space
	Bibliography

