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Synchronising the Senses: The Impact of Embodied Cognition on 

Communication, Explored in the Domain of Colour 

 

"Why did I study Linguistics instead of Celestial Mechanics?   

Linguistics got me into this excellent mess - only physics can get me out."  

Neal Stephenson, Anathem 

 

 

Abstract 

 

Colour terms divide the visual spectrum into categorical concepts.  Since Berlin & Kay’s 

(1969) cross-cultural study of colour terms, there has been debate about the extent to which 

these concepts are constrained by innate biases from perceptual hardware and the 

environment.  This study shows that concepts can affect perception in the domain of colour 

(e.g., reading the word ‘yellow’ causes us to see yellow).  An experiment was run in which 

participants were asked to adjust the font colour of colour terms to appear grey.  In fact, 

participants adjusted the font colour to perceptually oppose the colour the word described 

(e.g., the word ‘yellow’ was adjusted to be blue).  This is interpreted as over-compensating 

for a perceptual activation caused by the comprehension of the word.  These results are used 

to argue that cross-cultural patterns in colour term systems do not necessarily imply strong 

innate biases.  It is argued that the most efficient way of converging on, maintaining and 

transferring a conceptual system is for shared categories to re-organise perception.  This re-

organisation will converge to optimally fit the perceptual and environmental biases.  

Therefore, an Embodied, Relativist explanation of cross-cultural patterns is supported.  

Furthermore, if the comprehension of language involves the activation of perceptual 

representations, then there will be a communicative pressure to reduce perceptual differences 

between speakers.   
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Synchronising the Senses: The Impact of Embodied Cognition on 

Communication, Explored in the Domain of Colour 

 

1  Introduction 

 

Our understanding of the world begins with perception.  When we perceive an object, such as 

a piece of fruit, our sensory equipment measures features of the world such as pressure 

(touch), chemical composition (taste and smell) or the spectral intensity of light (vision).  Our 

brains then process this analogue data into meaningful, categorical structures such as ‘a 

banana’.  Thus we abstract away from the complexity of the world to create concepts.  This 

ability helps us function in the world, and is not unique to humans (Hurford, 2007, p.9-16).  

However, humans are unique in the ability to attach labels to these concepts using language.  

We can use language to convey our thoughts to other humans and reconstruct the thoughts of 

others in our own mind.  This study is concerned with two approaches to language.  

Universalism takes the position that language is subject to innate constraints from perception 

and the environment and therefore all cultures will have fundamentally similar understandings 

of the world.  Linguistic Relativism, on the other hand, hypothesises that the structures of a 

language affect the way individuals think about the world.  In this case, concepts can affect 

cognition and perception.   

 

Since Berlin & Kay’s (1969) work on the World Colour Survey, this debate has been 

researched through the domain of colour perception.  This has made the problem more 

tractable, since it restricts the domain to one sensory modality and the physiology of colour 

perception is well understood.  However, with essentially no variance across populations in 

terms of the physiology of vision (Mollon, 1999), different cultures nevertheless seem to have 

strikingly different approaches to colour.  For example, the Mangyans of the Philippines seem 

to have only 2 colour terms – that of ‘fresh’ and ‘dry’ colours (Ball, 2001, p. 15-16).  In 

contrast, speakers of Tzotzil from Mexico appear to have hundreds of grammaticalised forms 

that describe colour (MacKeigan & Muth, 2006).  Neither are colour categories stable across 

time – the English terms ‘yellow’ and ‘blue’ have the same etymological root, reflecting a 

time when yellow and blue were seen as different shades of the same colour (Ball, 2001, 

p.264).  Nevertheless, universal patterns in colour term systems (e.g., Berlin & Kay, 1969) 

have been taken as evidence for universal, innate biases (Bornstein, 1973).  This study argues 

that this inference is not valid.  It is true that some colours are more functionally salient than 
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others.  For example, leaves are green whereas fruit are red-ish.  Therefore, it is functionally 

useful to have labels that separate green and red.  Furthermore, some colours are more 

perceptually salient than others (Jameson & D’Andrade, 1997).  It has also been shown that 

natural colour term systems are optimised for constraints on the hardware of vision (Regier, 

Kay and Khetarpal, 2006) and for functionally classifying objects (Griffin, 2006).  

Universalism would argue that these innate biases have lead to universal patterns in cross-

cultural colour term systems. 

 

However, cross-cultural patterns could occur without innate biases through the following 

process:  If comprehension is based on perception (the Embodied Cognition hypothesis), an 

adaptive pressure to improve communication will try to minimise perceptual differences 

between people.  That is, by synchronising perception, people’s conceptual understanding of 

the world becomes closer.  This requires a process that can change an individual’s perceptions 

to fit a shared configuration.  If categories can affect perception (the Categorical Perception 

hypothesis), then, since categories can be shared through language, categories can warp 

perceptual spaces (e.g., Kuhl, 1991, Iverson & Kuhl, 1995) so as to bring people’s perceptual 

experiences closer.  Systems are likely to converge on colour terms that optimally allow 

functional discrimination and that involve the least modification of the average perceptual 

bias.  This will cause colour term systems to become optimised for constraints on the 

hardware of vision and for functionally classifying objects in the environment.  Given similar 

perceptual hardware and survival pressures, this will lead to universal patterns in colour term 

systems.  However, by this line of argument, the innate biases reflected in the colour terms are 

not the driving adaptive force, but a product of a communicative pressure acting in a cultural 

system.  Therefore, even a Relativist approach to language would expect universal patterns in 

language.  It is concluded that universal patterns do not necessarily support Universalism.  

Furthermore, an Embodied approach is favoured, since it causes a pressure for colour term 

systems to become more efficient at describing the real world. 

 

For the argument above to hold, three implications need to be proven:  Firstly, comprehension 

is based on perception (The Embodied implication).  Secondly, linguistic labels (categories) 

can affect perception (The Categorical Perception implication).  Thirdly, there is a 

mechanism whereby categorical effects on perception can cause colour terms to converge on 

functionally and perceptually optimal configurations (The Cultural implication).  Each of 

these implications will be considered.   
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The Embodied implication will be considered by reviewing the literature on Embodied 

Cognition.  Embodied Cognition Theory hypothesises that there is no neurological distinction 

between concepts and perception and that comprehension involves re-creating the motor 

responses or perceptual impressions associated with that concept (e.g., Barsalou, 1999).  For 

instance, understanding the word ‘kick’ involves motor areas which control the leg (Hauk, 

Johnsrude & Pulvermuller, 2004).  Similarly, hearing the word ‘yellow’ activates perceptions 

of the colour yellow (Ritcher and Zwaan, 2009).  Studies of Categorical Perception have 

shown that concepts can indeed influence perception (e.g., Gilbert, Regier, Kay & Ivry, 

2006). 

 

The Categorical Perception implication will be tested by running an experiment which 

demonstrates that the comprehension of colour terms activates perceptual representations.  

Although this has been examined to some extent, the current evidence is conflicting.  Most 

studies of categorical perception involve detecting differences in reaction times to stimuli that 

match or mismatch primed perceptual representations.  The current study will use a different 

approach that is less reliant on processing speed.  This paradigm comes from Hansen, 

Olkkonen and Walter (2006) who found that natural objects with a ‘typical’ colour retain 

traces of this colour in perception, regardless of their actual colour.  For example, bananas 

look slightly yellow, even when they are actually achromatic (grey).  This study will show 

that this effect extends to abstract words (e.g., the written word ‘yellow’ activates perceptual 

representations of the colour yellow).  This suggests that the linguistic system is built on top 

of a system for recognising objects (MacWhinney, 1999).  This paradigm also tests the sub-

implication that concepts should continuously and persistently affect perception. 

 

The Cultural implication will be explored by showing how linguistic categories can affect 

other domains of constraint.  This will involve defining the domains of constraint and the 

interactions between them.  It will be argued that categorical perception causes a dynamic 

which fits into Niche Construction Theory (Laland, Odling-Smee & Feldman, 2000).  Finally 

it will be concluded that a Universalist approach is not appropriate. 

 

The next section will cover other areas of the theoretical background.  Section three will give 

an overview of the field of colour categorisation.  Hansen et al. (2006) will be explained in 

section four.  Section five will define the constraints on colour categorisation, and consider 
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evidence for the influence of each domain of constraint.  Section six draws conclusions from 

this evidence and summarises the implications for theories of cultural transmission.  Two 

experiments on the effects of categorisation on perception are presented in sections seven and 

eight.  A general conclusion follows. 

 

2 Theoretical Background 

 

In this section, the major theories discussed in this study are outlined, including Universalism, 

Relativism, Embodied Cognition, Symbolism and Niche Construction.  Also, since much of 

the research on constraints on colour terms involves computational models, the rationale 

behind using models is explained. 

 

2.1 Universalism and Relativism 

 

Universalism and Relativism are two Structuralist approaches to language.  Universalism 

holds that the variation in language and culture is superficial in the sense that there is one 

common system of cognition underlying them, based on common constraints from perception 

or the environment.    Linguistic Relativism hypothesises that cognition is determined by the 

language the individual speaks.  The strength of this supposition varies between theorists.    

Relativism grew from the so-called Sapir-Whorf or Whorfian hypothesis (Sapir, 1929, Whorf, 

1940/1956) which holds that the linguistic categories held by an individual can affect the way 

that individual perceives the world.  A strong Whorfian hypothesis assumes that there are no 

constraints on the way linguistic categories are formed (Kay and Kempton, 1984).  Section 5 

will show that this is not the case for colour categorisation.  Indeed, in the domain of colour, 

Berlin & Kay’s (1969) study of basic colours has been interpreted as strong evidence for 

Universalism (Bornstein, 1987), although Kay’s later studies supported a weak Whorfian 

theory (Kay and Kempton, 1984, Gilbert, Regier, Kay & Ivry, 2006).  Recently, within the 

field of colour categorisation, it has been suggested that the contradictions between the 

evidence for Relativist or Universalist theories points to a possible third interpretation, 

situated in the middle ground between the two (Regier, 2007, Claidière, Jraissati & 

Chevallier, 2008, Jameson, 2005). 

 

2.2 Categorical perception 
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Categorical perception is a phenomenon whereby continuous, noisy data from the 

environment is sorted into discrete categories (Harnad, 1990).  For example, the visual 

spectrum is divided into discrete colour categories such as red, yellow and so on.  

Furthermore, by creating these categories, stimuli from the same category may be 

perceptually more alike than stimuli from different categories, regardless of their physical 

similarity (e.g., Liberman, Harris, Hoffman, & Griffith, 1957).  That is, categories can affect 

perception, which fits with a weak Whorfian hypothesis.  For example, two shades of green 

may appear more similar to each other than to a shade of yellow, even though their 

wavelengths may be physically equidistant (Gilbert, Regier, Kay & Ivry, 2006).  This is a 

categorical boundary effect (Pastore, 1987). 

 

Lupyan (2008) found that verbally labelling a concept enhances the categorical boundary 

effect.  Lupyan also concludes that perceptual spaces can be modulated or warped by context-

specific online processes rather than long-term, memory-based processes.  In addition to 

explaining the plasticity and context-sensitivity of language, it also explains how individuals 

can switch between more than one language.  This study considers the origins of the 

categorical boundaries of colour terms.  Are they determined by perception or by language?  

Universalism would argue that perception is the main constraint – that categories are formed 

based on the optimal way of partitioning the environment.  Relativism, on the other hand, 

would argue that the concepts within a language are the primary constraint on the boundaries.  

In this sense, language can affect perception.  This study will argue that the Relativist position 

is supported by adopting the approach of Embodied Cognition. 

 

2.3 Embodied Cognition 

 

Given that the range of constraints on colour categorisation includes perception, cognition and 

the environment, it makes sense to adopt the approach of Embodied Cognition (e.g., Barsalou, 

1999).  Embodied Cognition arose as a response to classical cognitive approaches (e.g., 

Artificial Intelligence, Symbolism) which typically study internal processes in isolation.  

Embodied Cognition emphasises that cognition originated to serve physical agents competing 

in a real environment, not to solve high-level planning problems like playing chess (Brooks, 

1990).  That is, cognition is primarily used for driving action in a real environment to 

complete low-level goals (e.g., finding food, avoiding predators) in real-time (Brooks, 1986, 

Thelen and Smith 1994, Thelen 1995).   
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An idea often linked to Embodied Cognition, and one which is associated with it in this study, 

is the perceptual symbols account of comprehension (Barsalou, 1999, Lakoff & Johnson, 

1999).  Symbolism assumes that cognition involves the manipulation of abstract symbols.  In 

contrast, perceptual symbols theory, traceable to David Hume (1784/1902), hypothesises that 

comprehension of language involves the simulation of the perceptual representations involved 

in perceiving the referent or the motor activity involved in carrying out the described action 

(Hauk et al., 2004, Pulvermüller, 2001).  For example, Zwaan, Stanfield and Yaxley (2002) 

showed participants sentences which included a target word, but implicitly suggested a 

particular shape.  For example, ‘an egg in a carton’ (ellipse) and ‘an egg on a frying pan’ 

(‘sunny side up’ - circle surrounded by smooth, curvy line).  They were then shown a picture 

of the object in either a matching or mismatching configuration to the preceding sentence and 

asked to decide if the object had appeared in that sentence.  Matched conditions evoked faster 

reactions than mismatched conditions.  Similar results have been found for orientation 

(Stanfield & Zwaan, 2001) and motion (Zwaan, Madden, Yaxley, & Aveyard, 2004).  Zwaan 

et al. (2002) argue that this would not happen if comprehension involved only amodal 

symbols – a symbolic ‘egg’ would activate all shape configurations equally.  Instead, 

perceptual representations are activated that involve shape during language comprehension, 

and there is a processing cost involved when this representation clashes with the one 

presented.  These findings fit into Embodied Cognition theory because they show that 

perception and comprehension are inherently linked.  For example, comprehending an egg 

involves a functional comprehension of the use of an egg in context.  Neuroimaging studies 

have shown that the same neural substrates are involved in both perception and 

comprehension (Hauk et al., 2004).  However, this effect appears to be lateralised to the right 

visual field (the left hemisphere, Gilbert et al., 2006, Drivonikou et al., 2007).  This could be 

linked with the lateralisation of language to the left hemisphere creating strengthened 

connections between linguistic categories and perceptions (Pulvermüller, 2001).   

 

For colour categorisation, then, Embodied Cognition would predict that the cognitive 

processes behind colour perception were systematically related to the goals of the perceiver as 

they attempt to survive and replicate in their environment.  This would include, for example, 

being able to easily distinguish colours used by other organisms for signalling (e.g., typical 

fruit colours), and having words for colours that could be used to distinguish between objects 

in the world that were part of different goals (for instance, green leaves versus fruit).  The first 
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set of goals suggests that colour systems may be adapted to the environment in which they are 

used.  The second set of goals have a social aspect, and include actions such as being able to 

describe the difference between an edible and a poisonous berry, or request a particularly 

coloured thread for weaving.  These would be subject to cultural constraints.  Furthermore, an 

Embodied approach predicts that the comprehension of colour terms activates perceptual 

representations of that colour.  For example, reading the word ‘yellow’ would activate 

perceptions of the colour yellow.  The experiments in this study test this prediction. 

 

2.4 Niche Construction 

 

This study notes that the domains which affect the origins of categories (e.g., genes, the 

environment, culture) are not causally separate.  For example, an individual’s genes will 

affect its perceptual hardware, and the range of colours this hardware can detect will have an 

effect on the categories that are formed.  The Embodied Cognition hypothesis predicts that 

there is a causal link between language and perception.  This study will show that this causes 

a feedback loop between different causal domains which creates a dynamic similar to Niche 

Construction (Laland, Odling-Smee & Feldman, 2000).  Niche construction theory observes 

that some organisms change their environment in a way that influences the pressures to which 

they must adapt.  For example, spiders spin webs and those spiders that are best adapted to 

life on a web will survive and reproduce.  Over time, offspring become better suited to living 

on a web and better at building a web.  Thus, the spider has constructed its own evolutionary 

‘niche’ to which it has adapted.  Humans change their environment more than any other 

organism, and so are the ultimate niche constructors.  This study suggests that the categorical 

perception of colour has Niche Construction dynamics.  For instance, the range of colour 

terms you share with your decorator may influence the colour of your walls, which in turn 

will strengthen the link between that colour term and the perception through exposure. 

 

2.5 Modelling 

 

Such is the complexity of the interactions of constraints governing colour categorisation that 

many studies have used computational models to investigate the influence of each pressure.  

Modelling is advantageous because it clarifies the theory and can generate dynamic 

interactions that are too complex to imagine otherwise.  From these interactions, novel 

predictions can be formed that can be tested in the real world.  These models typically involve 
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many computational agents which interact.  These agents can learn to associate lexical items 

with a particular range of the colour spectrum.  They typically play two ‘games’ in order to 

acquire categories.  The first is a ‘discrimination game’ wherein agents try to form categories 

that uniquely identified a given colour (that is, one where any given colour only belongs to 

only one category).  The second type of game takes place in models of cultural transmission.  

Agents play a ‘communication game’ which models the acquisition of colour terms.  This 

involves associating a category with a lexical item.  One agent describes a colour in the 

environment according to its lexical categories and another agent attempts to pick out that 

colour according to its own categories.  Agents adapt their categories so that, over time, their 

categories converge to a common configuration.  That is, having the same words which refer 

to the same range of the colour spectrum.   

 

3 Colour Categorisation 

 

This section outlines the field of colour categorisation.  First, however, its relation to broader 

field of modern linguistics is summarised.  About 100,000 years ago, a genetic change 

occurred in the ancestors of humans which resulted in the ability to label concepts and express 

them in meaningful ways.  Modern linguistics has focussed on researching this change.  

Nativists have focussed on describing the innate ‘principles’ that all languages share (e.g., 

nouns and verbs) and the set of ‘parameters’ that can lead to differences in the surface forms 

of languages (e.g., right- or left-headed grammar, e.g., Chomsky & Lasnik, 1993).  The 

‘change’ for Nativists involved the ability to detect and set those ‘parameters’.  Empiricists 

argue that the innate ‘principles’ are actually rooted in the structure of the world (e.g., 

principles of processing efficiency).  The ‘change’ for Empiricists was an improved ability to 

process this structure (e.g., recursion, Hauser, Chomsky & Fitch, 2002).  Culturalists, on the 

other hand, argue that the ‘change’ involved the way information is transmitted (e.g., Kirby, 

2007).  Before language, information could be gained by genetic inheritance or from 

individual learning.  Language allows rapid, multi-agent, cumulative information 

transmission.  The big question of modern linguistics, then, centres on the role of genes 

(Nativism), the environment (Empiricism) and culture (Culturalism).   

 

The first individuals with the ability to label concepts and share these labels still had a long 

way to go before communication was possible.  Imagine that you want to communicate a 

piece of knowledge to another person, namely that a particular type of fruit is poisonous.  You 
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decide that the best way to distinguish the fruit is by its colour, but have not yet developed a 

naming system for colours.  The main problem to overcome is not necessarily establishing a 

sign, but establishing the referent.  This is because, unlike structural features (size and shape), 

there is much less certainty about whether the colour percept you experience while looking at 

the fruit will be the same as the colour percept that somebody else experiences.  This is 

because colour is a ‘secondary object property’ – one that can only be sensed with one 

modality (Locke 1690/1975, Jackson, 1977).  Also, there are variations between individuals’ 

perceptual hardware (Jameson, Highnote, & Wasserman, 2001) and an object’s exact spectral 

intensity is not stable over time. 

  

Luckily, there are several factors that lead to sensible partitions of the visible spectrum.  

Firstly, people share the same sensory equipment (cones and rods) and cognitive processes 

(opponent colour processing).  Secondly, the perceptual space is non-uniform, meaning that 

there are more and less optimal ways of describing this space (Jameson & D’Andrade, 1997).  

Thirdly, the sensory equipment and the colour of the fruit have co-evolved so that the fruit is 

easily detectable (Regan, Julliot, Simmen, Viénot, Charles-Dominique and Mollon, 2001).  

Also, people have plasticity of mind which allows them to adapt and learn.  Finally, you live 

in a community of people who have been faced with this problem before.  A system of signs 

for colour can use constraints from genes, the environment and culture to anchor an otherwise 

arbitrary pairing of colours and signs.  This is essentially the theory used by Steels and 

Belpeame (2005).  However, they reached this conclusion by adopting a Universalist 

approach to colour categorisation.  This study will show that a Relativist approach can also 

reach this conclusion.  This study will argue that the most efficient way of converging on, 

maintaining and transferring a system for describing colours is for shared categories to be able 

to influence perception.  That is, instead of synchronising information about how each 

individual maps perceptions onto signs (Symbolism), we synchronise our perceptions so that 

each individual's mapping is the same (Embodied Cognition). 

 

3.1 Colour Perception 

 

This section outlines the basic physiology of colour perception and introduces the perceptual 

colour space used in the experiments.  Colour is the perceived spectral intensity of light.  

Energy at various wavelengths is emitted from objects such as the sun or electric lamps.  Part 

of this spectrum of energy is perceivable by human eyes – roughly the range 380 to 750 nm 
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(Starr, 2005).   Objects may absorb or reflect certain wavelengths of light.  Colour results 

from differing intensities of energy at specific wavelengths.  For example, a light with high 

energy at high wavelengths and low energy at low wavelengths will be perceived as red.  

Light is detected in the eye by cone cells and rod cells.  These contain opsin proteins which 

are sensitive to light.  The rod cells have a broad range and used to detect low-level 

information about shape and movement.  Cones are used for perceiving colour.  In a typical 

eye, there are three cone types which have different peak sensitivity to different portions of 

the spectrum, those being Short-wave (blue), Middle-wave (green) and Long-wave (red) 

(abbreviated to S, M and L).  The relationship between wavelength and absorbance for a cone 

type is Gaussian and the ranges of cone types overlap (Figure 1). 

 

To generate perceptions of colour, two types of cells in the Parvocellular lamine – Midget 

Ganglion and Small Bistratified Ganglion – compare different classes of cone (Regan et al., 

2001).  The Midget Ganglion cells calculate the ratio between the excitations of the Long and 

Middle cones (L–M), and the Small Bistratified Ganglion cells calculate the relative 

excitation of the Short cones compared to the Long and Middle cones ((L+M)–S) (Regan et 

al., 2001).  These two measurements motivate the Derrington Krauskopf and Lennie (DKL) 

perceptual colour space (Derrington Krauskopf & Lennie, 1984) used in the current study.  

This is a spatial mapping of colour.  Moving along the x axis changes the L and M cone 

activations independently from the S cone activation.  Moving along the y axis changes the S 

cone activation independently from the M and L cone activations.  There is a third axis which 

alters the luminance (brightness).  Any cross-section perpendicular to this axis will be an 

Figure 1: Spectral absorption curves of rod cells (R) and the short (S), middle (M) 
and long (L) wavelength pigments in cone cells.  Image from 

http://en.wikipedia.org/wiki/File:Cone-response.svg,  
adapted from Bowmaker & Dartnall (2005, p.505). 
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isoluminant plane, that is, all colours will be perceptually the same luminance (see Figure 2).  

The centre of an isoluminant plane is called the adaptation point.  This will appear as 

completely achromatic (grey) to the average eye.  This colour is used for the background in 

the experiment (participant’s eyes adapt to it, hence ‘adaptation point’).  A participant’s idea 

of ‘grey’ – their subjective white point – may differ from this (white does not mean brilliant 

white, only an achromatic shade).  There is no such thing as a universal ‘grey point’ that all 

people will see as achromatic.  The adaptation point in Hansen et al. and in this study is set to 

the colour of the Munsell chip English speakers choose as the best example of ‘grey’ (Berlin 

& Kay, 1969). 

 

3.2 Colour Terms 

 

This section introduces the early research on colour terms across cultures.  Berlin and Kay 

(1969) compiled the World Colour Survey (WCS) – a database of how different languages 

partition the visual spectrum into colour terms.  Observing cross-cultural patterns, Berlin and 

Kay adopted a Universalist approach to colour terms, assuming that there were certain 

universally salient colours and universally salient categories of colour.  These universal 

categories are mapped onto ‘basic colour terms’ in each language.  These were defined as 

words which describe colours that were monolexemic (they do not contain modifiers like 

‘dark red’) and psychologically salient (perceptually and socially salient in everyday 

situations, for instance ‘red’ has important symbolic roles in cultures and is easily sensed by 

the perceptual system).  However, they cannot be hyponyms (for instance ‘crimson’, 

Figure 2:  The DKL colour space (Mandelli & Kiper, 2005) (left) 
and an isoluminant plane (Hansen & Gegenfurtner, 2006, p. 241) (right). 
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‘vermillion’ are hyponyms of ‘red’) nor contextually restricted (for instance, ‘blonde’ is 

usually restricted for hair colour). 

 

The number of basic colour terms in a language varied between 3 (e.g., for Wobé) and 12 (for 

Russian).  Once these basic colour terms were defined for a given language, a Munsell-chip 

task was administered to a speaker of that language.  In this task, participants are given a large 

number of coloured chips whose colours are (physically) uniformly spaced (although not 

psychologically uniformly spaced, see section 5.2.3).  Participants are asked to choose the 

‘best example’ or ‘focus’ of a given colour term.  They are then asked to sort all the chips into 

groups based on the basic colour terms.  These define the range of each colour term (the 

boundaries).  Figure 3 shows a colour space where each point is one of the Munsell chips used 

in the WCS experiments.  Also, the partitioning of that space by a speaker of Wobé (3 basic 

colours) and French (11 basic colours) are shown.  For the latter two, a different colour 

indicates a different colour term (note that the space warps around horizontally, so that the 

Figure 3:  A space representing the Munsell chips used in the WCS (top, from 
http://www.icsi.berkeley.edu/wcs/data.html) and the partitioning of that space in Wobé 

(middle) and French (bottom, both from Claidière, Jraissati & Chevallier, 2008). 
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chips in the first column are as close to the second column as the final column on the far 

right). 

 

Berlin and Kay noted that certain basic colour terms were more likely to exist in a language, 

for example, most colour systems have a term for black and white, but not all have a 

distinction between red and pink.  From this they formulated a universal order of colour-term 

evolution.  Figure 4 summarises the order.  In the first stage (leftmost) the system only 

differentiates between light and dark hues (black and white).  In the second stage, an 

additional red term emerges, then a green or yellow term emerges in the next stage.  This 

process continues until all basic colours have their own term (for a more in-depth analysis, see 

Kay & Maffi, 2009). 

 

This approach of deriving a universal set of constraints on the structure of language from 

comparative studies has parallels with Universal Grammar (e.g., Chomsky, 1957).  However, 

the methodological approach has been criticised (e.g., Saunders & van Brakel, 1997, 

Saunders, 2000, MacKeigan & Muth, 2006).  More fundamentally, it has been demonstrated 

that weak innate biases can be amplified by cultural transmission (Kirby, Dowman & 

Griffiths, 2007), showing that cross-cultural patterns do not imply strong innate biases.   The 

current study will argue that Kirby et al’s point applies to colour terms. 

 

4 Memory Modulates Colour Perception 

 

This section reviews the motivational paper for this study.  Hansen et al. (2006) measure 

subjective perceptions of colour as modulated by semantic information, testing the Embodied 

implication.  This paradigm also tests whether the perceptual symbol hypothesis is supported 

by more than just a short-term processing effect.  Hansen et al. (2006) (reported in more detail 

and extended in Olkkonen, Hansen & Gegenfurtner, 2008) conducted an experiment to see 

whether the knowledge that an object has a ‘typical’ colour, for example bananas are yellow, 

Stage I  Stage II         Stage III/IV Stage V StageVI Stage VIII 
 Green            Purple 

Black  + Red    or/and  + Blue  + Brown + Pink 
White    Yellow         Orange 

   Gray 

Figure 4: Evolutionary stages of colour terms (from Berlin & Kay, 1969, p.4). 
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affects the perception of that object.  To do this, an experimental setup was employed 

whereby pictures of coloured fruit could be manipulated by the participant to any hue, 

maintaining a constant brightness.  This was done with four buttons which moved the locus of 

the hue distribution in a perceptually motivated colour space (DKL space, explained in 

section 3.1).  Participants were shown the pictures in a random hue (e.g., green banana) and 

asked to adjust it to appear naturally coloured (i.e. yellow banana).  These were the ‘typical’ 

settings.  Participants were then asked to adjust the hue of pictures of coloured fruit until they 

appeared achromatic – that is, grey or completely colourless.  These were the achromatic 

settings.  The ‘true’ grey was defined in reference to the adaptation point - the colour of the 

background on which the stimulus was presented, and to which the participants eyes adapted.  

The adaptation point was set to the hue of the Munsell chip English speakers choose as the 

best example of ‘grey’ (Berlin & Kay, 1969).  Hansen et al. found that the achromatic settings 

were slightly removed from the adaptation point in the direction opposite to the typical setting 

in an opponent-colour space.  For example, a banana would be adjusted to be slightly bluer 

than grey.  This was interpreted as a ‘compensation’ for the previous experience of seeing 

yellow bananas.  For all 7 fruit tested (carrot, orange, banana, lemon, cabbage, grapes, 

courgette), this trend held, while achromatic settings for random patches of colour were no 

different from the adaptation point.  To quantify this effect, the Memory Colour Index (MCI) 

was used (see section 7).  Briefly, this value is large when the vector between the typical 

setting, the adaptation point and the achromatic setting is straight and long.  That is, the MCI 

is large when the achromatic setting is adjusted into the directly opposing colour to the typical 

one.  This involved a consideration of participants’ subjective white points, calculated by 

asking the participants to adjust control stimuli (uniform patches with no semantic structure) 

to appear achromatic. 

 

Figure 6 shows a graph summarising the results.  The settings of the participants are set out in 

a perceptual colour space, with the adaptation point in the centre (explained in section 7.3).  A 

line is drawn for each fruit type from its mean typical setting (yellow banana, topmost points), 

Figure 5:  A ‘typical’ yellow banana (left) and the same image manipulated to 
appear (saturated) blue (middle) and achromatic (right). 
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the achromatic settings for control stimuli (‘true’ grey, points within the black circle) and the 

fruit’s mean achromatic setting (grey banana, bottom-most points).  The line for the banana 

passes from yellow, past the adaptation point (true grey) into the opposite side of the colour 

space (blue). 

 

Olkkonen et al. suggest that low-level processes in the lateral occipital complex are 

responsible for the memory colour effect and that a mechanism such as modulatory feedback 

(Grossberg, 1980) can integrate bottom up visual data with top-down expectations.  Olkkonen 

et al. (2008) expanded the study to look at the importance of surface texture and shading.  It 

was also found that the memory colour effect was robust under different illuminations.  That 

is, the effect was independent of colour constancy.  However, images without texture (e.g., a 

uniformly coloured banana with shadows) and without shading (e.g., a uniform outline of a 

banana) elicited less of a memory-colour effect.    While the participants still recognised the 

outline of a banana as a banana, the identity of the object only affected perception when all 

visual cues were present (outline + shading + texture).  This weakening of the effect was used 

Typical Setting 
 
Setting for control 
stimuli 
 
Achromatic Setting 

Figure 6: Results from Hansen et al. (2006). The typical and achromatic 
settings for fruit stimuli.  Axes are percentages of DKL space. 
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to argue that the effect was genuinely perceptual and not due to high-level semantic priming 

(i.e. knowing it is a banana). 

 

The results of this study are compatible with a perceptual symbol approach, since recognising 

a banana involves the perception of the colour yellow.  However, it does not address the 

Whorfian hypothesis, since there is no language involved.  Hansen et al.’s paradigm will be 

adapted to test whether perceptual representations are activated by colour terms rather than 

pictures of fruit.  It is predicted that participants will adjust the colour of a colour term beyond 

their subjective white point in the opposite direction to the one the word describes.  For 

example, the word ‘yellow’ displayed in an achromatic colour will still appear yellow, and so 

participants will compensate by adding a blue tint.  This will show that reading the word 

‘yellow’ triggers the activation of perceptual representations of the colour yellow (and so on 

for the other colours).  However, Olkkonen et al.’s finding that pictures with less structure 

elicited less of an effect would predict that colour terms, which are a further abstraction, 

would have a small perceptual effect.  If an effect is found, this will support an Embodied 

approach to language comprehension.  Furthermore, if the comprehension of words is based 

on the same system as the recognition of natural objects, an Embodied approach to the 

emergence of language is supported (MacWhinney, 1999). 

 

This paradigm differs from those in other Categorical Perception studies.  To begin with, it 

does not belong to either of Harnad’s (1990) methods for researching Categorical Perception.  

That is, it does not involve discrimination – indicating whether a pair of stimuli are the same 

or different.  Neither does it involve identification – the labelling of stimuli by the subject.  

Furthermore, other paradigms involve matching colours which are separated spatially or by 

temporal intervals.  Hansen et al.’s paradigm allows simultaneous matching and a fine 

granularity of colour manipulation which does not rely on short term memory.  Also, Hanson 

et al’s paradigm has no time constraints, showing that perceptions are continuously and 

persistently affected by the properties of the perceived object.  Furthermore, inferences in 

previous Embodied Cognition experiments were drawn from differences in high-level task 

performance (e.g., confirming the presence of an object or judgements of similarity).  Since 

the stimuli in the current study are manipulated in a perceptually motivated space, and 

therefore any adjustment by the participant can be quantified in terms of mean Small, 

Medium and Large cone activations, the results of the current study come from direct, low-
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level neurological representations of the participant’s perceptions.  This is seen as an 

advantage. 

 

5 Constraints on Colour Terms 

 

This section defines the constraints on colour terms in a cultural system, and how they relate.  

By considering the importance of each domain, conclusions will be drawn about the 

Universalist/Relativist debate and whether the Cultural implication is supported.  

Explanations of the cross-cultural variation in colour terms have considered the effects and 

interrelationships of genetics, culture and the environment.  For example, Bornstein (1973) 

first pointed out that the number of colour terms in a language is likely to be higher if that 

language is spoken further from the equator (quantified by Ember, 1978).  However, the 

explanations of this pattern have included genetic, cultural and environmental constraints.  

For example, greater Ultraviolet radiation nearer the equator leads to changes in the eye which 

favour fewer colour terms (Lindsey & Brown, 2002, see section 5.2.1).  This environmental 

constraint will lead to a genetic adaptation (Bornstein, 1973, Lindsey & Brown, 2002).  On 

the other hand, it has been argued that cultures near the equator tend to be less technologically 

advanced, leading to less of a requirement for exact specification of colour (Magnus, 1880, 

Regier & Kay, 2004). 

 

Under conventional interpretations, Universalism and Relativism differ with respect to the 

pressures that they predict will have the greatest effect on colour categorisations.  

Universalism predicts that linguistic categories are constrained primarily by perception 

(Nativism) and environment (Empiricism).  Relativism predicts that linguistic categories are 

primarily constrained primarily by language and culture (Culturalism).  I argue that if one 

takes an Embodied approach which emphasises the functional role of cognition, a different 

prediction is made for Relativism which allows it to explain more of the variation in cross-

cultural colour term systems. 

 

In order to do this, the relationships between the constraints on colour terms in a cultural 

system need to be outlined.  First, the entities and processes involved with colour 

categorisation are identified (entities are in bold and processes are italicised):  Genes produce 

Phenotypes through Ontogeny.  This phenotype is immersed in an Environment.  The 

Phenotype passes on its genes through Genetic Inheritance (e.g., sexual reproduction), 
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dependent on Natural Selection pressures from the environment.  The phenotype has sensory 

organs which interact with the environment to activate a perceptual space by a process of 

Perception.  According to Embodied cognition, this space is also used for comprehension, so 

it is a Conceputal/Sensory Space.  Motor control is also included in this space.  This 

conceptual/sensory space converts sensory data into categorical concepts through Cognition.  

This cognition can affect the behaviour of the phenotype so as to change the Environment 

through Action.  With an ability for Language, labels can be learned for concepts through 

Learning.  These labels are also learned from other people by a process of Cultural 

Transmission.   

 

Each of the processes above constrains the configuration of colour naming systems:   

• Genetic inheritance constrains which genes an entity has. 

• Genes constrain the sensory organs that can develop. 

• Both the sensory organs and the environment constrain the range of stimuli that are 

perceived. 

• Learning mechanisms and cultural transmission constrain which concepts are labelled. 

 

Figure 7 shows this relationship diagrammatically.  Two entities in a genetically and 

culturally related population are shown.  Boxes denote entities and arrows denote processes.  

From this, we can see that some domains are linked by chains of causality, but others are 

causally separate.  For instance, genes influence the phenotype, and so the perceptual 

constraints by extension.  For example, having genes which produce two or three cone types 

will influence the physiology of the phenotype and the perceptions it is able to perceive.  

However, an individual’s genes are not affected by a phenotype’s physiology or perceptions 

(removing the eyes or turning off a light does not change an individual’s genes).  
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Figure 7: A diagram showing the relationships between different domains of 
constraint on colour categorisation. 
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This study is concerned with the effect language has on perception (labelled ‘Categorisation 

Constraints’ in the diagram).  If language can re-organise our perceptual spaces, this creates a 

feedback loop between language and conceptual/sensory areas.  This causes two changes in 

the dynamics of the cultural system.  Firstly, labels can be learned from others, leading to a 

shared labelling system.  Sharing the same labels will cause a similar warping of the 

perceptual space, minimising the differences between the conceptual/perceptual spaces of 

individuals within a population. 

 

Secondly, the causal dynamic of constraints is vastly complicated if language can affect 

perception.  This can be demonstrated if one follows the arrows around the diagram with and 

without the ‘categorisation constraints’ arrow.  Including it leads to many more possible 

routes.  For example, the action of an individual is determined through a process of cognition 

applied to the conceptual/perceptual space.  Since language can affect this space, it has an 

impact on the way an individual changes the environment through action.  Changing the 

environment affects the natural selection pressures on an individual, which affects genetic 

inheritance (Niche Construction).  Therefore, language can have an indirect affect on gene 

frequencies in a population.  Individuals may survive and reproduce better if they are better at 

communicating through language.  From an Embodied perspective, better communication 

involves minimising the differences between activations in the conceptual/sensory spaces.  

Therefore, I argue that the Cultural implication of an Embodied account predicts that the 

evolution of individuals in a cultural system will converge on systems that minimise the 

differences between perceptions, including perceptual hardware and cognition.  Furthermore, 

since genetic changes to hardware take a long time, the rapid development of language 

suggests that cognition (e.g., perceptual warping) has adapted to a greater extent.  This will be 

discussed further in section 6. 

 

The current study argues that Symbolist and Embodied approaches would predict that the 

primary constraints on colour terms come from different domains.  Symbolism would predict 

that primary constraints on colour categorisation come from perception and cognition.  On the 

other hand, the Cultural implication for Embodied Cognition predicts that the constraints on 

colour terms will not be demonstrably dependent on only one domain of constraint.  The next 

sections will review evidence that linguistic systems for categorising colour are optimised for 
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each domain of constraint mentioned above1.  I argue that that although categorisation may be 

optimised for a given domain, is not necessarily adapted to that domain, and that cultural and 

categorisation constraints can explain why linguistic categories appear to be optimised for 

perceptual, environmental and learning constraints. 

 

5.2 Domains of Constraint 

 

5.2.1 Genetic constraints. Bornstein (1973) first suggested that genetic constraints could 

influence colour categorisation, hence populations nearer the equator having fewer colour 

terms.  Lindsey and Brown (2002, p. 510) argue that colour terms vary cross-culturally on a 

“fundamentally biological basis”.  They showed that the number of colour terms in a language 

correlated with the amount of UV-B radiation to which speakers were subjected.  This 

‘burnescence’ effect increases the density of the lens.  Over time, populations would adapt to 

have denser lenses nearer the equator.  Denser lenses skew hues towards green, ‘squeezing 

out’ the blue hues and the blue term with it (however, see Hardy et al., 2004 and Regier & 

Kay, 2004 for counter-arguments)2.  Models of genetic constraints have found that 

populations can converge on shared categorisations for colour if reproduction is based on 

discriminative success (Steels & Belpaeme, 2005) 3.  Jameson and Komerova (2008) found 

that modelling a heterogeneous population of dichromats and trichromats further constrained 

the convergence, aiding the emergence of shared categories.  In conclusion, genetic 

constraints seem to interact with other constraints to affect colour categorisation.  However, 

                                                 
1 This has already been addressed to some extent by Saunders and Brakel (1997), but all the evidence in the 
current study comes from research carried out after this publication. 
2 Furthermore, Lindsey and Brown (2002) conducted a WCS-style Munsell-chip experiment on a culturally 
homogeneous population with the stimuli virtually manipulated to simulate the effects of burnescence.  This was 
an innovative solution to controlling for individual differences.  It was found that participants’ use of “green” 
extended further into “blue” areas with greater simulated burnescence.  However, Hardy et al. (2004) repeated 
the burnescence experiment with the addition of a condition where older participants were given stimuli virtually 
manipulated to simulate less burnescence.  The results did not support Lindsey and Brown’s hypothesis. 
3 Steels & Belpaeme (2005) constructed computational models with 10 agents with the ability to categorise 
colours according to perceptions (radial basis function neural networks for each colour category).  The innate 
biases of these categories were defined by genetic encodings, but the categories did not change over a lifetime.  
That is, individual learning was not modelled.  Agents played the discrimination game 50 times before half of 
the population was replaced with new agents generated by a mutation of an existing agent (asexual 
reproduction).  The extent of the mutations were based on the inverse of the parent’s discriminatory success.  
That is, genes which facilitated success in the task were less likely to mutate.  Category variance between agents 
and between populations was used to measure the extent to which agents had a common categorisation, a small 
value meaning that many agents share large parts of their categorisations.  With these constraints, systems 
became totally shared within populations.  However, more categories were produced than for individual learning, 
the synchronisation of categories took longer and the system was less robust against changes in the environment.  
Also, the systems were not shared across populations. 
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genetic change happens on a large timescale.  Colour terms have evolved in a time span with 

very little cross-cultural genetic change, suggesting that other processes have a more 

immediate effect. 

 

5.2.2 Environmental constraints. Regan et al. (2001) show that colour vision co-evolved 

with the colour of the objects that it was used to identify.  Specifically, colour vision 

facilitated the detection of coloured fruit against a background of leaves.  Reciprocally, 

primates helped disperse the seeds (zoochory) so that, over time, the plants adapted to become 

more detectable (dispersal syndrome) 4 (Regan et al., 2001).  However, this is a long-term 

explanation.  The particular properties of the immediate environment may affect perception 

during individual development.  For example, focal colours have been shown to vary between 

populations from distant environments (Webster et al., 2002).  This may reflect either a 

cultural bias or an environmental bias.  Laeng et al. (2007) studied individuals from the same 

town in Norway, that is, a culturally homogenous population.  Colour sensitivity in adults 

varied depending on where they were born.    Those born at higher latitudes, where sunlight is 

shifted towards blue, had reduced sensitivity to yellow-green and blue-green contrasts, but a 

higher sensitivity to variations in the purple range.  Therefore, differences in the environment 

may have repercussions for the colour term system. 

 

Dowman (2007) ran a cultural transmission model where agents had to converge on 

categorisations for a uniformly-spaced colour space.  However, certain colours in the space 

were set to be more salient.  These ‘universal colours’ were not evenly spaced.  The analysis 

was done by converting the population’s convergent categorisation to the same format as the 

WCS data.  The fit between the model’s outcome and actual attested types in human cultures 

could then be compared.  Dowman found that the emergent systems fitted with attested types 

in the WCS only with the inclusion of unevenly-spaced ‘universal foci’.  This implies that the 

                                                 
4 Regan et al. (2001) give a thorough review of the research into the evolution of colour vision.  There is a large 
variation in primate visual morphology, ranging from monochromaticity (Owl monkeys, Aotus trivirgatus) to 
trichromaticity (all old-world monkeys and apes, catarrhine) and polymorphism (e.g., dichromaticity in males 
and a percentage of trichromaticity in females).  However, dichromaticity is not necessarily disadvantageous 
compared to trichromaticity.  Trichromaticity does appear to be optimised for the detection of certain fruit at 
close range (see Regan et al., p 260-262).  However, dichromats may be better at breaking camouflage of 
predators or prey (e.g., edible insects).  Therefore, in a society where foraging is done in groups and individuals 
may cooperatively signal to others about the presence of resources, polymorphic colour vision may be 
advantageous, since different individuals are ‘specialised’ for different tasks (a frequency-dependent advantage, 
see Clarke 1979, Mollon, Bowmaker & Jacobs, 1984). 
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spacing and frequency of salient colours constrain colour term systems.  However, Dowman 

emphasises that the nature of these foci could be environmental, genetic or cultural5.   

 

Griffin (2006) found that linguistic partitionings of the colour spectrum are optimised for the 

recognition of natural objects.  Images of objects were classified based on the distribution of 

pixels belonging to each colour category (e.g., trees are mainly green and brown while 

bananas are yellow and brown).  Natural colour categories proved to be better at classifying 

objects than other random categorisations.  This implies that colour terms are optimised for 

functionality, as Embodied cognition predicts.  In conclusion, and as expected, the visual 

environment does seem to impose constraints on colour categorisation. 

 

5.2.3 Perceptual constraints.  The perceptual space that results from the processing of 

opponent colours is non-uniform (see Figure 8), meaning that there are optimal ways to 

describe it (Jameson & D’Andrade, 1997).  Natural language partitions are optimised for 

describing the perceptual colour space, suggesting that perception is a primary constraint on 

                                                 
5 To achieve this, Dowman (2007) configured the model so that the ‘universal foci’ were chosen as the topic 
during communications 20 times more often than other colours, and were 20 times more likely to be 
remembered, meaning that universal foci were up to 400 times more salient, and not 20 times more salient, as 
stated in Dowman (2007, p.118). 

Figure 8: Munsell color samples, although regularly distributed in physical colour 
space, are irregularly distributed in perceptual opponent space (similar to DKL), 

from http://www.handprint.com/HP/WCL/color2.html. 
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colour categorisation (Regier, Kay & Khetarpal, 2006) 6. This mirrors findings in the 

configurations of vowel spaces (e.g., Liljencrants & Lindbloom, 1972, De Boer, 2000).  

Taken on its own, this evidence would support a Universalism, although later sections will 

show more complex interactions. 

 

Buchsbaum and Bloch (2002) found that similar algorithms approximate low-level processing 

of colour in the striate cortex (red-green and blue-yellow opponent contrasts, by Principal 

Component Analysis, PCA) and high-level linguistic encodings of colour (colour terms, by 

Non-negative Matrix Factorisation, NMF7).  Colour terms also emerge from the latter in a 

similar order to Berlin & Kay’s universal colour order8.  Although this may be evidence for 

innate perceptual biases, it also shows that perceptual and conceptual processing are similar, 

which is predicted by Embodied Cognition.  Buchsbaum and Block also point out that 

participants may be optimally dividing the Munsell chip space rather than describing their 

natural colour categories, confounding some of the findings for perceptual constraints. 

 

5.2.4 Learning constraints.  A memory and learning mechanisms are necessary to acquire 

colour categories (Komarova, Jameson & Narens, 2007).  Models have shown that individual 

learning alone does not lead to categorisations that are shared within a population, suggesting 

that individual learning is a weak constraint (Steels & Belpaeme, 2005)9.  Learning 

constraints also include storage capacity.  However, the number of categories for colours is 

not typically larger than any other domain, and Tzotsil speakers seem to be able to acquire 

hundreds of grammaticalised forms (see section 5.2.5).   

                                                 
6 Concluded from a model which partitioned the Munsell chip colour set so as to optimise the ‘well formedness’ 
of the partitions.  Well-formedness is a measure of how the partition of colour space maximises similarity within 
a category and to what extent words tend to name connected regions.  The first constraint biases categories to be 
regularly shaped rather than cover large ranges of the colour space.  The second constraint biases categories to 
cover a single, connected space, rather than isolated patches.  The model’s output resembled natural human 
partitonings (from the WCS).  Furthermore, for 82 of the 110 natural languages in the WCS, the well-formedness 
decreased as their partitions were shifted. 
7 NMF is a factor analysis algorithm like PCA, except that it is designed for values that are inherently positive 
and cannot be centred.  NMF has been applied to pictures of faces and has been shown to isolate features such as 
noses, eyes, ears (Lee & Seung, 1999).   
8 NMFs can be manipulated to extract any number axes to describe the data (basis functions).  In this context, the 
number of basis functions requested is analogous to the number of colour terms in the language.  NMFs were 
derived from the Munsell colour space with 3, 4, 6 and 8 basis functions, then each basis function was translated 
to an English colour term using data from the WCS.  The addition of colour terms as the number of basis 
functions increased, although not deterministic, generally followed Berlin and Kay’s (1969) universal order.  
That is, labels for colours emerge first for areas of the space which are easier to distinguish cognitively. 
9 Steels & Belpaeme (2005) ran a model where agents could change their colour categories over a lifetime 
through individual learning.  The agents were successful at the discrimination game, but the systems did not 
become shared between agents or between populations. 
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Lupyan and Dale (under review) hypothesise that languages spoken by larger, more dispersed 

groups (e.g., English) favour less morphological complexity (more lexicalised meanings).  

This is because more dispersed languages may be adapted to greater numbers of adult non-

native speakers, who find it easier to learn ‘simpler’ morphology (Lupyan & Dale, under 

review).  Furthermore, contextually restricted terms for colour are more feasible to use in 

tighter-knit communities.  For example, a speaker of Tzotszil, living in a remote village in 

Mexico described a pink Munsell chip with the name of a flower and the location of the 

particular flower they hand in mind (MacKeigan & Muth, 2006).  This approach is not 

feasible in a large, dispersed community.  Figure 9 shows the current study’s finding that 

more basic colour terms are found in larger groups (r=0.35, df=87, p<.005) and in ‘simpler’ 

languages with fewer inflectional forms for verbs (r= -0.51, df=14, p=.04, raw data from Kay 

& Maffi, 2009, Lewis, 2009, Roberson, Davies, Corbett, & Vandervyver, 2005).  This fits 

with Lupyan & Dale’s hypothesis as well as with Embodied Cognition’s emphasis on the 

functional role of language.  It also predicts that, although cultural processes may synchronise 

perceptions, there will be less synchronisation in more dispersed language communities. 

   

5.2.5 Cultural constraints.  This section reviews evidence of cultural constraints on colour 

terms.  Modelling has shown that cultural transmission can cause individual categorisations of 

colour space to converge on shared categories, given constraints on perception and the 
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environment (Steels & Belpaeme, 2005) 10 and also without constraints from the environment 

(Belpaeme & Bleys, 2005).  This has also been demonstrated in human-based experiments 

(Dowman, Xu & Griffiths, 2008)11.    However, these studies have not ruled out perceptual 

constraints as the major cause of cross-cultural patterns.  This may not be necessary, however:  

Kirby, Dowman and Griffiths (2007) have shown that very weak innate biases can be 

amplified through cultural transmission, leading to universal patterns.  Therefore, it’s possible 

that the constraints imposed on colour perception by the sensory organs are actually relatively 

small, and cultural processes are the main driving forces of colour term evolution.  This is 

supported by showing that simple discrimination rules combined with pragmatic constraints 

can lead to shared systems, without complex models of the perceptual system (Komarova, 

Jameson and Narens, 2007).   

 

If culture is a strong influence on colour categorisation, then Relativism is supported, since 

different cultures can arrive at different ways of comprehending the world, based on their 

functional needs (e.g., hunting vs. gathering vs. interior decorating).  If this is the case, then 

we would expect the WCS to contain large variance between cultures, contrary to Berlin and 

Kay’s original assumption.  There is some evidence for this.  Firstly, there are several systems 

of colour categorisation in the world that are remarkable outliers in the WCS.  For example, 

the Tzotzil language of Chiapas, Mexico, studied by MacKeigan & Muth (2006):  Although 

the WCS lists only 5 basic colour terms for Tzotzil, MacKeigan & Muth argue that there are 

                                                 
10 In Steels & Belpaeme’s (2005) study, cultural transmission was modelled using agents with categorical 
networks for discrimination, but also a lexicon which associated a word with each category, similar to other 
models of emergent categories (e.g., de Boer 2000).  No genetic inheritance was modelled.  Agents played a 
communication game.  The hearer could adjust its categorical network and lexicon to better fit what had been 
revealed about the speaker’s network and lexicon.  This adjustment could involve adopting the speaker’s name 
for a category, creating a new category or adjusting the focus of a category.  In this way, language 
communication stimulates the formation of categories, but also the formation of categories stimulates the 
language used.  This is a model of two way structural coupling between category formation and language 
(Maturana & Varela, 1998).  Steels & Belpaeme found that, although category boundaries were not completely 
shared, agents did have a common repertoire.  Furthermore, agents could be replaced with naive ones without 
disrupting the communicative success of the population. 
 
11 This was done using the transmission-chain paradigm (e.g., Kirby, Cornish & Smith, 2008).  In Dowman et al. 
(2008), participants were shown colours with made-up names, and asked to memorise them.  The participant was 
then tested on these names.  However, the participant did not see all colour-name pairs during training, imposing 
a bottleneck on learning.  The names shown to the first participant are randomised and randomly assigned to 
colours.  That participant’s output – their recalled pairings of colours and colour names – are given to the next 
participant as their input.  This process of iterated learning is repeated down the chain.  Chains were initiated 
with 2, 3, 4 5, and 6 initial colour terms with 13 participants in each chain with.  As with other transmission 
chain experiments (e.g., Kirby, Cornish & Smith, 2008), structure in the categories emerged in response to a 
pressure to become more learnable.  With 2 or 3 initial colour terms, the categories changed to be based either on 
hue or lightness.  With 4-6 categories, categories emerged based on both hue and lightness.   
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between 900 and 1000 colour compounds.    Below is one speaker’s description of a purple 

Munsell Chip:  

 

“  ik’ik’+tik s+k’an+al s+yax+al   … This possessive form instructs the 

viewer to search the overtones and reflections of the black for hints of 

yellow and then for dark blue, … This colour term is roughly equivalent to 

“dark’s yellowness (including orange) and blue-greenness”, showing that a 

literal translation does not arrive at the required “dark purple”. Clearly, in-

depth grammatical analysis is required.” 

(MacKeigan & Muth, 2006, p.27-28) 

 

Note that the system is highly morphologically complex, as predicted by Lupyan and Dale 

(under review, see section 5.2.4).  The complexity is due to the Tzotzil culture being heavily 

bound-up with colour.  The colour system is connected to orientation in the landscape, 

seasonal cycles and personality.    Distinctions are made based not only on hue, saturation and 

brightness, but also on the size of the object, discreteness, opacity, texture and movement.  

For Tzotzil speakers, then, concepts of colour should evoke many kinds of perceptual 

representations.  Evidence for this would support Relativism. 

 

Furthermore, colour terms have often emerged due to economic pressures (e.g., ‘Azure’ 

comes from Azurite – a very expensive material used in painting in the Middle Ages; Ball, 

2001) or artistic invention (e.g., ‘vermilion’ comes from the insect used to make dye or 

‘International Klein Blue’ from the work of Yves Klein; Ball, 2001).  Language contact can 

also have an effect.  For example, Middle Welsh did not have separate terms for green and 

blue whereas modern Welsh does, possibly due to a pressure from contact with English, 

although the original ‘grue’ term can still carry its original connotation (Lazar-Meyn, 2004).  

Overall, there is much evidence that cultural constraints can affect categorisation, supporting 

the Cultural adaptation implication.  However, in order to support a Relativist account, these 

differences would have to be more than superficial differences in colour words.  The variation 

caused by cultural processes must reflect fundamental variation in cognition and conceptual 

approaches to action and the environment. 

 

5.2.6 Categorisation Constraints.  This section reviews the conflicting evidence for ability 

of linguistic categories to affect perception, which is crucial for the Cultural implication.  
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Section 2 mentioned studies of Embodied Cognition which found evidence that 

comprehension of size and shape activated perceptual representations.  However, colour is not 

necessarily processed in the same way as spatial properties and is encoded with less stability 

(Aginsky & Tarr, 2000).  Several studies have found fragile links between colour concepts 

and colour perception.  For example, Kay and Kempton (1984) showed that categorisation 

could affect perception in the domain of colour12.  However, this effect disappeared when the 

task was constrained so as to avoid the “name strategy”.  This strategy involved labelling the 

chips with colours terms, then basing the decision on those labels rather than the actual 

spectral properties.  Kay and Kempton suggest only a weak form of the Whorfian hypothesis 

is supported by their study, namely that “Structural differences between language systems 

will, in general, be paralleled  by nonlinguistic cognitive differences, of  an unspecified sort, 

in the  native speakers of the two languages” (See Kay & Kempton, 1984, p. 74). 

 

Ritcher and Zwaan (2009) found that perceptual symbols are activated during the 

comprehension of colour terms using an interference paradigm.  Participants were shown two 

coloured squares in sequence, interrupted by a colour term.  The squares were either 

identically coloured, or very slightly different. The colour term either matched or mismatched 

the colour of the squares.  Participants performed a lexical decision task on the word, and then 

judged whether the colours were the same or different.  Responses for the colour 

discrimination task were slower when participants saw an intervening colour term that 

mismatched the colour of the squares.  This result held even when the participants were not 

required to perform the lexical decision task.  This implies that, for the current study’s 

experiment, perceptual activation is still expected without a comprehension task.  Ritcher and 

Zwaan interpreted the results as a conflict between the perception of the colour of the first 

square held in short-term memory and a different colour activated by the mismatched colour 

word.  This supports the theory that perceptual representations are accessed during 

comprehension. 

 

Returning to the motivational paper for this study, Hansen et al. (2006) found that perceptions 

are influenced by the knowledge of an object’s ‘typical’ colour (bananas always look yellow).  

                                                 
12 Kay and Kempton (1984) measured the subjective distance of green and blue hues of two cultures – one with a 
separate term for green and blue and one with one term that covered both.  Participants were presented with 
triads of coloured chips and asked to identify the one that was most different (‘furthest away’) from the other 
two.  The subjective distances of the speakers of the language with two colour terms were warped at the category 
boundary.  That is, their categorisation influenced the way they contrasted colours. 
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In perceptual symbol processing terms, their comprehension of the structure of the object 

activated perceptual representations of that object’s typical colour.  Olkonnen et al. (2008) 

suggest that this is due to a top-down effect of expectations.  In other words, they do not rule 

out comprehension involving abstract symbol manipulation (contra-Embodied Cognition).  

However, they do predict that the object must share visual features with its referent in order to 

effect perception.  Indeed, they find less of an effect with objects stripped of shading or 

texture.  This suggests that the perception (of a structure) activates a perceptual ‘memory’ (of 

a colour) whereas Embodied Cognition would argue that there is no difference between 

perceptions and concepts in terms of the neural substrates involved. 

 

However, there is evidence that, although perceptual symbols may be activated by 

comprehension, they can occur in separate substrates to direct perceptual activation (Connell 

2005, 2007).  This would be a modification of a strict perceptual symbols theory.  Connell 

(2007) showed participants an image following a sentence that primed the reader to expect a 

certain colour configuration.  For example, a “steak on a plate” primed a cooked (so brown) 

steak while a “steak in a butcher’s window” primed a raw (so red) steak.  Participants had to 

confirm that the image contained the object mentioned in the sentence. There was a 

significant difference in response times between matching and mismatching conditions, 

suggesting that the comprehension of colour involves perceptual symbols.  Counter-

intuitively, however, the mismatched condition evoked faster responses (participants primed 

with a steak on a plate responded faster to a red steak than a brown steak).  Connell explains 

this by suggesting that colour is encoded in a different way to some other object features.  A 

distinction is made between stable embodied representations, such as size and shape, which 

are multimodal and salient in visual field configuration and unstable embodied 

representations such as colour and smell, which are unimodal and not salient in visual field 

configuration.  If shape is more important for recognition than colour, colour can be ignored 

without incurring a processing cost.  Connell argues matched colours are harder to ignore, 

since the neural substrates that represented it are already active (see nurological evidence in 

Spalek & Thompson-Schill, 2008). 

 

The conflict between Ritcher and Zwann (2009) and Connell (2007) could be due to separate 

levels of representation.  For example, the perceptual representation for the abstract term ‘red’ 

and the one for the more concrete red of a raw steak could belong to different orders of an 

abstraction hierarchy.  Connell and Lynott (2009) suggest that separate representations can be 
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maintained when considering the interactions between typicality and context.  Response times 

were tested for objects presented either in their typical or atypical colour (e.g., red tomato 

versus green tomato), crossed with matching and mismatching primes (e.g., ‘Dan ate the 

tomato’ versus ‘Dan tasted the tomato before it was ready to eat’).  Responses were fastest 

both for typically coloured objects and matched primes but there was no additional effect for 

these conditions combined.  This suggests that typical colours (e.g., ‘red’ for tomatoes) are 

activated, regardless of context, but a representation of the contextual colour – the ‘actual’ 

colour - can be held in parallel13.  This does not fit with a strict perceptual symbol account, 

which predicts only one representation for both perceptions and concepts.  Neither does it fit 

with a Symbolist account, which predicts two representations, but one of them being non-

perceptual. 

 

Furthermore, it has been suggested that these parallel representations can be driven by 

different domains of constraint, possibly confounding the Universalist/Relativist debate.  

Claidière, Jraissati and Chevallier (2008) asked participants who had 11 colour categories in 

their native language to sort Munsell chips into 4 categories.  Participants’ choices reflected 

their native linguistic categories more closely than four-colour-category languages from the 

WCS, suggesting that participants were using their lexical categories, rather than perceptual 

ones.  This was interpreted as supporting a relativist theory.  However, the same results were 

obtained when participants sorted the chips while doing verbal shadowing (mindlessly 

repeating sentences played to them through headphones), which has been shown to interfere 

with lexical access and categorical perception (Winawer et al., 2007).  Claidière et al. 

concluded that colour categories are both language-specific (a cultural constraint supporting 

Relativism) and perceptually motivated (a perceptual constraint supporting Universlaism).  

Furthermore, they conclude that the Relativist/Universalist dichotomy is too narrow and 

restricts research and experimental paradigms.  Claidière et al. suggest that the influence of 

categorisation on cognition is task-dependent and that not all perceptually determined 

categories may be perceptually grounded (e.g., ‘red’ vs. ‘orange’ may be salient, but ‘orange’ 

                                                 
13 An interpretation of Hansen et al.’s findings, in the light of possible dual representations, is that the expected 
colour of an object (yellow for a banana) can interfere or integrate with the actual colour of an object (a grey 
banana with a blue tint) when participants are forced to give a single response.  Conell and Lynott suggest that 
holding parallel representations may be advantageous for error-correction, in the same way maintaining many 
possible parses of a sentence is advantageous (see Mitchell, 1994).  However, when required to sequentialise 
concepts, as for expression in language, a fusion of expected and actual representations is required, causing the 
‘memory colour’ effect.   
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on its own is not).  This runs against the idea of Embodied Cognition, which hypothesises a 

single process of comprehension. 

 

However, an alternative interpretation of Claidière et al.’s finding is that linguistic and 

perceptual categories are synchronised.  That is, participants in the verbal shadowing task 

were sorting the colours perceptually without influence from their linguistic categories, but 

their perceptual space had been warped by their linguistic categories and so the results were 

the same.  This synchronisation of linguistic and perceptual categories is exactly what is 

predicted by the dynamic outlined at the beginning of this section.  That is, a feedback loop 

between a single conceptual/perceptual space and linguistic labels.   Furthermore, the current 

study will show that people see colour term as achromatic only when they are adjusted to 

directly oppose the best exemplar of that colour term.  That is, the concept and the percept 

align directly.  This suggests single, not dual representations.  However, the current study 

does find differences in the strengths of this effect for different colours, potentially agreeing 

with Claidière et al.’s suggestion of graded perceptual grounding. 

 

5.3 Summary 

 

This section outlined the Cultural implication of Embodied Cognition.  Language can be used 

to acquire shared concepts.  If concepts and perceptions rely on the same system, then 

language can re-organise perceptions.  This increases the complexity of the interactions 

between sources of constraint on linguistic categorisations.  This section has reviewed studies 

that seem to conflict with regards to the primary source of constraint on colour categorisation.  

There is evidence for both innate biases, supporting Universalism, and cultural influences, 

supporting Relativism.  Furthermore, there is evidence for perceptual and cognitive 

constraints supporting Symbolist accounts, and cultural constraints supporting Embodied 

accounts.  This study argues that these apparent conflicts have occurred due to the increase in 

interactions cause by a feedback loop between shared linguistic labels and individual 

perceptual spaces. 

 

6 Implications of Categorisation Constraints for Cultural Transmission 

 

The last section showed that several domains of constraint, including cultural processes, 

influence colour categorisation.  There is evidence that these categorisations can influence 



5134235 Synchronising the Senses 32 

perception, which has been identified as a crucial argument for Relativism.  This section 

considers the Cultural implication, summarised in the last section, in greater depth.  First, the 

idea of perceptual warping is explained and applied to colour categorisation.  Next, the impact 

of a feedback loop caused by an Embodied approach is discussed in terms of Niche 

Construction.  Thirdly, perceptual warping, within a system with Niche Construction 

dynamics is argued to lead to convergence of perceptual spaces, resulting in better 

communication.  Finally, a note is made on compositionality in language.  It is concluded that 

Embodied Cognition may explain some of the features of the emergence of language. 

 

6.1 Perceptual Spaces 

 

This section explains perceptual warping.  Many models of the cultural transmission of 

denotation systems begin by defining a perceptual space for each individual which is then 

divided up with loci and boundaries (e.g., deBoer, 1999).  Eventually, a kind of ‘lookup table’ 

is produced where an individual calculates within which boundary a given stimulus falls in 

order to classify it.  An alternate view would be that each individual alters (warps) the 

perceptual space to suit the categories (Goldstone, 1994; Kuhl, 1994).  This is not a 

controversial theory for the auditory modality.  For instance, although born with the ability to 

detect any meaningful difference in any language, children eventually become unable to 

detect those differences that do not exist in the languages spoken around them (Eimas, 1978, 

Miyawaki, 1975, Kuhl, 1983).  In other words, humans do not merely categorise areas of the 

audible spectrum as belonging to particular phonemes, but actually alter their perceptual space 

to suit the phonemic system.  In the visual domain, Kuhl (1994) argues that the perceptual 

space is permanently changed by exposure to graphemes, although Lupyan (2008) shows that 

categorical perception can emerge on-line. 

 

Figure 10 is a graphical illustration of warping a perceptual space.  The division of the 

Munsell colour space by speakers of Culina is warped and rotated to optimally encode the 

colour categories. Formally, the parameterisations are the same.  However, warping the 

perceptual space allows for compression of information.  For example, the initial encoding of 

Figure 10 takes up to 40 x 8 units, while the final encoding takes only 4 units14.  This can ease 

processing and storage requirements.  Compression reduces the uncertainty between 

                                                 
14 The unwarped space could also be compressed, but note that only a uniform compression of the existing axes 
of the space would be formally different from warping the space. 
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categories (e.g., red vs. green) and the ability for individuals to differentiate within categories 

(e.g., different shades of red), similar to the effects of categorical perception.  This approach 

has already been suggested.  Buchsbaum and Bloch’s (2002) study showed that the NMF 

algorithm approximates colour categorisation in real languages (see section 5.2.3).  NMF 

essentially warps the perceptual space to best describe its limits.  The current study suggests 

that language sets constraints on an NMF-like process which works to alter the perceptual 

space to suit culturally salient colour contrasts.  However, it is suggested that this optimisation 

is not primarily a response to an adaptive pressure, but a consequence of the way we 

understand language.  Indeed, it is only because our perceptions can be aligned with our 

language system that semantics works at all.  This would fit better with an Embodied view 

than a Symbolist view.  

 

However, humans are able to perceive gradients in colours within categories.  There are two 

explanations for this.  Firstly, there may be two separate, competing perceptual and 

‘categorical’ colour spaces, similar to Connell and Lynott’s (2009) hypothesis.  Since the 

Figure 10:  Warping the perceptual space to efficiently encode the linguistic colour 
categories of Culina.  Original image (top) from Regier, Kay & Khertarpal, 2007, p. 1439. 
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categorical system is shared and can quickly adapt to immediate environmental pressures, one 

would expect agents with two systems to increasingly rely on the categorical system, 

especially for communication (see code duality theory, e.g., Hoffmeyer & Emmeche, 1991).  

In contrast, novel tasks which involved no communication (e.g., comparing colours and 

choosing an ‘odd one out’) may rely more on the true perceptual system.  A second 

explanation for the flexibility of categories is suggested by Lupyan (2008) who shows that 

perceptual spaces can be warped, but by context-specific, online processes rather than long-

term, memory-based processes.  This would allow a single conceptual/perceptual system (as 

Embodied Cognition hypothesises), as well as explaining the plasticity of language. 

 

6.2 Embodied Relationships 

 

A further adjustment to the assumptions about perceptual space is suggested.  The assumption 

that all perceptual spaces are the same may be unrealistic and may favour Universalism (see 

Levinson, 2000).  To begin with, colour vision and colour concepts develop during ontogeny 

(Bornstein, Kessen & Weiskopf, 1976, Roberson, Davidoff, Davies & Shapiro, 2004).  

Secondly, there may be an underestimation of the variation in colour term systems across 

cultures (see section 5.2.5).  Going back to the example of Tzotzil, colour terms seem to be 

intricately related in a way that, for example, ‘blue’ and ‘green’ in English seem not to be.  

This prompts a third way of approaching the formation of colour categories.  An individual 

begins with no conceptual space, but learns relationships between colour terms and 

perceptions.  For example, learning that ‘yellow’ and ‘blue’ are as different as light with 

640nm and 450nm wavelengths.  By using an embodied, relational approach to colour 

categories, one can construct relationships between terms based on any perceivable feature.  

This could include brilliance, reflectance or the physical structure of the object.  Therefore, a 

banana looks yellow because its colour is understood in terms of its structure, as well as its 

spectral properties.  This is a more stable approach to object identification, since structures 

are usually stable, while colour is not.  It would also fit with the grammaticalisation of colour 

terms to extend to other domains.  For example, the Tzotzil sak-vilan, meaning ‘pastel’ 

originates from the fading of colours on fabric from fraying (MacKeigan & Muth, 2006).  

Constructing relationships between words based on the relationships between the perceptual 

properties of their referents would then be part of a general learning mechanism which 

facilitated the learning of all concepts. 
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6.3 Niche Construction 

 

This section reiterates how a link between linguistic categories and perception fits into Niche 

Construction Theory.  If concepts can influence perception, and people share the same 

concepts, their perceptions will become synchronised.  This would render them more effective 

at communication, since referents would be perceived as similar (‘red’ can refer to the same 

domain of entities for each individual).  Furthermore, it may render them more able to co-

operatively build a better model of the actual environment (for instance, describing an unseen 

danger, or researching physics).  However, this will only be true if language is grounded in 

constraints that come from the actual environment.  If this were not the case, apart from being 

inefficient at describing the actual environment, a language may drift to influence the 

perceived environment in a way that results in a worse fit with the actual environment. 

 

Returning to the constraints diagram (section 5), note that the influence of categorisation 

continues, through action, to change the environment.  In other words, if language influences 

the perceived environment and facilitates communication, then it may also facilitate the way 

we change the actual environment.  In this sense, language’s influence on perception can be 

regarded as a form of Niche Construction (Laland, Odling-Smee & Feldman, 2000).  

Therefore, not only does language become better at describing the actual environment, but the 

environment becomes better suited to being described by language.  This creates a better fit 

between perceived and actual environments and possibly increases the fitness of language 

users.  Essentially, then, this study presents evidence for language-specific niche construction 

where language can influence the environment.  This dynamic would be a consequence of an 

Embodied system, and more efficient as part of an Embodied system than a Symbolist 

account.  I therefore argue that the Embodied account is supported. 

 

As an example of this dynamic, Hansen et al. (2006) showed that perception is affected by 

semantic knowledge, specifically that achromatic bananas look yellow.  However, bananas 

are domesticated (Heslop-Harrison & Schwarzacher, 2007).  The link between a banana’s 

structure and colour, therefore, is a constructed niche – cultivators fertilise the ‘best’ bananas, 

which go on to influence the way they perceive bananas, which affects which bananas they 

fertilise, and so on.  This means that the effect found in Hansen et al. cannot be innate, since 

the colour and structure of a banana have changed (see Figure 11).  Modulating perception 
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with flexible, high-level categories is a way of keeping up with rapidly changing 

environments. 

 

Less anecdotally, Griffin’s (2006) model, which classified objects using colour (see section 

5.2.2), found that natural colour categories optimally aid the identification of objects.  

Furthermore, the model performed equally well for natural and manufactured objects.  That is, 

manufactured objects have been coloured to be maximally classifiable by colour, according to 

linguistic colour categorisations.  This would be an intuitive and efficient tactic if, as 

Embodied Cognition suggests, comprehension is scaffolded onto systems of object 

recognition (MacWhinney, 1999).  There would be no advantage in doing this in a Symbolist 

system where perceptions and concepts have arbitrary connections. 

 

 

 

 

Figure 11:  Differing structures and colours of six species of banana, all ripe.  Top 
left:  Musa balbisiana, ancestor of modern cultivated bananas.  Top right: Pink 

Banana (Musa velutina).  Bottom, from left to right: Plantains (Musa paradisiacal), 
red bananas (Musa rutilus), Bananito (Musa acuminate) and Cavendish bananas 

(Musa cavendishii).  Images from Wikimedia Commons, 
http://commons.wikimedia.org. 
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6.4 Drift in cultural systems 

 

An important point which has not been highlighted in the literature is the drift introduced by 

cultural transmission.  Perceptual systems are noisy, and change over lifetimes.  Therefore, 

systems of categorising these perceptions may drift over time.  However, if concepts are 

shared, this drift is influenced by more than one system.  This may cause a different kind of 

drift from a stand-alone system for self-thought.  Communication has an additional semantic 

bottleneck which self-though does not have.  Using language for self thought, if you don't 

know a label, you can make one up.  However, for communication, this won't work.  For 

example, in models of cultural transmission (e.g., Steels & Belpaeme, 2005) agents do create 

new labels but, importantly, accept the speaker's label when available.  That is, 

communicative systems are more flexible than systems for self-thought (communicators must 

be more willing to change their minds), and so are more subject to drift.  The drift allows the 

system to move around the possible space of coding efficiency and object categorisation 

efficiency.  Peaks in these landscapes will attract the drift, hence environmental and 

perceptual constraints being projected into language.  That is, although systems of colour 

categorisation for self-thought may be more efficient if they were constrained by the 

environment, shared cultural systems are more likely to reflect constraints in the environment 

because they are more flexible.  That is, perceptual constraints have projected themselves into 

language because of a communicative pressure, rather than a perceptual or environmental 

pressure. 

 

I suggest that this drift, together with an ability for categories to warp perceptual spaces, 

would mean that individuals converge on a shared perceptual system.  If comprehension 

involves the activation of perceptual representations, then communication involves 

individuals reaching similar perceptual representations or, in a perfect world, activation of the 

same neural substrates.  Therefore, a population with a shared perceptual system would be 

able to communicate much more effectively.  In this sense, Embodied systems improve 

communicative success, whereas the same effect is not necessarily true of Symbolist systems. 

Furthermore, this drift means that populations can still converge on similar solutions, without 

having to assume that Universal biases are the main driving force.  It has been argued that the 

similarities in colour categorisation between cultures contradicts Relativism, which would 
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predict a large variation in colour categorisation between cultures (e.g., Belpaeme & Bleys, 

2005).  I argue that this inference is not necessarily valid. 

  

6.5 Compositionality 

 

A note is now made on a possible link between categorical perception and compositionality.  

Kirby, Cornish and Smith (2008) show that humans impose compositionality onto random 

systems in the presence of a semantic bottleneck.  The modulation of perception by categories 

may allow compositionality to operate by re-organising perception according to shared 

linguistic labels so that the features picked out by those labels are categorically salient.  This 

does not necessarily oppose Kirby et al.’s conclusion that cultural transmission alone can 

cause the emergence of compositional structure.  Rather, categorical modulation of perception 

may be the process which causes the emergence of compositionality.  Compositionality 

emerges when an object’s meaning is broken up into sub-meanings (Wray, 2000).  If 

meanings are perceptual representations, then compositionality involves breaking up the 

perceptual representation to more abstract parts.  An efficient way to do this would be to 

break the representation up by modality.  A testable hypothesis would be that compositional 

meanings would emerge quicker for stimuli that differed in two modalities than stimuli that 

differed in only one. 

 

6.6 Summary 

 

Categorical perception and Embodied Cognition cause dynamics in a cultural system that 

leads to a drive for better communication and a better coherence between concepts, the 

environment and perception.  This would explain cross-cultural patterns in colour term 

systems, as well as allowing radically different outliers.  In this sense, universal patterns do 

not necessarily support Universalism.  Furthermore, an Embodied approach to cognition can 

help explain the process of cultural transmission by providing a driving force for better 

communication. 
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7 Experiment 1 

 

In this experiment, participants changed the colour of colour terms to appear achromatic 

(grey).  It was predicted that the participants would adjust each word beyond grey into the 

opposite colour space to the colour it described.  For example, the word ‘yellow’ would only 

look grey to the human eye if it was actually tinted blue.  This would suggest that reading 

colour terms triggers the perceptual experience of the denoted colour.  In other words, when 

we read “yellow”, we see yellow. 

 

7.1 Apparatus 

 

This experiment uses computer controlled stimuli displayed on a monitor.  Monitors create 

the impression of a range of colours using groups of 3 phosphors which emit varying 

strengths of light at red, green and blue wavelengths.  The three phosphors correspond 

roughly to the S, M and L cone sensitivities in the eye.  However, a way is needed to map 

from the colour the computer intends to display and the actual cone activations in the eye.  

The CIE colour space is based on the average viewer's cone activations, and can be used to 

create this mapping.  Using a spectroradiometer, a monitor’s phosphor emissions were 

measured to create a conversion matrix which mapped between the program’s digital 

representation of phosphor emissions and a CIE representation of cone activations.  The cone 

activations were then converted to DKL colour space.  In this way, colours of the stimuli 

Figure 12:  The gamut of the monitor used in the experiment in DKL colour space. 

L-M 

S – (L+M) 
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could be manipulated in a perceptually motivated colour space and experimental measures 

could be taken that would approximate closely and systematically to the actual activation of 

cones in the participant’s eyes.  Figure 12 shows the monitor gamut in DKL space. 

 

The stimuli were displayed on an LG Flatron F900P monitor with a spatial resolution of 

1280x1024 pixels and a refresh rate of 60Hz.  The monitor was calibrated using a 

spectroradiometer and specialised calibration software (Woolf, 2001). The error of the 

predicted values was 2.65∆e (a perceivable difference begins at about 3∆e). The CIE 

chromaticity of the phosphors were Red=(0.56,0.34), Green=(0.29,0.57), Blue=(0.15,0.08).  

The CIE chromaticity of the white point of the monitor was set to the adaptation point used in 

Hansen et al. (2006): x=0.32, y=0.34 with a luminance of 29cd/m².  This chromaticity is equal 

to the one chosen by participants in Berlin & Kay (1969) as the focal point representing grey.  

It is also the colour of the background for the stimuli in both Hansen et al. (2006) and this 

study. 

 

7.2 Methods 

 

7.2.1 Participants.  Eighteen participants were recruited, all of whom had normal or 

corrected-to-normal vision and normal colour vision. 

 

7.2.2 Stimuli.  The stimuli consisted of five basic colour terms in English ('red', 'green', 'blue', 

'orange', and 'yellow').  These were chosen because they approximate most closely with 

Hansen et al.'s (2006) stimuli.  'Blue' was added as a test case and so as to cover a wider 

portion of the visual spectrum.  The control stimuli were uniform coloured squares, each with 

an area equal to the average surface area of the words (subtended 1.25o x 1.25o), and 

adjectives matched for colour term length and frequency (were 'six', 'total', 'fine', 'sudden' and 

'humane'; control word mean count=1772, sd=1343, colour term mean count=1503, sd=925, 

paired sample Wilcoxon signed rank test, W=11, p=.84) using CELEX (Baayen et al., 1995) 

and normed for colour association.  The words were presented centred in the middle of the 

screen in an Arial font and subtended a maximum of 6.3o x 2o.  The mean surface area of the 

words was 22,578 pixels or 1.7 % of the total surface of the screen.  All stimuli had a constant 

luminance of 30.8 cd/m2 (the same as in Hansen et al., 2006), slightly lighter than the 

background so that an achromatic stimulus would not blend into the background.  Stimuli 

were initially displayed in a random colour that was at least 5% of the total range of the 
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stimulus space away from the centre of the colour space (that is, stimuli were never initially 

presented in a colour close to true grey). 

 

7.2.3 Procedure.  The experiment took place in a light-proofed room with the only source of 

light being the monitor.    Participants were seated 187cm from the monitor and were required 

to complete three tasks involving the manipulation of the colour of the stimuli.  The 

participants were shown how to use 4 buttons to do this.  The four buttons moved the locus of 

the colour of the stimuli around the colour space along the x and y axes.  The buttons were 

labelled for the participant as 'remove yellow' (up), 'remove blue' (down), 'remove red' (left), 

'remove green' (right).  This is an approximation of the actual manipulation which increased 

and decreased the x and y axis values in the DKL colour space.  No participant was shown a 

representation of the colour space.  Before the experiment began, the participants spent three 

minutes in the darkened room with the monitor showing the background colour in order for 

their eyes to adapt.  There were four tasks in this experiment, run in blocks.  In task 1, 

participants saw the colour terms and were asked to manipulate the colour to be 'completely 

colourless, or grey'.  This is the achromatic value or Ca.  Task 2 was the same, but for control 

words.  In task 3, participants saw the colour terms and were asked to manipulate the colour 

to 'match the colour described' (e.g., make “red” appear red).  This is the 'typical' value or  Ct.  

In task 4, participants saw the uniform squares and were asked to manipulate the colour to be 

'completely colourless, or grey'.  This is the achromatic value or Sa.  The time taken to adjust 

each word was recorded.  The order of the words within each task was randomised and the 

order of the tasks for each participant was counterbalanced.  Before the experiment, 

participants completed a training phase where they could practice each of the tasks with 

random, non-experimental stimuli.  The number of trials required and the relative difficulty of 

the task meant that the experiment was relatively strenuous.  For more accurate results, the 

four tasks were split over two experimental sessions on different days.  A participant always 

had both sessions at the same time of day in order to minimise effects of exposure to daylight. 
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7.3 Measurements.  As in Hansen et al. (2006), the main measurement was the Memory 

Colour Index (MCI).  First, each participant’s final settings for each stimulus were re-centred 

around each participant's subjective white point, W (the mean achromatic setting for control 

stimuli).  The typical settings Ct were mirrored relative to the origin (-1800) to give Ct'.  The 

memory colour index (Equation 1) was then calculated as the length of the vector product of 

the vector between the origin and the achromatic setting Ca and the vector between the origin 

and the typical setting Ct.  An MCI will be large if the two vectors are maximally opposing. 

 

(Equation 1) 

 

7.4 Data 

 

One trial was removed due to equipment failure.  Two participants' data were removed, since 

they reported difficulties with the task, and took significantly longer than other participants to 

complete the test (mean total time=29min, mean for outliers=63min, t=-8.70, df=15, p<.001).  

One participant was removed because the distance of their achromatic settings from the 

adaptation point were more than 1.96 standard deviations from the total mean.  That is, they 

were unable to successfully complete the achromatic task.  Trials where the participant's 

chosen setting was identical to the initial random setting were removed because this suggests 

they completed the trial prematurely without adjusting the colour.  Trials that were more than 

1.96 standard deviations form each participant's mean trial time for each task type (achromatic 

and typical settings) were removed.  Achromatic trials further than 1.96 standard deviations 

from the mean for each achromatic stimulus type were removed.  This left 1068 data points 

(71%) for 15 participants. 

 

MCI = Ca 
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                |Ct| 
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Figure 13:  Steps to creating the MCI (left to right): plotting typical and achromatic 
settings around the whitepoint; converting to vectors; mirroring the typical vector; 
vector product of the two vectors gives the MCI. 
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7.5 Results 

 

This study aims to show that the comprehension of colour terms involves perceptual 

representations of the denoted colour.  This experiment found that participants only see a 

colour term as achromatic when it is tinted with the perceptually opposing colour.  There are 

three key effects:   

 

(1) The achromatic settings for colour terms are further from the adaptation point (‘grey’) 

than for control stimuli.   

(2) A colour term’s achromatic setting directly opposes its typical setting in the 

perceptual space (the word ‘yellow’ is adjusted to a blue tint). 

(3) A control word’s achromatic setting does not directly oppose its typical setting in the 

perceptual space (the word ‘sudden’, which has the same length and frequency as 

‘yellow’ is not adjusted to a blue tint).  

 

7.6 Statistics 

 

This section provides statistics to support the key findings outlined in the last section. 

 

(1)  The achromatic settings for colour terms were significantly further from the adaptation 

point than the achromatic settings for the control stimuli (over all trials, mean distance from 

adaptation point for colour terms=3.6%, for control stimuli=3.1%, t = 2.9, df = 751, p<.01).   

 

(2)  Participants adjusted the colour terms to achromatic settings which directly opposed their 

typical settings (MCI, 2-tailed, by-subjects, one-sample t-test; t=2.8, df=14, p=.016).  

Participants’ Mean MCIs ranged from -2% (no effect) to 5% with a mean of 1.3%.   The MCI 

for each stimulus was as follows:  'red' = -0.03%, 'green' = 1.40%, 'blue' = -0.32%, 'yellow' = 

3.74%, 'orange' = 2.00% (by-item, t=1.8, df=4, p=.14).   

 

(3)  The MCIs for control words were calculated using their matched colour term’s typical 

settings (‘sudden’ was given the typical setting of ‘yellow’).  The MCIs for control words 

were not significantly greater than zero (MCI, 2-tailed, by-subjects, one-sample t-test; t=0.8, 

df=14, p=.41).  MCIs for colour terms were significantly higher than for control words (2-

tailed by-subjects two-sample t-test; t=2.24, df=14, p=.04). 



5134235 Synchronising the Senses 44 

 

Hansen et al. (2006) includes two other statistics which are replicated for the current study:  

Firstly, achromatic squares did not significantly differ from the adaptation point, based on the 

Figure 14:  Graphs from the current study (top) and Hansen et al. (2006, p.1368).  All graphs 
are plotted in DKL colour space with axes in percentages of DKL space (e.g., top left x-axis 
ranges from -30% to 30%, bottom left x-axis from -10% to 10%).  Top left: Typical (yellow) 
and achromatic (grey) settings for the colour term ‘yellow’, with means for each condition in 
black.  Bottom left:  Typical (yellow) and achromatic (grey) settings for pictures of a banana, 
with means for each condition as diamonds.  Top right:  Lines connecting typical settings for 
each colour term, the mean subjective whitepoint and the mean achromatic settings for each 
colour term.  Achromatic settings are labelled with a letter (r = ‘red, ‘g = ‘green’, b = ‘blue’, 
y=’yellow’, o = ‘orange’).  Bottom right:  Lines connecting the mean typical setting for each 
fruit, the mean subjective whitepoint and the mean achromatic settings for each fruit.  Typical 
settings are labelled with a picture of the fruit. 
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Y-axis only (2-tailed by-subjects one-sample t-test; t=1.2, df=14, p=.23).  Secondly, 

achromatic colour-terms are significantly different from the adaptation point, based on the Y-

axis values only (2-tailed by-subjects one-sample t-test; t=2.5, df=14, p=.03).  Another 

statistic included in Hansen et al. (2006) is that achromatic settings for fruit (colour terms in 

the current study) were significantly different from achromatic settings for control stimuli.  

This made sense for Hansen et al., since all their experimental stimuli had typical settings in 

one hemisphere of the colour space, and so the expected MCI shift for colour terms was in 

one direction.  However, this statistic is not appropriate for the current experiment, since we 

have experimental stimuli with typical settings in both hemispheres.  This means that there is 

no prediction about the mean settings for experimental stimuli in comparison with control 

stimuli for the current study.  

 

Figure 14 shows two graphs from Hansen et al. (2006) and the same graphs with the data 

from the current study.  The graphs on the left show the typical and achromatic settings for 

the experimental stimuli, with the means for each condition highlighted.  The line between 

Figure 15:  Comparison of hues for typical settings from the current study 
and those for English speakers from the WCS (Berlin & Kay, 1969, data from 
http://www.icsi.berkeley.edu/wcs/data.html). 
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these means passes through the adaptation point into the opposite colour space.  That is, 

participants make the word ‘yellow’ look yellow in the typical condition, and adjust it to have 

a blue tint in the achromatic condition.  The graphs on the right show the mean typical and 

achromatic settings for each individual experimental stimulus.  A line is drawn from the 

typical setting (outside the bounds of the graph), through the mean subjective white point for 

all participants (calculated from the mean setting for uniform squares) and back out to the 

achromatic setting.  The straightness and length of these lines is what contributes to the MCI.   

 

The mean typical settings for each colour term in this study were compared with those chosen 

as the best examples of a colour term by English speakers in the WCS.  The range of colour 

choices in the WCS differ in saturation and brightness, so the comparison was done according 

to the angle from the adaptation point in DKL space, equivalent to 'hue' (figure 15).  The hues 

chosen in this study were not significantly different to those in the WCS (WCS mean = 216o, 

sd = 1.4, Current Study mean = 228, sd = 1.6, t = -0.81, df = 4, p = .46, data from 

http://www.icsi.berkeley.edu/wcs/data.html).   However, the mean achromatic setting for 

control stimuli is significantly different from the adaptation point (over all control stimulus 

trials, one-sample Hotelling’s T2, Hotelling, 1931, T2=129.2, df=2, p<.0001).  This is not 

necessarily problematic, since subjective white points will vary, along with individuals’ idea 

of ‘grey’ (Webster et al., 2002).  The MCI measurement takes this into account and returns a 

value based on each participant’s subjective colour settings. 

 

Three post-hoc tests were run on the MCIs for colour terms.  These included an ease-of-

production measure, word frequency and word surface area.  The MCI of colour terms were 

not significantly correlated with their mean ranking in the Battig-Montague norms (r=0.85, 

df=3, p=.07, Bonferroni-adjusted p with mutual correlation=.07, data from Van Overschelde, 

Rawson & Dunlosky, 2004). There was no significant correlation between colour term MCIs 

and colour term frequency (r= -0.70, df=3, p=.20, Bonferroni-adjusted p with mutual 

correlation =.21, frequencies from CELEX).  There was no significant correlation between 

colour term MCIs and surface area (r=0.81, df=3, p=.09, Bonferroni-adjusted p with mutual 

correlation =.10).  This shows that the effect in this study cannot be explained by ease of 

generation, typicality, frequency or stimulus surface area.  
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7.7 Discussion 

 

This study found that participants choose achromatic colours for colour terms that extend into 

precisely the opposing colour space to the colour they describe.  That is, when we read 

yellow, we see yellow.  It is argued that this effect comes from a perceptual activation caused 

by the comprehension of the colour term.  This supports an Embodied account of 

comprehension.  However, the main effects were weaker in the current study than in Hansen 

et al:  Colour words had a mean MCI of 1.3% in the current study - lower than Hansen et al. 

(2006) report for fruit (mean MCI of 8.23%).  However, Olkkonen et al. (2008) found that 

more abstract stimuli elicited less of an MCI effect (mean MCI of Photographs=7.6%, Fruit 

painted white to remove surface texture=5.6%, Uniform outlines of fruit=2.3%).  Colour 

terms are a further abstraction – they share no physical structure with their referent – so a 

smaller effect is expected.  Furthermore, 'typical' colours for colour terms tended to be 

maximally saturated colours at the limits of the colour space, whereas more intermediate 

saturations would be likely for realistic photographs.  Moving the typical setting further from 

the adaptation point increases the typical vector and decreases the MCI.  

 

Although the current study found a significant effect using the MCI, the effect is not large or 

robust.  Firstly, not all participants in the current study had a positive MCI.  Secondly, the 

analysis of MCI by items shows a large effect for yellow, orange and green but a negative 

effect for red and blue.  There are no blue or red stimuli in Hansen et al. (2006), but a red 

strawberry in Olkkonen et al. (2008) had a negative MCI value.  There may be two 

explanations for this.  Firstly, some inconsistency in the colour space or the calibration may 

attract all experimental stimuli towards the negative y-axis area.  This would give a 

significant result for Hansen et al., because the typical y-axis values for all experimental 

stimuli are positive.  Blue and red have lower or negative y-axis values, reducing their MCI 

value.  However, it would not explain why there was a difference between control and 

experimental stimuli in both experiments.  Alternatively, blue is not a usual colour for fruit.  

Recalling the co-evolution of fruit colour and colour vision, the colour term ‘blue’ may not 

work because the system is not adapted for processing it.  However, it does not explain why 

‘red’ should not have an effect, since red is a common colour for fruit. 

 

Another explanation for the general effect is related to the Stroop Effect (Stroop, 1935).  This 

is a delay in processing caused by conflicting stimuli.  Initial experiments noted slower 
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reaction times for naming the colour of the ink a word was printed in if the ink colour 

mismatched, for instance the word ‘red’ printed in green.  This phenomenon is thought to 

involve parts of the brain that handle conflict resolution (e.g., Spreen, Strauss & Sherman 

2006).  However, it is unlikely that the Stroop effect has a large influence on the results of the 

current experiments because, unlike many experiments investigating categorical perception 

and Embodied Cognition, neither of the current experiments imposes a time limit and reaction 

times are not measured as a main effect.   

 

The experimental effect also brings to mind Synaesthesia.  Synaesthetes experience a mixing 

of their senses.  For some individuals, linguistic structures, such as spoken or written words, 

evoke conscious perceptions of colour (Simner, 2007).  There is a tendency for non-

synaesthetes to associate certain graphemes with certain colours (Simner et al. 2005).  

However, these associations are phenomenologically different to synaesthetic experiences.  

The current study finds that colour words take on the perceptual features of their referents.  

However, synaesthetic effects usually involve feed-forward connections between perceptual 

areas, rather than by feedback connections from conceptual areas (Bargary & Mitchell, 2008, 

Barnett et al., 2008).  The experimental effect is hypothesised to be a feedback effect, and so 

the results of this study will not be discussed in terms of synaesthesia. 

 

Overall, the results support the Embodied implication (comprehension involves perception) 

and the Categorical Perception implication (concepts influence perception).  However, these 

results are consistent with two basic explanations.  Firstly, semantic information could be 

influencing the perception of the object itself.  That is, the word 'yellow' appears to be yellow 

because the concept activates perceptual representations.  Alternatively, the effect may be a 

part of the phenomenon of simultaneous colour contrast (e.g., Chevreul, 1868).  That is, the 

perception of colour depends on the surrounding colours.  In this experiment, semantic 

information may be used for colour constancy, and could be changing the perception of all 

colours.  That is, the colour of the word 'yellow' is taken, in the absence of other cues, as a 

locus for the colour yellow, and the perception of the background changes to suit this.  In this 

case, the background would look bluer than without the word 'yellow', and participants would 

try to match this colour.  In order to improve the power of the results and to address the 

confound above, a second experiment was run, described in the next section. 
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8 Experiment 2 

 

If people's perceptions of stimuli are altered by their prototypical colours, and if this extends 

into abstract stimuli such as colour terms, then a simple prediction is made:  Two different 

colour terms printed side by side in the same colour will appear to be different colours.  

Furthermore, this will provide evidence to solve the possible confound mentioned at the end 

of the last section.  The words will only appear to be different colours if semantic information 

causes the perception of the object itself to change.  If semantic information is used to 

calibrate colour perceptions in general, then the two words will still appear to be different. 

 

8.1 Apparatus 

 

The same display apparatus was used as in experiment 1.  Experiment 2 additionally used E-

prime and a serial response box to display stimuli and record participant responses. 

 

8.2 Methods 

 

8.2.1 Participants.  9 male and 6 female, non-colourblind, native English speakers were 

recruited who had not participated in the first experiment. 

 

8.2.2 Stimuli.  Participants were shown pairs of opposing colour terms – 'yellow' and 'blue' as 

a pair and 'red' and 'green' as a pair.  Four colour 'tints' were calculated that were equidistant 

(∆E*
ab of 1.0) from the adaptation point in the direction of the typical colours of these colour 

terms, as defined by the mean responses of participants in the first experiment ('red': l=32.14, 

x=0.322, y= 0.341; 'green': l=32.28, x=0.319, y =0.341; 'yellow': l=32.03, x=0.321, y=0.34; 

'blue': l=31.98, x=0.319, y=0.339). 

 

There were four colour conditions:  The pair were shown both in one term's typical tint 

(biased), both in the other term's typical tint (biased), each in their own typical tint (typical) 

and each in the other term's typical tint (atypical).  The colour terms were displayed in vertical 

alignment and each pair was shown in each condition in both spatial configurations.  As a 

control measure, the same tint conditions were applied to a pair of shapes – a square and a 

cross.  The difference in shapes mirrored the difference in colour terms.  The surface area of 

each shape was the mean surface area for the colour terms.  The stimuli had a luminance of 32 
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cd/m2, as in the first experiment.  All stimuli appeared on a uniform background with the 

same achromatic colour as in the first experiment (x=0.32, y=0.34, Luminance=29.0).  All 

stimuli subtended a maximum of 7o (words varied due to variation in length). 

 

8.2.3 Procedure.  A blank screen preceded each trial for 1 second.  Participants were asked 

to categorise the colours of the two targets as either being the same or different.  A training 

session was run first with random words and shapes.  Feedback was provided to familiarise 

the participants with the degree of difference they were expected to detect.  If the participants 

correctly identified the training stimuli, they moved on to the experimental stimuli.  

Participants saw each stimulus pair in both spatial configurations 12 times.  The order of the 

trials was randomised.  Participants had 2 optional breaks and the experiment took no longer 

than 20 minutes.  At the end of the experiment, participants were asked whether shapes were 

easier or harder to classify than colour terms, or if there was no difference between the two.  

The prediction was that participants would have a higher error rate while classifying 

identically coloured colour terms while classifying shapes. 

 

8.3 Results 

 

All participants correctly completed the training session and stated that they were able to 

distinguish between the different tints.  Participants were significantly more likely to 

categorise identically-coloured colour terms as different than identically-coloured shapes 

(t=13.32, df=2249, p<.0001). The error rates for identically coloured colour terms by 

participant ranged from 1% to 79% with a mean of 22.95% and the error rates for identically 

coloured shapes ranged from 0 % to 31% with a mean of 5.94%.  There was no significant 

difference in the error rates for typical and atypical colour term stimuli (mean error rate for 

typical condition=5.6%, mean error rate for atypical condition=4.7%, t=0.80, df=1413, 

p=.42). 

Stimuli Colour  

Different 

Stimuli 
structure 

Typical Atypical Same 

Shapes 3.94% 5.94% 

Colour terms 5.59% 4.65% 22.95% 
Table 1:  Error rates for judgements of colour in experiment 2. 
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A linear mixed effects regression was used to analyse the results.  The participants' responses 

were entered as the dependent variable.  Colour contrast (typical, atypical or biased, entered 

as two dummy variables), stimulus type (words or shapes), reaction time, sex and trial number 

were entered as fixed effects with a by-participants random effect.  Table 2 shows the 

statistics for the main fixed effects.  Colour contrast, stimulus type and reaction times were 

significant predictors of responses.  The sex of the participant, and the position of the trial in 

the experiment were not significant predictors. 

 

 

 

Reaction times were significantly longer for colour terms than squares (Mean reaction time 

for squares = 1765 ms, for colour terms =2276 ms, t =-7.76, MCMCp<.0001, calculated with 

Markov chain Monte Carlo method).  All participants also reported that shapes were easier to 

classify than colour words.   Reaction times for mismatching colour terms were significantly 

longer than matching colour terms (Mean reaction time for matching=1678 ms, 

mismatching=1739 ms, t=2.10, MCMCp=.04).  Adding a by-participants random slope 

significantly improved the fit of the model (Log likelihood difference=340.2, 

χ2=680.3,df=20,p<.0001), suggesting that participants were susceptible to the categorisation 

effect to significantly different degrees. 

 

8.4 Discussion 

 

Experiment 2 found evidence that two different colour terms presented in the same colour 

appear to be different colours.  Participants showed reduced discrimination accuracy between 

categories, fitting Pastore’s (1987) description of a categorical perception threshold effect.  

This supports the first experiment, is in line with other Embodied Cognition experiments, and 

is also freer from concerns of exact calibration, adaptation points and noise from the 

granularity of choices.  It could be argued that the effect is a Stroop-type effect, rather than a 

perceptual one.  However, there are three reasons to refute this:  Firstly, there were 

Variable Log Likelihood 
Difference 

χ2 df p 

Colour contrast 3133.8 6267.69 2 <0.0001 
Stimulus type 141.5 282.92 3 <0.0001 
Reaction time 164.6 329.17 6 <0.0001 
Sex 0.7 1.46 1 0.23 
Trial num 1.7 3.52 1 0.06 

Table 2:  Main fixed effects statistics. 
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significantly fewer errors for categorising colour terms presented in different colours.  This 

suggests that the extra error rate for identically-coloured colour terms was caused by a 

separate effect to one of a Stroop nature.  Secondly, the Stroop effect imposes a processing 

cost which is usually measured in response times.  Participants in this experiment had no time 

constraint.  Finally, since the effect on perception is hypothesised as threshold effect, one 

would expect the effect to come and go with the attention of the observer.  That is, whether 

they were considering it as a word or as a shape.  However, there is a possible confound in 

conditions where the two stimuli were different colours – although the difference between the 

colours was small, they were across category boundaries (e.g., yellow and blue), which might 

exaggerate the difference perceptually (e.g., Gilbert et al., 2006).  This does not explain why 

there were fewer errors for shapes, but may interact with the comprehension of the word.  

Overall, the results support the first experiment, and confirm the hypothesis that the colour of 

the object itself changes because of its known referent. 

 

 

9 Conclusion 

 

This study considered three implications of the Embodied Cognition Hypothesis.  The two 

experiments in this study found evidence to support the Embodied implication that 

comprehension involves activating perceptual symbols and the Categorical Perception 

implication that concepts can affect perception.  Specifically, colour words are seen as grey 

only when they are tinted with the perceptually opposing colour to the one they describe.  

This suggests that people literally see yellow when they read the word ‘yellow’.  Also, 

participants are more likely to classify two opposing colour words displayed in the same 

colour as different colours than abstract shapes.  These findings fit into an Embodied theory 

of cognition whereby perceptual representations are activated by linguistic stimuli (colour 

terms).  Furthermore, the first experiment showed that Embodied effects can be measured in 

ways other than delays in high-level processing, showing that perceptual symbols are 

persistently active during comprehension.  Several questions remain unanswered, however, 

such as why certain colour terms have a larger effect on perception than others (‘yellow’ had 

more of an effect than ‘blue’) or whether less abstract colour terms (those more obviously 

grounded in real-world objects such as ‘violet’) show more or less of an effect than basic 

colour terms. 
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Past studies have shown that a wide range of factors constrain the categorisation of colour, 

including the physiology of perception, the environment and cultural transmission.  This study 

shows that the categorisation acquired by individuals can feed back into perception and itself 

become a constraint both on the development of categorisation, the environment and genetic 

inheritance.  In this sense, the feedback from categorisation allows Niche Construction 

dynamics to apply to linguistic categorisations.  It was argued that this dynamic fits with the 

Cultural implication of an Embodied account of language comprehension.  That is, this 

study has concluded, similarly to Kirby et al. (2007), that universal patterns across 

populations do not necessarily imply strong innate biases.  This was done by arguing that 

Cultural, Embodied systems tend to drift towards better representations of the real world, 

which involves better coherence with perceptual and environmental constraints, creating 

cross-cultural patterns.  Furthermore, an Embodied approach to cultural dynamics 

incorporating a mechanism for perceptual warping predicts that the perceptual spaces of 

individuals can be synchronised through language to achieve better communication. 
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