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Abstract

Since their recent introduction, conditional random fields(CRFs) have been success-

fully applied to a multitude of structured labelling tasks in many different domains.

Examples include natural language processing (NLP), bioinformatics and computer

vision. Within NLP itself we have seen many different application areas, like named

entity recognition, shallow parsing, information extraction from research papers and

language modelling. Most of this work has demonstrated the need, directly or indi-

rectly, to employ some form of regularisation when applyingCRFs in order to over-

come the tendency for these models to overfit. To date a popular method for regularis-

ing CRFs has been to fit a Gaussian prior distribution over themodel parameters.

In this thesis we explore other methods of CRF regularisation, investigating their

properties and comparing their effectiveness. We apply ourideas to sequence labelling

problems in NLP, specifically part-of-speech tagging and named entity recognition.

We start with an analysis of conventional approaches to CRF regularisation, and

investigate possible extensions to such approaches. In particular, we consider choices

of prior distribution other than the Gaussian, including the Laplacian and Hyperbolic;

we look at the effect of regularising different features separately, to differing degrees,

and explore how we may define an appropriate level of regularisation for each feature;

we investigate the effect of allowing the mean of a prior distribution to take on non-

zero values; and we look at the impact of relaxing the featureexpectation constraints

satisfied by a standard CRF, leading to a modified CRF model we call the inequality

CRF. Our analysis leads to the general conclusion that althoughthere is some capacity

for improvement of conventional regularisation through modification and extension,

this is quite limited. Conventional regularisation with a prior is in general hampered by

the need to fit a hyperparameter or set of hyperparameters, which can be an expensive

process.

We then approach the CRF overfitting problem from a differentperspective. Specif-

ically, we introduce a form of CRF ensemble called alogarithmic opinion pool(LOP),

where CRF distributions are combined under a weighted product. We show how a LOP

has theoretical properties which provide a framework for designing new overfitting re-

duction schemes in terms of diverse models, and demonstratehow such diverse models

may be constructed in a number of different ways. Specifically, we show that by con-

structing CRF models from manually crafted partitions of a feature set and combining

them with equal weight under a LOP, we may obtain an ensemble that significantly
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outperforms a standard CRF trained on the entire feature set, and is competitive in per-

formance to a standard CRF regularised with a Gaussian prior. The great advantage

of LOP approach is that, unlike the Gaussian prior method, itdoes not require us to

search a hyperparameter space.

Having demonstrated the success of LOPs in the simple case, we then move on to

consider more complex uses of the framework. In particular,we investigate whether it

is possible to further improve the LOP ensemble by allowing parameters in different

models to interact during training in such a way that diversity between the models is

encouraged.

Lastly, we show how the LOP approach may be used as a remedy fora problem

that standard CRFs can sometimes suffer. In certain situations, negative effects may be

introduced to a CRF by the inclusion of highly discriminative features. An example of

this is provided by gazetteer features, which encode a word’s presence in a gazetteer.

We show how LOPs may be used to reduce these negative effects,and so provide

some insight into how gazetteer features may be more effectively handled in CRFs,

and log-linear models in general.
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Chapter 1

Introduction

Conditional Random Fields (CRFs) were introduced in 2001 byLafferty et al. (2001)

and currently represent a state-of-the-art approach to structured labelling problems in

natural language processing (NLP). Although originally employed for sequence la-

belling tasks such as noun-phrase chunking (NPC) (Sha and Pereira, 2003) and named

entity recognition (NER) (McCallum and Li, 2003), CRFs haverecently been applied

to problems that involve a more complex structure of dependencies between the ob-

jects being labelled. Examples include extraction of information from research papers

(Peng and McCallum, 2004), semantic role labelling (Cohn and Blunsom, 2005) and

parsing (Clark and Curran, 2004). The widespread acceptance of the CRF as the model

of choice for many labelling problems within the NLP community is evidenced by the

fact that its use has spread beyond English to many other languages, including Hindi

(Li and McCallum, 2003), Chinese (Peng et al., 2004) and Japanese (Kudo et al., 2004).

CRFs have also seen increasing application in domains otherthan NLP, such as com-

puter vision (He et al., 2004; Wang and Ji, 2005) and computational biology (Culotta

et al., 2005).

CRFs were originally introduced to overcome some of the weaknesses of related se-

quence labelling models. Hidden Markov Models (HMMs) (Rabiner, 1989), for exam-

ple, had enjoyed widespread success on a number of labellingtasks in NLP, including

part-of-speech tagging (Kupiec, 1992), information extraction (Freitag and McCallum,

2000) and shallow parsing (Molina and Pla, 2002). However, HMMs aregenerative

models which model a joint distribution over both observations and their labels. This

joint structure means that HMMs typically enforce strict conditional independence

assumptions between elements of the observations. Consequently, it is difficult to

tractably encode arbitrary dependencies between observation elements in an HMM, so

1
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the modelling power is restricted.Discriminativeapproaches, by contrast, model only

the distribution of the labelsgiventhe observations. Examples of discriminative mod-

els include sequential maximum entropy (ME) models (Ratnaparkhi, 1996), of which

a special case is the maximum entropy Markov model (MEMM) (McCallum et al.,

2000). The discriminative nature of these models allows thespecification of arbitrary,

non-independent properties of the observations via a set offeatures. For some tasks,

this extra facility means that important dependencies between the observations, which

would be hard to tractably encode in an HMM, can easily be included in the model.

This often leads to increased performance (McCallum et al.,2000). Conventional dis-

criminative models for sequence labelling typically specify a label distribution which

is normalised at each point in the sequence. As a result of this structure, these models

suffer a limitation which has become known aslabel bias(Bottou, 1991), and relates

to an undesired biasing effect in the label distribution towards certain labellings. CRFs

are also discriminative models, but in contrast to conventional discriminative models,

they specify a label distribution which isgloballynormalised over the whole sequence.

In doing so they avoid this bias effect. CRFs can therefore beseen as a solution to

the weaknesses of both generative sequencing models and conventional discriminative

sequencing models, taking advantage of increased modelling power over HMMs while

simultaneously avoiding the bias effects of MEMMs.

Despite the clear advantages CRFs possess over alternativemodels, they do have

certain shortcomings. At a high level these deficiencies maybe divided into two cate-

gories:scalingandoverfitting. The first of these,scaling, relates to both the computa-

tional and storage demands of CRF training, and how these scale with the complexity

of the task and the size of the label set. In general, CRFs takelonger to train than

comparable discriminative models, and usually take considerably longer than HMMs.

With all these types of model, the likelihood function is often used as an objective for

model training. In a supervised training setting, with HMMsthe likelihood function

decouples into separate functions consisting of disjoint sets of parameters. These sepa-

rate functions may be maximised independently and the maximum likelihood solution

with respect to the model parameters can be found analytically. With discriminative

models, however, the story is a little different because thelikelihood function usually

includes a normalising function which couples the model parameters, generally pre-

venting a maximum likelihood solution in a closed form. As a result, solving for the

model parameters usually demands the use of an iterative numerical optimiser. This

is the reason that training time for discriminative models,like CRFs and MEMMs, is
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generally longer than that for generative models, like HMMs. In addition, evaluation

of the normalising function for a CRF is typically computationally more demanding

than that for other discriminative models because the normalisation in a CRF is global.

Similar remarks hold for the high memory demands of CRF training. In general, effi-

cient evaluation of the normalising function for a CRF requires caching a large amount

of information. For tasks that involve complex dependencies between the objects be-

ing labelled and/or a large label set, these heavy storage demands make CRF training

impossible without an explicit strategy to overcome them. Cohn (2006) describes two

approaches to overcome these scaling problems when applying CRFs to larger tasks.

In this thesis we do not address these issues directly but instead focus on the second

CRF shortcoming mentioned above, namelyoverfitting.

Many of the important dependencies in a label distribution may be modelled effec-

tively by a CRF with a large number of highly expressive features. However, this pow-

erful modelling capability comes hand-in-hand with the increased danger that some

degrees of freedom contained in the model may fit to the idiosyncrasies of the training

data itself, rather than the systematic properties of the underlying distribution. CRFs

therefore exhibit a tendency to overfit the training data to agreater degree than alter-

native models. Indeed, most work with CRFs to date has demonstrated the need for

some form of regularisation to be applied.

Conventional approaches to regularising log-linear models in general, and CRFs

in particular, have focused on the use of a Gaussian prior over the model parameters

(Chen and Rosenfeld, 1999; Sha and Pereira, 2003). This approach has been shown to

be effective as a regularising strategy for a number of different tasks. However, despite

its popularity there is no tractable way to determine the optimal hyperparameters of

a prior distribution such as a Gaussian. In most cases fittinga Gaussian involves an

element of trial-and-error, and is largely seen as a “black art”. It is therefore desirable

to investigate other approaches to CRF regularisation, either by improving and refining

existing methods or by formulating an alternative paradigm. In this thesis we address

these issues by introducing a new framework for CRF regularisation that does not

require any hyperparameter search. The model is called alogarithmic opinion pool.
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1.1 Contributions of the Thesis

The main contributions of this thesis fall into three categories:

1. Analysis of Conventional CRF Regularisation. As alluded to above, the cur-

rent approach to CRF regularisation revolves around the useof a Gaussian prior

distribution over the model parameters. Typically, for simplicity, certain assump-

tions are usually made when employing this distribution, such as constraining

the Gaussian variance to be fixed across all parameters and forcing the Gaussian

mean to be zero for all parameters. In this thesis we venture beyond this basic

scenario to consider a range of other possibilities for conventional regularisation

of CRFs. Specifically, we consider choices of prior distribution other than the

Gaussian; we look at the effect of regularising different features separately, to

differing degrees, and explore how we may define an appropriate level of reg-

ularisation for each feature; we investigate the effect of allowing the mean of a

prior distribution to take on non-zero values; and we look the impact of relax-

ing the feature expectation constraints satisfied by a standard CRF, leading to

a modified CRF model we call theinequality CRF. Our general conclusion is

that although there is some capacity for improvement of conventional regular-

isation through modification and extension, this is quite limited. Conventional

regularisation with a prior is in general hampered by the need to fit a hyperpa-

rameter or set of hyperparameters. For a large number of hyperparameters the

hyperparameter search space quickly becomes too large to explore efficiently.

2. New Framework for CRF Regularisation. In this thesis we introduce a new

framework for CRF regularisation called alogarithmic opinion pool (LOP). The

LOP combines a set of CRFs in a weighted product. The great advantage of the

LOP approach in comparison with a conventional prior is thatthe LOP avoids the

need to fit a hyperparameter or set of hyperparameters. For this reason, we refer

to the LOP approach as “parameter-free”. This aspect makes the LOP cleaner,

and easy to implement and run. We show that the success of a LOPis determined

by thediversityof the models from which is composed, and we investigate how

this diversity may be introduced and adjusted. Overall, we show that a LOP, with

an appropriate choice of CRFs in the weighted product, may obtain results that

are as good as, or better, than those obtained through conventional regularisation.

3. Applications of the Framework. Having introduced the LOP, we go on to
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show how it may be used as a remedy for a much under-appreciated problem

with CRFs: in some circumstances, certain negative effectsmay be introduced

to a CRF by the inclusion of highly discriminative features.An example of this

is provided by gazetteer features, which encode a word’s presence in a gazetteer.

We demonstrate and explain the negative effect of such features, and show how a

LOP may be used to reduce its impact. In doing so we provide some insight into

how gazetteer features may be more effectively handled in CRFs, and log-linear

models in general.

1.2 Structure of the Thesis

Chapter 2 provides a background to the theory behind CRFs andcovers the relevant

literature. We look in more detail at the relationship between CRFs and previous,

related models and examine more closely the advantages thatCRFs possess. We also

describe the structure of a CRF from a graphical model point of view, and look at

the algorithms for CRF training and decoding. Also in this chapter we briefly cover

previous work on the two tasks we use for our experiments.

In Chapter 3 we present the experimental setup. We describe the two labelling

tasks, named entity recognition and POS tagging, that we useto compare the models.

We also discuss the experimental pipeline and software architecture employed. Lastly,

we look at the measures used to evaluate and compare the performance of the different

models.

Chapter 4 presents what we call thereference models. These are standard CRF

models which act as the base models for our experimental comparisons and are built

upon and extended in later chapters. Also in this chapter we demonstrate empirically

the tendency for a CRF to overfit a training dataset of small size.

In Chapter 5 we investigate conventional regularisation for CRFs and propose some

extensions to existing methods. We start by looking at the simplest approach,feature

cutoff, and then move on to investigate the use of a prior distribution. We compare the

standard Gaussian prior to two other distributions, the Laplacian and the Hyperbolic.

We also explore how the level of regularisation applied to each model parameter can

be made to vary across parameters, and investigate several ways in which this level

may be set. Finally, we introduce an alternative model for conventional regularisation,

called theinequality CRF, and show how this is related to existing approaches.

In Chapter 6 we introduce an alternative paradigm for CRF regularisation based on
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a logarithmic opinion pool(LOP). We describe the theory behind LOPs and investigate

some of their properties. We show that the performance of a LOP depends on how

diverse its constituent models are, and explore different ways in which this diversity

may be introduced to the model.

In Chapter 7 we expand on Chapter 6 by investigating how to introduce diversity

into a LOP throughco-operative trainingof the constituent models. Here, rather than

using independently pre-trained constituent models in theLOP, we train the parameters

in all constituent models together simultaneously, allowing interaction between them.

We describe the framework for co-operative training and discuss what constitutes a

suitable objective function. We present results to show howa co-operatively trained

LOP compares to one with independently pre-trained constituent models.

In Chapter 8 we investigate how certain negative effects maybe introduced to a

CRF by the inclusion of highly discriminative features. We explore the nature of these

negative effects and look at how they may be overcome. Specifically, we show how

the LOP approach of the previous chapters may be used as a solution to the problem,

and therefore how this represents an application of the ideas in the thesis.

Finally, in Chapter 9, we summarise our findings from the previous chapters and

conclude the thesis.



Chapter 2

Background

In this chapter we provide some background for the rest of thethesis. The chapter

is intended to cover the main concepts required to understand later chapters, and to

examine the relevant literature in the field. We start, in section 2.1, by situating CRFs

alongside previous, comparable sequence labelling models. Specifically, we look at

the strengths and weaknesses of generative sequence models, such as HMMs, and

see how these models were superseded by discriminative sequence models such as

MEMMs. We also briefly look at the shortcomings of these discriminative models,

such as thelabel biasproblem. This naturally leads to the need for a model which

corrects for these weaknesses, and in section 2.2 we introduce the CRF as such a

model. We define the CRF, and show its structure as a graphicalmodel, in section

2.2.1. We then give training and decoding algorithms for CRFs in sections 2.2.2 and

2.2.3 respectively. Section 2.2.4 describes applicationsof CRFs to date, both in NLP

and in other domains. Finally, in section 2.3, we move on to consider the phenomenon

of overfitting, which is particularly acute in CRFs. We first explore the concept in

general, then, in section 2.3.1, we look at specific examplesof schemes used to reduce

overfitting, for CRFs and other log-linear models.

2.1 Generative Models to Discriminative Models

When CRFs (Lafferty et al., 2001) were first introduced, theywere designed, in part

at least, to address some of the weaknesses of previous probabilistic models used for

sequence labelling. In this section we consider the properties of these earlier models,

and see how their shortcomings led to the development of the CRF. We divide the

models into two broad categories:generativeanddiscriminative.

7
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Figure 2.1: HMM graphical model structure.

2.1.1 Generative Sequence Models

Generative models assign a joint probability to a paired observation and label sequence.

Examples of such models includehidden Markov models (HMMs) andstochastic

grammars (SGs). Hidden Markov models have been applied to a number of labelling

tasks in speech recognition (Rabiner, 1989) and natural language processing, including

part-of-speech tagging (Kupiec, 1992), information extraction (Freitag and McCallum,

2000) and shallow parsing (Molina and Pla, 2002). They have also been applied to

similar tasks in other domains. For example, biological applications include the mod-

elling of secondary structure in protein families and intron splicing in eukaryotic genes

(Balay et al., 2001).

Figure 2.1 shows an HMM as a graphical model. The model consists of a set of

hidden states, or labels1, represented by random variablesSt , and a set of observable

elements represented by random variablesOt . In the figure the observable variables

are shaded, a convention we will use for graphical models throughout this chapter. In

most tasks in NLP both the state variables and the observation variables are discrete.

For example, in a part-of-speech tagging task2 the state variablesSt could represent

POS tags while the observation variablesOt represent words.

From the graph we can see that certain conditional independence relationships exist

between the states and the observations. Specifically,St+1 is conditionally independent

of St−1 givenSt . More generally, conditioning onSt rendersSu andSv independent for

all u < t andt < v. In addition,Ot is independent of all other variables givenSt . How-

ever, conditioning on an observation does not yield any conditional independencies, so

1In the thesis we assume there is a one-to-one mapping betweenstates and labels, and so we treat
the two terms as interchangeable. In general though, this need not be the case.

2We explain POS tagging in Chapter 3.
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the “future is independent of the past given the present” rule only holds if by “present”

we are referring to the current state.

Being a generative model, the HMM assigns a joint probability to an observation

and label sequence. This joint distribution may be factorised according to the condi-

tional independence relationships above. The distribution then becomes:

p(s,o) = p(s1)
T−1

∏
t=1

p(st+1 |st)
T

∏
t=1

p(ot |st) (2.1)

wheret runs over theT positions (words) in the sequence. The HMM is therefore

parameterised by a set of local conditional probability distributions p(st+1 |st) and

p(ot |st). In most cases we assume the model isstationary, meaning that the pa-

rameters in the distributions are independent oft. For a given HMM structure, the

value of the parameters may be estimated by maximising an objective function over

the training data. The simplest objective function is thejoint likelihood , although

other objectives may be used. If the training data consists of fully labelled data, with

both observation sequences and state sequences given, the parameters may be found

easily using the ratio of the relevant event counts. If the data is only partially labelled,

or unlabelled, the parameters may be be found using an iterative algorithm such as

Expectation-Maximisation (EM).

Once an HMM has been trained it may be used to label, ordecode, previously

unseen observation sequences. The task is to find the optimalstate sequences∗ with:

s∗ = argmax
s

p(s|o) = argmax
s

p(s,o)

p(o)
= argmax

s
p(s,o) (2.2)

The optimal state sequences∗ may be found efficiently using the Viterbi algorithm

(Viterbi, 1967).

2.1.1.1 Limitations of Generative Models

Although hidden Markov models have had many notable successes in language se-

quencing tasks, they do have restrictions in certain circumstances. One restriction of

HMMs relates to the strict conditional independence assumptions they make. For ex-

ample, as noted in the previous section, in an HMM an observation is dependent only

on the state at that sequence position in question. Such strict independence assump-

tions break our intuitions regarding the dependencies thatexist between observation
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elements in language. Long-range dependencies, for example, are very difficult to en-

code in an HMM whilst retaining the ability to train efficiently. A related point here is

the ease with which we may specify, in an HMM, arbitrary dependencies between ele-

ments in a sentence. For example, it seems intuitive that in alabelling task a state often

depends not simply on the identity of the observation elements in a window around that

position, but on specific properties they have. To illustrate, in a named entity recogni-

tion task we may expect that the current tag labelling decision ought to be influenced

not just by the identity of the current word, but by other factors such as the identity of

part-of-speech tags in a neighbourhood around the current word, and whether or not

the current word is capitalised. Although it is possible to represent these dependencies

through an HMM, the state space required often becomes extremely large very quickly,

rendering the model intractable.

A second potential restriction of HMMs relates to the fact that they define a joint

distributionp(s,o) over state and observation sequences, thereby implicitly modelling

both the conditional distributionp(s|o) and the marginal distributionp(o). In a situ-

ation where we have only partially labelled training data, or unlabelled training data,

this can be useful because we can still learn the marginal distribution from the data.

However, in a situation where we have fully labelled training data and we want to use

the HMM to label new unlabelled data, modelling of the entiredistribution can make

HMMs less discriminative. To address this, a number of approaches have been sug-

gested in the the literature. One possibility is to train theHMM discriminatively, using

a discriminative objective function. This typically involves maximising conditional

likelihood rather than joint likelihood, resulting in aconditional maximum likelihood

(CML) estimate, rather than a simplemaximum likelihood (ML) estimate for the pa-

rameters. Klein and Manning (2002) compare ML and CML training regimes using

HMMs on a POS tagging task. They find that the CML approach performs marginally

better than the ML, having forced the model to focus more on discriminatingbetween

the labels. In the speech community, CML-trained HMMs are often referred to as

class HMMs (CHMMs) (Krogh and Riis, 1999). Generally, training HMMs to max-

imum conditional likelihood requires the use of gradient-descent methods because the

objective cannot be solved for the parameters in a closed form (in the case of fully

labelled data) and the EM algorithm is not applicable to CML (in the case of partially

labelled or unlabelled data). Interestingly, Nadas (1983)shows that if the underlying,

“true” distribution lies within the model space, ML can find optimal parameters in the

presence of an infinitely large amount of training data. However, in the real-world
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Figure 2.2: CMM graphical model structure.

the “true” distribution is extremely unlikely to lie withinthe space of HMMs, and the

amount of training material is usually relatively limited.Hence discriminative training

is often preferred.

Other variants and extensions to the basic HMM structure address our first re-

striction above, regarding the ease of incorporation of arbitrary local dependencies.

Bourlard and Wellekens (1990), for example, show that discriminatively trained HMMs

correspond to a particular kind ofmulti-layer perceptron (MLP) . A particular strength

of MLPs is their ability to easily incorporate contextual information. Using this capa-

bility, Bourlard and Wellekens use MLPs on a speech task, achieving significantly

improved classification performance over standard HMMs trained using ML. Other

extensions along the CHMM line includehidden neural networks (HNNs) (Krogh

and Riis, 1999). In HNNs, parameters within a CHMM are replaced by MLPs. Krogh

and Riis (1999) use HNNs for the task of recognising broad phoneme classes, and

show significant performance gains over standard HMMs on thetask.

2.1.2 Discriminative Sequence Models

Discriminative sequence models model the conditional distribution of state sequences

given an observation sequencep(s|o) directly, rather than modelling the joint distri-

bution of states and observations and using inference to derive the conditional distri-

bution. In doing so, discriminative sequence models avoid some of the shortcomings

of generative sequence models described above. Discriminative sequence models may

be eitherper-state normalisedor globally normalised.

Per-state normalised models assign a probability distribution p(st |st−1, . . . ,o) to

a state at a particular position in a sequence given some contextual window around
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that position. The conditional probability of a state sequence given the observation

sequence is then derived (or sometimes approximated) as a function of these local

conditional probabilities. Examples of such models include the sequential maximum

entropy model and the conditional Markov model (CMM) (Ratnaparkhi, 1996), a spe-

cial case of which is the maximum entropy Markov model (MEMM)(McCallum et al.,

2000). Globally normalised models, by contrast, model the conditional distribution of

an entire state sequence given an observation sequencep(s|o) directly, without specif-

ically modelling the marginal state probabilities as part of the process. An example of

such a model is aconditional random field (Lafferty et al., 2001). As we are consid-

ering sequence models used prior to the introduction of CRFsin this section, we will

only look at per-state normalised models here.

Figure 2.2 shows the graphical structure of one example of a per-state normalised

discriminative model, called aconditional Markov model (CMM) . From the dia-

gram we see that the CMM is a discriminative variant of the HMM. Note the reversal

of direction of the vertical arrows between the states and the observations. A CMM

state is thereforeconditionedon the observation at the corresponding position in the

sequence, in contrast to an HMM where the state is seen asgeneratingthe observation.

Using the chain rule of probability and the conditional independencies in the graph,

the distribution for a CMM may be factorised to obtain:

p(s,o) = p(o1) p(s1 |o1)
T

∏
t=2

p(ot) p(st |st−1,ot) (2.3)

Although this is a joint distribution over states and observations, the graphical structure

is conditional in the sense that local conditional probabilities p(st |st−1,ot) appear in

the factorisation. In order to obtain the conditional distribution of a state sequence

given the observation sequence explicitly, we use:

p(s|o) =
p(s,o)

p(o)
(2.4)

and note that, because theot are marginally independent, we have:

p(o) =
T

∏
t=1

p(ot) (2.5)

and so:
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p(s|o) = p(s1 |o1)
T

∏
t=2

p(st |st−1,ot) (2.6)

We can see that, in contrast to the HMM where there is a state-transition conditional

probability tablep(st+1 |st) and an observation-emission conditional probability table

p(ot |st), in a CMM we have a single functionp(st |st−1,ot) that describes the proba-

bility of transitioning to a state given the previous state and current observation. Note

that, as discussed above, the CMM only everconditionson the observation sequence

and so does not attempt to model marginal distributionp(o).

A maximum entropy Markov model (MEMM) (McCallum et al., 2000) is a

specific instance of a CMM where the functionp(st |st−1,ot) is split into separate

probability distributions, one for each state. As these functions are independent oft,

we may instead writeps(s′ |o) for the probability of transition to states′ given a state

currentsand next observationo. In a MEMM each distributionps(s′ |o) is a log-linear

model, meaning that it has the form:

ps
(

s′ |o
)

=
1

Z(s,o)
exp

(

K

∑
k=1

λk fk
(

s′,o
)

)

(2.7)

where theλk are parameters of the model, thefk (s′,o) are feature functions (described

below) andZ(s,o) is a normalising function given by:

Z(s,o) = ∑
s′∈S

exp

(

K

∑
k=1

λk fk
(

s′,o
)

)

(2.8)

whereS is the set of all states. The use of a log-linear model here allows each dis-

tribution to be parameterised by a set of non-independent, overlapping features that

describe properties of the observation and state in a given position. This is the model’s

main advantage over a generative model. Each feature is a function of two arguments,

one encoding some property of the current observation and the other specifying the

value of the current state. A feature therefore typically has the form:

fb,s
(

s′,o
)

=

{

1 if b(o) holds ands′ = s

0 otherwise
(2.9)

where the functionb(o) is a predicate that describes some property of the observation,

for example:
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b(o) =

{

1 if o is capitalised

0 otherwise
(2.10)

The features do not have to be binary valued, but in most casesthey are. The parame-

tersλk may be found by maximising the conditional likelihood of state sequences given

the observation sequences contained in the training data. McCallum et al. (2000) used

generalised iterative scaling (GIS)(Darroch and Ratcliff, 1972) for this optimisation,

but other numerical methods may be used.

Once trained, an MEMM may be used to label a new observation sequence. Here,

as above with the HMM, the task is to identify the most likely state sequence under the

model, given the observation sequence. We must finds∗ where:

s∗ = argmax
s

p(s|o) (2.11)

This optimal state sequence may be found efficiently using the Viterbi algorithm.

When McCallum et al. (2000) first presented the MEMM as an alternative, im-

proved sequence labelling model over the HMM, they comparedits performance to

that of two HMM structures on a text segmentation task. Specifically, they used a

dataset consisting of documents from seven Usenet multi-part FAQs and attempted to

train the classifiers to partition and label subsets of the documents into different cat-

egories. The results suggested that the MEMM was indeed capable of outperforming

both HMMs on the segmentation task due to its ability to represent a richer set of

properties of the observation sequence relevant for labelling decisions. At the time,

this result was in line with a view in the community that discriminative classifiers were

generally preferable to generative ones. However, Ng and Jordan (2002) showed the

situation to be a little more complex. Using naive Bayes and logistic regression as

an illustrative generative-discriminative model pair, they demonstrated that the size of

the training sample is important in determining the relative performance of each type

of model. In general, discriminative models tend to have lower asymptotic error, but

the corresponding generative models can in some circumstances approach their higher

asymptotic error more quickly.

2.1.2.1 Limitations of Per-state Normalised Discriminati ve Sequence Models

As we saw in the previous section, an MEMM avoids some of the limitations exhibited

by an HMM. One example of this is the MEMM’s avoidance of the strong indepen-
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dence assumptions made by an HMM. However, MEMMs and other per-state nor-

malised discriminative models do possess certain weaknesses that generative models,

such as HMMs, do not. These weaknesses are a product of the conditional independen-

cies defined by their graphical structure, and, in particular, their per-state normalisation

property.

Probably the best-known example of this kind of weakness is the label bias prob-

lem. The termlabel biaswas first coined by Lafferty et al. (2001), although the phe-

nomenon was described earlier by Bottou (1991). As a consequence of per-state nor-

malisation, during decoding MEMMs to tend to prefer labellings that involve states

(labels) with a small number of successor states, as seen in the training data. In the

Viterbi lattice the initial probability mass of 1 is conserved most for these labellings.

Any apparently “wrong” decisions early on in the decoding, leading to incorrect partial

labellings having a higher probability than the correct labelling at intermediate points

in the sequence, are never subsequently “corrected” later in the sequence. This means

that there is a labelling bias towards states with one, or a small number of, successors.

States with a single successor ignore the observation entirely, while, more generally,

states with a small number of successors and a low entropy probability distribution

across the successors, tend to be influenced very little by the observation.

Klein and Manning (2002) describe a problem similar in nature to label bias but

seen from the point of view of observations rather than labels. They term this phe-

nomenonobservation bias. As with label bias, observation bias is suffered by per-

state normalised discriminative models due to their normalisation properties.

2.2 Conditional Random Fields

Conditional random fields (Lafferty et al., 2001) were introduced to overcome some

of the shortcomings of other discriminative sequence models that we looked at above.

Being discriminative in nature, CRFs share with MEMMs general advantages over

generative models such as avoiding the need to make strict independence assumptions.

In addition, CRFs do not suffer the label bias problem because they are not per-state

normalised like MEMMs, but areglobally normalised along the entire sequence (or,

more generally, over an arbitrary graphical structure). Weexplore these properties

further in this section.
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Figure 2.3: Graphical model structure for a linear chain CRF.

2.2.1 Definition and Structure

CRFs are globally normalised conditional probability models. Lafferty et al. (2001)

define a CRF as follows:

Let G = (V,E) be a graph such thatY = (Yυ)υ∈V , so thatY is indexed by
the vertices ofG. Then(X,Y) is aconditional random fieldin case, when
conditioned onX, the random variablesYυ obey the Markov property with
respect to the graph, that is

p(Yυ |X,Yω ,ω 6= υ) = p(Yυ |X,Yω ,ω ∼ υ) ,

whereω ∼ υ means thatω andυ are neighbours inG.

From this definition we see that a CRF is a Markov random field that isglobally

conditionedon the observation variablesX. The definition does not restrict the struc-

ture of the graph to a particular form, and arbitrary graphical structures are possible.

With more complicated graphs and/or greater connectivity,inference becomes more

complex and often some form of scaling is required to keep inference tractable (Cohn,

2006). In this thesis we restrict ourselves to sequence labelling tasks, and so deal with

a CRF graphical structure representing a sequence. In this case the graphical structure

is usually referred to as alinear chain CRF, and is shown in Figure 2.3. As we shall

see later, in the case of linear chains efficient dynamic programming algorithms exist

for training and decoding.

In Figure 2.3 each observation variableXi is connected to every other variable in

the graph. This is represented by the dotted line leaving each Xi node. As a result of



2.2. Conditional Random Fields 17

this structure, no conditional independencies exist between the observation variables.

Conditional independencies do exist, however, between thestate variables because

these have a (first order) linear chain structure. In a general graphical model, the

Hammersley-Clifford theorem (Hammersley and Clifford, 1971; Besag, 1974) states

that the family of probability distributions respecting the conditional independence

semantics of the graph may be parameterised using a set of arbitrary positive potential

functions defined on the cliques3 of the graph. For a cliquec with potential function

ψc, the joint distribution over the variablesY in the graph is given by:

p(y1, . . . ,yn) =
1
Z ∏

c∈C

ψc (yc) (2.12)

whereC is the set of cliques in the graph,yc are the values of the variables in cliquec,

andZ is a normalisation constant given by:

Z = ∑
y1,...,yn

∏
c∈C

ψc (yc) (2.13)

For the specific case of the linear chain structure shown in Figure 2.3, the cliques

involve edges(Yi−1,Yi) with the Yi globally conditioned on all theXi . In addition,

Lafferty et al. (2001) suggest potential functions over these cliques that have an expo-

nential form so as to take advantage of properties of the maximum entropy framework.

We will adjust the notation to make it consistent with that used earlier for describing

HMMs and MEMMs, so the edges become(St−1,St), and the observations are denoted

by Ot . We will also assume that the chain hasT elements and that we add a special

placeholderstart element at the beginning of the chain and similarstop element at

the end. The element indices therefore run 0 throughT +1. After this adjustment in

notation and using the exponential form for the potential functions, we can see from

Equation 2.12 that the distribution for a linear chain CRF isgiven by:

p(s|o) =
1

Z(o)
exp

(

T+1

∑
t=1

K

∑
k=1

λk fk (st−1,st ,o, t)

)

(2.14)

whereZ(o) is a normalising function given by:

Z(o) = ∑
s

[

exp

(

T+1

∑
t=1

K

∑
k=1

λk fk (st−1,st,o, t)

)]

(2.15)

3A clique is a maximally connected subgraph.
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Theλk are the modelparameters. They act as co-efficients to the functionsfk, which

arefeaturesdefined on subsets of the variablesS andO. They take the same form as

those we saw earlier when discussing MEMMs. The difference here is that the argu-

ment involving the observations may include all variablesO. An example of a feature

for a POS tagging task, where state variablesS represent POS tags, could therefore be:

fk (st−1,st ,o, t) =

{

1 if st−1 = “DET”, st = “NN” and ot = “dog”

0 otherwise

As before, the features may be real-valued but are often justbinary-valued.

We can see from Equation 2.15 that the normalisation for the CRF isglobal, span-

ning over the entire sequence. It is this property that allows CRFs to solve the label

bias problem in a principled way. In per-state normalised conditional models, such as

the MEMMs we saw earlier, transitions from a given state effectively compete only

against each other and not against transitions from other states (because they sum to

1). In a CRF, however, no such restriction exists. Consequently, in a label bias scenario

it is possible with a CRF to have subsequent path down-weighting (like in an HMM).

Therefore, with CRFs label bias is avoided.

2.2.2 Training

In this section we consider procedures for training CRFs. The most common method

for parameter estimation for CRFs isconditional maximum likelihood (CML) esti-

mation. We describe this, and other possible objectives, below.

2.2.2.1 Conditional Maximum Likelihood Estimation

In conditional maximum likelihood estimation we assume that, for a particular pa-

rameterisation of the CRF, the parametersλk have fixed but unknown values and we

seek those parameter values that make the training data mostlikely. To do this we de-

rive an expression for the conditional likelihood of the training data given a particular

model, then attempt to find the model which maximises this function. Let us assume

that the training data consists of a set ofN fully labelled sequencesD =
(

oi ,si
)

with

i = 1, . . . ,N. These sequences are a finite sample from the “true” distribution. Denoting

the parametersλk by a parameter vectorΘ = (λ1, . . . ,λK), theconditional likelihood

of the training data is given by:
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L (Θ) = ∏
o,s

p(s|o,Θ)c(o,s) (2.16)

where p(s|o,Θ) is the model distribution andc(o,s) is a count of the number of

times the configuration(o,s) occurs in the training data. We define theempirical

distribution (or training data distribution) ˜p(o,s) as:

p̃(o,s) =
c(o,s)

N
(2.17)

Each term in the product in the conditional likelihood function in Equation 2.16 is

non-negative, so we could equivalently maximise the alternative function:

L(Θ) = ∏
o,s

p(s|o,Θ)p̃(o,s) (2.18)

This function makes subsequent derivation easier. Therefore, we look for the parameter

vector that maximises this function, the optimum value being the conditional maximum

likelihood estimateΘCML:

ΘCML = argmax
Θ

L(Θ) (2.19)

To further simplify the derivation, it is sensible to maximise the logarithm ofL(Θ)

rather thanL(Θ) itself. We can do this because the logarithm is a monotonically in-

creasing function for positive real numbers. Hence the taskis to find the parameter

vectorΘ that maximises the conditional log-likelihood, given by:

Λ(Θ) = logL(Θ) = ∑
o,s

p̃(o,s) logp(s|o,Θ) (2.20)

In the case of a CRF, as we saw above, the distribution is givenby:

p(s|o,Θ) =
1

Z(o)
exp

(

T+1

∑
t=1

K

∑
k=1

λk fk (st−1,st,o, t)

)

(2.21)

Contracting∑k λk fk (st−1,st,o, t) to λ .f, the expression for the conditional log-likelihood

becomes:
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Λ(Θ) = ∑
o,s

p̃(o,s)

[

T+1

∑
t=1

λ .f

]

−∑
o,s

p̃(o,s) logZ(o) (2.22)

Because the summand in the second term is a function of the observation sequence

only, the conditional log-likelihood can be further simplified to:

Λ(Θ) = ∑
o,s

p̃(o,s)

[

T+1

∑
t=1

λ .f

]

−∑
o

p̃(o) logZ(o) (2.23)

This is theobjective function to be maximised under conditional maximum likelihood

parameter estimation. An important property of this function is that it isconvexso has

a unique maximum.

At this point it is tempting to take the derivative of the objective with respect to

each parameter, set each derivative to zero and try to solve for the parameter values.

Unfortunately, the resulting equations are implicit in theparameters and in general

a closed form solution cannot be found. In fact, because the CRF has a log-linear

form, when we carry out the above procedure we obtain the maximum entropy feature

constraints – that the expected values of the features underthe model and empirical

distributions are equal. This is related to the fact that themaximum likelihood model

across the space of exponential models on a given training set is also the unique model

that maximises the entropy across the space of models that obey the feature constraints

on the training set. To see this, we differentiate with respect to parameterλk to obtain:

∂Λ(Θ)

∂λk
= ∑

o,s
p̃(o,s)

T+1

∑
t=1

fk (st−1,st ,o, t)−∑
o

p̃(o)
1

Z(o)

∂Z(o)

∂λk
(2.24)

which simplifies to:

∂Λ(Θ)

∂λk
= ∑

o,s
p̃(o,s)

T+1

∑
t=1

fk (st−1,st,o, t)−∑
o,s

p̃(o) p(s|o,Θ)
T+1

∑
t=1

fk (st−1,st ,o, t)

= Ep̃(o,s) [ fk]−Ep(s|o,Θ) [ fk] (2.25)

Because in general we cannot solve for the parameters of the conditional maximum

likelihood model analytically, we must turn to numerical algorithms to find them. We

describe these algorithms later, in section 2.2.2.3. Typically a numerical optimisation

algorithm requires the calling process to supply the value of the objective function
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and its gradient at each iteration (and in some cases a representation of the second

derivatives). This means that the expression on the right-hand side of Equation 2.25

must be evaluated on each iteration, for the parameter vector representing the current

point in the parameter space being searched. The first expression is relatively easy

to evaluate and is not iteration-dependent, so can be done once, offline. The second

expression is more troublesome, and warrants a little investigation. The task, then, is

to evaluate:

Ep(s|o,Θ) [ fk] = ∑
o,s

p̃(o) p(s|o,Θ)
T+1

∑
t=1

fk (st−1,st ,o, t) (2.26)

At first sight it may appear that the evaluation of this expression is intractable for tasks

that involve a large number of states. This is because it requires the summand:

p̃(o) p(s|o,Θ)
T+1

∑
t=1

fk (st−1,st ,o, t) (2.27)

to be calculated for every possible state sequence for each observation sequence present

in the training data. However, an efficient dynamic programming algorithm exists

which allows us to circumvent this potential intractability. In order to understand how

this works, let us first rewrite the expression to be evaluated (dropping the explicit

reference to the dependence on the parametersΘ):

∑
o,s

p̃(o) p(s|o)
T+1

∑
t=1

fk (st−1,st,o, t) = ∑
o

p̃(o)
T+1

∑
t=1

∑
s

fk (st−1,st,o, t) p(s|o)

= ∑
o

p̃(o)
T+1

∑
t=1

∑
s′,s

fk
(

st−1 = s′,st = s,o, t
)

× p
(

st−1 = s′,st = s|o
)

= ∑
o

p̃(o)
T+1

∑
t=1

∑
s′,s

fk
(

st−1 = s′,st = s,o, t
)

× αt−1(s′ |o)Mt (s′,s|o)βt (s|o)

Z(o)
(2.28)

where theαt areforward vectors, theβt arebackward vectors(both defined below)

and theMt are matrices defined on each clique in the chain. Specifically, on thetth

clique in the chain the matrixMt is defined by:
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Mt
(

s′,s|o
)

= exp

(

∑
k

λk fk
(

st−1 = s′,st = s,o, t
)

)

(2.29)

Each matrix is square, with dimension equal to the number of states. The(s′,s) element

contains the value of the potential function on thetth clique whenst−1 = s′ andst = s.

Hence the(s′,s) element of the product of these matrices between positionst ′ andt in

the sequence represents the sum of the product of the potentials along all paths between

positionst ′ andt that havest ′ = s′ andst = s. A special case of this is the product of all

matrices in the sequence from cliques 1 toT +1, ∏T+1
t=1 Mt (o). This represents the sum

of the product of the potentials along all paths, for all possible values ofs0 andsT+1,

the placeholder elements. In particular, the normalising function along the sequence is

given by that matrix element that corresponds tos0 = start andsT+1 = stop:

Z(o) =

[

T+1

∏
t=1

Mt (o)

]

start, stop

(2.30)

Theαt vectors are defined recursively via:

αt (o)T = αt−1(o)T Mt (o) (2.31)

The base case is given by:

α0(s|o) =

{

1 if s= start

0 otherwise
(2.32)

Henceαt (s|o) contains the product of the potentials along all paths starting in the

start state ats0 and ending in the states at st . The base caseα0(o) therefore acts like

an initial probability vector in an HMM. Note the distinction here between an alpha

vector and the value of a particular component of the vector:the alpha vector on clique

t is denoted byαt (o), but thesth component of the vector is denoted byαt (s|o). The

same holds for beta vectorsβt (o) and the matricesMt (o).

Theβt vectors are defined in a recursive manner, similar to the alpha vectors:

βt (o) = Mt+1(o)βt+1(o) (2.33)
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The base case is given by:

βT+1(s|o) =

{

1 if s= stop

0 otherwise
(2.34)

Henceβt (s|o) contains the product of the potentials along all paths ending in thestop

state atsT+1 and starting in the states at st .

Because the joint probabilityp(st−1 = s′,st = s|o) may be expressed using the

matricesMt (o), we may use dynamic programming to efficiently compute the feature

expectations under the model. This requires one forward pass to calculate theαt (o)

vectors, and one backward pass to calculate theβt (o). In calculating theβt (o) vectors

the normalising function may be obtained by forming one additional product:

Z(o) =

[

T+1

∏
t=1

Mt (o)

]

start, stop

= [M1(o)β1(o)]start

= [β0(o)]start (2.35)

This may alternatively be obtained by calculating one additionalα vector,αT+1(o):

Z(o) = [αT+1(o)]stop (2.36)

It is possible to modify the CML estimation method above to include regularisation

in the form of a prior distribution over the model parameters. We will discuss this in

more detail later in the chapter, in section 2.3.1, when we describe overfitting reduction

schemes.

When describing the training procedure earlier we assumed that the parameter vec-

tor is updated on each iteration using the expected values inEquation 2.25. These

expected values are calculated using the entire training dataset. Therefore we require

one complete pass through the dataset for each iteration. This makes the procedure

described above abatch algorithm. It is possible, however, to employ anonline algo-

rithm instead. With this, the gradient would be calculated,and the parameter vector

updated, after passing through only a subset of the trainingdata. The extreme case

would be an parameter vector update for every training instance, i.e. every sequence in

the training data. For some datasets a single training instance may be almost as infor-

mative as the whole dataset in terms of gradient calculation, so employing an online
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algorithm can sometimes lead to much faster convergence. Inother cases the opposite

is true, where the added expense of calculating the parameter vector for each training

instance makes the online algorithm converge more slowly.

In addition to the frequency of parameter vector updates, other modifications to the

training algorithm are possible. One example relates to thecalculation of the expected

feature count under the model,Ep(s|o,Θ) [ fk], in Equation 2.25. This is calculated over

the entire distribution, that is, over all labellings for each sequence. However, we could

instead replace this with the feature count for only themost likelylabelling under the

model. In doing so we assume that most of the probability masslies in this labelling,

and the rest of the distribution can be ignored. This is called making aViterbi as-

sumption. The usefulness of this approach involves a trade-off between the exactness

of the gradient calculation and the training time. For the experiments we present later

in the thesis, training time is reasonable even with the fullexpected value calculation.

Hence we use Equation 2.25 for the gradient vector calculation.

2.2.2.2 Other Objective Functions

In the previous section we showed how to estimate the parameters of a CRF using con-

ditional maximum likelihood estimation. However, other choices of objective function

exist. The most notable study to date investigating alternative objective functions for

CRFs is that of Altun et al. (2003). We briefly describe their work in this section.

Altun et al. argue that sequence labelling tasks in NLP vary widely in nature with

respect to the style of the labelling problem. Some tasks, such as in named entity

recognition, involve labels that range over many elements in a sequence. Other tasks,

such as part-of-speech tagging, involve labels that apply only to single elements. In

addition, the statistical noise associated with a task varies with both the task itself and

the specific corpus used for training and testing. As a result, Altun et al. conjecture

that using different objective functions that are tailoredto the task in hand may result in

better classifiers. They propose two dimensions along whichobjective functions may

differ, one representing thenumerical scaleon which the objective is measured (ex-

ponential versus logarithmic), the other therangeof elements within a sequence over

which the objective is defined (pointwise versus sequential). Taking the cross-product

of the values along these two dimensions, Altun et al. define four objective functions,

one of which is the standard conditional log-likelihood function we discussed earlier.

The objectives are compared on two tasks: part-of-speech tagging (on sections of the

Penn Treebank (Marcus et al., 1993)) and named entity recognition (on Spanish news-
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wire articles provided from the CoNLL 2002 shared task (Kim Sang, 2002)). Altun

et al. found that the choice of objective function made very little difference to perfor-

mance on either task, and concluded that other factors, suchas the choice of feature

set, are more important. For the experiments we present in this thesis, we only use an

objective function based on the standard CML estimation method.

2.2.2.3 Optimisation of the Objective Function

Until recently the most popular techniques for parameter estimation with maximum

entropy models were iterative scaling algorithms:generalised iterative scaling (GIS)

(Darroch and Ratcliff, 1972) andimproved iterative scaling (IIS) (Della Pietra et al.,

1997). However, recent work by Malouf (2002) showed that iterative scaling algo-

rithms underperform a number of first and second order numerical optimisation algo-

rithms for parameter estimation for conditional maximum entropy models on various

NLP tasks. Prompted by this result, Wallach (2002) undertook a similar study for

parameter estimation for CRFs. Her results broadly supported those of Malouf, and

subsequent studies have done the same (Sha and Pereira, 2003).

In general, the most popular algorithms in use today for parameter estimation for

CRFs are related to thelimited memory variable metric (LMVM) (or L-BFGS)

method (Byrd et al., 1995). This method uses a sparse representation of the Hessian

matrix (the matrix of second derivatives of the objective function) that requires storage

of only a limited history of the incremental values of the objective function and its first

derivatives. This history is typically less than 20 steps. Other methods that may be used

are conjugate gradient methods, which only represent the first derivatives and not the

Hessian. Examples includeFletcher-Reeves(Fletcher and Reeves, 1964) andPolak-

Ribi ère-Positive(Polak and Ribière, 1969). These methods have generally been found

to underperform the LMVM method, but often outperform iterative scaling. Sha and

Pereira (2003) use a pre-conditioner with their conjugate gradient method, whereby

the method is accelerated by linearly transforming the variables. Other second order

methods that might theoretically be candidates include Newton’s method and quasi-

Newton methods. However, these either require the inverse Hessian to be explicitly

calculated, or at least a dense approximation of it to be calculated from first derivatives.

Consequently, for typical NLP problems, which often include millions of parameters,

these approaches are too demanding from a computational and/or storage point of view.

Currently, therefore, LMVM is the method of choice for CRF parameter estimation.

For all our experiments we use the LMVM method for optimisation of the objective.
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2.2.3 Decoding

Once a CRF has been trained, it may be used to decode (or label)other, unseen ob-

servation sequences. Referring back to the discussion in section 2.2.2.1 when we con-

sidered CRF parameter estimation, the probability of a particular state sequence given

an observation sequence is simply the product of the potentials on each clique for the

states in question, divided by the normalising function. The product potential may be

found by taking the product of the relevant entries from theMt(o) matrices along the

sequence. Hence:

p(s|o) =
∏T+1

t=1 Mt (st−1,st |o)

Z(o)
(2.37)

The normalising function is not dependent on the state sequence, so the optimal se-

quence (the one that has highest probability under the model, given the observation

sequence) can be found using a standard Viterbi algorithm (Viterbi, 1967).

To find the probability of a specified labelling, or to find the Viterbi labelling, only

one sweep through the lattice is required, either left-to-right or right-to-left. However,

if we conduct a sweep in both directions we have enough information to calculate the

pointwise marginal label distributionsp(st |o). To see this, glance back to Equation

2.28. From the expansion on the right-hand side, we can see that:

p
(

st−1 = s′,st = s|o
)

=
αt−1(s′ |o)Mt (s′,s|o)βt (s|o)

Z(o)
(2.38)

Now, the pointwise marginal distributions are given by summing over the previous

label in the corresponding pairwise marginal distribution. So:

p(st = s|o) = ∑
s′

p
(

st−1 = s′,st = s|o
)

= ∑
s′

αt−1(s′ |o)Mt (s′,s|o)βt (s|o)

Z(o)
(2.39)

But using Equation 2.31 we can contract the first two terms in the numerator on the

right-hand side to give:

p(st = s|o) =
αt (s|o)βt (s|o)

Z(o)
(2.40)
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Therefore, the pointwise marginal label distributions aregiven by the product of the

relevant entries in the alpha and beta vectors on the clique in question, divided by the

normalising function. We will be using pointwise marginal distributions in Chapter 6.

2.2.4 Applications

In their original CRF paper, Lafferty et al. (2001) introduced a linear chain CRF and

demonstrated its effectiveness on a synthetic dataset. Subsequently, linear chain CRFs

were applied effectively to a wide range of real sequence labelling tasks in NLP. These

include named entity recognition (McCallum and Li, 2003; Smith and Osborne, 2005,

2006), noun phrase chunking and shallow parsing (Sha and Pereira, 2003), informa-

tion extraction from research papers (Peng and McCallum, 2004; Pinto et al., 2003),

and language modelling (Roark et al., 2004). CRFs have also been developed for more

complex graphical structures, including trees and loopy graphs. Inference on these

more general structures involves a generalised form of the forward-backward proce-

dure we saw in section 2.2.2.1, usually employing some form of belief propagation.

Such CRFs have been applied to problems with more complex dependencies than can

easily be represented by a linear chain. Examples from NLP include semantic role

labelling (Cohn and Blunsom, 2005; Tang et al., 2006) and co-reference resolution

(Wellner et al., 2004; McCallum and Wellner, 2004).

In addition to the variety of tasks, CRFs have also been employed for sequence la-

belling tasks in a number of other languages. These include NER in German, Japanese

and Hindi (McCallum and Li, 2003; Asahara and Matsumoto, 2003; Li and McCallum,

2003), word segmentation in Chinese (Peng et al., 2004), text chunking in Korean (Lee

et al., 2005), and morphological analysis in Thai (Kruengkrai et al., 2006).

Outside NLP, CRFs have been used for many different structured labelling tasks in

a number of different domains. Examples includecomputer vision, where they have

been used for object detection (Torralba et al., 2005), object recognition (Quattoni

et al., 2005), object segmentation (Wang and Ji, 2005), and modelling human motion

and gestures (Sminchisescu et al., 2005; Wang et al., 2006);speech, where they have

been used to predict pitch accents (Gregory and Altun, 2004); andgenetics, where they

have been used to locate introns and exons in DNA sequences (Culotta et al., 2005).
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2.3 Overfitting

The termoverfitting describes the situation where a model, during training, overly

fits to the idiosyncratic or noisy properties of the trainingsample, rather than just the

systematic patterns implicit in the underlying data. In general this can occur when

a model has a relatively large number of degrees of freedom incomparison to the

size and complexity of the training sample. It can thereforetake place either when

the model has too many parameters, the sample is too small, orboth. With CRFs

often the overfitting problem takes place in the second of these scenarios, where the

model has roughly the number of degrees of freedom thought necessary to represent

the most important aspects of the underlying distribution,but where the dataset is too

small for all facets of the distribution to be observed in sufficient detail to be modelled

accurately. The result is that some degrees of freedom fit to aspects of the training

sample that represent noise, and do not reflect the underlying data from which the

sample is drawn.

A very clear, simple example illustrating overfitting is given by Bishop (1995).

He describes a regression scenario where some data points have been sampled from

a function containing a sine wave and a noise term. The presence of the noise term

means that the data points sampled do not lie exactly on the curve, but nevertheless

trace out the general shape of the curve. The aim is to model the underlying function

as well as possible given only the relatively small number ofsample data points. If

a polynomial is used as a model, the number of degrees of freedom of the model

is represented by the order of the polynomial. The greater the order, the larger the

number of free co-efficients to fit to the sample data. For polynomials of low order,

there are not enough degrees of freedom to model the underlying function from which

the data is sampled. For example, for a polynomial of first order the resulting straight

line is a very bad approximation to the underlying function except, possibly, in the

region of some of the data points. Conversely, for a polynomial of very high degree

(much larger than the number of data points in the sample, forexample), the resulting

curve fits all the data points exactly, but, in order to do this, it has very high curvature

in between the data points, and consequently generalises very badly to points other

than those in the sample. The “correct” choice is a polynomial of intermediate order,

which has enough degrees of freedom to capture the general shape of the sine wave

as represented through the noisy sample, but not so many degrees of freedom that the

noise itself is modelled.
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This general concept of trying to find the “best” model can also be illustrated from

the viewpoint of abias-variance decomposition(Geman et al., 1992). In the context

of the Bishop regression example above, the bias-variance decomposition quantifies

the effectiveness of the learned function (the polynomial)as a predictor of the function

being modelled (the sine wave). This “effectiveness” is usually represented as an ex-

pectation across all values of the output variable for a given value of the input variable,

across all values of the input variable, and across all training samples that could have

been used to arrive at the learned function (as different training samples typically result

in different learned functions). The expectation decomposes into three terms:

1. noise term: this term quantifies the inherent uncertainty, or noise, inthe data. In

the Bishop example this would be the variance of the output variable (the noisy

sine function) given the input variable, averaged across all values of the input

variable.

2. bias term: this term quantifies how closely the learned function can model the

underlying function. In the Bishop example this term would be the error between

the value of the average learned function (taken across all training samples) at a

given value of the input variable, and the average value of the output variable at

that value of the input variable, averaged across all valuesof the input variable.

3. variance term: this term quantifies the amount by which the learned function is

sensitive to the variability in the training sample used to train it. In the Bishop

example this term would be the variance in the value of the learned function

(taken across all training samples) for a given value of the input variable, aver-

aged across all values of the input variable.

Models which have a relatively large number of degrees of freedom (like poly-

nomials of high order in the Bishop example) will in general model the underlying

function better, so will tend to have a lower bias term. However, the extra degrees of

freedom these models contain will often cause them to overfitthe details of the training

data, making the models sensitive to the training sample. Such models will therefore

generally have a higher variance term. Conversely, simplermodels with fewer degrees

of freedom (lower order polynomials in the Bishop example) will tend to have a larger

bias term because they are not, in general, able to model the underlying function as

closely. They do, however, often have a lower variance term because they are not as

sensitive to the details of the training sample used to trainthem. Finding the “best”
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model therefore involves a trade-off between the bias and variance terms in the bias-

variance decomposition. Earlier, when we were suggesting the “best” model would be

a polynomial of intermediate order, we were implicitly considering this bias-variance

trade-off.

The example from Bishop described above involves a regression problem, but

a similar concept applies to the models we described earlierin the thesis: HMMs,

MEMMs and CRFs. CRFs particularly have the tendency to overfit severely on some

datasets. The reason why they tend to overfit to a greater degree than similar models,

such as MEMMs, relates to the normalisation. Suppose we havean MEMM and a CRF

with the same feature set. Both models have the same number ofparameters, but, as we

saw in section 2.1.2, the MEMM is pointwise normalised whereas a CRF is globally

normalised along a sequence. Consequently the MEMM must satisfy a normalisation

constraint for each state being transitioned from. Intuitively, the parameters trade-off

against each other only at a point. With a CRF, however, the normalisation is global so

parameters can trade-off against each other along the entire sequence. Consequently

the CRF is more flexible, having greater power to fit to the intricacies of the dataset,

but therefore also has a greater propensity tooverfit.

2.3.1 Overfitting Reduction

Various methods may be used to address the overfitting problem described in the pre-

vious section. The approach that is often taken is to deal directly with the symptoms

of overfitting. An example of this is given by Bishop (1995) for the function approx-

imation problem described above. A symptom of the overfitting in that example is

the very high curvature of the function in between the sampledata points. This is

an undesirable property for an approximating function, which we would hope would

be continuous and smooth between the data points in the sample. One way to address

this, therefore, is to add a penalty term to the objective function that explicitly penalises

large curvature. Bishop suggests a term that is proportional to the integral of the square

of the second derivative of the function over the relevant interval. This encourages the

function to have low curvature but still fit reasonably well to the sample data points.

In the case of CRFs, and log-linear models in general, a typical symptom of over-

fitting is parameter values with very large magnitude. We mayapply an engineering

approach to the overfitting problem in these models that is analogous to the large cur-

vature penalty term in Bishop’s function approximation example. One way to do this is
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to add a penalty term to the objective function, typically the conditional log-likelihood,

that directly discourages parameter values of large magnitude. An example of a such

a penalty would be a term that sums together the squares of theparameter values, i.e.

∑K
k=1 λ 2

k . Assuming that we are maximising an objective function, we would thensub-

tract this term from the existing objective. More generally, we could include a term of

the form−∑K
k=1 (λk−ck)

2, which discourages each parameter valueλk from straying

very far from the valueck. Theck values allow us to encode our prior beliefs about

where “good” parameter values should lie.

The approach to overfitting described in the previous two paragraphs we loosely

termed an “engineering” approach because we directly addressed the symptoms of

overfitting via the inclusion of a penalty term. The approachdid not have an explicit

statistical motivation. However, the same idea may also be viewed from a Bayesian

probabilistic standpoint. Taking a Bayesian approach, we think of the model parame-

ters as random variables and endow them with aprior distribution . This distribution

encodes ourprior beliefsabout which models are more likely than others, and is typi-

cally parameterised by one or morehyperparameters. Under the Bayesian paradigm,

we update the prior distribution on the basis of the information contained in the train-

ing data, to form theposterior distribution . The posterior distribution therefore rep-

resents our updated beliefs about the which models are more likely than others, having

observed the training data. Under a proper Bayesian treatment, we would then use

the posterior distribution to calculate various statistics of interest to us, typically cal-

culating expected values over that distribution. In principle we can continue the prior

concept further by thinking of the hyperparameters in the prior distribution as ran-

dom variables in their own right, and endowing them with distributions of their own.

These distributions are often referred to ashyperpriors , and they are typically pa-

rameterised by further hyperparameters. It is clear that such aBayesian hierarchical

modelquickly leads to a very large number of hyperparameters, andinvolves the eval-

uation of complicated integrals in calculating statisticsof interest. A simpler approach

is to terminate the hierarchy at the first level, thus dealingonly with a single set of

hyperparameters. A further simplification is to use a singlerepresentative model from

the posterior distribution, rather than taking averages over the whole distribution. This

leads to the idea of amaximum a posteriori (MAP) model.

With the MAP model, orMAP estimate, we take a single point estimate of the

model parameters that corresponds to themode of the posterior distribution. Chen

and Rosenfeld (1999) propose this method as a way of smoothing maximum entropy
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models, and use a Gaussian distribution as the choice of prior. The same idea can

be applied to CRFs. To see this, we start with a prior distribution p(Θ) and seek an

expression for the posterior distributionp(Θ |D), having observed training dataD.

The posterior may be expressed in terms of the conditional likelihood function and

prior distribution using Bayes’ rule:

p(Θ |D) =
p(D |Θ) p(Θ)

∫

p(D |Θ) p(Θ) dΘ
(2.41)

The integral in the denominator is over the space of all models, as defined by the param-

eter vectorΘ. The MAP estimateΘMAP, being the mode of the posterior distribution,

is therefore given by:

ΘMAP = argmax
Θ

p(Θ |D)

= argmax
Θ

p(D |Θ) p(Θ)

= argmax
Θ

log[p(D |Θ) p(Θ)]

= argmax
Θ

[logp(D |Θ)+ logp(Θ)] (2.42)

Hence the new objective function consists of the conditional log-likelihood, as before,

along with the additional term logp(Θ).

Now, it is common to assume that the parameters, as random variables, are inde-

pendent of each other. Under this assumption, the prior joint density may be factorised

into the product of the marginal densities, as follows:

p(Θ) =
K

∏
k=1

pk (λk) (2.43)

Taking the logarithm of both sides gives:

logp(Θ) =
K

∑
k=1

logpk (λk) (2.44)

In addition, we assume the parameters are identically distributed and each parameter

is endowed with a Gaussian distribution. We therefore have:

p(λk) =
1

σk
√

2π
exp

(

− 1

2σ2
k

(λk−µk)
2
)

(2.45)
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for hyperparametersµk andσ2
k , the means and variances respectively. Taking the log-

arithm of both sides and substituting back into Equation 2.44 gives:

logp(Θ) =
K

∑
k=1

[

−1
2

log2π − logσk−
1

2σ2
k

(λk−µk)
2
]

= −K
2

log2π −
K

∑
k=1

logσk−
1
2

K

∑
k=1

(

λk−µk

σk

)2

(2.46)

Note that the first two terms in this expression are independent of theλk, so can be

ignored. We therefore arrive at an additional term in the objective:

−1
2

K

∑
k=1

(

λk−µk

σk

)2

(2.47)

This term is very similar in form to the penalty we suggested earlier when we took an

engineering approach to the overfitting problem.

Having defined the hyperparametersµk andσk, we need a way to set their values.

Different possibilities exist here. One method is to derivethe values of the hyperparam-

eters from the training data. This general approach is oftenreferred to asEmpirical

Bayes(Carlin and Louis, 2000; Gelman et al., 2003), and includes arange of methods.

One way to employ Empirical Bayes is to approximate the marginal distribution (the

denominator in Equation 2.41) as a function of the hyperparameters only. The train-

ing data is then used to generate maximum likelihood estimates of parameters of the

marginal distribution (such the mean and variance), thus giving estimates for the hyper-

parameters themselves. However, in typical NLP problems when applying the MAP

approach to CRFs (and other log-linear models), it is more common to set the values

of the hyperparameters using a held-out dataset, after certain simplifications have been

made. Allocating an independently variable hyperparameter σk for each parameterλk,

and searching the for the optimal set ofσk values using held-out data is usually compu-

tationally too costly. Therefore, it is common to constrainall σk to be equal to a single

adjustable variableσ . In addition, it is typical set the mean of the distribution (theµk)

to the zero vector. Having made these simplifications, the single independent variable

σ can easily be found using a held-out dataset. This may be achieved either by manual

tuning using a range of values, or by employing an automated search process such as

a line search. Either way, using the simplifications above, atypical objective function

for a CRF with MAP estimation becomes:
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L(Θ)− 1
2σ2

K

∑
k=1

λ 2
k (2.48)

The additional term makes a contribution to the gradient of the objective function. The

new derivative, with respect to parameterλk, is given by:

Ep̃(o,s)[ fk]−Ep(s|o,Θ)[ fk]−
λk

σ2 (2.49)

Clearly, the additional term in the gradient is very inexpensive to evaluate, and does

not require an elaborate dynamic programming approach in contrast to the second term

from the original expression. The presence of the additional prior term does not change

the convexity of the objective function, so the maximum still occurs at a unique point

in the parameter space.

In our description of MAP estimation here we have used a Gaussian distribution

as the prior, but it other choices are possible. Peng and McCallum (2004) compare a

Gaussian to Laplacian and Hyperbolic priors on a task involving extraction of infor-

mation from research papers. They conclude that the Gaussian is in general a better

choice than the other two priors. We conduct similar experiments on two sequence

labelling tasks in Chapter 5, but reach alternative conclusions.

With the MAP estimation method above we collapse the posterior distribution to a

point estimate, the MAP estimate. As we described above, a full Bayesian treatment

would instead use the posterior distribution during decoding to average across a spec-

trum of models. Qi et al. (2005) attempt to do something alongthese lines with their

Bayesian conditional random field (BCRF)model. They use the Power Expectation

Propagation (Power EP) (Minka, 2004) method, an extension of Minka’s EP (Minka,

2001), to calculate the posterior distribution during training and decoding. They show

that BCRFs can outperform standard CRFs trained with CML andMAP on synthetic

data and a real FAQ labelling task. Although this model represents a step forward in

principle, there are some drawbacks. For example, the BCRF does still involve some

approximations, so does not represent a genuine Bayesian treatment of the problem.

In addition, BCRFs can be computationally more complex thanstandard CRFs trained

with CML or MAP, depending on the training regimes used for each. Lastly, it is not

clear how well the BCRF approach scales with the complexity of the problem or size

of the dataset.
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In the domain of neural networks, ensembles have been shown in many circum-

stances to reduce generalisation error over that of the models making up the ensemble.

As result, we can think of ensembles as another approach to reducing overfitting, and,

indeed this is the idea that underlies our work withlogarithmic opinion pools of CRFs

in later chapters. We will discuss previous use of ensemblesa little more in Chapter 6,

when we introduce LOPs.

2.4 Summary

In this chapter we have provided a general background to the material presented in the

rest of the thesis, the intention being to cover the main concepts required to understand

later chapters. Specifically, we have done the following:

• Situated CRFs with respect to previous, comparable sequence labelling models.

In particular, we looked at the strengths and weaknesses of generative sequence

models, such as HMMs, and saw how these models were superseded by dis-

criminative sequence models such as MEMMs. We also briefly looked at the

shortcomings of discriminative models, such as thelabel bias problem.

• Described CRFs in detail, covering the definition of a CRF andits structure as

a graphical model, training and decoding algorithms for CRFs, and the applica-

tions of CRFs to date, both in NLP and in other domains.

• Considered the phenomenon of overfitting, and methods that can be employed

to reduce the effect.

In the next chapter we move on to describe the experimental setup used for the

experiments conducted in the thesis.





Chapter 3

Experimental Setup

In this chapter we describe the conditions used to conduct the experiments presented

in this thesis. By doing this we aim to make the our results easy to reproduce. The

setup is essentially the same for most of the experiments. The experiments themselves,

and the results, are covered in more detail later in chapters5, 6, 7 and 8. This chapter,

more specifically, covers the following:

• The two labelling tasks we use for our experiments:named-entity recognition

andpart-of-speech tagging.

• The experimental pipeline and software architecture.

• The measures we use to evaluate and compare the performance of different mod-

els, and evaluate the significance of any differences observed.

The rest of the chapter is structured as follows: section 3.1describes the tasks in

general, and the specific datasets we use for them. Section 3.2 looks at the software

we have written to conduct the experiments. Specifically, section 3.2.1 covers the ar-

chitecture, while section 3.2.2 describes the implementation. In section 3.3 we briefly

describe the computing resources used for running the experiments, while in section

3.4 we look at how we evaluate performance. Finally, in section 3.5 we summarise the

chapter.

3.1 The Tasks

All of the experiments in this thesis are undertaken using two sequence labelling tasks,

with a separate dataset for each task. The tasks arenamed entity recognition (NER)

37
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andpart-of-speech tagging (POS tagging). We chose these tasks because they are

well-known to the NLP community, with standard datasets available for comparison

with other approaches in the literature. In addition, the tasks contrast with each other

in the type of problem they pose: POS tagging involves labelling single words in a sen-

tence whereas NER involves identifying and labelling entities that could range across

several words. In this section we briefly summarise the tasksand the datasets we use

for them.

3.1.1 Named Entity Recognition

Named entity recognition involves the identification of thelocation and type of a set

of pre-defined entities within a text. For example, within a bioinformatics domain

the entities might be proteins, cell compartments or phases, whereas in an astronomy

domain the entities might be planets, stars and other stellar objects. NER is often

used as the first stage in a larger process. Examples include systems for information

extraction, question answering and statistical machine translation. Borthwick (1999)

gives a comprehensive overview of NER for English.

NER emerged as a sub-task of information extraction from a series of meetings

known as the Message Understanding Conferences (MUC) (Grishman and Sundheim,

1996). These conferences were originally designed to encourage and foster research on

automated analysis of messages, primarily with a view to military applications. NER

was developed as a sub-task in the sixth conference (MUC-6) in 1995. Since then it has

been established as a task in its own right, and is frequentlythe subject of competitions

and challenges held at conferences and workshops. Examplesinclude the Conference

on Computational Natural Language Learning (CoNLL) SharedTasks (Kim Sang and

Meulder, 2003) and the Information Retrieval and Extraction Exercise (IREX) (Sekine

and Isahara, 1999). NER was originally applied to English, but has since been used

with other languages, including German (Kim Sang and Meulder, 2003), Dutch, Span-

ish (Kim Sang, 2002) and Japanese (Sekine and Isahara, 1999). NER systems can

generally be classified into two broad categories:rule-basedsystems (Farmakiotou

et al., 2000; Kim and Woodland, 2000) andstatistical methods. In recent years, statis-

tical approaches have become more prevalent and encompass awide range of models,

including decision trees (Sekine et al., 1998), hidden Markov models (Klein et al.,

2003), maximum entropy models (Klein et al., 2003; Curran and Clark, 2003), support

vector machines (SVMs) (Asahara and Matsumoto, 2003), voted perceptrons (Collins,
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2002) and CRFs (McCallum and Li, 2003).

As an illustration of the annotation scheme for NER, consider the following sen-

tence:

Nato declines comment on fighting in Iraq.

When annotated with labels representing entities relevantto the domain, the sentence

becomes:

Nato/I-ORG declines/O comment/O on/O fighting/O in/O Iraq/I-LOC ./O

We see that each token (including the full-stop) is annotated with an entity label. The

symbolO denotes the fact that a token is not part of a specific entity (i.e. it is outside

an entity). The labelI-ORG denotes the fact that a token is aorganisation, while the

labelI-LOC denotes the fact that a token is alocation. In general, a label of the form

I-X signifies that a token is part of an entity of typeX , and all words in an annotated

dataset are given either a label of this form or anO label.1

For our experiments we use the CoNLL-2003 shared task dataset for English (Kim

Sang and Meulder, 2003). This dataset consists of three sections: a training set, devel-

opment set and test set. The size of these sets, in terms of number of sentences and

tokens, is shown in Table 3.1. The dataset was compiled from Reuters news stories.

The training and development sets are comprised of ten days’worth of news cover-

age from August 1996, while the test set consists of articlesfrom December 1996.

For this dataset there are four entities: persons (PER), locations (LOC), organisations

(ORG) and miscellaneous (MISC). With this dataset, as with NER in general, the en-

tities are fairly sparse and the vast majority of words have theO label. This means that

NER is really the task of spotting the occasional entity against a background of non-

entities. In the CoNLL-2003 dataset the words were POS-tagged automatically using

the memory-based MBT tagger (Daelemans et al., 2002).

The CoNLL-2003 dataset was designed with the NER task in mindand allows

us to benchmark our results against those obtained by a number of other models that

were employed in the shared task. The best performing systemon the task attained

an F score of 93.87% on the development set and 88.76% on the test set. This was

a classifier combination framework involving a linear classifier, a maximum entropy

1Here we are using an annotation format where there is an alternative labelB-X for an entity of type
X. This label is used for the first token of an entity of typeX when the previous token was part of a
different entity also of typeX. Except for this case, tokens that are part of entities of typeX are labelled
with I-X. This is known as the IOB annotation scheme (Ramshaw and Marcus, 1995).



40 Chapter 3. Experimental Setup

Objects Training Development Test

Tokens 203,621 51,362 46,435

Sentences 14,987 3,466 3,684

Table 3.1: Numbers of tokens and sentences in the CoNLL-2003 shared task dataset.

model, a transformation-based learning model and an HMM (Florian et al., 2003).

Other high scoring systems included a maximum entropy model(Chieu and Ng, 2003)

and a combination of a maximum entropy model and an HMM (Kleinet al., 2003).

3.1.2 Part-of-Speech Tagging

POS tagging involves labelling each word in a sentence with its part-of-speech. A

word’s part-of-speech indicates its syntactic function, such as noun, verb or adjective,

as well as other information like number and tense. POS tagging has a long history,

dating back to the mid-1960s. The first well-known tagger that assigned tags to words

on the basis of local syntactic information, as opposed to just looking up tags in a

dictionary, was that of Klein and Simmons (1963). The first probabilistic tagger was

probably that of Stolz et al. (1965), which used conditionalprobabilities calculated

from tag sequences to assign tags to words after some pre-processing steps. Initially,

POS tagging was focused on English but over the years it has been applied to many

other languages. As with NER, most POS tagging systems can beroughly classified

as either rule-based or statistical. The best-known rule-based approaches are probably

those of Brill (1995). As for the statistical approaches, many models have been pro-

posed. These include hidden Markov models (Kupiec, 1992; Merialdo, 1994; Jelinek,

1985), decision trees (Schmid, 1994), neural networks (Benello et al., 1989), memory-

based learning models (Daelemanns et al., 1996) and maximumentropy models (Rat-

naparkhi, 1996).

To illustrate the annotation scheme for part-of-speech tagging, let us refer back to

our example sentence from the previous section. Annotated with POS tags, this would

look like:

Nato/NNP declines/VBZ comment/NN on/IN fighting/VBG in/IN Iraq/NNP ./.

In this case, then,VBZ denotes a verb,NN denotes a noun, etc. In an annotated dataset

every word is given such a label.
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For our POS tagging experiments we use an amended version of the CoNLL-2000

shared task dataset for English (Kim Sang and Buchholz, 2000). This dataset was

extracted from the Penn Treebank (Marcus et al., 1993) for use in the shared task. In

addition, it was relabelled with POS tags using the Brill tagger (Brill, 1994). For our

experiments, however, we have restored the original, hand-annotated POS tags that

appear in the Penn Treebank.

In Chapter 1 we mentioned scaling as a current limitation of CRFs. In general,

CRFs do not scale well to complex structured labelling tasks, where the resulting

graphical model is densely connected. In these cases inference can be intractable.

The situation is simpler in the case of a (first order) linear chain CRF. As we saw in

Chapter 2, for linear chain CRFs there are efficient dynamic programming algorithms

to handle inference. However, even linear chain CRFs do not scale well to tasks with a

large number of labels. In general, the time complexity for inference in a linear chain

CRF scales roughly with the square of the number of labels in the dataset. Therefore,

for sequence labelling tasks with a large number of labels, inference can be intractable

unless some explicit attempt is made to scale the model. An example of such a task

is POS tagging, where the label set size is often in the range of 40 - 45 tags. In his

thesis, Cohn (2006) examines different approaches to scaling CRFs to efficiently han-

dle such tasks. The work in that thesis was developed in parallel to the work presented

here. Consequently, we address the scaling problem for POS tagging using a different

approach: we collapse the label set. The shared task datasetcontains 45 different POS

tags. We collapse the number of tags to 5, employing the procedure used by McCallum

et al. (2003). The procedure is as follows:

• All types of noun are collapsed to a single categoryN.

• All types of verb are collapsed to a single categoryV.

• All types of adjective are collapsed to a single categoryJ.

• All types of adverb are collapsed to a single categoryR.

• All other POS tags are collapsed to a single categoryO.

The dataset provided with the shared task only includes a training set and a single

development/test set. In order to provide a separate development set, while leaving the

test set untouched, we randomly partition the training set into a training subset and a

development subset, using the same ratio of sizes as for the NER dataset. As a result,

we obtain training, development and test sets with sizes given in Table 3.2.
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Objects Training Development Test

Tokens 172,898 38,829 47,377

Sentences 7,300 1,636 2,012

Table 3.2: Numbers of tokens and sentences in the CoNLL-2000 shared task dataset.

3.2 Software

In this section we describe the software that we have writtento undertake the experi-

ments for the thesis. We first describe the general architecture at an abstract level, then

give details as to how the architecture is implemented in thesoftware itself.

3.2.1 Architecture

Figure 3.1 shows the software architecture for the experimental pipeline. In general, to

run a single experiment we train a model using a training dataset, then use the trained

model to decode other datasets, such a development set and/or a test set. Therefore,

the two primary stages in the experimental pipeline aretraining anddecoding. Before

being able to train the model, however, we must define the features to be used in the

model, and ascertain where those features are active in the datasets. We therefore have

feature instantiation (or definition) andfeature extraction stages as pre-processing

steps to the training stage. Consequently, our experimental pipeline consists of four

stages, and these are represented by the rectangular boxes in the figure. The elliptical

objects in the figure represent the inputs and outputs of eachstage. In reality these

elliptical objects take the form of text files.

3.2.1.1 Feature Instantiation

In Chapter 2 we defined a feature function as being a conjunction of predicates spec-

ified on a particularclique of a sequence. We now imagine a particular feature,f103,

that could be used in a POS tagging task. Specified on cliquet of a sequence with

observationso and on a clique with POS labelss′ ands (with s being thought of as

occupying the current position ands′ the previous), this feature is defined as:

f103(s
′,s,o, t) =

{

1 if current word(o, t) =“the” holds ands=“DET”

0 otherwise
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Figure 3.1: Software architecture for the experimental pipeline.

So this feature isactive on any clique for a given labelling of the observations if and

only if the current word is “the” and the current POS label is “DET”. In fact, in this case

the feature has no predicates that tests′. Note that the feature here, and indeed all the

features used in our experiments, are binary-valued. However this not a requirement,

and in principle features could be real-valued. In order to define a model we must

decide upon a set of features likef103 to include in the model. We do this by defining

a set offeature templates. These are like blue-prints for creating features such asf103

above, and are motivated by our linguistic intuition about the properties of a sequence

that are important if determining its labelling. For example, f103 could have been

created, orinstantiated, from a feature template such as:
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FTX,Y(s′,s,o, t) =

{

1 if current word(o, t) = X holds ands= Y

0 otherwise

Having defined a set of feature templates, we instantiate features from the templates

by passing through the training data and collapsing the non-grounded forms for the

predicates in each template on each clique of each sequence to the grounded forms

defined at the clique. For example,f103 would have been instantiated fromFTX,Y by

instantiatingX to “the” andY to “DET”.

For the experiments we carry out in this thesis, we only ever use features that

have been created in this way. These are calledsupported (or sometimesattested)

features because they have all been seen at least once in the training data. It is possible

to include other, non-supported features in the model – features that have not been

observed in the training data. One way to do this would be to instantiate all possible

grounded conjunctions of predicates from the feature templates, rather than just that

subset that have been observed. As noted by Sha and Pereira (2003), including these

unsupported features in a model may in principle cause it to perform better because

the new features can attach negative weights to transitionsthat should be discouraged

if a certain observation predicate is active. However, including these features does

require some form of regularisation to be applied during training because without this

the parameters associated with the unsupported features will tend to negative infinity.

Some of the results we present later refer specifically to theuse of unregularised models

in a LOP. In order to compare these with the corresponding unregularised models on a

consistent set of features, we chose not to include unsupported features. However, in

principle, our findings should still hold for LOPs with models including non-supported

features.

Typically the feature templates naturally fall into different categories based upon

the dependencies that the features instantiated from them are intended to model. For

example, some templates may instantiate to features that model the dependency of a

word’s NER label on the word’s POS label, while others may instantiate to features that

model dependencies between the NER label and the word’s orthographic properties.

The specific feature templates that we use for our experiments are described in the

next chapter, when we introduce the reference models.
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3.2.1.2 Feature Extraction

Having defined a set of features to be used in the model, we needto determine where

each feature is active in the dataset. In Chapter 2 we saw thatduring each iteration of

CRF training we must evaluate the expected value of each feature under the current

model. This involves a weighted sum over all possible labellings. As a result, we

must determine which features are active in the training data for all possible labellings

of the sequences, not just the observed one (the gold-standard). Additionally, when

we use a trained model to decode a development set or test set (as we also saw in

Chapter 2), we use a Viterbi algorithm which requires us to know which features are

active on all cliques of the dataset for all possible labellings – with different possible

labellings corresponding to different paths through the Viterbi lattice. Therefore, the

feature extraction stage in the experimental pipeline determines the active features for

all labellings of all the datasets we are using: training set, development set and test

set. This is represented in Figure 3.1 by the three arrows going into, and out of, the

extraction stage box.

3.2.1.3 Training

The output of the extraction stage, giving information regarding feature activations, is

the single input we need for the training stage. During the training stage the model

is fitted iteratively using the procedures described in Chapter 2. The fitting will cease

when some termination condition is satisfied. Typically this is a threshold for the

minimum absolute or relative change in the objective function, but could also be a

maximum number of iterations for example. The output of the fitting stage is a set

of parameters representing the converged model. We often also output other sets of

parameters, for example parameters representing the stateof the model at different

iterations. This allows for analysis of the learning process of the model during training.

3.2.1.4 Decoding

Having arrived at a trained model we may then use it to decode another dataset, typi-

cally a development set or test set. Our inputs to the decoding stage are therefore the

parameter set (output from the training stage) and the feature activation information

for the dataset to be decoded (output from the extraction stage).
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3.2.2 Implementation

The software to implement the four stages in the experimental pipeline is written in a

combination of C++ and Perl. In general, Perl scripts are used to control high level be-

haviour, while C++ code handles lower-level processing. The C++ code therefore ex-

ecutes the functionality associated with the four stages offeature instantiation, feature

extraction, model training and model decoding. In fact, allthe stages are implemented

by a single C++ binary. By contrast, Perl scripts define the configuration settings as-

sociated with the four stages such as input and output file names, and convergence

conditions for the training. For some experiments, the experimental pipeline described

above is executed many times over with a different value for ahyperparameter each

time. In this case the Perl scripts define the range of hyperparameters to be used.

As we discussed in Chapter 2, during training we optimise an objective function,

typically a penalised log-likelihood of the training data.Because an optimal set of

parameters cannot be found analytically, we must resort to using iterative numerical

routines. In particular, we use thelimited memory variable metric (LMVM) routine

(Nocedal, 1980), and for a small number of experiments in Chapter 5 we use a vari-

ant on this procedure calledbounded limited memory variable metric (BLMVM)

(Benson and More, 2001). Both routines are implemented in the Toolkit for Advanced

Optimisation (TAO) libraries (Benson et al., 2005). We alsouse the Portable Exten-

sible Toolkit for Scientific Computation (PETSc) (Balay et al., 2004), which provides

a set of vector structures that interface easily with TAO. Underneath both TAO and

PETSc sits a Message Passing Interface (MPI)2 communication layer, which allows

for efficient communication over a network when running parallelised experiments.

We use two different implementations of MPI, called MPICH3 and LAMMPI4. Most

of the experiments reported in this thesis involve only single-node processing, but the

co-operative training framework described in Chapter 7 requires a parallelised archi-

tecture and this makes explicit use of the MPI layer. In fact,the architecture for the

co-operative training software is a little more complex than the architecture here, so

we describe it separately in that chapter.

2http://www-unix.mcs.anl.gov/mpi
3http://www-unix.mcs.anl.gov/mpi/mpich
4http://www.lam-mpi.org
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3.3 Computing Resources

The experiments presented in this thesis were all conductedusing the computing re-

sources within the School of Informatics at the University of Edinburgh. These re-

sources broadly fall into two categories:

• compute servers: a small number of standalone machines powerful enough to

run an experiment in isolation. These machines are each equipped with four Intel

Xeon 2.8GHz processors and 4 or 5GB of RAM.

• clusters: four Beowulf clusters of machines. The number of nodes in a cluster

and the specification of the nodes, varies considerably between the clusters. The

newest cluster, which was used the most for our experiments,consists of 34

nodes each equipped with four Intel Pentium 4 3.0GHz processors and 4GB of

RAM.

3.4 Performance Evaluation

3.4.1 Performance Scores

In our experiments we must measure the performance of different models in order

to be able to compare them. We do this using standard measuresemployed by other

researchers. For the POS tagging experiments we measureper-token accuracy(short-

ened toaccuracy for the rest of the thesis). This is simply the proportion of tokens

(words) that are labelled correctly. NER, however, is a little more complex as it in-

volves chunks, orentities. We want a measure that encodes how well we have correctly

identified entity boundaries, and a simple measure such as accuracy will not represent

this clearly. We therefore useF score, which is turn is derived fromprecision and

recall. Precision (P) and recall (R) are defined as:

P =
TP

TP+FP
(3.1)

R =
TP

TP+FN
(3.2)

whereTP is the number oftrue positives (correctly identified entities),FP is the

number offalse positives(incorrectly identified entities) andFN is the number of

false negatives (incorrectly omitted entities). The statisticsTP, FP andFN may relate
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to a particular entity, or be global, across all entities. Asthey are all non-negative, it is

clear that precision and recall both take values in the interval from 0 to 1. Ideally, we

would like achieve a high value (i.e. close to 1) for both precision and recall. Indeed, if

we correctly label every word, we obtain a score of 1 for both precision and recall. In

general, however, trying to maximise recall may lead to over-prediction of a particular

chunk, which in turn leads to low precision. Conversely, trying to maximise precision

may lead to a under-prediction of a particular chunk, which in turns leads to low recall.

We therefore require a measure that encodes both precision and recall. The standard

candidate isF score, which is defined by:

Fα =
1

α 1
p +(1−α) 1

R

(3.3)

The parameterα determines the weighting of precision and recall. Usually it is set to

0.5, with the F score becoming:

F0.5 =
2PR

P+R
(3.4)

It is this definition (3.4) that we use as the performance measure in our NER experi-

ments.

3.4.2 Significance Testing

When assessing the difference in the performance of two models using the measures

described above, we must look not just at the absolute difference in the values obtained,

but also the statistical significance of that difference. Todo this we need an appropriate

statistical test for sequence labelling problems. We use a test popularised by Sha and

Pereira (2003) called thematched-pairs test(Gillick and Cox, 1989).

The matched-pairs test assumes that the stream of labellingdecisions (i.e. sen-

tences labelled by a CRF in our case) can be divided into unitssuch that, for a given

model, the errors that the model makes on a given segment are independent of the er-

rors that it makes on any of the other segments. With a CRF on the sequence labelling

tasks we consider in this thesis, it is reasonable to take a sentence as such a unit. The

test compares two models by measuring the difference in the number of errors (per-

token labelling errors) each model makes on each sentence. Let Ni
α be the number

of errors made by modelα on sentencei, wherei runs over allN sentences in the
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dataset. ThenZi = Ni
1−Ni

2 measures the difference in the number of errors made by

model 1 and model 2 on sentencei. Suppose we want to know the true mean difference

in the number of errors made by the models across all possiblesequences that could

be encountered. A natural estimate for this mean difference, µz, is the sample mean

µ̂z = 1
N ∑N

i=1Zi . In addition, a natural estimate for the variance of this difference is the

sample variancêσ2
z = 1

N−1 ∑N
i=1(Zi − µ̂z)

2. Now, if we define W by:

W =
µ̂z

σ̂z/
√

N
(3.5)

then for largeN (e.g. larger than 50)W will have a distribution that is approximately

normal, with unit variance. If we assume that on average the two models perform

equally well from the point of view of per-token labelling errors, thenµz (andW for

infinitely largeN) would be zero. Therefore, if we want to test whether two models

have significantly different accuracies, we form a null hypothesisH0 : µz = 0 and

test it by seeing how far the estimateW is from 0. We reject the hypothesis ifW is

sufficiently far from zero that underH0 W would have taken the given value (or a

value further from 0) with a probability below some threshold that we define. As this

corresponds to significantdifferencein accuracies at the threshold in question, the test

is a two-sidedone. However, if we instead want to establish, for example, whether

the first model has an accuracy that is significantlyhigher than the second model, we

form an alternative hypothesisH1 : µz < 0. We reject the hypothesis ifW is sufficiently

greater than zero that underH1 W would have taken the given value (or a higher value)

with a probability below the threshold. This is aone-sidedversion of the test. In our

experiments we use the one-sided version of the test and typically set the threshold at

5% (p < 0.05), but we state specific thresholds whenever significance tests are used

later in the thesis.

By definition this test is based inherently on accuracy rather than any entity-oriented

measure such a F score, so by using it we are measuring statistical significance of dif-

ferences in accuracy, not F score. This could potentially pose a problem for comparison

of models on NER. However, experience has shown that model performance rankings

based on accuracy and F score are almost always the same. Hence using this accuracy-

based statistical test is a reasonable substitute for an alternative entity-based one. It is

possible to measure the statistical significance of differences in F scores directly using

bootstrapping approaches (Yeh, 2000). However, Sha and Pereira (2003) found that

such measures are often swamped by variance, and recommend the simpler matched
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pairs test instead. We use the matched-pairs test in the thesis for both POS tagging and

NER.

3.5 Summary

In this chapter we have presented the experimental framework that we use to conduct

the experiments for this thesis. In particular, we have described:

• The two labelling tasks, named-entity recognition and part-of-speech tagging,

that we use to illustrate our ideas throughout the core chapters.

• The experimental pipeline and software architecture, including the stages cover-

ing feature instantiation, feature extraction, and training and decoding of models.

• The measures we use to evaluate and compare the performance of different mod-

els, and evaluate the significance of any differences observed.

Having presented the general experimental setup in this chapter, we move on in the

next chapter to present results for the baseline models and to empirically demonstrate

the CRF’s tendency to overfit.
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Reference Models and Overfitting

In this chapter we describe the standard CRF models that we use throughout the rest of

the thesis, and build upon in later chapters. We refer to these asreference models. The

basic performance results that we provide for these models will be used as baselines

for comparison later. Also in this chapter we demonstrate the tendency for a CRF to

overfit the data during training, an idea that we introduced and discussed in Chapter 2.

4.1 The Reference Models

Throughout the thesis, for both NER and POS tagging, we use some reference CRF

models. These models are called SIMPLE and STANDARD. They differ in the fea-

tures that they contain. Each model has two versions, one foreach task. The feature

templates used to generate the SIMPLE model are the same for both NER and POS

tagging. For the STANDARD model, however, the feature templates vary with task.

Table 4.1 shows the templates used to generate the SIMPLE model on both tasks. Note

thatst denotes the label at positiont in the sequence, andwt denotes the word at po-

sition t. The label in this context depends on the task. For POS tagging the labelis

Label predicates Observation predicates

st−1 = s′,st = s

st−1 = s′,st = s wt = w

st = s wt = w

Table 4.1: Feature templates generating the SIMPLE model.

51
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Label predicates Observation predicates

st−1 = s′,st = s

st−1 = s′,st = s wt = w

st = s wt−2 = w

wt−1 = w

wt = w

wt+1 = w

wt+2 = w

wt−2 = w′, wt−1 = w

wt+1 = w′, wt+2 = w

pt = p

pt−2 = p′, pt−1 = p

pt+1 = p′, pt+2 = p

Table 4.2: Feature templates generating n-gram features.

the POS tag, whereas for NER the label is the NER label. The feature templates in

Table 4.1 represent basic structural dependencies betweenconsecutive labels, and the

label and word at a given position. When instantiated, thesefeature templates generate

24,819 SIMPLE model features for NER and 18,482 SIMPLE model features for POS

tagging.

The feature templates used to generate the STANDARD model for each task are a

superset of those generating the SIMPLE model. They may be subdivided into three

categories according to the type of features they generate:

1. N-gram features. These are features that involve predicates defined on the ob-

servations that aren-grams of words, and, for NER, POS tags. Table 4.2 shows

the feature templates that are used to generate these features. The templates

used to generate the STANDARD model for POS tagging are only those resid-

ing above the dividing line. By contrast, for the NER STANDARD model all

templates in Table 4.2 are used. In the case of NER, feature templates treat POS

tags as observations. These are the ones involving symbols such aspt , which

denotes the POS tag at positiont in the table.

To clarify the information contained in the table, let us take an example. The

fifth line in the table shows a feature template (calledFT5 here for illustration)
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Label predicates Observation predicates

st = s wt contains a digit

wt contains an upper case character

wt contains a hyphen

wt contains a period

wt contains punctuation

wt is all digits

wt is a number

wt is alphanumeric

wt is only Roman numerals

wt is all uppercase

wt is all lowercase

wt is of mixed case

wt is a title

wt is an initial

wt is an acronym

wt has prefixx of lengthl , l = 1. . .4

wt has suffixx of lengthl , l = 1. . .4

wt has lengthx

Table 4.3: Feature templates generating orthographic features.

Label predicates Observation predicates

st = s wt−1 has Collins’ formatf

wt has Collins’ formatf

wt+1 has Collins’ formatf

wt−2, wt−1 have Collins’ formatf , f ′

wt−1, wt have Collins’ formatf , f ′

wt+1, wt+2 have Collins’ formatf , f ′

wt−2, wt−1, wt have Collins’ formatf , f ′, f ′′

wt−1, wt , wt+1 have Collins’ formatf , f ′, f ′′

wt , wt+1, wt+2 have Collins’ formatf , f ′, f ′′

Table 4.4: Feature templates generating Collins’ features.
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which is defined by:

FT5 =

{

1 if current word= w and currentlabel= s

0 otherwise

The n-grams shown in Table 4.2 are based on those described by Curran and

Clark (2003), where a similar set was shown to be effective ina standard maxi-

mum entropy model for NER. The feature templates in the tableconsist only of

unigrams and bigrams of words and POS tags. By including higher order pred-

icates (trigrams and higher) we risk overfitting. Indeed, weuse such features in

the next section to demonstrate the overfitting effect.

2. Orthographic features. In addition to then-gram features, the STANDARD

model for NER containsorthographic andCollins’ features. Feature templates

that generate orthographic features are shown in Table 4.3.These templates

consist of predicates that pick out some orthographic property of the current

word, such as whether it is capitalised, whether it containsa digit, etc.

3. Collins’ features. The termCollins’ featureis our terminology, and refers to

features that contain a special predicate defined by Collins(2002). The predicate

maps words toword classes, where a word class consists of words with the same

orthographic properties. Specifically, each character in aword is mapped to a

symbol and adjacent characters with the same symbol are thenmerged together.

For example, the wordHello would map toAa, the initialsA.B.C. would map

to A.A.A. and the number1,234.567 would map to0,0.0. Table 4.4 shows

the feature templates that are used to generate Collins’ features. As can be seen

from the table, the templates involven-grams of words (in a window around the

current word) over which the Collins’ predicate is applied.

When instantiated, these feature templates generate 450,346 features for the STAN-

DARD model for NER and 189,339 features for the STANDARD model for POS tag-

ging.

Table 4.5 gives F scores for the reference models on the NER task, for both devel-

opment set and test set. Table 4.6 gives accuracies for the corresponding models on the

POS tagging task. All the models are unregularised. Conventional regularisation of the

STANDARD model (including use of a Gaussian prior) is discussed in Chapter 5. As
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Model Development Test

SIMPLE 79.53 69.22

STANDARD 88.21 81.60

Table 4.5: F scores for reference models SIMPLE and STANDARD on NER.

Model Development Test

SIMPLE 95.15 94.84

STANDARD 96.76 96.32

Table 4.6: Accuracies for reference models SIMPLE and STANDARD on POS tagging.

expected from the feature sets described earlier, the STANDARD model significantly

outperforms the SIMPLE model at a significance level ofp < 0.05.

Table 4.7 gives representative times for training and decoding of the STANDARD

and SIMPLE models on NER. The corresponding times on POS tagging show similar

trends but are in general a little lower because the POS tagging models have smaller

feature sets, having been instantiated on a smaller training dataset.

4.2 Overfitting

In Chapter 2 we made the claim that CRFs have a tendency to overfit small datasets

that are used to train them. To demonstrate this, we take the NER STANDARD model

as a base and define a sequence of models via sets of additionalfeatures. These sets

form a sequence of supersets. We then train each model in the sequence and compare

results to the STANDARD model. Table 4.8 shows the feature templates from which

the additional sets of features are generated, in a sequenceA1 . . .A4. These involve

othern-grams of words and POS tags not used in the STANDARD model, including

higher ordern-grams. Note that the sets are increasing supersets in the sense that model

A2, for example, includes all the feature templates in modelA1 as well as the additional

ones from the rows labelledA2 in the table.

As we add more features to the STANDARD model, there are potentially two con-

flicting effects taking place. On the one hand we give each model greater modelling

power, which could lead to increased performance. One the other hand, we risk an



56 Chapter 4. Reference Models and Overfitting

Model
Dataset

Training Development Test

STANDARD 90 mins 50 secs 40 secs

SIMPLE 25 mins 25 secs 20 secs

Table 4.7: Representative times for training and decoding of the STANDARD and SIM-

PLE models on NER.
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Figure 4.1: Development set performance during training for the STANDARD model on

NER.

increased effect of overfitting as the extra degrees of freedom introduced through the

new features fit to the idiosyncrasies of the training data itself rather than the system-

atic properties of the underlying distribution. Table 4.9 gives F scores for the models

A1 . . .A4. The table shows both converged scores and best scores, where bestrefers to

the model that obtains the highest score on the development set during training. We see

from the table than the modelA1 performs roughly equally well as the STANDARD

model (the converged F score is slightly higher, although the best F score is a little

lower) but as we continue to add more features we obtain models that perform increas-
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Label predicates Observation predicates Model

st = s pt−2 = p

A1

pt−1 = p

pt = p

pt+1 = p

pt+2 = p

wt−1 = w′, wt = w
A2

wt = w′, wt+1 = w

pt−1 = p′, pt = p

A3

pt = p′, pt+1 = p

wt−2 = w′′, wt−1 = w′, wt = w

wt−1 = w′′, wt = w′, wt+1 = w

wt = w′′, wt+1 = w′, wt+2 = w

pt−2 = w′′, pt−1 = w′, pt = w
A4

pt−1 = w′′, pt = w′, pt+1 = w

pt = w′′, pt+1 = w′, pt+2 = w

Table 4.8: Additional sets of feature templates added to the STANDARD model tem-

plates to demonstrate overfitting.

Model Best Conv

STANDARD 88.21 87.91

A1 88.03 88.00

A2 87.83 87.70

A3 87.34 87.34

A4 87.10 86.89

Table 4.9: Development set F scores for feature template sequence models.
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ingly badly as overfitting increases. Clearly, we can see that the tendency to overfit

increases steadily as the number of features is increased. As a result, we conclude that

to apply CRFs effectively here, application of some form of regularisation is vital.

Table 4.9 we shows that the STANDARD model overfits the training data least.

However, even with the STANDARD model, there may still be a certain degree of

overfitting taking place. Indeed this may be observed by considering the path that is

taken through the model space as the STANDARD model is trained. As the training

continues and the model is fitted ever more closely to the training data distribution,

there comes a point at which the model’s performance on the development set starts to

diminish. This is illustrated in Figure 4.1, which shows theNER STANDARD model’s

performance on the development set during training. The best model with respect to

the development set, and the one for which we may expect the best generalisation

behaviour, lies somewhere in the region between iterations100 and 120. Beyond this

point, the model starts to fit more and more closely to the details of the training data

distribution rather than the underlying distribution.

Note that with the examples in this section we are demonstrating situations in which

a CRF overfits. Previous work with CRFs on various NLP tasks has also demonstrated

the tendency for CRFs to overfit, and this has led to the need for some form of regu-

larisation when applying CRFs to such tasks. However, we arenot claiming that CRFs

alwaysoverfit. In situations where increasingly large amounts of data are available, in

relation to model complexity, CRFs will overfit less and less.

4.3 Summary

In this chapter we have described the reference models that we use, and build upon,

in later chapters. We have presented the performance results for these models on both

NER and POS tagging. In addition, we have demonstrated the tendency of a CRF to

overfit the training data by creating a sequence of models with increasing numbers of

features. Having shown the existence of the overfitting problem, and the consequent

requirement for some form of regularisation when training CRFs, in the next chap-

ter we investigate conventional approaches to CRF regularisation, and propose some

extensions to them.
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Conventional Regularisation for CRFs

In Chapter 2 we explained the general phenomenon of a model overfitting the data on

which it is trained, and described some of its symptoms. Then, in the last chapter,

we looked at the specific case of overfitting by CRFs. Using NERas an example,

we saw how a CRF may overfit a dataset in some circumstances. Wedid this by

training a sequence of CRFs with increasingly large featuresets. Much CRF research

to date has supported the view that CRFs have a tendency to overfit, particularly when

they are applied to real-world tasks. Examples of such work include application of

CRFs to tasks such as named entity recognition (McCallum andLi, 2003), noun-phrase

chunking (Sha and Pereira, 2003) and information extraction from research papers

(Peng and McCallum, 2004). We may conclude, therefore, thatsuccessful application

of CRFs requires some form of regularisation to address thistendency to overfit.

Standard approaches to regularising CRFs, and log-linear models in general, have

focused on the use of a Gaussian prior distribution over the model parameters. The

choice of a Gaussian distribution (as opposed to some other)is primarily due to the

Gaussian being well understood and easy to implement. However, there are a number

of questions that arise here. Firstly, it is not clear that the Gaussian distribution is the

most natural choice for a prior all the time. With a wide variety of tasks and a corre-

spondingly diverse range of label distributions, it seems likely that in some cases other

prior distributions may be more appropriate. Secondly, a typical application of a Gaus-

sian prior involves constraining the distribution variance to be fixed across all model

parameters. This simplification aids computation, avoiding the need to search a hyper-

parameter space of large dimension in order to fit the prior. However, varying the value

of the variance of a Gaussian prior distribution for a particular model parameter influ-

ences the degree of regularisation applied to that parameter. Therefore, by applying a

59
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fixed variance across all parameters we are effectively applying an equal regularising

effect to each one. However, there may be some circumstanceswhere we want to reg-

ularise some parameters more than others. For example, if the feature associated with

one parameter is seen much more frequently than that of another, we may conjecture

that its parameter does not require regularising to the samedegree as the other one.

So how might we decide on the level of regularisation for different parameters? A

third question relates to the Gaussian prior mean. In a typical implementation using a

Gaussian prior, the mean is assumed to be zero. This is again primarily for simplicity

and avoids the need to search a joint space of both mean and variance to fit the prior.

However, fixing the Gaussian mean at zero penalises positiveand negative parameter

values equal in magnitude by the same amount, thereby discouraging movement away

from zero symmetrically. Since we may expect some parameters to have a positive

value while others are negative, it is not clear that a sensible choice for a mean is zero

itself – it could be a small positive value for example. So, what is the optimal choice

for the Gaussian mean? What happens when we allow the mean to move a away from

zero?

In this chapter we address these questions. Starting in section 5.2 we explore the

use of alternative priors and compare these to the Gaussian.In particular, we exper-

iment with Laplacian and theHyperbolic priors. In section 5.5 we then move on

to look at feature-dependent regularisation, where different model parameters are

regularised to different degrees. We investigate different ways of grouping features to-

gether for regularisation, including the extreme case where each feature is regularised1

to a different level. Then, in section 5.6, we experiment with non-zero values for the

Gaussian mean. To complete the picture, we also consider very simple approaches

to regularisation in the form of a feature cutoff, whereby parameters corresponding

to features which occur infrequently in the training data are removed from the model

altogether. We look at this with and without regularisationof the remaining parame-

ters (in sections 5.1 and 5.4 respectively). Finally, towards the end of the chapter, in

section 5.7, we look at an alternative formulation for regularisation of a CRF, which

we call theinequality CRF. This involves relaxing the feature expectation constraints

we discussed in Chapter 2. We show how this model is very similar in principle to

regularisation with a prior, and compare the two approaches.

1Note that sometimes we will use a phrase such as “regularise the features” to mean “regularise the
parameters associated with the features”.
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5.1 Feature Cutoff

Before considering different families of prior distribution, we look in this section at

a very simple approach to reducing overfitting, calledfeature cutoff (Ratnaparkhi,

1998). Feature cutoff is based on the idea that when a model isparameterised using

features that are redundant (or, more generally, not very useful) for modelling the dis-

tribution at hand, these features will tend to fit to arbitrary properties of the training

data rather than modelling the systematic properties of thedistribution observed. Thus

the model is likely to overfit the training data. By definitionfeatures which have this

property are likely to occur very infrequently. As a consequence, if we assume that

all infrequent features may have this property to some degree, then overfitting may

be reduced by removing infrequent features from the model. Feature cutoff therefore

involves removing features whose frequency falls below some threshold. For our ex-

periments we have chosen arbitrary thresholds of 1, 2 and 3.

Table 5.1 gives F scores on NER for CRFs with the different feature cutoff thresh-

olds. Table 5.2 gives accuracies on POS tagging for the corresponding models. The

STANDARD model is included in each case for comparison. We include development

set scores for completion, but the more interesting resultsare those for the test set in

each case. Note that the significance tests we use in this section, and throughout the

chapter, are at thep < 0.05 level.

From both tables we see that as we increase the cutoff threshold, in general scores

decrease. This trend is not surprising: as we remove more features from the model,

we take away useful modelling capability provided by the features in question. This

effect will have increasing influence and will at some point outweigh any beneficial

effect obtained from feature removal. As for other trends inthe results, the patterns

vary with task. For POS tagging, the model with features onlyof frequency one re-

moved has greater accuracy than the STANDARD model, on both development and

test sets. However, the scores it obtains are not significantly higher. The other models

on POS tagging obtain lower scores than the STANDARD model, although these are

not significantly lower. By contrast, on NERall feature cutoff models significantly

underperform the STANDARD model, with the exception of the model with features

only of frequency one removed, on the development set.

Although the specific effect of feature cutoff is not consistent across the two tasks,

the general point we observe is that feature cutoff is not an effective method of regu-

larisation for CRFs. In general we do not obtain significantly better results using this
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Frequencies RemovedDevelopment Test

STANDARD 88.21 81.60

1 87.72 80.58

1 and 2 86.54 80.36

1, 2 and 3 86.34 80.80

Table 5.1: F scores for feature cutoffs on NER.

Frequencies RemovedDevelopment Test

STANDARD 96.76 96.32

1 96.79 96.39

1 and 2 96.68 96.23

1, 2 and 3 96.64 96.18

Table 5.2: Accuracies for feature cutoffs on POS tagging.

procedure. It seems that sufficient useful information is contained in features of low

frequency that their removal harms the modelling capability of the CRF. This harming

effect outweighs any regularising effect that their removal may have in principle. As

we will see later in Chapter 8, some features of low frequencyare highly informative,

and removing these from the model can be very damaging to the model’s performance.

It seems, then, that the feature cutoff approach is in a sensetoo coarse, unable to dis-

tinguish between useful low frequency features and others that might be a source of

overfitting.

5.2 Conventional Priors

Most approaches to CRF regularisation have focused insteadon the use of a Gaussian

prior distribution over the model parameters. However, other choices of prior are pos-

sible. In this section we investigate whether the Gaussian represents a natural choice

for a CRF for sequence labelling tasks. To do so we compare three families of priors:

the Gaussian, the Laplacian and theHyperbolic. These priors are broadly similar

in that they increasingly penalise the value of a model parameter as it moves further

from the centre of the distribution. However, the priors differ in the specific form of
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Gaussian
Laplacian

Hyperbolic

Figure 5.1: Qualitative depiction of penalty terms for the different priors.

the penalty term they employ. Figure 5.1 gives a qualitativedepiction of the penalty

term for each prior. As we explained in Chapter 2, this term appears in the objective

function used to train the CRF.

5.2.1 Gaussian Prior

The most commonly used prior for CRF regularisation has beenthe Gaussian. Use of

the Gaussian prior assumes that each model parameter is drawn independently from a

Gaussiandistribution, which is typically represented as:

p(λk) =
1

(

2πσ2
k

)1/2
exp

(

− 1

2σ2
k

(λk−µk)
2
)

(5.1)

Theλk are the CRF model parameters, while theµk andσ2
k arehyperparametersof

the Gaussian distribution. They represent themeanandvariance of the distribution,

respectively. Ignoring terms that do not affect the model parameters, the regularised

log-likelihood with a Gaussian prior becomes:

LL(λ )− 1
2∑

k

(

λk−µk

σk

)2

(5.2)
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We see that the penalty term for the Gaussian prior is a sum of terms of the form
1
2

(

λk−µk
σk

)

, one for each model parameterλk. At the optimal point a set of equations

are satisfied. These equations, one for eachλk, have the form:

Ep̃(o,s)[ fk]−Ep(s|o)[ fk] =
λk−µk

σ2
k

(5.3)

We mentioned in the introduction to the chapter that the Gaussian prior is usually

assumed to have zero mean. This involves settingµk = 0 for eachk. With respect

to the Gaussian variancesσ2
k , there is a distinction between what we callfeature-

independent regularisationand feature-dependent regularisation. In the former,

the parameters associated with each feature are regularised to an equal degree and so

the corresponding variancesσ2
k are constrained to be equal, i.e.σ2

k = σ2 for all k. In

the latter case, the variancesσ2
k are allowed to vary withk. We present results for both

these cases later in this chapter.

We can see from Equation 5.3 that use of a Gaussian prior enforces the constraint

that the expected count of a feature under the model isdiscountedwith respect to the

count of that feature on the training data. This can be seen assomewhat similar in

nature to the discounting schemes employed in language modelling (Chen and Rosen-

feld, 2000). Under that analogy, use of the Gaussian prior corresponds to a form of

logarithmic discounting in feature count space.

5.2.2 Laplacian Prior

Use of the Laplacian prior assumes that each model parameteris drawn independently

from aLaplace distribution. This is typically represented as:

p(λk) =
1

2βk
exp

(

−|λk|
βk

)

(5.4)

The βk are hyperparameters of the Laplace distribution, like theµk and σk for the

Gaussian. Ignoring terms that do not affect the model parametersλk, the regularised

log-likelihood with a Laplacian prior is given by:

LL(λ )−∑
k

|λk|
βk

(5.5)

In this case we see that the penalty term for the Laplacian prior is a sum of terms of

the form |λk|
βk

. At the optimal point the model satisfies:



5.2. Conventional Priors 65

Ep̃(o,s)[ fk]−Ep(s|o)[ fk] =
sign(λk)

βk
, λk 6= 0 (5.6)

The numerator on the right-hand side in Equation 5.6 takes the value 1 ifλk is positive

and−1 if it is negative. Continuing our analogy with the languagemodelling world,

we see from the form of the penalty term that use of the Laplacian prior is similar to

applyingabsolute discountingin feature count space.

From Figure 5.1 we can observe that the derivative of the penalty term for the

Laplacian prior with respect to a parameterλk is discontinuous atλk = 0. This leads

to a potential problem in the evaluation of Equation 5.6 required by the optimisa-

tion libraries when training the model. To tackle this problem we use an approach

described by Williams, who shows how the discontinuity may be handled algorithmi-

cally (Williams, 1995). His method leads to sparse solutions, where, at convergence,

a substantial proportion of the model parameters can becomezero. The result of this

pruning effect is different, however, to feature induction, where features are included

in the model based on their effect on log-likelihood.

5.2.3 Hyperbolic Prior

Use of the Hyperbolic prior assumes that each model parameter is drawn independently

from theHyperbolic distribution. Under this distribution, ignoring terms that do not

affect the model parametersλk, the regularised log-likelihood is given by:

LL(λ )−∑
k

log

(

eβkλk +e−βkλk

2

)

(5.7)

Theβk are hyperparameters of the Hyperbolic distribution, as with the Laplacian. In

this case we see that the penalty term for the Hyperbolic prior is a sum of terms of the

form log
(

eβkλk+e−βkλk

2

)

. At the optimal point the model satisfies:

Ep̃(o,s)[ fk]−Ep(s|o)[ fk] = βk

(

eβkλk −e−βkλk

eβkλk +e−βkλk

)

(5.8)

Note that, unlike the Gaussian and Laplacian priors, the penalty term for the Hyper-

bolic prior does not correspond directly to any form of discounting in the language

modelling setting.
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Prior Development Test

STANDARD 88.21 81.60

Gaussian 89.86 83.97

Laplacian 89.57 83.62

Hyperbolic 89.41 83.47

Table 5.3: F scores for different prior families on NER.

Prior Development Test

STANDARD 96.76 96.32

Gaussian 97.07 96.69

Laplacian 97.07 96.77

Hyperbolic 96.85 96.41

Table 5.4: Accuracies for different prior families on POS tagging.

5.3 Feature-Independent Regularisation

Having described the three prior families2 in general in the last section, we now present

results of experiments conducted using feature-independent regularisation with these

priors. To recap, with feature-independent regularisation we fix the value of the ad-

justable regularising hyperparameter across all model parameters. We set this single

value using the development set. In the case of the Gaussian,we also set the mean to

zero.

Tables 5.3 and 5.4 give F scores for NER and accuracies for POStagging, respec-

tively, for the different priors. The unregularised STANDARD model on each task is

included for comparison. The general points are as follows:

1. In order to obtain the results shown in the tables, extensive search of the hyper-

parameter space is required for each prior family. Typically this required testing

15-20 distinct hyperparameter values, and significant performance improvement

can be gained from this careful search.

2. For each prior the regularised CRF significantly outperforms the unregularised

2Note that we sometimes useprior to meanprior family. The meaning should be clear from the
context.
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STANDARD model. This is no surprise, and is the reason for using a prior at

the outset. It does, however, confirm that each prior family is performing as

expected.

As with the feature cutoff results earlier, the more specificpatterns in the results

vary with task. On NER, reading down from Gaussian to Laplacian to Hyperbolic,

we observe decreasing F scores on both the development and test sets. However, the

only two scores that represent asignificantdifference in performance at thep < 0.05

level are those of the Gaussian and Hyperbolic priors on the development set. All other

relevant score pairs do not differ significantly. It seems, then, that for NER all the pri-

ors perform roughly equally well. For POS tagging the trendsare a slightly different.

Again the scores for the Gaussian and Laplacian priors do notrepresent significant

differences in performance. The Hyperbolic prior, however, does perform significantly

worse than the other two on both the development and test sets. One reason for this

may relate not to the regularising effect of the Hyperbolic prior itself, but to the practi-

cal difficulty of finding an optimal hyperparameter value forthis prior. Glancing back

to Equations 5.7 and 5.8, we see that the Hyperbolic prior hyperparameter,βk, influ-

ences the regularisation of the model parameters through a function of exponentials.

This function has a much more complicated form than the corresponding functions

for the Gaussian and Laplacian priors, and may make manual search for the optimal

hyperparameter setting more difficult than with the other priors.

From these results we conclude that the Gaussian prior, although by far the most

commonly used, isnot a natural choice of prior for CRFs on sequencing labelling

tasks, and possibly in general. The Laplacian and Gaussian priors obtain very similar

performance levels on both NER and POS tagging. The Hyperbolic prior does appear

to underperform the other two in some cases, but it not clear whether this relates to

some intrinsic property of the prior itself, or just a greater difficulty in its effective

application. These conclusions are somewhat contrary to the findings of similar work

conducted by Peng and McCallum (2004). They compare the sameprior families on

an information extraction, using CRFs to extract specific data from research papers.

They find that the Gaussian prior performs significantly better than alternative priors

on the task and consequently conclude the the Gaussian is theprior of choice. In addi-

tion, they report performance figures for the Hyperbolic andLaplacian priors that were

lower even than those of the unregularised STANDARD model. There are several pos-

sible reasons for these differences. The first is that for theHyperbolic prior, Peng and

McCallum (2004) did not use an adjustable hyperparameter. They instead applied a
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discount to each empirical expected feature count which wasdependent only on the

current value of the respective model parameter and corresponds in our case to using

a fixed value of 1 for theβ hyperparameter. Our results for this value of the hyper-

parameter are similarly poor. The second reason is that for the Laplacian prior, they

again used a fixed value for the hyperparameter, calculated via an absolute discounting

method used language modelling (Chen and Rosenfeld, 2000).Having achieved poor

results with this value they experimented with other valuesbut obtained even worse

performance.

5.4 Feature Cutoff with a Prior

In section 5.1 we looked at thefeature cutoff approach to regularisation and found

that, at least for the tasks we considered, the approach doesnot lead to significant

benefit for CRFs. We conjectured that by removing low frequency features from the

model, we are removing useful features as well as the less useful features that may

be a source of overfitting. However, it is possible that otherfeatures of frequencies

higher than those we considered in section 5.1 also have an overfitting effect to some

degree. If this is the case, we may obtain some benefit from applying a combination of

feature cutoff and the prior approach we looked at in the lastsection. We look at this

combination here in this section.

In the last section we concluded that the Gaussian and Laplacian priors perform

roughly equally well on the two tasks we are considering, with the Hyperbolic prior

underperforming the other two in some circumstances. Therefore, rather than present-

ing results for all priors with a feature cutoff, we take the Gaussian as a representative

prior.

Tables 5.5 and 5.6 give F scores and accuracies on NER and POS tagging, respec-

tively, for feature cutoff models with the addition of a Gaussian prior. In every case

we observe improved scores over the corresponding models without the prior. As for

how the new models compare to the unregularised STANDARD, the trends once again

differ with task. For NER none of the models differ in performance significantly from

the unregularised STANDARD, except the model with featuresof frequency three or

less removed, and even then only on the development set. However, all models sig-

nificantly underperform the STANDARD model with a Gaussian prior (from the last

section), so there seems to be no advantage in combining a feature cutoff with a prior

over a prior alone. For POS tagging, the results are more positive. Hereeverymodel
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Frequencies RemovedDevelopment Test

STANDARD 88.21 81.60

1 88.91 82.56

1 and 2 88.10 82.41

1, 2, and 3 87.55 82.00

Table 5.5: F scores for feature cutoffs with a Gaussian prior on NER.

Frequencies RemovedDevelopment Test

STANDARD 96.76 97.32

1 97.07 96.66

1 and 2 97.01 96.62

1, 2 and 3 96.92 96.57

Table 5.6: Accuracies for feature cutoffs with a Gaussian prior on POS tagging.

now significantly outperforms the unregularised STANDARD,so the combination is

having a useful regularising effect. In addition, results for the first two cutoff cate-

gories also do not significantly underperform the STANDARD model regularised with

a Gaussian prior.

From these results we conclude that features other than justthose with low fre-

quency contribute to model overfitting, and by regularisingthese features with a prior

we can gain some benefit. However, there is no advantage in using a feature cutoff in

addition to a straight prior, as we do not obtain significanceimprovement when doing

so.

5.5 Feature-Dependent Regularisation

In section 5.3 we considered what we callfeature-independent regularisation, where

the model parameters associated with different features are regularised to the same de-

gree. This was achieved, when using the priors of section 5.2, by setting the adjustable

hyperparameter of the prior to the same value for each model parameter. However, in

general it may not be the case that we want to regularise each parameter equally. As

we noted in the introduction, we may expect that a parameter associated with a fea-
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Threshold Development Test

STANDARD 88.21 81.60

Gaussian 89.86 83.97

1 89.00 82.62

2 88.99 83.03

5 89.14 82.81

7 89.29 83.12

Table 5.7: F scores for frequency cutoff on NER.

ture that has been seen many times in the training data may notrequire regularising to

the same degree as a parameter associated with a very infrequently occurring feature.

Therefore, a more sophisticated approach to regularisation with a prior would be to

regularise different features to different degrees. For this, we may envisage a spectrum

of regularisation possibilities. At one end of the spectrumwe have the case that we

have already considered, where all parameters are regularised to the same degree. We

have already denoted this asfeature-independent regularisation. At the other end

of the spectrum we have the opposite case, where regularisation is at the granularity

of each individual parameter. We call thisindividual feature regularisation . Some-

where in the middle of the spectrum we have intermediate cases, where parameters are

grouped into classes and regularised to the same degree within a class, but to different

degrees across classes. We call thisclustered feature regularisation. In this section

we consider this spectrum, investigating the two additional forms of regularisation in

the subsections below.

5.5.1 Clustered Feature Regularisation

We consider two methods of clustering features for regularisation with the clusters. We

call these approachesfrequency cutoff andfrequency bins.

5.5.1.1 Frequency Cutoff

When we considered feature cutoffs in section 5.1, we made the assumption that low

frequency features are liable to overfit to such a degree thatit may be best to remove

all such features from the model. From the results in that section, we concluded that

although some low frequency features may exhibit a tendencyto overfit to a greater
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Threshold Development Test

STANDARD 96.76 96.32

Gaussian 97.07 96.69

1 96.97 96.49

2 96.98 96.49

5 96.98 96.56

7 97.01 96.58

Table 5.8: Accuracies for frequency cutoff on POS tagging.

degree than features that occur more often, they do nevertheless contribute useful mod-

elling capability, and we should try to avoid removing them from the model. We could

instead retain these features, but regularise them to a greater degree than the other, more

frequent features. This method, which we callfrequency cutoff, specifies a threshold

on the frequencies of features in the training data. Parameters associated with features

that have frequencies less than or equal to the threshold areall regularised to the same

degree. All other parameters (associated with more frequent features) are left unreg-

ularised. We use the Gaussian prior as a representative prior for our regularisation,

and set the adjustable hyperparameter (the Gaussian variance) for the low frequency

features using the development set.

Tables 5.7 and 5.8 give F scores on NER and accuracies on POS tagging, respec-

tively, for models with feature cutoff of varying threshold. The STANDARD model

regularised with a Gaussian prior across all the parametersis also included for com-

parison. The main points from the results are as follows:

1. Generally, as the threshold is increased results improve.

2. On NER, with the exception of the model with a frequency cutoff of one, all

models significantly outperform the unregularised STANDARD model at the

p < 0.05 level. However, all models also significantly underperform the STAN-

DARD model regularised with a Gaussian prior across all the parameters.

3. On POS tagging,all models significantly outperform the unregularised the STAN-

DARD model at thep< 0.05 level. In addition, some models do not significantly

underperform STANDARD model regularised with a Gaussian prior across all

the parameters.
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These results suggest that the method of regularising low frequency features with

a prior is more effective than applying a simple feature cutoff, which by comparison

is much more coarse. In addition, it seems that gains can be made by regularising

more features in the model than just those with low frequency. This supports our con-

clusion from section 5.4, that features with frequencies higher than those considered

here and in section 5.1 contribute to model overfitting and benefit from some level of

regularisation.

5.5.1.2 Frequency Bins

With the frequency cutoff approach in the last section we only regularised parame-

ters of features with training data frequencies falling below some threshold. From the

results we concluded that features with higher frequencies, although likely to cause

overfitting to a lesser degree than rarer features, may nevertheless overfit to some ex-

tent. A generalisation of the approach in the previous section, therefore, is to create a

number of different feature clusters orbins, based on training data frequency, and reg-

ularise the associated parameters in each bin to a differentdegree. With a large number

of bins the search space clearly becomes very large. In orderto investigate this idea in

principle, we constrain the number of bins to be fairly small.

Tables 5.9 and 5.10 give F scores on NER and accuracies on POS tagging, respec-

tively, for representative frequency bins. In this case features of frequencies ten or

less are divided into two bins: frequencies 1−3 and frequencies 4−10. We allocate

a separate adjustable hyperparameter to each bin, and optimise manually using the

development set. From the tables we observe similar, but improved, results over the

models in the previous section. In all cases, for both tasks,the frequency bin models

significantly outperform the unregularised STANDARD model. In addition, a greater

number of models than in the previous section do not significantly underperform the

STANDARD model regularised with a single Gaussian prior across all parameters.

This suggests that applying a more specific level of regularisation to “similar” features

is advantageous, where we are basing similarity here on training data frequency. The

extreme case would be to regularise each feature to its own specific degree. Clearly

this would make the hyperparameter search space intractably large. However, it might

be possible instead to fix theratio of the level of regularisation applied to different

parameters and adjust the absolute level of regularisationvia this ratio and a smaller

number of hyperparameters, just one in the extreme case. We follow these ideas in the

section 5.5.2. However, before that we consider another wayof clustering the features
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σ1−3 σ4−10 Development Test

∞ ∞ 88.21 81.60

197 210 89.04 83.15

210 217 88.98 83.34

191.2 228.8 89.06 83.19

Table 5.9: F scores for frequency bins on NER.

σ1−3 σ4−10 Development Test

∞ ∞ 96.76 96.32

1.781 2.3 97.05 96.58

2.3 3.11 97.03 96.60

1.915 2.685 97.03 96.58

Table 5.10: Accuracies for frequency bins on POS tagging.

into subsets for regularisation. Instead of using trainingdata frequency, we cluster

based on the kind of dependency different features encode.

5.5.1.3 Dependency Types

With both thefrequency cutoff andfrequency binsapproaches above we cluster the

features into groups for regularisation based directly on the frequency of the features

in the training data. In this section we modify this idea slightly by clustering the fea-

tures based on the type of dependency they encode. At a high level the features we use

in the STANDARD CRF model (on both tasks) may be divided into two types: those

that modellabel-labeldependencies and those that modellabel-observationdependen-

cies. Features in the first set model the dependency of a word’s label on the previous

word’s label, while features in the second set model the dependency of a word’s label

on properties of the word itself and possibly other information contained in the obser-

vations, like POS tags for words in a local neighbourhood of the word. These two sets

of features can be thought of as roughly corresponding totransitions andemissions

in hidden Markov models, and we will therefore refer to the two sets as “transitions”

and “emissions” in this section. Table 5.11 illustrates thetwo sets of features for NER.

We see that the mean count for “emissions” is less than that for “transitions”. A sim-
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Feature Set Number of Features Mean Feature Count

“transition” 29,726 12.12

“emissions” 159,613 6.71

Table 5.11: Properties of “transitions” and “emissions” feature sets on NER.

σt σe Development Test

∞ ∞ 88.21 81.60

101.4 44 90.18 83.69

44 18 90.09 83.83

75 25 90.05 83.57

Table 5.12: F scores for dependency types on NER.

ilar story is true for POS tagging. Because the two sets of features encode different

dependencies with correspondingly different mean counts,it may be appropriate to

regularise them separately. We do this as before by allocating an independent Gaus-

sian variance hyperparameter to each feature set and adjusting each hyperparameter

separately. In order to make the hyperparameter search manageable, we use the global

optimal Gaussian variance (across all parameters) as a starting point and adjust the

separate “transition” and “emission” variances around this.

Tables 5.12 and 5.13 give F scores on NER and accuracies on POStagging, respec-

tively, for representative dependency type models. In the tablesσt is the square root

of the Gaussian variance hyperparameter for the “transitions” andσe is the square root

of the Gaussian variance for the “emissions”. The main points from the results are as

follows:

1. All models, on both tasks, significantly outperform the unregularised STAN-

DARD model.

2. No model, on either task, significantly underperforms theSTANDARD model

regularised with a single Gaussian prior across all parameters.

These results support our idea that clustering features based on the role they play,

or dependencies they encode, and regularising different clusters separately, can be ben-

eficial. Of course, this approach to clustering is effectively orthogonal to the one we
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σt σe Development Test

∞ ∞ 96.76 96.32

5.1 3.2 97.10 96.73

3.2 2.4 97.11 96.74

3.7 2.7 97.11 96.73

Table 5.13: Accuracies for dependency types on POS tagging.

σ Development Test

STANDARD 88.21 81.60

620 89.20 82.97

Table 5.14: F scores for frequency-based individual feature regularisation on NER.

were taking in previous sections, which was based on the frequency of the features in

the training data. Therefore, in principle, the two could becombined, although once

again we would have the problem of a potentially very large hyperparameter search

space. The advantage of the clustering method presented in this section is that there

are only two clusters, yet we obtain results that are in some cases better (although

not significantly atp < 0.05) than those of the STANDARD model regularised with a

single Gaussian prior across all the parameters.

5.5.2 Individual Feature Regularisation

Recalling the hypothetical spectrum we described earlier,at one end of the spectrum

we have the standard case for regularisation (described in section 5.3) where all pa-

rameters are regularised to an equal degree. In this sectionwe move to the other end

of the spectrum, and look at regularisation at the level of granularity of the individual

parameter. We consider two ways in which we might do this. Thefirst is based solely

on feature frequency (like thefrequency cutoff andfrequency binsapproaches ear-

lier). The other involves feature frequency, but is a littlemore sophisticated and takes

context information into account.
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σ Development Test

STANDARD 96.76 96.32

0.87 97.03 96.54

Table 5.15: Accuracies for frequency-based individual feature regularisation on POS

tagging.

5.5.2.1 Frequency-Based

In principle we could stretch thefrequency binsapproach above to the extreme case

where each bin has a width of just one, so each parameter is regularised to a different

degree and we set each of the hyperparameters independentlyusing the development

set. Clearly, this would make the hyperparameter search space infeasibly large. How-

ever, as we alluded to earlier, we could instead constrain theratio by which each model

parameter is regularised with respect to all others, and allow the absolute degree of reg-

ularisation to vary with asingleindependent variable against this ratio. We can then

set this single independent variable using the developmentset. The task, then, would

be to define the ratio by which different model parameters areregularised with respect

to each other. We base this ratio on training data frequency of the associated features,

as in earlier sections. To see how we may do this, consider again the following set of

equations (explained in section 5.2.1) that hold at the optimal point when applying a

Gaussian prior:

Ep̃(o,s)[ fk]−Ep(s|o)[ fk] =
λk−µk

σ2
k

(5.9)

Assuming a Gaussian meanµk of zero, we have a right-hand side ofλk/σ2
k , with the

varianceσ2
k defining the level of regularisation for model parameterλk. Now, if we

setσ2
k = ckσ2 for a single independent variableσ , we constrain the relative amount

by which a model parameter is regularised in a way that depends on the count,ck,

of the associated feature in the training data. So the higherthe training data feature

count, the lower the degree of regularisation of the model parameter. The absolute

level of regularisation for each model parameter is then defined by setting the value of

σ , which can be done using the development data.

Tables 5.14 and 5.15 give F scores on NER and accuracies on POStagging, re-

spectively, for frequency-based individual feature regularisation (FB-IFR). Theσ val-
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Regularisation Development Test

STANDARD (None) 88.21 81.60

FCB-IFR 88.84 82.84

Table 5.16: F scores for feature and context-based individual feature regularisation on

NER.

Regularisation Development Test

STANDARD (None) 96.76 96.32

FCB-IFR 96.87 96.39

Table 5.17: Accuracies for feature and context-based individual feature regularisation

on POS tagging.

ues are given in each case. We can see from the tables that there is a large difference

in magnitude between theσ value for NER and that for POS tagging. However, this

difference is not particularly important – we would not expect the twoσ values to be

similar necessarily because they refer to different tasks,with datasets and feature sets

of different sizes.

The results in the tables show that in all cases the FB-IFR models significantly out-

perform the unregularised STANDARD model at thep < 0.05 level. However, except

for one case, the models also significantly underperform theSTANDARD model regu-

larised with a single Gaussian prior across all the parameters. What we are doing here

is very similar to applying a Gaussian prior with a single variance across all parame-

ters, but in such a way that the effect on each parameter is skewed using the feature

count. Given that the results we obtain are worse than with a single Gaussian prior, it is

possible that the feature count is not the most appropriate factor to use in determining

the regularisation ratio. In the next section we consider a slightly more sophisticated

method for determining the ratio.

5.5.2.2 Frequency and Context-Based

In many of the previous sections we have used the frequency ofa feature in the training

data to determine the level of regularisation to be applied to an associated model pa-

rameter. This was motivated by the idea that infrequent features are less representative
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of the underlying distribution than more commonly occurring ones, and so are more

likely to overfit to the idiosyncratic properties of the training data. Although this idea

is reasonable at a high level, it is slightly simplistic and alittle crude. In this section

we take a more sophisticated approach from a Bayesian viewpoint.

Recalling Equation 5.3, we see that the level of regularisation applied to a model

parameter takes the form of a discount to the expected count of the associated feature

on the training data. It is natural, therefore, that the sizeof this discount, controlled

through the hyperparameterσk, is related to our confidence in thereliability of the

empirical expected count. We must therefore formulate a measure of this confidence.

We follow the approach of Kazama and Tsujii (2003), who developed a method to do

this for a standard maximum entropy model. We extend the method here to CRFs.

The empirical expected countEp̃(o,s)[ fk] in Equation 5.3 of a featurefk is given by:

∑
o,s

p̃(o,s)∑
t

fk(st−1,st,o, t) = ∑
o

p̃(o)∑
s

p̃(s|o)∑
t

fk(st−1,st ,o, t) (5.10)

= ∑
o

p̃(o) ∑
t,s′,s′′

p̃(st−1 = s′,st = s′′|o) fk(s
′,s′′,o, t)

Now, our CRF features (see Chapter 3) generally have the following form:

fk(st−1,st ,o, t) =

{

1 if st−1 = s1, st = s2 andhk(o, t) = 1

0 otherwise
(5.11)

wheres1 ands2 are the labels associated with featurefk andhk(o, t) is a binary-valued

predicate defined on observation sequenceo at positiont. With this feature defini-

tion, and contracting notation for the empirical probability to save space,Ep̃(o,s)[ fk]

becomes:

∑
o

p̃(o) ∑
t,s′,s′′

p̃(s′,s′′|o)δ (s′,s1)δ (s′′,s2)hk(o, t) = ∑
o

p̃(o)∑
t

p̃(s1,s2|o)hk(o, t)

= ∑
o

p̃(o) ∑
t:hk(o,t)=1

p̃(s1,s2|o)

Contributions to the inner sum are only made at positionst in sequenceo where the

hk(o, t) = 1. Suppose that we make the assumption that at these positions p̃(s′,s′′|o) ≈
p̃(s′,s′′|hk(o, t) = 1). Then:

Ep̃(o,s)[ fk] = ∑
o

p̃(o) ∑
t:hk(o,t)=1

p̃(s1,s2|hk(o, t) = 1) (5.12)
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Now, if we assume that we can get a reasonable estimate of ˜p(o) from the training data

then the only source of uncertainty in the expression forEp̃(o,s)[ fk] is the term ˜p(st−1 =

s1,st = s2|hk(o, t)= 1). Since this term is independent of sequenceo and positiont, we

can model it as the parameterθ of a Bernoulli random variable that takes the value 1

when featurefk is active and 0 when the feature is not active buthk(o, t) = 1. Suppose

there area andb instances of these two events, respectively. We endow the Bernoulli

parameter with a uniform prior Beta distribution Be(1,1) and, having observed the

training data, we calculate the variance of the posterior distribution, Be(1+a, 1+b).

The variance is given by:

var[θ ] = V =
(1+a)(1+b)

(a+b+2)2(a+b+3)
(5.13)

The variance ofEp̃(o,s)[ fk] therefore given by:

var
[

Ep̃(o,s)[ fk]
]

= V

[

∑
o

∑
t:hk(o,t)=1

p̃(o)2

]

(5.14)

We may use this variance as a measure of the confidence we have in Ep̃(o,s)[ fk] as an

estimate of the true expected count of featurefk. We therefore adjust the Gaussian

varianceσ2
k for each model parameterλk according to this confidence measure for the

associated feature. Each such confidence measure is not variable at runtime time, so

can be calculated once off-line.

Tables 5.16 and 5.17 give results for feature and context-based individual feature

regularisation (FCB-IFR). From the tables, we see that the scores are worse than those

obtained with the FB-IFR models of the previous section. Only two of the four FCB-

IFR models significantly outperform the unregularised STANDARD model at thep <

0.05 level, andall significantly underperform the STANDARD model regularisedwith

a single Gaussian prior across all parameters.

In this section and the last we have looked at ways in which we may regularise

a model at the level of individual features while at the same time avoiding the need

to fit a large number of independent hyperparameters. Although other approaches to

achieving this goal clearly exist, the results of the last two sections suggest the task is

not easy. Our findings in earlier sections in this chapter suggested that improvements

could be made with more careful feature-specific regularisation, at the level of feature

clusters or individual features. However, combined with the results in the last two sec-

tions it seems we cannot easily achieve this objective without the inevitable trade-off
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Mean Development Test

0 89.86 83.97

0.1 90.16 84.03

0.5 90.44 84.68

0.6 90.47 84.43

1 90.35 84.51

5 87.43 81.36

10 87.16 81.13

Table 5.18: F scores for positive Gaussian prior means on NER.

Mean Development Test

0 89.86 83.97

−0.1 89.64 83.72

−0.5 89.11 83.20

−1 88.65 82.83

−5 88.26 82.51

−10 88.07 82.38

Table 5.19: F scores for negative Gaussian prior means on NER.

with a hyperparameter search space of high dimension. The compromise, therefore,

may be an approach which lies somewhere in the middle of the hypothetical spectrum

we described earlier. An example of such a compromise would be thedependency

types method of section 5.5.1.3, where we achieved better resultsthan with a single

Gaussian prior over all the parameters, but using only two independent hyperparame-

ters.

5.6 Varying the Gaussian Mean

In the last few sections we have considered how we may apply different levels of

regularisation to the features in a model. In each case we were using a Gaussian prior

over clusters of features and controlling the level of regularisation applied to each

cluster by adjusting the Gaussian variance associated withthat cluster. In this section
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Mean Development Test

0 97.07 96.69

−5 95.80 95.46

−1 96.86 96.48

−0.1 97.02 96.68

0.1 97.14 96.77

0.67 97.37 96.97

1 97.31 96.88

5 96.14 95.68

Table 5.20: Accuracies for non-zero Gaussian prior means on POS tagging.

we move on to consider another aspect of the Gaussian prior: the effect of varying the

mean of the distribution. When using a Gaussian prior it is usual to fix the mean at zero

because there is usually no prior information to suggest that we should penalise large

positive values of model parameters any more or less than large magnitude negative

values. It also simplifies the hyperparameter search, requiring the need to optimise only

the variance hyperparameter (or hyperparameters) rather than the mean and variance

jointly. However, it is unlikely that optimal performance is always achieved for a

mean value of zero. For example, particularly where onlysupportedfeatures3 are

instantiated, the features are likely to represent conjunctions of predicates defined on

the observations and labels that represent events that are likely to occur. This will

usually result in more features having associated parameters with positive values than

negative. This would typically result in parameter values with a positive mean.

To investigate this we allow the Gaussian mean to vary away from 0. In order

to simplify the hyperparameter search and avoid having to search the joint mean and

variance space, we use the variance at the optimal value we found earlier in section 5.3

(with a mean of zero). We then fix the variance at this value andallow the mean to

vary away from zero.

Tables 5.18 and 5.19 give F scores on NER for models trained inthis way, with non-

zero means. Table 5.18 shows models with positive means, while Table 5.19 shows

negative means. From the tables we observe that:

1. Models with negative values for the Gaussian mean performworse than the zero-

3Supportedfeatures are those that are observed in the training data (asexplained in Chapter 2).
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mean model. This is not surprising because, as we noted above, we expect the

optimal mean value to be positive.

2. Models with a range of small positive values for the Gaussian mean outperform

the zero-mean model.

3. The model with the optimal value for the Gaussian mean on NER has a mean of

0.6. This significantly outperforms the zero-mean model at thep < 0.05 level.

The pattern we see in Tables 5.18 and 5.19 for NER is also observed for POS tag-

ging. Table 5.20 gives illustrative results on this task, with both positive and negative

values of the Gaussian mean. The optimal value for the mean isonce again a small

positive value, this time around 0.67. These results confirm our conjecture about the

non-zero values for the Gaussian mean, and suggest that considerable benefit may be

gained from a well structured search of the joint mean and variance hyperparameter

space when using a Gaussian prior for regularisation. Once again, however, there is

of course a trade-off here between finding better hyperparameter values and suffering

increased search complexity.

5.7 The Inequality CRF

In this section we consider an alternative approach to CRF regularisation that addresses

the problem from a slightly different starting point. We derive a variant of the vanilla

CRF that has a regularising effect implicit in its form. We call this new model the

inequality CRF. Our model is an extension of a similar idea applied to maximum

entropy models by Kazama and Tsujii (2003).

In Chapter 2 we saw that when training the parameters of a CRF to maximise the

conditional log-likelihood of the training data, at the optimal point a set ofequality

constraints on feature expectations are satisfied. These have the form:

Ep̃(o,s)[ fk]−Ep(s|o)[ fk] = 0, ∀k (5.15)

Here the indexk runs over all features 1. . .K in the model, so we have one such con-

straint for each feature. These constraints enforce a strong condition on the model: that

the expected count of each feature under the model is equal tothe count of that feature

on the training data (the feature’s empirical expected count). In practice we may regard
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this condition as too strong in cases where we have a relatively small training set. For

example, for a sparse feature we may not believe that the empirical expected count

(calculated from the small training set) is a reliable estimate of that feature’s regularity

of occurrence in general. Consequently, we may not want to enforce the constraint

(from the set described in Equation 5.15) for that particular feature. Instead, we may

want torelax the constraint and allow the feature’s empirical expected count to act only

as a rough guide to what the expected count under the model should be.

When considering different families of priors earlier in this chapter, we saw that

for each feature a prior enforces the condition that the model’s expected count of the

feature bediscountedwith respect to the feature’s empirical expected count. This is

a kind of relaxing of the constraints in Equation 5.15. In this section, however, we

consider a different form of relaxation of these constraints. In particular, for each

feature we enforce the constraint that the model’s expectedcount for the feature lie

within a specified windowaroundthe feature’s empirical expected count (but not that

the two are necessarily equal). We therefore enforce a set ofconditions of the form:

Ak ≥ Ep̃(o,s)[ fk]−Ep(s|o)[ fk] ≥−Bk, Ak,Bk > 0 (5.16)

In 5.16 theAk andBk control the size of the window around the empirical expected

count for featurefk. So, if we have little confidence that the empirical expectedcount is

accurate forfk, we relax that constraint from the set in Equation 5.16 more by allowing

Ak andBk to be larger. Conversely, if we have greater confidence in theaccuracy of

the empirical expected count forfk, we relax the constraint less by makingAk and

Bk smaller. In the extreme case where we have absolute confidence in the empirical

expected count of all features, the set of constraints in Equation 5.16 collapses to the

original set of constraints in Equation 5.15. This is sayingthat the training data is a

perfect predictor for any future data, and we do not need any smoothing.

Using the set of constraints described in Equation 5.16 as a starting point, we may

define a modified CRF by solving an optimisation problem. We call this modified CRF

the inequality CRF, and describe it in the next section.

5.7.1 Modified Model

In Chapter 2 we defined a linear chain CRF as a model with the following distribution:
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p(s|o) =
1

Z(o)
exp

(

T+1

∑
t=1

K

∑
k=1

λk fk(st−1,st,o, t)

)

(5.17)

We show in Appendix A that this general form of CRF distribution is the solution to a

sequential maximum entropy problem that includes feature expectation constraints of

a form similar to those in Equation 5.15. This optimisation problem can be stated as

follows:

max
p(s|o)

H [p(s|o)] = −∑
o

p̃(o)∑
s

p(s|o) logp(s|o) (5.18)

s.t. Ep̃(o,s)[ fk]−Ep(s|o)[ fk] = 0, k = 1. . .K

Following our argumentation in the previous section regarding relaxation of the feature

expectation constraints, we now define a modified optimisation problem that includes

the constraints given in Equation 5.16. Our new problem is therefore:

max
p(s|o)

H [p(s|o)] = −∑
o

p̃(o)∑
s

p(s|o) logp(s|o) (5.19)

s.t. Ep̃(o,s)[ fk]−Ep(s|o)[ fk]−Ak ≤ 0, k = 1. . .K

Ep(s|o)[ fk]−Ep̃(o,s)[ fk]−Bk ≤ 0, k = 1. . .K

In Appendix B we show that the general solution to this problem has the form:

p(s|o) =
1

Z(o)
exp

(

T+1

∑
t=1

K

∑
k=1

(αk−βk) fk(st−1,st ,o, t)

)

(5.20)

where the parametersαk andβk are non-negative Lagrange multipliers that satisfy the

Karush-Kuhn-Tucker (KKT) conditions (Nocedal and Wright,1999):

αk (Ep̃[ fk]−Ep[ fk]−Ak) = 0, k = 1. . .K

βk (Ep[ fk]−Ep̃[ fk]−Bk) = 0, k = 1. . .K (5.21)

We call this model theinequality CRF. Note that the model has twice the number of

parameters as a standard CRF defined using the same feature set. Each model param-

eterλk from the standard CRF is effectively “split” into two independent non-negative

variables,αk andβk.
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5.7.2 Training

To train the new model we use a modified conditional log-likelihood objective. We

form the dual objective function corresponding to the solution in Equation 5.20 of the

optimisation problem in 5.19, and obtain (see Appendix B fordetails):

Λ(α,β ) = LL(α,β )−∑
k

αkAk−∑
k

βkBk (5.22)

αk ≥ 0, βk ≥ 0, k = 1. . .K (5.23)

We then maximise this adjusted conditional log-likelihood, with the parameters

constrained to satisfy the inequalities in 5.23. During theoptimisation we require the

gradient of the new objective. We know the form for the gradient of the log-likelihood

term in Equation 5.22 from a standard CRF, and the derivatives of the latter two terms

are trivial to evaluate. Therefore the gradient of the objective function is given by:

∂Λ(α,β )

∂αk
= Ep̃(o,s)[ fk]−Ep(s|o)[ fk]−Ak (5.24)

∂Λ(α,β )

∂βk
= Ep(s|o)[ fk]−Ep̃(o,s)[ fk]−Bk (5.25)

5.7.3 Quadratic Penalty Extension

The derivation of the inequality CRF above results in a modelthat is similar to a stan-

dard CRF with a prior (we explain this a little later, in section 5.7.6). However, we may

also include a quadratic penalty to the “new” parametersαk andβk which is similar to

explicitly defining a Gaussian prior over these parameters.Following the terminology

of Kazama and Tsujii (2003), who applied the same idea to a maximum entropy model,

we refer to this modified model as the inequality CRF with aquadratic penalty ex-

tension (QPE). In the extension the inequality constraints 5.16 are modified to include

slack variablesγk andδk, and the objective is altered to include penalty terms quadratic

in these variables. The new optimisation problem thereforebecomes:

maxp,δ ,γ H(p)−C1∑
k

δ 2
k −C2∑

k

γ2
k (5.26)

s.t. Ep̃(o,s)[ fk]−Ep(s|o)[ fk]−Ak ≤ δk

Ep(s|o)[ fk]−Ep̃(o,s)[ fk]−Bk ≤ γk
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whereC1 andC2 are constants. The general solution to this problem has the same

form as the basic inequality CRF. However, the dual objective function is different,

and becomes:

Λ′(α,β ) = Λ(α,β )−∑
k

(

α2
k

4C1
+

β 2
k

4C2

)

(5.27)

The gradient of the objective correspondingly becomes:

∂Λ′(α,β )

∂αk
= Ep̃(o,s)[ fk]−Ep(s|o)[ fk]−

(

Ak +
αk

2C1

)

(5.28)

∂Λ′(α,β )

∂βk
= Ep(s|o)[ fk]−Ep̃(o,s)[ fk]−

(

Bk +
βk

2C2

)

(5.29)

We can see that the additional terms entering into the objective and its gradient are

similar to the corresponding terms when using a Gaussian prior with a standard CRF.

Therefore the quadratic penalty extension simulates the addition of a Gaussian prior to

the inequality CRF. In effect we have two levels of regularisation, the implicit regular-

isation provided by the inequality CRF itself, and explicitregularisation provided by

the Gaussian-style prior.

5.7.4 Bounded Gradient-Based Optimisation

From Equation 5.20 we see that, in contrast to estimation fora standard CRF in Equa-

tion 5.17, the optimisation problem now involves bounds on the parameters, each pa-

rameter being non-negative. We must therefore use an optimisation routine that pro-

vides this facility. In our experiments, we use a bounded variant of limited memory

variable metric (LMVM), calledbounded limited memory variable metric (BLMVM)

(Benson et al., 2002). We use an implementation of the algorithm that is also contained

in the Toolkit for Advanced Optimisation (TAO) (Benson and More, 2001) (see Chap-

ter 3).

5.7.5 Model Sparsity

The inequality CRF has the tendency to produce sparse solutions. This is somewhat

similar to the situation with the Laplacian prior we discussed earlier in section 5.2.2.

To see why this sparseness occurs, note that from the KKT conditions in 5.21, because

Ak, Bk > 0, if αk is non-zero thenβk is zero, and vice versa. Hence eitherαk or
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βk, or both, are zero. When both are zero, the corresponding parameter is zero and

the solution becomes sparse if this occurs for many parameters. Also from the KKT

conditions, it can be seen that where eitherαk or βk is non-zero, the corresponding

equality constraint is most relaxed. The inequality constraints define a feasible region

within the entire parameter space. Cases where bothαk andβk are zero correspond

to points within the region, while cases where eitherαk or βk are non-zero correspond

to points on the boundary of the region. AsAk and/orBk are increased, the equality

constraints are relaxed further and the feasible region is enlarged. Hence increasing

the value ofAk and/orBk tends to make the solution to the optimisation problem in

5.19 more sparse.

5.7.6 Relationship to the Exponential Prior

The inequality CRF shares a strong connection with theExponential prior, which is a

one-sided version of the Laplacian prior we saw earlier in section 5.2.2. The Laplacian

prior and the inequality CRF are therefore also related. We discuss the relationship

between the inequality CRF and Exponential prior in this section.

For positive parameterα, an exponential distribution has a probability density

function:

p(x) =

{

αe−αx if x > 0

0 otherwise

}

(5.30)

Consequently, when using this distribution as a prior, parameter values are forced

to be non-negative. In general, for log-linear models (and CRFs) parameter values may

be positive or negative: a positive value indicating evidence for the event represented

by the feature and a negative value indicating evidence against the event. As Goodman

(2004) shows, one way to reconcile this situation is to create, for every featurefk, a

complementary featurẽfk representing the event which is a conditional complement

of that represented by the feature. In this case, rather thanhaving one parameterλk,

for fk, which could be positive or negative, we have two parameters, λk andλ̃k, for fk

and f̃k respectively, which are both non-negative. In a sense the negative evidence for

fk would be represented through the positive valueλ̃k. Goodman uses this approach to

derive GIS update equations for maximum entropy models withan Exponential prior.

However, using BLMVM, no ad hoc modification to existing update code is required

as the bound constraints are directly handled by the estimation method.
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If we assign an Exponential prior distribution to each parameterλk andλ̃k, with hy-

perparametersAk andBk respectively, then, ignoring constant terms that do not involve

the parameters, the regularised log-likelihood becomes:

LL(λ − λ̃ )−∑
k

λkAk−∑ λ̃kBk (5.31)

λk, λ̃k ≥ 0 (5.32)

and the gradient of the objective becomes:

∂Λ(λ − λ̃ )

∂λk
= Ep̃(o,s)[ fk]−Ep(s|o)[ fk]−Ak (5.33)

∂Λ(λ − λ̃ )

∂ λ̃k
= Ep(s|o)[ fk]−Ep̃(o,s)[ fk]−Bk (5.34)

Hence by applying the Exponential prior in this way, we arrive at the same problem

as that for the inequality CRF. Given the connection betweenthe Exponential and

Laplacian priors, the derivatives for the Exponential prior in Equations 5.33 and 5.34

above are similar in nature to the corresponding derivatives for the Laplacian prior in

Equation 5.6.

5.7.7 Window Width

The parametersAk andBk in the inequality constraints in 5.16 determine the size of

the “window” around the corresponding equality constraint, the amount by which the

equality constraint may be violated. We can think of theAk representing a set oflower

bounds and theBk representing a set ofupper bounds. As we reasoned earlier, the

window size should reflect our confidence in the value of the corresponding empirical

feature expectation. Therefore, we require a way to calculate this window size. To do

this we consider two distinct possibilities, which we callmodesof the inequality CRF:

• Mode 1: The lower and upper window bounds are constrained to be equal for a

given feature, and are fixed across features. Hence:

Ak = Bk = C, for all k (5.35)
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Mode Ak Bk Development Test

1 0.0005 0.0005 89.63 83.60

2 0.0005 0.0052 90.08∗ 84.04

Table 5.21: F scores for different inequality CRF modes on NER.

Mode Ak Bk Development Test

1 0.197 0.197 97.09 96.73

2 0.197 0.700 97.20∗ 96.84∗

Table 5.22: Accuracies for different inequality CRF modes on POS tagging.

• Mode 2: The lower and upper window bounds are allowed to vary independently

for a given feature, but are each fixed across features. Hence:

Ak = C andBk = D, for all k (5.36)

In addition to the two modes above, there is also the possibility of using thequadratic

penalty extension. This is orthogonal to the distinction between the modes, and could

in principle be applied to each mode. For our experiments we apply the QPE just

to mode 1 as an illustration of the possible improvement fromthe additional level of

regularisation.

5.7.8 Results

Tables 5.21 and 5.22 give F scores for NER and accuracies for POS tagging, respec-

tively, for the two modes of the inequality CRF. Note that we are not using the quadratic

penalty extension here. The main points from the results areas follows:

1. For both modes on both tasks the inequality CRF significantly outperforms the

unregularised STANDARD model at thep < 0.05 level.

2. For both modes on both tasks the inequality CRF does not significantly under-

perform the STANDARD model regularised with a Gaussian prior. In addition,

in three of the four cases (marked with an asterisk in the tables), mode 2 signifi-

cantly outperforms the STANDARD model regularised with a Gaussian prior.
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Mode Development Test

Gaussian 89.86 83.97

1 89.63 83.60

1 + QPE 89.97 83.81

Table 5.23: F scores for inequality CRF mode 1 with QPE on NER.

The results for mode 1 are not surprising because, as we saw earlier in the chapter,

in its basic form the inequality CRF shares a strong connection to the Laplacian prior of

section 5.2. The performance scores for mode 1 are similar tothose for the Laplacian

(and Gaussian) prior from that section. Mode 2 is the more interesting case. The extra

degree of freedom afforded by the independent adjustment ofthe Ak andBk bounds

allows for significant improvement over the Gaussian and Laplacian priors. With the

inequality CRF in mode 2 we have therefore improved on the aims of thedependency

typesapproach of section 5.5.1.3: we have been able to significantly improve on the

Gaussian prior using two adjustable bounds, or hyperparameters.

For the quadratic penalty extension, we simplify the searchfor values of theC1 and

C2 by constraining them to be equal to one independent adjustable parameter. Tables

5.23 and 5.24 give F scores for NER and accuracies for POS tagging, respectively,

for the QPE applied to mode 1. From the results we can see that in general scores

are higher with the QPE than without it. In addition, on both tasks scores with the

QPE are higher than those with the STANDARD model regularised with a Gaussian

prior. However, none of the results are significantly betterthan those of the Gaussian

prior at thep < 0.05 level. We conclude then that the QPE has positive, but limited

usefulness over and above the implicit regularising effectof the inequality CRF in

mode 1. Although we do not present results for the QPE appliedto inequality CRF

in mode 2, we expect that the results would show a similar marginal improvement to

those of mode 1.

5.7.8.1 Model Sparsity

In section 5.7.5 we saw how the inequality CRF creates sparsesolutions, with many

parameters taking zero values. In this section we looking briefly at this effect. Table

5.25 shows how model sparsity varies with window size for theinequality CRF in mode

1 on NER. Similar results can be observed for POS tagging. We see from the table that



5.7. The Inequality CRF 91

Mode Development Test

Gaussian 97.07 96.69

1 97.09 96.73

1 + QPE 97.11 96.72

Table 5.24: Accuracies for inequality CRF mode 1 with QPE on POS tagging.

Ak, Bk Parameter Count F Score

1e−06 431630 87.45

1e−05 359783 88.95

1e−04 91038 89.43

0.001 29951 89.60

0.01 17206 89.43

0.1 14054 89.06

1 6551 87.04

Table 5.25: Model sparsity for mode 1 on NER.

increasing the window size tends to lead to a more general model, i.e. one that is closer

to the uniform distribution. For small values of window sizethis is advantageous, as

we have seen, as there is less overfitting to the training data. However, for larger values

performance is adversely affected as the model becomes too sparse.

Figure 5.2 shows how the number of non-zero parameters varies as training pro-

gresses for an inequality CRF in mode 1 on NER. From the graph we see that the

number of non-zero parameters decreases near-monotonically during training. It may

be tempting to conclude from this that a possible efficiency gain for the inequality

CRF might be to remove zero-valued parameters from the modelearly so as to re-

duce the load on memory. However, we observed that during training some parameters

alternated in value between zero and non-zero, making the removal of zero-valued

parameters prematurely potentially dangerous.
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Figure 5.2: Model sparsity during training on NER.

5.8 Summary

In this chapter we have surveyed a number of conventional regularisation techniques

for CRFs, and compared their effectiveness. We started by considering very simple

approaches such as feature cutoff, and found them to be of little use when used with

a CRF. We then looked at the technique of using a prior distribution over the model

parameters, and compared three families of priors. Our findings suggest that the Gaus-

sian prior, although the most commonly used with CRFs in practice, is not clearly the

most natural choice and other possibilities exist. The Laplacian prior, for example,

attains very similar performance levels at no extra cost. Wethen moved on to consider

how to apply regularisation to feature subsets at differentlevels of granularity. Here

our general conclusion is that improvement may be made by applying regularisation

at the feature-specific level, whether it be over clusters offeatures or at the individual

feature level. However, this benefit is usually offset by theincreased complexity of

searching a high-dimensional hyperparameter space. Finally, towards the end of the

chapter, we considered an alternative approach to CRF regularisation by formulating

a variant of the standard CRF model that has a regularising effect implicit in its form.

We showed that this model can lead to significant performanceimprovement over a

standard CRF regularised with a Gaussian prior, at the cost of having to optimise only



5.8. Summary 93

one additional hyperparameter.

In the next chapter we move on to consider an alternative framework for CRF regu-

larisation based on the combination of separate CRF models in an ensemble structure.

Our aim is to employunregularisedCRFs in a more sophisticated way. In particu-

lar, we hope to avoid the need to search a high-dimensional hyperparameter space,

characteristic of conventional regularisation with a prior.





Chapter 6

Logarithmic Opinion Pools for CRFs

In the last chapter we saw how we may regularise a CRF by applying a prior dis-

tribution over the model parameters. We looked at a number ofdifferent priors and

compared their regularising effects. We also investigatedthe possibility of regular-

ising different model parameters to differing degrees, looking at a number of ways

in which this may be achieved. We ended the chapter by concluding that although

some improvements may be made to the conventional approach to CRF regularisation

through small modifications and extensions, it would be desirable instead to find a

different approach that avoids the need to search a (potentially large) hyperparameter

space. In this chapter we introduce such a framework. Our approach is based on a

form of CRFensemblecalled alogarithmic opinion pool (LOP). In the course of the

chapter we describe properties of the LOP, and compare its effectiveness as a method

for overfitting reduction with the priors used in the previous chapter.

Ensembles have been used for a number of years (Perrone and Cooper (1993), Sol-

lich and Kroghtree-s (1995)) and have been shown in many circumstances to reduce

generalisation error over that of the constituent models, particularly in cases where

the errors of the constituents are uncorrelated (Rosen (1996), Oza and Tumer (2001)).

Theoretical justification for this behaviour is provided bythe variance reducing prop-

erties of the ensemble (Geman et al. (1992)).

In neural networks, ensembles are oftenadditivein the sense that they are defined

by a weighted majority vote of network outputs (in the case ofclassification) or a

weighted average of network outputs (in the case of regression). As we have seen,

CRFs are log-linear models. As a consequence of this log-linear form, an additive

ensemble of CRFs assigns a probability to a particular labelling of a graph that con-

tainsn terms, wheren is the number of models in the ensemble. In general this sum

95
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does not factorise conveniently. Consequently it is difficult to devise a Viterbi-style

algorithm for efficient exact decoding with an additive ensemble of CRFs. However,

if we instead use amultiplicativecombination of CRFs we avoid such problems. The

probabilities associated with a given labelling across allmodels then factorise into a

single expression for the ensemble. We may calculate the partition function for this

ensemble tractably with the same complexity as for a standard (single model) CRF. It

is this ensemble model of CRFs, called a logarithmic opinionpool, that we introduce

in this chapter.

This is the first of two chapters investigating LOPs for CRFs.Here we look at

the simple case: combining CRF models under a LOP where the models themselves

are trained independently offline before the combination step. Then, in Chapter 7,

we move on to explore how we may train the models in a LOP simultaneously, with

parameters in different models interacting with each otherthrough the LOP framework.

The rest of this chapter is structured as follows: In section6.1 we introduce loga-

rithmic opinions pools in general and describe some of theirproperties, demonstrating

the fact thatdiversity between the models in a LOP is important. In section 6.2 we

move on to look at the specifics of how we apply LOPs to CRFs in particular. Sec-

tion 6.3 investigates possible sources of diversity between the models in a LOP, and

section 6.4 briefly discusses training and decoding considerations. In section 6.5 we

investigate the feature set as a source of diversity, while in section 6.6 we look at di-

versity creation through the dataset. Having considered only unregularised models in

a LOP up to this point, section 6.7 looks at LOPs created from regularised CRFs and

compares the two. In section 6.8 we briefly consider the effect of non-uniform weights

on the LOP. Then, in section 6.9, we investigate another possible ensemble model for

CRFs, thelinear opinion pool (LIP), and compare its properties and performance to a

LOP. Finally, in section 6.10, we conclude the chapter.

6.1 Logarithmic Opinion Pools

In this section we give a general, qualitative introductionto logarithmic opinion pools.

In the next section we give a more quantitative description,with precise mathematical

details.

Suppose we have a set of models{pα} where each model represents a conditional

distribution1 pα (y |x) over a set of random variablesY given another set of random

1Similar reasoning holds for an unconditional distribution. We use a conditional distribution here
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Figure 6.1: Diagrammatic representation of a LOP.

variables2 X. Suppose also that we have a set of weights{wα}, with weightwα in-

formally representing the confidence we have in the opinion represented by modelpα .

Given such a set of models, alogarithmic opinion pool (LOP) is a single model that

pools the opinions of the individual (or constituent) models. This is illustrated dia-

grammatically in Figure 6.1. The LOP has a distributionpLOP which is defined in terms

of aweighted product of the constituent distributionspα , with weightswα . Hence by

changing the individual distributionspα or the weightswα we may change the LOP

distribution pLOP. The LOP is therefore an ensemble of the constituent models,but,

importantly, it is a log-linear rather than linear combination of the constituents.

The weightswα may be defineda priori or may be learned automatically by op-

timising some objective criterion. Intuitively, each weight encodes the importance we

attach to the “opinion” of a particular model. For example, each distributionpα in Fig-

ure 6.1 could represent the opinion of a particular person ona range of topics. The LOP

would then represent the pooled opinions of the group, with the weights governing the

importance attached to the opinions of different people.

The concept of combining the distributions of a set of modelsvia a weighted prod-

uct is not new, and has been used in a number of different application areas. Bordley

(1982) derived the form for a LOP in the management science literature, applying an

axiomatic approach to the problem of aggregating expert assessments of an event’s

probability into a group probability assessment. Benediktsson and Swain (1992) com-

because, as we will see later, our modelspα are CRFs, with conditional distributions.
2For convenienceX andY are assumed to be discrete, but the same reasoning here and inthe next

section would follow for continuous random variables, withsummations replaced by the relevant inte-
grals.
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pared a number of consensus methods, including a LOP, for classification of geo-

graphic data from multiple sources, and Hansen and Krogh (2000) used a LOP of

neural networks to learn protein secondary structure. However, the idea of combining

CRFs under a LOP, which we present in this thesis, is new.

6.1.1 Definition

In this section we give a more quantitative description of a LOP. Given our set of

constituent models{pα} from section 6.1, and a set of associated weights{wα}, the

logarithmic opinion pool has a distribution given by:

pLOP(y |x) =
1

ZLOP(x) ∏
α

pα (y |x)wα (6.1)

with ∑α wα = 1, and whereZLOP(x) is the normalising function:

ZLOP(x) = ∑
y

∏
α

pα (y |x)wα (6.2)

In order to see how this form arises, we follow the reasoning of Heskes (1998). We

start by defining the LOP as the model that is “closest” to the constituent models.

For our purposes, closeness is defined in terms of Kullback-Leibler divergence (KL-

divergence), which we denote byK. The KL-divergence between two conditional

distributionsr1(y |x) andr2(y |x) is given by:

K (r1, r2) = ∑
x

p̃(x)∑
y

r1(y |x) log

[

r1(y |x)

r2(y |x)

]

(6.3)

wherep̃(x) is the marginal distribution ofx. Note that, although we use KL-divergence

as a distance measure between two probability distributions, it is not a metric because

it is not symmetric.

The closest modelpLOP to the constituent modelspα is then defined in terms of a

weighted KL-divergence, with real-valued weightsvα :

pLOP(y |x) = argmin
p(y|x)

∑
α

vαK (p, pα) (6.4)

We must ensure that the distribution overy for eachx is normalised, that is:
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∑
y

p(y |x) = 1,∀x (6.5)

In order to do this, we introduce Lagrange multipliersγx. The objective becomes:

L =

[

∑
α

vα ∑
x

p̃(x)∑
y

p(y |x) log

[

p(y |x)

pα (y |x)

]

]

−∑
x

γx

(

∑
y

p(y |x)−1

)

(6.6)

where p̃(x) is the marginal distribution ofx (typically defined by a finite sample of

data that we have).

Taking derivatives with respect top(y |x) and setting to zero, we get:

∑
α

vα p̃(x)

(

log

[

pLOP(y |x)

pα (y |x)

]

+1

)

− γx = 0 (6.7)

Then, setting∑α vα = N and expanding, we get:

Np̃(x) logpLOP(y |x)−∑
α

vα p̃(x) logpα (y |x)+Np̃(x)− γx = 0 (6.8)

and so:

pLOP(y |x) = exp

(

γx

Np̃(x)
−1

)

exp

(

∑
α

vα
N

logpα (y |x)

)

(6.9)

The term exp
(

γx
Np̃(x) −1

)

is dependent uponx but noty, and acts as a normalising

function. Denoting this by 1
ZLOP(x) , we obtain:

pLOP(y |x) =
1

ZLOP(x)
exp

(

∑
α

vα
N

logpα (y |x)

)

(6.10)

which may be re-arranged to the form given in Equation 6.1:

pLOP(y |x) =
1

ZLOP(x) ∏
α

pα (y |x)
vα
N (6.11)

From this we see that each weightwα in the LOP is given byvα
N , and so the con-

straint∑α wα = 1 falls out naturally from the derivation. Note, however, that there is
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no other constraint imposed on the weights. In particular, the weights may be positive

or negative. However, cases where some weights are negativeare sometimes less easy

to interpret than cases where all the weights are positive. To see this, consider a sit-

uation where we have two models,A andB, with probability distributionspA andpB

respectively. These distributions encode probabilities of four outcomes, which are la-

belled 1. . .4. The distributions are shown in Table 6.1. From the table wecan see that

modelA assigns a high probability of 0.97 to the first outcome but only 0.01 to each

of the others. By contrast, modelB considers all outcomes equally likely. Now imag-

ine a LOP consisting only of modelsA andB. Table 6.2 shows the LOP’s probability

distributions for various weights,wA andwB, assigned to the two models. As we read

across the table from left to right, we see increasing weightbeing assigned to model

B in the LOP, while modelA’s weight decreases. In the cases where bothwA andwB

are positive, that is, in the first three cases, we obtain a probability distribution for the

LOP which is in line with our intuition. For example, in the first case, where a weight

of 0.99 is assigned to modelA, we see that the distribution of the LOP is almost the

same as that of modelA. Conversely, in the third case, where the weights are reversed,

the distribution of the LOP is almost the same as that of modelB. For the second case,

where the weightswA andwB are each 0.5, the LOP distribution is somewhere between

the distributions for the two models. However, if we allocate a weight of greater than

1 to modelB, we obtain results such as those in the fourth and fifth cases.Here the

distribution of the LOP is not so clearly related to that of either modelA or model

B. Indeed as we continue to add more weight to modelB and take weight away from

modelA, the LOP distribution actually looks less like that of modelB. Hence by al-

lowing negative weights, or more generally weights with magnitude greater than one,

we may arrive at a situation where the resulting distribution of the LOP is less easy to

interpret intuitively. In addition, when assigning weights automatically via a training

algorithm, we may reduce the likelihood of overfitting by preventing the weights from

taking values with large magnitude. Forcing the weights to be non-negative is one way

of achieving this. As a result, from this point onwards we will impose the additional

constraint that the weights be non-negative.

6.1.2 The Ambiguity Decomposition

There has been much work in the last decade investigating theproperties of linear en-

sembles of learners. This has usually taken place within thefield of neural networks,
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Outcome pA pB

1 0.97 0.25

2 0.01 0.25

3 0.01 0.25

4 0.01 0.25

Table 6.1: Models A and B with probability distributions pA and pB respectively.

Outcome
Weights [wA, wB]

[0.99, 0.01] [0.5, 0.5] [0.01, 0.99] [−1, 2] [−4, 5]

1 0.9686 0.7665 0.2587 0.0034 0.0000

2 0.0105 0.0778 0.2471 0.3322 0.3333

3 0.0105 0.0778 0.2471 0.3322 0.3333

4 0.0105 0.0778 0.2471 0.3322 0.3333

Table 6.2: Probability distributions for a LOP comprising models A and B.

but the concepts apply generally to other types of learner. An ensemble is usually de-

fined either by a weighted majority vote of the outputs of the individual learners (in the

case of classification), or just a weighted average of the outputs of the individual learn-

ers (in the case of regression). Taking mean squared error asthe error function, Krogh

and Vedelsby (1995) demonstrate an important relationshipbetween the generalisation

error of a neural network ensemble and a property which they termed theambiguity

of the ensemble. This relationship may be expressed as:

EENS= Ē− Ā (6.12)

whereEENS is the generalisation error of the ensemble,Ē is the weighted generalisa-

tion error of the individual networks and̄A is the ensemble ambiguity. The ambiguity

is defined as the weighted sum of the ambiguities of each network. A single network

ambiguity measures the disagreement between the learner and the ensemble. This re-

lationship is often called theambiguity decomposition.

Heskes (1998) shows that a similar decomposition holds for alogarithmic opinion

pool of probability distributions. In particular, supposewe have some general condi-

tional distributionq(y |x). Then the followingambiguity decompositionholds for a
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LOP of probability distributions:

K (q, pLOP) = ∑
α

wαK (q, pα)−∑
α

wαK (pLOP, pα)

= E−A (6.13)

where, as before, thepα are constituent models in the LOP andK denotes KL-divergence.

The principal differences between the ambiguity decompositions of Krogh and

Vedelsby (in Equation 6.12) and Heskes (in Equation 6.13) are as follows:

1. In Equation 6.12 the ensemble members, for example neuralnetworks, output

scalar values representing a classification or the value of afunction, whereas in

Equation 6.13 the LOP members are any models representing conditional prob-

ability distributions.

2. In Equation 6.12 the outputs of the ensemble members are combined either by

a weighted majority vote or a weighted linear combination, whereas in Equa-

tion 6.13 the conditional probability distributions are combined using a weighted

product.

3. In Equation 6.12 the error measure is a mean squared error over the outputs

of the learners, whereas in Equation 6.13 the error measure is a KL-divergence

between probability distributions.

The termsE andA in Equation 6.13 are similar conceptually to their counterparts

(Ē andĀ) in Equation 6.12 above. The decomposition tells us that thecloseness of the

LOP model to the distributionq(y |x) is governed by a trade-off between theE and

A terms. TheE term represents the closeness of the individual constituent models to

q(y |x), and theA term represents the closeness of the individual constituent models to

the LOP, and therefore indirectly to each other. This latterterm represents theambigu-

ity or, as we shall often refer to it, thediversity of the LOP. Using the decomposition,

we see that in order for the LOP to be a good model ofq(y |x), we require models

pα (y |x) which are individually good models ofq(y |x) (having smallE) and/or di-

verse (having largeA). In principle we can devise approaches to explicitly manipulate

theE andA terms in order to create this situation. Indeed, this is whatwe do both later

in this chapter, and in other chapters. In most cases in this thesis we tend to focus more

on theA term than theE term, and look for ways of encouraging diversity.
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It is interesting to consider how regularisation of the individual constituent models

effects theE andA terms in the ambiguity decomposition. For example, the aim of

regularising an individual constituent model would usually be to improve its generali-

sation capability. When regularising all constituent models, this would hopefully have

the effect of decreasing theE term (as the constituent models would be closer to the

“true” underlying distribution). However, regularisation would also tend to bring the

constituent models closer to a given distribution. So regularising would tend to have

the effect of decreasing theA term (as the constituent models are all closer to the same

uniform distribution). The resulting generalisation capability of the LOP would de-

pend on the specific interaction of these two effects. We lookat this empirically later

in the chapter when we apply LOPs of CRFs to some sequence labelling tasks.

An important aspect of Equation 6.13 is that the ambiguity term does not involve

the distributionq(y |x), and can therefore be estimated using (possibly large amounts

of) other data, distinct fromq(y |x). More importantly, the other data can beunlabelled

because the ambiguity term only involves comparing distributions over labels for the

LOP and the individual models, rather than comparing eitherof these to some given

labelling.

A consequence of this property of the ambiguity term is that an unbiased estimate

of the generalisation error of the LOP may be obtained using across-validation en-

sembleprocedure (Hansen and Krogh, 2000). With a cross-validation ensemble one

has access to a labelled dataset for training and a large amount of unlabelled data. The

training data is divided inton equally sized portions, wheren is the number of con-

stituent models in the LOP. Each modelα is trained on all portions of the training data

except portionα. The error on portionα is independent of the training and can be

used to estimate the generalisation error of modelα. This is done for each member

α. The unlabelled data can be used to estimate the ambiguity term, as we saw above.

Using the estimates of the generalisation error for each model, and the ambiguity term

calculated using the unlabelled data, Equation 6.13 may be used to obtain an unbiased

estimate of the generalisation error of the LOP. Most importantly, this estimate may be

obtained while still utilising all of the training data for estimation, rather than requiring

that part of the training data be held out in order to estimatethe generalisation error.

6.1.3 Relation to Product of Experts

Hinton (1999) introduced a model similar to a logarithmic opinion pool which he called
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a Product of Experts (PoEs). PoEs have been applied to a number of different tasks

including handwriting recognition (Mayraz and Hinton, 2002), modelling character

strings and the symbolic family trees problem (Brown and Hinton, 2000). Under a

PoE, the probability of a particular labelling (or observation, as Hinton mainly works

with generative models) is given by the product of probabilities assigned by a set of

constituent models, or experts. The PoE is therefore similar in form to a LOP but has

unnormalised, uniform weights set to 1:

pPoE(x) =
∏α pα (x)

∑x′ ∏α pα (x′)
(6.14)

Given a set of observed data vectors, Hinton attempts to fit the PoE model by

maximising the log-likelihood of the data under the model. Following his notation, and

denoting the set of parameters in modelα by θα , the derivative of the log-likelihood

of a single observed data vectorx with respect to the parameters in modelα is:

∂ logpPoE(x |θ1, . . . ,θn)

∂θα
=

∂ logpα (x |θα)

∂θα

− ∑
x′

pPoE

(

x′ |θ1, . . . ,θn
) ∂ logpα (x′ |θα)

∂θα
(6.15)

Hinton works with models where although the calculation of the derivative of the

log-likelihood for a single expert (first term in Equation 6.15) is tractable, the calcula-

tion of the expected value in the second term is intractable because of the summation

over the space of all data vectors. This problem may be tackled in one of two ways:

• Use some form of sampling, for example Gibbs sampling, to sample from the

distributionpPoE(x′ |θ1, . . . ,θn) in the second term of Equation 6.15, and so ap-

proximate the value of the second term.

• Employ a different parameter estimation procedure, with a different objective

function.

Hinton (2002) takes the second alternative above, and introduces a parameter es-

timation technique that he callscontrastive estimation. Note that, as we see later,

our models are linear chain CRFs and so we can efficiently evaluate the equivalent of

the second term in Equation 6.15exactly, and do not need to resort to approximate

methods. We therefore do not use contrastive estimation in this thesis.
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6.2 LOPs for CRFs

Up to this point our discussion of LOPs has been very general,without regard to the

kind of models providing the distributionspα . From here on we make the discussion

more concrete, and consider LOPs of CRFs. We could apply the ideas we develop to

CRFs with any graphical structure, such as chains, trees or lattices. For illustration, we

use the sequential labelling tasks we described in Chapter 3. We therefore work with

CRFs with a linear chain structure. In this case, the variablesx represent an observation

sequence, for example a sequence of words in a sentence. The variablesy represent

a sequence of labels for the observation sequence. For example, in the case of named

entity recognition (NER)3, these would be NER labels.

To clarify the terminology that we will use from here onwards, note the distinc-

tion between theweights wα (sometimes referred to asper-model weights) used in the

weighted product in the LOP (appearing explicitly in Equation 6.1), and theparame-

tersλαk which parameterise each constituent CRFα (appearing implicitly in Equation

6.1 through thepα).

As we alluded to in the preamble to this chapter, because CRFsare log-linear mod-

els they are particularly well suited to combination under aLOP. To see this, consider

again Equation 6.1 and the form for a CRF distribution discussed in Chapter 2. It is

easy to see that when CRF distributions are combined under a weighted product, the

potential functions factorise so that the resulting distribution is itself that of a CRF.

This CRF has potential functions that are given by a weightedlog-linear combination

of the potential functions of the constituent models, with weightswα .

It is clear from the general form of the LOP that if any constituent model allocates

zero probability to a labellingy then the LOP’s probability for that labelling also col-

lapses to zero. Hence the opinion of each constituent model can act as a veto. This is a

potential weakness of the LOP form, but is not a problem for usbecause CRFs, being

exponential models, generally do not allocate zero probability to any labelling.

6.3 Sources of Diversity

In section 6.1.2, we saw how the ambiguity decomposition motivates the desire to

construct constituent modelspα for a LOP that are both individually good models of a

distribution and are diverse. Diversity between the constituent models may be created

3See Chapter 3 for a description of this task.
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in a number of different ways. The main strategies for introducing diversity explored

here are:

(1) Feature set. Constituent models are parameterised using different feature sets.

The feature sets may be created in one of two ways:

• Manually: feature sets are defined using human intuition about which sets

are likely to lead to models with diverse distributions. This is usually based

on feature sets providing alternative, diverse “views” on the data.

• Automatically: feature sets are generated using a feature induction/clustering

process by optimising some objective which tries to maximise diversity be-

tween the models as they grow.

In this thesis we explore only themanualcreation of feature sets above. The

automaticcreation of feature sets is a much harder problem and is beyond the

scope of the thesis.

(2) Training set. Constituent models are trained using different training sets. The

variation in the properties of the training sets creates diversity between the models

that are created using them. The different training sets maybe created in a number

of ways. Examples include:

• Partitioning: the training set is partitioned into subsets with each constituent

model being trained on a separate subset.

• Bagging: each constituent model is trained on a set re-sampled from the

original training set distribution.

• Boosting: training set instances are given different weights duringtraining

on the basis of how difficult they are to label.

In this thesis we explorebaggingas a representative example of diversity via the

training set.

(3) Training algorithm. The training algorithm is designed so that, in addition to

modelling the training set well, the constituent models areencouraged or forced

to be diverse from one another. This means that the models arecoupled during

the training process and the parameters in all the models aretrained together. We

call thisco-operative training, and investigate it Chapter 7. As we will see in that
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chapter, we introduce a penalty term in the objective function that explicitly tries

to maximise the ambiguity term for the LOP.

Note that the three approaches above are not mutually exclusive, and could be

undertaken in combination. However, for ease of expositionwe will deal with them

separately. In this chapter we look at cases (1) and (2), contrasting them as possible

sources of constituent model diversity. Case (3), the co-operative training, is a little

more involved and so is covered separately in Chapter 7.

Consistent with the Product of Experts model discussed in section 6.1.3, we will

often refer to the constituent models of a LOP of CRFs asexperts. Sometimes an

expert will focus on modelling a particular aspect or subsetof a probability distribution

well (hence the name). An example of this would be an expert that consists almost

entirely of features that fire for a particular label, thereby modelling the distribution of

that label while effectively ignoring the details of the distributions of other labels. At

other times an expert may model the entire distribution but with an alternative “view”

to another expert. An example here would be two experts whichmodel the distribution

of all labels, but which consist of different feature sets. Sometimes we will also use

the nameconstituent modelfor expert (as we have been doing so far). Therefore, for

the rest of the thesis, we will treat the two terms as interchangeable.

6.4 Training and Decoding

In this chaptertraining simply refers to the process of estimating the parameters of

the constituent models. Each constituent model is trained independently of the others,

offline. The constituent models are then combined under a LOPwith uniform weights,

i.e. each model being weighted equally. As we saw in section 6.2, a LOP of CRFs

is itself a CRF. Consequently, decoding the LOP is no more computationally complex

than decoding with a standard CRF.

6.5 Diversity via the Feature Set

In this section we focus on trying to manually create diverseexperts by manipulating

the feature set that each expert uses. To do this we first definea pool of features and

then create different partitions of this pool. For the pool we use the feature set of the

STANDARD CRF, described in Chapter 4. Each partition of the feature set defines
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a set of experts. We call such a set anexpert set. The expert sets we use for our

experiments are described below.

6.5.1 Expert Sets

The expert sets we use to build LOPs are defined via our intuition about which group-

ings of features should result in a set of accurate and diverse experts. Usually these

experts are designed to focus on modelling a particular aspect or subset of the distri-

bution. As we saw earlier, the aim here is to define experts that model parts of the

distribution well while retaining diversity. In this section we describe four expert sets.

We include the STANDARD CRF model in each expert set, as one ofthe experts.

6.5.1.1 Label

MISC

PER

LOC

ORG

STANDARD

Figure 6.2: LABEL expert set for NER.

The LABEL expert set consists of the STANDARD CRF and a partition of the

features in the STANDARD CRF into five experts, one for each label. For NER an

expert corresponding to label X consists only of features that involve labels B-X or I-X

at the current or previous positions, while for POS tagging an expert corresponding

to label X consists only of features that involve label X at the current or previous

positions. This situation is illustrated in Figure 6.2 for the NER case. Here the shaded

oval, representing all features in the STANDARD model, is partitioned into subsets

corresponding to each NER label. In this expert set the experts focus on trying to

model the distribution of a particular label.
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POSITIONAL 0

POSITIONAL 1

POSITIONAL −1

STANDARD

Figure 6.3: POSITIONAL expert set.

6.5.1.2 Positional

ThePOSITIONAL expert set consists of the STANDARD CRF and a partition of the

features in the STANDARD CRF into three experts, each consisting only of features

that involve events either behind, at or ahead of the currentsequence position. This

is illustrated in Figure 6.3. The experts in this expert set focus on trying to model the

dependence of the current prediction on different positional information.

6.5.1.3 Simple

STANDARD

SIMPLE

Figure 6.4: SIMPLE expert set.

TheSIMPLE expert set consists of the STANDARD CRF and just a single expert:

the SIMPLE CRF described in Chapter 4 (one of the reference models from that chap-

ter). This situation is illustrated in Figure 6.4. The SIMPLE CRF models the entire

distribution rather than focusing on a particular aspect orsubset, but is much less ex-

pressive than the STANDARD model. The SIMPLE model comprises 24,819 features

for NER and 18,482 features for POS tagging.



110 Chapter 6. Logarithmic Opinion Pools for CRFs

6.5.1.4 Random

RANDOM 1

RANDOM 4

RANDOM 3

RANDOM 2

STANDARD

Figure 6.5: RANDOM expert set.

TheRANDOM expert set consists of the STANDARD CRF and random partitions

of the features in the STANDARD CRF into four experts. This isillustrated in Figure

6.5. This expert set acts as a baseline to ascertain the performance that can be expected

from an expert set that is not defined via any linguistic intuition.

6.5.2 Results

6.5.2.1 Experts

Before presenting results for the LOPs, we briefly give performance figures for the

STANDARD CRF and expert CRFs in isolation. For illustration, we do this for NER

models only. Table 6.3 shows F scores on the development set for the NER experts.

At the top we have the STANDARD CRF, consisting of the entire feature set, both un-

regularised and regularised with a Gaussian prior. We then have the individual experts

from each expert set presented in section 6.5.1. We see that,as expected, the expert

CRFs in isolation model the data relatively poorly comparedto the STANDARD CRF.

For example, some of the label experts attain very low F scores as they focus only on

modelling one particular label. Similar behaviour was observed for the POS tagging

models.

6.5.2.2 LOPs

Having defined and trained the experts above, we combine the experts from a given ex-

pert set under a LOP with uniform weights. Table 6.4 gives F scores for the resulting
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Expert F score

STANDARD unreg. 88.21

STANDARD reg. 89.86

LABEL LOC 8.82

LABEL MISC 8.38

LABEL ORG 9.47

LABEL PER 11.86

LABEL O 58.52

POSITIONAL -1 73.07

POSITIONAL 0 86.98

POSITIONAL 1 73.15

SIMPLE 79.53

RANDOM 1 71.19

RANDOM 2 69.11

RANDOM 3 73.29

RANDOM 4 69.30

Table 6.3: Development set F scores for individual NER experts.

LOPs on NER. Scores for both unregularised and regularised versions of the STAN-

DARD CRF are included for comparison. From the table we observe the following

points for NER:

1. In every case except one the LOPs outperform the unregularised STANDARD

CRF on both the development and test sets at a significance level of p < 0.05.

The one exception is the LOP with RANDOM experts on the development set,

which, although obtaining a higher F score than the unregularised STANDARD

CRF, does not outperform it at thep < 0.05 level. However, as we discussed in

section 6.5.1.4, the RANDOM expert set is only intended as a baseline.

2. In every case except the LOP with RANDOM experts on the development set,

the LOPs do not significantly underperform theregularisedSTANDARD CRF

at a significance level ofp< 0.05. Indeed, in the case of the SIMPLE expert set,

LOPs on both the development and test sets outperform the regularised STAN-

DARD CRF.
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Our results for NER therefore show that uniformly-weightedLOPs with unregu-

larised experts can lead to performance improvements over an unregularised STAN-

DARD CRF that equal or exceed those achieved from a conventional regularisation

approach using a Gaussian prior.

The results for LOPs on POS tagging show the same general trends as those on

NER, but with some of the above characteristics being slightly less marked. Table

6.5 gives accuracies on POS tagging for the LOPs corresponding to those in Table

6.4 on NER. As before, scores for both unregularised and regularised versions of the

STANDARD CRF are included for comparison. In every case except the RANDOM

expert set on the development set, the LOPs significantly outperform the unregularised

STANDARD CRF. In addition, the LOP with the SIMPLE expert setsignificantly

outperforms the regularised STANDARD CRF on the development set, and none of

the LOPs on the test set are significantly worse than the regularised STANDARD CRF.

The POS tagging results therefore support our findings on NER.

In addition to providing a competitive alternative to conventional regularisation

with a prior, the LOP approach, when used with unregularisedexperts, has the added

advantage that it is “parameter-free”. By this we mean that each expert CRF in the

LOP is unregularised, so we are not required to search a hyperparameter space. As

an illustration, to obtain our best results for the POS tagging regularised STANDARD

model, we re-trained using 15 different values of the Gaussian prior variance. With the

LOP we trained each expert CRF onlyonce.

Another important difference between the LOP approach presented here and that

of conventional regularisation with a prior is that the experts that comprise the LOP

are generally small, compact models that are fast to train. In the case of conven-

tional regularisation, however, it is the STANDARD model that must be re-trained

many times for different hyperparameter values. We conclude, then, that using experts

defined by intuitively-motivated feature partitions in a uniformly-weighted LOP can

provide a competitive alternative to conventional regularisation using a prior, and is

much cheaper computationally.

6.5.3 Choice of Expert Sets

We can see from Tables 6.4 and 6.5 that the performance of a LOPof CRFs varies with

the choice of expert set. For example, in our tasks the SIMPLEand POSITIONAL

expert sets perform better than those for the LABEL and RANDOM sets. For an ex-
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Model/LOP Development set Test set

STANDARD unreg. 88.21 81.60

STANDARD reg. 89.86 83.97

LABEL 89.23 83.55

POSITIONAL 89.86 84.50

SIMPLE 90.06 84.03

RANDOM 88.77 83.13

Table 6.4: F scores for LOPs of uniformly-weighted expert sets on NER.

Model/LOP Development set Test set

STANDARD unreg. 96.76 96.32

STANDARD reg. 97.07 96.69

LABEL 96.86 96.62

POSITIONAL 96.91 96.65

SIMPLE 97.30 97.09

RANDOM 96.81 96.66

Table 6.5: Accuracies for LOPs of uniformly-weighted expert sets on POS tagging.

planation here, we refer back to our discussion of Equation 6.13. We conjecture that

the SIMPLE and POSITIONAL expert sets achieve good performance in the LOP be-

cause they consist of experts that are diverse while simultaneously being reasonable

models of the data. The LABEL expert set exhibits greater diversity between the ex-

perts, because each expert focuses on modelling a particular label only, but each expert

is a relatively poor model of the entire distribution and thecorresponding LOP per-

forms worse. Similarly, the RANDOM experts are in general better models of the

entire distribution than the LABEL experts but tend to be less diverse because they do

not focus on any one aspect or subset of it. Intuitively, then, we want to devise experts

that provide diverse but accurate views on the data.

The expert sets we present in this chapter are motivated by linguistic intuition, but

clearly many other choices exist. One possibility would be to develop a framework

that establishes the feature partitions automatically, using a feature induction process

across all the constituent models simultaneously. We discuss this briefly in the future
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work section of Chapter 9.

6.6 Diversity via the Dataset

Having investigated the feature set as a possible source of diversity in the previous

section, in this section we consider the training data as thesource. To do this we

create a set of constituent models using a fixed set of featuretemplates (the same set

as earlier) but instantiate these templates on varying training datasets. To create the

extra datasets webag the training data. Specifically, we randomly select sequences

from the training data, with replacement, to create a new dataset of the same size as

the training data. We do this 15 times in total for each task, to create a set of bagged

training datasets. We then use the feature templates of the STANDARD CRF model to

instantiate and extract features on each of the bagged training datasets. Clearly, each

bagged dataset is a subset of the original training dataset.Therefore, each feature set

derived from a bagged dataset will be a subset of the feature set of the STANDARD

model. For NER, the STANDARD model has 450,346 features, whereas the feature

sets from the bagged training datasets have sizes ranging from 331,572 to 336,871

features, with a mean size of 334,039. Similarly, for POS tagging the STANDARD

model has 189,339 features, whereas the feature sets from the bagged training datasets

have sizes ranging from 144,219 to 147,838 features, with a mean size of 145,796.

Having created the feature sets, we train the correspondingmodels without regu-

larisation. Clearly, as the bagged models are trained on less data than the STANDARD

model for each task, we would expect them to individually underperform the STAN-

DARD model. To illustrate, on NER the unregularised STANDARD model obtains an

development set F score of 88.21, whereas the bagged models obtain development set

F scores ranging from 84.62 to 85.48, with a mean score of 85.04. A similar pattern is

observed for POS tagging.

For each task, we then combine the bagged models under a LOP and decode the

development and test sets. We would like to see whether the number of constituent

models in the LOP affects performance, so we create LOPs of size 3, 5 and 15. For the

LOPs of size 3 and 5 we create several constituent model sets from randomly selected

bagged models and average the results. For the LOP of size 15,we clearly only have a

single constituent model set, containing all the bagged models.

Table 6.6 gives F scores on NER for uniformly-weighted LOPs constructed from

bagged CRF models. Table 6.7 gives accuracies for the corresponding LOPs on POS
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tagging. In each case we include scores for the unregularised and regularised versions

of the STANDARD model. From the tables we can see that:

1. As the number of constituent models in the LOP increases, scores generally im-

prove. For LOPs of size 3 and 5, the results are little better than the unregularised

STANDARD CRF in most cases, and worse in some cases.

2. The results for the LOP of size 15 are closer to those of the LOPs of the last

section, where we were using feature set experts. In three ofthe four cases, the

LOP of size 15 significantly outperforms the unregularised STANDARD CRF at

thep< 0.05 significance level, and in two of the four cases does not significantly

underperform the regularised STANDARD CRF.

These results generally show that using the training data asa source of diversity for

the creation of constituent models is not as effective as using the feature set. The

bagged model LOPs do provide some improvement over the unregularised STAN-

DARD model in some cases, but the results are generally not competitive with those

of the regularised STANDARD model.

From the point of view of diversity, these results are to be expected. The feature set

experts of the previous section are intuitively more diverse than the constituent models

in this section. For example, the LABEL experts each focus onmodelling a different

aspect of label distribution, and have very little overlap of their feature sets. In contrast,

as we saw above in this section, the bagged CRF models have significant feature set

overlap with the STANDARD model, and therefore with each other. Note that bagging

the training set and partitioning the feature set are essentially orthogonal approaches

for creating constituent models for LOPs, so it would be possible to develop hybrid

schemes that combine the two.

There are other disadvantages with using bagged models in LOPs, as compared to

feature set experts. Firstly, it appears that LOPs of baggedmodels only attain good

performance when a large number of constituent models are included. This means

total training time is longer than with the smaller expert sets of the previous section.

Secondly, each bagged model is relatively large, containing a substantial proportion

of the features in the STANDARD model. This makes the bagged models slow to

train. The feature set experts, by contrast, are generally quite small models and so

are faster to train. These factors contribute to our conclusion that using the training

data as a source of diversity for creating constituent models for LOPs is of limited use.
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Model/LOP Development Test

STANDARD unreg. 88.21 81.60

STANDARD reg. 89.86 83.97

Mean 3 87.05 81.78

Mean 5 87.57 82.29

Mean 15 88.05 83.14

Table 6.6: F scores for LOPs of uniformly-weighted bagged models on NER.

Model/LOP Development Test

STANDARD unreg. 96.76 96.32

STANDARD reg. 97.07 96.69

Mean 3 96.72 96.43

Mean 5 96.83 96.52

Mean 15 96.95 96.64

Table 6.7: Accuracies for LOPs of uniformly-weighted bagged models on POS tagging.

Consequently, from this point onwards in the thesis we will focus on LOPs containing

feature set experts.

6.7 LOPs with Regularised Experts

All of the results presented so far in this chapter have involved LOPs with unregularised

constituent models. In this section we relax this constraint and consider the effect

on LOP performance of using regularised experts. We regularise the experts using a

Gaussian prior over the model parameters, the Gaussian being representative of the

different priors we considered in Chapter 5.

Table 6.8 shows F scores on NER for LOPs created from regularised versions of the

feature set experts described in section 6.5. We include theresults for the unregularised

models for comparison. Table 6.9 gives accuracies for the corresponding models on

POS tagging. The results show that regularising the expertshas a mixed effect on LOP

performance, with no consistent pattern emerging. In some cases scores improve, in

other cases they worsen. Viewing this from a diversity angle, this is not surprising.
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LOP
Unregularised Regularised

Development Test Development Test

LABEL 89.23 83.55 89.68 84.10

POSITIONAL 89.86 84.50 89.21 82.84

SIMPLE 90.06 84.03 90.00 84.89

RANDOM 88.77 83.13 88.65 83.01

Table 6.8: F scores for LOPs with uniformly-weighted unregularised and regularised

expert sets on NER.

LOP
Unregularised Regularised

Development Test Development Test

LABEL 96.86 96.62 96.66 96.39

POSITIONAL 96.91 96.65 96.78 96.61

SIMPLE 96.30 97.09 97.34 97.23

RANDOM 96.81 96.66 96.16 96.08

Table 6.9: Accuracies for LOPs with uniformly-weighted unregularised and regularised

expert sets on POS tagging.

When regularising the constituent models, usually the generalisation capability of the

individual models will improve, but the models will also tend to drawn closer to the

uniform distribution, and therefore to each other. Hence there will be a trade-off be-

tween individual constituent model accuracy and diversitybetween the models. The

result of this trade-off is difficult to predict, and will vary with the LOP. Of course,

using regularised experts in a LOP negates the “parameter-free” aspect that we earlier

proposed as a strength of the LOP with unregularised experts.

6.8 Non-Uniform Weights

So far in this chapter we have only considered LOPs with uniform weights. We have

seen that particularly good results may be obtained by combining unregularised fea-

ture set experts in a LOP where all models are equally weighted. However, it is clearly

possible to employ non-uniform weight combinations in a LOP. Doing so gives pref-
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LOP Development set Test set

SIMPLE uniform 90.06 84.03

SIMPLE manual 90.07 84.54

Table 6.10: F scores for manually-weighted SIMPLE LOPs on NER.

LOP Development set Test set

SIMPLE uniform 97.30 97.09

SIMPLE manual 97.34 97.18

Table 6.11: Accuracies for manually-weighted SIMPLE LOPs on POS tagging.

erence to the opinion of some models over others. To find a suitable set of weights

for a given set of constituent models in a LOP, we may generally use one of methods:

manualadjustment orautomaticsearch.

Efficient manual weight adjustment is difficult for LOPs thatcontain more than

two constituent models as these LOPs have at least twoindependentweights4. Search-

ing for an optimal set of weights in this situation is akin to the problem of searching

for optimal hyperparameters for a multi-dimensional prior, that we saw in Chapter 5.

However, LOPs of size two only have one independent weight, which may easily be

optimised using a development set. We do this for the SIMPLE LOPs with unregu-

larised experts we saw in section 6.5.2. Tables 6.10 and 6.11show F scores on NER

and accuracies on POS tagging, respectively, for these SIMPLE LOPs with manually

adjusted weights. We can see that on both tasks improvementscan be made over the

uniformly-weighted LOPs by manually adjusting the weightsaway from the uniform

distribution. Development set scores for the manually-adjusted LOPs are higher than

those of the uniform LOPs, but not significantly so at thep < 0.05 level. However, on

both tasks test set scoresaresignificantly higher.

As for automatic determination of optimal weight combinations, different possibil-

ities exist. One approach is to formulate a relevant objective function and optimise it.

One candidate here is the log-likelihood of the LOP as a function of the weights. In

this setup we fix the constituent models in their pre-defined state and train the weights

in the LOP as a separate process. To do this we must evaluate the derivatives of the

4Remember we are working with normalised weights.
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log-likelihood with respect to the weights. This is relatively straight forward, with

the derivatives taking a form that is similar to the derivatives for a standard CRF with

respect to its parameters. In particular, the expected value of every feature in each

constituent model under the LOP distribution must be evaluated. This can be achieved

efficiently using the standard forward-backward algorithmbecause, as we noted earlier,

the LOP is itself a CRF. We employed this weight-training procedure for the feature

set experts described in section 6.5. We found that the approach led to minimal im-

provements in performance over the corresponding LOPs withuniform weights. One

possible reason for this is that in general the feature set expert sets we have been using

contain constituent models that are of roughly equal quality (with the possible excep-

tion of the SIMPLE expert set). For these expert sets the bestweight combinations

probably do not lie very far from the uniform distribution, so any automatic process

will struggle to significantly improve on the uniform LOPs. It is possible, therefore,

that this automatic procedure may perform better for LOPs that contain a greater dif-

ferential in the quality of the constituent models. We leavethis possibility as an avenue

for further work.

6.9 Linear Opinion Pools

At the beginning of this chapter we saw how a LOP is a natural candidate for an

ensemble model of CRFs due to the exponential form of the CRF distribution: a set

of CRFs combined under a LOP is itself another CRF. Clearly, if we combine CRFs

using an additive ensemble rather than a multiplicative one, we do not obtain such an

elegant compact representation. However, it is still interesting to ask the question as

whether there is an efficient way to decode a additive model ofCRFs, and how such a

model would perform in comparison to a LOP. In this section weconsider these issues.

In contrast to a LOP, an additive model of classifiers is called alinear opinion pool

(LIP) . Using our notation for CRF distributionspα and per-model weightswα from

earlier in this chapter, we define a LIP of CRFs as:

pLIP (y |x) = ∑
α

wα pα (y |x) (6.16)

with ∑α wα = 1. Unlike a LOP, with a LIP there is no requirement for a normalising

function because the right-hand side of Equation 6.16 is already normalised. To see

this, we sum over all sequencesy:
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∑
y

pLIP (y |x) = ∑
y

∑
α

wα pα (y |x)

= ∑
α

wα ∑
y

pα (y |x)

= ∑
α

wα

= 1 (6.17)

Our question, then, is whether we can efficiently decode a LIPusing a Viterbi algo-

rithm. We want to find the Viterbi pathy∗ wherey∗ = argmaxy pLIP (y |x) for a given

observation sequencex. Let us first expand the definition of the Viterbi path here:

argmax
y

pLIP (y |x) = argmax
y

[

∑
α

wα pα (y |x)

]

= argmax
y

[

∑
α

wα
Z(x)

exp

(

∑
t

∑
k

fαk (yt−1,yt , t)

)]

(6.18)

wheret runs over the cliques in a sequence,k runs over the features in a model and

fαk is thekth feature in modelα. It is tempting to define a Viterbi-style algorithm

that moves left to right through a lattice maximising the partial sum (i.e. up to a

certain point in the sequence) on the right-hand side of Equation 6.18. However, a

little thought shows that this would not necessarily recover the Viterbi path of the LIP.

The reason is that the partial sums contain co-efficientswα
Z(x) that are “wrong” except

on the last clique of the sequence. This is because the partition functionsZ(x) for each

sequence cover the whole sequence, rather than the partial sequence to a particular

point. As a result, it is difficult to see a simple way to decodethe LIP using a Viterbi

algorithm.

One solution to this problem involves making a approximation. Rather than seek-

ing the Viterbi path of the LIP, we may instead look for the path that maximises the

product of the LIP’s marginal label probabilities at each point in the sequence. We

make the assumption that this latter path is a good approximation for the Viterbi path.

Indeed, in many cases the two paths will coincide. We are assuming, then, that:

pLIP

(

y = y′ |x
)

≈ ∏
t

pLIP

(

yt = y′t |x
)

(6.19)

But we know that:
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pLIP

(

yt = y′t |x
)

= ∑
y:yt=y′t

pLIP (y |x)

= ∑
y:yt=y′t

∑
α

wα pα (y |x)

= ∑
α

wα ∑
y:yt=y′t

pα (y |x)

= ∑
α

wα pα
(

yt = y′t |x
)

(6.20)

Hence the LIP’s marginal label distribution at given point is equal to the weighted sum

of the marginal label distributions of the constituent models at that point, using the

weightswα . Therefore, using Equation 6.19:

argmax
y

pLIP (y |x) = argmax
y

[

∏
t

∑
α

wα pα (yt |x)

]

= ∏
t

[

argmax
yt

[

∑
α

wα pα (yt |x)

]]

(6.21)

From this we can see that in order to decode a sequence with observationx we need to

do the following:

1. Calculate the pointwise marginal label distributionspα (yt |x) for each modelα
at each pointt. This can be achieved by conducting a backward sweep through

the decoding lattice, and is explained in Chapter 2.

2. Take a weighted sum of these marginal distributions at each point t using the

weightswα .

3. For each pointt select the label that corresponds to the highest probability in the

weighted marginal distribution at that point.

In order to compare the performance of LIPs and LOPs, we use the procedure

described above to decode a set of uniformly-weighted LIPs.Table 6.12 gives F scores

on NER for LIPs that consist of the feature set experts described in section 6.5. The

F scores for the corresponding LOPs are included for comparison. Table 6.13 gives

similar data on POS tagging, with accuracies replacing F scores. From the tables we

see that for both tasks, in every case except one, the scores obtained by the LOPs

are higher than those of the LIPs on both the development and test sets. For NER,

of the eight pairwise comparisons, five of them represent a significant performance
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Opinion Pool
LOP LIP

Development Test Development Test

LABEL 89.23 83.55 88.59 82.24

POSITIONAL 89.86 84.50 88.73 82.32

SIMPLE 90.06 84.03 89.33 82.99

RANDOM 88.77 83.13 87.28 81.23

Table 6.12: F scores for LOPs and LIPs with uniformly-weighted expert sets on NER.

improvement of the LOP over the corresponding LIP at thep< 0.05 significance level.

Equally, for POS tagging, six of the eight pairwise comparisons result in a significant

improvement for the LOPs.

The two primary factors responsible for the differences in performance between

the LOPs and the LIPs are likely to be the combination method (additive versus multi-

plicative) and the approximation method (as compared to an exact decoding). It is not

clear which of these factors dominates. In a sense, though, this is unimportant because

even with the approximation the LIP is significantly more complex to decode than the

LOP. With a LIP, using the method above, each constituent model must decode sepa-

rately, including both a forward and backward sweep throughthe lattice. With a LOP,

by contrast, the constituent models are combined upfront and only one decoding takes

place, with only the forward sweep through the lattice needed to recover the Viterbi

path. Therefore the LOP seems to be by far the more preferablechoice. As a result,

we will not be considering LIPs beyond this point in the thesis.

Note that Sutton et al. (2006) also consider linear ensembles of CRFs, looking at

both sequential and pointwise combinations. They reach similar conclusions to the

ones we reach here.

6.10 Summary

Following our examination of conventional regularisationtechniques for CRFs in Chap-

ter 5, in this chapter we moved on to introduce an alternativeframework for CRF

regularisation based on a form of ensemble model. The model,called alogarithmic

opinion pool, combines a set of CRFs in a weighted product. The LOP is a natural

choice for a CRF ensemble due to the exponential form of the CRF distribution. We
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Opinion Pool
LOP LIP

Development Test Development Test

LABEL 96.86 96.62 96.52 96.45

POSITIONAL 96.91 96.65 96.93 96.60

SIMPLE 97.30 97.09 97.23 97.01

RANDOM 96.81 96.66 96.64 96.31

Table 6.13: Accuracies for LOPs and LIPs with uniformly-weighted expert sets on POS

tagging.

described the properties of a LOP, and, in particular, saw how a LOP satisfies an am-

biguity decomposition, which motivates the need for the constituent models in a LOP

to be accurate and/or diverse. We discussed a number of ways in which such diverse

models may be created, focusing in this chapter on the feature set and the training data

as possibles sources of diversity.

Our main finding comes from the use of the feature set as a source of diversity.

By creating a set of expert CRF models based on an intuitively-motivated partition

of the feature set, and combining them under a LOP with uniform weights, we may

obtain a model which significantly outperforms an unregularised STANDARD CRF

that utilises the entire feature set, and is comparable in performance to a STANDARD

CRF regularised with a Gaussian prior. This means that the LOP approach represents

a competitive alternative to conventional regularisationwith a prior, but without the

need to search a (possibly high-dimensional) hyperparameter space.

Using the training set as a source of diversity, we created LOPs from a set of bagged

CRF constituent models. Our results show that although bagged model LOPs do pro-

vide some improvement over an unregularised STANDARD model, the results are not

competitive with those of the regularised STANDARD model. In addition, the bagged

constituent models are generally slower to train than the feature set constituent models.

We conclude that LOPs built from feature set experts are preferable.

Our main claim regarding the competitiveness of LOPs as an approach to regu-

larising CRFs relies on the use of unregularised models in the LOP. However, in the

chapter we also considered regularised CRF models as LOP constituents. We found

that results were mixed relative to the corresponding LOPs with unregularised con-

stituents, and were difficult to predict due the subtle trade-off between model accuracy
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and diversity.

Finally, we compared a linear opinion pool to a LOP. We saw that it is difficult to

devise an efficient Viterbi-style algorithm for LIP decoding, and that we must there-

fore resort to an approximate decoding. However, making this approximation leads to

decoding that is both more expensive than LOP decoding and results in lower perfor-

mance. We therefore conclude that a LOP is a much more preferable ensemble model

for CRFs than a LIP.

In this chapter constituent models were trained independently, offline, then com-

bined under a LOP. In the next chapter we look at how we may train the constituent

models non-independently, with parameters in different models interacting during train-

ing in such a way as to encourage diversity between the resulting models.



Chapter 7

Co-operative Training of LOPs

In Chapter 6 we introduced the idea of alogarithmic opinion pool (LOP) of CRFs.

The pool comprised a product of individual CRF models weighted by a set of per-

model weights. We also saw how a logarithmic opinion pool andits constituent models

satisfy anambiguity decomposition:

K (q, pLOP) = E−A = ∑
α

wαK (q, pα)−∑
α

wαK (pLOP, pα) (7.1)

wherepLOP is the LOP, thepα are the constituent models,q is some general distribution

and thewα are the LOP per-model weights. As we described in some detailin section

6.1.2, theE term represents the closeness of the individual constituent models toq and

theA term represents theambiguity or diversity between models, i.e. the closeness of

the individual constituent models to the LOP and therefore to each other. We can see

from the decomposition that in order for the LOP to be a good model of q, we require

modelspα which are both individually good models ofq (having smallE) and/or

diverse (having largeA). In Chapter 6 we explored different ways of encouraging

diversity between constituent models in a LOP, including manipulation of the training

set and the feature set. We found the best method was based on the feature set, by

creating constituent models from manually-specified intuitive partitions of the features.

However, once these feature partitions were chosen, no additional diversity creating

procedure was used. When the constituent models were trained, the parameters in

each model were estimated independently, with no interaction with the parameters in

other models. As we saw in Chapter 6, this approach worked well, but is it possible to

encourage diversity in other ways, directly and automatically?

In this chapter we explore the answer to this question by investigating other ap-

125
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proaches to creating diversity between the constituent models. We focus on the case

of manipulating the training algorithm to directly encourage inter-model diversity. We

call this approachco-operative training. In essence, because the training procedure

encourages diversity between models, parameters in different models now become

“aware” of each other and are trained interactively, ratherthan independently as in

the approach of Chapter 6. This general avenue of exploration opens up a vast range of

research possibilities, and we cannot investigate everything here. We therefore set our-

selves the goal in this chapter of providing aproof-of-conceptfor the idea of using the

CRF training algorithm to encourage diversity between constituent models in a LOP

in order to improve the LOP’s performance.

The rest of the chapter is structured as follows: In section 7.1 we give an overview

of co-operative training, elaborating on the general idea introduced here. In section

7.2 we consider previous work that uses similar ideas but in other domains, appealing

particularly to the arena of artificial neural networks (ANNs). Sections 7.3 and 7.4

describe the quantitative details behind co-operative training, while in section 7.5 we

see how these details may be implemented in practise with a description of the software

framework. Section 7.6 describes our experiments and the results we obtain, and,

finally, in section 7.7 we summarise and conclude the chapter.

7.1 Co-operative Model Training

Figures 7.1 and 7.2 give a pictorial depiction of the idea behind co-operative training.

In each figure the dark background represents the space of allmodels, while the target

distribution is represented byq. This is the distribution that each model is attempting

to represent. The light arrows between any two models in eachfigure represent an

attractive influence, and hence a tendency for the models to move closer together in

a KL-divergence sense. By contrast, the dark arrows represent a repulsive influence,

and hence a tendency for the models to move further apart. Thetraining algorithm

involves optimising a criterion that encourages each modelto be a good representation

of q (light arrows forcing each constituent model to move towards q) while encour-

aging diversity between the models (dark arrows encouraging the constituent models

to maintain their distance from each other). This corresponds in Equation 7.1 to re-

ducing theE term while simultaneously increasing theA term. Figure 7.1 represents

the situation early on during co-operative training. All constituent models, and there-

fore the LOP itself, are far from the target distribution. Then, as co-operative training
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Figure 7.1: The LOP and its constituent models early in the co-operative training pro-

cedure.
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Figure 7.2: The LOP and its constituent models later in the co-operative training pro-

cedure.
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progresses, we move closer to the situation depicted in Figure 7.2. Here each model

has moved closer to the target distribution, forcing the LOPcloser as well. Simulta-

neously, we have increased, or at least maintained, diversity between the constituent

models using the repulsive influence represented by the darkarrows.

7.2 Related Work

The work most closely related to the ideas presented in this chapter comes from the

field of neural networks. Within this domain, the general concept that diversity is im-

portant for creating ensembles of networks with low generalisation error has been well

established for some years. One of the first formulations of this idea was presented

by Krogh and Vedelsby (1995), who derived anambiguity decompositionfor neural

network ensembles for regression. Since then numerous methods have been employed

to try to introduce diversity into neural network ensembles. Many of these are analo-

gous to the approaches we investigated for LOPs of CRFs in Chapter 6. Approaches

have included using the feature set (Brown et al., 2002; Opitz, 1999; Zenobi and Cun-

ningham, 2001), and manipulating the training data (Carneyand Cunningham, 1999;

Melville and Mooney, 2005). However, there has also been a smaller body of work that

involves manipulating the training algorithm directly in order to encourage diversity. It

is this work that is more specifically aligned with the ideas in this chapter. In the neural

network community this training algorithm approach is generally known asnegative

correlation learning (Liu and Yao, 1999). An early example of the idea is provided

by Rosen (1996), who adjusts the error function used by the back-propagation algo-

rithm during network training to include a term containing correlations between pairs

of networks. The presence of the term encourages networks tobecome decorrelated as

training progresses. Liu and Yao (1999) use a similar idea byincluding what they call

a correlation penalty term in the error function. This term encodes the correlation

between the errors of each network and the network ensemble.The aim is to try to

negatively correlate each network’s error with the errors of the rest of the ensemble.

Brown and Wyatt (2003) formalise the negative correlation learning idea by remov-

ing some of the assumptions made in the original presentation, and prove that certain

bounds exist on the parameters that control the penalty term. The approaches of Liu

and Yao (1999), and later Brown and Wyatt (2003), are therefore very similar to our

approach in this chapter, where we use adiversity penalty to encourage diversity, or

ambiguity, between the constituent CRF models in a LOP.
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7.3 Training Algorithm

Design of the training algorithm for the co-operative training framework involves spec-

ifying an objective function and ascertaining how it may be optimised. In this section

we construct a general form for the objective function and show how its derivatives

may be derived.

7.3.1 Objective Function

Using Equation 7.1 as our guide, our aim is to formulate an objective function that

simultaneously makes theE term decrease while forcing theA term to increase. We

therefore create an objective comprising two parts:

1. For the first part we attempt to make the constituent modelsmodel the data well

by encouraging theE term to be small. We use training data log-likelihood to

do this. There are two clear candidates forms for this part. The first candidate

involves a simple sum of the log-likelihoods for each constituent model, so has

the form:

∑
α

LLα

whereLLα denotes training data log-likelihood under modelα.

The second candidate involves a weighted sum of log-likelihoods for each con-

stituent model. This therefore has the form:

∑
α

wαLLα

where, as before, thewα are the per-model weights. For the rest of the chapter

we will consider the first candidate above as the default case, with the second

candidate being a possible variant on this.

2. In the second part of the objective function we attempt to encourage diversity

among the constituent models by constructing a term which explicitly penalises

a small ambiguity. As in the first part, we experiment with twoforms for this

term. The first form, which we call theL1 form , looks like:

− γ
A
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whereA is the ambiguity from Equation 7.1. The non-negative parameter γ
controls the degree to which the penalty is effective. The second form, which we

call theL2 form , looks like:

− γ
A2

The termsL1 andL2 are coined from an analogy with conventional per-model

priors. The termL1 prior is often used to signify a prior that is a linear in the

model parameter in log-space, such as the Laplacian prior wesaw in Chapter

5. Correspondingly, the termL2 prior is often used to signify a prior that is

quadratic in the model parameters in log-space, such as a Gaussian prior. For

the rest of the chapter we will consider theL1 form of the penalty term as the

default case, and theL2 form as a possible variant. Note that both forms of the

diversity penalty encourage the ambiguity to be as large as possible by penalising

values close to zero. We could in addition penalise ambiguities that are too far

away from some preferred value we have in mind for the ambiguity. This could

be achieved by including additional penalty terms in the objective. We do not

consider this level of refinement however.

The parameterγ is a little like a hyperparameter of a prior distribution (see prior

families in Chapter 5). For large values ofγ the effect of the prior begins to dominate

in the objective function, putting more emphasis on diversity between models and less

on individual model quality. Conversely, for small values of γ more emphasis is placed

on model quality and diversity becomes less important. In the extreme case whereγ
is 0, the prior term is non-existent and the co-operative training framework collapses

to the standard case where the individual models are trainedindependently, with no

interaction between parameters in different models.

Putting together the two parts from above, the default form for our objective func-

tion becomes:

Λ(λ ) = ∑
α

LLα − γ
A

(7.2)

7.3.2 Derivatives of the Objective Function

In order to be able to optimise the objective function described in the last section

using the numerical optimisation routines we outlined in Chapter 3, we must be able to
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evaluate the derivative of the objective with respect to theparameters we are adjusting.

With co-operative training we are training model parameters in all constituent models

together, simultaneously. Therefore we need an expressionfor the derivative of the

objective function with respect to a particular parameter in a particular constituent

model. Let us denote this byλβk: it is thekth parameter in modelβ .

To make the derivation clearer, let us denote the second termin our objective by a

general function of the ambiguity and call itf (A), like this:

Λ(λ ) = ∑
α

LLα − f (A) (7.3)

From our discussion in section 7.3.1 we know thatf (A) will be either γ
A or γ

A2 . There-

fore, we need to evaluate the following:

∂Λ
∂λβk

=
∂

∂λβk

[

∑
α

LLα − f (A)

]

= ∑
α

∂LLα
∂λβk

− f ′ (A)
∂A

∂λβk
(7.4)

Clearly, the first term in Equation 7.4 is easy to evaluate because it is just the sum of

the derivatives of the log-likelihoods of the data under each of the constituent models.

In standard CRF training we need to calculate such a derivative for the single model

we are using. Here we just need to do it across all the models, but the technology is the

same. If we are using a weighted sum of log-likelihoods rather than an unweighted sum

(the other possibility for the first term in the objective discussed above), the calculation

is marginally more complex but does not cause any problem.

The second term in the derivative in Equation 7.4, however, is a little more com-

plex. Clearly f ′ (A) is either− γ
A2 or−2γ

A3 , respectively, for theL1 andL2 forms of the

diversity term in the objective. Provided we can evaluateA itself, neither of these two

terms pose any problems. The potential problem, though, lies in the derivative ofA,

i.e. ∂A
∂λβk

.

Before attempting to evaluate∂A
∂λβk

, let us first re-expressA in a slightly different

form to the one we have been using up to now. This re-representation will make the

derivation a little easier. Currently, we have the following definition forA:

A = ∑
α

wαK (pLOP, pα) (7.5)
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Expanding the KL-divergence term, we have:

A = ∑
α

wα ∑
o

p̃(o)∑
s

pLOP(s|o) log

[

pLOP(s|o)

pα (s|o)

]

(7.6)

Moving the sum over thewα through the expression, expanding the logarithm and

dropping the arguments topLOP andpα to save space, we have:

A = ∑
o

p̃(o)∑
s

∑
α

wα [pLOP logpLOP− pLOP logpα ] (7.7)

Remembering that∑α wα = 1, we get:

A = ∑
o

p̃(o)∑
s

[

pLOP logpLOP− pLOP∑
α

wα logpα

]

= ∑
o

p̃(o)∑
s

[

pLOP logpLOP− pLOP log

[

∏
α

pwα
α

]]

(7.8)

But, as we defined earlier,pLOP = ∏α pwα
α

ZLOP
, so we can re-express Equation 7.8 as:

A = ∑
o

p̃(o)∑
s

[pLOP logpLOP− pLOP log[pLOPZLOP]]

= ∑
o

p̃(o)∑
s

[pLOP logpLOP− pLOP logpLOP− pLOP logZLOP]

= −∑
o

p̃(o)∑
s

pLOP logZLOP

= −∑
o

p̃(o) logZLOP (7.9)

where, in last transition, we have used the fact thatZLOP is not a function of the labelling

s and of course∑s pLOP(s|o) = 1 for anyo. Remember thatZLOP is a function ofo so

re-introducing the function notation, our new expression for A is:

A = −∑
o

p̃(o) logZLOP(o) (7.10)

Now that we have an expression forA, we can take the derivative with respect to a

general parameterλβk:

∂A
∂λβk

= −∑
o

p̃(o)
1

ZLOP(o)

∂ZLOP(o)

∂λβk
(7.11)
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Therefore we need to evaluate∂ZLOP
∂λβk

. Remember thatZLOP is the normalising function

in the definition of the LOP. Hence:

ZLOP(o) = ∑
s

∏
α

pα (s|o)wα (7.12)

So we need to take the derivative of∏α pα (s|o)wα , but it is actually easier to take the

derivative of the logarithm of this quantity. So we would like a way of expressing the

derivative of a function of a variable in terms of the derivative of the logarithm of that

function. For this we use a trick:

∂
∂x

log[ f (x)] =
1

f (x)
∂ f
∂x

(7.13)

and so:

∂ f
∂x

= f (x)
∂
∂x

log[ f (x)] (7.14)

Taking the derivative ofZLOP in Equation 7.11 using this trick we get:

∂ZLOP(o)

∂λβk
= ∑

s

(

∏
α

pwα
α

)

∂
∂λβk

[

∑
α

wα logpα

]

= ∑
s

(

∏
α

pwα
α

)

∑
α

wαδαβ
∂ logpα

∂λβk

= ∑
s

(

∏
α

pwα
α

)

wβ
∂ logpβ

∂λβk
(7.15)

Now, pβ (s|o) is the probability density function for a standard CRF, so logpβ has the

form:

logpβ (s|o) = log

[

1
Zβ (o)

exp

(

∑
n

∑
j

λβ j fβ j (s,o,n)

)]

= ∑
n

∑
j

λβ j fβ j (s,o,n)− logZβ (o) (7.16)

whereZβ is the normalisation constant for modelβ and fβ j (s,o,n) refers to thejth

feature in modelβ on cliquen in a sequence with observationo and labellings. So,

taking the derivative with respect toλβk (which we need in Equation 7.15 above), we

get:
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∂ logpβ

∂λβk
=

∂
∂λβk

[

∑
n

∑
j

λβ j fβ j (s,o,n)− logZβ (o)

]

= ∑
n

fβk (s,o,n)− 1
Zβ (o)

∂Zβ (o)

∂λβk
(7.17)

The second term on the right-hand side here can be evaluated relatively easily, as fol-

lows:

1
Zβ (o)

∂Zβ (o)

∂λβk
=

1
Zβ (o)

∂
∂λβk

[

∑
s′

exp

(

∑
n′

∑
j ′

λβ j ′ fβ j ′
(

s′,o,n′
)

)]

=
1

Zβ (o) ∑
s′

[

∑
n′

fβk
(

s′,o,n′
)

]

exp

(

∑
n′

∑
j ′

λβ j ′ fβ j ′
(

s′,o,n′
)

)

= ∑
s′

[

∑
n′

fβk
(

s′,o,n′
)

]

1
Zβ (o)

exp

(

∑
n′

∑
j ′

λβ j ′ fβ j ′
(

s′,o,n′
)

)

= ∑
s′

pβ
(

s′ |o
)

[

∑
n′

fβk
(

s′,o,n′
)

]

(7.18)

Therefore, our expression for
∂ log pβ

∂λβk
in Equation 7.17 becomes:

∂ logpβ

∂λβk
= ∑

n
fβk (s,o,n)−∑

s′
pβ
(

s′ |o
)

[

∑
n′

fβk
(

s′,o,n′
)

]

(7.19)

and, in turn,∂ZLOP(o)
∂λβk

in Equation 7.15 becomes:

∂ZLOP(o)

∂λβk
= ∑

s

(

∏
α

pwα
α

)

wβ

[

∑
n

fβk−∑
s′

pβ
(

s′ |o
)

[

∑
n′

fβk

]]

(7.20)

Expanding the outer bracket in Equation 7.20 above and substituting into our original

expression for ∂A
∂λβk

in Equation 7.11, we finally arrive at:

∂A
∂λβk

= −∑
o

p̃(o)∑
s

(

∏α pwα
α

ZLOP(o)

)

wβ ∑
n

fβk (s,o,n)

+∑
o

p̃(o)∑
s

(

∏α pwα
α

ZLOP(o)

)

wβ ∑
s′

pβ
(

s′ |o
)

[

∑
n′

fβk
(

s′,o,n′
)

]

= −∑
o

p̃(o)∑
s

pLOP(s|o)wβ ∑
n

fβk (s,o,n)

+∑
o

p̃(o)∑
s

pLOP(s|o)wβ ∑
s′

pβ
(

s′ |o
)

[

∑
n′

fβk

(

s′,o,n′
)

]

(7.21)
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In the second term on the right-hand side here, we are taking aweighted sum∑s over

labellingss weighted by thepLOP(s|o) distribution. However, as the argument to the

sum (i.e. thewβ and inner∑s′ sum) is not a function of the labellings, it can be taken

outside the∑s sum and the sum itself just collapses to 1. Hence we can simplify the

whole expression to:

∂A
∂λβk

= −∑
o

p̃(o)∑
s

pLOP(s|o)wβ ∑
n

fβk (s,o,n)

+∑
o

p̃(o)wβ ∑
s′

pβ
(

s′ |o
)

∑
n′

fβk
(

s′,o,n′
)

= −wβ EpLOP

[

fβk
]

+wβ Epβ

[

fβk
]

= −wβ

[

EpLOP

[

fβk
]

−Epβ

[

fβk
]

]

(7.22)

Therefore the derivative ofA with respect to a generalkth parameterλβk in one of the

constituent modelsβ is actually the difference between the expected count of theasso-

ciated feature under that model and the expected count of theassociated feature under

the LOP. Armed with this we can now evaluate the derivative ofthe entire objective

function in (7.4). It becomes:

∂Λ
∂λβk

= ∑
α

∂LLα
∂λβk

+ f ′ (A)wβ

[

EpLOP

[

fβk
]

−Epβ

[

fβk
]

]

(7.23)

We evaluate this expression on each iteration of co-operative training, and pass it to

the number optimisation routines along with the value of theobjective itself.

From the form of the objective function and its derivatives derived above, we sus-

pect that the objective is convex in the model parameters. However, so far we have not

been able to prove this.

7.4 Decoding

The specification of an alternative objective function and evaluation of its derivatives

make co-operative training a little more complex than the basic case of LOP training

we introduced in Chapter 6. However, once the constituent models have been trained

within the co-operative training framework, decoding the models under a LOP is iden-

tical to before.
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LOP

Expert 1 Expert 2 Expert 3

Figure 7.3: Schematic representation of architecture for co-operative training.

7.5 Implementation

In this section we give both a schematic description of the architecture, and look briefly

at the specifics of the software implementation.

7.5.1 Schematic Representation

7.5.1.1 Training

Figure 7.3 gives a schematic representation of the architecture we use for co-operative

training. For the purposes of illustration in the diagram, we see a LOP with three

constituent models, or experts. In addition to the constituent models, we think of

the LOP itself as having a distinct identity, with its own node. During training (and

decoding) information flows back and forth between each constituent model and the

LOP. This information can be single valued data, like a double representing a per-

model weight, or a vector of values, like a vector of doubles representing a parameter

vector or gradient vector. The illustration depicts one such example communication.

It shows the subsets of a vector residing at the LOP node beingscattered to different

constituent model nodes. Each subset of the vector containsinformation relevant to
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the respective constituent model.

During training we need to pass the value of the objective function from Equation

7.3 and its gradient vector from Equation 7.23 to the libraries containing the numerical

optimisation routines. This only need occur at one node, andwe choose the LOP node

as the most natural choice for this. Therefore the LOP node must be aware, and be

able to communicate, all terms in Equations 7.3 and 7.23 to the libraries. In order for

this to occur, a sequence of communication operations between the LOP node and the

constituent model nodes takes place during each iteration of the co-operative training.

The low-level details are a little intricate, but in essencethe following takes place in

each iteration:

1. An updatedglobal parameter vectorcontaining all parameters in all constituent

models, and the per-model weights, is received by the LOP node from the li-

braries.

2. Subsets of this parameter vector, each containing model parameters and a per-

model weight, are sent to the respective constituent model nodes.

3. Each constituent modelα calculates itsdistribution vector , i.e. a vector rep-

resentingpα . This encodes probabilities for all labellings of sequences in the

training data given the updated values (for the current iteration) of the model

parameters.

4. Each constituent modelα communicates its distribution vector to the LOP node.

5. The constituent model nodes and the LOP node process theirdata in parallel:

• Each constituent modelα calculatesLLα , ∂LLα
∂λβk

and the vector representing

Epα

[

fβk
]

.

• The LOP node calculates itsdistribution vector representingpLOP, the am-

biguity A, f (A) and the vector representing EpLOP

[

fβk
]

.

6. Each constituent modelα sendsLLα , ∂LLα
∂λβk

and the vector representing Epα

[

fβk
]

to the LOP node.

7. The LOP node gathers the data together and evaluates the objective function

from Equation 7.3 and its gradient vector from Equation 7.23. It then sends

these to the the optimisation libraries, and the process starts over.
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7.5.1.2 Decoding

As mentioned in section 7.4 above, the decoding of a LOP consisting of constituent

models with co-operatively trained parameters is no more complex than the LOP de-

coding described in Chapter 6. However, given the architecture required for the co-

operative training algorithm, it is easy to decode (both schematically and in practice)

within the same framework. The decoding therefore involvesthe following steps:

1. Each constituent modelα reads in a parameter vector from the training stage

(the final parameter vector or one representing a particulariteration) and also

reads in a specified dataset for decoding. Using the parameter vector, each model

calculates itsdistribution vector , i.e. the vector representingpα for that dataset.

2. Each constituent modelα communicates its distribution vector to the LOP node.

3. The LOP node gathers together the constituent model distribution vectors and

weights them, so forming and thedistribution vector representingpLOP.

4. The LOP node undertakes the decoding of the specified dataset. The actual

decoding step itself therefore occurs only at the LOP node.

7.5.2 Software Implementation

The software we have written for co-operative training is implemented in C++ and Perl.

Perl scripts generally control high-level behaviour. For example, a single Perl script

would define all the settings and necessary actions to be taken for particular experi-

ment. The C++ code by contrast controls the lower-level, computationally intensive

behaviour for the training and decoding of the models. The C++ code is divided into

two binaries, one for training and one for decoding. Each of these is evoked from a

Perl script with the correct flag settings for the experimentat hand.

The C++ code for model training and decoding is parallelised, and is designed

to work on a cluster of machines. Use of multiple machines is anecessity because

for co-operative training to be efficient, a representationof each constituent model

must be maintained in memory during the training process (ascan be seen from our

calculations of the objective function and its gradient vector earlier). In general this

memory requirement is far too large for any single machine that we have access to. We

make use of an implementation of themessage passing interface(MPI)1 protocols to

1http://www-unix.mcs.anl.gov/mpi
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LOP

Expert 1

Expert 2 Expert 3

Figure 7.4: Software architecture for co-operative training.

aid communication between the nodes in the cluster. The MPI libraries are described

in more detail in Chapter 3.

Figure 7.4 gives a more software-specific representation ofthe architecture than the

more general view in Figure 7.3. In the simplest case, each constituent model occupies

only one node of the cluster, with the LOP node also occupyinga node. However, for

some tasks and/or datasets we may need to parallelise each constituent model across

multiple nodes. This situation is illustrated in Figure 7.4, with each constituent model

being spread across three nodes. When this extra level of parallelisation is in effect, the

LOP node communicates with one “representative” node from each constituent model.

We call this representative node thegateway node. In Figure 7.4, the gateway nodes

are represented by the larger circles in each constituent model grouping. Therefore,

there are really two levels of communication: communication within each constituent

model, between the constituent model’s gateway node and itsother nodes, and com-

munication at the level of the LOP, between the gateway nodesand the LOP node

itself. The MPI infrastructure makes this two-level communication easy to implement

in an elegant way. We do this by defining an MPI communicator for each constituent

model, including only the nodes in that constituent model. These communicators are
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represented by the inner circles in Figure 7.4. We then defineone “global” communi-

cator that contains only the gateway nodes and the LOP node. This communicator is

represented by the outer circle in Figure 7.4. Defining thesecommunicators means we

can use a C++ class structure that wraps the MPI communicatorstructure and allows a

single set of C++ class member functions to implement different MPI behaviour poly-

morphically depending on the level of abstraction of the message passing at a particular

time.

7.6 Experiments

In our experiments our primary goal is to establish the effectiveness of the diversity

penalty term in creating better performing LOPs. Our secondary goal is to conduct a

preliminary investigation into the sensitivity of the training process to various changes

in the setup, such as the use of a different log-likelihood term in the objective, different

forms for the penalty term, and use of different expert sets.In order to handle these

possibilities we define adefault configuration and then investigate variants of this

default by modifying a single aspect in each case. All of the experiments are conducted

on the NER task described in Chapter 3.

7.6.1 Default Configuration

The default configuration for our experiments consists of the following:

1. Default objective function defined earlier, i.e.∑α LLα − γ
A

2. Unregularised constituent models

3. Uniform per-model weights

4. STANDARD and SIMPLE constituent models only

We could start the co-operative training from the zero parameter vector for each con-

stituent model in the LOP. However, this would make the process unnecessarily ineffi-

cient because we already have a set of good candidate vectorsfor starting the training

from the experiments in previous chapters. Therefore, we take advantage of this set

by seeding each constituent model with apriming vector . This vector, for a given

constituent model, is the one that achieved the best F score on the development set
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Figure 7.5: Development set F scores for an unregularised co-operatively trained LOP.
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Figure 7.6: Test set F scores for an unregularised co-operatively trained LOP.

when the model was trained originally (independently of anyother model). We use

this seeding technique in this section, and the other sections that follow.
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Figure 7.5 shows development set F scores for the default configuration as the

co-operative training progresses. It is represented by thehighest of the three lines

in the figure. The lowest line, the straight one, shows the F score for a single LOP

created using the priming vectors for each constituent model and using uniform per-

model weights. Hence this is one of the LOPs we first reported on in section 6.5.2.2.

The middle line is intended to act as a baseline for the performance of the default

configuration. This line shows what happens when the constituent models continue

to be trained, unregularised, starting from their priming vectors but independently of

each other, with no interaction. The F scores that the corresponding LOP achieves are

higher than the score it achieved at the priming vector point(i.e. represented by the

straight line). However, this is just a facet of the optimisation routine. Having started to

re-train each model at its priming vector, the training procedure takes the models into

a region of the parameter space where the resulting LOP happens to do better than it

did previously when the constituent models were each trained from the zero parameter

vector. This is not an important point though. The importantpoint is that the default

configuration, trained using a diversity penalty, outperforms this baseline. Figure 7.6

shows the test set F scores corresponding to the developmentset scores in Figure 7.5.

We can see that, once again, the default configuration score is significantly higher than

that of the baseline. We therefore have evidence that the presence of the diversity

penaltyis achieving the intended effect of making the constituent models more diverse

and so improving the corresponding LOP.

The default configuration shown in the figures corresponds toaγ value of 1, which

we found using manual tuning on the development set. However, further improvements

are likely to be possible with a more thorough search of theγ-space. We use the same

manual tuning approach in each of the following sections.

7.6.2 Using Regularised Experts

In Chapter 6 we looked at LOPs created from regularised constituent models, and

compared them to LOPs comprising only unregularised models. We found that the

unregularised LOPs performed better. We now make the same comparison with co-

operatively trained constituent models. To do this we undertake co-operative training

with a diversity penalty, but simultaneously regularise the constituent models using

separate Gaussian priors. For each model we use the (parameter-independent) optimal

Gaussian variance, found using the development set when themodels were trained in-
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Figure 7.7: Development set F scores for a regularised co-operatively trained LOP.

dependently. For the STANDARD model this value is 44, while for the SIMPLE model

it is 100. Of course, these values are not necessarily optimal for the co-operatively

trained constituent models as they were established when each model was trained in-

dependently, but they should form good approximations to the optimal values.

Figure 7.7 shows development set F scores for the default configuration modified

to use regularised constituent models. The figure also showstwo non-co-operatively

trained LOPs, one with unregularised constituent models (as seen in Figure 7.5) and the

other with regularised constituent models, combined with uniform per-model weights.

These are LOPs we presented results for in Chapter 6. The general performance profile

of the co-operatively trained LOP is similar to the one observed in Figure 7.5 with

the unregularised constituent model LOP. We therefore haveadditional evidence that

the diversity penalty improves the LOP, this time in the presence of alternative, per-

model regularisation. As we observed in Chapter 6, however,the LOP with regularised

constituent models underperforms the LOP with unregularised models. Once again,

we attribute this to the subtle trade-off between model quality and LOP diversity, the

regularised models being better models of the underlying distribution but also being

less diverse because they are closer to the uniform distribution.
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7.6.3 Using Weighted Log-Likelihoods
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Figure 7.8: Development set F scores for an unregularised co-operatively trained LOP

using a weighted sum of log-likelihoods in the objective function.
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Figure 7.9: Test set F scores for an unregularised co-operatively trained LOP using a

weighted sum of log-likelihoods in the objective function.
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In the default configuration the first term in the objective function is the sum of the

log-likelihoods of the constituent models. In this sectionwe investigate the effect of

replacing that term with aweightedsum of log-likelihoods,∑α wαLLα . Note that the

weights used in this weighted sum are the same as the weights used in the calculation

of the LOP distribution during training and decoding, so we are also using non-uniform

weights in the LOP generally, unlike in the default configuration.

Figure 7.8 shows development set F scores for LOPs co-operatively trained with a

non-uniformly weighted sum of log-likelihoods. Figure 7.9shows the corresponding

test set F scores. Clearly, the lines labelled (0.5, 0.5) just represent the default configu-

ration. From the figures we can see that the choice of weights can make a significance

difference to the performance of the resulting LOP when co-operatively trained. For

example, the default configuration performs significantly better on the test set than

that the LOP with weights (0.4, 0.6), although on the development the difference is

less clear. Other weight combinations produce similarly varied performance profiles.

This suggests that it would be worthwhile to devise a strategy for automatically finding

optimal weight choices. Typically such a procedure would berun as a separate pro-

cess, offline, before the co-operative training commences.However, this extension is

beyond the scope of the thesis, and we leave it for future work.

7.6.4 Using Other Diversity Penalties

In the co-operative training framework, the second term in the objective function is the

diversity penalty. When we described the diversity penaltyearlier in the chapter we

proposed two forms that it might take, although many other choices are possible. The

default configuration contains theL1 form of the penalty term, but we also suggested

anL2 form. In this section we look at the effect of using thisL2 form.

Figure 7.10 shows development set F scores for LOPs co-operatively trained with

bothL1 andL2 forms for the diversity penalty. Figure 7.11 shows the corresponding

test set F scores. We can see from the figures that neither formconsistently outper-

forms the other across both datasets. TheL1 form tends to do better than theL2 on

the development set while the situation is reversed on the test set. This suggests that

alternative forms for the diversity penalty, such as theL2 form, can also be effective

in improving the LOP with co-operative training. However, much additional work

is required in this area to ascertain the precise propertiesof an effective penalty. The

functional form of the penalty effects its influence in the objective function. Too strong
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Figure 7.10: Development set F scores for an unregularised co-operatively trained LOP

using an L2 diversity penalty in the objective function.
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Figure 7.11: Test set F scores for an unregularised co-operatively trained LOP using

an L2 diversity penalty in the objective function.

a penalty can lead to ambiguity dominating over accuracy, whereas too weak a penalty

can have the opposite effect. Although the general influenceof the penalty may be
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Figure 7.12: Development set F scores for an unregularised co-operatively trained LOP

using POSITIONAL experts.

controlled through a parameter such as theγ we discussed earlier, this form of control

may have too crude a calibration if the functional form of thepenalty is not suitable.

7.6.5 Other Expert Sets

All the co-operative training results we have presented so far in this chapter have in-

volved LOPs comprising a single expert set consisting of theSTANDARD and SIM-

PLE models. In this section we investigate whether the same positive results for the

diversity penalty extend to other expert sets. In particular we look at the LABEL and

POSITIONAL expert sets that we described in Chapter 6.

Figure 7.12 shows development set F scores for LOPs co-operatively trained with

POSITIONAL experts. Figure 7.13 shows the test set F scores.Figures 7.14 and

7.15 give the corresponding graphs for the LABEL expert set.The straight line in

each graph represents the score the corresponding LOP obtained when the constituent

models were trained independently. From the four graphs we can see that we obtain

similar behaviour with the POSITIONAL and LABEL expert sets, when co-operatively

trained with a diversity penalty, as we do with the SIMPLE expert set used earlier. We

therefore have additional evidence that the diversity penalty is achieving its purpose.
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Figure 7.13: Test set F scores for an unregularised co-operatively trained LOP using

POSITIONAL experts.

 89

 89.2

 89.4

 89.6

 89.8

 90

 0  20  40  60  80  100  120  140

F
 S

co
re

 (
%

)

Iterations

COT LOP LABEL
Static LOP LABEL

Figure 7.14: Development set F scores for an unregularised co-operatively trained LOP

using LABEL experts.
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Figure 7.15: Test set F scores for an unregularised co-operatively trained LOP using

LABEL experts.

7.6.6 Joint Parameter and Weight Training

In this chapter we have focused only on co-operative training of the constituent mod-

els, and have ignored the task of additionally learning the per-model weights in the

LOP (thewα ). It is possible, however, to extend the co-operative training framework

to include weight training. This would involve evaluation of the derivatives of the ob-

jective function with respect to the model weights. Theoretical calculation of these

derivatives is actually simpler than the parameter derivative derivation we presented in

section 7.3.2, and subsequent modification to the frameworkwould not be huge. The

work is, however, beyond the scope of the thesis, and so we leave it to future work.

7.7 Summary

In this chapter we have explored how to encourage diversity between constituent mod-

els in a LOP by manipulating the CRF training algorithm directly. In particular, we

introduced the idea of co-operative training of LOP constituent models, where param-

eters in different models interact during the training process. We encourage diversity

between the models using a specially formulated objective function which includes a

diversity penalty term.
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Our main results show that the presence of a diversity term inthe objective can

indeed lead to LOPs with improved performance. We have shownthis to be the case for

LOPs created from a number of the expert sets we introduced inChapter 6. The work

in this chapter therefore represents aproof-of-conceptfor the idea of manipulating

diversity during training. The space of possibilities for more thorough investigation

of the ideas we have presented in this chapter, and extensions to them, is vast. We

have really only scratched the surface here, and many aspects warrant more thorough

investigation. For example, our results show that manipulating the log-likelihood part

of the objective function can affect the LOP’s performance to a significant degree. We

were using a weighted combination of constituent model log-likelihoods, but other

functions of the log-likelihood are possible. We proposed two candidate forms for the

diversity penalty, but many other possibilities exist. In addition, we only looked at co-

operatively training the parameters of constituent modelsin this chapter, but it is also

possible to incorporate the search for optimal per-model weights into the framework.

We leave all these issues as possible avenues for future research.
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Applications of LOPs: Highly

Discriminative Features

In Chapter 6 we introduced the logarithmic opinion pool for CRFs and showed how

it may be seen as an alternative to conventional regularisation of a CRF with a prior.

Our explanation for the good performance of the LOP was basedon theambiguity de-

compositionin Equation 6.13. The decomposition motivated the idea thata good LOP

contains constituent models that are both individually accurate and mutually diverse in

a KL-Divergence sense.

In this chapter we change angle slightly and view the LOP froman alternative

standpoint. In particular, a LOP may be seen as a solution to an important but generally

under-appreciated problem that occurs when training CRFs,and log-linear models in

general, with highly discriminative features. A highly discriminative feature in this

context is a feature which is often sparse, and whose observation context is highly

correlated with the corresponding label that it encodes. Hence the observation context

is a strong predictor of the label. An example of such a feature could be a gazetteer

feature, and indeed, as we shall see later in the chapter, in our experiments we use

gazetteer features as illustrative examples.

We demonstrate in the following sections that although inclusion of such highly

discriminative features in a model in general leads to improved performance, it can

also cause negative effects. These effects stem from an over-reliance by the model

on these features to explain the data. By including the new features in the model,

we transfer explanatory power to these features away from the existing features, so

making the existing features less expressive. This can leadto certain types of labelling

errors during decoding. Our conclusion is that to fully harness the power of highly

151
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discriminative features a more careful training regime must be used, and we show

that training and then decoding using a LOP is a solution for this. At the end of

the chapter we show that in addition to gazetteer features, similar behaviour may be

obtained with other subsets of discriminative features, and we show how such subsets

may be identified.

8.1 Gazetteers and Gazetteer Features

In order to demonstrate the problems with discriminative features we have outlined

above, we need to be able to identify a subset of features within a model, or a set of

features that could be added to a model, that have this discriminative property. To do

this we make use ofgazetteer featuresas a running example throughout the chapter.

In this section we introduce the idea behind gazetteers, andhow they are used with

log-linear models via gazetteer features.

When using a CRF, or a log-linear model in general, on a task such as NER, one

usually constructs features in the model which represent the dependencies between a

word’s NER label and local contextual properties of the wordthat are thought to influ-

ence the NER label, such as the word itself, its part-of-speech tag or some orthographic

properties of the word. However, one sometimes encounters an entity which is difficult

to identify using these local contextual cues alone becausethe entity has not been seen

before. In these cases, agazetteeror dictionary of possible entity identifiers is often

useful. Such identifiers could be names of people, places, companies or other organisa-

tions. Using gazetteers one may define additional features in the model that represent

the dependencies between a word’s NER label and its presencein a particular gazetteer.

Suchgazetteer featuresare often highly informative, and their inclusion in the model

should in principle result in higher model accuracy. We describe the gazetteers we use

for the experiments in this chapter, and the features that encode dependencies upon

them, in the next few sections.

To date gazetteers have been widely used in a variety of information extraction

systems, including both rule-based systems and statistical models. In addition to lists

of people names, locations, etc., recent work in the biomedical domain has utilised

gazetteers of biological and genetic entities such as gene names (Finkel et al., 2005;

McDonald and Pereira, 2005). In general gazetteers are thought to provide a useful

source of external knowledge that is helpful when an entity cannot be identified from

knowledge contained solely within the dataset used for training. However, some re-
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search has questioned the usefulness of gazetteers (Krupkaand Hausman, 1998; Mor-

gan et al., 1995). Other work has supported the use of gazetteers in general but has

found that lists of only moderate size are sufficient to provide most of the benefit

(Mikheev et al., 1999). Therefore, to date the effective useof gazetteers for informa-

tion extraction has in general been regarded as a “black art”. As a result of this, in using

gazetteer features as illustrative examples of the more general discriminative features

we talked about earlier, we are also providing in this chapter a possible explanation

for some of the conflicting results witnessed in the past whenapplying gazetteers to

various information extraction tasks.

The material we present in this chapter is based on one of our conference papers

(Smith and Osborne, 2006). While we were developing the ideas, Sutton et al. (2006),

independently and in parallel, were following a similar theme. In their paper they

identify general problems with gazetteer features and propose a solution similar to our

LOP approach. They present results on NP-chunking in addition to NER, and provide a

slightly more general approach. By contrast, we motivate the problem more thoroughly

through analysis of the actual errors observed and through consideration of the success

of other candidate solutions, such as traditional regularisation over feature subsets.

8.2 Experimental Setup

Before looking in more detail at the problems encountered when training models with

highly discriminative features, we first describe the setupfor the experiments in this

chapter. We also provide results for the baseline models, with and without gazetteer

features. Subsequent sections in this chapter discuss approaches which use, and extend,

the models described here.

8.2.1 Task and Dataset

As we alluded to in the introduction to the chapter, we conduct our experiments on

NER. This is mainly for illustrative purposes: gazetteer features are particularly good

examples of the discriminative features whose effect we aretrying to investigate in the

chapter, and NER is a task particularly conducive to the use of gazetteers in helping

to correctly label entities unseen in the training data. As before we use the CoNLL-

2003 shared task English dataset (Kim Sang and Meulder, 2003) that we described in

Chapter 3.
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Gazetteer Name Entry Type # Entries

SUR-GAZ People surnames 88,799

FEM-GAZ female first names 4,275

MAL-GAZ male first names 1,219

PLA-GAZ place names 27,635

COMP-GAZ-1 company names 20,638

COMP-GAZ-2 company names 279,195

ORG-GAZ organisation names1 425

Table 8.1: Properties of the seven gazetteers.

Bea Anglican Church

Beata Anglican Communion

Beatrice Anti-Masonic Party

Beatris Arab League

Beatriz Arminian Baptist

Table 8.2: Extracts from the FEM-GAZ and ORG-GAZ gazetteers.

8.2.2 Gazetteers

For the experiments in this chapter we employ a total of sevengazetteers. These cover

names of people, places and organisations. Table 8.1 gives details of the gazetteers,

along with the names we will use to refer to the gazetteers in the chapter. Table 8.2

gives extracts from the FEM-GAZ and ORG-GAZ gazetteers. As can be seen from the

table, the gazetteer entries may consist of single or multiple words.

8.2.3 Feature set

In Chapter 4 we described the STANDARD model for NER. For the experiments in this

chapter we modify the STANDARD model by including an additional set of features

defined using the gazetteers above. We call this modified model the STANDARD+G

model, and call the extra featuresgazetteer features.

Our gazetteer features encode whether a particular word appears in a particular

gazetteer. We divide the gazetteer features into two sets:unlexicalised and lexi-

1Names of organisations other than companies, such as government agencies, charities, etc.
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Label predicates Observation predicates

st = s wt is in gazetteer SUR-GAZ

wt is in gazetteer FEM-GAZ

wt is in gazetteer MAL-GAZ

wt is in gazetteer PLA-GAZ

wt is in gazetteer COM-GAZ-1

wt is in gazetteer COM-GAZ-2

wt is in gazetteer ORG-GAZ

Table 8.3: Feature templates for unlexicalised gazetteer features.

calised. The unlexicalised features model the dependency between aword’s presence

in a gazetteer and its NER label, irrespective of the word’s identity. The lexicalised fea-

tures, on the other hand, include the word’s identity and so provide more refined word-

specific modelling of the gazetteer-NER label dependency. The feature templates that

define the unlexicalised and lexicalised gazetteer features are shown in Tables 8.3 and

8.4 respectively. Defining gazetteer features in this way isthe typical method of rep-

resenting gazetteer information in log-linear models. Note that some gazetteer entries

involve multiple words where not all the words appear individually in the gazetteer.

Consequently, the lexicalised gazetteer features arenotsimply determined by the word

identity features.

In total there are 35 unlexicalised gazetteer features and 8,294 lexicalised gazetteer

features. Therefore, together with the 450,346 features in the STANDARD model for

NER, this gives a total of 458,675 features in STANDARD+G model.

8.2.4 Baseline Results

Before exploring the overtraining effect that gazetteer feature can have in the next

section, we first give baseline results for the STANDARD+G model. We include the

results for the STANDARD model for comparison. Table 8.5 gives F scores for the

two models, both unregularised and regularised models. Development set scores are

included for completeness, and are referred to later in the chapter. The regularised

models are trained with a zero-mean Gaussian prior, with thevariance set using the

development data.

From the table we see that the addition of the gazetteer features allows the STAN-
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Label predicates Observation predicates

st = s wt = w, wt is in gazetteer SUR-GAZ

wt = w, wt is in gazetteer FEM-GAZ

wt = w, wt is in gazetteer MAL-GAZ

wt = w, wt is in gazetteer PLA-GAZ

wt = w, wt is in gazetteer COM-GAZ-1

wt = w, wt is in gazetteer COM-GAZ-2

wt = w, wt is in gazetteer ORG-GAZ

Table 8.4: Feature templates for lexicalised gazetteer features.

Model
Development Test

Unreg. Reg. Unreg. Reg.

STANDARD 88.21 89.86 81.60 83.97

STANDARD+G 89.19 90.40 83.10 84.70

Table 8.5: F scores for STANDARD and STANDARD+G models.

DARD+G model to outperform the STANDARD one, for both the unregularised and

regularised models. In each case, the STANDARD+G model outperforms the STAN-

DARD model at a significance level ofp < 0.02. Therefore, the addition of the

gazetteer features appears to lead to a positive improvement. However, as we alluded to

in the introduction to this chapter, these results camouflage the fact that the gazetteer

features introduce some negative effects. As such, the realbenefit of including the

gazetteer features in STANDARD+G is not fully realised.

8.3 Error Analysis of Gazetteer Features

We identify problems with the use of gazetteer features by considering test set labelling

errors for both STANDARD and STANDARD+G. We use regularisedmodels here as

an illustration. Table 8.6 shows the number of sites (a site being a particular word

at a particular position in a sentence) where labellings have improved, worsened or

remained unchanged with respect to the gold-standard labelling with the addition of

the gazetteer features. For example, the value in the top-left cell is the number of sites
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STANDARD+G

X ✗

S
TA

N
D

A
R

D

X 44,945 160

✗ 228 1,333

Table 8.6: Test set errors.

where both the STANDARD and STANDARD+G models label words correctly.

The most interesting cell in the table is the top-right one, which represents sites

where STANDARD is correctly labelling words but, with the addition of the gazetteer

features, STANDARD+G mislabels them. At these sites, the addition of the gazetteer

features actually worsens things. How well, then, could theSTANDARD+G model

do if it could somehow reduce the number of errors in the top-right cell? In fact, if

it had correctly labelled those sites, a significantly higher test set F score of 90.36%

would have been obtained. This potential upside suggests much could be gained from

investigating ways of correcting the errors in the top-right cell. It is not clear whether

there exists any approach that could correctall the errors in the top-right cell while

simultaneously maintaining the state in the other cells, but approaches that are able to

correct at least some of the errors should prove worthwhile.

On inspection of the sites where errors in the top-right celloccur, we observe that

some of the errors occur in sequences where no words are in anygazetteer, so no

gazetteer features are active for any possible labelling ofthese sequences. In other

cases, the errors occur at sites where some of the gazetteer features appear to have dic-

tated the label, but have made an incorrect decision. As a result of these observations,

we classify the errors from the top-right cell of Table 8.6 into two types:Type A and

Type B.

8.3.1 Type A Errors

We call Type A errors those errors that occur at sites where gazetteer features seem to

have beendirectlyresponsible for the mislabelling. In these cases the gazetteer features

effectively “over-rule” the other features in the model causing a mislabelling where the

STANDARD model, without the gazetteer features, correctlylabels the word.

An example of a Type A error is given in the sentence extract below:

about/O Healy/I-LOC
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This is the labelling given by STANDARD+G. The correct labelfor Healy here is

I-PER. The STANDARD model is able to decode this correctly asHealy appears in

the training data with theI-PER label. The reason for the mislabelling by the STAN-

DARD+G model is thatHealy appears in both the gazetteer of place names and the

gazetteer of person surnames. The feature encoding the gazetteer of place names with

theI-LOC label has a parameter value (value ofλ ) of 4.20, while the feature encoding

the gazetteer of surnames with theI-PER label has a parameter value of 1.96, and the

feature encoding the wordHealy with theI-PER label has a parameter value of 0.25.

Although other features both at the wordHealy and at other sites in the sentence con-

tribute to the labelling ofHealy, the influence of the first feature above dominates. So

in this case the addition of the gazetteer features has confused things at test time.

8.3.2 Type B Errors

We call Type B errors those errors that occur at sites where the gazetteer features seem

to have been onlyindirectly responsible for the mislabelling. In these cases the misla-

belling appears to be more attributable to the non-gazetteer features, which are in some

sense less expressive after being trained with the gazetteer features. Consequently, they

are less able to decode words that they could previously label correctly.

An example of a Type B error is given in the sentence extract below:

Chanderpaul/O was/O

This is the labelling given by STANDARD+G. The correct labelling, given by STAN-

DARD, is I-PER for Chanderpaul. In this case no words in the sentence (including

the part not shown) are present in any of the gazetteers so no gazetteer features are

active for any labelling of the sentence. Consequently, thegazetteer features do not

contribute at all to the labelling decision. Non-gazetteerfeatures in STANDARD+G

are, however, unable to find the correct labelling forChanderpaul when they previ-

ously could in the STANDARD model.

For both Type A and Type B errors it is clear that the gazetteerfeatures in STAN-

DARD+G are in some sense too “powerful” while the non-gazetteers features have

become too “weak”. The question, then, is: can we train all the features in the model

in a more sophisticated way so as to correct for these effects?
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8.4 Feature Dependent Regularisation

One interpretation of the findings of our error analysis in the previous section is that the

addition of the gazetteer features to the model is having an implicit over-regularising

effect on the other features. Therefore, is it possible to adjust for this effect through

more careful explicit regularisation using a prior? Can we directly regularise the

gazetteer features more heavily and the non-gazetteer features less? We investigate

this possibility in this section.

The STANDARD+G model is regularised by fitting a single Gaussian variance hy-

perparameter,σ2, across all features. The optimal value for this single hyperparameter

is 2025 (σ = 45). We now relax this single constraint by allocating a separate hyper-

parameter to different feature subsets, one for the gazetteer features (σgaz) and one for

the non-gazetteer features (σnon-gaz). The hope is that the differing subsets of features

are best regularised using different prior hyperparameters. Clearly, by doing this we

increase the search space significantly and encounter some of the problems we saw in

Chapter 5. In order to make the search manageable, we constrain ourselves to three

scenarios:

1. We fixσ2
non-gaz, the variance for the non-gazetteer features, at the singlevariance

optimum of 2025, and regularise the gazetteer features a little more.

2. We fix σ2
gaz, the variance for the gazetteer features, at the single variance opti-

mum of 2025, and regularise the non-gazetteer features a little less.

3. We simultaneously regularise the gazetteer features a little more than at the sin-

gle variance optimum, and regularise the non-gazetteer features a little less.

Table 8.7 gives representative development set F scores foreach of these three sce-

narios, with each scenario separated by a horizontal dividing line. We see that in gen-

eral the results do not differ significantly from that of the single variance optimum. We

conjecture that the reason for this is that the regularisingeffect of the gazetteer features

on the non-gazetteer features is due to relatively subtle interactions during training that

relate to the dependencies the features encode and how thesedependencies overlap.

Regularising different feature subsets by different amounts with a Gaussian prior does

not directly address these interactions but instead just rather crudely penalises the mag-

nitude of the parameter values of different feature sets to different degrees. Indeed this

is true for any standardly formulated prior which makes independence assumptions
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σgaz σnon−gaz Development

42 45 90.40

40 45 90.30

45 46 90.39

45 50 90.38

44.8 45.2 90.41

43 47 90.35

Table 8.7: FDR development set F scores.

over the parameters2. It seems therefore that any solution to the regularising problem

should come through more explicit restricting or removing of the interactions between

gazetteer and non-gazetteer features during training.

8.5 LOPs

We may remove interactions between gazetteer and non-gazetteer features entirely by

quarantining the gazetteer features and training them in a separate model. This al-

lows the non-gazetteer features to be protected from the over-regularising effect of the

gazetteer features. In order to decode taking advantage of the information contained

in both models, we must combine the models in some way. To do this we use the

logarithmic opinion pool that we introduced in Chapter 6.

In order to use a LOP for decoding we could employ a uniform distribution over

the constituent models. However, we saw in Chapter 6 that in some cases manually

tuning the weight distribution can give improved performance over a LOP with uniform

weights. In this chapter we only construct LOPs consisting of two models in each case,

one model with gazetteer features and one without. We can therefore efficiently tune

the one free weight using the development set.

To construct models for the gazetteer and non-gazetteer features we first partition

the feature set of the STANDARD+G model into the subsets outlined in Table 8.8. The

simple structural features modellabel-labelandlabel-worddependencies, while the

advanced structural featuresinclude these features as well as those modellinglabel-

label-wordconjunctions. Thesimple orthographic featuresmeasure properties of a

2We talked about this assumption of independence between parameters when using a prior in section
2.3.1.
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Feature Subset Feature Type

S1 simple structural features

S2 advanced structural features

N n-grams of words and POS tags

O simple orthographic features

A advanced orthographic features

G gazetteer features

Table 8.8: STANDARD+G feature subsets.

LOP Development Test

STANDARD+g 90.40 84.70

S1G-STANDARD 91.34 85.98

S2G-STANDARD 91.32 85.59

S2NG-STANDARD 90.66 84.59

S2NOG-STANDARD 90.47 84.92

S2NOAG-STANDARD 90.56 84.78

Table 8.9: Regularised LOP F scores.

word such as capitalisation, presence of a digit, etc., while theadvanced orthographic

properties model the occurrence of prefixes and suffixes of varying length.

We create and train different models for the gazetteer features by adding different

feature subsets to the gazetteer features. We regularise these models in the usual way

using a Gaussian prior. In each case we then combine these models with the STAN-

DARD model and decode under a LOP.

Table 8.9 gives results for LOP decoding for the different model pairs. Results for

the STANDARD+G model are included in the first row for comparison. For each LOP

the hyphen separates the two models comprising the LOP. So, for example, in the sec-

ond row of the table we combine the gazetteer features with simple structural features

in a model, train and decode with the STANDARD model using a LOP. The simple

structural features are included so as to provide some basicsupport to the gazetteer

features.

We see from Table 8.9 that the first two LOPs significantly outperform the regu-
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LOP LOP Weights

S1G-STANDARD [0.39, 0.61]

S2G-STANDARD [0.29, 0.71]

S2NG-STANDARD [0.43, 0.57]

S2NOG-STANDARD [0.33, 0.67]

S2NOAG-STANDARD [0.39, 0.61]

Table 8.10: Regularised LOP weights.

larised STANDARD+G model (at a significance level ofp < 0.01, on both the test

and development sets). By training the gazetteer features separately we have avoided

their over-regularising effect on the non-gazetteer features. This relies on training the

gazetteer features with a relatively small set of other features. We can see this by read-

ing down the table, below the top two rows. As more features are added to the model

containing the gazetteer features, we obtain decreasing test set F scores because the

advantage created from separate training of the features isincreasingly lost.

Table 8.10 gives the corresponding weights for the LOPs in Table 8.9, which are

set using the development data. We see that in every case the LOP allocates a smaller

weight to the gazetteer features model than the non-gazetteer features model and in

doing so restricts the influence that the gazetteer featureshave in the LOP’s labelling

decisions.

Table 8.11, similar to Table 8.6 earlier, shows test set labelling errors for the STAN-

DARD model and the one of the LOPs. We take the S2G-STANDARD LOP here for

illustration. We see from the table that the number of errorsin the top-right cell shows a

reduction of 29% over the corresponding value in Table 8.6. We have therefore reduced

the number errors of the type we were targeting with our approach. The approach has

also had the effect of reducing the number of errors in the bottom-right cell, which

further improves model accuracy.

All the LOPs in Table 8.9 contain regularised constituent models. Table 8.12 gives

test set F scores for the corresponding LOPs constructed from unregularised models.

Although the scores are lower than those in Table 8.9, the S1G-STANDARD LOP still

outperforms theregularisedSTANDARD+G model.

In summary, by training the gazetteer features and non-gazetteer features in sepa-

rate models and decoding using a LOP, we are able to overcome the problems described
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s2g-STANDARD LOP

X ✗

S
TA

N
D

A
R

D

X 44,991 114

✗ 305 1,256

Table 8.11: Test set errors

LOP Development Test

S1G-STANDARD 90.58 84.87

S2G-STANDARD 90.70 84.28

S2NG-STANDARD 89.70 84.01

S2NOG-STANDARD 89.48 83.99

S2NOAG-STANDARD 89.40 83.70

Table 8.12: Unregularised LOP F scores.

in earlier sections and can achieve much higher accuracy. This shows that successfully

deploying gazetteer features within log-linear models should involve careful consid-

eration of restrictions on how features interact with each other, rather than simply

considering the absolute values of feature parameters in isolation from each other.

8.6 More General Case: Gazetteer-Like Features

So far our discussion has focused on gazetteer features as illustrative examples of the

general discriminative features that we talked about in theopening sections. To show

that our findings are not specific to gazetteer features, we explore other sets of features

with properties similar to those of gazetteer features. By applying similar treatment

to these features during training we may be able harness their usefulness to a greater

degree than is currently the case when training in a single model. So how might other

discriminative features with similar properties be identified?

The task of identifying the optimal feature set partition for creation of models in the

previous section is in general a hard problem because it relies on clustering the features

based on their explanatory power relative to all other clusters. Both the number of
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Figure 8.1: Pictorial depiction of a family n-ton feature for n = 3.

clusters and the distribution of features across the clusters must be determined.3

However, we may be able to solve the problem approximately. We have already

found a partition manually, using our intuition about the problems of training highly

discriminative features. Using this we have been able to arrive at a “reasonable” par-

tition. One way forward, therefore, is to try to devise some heuristics that allow us to

identify feature sets that have similar properties to thoseof discriminative set we have

been using, i.e. the gazetteer features. In this section we consider three such heuristics.

All of these heuristics are motivated by the observation that gazetteer features are both

highly discriminative and generally very sparse. The heuristics lead to three candidate

feature sets:

1. Family Singleton Features (FSF). We define a featurefamily as a set of features

that have the same conjunction of predicates defined on the observations. Hence

they differ from each other only in the NER label that they encode. Family

singleton featuresare features that have a count of 1 in the training data when

all other members of that feature family have zero counts. These features have

a flavour of gazetteer features in that they represent the fact that the conjunction

of observation predicates they encode is highly predictiveof the corresponding

NER label, and that they are also very sparse.

2. Family n-ton Features (FnF). These are features that have a count ofn (greater

than 1) in the training data when all other members of that feature family have

3This problem is very similar to the task of defining an optimalfeature partition for the feature set
experts that we saw in Chapter 6.
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zero counts. They are similar to family singleton features,but exhibit gazetteer-

like properties less and less as the value ofn is increased because a larger value of

n represents less sparsity. Figure 8.1 gives a pictorial representation of a single

family of family n-ton features, for n = 3. In the diagram the feature family

consists of features which all have the same observation part, represented by the

box enclosing a local neighbourhood of words and POS tags, and a distribution

of training data counts across possible labels that has all the mass on one label,

in this case a count of 3 on labelL2.

3. Loner Features (LF). These are features which occur with a low mean number

of other active features in the training data. They are similar to gazetteer features

in that, at the points where they occur, they are in some sensebeing relied upon

more than most features to explain the data. Figure 8.2 givesa pictorial repre-

sentation of where loner features will in general occur. Thediagram shows the

mean number of features active at different positions in a sentence in the training

data, for the gold standard labelling. The loner features will typically occur at

positions similar to the one marked, where only a small number of other features

are active.

To create loner feature sets we rank all features in the STANDARD+G model

based on the mean number of other features they are observed within the training

data, then we take subsets of increasing size. We present results for subsets of

size 500, 1000, 5000 and 10000.

For each of these categories of features we add simple structural features (the S1

set from earlier), to provide basic structural support, andthen train a regularised model.

We also train a regularised model consisting of all featuresin STANDARD+G except

the features from the category in question. We decode these model pairs under a LOP

as described earlier.

Table 8.13 gives test set F scores for LOPs created from each of the categories

of features above (with abbreviated names derived from the category names). The

results show that for thefamily singleton featuresand each of theloner feature sets

we obtain LOPs that significantly outperform the regularised STANDARD+G model

(p < 0.0002 in every case). Thefamily n-ton features’ LOP does not do as well, but

that is probably due to the fact that some of the features in this set have a large value

of n and so behave much less like gazetteer features.
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Words

Active Features

Figure 8.2: Pictorial depiction of number of features active at different positions within

a sentence. The loner features are those features that occur only at places like the one

marked, where only a small number of other features are active.

In summary, we obtain the same pattern of results using our quarantined train-

ing and LOP decoding method with these categories of features that we do with the

gazetteer features. We conclude that the problems with gazetteer features that we have

identified in this chapter are exhibited by general discriminative features with gazetteer

feature-like properties, and our method is also successfulwith these more general fea-

tures. Clearly, the heuristics that we have devised in this section are very simple, and

it is likely that with more careful engineering better feature partitions can be found.

8.7 Summary

In this chapter we have identified and analysed negative effects that can be introduced

to CRFs, and log-linear models in general, by the inclusion of highly discriminative

features. We have used gazetteer features as a representative example of such a dis-

criminative feature set. We have shown that these negative effects manifest themselves

through errors that generally result from the model’s over-dependence on the discrim-

inative features for decision making. To overcome this problem a more careful treat-

ment of these features is required during training. The solution we propose involves
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LOP Test Set

FSF 85.79

FnF 84.78

LF 500 85.80

LF 1000 85.70

LF 5000 85.77

LF 10000 85.62

Table 8.13: Regularised LOP F scores.

quarantining the highly discriminative features and training them separately from the

other features in the model. Decoding is then undertaken using the logarithmic opinion

pool framework that we introduced in Chapter 6. In fact, the LOP provides a natural

way to handle the problem, with different constituent models for the different feature

types. The method leads to much greater accuracy, and allowsthe power of discrimi-

native features to be fully harnessed.

Towards the end of the chapter, we went on to identify other examples of highly

discriminative feature sets (in addition to the gazetteer features we had been using

though the chapter) by looking for features with gazetteer feature-like properties. We

showed that similar problems, and our proposed solution, also exist for these more

general discriminative feature sets.





Chapter 9

Conclusion

This thesis concerns regularisation techniques for conditional random fields (CRFs)

within the domain of natural language processing (NLP). CRFs are conditional prob-

abilistic models for structured labelling problems, and have been successfully applied

to a number of different tasks in NLP and other domains. Despite their success, much

work has supported the view that CRFs tend to overfit the data on which they are

trained, significantly in some circumstances. As a result, effective application of CRFs

requires the need for some form of regularisation. To date, conventional approaches to

regularising CRFs have focused on the use of a Gaussian priorover the model param-

eters. However, in most cases fitting a Gaussian prior involves an element of trial-and-

error, where one must search a potentially high-dimensional hyperparameter space.

In this thesis we address the overfitting problem in CRFs by investigating an al-

ternative framework for CRF regularisation based on a form of CRF ensemble model.

The main contributions of the thesis fall into three categories:

1. Analysis of Conventional CRF Regularisation. Our first contribution entails

a thorough analysis of conventional regularisation techniques for CRFs, includ-

ing some extensions which we propose. We start by considering regularisation

with a prior distribution, and compare three families of priors. Our findings sug-

gest that the Gaussian prior, although the most commonly used with CRFs in

practice, is not clearly the most natural choice and other possibilities exist. This

conclusion is contrary to the findings of previous work by Peng and McCallum

(2004). We also consider how to apply regularisation with a prior to the fea-

tures in a model in a feature-specific way. This differs from the usual application

of a prior, where all parameters are regularised equally. Welook at regularisa-

tion over subsets of features, investigating how such groupings may be defined,

169
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and consider regularisation at the level of individual features, where each fea-

ture in the model is regularised to a different degree. Our general conclusion

is that although improvements may be made with regularisation at a lower level

of granularity, the benefits gained are typically offset by the complex search re-

quired to fit a larger number of hyperparameters. Lastly, we introduce a new,

alternative approach to conventional regularisation by formulating a variant of

the standard CRF model that has a regularising effect implicit in its form. We

call this model theinequalityCRF, and show that it can lead to significant per-

formance improvement over a standard CRF regularised with aGaussian prior,

at the cost of only one additional hyperparameter.

2. New Framework for CRF Regularisation. Our second contribution forms the

main focus of the thesis. Here, we introduce an alternative framework for CRF

regularisation based on a form of ensemble model called alogarithmic opinion

pool (LOP). The model combines a set of CRFs in a weighted product.We

show that the LOP is a natural choice for a CRF ensemble due to the exponential

form of the CRF distribution. We also demonstrate how the LOPsatisfies an

ambiguity decomposition, which motivates the need for the models in the LOP

to be accurate and/or diverse. Such diversity may be createdin a number of ways,

including using the feature set, the training data and the training algorithm. We

explore each of these possibilities.

Our main result comes from using the feature set as a source ofdiversity. We

show that by creating a set of CRF models based on an intuitively-motivated par-

tition of the feature set, and combining them under a LOP withuniform weights,

we may obtain a model which significantly outperforms an unregularised stan-

dard CRF that utilises the entire feature set, and is comparable in performance

to a standard CRF regularised with a Gaussian prior. This means that the LOP

approach with unregularised models represents a competitive alternative to con-

ventional regularisation with a prior, but without the needto search a hyperpa-

rameter space.

We also show that using the training set as a source of diversity is not as effective

as use of the feature set. Employing CRFs trained from baggedtraining set sam-

ples, we obtain LOPs that do provide some improvement over anunregularised

standard CRF, but are not competitive with a standard CRF regularised with a

Gaussian prior.
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Our LOP framework involves the multiplicative combinationof CRFs in an en-

semble model. A variant of this is thelinear opinion pool(LIP), where models

are combined additively. We investigate the properties of LIPs for CRFs and

compare them to LOPs. We see that it is difficult to achieve efficient, accurate

decoding of a LIP of CRFs, and that approximate decoding mustbe used. How-

ever, we also show how such approximation leads to decoding that is both more

expensive than LOP decoding and results in lower performance. Our conclusion,

therefore, is that a LOP is a more preferable combination method for CRFs than

a LIP.

In addition to considering the feature set and training set as possible sources of

diversity, we also investigate ways of encouraging diversity through the CRF

training algorithm. In particular, we introduce the idea ofco-operative training

of CRFs, where parameters in different models interact during the training pro-

cess. We encourage diversity between the models using a specially formulated

objective function which includes adiversity penaltyterm. Our results demon-

strate that the presence of the diversity term can lead to LOPs with improved

performance. Our work in this area sets the scene for a numberof future re-

search possibilities.

3. Applications of the Framework. Our third contribution involves application of

the LOP framework to overcome negative effects that a CRF maysuffer under

the standard training regime. Such effects can occur when highly discriminative

features are included in the model. We identifygazetteerfeatures as a represen-

tative example of such a discriminative feature set. We showthat these negative

effects manifest themselves through errors that generallyresult from the model’s

over-dependence on the discriminative features for decision making. To over-

come this problem a more careful treatment of these featuresis required during

training. We show that one solution to this problem involvesquarantining the

highly discriminative features and training them separately from the other fea-

tures in the model. Decoding is then undertaken using the logarithmic opinion

pool framework. In fact, the LOP provides a natural way to handle the prob-

lem, with different constituent models for the different feature types. We show

that separate training and LOP decoding can lead to much greater accuracy, and

allows the power of discriminative features to be fully harnessed. In particular,

this method may provide for more effective use of gazetteerswith CRF models
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in the future. Lastly, we identify other examples of highly discriminative fea-

ture sets, in addition to gazetteer features, by identifying features with gazetteer

feature-like properties. We show that similar problems also exist for these more

general discriminative feature sets, and that the LOP approach may be used to

address them.

In summary, this thesis demonstrates the potential for regularising CRFs in alterna-

tive ways to the conventional approaches in the literature.We present one such method

in the thesis and explore its properties. We show that the approach can achieve perfor-

mance levels for the CRF that are similar, or better, than those of traditional approaches

but at lower cost.

9.1 Future Work

In each chapter of the thesis we have noted threads of work with the potential for future

investigation. We now summarise some of the main possibilities:

1. In Chapter 6 (section 6.8), we looked at the possibility ofcreating LOPs with

non-uniform weights. We described a procedure to find the optimal set of weights

for a given set of constituent models. The approach was basedon training the

weights to maximise the log-likelihood of the training data. This log-likelihood

was a function of the weights only, with the constituent models held fixed in

their pre-trained states. We found that the procedure did not produce significant

improvements over LOPs with a uniform weight distribution.We attributed this

to the fact that for most of the feature set expert sets we havebeen using in the

thesis, the optimal weight distribution is likely to be close to the uniform distri-

bution because the experts are of roughly equal quality. It would be interesting

to investigate this idea further and experiment with the behaviour of the algo-

rithm in situations where the constituent models possess a greater differential in

model quality. In such cases we would expect the LOP to downgrade the weight

attached to the less accurate models, therefore partially removing these models

from the LOP’s labelling decisions.

In addition to use of the log-likelihood in the objective function, it would also

be possible to seek optimal weights based on an alternative measure. One pos-

sibility would be to try to maximise the most relevant criterion for the task. For

example, for NER this could be F score.
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2. In Chapter 7 we described a framework where parameters in different CRFs

interact during training through a penalty term in the objective function that en-

courages diversity between the resulting models. Our results showed that the

basic framework was successful and we were able to create LOPs that showed

performance improvements over the LOPs of previous chapters, where the con-

stituent models were trained independently. However, as wementioned in Chap-

ter 7, our findings really only represent a proof-of-conceptfor this body of work,

and there are many avenues for future investigation. Possibilities include explo-

ration of other forms of the co-operative training objective function, including

more effective forms for the diversity penalty; the extension of the training al-

gorithm to include LOP per-model weights as well as constituent model param-

eters; and examination of the behaviour of the framework with a wider range

other expert sets.

3. The co-operative training framework of Chapter 7 takes asinput a set of pre-

defined constituent models, and trains the models interactively. For the ex-

periments in the chapter we used the feature set expert sets that we had pre-

viously found to yield high performing LOPs. These experts sets were based

on intuitively-motivated partitions of the feature set. Inprinciple, however, we

could generalise the co-operative training framework to include a feature induc-

tion facility as well as model training. Such a system would induce features in

a similar way to single model feature induction for CRFs (McCallum, 2003),

but across all models in an expert set simultaneously. The models would also

be co-operatively trained within framework, with induction and training steps

alternating. Clearly, design of such a system would involvea number of hard

engineering decisions to maintain tractability, but the general idea represents an

interesting avenue.

4. This thesis has concerned regularisation of CRFs in ways alternative to the con-

ventional use of a prior distribution over the model parameters. However, it

would be interesting to investigate the possibility of bridging the gap between

the two approaches. For example, appropriate use of a Gaussian (or other) prior

with a non-diagonal covariance matrix (where we do not assume model param-

eters are independent), may be able to simulate the behaviour of a LOP to some

degree. Of course, application of such a prior would be problematic as it would

involve specification of an even larger number of hyperparameters than with the
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usual, diagonal case. Nonetheless, such a prior may shed light on the theoretical

connections between priors and LOPs, and this would be very interesting.



Appendix A

Derivation of the CRF Probability

Density Function

In Chapter 2 we defined a linear chain CRF as a model with the following distribution:

p(s|o) =
1

Z(o)
exp

(

T+1

∑
t=1

K

∑
k=1

λk fk(st−1,st,o, t)

)

whereo is a sequence of observations,s is the corresponding sequence of labels, thefk

are feature functions, theλk are model parameters associated with thefk, t runs over

the cliques in the sequence, andZ(o) is a normalising function.

We now show that this general form of CRF distribution is the solution to a con-

strained optimisation problem, specifically a sequential entropy maximisation prob-

lem. The constraints in this problem have the form:

Ep(s|o)[ fk] = Ck, k = 1. . .K (A.1)

where theCk are a set of arbitrary constants. The optimisation problem can be stated

as follows:

max
p(s|o)

H [p(s|o)] = −∑
o

p̃(o)∑
s

p(s|o) logp(s|o) (A.2)

s.t. Ep(s|o)[ fk] = Ck, k = 1. . .K

We are therefore seeking the most general model (the one which maximises the se-

quential entropy) that obeys the constraints. In order to derive the general solution to
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this problem, we appeal to Lagrangian methods. Good references in this area include

the textbooks by Nocedal and Wright (1999) and Bertsekas (1999).

We first reformulate problem A.2 as a minimisation problem rather then a max-

imisation problem, and include an explicit normalisation constraint for the distribution

p(s|o) . This brings our setup into line with the standard form for the expression of

constrained optimisation problems. Hence our problem trivially becomes:

min
p(s|o)

H [p(s|o)] = ∑
o

p̃(o)∑
s

p(s|o) logp(s|o) (A.3)

s.t. Ep(s|o)[ fk] = Ck, k = 1. . .K

∑
s

p(s|o)−1 = 0, ∀o s.t. p̃(o) > 0

Note that we can multiply the last set of constraints by ˜p(o), for eacho, without violat-

ing any of the constraints in the set. We do this to make subsequent derivation easier.

We also introduce a set of Lagrange multipliersαk, each multiplier corresponding to a

constraint in A.3, to form the Lagrangian:

L = ∑
o

p̃(o)∑
s

p(s|o) logp(s|o)

+
K

∑
k=1

αk
(

Ck−Ep(s|o)[ fk]
)

+∑
o

µop̃(o)

(

∑
s

p(s|o)−1

)

(A.4)

We now differentiate the Lagrangian with respect to thep(s|o) distribution. Let us

consider a particular “element” of that distributionp(s′|o′). We must evaluate the

derivative of the Lagrangian with respect to this element. Let us consider this term-

by-term. The easiest term in the Lagrangian to differentiate is probably the last one.

This differentiates toµo′ p̃(o′). Next let us evaluate the derivative of the first term in

the Lagrangian. This is:

∂
∂ p(s′|o′)

[

∑
o

p̃(o)∑
s

p(s|o) logp(s|o)

]

= ∑
o

p̃(o)∑
s

∂
∂ p(s′|o′) [p(s|o) logp(s|o)]

= p̃(o′)
[

logp(s|o′)+1
]

The derivative of the middle term in A.4 is a little more awkward to evaluate. Clearly

the derivative ofCk vanishes and so we only need to look at the derivative of the

expected value offk under the model. This derivative is:



177

∂
∂ p(s′|o′)

[

−
K

∑
k=1

αkEp(s|o)[ fk]

]

which expands to:

−
K

∑
k=1

αk
∂

∂ p(s′|o′)

[

∑
o

p̃(o)∑
s

p(s|o)
T+1

∑
t=1

fk (s,o, t)

]

with t running over theT + 1 cliques in the sequence. We can see that this term

differentiates to:

−
K

∑
k=1

αkp̃(o′)
T+1

∑
t=1

fk
(

s′,o′, t
)

Putting the derivatives of the three terms in A.4 together, we arrive at the derivative of

the entire Lagrangian:

∂L

∂ p(s′|o′) = p̃(o′)

[

1+ logp(s′|o′)−
K

∑
k=1

αk

T+1

∑
t=1

fk
(

s′,o′, t
)

+ µo′

]

We set this to zero, to give:

p̃(o′)

[

1+ logp(s′|o′)−
K

∑
k=1

αk

T+1

∑
t=1

fk
(

s′,o′, t
)

+ µo′

]

= 0 (A.5)

We are only interested in the Lagrangian, and its derivatives, in that area of the space

for which p̃(o′) 6= 0. Therefore, we can simplify Equation A.5 to:

1+ logp(s′|o′)−
K

∑
k=1

αk

T+1

∑
t=1

fk
(

s′,o′, t
)

+ µo′ = 0

which gives:

logp(s′|o′) = −µo′ −1+
K

∑
k=1

αk

T+1

∑
t=1

fk
(

s′,o′, t
)

Then exponentiating we get:
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p(s′|o′) = exp(−µo′ −1)exp

(

K

∑
k=1

αk

T+1

∑
t=1

fk
(

s′,o′, t
)

)

However, we know that∑s′ p(s′|o′) = 1, so:

exp(−µo′ −1)∑
s′

exp

(

K

∑
k=1

αk

T+1

∑
t=1

fk
(

s′,o′, t
)

)

= 1

From this we can get the normalising functionZ(o′):

Z
(

o′
)

=
1

exp(−µo′ −1)
= ∑

s′
exp

(

K

∑
k=1

αk

T+1

∑
t=1

fk
(

s′,o′, t
)

)

Therefore, the distribution becomes:

p(s′|o′) =
1

Z(o′)
exp

(

K

∑
k=1

αk

T+1

∑
t=1

fk
(

s′,o′, t
)

)

Re-ordering the sums, removing the primes, re-labelling the Lagrange multipliersαk

(corresponding to the model parameters) to the more conventional λk, and noting that

the cliques in a sequence are just label pairs(st−1,st), this probability density function

can be re-stated as:

p(s|o) =
1

Z(o)
exp

(

T+1

∑
t=1

K

∑
k=1

λk fk(st−1,st ,o)

)

(A.6)

Hence we have derived the general form for a linear chain CRF distribution as the

solution to a constrained sequential maximum entropy problem.

In the general probability density function given in A.6, the values of theλk depend

on the original constantsCk in the constraints in A.1. Given a training data sample,

the most natural choice for the constantsCk would be the empirical expected feature

counts, calculated using the training data. Hence the constraints in A.1 would become:

Ep̃(o,s)[ fk]−Ep(s|o)[ fk] = 0, k = 1. . .K

With this specific choice for the constraints, the values of the model parametersλk

correspond to the maximum likelihood CRF model.
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The Inequality CRF

In this appendix we provide detailed derivations of some of the properties of the in-

equality CRF. Specifically, we derive the inequality CRF probability density function

and the objective function used for training. The inequality CRF is introduced and

discussed in Chapter 2.

B.1 Derivation of the Probability Density Function

In Chapter 5 we stated the optimisation problem for the inequality CRF as follows:

max
p(s|o)

H [p(s|o)] = −∑
o

p̃(o)∑
s

p(s|o) logp(s|o) (B.1)

s.t. Ep̃(o,s)[ fk]−Ep(s|o)[ fk]−Ak ≤ 0, k = 1. . .K

Ep(s|o)[ fk]−Ep̃(o,s)[ fk]−Bk ≤ 0, k = 1. . .K

In order to derive the general solution to this problem, and therefore the general form

for the probability density function of the inequality CRF,we appeal to Lagrangian

methods. Our derivation follows very closely the derivation of the probability density

function of a standard CRF, covered in Appendix A. However, in order to make each

appendix self-contained, we will also show the details in full in this appendix. As men-

tioned in Appendix A, good references on Lagrangian methodsinclude the textbooks

by Nocedal and Wright (1999) and Bertsekas (1999).

We first reformulate the problem in B.1 as a minimisation problem rather then a

maximisation problem, and include an explicit normalisation constraint for the distri-

butionp(s|o) . This brings our setup into line with the standard form for the expression

of constrained optimisation problems. Hence our problem becomes:
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min
p(s|o)

H [p(s|o)] = ∑
o

p̃(o)∑
s

p(s|o) logp(s|o) (B.2)

s.t. Ep̃(o,s)[ fk]−Ep(s|o)[ fk]−Ak ≤ 0, k = 1. . .K

Ep(s|o)[ fk]−Ep̃(o,s)[ fk]−Bk ≤ 0, k = 1. . .K

∑
s

p(s|o)−1 = 0, ∀o s.t. p̃(o) > 0

Note that we can multiply the last set of constraints by ˜p(o), for eacho, without vio-

lating any of the constraints in the set. Doing this makes subsequent derivation easier.

Having done that, we introduce a set of Lagrange multipliersfor each set of constraints

in B.2, and form the Lagrangian:

L = ∑
o

p̃(o)∑
s

p(s|o) logp(s|o)

+
K

∑
k=1

αk
(

Ep̃(o,s)[ fk]−Ep(s|o)[ fk]−Ak
)

+
K

∑
k=1

βk
(

Ep(s|o)[ fk]−Ep̃(o,s)[ fk]−Bk
)

+∑
o

µop̃(o)

(

∑
s

p(s|o)−1

)

(B.3)

We now differentiate the Lagrangian with respect to thep(s|o) distribution. Let us

consider a particular “element” of that distributionp(s′|o′). We must evaluate the

derivative of the Lagrangian with respect to this element. Let us consider this term-

by-term. The easiest term in the Lagrangian to differentiate is probably the last one.

This differentiates toµo′ p̃(o′). Next let us evaluate the derivative of the first term in

the Lagrangian. This is:

∂
∂ p(s′|o′)

[

∑
o

p̃(o)∑
s

p(s|o) logp(s|o)

]

= ∑
o

p̃(o)∑
s

∂
∂ p(s′|o′) [p(s|o) logp(s|o)]

= p̃(o′)
[

logp(s|o′)+1
]

The derivatives of the middle two terms in B.3 are a little more awkward to evaluate,

but are quite similar to each other so we only need evaluate one of them. Let us take the

former of the two. Clearly the derivative ofAk vanishes andp(s′|o′) does not appear in

the empirical expected value offk. Therefore we only need to look at the derivative of

the expected value offk under the model. This derivative is:
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∂
∂ p(s′|o′)

[

−
K

∑
k=1

αkEp(s|o)[ fk]

]

which expands to:

−
K

∑
k=1

αk
∂

∂ p(s′|o′)

[

∑
o

p̃(o)∑
s

p(s|o)
T+1

∑
t=1

fk (s,o, t)

]

with t running over theT + 1 cliques in the sequence. We can see that this term

differentiates to:

−
K

∑
k=1

αkp̃(o′)
T+1

∑
t=1

fk
(

s′,o′, t
)

It is obvious from this that the third term in the Lagrangian (with the βk Lagrange

multipliers) differentiates to:

K

∑
k=1

βkp̃(o′)
T+1

∑
t=1

fk
(

s′,o′, t
)

Putting all these individual derivatives together, we arrive at the derivative of the entire

Lagrangian:

∂L

∂ p(s′|o′) = p̃(o′)

[

1+ logp(s′|o′)−
K

∑
k=1

(αk−βk)
T+1

∑
t=1

fk
(

s′,o′, t
)

+ µo′

]

We set this to zero, to give:

p̃(o′)

[

1+ logp(s′|o′)−
K

∑
k=1

(αk−βk)
T+1

∑
t=1

fk
(

s′,o′, t
)

+ µo′

]

= 0 (B.4)

We are only interested in the Lagrangian, and its derivatives, in that area of the space

for which p̃(o′) 6= 0. Therefore, we can simplify B.4 to:

1+ logp(s′|o′)−
K

∑
k=1

(αk−βk)
T+1

∑
t=1

fk
(

s′,o′, t
)

+ µo′ = 0

which gives:
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logp(s′|o′) = −µo′ −1+
K

∑
k=1

(αk−βk)
T+1

∑
t=1

fk
(

s′,o′, t
)

Then exponentiating we get:

p(s′|o′) = exp(−µo′ −1)exp

(

K

∑
k=1

(αk−βk)
T+1

∑
t=1

fk
(

s′,o′, t
)

)

However, we know that∑s′ p(s′|o′) = 1, so:

exp(−µo′ −1)∑
s′

exp

(

K

∑
k=1

(αk−βk)
T+1

∑
t=1

fk
(

s′,o′, t
)

)

= 1

From this we can get the normalising functionZ(o′):

Z
(

o′
)

=
1

exp(−µo′ −1)
= ∑

s′
exp

(

K

∑
k=1

(αk−βk)
T+1

∑
t=1

fk
(

s′,o′, t
)

)

Therefore, we arrive at the general form for the probabilitydensity function for the

inequality CRF:

p(s′|o′) =
1

Z(o′)
exp

(

K

∑
k=1

(αk−βk)
T+1

∑
t=1

fk
(

s′,o′, t
)

)

Re-ordering the sums, removing the primes and noting that the cliques in a sequence

are just label pairs(st−1,st), this probability density function can be re-stated as:

p(s|o) =
1

Z(o)
exp

(

T+1

∑
t=1

K

∑
k=1

(αk−βk) fk(st−1,st,o)

)

The theory behind the use of Lagrangian methods (Nocedal andWright, 1999) dictates

that when the constraints are expressed as in B.2, the Lagrange multipliers are all non-

negative. Therefore we have conditions on theαk andβk:

αk ≥ 0, βk ≥ 0, k = 1. . .K

In addition, theαk andβk also satisfy the Karush-Kuhn-Tucker (KKT) conditions (No-

cedal and Wright, 1999). These conditions are:
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αk (Ep̃[ fk]−Ep[ fk]−Ak) = 0, k = 1. . .K

βk (Ep[ fk]−Ep̃[ fk]−Bk) = 0, k = 1. . .K

Because the inequality CRF model parameters (theαk andβk) are non-negative, the

training process involves a bounded optimisation problem.To handle this we use the

bounded limited memory variable metric (BLMVM) algorithm (Benson and More,

2001), which is implemented via special routines in the TAO libraries (see Chapter 3).

B.2 Derivation of the Objective Function

Following Lagrangian methods, we derive an objective function for the inequality CRF

by substituting the values found in the previous section forthe Lagrange multipliers,

back into the Lagrangian. To simplify the orthography, let us denote the exponent in

the probability density function for the inequality CRF byE, so:

E (o,s) =
T+1

∑
t=1

K

∑
k=1

(αk−βk) fk (s,o, t)

Using this, the Lagrangian becomes:

L = ∑
o

p̃(o)∑
s

eE(o,s)

Z(o)
[E (o,s)− logZ(o)]

+
K

∑
k=1

αk

[

∑
o,s

p̃(o,s)
T+1

∑
t=1

K

∑
k=1

fk (s,o, t)−∑
o

p̃(o)∑
s

eE(o,s)

Z(o)

T+1

∑
t=1

K

∑
k=1

fk (s,o, t)−Ak

]

+
K

∑
k=1

βk

[

∑
o

p̃(o)∑
s

eE(o,, k=1...Ks)

Z(o)

T+1

∑
t=1

K

∑
k=1

fk (s,o, t)−∑
o,s

p̃(o,s)
T+1

∑
t=1

K

∑
k=1

fk (s,o, t)−Bk

]

+0

Collecting terms and simplifying gives:
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L = ∑
o

p̃(o)∑
s

eE(o,s)

Z(o)
[E (o,s)− logZ(o)]

−∑
o

p̃(o)∑
s

eE(o,s)

Z(o)
E (o,s)

+∑
o,s

p̃(o,s)E(o,s)

−
K

∑
k=1

αkAk−
K

∑
k=1

βkBk

Further simplifying leads to:

L = −∑
o

p̃(o) logZ(o)+∑
o,s

p̃(o,s)E(o,s)−
K

∑
k=1

αkAk−
K

∑
k=1

βkBk (B.5)

Actually, the first two terms on the right-hand side are just the log-likelihood under the

inequality CRF. To see this, consider the definition of the log-likelihood:

LL(α,β ) = log

[

∏
o,s

p(s|o)p̃(o,s)

]

= ∑
o,s

p̃(o,s) log

[

eE(o,s)

Z(o)

]

= ∑
o,s

p̃(o,s) [E (o,s)− logZ(o)]

= −∑
o

p̃(o) logZ(o)+∑
o,s

p̃(o,s)E(o,s)

Comparing this to B.5 we see that the Lagrangian, and therefore the objective function,

is just:

L = LL(α,β )−
K

∑
k=1

αkAk−
K

∑
k=1

βkBk

This is the expression for the objective function given in Chapter 5, Equation 5.22.
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