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Abstract

Since their recent introduction, conditional random figl@&RFs) have been success-
fully applied to a multitude of structured labelling tasksmany different domains.
Examples include natural language processing (NLP), fmaimatics and computer
vision. Within NLP itself we have seen many different apation areas, like named
entity recognition, shallow parsing, information extiactfrom research papers and
language modelling. Most of this work has demonstrated greindirectly or indi-
rectly, to employ some form of regularisation when apply@gFs in order to over-
come the tendency for these models to overfit. To date a pomdthod for regularis-
ing CRFs has been to fit a Gaussian prior distribution oventbdel parameters.

In this thesis we explore other methods of CRF regularisaiiovestigating their
properties and comparing their effectiveness. We applydras to sequence labelling
problems in NLP, specifically part-of-speech tagging ant@a entity recognition.

We start with an analysis of conventional approaches to GigElarisation, and
investigate possible extensions to such approaches. ficydar, we consider choices
of prior distribution other than the Gaussian, including ttaplacian and Hyperbolic;
we look at the effect of regularising different featuresarpely, to differing degrees,
and explore how we may define an appropriate level of regdtidn for each feature;
we investigate the effect of allowing the mean of a priorrdsition to take on non-
zero values; and we look at the impact of relaxing the feagxpectation constraints
satisfied by a standard CRF, leading to a modified CRF modelalv¢he inequality
CRE Our analysis leads to the general conclusion that alththugyie is some capacity
for improvement of conventional regularisation throughdification and extension,
this is quite limited. Conventional regularisation withrégpis in general hampered by
the need to fit a hyperparameter or set of hyperparametershwhn be an expensive
process.

We then approach the CRF overfitting problem from a diffepamspective. Specif-
ically, we introduce a form of CRF ensemble calleldgarithmic opinion poo(LOP),
where CRF distributions are combined under a weighted miodMe show how a LOP
has theoretical properties which provide a framework faigeing new overfitting re-
duction schemes in terms of diverse models, and demonkwatsuch diverse models
may be constructed in a number of different ways. Specificalé show that by con-
structing CRF models from manually crafted partitions oéattire set and combining
them with equal weight under a LOP, we may obtain an enserhblkesignificantly



outperforms a standard CRF trained on the entire featur@sétis competitive in per-
formance to a standard CRF regularised with a Gaussian prioe great advantage
of LOP approach is that, unlike the Gaussian prior methodpé&s not require us to
search a hyperparameter space.

Having demonstrated the success of LOPs in the simple ca&sthem move on to
consider more complex uses of the framework. In particwarinvestigate whether it
is possible to further improve the LOP ensemble by allowiagameters in different
models to interact during training in such a way that diugrbetween the models is
encouraged.

Lastly, we show how the LOP approach may be used as a remeadydablem
that standard CRFs can sometimes suffer. In certain Stusthegative effects may be
introduced to a CRF by the inclusion of highly discriminatieatures. An example of
this is provided by gazetteer features, which encode a wqnasence in a gazetteer.
We show how LOPs may be used to reduce these negative eféaxtsso provide
some insight into how gazetteer features may be more efédgthandled in CRFs,
and log-linear models in general.
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Chapter 1
Introduction

Conditional Random Fields (CRFs) were introduced in 200L&fferty et al. (2001)
and currently represent a state-of-the-art approach tetstred labelling problems in
natural language processing (NLP). Although originallypéoged for sequence la-
belling tasks such as noun-phrase chunking (NPC) (Sha aet®e¢003) and named
entity recognition (NER) (McCallum and Li, 2003), CRFs hageently been applied
to problems that involve a more complex structure of depeoi@s between the ob-
jects being labelled. Examples include extraction of infation from research papers
(Peng and McCallum, 2004), semantic role labelling (Coheh Blunsom, 2005) and
parsing (Clark and Curran, 2004). The widespread acceptaiitbe CRF as the model
of choice for many labelling problems within the NLP comntyns evidenced by the
fact that its use has spread beyond English to many otheuday®s, including Hindi
(Li and McCallum, 2003), Chinese (Peng et al., 2004) andrilege(Kudo et al., 2004).
CRFs have also seen increasing application in domains titherNLP, such as com-
puter vision (He et al., 2004; Wang and Ji, 2005) and comjuutal biology (Culotta
et al., 2005).

CRFs were originally introduced to overcome some of the weakes of related se-
guence labelling models. Hidden Markov Models (HMMs) (Redoj 1989), for exam-
ple, had enjoyed widespread success on a number of lab&dkikg in NLP, including
part-of-speech tagging (Kupiec, 1992), information estita (Freitag and McCallum,
2000) and shallow parsing (Molina and Pla, 2002). Howev&iM$ are generative
models which model a joint distribution over both obsemasi and their labels. This
joint structure means that HMMs typically enforce stricihddional independence
assumptions between elements of the observations. Cosstygut is difficult to
tractably encode arbitrary dependencies between obgamelements in an HMM, so

1



2 Chapter 1. Introduction

the modelling power is restricte@iscriminativeapproaches, by contrast, model only
the distribution of the labelgiventhe observations. Examples of discriminative mod-
els include sequential maximum entropy (ME) models (Randp, 1996), of which

a special case is the maximum entropy Markov model (MEMM) Qditum et al.,
2000). The discriminative nature of these models allowssiexification of arbitrary,
non-independent properties of the observations via a sietadfires For some tasks,
this extra facility means that important dependencies betwthe observations, which
would be hard to tractably encode in an HMM, can easily beuihet! in the model.
This often leads to increased performance (McCallum e2@DQ). Conventional dis-
criminative models for sequence labelling typically speai label distribution which

is normalised at each point in the sequence. As a result®fthicture, these models
suffer a limitation which has become knownlabel bias(Bottou, 1991), and relates
to an undesired biasing effect in the label distributiondais certain labellings. CRFs
are also discriminative models, but in contrast to conwerai discriminative models,
they specify a label distribution which gdoballynormalised over the whole sequence.
In doing so they avoid this bias effect. CRFs can thereforedsn as a solution to
the weaknesses of both generative sequencing models anehtmmal discriminative
sequencing models, taking advantage of increased moglelliwer over HMMs while
simultaneously avoiding the bias effects of MEMMs.

Despite the clear advantages CRFs possess over alternaitlels, they do have
certain shortcomings. At a high level these deficiencies beaglivided into two cate-
gories:scalingandoverfitting The first of thesescaling relates to both the computa-
tional and storage demands of CRF training, and how these with the complexity
of the task and the size of the label set. In general, CRFsltaiger to train than
comparable discriminative models, and usually take camnalaly longer than HMMs.
With all these types of model, the likelihood function isesftused as an objective for
model training. In a supervised training setting, with HMkhe likelihood function
decouples into separate functions consisting of disj@ts of parameters. These sepa-
rate functions may be maximised independently and the manxitikelihood solution
with respect to the model parameters can be found analyticélith discriminative
models, however, the story is a little different becausditedihood function usually
includes a normalising function which couples the modebpweters, generally pre-
venting a maximum likelihood solution in a closed form. Aseault, solving for the
model parameters usually demands the use of an iterativemcahoptimiser. This
is the reason that training time for discriminative modélke CRFs and MEMMSs, is



generally longer than that for generative models, like HMNMsaddition, evaluation
of the normalising function for a CRF is typically computatally more demanding
than that for other discriminative models because the nlisataon in a CRF is global.
Similar remarks hold for the high memory demands of CRF trgnin general, effi-
cient evaluation of the normalising function for a CRF regaicaching a large amount
of information. For tasks that involve complex dependesntietween the objects be-
ing labelled and/or a large label set, these heavy storageudgs make CRF training
impossible without an explicit strategy to overcome therah€(2006) describes two
approaches to overcome these scaling problems when agbRfs to larger tasks.
In this thesis we do not address these issues directly bigadgocus on the second
CRF shortcoming mentioned above, namaherfitting

Many of the important dependencies in a label distributi@yne modelled effec-
tively by a CRF with a large number of highly expressive feasu However, this pow-
erful modelling capability comes hand-in-hand with thereased danger that some
degrees of freedom contained in the model may fit to the ichosysies of the training
data itself, rather than the systematic properties of thaetying distribution. CRFs
therefore exhibit a tendency to overfit the training data tyeater degree than alter-
native models. Indeed, most work with CRFs to date has detraded the need for
some form of regularisation to be applied.

Conventional approaches to regularising log-linear medelgeneral, and CRFs
in particular, have focused on the use of a Gaussian priar théeemodel parameters
(Chen and Rosenfeld, 1999; Sha and Pereira, 2003). Thisagphas been shown to
be effective as a regularising strategy for a number of tbfietasks. However, despite
its popularity there is no tractable way to determine therogt hyperparameters of
a prior distribution such as a Gaussian. In most cases fiti@aussian involves an
element of trial-and-error, and is largely seen as a “blatk & is therefore desirable
to investigate other approaches to CRF regularisatiomeeliy improving and refining
existing methods or by formulating an alternative paradigmthis thesis we address
these issues by introducing a new framework for CRF reggdéion that does not
require any hyperparameter search. The model is calledaithmic opinion poal



4 Chapter 1. Introduction

1.1 Contributions of the Thesis
The main contributions of this thesis fall into three catégg

1. Analysis of Conventional CRF Regularisation As alluded to above, the cur-
rent approach to CRF regularisation revolves around thetiagaussian prior
distribution over the model parameters. Typically, for plitity, certain assump-
tions are usually made when employing this distributiorghsas constraining
the Gaussian variance to be fixed across all parameters esidgehe Gaussian
mean to be zero for all parameters. In this thesis we venteyerd this basic
scenario to consider a range of other possibilities for eational regularisation
of CRFs. Specifically, we consider choices of prior disttibn other than the
Gaussian; we look at the effect of regularising differerdtfees separately, to
differing degrees, and explore how we may define an apprepléxel of reg-
ularisation for each feature; we investigate the effectliofxang the mean of a
prior distribution to take on non-zero values; and we look ittnpact of relax-
ing the feature expectation constraints satisfied by a at@n@RF, leading to
a modified CRF model we call theequality CRF Our general conclusion is
that although there is some capacity for improvement of eatienal regular-
isation through modification and extension, this is quiteited. Conventional
regularisation with a prior is in general hampered by thedneefit a hyperpa-
rameter or set of hyperparameters. For a large number ofrhgpemeters the
hyperparameter search space quickly becomes too largeloresxefficiently.

2. New Framework for CRF Regularisation. In this thesis we introduce a new
framework for CRF regularisation called@garithmic opinion pool (LOP)The
LOP combines a set of CRFs in a weighted product. The greatraage of the
LOP approach in comparison with a conventional prior is that_OP avoids the
need to fit a hyperparameter or set of hyperparameters. Rorgison, we refer
to the LOP approach as “parameter-free”. This aspect mdieeE®P cleaner,
and easy to implement and run. We show that the success of ésldeRermined
by thediversityof the models from which is composed, and we investigate how
this diversity may be introduced and adjusted. Overall, nesthat a LOP, with
an appropriate choice of CRFs in the weighted product, magiobesults that
are as good as, or better, than those obtained through domwvalregularisation.

3. Applications of the Framework. Having introduced the LOP, we go on to



1.2. Structure of the Thesis 5

show how it may be used as a remedy for a much under-appreégabdlem
with CRFs: in some circumstances, certain negative efi@etg be introduced
to a CRF by the inclusion of highly discriminative featuréds example of this
is provided by gazetteer features, which encode a wordsgmee in a gazetteer.
We demonstrate and explain the negative effect of suchriegtand show how a
LOP may be used to reduce its impact. In doing so we providessogight into
how gazetteer features may be more effectively handled iIRSCRBnd log-linear
models in general.

1.2 Structure of the Thesis

Chapter 2 provides a background to the theory behind CRFsawvrs the relevant
literature. We look in more detail at the relationship besaweCRFs and previous,
related models and examine more closely the advantage€Riad possess. We also
describe the structure of a CRF from a graphical model pdintiew, and look at
the algorithms for CRF training and decoding. Also in thisyter we briefly cover
previous work on the two tasks we use for our experiments.

In Chapter 3 we present the experimental setup. We desdridénto labelling
tasks, named entity recognition and POS tagging, that wéousempare the models.
We also discuss the experimental pipeline and softwardataotire employed. Lastly,
we look at the measures used to evaluate and compare thempanice of the different
models.

Chapter 4 presents what we call treference modelsThese are standard CRF
models which act as the base models for our experimental ansgms and are built
upon and extended in later chapters. Also in this chapteremothstrate empirically
the tendency for a CRF to overfit a training dataset of smad.si

In Chapter 5 we investigate conventional regularisatioiCi@ s and propose some
extensions to existing methods. We start by looking at thekst approacHgeature
cutoff and then move on to investigate the use of a prior distioutiVe compare the
standard Gaussian prior to two other distributions, thelagipn and the Hyperbolic.
We also explore how the level of regularisation applied tocheaodel parameter can
be made to vary across parameters, and investigate sevayaliw which this level
may be set. Finally, we introduce an alternative model fawvemtional regularisation,
called thenequality CRF and show how this is related to existing approaches.

In Chapter 6 we introduce an alternative paradigm for CRElaagsation based on
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alogarithmic opinion poo(LOP). We describe the theory behind LOPs and investigate
some of their properties. We show that the performance of & d8pends on how
diverse its constituent models are, and explore differemgsanin which this diversity
may be introduced to the model.

In Chapter 7 we expand on Chapter 6 by investigating how todlice diversity
into a LOP througtco-operative trainingf the constituent models. Here, rather than
using independently pre-trained constituent models iL.tDB, we train the parameters
in all constituent models together simultaneously, allayinteraction between them.
We describe the framework for co-operative training anatuks what constitutes a
suitable objective function. We present results to show have-operatively trained
LOP compares to one with independently pre-trained carestitmodels.

In Chapter 8 we investigate how certain negative effects beayntroduced to a
CRF by the inclusion of highly discriminative features. Wgplere the nature of these
negative effects and look at how they may be overcome. Spatyfiwe show how
the LOP approach of the previous chapters may be used asteoadiuthe problem,
and therefore how this represents an application of thesidethe thesis.

Finally, in Chapter 9, we summarise our findings from the mes chapters and
conclude the thesis.



Chapter 2
Background

In this chapter we provide some background for the rest oftlilesis. The chapter
is intended to cover the main concepts required to undeddeter chapters, and to
examine the relevant literature in the field. We start, irtisac2.1, by situating CRFs
alongside previous, comparable sequence labelling mo@gscifically, we look at
the strengths and weaknesses of generative sequence mauagtsas HMMs, and
see how these models were superseded by discriminativesegunodels such as
MEMMs. We also briefly look at the shortcomings of these dimsgrative models,
such as theabel biasproblem. This naturally leads to the need for a model which
corrects for these weaknesses, and in section 2.2 we irdeothe CRF as such a
model. We define the CRF, and show its structure as a grapmodetl, in section
2.2.1. We then give training and decoding algorithms for €RFsections 2.2.2 and
2.2.3 respectively. Section 2.2.4 describes applicatidridRFs to date, both in NLP
and in other domains. Finally, in section 2.3, we move on twsaer the phenomenon
of overfitting, which is particularly acute in CRFs. We firstpéore the concept in
general, then, in section 2.3.1, we look at specific examgfleshemes used to reduce
overfitting, for CRFs and other log-linear models.

2.1 Generative Models to Discriminative Models

When CRFs (Lafferty et al., 2001) were first introduced, tiare designed, in part
at least, to address some of the weaknesses of previousyiisti@models used for
sequence labelling. In this section we consider the pragsedf these earlier models,
and see how their shortcomings led to the development of RE. @Ve divide the
models into two broad categoriegenerativeanddiscriminative.

7
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Figure 2.1: HMM graphical model structure.

2.1.1 Generative Sequence Models

Generative models assign a joint probability to a pairectolzion and label sequence.
Examples of such models inclutéédden Markov models (HMMs) andstochastic
grammars (SGs) Hidden Markov models have been applied to a number of laigell
tasks in speech recognition (Rabiner, 1989) and naturgliage processing, including
part-of-speech tagging (Kupiec, 1992), information estitm (Freitag and McCallum,
2000) and shallow parsing (Molina and Pla, 2002). They hdse been applied to
similar tasks in other domains. For example, biologicall@ggions include the mod-
elling of secondary structure in protein families and inteplicing in eukaryotic genes
(Balay et al., 2001).

Figure 2.1 shows an HMM as a graphical model. The model ctnsfsa set of
hidden states, or labélsrepresented by random variablgs and a set of observable
elements represented by random varialfdes In the figure the observable variables
are shaded, a convention we will use for graphical modetsuginout this chapter. In
most tasks in NLP both the state variables and the obsernvatioables are discrete.
For example, in a part-of-speech tagging fagie state variable§ could represent
POS tags while the observation variab@sepresent words.

From the graph we can see that certain conditional indeperdelationships exist
between the states and the observations. SpecifiGallyis conditionally independent
of S_1 given§. More generally, conditioning 0§ rendersS, andS, independent for
all u <t andt < v. In addition,0; is independent of all other variables giv&n How-
ever, conditioning on an observation does not yield any itmmél independencies, so

1In the thesis we assume there is a one-to-one mapping bestates and labels, and so we treat
the two terms as interchangeable. In general though, tleid net be the case.
2We explain POS tagging in Chapter 3.
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the “future is independent of the past given the presen€ oully holds if by “present”
we are referring to the current state.

Being a generative model, the HMM assigns a joint probahititan observation
and label sequence. This joint distribution may be factatiaccording to the condi-
tional independence relationships above. The distributien becomes:

T-1 T
p(s,0) = p(s1) t|1 P(St+1] &>t|1 p(o|s) (2.1)

wheret runs over theT positions (words) in the sequence. The HMM is therefore
parameterised by a set of local conditional probabilitytriisitions p(s+1|s) and
p(o|s). In most cases we assume the modedtationary meaning that the pa-
rameters in the distributions are independent.ofor a given HMM structure, the
value of the parameters may be estimated by maximising actg function over
the training data. The simplest objective function is jbiat likelihood , although
other objectives may be used. If the training data consisfislly labelled data, with
both observation sequences and state sequences giverarémegbers may be found
easily using the ratio of the relevant event counts. If tha daonly partially labelled,
or unlabelled, the parameters may be be found using aniveralgorithm such as
Expectation-Maximisation (EM).

Once an HMM has been trained it may be used to labetjemode previously
unseen observation sequences. The task is to find the osiatalsequence with:

p(s,0)
p(o)

The optimal state sequense may be found efficiently using the Viterbi algorithm
(Viterbi, 1967).

s" = argmaxp(s|0) = argmax = argmaxp(s,0) (2.2)
S S S

2.1.1.1 Limitations of Generative Models

Although hidden Markov models have had many notable suesesslanguage se-
guencing tasks, they do have restrictions in certain cistanmces. One restriction of
HMMs relates to the strict conditional independence assiomgthey make. For ex-
ample, as noted in the previous section, in an HMM an observi dependent only
on the state at that sequence position in question. Such isttiependence assump-
tions break our intuitions regarding the dependenciesdhist between observation
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elements in language. Long-range dependencies, for exaamel very difficult to en-
code in an HMM whilst retaining the ability to train efficigyntA related point here is
the ease with which we may specify, in an HMM, arbitrary dejearcies between ele-
ments in a sentence. For example, it seems intuitive thalaibedling task a state often
depends not simply on the identity of the observation eldmiara window around that
position, but on specific properties they have. To illugtyat a named entity recogni-
tion task we may expect that the current tag labelling denisiught to be influenced
not just by the identity of the current word, but by other tastsuch as the identity of
part-of-speech tags in a neighbourhood around the currerd,vand whether or not
the current word is capitalised. Although it is possibledpresent these dependencies
through an HMM, the state space required often becomesealydarge very quickly,
rendering the model intractable.

A second potential restriction of HMMs relates to the facttthey define a joint
distributionp (s, 0) over state and observation sequences, thereby implicitlyetting
both the conditional distributiop(s| o) and the marginal distributiop(0). In a situ-
ation where we have only partially labelled training datauolabelled training data,
this can be useful because we can still learn the marginailison from the data.
However, in a situation where we have fully labelled traghdata and we want to use
the HMM to label new unlabelled data, modelling of the entiigribution can make
HMMs less discriminative. To address this, a number of apghes have been sug-
gested in the the literature. One possibility is to trainiM discriminatively, using
a discriminative objective function. This typically inw@s maximising conditional
likelihood rather than joint likelihood, resulting incanditional maximum likelihood
(CML) estimate, rather than a simpl@aximum likelihood (ML) estimate for the pa-
rameters. Klein and Manning (2002) compare ML and CML tragniegimes using
HMMs on a POS tagging task. They find that the CML approachopes$ marginally
better than the ML, having forced the model to focus more sgrdhninatingbetween
the labels. In the speech community, CML-trained HMMs arterofreferred to as
class HMMs (CHMMs) (Krogh and Riis, 1999). Generally, training HMMs to max-
imum conditional likelihood requires the use of gradieascdent methods because the
objective cannot be solved for the parameters in a closed far the case of fully
labelled data) and the EM algorithm is not applicable to ChLtke case of partially
labelled or unlabelled data). Interestingly, Nadas (198®)ws that if the underlying,
“true” distribution lies within the model space, ML can fingtonal parameters in the
presence of an infinitely large amount of training data. Havein the real-world
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Figure 2.2: CMM graphical model structure.

the “true” distribution is extremely unlikely to lie withithe space of HMMs, and the
amount of training material is usually relatively limitedence discriminative training
is often preferred.

Other variants and extensions to the basic HMM structureessdour first re-
striction above, regarding the ease of incorporation oftety local dependencies.
Bourlard and Wellekens (1990), for example, show that disoatively trained HMMs
correspond to a particular kind ofulti-layer perceptron (MLP) . A particular strength
of MLPs is their ability to easily incorporate contextualarmation. Using this capa-
bility, Bourlard and Wellekens use MLPs on a speech taskieauty significantly
improved classification performance over standard HMMgéa using ML. Other
extensions along the CHMM line includedden neural networks (HNNs) (Krogh
and Riis, 1999). In HNNs, parameters within a CHMM are repthby MLPs. Krogh
and Riis (1999) use HNNs for the task of recognising broadnghme classes, and
show significant performance gains over standard HMMs ottietble

2.1.2 Discriminative Sequence Models

Discriminative sequence models model the conditionatibistion of state sequences
given an observation sequenpés| o) directly, rather than modelling the joint distri-
bution of states and observations and using inference teedite conditional distri-
bution. In doing so, discriminative sequence models avoidesof the shortcomings
of generative sequence models described above. Disclinersequence models may
be eithemer-state normalisedor globally normalised.
Per-state normalised models assign a probability digiohyp (s | &-1,-..,0) to
a state at a particular position in a sequence given somextoial window around
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that position. The conditional probability of a state setgeegiven the observation
sequence is then derived (or sometimes approximated) ascéidn of these local
conditional probabilities. Examples of such models ineldide sequential maximum
entropy model and the conditional Markov model (CMM) (Ratzukhi, 1996), a spe-
cial case of which is the maximum entropy Markov model (MEMMIcCallum et al.,
2000). Globally normalised models, by contrast, model traditional distribution of
an entire state sequence given an observation seqpéage) directly, without specif-
ically modelling the marginal state probabilities as pdithe process. An example of
such a model is aonditional random field (Lafferty et al., 2001). As we are consid-
ering sequence models used prior to the introduction of GRHEsis section, we will
only look at per-state normalised models here.

Figure 2.2 shows the graphical structure of one example @frafate normalised
discriminative model, called aonditional Markov model (CMM) . From the dia-
gram we see that the CMM is a discriminative variant of the HMléte the reversal
of direction of the vertical arrows between the states ardalbservations. A CMM
state is thereforeonditionedon the observation at the corresponding position in the
sequence, in contrast to an HMM where the state is segarayatinghe observation.
Using the chain rule of probability and the conditional ipdadencies in the graph,
the distribution for a CMM may be factorised to obtain:

.
p(s,0) = p(01) p(s1]01) [Lp(ot) p(st|s-1,0) (2.3)

Although this is a joint distribution over states and obaéions, the graphical structure
is conditional in the sense that local conditional prokitibd p(s | s—1,0¢) appear in
the factorisation. In order to obtain the conditional disition of a state sequence
given the observation sequence explicitly, we use:

p(s|o) = P80 (2.4)

p(o) =t|1 p(ar) (2.5)

and so:
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.
p(s[o) =p(s1|01) er(St|Stflaot> (2.6)
t=

We can see that, in contrast to the HMM where there is a statsition conditional
probability tablep(s.1|s) and an observation-emission conditional probabilityeabl
p(o|s), in a CMM we have a single functiop(s | s—1,0t) that describes the proba-
bility of transitioning to a state given the previous state aurrent observation. Note
that, as discussed above, the CMM only ev@nditionson the observation sequence
and so does not attempt to model marginal distribupoo).

A maximum entropy Markov model (MEMM) (McCallum et al., 2000) is a
specific instance of a CMM where the functigis | s—1,0t) is split into separate
probability distributions, one for each state. As thesecfioms are independent of
we may instead writgs (S'| 0) for the probability of transition to state given a state
currentsand next observation In a MEMM each distributioms(s'| 0) is a log-linear
model, meaning that it has the form:

K
ps(s'|o) = Z(i 5 exp(kz M fi (s’,o)) (2.7)
7 =

where the\ are parameters of the model, the's', 0) are feature functions (described
below) andZ (s,0) is a normalising function given by:

Z(s,0) = ; exp <k§ Ak fi (s’,o)) (2.8)
€S =1

whereSis the set of all states. The use of a log-linear model hemvalleach dis-
tribution to be parameterised by a set of non-independestlapping features that
describe properties of the observation and state in a gigsitipn. This is the model's
main advantage over a generative model. Each feature iscéidarof two arguments,
one encoding some property of the current observation aadther specifying the
value of the current state. A feature therefore typically tiee form:

1 if b(o) holds ands’' =s

. (2.9)
0 otherwise

fos(s,0) = {

where the functiofb (0) is a predicate that describes some property of the observati
for example:



14 Chapter 2. Background

b(0) :{ 1 if ois capitalised (2.10)

0 otherwise

The features do not have to be binary valued, but in most ¢asgsare. The parame-
tersAx may be found by maximising the conditional likelihood oftsteequences given
the observation sequences contained in the training dat&alum et al. (2000) used
generalised iterative scaling (GIS)YDarroch and Ratcliff, 1972) for this optimisation,
but other numerical methods may be used.

Once trained, an MEMM may be used to label a new observatipnesee. Here,
as above with the HMM, the task is to identify the most likelyte sequence under the
model, given the observation sequence. We mustdirvdhere:

s" =argmaxp(s|o) (2.11)
S

This optimal state sequence may be found efficiently usiagv/terbi algorithm.

When McCallum et al. (2000) first presented the MEMM as anréiive, im-
proved sequence labelling model over the HMM, they comp#eegderformance to
that of two HMM structures on a text segmentation task. Sjpatly, they used a
dataset consisting of documents from seven Usenet multiFHd&s and attempted to
train the classifiers to partition and label subsets of theudwents into different cat-
egories. The results suggested that the MEMM was indeedt@apéoutperforming
both HMMs on the segmentation task due to its ability to repné a richer set of
properties of the observation sequence relevant for laigetiecisions. At the time,
this result was in line with a view in the community that distnative classifiers were
generally preferable to generative ones. However, Ng andbdo(2002) showed the
situation to be a little more complex. Using naive Bayes agistic regression as
an illustrative generative-discriminative model paigytdemonstrated that the size of
the training sample is important in determining the relagperformance of each type
of model. In general, discriminative models tend to havedoasymptotic error, but
the corresponding generative models can in some circurtessaapproach their higher
asymptotic error more quickly.

2.1.2.1 Limitations of Per-state Normalised Discriminati ve Sequence Models

As we saw in the previous section, an MEMM avoids some of théditions exhibited
by an HMM. One example of this is the MEMM'’s avoidance of thesg indepen-
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dence assumptions made by an HMM. However, MEMMs and othestpge nor-
malised discriminative models do possess certain weakadhat generative models,
such as HMMs, do not. These weaknesses are a product of tHgional independen-
cies defined by their graphical structure, and, in partiGtiteeir per-state normalisation
property.

Probably the best-known example of this kind of weaknedsdatabel bias prob-
lem. The termlabel biaswas first coined by Lafferty et al. (2001), although the phe-
nomenon was described earlier by Bottou (1991). As a coreserguof per-state nor-
malisation, during decoding MEMMs to tend to prefer labedb that involve states
(labels) with a small number of successor states, as sedw itrdining data. In the
Viterbi lattice the initial probability mass of 1 is consed/most for these labellings.
Any apparently “wrong” decisions early on in the decodiregding to incorrect partial
labellings having a higher probability than the correctelfing at intermediate points
in the sequence, are never subsequently “corrected” latdwei sequence. This means
that there is a labelling bias towards states with one, oralsmamber of, successors.
States with a single successor ignore the observatioregntwhile, more generally,
states with a small number of successors and a low entrogyapility distribution
across the successors, tend to be influenced very littledglservation.

Klein and Manning (2002) describe a problem similar in natiar label bias but
seen from the point of view of observations rather than kbdlhey term this phe-
nomenonobservation bias As with label bias, observation bias is suffered by per-
state normalised discriminative models due to their noisatibn properties.

2.2 Conditional Random Fields

Conditional random fields (Lafferty et al., 2001) were imlnced to overcome some
of the shortcomings of other discriminative sequence ntielt we looked at above.
Being discriminative in nature, CRFs share with MEMMs gahedvantages over
generative models such as avoiding the need to make suliepandence assumptions.
In addition, CRFs do not suffer the label bias problem beedhegy are not per-state
normalised like MEMMs, but arglobally normalised along the entire sequence (or,
more generally, over an arbitrary graphical structure). &Xplore these properties
further in this section.
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Figure 2.3: Graphical model structure for a linear chain CRF.

2.2.1 Definition and Structure

CRFs are globally normalised conditional probability misdd_afferty et al. (2001)
define a CRF as follows:

LetG = (V,E) be a graph such that= (Y,), .y, SO thatY is indexed by
the vertices ofs. Then(X,Y) is aconditional random fieldn case, when
conditioned orK, the random variableg, obey the Markov property with
respect to the graph, that is

p<YU |X,Yw,(,()7é U) = p(YU ‘ X7Y0J7wN U)7
wherew ~ U means thato andv are neighbours .

From this definition we see that a CRF is a Markov random fietd ihglobally
conditionedon the observation variable& The definition does not restrict the struc-
ture of the graph to a particular form, and arbitrary graphgtructures are possible.
With more complicated graphs and/or greater connectiuifigrence becomes more
complex and often some form of scaling is required to keegrerfce tractable (Cohn,
2006). In this thesis we restrict ourselves to sequencdlilapéasks, and so deal with
a CRF graphical structure representing a sequence. Indhesttie graphical structure
is usually referred to aslanear chain CRF, and is shown in Figure 2.3. As we shall
see later, in the case of linear chains efficient dynamicaroging algorithms exist
for training and decoding.

In Figure 2.3 each observation variatdgis connected to every other variable in
the graph. This is represented by the dotted line leavin ganode. As a result of
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this structure, no conditional independencies exist betwibe observation variables.
Conditional independencies do exist, however, betweersthie variables because
these have a (first order) linear chain structure. In a gérggegphical model, the
Hammersley-Clifford theorem (Hammersley and Clifford,719 Besag, 1974) states
that the family of probability distributions respectingeticonditional independence
semantics of the graph may be parameterised using a setiwhgylpositive potential
functions defined on the cliquésf the graph. For a clique with potential function
Ye, the joint distribution over the variablééin the graph is given by:

PO 30) = 5 [ ) (2.12)

whereC is the set of cliques in the grapy, are the values of the variables in cliqce
andZ is a normalisation constant given by:

Z='3 [] %) (2.13)

Y1,--,¥nCE
For the specific case of the linear chain structure shown gureéi 2.3, the cliques
involve edgeqYi_1,Y;) with theY; globally conditioned on all the;. In addition,
Lafferty et al. (2001) suggest potential functions ovestheliques that have an expo-
nential form so as to take advantage of properties of the maixi entropy framework.
We will adjust the notation to make it consistent with thagdi®arlier for describing
HMMs and MEMMSs, so the edges becoif®_1,S), and the observations are denoted
by O;. We will also assume that the chain Haglements and that we add a special
placeholderstart element at the beginning of the chain and simgtop element at
the end. The element indices therefore run O throlighl. After this adjustment in
notation and using the exponential form for the potentiakctions, we can see from
Equation 2.12 that the distribution for a linear chain CREBien by:

(s|o)—iex THK)\f(st &,0,t) (2.14)
p =700 p t;k; kfk(8-1,%,0, :

whereZ (0) is a normalising function given by:

T+1 K
Z(o)=7% [exp< Z > Akfk(stl,st,o,U)] (2.15)
S t=1k=1

3A clique is a maximally connected subgraph.
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The Ak are the modebarameters They act as co-efficients to the functiofys which
arefeaturesdefined on subsets of the variableandO. They take the same form as
those we saw earlier when discussing MEMMs. The differerere Is that the argu-
ment involving the observations may include all variailesAn example of a feature
for a POS tagging task, where state varial@espresent POS tags, could therefore be:

1 ifs_1="DET", § =“NN"and o, = “dog”
0 otherwise

fk(st-1,5,0,t) = {

As before, the features may be real-valued but are ofterbjnatry-valued.

We can see from Equation 2.15 that the normalisation for tRE S global, span-
ning over the entire sequence. It is this property that al@RFs to solve the label
bias problem in a principled way. In per-state normaliseddittonal models, such as
the MEMMs we saw eatrlier, transitions from a given statectiely compete only
against each other and not against transitions from otl¢es{because they sum to
1). In a CRF, however, no such restriction exists. Consettyéma label bias scenario
it is possible with a CRF to have subsequent path down-wieigliike in an HMM).
Therefore, with CRFs label bias is avoided.

2.2.2 Training

In this section we consider procedures for training CRFs fitost common method
for parameter estimation for CRFsasnditional maximum likelihood (CML) esti-
mation. We describe this, and other possible objectives, below.

2.2.2.1 Conditional Maximum Likelihood Estimation

In conditional maximum likelihood estimation we assumettifiar a particular pa-
rameterisation of the CRF, the paramet&tshave fixed but unknown values and we
seek those parameter values that make the training datalikedgt To do this we de-
rive an expression for the conditional likelihood of thetiag data given a particular
model, then attempt to find the model which maximises thigtion. Let us assume
that the training data consists of a setNofully labelled sequenced = (oi,§) with
i=1,...,N. These sequences are a finite sample from the “true” disibibbuDenoting
the parameteray by a parameter vect@® = (A4, ...,Ak), theconditional likelihood

of the training data is given by:
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(@) =[] p(slo.0) (2.16)
0,S
where p(s|0,0) is the model distribution and(o,s) is a count of the number of
times the configuratiorfo,s) occurs in the training data. We define thmpirical
distribution (or training data distributionp (o, s) as:

c(0o,9)
N

p(o,s) = (2.17)

Each term in the product in the conditional likelihood fupatin Equation 2.16 is
non-negative, so we could equivalently maximise the adtidra function:

L(©) =[] p(s|0,0)" (2.18)

0,S

This function makes subsequent derivation easier. Thexgice look for the parameter
vector that maximises this function, the optimum value géine conditional maximum
likelihood estimat&®,,, :

Ocy. = argmax (0) (2.19)
e)

To further simplify the derivation, it is sensible to maxaswrithe logarithm ot. ()
rather tharlL (©) itself. We can do this because the logarithm is a monotdyiaa
creasing function for positive real numbers. Hence the taghk find the parameter
vector® that maximises the conditional log-likelihood, given by:

A(®)=logL(® Z p(o,s)logp(s|o,©) (2.20)

0,S

In the case of a CRF, as we saw above, the distribution is dgyen

1 T+1 K
p(s[0,0) = mexlo<t; kzl)‘kfk(st—l,sta(),t)) (2.21)

Contractingy y Ak fk (S—1, %, 0,t) to A.f, the expression for the conditional log-likelihood
becomes:
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AN(O)=Y p(o,s) [Till}\ f] p(o,s)logZ(o) (2.22)

Because the summand in the second term is a function of thenai®n sequence
only, the conditional log-likelihood can be further sinfigd to:

T+1
ANO)=Y fp(o,9) [Zl)\ f] 0)logZ (o) (2.23)

This is theobjective function to be maximised under conditional maximum likelihood
parameter estimation. An important property of this fuoitis that it isconvexso has
a unique maximum.

At this point it is tempting to take the derivative of the offjge with respect to
each parameter, set each derivative to zero and try to solvihé parameter values.
Unfortunately, the resulting equations are implicit in th&rameters and in general
a closed form solution cannot be found. In fact, because RRE Bas a log-linear
form, when we carry out the above procedure we obtain the maixi entropy feature
constraints — that the expected values of the features uhdenodel and empirical
distributions are equal. This is related to the fact thatrttaximum likelihood model
across the space of exponential models on a given training akso the unique model
that maximises the entropy across the space of models thgtbé feature constraints
on the training set. To see this, we differentiate with respe parametely to obtain:

T+1 (?Z(O)
19)\k Ozsp 0,S) Zlfkst 1,%,0,t) — Zp I (2.24)
which simplifies to:
0/\(@) B . T+1 T+1
. oZpos kaal,stot OZ p(s|o,0) kaal,&Ot)
= Epos) [kl — Epsioe) [f] (2.25)

Because in general we cannot solve for the parameters ofoiditional maximum
likelihood model analytically, we must turn to numericagatithms to find them. We
describe these algorithms later, in section 2.2.2.3. Bfjyi@ numerical optimisation
algorithm requires the calling process to supply the valtighe objective function
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and its gradient at each iteration (and in some cases a espat®n of the second
derivatives). This means that the expression on the rightdtside of Equation 2.25
must be evaluated on each iteration, for the parameter vegppoesenting the current
point in the parameter space being searched. The first esipress relatively easy
to evaluate and is not iteration-dependent, so can be dore offline. The second
expression is more troublesome, and warrants a little iiya&t$on. The task, then, is
to evaluate:

T41
Epsoe) [fk] = Z p(s|0,0) Zi fk(8-1,%,0,1) (2.26)

0,S
At first sight it may appear that the evaluation of this expr@s is intractable for tasks
that involve a large number of states. This is because itregjthe summand:

T+1
f(o)p(s|o,0) Z fi(s-1,%,0,1) (2.27)
t=

to be calculated for every possible state sequence for desdneation sequence present
in the training data. However, an efficient dynamic prograngralgorithm exists
which allows us to circumvent this potential intractalyilitn order to understand how
this works, let us first rewrite the expression to be evaldigtiopping the explicit
reference to the dependence on the param@&grs

T+1 T+1

> P(o)p(s|o) t; fc(s-1.5,0t) = %Iﬁ 0) ngk(&—l,&,o,t)p(sm)

03 t=
T+1

= %5(0) t;;fk (s-1=95,5=s,0;t)

x p(s-1=95,5%=s|0)
T+1

= 5 p(o) t;gsfk (s-1=9,5=s0)

. Gt-1(S[0)Mi (S,8[0) A (S| 0)
Z(o)

(2.28)

where thea; areforward vectors, the 3 arebackward vectors(both defined below)
and theM; are matrices defined on each clique in the chain. Specifjaaiythetth
clique in the chain the matrik; is defined by:
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My (s’,s\o):exp<Z)\kfk(s¢_1:s’,s¢:s,o,t)> (2.29)

Each matrix is square, with dimension equal to the numbetatés. Thes', s) element
contains the value of the potential function on ttiecligue whers,_; = s ands = s.
Hence thes, s) element of the product of these matrices between positiarglt in
the sequence represents the sum of the product of the paiteaiting all paths between
positiong” andt that haves, = S ands = s. A special case of this is the product of all
matrices in the sequence from cliques Tte 1, |-|th+11 M; (0). This represents the sum
of the product of the potentials along all paths, for all plolgsvalues ofsy andsr 1,
the placeholder elements. In particular, the normalisingcfion along the sequence is
given by that matrix element that correspondsde- start andsr, 1 = stop:

T+1
Z(0) = r! M (0) (2.30)
t= start, stop
The a; vectors are defined recursively via:
T_ T
ai(0) =a-1(0) M (0) (2.31)
The base case is given by:
1 if s=start
ao(s|o) = . (2.32)
0 otherwise

Hencea; (s| 0) contains the product of the potentials along all pathsistin the
start state aty and ending in the stateats. The base casep (0) therefore acts like
an initial probability vector in an HMM. Note the distinchidhere between an alpha
vector and the value of a particular component of the vetharalpha vector on clique
t is denoted bya; (0), but thesth component of the vector is denoted dny(s| 0). The
same holds for beta vectofs(0) and the matricedl; (0).

The [ vectors are defined in a recursive manner, similar to thesalgictors:

B (0) = Mt11(0) B+1(0) (2.33)
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The base case is given by:

Bri1(s|o) = { L 15=stop (2.34)

0 otherwise

Hencep; (s| 0) contains the product of the potentials along all paths enifithestop
state atst, 1 and starting in the stateats;.

Because the joint probabilitp(s_1 = 5,5 = s|0) may be expressed using the
matricesM; (0), we may use dynamic programming to efficiently compute tladuiie
expectations under the model. This requires one forward fmasalculate thex; (0)
vectors, and one backward pass to calculategtie). In calculating the3; (0) vectors
the normalising function may be obtained by forming one addal product:

T+1

tl:! " start, stop
= [Ml (0) Bl (0)]start

= [.BO (0>]start (235)

Z(0) =

This may alternatively be obtained by calculating one addél a vector,at1 (0):

VA (O> = [aT+1 (O)]stop (2.36)

It is possible to modify the CML estimation method above tdude regularisation
in the form of a prior distribution over the model parametérge will discuss this in
more detail later in the chapter, in section 2.3.1, when vgedlee overfitting reduction
schemes.

When describing the training procedure earlier we assuimadhe parameter vec-
tor is updated on each iteration using the expected valué&gjuation 2.25. These
expected values are calculated using the entire trainitegda Therefore we require
one complete pass through the dataset for each iteratiois riiakes the procedure
described above laatch algorithm. It is possible, however, to employ anline algo-
rithm instead. With this, the gradient would be calculataadd the parameter vector
updated, after passing through only a subset of the traidaig. The extreme case
would be an parameter vector update for every training imcai.e. every sequence in
the training data. For some datasets a single trainingnostenay be almost as infor-
mative as the whole dataset in terms of gradient calculagsoremploying an online
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algorithm can sometimes lead to much faster convergenashbr cases the opposite
is true, where the added expense of calculating the paramateor for each training
instance makes the online algorithm converge more slowly.

In addition to the frequency of parameter vector updatdgranodifications to the
training algorithm are possible. One example relates ta@#heulation of the expected
feature count under the modé, o o) [fk], in Equation 2.25. This is calculated over
the entire distribution, that is, over all labellings folckasequence. However, we could
instead replace this with the feature count for only thest likelylabelling under the
model. In doing so we assume that most of the probability ri@ssn this labelling,
and the rest of the distribution can be ignored. This is datfeaking aViterbi as-
sumption. The usefulness of this approach involves a trade-off betvike exactness
of the gradient calculation and the training time. For thpezkments we present later
in the thesis, training time is reasonable even with thedufiected value calculation.
Hence we use Equation 2.25 for the gradient vector calaulati

2.2.2.2 Other Objective Functions

In the previous section we showed how to estimate the pasameta CRF using con-
ditional maximum likelihood estimation. However, othepdates of objective function
exist. The most notable study to date investigating alter@abjective functions for
CRFs is that of Altun et al. (2003). We briefly describe thearkvin this section.

Altun et al. argue that sequence labelling tasks in NLP vadely in nature with
respect to the style of the labelling problem. Some tasksh ss in named entity
recognition, involve labels that range over many elemants sequence. Other tasks,
such as part-of-speech tagging, involve labels that apply o single elements. In
addition, the statistical noise associated with a taslegaiith both the task itself and
the specific corpus used for training and testing. As a regliftin et al. conjecture
that using different objective functions that are tailotethe task in hand may resultin
better classifiers. They propose two dimensions along wbigglctive functions may
differ, one representing theumerical scaleon which the objective is measured (ex-
ponential versus logarithmic), the other ttaageof elements within a sequence over
which the objective is defined (pointwise versus sequenflaking the cross-product
of the values along these two dimensions, Altun et al. deboe dbjective functions,
one of which is the standard conditional log-likelihood ¢tinn we discussed earlier.
The objectives are compared on two tasks: part-of-speeghing (on sections of the
Penn Treebank (Marcus et al., 1993)) and named entity rétmgon Spanish news-
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wire articles provided from the CoNLL 2002 shared task (Kian§, 2002)). Altun
et al. found that the choice of objective function made vétleldifference to perfor-
mance on either task, and concluded that other factors, asithe choice of feature
set, are more important. For the experiments we presentsritiasis, we only use an
objective function based on the standard CML estimatiorhougkt

2.2.2.3 Optimisation of the Objective Function

Until recently the most popular techniques for parametéimegion with maximum
entropy models were iterative scaling algorithrgeneralised iterative scaling (GIS)
(Darroch and Ratcliff, 1972) andhproved iterative scaling (1IS) (Della Pietra et al.,
1997). However, recent work by Malouf (2002) showed thatatige scaling algo-
rithms underperform a number of first and second order nurakoiptimisation algo-
rithms for parameter estimation for conditional maximuntrepy models on various
NLP tasks. Prompted by this result, Wallach (2002) undértacimilar study for
parameter estimation for CRFs. Her results broadly supgdatiose of Malouf, and
subsequent studies have done the same (Sha and Pereira, 2003

In general, the most popular algorithms in use today for patar estimation for
CRFs are related to thiémited memory variable metric (LMVM) (or L-BFGS)
method (Byrd et al., 1995). This method uses a sparse reyetga of the Hessian
matrix (the matrix of second derivatives of the objectivedtion) that requires storage
of only a limited history of the incremental values of theatijve function and its first
derivatives. This history is typically less than 20 stepthé@dmethods that may be used
are conjugate gradient methods, which only represent thed@rivatives and not the
Hessian. Examples includdetcher-ReeveqFletcher and Reeves, 1964) andlak-
Ribi ére-Positive(Polak and Ribiere, 1969). These methods have generadly foeind
to underperform the LMVM method, but often outperform itéra scaling. Sha and
Pereira (2003) use a pre-conditioner with their conjugatelignt method, whereby
the method is accelerated by linearly transforming thealdeis. Other second order
methods that might theoretically be candidates include tNew method and quasi-
Newton methods. However, these either require the inveesssidn to be explicitly
calculated, or at least a dense approximation of it to beutatied from first derivatives.
Consequently, for typical NLP problems, which often in@udillions of parameters,
these approaches are too demanding from a computationakatorage point of view.
Currently, therefore, LMVM is the method of choice for CRRg@aeter estimation.
For all our experiments we use the LMVM method for optimisatof the objective.
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2.2.3 Decoding

Once a CRF has been trained, it may be used to decode (or t&hel) unseen ob-

servation sequences. Referring back to the discussiorctioae2.2.2.1 when we con-

sidered CRF parameter estimation, the probability of aqadr state sequence given
an observation sequence is simply the product of the paisrdn each clique for the

states in question, divided by the normalising functione Pphoduct potential may be
found by taking the product of the relevant entries from Myéo) matrices along the

sequence. Hence:

T+1
p(s|o) = M Mé((sé)l’stm) (2.37)

The normalising function is not dependent on the state sespjeso the optimal se-
guence (the one that has highest probability under the mgdain the observation
sequence) can be found using a standard Viterbi algorithiterf), 1967).

To find the probability of a specified labelling, or to find thievbi labelling, only
one sweep through the lattice is required, either leftigtvror right-to-left. However,
if we conduct a sweep in both directions we have enough irdtion to calculate the
pointwise marginal label distributions(s |0). To see this, glance back to Equation
2.28. From the expansion on the right-hand side, we can s¢e th

o1(s'[0)M (s,8[0) B (s]0)
Z(0)

p(s-1=5,5=s|0) = (2.38)

Now, the pointwise marginal distributions are given by sumgnover the previous
label in the corresponding pairwise marginal distributiSo:

p(s=slo) = ZD(SMZS',&:SIO)

< 01(S[o)Mi(s,s|0) B (s|o)
_ Z 75 (2.39)

But using Equation 2.31 we can contract the first two term$&ertumerator on the

right-hand side to give:

(2.40)
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Therefore, the pointwise marginal label distributions green by the product of the
relevant entries in the alpha and beta vectors on the cligg@eéstion, divided by the
normalising function. We will be using pointwise marginatributions in Chapter 6.

2.2.4 Applications

In their original CRF paper, Lafferty et al. (2001) introdhaca linear chain CRF and
demonstrated its effectiveness on a synthetic datasese§ubntly, linear chain CRFs
were applied effectively to a wide range of real sequencelliaig tasks in NLP. These
include named entity recognition (McCallum and Li, 2003;i®nand Osborne, 2005,
2006), noun phrase chunking and shallow parsing (Sha areir®e2003), informa-
tion extraction from research papers (Peng and McCallur@42Pinto et al., 2003),
and language modelling (Roark et al., 2004). CRFs have &so developed for more
complex graphical structures, including trees and loomphgs. Inference on these
more general structures involves a generalised form of dhedrd-backward proce-
dure we saw in section 2.2.2.1, usually employing some fdrimetief propagation.
Such CRFs have been applied to problems with more compleardigmcies than can
easily be represented by a linear chain. Examples from NicRidle semantic role
labelling (Cohn and Blunsom, 2005; Tang et al., 2006) andeference resolution
(Wellner et al., 2004; McCallum and Wellner, 2004).

In addition to the variety of tasks, CRFs have also been eyepléor sequence la-
belling tasks in a number of other languages. These incliglR M German, Japanese
and Hindi (McCallum and Li, 2003; Asahara and Matsumoto,200and McCallum,
2003), word segmentation in Chinese (Peng et al., 2004)ckeking in Korean (Lee
et al., 2005), and morphological analysis in Thai (Kruergkt al., 2006).

Outside NLP, CRFs have been used for many different stredtiabelling tasks in
a number of different domains. Examples incluaenputer visionwhere they have
been used for object detection (Torralba et al., 2005), atbjecognition (Quattoni
et al., 2005), object segmentation (Wang and Ji, 2005), avdkiting human motion
and gestures (Sminchisescu et al., 2005; Wang et al., 26pégchwhere they have
been used to predict pitch accents (Gregory and Altun, 2@0lgeneticswhere they
have been used to locate introns and exons in DNA sequena&st@Cet al., 2005).
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2.3 Overfitting

The termoverfitting describes the situation where a model, during trainingslgve
fits to the idiosyncratic or noisy properties of the traingsgmple, rather than just the
systematic patterns implicit in the underlying data. In e this can occur when
a model has a relatively large number of degrees of freedocomparison to the
size and complexity of the training sample. It can theretalee place either when
the model has too many parameters, the sample is too smdibtor With CRFs
often the overfitting problem takes place in the second dcddlseenarios, where the
model has roughly the number of degrees of freedom thouglessary to represent
the most important aspects of the underlying distributart,where the dataset is too
small for all facets of the distribution to be observed infisignt detail to be modelled
accurately. The result is that some degrees of freedom fispecs of the training
sample that represent noise, and do not reflect the undgriyata from which the
sample is drawn.

A very clear, simple example illustrating overfitting is giv by Bishop (1995).
He describes a regression scenario where some data poigdban sampled from
a function containing a sine wave and a noise term. The pcesehthe noise term
means that the data points sampled do not lie exactly on thve chut nevertheless
trace out the general shape of the curve. The aim is to modelrderlying function
as well as possible given only the relatively small numbesarhple data points. If
a polynomial is used as a model, the number of degrees ofdneenf the model
is represented by the order of the polynomial. The greaterotider, the larger the
number of free co-efficients to fit to the sample data. For poigials of low order,
there are not enough degrees of freedom to model the undgiiynction from which
the data is sampled. For example, for a polynomial of firseottle resulting straight
line is a very bad approximation to the underlying functiotwept, possibly, in the
region of some of the data points. Conversely, for a polyrabmwi very high degree
(much larger than the number of data points in the sampleeXample), the resulting
curve fits all the data points exactly, but, in order to do,thikas very high curvature
in between the data points, and consequently generalisgsuaely to points other
than those in the sample. The “correct” choice is a polynbofintermediate order,
which has enough degrees of freedom to capture the genexpé If the sine wave
as represented through the noisy sample, but not so mangeategf freedom that the
noise itself is modelled.
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This general concept of trying to find the “best” model camadids illustrated from
the viewpoint of abias-variance decompositioGeman et al., 1992). In the context
of the Bishop regression example above, the bias-variaacendposition quantifies
the effectiveness of the learned function (the polynonasala predictor of the function
being modelled (the sine wave). This “effectiveness” isallyuepresented as an ex-
pectation across all values of the output variable for argixadue of the input variable,
across all values of the input variable, and across allittgisamples that could have
been used to arrive at the learned function (as differemtitrg samples typically result
in different learned functions). The expectation deconegasto three terms:

1. noise term this term quantifies the inherent uncertainty, or nois¢héedata. In
the Bishop example this would be the variance of the outpuabie (the noisy
sine function) given the input variable, averaged acroksadlies of the input
variable.

2. bias term: this term quantifies how closely the learned function camlehthe
underlying function. In the Bishop example this term wouédbe error between
the value of the average learned function (taken acrosgaating samples) at a
given value of the input variable, and the average value@bilitput variable at
that value of the input variable, averaged across all vadfieise input variable.

3. variance term: this term quantifies the amount by which the learned fumaso
sensitive to the variability in the training sample usedréortit. In the Bishop
example this term would be the variance in the value of thenkssh function
(taken across all training samples) for a given value of thpaui variable, aver-
aged across all values of the input variable.

Models which have a relatively large number of degrees cfdoen (like poly-
nomials of high order in the Bishop example) will in generabdel the underlying
function better, so will tend to have a lower bias term. Hogrethe extra degrees of
freedom these models contain will often cause them to ovkditletails of the training
data, making the models sensitive to the training sampleh $wdels will therefore
generally have a higher variance term. Conversely, simptatels with fewer degrees
of freedom (lower order polynomials in the Bishop exampld) tend to have a larger
bias term because they are not, in general, able to modelntierlying function as
closely. They do, however, often have a lower variance tegoabse they are not as
sensitive to the details of the training sample used to tila@m. Finding the “best”
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model therefore involves a trade-off between the bias amdwvee terms in the bias-
variance decomposition. Earlier, when we were suggestiadliest” model would be
a polynomial of intermediate order, we were implicitly catexing this bias-variance
trade-off.

The example from Bishop described above involves a regrmessioblem, but
a similar concept applies to the models we described earli¢he thesis: HMMs,
MEMMs and CRFs. CRFs particularly have the tendency to dveefierely on some
datasets. The reason why they tend to overfit to a greateedegan similar models,
such as MEMMs, relates to the normalisation. Suppose wedraldMEMM and a CRF
with the same feature set. Both models have the same numparasheters, but, as we
saw in section 2.1.2, the MEMM is pointwise normalised whsra CRF is globally
normalised along a sequence. Consequently the MEMM musfysatnormalisation
constraint for each state being transitioned from. Intelij, the parameters trade-off
against each other only at a point. With a CRF, however, thealisation is global so
parameters can trade-off against each other along theeesgiquence. Consequently
the CRF is more flexible, having greater power to fit to theidairies of the dataset,
but therefore also has a greater propensitguerfit

2.3.1 Overfitting Reduction

Various methods may be used to address the overfitting probéscribed in the pre-
vious section. The approach that is often taken is to deattyr with the symptoms
of overfitting. An example of this is given by Bishop (1995} the function approx-
imation problem described above. A symptom of the overdtiim that example is
the very high curvature of the function in between the sandaia points. This is
an undesirable property for an approximating function,alhive would hope would
be continuous and smooth between the data points in the sa@pk way to address
this, therefore, is to add a penalty term to the objectivefiom that explicitly penalises
large curvature. Bishop suggests a term that is propotttorthe integral of the square
of the second derivative of the function over the relevatdrival. This encourages the
function to have low curvature but still fit reasonably welthe sample data points.
In the case of CRFs, and log-linear models in general, aaygygmptom of over-
fitting is parameter values with very large magnitude. We mpgly an engineering
approach to the overfitting problem in these models that éogwous to the large cur-
vature penalty term in Bishop’s function approximationmexde. One way to do this is
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to add a penalty term to the objective function, typically donditional log-likelihood,
that directly discourages parameter values of large madeit An example of a such
a penalty would be a term that sums together the squares phtiagneter values, i.e.
ZEZMKZ- Assuming that we are maximising an objective function, veeild thensub-
tract this term from the existing objective. More generally, welkchinclude a term of
the form— zEﬂ (Ak— ck)z, which discourages each parameter valyérom straying
very far from the value,. Thec, values allow us to encode our prior beliefs about
where “good” parameter values should lie.

The approach to overfitting described in the previous twagaphs we loosely
termed an “engineering” approach because we directly addethe symptoms of
overfitting via the inclusion of a penalty term. The approdahnot have an explicit
statistical motivation. However, the same idea may alsoib&eaed from a Bayesian
probabilistic standpoint. Taking a Bayesian approach,irgktof the model parame-
ters as random variables and endow them wighmiar distribution . This distribution
encodes ouprior beliefsabout which models are more likely than others, and is typi-
cally parameterised by one or mdrgperparameters Under the Bayesian paradigm,
we update the prior distribution on the basis of the infoioratontained in the train-

ing data, to form theposterior distribution . The posterior distribution therefore rep
resents our updated beliefs about the which models are nixefg than others, having
observed the training data. Under a proper Bayesian tredtme would then use
the posterior distribution to calculate various statstf interest to us, typically cal-
culating expected values over that distribution. In pipheiwe can continue the prior
concept further by thinking of the hyperparameters in therpdistribution as ran-
dom variables in their own right, and endowing them with rilisttions of their own.
These distributions are often referred totagerpriors, and they are typically pa-
rameterised by further hyperparameters. It is clear thelh stBayesian hierarchical
model quickly leads to a very large number of hyperparametersjmaradves the eval-
uation of complicated integrals in calculating statisb€terest. A simpler approach
is to terminate the hierarchy at the first level, thus deabnty with a single set of
hyperparameters. A further simplification is to use a simgfgesentative model from
the posterior distribution, rather than taking averagesr tive whole distribution. This
leads to the idea of maximum a posteriori (MAP) model.

With the MAP model, otMAP estimate, we take a single point estimate of the
model parameters that corresponds to miede of the posterior distribution. Chen
and Rosenfeld (1999) propose this method as a way of sma@pth@ximum entropy
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models, and use a Gaussian distribution as the choice af pfioe same idea can
be applied to CRFs. To see this, we start with a prior distidoup (©) and seek an
expression for the posterior distributiqgn®| D), having observed training dat.
The posterior may be expressed in terms of the conditiokalitiood function and
prior distribution using Bayes’ rule:

~ p(D|O)p(©)
POID) =T D6 p(e) do 41)

The integral in the denominator is over the space of all mn®ael defined by the param-

eter vectoi®©. The MAP estimat®,,p, being the mode of the posterior distribution,
is therefore given by:

Ouap = argmaxp(©|D)
= argznaxp(DI(B)p(O)
= argénaxlog [P(D[©)p(O)]
= argénax[logp(D\G))+Iogp(G))] (2.42)

Hence the new objective function consists of the conditiowlikelihood, as before,
along with the additional term log(©).

Now, it is common to assume that the parameters, as randdabies, are inde-
pendent of each other. Under this assumption, the priot gl@nsity may be factorised
into the product of the marginal densities, as follows:

K

P(©) = k|_| Pk (Ak) (2.43)
=1

Taking the logarithm of both sides gives:

K
logp(©) = % logpk (A) (2.44)
k=1

In addition, we assume the parameters are identicallyibiged and each parameter
is endowed with a Gaussian distribution. We therefore have:

1 1
pP(A) = ak\/ﬁeXIO(—zj‘kz (Ak—uk)z) (2.45)
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for hyperparameterg, ando?, the means and variances respectively. Taking the log-
arithm of both sides and substituting back into Equatiod 2¢es:

KT 1 1 5
logp(©) = —5log2m—log ok — —— (Ak — 1) }
k; 2 207
K K 1 K )\k—[,lk 2
= ——log2m— Y logoyx— = <7) (2.46)
2 kgl 25\ Ok

Note that the first two terms in this expression are independethe Ay, so can be
ignored. We therefore arrive at an additional term in thesotiye:

2
()“‘_ ““) (2.47)

This term is very similar in form to the penalty we suggestadier when we took an
engineering approach to the overfitting problem.

Having defined the hyperparametgisand oy, we need a way to set their values.
Different possibilities exist here. One method is to dethwevalues of the hyperparam-
eters from the training data. This general approach is aftérred to aEmpirical
Bayes(Carlin and Louis, 2000; Gelman et al., 2003), and includesge of methods.
One way to employ Empirical Bayes is to approximate the nmagiistribution (the
denominator in Equation 2.41) as a function of the hyperpatars only. The train-
ing data is then used to generate maximum likelihood estisnat parameters of the
marginal distribution (such the mean and variance), thusgiestimates for the hyper-
parameters themselves. However, in typical NLP problemsnndpplying the MAP
approach to CRFs (and other log-linear models), it is moraroon to set the values
of the hyperparameters using a held-out dataset, aftezinesimplifications have been
made. Allocating an independently variable hyperparanmmtéor each parametey,
and searching the for the optimal setapfvalues using held-out data is usually compu-
tationally too costly. Therefore, itis common to constralihoy to be equal to a single
adjustable variable. In addition, it is typical set the mean of the distributidime(Ly)
to the zero vector. Having made these simplifications, thglsiindependent variable
o can easily be found using a held-out dataset. This may be\aheither by manual
tuning using a range of values, or by employing an automagacch process such as
a line search. Either way, using the simplifications abouwgpaal objective function
for a CRF with MAP estimation becomes:
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K
2

L(®)— T k;)\k (2.48)

The additional term makes a contribution to the gradienhefdbjective function. The

new derivative, with respect to paramefgr is given by:

Esio,9[ Tkl — Epso0) [Tkl — = (2.49)

Clearly, the additional term in the gradient is very inexgiga to evaluate, and does
not require an elaborate dynamic programming approachntrast to the second term
from the original expression. The presence of the additipnar term does not change
the convexity of the objective function, so the maximum siticurs at a unique point
in the parameter space.

In our description of MAP estimation here we have used a Ganghistribution
as the prior, but it other choices are possible. Peng and Ma@#2004) compare a
Gaussian to Laplacian and Hyperbolic priors on a task inaghextraction of infor-
mation from research papers. They conclude that the Gaussia general a better
choice than the other two priors. We conduct similar experita on two sequence
labelling tasks in Chapter 5, but reach alternative conchss

With the MAP estimation method above we collapse the pastdistribution to a
point estimate, the MAP estimate. As we described abovel] Béyesian treatment
would instead use the posterior distribution during desgdo average across a spec-
trum of models. Qi et al. (2005) attempt to do something albrege lines with their
Bayesian conditional random field (BCRF)model. They use the Power Expectation
Propagation (Power EP) (Minka, 2004) method, an extendidimka’s EP (Minka,
2001), to calculate the posterior distribution duringrirag and decoding. They show
that BCRFs can outperform standard CRFs trained with CMLMAP on synthetic
data and a real FAQ labelling task. Although this model repn¢s a step forward in
principle, there are some drawbacks. For example, the BG#SE dtill involve some
approximations, so does not represent a genuine Bayesiamient of the problem.
In addition, BCRFs can be computationally more complex gtandard CRFs trained
with CML or MAP, depending on the training regimes used fartea_astly, it is not
clear how well the BCRF approach scales with the compleXityhe problem or size
of the dataset.
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In the domain of neural networks, ensembles have been showrany circum-
stances to reduce generalisation error over that of the lmoagking up the ensemble.
As result, we can think of ensembles as another approachitireg overfitting, and,
indeed this is the idea that underlies our work Witharithmic opinion pools of CRFs
in later chapters. We will discuss previous use of ensenwlgde more in Chapter 6,
when we introduce LOPs.

2.4 Summary

In this chapter we have provided a general background to titenml presented in the
rest of the thesis, the intention being to cover the main eptsrequired to understand
later chapters. Specifically, we have done the following:

¢ Situated CRFs with respect to previous, comparable seguabelling models.
In particular, we looked at the strengths and weaknessesrdrgtive sequence
models, such as HMMs, and saw how these models were superbgdiis-
criminative sequence models such as MEMMs. We also brietikdd at the
shortcomings of discriminative models, such asl#ie| bias problem

e Described CRFs in detail, covering the definition of a CRF asdtructure as
a graphical model, training and decoding algorithms for €Rind the applica-
tions of CRFs to date, both in NLP and in other domains.

e Considered the phenomenon of overfitting, and methods #rabe employed
to reduce the effect.

In the next chapter we move on to describe the experimentap sesed for the
experiments conducted in the thesis.






Chapter 3
Experimental Setup

In this chapter we describe the conditions used to condecexiperiments presented
in this thesis. By doing this we aim to make the our resulty éaseproduce. The
setup is essentially the same for most of the experiments eXperiments themselves,
and the results, are covered in more detail later in chapte®s 7 and 8. This chapter,
more specifically, covers the following:

e The two labelling tasks we use for our experimemamed-entity recognition
andpart-of-speech tagging

e The experimental pipeline and software architecture.

e The measures we use to evaluate and compare the perfornfatifferent mod-
els, and evaluate the significance of any differences obderv

The rest of the chapter is structured as follows: sectiord@dcribes the tasks in
general, and the specific datasets we use for them. Secfldodks at the software
we have written to conduct the experiments. Specificallgtise 3.2.1 covers the ar-
chitecture, while section 3.2.2 describes the implemeartatn section 3.3 we briefly
describe the computing resources used for running the empets, while in section
3.4 we look at how we evaluate performance. Finally, in s&c8.5 we summarise the
chapter.

3.1 The Tasks

All of the experiments in this thesis are undertaken usirggequence labelling tasks,
with a separate dataset for each task. The tasksaareed entity recognition (NER)

37
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and part-of-speech tagging (POS tagging) We chose these tasks because they are
well-known to the NLP community, with standard datasetslalbe for comparison
with other approaches in the literature. In addition, theksacontrast with each other
in the type of problem they pose: POS tagging involves laigelingle words in a sen-
tence whereas NER involves identifying and labelling egithat could range across
several words. In this section we briefly summarise the taskisthe datasets we use
for them.

3.1.1 Named Entity Recognition

Named entity recognition involves the identification of fbeation and type of a set
of pre-defined entities within a text. For example, withiniaitformatics domain
the entities might be proteins, cell compartments or phagksereas in an astronomy
domain the entities might be planets, stars and other steligects. NER is often
used as the first stage in a larger process. Examples inciistienss for information
extraction, question answering and statistical machiaestation. Borthwick (1999)
gives a comprehensive overview of NER for English.

NER emerged as a sub-task of information extraction fromrees®f meetings
known as the Message Understanding Conferences (MUC)H@&s and Sundheim,
1996). These conferences were originally designed to eagewand foster research on
automated analysis of messages, primarily with a view tdatamyl applications. NER
was developed as a sub-task in the sixth conference (MUG¥95. Since then it has
been established as a task in its own right, and is frequémlgubject of competitions
and challenges held at conferences and workshops. Examplede the Conference
on Computational Natural Language Learning (CoNLL) Sharasks (Kim Sang and
Meulder, 2003) and the Information Retrieval and Extrattixercise (IREX) (Sekine
and Isahara, 1999). NER was originally applied to Englislt,Has since been used
with other languages, including German (Kim Sang and Meu{#3), Dutch, Span-
ish (Kim Sang, 2002) and Japanese (Sekine and Isahara,. 18R systems can
generally be classified into two broad categoriege-based systems (Farmakiotou
et al., 2000; Kim and Woodland, 2000) astadtistical methods. In recent years, statis-
tical approaches have become more prevalent and encompads eange of models,
including decision trees (Sekine et al., 1998), hidden Marknodels (Klein et al.,
2003), maximum entropy models (Klein et al., 2003; Currath @rark, 2003), support
vector machines (SVMs) (Asahara and Matsumoto, 2003) gdvoeeceptrons (Collins,
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2002) and CRFs (McCallum and Li, 2003).
As an illustration of the annotation scheme for NER, corsitie following sen-
tence:

Nato declines coment on fighting in Irag.

When annotated with labels representing entities relewatite domain, the sentence
becomes:

Nat o/ I - ORG declines/ O comrent/ O on/O fighting/Oin/Olrag/l-LCC ./0O

We see that each token (including the full-stop) is anndtatiéh an entity label. The
symbolO denotes the fact that a token is not part of a specific entity {i is outside
an entity). The label - ORG denotes the fact that a token igayanisation while the
labell - LOC denotes the fact that a token isogation In general, a label of the form
| - X signifies that a token is part of an entity of tyje and all words in an annotated
dataset are given either a label of this form oGiabel?!

For our experiments we use the CoNLL-2003 shared task ddtagenglish (Kim
Sang and Meulder, 2003). This dataset consists of thremeech training set, devel-
opment set and test set. The size of these sets, in terms dfenuwhsentences and
tokens, is shown in Table 3.1. The dataset was compiled freotd®s news stories.
The training and development sets are comprised of ten deysh of news cover-
age from August 1996, while the test set consists of artiftl@® December 1996.
For this dataset there are four entities: persons (PERfitmts (LOC), organisations
(ORG) and miscellaneous (MISC). With this dataset, as wiiRNn general, the en-
tities are fairly sparse and the vast majority of words h&etlabel. This means that
NER is really the task of spotting the occasional entity agiaa background of non-
entities. In the CoNLL-2003 dataset the words were POSadggitomatically using
the memory-based MBT tagger (Daelemans et al., 2002).

The CoNLL-2003 dataset was designed with the NER task in ramdl allows
us to benchmark our results against those obtained by a nushlo¢gher models that
were employed in the shared task. The best performing systethe task attained
an F score of 93.87% on the development set and 88.76% onghsete This was
a classifier combination framework involving a linear ciéisg a maximum entropy

IHere we are using an annotation format where there is amaliee labeB- X for an entity of type
X. This label is used for the first token of an entity of ty)evhen the previous token was part of a
different entity also of typ&. Except for this case, tokens that are part of entities of ¥/pre labelled
with | - X. This is known as the IOB annotation scheme (Ramshaw andugat©95).
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Objects | Training | Development Test

Tokens | 203,621 51,362 46,435
Sentences 14,987 3,466 3,684

Table 3.1: Numbers of tokens and sentences in the CoNLL-2003 shared task dataset.

model, a transformation-based learning model and an HMMrig&h et al., 2003).
Other high scoring systems included a maximum entropy m@tgeu and Ng, 2003)
and a combination of a maximum entropy model and an HMM (Kétial., 2003).

3.1.2 Part-of-Speech Tagging

POS tagging involves labelling each word in a sentence watlpart-of-speech. A
word’s part-of-speech indicates its syntactic functiargtsas noun, verb or adjective,
as well as other information like number and tense. POS taglyas a long history,
dating back to the mid-1960s. The first well-known tagget #ssigned tags to words
on the basis of local syntactic information, as opposed $b lpoking up tags in a
dictionary, was that of Klein and Simmons (1963). The firstiqabilistic tagger was
probably that of Stolz et al. (1965), which used conditiompadbabilities calculated
from tag sequences to assign tags to words after some pcegsiog steps. Initially,
POS tagging was focused on English but over the years it hars &#gplied to many
other languages. As with NER, most POS tagging systems caouigély classified
as either rule-based or statistical. The best-known rakel approaches are probably
those of Brill (1995). As for the statistical approachesngnenodels have been pro-
posed. These include hidden Markov models (Kupiec, 1992idltl, 1994; Jelinek,
1985), decision trees (Schmid, 1994), neural networks éBeet al., 1989), memory-
based learning models (Daelemanns et al., 1996) and maxentnopy models (Rat-
naparkhi, 1996).

To illustrate the annotation scheme for part-of-speechitay let us refer back to
our example sentence from the previous section. AnnotaioROS tags, this would
look like:

Nat o/ NNP decl i nes/ VBZ comment/ NN on/IN fighting/VBG in/IN Irag/NNP ./.

In this case, therl/BZ denotes a verbd\N denotes a noun, etc. In an annotated dataset
every word is given such a label.
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For our POS tagging experiments we use an amended versibe @dNLL-2000
shared task dataset for English (Kim Sang and Buchholz, )2008is dataset was
extracted from the Penn Treebank (Marcus et al., 1993) feriushe shared task. In
addition, it was relabelled with POS tags using the Brillgag(Brill, 1994). For our
experiments, however, we have restored the original, feammbtated POS tags that
appear in the Penn Treebank.

In Chapter 1 we mentioned scaling as a current limitation BFE. In general,
CRFs do not scale well to complex structured labelling tasksere the resulting
graphical model is densely connected. In these cases mtierean be intractable.
The situation is simpler in the case of a (first order) lindaain CRF. As we saw in
Chapter 2, for linear chain CRFs there are efficient dynamag@mmming algorithms
to handle inference. However, even linear chain CRFs doazdé svell to tasks with a
large number of labels. In general, the time complexity fdefence in a linear chain
CRF scales roughly with the square of the number of labelkerdataset. Therefore,
for sequence labelling tasks with a large number of labefeyénce can be intractable
unless some explicit attempt is made to scale the model. Ample of such a task
is POS tagging, where the label set size is often in the rahd® e 45 tags. In his
thesis, Cohn (2006) examines different approaches tongc@lRFs to efficiently han-
dle such tasks. The work in that thesis was developed inlphralthe work presented
here. Consequently, we address the scaling problem for B@ifpig using a different
approach: we collapse the label set. The shared task datagains 45 different POS
tags. We collapse the number of tags to 5, employing the groeaused by McCallum
et al. (2003). The procedure is as follows:

¢ All types of noun are collapsed to a single categdry

e Alltypes of verb are collapsed to a single categdry

¢ All types of adjective are collapsed to a single categbry
e All types of adverb are collapsed to a single cated®ry

e All other POS tags are collapsed to a single category

The dataset provided with the shared task only includesi@inigaset and a single
development/test set. In order to provide a separate devedot set, while leaving the
test set untouched, we randomly partition the training it a training subset and a
development subset, using the same ratio of sizes as forEfreddtaset. As a result,
we obtain training, development and test sets with sizesngiv Table 3.2.
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Objects | Training | Development Test

Tokens | 172,898 38,829 47.377
Sentences 7,300 1,636 2,012

Table 3.2: Numbers of tokens and sentences in the CoNLL-2000 shared task dataset.

3.2 Software

In this section we describe the software that we have writteimdertake the experi-
ments for the thesis. We first describe the general architeett an abstract level, then
give details as to how the architecture is implemented irstifavare itself.

3.2.1 Architecture

Figure 3.1 shows the software architecture for the expartai@ipeline. In general, to
run a single experiment we train a model using a trainings#tahen use the trained
model to decode other datasets, such a development set anid&t set. Therefore,
the two primary stages in the experimental pipelineteaming anddecoding Before
being able to train the model, however, we must define theifeatto be used in the
model, and ascertain where those features are active iratasets. We therefore have
feature instantiation (or definition) andfeature extraction stages as pre-processing
steps to the training stage. Consequently, our experirhpigtaline consists of four
stages, and these are represented by the rectangular Inakesfigure. The elliptical
objects in the figure represent the inputs and outputs of stagde. In reality these
elliptical objects take the form of text files.

3.2.1.1 Feature Instantiation

In Chapter 2 we defined a feature function as being a conjpmcii predicates spec-
ified on a particulaclique of a sequence. We now imagine a particular featfygs,
that could be used in a POS tagging task. Specified on ctiqpiea sequence with
observation® and on a clique with POS labetsands (with s being thought of as
occupying the current position aistithe previous), this feature is defined as:

1 if currentword(o,t) =“the” holds ands="DET"
0 otherwise

f103<sl7 S, 07t) = {
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—» Instantiation | »

Training Data Training Events
Development Data Development Events
Test Data

\ 4

Extraction

v

Training —>

Figure 3.1: Software architecture for the experimental pipeline.

So this feature isictive on any clique for a given labelling of the observations if and
only if the current word is “the” and the current POS labelET". In fact, in this case
the feature has no predicates that géstNote that the feature here, and indeed all the
features used in our experiments, are binary-valued. Hemnténs not a requirement,
and in principle features could be real-valued. In orderefire a model we must
decide upon a set of features likg)s to include in the model. We do this by defining
a set offeature templates These are like blue-prints for creating features such gs
above, and are motivated by our linguistic intuition abdnet properties of a sequence
that are important if determining its labelling. For examplfip3 could have been
created, oinstantiated, from a feature template such as:
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1 if currentword(o,t) = X holds ands=Y

FTXY S/7S7O7t = .
v ) {O otherwise

Having defined a set of feature templates, we instantiateres from the templates
by passing through the training data and collapsing thegroonded forms for the
predicates in each template on each clique of each sequerhe grounded forms
defined at the clique. For examplfapz would have been instantiated frofTy y by
instantiatingX to “the” andY to “DET".

For the experiments we carry out in this thesis, we only ess features that
have been created in this way. These are callgaported (or sometimesttested
features because they have all been seen at least once aittieg data. It is possible
to include other, non-supported features in the model -ufeatthat have not been
observed in the training data. One way to do this would be $taimtiate all possible
grounded conjunctions of predicates from the feature tatep| rather than just that
subset that have been observed. As noted by Sha and Pe@d®) ,(ihcluding these
unsupported features in a model may in principle cause ietfopm better because
the new features can attach negative weights to transiti@ishould be discouraged
if a certain observation predicate is active. However,udolg these features does
require some form of regularisation to be applied duringniregy because without this
the parameters associated with the unsupported featuliedemd to negative infinity.
Some of the results we present later refer specifically taifgeof unregularised models
in a LOP. In order to compare these with the correspondingguiarised models on a
consistent set of features, we chose not to include unstggpteatures. However, in
principle, our findings should still hold for LOPs with modehcluding non-supported
features.

Typically the feature templates naturally fall into diféeit categories based upon
the dependencies that the features instantiated from thenmtgnded to model. For
example, some templates may instantiate to features thd¢lntiee dependency of a
word’s NER label on the word’s POS label, while others mayansate to features that
model dependencies between the NER label and the word’sgyghhic properties.
The specific feature templates that we use for our expersnare described in the
next chapter, when we introduce the reference models.
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3.2.1.2 Feature Extraction

Having defined a set of features to be used in the model, wetnedetermine where
each feature is active in the dataset. In Chapter 2 we savdtinaiy each iteration of
CRF training we must evaluate the expected value of eachrieander the current
model. This involves a weighted sum over all possible labhgd. As a result, we
must determine which features are active in the training étatall possible labellings
of the sequences, not just the observed one (the gold-sthndadditionally, when
we use a trained model to decode a development set or tesissete( also saw in
Chapter 2), we use a Viterbi algorithm which requires us tovknvhich features are
active on all cliques of the dataset for all possible labghi — with different possible
labellings corresponding to different paths through th&eendi lattice. Therefore, the
feature extraction stage in the experimental pipelinerddtees the active features for
all labellings of all the datasets we are using: training detelopment set and test
set. This is represented in Figure 3.1 by the three arrowsggimito, and out of, the
extraction stage box.

3.2.1.3 Training

The output of the extraction stage, giving information meljjag feature activations, is
the single input we need for the training stage. During ta@ning stage the model
is fitted iteratively using the procedures described in G&ap. The fitting will cease
when some termination condition is satisfied. Typicallystid a threshold for the
minimum absolute or relative change in the objective furctibut could also be a
maximum number of iterations for example. The output of thénfj stage is a set
of parameters representing the converged model. We ofssnaltput other sets of
parameters, for example parameters representing the ftalbe model at different
iterations. This allows for analysis of the learning pracesthe model during training.

3.2.1.4 Decoding

Having arrived at a trained model we may then use it to decadéhar dataset, typi-
cally a development set or test set. Our inputs to the degostage are therefore the
parameter set (output from the training stage) and the featctivation information
for the dataset to be decoded (output from the extractiayesta
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3.2.2 Implementation

The software to implement the four stages in the experinh@ipaline is written in a
combination of C++ and Perl. In general, Perl scripts areliseontrol high level be-
haviour, while C++ code handles lower-level processinge T+ code therefore ex-
ecutes the functionality associated with the four stagdeatitire instantiation, feature
extraction, model training and model decoding. In facttla! stages are implemented
by a single C++ binary. By contrast, Perl scripts define tha&figaration settings as-
sociated with the four stages such as input and output fileesalind convergence
conditions for the training. For some experiments, the @rpental pipeline described
above is executed many times over with a different value foyerparameter each
time. In this case the Perl scripts define the range of hypanpeters to be used.

As we discussed in Chapter 2, during training we optimiselgeative function,
typically a penalised log-likelihood of the training datBecause an optimal set of
parameters cannot be found analytically, we must resorstoguiterative numerical
routines. In particular, we use thienited memory variable metric (LMVM) routine
(Nocedal, 1980), and for a small number of experiments inpBreb we use a vari-
ant on this procedure calldzbunded limited memory variable metric (BLMVM)
(Benson and More, 2001). Both routines are implementedatolkit for Advanced
Optimisation (TAO) libraries (Benson et al., 2005). We alse the Portable Exten-
sible Toolkit for Scientific Computation (PETSc) (Balay &t 2004), which provides
a set of vector structures that interface easily with TAOdeimeath both TAO and
PETSc sits a Message Passing Interface (RBdmmunication layer, which allows
for efficient communication over a network when running fatsed experiments.
We use two different implementations of MPI, called MPRC&hd LAMMPI*. Most
of the experiments reported in this thesis involve only Enagpde processing, but the
co-operative training framework described in Chapter 7 requires a parallelisediar
tecture and this makes explicit use of the MPI layer. In fdog, architecture for the
co-operative training software is a little more complexrthbe architecture here, so
we describe it separately in that chapter.

2http://www-unix.mcs.anl.gov/mpi
Shttp://www-unix.mcs.anl.gov/mpi/mpich
“http://www.lam-mpi.org
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3.3 Computing Resources

The experiments presented in this thesis were all condugted) the computing re-
sources within the School of Informatics at the UniversifyEalinburgh. These re-
sources broadly fall into two categories:

e compute servers a small number of standalone machines powerful enough to
run an experimentin isolation. These machines are eacpgedivith four Intel
Xeon 2.8GHz processors and 4 or 5GB of RAM.

e clusters four Beowulf clusters of machines. The number of nodes ituater
and the specification of the nodes, varies considerablydsrithe clusters. The
newest cluster, which was used the most for our experimeotssists of 34
nodes each equipped with four Intel Pentium 4 3.0GHz prarsessd 4GB of
RAM.

3.4 Performance Evaluation

3.4.1 Performance Scores

In our experiments we must measure the performance of diffemodels in order

to be able to compare them. We do this using standard measumgisyed by other
researchers. For the POS tagging experiments we mepsuteken accuracy(short-
ened toaccuracy for the rest of the thesis). This is simply the proportion akdns
(words) that are labelled correctly. NER, however, is ddithore complex as it in-
volves chunks, oentities. We want a measure that encodes how well we have correctly
identified entity boundaries, and a simple measure suchcasay will not represent
this clearly. We therefore ugde score which is turn is derived fronprecision and
recall. Precision P) and recall R) are defined as:

TP

P = TP+FP 3-1)
TP

R = 7p1EN (3:2)

where TP is the number otrue positives (correctly identified entities)FP is the
number offalse positives(incorrectly identified entities) an&N is the number of
false negatives (incorrectly omitted entities). The statsT P, FP andFN may relate
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to a particular entity, or be global, across all entities.they are all non-negative, it is
clear that precision and recall both take values in the waldrom O to 1. Ideally, we

would like achieve a high value (i.e. close to 1) for both p®n and recall. Indeed, if
we correctly label every word, we obtain a score of 1 for batkcsion and recall. In

general, however, trying to maximise recall may lead to gquediction of a particular

chunk, which in turn leads to low precision. Converselyirtgyto maximise precision
may lead to a under-prediction of a particular chunk, whicturns leads to low recall.
We therefore require a measure that encodes both precistbnegall. The standard
candidate i$- score which is defined by:

1
Fo = — - (3.3)
as+(1-a)5

The parametea determines the weighting of precision and recall. Usuallyg set to
0.5, with the F score becoming:

2PR

Fos = PIR (3.4)

It is this definition (3.4) that we use as the performance meams our NER experi-
ments.

3.4.2 Significance Testing

When assessing the difference in the performance of two lmadéng the measures
described above, we must look not just at the absolute diffag in the values obtained,
but also the statistical significance of that differencedddhis we need an appropriate
statistical test for sequence labelling problems. We ussigpopularised by Sha and
Pereira (2003) called thmatched-pairs test(Gillick and Cox, 1989).

The matched-pairs test assumes that the stream of labelioigions (i.e. sen-
tences labelled by a CRF in our case) can be divided into gaith that, for a given
model, the errors that the model makes on a given segment@ependent of the er-
rors that it makes on any of the other segments. With a CRF@gsedhfuence labelling
tasks we consider in this thesis, it is reasonable to taket@isee as such a unit. The
test compares two models by measuring the difference in tingber of errors (per-
token labelling errors) each model makes on each senteneeN!Lbe the number
of errors made by modat on sentence, wherei runs over allN sentences in the
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dataset. The; = Ni — N, measures the difference in the number of errors made by
model 1 and model 2 on senternic&uppose we want to know the true mean difference
in the number of errors made by the models across all possdzjaences that could
be encountered. A natural estimate for this mean differepges the sample mean

fl. = & YN, Zi. In addition, a natural estimate for the variance of thifedénce is the
sample variancé? = yx; SN (Z — [1,)% Now, if we define W by:

A

s
52/ VN

then for largeN (e.g. larger than 50)V will have a distribution that is approximately

(3.5)

normal, with unit variance. If we assume that on average weerhodels perform
equally well from the point of view of per-token labellingrers, thenp, (andW for
infinitely large N) would be zero. Therefore, if we want to test whether two ni®de
have significantly different accuracies, we form a null hy@sisHg : yu; = 0 and
test it by seeing how far the estimaté is from 0. We reject the hypothesis\W is
sufficiently far from zero that undddy W would have taken the given value (or a
value further from 0) with a probability below some threghthat we define. As this
corresponds to significaxifferencein accuracies at the threshold in question, the test
is atwo-sidedone. However, if we instead want to establish, for examplegtiver
the first model has an accuracy that is significahityherthan the second model, we
form an alternative hypothedis; : 1, < 0. We reject the hypothesisW is sufficiently
greater than zero that unddr, W would have taken the given value (or a higher value)
with a probability below the threshold. This isoae-sidedversion of the test. In our
experiments we use the one-sided version of the test anchtyypset the threshold at
5% (p < 0.05), but we state specific thresholds whenever significagsts aare used
later in the thesis.

By definition this test is based inherently on accuracy ndtinen any entity-oriented
measure such a F score, so by using it we are measuringisttsgnificance of dif-
ferences in accuracy, not F score. This could potentialge@oproblem for comparison
of models on NER. However, experience has shown that modierpeance rankings
based on accuracy and F score are almost always the samee tng this accuracy-
based statistical test is a reasonable substitute for amative entity-based one. It is
possible to measure the statistical significance of diffees in F scores directly using
bootstrapping approaches (Yeh, 2000). However, Sha areir@€2003) found that
such measures are often swamped by variance, and recomheesafipler matched
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pairs test instead. We use the matched-pairs test in this floe®oth POS tagging and
NER.

3.5 Summary

In this chapter we have presented the experimental framethat we use to conduct
the experiments for this thesis. In particular, we have desd:

e The two labelling tasks, named-entity recognition and-pé&tpeech tagging,
that we use to illustrate our ideas throughout the core enapt

e The experimental pipeline and software architecture pidiclg the stages cover-
ing feature instantiation, feature extraction, and tragrand decoding of models.

e The measures we use to evaluate and compare the perfornfatifferent mod-
els, and evaluate the significance of any differences obderv

Having presented the general experimental setup in thistehave move on in the
next chapter to present results for the baseline modelsaadhpirically demonstrate
the CRF’s tendency to overfit.



Chapter 4
Reference Models and Overfitting

In this chapter we describe the standard CRF models that e/thtsughout the rest of
the thesis, and build upon in later chapters. We refer toethaeference models The

basic performance results that we provide for these mod#llb&used as baselines
for comparison later. Also in this chapter we demonstragetémdency for a CRF to
overfit the data during training, an idea that we introduced discussed in Chapter 2.

4.1 The Reference Models

Throughout the thesis, for both NER and POS tagging, we use seference CRF
models. These models are called SIMPLE and STANDARD. Thé#grdn the fea-
tures that they contain. Each model has two versions, onesaich task. The feature
templates used to generate the SIMPLE model are the sametloMNER and POS
tagging. For the STANDARD model, however, the feature teatgd vary with task.
Table 4.1 shows the templates used to generate the SIMPLElImodoth tasks. Note
thats denotes the label at positidnn the sequence, angk denotes the word at po-
sitiont. Thelabelin this context depends on the task. For POS tagging the iabel

Label predicates Observation predicates
§-1=9,5=S
§1=S,%=S W =W

S=S W =W

Table 4.1: Feature templates generating the SIMPLE model.
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Label predicates Observation predicates

§1=S,%=S
§-1=5,%=S W =W
& =S W2 =W
W1 =W
W =W
Wil =W
Wi2 =W

W2 =W, W_1=W
Wiyl =W, Wi =W
pe=p
p2=p, p1=p
Pir=p, Pr2=p

Table 4.2: Feature templates generating n-gram features.

the POS tag, whereas for NER the label is the NER label. There@emplates in
Table 4.1 represent basic structural dependencies betwaesecutive labels, and the
label and word at a given position. When instantiated, tifemsteire templates generate
24,819 SIMPLE model features for NER and, 182 SIMPLE model features for POS
tagging.

The feature templates used to generate the STANDARD modekich task are a
superset of those generating the SIMPLE model. They may baisded into three
categories according to the type of features they generate:

1. N-gram features These are features that involve predicates defined on the ob
servations that are-grams of words, and, for NER, POS tags. Table 4.2 shows
the feature templates that are used to generate thesedwatilihe templates
used to generate the STANDARD model for POS tagging are drage resid-
ing above the dividing line. By contrast, for the NER STANDBRnodel all
templates in Table 4.2 are used. In the case of NER, featomglé¢es treat POS
tags as observations. These are the ones involving symbasasp;, which
denotes the POS tag at positioim the table.

To clarify the information contained in the table, let usdan example. The
fifth line in the table shows a feature template (calel} here for illustration)
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Label predicates Observation predicates

S$=S w; contains a digit
W; contains an upper case character
W; contains a hyphen
W; contains a period
W; contains punctuation
w; is all digits
W IS a number
W is alphanumeric
W is only Roman numerals
w; is all uppercase
W is all lowercase
W; is of mixed case
W is a title
W; is an initial
W; IS an acronym
w; has prefixx of lengthl, | =1...4
w; has suffixx of lengthl, 1 =1...4

w; has lengthx

Table 4.3: Feature templates generating orthographic features.

Label predicates Observation predicates

§$=S W;_1 has Collins’ formatf
w; has Collins’ formatf
W1 has Collins’ formatf
W_2, W1 have Collins’ formatf, f’
W_1, W have Collins’ formatf, f’
W1, W2 have Collins’ formatf, f’
W_2, W_1, W have Collins’ formatf, f/, f”
W1, W, Wi 1 have Collins’ formatf, f/, f”

W, W1, Wi, 2 have Collins’ formatf, f/, f”

Table 4.4: Feature templates generating Collins’ features.
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which is defined by:

FT. 1 if currentword = w and currenflabelk= s
5= .
0 otherwise

The n-grams shown in Table 4.2 are based on those described bprCand
Clark (2003), where a similar set was shown to be effective standard maxi-
mum entropy model for NER. The feature templates in the tebfesist only of
unigrams and bigrams of words and POS tags. By includingdnighder pred-
icates (trigrams and higher) we risk overfitting. Indeed,use such features in
the next section to demonstrate the overfitting effect.

. Orthographic features. In addition to then-gram features, the STANDARD

model for NER containsrthographic andCollins’ features. Feature templates
that generate orthographic features are shown in Table #l8se templates
consist of predicates that pick out some orthographic ptgpaf the current
word, such as whether it is capitalised, whether it contaidgit, etc.

. Collins’ features. The termCollins’ featureis our terminology, and refers to

features that contain a special predicate defined by CqRid82). The predicate
maps words tevord classeswhere a word class consists of words with the same
orthographic properties. Specifically, each character woed is mapped to a
symbol and adjacent characters with the same symbol ararbeged together.
For example, the worékel | 0 would map toAa, the initialsA. B. C. would map

to A A A and the numbet, 234. 567 would map to0, 0. 0. Table 4.4 shows
the feature templates that are used to generate Collingireesa As can be seen
from the table, the templates involmegrams of words (in a window around the
current word) over which the Collins’ predicate is applied.

When instantiated, these feature templates generat@46@eatures for the STAN-

DARD model for NER and 18339 features for the STANDARD model for POS tag-

ging.
Table 4.5 gives F scores for the reference models on the N&& fiar both devel-

opment set and test set. Table 4.6 gives accuracies for thesponding models on the

POS tagging task. All the models are unregularised. Corwegitregularisation of the
STANDARD model (including use of a Gaussian prior) is disadsin Chapter 5. As
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Model Development Test

SIMPLE 79.53 69.22
STANDARD 88.21 81.60

Table 4.5: F scores for reference models SIMPLE and STANDARD on NER.

Model Development Test

SIMPLE 95.15 94.84
STANDARD 96.76 96.32

Table 4.6: Accuracies for reference models SIMPLE and STANDARD on POS tagging.

expected from the feature sets described earlier, the STRIDmodel significantly
outperforms the SIMPLE model at a significance levepaf 0.05.

Table 4.7 gives representative times for training and diegpdf the STANDARD
and SIMPLE models on NER. The corresponding times on POSrgghow similar
trends but are in general a little lower because the POSrgggibdels have smaller
feature sets, having been instantiated on a smaller tgaotataset.

4.2 Overfitting

In Chapter 2 we made the claim that CRFs have a tendency tditwmall datasets
that are used to train them. To demonstrate this, we take B STANDARD model
as a base and define a sequence of models via sets of additahaks. These sets
form a sequence of supersets. We then train each model irethiesce and compare
results to the STANDARD model. Table 4.8 shows the featumgptates from which
the additional sets of features are generated, in a sequence?,. These involve
othern-grams of words and POS tags not used in the STANDARD modeliidimg
higher orden-grams. Note that the sets are increasing supersets inrike geat model
A, for example, includes all the feature templates in médels well as the additional
ones from the rows labelle#, in the table.

As we add more features to the STANDARD model, there are pialgntwo con-
flicting effects taking place. On the one hand we give eachehgekater modelling
power, which could lead to increased performance. One therdtand, we risk an
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Dataset
Model

Training | Development Test

STANDARD | 90 mins 50 secs 40 secs
SIMPLE 25 mins 25 secs 20 secs

Table 4.7: Representative times for training and decoding of the STANDARD and SIM-
PLE models on NER.

89 T T T
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Figure 4.1. Development set performance during training for the STANDARD model on
NER.

increased effect of overfitting as the extra degrees of treethtroduced through the
new features fit to the idiosyncrasies of the training daelfirather than the system-
atic properties of the underlying distribution. Table 4i9e3 F scores for the models
A;...A4. The table shows both converged scores and best scores bdwtrefers to

the model that obtains the highest score on the developraedtisng training. We see
from the table than the modéh performs roughly equally well as the STANDARD
model (the converged F score is slightly higher, althoughlibst F score is a little
lower) but as we continue to add more features we obtain rsddat perform increas-
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Label predicates  Observation predicates | Model

& =S P—2=0p
P-1=0DP
Pt=p A
P+1=1P
Pty2=1p
Wog =W, W =W
Az
W =W, W1 =W
Pp-1=p,p=p
=0, p1=p
Wo=W W _ 1=W,w=w A
Weog =W, W =W, W1 =W ’
W =W, W1 =W, W,o=W
—w/! _ _
p2=w, p1=W,p=w A

p-1=W, p =W, pi1=w
p=W,pr1=W,po=wW

Table 4.8: Additional sets of feature templates added to the STANDARD model tem-

plates to demonstrate overfitting.

Model Best | Conv
STANDARD | 8821 | 87.91
A1 88.03 | 88.00

A 87.83| 87.70

Az 87.34| 87.34

Ay 87.10 | 86.89

Table 4.9: Development set F scores for feature template sequence models.
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ingly badly as overfitting increases. Clearly, we can seetti@tendency to overfit
increases steadily as the number of features is increased.résult, we conclude that
to apply CRFs effectively here, application of some formegjularisation is vital.

Table 4.9 we shows that the STANDARD model overfits the trajriata least.
However, even with the STANDARD model, there may still be a@aia degree of
overfitting taking place. Indeed this may be observed by idensg the path that is
taken through the model space as the STANDARD model is taides the training
continues and the model is fitted ever more closely to thaitrgidata distribution,
there comes a point at which the model’s performance on thelolement set starts to
diminish. This is illustrated in Figure 4.1, which shows thER STANDARD model’s
performance on the development set during training. Thé hoeslel with respect to
the development set, and the one for which we may expect thedgameralisation
behaviour, lies somewhere in the region between iteratl®@¥sand 120. Beyond this
point, the model starts to fit more and more closely to theildeté the training data
distribution rather than the underlying distribution.

Note that with the examples in this section we are demomstyaituations in which
a CRF overfits. Previous work with CRFs on various NLP taslssaiso demonstrated
the tendency for CRFs to overfit, and this has led to the neesidime form of regu-
larisation when applying CRFs to such tasks. However, waatelaiming that CRFs
alwaysoverfit. In situations where increasingly large amountsatbdare available, in
relation to model complexity, CRFs will overfit less and less

4.3 Summary

In this chapter we have described the reference models thatse, and build upon,
in later chapters. We have presented the performance sdsulthese models on both
NER and POS tagging. In addition, we have demonstrated titetey of a CRF to
overfit the training data by creating a sequence of models widreasing numbers of
features. Having shown the existence of the overfitting lemob and the consequent
requirement for some form of regularisation when trainingKs, in the next chap-
ter we investigate conventional approaches to CRF regaléon, and propose some
extensions to them.



Chapter 5
Conventional Regularisation for CRFs

In Chapter 2 we explained the general phenomenon of a moeé€itbwng the data on
which it is trained, and described some of its symptoms. Tilethe last chapter,
we looked at the specific case of overfitting by CRFs. Using NiSRan example,
we saw how a CRF may overfit a dataset in some circumstancesdid\his by
training a sequence of CRFs with increasingly large feasets. Much CRF research
to date has supported the view that CRFs have a tendency tiit,qvarticularly when
they are applied to real-world tasks. Examples of such wodkude application of
CRFs to tasks such as named entity recognition (McCalluniLgra®03), noun-phrase
chunking (Sha and Pereira, 2003) and information extractiom research papers
(Peng and McCallum, 2004). We may conclude, therefore sihatessful application
of CRFs requires some form of regularisation to addresgdmdency to overfit.

Standard approaches to regularising CRFs, and log-linederfs in general, have
focused on the use of a Gaussian prior distribution over tbdehparameters. The
choice of a Gaussian distribution (as opposed to some otherjmarily due to the
Gaussian being well understood and easy to implement. Hawiere are a number
of questions that arise here. Firstly, it is not clear that@aussian distribution is the
most natural choice for a prior all the time. With a wide véyief tasks and a corre-
spondingly diverse range of label distributions, it seeikedy that in some cases other
prior distributions may be more appropriate. Secondlypécig! application of a Gaus-
sian prior involves constraining the distribution variarto be fixed across all model
parameters. This simplification aids computation, avadire need to search a hyper-
parameter space of large dimension in order to fit the priokveler, varying the value
of the variance of a Gaussian prior distribution for a patac model parameter influ-
ences the degree of regularisation applied to that paraumiterefore, by applying a

59



60 Chapter 5. Conventional Regularisation for CRFs

fixed variance across all parameters we are effectivelyyapgplan equal regularising
effect to each one. However, there may be some circumstavizere we want to reg-
ularise some parameters more than others. For example, fétdiure associated with
one parameter is seen much more frequently than that of anatle may conjecture
that its parameter does not require regularising to the sdegece as the other one.
So how might we decide on the level of regularisation foret#it parameters? A
third question relates to the Gaussian prior mean. In a &eplementation using a
Gaussian prior, the mean is assumed to be zero. This is agaiargy for simplicity
and avoids the need to search a joint space of both mean aada&to fit the prior.
However, fixing the Gaussian mean at zero penalises positiienegative parameter
values equal in magnitude by the same amount, thereby degiog movement away
from zero symmetrically. Since we may expect some paramétehave a positive
value while others are negative, it is not clear that a sémsitoice for a mean is zero
itself — it could be a small positive value for example. Soawis the optimal choice
for the Gaussian mean? What happens when we allow the meaov®araway from
zero?

In this chapter we address these questions. Starting iloaee we explore the
use of alternative priors and compare these to the Gaushigparticular, we exper-
iment with Laplacian and theHyperbolic priors. In section 5.5 we then move on
to look atfeature-dependent regularisation where different model parameters are
regularised to different degrees. We investigate diffeveays of grouping features to-
gether for regularisation, including the extreme case wleach feature is regularised
to a different level. Then, in section 5.6, we experimenhwion-zero values for the
Gaussian mean. To complete the picture, we also considgrsuaple approaches
to regularisation in the form of a feature cutoff, wherebygmaeters corresponding
to features which occur infrequently in the training data emoved from the model
altogether. We look at this with and without regularisatafrthe remaining parame-
ters (in sections 5.1 and 5.4 respectively). Finally, talgahe end of the chapter, in
section 5.7, we look at an alternative formulation for regiglation of a CRF, which
we call theinequality CRF. This involves relaxing the feature expectation constsain
we discussed in Chapter 2. We show how this model is very aimml principle to
regularisation with a prior, and compare the two approaches

INote that sometimes we will use a phrase such as “reguldréstetitures” to mean “regularise the
parameters associated with the features”.
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5.1 Feature Cutoff

Before considering different families of prior distribati, we look in this section at
a very simple approach to reducing overfitting, calfedture cutoff (Ratnaparkhi,
1998). Feature cutoff is based on the idea that when a mogelrésneterised using
features that are redundant (or, more generally, not vesjulisfor modelling the dis-
tribution at hand, these features will tend to fit to arbijraroperties of the training
data rather than modelling the systematic properties oflisteibution observed. Thus
the model is likely to overfit the training data. By definititeatures which have this
property are likely to occur very infrequently. As a consenqce, if we assume that
all infrequent features may have this property to some dedieen overfitting may
be reduced by removing infrequent features from the modehture cutoff therefore
involves removing features whose frequency falls belowednneshold. For our ex-
periments we have chosen arbitrary thresholds of 1, 2 and 3.

Table 5.1 gives F scores on NER for CRFs with the differentufieacutoff thresh-
olds. Table 5.2 gives accuracies on POS tagging for the moreding models. The
STANDARD model is included in each case for comparison. Vetuide development
set scores for completion, but the more interesting resuishose for the test set in
each case. Note that the significance tests we use in thisrseahd throughout the
chapter, are at thp < 0.05 level.

From both tables we see that as we increase the cutoff tHksh@eneral scores
decrease. This trend is not surprising: as we remove motarésafrom the model,
we take away useful modelling capability provided by thedess in question. This
effect will have increasing influence and will at some poiatveeigh any beneficial
effect obtained from feature removal. As for other trendshia results, the patterns
vary with task. For POS tagging, the model with features afil§requency one re-
moved has greater accuracy than the STANDARD model, on betkldpment and
test sets. However, the scores it obtains are not significaigher. The other models
on POS tagging obtain lower scores than the STANDARD modiglpagh these are
not significantly lower. By contrast, on NE&I feature cutoff models significantly
underperform the STANDARD model, with the exception of thedal with features
only of frequency one removed, on the development set.

Although the specific effect of feature cutoff is not consigtacross the two tasks,
the general point we observe is that feature cutoff is notfeattve method of regu-
larisation for CRFs. In general we do not obtain significabitter results using this
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Frequencies RemovedDevelopment Test
STANDARD 88.21 81.60

1 87.72 80.58

land?2 86.54 80.36
1,2and 3 86.34 80.80

Table 5.1: F scores for feature cutoffs on NER.

Frequencies RemovedDevelopment Test
STANDARD 96.76 96.32

1 96.79 96.39

1land?2 96.68 96.23
1,2and 3 96.64 96.18

Table 5.2: Accuracies for feature cutoffs on POS tagging.

procedure. It seems that sufficient useful information istamed in features of low
frequency that their removal harms the modelling capahdlftthe CRF. This harming
effect outweighs any regularising effect that their remiaway have in principle. As
we will see later in Chapter 8, some features of low frequeareyhighly informative,
and removing these from the model can be very damaging to tiiels performance.
It seems, then, that the feature cutoff approach is in a dexseoarse, unable to dis-
tinguish between useful low frequency features and othesmight be a source of
overfitting.

5.2 Conventional Priors

Most approaches to CRF regularisation have focused inste#de use of a Gaussian
prior distribution over the model parameters. Howevergotthoices of prior are pos-
sible. In this section we investigate whether the Gaus®presents a natural choice
for a CRF for sequence labelling tasks. To do so we compaee tlamilies of priors:
the Gaussian the Laplacian and theHyperbolic. These priors are broadly similar
in that they increasingly penalise the value of a model patanas it moves further
from the centre of the distribution. However, the priordelifin the specific form of
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Gaussian
Laplacian -
Hyperbolic -~

Figure 5.1: Qualitative depiction of penalty terms for the different priors.

the penalty term they employ. Figure 5.1 gives a qualitadiepiction of the penalty
term for each prior. As we explained in Chapter 2, this terrmpesgps in the objective
function used to train the CRF.

5.2.1 Gaussian Prior

The most commonly used prior for CRF regularisation has lteerGaussian. Use of
the Gaussian prior assumes that each model parameter ia drdependently from a
Gaussiandistribution, which is typically represented as:

1 1
P(Ak) = W‘“D(‘f‘kz()\k—NUZ) (5.1)
k

The A¢ are the CRF model parameters, while fixeand 0k2 arehyperparameters of
the Gaussian distribution. They represent ttigan andvariance of the distribution,
respectively. Ignoring terms that do not affect the modeapeeters, the regularised
log-likelihood with a Gaussian prior becomes:

LL()\)—%Z (Ak_“k)z (5.2)

Ok
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We see that the penalty term for the Gaussian prior is a surerofst of the form

% <)"‘;k“k>, one for each model parametdy. At the optimal point a set of equations

are satisfied. These equations, one for egglhave the form:

Ak — Hk
Epo,9)[ k] —Ep(so)[fk] = o2 (5.3)

We mentioned in the introduction to the chapter that the Gansprior is usually

assumed to have zero mean. This involves setfting- O for eachk. With respect
to the Gaussian variances?, there is a distinction between what we clhture-
independent regularisationand feature-dependent regularisation In the former,
the parameters associated with each feature are regulaosen equal degree and so
the corresponding varianc@ are constrained to be equal, i.ﬂkz = o?forall k. In
the latter case, the variance% are allowed to vary witlk. We present results for both
these cases later in this chapter.

We can see from Equation 5.3 that use of a Gaussian priorea@¥ahe constraint
that the expected count of a feature under the moddikisountedwith respect to the
count of that feature on the training data. This can be seeo@&what similar in
nature to the discounting schemes employed in languagelhmgd@&hen and Rosen-
feld, 2000). Under that analogy, use of the Gaussian primesponds to a form of
logarithmic discounting in feature count space.

5.2.2 Laplacian Prior

Use of the Laplacian prior assumes that each model parametswn independently
from aLaplace distribution. This is typically represented as:

DA = Ziﬁkexp(—‘g—i‘) (5.4)

The B¢ are hyperparameters of the Laplace distribution, like gheand oy for the
Gaussian. Ignoring terms that do not affect the model paiens®y, the regularised
log-likelihood with a Laplacian prior is given by:

L
B«

In this case we see that the penalty term for the Laplaciaor pgia sum of terms of

LL(A) (5.5)

the form%—t'. At the optimal point the model satisfies:



5.2. Conventional Priors 65

ign(A
Epos) [Tkl —Epso)lfl = S'g;(k ) A0 (5.6)

The numerator on the right-hand side in Equation 5.6 takesdtue 1 ifAy is positive
and—1 if it is negative. Continuing our analogy with the languagedelling world,
we see from the form of the penalty term that use of the Laptaprior is similar to
applyingabsolute discountingin feature count space.

From Figure 5.1 we can observe that the derivative of the Ipeterm for the
Laplacian prior with respect to a paramefgris discontinuous adx = 0. This leads
to a potential problem in the evaluation of Equation 5.6 nemliby the optimisa-
tion libraries when training the model. To tackle this perbl we use an approach
described by Williams, who shows how the discontinuity mayhlandled algorithmi-
cally (Williams, 1995). His method leads to sparse solugjamhere, at convergence,
a substantial proportion of the model parameters can beaeme The result of this
pruning effect is different, however, to feature inductiarhere features are included
in the model based on their effect on log-likelihood.

5.2.3 Hyperbolic Prior

Use of the Hyperbolic prior assumes that each model paraiiseteawn independently
from theHyperbolic distribution. Under this distribution, ignoring terms thao not
affect the model parameteig, the regularised log-likelihood is given by:

Pk eﬁMk) (5.7)

LL(A)—ZIog ( 5

The B¢ are hyperparameters of the Hyperbolic distribution, ashe Laplacian. In
this case we see that the penalty term for the Hyperbolia pgia sum of terms of the

form log (M) At the optimal point the model satisfies:

KAk — @ BrAk
hk—e ) (5.8)

Ef)(o,s) [fk] - Ep(s|o)[fk] = B« <m

Note that, unlike the Gaussian and Laplacian priors, thalpeierm for the Hyper-
bolic prior does not correspond directly to any form of dignting in the language
modelling setting.
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Prior Development Test
STANDARD 88.21 81.60
Gaussian 89.86 83.97
Laplacian 89.57 83.62
Hyperbolic 89.41 83.47

Table 5.3: F scores for different prior families on NER.

Prior Development Test
STANDARD 96.76 96.32
Gaussian 97.07 96.69
Laplacian 97.07 96.77
Hyperbolic 96.85 96.41

Table 5.4: Accuracies for different prior families on POS tagging.

5.3 Feature-Independent Regularisation

Having described the three prior familfés general in the last section, we now present
results of experiments conducted using feature-indepenégularisation with these
priors. To recap, with feature-independent regularisatie fix the value of the ad-
justable regularising hyperparameter across all modelmaters. We set this single
value using the development set. In the case of the Gaussgaalso set the mean to
zero.

Tables 5.3 and 5.4 give F scores for NER and accuracies fortB@fing, respec-
tively, for the different priors. The unregularised STANBA model on each task is
included for comparison. The general points are as follows:

1. In order to obtain the results shown in the tables, extersgarch of the hyper-
parameter space is required for each prior family. Typjctils required testing
15-20 distinct hyperparameter values, and significanigperdince improvement

can be gained from this careful search.

2. For each prior the regularised CRF significantly outpent®the unregularised

2Note that we sometimes ugegior to meanprior family. The meaning should be clear from the
context.
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STANDARD model. This is no surprise, and is the reason fongis prior at
the outset. It does, however, confirm that each prior fanslperforming as
expected.

As with the feature cutoff results earlier, the more speg#ftterns in the results
vary with task. On NER, reading down from Gaussian to Lapladb Hyperbolic,
we observe decreasing F scores on both the developmentstrekts. However, the
only two scores that represensggnificantdifference in performance at thee< 0.05
level are those of the Gaussian and Hyperbolic priors onéireldpment set. All other
relevant score pairs do not differ significantly. It seerhgn, that for NER all the pri-
ors perform roughly equally well. For POS tagging the treadsa slightly different.
Again the scores for the Gaussian and Laplacian priors daepresent significant
differences in performance. The Hyperbolic prior, howedees perform significantly
worse than the other two on both the development and test Gets reason for this
may relate not to the regularising effect of the Hyperbohopitself, but to the practi-
cal difficulty of finding an optimal hyperparameter value tbis prior. Glancing back
to Equations 5.7 and 5.8, we see that the Hyperbolic prioetpgrameterf, influ-
ences the regularisation of the model parameters througin@idén of exponentials.
This function has a much more complicated form than the spoeding functions
for the Gaussian and Laplacian priors, and may make managattséor the optimal
hyperparameter setting more difficult than with the othéonst

From these results we conclude that the Gaussian prioguitinby far the most
commonly used, isiot a natural choice of prior for CRFs on sequencing labelling
tasks, and possibly in general. The Laplacian and Gaussians pbtain very similar
performance levels on both NER and POS tagging. The Hyperpobr does appear
to underperform the other two in some cases, but it not cldaatiaer this relates to
some intrinsic property of the prior itself, or just a greatifficulty in its effective
application. These conclusions are somewhat contraryetdinldings of similar work
conducted by Peng and McCallum (2004). They compare the pamrefamilies on
an information extraction, using CRFs to extract specifitadeom research papers.
They find that the Gaussian prior performs significantly dretihan alternative priors
on the task and consequently conclude the the Gaussianpsith@f choice. In addi-
tion, they report performance figures for the Hyperbolic aaglacian priors that were
lower even than those of the unregularised STANDARD modeér& are several pos-
sible reasons for these differences. The first is that foH¥eerbolic prior, Peng and
McCallum (2004) did not use an adjustable hyperparametbey Tnstead applied a
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discount to each empirical expected feature count whichdegendent only on the
current value of the respective model parameter and carreispin our case to using
a fixed value of 1 for thg8 hyperparameter. Our results for this value of the hyper-
parameter are similarly poor. The second reason is thahfot aplacian prior, they
again used a fixed value for the hyperparameter, calculategihvabsolute discounting
method used language modelling (Chen and Rosenfeld, 26l2®¥ng achieved poor
results with this value they experimented with other valbesobtained even worse
performance.

5.4 Feature Cutoff with a Prior

In section 5.1 we looked at tHeature cutoff approach to regularisation and found
that, at least for the tasks we considered, the approach mutelead to significant
benefit for CRFs. We conjectured that by removing low freaqyefieatures from the
model, we are removing useful features as well as the ledsiluisatures that may
be a source of overfitting. However, it is possible that ofleatures of frequencies
higher than those we considered in section 5.1 also haveexfiting effect to some
degree. If this is the case, we may obtain some benefit frortyiagpa combination of
feature cutoff and the prior approach we looked at in thedastion. We look at this
combination here in this section.

In the last section we concluded that the Gaussian and Liaplg@eciors perform
roughly equally well on the two tasks we are consideringhwitte Hyperbolic prior
underperforming the other two in some circumstances. Taererather than present-
ing results for all priors with a feature cutoff, we take thauSsian as a representative
prior.

Tables 5.5 and 5.6 give F scores and accuracies on NER anda@@i8d, respec-
tively, for feature cutoff models with the addition of a Gaias prior. In every case
we observe improved scores over the corresponding modéiewiithe prior. As for
how the new models compare to the unregularised STANDAR®t{rdnds once again
differ with task. For NER none of the models differ in perf@nte significantly from
the unregularised STANDARD, except the model with featuweequency three or
less removed, and even then only on the development set. \i¢oved] models sig-
nificantly underperform the STANDARD model with a Gaussiaiop(from the last
section), so there seems to be no advantage in combininguadeautoff with a prior
over a prior alone. For POS tagging, the results are mordipesHereeverymodel
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Frequencies RemovedDevelopment Test
STANDARD 88.21 81.60

1 88.91 82.56

land?2 88.10 82.41
1,2,and 3 87.55 82.00

Table 5.5: F scores for feature cutoffs with a Gaussian prior on NER.

Frequencies RemovedDevelopment Test
STANDARD 96.76 97.32

1 97.07 96.66

1land 2 97.01 96.62
1,2and 3 96.92 96.57

Table 5.6: Accuracies for feature cutoffs with a Gaussian prior on POS tagging.

now significantly outperforms the unregularised STANDARID, the combination is
having a useful regularising effect. In addition, resutis the first two cutoff cate-
gories also do not significantly underperform the STANDARDd®I regularised with
a Gaussian prior.

From these results we conclude that features other tharthjase with low fre-
guency contribute to model overfitting, and by regularidingse features with a prior
we can gain some benefit. However, there is no advantageng adeature cutoff in
addition to a straight prior, as we do not obtain significaimegrovement when doing
so.

5.5 Feature-Dependent Regularisation

In section 5.3 we considered what we dakiture-independent regularisation where
the model parameters associated with different featueesegularised to the same de-
gree. This was achieved, when using the priors of sectiorby.8etting the adjustable
hyperparameter of the prior to the same value for each maatehpeter. However, in
general it may not be the case that we want to regularise ememeter equally. As
we noted in the introduction, we may expect that a parametsra@ated with a fea-
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Threshold | Development Test
STANDARD 88.21 81.60
Gaussian 89.86 83.97

1 89.00 82.62

2 88.99 83.03

5 89.14 82.81

7 89.29 83.12

Table 5.7: F scores for frequency cutoff on NER.

ture that has been seen many times in the training data magaquite regularising to
the same degree as a parameter associated with a very iaefitigoccurring feature.
Therefore, a more sophisticated approach to regularisatith a prior would be to
regularise different features to different degrees. Fis;, the may envisage a spectrum
of regularisation possibilities. At one end of the spectnymhave the case that we
have already considered, where all parameters are regedhbio the same degree. We
have already denoted this &sature-independent regularisation At the other end
of the spectrum we have the opposite case, where regularigatat the granularity
of each individual parameter. We call thigividual feature regularisation. Some-
where in the middle of the spectrum we have intermediatescadgere parameters are
grouped into classes and regularised to the same degree withass, but to different
degrees across classes. We call thisstered feature regularisation In this section
we consider this spectrum, investigating the two additidéoians of regularisation in
the subsections below.

5.5.1 Clustered Feature Regularisation

We consider two methods of clustering features for regsidion with the clusters. We
call these approaché®quency cutoff andfrequency bins

5.5.1.1 Frequency Cutoff

When we considered feature cutoffs in section 5.1, we magl@assumption that low
frequency features are liable to overfit to such a degreeittinady be best to remove
all such features from the model. From the results in thai@®cwe concluded that
although some low frequency features may exhibit a tendémoyerfit to a greater
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Threshold | Development Test
STANDARD 96.76 96.32
Gaussian 97.07 96.69
1 96.97 96.49
2 96.98 96.49
5 96.98 96.56
7 97.01 96.58

Table 5.8: Accuracies for frequency cutoff on POS tagging.

degree than features that occur more often, they do nevestheontribute useful mod-
elling capability, and we should try to avoid removing theonfi the model. We could
instead retain these features, but regularise them to &egidegree than the other, more
frequent features. This method, which we dedlquency cutoff, specifies a threshold
on the frequencies of features in the training data. Paremmassociated with features
that have frequencies less than or equal to the thresholalaregularised to the same
degree. All other parameters (associated with more fretieartures) are left unreg-
ularised. We use the Gaussian prior as a representativefpriour regularisation,
and set the adjustable hyperparameter (the Gaussian eyitor the low frequency
features using the development set.

Tables 5.7 and 5.8 give F scores on NER and accuracies on BQiBdarespec-
tively, for models with feature cutoff of varying threshol@he STANDARD model
regularised with a Gaussian prior across all the paraméteatso included for com-
parison. The main points from the results are as follows:

1. Generally, as the threshold is increased results improve

2. On NER, with the exception of the model with a frequencyotfudf one, all
models significantly outperform the unregularised STANDARodel at the
p < 0.05 level. However, all models also significantly underperfaghe STAN-
DARD model regularised with a Gaussian prior across all tirameters.

3. On POS taggingll models significantly outperform the unregularised the STAN
DARD model at thep < 0.05 level. In addition, some models do not significantly
underperform STANDARD model regularised with a Gaussiaorpacross all
the parameters.
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These results suggest that the method of regularising lequigncy features with
a prior is more effective than applying a simple feature tfutehich by comparison
is much more coarse. In addition, it seems that gains can lak oy regularising
more features in the model than just those with low frequeiitys supports our con-
clusion from section 5.4, that features with frequencieghr than those considered
here and in section 5.1 contribute to model overfitting anuefiefrom some level of
regularisation.

5.5.1.2 Frequency Bins

With the frequency cutoff approach in the last section we only regularised parame-
ters of features with training data frequencies fallingomesome threshold. From the
results we concluded that features with higher frequen@kbough likely to cause
overfitting to a lesser degree than rarer features, may tieless overfit to some ex-
tent. A generalisation of the approach in the previous sactherefore, is to create a
number of different feature clustersloins, based on training data frequency, and reg-
ularise the associated parameters in each bin to a diffdegree. With a large number
of bins the search space clearly becomes very large. In tmdevestigate this idea in
principle, we constrain the number of bins to be fairly small

Tables 5.9 and 5.10 give F scores on NER and accuracies ond®Qiag, respec-
tively, for representative frequency bins. In this casduess of frequencies ten or
less are divided into two bins: frequencies- B and frequencies 4 10. We allocate
a separate adjustable hyperparameter to each bin, andisptimanually using the
development set. From the tables we observe similar, butawegl, results over the
models in the previous section. In all cases, for both tasiesfrequency bin models
significantly outperform the unregularised STANDARD madel addition, a greater
number of models than in the previous section do not sigmfigainderperform the
STANDARD model regularised with a single Gaussian prioroasrall parameters.
This suggests that applying a more specific level of regeddion to “similar” features
is advantageous, where we are basing similarity here onitigadata frequency. The
extreme case would be to regularise each feature to its oecifgpdegree. Clearly
this would make the hyperparameter search space intrgdeage. However, it might
be possible instead to fix thratio of the level of regularisation applied to different
parameters and adjust the absolute level of regularis&tethis ratio and a smaller
number of hyperparameters, just one in the extreme caseoMye/fthese ideas in the
section 5.5.2. However, before that we consider anotherofajustering the features



5.5. Feature-Dependent Regularisation 73

01_3 | 04_10 | Development Test
0 o0 88.21 8160
197 | 210 89.04 83.15
210 | 217 88.98 8334
1912 | 2288 89.06 8319

Table 5.9: F scores for frequency bins on NER.

01_3 | 04_10 | Development Test

00 0 96.76 96.32
1.781| 23 97.05 96.58
23 | 311 97.03 96.60
1.915| 2.685 97.03 96.58

Table 5.10: Accuracies for frequency bins on POS tagging.

into subsets for regularisation. Instead of using trairilaga frequency, we cluster
based on the kind of dependency different features encode.

5.5.1.3 Dependency Types

With both thefrequency cutoff andfrequency binsapproaches above we cluster the
features into groups for regularisation based directlylanftequency of the features
in the training data. In this section we modify this idea Istlg by clustering the fea-
tures based on the type of dependency they encode. At a lviglthe features we use
in the STANDARD CRF model (on both tasks) may be divided into types: those
that modelabel-labeldependencies and those that mddbel-observatiomlependen-
cies. Features in the first set model the dependency of a sviakel on the previous
word’s label, while features in the second set model the nidgecy of a word’s label
on properties of the word itself and possibly other inforimatcontained in the obser-
vations, like POS tags for words in a local neighbourhoodhefword. These two sets
of features can be thought of as roughly correspondingatesitions andemissions
in hidden Markov models, and we will therefore refer to the@tsets as “transitions”
and “emissions” in this section. Table 5.11 illustratestthe sets of features for NER.
We see that the mean count for “emissions” is less than thdtramsitions”. A sim-
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—

Feature Setl Number of Features Mean Feature Coun

“transition” 29,726 1212
“emissions” 159,613 6.71

Table 5.11: Properties of “transitions” and “emissions” feature sets on NER.

Gt Oe | Development Test
00 ) 88.21 8160
1014 | 44 90.18 83.69
44 | 18 90.09 83.83
75 | 25 90.05 83.57

Table 5.12: F scores for dependency types on NER.

ilar story is true for POS tagging. Because the two sets dfifea encode different
dependencies with correspondingly different mean couttsay be appropriate to
regularise them separately. We do this as before by allogath independent Gaus-
sian variance hyperparameter to each feature set and iadjesich hyperparameter
separately. In order to make the hyperparameter searchgeahke, we use the global
optimal Gaussian variance (across all parameters) as tngt@oint and adjust the
separate “transition” and “emission” variances around.thi

Tables 5.12 and 5.13 give F scores on NER and accuracies otelg@i8g, respec-
tively, for representative dependency type models. In difsdeso; is the square root
of the Gaussian variance hyperparameter for the “tramstiandoe is the square root
of the Gaussian variance for the “emissions”. The main gdim the results are as
follows:

1. All models, on both tasks, significantly outperform theagularised STAN-
DARD model.

2. No model, on either task, significantly underperforms ST&NDARD model
regularised with a single Gaussian prior across all pararaet

These results support our idea that clustering featuresdbais the role they play,
or dependencies they encode, and regularising differestals separately, can be ben-
eficial. Of course, this approach to clustering is effedyivathogonal to the one we
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i | O0c | Development Test

© | 00 96.76 96.32
51|32 97.10 96.73
32|24 97.11 96.74
37|27 97.11 96.73

Table 5.13: Accuracies for dependency types on POS tagging.

o Development Test
STANDARD 88.21 81.60
620 89.20 82.97

Table 5.14: F scores for frequency-based individual feature regularisation on NER.

were taking in previous sections, which was based on theiéecy of the features in
the training data. Therefore, in principle, the two coulddoenbined, although once
again we would have the problem of a potentially very largpdrparameter search
space. The advantage of the clustering method presentédsiadction is that there
are only two clusters, yet we obtain results that are in soase€ better (although
not significantly atp < 0.05) than those of the STANDARD model regularised with a
single Gaussian prior across all the parameters.

5.5.2 Individual Feature Regularisation

Recalling the hypothetical spectrum we described eadieone end of the spectrum
we have the standard case for regularisation (describedatios 5.3) where all pa-
rameters are regularised to an equal degree. In this seegamove to the other end
of the spectrum, and look at regularisation at the level ahgtarity of the individual
parameter. We consider two ways in which we might do this. fiilseis based solely
on feature frequency (like thigequency cutoff andfrequency bins approaches ear-
lier). The other involves feature frequency, but is a littlere sophisticated and takes
context information into account.
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g Development Test
STANDARD 96.76 96.32
0.87 97.03 96.54

Table 5.15: Accuracies for frequency-based individual feature regularisation on POS

tagging.

5.5.2.1 Frequency-Based

In principle we could stretch thigequency binsapproach above to the extreme case
where each bin has a width of just one, so each parameterutareged to a different
degree and we set each of the hyperparameters independsimtfythe development
set. Clearly, this would make the hyperparameter searctespéeasibly large. How-
ever, as we alluded to earlier, we could instead constrairetiio by which each model
parameter is regularised with respect to all others, amihethe absolute degree of reg-
ularisation to vary with asingleindependent variable against this ratio. We can then
set this single independent variable using the develops®n(The task, then, would
be to define the ratio by which different model parametersegealarised with respect
to each other. We base this ratio on training data frequehttyecassociated features,
as in earlier sections. To see how we may do this, considen dga following set of
equations (explained in section 5.2.1) that hold at thenagitpoint when applying a
Gaussian prior:

Ak — Uk
oF

Epo,9 [Tkl — Ep(sio) [ f] = (5.9)
Assuming a Gaussian meam of zero, we have a right-hand side}q{/akz, with the
varianceok2 defining the level of regularisation for model parametgr Now, if we
seto? = cco? for a single independent variabte, we constrain the relative amount
by which a model parameter is regularised in a way that dependthe countgy,
of the associated feature in the training data. So the hitjieetraining data feature
count, the lower the degree of regularisation of the modehmpater. The absolute
level of regularisation for each model parameter is themeefby setting the value of
o, which can be done using the development data.

Tables 5.14 and 5.15 give F scores on NER and accuracies ond@Qg, re-
spectively, for frequency-based individual feature regishtion (FB-IFR). Ther val-
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Regularisation Development Test

STANDARD (None)|  88.21 | 81.60
FCB-IFR 88.84 |82.84

Table 5.16: F scores for feature and context-based individual feature regularisation on
NER.

Regularisation | Development Test

STANDARD (None) 96.76 96.32
FCB-IFR 96.87 96.39

Table 5.17: Accuracies for feature and context-based individual feature regularisation

on POS tagging.

ues are given in each case. We can see from the tables thaishefarge difference
in magnitude between the value for NER and that for POS tagging. However, this
difference is not particularly important — we would not egpthe twoo values to be
similar necessarily because they refer to different tagkit, datasets and feature sets
of different sizes.

The results in the tables show that in all cases the FB-IFRetsailgnificantly out-
perform the unregularised STANDARD model at the: 0.05 level. However, except
for one case, the models also significantly underperfornsStfieNDARD model regu-
larised with a single Gaussian prior across all the pararmeWhat we are doing here
is very similar to applying a Gaussian prior with a singleiaace across all parame-
ters, but in such a way that the effect on each parameter igeskasing the feature
count. Given that the results we obtain are worse than withgdesGaussian prior, itis
possible that the feature count is not the most appropréat®f to use in determining
the regularisation ratio. In the next section we considdightty more sophisticated
method for determining the ratio.

5.5.2.2 Frequency and Context-Based

In many of the previous sections we have used the frequergyeatture in the training
data to determine the level of regularisation to be appleedrt associated model pa-
rameter. This was motivated by the idea that infrequentifeatare less representative
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of the underlying distribution than more commonly occugriones, and so are more
likely to overfit to the idiosyncratic properties of the maig data. Although this idea
is reasonable at a high level, it is slightly simplistic anlittée crude. In this section
we take a more sophisticated approach from a Bayesian vietvpo

Recalling Equation 5.3, we see that the level of regulaosapplied to a model
parameter takes the form of a discount to the expected cduhé@ssociated feature
on the training data. It is natural, therefore, that the sizthis discount, controlled
through the hyperparametey, is related to our confidence in thieliability of the
empirical expected count. We must therefore formulate asomesof this confidence.
We follow the approach of Kazama and Tsujii (2003), who depetl a method to do
this for a standard maximum entropy model. We extend the oddtlere to CRFs.

The empirical expected couB g [ fk] in Equation 5.3 of a featuré is given by:

Z ﬁ(()? S) Z fk(&—bsb 07t) = Z ﬁ(O) Z ﬁ(s‘o) Z fk(&—LS[?O?t) (510)
0,S 0 S
= Y B0) Y Bls-1=5.5=5"0)fk(s,s"01)
0 t,58"
Now, our CRF features (see Chapter 3) generally have thewoily form:

1 ifsg_1=s1,5=sandh(o,t)=1

fu(s-1,%,0,t) = { (5.11)

0 otherwise

wheres; ands, are the labels associated with featdig@andhg(o,t) is a binary-valued
predicate defined on observation sequeoed positiont. With this feature defini-
tion, and contracting notation for the empirical probapilio save spacets )| f]
becomes:

300 3w B <0)3(.51)8(8" sM(0) = 5 BO) ¥ Plswszlolh(o.t)
0] 4 0]
=SB0 Y Bls%l0)
0 t:hg(ot)=1
Contributions to the inner sum are only made at positioimssequence® where the

h(o,t) = 1. Suppose that we make the assumption that at these ps$it®irs’|o) ~
p(s,s’|h(o,t) = 1). Then:

os fk Z p ) ﬁ(sl752|hk(o7t> = 1) (5-12)
t:hg(ot)=1
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Now, if we assume that we can get a reasonable estimati@pfrom the training data
then the only source of uncertainty in the expressiorkfgg ¢ [ fi] is the termp(s 1 =
s1,S = S2|hk(0,t) = 1). Since this term is independent of sequenead positiort, we
can model it as the paramet@rof a Bernoulli random variable that takes the value 1
when featurefy is active and 0 when the feature is not activeliyfb,t) = 1. Suppose
there area andb instances of these two events, respectively. We endow theoBHk
parameter with a uniform prior Beta distribution Be(1,1)damaving observed the
training data, we calculate the variance of the posteristritution, Be(1a, 1+ b).
The variance is given by:

L (1+a)(1+b)
varf] =V = (a+b+2)2(a+b+3) (®.13)
The variance ok, g [ f«] therefore given by:
var[Egog[fil] =V | Y f)(o)2] (5.14)
0 t:hg(ot)=1

We may use this variance as a measure of the confidence werhByg i [ fk] as an
estimate of the true expected count of featfye We therefore adjust the Gaussian
varlanceak for each model parametg according to this confidence measure for the
associated feature. Each such confidence measure is nableaait runtime time, so
can be calculated once off-line.

Tables 5.16 and 5.17 give results for feature and contest¢dbandividual feature
regularisation (FCB-IFR). From the tables, we see that thees are worse than those
obtained with the FB-IFR models of the previous section.y@wb of the four FCB-
IFR models significantly outperform the unregularised SDMRD model at thep <
0.05 level, andall significantly underperform the STANDARD model regulariseith
a single Gaussian prior across all parameters.

In this section and the last we have looked at ways in which \ag regularise
a model at the level of individual features while at the sammeetavoiding the need
to fit a large number of independent hyperparameters. Aghather approaches to
achieving this goal clearly exist, the results of the lasi s8gctions suggest the task is
not easy. Our findings in earlier sections in this chaptegssted that improvements
could be made with more careful feature-specific regultideaat the level of feature
clusters or individual features. However, combined with tasults in the last two sec-
tions it seems we cannot easily achieve this objective witkiwe inevitable trade-off
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Mean | Development Test
0 89.86 83.97
0.1 90.16 84.03
0.5 90.44 84.68
0.6 90.47 84.43
1 90.35 84.51
87.43 81.36

10 87.16 8113

Table 5.18: F scores for positive Gaussian prior means on NER.

Mean | Development Test

0 89.86 8397
-0.1 89.64 83.72
-05 89.11 83.20

-1 88.65 82.83
-5 88.26 8251
-10 88.07 82.38

Table 5.19: F scores for negative Gaussian prior means on NER.

with a hyperparameter search space of high dimension. Thgkonise, therefore,
may be an approach which lies somewhere in the middle of thethgtical spectrum
we described earlier. An example of such a compromise woelthbdependency
types method of section 5.5.1.3, where we achieved better rethdts with a single
Gaussian prior over all the parameters, but using only twierendent hyperparame-
ters.

5.6 Varying the Gaussian Mean

In the last few sections we have considered how we may apffigreit levels of

regularisation to the features in a model. In each case we usng a Gaussian prior
over clusters of features and controlling the level of regshtion applied to each
cluster by adjusting the Gaussian variance associatedtaticluster. In this section
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Mean | Development Test
0 97.07 96.69
-5 95.80 95.46
-1 96.86 96.48
-0.1 97.02 96.68
0.1 97.14 96.77
0.67 97.37 96.97
1 97.31 96.88

5 96.14 95.68

Table 5.20: Accuracies for non-zero Gaussian prior means on POS tagging.

we move on to consider another aspect of the Gaussian pneeftect of varying the
mean of the distribution. When using a Gaussian prior it isali fix the mean at zero
because there is usually no prior information to suggestieashould penalise large
positive values of model parameters any more or less thge laragnitude negative
values. It also simplifies the hyperparameter search, negrthe need to optimise only
the variance hyperparameter (or hyperparameters) ratiaerthe mean and variance
jointly. However, it is unlikely that optimal performance always achieved for a
mean value of zero. For example, particularly where csupportedfeature$ are
instantiated, the features are likely to represent corjons of predicates defined on
the observations and labels that represent events thaikahg 10 occur. This will
usually result in more features having associated paramefiéh positive values than
negative. This would typically result in parameter valuethva positive mean.

To investigate this we allow the Gaussian mean to vary away f©. In order
to simplify the hyperparameter search and avoid having éocéethe joint mean and
variance space, we use the variance at the optimal valuewnel fearlier in section 5.3
(with a mean of zero). We then fix the variance at this value @lav the mean to
vary away from zero.

Tables 5.18 and 5.19 give F scores on NER for models traingdsimvay, with non-
zero means. Table 5.18 shows models with positive meanse Wiable 5.19 shows
negative means. From the tables we observe that:

1. Models with negative values for the Gaussian mean penfavrse than the zero-

3Supportedeatures are those that are observed in the training daexfdained in Chapter 2).
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mean model. This is not surprising because, as we noted abavexpect the
optimal mean value to be positive.

2. Models with a range of small positive values for the Gaarssnean outperform
the zero-mean model.

3. The model with the optimal value for the Gaussian mean oR N&s a mean of
0.6. This significantly outperforms the zero-mean model attke0.05 level.

The pattern we see in Tables 5.18 and 5.19 for NER is also wédéor POS tag-
ging. Table 5.20 gives illustrative results on this taskhviioth positive and negative
values of the Gaussian mean. The optimal value for the meands again a small
positive value, this time around@&. These results confirm our conjecture about the
non-zero values for the Gaussian mean, and suggest thatlemtsle benefit may be
gained from a well structured search of the joint mean anchmae hyperparameter
space when using a Gaussian prior for regularisation. Ogaaahowever, there is
of course a trade-off here between finding better hyperpar@anvalues and suffering
increased search complexity.

5.7 The Inequality CRF

In this section we consider an alternative approach to CB#agisation that addresses
the problem from a slightly different starting point. We wlera variant of the vanilla
CRF that has a regularising effect implicit in its form. Wdl¢his new model the
inequality CRF. Our model is an extension of a similar idea applied to maxmu
entropy models by Kazama and Tsuijii (2003).

In Chapter 2 we saw that when training the parameters of a ORf&akimise the
conditional log-likelihood of the training data, at the iopal point a set okequality
constraints on feature expectations are satisfied. These have the form:

Epo.9)[ Tkl — Ep(go)[fk] =0, ¥k (5.15)

Here the indeX runs over all features.1.K in the model, so we have one such con-
straint for each feature. These constraints enforce agtondition on the model: that
the expected count of each feature under the model is eqtla tmunt of that feature
on the training data (the feature’s empirical expected tolmpractice we may regard
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this condition as too strong in cases where we have a relagweall training set. For
example, for a sparse feature we may not believe that thermaipéxpected count
(calculated from the small training set) is a reliable estieof that feature’s regularity
of occurrence in general. Consequently, we may not want torem the constraint
(from the set described in Equation 5.15) for that partictgature. Instead, we may
want torelaxthe constraint and allow the feature’s empirical expectadtto act only
as a rough guide to what the expected count under the modelcsbe.

When considering different families of priors earlier ingtthapter, we saw that
for each feature a prior enforces the condition that the f®dgpected count of the
feature bediscountedwith respect to the feature’s empirical expected count.sT#i
a kind of relaxing of the constraints in Equation 5.15. Irsthection, however, we
consider a different form of relaxation of these constiintn particular, for each
feature we enforce the constraint that the model’'s expecbeait for the feature lie
within a specified windovaroundthe feature’s empirical expected count (but not that
the two are necessarily equal). We therefore enforce a setrafitions of the form:

A« > Ep(o,s)[fk] — Ep(go) [ fk] = =Bk, Ax,Bk>0 (5.16)

In 5.16 theAx and By control the size of the window around the empirical expected
count for featurefy. So, if we have little confidence that the empirical expectaaht is
accurate forfy, we relax that constraint from the set in Equation 5.16 mgrallowing
A andBy to be larger. Conversely, if we have greater confidence iratiseiracy of
the empirical expected count fdg, we relax the constraint less by makiAg and
By smaller. In the extreme case where we have absolute conéidertbe empirical
expected count of all features, the set of constraints irakgn 5.16 collapses to the
original set of constraints in Equation 5.15. This is saytimgt the training data is a
perfect predictor for any future data, and we do not need argoshing.

Using the set of constraints described in Equation 5.16 #&rfargy point, we may
define a modified CRF by solving an optimisation problem. Wkt modified CRF
theinequality CRF, and describe it in the next section.

5.7.1 Modified Model

In Chapter 2 we defined a linear chain CRF as a model with th@foig distribution:
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(s|o)—iex T+1K)\ fi( o,t) (5.17)
p - Z(O) P t; kZl kTk(&-1,%,0, .

We show in Appendix A that this general form of CRF distriloutis the solution to a

sequential maximum entropy problem that includes featypeetation constraints of
a form similar to those in Equation 5.15. This optimisatioolgem can be stated as
follows:

max H[p(s|o)] sjo) logp(s|o 5.18
ma [p(s|o) Zp Zp |0)logp(s|o) (5.18)
S.t. p (0,9) [fi] — s|0)[fk] 0, k=1..

Following our argumentation in the previous section regaydelaxation of the feature
expectation constraints, we now define a modified optinoggtroblem that includes
the constraints given in Equation 5.16. Our new problemesdfore:

max H[p(s|o)] s|lo)logp(s|o 5.19
max H[p(s|0)] = —  B(0) ¥ P(sio)logp(sio) (5.19)

s.t. Epos[fkl = Epso)lfl —A<0, k=1...K
Epso)lfkl —Epiog[f] =Bk <0, k=1...K

In Appendix B we show that the general solution to this probleas the form:

T+1 K
p(slo) = —exp<z Z (o — Br) fu(st-1,%, 0t)> (5.20)

where the parameters, and ¢ are non-negative Lagrange multipliers that satisfy the
Karush-Kuhn-Tucker (KKT) conditions (Nocedal and Wrigt@99):

ak(Eﬁ[fk]—Ep[fk]—Ak) = 0, k=1...K
B (Ep[fd —Eplfil —Bx) = 0, k=1...K (5.21)

We call this model thénequality CRF. Note that the model has twice the number of
parameters as a standard CRF defined using the same fedtutasle model param-
eterAy from the standard CRF is effectively “split” into two indepent non-negative
variables,ax and S.
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5.7.2 Training

To train the new model we use a modified conditional log-Ihk@bd objective. We
form the dual objective function corresponding to the golutn Equation 5.20 of the
optimisation problem in 5.19, and obtain (see Appendix Bdietails):

Aa.B) = LL(@.p) = 3 cuv— 3 A (5.22)

k>0, Bc>0, k=1...K (5.23)

We then maximise this adjusted conditional log-likelihpadth the parameters
constrained to satisfy the inequalities in 5.23. Duringdpémisation we require the
gradient of the new objective. We know the form for the gratie the log-likelihood
term in Equation 5.22 from a standard CRF, and the derivativ¢he latter two terms
are trivial to evaluate. Therefore the gradient of the ofoyedunction is given by:

oN(a,
%km = Epo9[fil —Ep(sio) [fk] —Ax (5.24)
dN(a,p

% = Epgo)[fl —Ep(og [l —Bx (5.25)

5.7.3 Quadratic Penalty Extension

The derivation of the inequality CRF above results in a maoloal is similar to a stan-
dard CRF with a prior (we explain this a little later, in sect5.7.6). However, we may
also include a quadratic penalty to the “new” parametgrand B« which is similar to
explicitly defining a Gaussian prior over these parametesdiowing the terminology
of Kazama and Tsuijii (2003), who applied the same idea to aimar entropy model,
we refer to this modified model as the inequality CRF withuadratic penalty ex-
tension (QPE) In the extension the inequality constraints 5.16 are medlifd include
slack variableg, anddy, and the objective is altered to include penalty terms cataxr
in these variables. The new optimisation problem theref@@mes:

ma, sy H(P)~CL¥ &~ C2§ K (5.26)
s:t. Egog!fk] —Epsio)l fkl — Ak < &
Epsio) [ fkl — Epo,s) [ f] — Bk < W
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whereC; andC, are constants. The general solution to this problem hasahees
form as the basic inequality CRF. However, the dual objectinction is different,
and becomes:

N(a,B)=NAa,B)— Z (4(:1 4%2> (5.27)

The gradient of the objective correspondingly becomes:

0 /

%k’m = Epo,9[fkl — Epso)[fk] — <Ak+—> (5.28)
oN (a,p 8

% = Ep(SO)[fk]_Eﬁ(qs)[fk]—<Bk+%> (5.29)

We can see that the additional terms entering into the dlageand its gradient are
similar to the corresponding terms when using a Gaussiam with a standard CRF.
Therefore the quadratic penalty extension simulates tdaiad of a Gaussian prior to
the inequality CRF. In effect we have two levels of regulaiisn, the implicit regular-
isation provided by the inequality CRF itself, and expliggularisation provided by
the Gaussian-style prior.

5.7.4 Bounded Gradient-Based Optimisation

From Equation 5.20 we see that, in contrast to estimatioa &iandard CRF in Equa-
tion 5.17, the optimisation problem now involves boundslanparameters, each pa-
rameter being non-negative. We must therefore use an ggatian routine that pro-
vides this facility. In our experiments, we use a boundedavarof limited memory
variable metric (LMVM), calledounded limited memory variable metric (BLMVM)
(Benson et al., 2002). We use an implementation of the dlguarihat is also contained
in the Toolkit for Advanced Optimisation (TAO) (Benson anaid, 2001) (see Chap-
ter 3).

5.7.5 Model Sparsity

The inequality CRF has the tendency to produce sparse @afutiThis is somewhat
similar to the situation with the Laplacian prior we discedsarlier in section 5.2.2.
To see why this sparseness occurs, note that from the KKTitbmmslin 5.21, because
Ax, Bk > 0, if ax is non-zero therBy is zero, and vice versa. Hence eithmr or
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Bk, or both, are zero. When both are zero, the correspondirgnpeter is zero and
the solution becomes sparse if this occurs for many paramefdso from the KKT
conditions, it can be seen that where eithgror B« is non-zero, the corresponding
equality constraint is most relaxed. The inequality caists define a feasible region
within the entire parameter space. Cases where bpthnd ¢ are zero correspond
to points within the region, while cases where eitbgior B¢ are non-zero correspond
to points on the boundary of the region. Ag and/orBy are increased, the equality
constraints are relaxed further and the feasible regiomlarged. Hence increasing
the value ofAx and/orBy tends to make the solution to the optimisation problem in
5.19 more sparse.

5.7.6 Relationship to the Exponential Prior

The inequality CRF shares a strong connection withBkeonential prior, which is a
one-sided version of the Laplacian prior we saw earlier oiiea 5.2.2. The Laplacian
prior and the inequality CRF are therefore also related. Weuss the relationship
between the inequality CRF and Exponential prior in thigisec

For positive parameteer, an exponential distribution has a probability density
function:

p(x):{ ae 9 ifx>0 } (5.30)

0 otherwise

Consequently, when using this distribution as a prior, pexi@r values are forced
to be non-negative. In general, for log-linear models (aR#F€) parameter values may
be positive or negative: a positive value indicating evigefor the event represented
by the feature and a negative value indicating evidencenagtie event. As Goodman
(2004) shows, one way to reconcile this situation is to eefr every featurefy, a
complementary featurd representing the event which is a conditional complement
of that represented by the feature. In this case, ratherlih&img one parameteyy,
for fx, which could be positive or negative, we have two parameiqgrandj\k, for fyx
and f, respectively, which are both non-negative. In a sense thative evidence for
fx would be represented through the positive vaﬁkLeGoodman uses this approach to
derive GIS update equations for maximum entropy models aritlExponential prior.
However, using BLMVM, no ad hoc modification to existing upglaode is required
as the bound constraints are directly handled by the esomatethod.
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If we assign an Exponential prior distribution to each pagtemy andf\k, with hy-

perparameter8y andBy respectively, then, ignoring constant terms that do naile
the parameters, the regularised log-likelihood becomes:

LL(A —A) — ZAkAk ~ S ABx (5.31)

A A >0 (5.32)

and the gradient of the objective becomes:

ONA —A)
“on  Esesli—Epsolfid —Ac (5.33)
ANA — A
% — Ep(s|o)[fk] — Ef,(qs) [fk] — Bk (5.34)

Hence by applying the Exponential prior in this way, we arat the same problem
as that for the inequality CRF. Given the connection betwibenExponential and

Laplacian priors, the derivatives for the Exponential piioEquations 5.33 and 5.34
above are similar in nature to the corresponding derivatiee the Laplacian prior in

Equation 5.6.

5.7.7 Window Width

The parametersy andBy in the inequality constraints in 5.16 determine the size of
the “window” around the corresponding equality constratiné amount by which the
equality constraint may be violated. We can think of ygepresenting a set ¢dwer
bounds and theBy representing a set afpper bounds As we reasoned earlier, the
window size should reflect our confidence in the value of threesponding empirical
feature expectation. Therefore, we require a way to caleutds window size. To do
this we consider two distinct possibilities, which we calbdesof the inequality CRF:

e Mode 1. The lower and upper window bounds are constrained to bel égua
given feature, and are fixed across features. Hence:

Ac=Bx=C, forallk (5.35)
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Mode | Ax Bk Development Test

1 | 0.0005| 0.0005 89.63 83.60
2 | 0.0005| 0.0052 90.08" 84.04

Table 5.21: F scores for different inequality CRF modes on NER.

Mode | A Bx | Development Test

1 0.197| 0.197 97.09 96.73
2 0.197| 0.700 97.20° 96.84"

Table 5.22: Accuracies for different inequality CRF modes on POS tagging.

e Mode 2: The lower and upper window bounds are allowed to vary inddpatly
for a given feature, but are each fixed across features. Hence

A =C andBy =D, forallk (5.36)

In addition to the two modes above, there is also the poggibflusing thequadratic
penalty extension This is orthogonal to the distinction between the moded,cauld
in principle be applied to each mode. For our experiments pmyathe QPE just
to mode 1 as an illustration of the possible improvement ftbenadditional level of

regularisation.

5.7.8 Results

Tables 5.21 and 5.22 give F scores for NER and accuraciesd&rt8gging, respec-
tively, for the two modes of the inequality CRF. Note that wer@ot using the quadratic
penalty extension here. The main points from the resultasifellows:

1. For both modes on both tasks the inequality CRF signifiganttperforms the
unregularised STANDARD model at thge< 0.05 level.

2. For both modes on both tasks the inequality CRF does noffisi@ntly under-
perform the STANDARD model regularised with a Gaussianpriie addition,
in three of the four cases (marked with an asterisk in theesgbmode 2 signifi-
cantly outperforms the STANDARD model regularised with au€san prior.
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Mode | Development Test

Gaussian 89.86 83.97
1 89.63 83.60
1+ QPE 89.97 83.81

Table 5.23: F scores for inequality CRF mode 1 with QPE on NER.

The results for mode 1 are not surprising because, as we sher @athe chapter,
in its basic form the inequality CRF shares a strong conae¢ti the Laplacian prior of
section 5.2. The performance scores for mode 1 are simildno®e for the Laplacian
(and Gaussian) prior from that section. Mode 2 is the momr@sting case. The extra
degree of freedom afforded by the independent adjustmetiteody, and By, bounds
allows for significant improvement over the Gaussian andaaan priors. With the
inequality CRF in mode 2 we have therefore improved on thesaifthedependency
types approach of section 5.5.1.3: we have been able to signijcanprove on the
Gaussian prior using two adjustable bounds, or hyperpaesie

For the quadratic penalty extension, we simplify the seéochalues of theC; and
C, by constraining them to be equal to one independent adjiespabameter. Tables
5.23 and 5.24 give F scores for NER and accuracies for POSnggespectively,
for the QPE applied to mode 1. From the results we can seenhgeneral scores
are higher with the QPE than without it. In addition, on baakks scores with the
QPE are higher than those with the STANDARD model reguldrisgh a Gaussian
prior. However, none of the results are significantly betit@n those of the Gaussian
prior at thep < 0.05 level. We conclude then that the QPE has positive, butdini
usefulness over and above the implicit regularising eftdécthe inequality CRF in
mode 1. Although we do not present results for the QPE appiiedequality CRF
in mode 2, we expect that the results would show a similar makgmprovement to
those of mode 1.

5.7.8.1 Model Sparsity

In section 5.7.5 we saw how the inequality CRF creates sgaisgions, with many
parameters taking zero values. In this section we lookimgfligrat this effect. Table
5.25 shows how model sparsity varies with window size foiitleguality CRF in mode
1 on NER. Similar results can be observed for POS tagging.a&drem the table that
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Mode | Development Test

Gaussian 97.07 96.69
1 97.09 96.73
1+ QPE 97.11 96.72

Table 5.24: Accuracies for inequality CRF mode 1 with QPE on POS tagging.

Ay, By | Parameter Count F Score
le— 06 431630 87.45
le— 05 359783 88.95
le— 04 91038 89.43
0.001 29951 89.60
0.01 17206 89.43
0.1 14054 89.06
1 6551 87.04

Table 5.25: Model sparsity for mode 1 on NER.

increasing the window size tends to lead to a more generaéhiogel one that is closer

to the uniform distribution. For small values of window sikes is advantageous, as
we have seen, as there is less overfitting to the training eaever, for larger values

performance is adversely affected as the model becomepawses

Figure 5.2 shows how the number of non-zero parameterssvasdraining pro-
gresses for an inequality CRF in mode 1 on NER. From the graplsee that the
number of non-zero parameters decreases near-monofgrdaaing training. It may
be tempting to conclude from this that a possible efficienaindor the inequality
CRF might be to remove zero-valued parameters from the mealdy so as to re-
duce the load on memory. However, we observed that duringrigagsome parameters
alternated in value between zero and non-zero, making tmeval of zero-valued
parameters prematurely potentially dangerous.
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Figure 5.2: Model sparsity during training on NER.

5.8 Summary

In this chapter we have surveyed a number of conventionallaegation techniques
for CRFs, and compared their effectiveness. We started hgidering very simple
approaches such as feature cutoff, and found them to belefuge when used with
a CRF. We then looked at the technique of using a prior digivh over the model
parameters, and compared three families of priors. Ourrfgglsuggest that the Gaus-
sian prior, although the most commonly used with CRFs intpracis not clearly the
most natural choice and other possibilities exist. The &ajh prior, for example,
attains very similar performance levels at no extra costtivéa moved on to consider
how to apply regularisation to feature subsets at diffelevels of granularity. Here
our general conclusion is that improvement may be made biyismgpregularisation
at the feature-specific level, whether it be over clusterfigafures or at the individual
feature level. However, this benefit is usually offset by iereased complexity of
searching a high-dimensional hyperparameter space. Ifit@alvards the end of the
chapter, we considered an alternative approach to CRFaggation by formulating
a variant of the standard CRF model that has a regularisfiegtéfmplicit in its form.
We showed that this model can lead to significant performamgeovement over a
standard CRF regularised with a Gaussian prior, at the dd&tvang to optimise only



5.8. Summary 93

one additional hyperparameter.

In the next chapter we move on to consider an alternativedveonk for CRF regu-
larisation based on the combination of separate CRF made@ls ensemble structure.
Our aim is to employunregularisedCRFs in a more sophisticated way. In particu-
lar, we hope to avoid the need to search a high-dimensiorzrparameter space,
characteristic of conventional regularisation with a prio






Chapter 6
Logarithmic Opinion Pools for CRFs

In the last chapter we saw how we may regularise a CRF by applgiprior dis-
tribution over the model parameters. We looked at a numbeiliftdrent priors and
compared their regularising effects. We also investigabedpossibility of regular-
ising different model parameters to differing degreesking at a number of ways
in which this may be achieved. We ended the chapter by comgutiat although
some improvements may be made to the conventional approd€RF regularisation
through small modifications and extensions, it would berdes instead to find a
different approach that avoids the need to search a (patgrirge) hyperparameter
space. In this chapter we introduce such a framework. Ouroagp is based on a
form of CRFensemble&alled alogarithmic opinion pool (LOP). In the course of the
chapter we describe properties of the LOP, and comparefést@ieness as a method
for overfitting reduction with the priors used in the prewsathapter.

Ensembles have been used for a number of years (Perrone apei©993), Sol-
lich and Kroghtree-s (1995)) and have been shown in manyrmistances to reduce
generalisation error over that of the constituent modedstiqularly in cases where
the errors of the constituents are uncorrelated (Rosers(1@¥a and Tumer (2001)).
Theoretical justification for this behaviour is provided thye variance reducing prop-
erties of the ensemble (Geman et al. (1992)).

In neural networks, ensembles are oftatditivein the sense that they are defined
by a weighted majority vote of network outputs (in the caseclaksification) or a
weighted average of network outputs (in the case of regraksiAs we have seen,
CRFs are log-linear models. As a consequence of this lagtifiorm, an additive
ensemble of CRFs assigns a probability to a particular liaigedbf a graph that con-
tainsn terms, wheren is the number of models in the ensemble. In general this sum

95
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does not factorise conveniently. Consequently it is diffibe devise a Viterbi-style
algorithm for efficient exact decoding with an additive entée of CRFs. However,

if we instead use anultiplicativecombination of CRFs we avoid such problems. The
probabilities associated with a given labelling acrossraldels then factorise into a
single expression for the ensemble. We may calculate th@iparfunction for this
ensemble tractably with the same complexity as for a stah@@ngle model) CRF. It

is this ensemble model of CRFs, called a logarithmic opimioal, that we introduce
in this chapter.

This is the first of two chapters investigating LOPs for CRFF&ere we look at
the simple case: combining CRF models under a LOP where tlielmthemselves
are trained independently offline before the combinati@pstThen, in Chapter 7,
we move on to explore how we may train the models in a LOP sanelbusly, with
parameters in different models interacting with each otifwerugh the LOP framework.

The rest of this chapter is structured as follows: In sec@dnwe introduce loga-
rithmic opinions pools in general and describe some of {i@perties, demonstrating
the fact thatdiversity between the models in a LOP is important. In section 6.2 we
move on to look at the specifics of how we apply LOPs to CRFs itiquéar. Sec-
tion 6.3 investigates possible sources of diversity betwtbe models in a LOP, and
section 6.4 briefly discusses training and decoding corsid®s. In section 6.5 we
investigate the feature set as a source of diversity, whikgection 6.6 we look at di-
versity creation through the dataset. Having consideréygl wmregularised models in
a LOP up to this point, section 6.7 looks at LOPs created fregularised CRFs and
compares the two. In section 6.8 we briefly consider the effecon-uniform weights
on the LOP. Then, in section 6.9, we investigate anotherilplessnsemble model for
CRFs, thdinear opinion pool (LIP), and compare its properties and performance to a
LOP. Finally, in section 6.10, we conclude the chapter.

6.1 Logarithmic Opinion Pools

In this section we give a general, qualitative introductiofogarithmic opinion pools.
In the next section we give a more quantitative descriptiath precise mathematical
details.

Suppose we have a set of modéts, } where each model represents a conditional
distribution' py (y|X) over a set of random variablés given another set of random

1Similar reasoning holds for an unconditional distributioVe use a conditional distribution here
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Figure 6.1: Diagrammatic representation of a LOP.

variableg X. Suppose also that we have a set of weidltg }, with weightwy in-
formally representing the confidence we have in the opinggmasented by model,.
Given such a set of models]@garithmic opinion pool (LOP) is a single model that
pools the opinions of the individual (or constituent) madeThis is illustrated dia-
grammatically in Figure 6.1. The LOP has a distributmg. which is defined in terms
of aweighted product of the constituent distributions,, with weightsw,. Hence by
changing the individual distributiong, or the weightsv, we may change the LOP
distribution p,o,.. The LOP is therefore an ensemble of the constituent modtets,
importantly, it is a log-linear rather than linear combinatof the constituents.

The weightsw, may be defined priori or may be learned automatically by op-
timising some objective criterion. Intuitively, each wktgncodes the importance we
attach to the “opinion” of a particular model. For examplagle distributionpy in Fig-
ure 6.1 could represent the opinion of a particular persoa@mge of topics. The LOP
would then represent the pooled opinions of the group, véhaeights governing the
importance attached to the opinions of different people.

The concept of combining the distributions of a set of mod&sa weighted prod-
uct is not new, and has been used in a number of differentcgijgn areas. Bordley
(1982) derived the form for a LOP in the management scienemture, applying an
axiomatic approach to the problem of aggregating expegssssents of an event's
probability into a group probability assessment. Benexditth and Swain (1992) com-

because, as we will see later, our modgjsare CRFs, with conditional distributions.

2For convenienc& andY are assumed to be discrete, but the same reasoning here tedriext
section would follow for continuous random variables, wstimmations replaced by the relevant inte-
grals.
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pared a number of consensus methods, including a LOP, fssifitzation of geo-
graphic data from multiple sources, and Hansen and KroghQRQsed a LOP of
neural networks to learn protein secondary structure. Hewehe idea of combining
CRFs under a LOP, which we present in this thesis, is new.

6.1.1 Definition

In this section we give a more quantitative description of@PL Given our set of
constituent model$p, } from section 6.1, and a set of associated weighig}, the
logarithmic opinion pool has a distribution given by:

Pros (¥ [X) = 75 [ ] Pa (y[x)" (6.1)

with § , wq = 1, and where&, . (x) is the normalising function:

LOP = Z |_| Pa y‘X (62)
Y a

In order to see how this form arises, we follow the reasonihgleskes (1998). We
start by defining the LOP as the model that is “closest” to thestituent models.
For our purposes, closeness is defined in terms of Kullbagkier divergence (KL-
divergence), which we denote bB¢. The KL-divergence between two conditional
distributionsr (y | x) andr, (y | X) is given by:

K(rr2) = 3 00 3 v g {20 63

wherep(x) is the marginal distribution of. Note that, although we use KL-divergence
as a distance measure between two probability distribstibis not a metric because
it is not symmetric.

The closest modgb, .- to the constituent models, is then defined in terms of a
weighted KL-divergence, with real-valued weights

PLor (Y[ X) = ar?TnInZ VaK (P, Pa) (6.4)
p(y|x)

We must ensure that the distribution oyefior eachx is normalised, that is:
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Z p(y|x)=1,¥x (6.5)
y

In order to do this, we introduce Lagrange multipliggs The objective becomes:

ZIZVGZ z y|xlog[py|xu ZVX<Zpy|x ) 6.6)

where g(x) is the marginal distribution ox (typically defined by a finite sample of
data that we have).
Taking derivatives with respect {o(y | X) and setting to zero, we get:

Zva P (X) <Iog [%] +1> —%=0 (6.7)

Then, settingy , Vo = N and expanding, we get:

N (x) log peor (Y [ X) — Zvap )10gpa (Y [X) + NP (X) — =0 (6.8)
and so:
P 1) = exp [ 1) exp( 'S 1 logpa () (6.9
N (x) & N

The term exp( Kf 5~ 1) is dependent upor but noty, and acts as a normalising
function. Denoting this bym, we obtain:

Pror (Y [X) = exp(z VW“ logpa (Y| X)) (6.10)

Z o (X)

which may be re-arranged to the form given in Equation 6.1

Pan (Y1) = 5 [ Pa (v ) 611)

From this we see that each weighy in the LOP is given bvaa, and so the con-
strainty , Wy = 1 falls out naturally from the derivation. Note, howevegtlhhere is
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no other constraint imposed on the weights. In particuler weights may be positive
or negative. However, cases where some weights are negat\sdmetimes less easy
to interpret than cases where all the weights are positigeseE this, consider a sit-
uation where we have two model,andB, with probability distributiongpa and pg
respectively. These distributions encode probabilitiesoor outcomes, which are la-
belled 1..4. The distributions are shown in Table 6.1. From the tablearesee that
modelA assigns a high probability of.97 to the first outcome but only.@1 to each
of the others. By contrast, modBlconsiders all outcomes equally likely. Now imag-
ine a LOP consisting only of modefsandB. Table 6.2 shows the LOP’s probability
distributions for various weightsya andwg, assigned to the two models. As we read
across the table from left to right, we see increasing weligling assigned to model
B in the LOP, while model's weight decreases. In the cases where bgttandwg
are positive, that is, in the first three cases, we obtain balitity distribution for the
LOP which is in line with our intuition. For example, in thedircase, where a weight
of 0.99 is assigned to modé&|, we see that the distribution of the LOP is almost the
same as that of modél Conversely, in the third case, where the weights are reders
the distribution of the LOP is almost the same as that of mBd€&bor the second case,
where the weighta/y andwg are each (b, the LOP distribution is somewhere between
the distributions for the two models. However, if we allazatweight of greater than
1 to modelB, we obtain results such as those in the fourth and fifth caldese the
distribution of the LOP is not so clearly related to that aher modelA or model

B. Indeed as we continue to add more weight to md@&lahd take weight away from
modelA, the LOP distribution actually looks less like that of mo&elHence by al-
lowing negative weights, or more generally weights with miagde greater than one,
we may arrive at a situation where the resulting distributid the LOP is less easy to
interpret intuitively. In addition, when assigning weiglgutomatically via a training
algorithm, we may reduce the likelihood of overfitting by yeating the weights from
taking values with large magnitude. Forcing the weightsgmbn-negative is one way
of achieving this. As a result, from this point onwards welwilpose the additional
constraint that the weights be non-negative.

6.1.2 The Ambiguity Decomposition

There has been much work in the last decade investigatingrdperties of linear en-
sembles of learners. This has usually taken place withirfi¢te of neural networks,
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Outcome| pa Ps
1 0.97 ] 0.25

2 0.01] 0.25
3 0.01] 0.25
4 0.01] 0.25

Table 6.1: Models A and B with probability distributions pa and pg respectively.

Weights va, wg]

[0.99,001] | [0.5,05] | [0.01,099] | [-1,2] | [-4, 5]
0.9686 0.7665 0.2587 | 0.0034 | 0.0000
0.0105 0.0778 0.2471 | 0.3322| 0.3333
0.0105 0.0778 0.2471 | 0.3322| 0.3333
0.0105 0.0778 0.2471 | 0.3322| 0.3333

Outcome

A W N P

Table 6.2: Probability distributions for a LOP comprising models A and B.

but the concepts apply generally to other types of learnare#semble is usually de-
fined either by a weighted majority vote of the outputs of tidividual learners (in the
case of classification), or just a weighted average of thpuistof the individual learn-
ers (in the case of regression). Taking mean squared ertbeasror function, Krogh
and Vedelsby (1995) demonstrate an important relationsétiween the generalisation
error of a neural network ensemble and a property which teaypéd theambiguity

of the ensemble. This relationship may be expressed as:

Eens=E—A (6.12)

whereEgnsis the generalisation error of the ensemltids the weighted generalisa-
tion error of the individual networks anlis the ensemble ambiguity. The ambiguity
is defined as the weighted sum of the ambiguities of each mktwosingle network
ambiguity measures the disagreement between the leardéha®nsemble. This re-
lationship is often called thembiguity decomposition

Heskes (1998) shows that a similar decomposition holds fogarithmic opinion
pool of probability distributions. In particular, suppose have some general condi-
tional distributionq(y | x). Then the followingambiguity decompositionholds for a
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LOP of probability distributions:

K(0,Por) = > WaK(d,Pa) = WaK (PLop; Par)

a a

_ E_A (6.13)

where, as before, the, are constituent models in the LOP aldenotes KL-divergence.
The principal differences between the ambiguity decontfs of Krogh and
Vedelsby (in Equation 6.12) and Heskes (in Equation 6.18parfollows:

1. In Equation 6.12 the ensemble members, for example neatalorks, output
scalar values representing a classification or the valuefafietion, whereas in
Equation 6.13 the LOP members are any models representimjtamal prob-
ability distributions.

2. In Equation 6.12 the outputs of the ensemble members anbioed either by
a weighted majority vote or a weighted linear combinatioheveas in Equa-
tion 6.13 the conditional probability distributions arentined using a weighted
product.

3. In Equation 6.12 the error measure is a mean squared eresrtibe outputs
of the learners, whereas in Equation 6.13 the error measwae&iL-divergence
between probability distributions.

The termsE andA in Equation 6.13 are similar conceptually to their coundetrp
(EandAT) in Equation 6.12 above. The decomposition tells us thatlkbseness of the
LOP model to the distribution (y | x) is governed by a trade-off between tBeand
Aterms. TheE term represents the closeness of the individual constitmexlels to
q(y|x), and theA term represents the closeness of the individual constitnedels to
the LOP, and therefore indirectly to each other. This lda#en represents theembigu-
ity or, as we shall often refer to it, thddversity of the LOP. Using the decomposition,
we see that in order for the LOP to be a good modetj ©f | x), we require models
Pa (Y| X) which are individually good models @f(y | x) (having smallE) and/or di-
verse (having largd). In principle we can devise approaches to explicitly mafafe
theE andA terms in order to create this situation. Indeed, this is weato both later
in this chapter, and in other chapters. In most cases inltb&g we tend to focus more
on theA term than thde term, and look for ways of encouraging diversity.
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It is interesting to consider how regularisation of the indual constituent models
effects theE and A terms in the ambiguity decomposition. For example, the a@m o
regularising an individual constituent model would usyék to improve its generali-
sation capability. When regularising all constituent megdthis would hopefully have
the effect of decreasing tHe term (as the constituent models would be closer to the
“true” underlying distribution). However, regularisatiavould also tend to bring the
constituent models closer to a given distribution. So ragsing would tend to have
the effect of decreasing thfeterm (as the constituent models are all closer to the same
uniform distribution). The resulting generalisation chitity of the LOP would de-
pend on the specific interaction of these two effects. We ktakis empirically later
in the chapter when we apply LOPs of CRFs to some sequendérgliasks.

An important aspect of Equation 6.13 is that the ambiguitsntdoes not involve
the distributiong(y | X), and can therefore be estimated using (possibly large atsoun
of) other data, distinct frorg(y | x). More importantly, the other data can brelabelled
because the ambiguity term only involves comparing digtidms over labels for the
LOP and the individual models, rather than comparing eitfighese to some given
labelling.

A consequence of this property of the ambiguity term is tmatiabiased estimate
of the generalisation error of the LOP may be obtained usingsas-validation en-
sembleprocedure (Hansen and Krogh, 2000). With a cross-validaitsemble one
has access to a labelled dataset for training and a largergrabunlabelled data. The
training data is divided intm equally sized portions, wheris the number of con-
stituent models in the LOP. Each models trained on all portions of the training data
except portiona. The error on portiora is independent of the training and can be
used to estimate the generalisation error of madelThis is done for each member
a. The unlabelled data can be used to estimate the ambiguity &s we saw above.
Using the estimates of the generalisation error for eachahathd the ambiguity term
calculated using the unlabelled data, Equation 6.13 maysée to obtain an unbiased
estimate of the generalisation error of the LOP. Most imgattly, this estimate may be
obtained while still utilising all of the training data fos&mation, rather than requiring
that part of the training data be held out in order to estintaegeneralisation error.

6.1.3 Relation to Product of Experts

Hinton (1999) introduced a model similar to a logarithmidaopn pool which he called
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a Product of Experts (PoEs). PoEs have been applied to a number of different tasks
including handwriting recognition (Mayraz and Hinton, 2)0modelling character
strings and the symbolic family trees problem (Brown andtéir 2000). Under a
PoE, the probability of a particular labelling (or obserwat as Hinton mainly works
with generative models) is given by the product of prob&bksi assigned by a set of
constituent models, or experts. The PoE is therefore sinmléorm to a LOP but has
unnormalised, uniform weights set to 1:

__[aPa (x)
e = S Pl o ) (614

Given a set of observed data vectors, Hinton attempts to ditRtbE model by
maximising the log-likelihood of the data under the modellldwing his notation, and
denoting the set of parameters in modeby 6, the derivative of the log-likelihood
of a single observed data vectowith respect to the parameters in modeis:

0logPee(X| 61,...,6n)  dlogpqg (X|Ba)

090, 0901
dlo x| 6
S P (X6, ) TOIP O] 4
a

X/

Hinton works with models where although the calculationhe terivative of the
log-likelihood for a single expert (first term in Equatiorlb) is tractable, the calcula-
tion of the expected value in the second term is intractabtabse of the summation
over the space of all data vectors. This problem may be tddklene of two ways:

e Use some form of sampling, for example Gibbs sampling, toparftom the
distribution pe.c (X’ | 61, ..., 6n) in the second term of Equation 6.15, and so ap-
proximate the value of the second term.

e Employ a different parameter estimation procedure, withfer@nt objective
function.

Hinton (2002) takes the second alternative above, anddotes a parameter es-
timation technique that he caltontrastive estimation Note that, as we see later,
our models are linear chain CRFs and so we can efficienthuatalthe equivalent of
the second term in Equation 6.8xactly and do not need to resort to approximate
methods. We therefore do not use contrastive estimatidmsrthesis.
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6.2 LOPs for CRFs

Up to this point our discussion of LOPs has been very genettiput regard to the
kind of models providing the distribution,. From here on we make the discussion
more concrete, and consider LOPs of CRFs. We could applyddesiwe develop to
CRFs with any graphical structure, such as chains, treegtards. For illustration, we
use the sequential labelling tasks we described in Chaptére3therefore work with
CRFs with a linear chain structure. In this case, the vaggbiepresent an observation
sequence, for example a sequence of words in a sentence.afibblesy represent
a sequence of labels for the observation sequence. For éxamghe case of named
entity recognition (NER, these would be NER labels.

To clarify the terminology that we will use from here onwara®ete the distinc-
tion between theveights w, (sometimes referred to ger-model weighisused in the
weighted product in the LOP (appearing explicitly in Eqoatb.1), and thgparame-
tersAqk which parameterise each constituent CéiRfappearing implicitly in Equation
6.1 through thepgy).

As we alluded to in the preamble to this chapter, because @RHsg-linear mod-
els they are particularly well suited to combination und&CQP. To see this, consider
again Equation 6.1 and the form for a CRF distribution disedsin Chapter 2. It is
easy to see that when CRF distributions are combined undeighted product, the
potential functions factorise so that the resulting dusttion is itself that of a CRF.
This CRF has potential functions that are given by a weighigdinear combination
of the potential functions of the constituent models, witigintswy, .

It is clear from the general form of the LOP that if any consgitt model allocates
zero probability to a labelling then the LOP’s probability for that labelling also col-
lapses to zero. Hence the opinion of each constituent matedct as a veto. Thisis a
potential weakness of the LOP form, but is not a problem fdresause CRFs, being
exponential models, generally do not allocate zero prditabe any labelling.

6.3 Sources of Diversity

In section 6.1.2, we saw how the ambiguity decompositionivatgs the desire to
construct constituent modegg, for a LOP that are both individually good models of a
distribution and are diverse. Diversity between the caunstit models may be created

3See Chapter 3 for a description of this task.
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in a number of different ways. The main strategies for intrcidg diversity explored

here are:

(1) Feature set. Constituent models are parameterised using differentifeatets.
The feature sets may be created in one of two ways:

e Manually: feature sets are defined using human intuition about whaté s
are likely to lead to models with diverse distributions. 8 usually based
on feature sets providing alternative, diverse “views” ba tiata.

e Automatically feature sets are generated using a feature inductiotecing
process by optimising some objective which tries to maxaulersity be-
tween the models as they grow.

In this thesis we explore only theanualcreation of feature sets above. The
automaticcreation of feature sets is a much harder problem and is lokttoa
scope of the thesis.

(2) Training set. Constituent models are trained using different trainintg.s& he
variation in the properties of the training sets createsidity between the models
that are created using them. The different training setslmeagreated in a number
of ways. Examples include:

¢ Partitioning: the training set is partitioned into subsets with each tituesnt
model being trained on a separate subset.

e Bagging each constituent model is trained on a set re-sampled flam t

original training set distribution.

e Boosting training set instances are given different weights duthagning
on the basis of how difficult they are to label.

In this thesis we explorbaggingas a representative example of diversity via the

training set.

(3) Training algorithm. The training algorithm is designed so that, in addition to
modelling the training set well, the constituent models emeouraged or forced
to be diverse from one another. This means that the modelscangled during
the training process and the parameters in all the modelsarned together. We
call thisco-operative training, and investigate it Chapter 7. As we will see in that
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chapter, we introduce a penalty term in the objective fuamcthat explicitly tries
to maximise the ambiguity term for the LOP.

Note that the three approaches above are not mutually exelusnd could be
undertaken in combination. However, for ease of exposivenwill deal with them
separately. In this chapter we look at cases (1) and (2)r&stintg them as possible
sources of constituent model diversity. Case (3), the aratjve training, is a little
more involved and so is covered separately in Chapter 7.

Consistent with the Product of Experts model discusseddtiae6.1.3, we will
often refer to the constituent models of a LOP of CRF®®agerts Sometimes an
expert will focus on modelling a particular aspect or sule$@tprobability distribution
well (hence the name). An example of this would be an expatt ¢bnsists almost
entirely of features that fire for a particular label, therebodelling the distribution of
that label while effectively ignoring the details of thetdilsutions of other labels. At
other times an expert may model the entire distribution hith an alternative “view”
to another expert. An example here would be two experts winigtiel the distribution
of all labels, but which consist of different feature setenfetimes we will also use
the nameconstituent modelfor expert (as we have been doing so far). Therefore, for
the rest of the thesis, we will treat the two terms as intemgieable.

6.4 Training and Decoding

In this chapteitraining simply refers to the process of estimating the parameters of
the constituent models. Each constituent model is trainddpendently of the others,
offline. The constituent models are then combined under aw@uniform weights,

i.e. each model being weighted equally. As we saw in sectidn@LOP of CRFs

is itself a CRF. Consequently, decoding the LOP is no morepedationally complex
than decoding with a standard CRF.

6.5 Diversity via the Feature Set

In this section we focus on trying to manually create diversgerts by manipulating
the feature set that each expert uses. To do this we first defoo®| of features and
then create different partitions of this pool. For the poel use the feature set of the
STANDARD CREF, described in Chapter 4. Each partition of teatfire set defines
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a set of experts. We call such a setexpert set The expert sets we use for our
experiments are described below.

6.5.1 Expert Sets

The expert sets we use to build LOPs are defined via our iatug&bout which group-
ings of features should result in a set of accurate and divexperts. Usually these
experts are designed to focus on modelling a particularcspesubset of the distri-
bution. As we saw earlier, the aim here is to define expertsrtiadel parts of the
distribution well while retaining diversity. In this seot we describe four expert sets.
We include the STANDARD CRF model in each expert set, as onlesoéxperts.

6.5.1.1 Label

STANDARD

Figure 6.2: LABEL expert set for NER.

The LABEL expert set consists of the STANDARD CRF and a patrtition of the
features in the STANDARD CREF into five experts, one for eadfela For NER an
expert corresponding to label X consists only of featurasithvolve labels B-X or I-X
at the current or previous positions, while for POS taggingeapert corresponding
to label X consists only of features that involve label X ag¢ tturrent or previous
positions. This situation is illustrated in Figure 6.2 foetNER case. Here the shaded
oval, representing all features in the STANDARD model, istipaned into subsets
corresponding to each NER label. In this expert set the ¢éxgecus on trying to
model the distribution of a particular label.



6.5. Diversity via the Feature Set 109

STANDARD

Figure 6.3: POSITIONAL expert set.

6.5.1.2 Positional

ThePOSITIONAL expert set consists of the STANDARD CRF and a patrtition of the
features in the STANDARD CRF into three experts, each ctingi®nly of features
that involve events either behind, at or ahead of the cusegtience position. This
is illustrated in Figure 6.3. The experts in this expert seuk on trying to model the
dependence of the current prediction on different posatiamformation.

6.5.1.3 Simple

STANDARD

Figure 6.4: SIMPLE expert set.

TheSIMPLE expert set consists of the STANDARD CRF and just a single gxpe
the SIMPLE CRF described in Chapter 4 (one of the referenagetsdrom that chap-
ter). This situation is illustrated in Figure 6.4. The SIMPICRF models the entire
distribution rather than focusing on a particular aspedudrset, but is much less ex-
pressive than the STANDARD model. The SIMPLE model compriz&819 features
for NER and 18482 features for POS tagging.
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6.5.1.4 Random

STANDARD

Figure 6.5: RANDOM expert set.

TheRANDOM expert set consists of the STANDARD CRF and random parstion
of the features in the STANDARD CRF into four experts. Thidlisstrated in Figure
6.5. This expert set acts as a baseline to ascertain thepenfice that can be expected
from an expert set that is not defined via any linguistic ithou.

6.5.2 Results
6.5.2.1 Experts

Before presenting results for the LOPs, we briefly give penfance figures for the
STANDARD CRF and expert CRFs in isolation. For illustratiove do this for NER
models only. Table 6.3 shows F scores on the developmentisétd NER experts.
At the top we have the STANDARD CRF, consisting of the ent@tfire set, both un-
regularised and regularised with a Gaussian prior. We tlage the individual experts
from each expert set presented in section 6.5.1. We seeathatpected, the expert
CRFs in isolation model the data relatively poorly compéarethe STANDARD CRF.
For example, some of the label experts attain very low F scasethey focus only on
modelling one particular label. Similar behaviour was oted for the POS tagging
models.

6.5.2.2 LOPs

Having defined and trained the experts above, we combinetiests from a given ex-
pert set under a LOP with uniform weights. Table 6.4 givesdiex for the resulting



6.5. Diversity via the Feature Set 111

Expert F score

STANDARD unreg.| 8821
STANDARD reg. | 89.86

LABEL LOC 8.82
LABEL MISC 8.38
LABEL ORG 9.47
LABEL PER 11.86

LABEL O 58.52

POSITIONAL -1 | 73.07
POSITIONAL O 86.98
POSITIONAL 1 73.15
SIMPLE 79.53
RANDOM 1 7119
RANDOM 2 69.11
RANDOM 3 73.29
RANDOM 4 69.30

Table 6.3: Development set F scores for individual NER experts.

LOPs on NER. Scores for both unregularised and regularisesions of the STAN-
DARD CRF are included for comparison. From the table we oleséne following
points for NER:

1. In every case except one the LOPs outperform the unregedbh STANDARD
CRF on both the development and test sets at a significanekdep < 0.05.
The one exception is the LOP with RANDOM experts on the dgvalent set,
which, although obtaining a higher F score than the unrepeld STANDARD
CREF, does not outperform it at thee< 0.05 level. However, as we discussed in
section 6.5.1.4, the RANDOM expert set is only intended agseline.

2. In every case except the LOP with RANDOM experts on the ldpweent set,
the LOPs do not significantly underperform tregularisedSTANDARD CRF
at a significance level gh < 0.05. Indeed, in the case of the SIMPLE expert set,
LOPs on both the development and test sets outperform thiareged STAN-
DARD CRF.
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Our results for NER therefore show that uniformly-weightgdPs with unregu-
larised experts can lead to performance improvements aveineegularised STAN-
DARD CRF that equal or exceed those achieved from a conveadtiegularisation
approach using a Gaussian prior.

The results for LOPs on POS tagging show the same generalsti@nthose on
NER, but with some of the above characteristics being diigess marked. Table
6.5 gives accuracies on POS tagging for the LOPs correspgrdithose in Table
6.4 on NER. As before, scores for both unregularised andaegad versions of the
STANDARD CREF are included for comparison. In every case pktiee RANDOM
expert set on the development set, the LOPs significant|yesfdrm the unregularised
STANDARD CRF. In addition, the LOP with the SIMPLE expert sggnificantly
outperforms the regularised STANDARD CRF on the develogmsety and none of
the LOPs on the test set are significantly worse than theaegatl STANDARD CRF.
The POS tagging results therefore support our findings on.NER

In addition to providing a competitive alternative to contienal regularisation
with a prior, the LOP approach, when used with unregularesqzerts, has the added
advantage that it is “parameter-free”. By this we mean tla@heexpert CRF in the
LOP is unregularised, so we are not required to search a pgpeneter space. As
an illustration, to obtain our best results for the POS taggegularised STANDARD
model, we re-trained using 15 different values of the Gaumsprior variance. With the
LOP we trained each expert CRF omgice

Another important difference between the LOP approacheortesi here and that
of conventional regularisation with a prior is that the estpehat comprise the LOP
are generally small, compact models that are fast to tramthé case of conven-
tional regularisation, however, it is the STANDARD modeathmust be re-trained
many times for different hyperparameter values. We corgltlien, that using experts
defined by intuitively-motivated feature partitions in aiformly-weighted LOP can
provide a competitive alternative to conventional reggkion using a prior, and is
much cheaper computationally.

6.5.3 Choice of Expert Sets

We can see from Tables 6.4 and 6.5 that the performance of aof ORFs varies with
the choice of expert set. For example, in our tasks the SIMBh& POSITIONAL
expert sets perform better than those for the LABEL and RANDS®ts. For an ex-



6.5. Diversity via the Feature Set 113

Model/LOP Development sef Test set
STANDARD unreg. 8821 81.60
STANDARD reg. 89.86 83.97
LABEL 89.23 83.55
POSITIONAL 89.86 84.50
SIMPLE 90.06 84.03
RANDOM 88.77 83.13

Table 6.4: F scores for LOPs of uniformly-weighted expert sets on NER.

Model/LOP Development sef Test set
STANDARD unreg. 96.76 96.32
STANDARD reg. 97.07 96.69
LABEL 96.86 96.62
POSITIONAL 96.91 96.65
SIMPLE 97.30 97.09
RANDOM 96.81 96.66

Table 6.5: Accuracies for LOPs of uniformly-weighted expert sets on POS tagging.

planation here, we refer back to our discussion of Equati@8.6We conjecture that
the SIMPLE and POSITIONAL expert sets achieve good perfogaan the LOP be-
cause they consist of experts that are diverse while simedtasly being reasonable
models of the data. The LABEL expert set exhibits greateerdity between the ex-
perts, because each expert focuses on modelling a partiabtd only, but each expert
is a relatively poor model of the entire distribution and twresponding LOP per-
forms worse. Similarly, the RANDOM experts are in generatitéremodels of the
entire distribution than the LABEL experts but tend to beslderse because they do
not focus on any one aspect or subset of it. Intuitively, themwant to devise experts
that provide diverse but accurate views on the data.

The expert sets we present in this chapter are motivateabwibtic intuition, but
clearly many other choices exist. One possibility would del¢velop a framework
that establishes the feature partitions automaticalipgua feature induction process
across all the constituent models simultaneously. We dssthis briefly in the future
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work section of Chapter 9.

6.6 Diversity via the Dataset

Having investigated the feature set as a possible sourcé&veifsdy in the previous
section, in this section we consider the training data assthece. To do this we
create a set of constituent models using a fixed set of fe&euonplates (the same set
as earlier) but instantiate these templates on varyingihrgidatasets. To create the
extra datasets wbkag the training data. Specifically, we randomly select segesnc
from the training data, with replacement, to create a newas#tof the same size as
the training data. We do this 15 times in total for each taslcreate a set of bagged
training datasets. We then use the feature templates offlARBARD CRF model to
instantiate and extract features on each of the baggedngagiatasets. Clearly, each
bagged dataset is a subset of the original training datd$etrefore, each feature set
derived from a bagged dataset will be a subset of the feaairefsthe STANDARD
model. For NER, the STANDARD model has 4386 features, whereas the feature
sets from the bagged training datasets have sizes ranging 381572 to 336871
features, with a mean size of 3®89. Similarly, for POS tagging the STANDARD
model has 18839 features, whereas the feature sets from the baggenhtyaiatasets
have sizes ranging from 14219 to 147838 features, with a mean size of 1496.

Having created the feature sets, we train the corresponddels without regu-
larisation. Clearly, as the bagged models are trained adata than the STANDARD
model for each task, we would expect them to individually enpeérform the STAN-
DARD model. To illustrate, on NER the unregularised STANOARI0del obtains an
development set F score of 28, whereas the bagged models obtain development set
F scores ranging from 882 to 8548, with a mean score of 8. A similar pattern is
observed for POS tagging.

For each task, we then combine the bagged models under a LOBeande the
development and test sets. We would like to see whether th#auof constituent
models in the LOP affects performance, so we create LOPz®ef%i5 and 15. For the
LOPs of size 3 and 5 we create several constituent modelreetsrbndomly selected
bagged models and average the results. For the LOP of sixecl@early only have a
single constituent model set, containing all the baggedetsod

Table 6.6 gives F scores on NER for uniformly-weighted LOBsstructed from
bagged CRF models. Table 6.7 gives accuracies for the pomeing LOPs on POS
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tagging. In each case we include scores for the unreguthaisd regularised versions
of the STANDARD model. From the tables we can see that:

1. Asthe number of constituent models in the LOP increaseses generally im-
prove. For LOPs of size 3 and 5, the results are little beti@n the unregularised
STANDARD CRF in most cases, and worse in some cases.

2. The results for the LOP of size 15 are closer to those of @@4 of the last
section, where we were using feature set experts. In thrégedbur cases, the
LOP of size 15 significantly outperforms the unregulariseaISDARD CRF at
thep < 0.05 significance level, and in two of the four cases does naotfsigntly
underperform the regularised STANDARD CRF.

These results generally show that using the training dagissasirce of diversity for
the creation of constituent models is not as effective asgutie feature set. The
bagged model LOPs do provide some improvement over the ulargged STAN-
DARD model in some cases, but the results are generally mopettive with those
of the regularised STANDARD model.

From the point of view of diversity, these results are to begeeted. The feature set
experts of the previous section are intuitively more diedtsan the constituent models
in this section. For example, the LABEL experts each focusnodelling a different
aspect of label distribution, and have very little overlagheir feature sets. In contrast,
as we saw above in this section, the bagged CRF models haviéicsigt feature set
overlap with the STANDARD model, and therefore with eacheotiNote that bagging
the training set and partitioning the feature set are esdnorthogonal approaches
for creating constituent models for LOPs, so it would be gmego develop hybrid
schemes that combine the two.

There are other disadvantages with using bagged modelsRsL.& compared to
feature set experts. Firstly, it appears that LOPs of baggedels only attain good
performance when a large number of constituent models atadad. This means
total training time is longer than with the smaller expetissaf the previous section.
Secondly, each bagged model is relatively large, contgiaisubstantial proportion
of the features in the STANDARD model. This makes the baggedeis slow to
train. The feature set experts, by contrast, are generaiite gmall models and so
are faster to train. These factors contribute to our comafuthat using the training
data as a source of diversity for creating constituent nmeofbelL OPs is of limited use.
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Model/LOP Development Test
STANDARD unreg. 8821 81.60

STANDARD reg. 89.86 83.97
Mean 3 87.05 8178
Mean 5 87.57 82.29
Mean 15 88.05 83.14

Table 6.6: F scores for LOPs of uniformly-weighted bagged models on NER.

Model/LOP Development Test
STANDARD unreg. 96.76 96.32

STANDARD reg. 97.07 96.69
Mean 3 96.72 96.43
Mean 5 96.83 96.52
Mean 15 96.95 96.64

Table 6.7: Accuracies for LOPs of uniformly-weighted bagged models on POS tagging.

Consequently, from this point onwards in the thesis we witifs on LOPs containing
feature set experts.

6.7 LOPs with Regularised Experts

All of the results presented so far in this chapter have ve@ILOPs with unregularised
constituent models. In this section we relax this constramd consider the effect
on LOP performance of using regularised experts. We repaldhe experts using a
Gaussian prior over the model parameters, the Gaussiag bemmesentative of the
different priors we considered in Chapter 5.

Table 6.8 shows F scores on NER for LOPs created from regelaxiersions of the
feature set experts described in section 6.5. We includesthéts for the unregularised
models for comparison. Table 6.9 gives accuracies for tmesponding models on
POS tagging. The results show that regularising the expads mixed effect on LOP
performance, with no consistent pattern emerging. In soases scores improve, in
other cases they worsen. Viewing this from a diversity antfies is not surprising.
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Lop Unregularised Regularised
Development Test | Development Test
LABEL 89.23 83.55 89.68 84.10
POSITIONAL 89.86 84.50 89.21 82.84
SIMPLE 90.06 84.03 90.00 84.89
RANDOM 88.77 8313 88.65 83.01

Table 6.8: F scores for LOPs with uniformly-weighted unregularised and regularised
expert sets on NER.

Lop Unregularised Regularised
Development Test | Development Test
LABEL 96.86 96.62 96.66 96.39
POSITIONAL 96.91 96.65 96.78 96.61
SIMPLE 96.30 97.09 97.34 97.23
RANDOM 96.81 96.66 96.16 96.08

Table 6.9: Accuracies for LOPs with uniformly-weighted unregularised and regularised

expert sets on POS tagging.

When regularising the constituent models, usually the gdisation capability of the

individual models will improve, but the models will also teto drawn closer to the
uniform distribution, and therefore to each other. Henardtwill be a trade-off be-

tween individual constituent model accuracy and diverséjween the models. The
result of this trade-off is difficult to predict, and will wamwith the LOP. Of course,

using regularised experts in a LOP negates the “parametet-aspect that we earlier
proposed as a strength of the LOP with unregularised experts

6.8 Non-Uniform Weights

So far in this chapter we have only considered LOPs with umifaeights. We have
seen that particularly good results may be obtained by coimdpiunregularised fea-
ture set experts in a LOP where all models are equally weigttewever, it is clearly
possible to employ non-uniform weight combinations in a LOBing so gives pref-
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LOP Development set Test set
SIMPLE uniform 90.06 84.03
SIMPLE manual 90.07 84.54

Table 6.10: F scores for manually-weighted SIMPLE LOPs on NER.

LOP Development sef Test set
SIMPLE uniform 97.30 97.09
SIMPLE manual 97.34 97.18

Table 6.11: Accuracies for manually-weighted SIMPLE LOPs on POS tagging.

erence to the opinion of some models over others. To find aldeitset of weights
for a given set of constituent models in a LOP, we may geneteé one of methods:
manualadjustment oautomaticsearch.

Efficient manual weight adjustment is difficult for LOPs tlwantain more than
two constituent models as these LOPs have at leasinependeniveights. Search-
ing for an optimal set of weights in this situation is akin ke tproblem of searching
for optimal hyperparameters for a multi-dimensional pribat we saw in Chapter 5.
However, LOPs of size two only have one independent weighichivmay easily be
optimised using a development set. We do this for the SIMPI®P& with unregu-
larised experts we saw in section 6.5.2. Tables 6.10 andshd@w F scores on NER
and accuracies on POS tagging, respectively, for these SEMOPs with manually
adjusted weights. We can see that on both tasks improveroantse made over the
uniformly-weighted LOPs by manually adjusting the weighigy from the uniform
distribution. Development set scores for the manuallysidid LOPs are higher than
those of the uniform LOPs, but not significantly so at the 0.05 level. However, on
both tasks test set scorage significantly higher.

As for automatic determination of optimal weight combioas, different possibil-
ities exist. One approach is to formulate a relevant objedtinction and optimise it.
One candidate here is the log-likelihood of the LOP as a fanatf the weights. In
this setup we fix the constituent models in their pre-definatesand train the weights
in the LOP as a separate process. To do this we must evalatietivatives of the

4Remember we are working with normalised weights.
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log-likelihood with respect to the weights. This is relally straight forward, with
the derivatives taking a form that is similar to the derivas for a standard CRF with
respect to its parameters. In particular, the expectedevafievery feature in each
constituent model under the LOP distribution must be evallial his can be achieved
efficiently using the standard forward-backward algoritcause, as we noted earlier,
the LOP is itself a CRF. We employed this weight-traininggaure for the feature
set experts described in section 6.5. We found that the apprted to minimal im-
provements in performance over the corresponding LOPs wvitform weights. One
possible reason for this is that in general the feature gentsets we have been using
contain constituent models that are of roughly equal quéhith the possible excep-
tion of the SIMPLE expert set). For these expert sets the Weght combinations
probably do not lie very far from the uniform distributiorp any automatic process
will struggle to significantly improve on the uniform LOP4.i$ possible, therefore,
that this automatic procedure may perform better for LORs$ tlontain a greater dif-
ferential in the quality of the constituent models. We lethus possibility as an avenue
for further work.

6.9 Linear Opinion Pools

At the beginning of this chapter we saw how a LOP is a naturabickate for an
ensemble model of CRFs due to the exponential form of the GBRtRklition: a set
of CRFs combined under a LOP is itself another CRF. Cledrlyei combine CRFs
using an additive ensemble rather than a multiplicative @areedo not obtain such an
elegant compact representation. However, it is still eé&ng to ask the question as
whether there is an efficient way to decode a additive mod€Ri¥¥s, and how such a
model would perform in comparison to a LOP. In this sectiorcemssider these issues.

In contrast to a LOP, an additive model of classifiers is cedlenear opinion pool
(LIP). Using our notation for CRF distributiorng, and per-model weight®, from
earlier in this chapter, we define a LIP of CRFs as:

Pue (Y [X) = 3 WaPa (Y |X) (6.16)

with 5, wg = 1. Unlike a LOP, with a LIP there is no requirement for a norisiat
function because the right-hand side of Equation 6.16 eadly normalised. To see
this, we sum over all sequencgs
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zpup(y|x) = zzwapa(y|x)
y y a
= ZWaZpa(Y‘X)
T g
= Zwa

=1 (6.17)

Our question, then, is whether we can efficiently decode audiRg a Viterbi algo-
rithm. We want to find the Viterbi paty* wherey* = argmay p.» (y | x) for a given
observation sequence Let us first expand the definition of the Viterbi path here:

argmaxp.e (y |x) = argmaX{ZwapaMX)]
y y a

Wa
= argyrnaXI;mexp@Zfak(yt1,yt,t>>] (6.18)

wheret runs over the cliques in a sequen&auns over the features in a model and
fak is thekth feature in modebr. It is tempting to define a Viterbi-style algorithm
that moves left to right through a lattice maximising thet@érsum (i.e. up to a
certain point in the sequence) on the right-hand side of Egu#®.18. However, a
little thought shows that this would not necessarily recakie Viterbi path of the LIP.
The reason is that the partial sums contain co-eﬁici%sthat are “wrong” except
on the last clique of the sequence. This is because theipafiiinctionsZ (x) for each
sequence cover the whole sequence, rather than the pagjaésce to a particular
point. As a result, it is difficult to see a simple way to decdlue LIP using a Viterbi
algorithm.

One solution to this problem involves making a approximatiBather than seek-
ing the Viterbi path of the LIP, we may instead look for thetp#tat maximises the
product of the LIP’s marginal label probabilities at eachnpan the sequence. We
make the assumption that this latter path is a good apprdxméor the Viterbi path.
Indeed, in many cases the two paths will coincide. We arenaisgy) then, that:

Pur (y =Y X) ~ El Pue (yt =V | X) (6.19)

But we know that:
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Pue (Yt = |X) = Z Pue (Y[ X)

Y=y

= Z ZWapa(Y|X)

yy=y @

= ZWa Z Pa (Y[X)

a Y=Y
S wape (1 =¥ (620
o]

Hence the LIP’s marginal label distribution at given posegual to the weighted sum
of the marginal label distributions of the constituent misda that point, using the
weightsw,. Therefore, using Equation 6.19:

argmaxpe (Y| X) = argmax[n > Wa Pa (yt|x)}
y y ta

= [argmax{%wa Pa (V| X)H (6.21)

t Yt

From this we can see that in order to decode a sequence wignvalbi®nx we need to
do the following:

1. Calculate the pointwise marginal label distributigns(y; | x) for each modetr
at each point. This can be achieved by conducting a backward sweep through
the decoding lattice, and is explained in Chapter 2.

2. Take a weighted sum of these marginal distributions al gaintt using the
weightswy,.

3. For each point select the label that corresponds to the highest probabilihe
weighted marginal distribution at that point.

In order to compare the performance of LIPs and LOPs, we useitbcedure
described above to decode a set of uniformly-weighted LTBble 6.12 gives F scores
on NER for LIPs that consist of the feature set experts desdrin section 6.5. The
F scores for the corresponding LOPs are included for corapari Table 6.13 gives
similar data on POS tagging, with accuracies replacing Fescd-rom the tables we
see that for both tasks, in every case except one, the scbtamed by the LOPs
are higher than those of the LIPs on both the developmentestdsets. For NER,
of the eight pairwise comparisons, five of them represengaifstant performance
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o LOP LIP
Opinion Pool
Development Test | Development Test
LABEL 89.23 83.55 88.59 8224
POSITIONAL 89.86 84.50 88.73 82.32
SIMPLE 90.06 84.03 89.33 82.99
RANDOM 88.77 83.13 87.28 81.23

Table 6.12: F scores for LOPs and LIPs with uniformly-weighted expert sets on NER.

improvement of the LOP over the corresponding LIP atpgke0.05 significance level.
Equally, for POS tagging, six of the eight pairwise compamisresult in a significant
improvement for the LOPs.

The two primary factors responsible for the differences énfprmance between
the LOPs and the LIPs are likely to be the combination methaddifive versus multi-
plicative) and the approximation method (as compared tokantelecoding). It is not
clear which of these factors dominates. In a sense, thohghstunimportant because
even with the approximation the LIP is significantly more gdex to decode than the
LOP. With a LIP, using the method above, each constituentetnodist decode sepa-
rately, including both a forward and backward sweep thrathghlattice. With a LOP,
by contrast, the constituent models are combined upfrothioauty one decoding takes
place, with only the forward sweep through the lattice néetberecover the Viterbi
path. Therefore the LOP seems to be by far the more prefechlniee. As a result,
we will not be considering LIPs beyond this point in the tsesi

Note that Sutton et al. (2006) also consider linear ensesrifl€RFs, looking at
both sequential and pointwise combinations. They reacliaimonclusions to the
ones we reach here.

6.10 Summary

Following our examination of conventional regularisatiechniques for CRFs in Chap-
ter 5, in this chapter we moved on to introduce an alterndtamework for CRF
regularisation based on a form of ensemble model. The modié¢d alogarithmic
opinion pool, combines a set of CRFs in a weighted product. The LOP is aalatu
choice for a CRF ensemble due to the exponential form of thE GiRtribution. We
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o LOP LIP
Opinion Pool
Development Test | Development Test
LABEL 96.86 96.62 96.52 96.45
POSITIONAL 96.91 96.65 96.93 96.60
SIMPLE 97.30 97.09 97.23 97.01
RANDOM 96.81 96.66 96.64 96.31

Table 6.13: Accuracies for LOPs and LIPs with uniformly-weighted expert sets on POS
tagging.

described the properties of a LOP, and, in particular, saw &&.OP satisfies an am-
biguity decomposition, which motivates the need for thestiuent models in a LOP

to be accurate and/or diverse. We discussed a number of waykich such diverse

models may be created, focusing in this chapter on the featrand the training data
as possibles sources of diversity.

Our main finding comes from the use of the feature set as a sairdiversity.
By creating a set of expert CRF models based on an intuitivedyivated partition
of the feature set, and combining them under a LOP with umfamrights, we may
obtain a model which significantly outperforms an unregatad STANDARD CRF
that utilises the entire feature set, and is comparableriopeance to a STANDARD
CRF regularised with a Gaussian prior. This means that the B@proach represents
a competitive alternative to conventional regularisatrath a prior, but without the
need to search a (possibly high-dimensional) hyperpaerspace.

Using the training set as a source of diversity, we createB4.fbom a set of bagged
CRF constituent models. Our results show that althoughdxdggodel LOPs do pro-
vide some improvement over an unregularised STANDARD mdtelresults are not
competitive with those of the regularised STANDARD modalatdition, the bagged
constituent models are generally slower to train than thufe set constituent models.
We conclude that LOPs built from feature set experts areepaéfe.

Our main claim regarding the competitiveness of LOPs as @moagh to regu-
larising CRFs relies on the use of unregularised modelsen_tbP. However, in the
chapter we also considered regularised CRF models as LORitwamts. We found
that results were mixed relative to the corresponding LORE unregularised con-
stituents, and were difficult to predict due the subtle tratfdoetween model accuracy
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and diversity.

Finally, we compared a linear opinion pool to a LOP. We saw itha difficult to
devise an efficient Viterbi-style algorithm for LIP decodirand that we must there-
fore resort to an approximate decoding. However, making dpproximation leads to
decoding that is both more expensive than LOP decoding audtsan lower perfor-
mance. We therefore conclude that a LOP is a much more pbi¢eeasemble model
for CRFs than a LIP.

In this chapter constituent models were trained indepethgesffline, then com-
bined under a LOP. In the next chapter we look at how we man tta constituent
models non-independently, with parameters in differendel®interacting during train-
ing in such a way as to encourage diversity between the neguitodels.



Chapter 7
Co-operative Training of LOPs

In Chapter 6 we introduced the idea ofagarithmic opinion pool (LOP) of CRFs.
The pool comprised a product of individual CRF models weghby a set of per-
model weights. We also saw how a logarithmic opinion pooligsmdonstituent models
satisfy anambiguity decomposition

K(por) = E-A= ZWa (9 Par) ZWa (Peor, Par) (7.1)

wherep,os is the LOP, thg, are the constituent modelgis some general distribution
and thew, are the LOP per-model weights. As we described in some detséction
6.1.2, theE term represents the closeness of the individual constituedels tog and
theAterm represents theembiguity or diversity between models, i.e. the closeness of
the individual constituent models to the LOP and thereforedch other. We can see
from the decomposition that in order for the LOP to be a good@®hofq, we require
models pg which are both individually good models of (having smallE) and/or
diverse (having larg&). In Chapter 6 we explored different ways of encouraging
diversity between constituent models in a LOP, includingnipalation of the training
set and the feature set. We found the best method was basé@ deature set, by
creating constituent models from manually-specified titeipartitions of the features.
However, once these feature partitions were chosen, ndiawlal diversity creating
procedure was used. When the constituent models were draihe parameters in
each model were estimated independently, with no intemadtiith the parameters in
other models. As we saw in Chapter 6, this approach workel] lalis it possible to
encourage diversity in other ways, directly and automéyiea

In this chapter we explore the answer to this question bysitgating other ap-

125
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proaches to creating diversity between the constituentatsodVe focus on the case
of manipulating the training algorithm to directly encogeainter-model diversity. We
call this approaclto-operative training. In essence, because the training procedure
encourages diversity between models, parameters in eiffenodels now become
“aware” of each other and are trained interactively, ratian independently as in
the approach of Chapter 6. This general avenue of explorafiens up a vast range of
research possibilities, and we cannot investigate evienythere. We therefore set our-
selves the goal in this chapter of providingm@of-of-concepfor the idea of using the
CRF training algorithm to encourage diversity between tituent models in a LOP

in order to improve the LOP’s performance.

The rest of the chapter is structured as follows: In sectidnwé give an overview
of co-operative training, elaborating on the general ideeoduced here. In section
7.2 we consider previous work that uses similar ideas butheradomains, appealing
particularly to the arena of artificial neural networks (AN Sections 7.3 and 7.4
describe the quantitative details behind co-operativiaitrg, while in section 7.5 we
see how these details may be implemented in practise witb@iggon of the software
framework. Section 7.6 describes our experiments and thelteewe obtain, and,
finally, in section 7.7 we summarise and conclude the chapter

7.1 Co-operative Model Training

Figures 7.1 and 7.2 give a pictorial depiction of the ideaith@lco-operative training.
In each figure the dark background represents the spacerabdkls, while the target
distribution is represented ly This is the distribution that each model is attempting
to represent. The light arrows between any two models in égcine represent an
attractive influence, and hence a tendency for the modelsoteraloser together in
a KL-divergence sense. By contrast, the dark arrows reptesespulsive influence,
and hence a tendency for the models to move further apart. tréiveng algorithm
involves optimising a criterion that encourages each mtuleé a good representation
of q (light arrows forcing each constituent model to move towgagdwhile encour-
aging diversity between the models (dark arrows encougatiia constituent models
to maintain their distance from each other). This corresigan Equation 7.1 to re-
ducing theE term while simultaneously increasing tAgerm. Figure 7.1 represents
the situation early on during co-operative training. Alhstituent models, and there-
fore the LOP itself, are far from the target distribution.ef as co-operative training
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Figure 7.1: The LOP and its constituent models early in the co-operative training pro-

cedure.

Figure 7.2: The LOP and its constituent models later in the co-operative training pro-

cedure.
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progresses, we move closer to the situation depicted inr€igL2. Here each model
has moved closer to the target distribution, forcing the Léld3er as well. Simulta-
neously, we have increased, or at least maintained, diydystween the constituent
models using the repulsive influence represented by theateolvs.

7.2 Related Work

The work most closely related to the ideas presented in tapter comes from the
field of neural networks. Within this domain, the general @spt that diversity is im-
portant for creating ensembles of networks with low gensaéibn error has been well
established for some years. One of the first formulationshisf idea was presented
by Krogh and Vedelsby (1995), who derived ambiguity decompositionfor neural
network ensembles for regression. Since then numerousoaetiave been employed
to try to introduce diversity into neural network ensembl®kany of these are analo-
gous to the approaches we investigated for LOPs of CRFs ipt€éh&. Approaches
have included using the feature set (Brown et al., 2002;20p899; Zenobi and Cun-
ningham, 2001), and manipulating the training data (Caarey Cunningham, 1999;
Melville and Mooney, 2005). However, there has also beenalenbody of work that
involves manipulating the training algorithm directly irder to encourage diversity. It
is this work that is more specifically aligned with the ideahis chapter. In the neural
network community this training algorithm approach is gatlg known asnegative
correlation learning (Liu and Yao, 1999). An early example of the idea is provided
by Rosen (1996), who adjusts the error function used by tlo&-peopagation algo-
rithm during network training to include a term containingyielations between pairs
of networks. The presence of the term encourages netwobieacmme decorrelated as
training progresses. Liu and Yao (1999) use a similar ideenbtlyding what they call

a correlation penalty term in the error function. This term encodes the corretatio
between the errors of each network and the network ensenilble.aim is to try to
negatively correlate each network’s error with the errdrshe rest of the ensembile.
Brown and Wyatt (2003) formalise the negative correlatiearhing idea by remov-
ing some of the assumptions made in the original presentadiod prove that certain
bounds exist on the parameters that control the penalty. t&ime approaches of Liu
and Yao (1999), and later Brown and Wyatt (2003), are theeefery similar to our
approach in this chapter, where we useiersity penalty to encourage diversity, or
ambiguity, between the constituent CRF models in a LOP.
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7.3 Training Algorithm

Design of the training algorithm for the co-operative tragnframework involves spec-
ifying an objective function and ascertaining how it may Ipgimised. In this section
we construct a general form for the objective function andvslhow its derivatives
may be derived.

7.3.1 Objective Function

Using Equation 7.1 as our guide, our aim is to formulate aredbje function that
simultaneously makes thHe term decrease while forcing theterm to increase. We
therefore create an objective comprising two parts:

1. For the first part we attempt to make the constituent madeldel the data well
by encouraging th& term to be small. We use training data log-likelihood to
do this. There are two clear candidates forms for this pahie first candidate
involves a simple sum of the log-likelihoods for each cadnstit model, so has
the form:

LL
Za

wherelLLy denotes training data log-likelihood under model

The second candidate involves a weighted sum of log-likelits for each con-
stituent model. This therefore has the form:

LL
;Wa a

where, as before, the, are the per-model weights. For the rest of the chapter

we will consider the first candidate above as the default,cagh the second
candidate being a possible variant on this.

2. In the second part of the objective function we attemptricoerage diversity
among the constituent models by constructing a term whighiatty penalises
a small ambiguity. As in the first part, we experiment with tieoms for this
term. The first form, which we call thiel form, looks like:

>i<
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where A is the ambiguity from Equation 7.1. The non-negative patamg
controls the degree to which the penalty is effective. Tleesd form, which we
call theL2 form, looks like:

y
A2

The termd.1 andL2 are coined from an analogy with conventional per-model

priors. The termL1 prior is often used to signify a prior that is a linear in the
model parameter in log-space, such as the Laplacian pricsamein Chapter
5. Correspondingly, the term2 prior is often used to signify a prior that is
guadratic in the model parameters in log-space, such as astaauprior. For
the rest of the chapter we will consider th& form of the penalty term as the
default case, and tHe2 form as a possible variant. Note that both forms of the
diversity penalty encourage the ambiguity to be as larg®asiple by penalising
values close to zero. We could in addition penalise ambegithat are too far
away from some preferred value we have in mind for the ambygiihis could
be achieved by including additional penalty terms in theeotiye. We do not
consider this level of refinement however.

The parametey is a little like a hyperparameter of a prior distribution égerior
families in Chapter 5). For large values pthe effect of the prior begins to dominate
in the objective function, putting more emphasis on diwgisetween models and less
on individual model quality. Conversely, for small valués/anore emphasis is placed
on model quality and diversity becomes less important. éhaktreme case whege
is 0, the prior term is non-existent and the co-operativinimg framework collapses
to the standard case where the individual models are tram#zbendently, with no
interaction between parameters in different models.

Putting together the two parts from above, the default fasnolr objective func-
tion becomes:

/\()\)ZZLLG—% (7.2)

7.3.2 Derivatives of the Objective Function

In order to be able to optimise the objective function démamtiin the last section
using the numerical optimisation routines we outlined ira@ier 3, we must be able to
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evaluate the derivative of the objective with respect topghiameters we are adjusting.
With co-operative training we are training model parameterall constituent models
together, simultaneously. Therefore we need an expregsiaie derivative of the
objective function with respect to a particular parameteriparticular constituent
model. Let us denote this byg,: it is thekth parameter in modeg.

To make the derivation clearer, let us denote the seconditecur objective by a
general function of the ambiguity and callfi{A), like this:

AM) = LLg—f(A) (7.3)

From our discussion in section 7.3.1 we know the) will be eitherX or ;. There-
fore, we need to evaluate the following:

oN 0 {
- = ——|JLL —f(A)]
0Apk 0Apk ; ‘

OlLg OA

_ ; v f’(A)WBk (7.4)

Clearly, the first term in Equation 7.4 is easy to evaluateahse it is just the sum of
the derivatives of the log-likelihoods of the data underheaicthe constituent models.
In standard CRF training we need to calculate such a dere/ébr the single model
we are using. Here we just need to do it across all the modaishé technology is the
same. If we are using a weighted sum of log-likelihoods nattien an unweighted sum
(the other possibility for the first term in the objectivedissed above), the calculation
is marginally more complex but does not cause any problem.

The second term in the derivative in Equation 7.4, howeges, little more com-
plex. Clearlyf’ (A) is either—A—V2 or —%’, respectively, for th&1 andL2 forms of the
diversity term in the objective. Provided we can evaluaitself, neither of these two
terms pose any problems. The potential problem, thougs ihiehe derivative ofj,
ie. %'

Before attempting to evaluatg\%, let us first re-expresA in a slightly different
form to the one we have been using up to now. This re-repragentwill make the
derivation a little easier. Currently, we have the follogigefinition forA:

A= ZWGK(pLoPa pa) (75)

a
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Expanding the KL-divergence term, we have:

A = TWo (O3 pur(s]0llog| B S (7.6)

4 Pa (s]0)
Moving the sum over thev, through the expression, expanding the logarithm and
dropping the arguments f@.. andp, to save space, we have:

Z [3(0) Z ZWG [pLOPlOg pLOP - pLOPlOg pa] (7-7)
0 S

Remembering thef , Wy = 1, we get:

A = Zﬁ(0>z[pmplogpmp—pLopralogpa}
[0} S a

= Z p(o) Z [pmplog PLor — PLorl0g [|:| pYJV"H (7.8)

But, as we defined earliep o, = “ngg SO we can re-express Equation 7.8 as:

P(0) > [Porl0gPror — PLorlOG [PLopZicr]]
S

(0) > [PLorlOg Pror — Pror10g P — PLop |09 Zop)
S

= = Z [5(0) logZioe (7.9)

where, in last transition, we have used the fact Hatis not a function of the labelling
sand of cours& ¢ p.or (S| 0) = 1 for anyo. Remember that, ., is a function ofo so
re-introducing the function notation, our new expressionrX is:

z |Og ZLOP (710)

0]

Now that we have an expression #yrwe can take the derivative with respect to a
general paramete¥p,:

oA . 1 0Z.(0)
= _ o
g~ 2P 070 aan

(7.11)
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Therefore we need to evalua%f—:’. Remember thaZ,., is the normalising function
in the definition of the LOP. Hence:

Zor(0) = 3 []Palslo) (7.12)
S a

So we need to take the derivativeaf, ps (s|0)", but it is actually easier to take the
derivative of the logarithm of this quantity. So we woulddik way of expressing the
derivative of a function of a variable in terms of the derivatof the logarithm of that
function. For this we use a trick:

0 1 of

oot = gy (7.13)
and so:

of 0

o = (0 5-log[f (%) (7.14)

Taking the derivative oZ, ., in Equation 7.11 using this trick we get:

df;j\;(ko) _ Z(l_l ) {ZWalogpa}
() gt
dlogpg

= ()G, 79

Now, pg (s|0) is the probability density function for a standard CRF, spdp has the

form:

= > > Agjfpj(s,0,n)—logZs (o) (7.16)

whereZg is the normalisation constant for modgland fg; (s,0,n) refers to thejth
feature in modep3 on cliquen in a sequence with observatiorand labellings. So,
taking the derivative with respect #gc (which we need in Equation 7.15 above), we
get:
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dlogpg
= Agifgi(s,0,n)—logZg (o
0Apk 9Apk [Z; pitei 925! >]
= fa (S,0,n) — 7.17
;Bk( ) Z5(0) g (7.17)

The second term on the right-hand side here can be evalugtively easily, as fol-
lows:

1 0 /
Zg(0) dAgx  Zg(0) dAg [;exF)(nZJZAﬁrfm' (io,n))]
— Z;i()) g [Z ka (S/,O7 n’)] exp(Z ZAﬁi'fBj’ (S’,O, n/))
n T
— ;LZ fgr (S0 n)] Zﬁl( exp(ZZ)\m/fm s, o0, n))

= ;pﬁ (s'|o) [; fgk (8,0, n’)] (7.18)
Therefore, our expressmnf ipﬁ in Equation 7.17 becomes:
d(l;;\g Pe _ > fpk(s.on) - g ps (s']0) [Z fgk (8,0, n’)] (7.19)
Bk n m
and, in turn 9Z10p(0) Equation 7.15 becomes:

5 - 30wy fynl]| oo

Expanding the outer bracket in Equation 7.20 above and isutrst) into our original

expression fo B 2= in Equation 7.11, we finally arrive at:

oA ~ [Na paa>
—— = — P(o ( wg ) fgr(s,0,n)
9 gk % B; B

LOP

+Z|5 ( )wﬁzpﬁ(gm)[;fﬁk(g,o,nf)]
2.7

g
Prop s\ 0)Wg Z fgi (s,0,N)

n

o™M

o

—

e ©
oM oM )

PLor (S| 0) W5 ; pg (']0) [Z fg (S0, n’)] (7.21)
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In the second term on the right-hand side here, we are takingighted sung 5 over
labellingss weighted by thep,o- (S| 0) distribution. However, as the argument to the
sum (i.e. thewg and innery ¢ sum) is not a function of the labellirg it can be taken
outside they ¢ sum and the sum itself just collapses to 1. Hence we can Sintpé
whole expression to:

oA
a)\—ﬁk = Z ZpLOP S|0Wﬁzfﬁkson)

[0)

+5 Bl WBZpB (s'o) Zf,;k (s,o,n)
s n

[¢]

= —WgEp,o, [ fpk] +WpaEpj [ ]
= —Wg |:EpLOP [fﬁk} - Epp [fﬁk]] (7.22)

Therefore the derivative & with respect to a generéth parameted gy in one of the
constituent modelg is actually the difference between the expected count cdisise-
ciated feature under that model and the expected count afstheciated feature under
the LOP. Armed with this we can now evaluate the derivativéhefentire objective
function in (7.4). It becomes:

ZA dLL
gk Z R BZ A)wg [Epmp [ faK] —Enpg [f,gk}] (7.23)

We evaluate this expression on each iteration of co-operataining, and pass it to
the number optimisation routines along with the value ofdhgctive itself.

From the form of the objective function and its derivativesided above, we sus-
pect that the objective is convex in the model parametersveder, so far we have not
been able to prove this.

7.4 Decoding

The specification of an alternative objective function awal@ation of its derivatives
make co-operative training a little more complex than theikaase of LOP training
we introduced in Chapter 6. However, once the constituertaischave been trained
within the co-operative training framework, decoding thedals under a LOP is iden-
tical to before.
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Expert 1 Expert 2 Expert

LOP

Figure 7.3: Schematic representation of architecture for co-operative training.

7.5 Implementation

In this section we give both a schematic description of thitecture, and look briefly
at the specifics of the software implementation.

7.5.1 Schematic Representation
7.5.1.1 Training

Figure 7.3 gives a schematic representation of the ar¢hiegve use for co-operative
training. For the purposes of illustration in the diagrane see a LOP with three
constituent models, or experts. In addition to the constitumodels, we think of
the LOP itself as having a distinct identity, with its own eodDuring training (and
decoding) information flows back and forth between each titoiesit model and the
LOP. This information can be single valued data, like a deuklpresenting a per-
model weight, or a vector of values, like a vector of doubkgmresenting a parameter
vector or gradient vector. The illustration depicts onelsagample communication.
It shows the subsets of a vector residing at the LOP node tssiagered to different
constituent model nodes. Each subset of the vector conitafimsnation relevant to
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the respective constituent model.

During training we need to pass the value of the objectivetion from Equation
7.3 and its gradient vector from Equation 7.23 to the li@sigontaining the numerical
optimisation routines. This only need occur at one node yamdhoose the LOP node
as the most natural choice for this. Therefore the LOP nodst i aware, and be
able to communicate, all terms in Equations 7.3 and 7.23ddiltnaries. In order for
this to occur, a sequence of communication operations legtwes LOP node and the
constituent model nodes takes place during each iterafitreao-operative training.
The low-level details are a little intricate, but in essettoe following takes place in
each iteration:

1. Anupdatedjlobal parameter vectorcontaining all parameters in all constituent
models, and the per-model weights, is received by the LOR i the li-
braries.

2. Subsets of this parameter vector, each containing madahpeters and a per-
model weight, are sent to the respective constituent mauki s

3. Each constituent model calculates itglistribution vector, i.e. a vector rep-
resentingpy. This encodes probabilities for all labellings of sequenicethe
training data given the updated values (for the currenaiten) of the model
parameters.

4. Each constituent modal communicates its distribution vector to the LOP node.

5. The constituent model nodes and the LOP node processititaiin parallel:

e Each constituent model calculated L, ‘;';ﬁ and the vector representing

Epa [ fpx]-
e The LOP node calculates itstribution vector representing, o, the am-
biguity A, f (A) and the vector representingE, [ fpx]-

6. Each constituent modelsendd L, 2-5e and the vector representingH fs]

to the LOP node.

7. The LOP node gathers the data together and evaluates jibetiod function
from Equation 7.3 and its gradient vector from Equation 7.28then sends
these to the the optimisation libraries, and the procestssiger.
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7.5.1.2 Decoding

As mentioned in section 7.4 above, the decoding of a LOP stingiof constituent
models with co-operatively trained parameters is no morapex than the LOP de-
coding described in Chapter 6. However, given the architectequired for the co-
operative training algorithm, it is easy to decode (bothesctically and in practice)
within the same framework. The decoding therefore invothesfollowing steps:

1. Each constituent model reads in a parameter vector from the training stage
(the final parameter vector or one representing a partigtéaation) and also
reads in a specified dataset for decoding. Using the pararest®r, each model
calculates itglistribution vector, i.e. the vector representing, for that dataset.

2. Each constituent modal communicates its distribution vector to the LOP node.

3. The LOP node gathers together the constituent modelldistn vectors and
weights them, so forming and thiéstribution vector representingp,op.

4. The LOP node undertakes the decoding of the specifiededatd$he actual
decoding step itself therefore occurs only at the LOP node.

7.5.2 Software Implementation

The software we have written for co-operative training ipiemented in C++ and Perl.
Perl scripts generally control high-level behaviour. Frample, a single Perl script
would define all the settings and necessary actions to be takeparticular experi-
ment. The C++ code by contrast controls the lower-level, mat@tionally intensive
behaviour for the training and decoding of the models. The €ade is divided into
two binaries, one for training and one for decoding. Eachheke is evoked from a
Perl script with the correct flag settings for the experimagriiand.

The C++ code for model training and decoding is parallelisstd is designed
to work on a cluster of machines. Use of multiple machines ieeessity because
for co-operative training to be efficient, a representatidreach constituent model
must be maintained in memory during the training processéasbe seen from our
calculations of the objective function and its gradientteeearlier). In general this
memory requirement is far too large for any single machir e have access to. We
make use of an implementation of threessage passing interfac@P1)! protocols to

Ihttp://www-unix.mcs.anl.gov/mpi
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Expert 1

o3

3 @3

Expert 2

Figure 7.4: Software architecture for co-operative training.

aid communication between the nodes in the cluster. The MRirles are described
in more detail in Chapter 3.

Figure 7.4 gives a more software-specific representatidimeodirchitecture than the
more general view in Figure 7.3. In the simplest case, eaoktitoent model occupies
only one node of the cluster, with the LOP node also occupgingde. However, for
some tasks and/or datasets we may need to parallelise eastitwent model across
multiple nodes. This situation is illustrated in Figure ,AMth each constituent model
being spread across three nodes. When this extra level aligegation is in effect, the
LOP node communicates with one “representative” node fraoh&onstituent model.
We call this representative node thateway node In Figure 7.4, the gateway nodes
are represented by the larger circles in each constituedehgrouping. Therefore,
there are really two levels of communication: communiaatiothin each constituent
model, between the constituent model’s gateway node aradhies nodes, and com-
munication at the level of the LOP, between the gateway nadesthe LOP node
itself. The MPI infrastructure makes this two-level comnuoation easy to implement
in an elegant way. We do this by defining an MPI communicatoe&xh constituent
model, including only the nodes in that constituent modéleSe communicators are
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represented by the inner circles in Figure 7.4. We then deinee"global” communi-
cator that contains only the gateway nodes and the LOP ndais.cbmmunicator is
represented by the outer circle in Figure 7.4. Defining tloesemunicators means we
can use a C++ class structure that wraps the MPI communistitature and allows a
single set of C++ class member functions to implement agfieMP1 behaviour poly-
morphically depending on the level of abstraction of the sage passing at a particular
time.

7.6 Experiments

In our experiments our primary goal is to establish the ¢ffeaess of the diversity
penalty term in creating better performing LOPs. Our seeoyngoal is to conduct a
preliminary investigation into the sensitivity of the tné&ig process to various changes
in the setup, such as the use of a different log-likelihoooht@ the objective, different
forms for the penalty term, and use of different expert sétsorder to handle these
possibilities we define default configuration and then investigate variants of this
default by modifying a single aspect in each case. All of teeeiments are conducted
on the NER task described in Chapter 3.

7.6.1 Default Configuration

The default configuration for our experiments consists efftillowing:

=

. Default objective function defined earlier, igq LLy — %(

N

. Unregularised constituent models

w

. Uniform per-model weights

4. STANDARD and SIMPLE constituent models only

We could start the co-operative training from the zero pat@mvector for each con-
stituent model in the LOP. However, this would make the pseaenecessarily ineffi-
cient because we already have a set of good candidate vémtatsrting the training
from the experiments in previous chapters. Therefore, e talvantage of this set
by seeding each constituent model witlp@ming vector. This vector, for a given
constituent model, is the one that achieved the best F seotheodevelopment set
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Figure 7.5: Development set F scores for an unregularised co-operatively trained LOP.
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Figure 7.6: Test set F scores for an unregularised co-operatively trained LOP.

when the model was trained originally (independently of attyer model). We use
this seeding technique in this section, and the other sextlat follow.
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Figure 7.5 shows development set F scores for the defaufigrtmation as the
co-operative training progresses. It is represented byhtgkest of the three lines
in the figure. The lowest line, the straight one, shows thedfestor a single LOP
created using the priming vectors for each constituent rinaade using uniform per-
model weights. Hence this is one of the LOPs we first reportethsection 6.5.2.2.
The middle line is intended to act as a baseline for the pevdoce of the default
configuration. This line shows what happens when the caestitmodels continue
to be trained, unregularised, starting from their primiregtors but independently of
each other, with no interaction. The F scores that the cpording LOP achieves are
higher than the score it achieved at the priming vector piet represented by the
straight line). However, this is just a facet of the optintisaroutine. Having started to
re-train each model at its priming vector, the training @auare takes the models into
a region of the parameter space where the resulting LOP happedo better than it
did previously when the constituent models were each tddirem the zero parameter
vector. This is not an important point though. The importamint is that the default
configuration, trained using a diversity penalty, outperfs this baseline. Figure 7.6
shows the test set F scores corresponding to the develom®iestores in Figure 7.5.
We can see that, once again, the default configuration sgasignificantly higher than
that of the baseline. We therefore have evidence that theepoe of the diversity
penaltyis achieving the intended effect of making the constituenteochore diverse
and so improving the corresponding LOP.

The default configuration shown in the figures corresponds/tealue of 1, which
we found using manual tuning on the development set. Howkuéner improvements
are likely to be possible with a more thorough search ofjtlspace. We use the same
manual tuning approach in each of the following sections.

7.6.2 Using Regularised Experts

In Chapter 6 we looked at LOPs created from regularised @¢aest models, and
compared them to LOPs comprising only unregularised modéls found that the
unregularised LOPs performed better. We now make the sam@axdson with co-
operatively trained constituent models. To do this we utadker co-operative training
with a diversity penalty, but simultaneously regularise ttonstituent models using
separate Gaussian priors. For each model we use the (paraimd¢pendent) optimal
Gaussian variance, found using the development set whendldels were trained in-
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Figure 7.7: Development set F scores for a regularised co-operatively trained LOP.

dependently. For the STANDARD model this value is 44, whilethe SIMPLE model
it is 100. Of course, these values are not necessarily opfonaghe co-operatively
trained constituent models as they were established whanraadel was trained in-
dependently, but they should form good approximations éoojptimal values.

Figure 7.7 shows development set F scores for the defauligtoation modified
to use regularised constituent models. The figure also sheasion-co-operatively
trained LOPs, one with unregularised constituent modsiséan in Figure 7.5) and the
other with regularised constituent models, combined witifiarm per-model weights.
These are LOPs we presented results for in Chapter 6. Theaj@eeformance profile
of the co-operatively trained LOP is similar to the one obedrin Figure 7.5 with
the unregularised constituent model LOP. We therefore aad#ional evidence that
the diversity penalty improves the LOP, this time in the pres of alternative, per-
model regularisation. As we observed in Chapter 6, howéven OP with regularised
constituent models underperforms the LOP with unregugdri:iodels. Once again,
we attribute this to the subtle trade-off between modelitpuahd LOP diversity, the
regularised models being better models of the underlyistribution but also being
less diverse because they are closer to the uniform disisitou



144 Chapter 7. Co-operative Training of LOPs

7.6.3 Using Weighted Log-Likelihoods
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Figure 7.8: Development set F scores for an unregularised co-operatively trained LOP

using a weighted sum of log-likelihoods in the objective function.
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Figure 7.9: Test set F scores for an unregularised co-operatively trained LOP using a

weighted sum of log-likelihoods in the objective function.
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In the default configuration the first term in the objectivadtion is the sum of the
log-likelihoods of the constituent models. In this sectwoa investigate the effect of
replacing that term with aveightedsum of log-likelihoodsy , wqLLy. Note that the
weights used in this weighted sum are the same as the weigidsiii the calculation
of the LOP distribution during training and decoding, so \wealso using non-uniform
weights in the LOP generally, unlike in the default configima.

Figure 7.8 shows development set F scores for LOPs co-apalgatrained with a
non-uniformly weighted sum of log-likelihoods. Figure &Bows the corresponding
test set F scores. Clearly, the lines labelle®(0.5) just represent the default configu-
ration. From the figures we can see that the choice of weigirtsake a significance
difference to the performance of the resulting LOP when peratively trained. For
example, the default configuration performs significantbttér on the test set than
that the LOP with weights (@, 0.6), although on the development the difference is
less clear. Other weight combinations produce similariecaperformance profiles.
This suggests that it would be worthwhile to devise a stgategautomatically finding
optimal weight choices. Typically such a procedure wouldureas a separate pro-
cess, offline, before the co-operative training commenkEksvever, this extension is
beyond the scope of the thesis, and we leave it for future work

7.6.4 Using Other Diversity Penalties

In the co-operative training framework, the second ternhexdbjective function is the
diversity penalty. When we described the diversity penahylier in the chapter we
proposed two forms that it might take, although many otheiads are possible. The
default configuration contains the form of the penalty term, but we also suggested
anL2 form. In this section we look at the effect of using thiz form.

Figure 7.10 shows development set F scores for LOPs co-iymdyetrained with
bothL1 andL2 forms for the diversity penalty. Figure 7.11 shows the cgprnding
test set F scores. We can see from the figures that neitherdonsistently outper-
forms the other across both datasets. Theform tends to do better than the& on
the development set while the situation is reversed on thtestd. This suggests that
alternative forms for the diversity penalty, such as lt2eform, can also be effective
in improving the LOP with co-operative training. Howeveruoh additional work
is required in this area to ascertain the precise propesfies effective penalty. The
functional form of the penalty effects its influence in th¢emive function. Too strong
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Figure 7.10: Development set F scores for an unregularised co-operatively trained LOP

using an L2 diversity penalty in the objective function.
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Figure 7.11: Test set F scores for an unregularised co-operatively trained LOP using

an L2 diversity penalty in the objective function.

a penalty can lead to ambiguity dominating over accuracgreds too weak a penalty
can have the opposite effect. Although the general influexidbe penalty may be
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Figure 7.12: Development set F scores for an unregularised co-operatively trained LOP

using POSITIONAL experts.

controlled through a parameter such asyivee discussed earlier, this form of control
may have too crude a calibration if the functional form of gemalty is not suitable.

7.6.5 Other Expert Sets

All the co-operative training results we have presentedasanfthis chapter have in-
volved LOPs comprising a single expert set consisting ofSMRANDARD and SIM-
PLE models. In this section we investigate whether the samséiye results for the
diversity penalty extend to other expert sets. In particule look at the LABEL and
POSITIONAL expert sets that we described in Chapter 6.

Figure 7.12 shows development set F scores for LOPs co-ydyetrained with
POSITIONAL experts. Figure 7.13 shows the test set F scoFegures 7.14 and
7.15 give the corresponding graphs for the LABEL expert sHte straight line in
each graph represents the score the corresponding LOMebdtahen the constituent
models were trained independently. From the four graphsawvesee that we obtain
similar behaviour with the POSITIONAL and LABEL expert setden co-operatively
trained with a diversity penalty, as we do with the SIMPLE extset used earlier. We
therefore have additional evidence that the diversity ftgigachieving its purpose.
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Figure 7.13: Test set F scores for an unregularised co-operatively trained LOP using

POSITIONAL experts.

90

89.8

89.6

F Score (%)

89.4

89.2

89

COT LOP LABEL ———
_ Static LOP LABEL -~

20

40

60

80 100 120
Iterations

Figure 7.14: Development set F scores for an unregularised co-operatively trained LOP

using LABEL experts.
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Figure 7.15: Test set F scores for an unregularised co-operatively trained LOP using
LABEL experts.

7.6.6 Joint Parameter and Weight Training

In this chapter we have focused only on co-operative trginiithe constituent mod-
els, and have ignored the task of additionally learning teerpodel weights in the
LOP (thewy). It is possible, however, to extend the co-operative ingiriramework
to include weight training. This would involve evaluatiohtbe derivatives of the ob-
jective function with respect to the model weights. Theioedtcalculation of these
derivatives is actually simpler than the parameter dekieaterivation we presented in
section 7.3.2, and subsequent modification to the frameworkd not be huge. The
work is, however, beyond the scope of the thesis, and so we leto future work.

7.7 Summary

In this chapter we have explored how to encourage diversityéen constituent mod-
els in a LOP by manipulating the CRF training algorithm dikgclIn particular, we
introduced the idea of co-operative training of LOP constiit models, where param-
eters in different models interact during the training e We encourage diversity
between the models using a specially formulated objectimetion which includes a
diversity penalty term.
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Our main results show that the presence of a diversity terthénobjective can
indeed lead to LOPs with improved performance. We have shbismo be the case for
LOPs created from a number of the expert sets we introduc€hapter 6. The work
in this chapter therefore representp@of-of-concepfor the idea of manipulating
diversity during training. The space of possibilities foora thorough investigation
of the ideas we have presented in this chapter, and extentiotmem, is vast. We
have really only scratched the surface here, and many aspactant more thorough
investigation. For example, our results show that manimdahe log-likelihood part
of the objective function can affect the LOP’s performanza significant degree. We
were using a weighted combination of constituent modellikg/thoods, but other
functions of the log-likelihood are possible. We proposed tandidate forms for the
diversity penalty, but many other possibilities exist. tddion, we only looked at co-
operatively training the parameters of constituent modethis chapter, but it is also
possible to incorporate the search for optimal per-modegkts into the framework.
We leave all these issues as possible avenues for futurarcbse
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Applications of LOPs: Highly

Discriminative Features

In Chapter 6 we introduced the logarithmic opinion pool fdREs and showed how
it may be seen as an alternative to conventional regulaisaf a CRF with a prior.
Our explanation for the good performance of the LOP was basddeambiguity de-
compositionin Equation 6.13. The decomposition motivated the ideaalygiod LOP
contains constituent models that are both individuallyaate and mutually diverse in
a KL-Divergence sense.

In this chapter we change angle slightly and view the LOP faomalternative
standpoint. In particular, a LOP may be seen as a solutiom important but generally
under-appreciated problem that occurs when training CBRg,log-linear models in
general, with highly discriminative features. A highly disninative feature in this
context is a feature which is often sparse, and whose olsamveontext is highly
correlated with the corresponding label that it encodesiddeéhe observation context
is a strong predictor of the label. An example of such a featauld be a gazetteer
feature, and indeed, as we shall see later in the chapteyriexperiments we use
gazetteer features as illustrative examples.

We demonstrate in the following sections that althoughusidn of such highly
discriminative features in a model in general leads to impdoperformance, it can
also cause negative effects. These effects stem from anrehemce by the model
on these features to explain the data. By including the natufes in the model,
we transfer explanatory power to these features away frarettisting features, so
making the existing features less expressive. This canttea€rtain types of labelling
errors during decoding. Our conclusion is that to fully res®s the power of highly
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discriminative features a more careful training regime trhes used, and we show
that training and then decoding using a LOP is a solution ligs.t At the end of
the chapter we show that in addition to gazetteer featumaslas behaviour may be
obtained with other subsets of discriminative features,\aa show how such subsets
may be identified.

8.1 Gazetteers and Gazetteer Features

In order to demonstrate the problems with discriminativatdees we have outlined
above, we need to be able to identify a subset of featuresnaatimodel, or a set of
features that could be added to a model, that have this ais@tive property. To do
this we make use ajazetteer featuresas a running example throughout the chapter.
In this section we introduce the idea behind gazetteershamdthey are used with
log-linear models via gazetteer features.

When using a CRF, or a log-linear model in general, on a task as NER, one
usually constructs features in the model which representifpendencies between a
word’s NER label and local contextual properties of the wibvat are thought to influ-
ence the NER label, such as the word itself, its part-of-slpésgy or some orthographic
properties of the word. However, one sometimes encounteestity which is difficult
to identify using these local contextual cues alone bectgsentity has not been seen
before. In these casesgazetteeror dictionary of possible entity identifiers is often
useful. Such identifiers could be names of people, plac@spaaies or other organisa-
tions. Using gazetteers one may define additional featardsei model that represent
the dependencies between a word’s NER label and its preseagarticular gazetteer.
Suchgazetteer featuresare often highly informative, and their inclusion in the nebd
should in principle result in higher model accuracy. We dibscthe gazetteers we use
for the experiments in this chapter, and the features theba dependencies upon
them, in the next few sections.

To date gazetteers have been widely used in a variety ofnrdtion extraction
systems, including both rule-based systems and statistiedels. In addition to lists
of people names, locations, etc., recent work in the biooadiomain has utilised
gazetteers of biological and genetic entities such as games (Finkel et al., 2005;
McDonald and Pereira, 2005). In general gazetteers aregttida provide a useful
source of external knowledge that is helpful when an enatynot be identified from
knowledge contained solely within the dataset used foningi. However, some re-
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search has questioned the usefulness of gazetteers (Kanpkdausman, 1998; Mor-
gan et al., 1995). Other work has supported the use of garstie general but has
found that lists of only moderate size are sufficient to pdevimost of the benefit
(Mikheev et al., 1999). Therefore, to date the effective afsgazetteers for informa-
tion extraction has in general been regarded as a “blackAasta result of this, in using
gazetteer features as illustrative examples of the morergédiscriminative features
we talked about earlier, we are also providing in this chaptpossible explanation
for some of the conflicting results witnessed in the past waygplying gazetteers to
various information extraction tasks.

The material we present in this chapter is based on one ofanference papers
(Smith and Osborne, 2006). While we were developing thesidgatton et al. (2006),
independently and in parallel, were following a similarriie In their paper they
identify general problems with gazetteer features andgseg solution similar to our
LOP approach. They present results on NP-chunking in atditi NER, and provide a
slightly more general approach. By contrast, we motivaegiioblem more thoroughly
through analysis of the actual errors observed and throaghkideration of the success
of other candidate solutions, such as traditional regsedion over feature subsets.

8.2 Experimental Setup

Before looking in more detail at the problems encounteredmiinaining models with
highly discriminative features, we first describe the seftupthe experiments in this
chapter. We also provide results for the baseline models, and without gazetteer
features. Subsequent sections in this chapter discussags which use, and extend,
the models described here.

8.2.1 Task and Dataset

As we alluded to in the introduction to the chapter, we comndwe experiments on
NER. This is mainly for illustrative purposes: gazetteattees are particularly good
examples of the discriminative features whose effect wergneg to investigate in the
chapter, and NER is a task particularly conducive to the diggpetteers in helping
to correctly label entities unseen in the training data. Afke we use the CoNLL-
2003 shared task English dataset (Kim Sang and Meulder,) 208B8we described in
Chapter 3.
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Gazetteer Name Entry Type # Entries

SUR-GAZ People surnames| 88 799
FEM-GAZ female first names| 4,275
MAL-GAZ male first names 1,219
PLA-GAZ place names 27,635
COMP-GAZ-1 company names | 20,638
COMP-GAZ-2 company names | 279,195
ORG-GAZ | organisation namés 425

Table 8.1: Properties of the seven gazetteers.

Bea Angl i can Church
Beat a Angl i can Conmuni on
Beatrice Anti-Masonic Party
Beatris Arab League

Beatriz Armini an Bapti st

Table 8.2: Extracts from the FEM-GAZ and ORG-GAZ gazetteers.

8.2.2 Gazetteers

For the experiments in this chapter we employ a total of sgezetteers. These cover
names of people, places and organisations. Table 8.1 gatagsdof the gazetteers,

along with the names we will use to refer to the gazetteerbenchapter. Table 8.2

gives extracts from the FEM-GAZ and ORG-GAZ gazetteers. #slme seen from the

table, the gazetteer entries may consist of single or neltords.

8.2.3 Feature set

In Chapter 4 we described the STANDARD model for NER. For tiigegiments in this
chapter we modify the STANDARD model by including an addiabset of features
defined using the gazetteers above. We call this modified hibd STANDARD+G
model, and call the extra featurgazetteer features

Our gazetteer features encode whether a particular wordaappn a particular
gazetteer. We divide the gazetteer features into two setdexicalised and lexi-

INames of organisations other than companies, such as goeetragencies, charities, etc.
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Label predicates Observation predicates

§S=S W; is in gazetteer SUR-GAZ
W; is in gazetteer FEM-GAZ
W, is in gazetteer MAL-GAZ
W; is in gazetteer PLA-GAZ

W; is in gazetteer COM-GAZ-1

W; is in gazetteer COM-GAZ-2
W; is in gazetteer ORG-GAZ

Table 8.3: Feature templates for unlexicalised gazetteer features.

calised The unlexicalised features model the dependency betwaemdis presence
in a gazetteer and its NER label, irrespective of the worEsitity. The lexicalised fea-
tures, on the other hand, include the word’s identity andrswide more refined word-
specific modelling of the gazetteer-NER label dependenhyg. f€ature templates that
define the unlexicalised and lexicalised gazetteer featame shown in Tables 8.3 and
8.4 respectively. Defining gazetteer features in this waheéstypical method of rep-
resenting gazetteer information in log-linear models. éNitblat some gazetteer entries
involve multiple words where not all the words appear indially in the gazetteer.
Consequently, the lexicalised gazetteer featuresatrsimply determined by the word
identity features.

In total there are 35 unlexicalised gazetteer features a2@8exicalised gazetteer
features. Therefore, together with the 4386 features in the STANDARD model for
NER, this gives a total of 45875 features in STANDARD+G model.

8.2.4 Baseline Results

Before exploring the overtraining effect that gazetteeatdiee can have in the next
section, we first give baseline results for the STANDARD+Gdelo We include the
results for the STANDARD model for comparison. Table 8.5egi\F scores for the
two models, both unregularised and regularised models.eldpment set scores are
included for completeness, and are referred to later in ttepter. The regularised
models are trained with a zero-mean Gaussian prior, withvéitEnce set using the
development data.

From the table we see that the addition of the gazetteerrsatllows the STAN-
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Label predicates Observation predicates

S$=S W, = W, W; is in gazetteer SUR-GAZ
W = W, W, is in gazetteer FEM-GAZ
W, = W, W; is in gazetteer MAL-GAZ
W =W, W; is in gazetteer PLA-GAZ

W =W, W; is in gazetteer COM-GAZ-1

W, =W, W; is in gazetteer COM-GAZ-2

W =W, W; is in gazetteer ORG-GAZ

Table 8.4: Feature templates for lexicalised gazetteer features.

Development Test
Unreg.| Reg. | Unreg.| Reg.

STANDARD 88.21 | 89.86| 81.60 | 83.97
STANDARD+G | 89.19 | 90.40| 83.10 | 84.70

Model

Table 8.5: F scores for STANDARD and STANDARD+G models.

DARD+G model to outperform the STANDARD one, for both the egularised and
regularised models. In each case, the STANDARD+G modelevftdpns the STAN-
DARD model at a significance level g < 0.02. Therefore, the addition of the
gazetteer features appears to lead to a positive improvetdewever, as we alluded to
in the introduction to this chapter, these results camoafthg fact that the gazetteer
features introduce some negative effects. As such, thebegaéfit of including the
gazetteer features in STANDARD+G is not fully realised.

8.3 Error Analysis of Gazetteer Features

We identify problems with the use of gazetteer features Imgictering test set labelling
errors for both STANDARD and STANDARD+G. We use regulariseddels here as
an illustration. Table 8.6 shows the number of sites (a s#ieda particular word
at a particular position in a sentence) where labellingehayproved, worsened or
remained unchanged with respect to the gold-standardliladpelith the addition of
the gazetteer features. For example, the value in the fopdkis the number of sites



8.3. Error Analysis of Gazetteer Features 157

STANDARD+G

v 0]
v 44945 160
0 228 1,333

STANDARD

Table 8.6: Test set errors.

where both the STANDARD and STANDARD+G models label wordsectly.

The most interesting cell in the table is the top-right on&joh represents sites
where STANDARD is correctly labelling words but, with thedatibn of the gazetteer
features, STANDARD+G mislabels them. At these sites, titbtach of the gazetteer
features actually worsens things. How well, then, couldSFANDARD+G model
do if it could somehow reduce the number of errors in the igptrcell? In fact, if
it had correctly labelled those sites, a significantly higtest set F score of 986%
would have been obtained. This potential upside suggesth cnuld be gained from
investigating ways of correcting the errors in the top-tigéll. It is not clear whether
there exists any approach that could corrattthe errors in the top-right cell while
simultaneously maintaining the state in the other cells approaches that are able to
correct at least some of the errors should prove worthwhile.

On inspection of the sites where errors in the top-right cetiur, we observe that
some of the errors occur in sequences where no words are iyaastteer, SO no
gazetteer features are active for any possible labellinthese sequences. In other
cases, the errors occur at sites where some of the gazettgards appear to have dic-
tated the label, but have made an incorrect decision. Asuidt i@fsthese observations,
we classify the errors from the top-right cell of Table 8.6oitwo types:Type A and
Type B.

8.3.1 Type A Errors

We call Type A errors those errors that occur at sites whereti@er features seem to
have beemlirectlyresponsible for the mislabelling. In these cases the gead#tatures
effectively “over-rule” the other features in the model seag a mislabelling where the
STANDARD model, without the gazetteer features, correlethels the word.

An example of a Type A error is given in the sentence extraldvize

about/ O Heal y/I-LQCC
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This is the labelling given by STANDARD+G. The correct lalfet Heal y here is

| - PER. The STANDARD model is able to decode this correctlyHaal y appears in
the training data with the- PER label. The reason for the mislabelling by the STAN-
DARD+G model is thateal y appears in both the gazetteer of place names and the
gazetteer of person surnames. The feature encoding thaéemzeaf place names with
thel - LOClabel has a parameter value (valueAgfof 4.20, while the feature encoding
the gazetteer of surnames with thePER label has a parameter value o6, and the
feature encoding the wortdeal y with thel - PER label has a parameter value oP6.
Although other features both at the wdtidlal y and at other sites in the sentence con-
tribute to the labelling oHeal y, the influence of the first feature above dominates. So
in this case the addition of the gazetteer features has sedfihings at test time.

8.3.2 Type B Errors

We call Type B errors those errors that occur at sites wherg#zetteer features seem
to have been onlindirectly responsible for the mislabelling. In these cases the misla-
belling appears to be more attributable to the non-gazdttatures, which are in some
sense less expressive after being trained with the garéttgares. Consequently, they
are less able to decode words that they could previously taveectly.

An example of a Type B error is given in the sentence extracwe

Chander paul / O was/ O

This is the labelling given by STANDARD+G. The correct ldbed, given by STAN-
DARD, is| - PER for Chander paul . In this case no words in the sentence (including
the part not shown) are present in any of the gazetteers saznettger features are
active for any labelling of the sentence. Consequentlygdmeetteer features do not
contribute at all to the labelling decision. Non-gazetteatures in STANDARD+G
are, however, unable to find the correct labelling @eander paul when they previ-
ously could in the STANDARD model.

For both Type A and Type B errors it is clear that the gazefiestiures in STAN-
DARD+G are in some sense too “powerful” while the non-gaesstt features have
become too “weak”. The question, then, is: can we train &lfdatures in the model
in a more sophisticated way so as to correct for these effects
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8.4 Feature Dependent Regularisation

One interpretation of the findings of our error analysis i@ pinevious section is that the
addition of the gazetteer features to the model is havingrlicit over-regularising
effect on the other features. Therefore, is it possible josidor this effect through
more careful explicit regularisation using a prior? Can wedly regularise the
gazetteer features more heavily and the non-gazettearésaless? We investigate
this possibility in this section.

The STANDARD+G model is regularised by fitting a single Gaaisyariance hy-
perparametery?, across all features. The optimal value for this single hyammeter
is 2025 @ = 45). We now relax this single constraint by allocating a satgahyper-
parameter to different feature subsets, one for the gadtatures ¢ya,) and one for
the non-gazetteer features\gn-gaz). The hope is that the differing subsets of features
are best regularised using different prior hyperparanset@early, by doing this we
increase the search space significantly and encounter sotine jproblems we saw in
Chapter 5. In order to make the search manageable, we constnselves to three

scenarios:

1. We fix aﬁmgaz, the variance for the non-gazetteer features, at the suagiance
optimum of 2025, and regularise the gazetteer featuretariore.

2. We fix Uéaz, the variance for the gazetteer features, at the singleweei opti-
mum of 2025, and regularise the non-gazetteer featuregeddiss.

3. We simultaneously regularise the gazetteer featuradeartiore than at the sin-
gle variance optimum, and regularise the non-gazetteauriesa little less.

Table 8.7 gives representative development set F scorestbr of these three sce-
narios, with each scenario separated by a horizontal aigitihe. We see that in gen-
eral the results do not differ significantly from that of thiegle variance optimum. We
conjecture that the reason for this is that the regularisifert of the gazetteer features
on the non-gazetteer features is due to relatively subtieantions during training that
relate to the dependencies the features encode and howdbpsadencies overlap.
Regularising different feature subsets by different amiewith a Gaussian prior does
not directly address these interactions but instead jtiserarudely penalises the mag-
nitude of the parameter values of different feature setsfterdnt degrees. Indeed this
is true for any standardly formulated prior which makes peledence assumptions
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Ogaz | Onon-gaz | Development
42 45 90.40
40 45 90.30
45 46 90.39
45 50 90.38
44.8| 45.2 90.41
43 47 90.35

Table 8.7: FDR development set F scores.

over the parametefs |t seems therefore that any solution to the regularisirdpjem
should come through more explicit restricting or removirighe interactions between
gazetteer and non-gazetteer features during training.

8.5 LOPs

We may remove interactions between gazetteer and nontgazétatures entirely by
guarantining the gazetteer features and training them ieparate model. This al-
lows the non-gazetteer features to be protected from theregeilarising effect of the
gazetteer features. In order to decode taking advantageedhformation contained
in both models, we must combine the models in some way. To dontd use the
logarithmic opinion pool that we introduced in Chapter 6.

In order to use a LOP for decoding we could employ a uniforntrithgtion over
the constituent models. However, we saw in Chapter 6 thapimescases manually
tuning the weight distribution can give improved perforroaover a LOP with uniform
weights. In this chapter we only construct LOPs consistirtggo models in each case,
one model with gazetteer features and one without. We caeftire efficiently tune
the one free weight using the development set.

To construct models for the gazetteer and non-gazettermrésawe first partition
the feature set of the STANDARD+G model into the subsetsroedlin Table 8.8. The
simple structural features modellabel-labelandlabel-worddependencies, while the
advanced structural featuresinclude these features as well as those modelabgl-
label-word conjunctions. Theimple orthographic featuresmeasure properties of a

2\We talked about this assumption of independence betweamgers when using a prior in section
2.3.1.
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Feature Subset Feature Type
S1 simple structural features
S2 advanced structural features
N n-grams of words and POS tags
O simple orthographic features
A advanced orthographic features
G gazetteer features

Table 8.8: STANDARD+G feature subsets.

LOP Development Test
STANDARD+g 90.40 84.70
S1G-STANDARD 91.34 85.98
S2G-STANDARD 91.32 85.59
S2NG-STANDARD 90.66 84.59
S2NOG-STANDARD 90.47 84.92
S2NOAG-STANDARD 90.56 84.78

Table 8.9: Regularised LOP F scores.

word such as capitalisation, presence of a digit, etc.,etthiéadvanced orthographic
properties model the occurrence of prefixes and suffixes of varying lengt

We create and train different models for the gazetteer feathy adding different
feature subsets to the gazetteer features. We reguladse thodels in the usual way
using a Gaussian prior. In each case we then combine theselsneidh the STAN-
DARD model and decode under a LOP.

Table 8.9 gives results for LOP decoding for the differentelgairs. Results for
the STANDARD+G model are included in the first row for comgan. For each LOP
the hyphen separates the two models comprising the LOPoSexample, in the sec-
ond row of the table we combine the gazetteer features witiplsi structural features
in a model, train and decode with the STANDARD model using @PLThe simple
structural features are included so as to provide some Isagiport to the gazetteer
features.

We see from Table 8.9 that the first two LOPs significantly edimrm the regu-
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LOP LOP Weights

S1G-STANDARD | [0.39, 0.61]
S2G-STANDARD | [0.29, 0.71]
S2NG-STANDARD | [0.43,0.57]
S2NOG-STANDARD | [0.33, 0.67]
S2NOAG-STANDARD| [0.39, 0.61]

Table 8.10: Regularised LOP weights.

larised STANDARD+G model (at a significance level pk 0.01, on both the test
and development sets). By training the gazetteer feataearately we have avoided
their over-regularising effect on the non-gazetteer fietuThis relies on training the
gazetteer features with a relatively small set of othenfiesst. We can see this by read-
ing down the table, below the top two rows. As more featuresagided to the model
containing the gazetteer features, we obtain decreassigét F scores because the
advantage created from separate training of the featurasrisasingly lost.

Table 8.10 gives the corresponding weights for the LOPs bi€r8.9, which are
set using the development data. We see that in every caséXtReallocates a smaller
weight to the gazetteer features model than the non-gardtatures model and in
doing so restricts the influence that the gazetteer feahaes in the LOP’s labelling
decisions.

Table 8.11, similar to Table 8.6 earlier, shows test setlimigeerrors for the STAN-
DARD model and the one of the LOPs. We take the S2G-STANDARIP [@re for
illustration. We see from the table that the number of erothe top-right cell shows a
reduction of 29% over the corresponding value in Table 8.6 hake therefore reduced
the number errors of the type we were targeting with our aggino The approach has
also had the effect of reducing the number of errors in theéobotright cell, which
further improves model accuracy.

All the LOPs in Table 8.9 contain regularised constituentsis. Table 8.12 gives
test set F scores for the corresponding LOPs constructed dirregularised models.
Although the scores are lower than those in Table 8.9, the ST&NDARD LOP still
outperforms theegularisedSTANDARD+G model.

In summary, by training the gazetteer features and nonttggzedfeatures in sepa-
rate models and decoding using a LOP, we are able to overdwmmpedblems described
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o $2g-STANDARD LOP
S v O

|<Z_( v 44,991 114

» O 305 1,256

Table 8.11: Test set errors

LOP Development Test
S1G-STANDARD 90.58 84.87
S2G-STANDARD 90.70 84.28

S2NG-STANDARD 89.70 84.01

S2NOG-STANDARD 89.48 83.99
S2NOAG-STANDARD 89.40 83.70

Table 8.12: Unregularised LOP F scores.

in earlier sections and can achieve much higher accuragg.shlows that successfully
deploying gazetteer features within log-linear modelsusthanvolve careful consid-

eration of restrictions on how features interact with eatieg rather than simply
considering the absolute values of feature parameterslatisn from each other.

8.6 More General Case: Gazetteer-Like Features

So far our discussion has focused on gazetteer featuresistsative examples of the
general discriminative features that we talked about inojpening sections. To show
that our findings are not specific to gazetteer features, \wkexother sets of features
with properties similar to those of gazetteer features. Bglyng similar treatment

to these features during training we may be able harnessubkefulness to a greater
degree than is currently the case when training in a singléel&o how might other

discriminative features with similar properties be idéat?

The task of identifying the optimal feature set partitiondceation of models in the
previous section is in general a hard problem becauseétsrel clustering the features
based on their explanatory power relative to all other ersst Both the number of



164 Chapter 8. Applications of LOPs: Highly Discriminative Features

@ ¢ & ©
@ ®© & ©

Figure 8.1: Pictorial depiction of a family n-ton feature for n = 3.

clusters and the distribution of features across the asisteist be determinedl.

However, we may be able to solve the problem approximatelg. Hae already
found a partition manually, using our intuition about thelgems of training highly
discriminative features. Using this we have been able toeaat a “reasonable” par-
tition. One way forward, therefore, is to try to devise soneafistics that allow us to
identify feature sets that have similar properties to thafsgiscriminative set we have
been using, i.e. the gazetteer features. In this sectioronsider three such heuristics.
All of these heuristics are motivated by the observation ¢faaetteer features are both
highly discriminative and generally very sparse. The hstios lead to three candidate
feature sets:

1. Family Singleton Features (FSF)We define a featufamily as a set of features
that have the same conjunction of predicates defined on ereadtions. Hence
they differ from each other only in the NER label that they @ohe. Family
singleton featuresare features that have a count of 1 in the training data when
all other members of that feature family have zero countses€étfeatures have
a flavour of gazetteer features in that they represent theHatthe conjunction
of observation predicates they encode is highly prediativine corresponding
NER label, and that they are also very sparse.

2. Family n-ton Features (FnF) These are features that have a count (greater
than 1) in the training data when all other members of thaufeafamily have

3This problem is very similar to the task of defining an optirfedture partition for the feature set
experts that we saw in Chapter 6.
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zero counts. They are similar to family singleton featuleg,exhibit gazetteer-
like properties less and less as the value isfincreased because a larger value of
n represents less sparsity. Figure 8.1 gives a pictoriakssprtation of a single
family of family n-ton features for n = 3. In the diagram the feature family
consists of features which all have the same observatidnrearesented by the
box enclosing a local neighbourhood of words and POS tagkaatistribution

of training data counts across possible labels that hakealintass on one label,
in this case a count of 3 on lable}.

3. Loner Features (LF). These are features which occur with a low mean number
of other active features in the training data. They are sintd gazetteer features
in that, at the points where they occur, they are in some dagisg relied upon
more than most features to explain the data. Figure 8.2 giy@storial repre-
sentation of where loner features will in general occur. dregram shows the
mean number of features active at different positions iméesee in the training
data, for the gold standard labelling. The loner featurdbstypically occur at
positions similar to the one marked, where only a small nurobether features
are active.

To create loner feature sets we rank all features in the STARD+G model
based on the mean number of other features they are obseitvéal tive training
data, then we take subsets of increasing size. We preseititsrés subsets of
size 500, 1000, 5000 and 10000.

For each of these categories of features we add simple stali¢eatures (the S1
set from earlier), to provide basic structural support, tirah train a regularised model.
We also train a regularised model consisting of all featimeSTANDARD+G except
the features from the category in question. We decode theselpairs under a LOP
as described earlier.

Table 8.13 gives test set F scores for LOPs created from efatite categories
of features above (with abbreviated names derived from #tegory names). The
results show that for thiamily singleton featuresand each of théoner feature sets
we obtain LOPs that significantly outperform the regulatiSTANDARD+G model
(p < 0.0002 in every case). THamily n-ton features’ LOP does not do as well, but
that is probably due to the fact that some of the featuresignsiet have a large value
of nand so behave much less like gazetteer features.
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Active Features
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Figure 8.2: Pictorial depiction of number of features active at different positions within
a sentence. The loner features are those features that occur only at places like the one

marked, where only a small number of other features are active.

In summary, we obtain the same pattern of results using oaramtined train-
ing and LOP decoding method with these categories of festilnat we do with the
gazetteer features. We conclude that the problems withtiggrdeatures that we have
identified in this chapter are exhibited by general disoniative features with gazetteer
feature-like properties, and our method is also successthlthese more general fea-
tures. Clearly, the heuristics that we have devised in #asign are very simple, and
it is likely that with more careful engineering better fe@ypartitions can be found.

8.7 Summary

In this chapter we have identified and analysed negativetsftaat can be introduced
to CRFs, and log-linear models in general, by the inclusibhighly discriminative

features. We have used gazetteer features as a repregerebeimple of such a dis-
criminative feature set. We have shown that these negdfaet® manifest themselves
through errors that generally result from the model’s ostependence on the discrim-
inative features for decision making. To overcome this fewba more careful treat-
ment of these features is required during training. Thetgmuve propose involves
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LOP Test Set

FSF 85.79
FnF 84.78
LF 500 | 85.80
LF 1000 | 85.70
LF 5000 | 85.77
LF 10000| 85.62

Table 8.13: Regularised LOP F scores.

guarantining the highly discriminative features and tiragnthem separately from the
other features in the model. Decoding is then undertakergubie logarithmic opinion

pool framework that we introduced in Chapter 6. In fact, tli@A_provides a natural
way to handle the problem, with different constituent madel the different feature
types. The method leads to much greater accuracy, and alt@ysower of discrimi-

native features to be fully harnessed.

Towards the end of the chapter, we went on to identify othamgdes of highly
discriminative feature sets (in addition to the gazetteatdres we had been using
though the chapter) by looking for features with gazetteature-like properties. We
showed that similar problems, and our proposed soluticsy akist for these more
general discriminative feature sets.






Chapter 9
Conclusion

This thesis concerns regularisation techniques for caordit random fields (CRFs)
within the domain of natural language processing (NLP). €R¥fe conditional prob-
abilistic models for structured labelling problems, anddbeen successfully applied
to a number of different tasks in NLP and other domains. Degheir success, much
work has supported the view that CRFs tend to overfit the datavtoich they are
trained, significantly in some circumstances. As a restiéicave application of CRFs
requires the need for some form of regularisation. To daieyentional approaches to
regularising CRFs have focused on the use of a Gaussiangweoithe model param-
eters. However, in most cases fitting a Gaussian prior imgan element of trial-and-
error, where one must search a potentially high-dimensioyerparameter space.

In this thesis we address the overfitting problem in CRFs bgstigating an al-
ternative framework for CRF regularisation based on a foff@RF ensemble model.
The main contributions of the thesis fall into three catéggor

1. Analysis of Conventional CRF Regularisation Our first contribution entails
a thorough analysis of conventional regularisation teghes for CRFs, includ-
ing some extensions which we propose. We start by consglegigularisation
with a prior distribution, and compare three families ofgrs. Our findings sug-
gest that the Gaussian prior, although the most commonlg wsién CRFs in
practice, is not clearly the most natural choice and othesjtdlities exist. This
conclusion is contrary to the findings of previous work by ¢#@nd McCallum
(2004). We also consider how to apply regularisation withriargo the fea-
tures in a model in a feature-specific way. This differs fréma tisual application
of a prior, where all parameters are regularised equally.|l&& at regularisa-
tion over subsets of features, investigating how such grmgomay be defined,
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and consider regularisation at the level of individual teas, where each fea-
ture in the model is regularised to a different degree. Oumegal conclusion

is that although improvements may be made with reguladsadt a lower level
of granularity, the benefits gained are typically offset bg tomplex search re-
quired to fit a larger number of hyperparameters. Lastly, mteoduce a new,
alternative approach to conventional regularisation bynidating a variant of
the standard CRF model that has a regularising effect impfigts form. We
call this model thenequalityCRF, and show that it can lead to significant per-
formance improvement over a standard CRF regularised wi¢lawassian prior,
at the cost of only one additional hyperparameter.

. New Framework for CRF Regularisation. Our second contribution forms the

main focus of the thesis. Here, we introduce an alternatas@éwork for CRF
regularisation based on a form of ensemble model calllegarithmic opinion
pool (LOP). The model combines a set of CRFs in a weighted prodd.
show that the LOP is a natural choice for a CRF ensemble dine texponential
form of the CRF distribution. We also demonstrate how the LSaRsfies an
ambiguity decompositigrwhich motivates the need for the models in the LOP
to be accurate and/or diverse. Such diversity may be créatedumber of ways,
including using the feature set, the training data and theitrg algorithm. We
explore each of these possibilities.

Our main result comes from using the feature set as a sourdevefsity. We
show that by creating a set of CRF models based on an intlytnaetivated par-
tition of the feature set, and combining them under a LOP witifiorm weights,
we may obtain a model which significantly outperforms an galarised stan-
dard CRF that utilises the entire feature set, and is corbpara performance
to a standard CRF regularised with a Gaussian prior. Thiss#eat the LOP
approach with unregularised models represents a conyeasdiltiernative to con-
ventional regularisation with a prior, but without the ndedsearch a hyperpa-
rameter space.

We also show that using the training set as a source of diyessiot as effective
as use of the feature set. Employing CRFs trained from batygetng set sam-
ples, we obtain LOPs that do provide some improvement ovemnaegularised
standard CRF, but are not competitive with a standard CR&lagged with a
Gaussian prior.
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Our LOP framework involves the multiplicative combinatiohCRFs in an en-
semble model. A variant of this is thmear opinion pool(LIP), where models
are combined additively. We investigate the properties IéfsLfor CRFs and
compare them to LOPs. We see that it is difficult to achieveiefit, accurate
decoding of a LIP of CRFs, and that approximate decoding teisised. How-
ever, we also show how such approximation leads to decotiatgd both more
expensive than LOP decoding and results in lower performa®ar conclusion,
therefore, is that a LOP is a more preferable combinatiorhotefor CRFs than
aLIP.

In addition to considering the feature set and training sgi@ssible sources of
diversity, we also investigate ways of encouraging divgrgirough the CRF
training algorithm. In particular, we introduce the ideacofoperative training
of CRFs, where parameters in different models interactrdutine training pro-
cess. We encourage diversity between the models using &ablpéormulated
objective function which includes diversity penaltyerm. Our results demon-
strate that the presence of the diversity term can lead tosL@ikh improved
performance. Our work in this area sets the scene for a nuwibkertture re-
search possibilities.

. Applications of the Framework. Our third contribution involves application of
the LOP framework to overcome negative effects that a CRF soéfer under
the standard training regime. Such effects can occur whgmhdiscriminative
features are included in the model. We identgiBzetteefeatures as a represen-
tative example of such a discriminative feature set. We stawthese negative
effects manifest themselves through errors that genemedlyit from the model’s
over-dependence on the discriminative features for dacisiaking. To over-
come this problem a more careful treatment of these featanegjuired during
training. We show that one solution to this problem involgesirantining the
highly discriminative features and training them sepdyaft®m the other fea-
tures in the model. Decoding is then undertaken using thariibgmic opinion
pool framework. In fact, the LOP provides a natural way todiarthe prob-
lem, with different constituent models for the differenafere types. We show
that separate training and LOP decoding can lead to muchegraecuracy, and
allows the power of discriminative features to be fully hessed. In particular,
this method may provide for more effective use of gazettegits CRF models
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in the future. Lastly, we identify other examples of highligaiminative fea-
ture sets, in addition to gazetteer features, by identifyeatures with gazetteer
feature-like properties. We show that similar problem® &sist for these more
general discriminative feature sets, and that the LOP agbronay be used to
address them.

In summary, this thesis demonstrates the potential foreaeging CRFs in alterna-

tive ways to the conventional approaches in the literatife present one such method

in the thesis and explore its properties. We show that theoagp can achieve perfor-

mance levels for the CRF that are similar, or better, thaselod traditional approaches

but at lower cost.

9.1 Future Work

In each chapter of the thesis we have noted threads of workthgtpotential for future

investigation. We now summarise some of the main possédslit

1.

In Chapter 6 (section 6.8), we looked at the possibilitgm@fating LOPs with
non-uniform weights. We described a procedure to find thierggdtset of weights
for a given set of constituent models. The approach was baséchining the
weights to maximise the log-likelihood of the training datdis log-likelihood
was a function of the weights only, with the constituent medeld fixed in
their pre-trained states. We found that the procedure dighramluce significant
improvements over LOPs with a uniform weight distributide attributed this
to the fact that for most of the feature set expert sets we haee using in the
thesis, the optimal weight distribution is likely to be ado® the uniform distri-
bution because the experts are of roughly equal quality.olild/be interesting
to investigate this idea further and experiment with theavébur of the algo-
rithm in situations where the constituent models possessatay differential in
model quality. In such cases we would expect the LOP to doadethe weight
attached to the less accurate models, therefore parteitpving these models
from the LOP’s labelling decisions.

In addition to use of the log-likelihood in the objective @tion, it would also

be possible to seek optimal weights based on an alternagasune. One pos-
sibility would be to try to maximise the most relevant criter for the task. For

example, for NER this could be F score.
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2. In Chapter 7 we described a framework where parametersffereht CRFs
interact during training through a penalty term in the obyexfunction that en-
courages diversity between the resulting models. Our tesilowed that the
basic framework was successful and we were able to creates itle® showed
performance improvements over the LOPs of previous chepidrere the con-
stituent models were trained independently. However, asvemtioned in Chap-
ter 7, our findings really only represent a proof-of-condepthis body of work,
and there are many avenues for future investigation. Pidiisfbinclude explo-
ration of other forms of the co-operative training objeetiuinction, including
more effective forms for the diversity penalty; the extemsof the training al-
gorithm to include LOP per-model weights as well as conetitunodel param-
eters; and examination of the behaviour of the framework witwider range
other expert sets.

3. The co-operative training framework of Chapter 7 takethpst a set of pre-
defined constituent models, and trains the models inteedgti For the ex-
periments in the chapter we used the feature set expertlsstsve had pre-
viously found to yield high performing LOPs. These expedtssvere based
on intuitively-motivated partitions of the feature set. dnnciple, however, we
could generalise the co-operative training framework tdude a feature induc-
tion facility as well as model training. Such a system woulduce features in
a similar way to single model feature induction for CRFs (M#Gm, 2003),
but across all models in an expert set simultaneously. Theelsavould also
be co-operatively trained within framework, with inducti@and training steps
alternating. Clearly, design of such a system would inva@veumber of hard
engineering decisions to maintain tractability, but theeyal idea represents an
interesting avenue.

4. This thesis has concerned regularisation of CRFs in wigshative to the con-
ventional use of a prior distribution over the model paramet However, it
would be interesting to investigate the possibility of lgiitg the gap between
the two approaches. For example, appropriate use of a Gaw&siother) prior
with a non-diagonal covariance matrix (where we do not agsomadel param-
eters are independent), may be able to simulate the behafialLOP to some
degree. Of course, application of such a prior would be mwlatic as it would
involve specification of an even larger number of hyperpatans than with the
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usual, diagonal case. Nonetheless, such a prior may steahghe theoretical
connections between priors and LOPs, and this would be wégydsting.



Appendix A

Derivation of the CRF Probabillity

Density Function

In Chapter 2 we defined a linear chain CRF as a model with th@foig distribution:

T+1 K
p(s[o) —exp< Zi > Akfk(stl,st,o,t))
=1

whereo is a sequence of observatiosss the corresponding sequence of labels,fihe
are feature functions, th&, are model parameters associated with thd runs over
the cliques in the sequence, afa(b) is a normalising function.

We now show that this general form of CRF distribution is tb&igon to a con-
strained optimisation problem, specifically a sequentitagy maximisation prob-
lem. The constraints in this problem have the form:

Epso)lfi] =Ck, k=1...K (A.1)

where theCy are a set of arbitrary constants. The optimisation problamlie stated
as follows:

max H[p(s|0)] = Z Z p(s|o) logp(s|o) (A.2)

p(slo) 9

S.t. ps\o[fk] Ck, k=1..

We are therefore seeking the most general model (the onehwhaximises the se-
guential entropy) that obeys the constraints. In order tivdehe general solution to
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this problem, we appeal to Lagrangian methods. Good reteseim this area include
the textbooks by Nocedal and Wright (1999) and Bertseka89q)19

We first reformulate problem A.2 as a minimisation problerthes then a max-
imisation problem, and include an explicit normalisatiomstraint for the distribution
p(sjo) . This brings our setup into line with the standard form foe #xpression of
constrained optimisation problems. Hence our problenietliivbecomes:

min Hlp(s|o)]=" fA( p(s|o)logp(s|o A.3
min |0) Zp Z |0)logp(s|o) (A.3)
s.t. p (slo) [fk] =C, k=1...K

Zp(s\o —1=0, Vos.t.p(0) >

Note that we can multiply the last set of constraintglpg), for eacho, without violat-
ing any of the constraints in the set. We do this to make sulesgglerivation easier.
We also introduce a set of Lagrange multipliegs each multiplier corresponding to a
constraint in A.3, to form the Lagrangian:

2= Y 0) pso)logp(slo)

K
+ > 0k (Ck— Ep(sio) [ fi])
&

3 Hofo) (z p(sl0) 1) (A4)

We now differentiate the Lagrangian with respect to fi{go) distribution. Let us

+

consider a particular “element” of that distributigpis'|0’). We must evaluate the
derivative of the Lagrangian with respect to this elemergt Ws consider this term-
by-term. The easiest term in the Lagrangian to differeatiatprobably the last one.
This differentiates tquy p(0'). Next let us evaluate the derivative of the first term in
the Lagrangian. This is:

37| 3 B0 3 plsio)logpiso)| = 3 Blo) 3 5o s (so) ogp(so)
— 5(d) [logp(sid) + 1]

The derivative of the middle term in A.4 is a little more awkddo evaluate. Clearly
the derivative ofC, vanishes and so we only need to look at the derivative of the
expected value ofy under the model. This derivative is:
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0 K
—— = okE f
IpE]0) k; KEp(sio) k]]
which expands to:
K 0 T+1
-3 a p(sjo fk(s,0,t
2, "FpE1) (§0) 3 fils.o)

with t running over theT + 1 cliques in the sequence. We can see that this term
differentiates to:

T+1

akp Zlka,Ot

Putting the derivatives of the three terms in A.4 togetherarive at the derivative of
the entire Lagrangian:

02 p(0') |1+logp(s|o) S a T+lf (s,0,t) +
= - k k{=,VY, o
dp(s|o) ==
We set this to zero, to give:
T+1

p(o) =0 (A.5)

1+logp(s|o) — Z ay Z fi(s,0,t) + Uy

We are only interested in the Lagrangian, and its derivatiirethat area of the space
for which p(0’) # 0. Therefore, we can simplify Equation A.5 to:

K T+1

1+logp(s|o) — Z Zx k(S,0,t)+ Hy =0
K=1

which gives:

K T41
logp(s]0) = —py =1+ ax y fi(s.0,t)
k=1 =1

Then exponentiating we get:
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K T+1
p(s]0') = exp(—pHy — 1) exp(Z o} Zl fi (S',O',t)>
= =

However, we know thaf ¢ p(s|0’) = 1, so:

K T+1
exp(—Hy —1) gexp<z ay Zx fi (s’,o’,t)> =1
k=1 f=

From this we can get the normalising functidiio’):

. 1 K T+1 S/ )
Z(d) = T = gexp<k;akt; fic ,o,t))

Therefore, the distribution becomes:

1 K T+1
p(s|o) = mexp<kz ac Y i (s’,o’,t))
=1

t=1
Re-ordering the sums, removing the primes, re-labellirgltagrange multipliers
(corresponding to the model parameters) to the more coireitA, and noting that
the cliques in a sequence are just label pgrs:, s ), this probability density function
can be re-stated as:

B 1 T+1 K At "
p(SIO)—%eXD t; k; kfk(s-1,%,0) (A.6)

Hence we have derived the general form for a linear chain CRfiloution as the
solution to a constrained sequential maximum entropy j@robl

In the general probability density function given in A.6etvalues of th, depend
on the original constantSi in the constraints in A.1. Given a training data sample,
the most natural choice for the consta@tswould be the empirical expected feature
counts, calculated using the training data. Hence the rintt in A.1 would become:

Es(os)[fkl —Epgo)[fu] =0, k=1...K

With this specific choice for the constraints, the valueshaf inodel parameterk
correspond to the maximum likelihood CRF model.



Appendix B

The Inequality CRF

In this appendix we provide detailed derivations of somehef properties of the in-
equality CRF. Specifically, we derive the inequality CRFhability density function
and the objective function used for training. The ineqyalRF is introduced and
discussed in Chapter 2.

B.1 Derivation of the Probability Density Function

In Chapter 5 we stated the optimisation problem for the iaiguCRF as follows:

max H[p(s|o)] s|o)logp(s|o B.1
max H[p(s|0)] =~ 3 (o) 3 p(slo)logp(sio) (8.1)
st. Epos[fk] —Epgo)lfk] —A« <0, k=1...K

Epso)lfkl —Epiog[f] =Bk <0, k=1...K

In order to derive the general solution to this problem, dretdfore the general form
for the probability density function of the inequality CRFe appeal to Lagrangian
methods. Our derivation follows very closely the derivataf the probability density
function of a standard CRF, covered in Appendix A. HoweweRiider to make each
appendix self-contained, we will also show the details Ihif.this appendix. As men-
tioned in Appendix A, good references on Lagrangian methioclsde the textbooks
by Nocedal and Wright (1999) and Bertsekas (1999).

We first reformulate the problem in B.1 as a minimisation peab rather then a
maximisation problem, and include an explicit normalisatconstraint for the distri-
butionp(s|o) . This brings our setup into line with the standard form far &xpression
of constrained optimisation problems. Hence our problenobees:
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min H[p(s|o)] :z p(o) Zp(s|o)logp(s|o) (B.2)

plsio) )
st Epoglfl —Epgo)lfkl —A<0, k=1...K
Epso)lfkl —Epiog[f] =Bk <0, k=1...K

Z p(sjo)—1=0, VYos.t.p(o) >0
S

Note that we can multiply the last set of constraintsgg), for eacho, without vio-
lating any of the constraints in the set. Doing this makesegbent derivation easier.
Having done that, we introduce a set of Lagrange multipfigreach set of constraints
in B.2, and form the Lagrangian:

Z= 3 p(0)} p(sio)logp(s|o)
K
+ 2 ac(Bnog [l ~ Eotso il ~ A
K
+ Z'Bk( p(slo) [fk] os)[fk] )
K=1
+ Hof(0) <z p(s|o) — 1) (B.3)

We now differentiate the Lagrangian with respect to fi{go) distribution. Let us
consider a particular “element” of that distributigpis'|0’). We must evaluate the
derivative of the Lagrangian with respect to this elemergt s consider this term-
by-term. The easiest term in the Lagrangian to differeatiatprobably the last one.
This differentiates tquy p(0'). Next let us evaluate the derivative of the first term in
the Lagrangian. This is:

% 3 B(0)y p(sio)logp(sio)| = 5 B(O)Y 5 (s?’|o’) P(sIO)Iogp(si)]

o

= P(0) [logp(s0) +1]

The derivatives of the middle two terms in B.3 are a little mawkward to evaluate,
but are quite similar to each other so we only need evalua@bthem. Let us take the
former of the two. Clearly the derivative @ vanishes ang(s|0’) does not appear in
the empirical expected value &f. Therefore we only need to look at the derivative of
the expected value df under the model. This derivative is:
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9
ap(s|o)

K
— > akEp(so) [fk]]
&

which expands to:

K T+1
_k;akﬁp(S’ 5 p(slo) t; fk(s,o,t)]

with t running over theT + 1 cliques in the sequence. We can see that this term
differentiates to:

T+1

akp kas’ot

It is obvious from this that the third term in the Lagrangiamth the By Lagrange
multipliers) differentiates to:

T+1

Zka kas’ot

Putting all these individual derivatives together, we\ariat the derivative of the entire

Lagrangian:
_9Z p(0') |1+ logp(s|o) % (o — B )THf (s,0,t) + 1
= - k — Pk k s YUy
dp(s|o) K=1 t; ?

We set this to zero, to give:

T+1

K
p(0’) |1+ logp(s|o’) - Z ak—Bk>ka(§,0’,t)+ud =0 (B.4)
k=1 t=

We are only interested in the Lagrangian, and its derivatiirethat area of the space
for which p(0’) # 0. Therefore, we can simplify B.4 to:

T+1

K
1+logp(s|o) — Z ak—Bk)Zlfk(s’,o’,t)Jrud:O
=1 =

which gives:
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T+1

logp(s]0) = —py — 1+ Z (ak—Bx) Zlfk (s,0,t)

Then exponentiating we get:

K T11
p(s]0’) = exp(—py — 1) exp( > (ac—B) Zl fi (S’,O',t)>
t=

k=1

However, we know thaf ¢ p(s|0’) = 1, so:

K T11
exp(—Hy — 1) Zexp( > (=B Zl fi (S’,O',t)> =1
t=

s k=1

From this we can get the normalising functidiio’):

/ 1 T+l /
Z(d) ESTETE Zexp<z (o — By) t; fk(s’,o,t)>

Therefore, we arrive at the general form for the probabitlgnsity function for the
inequality CRF:

K T+1
(S"O —exp<z ak_Bk) Z fk (5/70/7t)>
K=1 t=

Re-ordering the sums, removing the primes and noting treatliiques in a sequence
are just label pairgs_1, %), this probability density function can be re-stated as:

T+1 K
p(s|o) = —exp(Zl Z (ak—B) f(s-1, %, 0))

The theory behind the use of Lagrangian methods (Nocedahaight, 1999) dictates
that when the constraints are expressed as in B.2, the Lggranltipliers are all non-
negative. Therefore we have conditions on tlyeand By:

ax>0, >0, k=1...K

In addition, theay andfx also satisfy the Karush-Kuhn-Tucker (KKT) conditions (No-
cedal and Wright, 1999). These conditions are:



B.2. Derivation of the Objective Function

ok (Ep[fi]l —Ep[fl =A) = 0, k=1...K
B« (Ep[fdl —Ep[fil —Bx) = 0, k=1
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Because the inequality CRF model parameters @thand 3¢) are non-negative, the
training process involves a bounded optimisation probl&émhandle this we use the
bounded limited memory variable metric (BLMVM) algorithrBénson and More,
2001), which is implemented via special routines in the TAdries (see Chapter 3).

B.2 Derivation of the Objective Function

Following Lagrangian methods, we derive an objective fiomctor the inequality CRF

by substituting the values found in the previous sectiorttierLagrange multipliers,
back into the Lagrangian. To simplify the orthography, lstdenote the exponent in

the probability density function for the inequality CRF Byso:

T+1 K

E(0,s) = t; kZl(ak — B fk(s,0,1)

Using this, the Lagrangian becomes:

oy
Z = Z p(O) Z Z(O) [E (07 S) - |OgZ(0)]
K T+1 K T+1 K
fi(s,0,t) —
PRI P o BaN
K eE(o k=1..Ks) T+1 K
+ ﬁk[Zlﬁ(O)z Zkasot Zﬁ(os

t=1k=1 0,S

_|_
e

Collecting terms and simplifying gives:
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Further simplifying leads to:

BkBk (B.5)

||M;<
||[\/|x

Z 0)logZ(o Z

6] 0,S

Actually, the first two terms on the right-hand side are jastlog-likelihood under the
inequality CRF. To see this, consider the definition of theeligelihood:

LL(a,B) = Iog[

Comparing this to B.5 we see that the Lagrangian, and theréfie objective function,
is just:

Z=LL(a,B)— ZakAk ZBkBk

This is the expression for the objective function given ira@ter 5, Equation 5.22.
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