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ABSTRACT 

We study some methodologies for applicative language programming and 

we address the problem of Improving efficiency in recursive equation programs 

by establishing suitable communications between subcomputations. 

We first use the program transformation approach and we show that. 

using the generalization strategy and the tupllrig strategy, optimal algorJthms 

may be obtained for the evaluation of linear recurrence relations in semiring 

structures. We also show that using the 'tupling strategy one may transform 

general recursion into linear recursion. This allows an efficient 

implementation of recursion without stacks and its direct translation into 

while-loop programs. Much other work in the area of program transformation 

turns out to be a special case of tupling strategy application. 

We prove that for some classes of recursive equation programs it is impossible 

to avoid redundant computations by the use of the tupllng strategy. 

We also use the approach called program annotation". by which we can 

dynamically specify communications between subcomputations. This method 

allows us to avoid redundant computations when the tupling strategy cannot 

work. 

We apply the memo-function idea and we define the operational semantics of 

an applicative language with memo-functions providing their first formal 

treatment. 

We also study the relationship between formal theories and operational 

semantics definitions and we describe the implemention of a deductive system 

for the concurrent evaluation of expressions using such definitions. 

We finally say something about other methods for denoting 

communications in applicative languages and we study how efficiency 

improvements can be made by introducing concurrent computing agents and 

allowing messages among them. 



AKNOWLEDGE4ENTS 

I would like to thank my supervisor. Rod Burstall, for his helpful 

suggestions and continuous guidance throughout the period of my study. I am 

also very grateful to Robin Milner for acting as supervisor during Rod Burstall's 

absence. Gordon Plotkin at Edinburgh and Andrzej Skowron at Warsaw 

University for many stimulating conversations. My thanks go also to the 

colleagues at the Department of Computer Science at Edinburgh University: 

they, and many other friends, made my work very enjoyable and fruitful. 

Thanks to Eleanor Kerse for her excellent typing. 

I acknowledge the financial support of the Consiglio Nazionale delle 

Ricerche (Italy). 	I was also supported by an Edinburgh University 

studentship. 	I would like to thank Lucio Bianco. Director of lASl-CNR in 

Rome, who allowed me to study at Edinburgh and granted me the necessary 

leaves of absence. 

I dedicate this thesis to my parents. 

DECLARATION 

This thesis was composed by myself under the guidance of my supervisor 

Rod Burstail. 

Sections 1. 1 to 1. 6 of Chapter 1 are an expanded version of (Pettorossi and 

Burstall 821. Some of the results presented in Sections 1. 7 and 1. 8 were 

published in (Pettorossi 80a) and (Pettorossi 841. Section 2.1 is an improved 

version of a part of [Plotkin 811. Sections 2. 2 - 2. 3 have been submitted for 

publication. 



Table of Contents 

INTRODUCTION 3 

1. DERIVING EFFICIENT APPLICATIVE PROGRAMS : 9 

COMMUNICATIONS VIA TUPLING STRATEGY 

1. 1 Introduction 9 

1.2 Preliminary considerations and definitions 10 

1.3 Deriving an 	algorithm 	for computing 	the 	Fibonacci function 	in 21 

logarithmic time 

1.4 A comparison with other algorithms 31 

1.5 The general case of homogeneous linear recurrence relations 40 

1.6 Comparing 	the 	transformation 	technique 	and 	the 	stepwise 57 

refinement technique 

1.7 More on the comparison with other algorithms 64 

1.8 On 	the application 	of the tupling strategy: 	the general method 72 

and some of its properties 

1.8. 1 An alternative use of the tupling strategy in program P2 73 

1. 8. 2 A 	safety property 	for the tupling strategy 75 

1. 8. 3 Application of the tupling strategy 81 

1. 8. 4 Limitations of the tupling strategy 96 

1. 9 The tupling strategy compared with other methods of eliminating 103 

redundancy in recursive calls 

1.10 The tupling strategy and the use of data structures 111 

1.11 Conclusions 	and 	some 	motivations 	for 	communications 	in 122 

applicative languages 

2. OPERATIONAL SEMANTICS OF MEMOFUNCTIONS 123 

2. 1 Structural Operational Semantic Definition of the Language L 125 

2. 1.1 Preliminary remarks and a simple example 126 

2. 1. 2 Static Semantics of L 130 

1. 



ii 

2. 1. 3 Dynamic Semantics for L 	 139 

2. 1. 4 Some Examples of the Operational Semantics of the 146 

Language L 

2. 2 Some Remarks on the Structural Operational Semantics of the 152 

Language L 

2.2. 1 Multiple occurrences of bindings for the language L 152 

2. 2. 2 Further Discussions 156 

2.3 Use 	of memofunctions 	for avoiding 	repeated 	computations 	in 158 

recursive programs 

2. 3. 1 Static Semantics for memoL 164 

2. 3. 2 Dynamic Semantics for memoL 168 

2.3.3 Alternative rules for memoL 170 

2.3.4 An 	Example and 	Some Remarks on the Semantics of 172 

memoL 

2. 4 Some 	properties 	of the 	operational 	semantics 	definitions 	and 178 

program annotation methodology 

2.4.1 Relationship 	between 	the 	language 	L 	and 	memoL. 179 

Proposal of a program transformation methodology. 

2. 4. 2 The Church-Rosser property for the operational semantics 182 

of the language L 

2. 4. 3 The Church-Rosser property for the operational semantics 183 

for the language memoL 

2. 4. 4 Consistency 	of 	the 	operational 	semantics 	for 	the 185 

languages L and memoL 

2.4. 5 Extending the results on the consistency of the semantics 194 

for the languages L and mernoL 

2. 4. 6 Main Results and Some Final Examples 198 

2. 4. 7 On the position of the memofunctions definitions 200 

2.5 Formal Theories for Structural Operational Semantics 202 

2. 5. 1 	First Interpretation 203 

2.6 Prolog implementations of Structural Operational Semantics 206 

2. 6. 1 Implementation Syntax for L 206 

2. 6. 2 Dynamic Semantics for L 209 

2. 6. 3 Pragmatics for L 211 



iii 

2. 6. 4 Implementation Syntax for memoL 213 

2. 6. 5 Dynamic Semantics for memoL 215 

2.6.6 Pragmatics for memoL 217 

2. 6. 7 On the number of different reduction sequences 218 

2. 7 Annotations denoting communications and communicating agents 220 

2. 7. 1 Annotations denoting communications 220 

2. 7. 2 Communicating Agents 224 

2. 8 	Conclusions 229 

Appendix A. THE 	STATIC 	SEMANTICS 	FOR 	RECURSIVE 	EQUATIONS 231 

PROGRAMS 

Appendix B. OPERATIONAL SEMANTICS FOR N-ARY FUNCTIONS 235 

Appendix C. FORMAL THEORIES FOR OPERATIONAL SEMANTICS 241 

C. 1 Models 254 

C. 2 Summary of results 258 

Appendix D. TABLE OF SYMBOLS 261 

References 263 



Ust of Figures 

Figure 1-1: Redundant computations in program P2: G(1.0.k/2) 

occurs 4 times in evaluating fib(2k). (Suppose k 

even.) 

Figure 1-2: Deriving logarithmic running time algorithms for 

computing the Fibonacci function. (We have annotated 

the transformation steps and the programs with the 

corresponding equation numbers.) 

Figure 1-3: Redundant 	computations 	in 	program 	P2.1: 

G( 1 . 0. k/2) 	occurs twice in evaluating fib(2k). 

(Suppose k even.) 

Figure 1-4: Alternative derivation of logarithmic running time 

algorithms for the Fibonacci function. (Transformation 

steps and programs are annotated with the 

corresponding equation numbers. 

Figure 1-5: The flowchart F corresponding to the program schema 

S. 

Figure 1-6: The Program Construction Cycle according to the 

Stepwise Refinement Technique and the Program 

Transformation Technique. 

Figure 1-7: Redundant computations in program P2 
	

G( 1 0. k/4) 

occurs 4 times in evaluating fib(2k+1). (Suppose k/2 

even). 

Figure 1-8: Redundant 	computations 	in 	evaluating 	fib(2k). 

G(0. 1. k12) occurs 3 times. (Suppose k even.) 

Figure 1-9: Computations which share the same subcomputation. 

Figure 1-10: 	Upper parr of the descent tree for S. 

Figure 1-11: 	Upper parr of the descent tree for S2  if c(d(x)) = 

d(c(x)) 

iv 

27 

30 

35 

38 

50 

59 

73 

76 

78 

82 

82 



Figure 1-12: Recursive Schema for the Towers of Hanoi problem 87 

Figure 1-13: Flowchart Schema for the Towers of Hanoi problem 88 

Figure 1-14: The Cyclic Towers of Hanoi problem. 	The "clock" and 90 

"anticlock" functions. 	"X: n" means "n disks are in 

the peg X". 

Figure 1-15: The m-dag for the Cyclic Towers of Hanoi problem. 91 

c(n.xyz) stands for clock(n.xy.z). 	a(nxyz) 	stands 

for anticlock(n.x.y.z). 

Figure 1-16: The m-dag for the fusc function. 94 

Figure 1-17: Dags t(n) for n 	1. 	n is the number of nodes from 97 

the root to the leftmost leaf. 

Figure 1-18: Definition of grid(n) 	for n ) 	 1. 	n is the number of 98 

the nodes in the first row of grid(n). 

Figure 1-19: Closing grid(n) 	by a pebble in <I,j>. 99 

Figure 1-20: Closing n-i grids in grid(n). 101 

Figure 1-21: Descent tree for common generator redundancy. 105 

Figure 1-22: A 	"rectangle" 	for 	the 	commutative 	periodic 107 

redundancy. 

y ranges over e 1'x for 01 0. 

Figure 2-1: The evaluation of a simple expression. 	 128 

Figure 2-2: 	Deriving a transition from a sub-transition. 	 128 

sube (or sube'] is a subexpression of a (or a']. 

Figure 2-3: A sequence of transitions. 	 129 

Figure 2-4: An elementary transition with more than one premise. 	129 

Figure 2-5: The possible rewritings of a simple expression. 	 147 

Figure 2-6: Proof of the rewritings of a simple expression 	 148 

(using rule 81). 

Figure 2-7: Proof of the rewritings of a simple expression using 149 

rule B1 

(instead of rule 81). 

Figure 2-8: 	Schema of transitions for let y: mt = 7 in x + y. 	 150 

where x is bound to 5. 

The numbers denote the transitions given in the text. 

Figure 2-9: Computing 	the 	Fibonacci 	Numbers 	using 160 

Memofunctions. 

V 



Vi 

Figure 2-10: 	Computing binomial coefficients. 	 177 

Use of memo for [n. m] = [n. n-rn] 

Figure 2-11: The Program Annotation Methodology for avoiding 178 

repeated functions calls. 

Figure 2-12: Relating two operational semantics: sem for the 179 

language L 

and memosem for the language memoL 

Figure 2-13: Program Transformation and Program Annotation. 	181 



INTRODUCTION 

One of the major problems in the technology of the software production is 

the specification and the verification of programs. A lot of research efforts 

are directed towards the definition of specification methods so that program 

development can be done without great difficulties and program correctness 

can easily be shown. In order to achieve those goals. among the various 

suggestions, applicative or functional programming has been advocated 

(Backus 781 because: 

- it allows for proof techniques which are particularly appealing due to their 

simple logic and algebraic nature. and 

- it allows for parallel execution of programs. Thus it overcomes some of the 

constraints due to the sequentlality of the von Neumann based programming 

languages, which often forces an "over-specification" of the algorithms. 

For functional programming the "specification languages" and the "execution 

languages" are not so far apart, and that fact tends to make the correctness 

proofs more transparent and simpler. 

As an introduction to functional programming and its applications, the 

reader may refer to (Henderson 80. Darlington. Henderson and Turner 821. 

Various applicative languages have been proposed over the last two decades. 

Among them we recall LISP (McCarthy et al. 621. PROLOG (Kowalski 741. 

LUCID (Ashcroft and Wadge 771. FP systems (Backus 781. ML (Gordon. Milner 

and Wadsworth 791. SASL (Turner 761. KRC [Turner 81a]. NPL (Burstall 771 

and HOPE [Burstall. MacQueen and Sanneila 801. 

We will focus our attention to the ones which are more related to the 

3 
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recursive equations language as defined in (Burstali and Darlington 771. For 

that class of languages, which include NPL, HOPE and KRC, the operational 

semantics can be given in terms of rewriting rules (though some problems 

arise due to the nondeterminism and the possible overlapping of rules) 

(Boudol 83. Huet and Lvy 791. 

A model for the computation of recursive functions based on rewriting systems 

is described already in [Kieene 671 Chapter 11. where the 'replacement rules 

and the*substitution rule' are used for rewriting gold terms into new ones. 

More recently, various people have been studying computation processes with 

equations and rewritings (see, for Instance. (O'Donnell 77. Hoffmann and 

O'Donnell 82. Dershowitz 83]). Those computation processes seem to have 

interesting features and allow for short and elegant proofs of correctness. 

However, in this style of programming, we have often to solve an 

efficiency oroblem. Indeed it may be difficult to specify efficient computations 

using equations. 	The program transformation methodology [Burstall and 

Darlington 771 offers a solution to that difficulty. 	We investigate that 

methodology and how we can get through it very efficient algorithms (at least 

for specified classes of programs). 

Using transformations we can derive from ridiculous programs some 

reasonable programs [Burstall and Darlington 771 and also from reasonable 

programs some clever and very efficient ones: 

ridiculous ---------------- > 	reasonable ----------> clever 

programs 	Burstall 	 programs 	this 	 programs 

and 	 thesis 

Darlington 

In Section 1. 1 - 1. 7 of Chapter 1 we derive optimal algorithms for the 

evaluation of linear recurrence relations. 	We do so by introducing new 
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generalization strategies and applying the "tupling strategy (whose definition 

is given In Section 1. 2) [Pettorossl 771 to make subcomputations to interact 

and cooperate as desired. Our results can be viewed as an answer to 

Professor Dijkstra's scepticism In the use of the transformation approach for 

the development of very efficient algorithms EDljkstra 821. Similar work has 

been done In [Reif and Scherlls 821 where efficient graph algorithms, as 

Tarjan's strong connectivity algorithm, are derived by transformation. 

We look at the tuolina strategy as a first approach to communications in 

applicative languages, in the sense that several functions can communicate 

among each other (thereby allowing for greater efficiency) when they are 

components of a function which is the tuple of all of them. The various 

examples given in this thesis will elucidate that idea. 

Tupling also allows the parallel evaluation of expressions, because we can 

compute the components of a tupled function in a concurrent way. 

When programming with equations. another possible cause of inefficiency 

is their recursive structure. That structure, while allowing straightforward 

proofs of correctness (Burstall 691. may not be desirable because 

implementing recursion is in general expensive. In Sections 1. 8 - 1. 9 we 

deal with that problem and we see that using symbolic evaluation and tupling 

strategy, one may transform recursive equations programs into new programs 

which have a particular form of recursion, called linear recursion. That kind 

of recursion is flowchartabie (and sometimes with good efficiency [Chandra 

73]). and therefore those programs can easily be rewritten into while-loop 

programs. Such translation can be done using a bounded number of data 

locations and that number is equal to the number of the functions which need 

to be tupled together. 

Much other work done in program transformation can be viewed as a special 

case of application of the tupling strategy (see in particular (Cohen 83]). 



Other causes of inefficiency in recursive equations programs already 

studied In the literature Include: 

- the elimination of intermediate' data structures using the composition strategy 

(Feather 79. Wadler 81, Scherlls 801 and 

- 	the 	avoidance 	of 	multiple 	traversal 	of 	data 	structures 

(Pettorossi 77. Feather 79. Wadler 811. We Investigate in some detail this last 

issue in Section 1.10. 

We conclude the first chapter of the thesis with a result (see Section 1. 8) 

concerning the limitations of the tuDlina strategy- : we show that there exists a 

class of computations for which the elimination of repeated evaluations of 

recursively defined functions cannot be obtained by applying the tupllng 

strategy. (We use techniques similar to the ones described in (Paterson and 

Hewitt 701.) That negative result is the reason for the study presented in the 

second part of the thesis. There we adopt another approach to efficiency 

improvements. 

We consider a computer architecture in which programs can run in a 

parallel and concurrent way (Darlington and Reeve 811 and they can cooperate 

using some communication facilities. - 

Parallelism alone is not a good solution for gaining efficiency, because it may 

require an exponential amount of resources (as the familiar example of the 

Fibonacci function shows). Therefore. together with parallelism, we also 

need some communications among programs. 

As a first step in this direction we use memo-functions for improving efficiency 

by remembering already computed values. 

In Sections 2. 1 - 2.4 we define two simple applicative languages, the first 

without memo-functions and the second with memo-functions. We give their 

structural operational semantics (Plotkin 811 (without using labelled transition 

systems (Plotkin 82]) and we prove their "consistency". thereby showing that 
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the evaluator for memo-functions improves efficiency while preserves 

correctness. 

The use of memo-functions In recursive equations programs can also be 

considered in the framework of the "program annotation methodology" as first 

examined in (Schwarz 821. In that methodology the process of increasing 

efficiency Is factorized in two phases: 

the definition of an evaluator for an "extended" recursive 

equations language where one can specify via annotations how 

recursive programs are evaluated. 

the synthesis of the relevant annotations for improving the 

performances of the given programs. 

In Section 2.5 we analyze some properties of the given operational 

semantics definitions and we study various ways in which it can be embedded 

in formal theories. Those embeddings show how the computational process 

can be viewed as a theorem proving activity in suitable theories. 

In Section 2.6 we describe a Prolog implementation of those operational 

semantics definitions. 

Finally we say something about other ways of allowing communications 

and parallelism in recursive equations programs. We introduce the notion of 

computing agents as entities which perform the evaluation of expressions, and 

we examine various methods of denoting communications among them. The 

aim is. as usual. the increase of efficiency through agents cooperation. This 

work is only briefly introduced at the end of the thesis, and the interested 

reader may refer to [Pettorossi 81a. Pettorossi and Skowron 82a. Pettorossi 

and Skowron 82b. Pettorossi and Skowron 831. Related work is done in 

[Dennis 74. Kahn and MacQueen 77. Hewitt and Baker 78, Hoare 78, Milner 

80]. 



qula per facilia ad difficilia oportet devenire. 

(... for difficult things ought to be reached by way of easy ones.) 

"De Modo Studendi" (Thomas Aquinas. 1225-1274) 
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Chapter 1 

DERIVING EFFICIENT APPUCATIVE PROGRAMS: 

COMMUNICATIONS VIA TUPUNG STRATEGY 

1. 1 Introduction 

In this part of the thesis we will analyse the program transformation 

technique a la Burstall-Darlington (Burstall and Darlington 771 for deriving 

correct and efficient programs. 

We will consider a particular class of programs concerning the evaluation of 

linear recurrence relations, and we will try to derive them by applying the 

transformation technique. In the course of the derivation we will discuss the 

power of the transformation strategies and we will compare the efficiency of 

the programs we obtained with that of already known algorithms. We will also 

be concerned with the comparison of the ørogram transformation technique a 
la Burstall-Darlington (Burstail and Darlington 771 with the stepwise refinement 

technique advocated by Dijkstra and Wirth (Wirth 711. 

The choice of a particular class of problems is motivated by the need of a 

concrete test-case, so that we could compare the features of the program 

transformation technique in a domain where other techniques have been found 

very valuable. A similar approach has already been taken in the past and, for 

instance, in [Darlington 781 we can find a detailed study of the derivation of 

sorting algorithms. We think that those results and ours show some very good 

features of the program transformation technique and give interesting insights 

on the power of the transformation strategies. 

The particular case of the Fibonacci function is first considered and a 

9 
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comparison with the conventional matrix exponentiation algorithm is made. 

Then we generalize the derivation of the program for computing the Fibonacci 

function to the case of linear recurrence relations with constant coefficients. 

It turns out that the rules and the strategies one uses for Fibonacci are 

powerful enough to lead in the general case also. to an efficient algorithm in a 

quite straightforward way. 

The choice of the evaluation of linear recurrence relations was suggested to us 

by Professor Dijkstra, who considered it to be a challenging one for exploring 

the practical interest of the program transformation technique. especially in 

contrast with the use of the stepwise refinement technique. 

1. 2 Preliminary considerations and definitions 

Transforming recursive equations is a good methodology for writing 

correct and efficient programs (Burstall and Darlington 771. Following this 

methodology the programmer is first asked to be concerned with program 

correctness only and then, at later stages. with efficiency considerations. 

The original version of the program, which he may easily prove correct. is 

transformed (perhaps in several steps) Into a program which is still correct. 

because the rules used for the transformation preserve correctness. and it is 

more efficient because the evoked computations save time and/or space. 

Several papers have been written about this methodology concerning: 

systems for transforming programs (Bauer at al. 771. [Darlington and 

Burstall 761. (Feather 781. (Scherlis 801. (Darlington 811. (Feather 821: 

various rules for making such transformations (Arsac and Kodratoff 821. 

(Chatelin 771. (Pettorossi 781. (Pettorossi 771. (Schwarz 781. (Manna and 

Waldinger 791. (Scherlis 801. (Wand 801: and 

some theories for proving the correctness of the transformations (Bauer at 

al. 781. (Huet and Lang 781. (Kott 781. 

The given lists of references are not to be considered as exhaustive. For a 
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more extensive bibliography one may refer to [Burstall and Feather 771. 

[Partsch and StelnbrUggen 811 and (Partsch and StelnbrUggen 831. 

Unfortunately for the program transformation methodology a general 

framework in which one can prove that transformations improve efficiency while 

preserving correctness. is not fully available yet. First steps in this direction 

were done in (Wegbreit 76. Scherlis 801. 

One might wonder in fact whether it is Important to develop such a general 

framework at all: it might be the case that using the transformation 

methodology one can derive algorithms which have a limited degree of 

efficiency only. and that if one wanted to write very efficient programs one 

would be forced to adopt other programming techniques, as for example, the 

stepwise refinement technique [Dahl et al. 721. [Wirth 711. But this does not 

seem to be the case, at least for particular classes of algorithms, as 

demonstrated in this thesis for algorithms which evaluate linear recurrence 

relations. Working out the details of the program transformation, we show 

that very high levels of efficiency can be achieved. 

In order to be able to reason about the program transformation approach in a 

precise way we will now introduce a suitable formal system. Our presentation 

is somehow inspired by Chapter Xi of Kleene's book "Introduction to 

Metamathematics" (Kleene 671 and more recent work on the theory of formal 

languages (see for instance [Hoperoft and Ullman 79]). However the main 

inspiration is the recent work by G. Plotkin on a structural approach to 

operational semantics definitions (Plotkin 811. 

We first define the language in which we write our recursive—equations 

programs. We consider the following basic sets: 

1. Numbers 	m EN N = (0.1.2....) 

2. Truthvalues 	t E  I 	T = (tt. ff) 



Individual Variables 	x.y.z.. .. £ iVar 

Functional Variables (with arities) fg.. . . € FVar = U 1  FVar 1 . 

where FVar 1  Is the set of functional variables with arity I. 

Basic Operators (with arities) bop 1  £ Bop = U 1  Bop 1 . where Bop 1  

is the set of basic operators with arity I. 

The set Var = IVar U FVar is a (possibly infinite) denumerable set of 

symbols. 

Notice that the set Numbers and possibly other basic sets we may want to 

define, as for instance Lists. Trees, etc.. can be introduced by using 

constructors. which will be considered as basic operators. We may in fact 

define the set Constr of constructors. ranged over by cons € Constr E Bop. 

Elements of Constr have aritles as all basic operators do. 

For instance, using the constructors 0 (with arity zero) and succ (with arity 

one) we can define Numbers as follows: 

N = (0,succ(0).succ(succ(0)).. . 

Using the constructors "empty". "tip" and "node" we can define the set of 

Trees-of-numbers, as the follows: 

- "empty" denotes the empty tree; 

- "tip(n)" denotes the tree with one tip only whose number is n: 

- "node(tl . t2) ' denotes the tree with the two subtrees ti and t2. 

Starting from these basic sets we can define the following derived sets: 

Basic Expressions 	be € BasExp 

be::=mltlxlcons(.... be, ...) 

Expressions 	 e E Exp 

12 



be I bop( .) I it eo  then e 

e where dlf( .... e....) 

Definitions 	 d € Def 

d : : = x=e I <x 1 	. x,., >=e where n2 

The angle-brackets in <x 1 . . . x 1,> denote the n-ary tupllng operator. We 

assume that for any 01 there exists in Bop a k-ary tupling operator. and that 

the unary tupling operator is the Identity function. 

Recursive Equations 	req € Req 

req::=f( .... be....) 	=e 

We may use = Instead of 	. when no confusion arises with the equality 

predicate. 

(The notion of Basic Expressions, as particular kinds of Expressions. is 

needed only for the definition of the left-hand-sides of the Recursive 

Equations). 

Programs are sets of recursive equations. 

For example 

t(x) = it x=O Than 1  else x f(x-1) 

is a recursive equation and it denotes a program which is made out of that 

recursive equation only. Sometimes we do not use the if-then- else construct 

and we break a recursive equation into several ones. For instance the 

following two equations: 

1(0) 	 16== 1 

f(succ(n)) 6= succ(n) 	1(n) 

are equivalent to the one given above. Notice that here we assumed n E IVar. 

We also omitted (as we will often do) the curly brackets to group together 

recursive equations to form a program. 

13 



Moreover, we like to avoid recursive equations such as: 

	

1(n) 	m • n 	 because the variable m Is not defined 

	

or 1(n) 	a2+n 2  where z=3n because z does not occur in a 2+n2. 

In the Appendix A we will give the static semantics for recursive equations 

(this terminology comes from [Plotkin 81]). so that we may restrict ourselves 

to well-formed recursive equations only, and we may avoid the anomalous 

cases given above. 

We should complete the presentation of our language for recursive 

equations programs by giving also its dynamic operational semantics, I. e. the 

rules for evaluating expressions. 

However, in the second part of the thesis we will define the operational 

semantics of a simple applicative language L. which could be considered as 

an extension of the recursive equations language introduced here. Therefore 

we ask the reader to refer to the definitions given there. 

For the time being we hope that he may be satisfied by knowing that 

expressions are evaluated by the use of a deductive system (similar to the one 

used in Keene 671 Chapter XD . which replaces instances of left hand sides of 

recursive equations by the corresponding instances of right hand sides (in any 

context they might occur) and performes the operations denoted by the basic 

operators. 

Now we will introduce some more concepts for reasoning about 

transformations of recursive equations programs. 

New programs can be derived from "old programs. by using rules and/or 

strategies. 

Here are the most usual rules one encounters in the literature. 

14 
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Definitions Rule. 	It consists In the Introduction of a new recursive 

equation, say f( ... ) 6= a. so that the left hand side" I(. . .) is not an 

Instance of any left hand side of equations already existing in the program. 

We say that an expression e 1  is an instance of an expression e 2  1ff there is a 

substitution C so that 0(e2)e1; in that case we may say that e 1  matches 92  

(one-way unification). 

Here are some examples: 	f(succ(n)) Is an Instance of f(m). where 

O(m)=succ(rI). g(succ(n) m) is not an instance of g(p. succ(q)). 

Instantiation Rule. 	This rule consists in the introduction of an 

Instance of an existing equation. 	This rule already occurs In Keene 671 

where it is called substitution ruled. 

For Instance 	g(n,O) 6== 	0 	can be obtained via Instantiation from 

g(n.m) 6= m fact(n) 

Unfolding Rule. In an already existing equation. an  occurrence of an 

instance of the I. h. s. of an equation is replaced by the corresponding 

instance of the associated r. h. s. . thereby producing a new equation. 

Here is an example. Suppose we are given the following program: 

1(0) 	 6= 1 

f(succ(n)) 	6= n-1(n) 

Then we could derive by instantiation the equation: 

t(succ(suoc(n)) 	succ(rt) 	f(succ(n)) 

and then by unfolding we get: 

f(succ(succ(n)) 4== succ(n) 	(n 	1(n)). 	 EU 

This rule has been already considered in (Kleene 671 Chapter 11, where it is 

called 'replacement ruled. It is also the rule used in term rewriting systems 

(see for instance (Huet and Oppen 801) for defining computations using rewrite 

rules. 

Folding Rule (as the unfolding rule, interchanging I. h. s. and 

r. h. s. ) 
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Where-Abstraction Rule. Given a recursive equation f( ... ) 	e 

such that a M C[e'] where C is a context denoting that the subexprassion e' 

occurs In a. we Introduce the new equation t( ... ) 	C[z] 	where z=e' 

provided that z Is a "new" variable symbol. I. e. a variable symbol not 

occurring In f(. . . ) 	a 

Laws Rule. 	We can define a new equation by transforming a 

subexpression using some rules which hold in the algebra of the basic 

operators. For instance f(succ(n)) = n • f(n) can be transformed into 

f(succ(n)) 6= f(n) • n because 	Is commutative.. 

Strategies for transforming programs are ways In which new function 

definitions may be derived. New derived functions may be introduced in the 

given program using the "definition rule". 

Well-known strategies are the following ones [Burstall and Darlington 771: 

I. Composition. If a subexpression f(g(x)) occurs in an expression e. 

we define h(x)=f(g(x)) and replace f(g(x)) by h(x) in a. 

Using this strategy one may derive a new program which. hopefully, is more 

efficient. For Instance, one may avoid the construction of intermediate data 

structures, which are the output of g and the input for f. Some examples are 

in [Burstall and Darlington 77, Feather 79, Scherlis 801. 

The composition strategy is also very useful when the output of f does not 

depend on the entire output of g. In that case we can obtain some of the 

advantages of the lazy evaluation mechanism. 

2. Tupling. (In the literature this strategy has been also called pairing, 

when only two functions are considered) ( (Burstall and Darlington 771 page 49). 

If in an expression e. the functions f 1 (x). f2 (x) .....f(x) occur, we may 

define h(x)<f 1 (x) .f2 (x) .....f(x)>. Then in e we will use 11 i(h(x)) instead 

of f 1 (x) . where IN denotes the i-th projection function, for i=1, . . . , n. 
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The use of the tupling strategy Is very useful if the functions f 1 (x) .....f(x) 

have all to access the same data structure x (and no other function is using 

x). The use of x will then be restricted to the computation of h(x) and the 

store used by x can be released as soon as NO has been computed. This 

allows great improvements in "tImeXmemory efficiency while executing 

recursive equations programs (Pettorossi 771. 

The use of the tupling strategy is also very effective when common 

subexpressions occur in evaluating several functions. Tupling those functions 

together results in an improvement of the performances. Various examples of 

that fact will be given later in the thesis. 

3. Generalization. It could be of two kinds. 

I) Generalization from expressions to functions. 

If an expression e occurs in a program and the variables X 1 , 	xn occur free 

In it, then we may define a newfunctlon I via the equation f(x 1  .... .x) = a 

and replace e by f(x 1  .....x) itself (Burstall and Feather 771. Generalizations 

of this kind are somewhat similar to those in [Aubin 791 and (Boyer and Moore 

75]. 

ii) Generalization from functions to functions. 

It can be done in two different ways. The new function can be introduced 

either by cases or by implicit definition (Pettorossi and Burstall 821. 

Definition by cases. 

Let us consider the following program: 

( f(be 11 . . . . ) 6= a 1 . . . . . f(be 1 . . . . ) 	= On 
) 

which defines the function f and let us suppose that some constants. say 

C 1  ..... Cm  occur in the expressions a 1 .. . . . e 1.. 	We can generalize those 

constants to variables, say y,. . 	yrn , and define the same function f as 

follows: 

( f(.. .) 	f2(. .• .C 1  ..... Cm )  

12(be 11  ............Ym 	= °' i ..... f2(ba1.. .......... 	 s',, 
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where e' 1 ..... e', are expressions which can easily be derived from 

On  using the fact that f(. . .) = f2(. . . .c 1  ..... cm ) 

For example. from: 

( f(0)=1. f(n+1)=(n+1) -f(n) J 	we get: 

{ t(n)=f2(n.1). f2(0.y)=y. f2(n+1.y)=(n+1)-f2(ny) }. 

Implicit definition. 

Given the program: 

[ f(be 11 . . . . ) 	e. . . . . f(be 1 . . . . ) 	On } 

which defines the function f. we can introduce the new functions 

g 1 (. . .) ..... g m ( ... ) by implicit defiflition, using the following recursive 

equation: 

f(...) 	F( .... g 1 (...) ..... 

where F is a functional which we have to invent and which may depend on the 

arguments of f as well. 

For example, given the program: 

{ G(a.b.0)=a. G(a. b. 1)=b. G(a. b. n+2)=G(a. b. n)+G(a. b. n+1) J 
we may introduce by implicit definition the new functions p(n) and q(n) using 

the equation: 

G(a.b.n) = F(a.b.n.p.q) = p(n)•a + q(n)•b. 

The explicit definition of p(n) and q(n) gives us: 

p(n)=G(1.0.n) and q(n)=G(0.1.n). 

We will see some more examples of those generalization strategies in 

what follows. 

The basic idea of the program transformation technique as introduced by 

Burstall and Darlington [Burstall and Darlington 771. is to derive from a given 

recursive equations program, another one which computes the same function 

in a more efficient way. 
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In such a derivation two major Issues are to be considered: equivalence and 

efficiency. 

The equivalence issue consists in the fact that the derived program. say 

P'. should be equivalent to the given one. say P. in a strong sense. I. a. Yx if 

P(x) terminates and computes the value f(x) then P'(x) terminates and 

computes the same value f(x) . 

Sometimes one may encounter a "termination problem". Indeed, using the 

strategies and the rules we have listed above, the derived program P'(x) may 

fail to terminate for input values for which P(x) terminates. 

Let us see the following example. 

Given the program: 1, f(0) 	0 

f(succ(n)) 4=1(n). 

we can get by instantiation from 2: 

f(succ(succ(n) ) ) 4=T(succ(n)) 

by unfolding from 2 and 3: 

3'. f(succ(succ(n)) 4=1(n) 

and eventually by folding f(n) in 2 using 3' we get: 

2'. f(succ(n)) 4= T(succ(succ(n)). 
Now the derived program (equations 1 and 2') for the function f terminates 

only for the input 0. and therefore it does not compute the function computed 

by the given program (equations 1 and 2), which was the constant function 

yielding always the value 0. 	 0 

Work related with this equivalence issue was done in Mott 78. Scherlis 801. 

In order to make sure that termination is preserved. Kott suggested a method 

based on counting the number of foldings and unfoldings. while Scherlis 

adopted transformation rules which correspond to a restricted use of the ones 

we have presented above. 

The efficiency issue is related to the time and/or memory requirements in 

running a derived program with respect to a given one. 
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In (Burstall and Darlington 771 the time requirement considered is the number 

of recursive calls necessary to compute the result. We will also use such a 

measure in the next sections when deriving efficient algorithms for evaluating 

linear recurrence relations. 

Ways of improving memory requirements via program transformation or 

destructiveness analysis' have been considered in (Pettorossi 781 and (Mycroft 

811. 
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1. 3 Deriving an algorithm for computing the Fibonacci function in logarithmic 

time 

We start off from the familiar definition: 

Program P1 

fib(0) 	= 1 

fib(1) 	= 1 

fib(n+2) = fib(n+1) + fib(n) 	 for n0 

and we look for a logarithmic running time program for computing the 

Fibonacci function. 	(In (Burstall and Darlington 771 a linear running time 

program is obtained.) 	We will use the transformation method and its 

strategies for deriving "new" (and more efficient) programs from "old" ones. 

Obviously Program P1 is a well-formed program (see Appendix A). 

As it has been the case for many other functions (see for instance, the 

factorial function in [Burstail and Feather 77]), in order to improve the running 

time efficiency we can apply the "generalization strategy" already described, 

by transforming the constant 1 in equation 1 into the variable a 0  and the 

constant 1 In equation 2 into the variable a 1 . 

These variables will be considered as extra arguments of a new function. 

as usually done when using the generalization strategy (Burstall and Feather 

771. Therefore we get the following generalized Fibonacci function: 

(GENERALIZATION EUREKA) 

G(a0. a i l O) = a0  

G(a0. a l . 1) = a 1 	 - 

G(a0 .a 1 .n+2) = G(a0 .a 1 .n+1) + G(a0 .a 1 .n) 	for nO 

The word "eureka" which annotates the above generalization step, is used 

throughout this paper as in [Burstall and Darlington 771. for denoting 

unobvious steps in the transformations of our programs. 
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The function G has been obtained by applying the aeneralization with definition 

by cases (see Section 1. 2). 

It allows us to compute the Fibonacci function starting from any two Initial 

values a0  and a 1 . 

Obviously we can derive the following program for computing fib(n): 

Program P1, 1 

fib(n) = G( 1. 1.n) 	 for nO 

G(a0. a l , O) = a0  

G(a0. a l . 1) =a 1  

G(a0
1
a 1 .n+2) = G(a0

1
a 1 .n+1) + G(a0

1

a 1 .n) 	for nO 

Program P1. 1 is well-formed. 

Looking for a fast way of computing G. we need to relate G(a 0
1 
a 1 . n+2) 

not to G(a0 .a 1 .n+1) and G(a0 a 1 .n) as in equation 6. but to "more distant" 

values, say G(a0 .a 1 .n) and G(a0 .a 1 .n-1). This can be achieved by using 

the'unfolding rule". We get: 

G(a0 ,a 1 .ri+2) =G(a0 ,a 1 .n+1) +G(a0 .a 1 .n) 

= 2-G(a0 a 1 . n) + G(a0 .a 1 .n-1) 

by unfolding G(a0. a l , n+1) using 6. 

We can iterate this unfolding process and we get: 

G(a0. a l l n+2) = 3-G(a0 .a 1 . n-i) + 2•G(a0 .a 1 n-2) 

by unfolding G(a0 . a 1 , n) in the previous expression. 

Eventually we get: 

G(a0. al , n+2) = c 1 .G(a0 .a 1 .0) = c 1 .a 1 +c2 -a0 . 

where the two values c 1  and c2  depend on n. I. e. the "distance" of 

G( a0 , a 1 . n+2) from G (a 0
1 
a 1 , 1) and G (a0

1 

a 1 . 0). 

This reasoning motivates the following "eureka step" (more "ad hoc" than the 
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previous generalization eureka). by which we generalize the constants c 1  and 

c2  and we introduce the implicit definition of two new functions p(n) and q(ri): 

8. G(a0 . a l l n) = p(n) -a0  + q(n) -a 1 	(LINEAR COMBINATION EUREKA) 

This "eureka" Is an application of the generalization by implicit definition as 

introduced in Section 1. 2. 

The program transformation process continues, as usual. by looking for 

an explicit definition of the newly introduced functions p(n) and q(n). 

From 4 and 8 (for n=O) we get: a 0  = p(0) -a0  +q(0) •a 1 . Since this equality 

should hold for all values of a0  and a 1 . we have q(0) = 0 and hence 

P(0) = 1. 

Analogously from 5 and 8 (for n1) we get: a 1  = p(1) -a0  + q(1) -a 1 l which 

yields p(l) = 0 and q(1) = 1. 

From 6 and 8 (for n+2 instead of n) we get: 

G(a0. all  n+1) + G(a0. a l l n) = p(n+2) -a 0  4 q(n+2) -a 1  

By 8 we have: 

p(n+1) -a0  + q(n+1) -a 1  + p(n) -a0  + q(n) -a 1  = p(n+2) -a0  + q(n+2) -a 1  

and therefore, since this equality should hold for all values of a 0  and a 1 , we 

get: p(n+2) = p(n+1) + p(n) and q(n+2) = q(n+1) + q(n). 

By 4. 5 and 6 we get: p(n) = G(1.0.n) and q(n) = G(0. 1.n). 

Thus the LINEAR COMBINATION EUREKA can be rewritten as follows: 

8'. G(a0 .a 1 .n) =G(1.0.n)-a 0 +G(O.1.n)-a 1  

Since the function G (a 0 . a.. n) computes the Fibonacci function starting 

from the initial values a 0  and a 1 . if we substitute in 8' fib(n) for a 0  and 

fib(n+1) for a 1  we get that G(a0 . a 1 . n) is equal to fib(2n): thus: 

8". f1b(2n) = G(Iib(n). fib(ri+1).n) 



=G(1.O.n) -fib (n) +G(O.1.n)•fib(n+1) 	 by 8' 

This equation allows to derive a logarithmic running time algorithm for 

computing the Fibonacci function, because the argument 2n has been divided 

by 2 and because analogous equations can be derived for G(1.O.n) and 

GO. 1. n). 

However, In order to obtain equation 8" using the program transformation 

technique, we need a second generalization step. by which we will obtain a 

general formula for computing G(a 0 .a 1 . n) in logarithmic time for any value of 

the variables a a 1  and n. 

From equation 6 we can generalize the constant 2 occurring in 

G(a0 . a 1 . n+2) into a new variable, say K. which will be. as usual, an extra 

argument of the resulting function. Therefore we define the function 

F(a0 .a 1 .n,k) as follows: 

9. F(a0 , a.1 . n. k) = G(a0 , a 1 . n+k) 	 (GENERALIZATION EUREKA) 

(for the function F) 

Now we look for the explicit definition of F. in terms of the argument k just 

introduced. We obtain: 

F(a0 .a 1 .n.0) = G(a0 .a 1 .n) 

F(a0 .a 1 .n.1) =G(a0 .a 1 .n+1) 

F(a0 . a l . n.k+2) = G(a0 1 a 1 .n+k+2) 

= G(a0. a l l n+k+1) + G(a0. a l l n+k) 	by unfolding (using 6) 

= F(a0 . a l . n.k+1) + F(a0, a l , n.k) 	by folding (using 9) 

Now it is possible to make for F the same transformation steps made for 

G. because F and G obey the same recurrence relation. 

We can apply for F the "linear combination eureka" (see equation 8), and we 

get: 

F(a0 ,a 1 .n.k)r(k)"G(a 0 .a 1 .n) +s(k)-G(a0.a1,n+1), 

24 
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because G(a0 . a 1 . n). G(a0 . a 1 . n+1) and k play for F the role of a 0 . a 1  and n 

respectively for G. 

Looking for the explicit definition of r(k) and s(k) we obtain (by making 

the same derivations performed for the function G) that: 

r(0) = 1. r(1) = 0. r(k+2) = r(k+1) + r(k) 	and 

s(0) = 0. s(1) = 1. s(k+2) = s(k+1) + s(k). 

Thus we have as before: 

r(k) = G(1.0.k) 	and 	s(k) = G(0.1.k). 

We get: 

F(a0 .a 1 n,k) =G(1.O.k)•G(a0.a 1 .n) +G(0.1.k)•G(a0,. a l l n+1) 

and from It we obtain. using 9, the following equation: 

9'. G(a0, a l l n+k) =G(1.0.k)-G(a0 .a 1 .n) +G(Q..1.k)•G(a0 .a 1 .n+1) 

(EFFICIENCY EQUATION) 

Equation 9' allows us to achieve the logarithmic running time algorithm we - 

were looking for. In fact, if we want to compute fib(2k) we need to compute 

G(1. 1.2k) (by equation 7) and for computing G(1, 1,2k) according to 

equation 9'. we need only to know G(1.0.k). G(1.1,k). G(0.1.k) and 

G( 1. 1. k+1) which are values of the function G around the point k. As we 

already mentioned. this division by 2 of the relevant argument allows the 

desired efficiency. 

From equation 9' we can derive the new program P2 for computing the 

Fibonacci function: 
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G(a0 .a1 .0) 

G(a0 .a 1 ,1) 

G(a0 a 1 .2k) 

Program P2 

=1 
	

by 1 

=1 
	

by 2 

= G(1.l.2k) 
	

by 7 

= G( 1.0. k) •G( 1. 1. k) + G(0. 1. k) •G( 1. 1. k+1) 
	

by 9' 

= G(1.1..2k+1) 
	

by 7 

= G(1.0.k) •G(1. 1.k+1) + G(0. 1.k) •G(1. 1.k+2) 
	

by 9' 

=a0 	 by4 

=a 1 	 by  

= G(1.0.k) •G(a 0 a 1 . k) + G(0. 1. k) G(a0 .a 1 .k+1) 

fib(0) 

fib(l) 

fib(2k) 

fib(2k+1) 

by 9' 

17. G(a0 . a l l 2k+1) = G(1.0.k) •G(a0. a l l k+1) + G(0. 1.k) •G(a0. a l l k+2) 

by 9' 

Unfortunately, as one can see from fig. 1-1k program P2 may evoke 

computations with redundant evaluations. In order to guarantee a logarithmic 

running time for P2 one should avoid them (or, at least, prove them to be 

suitably bounded). 

Notice that redundant evaluations can be detected by symbolic evaluation 

alone, using "unfolding: in our case. for example, when computing fib(2k). 

we will compute G(1.0.k/2) 4 times (see fig. 1-1). 

But this difficulty can be easily solved by using the tupling strategy 

[Pettorossi 771. The "tupling strategy consists in defining a new function as 

the tuple of all functions which require common subcomputations. We will 

apply it by tupling together G( 1.0. k) . G( 1. 1. k) . G(0. 1, k) and G(1, 1, k+1) 

because they all need the computation of G( 1.0. k/2) (see fig. 1-1). 



flb(2k) 

\ 	

by 12 

G(1, 0. k) 	G(1, 1. k) 	G(0. 1. k) 	G(1, 1. k+1) 

A N 
G(1.0.k/2) 	G(1.0.k/2) 	G(1.0.k/2) 	G(1..0.k/2) 

by 16 	 by 12 	 by 16 	 by 13 

Figure 1-1: Redundant computations in program P2: 
G(1.0. k/2) occurs 4 times in evaluating fib(2k). 

(Suppose k even.) 

Therefore we will define the following auxiliary function t(k): 

t(k) =<G(1.0.k).G(0.1.k).G(1.1.k).G(1.1.k+1)> (TUPLING EUREKA) 

The order in which the individual functions G's occur in t(k) is 

immaterial. The explicit definition of the function t(k) can easily be derived by 

standard applications of the "folding" and "unfolding" rules using equations 4. 

5. 6 and 9' and we get: 

t(0) 	= <1.0.1.1' 

20.t(2k) 	=<G(1.0.2k).G(0.1.2k).G(1.1.2k).G(1.1.2k+1)> 

=<G(1.0.k)•G(1.0.k)4-G(0.1.k)•G(1.0.k+1). 

G(1.0.k)"G(0.1.k) +G(O.1.k)-G(0.1.k+1). 

G(1.0. k) -G(. 1. k) + G(0. 1.k) •G(1. 1. k+1). 

G(1.0k)•G(1.1.k+1) + G(0.1.k)-G(1.1.k+2)> 

by 9' 

= <a2+b2 . b(2a+b). ac+bd, ad+b(c+d)> where <a.b.c. d> = t(k) 

by 6 and 9' 

27 
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21. t(2k+1) =<G(L0.2k+1).G(0.1.2k+1) .G(1..L2k+1). G(1.1.2k+2)> 

= <2ab+b2 . (a+b) 2+b2 . ad+b(c+d), a(c+d)+b(2d+c)> 

where <a. b.c.d> = t(k) 

Therefore we can now obtain the following nonredundant program P3, 

which computes the Fibonacci function in logarithmic time. 

Program P3 

 fib(0) = 1 

 fib(1) = 1 

 fib(2k) = ac+bd where <a.b.c.d> = t(k) 

 fib(2k+1) = ad+b(c+d) where <a.b.c.d> = t(k) 

 t(0) = 	<1.0.1.1> 

 t(2k) = <a2+b2 . b(2a+b). ac+bd. ad+b(c+d)' 

Where <a b.c.d' = t(k) 

 t(2k+1) = <2ab+b2 . 	(a+b) 2+b2 . ad+b(c+d), a(c+d)+b(2d+c)> 

where <a. b.c.d> = t(k) 

Notice that, instead of 'tupling" the functions which cause redundant 

computations in equation 12. namely G(1, 0, Ic). G(0. 1. k). G( 1. 1. Ic) and 

G( 1. 1. k+1). as we did, we could have tupled the functions G( 1.0. k). 

G(0. 1. k). G( 1.1. k+1) and G(1. 1. k+2) which cause redundant computations 

in equation 13. The resulting program would have been equivalent to program 

P3. In Section 1. 8 we will discuss that fact and we will see other interesting 

properties of the tupling strategy. 

We also can simplify program P3 using the following equation which can 

be derived from equations 7 and 18: 

fib(n+1) = 7T3(t(n)) 

where, in general. lTi(<eO.91. 	ek>) = ei for =0.....k. 
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Notice that 771 denotes the (i+1)st projection function. 	It is not a usual 

convention, but it will shorten our notations in what follows. 	When no 

confusion arises, we will feel free to use ffj  to denote the i—th projection as 

well. 

We obtain program P4. 

Program P4 

10. flb(0) 	= 1 

22. fib(.n+1) = 73(t(n)) 

t(0) 	= <1.0.1.1> 

t(2k) 	= <a2+b2 . b(2a+b) 

where 1T3( eO, el . e2. e3>) = e3 

ac+bd. ad+b(c+d)> 

whorea.b.c.d> = t(k) 

t(2k+1) 

	

	= <2ab+b2 . (a+b) 2+b(2). ad+b(c+d). a(c+d)+b(2d+c)> 

where <a.b.c.d> = t(k) 

We could also have derived the equation: 

22'. fib(n) =172(t(n)) 	 for n0 

and we could have used it in program P4 instead of equations 22 and 10. 

But. in evaluating 72(t(n)) we should avoid computing all 4 components of 

t(n). because otherwise we would also compute 7T3(t(n)) which is equal to 

fib(n+1). and it seems awkward to compute fib(ri+1) while computing fib(n). 

A solution to this inconvenience can be obtained by using a 'call by need 

evaluation mode for the projection function 7T2 or by introducing suitable 

conditional expressions (see Example 9 Section 1. 8. 3). 

In fig. 1-2 the reader may have a synoptic account of the program 

transformation steps we have made so far.. 



Program P1 (1 . 2. 3): Definition. Exponential time. 

.1 

Generalization Eureka (4. 5. 6) defining G(a 0 . a. n) 

Program P1. 1 (7.4.5.6). Exponential time. 

I 

Linear Combination Eureka.for G(a 0 . a l , n) 	(8 1 ) 

Generalization Eureka defining F(a 0 .a 1 . n. k) (9) 

Efficiency Equation 	 (9 1 ) 

I 

Program P2 (from 10 to 17).. Almost logarithmic time. 

4 functions require common subcomputatlons. 

.1 

Tupling strategy with 4 functions (19. 20. 21) 

I 

Program R3 (10.11. 12'. 13'. 19.20.21). Logarithmic time. 

As the 2X2 Matrix Exponentiation Method. 

1. 

Simplification strategy (22) 

I 

Program P4 (10. 19. 20, 21. 22). Logarithmic time. 

As program P3, but fewer equations. 

Figure 1-2: 	Deriving 9  logarithmic running time algorithms for computing the 
Fibonacci function. (We have annotated the transformation steps 

and the programs with the corresponding equation numbers. ) 
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1. 4 A comparison with other algorithms 

Linear recurrence relations can also be evaluated in logarithmic time 

using the well-known matrix exoonentiation method (Miller and Brown 

66. Hoggatt 691. We will recall it in the case of the Fibonacci function 

evaluation. Directly from the definition, we have: 

f1b(2) 	1 	1 	flb(1) 

flb(1) 	1 	0 	fib(0) 

and. in general, we have: 

fib(k+1) 	 fib(1) 

= Mk 

fib(k) 	 f1b(0) 

= Mk. LI for .k0 

11 

where M= 

10 

Therefore, in order to compute fib(k+1) we have to compute M 1'. This 

matrix can be computed in logarithmic time, because we can compute the 

values of M. M2 . M 4 . M8 . . . . by successive squarings starting from the matrix M 

and then we can multiply together those matrices whose exponents contribute 

to a sum equal to k (Miller and Brown 66, Hoggatt 69. SteinbrUggen 771. 

More formally, we have: M k = 11 M
b 

I  2  , where the b,'s are defined by 
=0 

the binary expansion of k. I. e. k = E b 1  2. 
=0 

Example 1. For computing fib( 14). since 13 = 1+4+8. we have: 
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fib( 14) 	 1 

=M 13 ' 	= M•M4 •M8 • 

fib(13)_ 	 1 

11 	53 	3421 	1 

1 0 3 2 	21 13 	1 

	

377 233 	1 

	

233 144 	1 

Thus fib(14) = 337 + 233 = 610. 	 0 

What kind of relationship exists between the matrix exponentiation method 

and our method as defined by program P4? The answer to this question Is 

given by the following fact, which shows that the 4-tuple t(k) directly 

corresponds to MC  for any 00. 

	

11 	 c b 

Fact 1 Let M be 	 . Mk be 	 and t(k) be defined as in 

	

1 0 	 d a 

program P4. 	Vk0 	t(k) = <a.b.c. c+d. 

	

Proof By Induction on K. 	 1i- 

It is very interesting to notice that the use of the tupling strategy. which 

we applied in the transformation approach only for avoiding redundant 

evaluations of common subexpressions. "rediscovered", as Fact 1 indicates, 

the matrix exponentiation approach, by satisfying the apparently unrelated 

requirement of improving efficiency. 	But the relationship between the two 

approaches can be shown to be even stronger, as we will now indicate. 

The matrix exponentiation method can be improved because the following 
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Fact 2 allows us to derive the matrix M2k  from the matrix Mk.  for any kO, by 

knowing only the 2 elements of the last column of M' (Miller and Brown 661. 

Fact 2. Under the hypotheses of Fact 1. V00 d=b and c=a+b. I. e. the 

matrices M 1 's are symmetric and they have only two Independent elements. 

namely a and b. Proof. By induction on k. 0 

From Fact 2 It follows that in order to derive M 2 from Mk  it is enough to 

know only one row or one column of Mk.  That property is indeed valid for any 

linear recurrence relation with constant coefficients, as we will see in the next 

section. 

Can we rediscover the improved version of the matrix exponentiation 

method (in which we compute only two elements of the matrices Mk.  for any 

kO. by using Fact 2) by applying the tupling strategy for avoiding redundant 

computations so that only two functions (instead of four as we did in the 

definition of t( k)) are tupled together? 

The answer Is yes and the corresponding program can be derived from 

program P2 as follows. 

The technique used is an application of what we may call a simplification 

strategy. We can transform equations 12 and 13 for minimizing the number of 

distinct values occurring in them. 

12w. fib(2k) 	= G( 1.0. k) -G( 1.1. k) + G(O. 1,k) 	G( 1.1. k+1) 	by 12 

= G(1, 0. k) • (G(1.0, k) •G(1. 1.0) + GO. 1.k) -G(1. 1.1)) 

+ G(0. 1.k) 	(G(1,0, k) -G(1. 1.1) + G(0. 1.k) -G(1. 1.2)) 

by 9' 

= (a+b) 2  + b2 	where a,b = G(1.O.k). G(O.1,k) 

by 4. 5 and 6 

Analogously: 



34 

13". flb(2k+1) =G(1.0k) •G(1.1.k+1) +G(O.1.k) G(1.1.k+2) 	by 13 

= (a+b) 
2  + 2b(a+b) 	where a.b=G(1.0.k). G(0.1.k)by9' 

Analogously we may transform equations 16 and 17 and we get: 

G(a0 .a 1 ,k) 	= G(1.0.k) -a0 	G(0. 1.k) -a 1 	 by 8 

G(a0 .a 1 k+1) =G(1.0.k)-G(a0, a l l 1) +G(O..1.k)•G(a0  a l l 2) 	 by 9'  

= G(1.0.k) -a 1  + G(0. 1.k) -(a0+a 1 ) 	 by 4.5 and 6 

G(a0 .a 1 .k+2) = G(a0 .a 1 .k+1) + G(a0 .a 1 .k) 	 by 6 

= GO, 0.k)-a l  +G(0.1.k) 	(a0+a1)+G(a0. a l l k) 

by above equation for G(a0 . a 1  k+1) 

=G(10.k) a 1  +G(O.1.k) (a0+a 1 ) 

+G(1.0k) G(a0. a l l 0) +G(0.1.k) G(a0. a l l 1) 	by 9' 

= G(1 0. k) (a0+a 1 ) + G(0. 1.k) (a 0+2a 1 ) 	 by 4 and 5 

Therefore we get the following program P2. 1 from Program P2: 

Program P2, 1 

 fib(0) = 1 

 fib(1) = 1 

 fib(2k) = (a+b) 2+b2  

 fib(2k+1) = (a+b) 2+2b(a+b) 

where a. b = G( 1.0. k). G(0. Ilk) 

where a. b = G( 1.0. k). G(0. 1,k) 

G(a0 a 1 .0) 	= a0  

G(a0 .a1 .1) 	=a1  

16'. G(a0 . a 1 ..2k) 	= G(1. 0. k) -G(a 0 . a 1 . k) + G(0. 1. k) -G(a 0 . a 1 . k+1) by 9' 

= p2a0+2a 1 pq+(a0+a 1 ) q2  

where p.q = G( 1. 0. k) . G(0. 1. k) 
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17'. G(a0 .a 1 .2k+1) =G(1.Ok)G(a 0 .a1 .k+1) +G(O,1,k)•G(a0 .a 1 k+2) 

by 9' 

= p2a 1 +2(a0+a 1 ) pq+(a0+2a 1 ) q2  

where p.q = G( 1. 0. k) . G(O. 1. k) 

Program P2. 1 still suffers from the presence of redundant computations 

(see fig. 1-3) 

fib( 2k) 

by 12 

G(1.0.k) 	 G(0.1.k) 

G(1.0.k/2) 	G(1.O.k/2) 

by 16' 	 by 16' 

Figure 1-3: Redundant computations in program P2. 1: 
G( 1.0. k/2) occurs twice in evaluating fib(2k). 

(Suppose k even.) 

They are caused by the functions G(1,0.k) and G(0. 1.k) and therefore 

we will use the tupling strategy' defining the following auxiliary function r(k) 

r(k) = <G(1.0.k). G(0. 1..k)> 	 (TUPLING EUREKA) 

r(0) 	= <1.0> 

r(2k) 	= <G(1.0.2k). G(0. 1.2k)> 
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22 	2 
= <p +q .2pq+q > 	where <p, q> = r(k) 	 by 16' 

26. r(2k+1) =<G(1.0.2k+1). G(0.1.2k+1)> 

= <2pq+q2 . (p+q) 2+q2> 	where <p. q> = r(k) 	 by 17' 

Therefore we can transform program P2. 1 into program P3. 1 where no 

redundant computations occur and. as required, we tupied only two functions. 

The running time for P3. 1 is again logarithmic. 

Program P3. 1 

f1b(0) = 1 

fib(1) = 1 

12".fib(2k) = (a+b) 2+b2 	 where <a, W = r(k) 

13".fib(2k+1) = (a+b) 2  + 2b(a+b) 	where <a, W = r(k) 

24. r(0) = <1.0> 

25, r(2k) = <a2+b2 . 2ab+b2> where (a, b> = r(k) 

26. r(2k+1) = <2ab+b2 . (a+b) 2+b2> 	where <a. b> = r(k) 

The straightforward correspondence between program P3. 1 and the matrix 

exponentiation method is stated by the following fact: 

	

1 1 	 rc b 

Fact 3 Let M be 	 . M 
k

be 	 and r(k) be defined as in 

	

10 	 d a 

program P3.1. 	Vk0 	r(k) = <a. b>. 

Proof By Induction on 1<. 	 U 

As we simplified Program P3 and we obtained program P4. we can 

simplify program P3. 1 also, by using once more the efficiency equation 9'. 

For n0, we have: 

7'. fib(n) 	= G(1.1.n) 	 by 7 
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= G(1.0.n)G(1.1.0) + G(0. 1.n) -G(1.1.1) 
	

by 9' 

= G( 1.0. n) + G(0 1. n) 
	

by 4.5 

= a+b where <a.b = r(n) 
	

by 23 

Therefore we can get the following program P4. 1: 

Program P4. 1 

flb(0) = 1 

flb(1). = 1 

7'. flb(n+2) = a+b 	where <a. b> = r(n+2) 	for n)0 

r(0) = <1.0> 

r(2k) = <a2+b2 .2ab+b2> 	 where <a.b> = r(k) 

r(2k+1) = <2ab+b2 . (a+b) 2+b2> 	where <a, b) = r(k) 

Notice that program P4. 1 has less equations than program P3. 1. but It 

determines exactly the same sequence of computations, as it can be proved 

by induction on k. 

The following fig. 1-4 summarizes the last transformation steps we have 

performed. 

Instead of using the simplification strategy and the tupling strategy. we 

can get program P3. 1 directly from program P1 by discovering an efficiency 

equation a bit more"clever' than 9' as follows. We could have thought of 

expressing G(1.0. k) and G(0. 1. k) in 9' in terms of the Fibonacci function for 

reducing the number of different functions to be computed. This can be done 

by extending the definition of the Fibonacci function so that 

fib(n+2) = fib(n+1) + fib(n) holds for n 	-2. Therefore. if we want to have 

fib(0) = 1 and fib(1) = 1. we must have fib(-1) = 0 and fib(-2) = 1. Thus: 

27. G( 1. 0. k) = fib(k-2) 	 by 4. 5 and 6 



Program P2 (from 10 to 17). "Almost" logarithmic time 

Simplification strategy (12". 13". 16'. 17') 

1. 

Program P2. 1 (10.11. 12". 13". 14.15.16'. 17'). "Almost" logarithmic time. 

2 functions require common subcomputatlOnS. 

Tupling strategy with 2 functions (24.25.26) 

Program P3.1 (10.11. 12". 13", 24.25.26). Logarithmic time. 

As the 2X2 Matrix Exponentiation Method with 2 independent values. 

1. 

Simplification strategy (7') 

I 

Program P4.1 (10. 11.7'.24.25.26). Logarithmic time. 

As Program P3. 1, but fewer equations. 

Figure 1-4: 	Alternative derivation of IogarithmiC running time algorithms 
for the Fibonacci function. (Transformation steps and programs 

are annotated with the corresponding equation numbers.) 

28. G(0.1.k) = fib(k-1) 
	 by 4. 5 and 6 

We can then rewrite the EFFICIENCY EQUATION as follows: 

9". G(a0. a l l n+k) = fib(k-2) .G(a 0 a 1 .n) + fib(k-1) -G(a0. a l l n+1) 

for n0. 00 

Using 9 we get the following program for computing the Fibonacci function: 

fib(0) 	= 1 

fib(1) 	= 1 

38 
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flb(2k) 	= G(1.1.2k) 	 by 7 

= fib(k-2) "fib(k) + fib(k-1) •fib(k+1) 	 by 9" and 7 

= (a+b) 2  + b2 	where a.b = fib(k-2) .fib(k-1) 	by 3 

fib(2k+1) = G(11.2k+1) 	 by 7 

= fib(k-2) •tlb(k+1) + fib(k-1) -flb(k+2) 	 by 9" and 7 

= (a+b) 2  + 2b(a+b) where a,b = fib(k-2).fib(k-1) 	by 3 

By equations 23. 27 and 28 it turns out that equations 29 and 30 are the same 

as 12" and 13". Therefore applying the tupllng strategy by defining 

r(n) = <fib(n-2) .fib(n-1)> we can get again program P3. 1. 

It is very interesting to notice that the cleverness of discovering 9. starting 

from 9' (including also the extension of the Fibonacci function definition) can 

be obtained via the application of a very simple strategy. I. e. the 

simplification one. Therefore. in some particular cases, the basic strategies 

are indeed very powerful and they allow us to obtain results which can be 

otherwise derived only by "intelligent" reasoning. 

Linear recurrence relations may also be solved using the generatirta 

functions method (Liu 681 . Applying that method it is possible to derive an 

explicit formula for the nth element of the series which satisfies a given 

recurrence relation. That formula contains in general an exponentiation to the 

nth power which allows a logarithmic running time algorithm. For example. 

for the Fibonacci relation. fib(n) is equal to (A 1 -B'1 ) i/T. where 

A = (1+'I) /2 and B = (1/ /2 . Therefore as far as running time is 

concerned, the program we obtained using the transformation technique is not 

less efficient. at least asymptotically. 
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1. 5 The general case of homogeneous linear recurrence relations 

In this section we deal with the general case of homogeneous linear 

recurrence relations with constant coefficients (whose definition will be 

recalled later) and we show that analogous steps to those presented for 

deriving an efficient algorithm for computing the Fibonacci function can be 

performed in that case as well. 

We will follow for the general case, the transformation steps Indicated In 

fig. 1-2 (from program P1 to program P2) and the ones indicated in 

fig. 1-4 (from program P2 to program P3. 1): in fact the generalization 

eurekas and the linear combination eurekas can be applied in the same 

manner. so  that we can derive an algorithm for evaluating any homogeneous 

linear recurrence relation in logarithmic time. 

Therefore, as the matrix exponentiation method is a general method for 

evaluating linear recurrence relations, so is our transformation method. This 

is an interesting fact because it shows the uniform" power of the 

transformation strategies with respect to a given class of problems, just as 

paradigms (Floyd 791 in the stepwise refinement technique has a uniform 

power for solving problems in a given class. 

Let us consider a general homogeneous linear recurrence relation of 

order r: 

4.1 	h(0) 	=h0  

h(1) 

h(r-1) = hr-1 

h(n) 	= b0  h(n-r) + . . . + br_i h(n-1) 	for nr 

We will also write h(n) = L(h(n-r) .....h(n - 1)) 	where the polynomial 



r- 1 
L(x0 	. Xr_i )  = E b x 1  is a linear polynomial in the variables x0 ..... Xr_i 

I=0 

with the constant coefficients b0.....b r_iS 

The generalization eureka introduces the following function H (analogous 

to the function G(a0 .a 1 .a)): 

4.2 Who , ... .hr_iSO) 	= h0  

Who, ....h r_i.ri )  = h r-1 

H(h0.....h r_i. n) 	= L(H(h0 . .... hr_i. n-r) ..... Who, ....hr_is n-i)) 

for nr 

The general form of the linear combination eureka (analogous to equation 

8') is: 

4.3 Who, ....h r_i.fl )  = H(1.0 ..... O.n)h0 +... + H(0.0.....i.fl)h r_i 

r- 1 
= E H1(n)h 

i=0 

where we denoted by H 1 (n) the term H(0.. . .0.1.0.0.n) 

for =0.....r-1. 

If we take ho, ....h r_i to be equal to r consecutive values of 

Who . ....hr_i.fl) for n=k.k+1 .....k+r-1. then from the linear combination 

eureka, we can derive the following general form of the efficiency equation, as 

we did in deriving the equation 9': 

4.4 H(h0.....hr_i.m+k) = H(1.0.....Om) • Who, ....h r_i.k)+. . 

+H(0,0.....1.m)- Who, ....hr_ik+rl) 
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r- 1 
= E l-1 1 (m) H(h0 	h r_1.k4 l )  

i=0 

which can be proved by induction on k using equation 4. 3. 

Therefore we have the following equations: 

r- 1 
4.4.1 h(2k) 	= H( 0 . .... h_1.k+k ) 	= E H 1 (k) H(h0 ..... hr_i., k+i) 

1=0 

r- 1 
4.4.2 h(2k+1) = H(h 0 . ... . hi_i. k+k41) = 	H(k) 1-100 1.... hr_i. k+i+1) 

1=0 

which are analogous to the equations 12 and 13 of Section 1. 3. 

For avoiding redundant computations In computing h(2k) and h(2k+1) we 

need to apply the tupling strategy (as we did in deriving equation 18) to the 

following 	2r 	functions: 	1-10 (k) ..... Hr_i(k) . 	H(h, ..... hr_i• Ic) ..... 

H(h0 .....
hr_i. k+r-1). Out of these 2r values, only r are independent. In 

fact. as for the equations 16' and 17'. we can express H(h0 ..... hr_id k+i) for 

1=0 ..... r in terms of the F-1 1 (k)'s for 0jr-1, using the equation 4.4. We 

have: 

r- 1 
4.5 H(h0..... h r_ik+I) = E I -  i(k) t-f(h0 ..... hr_i.I+I) for Oir 	by 4.4 

j=0 

Therefore we can rewrite the equations 4. 4. 4. 4. 1 and 4. 4. 2 as follows: 

r-1 	 r-1 
4.4' 	H(h ..... hr_i.m+ 	H i  ( M) ( E I1 1 ( k) H(h0 ..... h r_i.l+j )  ] 

i=0 	j=0 

r-1 	r-1 
4.4. 1' 	h(2k) = E 1-1 1 (k) E E H(k) H(h0..... h r_i.l+J ) ] 

1=0 	j=O 

r=0 	r-1 
= 	E 1-1 1 (k) ( E i-f(k)h 11. 1  I 

.i=0 	j=0 

	

r-1 	r-1 
4.4.2' 	h(2k+1) = E t-1 1 (k) 1 E H 1 (k) H(h0 ..... h r_il+J 4 l)l 

	

i=0 	j=0 

42 
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r-1 	r-1 
= 	H(k) (E H(k) h 11. 1  I 

1=0 	j=0 

where h 1  stands for h(i) for 0i42r-1. 

The h i 's for 0i2r-1 can be computed once and for all, using the equations 

4. 1. Then WO can apply the tupling strategy, as we did in equation 23. for 

computing the r independent values by defining the following function t(k): 

4.6 	t(k) = <H(1.0 ..... 0.k). H(0.1 ..... 0.k) ..... 1-1(0.0 ..... 

= I-$0(k). H 1 (k) ..... Hri(k)) 	 (TUPLING EUREKA) 

Now we can derive the equations for computing t(k) using equation 4.8 and 

the efficiency equation 4.4'. in much the same way as we derived equations 

24. 25 and 26. 

4.7 t(0) 	= H0 (0) . H 1 (0) ..... Hr_i(0)> 	 by 4.6 

0> 	 by4.2 

4.8 t(r-1) = <1-10(r-1LH 1 (r-1) ..... Hr_i(r1)> 	 by 4.6 

=<0.0 ..... 1> 	 by4.2 

4.9 t(2k) = <H 0 (k+k) ..... Hr_i(k+k)> 	 by 4.6 

	

r-1 	r-1 = < F, H I (k) ( E l-i(k)H0(i+j)] 

	

=0 	j=0 

	

r-1 	r-1 
i-11(k)[ E H(k) Hr_i(l+j)] > 	 by 4.4' 

	

=0 	j=0 

4. 10 t(2k+1) = <H 0 (k+k+1) ..... Hr_i(k+k+l)> 	 by 4.6 



r-1 	 r-1 
= < E H 1 (k) H0(k+1+i)..... E H(k) Hr_i  k+l+i) > 	by 4.4 

=0 	 i=0 

r-1 	r-1 
= < E H 1 (k) ( E H 1 (k) H0 (i+1+1)1 

=0 	j=O 

r-1 	r-1 
l-1 1 (k)( E l-1 1 (k) H r_i(i+j+l ) l > 	 by 4.5 

i=0 	j=0 

We have now completed the task of deriving a general program (given below) 

for evaluating any homogeneous linear recurrence relation of order r in 

logarithmic time. 

44 
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Recursive program for evaluating linear recurrence relations 

(as given by equations 4. 1) 

h(0) 	=h0 	 by4.1 

h(r-1) 	= hr_i 	 by 4. 1 

r-1 	r-1 
h(2k) 	= E a 1  F, a 1  h(i+j) 

=0 	j=0 
where <a0.....ar_i) = t(k) 	by 4.4. 1' and 4.6 

r-1 	r-1 
h(2k+1) = E a, E a h(i+j+1) 

=0 	j=0 
where <a 0 ..... ar_i) = t( k) 	by 4. 4. 2' and 4. 6 

t(0) 	= <1.0.....0) 	 by 4.7 

t(r-1) 	= <0.0.....1> 	 by 4.8 

r-1 	r-1 	 r-1 	r-1 
t(2k) = < 	a 1  I E a7TO(t(i+j) )1 ..... E a 1  I E a 1 .lTr-1 (t(i+j) )] > 

i=O 	j=O 	 i=O 	j=0 

where <a0.....ar_i> = t(k) 	by 4.9 

r-1 	r-1 	 r-1 	r-1 
t(2k+•1) = < E a 1  I E a 1 7T0(t(i+J+1) )] ..... E at  ( E a-1Tr-1 (t(i+j+1 ) ) I > 

=0 	j=0 	 i=0 	j=0 

where <a0 .....ar_i> = t(k) 	by 4. 10 

Remarks 

The precomputation of the h(i)'s and the M) 's for ri2r-1 is required 

and it can be done using equations 4. 1 and definitions 4. 2 and 4. 6. 

77i(<a0.....ar_i>) = a 1 	for =0.....r-1. 	 0 
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As a consequence of the program we have just derived one can say that. 

In general, any homogeneous linear recurrence relation of order r (In which a 

generic value depends on r preceding values) can be evaluated in logarithmic 

time if we- compute r values simultaneously (see equation 4. 6). 

Example 2 

Given the following linear recurrence relation: 

[p0 = 1 

= 2•p(n-1) for n>O 

we have r=1 and therefore all summation operators occurring In the general 

program vanish. 

Moreover, since r=2r-11 we have to compute only the value of p(1). which Is 

equal to 2. 

We have: p(2k) = a0 •a0 p(0) = a. p(2k+1) = a0 a0 -p(1) = 2a. 

t(k) = < a0 ': 	t(0) = < 1 ': 	t(2k) = < a ': 	t(2k+1) = < 2a > 

and therefore we get (by forgetting the unit-tupllng operator): 

P(0) 	=1 

p(2k) 	= a 	where a 0  = t(k) 

p(2k+1) 	= 2a 	where a0  = t(k) 

t(0) 	=1 

t(2k) 	= a 	where a0  = t(k) 

t(2k+1) 	= 2a 	where a0  = t(k) 

Since p(k) and t(k) obey the same equations, p(k)=t(k) 

we obtained can be further simplified as follows: 

P(0) 	=1 

p(2k) 	= p2 (k) 

p(2k+1) = 2•p2 (k) 

Example 3 

Let us consider the following recurrence relation: 

Thus the program 



d(0) = 1 

=2 

= 0 

	

d(n) = d(n-1) + 2d(n-3) 	for 02 

We have: r=3. 2r-15. Thus we have to compute d( i) for i3. 4. 5 and 

we get: d(3)=2. d(4)=d(5)6. We also have: 

t(0)=<1.0.0). 	t(1)<O.1.0>. 	t(2)=<0.O.1>. 	t(3)<2.0.1>. 	t(4)<2.2.1>. 

t(5)<2.2.3' 	because 	for 	=34.5 	and 	j=O.1.2: 

7Tj(t(l)) = 7TJ(t(l-1)) + 2.71(t(i-3)). (In fact the components of t(i) satisfy 

the same recurrence relation given for d(n). as one can see from equation 

4. 2 and 4. 6). We can then derive: 

d(2k) =a0 (a0d(0) +a 1d(1) +a2d(2)) +a 1 (a0d(1) +a 1 d(2) +a2d(3)) 

+a2(a0d(2) +a 1 d(3) +a2d(4)) 

= a + 4a0a 1  + 4a 1 a2  + 64 	 where <a0 . a 1 . a2) = t( k) 

and analogously: 

d(2k+1) = 2a +2a + 64 + 4a0  a2  + 12 a 1  a2 	 where <a0  a 1 ,a2> = t(k) 

We also have: 

t(2k) 	= <a + 4a 1 a2  + 24. 2a0a 1  + 24. a + 24 + 2a0a2  + 2a 1 a2> 

where <a0. a l , a2> = t(k) 

t( 2k+1) = <4a0a2+2a+4a 1 a2+24. a+4a 1 a2+24. 2a0a 1  +2a0a2+2a 1 a2+a+3a> 

where <a0, ail  a2  = t(k) 

The resulting program Is the following: 

d(0) 	=1 

=2 

=0 

d(2k) 	= a2  + 4ab + 4bc + 6c2  where <a.b.c> = t(k) 
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d(2k+1) = 2a2  + 2b2  + 6c2  + 4ac + 12bc 	 where <a. b. c> = t(k) 

t(0) 	= <1.0.0) 

t(2k) 	= <a2  + 4bc + 2c2 . 2ab + 2c2 . b2  + C2  + 2ac + 2bc 

where <a.b.c> 	t(k) 

t(2k+1) = <4ac + 2b 2  + 4bc 4 2c2 . a2  + 4bc + 2c2 .2ab + 2ac + 2bc + b2  + 3c2' 

where <a, b. c = t(k) 

Notice that once we computed the expressions for t(2k) and t(2k+1). since 

they hold for any 00. we can discard from the program the equations for 

t(1) .....t(r-1). This fact is a general property and it could also be applied 

for the d's values. so  that we could have erased the equations for d(1) and 

d(2). 

At the end of this section we would like to derive a for-loop program 

equivalent to the general recursive program we have given. This for-loo p  

program will be a generalization of the one presented in [Wilson and Shortt 

801. which had to be proved correct at the expense of many theorems and 

long proofs and worked only for Fibonacci recurrence relations. 

Unfortunately the recursion which occurs in the given general recursive 

program is not a tail-recursion and therefore its translation into a for-loop 

program is not immediate. 

Nevertheless such a translation is possible (Walker and Strong 721 

because of the equivalence between the following recursive schema S and the 

flowchart F in fig. 1-5. Suppose we are given the following recursive definition 

of the function g(k): 
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1 
g(k) = 	a(g(b(k))) 	 jteven(k) 	 (Schema S) 

c(g(d(k))) 	 jj odd( k) 

where zero(k) . even(k) and odd(k) test whether k is zero, even or odd. 

respectively. 

It can easily be proved by induction on the depth of recursion that g(k) can be 

computed by the flowchart program (with one stack) given in fig. 1-5. 

We can apply that equivalence result of the schema S and the flowchart F 

for computing the recursively defined function t(k) which occurs in our 

program. Since in that program the b and d operations correspond to integer 

divisions by 2. the content of the stack at the label L in the flowchart F is the 

binary expansion of k. We assume that the empty stack represents the binary 

expansion of 0. 

Therefore we can obtain the following for-loop program for evaluating In 

logarithmic time any homogeneous linear recurrence relation of order r, as 

given by the equations 4. 1. 



(Flowchart F) 

inout k 

4 
empty stack 

	

even(k) 	 odd( k)  

k :=
0r0) 	

k:= d(k) 

- oush a 	 T = e 	 push a - 

[I 

	

top a 	 top c 

T:=a(T) 	 empty 	T 	c(T)  

1stack 

- pop 	 outout T 	 pop - 

Figure 1-5: The flowchart F corresponding to the program schema S. 
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For-loop Program for Evaluating Linear Recurrence Relations 

(as given by equations 4. 1) 

{ bO; h(0)=h0 ; . . . 	h(r-1)=hr_1; h(n)=L(h(ri-r) .....h(n-1)) for n)r } 

if r,=O then B(0). i: =0.0 

else 	 (1) 

while Nk do B(i) . m. I: rem(m/2) . m12. i+1 2d 

1. 
(n 	E 5(i)•2' andi=ognj} 

=0 

t(0) 	:=<1.0.....0': 

t(r-1) := (0.0.....1>: 

IQL l=r Lq 2r-1 do h(i) := L(h(i-r) .....h(i-1)) 

M) : =(L(7T0(t(i-r) ) .....7T0(t(i-1) ) ) 	 (2) 

L(7Tr-1 Mi-r) ) .....lTr-1 Mi-l) ) ) 

WE 

1: =t(0); 

for p=Q. downto 1 do 

if 8(p)=0 then 

	

r-1 	r-1 
T:=< E 77i(T) ( T, 7Tj(T)•770(t(i+j))] 

	

=0 	j=0 

	

r-1 	r-1 
E 711(T) ( 	1TJ(T) -7Tr-1(t(i+j))] 

	

=0 	j=0 

else 
	 (3) 

r-1 r-1 
T:=< 	E 	7Ti(T) C E 1Tj(T)170(t(i+j+1))] 

=0 j=0 

r-1 r-1 
E 	7Ti(T) C E 77j (T) •77r-1(t(i+j+1))] 
=0 j=0 
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ME 

r-1 	r-1 
if 8(0)=0 then H:= E 7TI(T) ( E 7rJ (T)h (1 +1 )) ] 

1=0 	j=0 

r-1 	r-1 
else  H: 	E Vi 	[ E 7Tj(T)'h(i+j+1))1 

1=0 	j=0 

{ H = h(n) J 

The binary expansion of n is stored in the array B(i) 

for I=#. . . . , 0 

Computation of the values h(r).. . . h(2r-1) .t(r).. . .t(2r-1). 

Computation of T. I = t(n/2) if n is even. T = t((n-1)/2) If n Is odd. 0 

The method presented here allows also a fast evaluation of 

non-homogeneous linear recurrence relations, because in that case the result 

is the sum of two terms: one corresponding to the associated homogeneous 

relation, which we can evaluate in logarithmic time, and the other one being a 

particular solution of the given non-homogeneous relation (Liu 68). The 

method can also be used when we have a set of mutual depending linear 

recurrence relations (with constant coefficients). In fact it is always possible 

to reduce such a set, via substitutions, to a set of independent relations (Liu 

681 and solve them simultaneously using the tupling strategy. 

Furthermore. one can apply the general algorithms we have given in this 

section to recurrence relations holding in other algebraic structures, different 

from the one of the integers with usual addition and multiplication for which we 

presented it. This is what is stated in the following Fact 4. Let us first recall 

a few basic definitions. 

A semiring is an algebra (S.+. ). where S is a set and + and - are two 

binary operations on S. such that: 
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) + is associative and commutative. 

ii) 	- Is associative. 

lii) • distributes over + on both sides, 1. 9. a•(b+c)=(ab)+(a-C) 

and (b+c)•a=(b'a)+(Ca). 

An element i of S is an identity for the operation op Itt 

Yx € S (x op i) = (I op x) = x . 	(We used an infix notation for op). 

An element a of S is an absorbent element for the operation op iff 

Yx € S (x op a) = (a op x) = a 

Notice that we could have written the identity for + instead of 'an identity 

for + because If there is an identity then It is unique. In fact. suppose there 

are 2 identities, 0 and 0' say. By definition we have: 

Yx € S 0+x = x+0 = x 	and 	Yx € S 0'+x = x+0' = X. 

Instantiating the first for x=0' and the second for x=0 we get 0+0'=O=O'. 

Analogously one could show that the absorbent element for an operation is 

unique (if it exists) 

A somiring (S.+. -) with identity elements 1 for • and 0 for + is also denoted 

by (S.+. -.0.1). 

Fact 4. The recursive program and the for-loop program we have given for 

the evaluation of linear recurrence relations with constant coefficients are valid 

in any semirina structure (S. +. •). which has 

I) an identity element for - (let us call it 1). and 

ii) an absorbent element for - (let us call it 0) which-is an identity for +. 

Proof. The various steps we made for going from the given equations 4. 1 to 

the final programs are based on the efficiency equation 4. 4. We have to show 

that equation 4. 4 holds in any semiring structure satisfying the given 

hypotheses. We will prove that property by induction on <k. m'. 

53 



54 

For k0 and m0: 

r- 1 

Who, ....hr_i. 0)  = 	H 1 (0) H(h0.....h r_i..i )  
1=0 

1.H(h0.....hr_i.0) + 0H(h 0 .... h r...i.l) + 

+ 0 Who, ....hr_i.rl) 

= H(h0.....h r_i. 0)  

Analogous equalities can be proved for k=0 and m = 1. . . . , r-I as follows. 

Suppose now that equation 4. 4. is valid for k=0 and any mp with pr-1. Let 

us show that it holds for m=p+1. 

Who, 	hr-i . p+l) = b0  H(h0.....hr_is p+1-r) +. . . +b r_i H( h0.....h r_i. p) 

by 4. 1 
r- 1 

= b0- E H 1 (p+1-r) l-f(h0.....hr_i.l ) + 
=0 

r-1 
+ br_1 	E H1(p) Who, ....hr_i.i) 

1=0 	
by inductive hypothesis 

r-1 
= 	H 1 (p+1) Wh o, .... h r_i.I) 

1=0 

by hypotheses on the semiring structure and equations 4. 1. 

Therefore equation 4.4 holds in a semiring structure for k=0 and any 

M O. 

Now suppose that equation 4.4 holds for any m0 and any kp with pr-1. Let 

us show that it holds for k=p+ 1. 

H(h0.....hr_i. m+p+1) = b0•H(h0.....hr_i. m+p+1-r) + . . 

	

+ br_1H(ho.....hr_i. m+p) 	 by 4. 1 

r- 1 
= b0  [ E H1(m) Who ,  ....hr_i.p+lr+i)] + . . 

i=0 



55 

r- 1 
+ br_1 [E H I (m) HOW  .... h r_i.P+l ) J 

1=0 	
by Inductive hypothesis 

r- 1 
= 	H(m) H(h0 . ... . h r_i.P+l+l )  

1=0 

by hypotheses on the semiring structure and equations 4. 1. 	 ci 

The programs we have given can be used, for instance, in the semiring 

of truthvalues B = Mrue, false). V. A. false. .rJA&.  and the semiring M of the 

real numbers R with +00  and the usual minimum and addition operations 

M = (R U (-fm). mm. +. +. 0). and the subsemiririg of M obtained by 

considering nonnegative real numbers only. 

Example 4. Let us consider the following recurrence relation in M: 

d(0) = 0 

=2 

= 

d(n) = min(d(n-1) . d(n-3)-2) for 02 

We get the following logarithmic running time program for computing 

d(n): 

d(0) = 0 

d(2k) = min(a + min(a+O.b+2.c+). b+ min(a+2.b+c0.c2). 

c + min (a+.b-2.c-2)) 

= min(2a. a+b+2. b+c-2. 2c-2) 	 where <a, b. c'=t( k) 

and analogously: 

d(2k+1) = mm (2a+2. a+c-2. 2b-2. b+c-2. 2c-2) where <a, b. c>=t( k) 

t(0) 	= <0. +. +) 
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t(2k) 	= <min(2a.b+C_2.2C_2). min (a+b.2c_2 min +2b2> 

where <a b, c>=t(k) 

t(2k+1) = <mjn(a+c-2. 2b-2. b+c-2. 2c-2). min(2a. b+c-2. 2c-2). 

mln(a+b.a+C.2b.b+C.2C2)> 	where a.b.c>t(k) 



1. 6 Comparing the transformation technique and the stepwise refinement 

technique 

In this section we would like to compare the transformation technique 

(Burstall and Darlington 771 and the stepwise refinement technique (Wirth 711 

making some general comments and discussing their features when these 

techniques are applied for writing programs which evaluate linear recurrence 

relations. 

Both techniques indeed have their merits. For computing the solution of 

recurrence relations the stepwise refinement method uses structured 

concepts. like matrices and binary representations, but it seems to require 

more creative thoughts than the transformation technique. in particular in the 

stepwise refinement approach, the programmer has to be familiar with the fact 

that given two matrices: 

	

a+b b 	 c+d dl 

A = 	 and A' = 
	

for some a. b, c and d 

	

b a 	 d 	cj 

e+f f 

we have that: A-A' = A' -A 

f 	e 

where e = ac+bd and f = d(a+b)+bc. 

The knowledge of that fact is an , priori requirement for devising a 

suitable loop structure and, if the program is not organized using such a loop. 

it seems very hard, or even impossible. to achieve the desired logarithmic 

efficiency [Gries and Levin 80. Urbanek 80. Wilson and Shortt 80, Pettorossi 

80a]. 
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This situation fits very well with the analogy given in (Burstall and Feather 
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771. concerning the stepwise refinement technique and the transformation 

technique. which are respectively compared with sculpture and plasticine 

modelling. In sculpture. we all know that once the outline of a statue is 

carved in a rock. there is very little possibility for changing the basic idea of 

the artistic composition. In our program, using the stepwise refinement 

technique. the"outline of the statue consists, in the outermost loop for 

performing the successive squarings of the matrix: 

Ii 	1 

M = l 

Li 0 

That loop has to be controlled by the binary representation of the value ii 

for which we would like to compute the solution of the recurrence relation (see 

(Wilson and Shortt 80]). Different approches to the outermost loop could 

have made a logarithmic running time almost impossible to be achieved in a 

simple way. 

On the contrary, we showed in the previous sections that using the 

transformation technique a very efficient program can be obtained, without a 

deep knowledge of recurrence relations or matrix theory. The transformation 

technique, via its strategies, led us to the desired algorithm without great 

effort. 

Obviously, in transforming programs we have to make some clever steps. 

called eurekas (Burstall and Darlington 771, which are not always easy to 

make. However, we have strategies. such as composition, tupiing. 

generalization, simplification. etc. (Burstali and Feather 771, which help us to 

produce eurekas and allow us to improve program performances. These 

strategies play the analogous role of the programming paradigms. which help 

the programmer in choosing the suitable loop structures, when using the 

stepwise refinement technique (Floyd 791. The situation of program 

construction using the two techniques may be depicted as in fig. 1-6. 
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program specifications 
	

program specifications 

paradigms 
	 strategies 

loops and invariants inventions 

a program refinement step 

(i) The Stepwise Refinement Technique 

eureka steps 

by (possibly 

automatic) 

transformation 

I 
a program version 

(ii) The Transformation Technique 

Figure 1-6: The Program Construction Cycle according 
to the Stepwise Refinement Technique and 
the Program Transformation Technique. 

We are not claiming that the transformation method Is better than the 

stepwise refinement method, but we would like to stress that in our examples 

some very interesting features of the program transformation technique with 

respect to the stepwise technique have been exploited. In particular we have 

seen that, using standard strategies, it was relatively simple to derive the 

various eureka definitions for our programs, while it seems difficult to 

directly formulate the complex loop invariant of an iterative program for solving 

recurrence relations in logarithmic time (Wilson and Shortt 801. In particular 

the notion of matrix as grouping of values for a fast evaluation of recurrence 

relations has been derived by simple application of the tupling strategy, while 

that notion is in some sense "primitive" 0. e. not derivable) in the construction 
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of an efficient program using the stepwise refinement technique. 	It is 

interesting to notice that. in deriving our programs, the simultaneous 

evaluation of some expressions for avoiding redundant computations. 

automatically achieved the desired logarithmic performance. One might say 

that it was the efficiency requirement itself which. via the tupling strategy 

application. rediscovered" for us the notion of matrix. Indeed it also 

rediscovered the notion of symmetric matrix, as we showed towards the end 

of section 1.4. 

Another possible advantage of the program transformation approach is the fact 

that it can easily be used in the functional style of programming, advocated in 

(Backus 781. 

In the last part of this section we would like also to stress the strong 

connection between the task of devising loops and the one of finding eurokas. 

already mentioned in (Burstall and Feather 771. Related work in this direction 

has been done in (Broy and Krieg-BrUckner 801. 

The eureka steps are intelligent" steps as the inventions of loops invariants 

are. 	For these inventions, creativity and programming experience play a 

crucial role. 	For example. the "linear combination eureka' has been as 

crucial as the idea successive squaring of matrices is for the stepwise 

refinement technique, but we think that such a eureka is. in some sense, less 

difficult. 

One can often observe an interesting correspondence between the eureka 

steps and the loops invariants. This correspondence is not claimed in 

general, but it is valid when the recursive program has a "simple" kind of 

recursion (which includes tail-recursion) easily translatable into a loop. In 

order to clarify the ideas we will now give the following two examples. 
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Example 5 

In [Burstalt and Darlington 771 the following program for computing the 

Fibonacci function in linear time is given: 

fib(0) = 1 

fib( 1) = 1 

fib(n) = u+v 	where <u.v> = g(n-1) 

g(1) = <1,1> 

g(n) = <u+v.u> 	where <u.v> = g(n-1) 

It is based on the eureka step which consists of defining the function 

g(n) = fib(n) .flb(n-1)> for n)1. On the other hand. the iterative program 

for computing the same function in linear time may be written as follows: 

(nO} 

i.u.v-1.1.O: 

( 
<u. v> = <fib(l+1) .flb(i)> and in-1 } 

while i<n-1 cLq 

t: =u+v; v: =u; 	u: =t: I: =i+1 

M. 

( nO and u = fib(n) ] 

One can easily see that the two auxiliary variables u and v of the iterative 

program are equal to the projections of the function g defined in the eureka 

step. We have in fact: g(i+1)=(u.v). 0 

Example 6 (From section 1. 4) 

Since r(n) = <G(1.0.ri). G(0.1.n)> (see equation 23) using equations 27 

and 28 we have: r(n) = <fib(n-2) .fib(n-1)'. Therefore we can transform 

program P3. 1 into the following: 



Program P3.2 

fib( n) = 7T1(r(n+1)) 

r(0) 	= <1.0) 

r(2k) 	= (a2 + b2 .2ab + b2) 	 where <a, W = r(k) 

r(2k+1) = <2ab + b 
2
,(a+b) 2  + b2> 	whore <a, W = r(k) 

where1T1(<o0.91>) =el. 

For this recursive program we can derive the following iterative version: 

t 
( n0 and L = Iog(n+l)J and n+i = 	B(i) .21 J 

1=0 
u.v := 1.0; 

p := I.; 

( <u.v> = <flb(m-2). fib(m-1)> = 

= cflb2 (k-2)+fib2 (k-1). 2fib(k-2)flb(k-1)+fib2 (k- 1)> 	 if m=2k 

= <2flb(k-2)flb(k-1) +fjb2 (k-i) . (ftb(k-2) +flb(k-1) ) 2+fib2 (k-1) >  if m=2k+i 

I 
where if I=p then m=0 else m= T, B(i) .2'-P-') 

while p0 	if B(p) = 0 then u, v := u 2+v2 2uv+v2  

else  u.v : = 2uv+v2 . (u+v) 21-v2 : 

P: =p-1 

od 

[ n0 a n d  . vfib(n) } 

This iterative program can easily be derived from the general for-loop 

program (actually only from the fragment for computing T) given in section 

1. 5 by recalling that: 

I) T = t(n/2) if n is even and T = t((n-1)12) if n is odd; and 

ii) in order to compute fib(n) we need only to compute the second projection 
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of t(ri+i), because in the general for-loop program the function t plays the 

role of the function 	r 	in 	program 	P3. 2 	and 	in 	our case 
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r(n+1) = <fib(n-1)fib(n)'. Therefore t(n+1) can be obtained as the value of 

the variable I in the general program assuming that the array B contains the 

binary expansion of n+1 and the for-loop is performed for all digits in B. 

To complete the derivation of our Iterative program from the general one, it is 

enough to consider that in our case T is <u v> and t( 0) = <1 . 0>. t( 1) = <0. 1>. 

t(2) = <1.1> and t(3) = <1.2>. 

The expression for <fib(m-2), fib(m-1)> in the invariant I can be obtained 

from the equation 23 on which the recursive program P3.2 is based. In fact. 

since r(m) = <G(1.0.m) .G(0. 1.m)> = <fib(m-2) .flb(m-1)> using equations 

25 and 26. we have: 

<fib(m-2) .fib(m-1)' = 

= <fib2 (k-2) + fib 2 (k-1). 2.fib(k-2)fib(k-1) + fib 2 (k-1)) 	 if m=2k 

= <2-fib(k-2)fib(k-1) + fib 2 (k-1). (fib(k-2)+flb(k-1)) 2  + fib 2 (k-1)> Lf m=2k+1 
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1. 7 More on the comparison with other algorithms 

One of the first papers which, to our knowledge, has been published on 

the mechanical evaluation of linear recurrence relations is (Miller and Brown 

66]. 

Several other papers have been recently published on that topic during the last 

few years (Shortt 78. GrIes and Levin 80. Urbanek 80. Wilson and Shortt 

80, PettorosSi 80a] and we think that it is appropriate to relate those results 

with the ones we presented in the previous sections. 

In (Miller and Brown 661 the key ideas for achieving an algorithm which 

requires an O(k3log n) multiplication for computing the n-th term of a linear 

recurrence relation of order k are already developed. In that paper the matrix 

multiplication method is used, and there are some insights for an O(k 2log n) 

algorithm, when it is said that "we need to know only a single row or column 

of [the matrix] Ar" But then the authors (page 189) say that the matrices "are 

filled in by use of the recurrence relation" and this approach, if taken in a 

naive way requires k extra multiplications for each element of the matrices. 

Therefore they get an O(k3 log n) algorithm. 

Indeed in order to compute the product of two kXk matrices in semiring 

structures we need, in general, at least k 3  multiplications ( (Jerrum and Snir 

821). 

(Gries and Levin 801 (page 69) showed how to use only k 2  multiplications to 

"fill in the rest of (the matrices]". 	In order to do so the authors take 

advantage of the particular structure of the matrices involved. 	Such a 

structure, however, was already known to the authors of (Miller and Brown 

66]. 

A last comment on (Miller and Brown 661 paper: some of the computation 

steps presented there are a bit awkward for the following two reasons: I) the 

multiplication by the matrix U 1  corresponds to an "opposite movement" in the 

recurrence relation to be evaluated in the sense that, for instance, in the 
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sequence ( f 1  I PO ) they must compute fk for computing k-1 and ii) in the 

final matrix multiplication, denoted there by BUk. they need to know all the 

values of Uk. while in general a row of B and a column of Uk would suffice. 

In (Shortt 781 the author gives an algorithm for computing Fibonacci 

numbers in O(log n) steps using only a fixed amount of storage. That 

algorithm corresponds to one requiring O(k 2 log n) multiplications (where k=2 

since the Fibonacci relation is of order 2). It has been generalized to any 

order-k Fibonacci number in (Wilson and Shortt 801. where order-k Fibonacci 

numbers. denoted by Fib k(n). are defined as follows: 

Fib k(1)0 	Fib '(k1)0. 

Fib k(k)1. 

Fib k( n ) = k Fib k( n_i) 	for 001. 
1=1 

Although 	the 	authors 	of that last paper do not give 	a 	detailed complexity 

analysis of their algorithm, 	it Is easy to see that 	it 	still 	requires O(k2log 	ri) 

multiplications 	and 	a constant 	number of 	auxiliary 	memory 	cells 

(F(0) .....F(k-1) ,F2(0) .....F2(k-1)). 	apart from 	the 	cell(s) needed for 

the binary representation of the input number n for which 	Fib 1'(n) should be 

computed 

Let us recall the Wilson-Shortt algorithm, which we will write using the 

syntax adopted in [Wilson and Shortt 801. (For the time being. the reader 

should not pay attention to the fact that some instructions are put within square 

brackets and marked by [1]. . . . [5]. ) 



The Wilson-Shortt Algorithm 

Given k and n. where 2k<n: 

begin 

{ 
for i=0tk-2. F(l):=0:  

F(k-l) : =1: J 
L: = 1092nj; 

for  1=0 Iq L. b(i) : =ith bit of the binary representation of n; 

/* the most significant bit is b(0) / 

	

for step = 1 Lo L. 	: 

( fgL d0 IQ k-i. 
	 (21 

d 	 k-i 	 k-I- i 
F2(d):=[ T, F(j)( 	F(d-h))] + E F(j) (F(k+d-j) - 	F(d+i)1: ] 

	

J=O 	h0 	 j=d+i 	 =1 

it b(step)0 then [ fg.d=0 	k-i. F(d):=F2(d); 1 	 (31 

else 	do: 

for 	F(d):=F2(d+i): 

[41 
k-i 

F(k-i):= E F20): 
i=0 

end 

	

return [F(0 )  1: 	(5] 

and 

This algorithm is not completely satisfactory because of the following reasons: 

I) it does not allow us to compute general order-k Fibonacci numbers 

F 
k
(n) for n"k and 

ii) it performs some unuseful computations. 

Point i) can be easily remedied. realizing that: 
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Yd 0dk-1. F(d) gives indeed the d-th Fibonacci number. 

For point II) we notice that in the main loop of the Wilson-Shortt algorithm, 

driven by the index step. a new k-tuple of Fibonacci numbers is computed 

from an old one. while the result to be returned at the end of the computation 

is a component only. namely F(0). of the last computed k-tuple. in 

particular when'computing the nth Fibonacci number, that algorithm computes 

also the (n+1)th.....(n+k- 1)th numbers. Therefore a way of giving a 

solution to the problem of point ii) is the following: when computing the mth 

order-k Fibonacci number one should use the Wilson-Shortt algorithm with n 

initialized to m-(k-1) and then return as result F(k-1). instead of F(0). 

As we already pointed out in [Pettorossi 80a]. the Wilson-Shortt algorithm 

is quite interesting because it shows that for computing general order-k 

Fibonacci numbers In logarithmic time it Is sufficient to know only k 

consecutive values of the Fibonacci sequence. This fact indeed can be 

generalized to any homogeneous linear recurrence relation (h. I. r. r. for 

short) of order k. as we have shown in Section 1. 5. 

A first step in this direction was made by [Urbanek 801. where an O(k 3 log n) 

algorithm for solving h. I. r. r. of order k is presented. 	There it is clearly 

stated that, for the initialization step, one could replace kxk matrices (as 

used in the matrix multiplication method) by column vectors of length k. 

We can summarize the results presented in the papers we mentioned in the 

following table. 

[Miller and Brown 661: 

Computation of order-k homogeneous linear recurrence relations. 

Complexity Time: O(k3  log n) multiplications. Hints for an 

0(k2  log n) algorithm. 

Space: 0(k2) 
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(Shortt 781: 

Computation of order-2 Fibonacci numbers. 

Complexity: Time: 0(k2  log n) multiplications. 

Space: 0(k) 

[Wilson and Shortt 801: 

Computation of order-k Fibonacci numbers. 

Complexity: Time: 0(k2  log n) multiplications. 

Space: 0(k) 

(Urbanek 801: 

Computation of order-k homogeneous linear recurrence relations. 

Complexity: Time: 0(k3  log n) multiplications. 

Space: 0(k2). Hints for 0(k). 

(Gries and Levin 801: 

Computation of order-k homogeneous linear recurrence relations. 

Complexity: Time: 0(k2  log n) multiplications. 

Space: 0(k2). 

In those papers the correctness proof of the proposed algorithms was done via 

theorems. 

In [Pettorossi 80a] we show that the (Wilson and Shortt 801 algorithm can be 

derived by transformations from the usual kXk matrix multiplication method if 

we use a concise representation of the matrices involved as vectors of length 

k. Indeed the usual algorithm based on matrix multiplications can be written as 

follows (for the time being do not consider the square brackets around some 

instructions) 



The Matrix Multiplication Algorithm 

Given k and n. where 2k<n: 

begin 

[ P: =M; ] 	(1] 

L: = log2nj; 

for =0 to L. b(i) :ith bit of the binary representation of n; 

/ 0  the most significant is b(0) / 

for step = 1 to L, 	: [ M2:=PXP : ] 	[2] 

II b(step) = 0 then [ P: =M2 ] else  [ P: =M2XM 1: 
(3] 	 (4] 

end; 

return I P, ]; 	(51 

end 

	

111... 	11 

100.. .00 

where M = 0 1 0 . . . 0 0 is a kXk matrix and Pkk is  the element 

000.. .10 

of the lower right corner of the kXk matrix P. 

We proved that there exists an extract" operation such that for any matrix 

computation above written within square brackets, the following diagram 

commutes: 



operation [ii of the Matrix Multiplication 

Algorithm within square brackets 

matrices matrix 

operands result 

extract extract 

vectors of vector of 

values values 

corresponding operation [i] within square 

brackets for Wilson-Shortt Algorithm 

The interested reader may see the details In [Pettorossi 80a]. 

In Section 1. 5 we derived via transformations an algorithm whose features can 

be described as follows: 

(Pettorossi and Burstall 821: 

Computation of order-k homogeneous linear recurrence relations 

over semirings. 

Complexity: Time: O(k 2  log n) multiplications. 

Space: 0(k) 

In Section 1.5 we also showed that for any sequence (G(i)) of values 

defined by a homogeneous linear recurrence relation of order k with constant 

coefficients we can express G(2m) .G(2m+1) .....G(2m+k-1) in terms of 

G(m) .G(m+1) ..... G(m+k-1). That means that suitable recurrence 

formulae. as defined in [Wilson and Shortt 801 page 69. exist for any 

homogeneous linear recurrence relation. 
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A last remark concerns the length of the correctness proof. Some pages 

of Theorems and Lemmas were necessary in (Wilson and Shortt 801 to show 

the correctness of the algorithm. 

In Section 1. 5 using the program transformation technique we are able to 

show, without much effort, the correctness of our iterative algorithm, which is 

a generalization of one by Wilson-Shortt. starting from the general definition of 

the linear recurrence relations. We obtained that derivation by a simple 

application of some strategies. well-known in the program transformation 

methodology. 
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1.8 On the application of the tupling strategy: the general method and some 

of its properties 

In this section we will make some comments on the tupllng strategy as we 

used it in Sections 1. 3 and 1. 5. and we Will present some of its properties. 

A first comment concerns the fact that in the program P2 (see Section 1. 3) 

the tupling strategy could have been applied in a different way. But, as we 

already mentioned, the resulting program would have been equivalent to the 

program P3 (see Section 1.3) ("equivalent" here means that the programs 

determine the same computations for any input). Indeed we will show that the 

elimination of redundant subcomputatiOnS evoked by equation 13 in program 

P2 avoids also the redundant subcomputatlOflS evoked by equation 12 and 

viceversa. 

A second comment is related to the symbolic evaluation analysis needed for 

discovering common subcomputatiOflS. 	We will show that an interesting 

property. which we will call safety property, holds for the tupling strategy. It 

can be formulated as follows: 	if the analysis of the redundancy is not 

complete and we "tuple together" only some of the functions which determine 

redundant (sub) computations. then the "undiscovered" redundancy still 

remains and it can be avoided by applying again the tupling strategy Itself. 

We will then give some other examples of the application of the tupling 

strategy. We will also present a limitation result" and we will exhibit a class of 

program schemata for which the tupling strategy cannot completely avoid 

redundancy in recursive calls. (The same result holds for any other method 

which makes use of a bounded number of memory cells.) 



1. 8. 1 An alternative use of the tupling strategy in program P2 

Looking at equation 13 of program P2 by symbolic evaluation we discover 

the common subcomputations as illustrated In fig. 1-7 (analogous to 

fig. 1-1). 

fib(2k+1) 

G(1.0.k) G(1.1.k+1) G(0.1.k) G(1.1.k+2) 

/ f 
G(1.0k/2) G(1.0k/2) G(1.0.k/2) G(1.0.k/2) 

G(1.O.k/4) G(1.0.k/4) G(1.0.k/4) G(1.O.k/4) 

Figure 1-7: Redundant computations in program P2. 
G( 1 .0. k/4) occurs 4 times in evaluating fib(2k+i). 

(Suppose k/2 even). 

We will use the tupling strategy by defining the 'following function z( k): 

z(k) = <G(1.O.k) .G(O,. 1,k) . G(1. 1.k+1) .G(1. 1.k+2)>. 

Using the equations 4. . 5. and 6. of Section 1. 3 we get the explicit definition 

for z(k). as follows: 

z(0) = <G(1.0.0) .G(0. 1.0) .G(1. 1.1) .G(1. 1.2)> 

= (1.0.1.2> 

z(2k) = <G(1.0.2k) .G(0. 1.2k) .G(1. 1.2k+1) .G(1. 1.2k+2)> 

=<G(1.0.k)-G(1.0.k)+G(0.1.k)G(1.0.k+1). 

G(1. 0. k) •G(0. 1. k) -s-G(0. 1. k) •G(0. 1. k+1) 

G(1.0.k)-G(1.1.k-f-1)+G(0.1.k)G(1.1.k+2). 

G(1.0.k)-G(1.1.k+2)+G(0.1.k)G(1.1.k+3)> 	by 9' 

= <a2+b2 . b(2a+b) ac+bd, ad+b(c+d)> where <a, b. c. d> = z( k) 

and analogously. 

z(2k+1) = <G(1..0.2k+1).G(O.1.2k+1).G(1.1.2k+2).G(1.1.2k3)> 

= <2ab+b2. (a+b)2+bZad+b(c+d)  .a(c+d)+b(2d+c)> 

73 



74 

where <a.b.c.d> =z(k) 

We also have: 

fib(2k) = G(1, 1. 2k) 

=G(1.0.k).G(1.1.k)+G(0.1.k)G(1.1.k+fl 	 by 9' 

= a(d-c)+bC 	 where (a. b.c,d> = z(k) 

f1b(2k+1) = G(1. 1.2k+1) 

=G(1.0.k).G(1.1.k+1)+G(0.1.k)G(1.1.k+2) 	by 9' 

=ac+bd 	 where <a.b.c.d> =z(k) 

and we can derive the following program for computing the Fibonacci function 

in logarithmic time: 

Program P3. 2 

Ib(0) = 1 

fib( 1) = 1 

fib(2k) = a(d-c)+bc 	 where <a b.c.d> = z(k) 

Fib(2k+1) = ac+bd 	 where <a b.c.d> = z(k) 

(0) 	= <1.0.1.2> 

z(2k) = <a2+b2 . b(2a+b). ac+bd. ad+b(c+d)> 

where <a.b.c.d> = z(k) 

z(2k+1) = <2ab+b2 . (a+b) 2+b2 . ad+b(c+d), a(c+d)+b(2b+c)' 

where <a.b.cd> =z(k) 

Fact 5. Program P3. 2 computes the same function computed by program P3 

(see Section 1.3). 

Proof. It is enough to prove that: 

z(k) = <a, b. ci. c+d> where <a, b. c. d> = r(k). Immediate by induction on 1<. 0 

The same alternative method of applying the tupling strategy in program 

P3 we have now shown, could have been used also in the program for 

evaluating linear recurrence relations, with the result of deriving a program 

equivalent to the one we presented in Section 1. 5. 



1. S. 2 A "safety ropartv" for the tuplina strategy 

We will study the safety property" of the tupling strategy by first 

presenting an example of its use. 

We take our example again from the evaluation of linear recurrence relations. 

As we already mentioned the safety property is a guarantee against the 

incomplete analysis of redundancy. 

Suppose that in the program P2 of Section 1. 3 we discovered, through 

symbolic evaluation, that the functions G( 1.0. k) and G( 1. 1. k) require the 

computation of G( 1. 0. k/2) (see equation 12.) and we did not realize that 

also functi6ns GO, 1.k) and G(1.1.k+1) require it. 

In that case we would have defined, instead of the function t(k) of equation 

18. . the following function p(k): 

P(k) = <G( 1.0. k) .G( 1.1. k)> 	 (PARTIAL TUPLING EUREKA) 

We can easily derive that: 

P(0) 	<1.1) 

P(2k) 	= <a2+G2 (0. 1. k) ac+G(0. 1. k) -G(1, 1. k+1)) 

where <a, c> = p(k) 

p(2k+1) = 2aG(0. 1.k)+G 2 (0.1.k). aG(1.1.k+1)+G(0.1.k)(C+G(1.1.k))> 

where <a, c> = p(k) 

Thus we get from program P2 the following program: 

fib(0) = 1 

fib(1) = 1 

fib(2k) 	= ac+G(0.1.k)-G(1.1.k+1) 	 where <a. c> = p(k) 

fib(2k+1) =a.G(1.1.k+1)+G(0.1.k)"(C+G(1.1.k' 1 1)) 	where <a.c>p(k) 

together with the above equations for p(0) . p(2k) and p(2k+1) and 

the equations 14. 15. 16 and 17 for G(a0 .a 1 .k) (see Section 1.3). 

If we look for more redundancies we may discover (see fig. 1-8) that we need 

to tuple the functions p(k). G(0.1.k) and G(1.1.k+1). 
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fib( 2k) 

p(k) G((O.1.k) G(1.1.k+1) 

G(O.1,k/2) GO. 1.k/2) GO, 1.k/2) 

Figure 1-8: 	Redundant computations in evaluating fib(2k). 
G(O. 1. k/2) occurs 3 times. (Suppose k even.) 

Therefore. applying the tupling strategy again, we will define: 

q( k) = <p(k) , GO, 1. k). G( 1. 1. k+1)> 	and we get: 

q(0) 	= "1.1>. 0. 1> 

q(2k) = <<a2+b2. ac+bd>, b(2a+b). ad+b(c+d)> 

where <<a.c.b.d> = q(k) 

q(2k+1) = <<2ab+b2 . ad+b(c+d)). (a+b) 2+b2 . a(c+d)+b(2d+c)> 

where <<a c.b.d> = q(k) 

Here is the resulting program for computing the Fibonacci function. 

flb(0) = 1 

fib(1) = 1 

fib(2k) = ac+bd 	 where <<a.c.b.d' = q(k) 

fib(2k+1) = ad+b(c+d) 	 where <<a, c>. b, d> = q(k) 

together with the equations above for q(0) . q(2k) and q(2k+1). 

This program is equivalent to program P3 of Section 1. 3 because we have that 

t(k) of program P3 is equal. by definition, to the 4-tuple 

<1T1(7T1(q(k))). 7T2(q(k)). 7T2(7T1(q(k))). 1T3(q(k))>. 
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Now we can generalize the result we have obtained in the above example. 

Suppose we are given a recursive equation program of the form: 
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r(g(p 1 ()). 	g(p(h)). k) 

L gj 	s(g(q 1(t)). g(q,(1i)). LL) 

where f and g are two functional variables, p 1 ... p. qj,••  q, are basic 

operators, and r and s are basic operators or-then-f. 

and h.  denote tuples of arguments. If . is <k 1 .....kr  then p() is 

p( k 1  .....k,). Analogously for ti. 

The results we will present here could be further generalized: 

I) by considering more than two function definitions (not f and g only, as in 

our case). 

by allowing the p i 's and the q 1 's to have different aritles: 

by allowing r and s to be of the form: if-then-elseif-then-.. . - e lse . 

Without loss of generality, let us assume that three different calls of the 

function g require the same subcomputatlon. 

The situation can be depicted in fig. 1-9 where 1 4 r.s.t 4 n 	and 

1 4 u.v.w 1C m. In such a situation there are three function calls, namely 

g( 	 g( p(j)) and g( Pt(k)).  which all require the computation of 

Therefore we have: q 0 (p,()) = q( 	= q( P(JO). 

There are two cases depending on whether or not the analysis of the 

redundancy is complete. 

Case 1. The analysis of the redundancy is not complete. 

Without loss of generality, let us assume that in applying the tupling strategy 

we pair together only the functions g(p,()) and g(p()). Therefore we 

define the function: 

a() = <g(p,()). g(p 3 ())>. 

We now assume (Uniqueness Assumption) that, for a given "decrement 

function" da, there is a unique way of expressing a(k) as follows: 
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f(k) 

Pr 
	

ps 	 Pt 

g(p3 (JO) 

q 	\u
/ /<< q•• 

t=g(q 
u 
 (p 

 r 
 (k))) 

Figure 1-9: Computations which share the same subcomputation. 

a(k) = <1a(a 1 a2 .t.k1. 2a(a 1 .a2 .t.1> 	whore t = ca(a 1 .a2 .h] 

where <a 1 .a2  = a(da()) 

where 

(i)- 1a(a 1 .a2 .t.] (i.e. the "first component" for a) and 2a(a 1 .a2 .t.k] (i.e. 

the "second component" for a) are two expressions with possible occurrences 

of the variables a 1 . a2 . t and : and 

(ii) ca(a 1 . a2 .] (i.e. the "common subterm" for a) is an expression (with 

possible occurrences of the variables a 1 , a2  and ) equal to 

For example, in the case of the Fibonacci evaluation, when we obtained the 

function p(k) (see this Subsection) . we have: 

la(a11 a2' L k]: if k=O then 1 elseif even(k) then a+G 2 (O. 1. k) 

else 2" a 1 G( 0 1. k) +G 2 ( 0. 1. k) 



2a(a 1 . a2 .t.1: if k=O than 1 sIsalf even( k) then a 1 a2+G(O. 1. k) "G( 1.1. k+l) 

else a 1 " G( 1. 1. k+i) +G(O. 1. k) (a 2+G( 1. 1. k+i)) 

ca(a 1 .a2 .hl: 	a 1  

da(k): 	 if even(k) then k/2 else (k-i) /2. 

In most of the examples we have studied the Uniqueness Assumption does 

hold by allowing only "standard applications" of the tupling strategy. A formal 

definition of the "standard application" notion will not be given here. because 

It has only a technical relevance for expressing the conditions under which the 

Uniqueness Assumption is valid. 

We only say that, when defining the tupled function a(k).  the standard 

application forces ca(a 1 .a2 .) to be a. 1  (or a2 ) if a 1  (or a2 ) is the common 

subterm of the components of a(k). 

We also assume that for the decrement function a 'termination condition" 

holds, in the sense that the sequence of recursive calls of 

(a(da " ( k)) I n ) 0 ) is well—founded. 

Case 2. The analysis of the redundancy is complete. 

The tupling strategy gives us the following function c(): 

c() = <g(p() ) . g(p() ) . g(p(k) )>. 

By the Uniqueness Assumption, given the "decrement function" dc, there is a 

unique way of expressing c() as follows: 

c(k) = <1c(c 1 .c2 .c3 .t.j]. 2c[c 1 .c2 .c3 t.1. 3c(c 1 .c2 .c3 .t.1> 

where t= cc(c 1 .c2 .c3 .kJ 

whore <c 1 ,c2 c3> = c(dc(k)) 

where 

lc[. . .1. 2c(. . .1. 3c[. . .] and ccl. . . J are expressions with possible 

occurrences of the variables c 1 . C2 . c3 . and k. and 

the expression cc(. . .1 is equal to g(q(p(k))). i.e. 	the "common 

subterm" shared by the projections of c(,). 
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Fact 6. If da(k) = dc(h) then 

1a(a 1 .a2 .t.k] 0  1c(a 1 .a2 .g(p(da(&)).t.kJ 

2a(a 1 .a2 .t.k] 	2c(a 1 .a2 .g(p(da(k))).t.E1 

ca(a 1 . a2 , k) 	cc(a 1 . a2 . g ( 	da ( s))) . jjc 

Proof. Immediate consequence of the Uniqueness Assumption, because the 

common term t is the same for a(k) and c(k). 	 0 

Now the "safety orooerty" for the tupling strategy can be defined as 

follows: 

given a recursive equations program p, where all functions in the 

set F = C fl . - - - I f ) share the computation of a term t. if the 

tupling strategy is applied to the functions in a subset S of F. 

thereby defining the new function a. then in the resulting program 

the functions in F - S and the tupled function a still share the 

computation of t: 

if we apply again the tupling strategy to the functions in 

C a 1 U F - S. then the resulting program is equivalent to the one 

obtainable from the program p by tupling together all functions in 

F. 

Fact 7. With reference to the definitions given above. if da(k) = dc() then 

the safety property holds for the tupling strategy. 

Proof. We have to show that we can pair together the functions a(k) and 

g(p()). They share the same subcomputation of the term t = g(q(p())) 

because q( 	= q( 	. and therefore pairing is indeed possible. 

We can then define the new function: b(k) = <a(k). 9(Pt(&>.  In order to 

complete the proof we need to show that: 

c() = <771(a()). 772(a()). g(p())>. 	That equality can easily be shown 

by recursion induction, using the results of the previous Fact 6. 	 0 
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Remark. The proof of the "safety property" has been greatly simplified by the 

Uniqueness Assumption. As It stands, our proof is essentially based on the 

isomorphism between the two n-tuples (. . . <<x 1 . xf. x3>.....x 1 > and 

<x 
11 

x2 . x3 .....x>. 

The result we have obtained can be generalized to any k-tuple of function 

calls (not triples only) and any number of intermediate steps (not two 

successive pairings only). 

We also think that the safety property holds under much weaker hypotheses 

than the Uniqueness Assumption: we leave that study for elsewhere. 

1. 8. 3 ADDlicatlon of the tupling strategy 

Let us consider the class C Sn  I nO ) of recursive program schemata each 

of which is of the following form: 

f(x) = a(x) 	 if p(x) 

f(x) = b(x. f(c 1 (x)) .....f(c(x))) 	 otherwise 

Without loss of generality we may restrict our attention to the case n = 2 . Let 

us denote c 1  by c and c 2 by d. We have: 

S2 : f(x) = a(x) 	 if p(x) 

f(x) = b(x.f(c(x)).f(d(x))) 	 otherwise 

We will now study some properties of the tupling strategy for the schema S 2 . 

Those properties can easily be extended to any schema S n. for any n. 

We will follow the terminology introduced in (Cohen 83). 

We assume that the functions a. b. C. d and p are strict and their evaluation 

has no side effects. Under these hypotheses the call by value mechanism 

allows us to compute f(x) as the least fixed point of S 2 . The parameter x 

stands for either a scalar or a k-tuple (for k2). 
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Definition 1: The descent tree for S 2  is a tree whose root is 1(x) and if 

1(y) Is one of its nodes. then f(c(y)) and f(d(y)) are the son-nodes of 

that node. 

Sometimes we allow ourselves to use variants of descent trees. where we 

avoid writing the function symbol f and/or the argument symbol x and/or the 

parentheses. 

Notice that the descent tree for S 2  Is an Infinite tree. 

Figure 1-10 shows the "upper part" of the descent tree for S. 

1(x) 

f(c(x)) 	 f(d(x)) 

	

f(c(c(x) ) ) f(d(c(x) ) ) 	f(c(d(x) ) ) f(d(d(x) ) ) 

Figure 1-10: "Upper parr of the descent tree for S 

In the descent tree some of the nodes may be identified if we assume that 

some conditions hold for the functions c and d. 

For exampleS if c(d(x)) = d(c(x)) the 'upper parr of the descent tree for S 2  

will took like the directed acyclic graph (dag) in fig. 1-11. 

f(x) 

	

f(c(x)) 	f(d(x)) 

f(c(c(x))) f(c(d(x))) f(d(d(x))) 

Figure 1-11: 	"Upper part of the descent tree for S 2  if c(d(x)) = d(c(x)) 

A descent tree with some nodes which are Identified is called a compressed 

descent dap. 
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Under a given interpretation. if a compressed descent dag does not have two 

distinct nodes which can be Identified. then It is called a minimal compressed 

descent dag. (It is also called a dependency graph in (Bird 80]. ) It denotes 

the computation of t(x) without redundancy. if we assume that It Is truncated 

in such a way that the arguments occurring in the leaves make the predicate 

p(x) to be true. 

Let 0 be the domain where the function f is defined. It can be partitioned In 

two subdomains as follows: 

D=BUR.s.t. BflR=ø. 	where YxeB. p(x)=true and 

Yx € R. p(x) = false. 

We say that B Is the set of base cases and A is the set of recursive cases. 

Let us consider a set of functions S = ( h 1  I for 10 ). We say that the frontier 

condition holds for S w. r. t. the function I ill 

Vx £ B. 	Vh 1  € S. 	[ h 1 (x) and a(h 1 (x)) are defined and 

II f(h,(x)) is defined then f(h 1 (x)) = a(h1(x)) ]. 

In other words. Vx £ B. 	Vh 1  C S. 	It p(x) = true then p(h 1 (x)) = true, 1. e. 

if x is a base case for I then h 1 (x) is a base case as well. 

Now we give an algorithm for the application of the tupling strategy, as a 

method of transforming the schema S. to derive a more efficient program 

Schema. 

Derive the minimal compressed descent dag (called m-dag) of 

the function defined by S 2 , via symbolic evaluation. 

Let a cut in an m-dag be a set of nodes s. t. if we remove 

them, together with the incoming and outgoing edges. the m-dag 

is divided into two disconnected graphs. 

In the m-dag derived in Step 1, we determine a totally ordered 



sequence of cuts (possibly not disjoint) which is consistent with 

the function calls relationships. i. e. the cut which includes a 

"son node" does not precede the cut which Includes the "father 

node" (unless both nodes are in both cuts). Those cuts are such 

that the function calls occurring in a cut can be evaluated using 

only the function calls of the cut which immediately follows it in 

the total order (Cut Isolation Proøerty). 

Tuola together the function calls In a cut and find their recursive 

definition in terms of the function calls of the cut which follows (in 

the total order of the cuts). 

Check the base cases definitions so that the recursive definition 

found in the previous step is well-founded. 

Express the evaluation of the given function in terms of the tuoled 

functions. 

The following examples will clarify the ideas. 

Example 7. 

Consider the familiar problem of the towers of Hanoi. with 3 pegs A. B and 

C. It is required to move a pile of n disks with r?O from peg A to peg B using 

peg C as an auxiliary peg, under the constraint that no disk can be placed on 

top of a smaller one. 

The solution may be expressed by the following recursive program: 

f(n.A,B.C) = skip 	 if n 	0 

f(n.A.B.C)f(fl-1.A.C.B) 	AB: f(rV1.C.B.A) 	jjn1 

where f(n.A.B.C) moves n disks from peg A to peg B using C as auxiliary 

peg. XV denotes the move of the top disk from peg X to peg V. :: denotes the 

concatenation of moves and "skip" is the "empty move". 
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Notice that the above definition of the function f Is an instance of the schema 

S2 . 

Step 1. 	m-dag for f(n.A.B.C): 

n A B C 

n-1ACB n-1CBA 

n-2BCA n-2ABC n-2CA8 	*— cut n-2 

L < 
n-3ACB n-3BAC n-3CBA 

n-4BCA n-4ABC n-4CAB 	 cut n-4 
--- 

Step  2. A set of function calls which produces cuts in the m-dag is: 

C f(k.B.C.A). f(k.A.B.C). f(k.CAB) ) 	(see cuts (n-2) and (n-4)). 

Step 3. Tupllrig the above functions together we have: 

r(k) = <f(k.A.B.C), f(k.6.C.A), f(k.C.A.6)> 

(The order of the functions is not significant. ) 



r(0) = skip. skip. skip> 

r(k) = <(u: : AC: : v) : : AB : : (w: : GB: : U) 

(v:: BA: :w)::BC::(u:: AC: :v). 

(w: : CB:: U) :: CA :: (v: : BA: : w)> 	by unfolding (assuming 01 2) 

where <u.v.w> = r(k-2) 

= <x: : AS: : z. y: : BC: : x. z: : CA: : y> 

where x = u: : AC: :v, y = v: :BA: :w. z= w: : CS: : u 

where <u.v.w> = r(k-2) 

Stop 4. In order to achieve a well-founded definition of the function r(k). 

since r(k) calls r(k-2) and we have already the definition of r(0). we need to 

give the definition of r( 1). By unfolding we get: 

r(1) = <AB. BC. CA > 

Step 5. 

f(n.A B. C) = skip 	 it n = 0 

f(n.A.B.C) =AB 	 if  = 1 

f(n.A.B.C)=f(n-1.A.CB):: AB: :f(n-1.C.B.A) 

= (u: : AC: : v) : :AB:: (w: : GB: : u) 

where <u.v.w> = r(n-2) 	 if n > 2 

Putting together the above equations for f (see Step 5.) and the ones for r we 

have a linear recursive program for solving the Hanoi towers problem. 

(Notice that the original straightforward solution did not exhibit a linear 

recursion. ) 

The fact that we obtained a linear recursion is a general property of the 

application of the tupiing strategy because cuts are totally ordered and the Cut 

Isolation property holds. 

When a linear recursion is obtained, it can always be removed without use of 

a stack. Here we will not go into the details of this subsidiary problem. The 
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Interested reader may refer to (Paterson and Hewitt 70. Walker and Strong 

72, Chandra 73. Swamy and Savage 791. By applying the recursion removal 

techniques described in those papers, one may obtain various Iterative 

algorithms, for solving the Hanoi towers problem. (Therefore those algorithms 

do not need any proof of correctness. unlike the ones in (Hayes 77. Er 82]). 

We only recall that the recursive schema RH (fig. 1-12) can be translated into 

the flowchart FM of fig. 1-13 (see (Walker and Strong 72]). 

aO 	 Ifn=0 

Schema RH: 	f(n) = el 	 if n = 1 

a(f(n-2)) 	if ri > 2 

Figure 1-12: Recursive Schema for the Towers of Hanoi problem 

We get the following Iterative program for moving a tower of n disks from peg 

A to peg B: 

it a = 0 then res : = skip 

elseif a = 1 then res : = AB 

else  begin if even(n) then r : = <skip. skip, skip> 

else r:<AB. BC. CA ): 

while n > 3 do r := <ri : : AC: : r2: : AB: :r3: : GB: : ri 

: BA: : r3: : BC: : rl : : AC: : r2. 

: CB: : rl : : CA: : r2: : BA: : r3>; 

a := n-2 

ad 

res : = ri: : AC: : r2: : AB: : r3: : GB: : ri 

end 

where ri denotes the i-th component of r. for 11 .2. 3. 

The assignment for obtaining the new value of r from the "old one is a 

. parallel assignment. i.e. the components on the r. h. s. are all referring to 

the old values. 



input n 	 Flowchart FH 

it even(n) then F := eO 

F : = el 

MM 

output F 

n:=n+2-'s 	 F:=a(F) 

Figure 1-13: Flowchart Schema for the Towers of Hanoi problem 

Example 8. 

It is taken from (Bird 801 pp. 409-410. 

Consider the following mutually recursive definitions of f and g: 

f(n) = 1 	 if n1 

f(n) = 2-f(n-2) - 3-g(n-1) 	 otherwise 

g(n) = 1 	 if n1 

g(n) = f(n-1) + g(n-1) 	 otherwise 

Step 1. 	m-dag for f and g: 



-.._ r --  
g(n-1) 	#g(n-2) 	'9-g(n-3) 	g(n-4) 

k 
f( n) 	 * f( n-2) 	I f( ri-3) 	f( n-4) 

	

cut n-2 	out n-3 

Steps 2. 3 and 4. 

p(n)=<g(n).f(n).f(n-1)' 

We get: 

P(n) = <1.1.1> 	 'in 4 1 

p(n) = <f(n-1) + g(n-1) . 2"f(ri-2) - 3g(n-1) . f(n-1)> 

= <V + u. 2w - 3u. v' whore <u. v. w> = p(n-1) 	otherwise 

Step 5. 

f(n) = 1 
	

I1n IC 1 

1(n) = 2w - 3u 	where <u. Y. w' = p(n-1) 	 otherwise 

Notice that the tupling strategy may determine the evaluation of unnecessary 

expressions (see for instance the v component in the second equation of Step 

5). 

In order to avoid that difficulty we may use a "call by need" approach to the 

computation of the various components of the tupled functions occurring in 

where clauses, or we may introduce suitable conditional expressions (see the 

following example). 
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Examole 9. 

This example is taken from [Atkinson 811. It is the "cyclic Towers of Hanoi" 

problem. This problem is a simple modification of the standard one: the 3 

pegs are supposed to be cyclically arranged and the moves are allowed in the 

clockwise direction only (1. 9. AG. BC. and CA are the only moves allowed). 

. A:n 

-p clock(n.A.B.C) 	-9 
	

0 	 0 

C:O 	B:O 
	

C:O 	B:n 

Only clockwise moves available: AB. BC. CA  

. A:n 

B:O 	C:O 

-' anticlock(n.A. B. C) -' I 
Only clockwise moves available: AC. CB. BA  

Figure 1-14: The Cyclic Towers of Hanoi problem. 
The "clock" and "anticlock" functions. 

"X: n" means "n disks are in the peg X". 

The solution may be expressed as follows (see also fig. 1-14): 
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RECURSIVE CYCLIC TOWERS OF HANOI 

Moving a tower of n disks from peg A to peg B. Allowed moves: AB. BC. CA . 

clock(n.AB.C) = skip 	 it n = 0 

clock (nA.B.C) =anticlock(n-1.A.C,8)::AB::anticlock(n-1.C..B.A) 

if  > 1 

anticlock(n.A. B. C) = skip 	 it n = 0 

anticlock(n.A.B.C) =antic(ock(n-1..AB.C):: AC: :clock(n-1.B.A.C) 

:CB: :anticlock(n-1.A.B.C) 	 it 	1 

Steo 1. 	m-dag as in fig. 1-15. 

c(n. ABC) 

a(ri-LACB) 	 a(n-1,CBA) 

a( n-2. ACB) 	c( n-2. BCA) 	c( n-2. CAB) 	a( n-2. CBA) 

c(n-3. CAB) 	a(n-3.ACB) 	a(n-3. BAC) 	a(n-3. CBA) 	c(ri-3. BCA) 

_•_-_/-- 	 ---- 
c( n-4. CAB) a( n-4. ACB) a( n-4. BAC) a(n-4. CBA) c( n-4. ABC) c( n-4. BCA) 

-- -----
--- - 

L5: 3 a( n-5. BAG) a( n-5. CBA) c( n-5. ABC) c( n-5. BCA) 

cut n-5 

Figure 1-15: The m-dag for the Cyclic Towers of Hanoi problem. 
c(n.xyz) stands for clock(n.x.y.z. 

a(n.xyz) stands for anticlock(n.x.y.z. 
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Steps 2. 3 and 4. 

We 	write 	c(n.x.y.z) 	for 	clock(n.xy.z) 	and 	a(n.xy.z) 	for 

anticiock(n.x.y.z). We define: 

t(n.A.B.C) =<c(n.C.A.B). a(n.A.C.B). a(nB.A.C). 

a(n.C.B.A). c(n.A.6.C). c(n.8.C.A) >. 

We have: 

t(n.A.B.C) = <skip, skip, skip, skip, skip. skip> 	 if n = 0 

t(n.A. B. C) = 04: : CA: : t3,. t2: : AB: : t1: : BC: : t2. t3: : BC: : t5: : CA: : t3. 

t4: : CA: : t6: : AB: : t4. t2: :AB: : M. t3: : BC: : t2> 

where 01.t2t3.t4.t5.t6> = t(n-1.AB.C) 	if  > 1 

Step 5. 

clock(n. A.B. C) = skip 	 ii a = 0 

ciock(n.A. B. C) = t2: :AB: :t4 

where 01.t2.t3.t4.t5.t6) = t(n-1,A.B.C) 	if a 	1 

We can easily obtain an iterative solution using the same technique we applied 

in the standard Towers of Hanoi problem. 
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ITERATIVE CYCLIC TOWERS OF HANOI 

Moving a tower of n disks from peg A to peg B. Allowed moves: AB. BC. CA . 

j n = 0 then res : = skip 

el se  be-gin T : = <skip, skip, skip, skip, skip. skip; 

while n > 1 doT := <T4: : CA: : 13. 

T2: : AB: : Ti: : BC: : T2. 

BC: :15:: CA:: T3. 

CA: : T6:: AB: : 14. 

12: :.AB: : 14. 

T3:: BC: :T2'; 

n : = n-i 

od 

res : = T2:: AB: :14 

end 

As usual TI denotes the l-th component of T for i = 1 .....6. and the 

assignment from the old value of T to the "new" one is a parallel 

assignment. 

Notice that an iterative solution for the Cyclic Towers of Hanoi problem was 

claimed to be not easy to find C [Atkinson 811 page 118). 

The iterative algorithm we have presented produces exactly the same sequence 

of moves which is produced by the recursive algorithm. As we already 

remarked in the previous example, we could improve the iterative algorithm 

taking into consideration the fact that in the tuple T only the components T2 

and 14 are needed for computing the final sequence of moves. The 

introduction of suitable conditional expressions may realize that improvement. 

In particular. by unfolding we can get: 
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if n = 0 then res : = skip 

if n = 1 then res : = AB 

it n = 2 then res : = AB: : BC: : AB: : CA: : AB 

also  begin 

(as above). 

end 

Example 9. 1 

In this example we derive an Iterative algorithm for computing the fusc 

function defined as follows: 

fusc(0) 	= 0 

fusc(1) 	= 1 

fusc(2n) 	= fusc(n) 

fusc(2n+i) = fusc(n) + fusc(n+1) 

Our derivation is an answer to Prof. Dljkstra's challenge ( (Dijkstra 821 

pages 215.230). and it can be contrasted with the one given in [Bauer and 

Wssner 811 pages 288-290. There the iterative algorithm is obtained at the 

expense of a linear combination eureka step which is not straightforward. 

The m-dag for fusc(n) is given in fig. 1-16. 

n odd 	 n even 

fusc(2n+1) 
	

fusc(2n+1) 

fusc(n) 	fusc(n+1) 
	

fusc(n) 	fusc(n+1) 

fusc( (n-i) /2) 	fusc( (n+1) /2) 
	

fusc(n/2) 	fusc(n/2 + 1) 

Figure 1-16: The m-dag for the fusc function. 
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At any given level the m-dag can be cut by the pair 

<fusc(n). fusc(n+1)>. 	Therefore we can apply the tupling strategy and we 

get: 

fusc(n) 	=7T1(g(n)) 

g(0) 	= <0. 1> 

g(2n) 	= <fusc(2n). fusc(2n+1)> 

= <fusc(n). fusc(n)+fusc(n+1)> 

= <u. u+v> 	where <u.v>=g(n) 

g(2n+1) = <u+v. v> 	where <u.v>g(n) 

The above linear recursion can be transformed into an iterative program using 

the same schema-flowchart equivalence used in Section 1. 5 for recurrence 

relations. We get: 

(n0} 

11 n=0 then B(0). 1: =0.0 

else begin m, i. t: =n. 0. clog nj; 

while iL  do B(i) .m. I: =rem(m112) m112. i+1 p4 end:  

(BE!. .0] stores the binary digits of n. The most significant one is B( L) J 

<u.v>.p := <0.1>.!; 

( 
<u, V> 	<fusc(m) .fusc(m+1)> and 

m = jj pi then 0 else 	E 	8(i) •2 	) 
i=p+1 

while p0Qj.8(p)0 then v:u+v else u :=u+v; 

p : = p-i od 

[ <u, v> = <fusc(n).fusc(n+1)) = g(n) } 

Note. 	II denotes the integer division. 

The above program has a logarithmic running time as Prof. Dijkstra's one. 

(given below). Unfortunately it uses logarithmic space requiring the array B 

(although that is not a great disadvantage, because B stores the binary digits 

of n and we can assume that they are given us for free). 



M. 

In (Pettorossi 841 it is shown that. by applying the generalization strategy 

w. r. t. the initial values of u and v. we can obtain, after suitable 

transformations and lnstantlatlons, the following program: 

( n0 

while q>0  do if even(q) then v : = u+v else u : = u+v: 

q : = q//2 od 

( u = fusc(n) } 

which is exactly the one suggested by Prof. Dijkstra. 

1. 8. 4 Limitations of the tuolina strategy 

In this subsection we will show a "limitation result". 	It holds for the 

tupling strategy as well as for any other method which avoids redundancy in 

recursive calls, under the hypothesis that only a bounded amount of memory 

cells can be used. 

That hypothesis is not very restrictive because. if we allow for unbounded 

number of memory cells, we can avoid redundant computations in recursive 

calls by implementing the recursion using stacks and tables of already 

computed values, as done in the memo-function technique (Michie 681. The 

description of more advanced methods (such as the "overtabulation" and 

"exact tabulation") which make use of an unbounded number of memory cells 

can be found in [Bird 801. 

Let us consider the following recursive program schema: 

	

32: f(x) = a(x) 	 if p(x) 

f(x) = b(x,f(c(x)).f(d(x))) 	 otherwise 

	

Theorem 2: 	For any integer n there exists an interpretation for the 

function symbols and predicate symbols of S. such that f(x) cannot be 

computed using less than n memory cells. 

Proof: (see [Paterson and Hewitt 70]) 
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The above theorem Implies that for any schema S n  for n ) 2 (see Sect. 

1. 8. 3) the tupling strategy cannot avoid redundancy in recursive calls. 

because with the tupllng strategy, we are able to memorize only a fixed 

number of intermediate results (corresponding to the values of the functions 

calls in each cut). 

Even if we assume commutative redundancy (I. e. c(d(x)) = d(c(x)) 

whenever p(x) is false) . the tupling strategy cannot completely avoid 

redundancy. The statement of this fact is in [Cohen 831. but his inductive 

proof (see pages 289-290) Is not satisfactory. As It has been presented, his 

proof would be valid for asserting the need of n memory cells for evaluating 

the function f(x) defined by the schema S2  under the assumption (which we 

will call'Al") that c(c(x)) = d(c(x)) whenever p(x) is false. 

This Is not the case because any minimal compressed descent dag for S2  

under the assumption Al is of the form t(k) for some k (see fig. 1-17). 

t( 1) = o 	and 	t(n) = 

n-i { 

Figure 1-17: 	Dags t(n) for ri > 1. 
n is the number of nodes from the root to the leftmost leaf. 

and any t(n) can be evaluated using at most two memory cells. 

In the remaining part of this subsection we give a non-inductive proof of the 

above theorem under the commutative assumption that "c(d(x)) = d(c(x)) 

whenever p(x) is false". 

As it has been pointed out by [Paterson and Hewitt 701 the proof can be 

described using a pebble game over the minimal compressed descent dag of 

f(x). 
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Let us consider the indexed set of grids as defined In fig. 1-18. 

n 

grid(1) = a 	and 	grid(n) = 

FF  
Figure 1-18: 	Definition of grid(n) for n ) 1. 

n is the number of the nodes in the first row of grid(n). 

If the left-upper corner (called root) corresponds to the f(x 0) call and a 

vertical [or horizontal] arc connects the node for f(y) with the node for 

f(d(y)) [or f(c(y)) ] then grid (n) is the minimal compressed descent dag for 

the free interpretation of S2 . called I,. S. t. p(c tdx0) is true 1ff i+jn for the 

given x0 . In that case, in fact. the nodes In the diagonal side of grid(n) 

correspond to base cases. 

(For the notion of 'free interpretation see [Paterson and Hewitt 70]). 

Notice that the m-dags are in the form of grids because of the commutativity 

hypothesis. 

The pebble game over a grid(n) is described by the following rewrite rules: 

Al. For any leaf: o 

R2. For any subconfiguration: r ---:> ro 
The minimum number of pebbles necessary for placing one pebble in the root 

is equal to the minimum number of memory cells necessary to compute f(x 0 ) 

(see (Paterson and Hewitt 701) 

An are is a vertical or horizontal line connecting two adjacent nodes of a grid. 

Arcs are oriented "left-to-right" and top-down. 

• path is a sequence of adjacent arcs. which agrees with their orientation. 

• pebbled grid is closed if for every path from the root to a leaf there exists 

one pebble in one of its nodes. 
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Notice that during the game a closed grid may become open. During the 

game a node may be pebbled more than once. 

Lemma 3: The only move which makes an open grid to become closed is 

Al. 

Proof: Immediate. 

Lemma 4: During the game. whenever an open grid(n) becomes closed 

we need at least n pebbles In that closed grid. 

Proof: 	Let us denote the nodes in the grid(n) by the row.column' 

indexes (<i.j> I 1(in, ljn. i+jn+l). 	Suppose that the move which 

closes an open grid(n) . puts a pebble in the leaf <1.1>.  Let us consider 

a path from the root, which does not have any pebble prior to that move. 

That path crosses i-i columns and j-1 rows (see fig. 1-19 where the 

crossings have been denoted by arrows). 

<1. 1> 

<1 n) 

Figure 1-19: 	Closing grid(n) by a pebble in <i.j>. 

Since all paths, branching off that path should be closed, we must 

intersect with a pebble all columns below that path and all rows to the 

right of that path and we need the pebble in <I, j>. Thus we need at least 

(i-1)+(j-1)+1 = i+j-1 pebbles to close an open grid(n). 

Since n = i+j-1 for any leaf position <i.j>. the proof of Lemma 4 is 

completed. 
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A method (let us call it M) of using exactly I-i pebbles to close the i-i 

columns below an open path which intersects them is the following: 

- Place a pebble anywhere in the leftmost column: 

- Let <r. c- be the <row, column) position of the pebble placed in 
the c column. 	Place the pebble in column c+1 in the row 

position r' s. t. r'' r-1. 

Analogous method can be defined for using exactly j-1 pebbles to close 

the j-1 rows on the right of an open path. 

Two ways of applying the above mentioned method are the following: 

place the pebbles on the leaves. (In this case the method M 

is applied with r' = r-1 for any column position C.) 

place the pebbles on the "highest row position below the open 

path and on the "leftmost column position on the right of the 

open path (In this case the method 'M is applied with r'r). 

We depicted this second way in the figure 1-19. 

Lemma 5: If an open grid(n) is closed and it has m)n pebbles. we can 

conclude the game of placing a pebble on the root of grid(n) using no 

more than m pebbles. 

Proof: By induction on n. For n=0 it is obvious. Suppose the lemma 

true for n-i, we show it for n. Suppose the open grid(n) has been 

closed using mn pebbles. 

Let us consider the following sequence of grids, all subgrids of grid(n) 

grid(n-1) with root <1.2>. grid(n-2) with root <2.2> .....grid(1) with 

root <n-1.2>. 

When the grid(n) becomes closed, say after the move r. grid(n-1) with 

root 0. 2> either has been closed by that same move r or it was already 

closed. By the lemma 4 and the induction hypothesis we have at least 

n-i pebbles for closing the grid(n-1) with root <1.2'. We can then 
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conclude the game for closing such grid(n-1) placing 'I pebble in 

position 0. 2>. We have then at least n-2 pebbles at our disposal for 

concluding the game for the grid(n-2), by applying the induction 

hypothesis again. Eventually we get to the situation where 

grid(n-1) .....grid( 1) are all closed with pebbles in their roots (see the 

figure 1-20). We used n-i pebbles. 

n 

grid(n): 

grid(n-1) 

grid( n-2) 

grid(1) 

L 	Figure 1-20: Closing n-i grids In grld(n). 

Since grid(n) is closed and we have at our disposal mn pebbles, there 

must be at least one pebble in the first column. We will then be able to 

conclude the game for grid(n) applying rule R2 (one or more times) and 

therefore using no more than m pebbles. 

Lemma 6: The number of memory cells necessary to compute f(x) of S 2  

under the free interpretation I,., and the commutative hypothesis. is not 

less than the minimum number of pebbles placed in a closed grid(n) 

which was open in the previous move. 

Proof: The number of memory cells necessary to compute f(x) of S. 

under I,, is at least equal to the minimum number of pebbles necessary 

i) to close an open grid(n) and ii) to finish the pebble game for grid(n). 

keeping it always closed. By Lemma 5 condition ii) can be dropped. 

From the previous lemmas 4 and 6 we conclude that for any n there exists 

a commutative interpretation for S 2  such that n memory cells are needed for 
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evaluating f(x) and avoiding redundancy. This concludes the proof of Cohen's 

statement C (Cohen 831 page 288) we promised at the beginning of this 

subsection. 

As a final remark, we will show the following upper bound result. 

Theorem 7: n pebbles suffice to pebble the root of grid(n) for any n 	1. 

Proof: By complete induction on n. For n = 1 it is obvious. Assume that 

the theorem holds for any k 4 n-i then we can shows that it holds for k = 

11 as follows. Let us refer to the figure 1-20. Starting from an empty 

grid(n) we can place a pebble in <1.2> using n-i pebbles. With the 

remaining n-2 pebbles we place a pebble in <2. 2> and so on (by 

complete induction). Therefore we can place n-i pebbles as shown in 

the figure 1-20 using n-i pebbles only. One extra pebble place In <1.1> 

allows us to conclude the game having eventually only 1 pebble in 0. 1>. 



1. 9 The tupling strategy compared with other methods of eliminating 

redundancy in recursive calls 

In the literature we can find various methods for eliminating redundant 

computations in recursive programs. We can divide them into two groups: 

the first one for which the number of extra memory cells for storing already 

computed values is input-independent (Group Gi). and the second one for 

which the number of extra memory cells is input-dependent (Group G2). 

Group Gi includes: 

1. 1 Variable small-table heuristic methods (l-liiden 76) 

1. 2 Descent-conditions-based strategies for: 

1. 2. 1 explicit redundancy 

1. 2. 2 common generator redundancy 

1. 2. 3 commutative periodic redundancy (Cohen 831 

3 Tupling Strategy (Pettorossi 771 

Group G2 includes: 

1 Memo-functions [Michie 681 

2. 2 Overtabuiation techniques (Bird 801 

2. 3 Exact tabulation techniques (Bird 801 

2. 4 Descent-conditions-based strategies for commutative redundancy 

(Cohen 831. 

We would like to show that the tupling strategy is indeed a generalization of the 

methods listed in Group Gi. The methods in Group G2 allow for an 

unbounded number of memory cells and therefore comparing the tupling 

strategy with them is not particularly significant. 

As far as Hilden's methods are concerned, we will only say that they are 

of a heuristic nature and we can never be sure of avoiding redundant 

computations when applying them. 
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The comparison in which we are most interested is the one between the tupling 

strategy and the descent-condition-based strategies of group GI [Cohen 831. 

In what follows we will show that the tupling strategy is indeed a proper 

extension of Cohen's methods. 

Our work was done independently from Cohen's and this section is devoted to 

clarify the relationship between his results and ours. 

Let us consider the following schema: 

S2 : f(x) = a(x) 	 if p(x) 

f(x) = b(x. f(c(x)) . f(d(x) ) 	 otherwise 

Tupling vs. exolicit redundancy. 

There is explicit redundancy if c(x) = d(x). In that case the m-dag for f(x) 

is: 

f(x) —) f(c(x)) - 	
2 

f(c (x)) 

A cut in m-dag is any function call of the form f(c 1 (x)) for i)O. 	Therefore. by 

a 	trivial application of the tupling strategy, 	we tuple one function only, say 

f(c'(x)). and we express it in terms of the subsequent cut, f(cl4(x)). as 

follows: 

i. 	 ii1 	 - 
f(c(x)) 	b(x.z.z) 	where z = fCc (x)) 	for i0 

Step 5 of the application of the tupling strategy gives us: 

f(x) = a(x) 	 if p(x) 

f(x) = b(x.z.z) 	where z = f(c(x)) 	 otherwise 

which is exactly the same program schema we get by applying Cohen's explicit 

redundancy strategy. 

In order to compare the tupling strategy with the common generation 

redundancy and the commutative periodic redundancy strategies given in 

(Cohen 831 we need only to deal with the latter one because the former is a 

special case of it. However, in order to make the presentation as clear as 
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posslble, we will consider the two cases separately. We will also show some 

improvements to Cohen's methods. 

Tuplina vs. common-generator redundancy. 

In the common-generator-redundancy we have that: 

c(x) = gm(x) and d(x) = g"(x) 

for some function g(x). for some non-negative integers m and n 

and for all x € R (I. G. such that p(x) is false). 

the frontier condition holds for (g 1 (x) I O<imax(m.n)). 

Without loss of generality we may assume that rn and n are relatively prime. 

The descent tree generated by f(x) is represented in figure 1-21. 

f(x) 

f(g 
m

(x)) 	 f(g (x)) 

f( 92m( X)) 	 f(gmli)(x)) 	 f(g2'(x)) 

Figure 1-21: Descent tree for common generator redundancy. 

In the expressions of the form f(g(x)) occurring in it. we have p = im+jn for 

some integers i.j. Since every natural number greater than (rn-i) (n-1)-1 

can be expressed as im+jn, for integers i.j and m and n relatively prime 

(Cohen 801. and m and n are typically small. at the nodes of the descent tree 

we have almost all f(g'(x)) for p > 0. 

Therefore the computation of f(x) can be performed according to the following 

m-dag: 

f(x) - f(g(x)) -> f(g 2 (x)) 	> f(g 3 (x)) -4 . . . _4 f(gt(x)) 

where we know that a recurrence relation of order k. with kmax(m. n) . holds 

among the nodes of the m-dag. because f(x) = b(x. f(gm(x)) . f(g"(x))). In 

the 	above 	m-dag 	t 	is 	such 	that 	p(gt(x)) 	= 	true 	and 
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V q < t 	p(g 
q 
 (x)) = false. Thus f(g 

t 
 (x)) = a(g 

t
(x)). A cut for the above 

m-dag can be chosen to be a sequence of k adjacent function calls. We tuple 

them together and we can express <f(g 
q 
 (x)) .....f(g 

q-k'l
(x))) 	in terms of 

<f(g(x)) ..... f(gC(x))) 	using the second equation of S 2 . 

Notice that the frontier condition ensures that the recursion of the tupled 

functions Is well-founded. In fact the frontier condition tells us that If p(g t (x)) 

is true. then also p(gt(x)) is true for 0 < I IC max(m. n). Therefore we can 

start the recursion from the k-tuple: <f( gtl( x))f( g t k ( x))>. in fact, 

since k=max(m. n) we are sure that the frontier condition holds for all 

functions in that k-tuple, if it holds for gt(x). 

The above k-tuple of values corresponds exactly to the values BACKgW for 

i=1 .....max(m. n) of Cohen's solution (see (Cohen 831 page 277). In our 

solution we avoid the need for the extra location BACKg[0], which is used by 

Cohen. 

Let us call permanent memory cells the ones needed when entering and 

exiting a recursive call of the tupled function. and 'temporary" memory cells 

the ones needed during a recursive call. 

The interesting point of the application of the tupiing strategy is not the use of 

one permanent memory cell less (i.e. BACK9(0]). but the fact that we are 

able to distinguish between the need for permanent and the need for 

temporary memory cells (or, as in Cohen's terminology, non-local and local 

memory cells). 

Tupling vs. commutative periodic redundancy. 

In the commutative periodic redundancy we have that: 

c'(x) = d(x) for some i and j 	for all x E A 

c(d(x)) = d(c(x)) 	 for all x E R 

the frontier condition holds for C c
m n 

d (x) I 04m<,. 0n<j. m+n>0 . 

Let e(x) be c 1 (x) (which is also equal to d(x)). 



— 	f(c0d 1 y) 	' 	 . . . 	 f(c&1y) 

1. 
	 1. 

— > f(c 1 dy) -•+ 
	

- f(c ' d 1 y) 

I 
	

1. 

—> f(cd ' y) — 
	 — f(c 1 dy) 

f( y) 

f(c 1 0 d y) 

i-i 0 
fCc dy) 

The m-dag for the computation of f(x) looks like this (Cohen 831: 
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where each rectangle is of the form shown in fig. 1-22. 

Figure 1-22: A rectangle for the commutative periodic redundancy. 

y ranges over e x for k0. 

Therefore a cut of the m-dag can be obtained by tupling together the following 

function calls. i. e. the ones which occur in a rectangle: 

C(x) = Mx) . 	f(c 
0 1 	 0 J-1  d x) . . . . 	f(c d 	x) 

10 	 11 	 l i-i 
fCc d x) . 	fCc d x) . . . 	fcc d 	x) 

i-i 0 	 i-i 1 	 i-i 
fCc 	d x) . 	fCc d x) . 	. . . fCc d i-i x)>. 

We can express the function calls occurring in a cut in terms of the function 

calls occurring in a subsequent cut. as was shown by (Cohen 831 page 283. 
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We will not go into the details here. 	The interested reader may refer to 

Cohen's paper. In that paper the redundancy of recursive calls is avoided by 

keeping In permanent memory cells the values of the function calls which 

realize the cut C(x). Some extra jXj  temporary memory cells are needed: 

they are the array ARGUMENT(0: (I-i) .0: (J-1)]. 

Notice that the frontier condition, as in the case of the common-generator-

redundancy, ensures that the recursive definition of C(x) is well-founded. In 

fact, if p(x) = true. i. e. x is a base case. then all arguments of the function 

calls In C(x). I. e. Cmd(X)  for 04m<i. 04n<j. m+n>0. are also base cases. 

In other words. for any m and n satisfying the above constraints, if f(cmd(x)) 

Is defined then it Is equal to a(cmdn(x)).  by the frontier condition. 

In the case of commutative periodic redundancy we can apply the tupiing 

strategy In a different way, by using cuts corresponding to the first row and 

the first column of the above mentioned rectangles. This is done by defining 

the following function: 

D(x) = <f(x) . 	f(c°d 1 x) . . . . 	f(c0d 1 x). 

f(c 
1 0 
d x). 

i-i 0 
f(c d x)>. 

In order to elucidate the correspondence with Cohen's solution, let us store 

the values f(x) f(c 0d 1 x) .....f(c0dx) in the array .  BACKd[0: (j-1)1 and the 

values f(c 
1 0 	 i-1 0 
d x) .....f(c d x) in the array 8ACKc(1: (i-i)] (Cohen uses 

instead the array BACKc(0: (i-i)]). We use iXj temporary memory cells of the 

array ARGUMENT[0: 0- 1) .0: (j-1)1 and one extra temporary cell Temp, which 

initially gets the value BACKd[0] (which is also equal to BACKc(0J). 

We can express D(x) in terms of D(e(x)) . using the following program written 

in an Algol-like notation. 



Temp: =BACKd(01: 

for M from (i-i) step -1 until 0 do 

begin 

BACKd[(-1)]: = 

If p(ARGUMENT(M. (j-1)]) 

then a(ARGUMENT(M. (j-1)]) 

else b(ARGUMENT(M. (j-1)]. BACKd((j-1)]. 

if M=0 then Tema also BACKc(M]): 

for N from (J-2) step -1 until 0 do 

BACKd(N]: = 

If p(ARGUMENT(M. N]) 

then a(ARGUMENT(M. N]) 

else b(ARGUMENT(M. N]. BACKd(N]. BACKd(N+1]): 

if MOO then BACKc(MJ: =BACKd(01 

end 

The reader may refer to Cohen's paper for an explanation of the above 

program and why it indeed computes D(x) from D(e(x)). That program is a 

variant of the one used in Cohen's 'improved solution" (see page 284 (Cohen 

831). We only added the pieces of code which are underlined. Those 

additions are needed because we are using the temporary cell Temp instead of 

the permanent cell BACKc(0]. 

As we already mentioned, the important issue here is not the saving of 

one permanent memory cell, but the fact that. through the application of the 

tupling strategy, we are able to distinguish between the need of permanent 

cells and the need of temporary cells. 
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So far we have shown that Cohen's methods for avoiding redundancy in 
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recursive calls can be considered as particular cases of application of the 

tupling strategy. We will now show that the tupling strategy is a proper 

extension of those methods. In order to do so we have only to refer to the 

Towers of Hanoi example for which the tupling strategy can be applied as 

shown in subsection 1. 8. 3. but none of Cohen's method can (as already 

stated in (Cohen 831 page 295). 



1. 10 The tupilna strategy and the use of data structures 

We would like to present another Important use of the tupllng strategy for 

improving programs via transformations. 

The basic idea consists In tupling together those functions whose evaluation 

requires the same data structure. It turns out that if during the computation 

we reduce the number of passes" over a given data structure, we improve the 

time X  space performances. because we can release storage sooner. Some 

preliminary results in that direction were published in (Pottorossl 771. and they 

were applied in (Feather 791. Related work can be found in (Wadler 

81. Scherlis 801: their methods also allow to improve the timeXspace 

performances. 

instead of defining a formal framework and formally proving the properties 

of that use of the tupling strategy. we prefer to give two examples from which 

the reader may gain deeper insights, together with concrete programming 

suggestions. The definition of a formal framework is left for future 

investigation. 

The first introductory example is about the computation of the difference 

between the smallest and the biggest leaf of a binary tree. 

The following HOPE-like program (Burstail. MacQueen and Sannella 801 solves 

the problem. 
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data btree(num) == niltree ++ tip(num) ++ btree(num)btree(num) 

dec mInt: btree(num) 	num 

mint(niltree) 	= 

mInt(tip(n)) 	= n 

mint(t1t2) 	= miii (muntUD. mink(t2)) 

dec  maxt: btree(num) > num 

maxt(nuitree) 	= - 

maxt(tlp(n)) 	= ii 

maxl(tlAt2) 	= max(maxL(tl). maxt(t2)) 

dec task: btree(num) 	num 

task(t) = maxl(t) - mint(t) 

Since mint(t) and maxt(t) both have the argument t. even though it is not a 

common suboxpresslori, just a simple variable, we tupla them together and we 

define the function p(t) = <munt(t) . maxt(t)>. 

By instantiation we get: 

dec p: btree(num) 	numxrium 

p(nultree) 	= (+, -> 

p(tip(n)) 	= 

p(tlAt2) 	= <mun(al.a2). max(bl.b2)> where <al.bl>=p(tl) 

<a2, b2>=p(t2) 

task(t) = 772(p(t) ) - 71 (p(t) ) 

One can easily see that the derived program is more timeXspace efficient than 

the given one. because after the evaluation of p(tl) the storage used by ti 

can be released. while after the evaluation of maxt(tl) . we cannot, because 

ti is necessary for computing mint(tl). 

Let us now give a more interesting (though more complex) example 

concerning the destructive evaluation oroblem (Pettorossi 781. 
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Given a term to be evaluated, we want to mark the occurrences of its 

function symbols so that, during evaluation, the cells storing the arguments of 

the marked functions can be released without effecting the correctness of the 

result. 

Let A = Cf. g. h. . .) be a (finite or deriumerably infinite) ranked alphabet 

and V = (x.y.z.. . .) a (finite or denumerably Infinite) set of variables. We 

define the set TAV of A-terms over V as follows: 

- for any x € V 	> 	TA, V 	
(variable terms) 

- for any f € A with rank (or arity) n. for any ti .....tn € TAY 

	

<f ti. . tn) € TAV 	 (application terms) 

For simplicity we also write x instead of <x' for any x € V. 

Let us consider an evaluation function evai from TA,V  to a given domain 

0. We assume that 'eval" uses a variable-environment p: V - D for 

assigning values in D to variables and a function-environment for assigning 

functions to ranked symbols in A. We also assume that "eval' corresponds to 

the call-by-value evaluation rule and it evaluates its arguments In the 

left-to-right order, with the exception that variable terms are evaluated after 

application terms. 

For instance, for the term < f x < g x z > < h y > > the order of evaluation of the 

subterms is denoted by the integers associated with their leftmost symbols as 

follows: < 1`7 x6 < g3 xl z2 > < h5 y4 > >, where subterms with smaller numbers 

are evaluated first. 

In intuitive terms. the evaluation proceeds as a 'left-to-right' and 'bottom-up" 

visit of the tree one can associate with a given term by the following 

correspondence: 

(ftl ... tn'' 	f 

t(tn 

Let us now extend our alphabet A so that for each symbol a € A we have a 

"marked symbol' 9 (with the same arity) also belonging to A. 
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We extend the "eval" function as follows: 

for any f (with arity n) € A. for any ti .....tn € TAV after the evaluation of 

T ti. . .tn> we have that V x C V S. t. 3 ti 1in and ti 0  x. p(x) is undefined. 

In other words. <T tl... tn> is the "destructive version" of < f ti. . . tn > 

(Schwarz 78. Pettorossi 781. i. e. it destroys the values of all variables 

occurring as immediate arguments of T. 

Example 10. 

< T x  < g x z  > <}iy>>. <f<xz>y<hy)> are terms correctly marked. 

The first one Is maximally marked, while the second Is not (because the 

leftmost f also could have been marked). 

< f x < U x z ' y > is not correctly marked because 5 destroys the value of x 

which will be used by the function f. 

The following program Progi written in a HOPE-like style optimally marks 

a given TA ,v-term.  

Program Progi 

data term == vn(rame) '+ an(name, list term) 

dec mark: term 	term 

mark(n) <== mark2(n. 0) 

dec mark2: term X set name " term 

mark2(vn(namel) .v) 	 vn(namol) 

mark2(an(namel. tnì) .v) 	= an (name lm.mark2llSt(tfl. v U  w)) 

where nameim = if v fl  w = 0 then namel 

else namel 

where w = singlevar( tn) 



115 

	

dec singlevar: list term 	set name 

singlevar( nil) 
	 = 0 

singlevar(vn (name l): : ti) 
	

= (namel) U  slnglevar(ti) 

singievar(an (name l . til) : : ti) 
	

= singlevar(tt) 

dec mark2list: list term X  set name > list term 

mark2llst(nll.v) 	 6= nil 

mark2list(vn( name l): : tL.v) 	6= vn(namel): : mark2list(tt, v) 

mark2iist(an (name l.tLl) :ti. v) 	= mark2(an(namel.ttl). 

v U varinapp(ti)) 

mark2list(tt. y) 

	

c. varinapp: list term 	set name 

varinapp( nil) 
	

0 

varinapp(vn (name l): : ti) 

varinapp(an(namel.tLl): ti) 

dec alivar: list term > set name 

allvar( nil) 

ailvar(vn (name l): : ti) 

allvar(an (name l.ttl): :tt) 

varinapp(tt) 

alivar(til) U  varinapp(tt) 

= 0 

= (namel) U  ailvar(tt) 

allvar(til) U ailvar(tt) 

Let us make a few comments to help the readability of our program. 

vn and an are constructors for variable-terms and application-terms 

respectively, name is supposed to be a primitive data type. 

The second argument of rnark2 is the set of variables which are required in 

future computations. 

singlevar. given a list of terms, builds the set of variable terms occurring 

at the top level of that list. 

mark2list behaves as mark2 for a list of terms. 
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vartnaon, given a list of terms. builds the set of all variables occurring 

in aøplication-terms of that list. 

allvar, given a list of terms. builds the set of all variables occurring in 

those terms. 

For instance 	if t = ( x. < f y < h z > > I then slngievar(t) = C x ). 

varinapp(t) = C y. z ). allvar(t) = C x. y. z 1. 

Looking at the definition of mark2 we see that both functions singlevar and 

mark2list use the list tn. Therefore we tuple them together and we get: 

H( In. v) = <singlevar( In) . mark2llst( In. v U slnglevar( In) ) 

We obtain: 

H(nll.ø) 	 6= <ø.nll> 

H(vn(namel): :tt.v) 6= <(namel) U singlevar(tL). vn(namel) 

mark2llst(t2. . v U  (name 1) U singlevar(t2))) 

< (namel) U  a. vn(namel): : b > 

where <a, b> = H(tL.v U  (namel)) 

H(an(namel.ttl)::tt.v) 	= <singlevar(tt). 

mark2 (an (namel.tLl). v U  singtevar(tt) 

U varinapp(ti)) : : mark2list(tL. vUsingIevar(t))> 

= <a. mark2 (anriamal . t21). vUaUvarinapp(tL)): : b 

where <a, b> = H(tL.v) 

In the definition of H. both functions varinapp and H use the list tt. We tuple 

those functions together and we get (after "flattening" the pair of functions in 

H): 

K(tL.v) = <singlevar(t). mark2list(tL.v U singlevar(tt)). varinapp(t)> 

We obtain: 

K(nil.ø) 	 = <. nil, > 

K(vn(name1):t.V) 	 < Cnamoll U a. vn(namel): :b. c> 

where <a.b.c> = K(t.v U  Cnamel}) 
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K(an(namel.ttl)::ti,V) 	4== 'a. mark2 (an (namal.ttl). vUa Uc)::b. 

allvar(tLl) U  c> where <a.b.c> = K(tL,v) 

By 	unfolding 	in 	the 	equation for 	K(an(namel 	til): : ti, v) 	the 	definition 	of 

mark2 we get the expression: 

<a. an(namelm. mark2list(tt1 .v U  a  U  c  U  w)): : b. 	allvar(til) 	U  c> 

where riameim = if (v U  a  U C)  Ii w = 0 then name 1 	else namel 

where w = singlevar(til) 

where <a.b.c> = K(ti.v) 

We 	see that both 	mark2list and 	ailvar visit the 	same 	data 	structure W. 

Therefore we are led to the following definition: 

L(Ln.v) = 

<singlevar( in). 	mark2list( in. v U singlevar( in)). varinapp( in). 	allvar( in)> 

and we obtain: 

L(nhl.v) (0. nIl. 0. 0' 

L(vn(namel): : tt.v) (namel) U  a. vn(namel): : b. c. 	(namel) U d' 

where <a.b.c.d> = L(tt.v U  (name l)) 

L(an (name l.til):ti,V) 	6= a. 	an(namolm.bl)::b. 	dl 	U. 	dl Ucj> 

where nameim = if (v U  a U C) Ii al = 0 

then name 1 	else name 1 

where <al.bl.cl ..dl> = L(ttl.v U  a  U C) 

where <a. bc.d> = L(ti.v) 

The resulting final program Prog2 is as follows: 



Program Proa2 

data term == vn(name) ++ an(name. list term) 

dec mark: term 	term 

(defined as above)... 

dec mark2: term X set name 	term 

mark2(vn (name l) ,v) 	 = vn(namQl) 

mark2(an(namel, in) .v) 	 an(name1m.7T2(L(1n.v))) 

where namel m = if v  fl 771 (L( in. v) ) =0 

then name else name 1 

dec L: list term X  set name 	(set name X list term X  set name X  set name) 

(defined as above). 

where 771 denotes the i-th projection function, for =1... .4. 

The Hope Implementation (Burstall. MacQueen and Sannelia 801 of Progi and 

Prog2 on the DEC-10 at Edinburgh University confirms the expected 

improvements of the program performances. 

Now we will make a few remarks about the derivation from Progi to 

Prog2. We leave to the reader the task of abstracting from those remarks the 

related general properties of the tupiing strategy. 

Remark 1. The recursive structure of the functions in the derived program 

Prog2 is similar to the one of the given Progi. For example in Prog2 the 

definition of L(an(namel . til): : ti.. . .) is in terms of L(til.... ) and 

L(ti.. . .). and in Progl the definition of allvar(an (name l. til): : ti) is also 

in terms of allvar(til) and ailvar(ti). 
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Remark 2. As we already noticed, the use of the tuptirig strategy may 

force us to compute values not strictly necessary. 
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For instance in the definition of L one sees that it is not necessary to compute 

the value of ci. As usual this inconvenience may be avoided in two ways: 

- by applying a call-by-need (meta) rule of evaluation when evaluating tuples. 

or 

- by explicitly defIning some suitable auxiliary functions. This second way can 

be implemented in our case as follows. 

The computation of the ci component in the definition of L is avoided by 

writing: 

"where <al.bl.dl> = M(tti. 4  aU C)" 

instead of: 	"where <al.bl.cl .dl> = L(til. v U  a  U  C)" 

and defining the function M as follows: 

M(tLl.v) = 

<singlevar(tLl), mark2iist(tLl. v Y singlevar(tLl)) . ailvar(ti). 

We have: 

M(nll.v) 	 <O. nil. ø' 

M(vn(namei): : tL.v) 	 4= ((namel) U  a. vn(rtamel): : b. (namol) U d 

where <a.b.d> = M(tL,v U  (namel)) 

M(an(namel.tLl): :t2.. v) 	<a; an(nameim.bl): :b. dl U  d 

where nameimj(vUaUC) flai=ø 

then riamel else namel 

where <al.bi.dl> = M(til. v 	a U C) 

where <a.bc.d' = L(t2..v) 

Making an extensive use of this second way of avoiding the above mentioned 

inconvenience, we may obtain a final program where in the mark2 definition in 

Prog2, instead of lTi(L(  In.  v)). we have 7Ti(H( In. v)) for i=1.2. 

The reader may easily verify that the final program includes, together with the 

definitions of the functions L and M. also the definition of H and K suitably 

"linked", so that for instance, in the definition of H we have the following 

equation:  
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H (an (name l.tLl)::ttV) 16== <a. mark2 (an (namal.tIl). vUaUc)::b> 

where <a.b.c) = K(tL.v). 

Analogously. in the definition of K we have the equation: 

K(an(namel.tEl)::tt.V) 	=<a. an(namelm.bl)::b.dl Ud> 

wher9namelm = if (V U  a U  C) (1 al = 0 

then name  else- name  

where <al.bl.dl> = M(tLl. v U  a  U C) 

where <a. b.c.d) = L(tt. v). 

Remark 3. This remark concerns a property which is analogous to the 

safety property described in section 1. 8. 

The need to tuple together various functions can be discovered"incrementally"  

(by using the unfolding rule or symbolically evaluating programs). while new 

tupled definitions are synthesized from old ones. This is elucidated by the 

process we followed in the above example, starting from the function H and 

deriving the need of defining the function K and then the function L. 

The process of tupllng functions together is bound to terminate because the 

initial program has a finite number of defined functions. and new tupled 

functions are. so  to speak, members of the powerset of the set of the given 

initial functions. 

Remark 4. When applying the tupiing strategy one should comply with the 

following independence requirement: the functions which are tupled together 

should have arguments which (once instantiated) do not depend on other 

functions of the same tupie. 

We may see the reason for that requirement considering program Progi. 

After noticing that both singlevar and rnark2list visit the list n we could have 

defined the function ki as follows: 

jj(n.z) = <singlevar(Ln). mark2list( 1 n.z)). 

Unfortunately, this pairing does not satisfy our independence requirement. 
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because In Progi z is Instatlated as "v U  slnglevar( in)" and singlevar( in) is a 

component of the ff(in.z). 

Indeed It Is Impossible to write the third equation for H. In fact: 

H(an(namol.ttl): :tL.Z) 	<a. rnark2 (an (name l.ttl)zUvarinapp(ti)): :b> 

where <a.b' =tj(tiz) 

and by unfolding the mark2 definition, we get: 

<a. an (namel m. mark2tlst(tL1. zuvarinapp(tL) 

Usinglevar(ttl))) : : b> 

where <ab' =tj(ti.z) 

Now singlevar(tLl) is an argument of mark2list(tLl .... ) and we cannot 

express them as components of the function jj(tLl .... ) despite the fact that 

they both visit the list til. The composition strategy solves that problem as our 

previous definition of H shows. 
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1. 11 Conclusions and some motivations for communications in applicative 

languages 

In this first part of the thesis we considered a strategy called tupling 

strategy for transforming applicative programs, and making them more 

efficient. That strategy: avoids redundant computations by the synchronized 

evaluation of a predefined set of functions. In that way intermediate 

computed values may be used in more than one evaluation, and data 

structures may be kept In memory for the minimum amount of time. 

We showed that the use of the tupling strategy allows us to achieve very 

efficient programs at least for certain classes of problems (as for instance for 

the evaluation of linear recurrence relations ). 

We also showed that there are classes of functions for which the complete 

avoidance of repeated computations requires an unbounded number of function 

evaluations to be synchronized. 	Therefore, for those classes, the tupling 

strategy is not powerful enough. 	That fact provides the motivation of the 

second part of the thesis, which is concerned with various approaches for 

allowing run-time communications among function evaluations. (Applying 

the tupling strategy can be viewed as establishing 'compile-time 

communications.) 

In particular we envisage a computing environment where tasks are performed 

by a network of computing agents performing subtasks in a concurrent way. 

Those agents may communicate with each other and help each other towards 

the achievement of a common goal. 

In the second part of the thesis we will consider a very simple way of 

establishing run-time communications. It consists in remembering already 

computed values and allowing computing agents to access them. This idea is 

taken from [Michie 681 and we will apply it also to the case where agents (or 

subtasks) are evoked by recursive functions calls. 



Chapter 2 

OPERATIONAL SEMANTICS OF MEMOFUNCTIONS 

In this chapter of the thesis no new programming ideas are introduced. 

except for some suggestions concerning the program annotation methodology 

[Schwarz 821 (see Section 2. 4) and communications among processes in 

applicative languages (see Section 2. 7). 

We give the definition of the operational semantics of a simple applicative 

language in which repeated evaluations of recursive calls are avoided using 

rnemofunctions (Michie 681. 

We store the memo information" in environments which during the 

computation are discarded as soon as possible. We destroy all 

argument-value pairs of the memo component of the environments when 

exiting the scope of the memofurictlon definitions. 

We start off by presenting in Section 2. 1 and 2. 2 the method of 

"generalized inductive definitions" as used in [Plotkin 811. and we first apply it 

for describing the operational semantics of a simple applicative language 

without memofunctions. (Section 2. 1 is an improved version of what can be 

found in [Plotkin 811 Chapter 3 and 4). 

That semantics definition is later used for proving the correctness of the 

operational semantics of memofunctions given in Section 2. 3. 

In Section 2. 4 we present that correctness proof by showing that the 

transformation of functions to memofunctions does not effect the result of the 

computation. 

123 



124 

In Section 2. 5 and in Appendix C we present some techniques for 

embedding generalized Inductive definitions, also called structural 

definitions". into formal theories. 

Section 2. 6 is devoted to the description of Prolog implementations of the 

operational semantics rules. 

Finally, in Section 2. 7 we introduce some work we have done on 

. annotations denoting communications' and"computing agents in applicative 

languages. 



2. 1 Structural Operational Semantic Definition of the Language L 

We will consider a simple recursive language L. whose abstract syntax Is 

defined by the following basic and derived sets. 

Basic Sets. Numbers 	 m £ N = (0.1... .) 	 (1) 

Truthvalues 	t E T = (true. false) 	 (2) 

Variables 	 x.y.z ..... fg. . . . E Var 	 (3) 
n 

Basic Operators 	bop 1  6  Bop = U Bop 1  (i is the arity) 	(4) 
i=0 

Types 	 T 6 Typ = (mt. bool) 

Notes. 

For each basic set we give its name (e. g. Numbers), the metavarlabie 

ranging over it (e. g. m) and its symbol (9. g. N). 

Instead of "true and false we may use "tv' and ff. 

Variables have arities. We assume that individual variables (e. g. 

x. y, z.....) have arity 0. and functional variables (e. g. f. g... ..) have arity 1. 

This last assumption is made only to simplify the notation. In Appendix B we 

will give the rules for extending the operational semantics to functions with 

arity n0. 

Basic operators have arities and we assume that bop 1  has arity I. Sop, is 

the set of all basic operators with arity I. The it-then-else  construct is an 

element of Bop3 . 

Derived Sets. 	Expressions 	eE  Exp 

e : :=m Itixlbcp(e 0 ...I Lf e then e 

I let d in e I f(e) 

Definitions 	d 6  0 

d ::=x:T=eff(x:T0):T 1 =eirecdid0 and  d1 
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We used the usual BNF notation. Thus, for instance. e : := . . . I x I 

means that any (individual) variable x C Var is an expression. The same 

meaning can be expressed as follows: 	Exp = . . . + Var + . . . where + 

denotes the disjoint union of sets. 

Example 11. 

5+3 	and 	if eq(2.y) then  else 3 are expressions in L. 

eq denotes the equality predicate and we can write it as the infix 

f(x: Int): mt = plus(x. 2) is a definition In L. 	 0 

In the language L we can write expressions which denote programs" for 

computing the value of (possibly) recursively defined functions. 

For instance, we can write: 

let  rec fact(x: int) :int = It x0 then 1 also x 	fact(x-1) 

i n  

which will be evaluated to 51. 

Note. 

In order to define the operational semantics of the language L we will need to 

extend the set "Definitions by the set Env of environments, ranged over by 

P. Environments occur only during evaluation. 

2.1.1 Preliminary remarks and a simple example 

Before presenting the operational semantics of L. using generalized 

inductive definitions [Shoenfield 67. Plotkin 811. let us make the following 

remarks. 

(1) We will introduce as few auxiliary notions as possible. 	This should be 

contrasted, for instance, with the SECD machine approach [Landin 661 in 

which the operational semantics of an applicative language is given through 

the use of auxiliary concepts such as the stack S. the environment E. the 
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control C and the dump D. Following [Plotkin 811. we avoid the use of auxiliary 

concepts and we consider as primitive concepts only the expressions and the 

definitions to be evaluated. The operational Steps for evaluating a giver, 

expression (or definition) will be represented by a syntactic modification of the 

expression (or definition) itself. 

The problems related to the parsing of expressions and definitions are 

avoided by considering only their abstract syntax. 

We will specify the transformations of the expressions (or definitions) In a 

structural way. using formal theories. 	Those theories have axioms which 

specify how transformations of "basic expressions" are to be realized, and 

rules of inference which define the transformations of "compound expressions" 

in terms of the transformations of the "component expressions" (Analogously 

for definitions). 

An important advantage of a structural approach to the operational 

semantics is that via generalized inductive definitions, it is possible to prove 

properties of programs using the structural induction method [Burstail 691. 

Some examples are given in [Plotkin 811. 

In what follows we will write e 1  + 	to denote that there is a transition 

from the expression e to the expression e1f1 . We will also say that e rewrites 

into e 11 , or e  is transformed into 

Often we will also use the X-calculus terminology (Barendregt 811. which could 

be applied to any rewriting system. For instance we will use the concepts of 

"contraction". "redex", "reduction". etc. 

Let us look now at an example of a very simple theory for specifying the 

operational semantics of arithmetic expressions. with + only. 

We have: 

i) the axiom schema: 

+(m.n) + s 	where sn+m. 
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which stands for all axioms which are its instances for any n.m € Numbers 

and 

ii) the rule schema r: 

e - e' 

which stands for all its instances obtained by instantiating the expressions e 

and e' in any argument position. 

Using those axioms and rules we may reduce the expression 34,7+2 according 

to the diagram of fig. 2-1. where by the subdiagram of fig. 2-2 we mean that 

the transition a - a' holds because sube > sube' holds and we can apply 

rule r. A pictorial view of the transformations evoked by our semantic 

definitions can be given as In fig. 2-3. 

3 + (7+2) — 3 + 9 --> 12 

t  

7 + 2 - 9 

Figure 2-1: The evaluation of a simple expression. 

e —  a' 

tr 

sube 	' sube' 

Figure 2-2: 	Deriving a transition from a sub-transition. 

sube (or sube'l is a subexpression of a (or a']. 

We could express the meaning of that figure by saying that in order to justify a 

surface transition" (e. g. 90 ', e. ) we need a (possibly empty) tree of 

subtransitions (e. g. 901  —> a 11 . . . . . eOn 4 e l d connected by applications 

of rules Ce. g. r01 . r. . . ) ending with "axiom transitions" (a. g. 

e0 
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00 	 °1 	- 	e2 	•- 	... 	em  

fr01 	t 	 t 	 t 

801 	 e 

I 

00n 	 0 1n 

Figure 2-3: A sequence of transitions. 

In the figure 2-3 the tree of subtransitions is very "thin% because we 

considered rules with one premise only. More generally, a surface 

transition' e > e' is justified by rule r and k subtransitions. as the diagram of 

fig. 2-4 shows. 

o —+ e' 

	

I 	by  

	

e1e1' 	... 	ek — ek' 

Figure 2-4: An elementary transition with more than one premise. 

Notice that a transition e — e' can be viewed as a theorem which is proved 

by applying rule r, once we proved the transitions el 	el'. . . . . ek — > ek'. 

This proof-theoretical view of transitions is quite interesting and it will be 

adopted later when considering transitions (and their derivation from other 

transitions) as theorems in (possibly different) formal theories. 
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2. 1. 2 Static Semantics of L 

In order to provide the definition of the operational semantics of our 

language L. we need to give a set of axioms and a set of rules for 

transforming expressions and definitions. Since not, all expressions (and 

definitions) in the language L are well-formed, we first select a subset of them 

to which axioms and transformation rules may be applied, by using a method 

called static semantics (Plotkin 811. For instance, the expression 

"(1+3)+fa1se will not be considered to be wail-formed, and although it might 

be transformed into 4+faise", we do not do so. 

The static semantics is a deductive system for performing the tvpecheckinp 

and deducing well-formed compound expressions from well-formed component 

subexpressiorts (and analogously for definitions). For an introductory example 

of use of the static semantics see Appendix A. 

Let us now introduce the static semantics for L. 

We first consider the following auxiliary sets: 

a set V of variables which is a finite subset of Var, I. e. V C hn  Var. 

a set of Expressible Tvoes. called ETypes. ranged over by at. 	The 

elements of ETypes are the types of the expressions. We choose for our 

language L: 

at : : = T 	where T € Typ 

Therefore expressions may be evaluated to either an integer or a boolean 

value only, because we have Typ = (bool, int). 

a set of Denotable Types. called DTypes. ranged over by dt. 	The 

elements of Dlypes are the types of the values. which are bound to variables 

(defined in the definitions). 

We choose for our language: 

dt : : = T I T 0 	T1 	where T. T0, T 1 IE Typ. 

Therefore variables may have one of the following types: 

mt, bool. mt > kit. int 	bool. bool - mt. bool - bool. 



a sot of Type-Environments, called TEnv, ranged over by a, 48,,., 

TEnv = 	 TEnvv 	where TEnvv, = V - Dtypes. 
V Stin Var 

Therefore a type-environment 2 € TEflVy  binds variables In V to denotablo 

types in DTypes. 	(We used the symbol E to denote the disjoint sum 

operation.) We will write a: V meaning that a E V 	DTypes where the 

intended set Dlypes should be understood from the context. 

A particular pair <x. T) in a will also be written as: x=T. 

a set of Denotable Values, called DVaI. ranged over by dv. 

(This set and the set of Environments (see 6.) are needed only for the 

dynamic semantics definition, but we introduce them here for convenience 

reasons.) The elements of DVaI are the values to which variables are bound in 

the environments. We choose: 

dv E  DVaI = N+T+Abstracts. where + denotes the disjoint sum. N is the set of 

natural numbers. T is Ctt. ff1. and Abstracts is the following set: 

{Xx: etO. e: eti I a((=etO)] I, 	e: eti 

for some a:V and FV(e) E VJ. 

Abstracts is a set of constructs of the form )tx: etO. e: eti where x is a variable 

of type etO and e is an expression of type eti. satisfying the property written to 

the right of the vertical bar I. Informally, that property says that from the typo 

information given by the type environment a and the fact that x has type etO, 

we can derive that a has type eti. (The formal definition of F will be given 

later on.) In the definition of Abstracts the set V is constrained by the fact 

that the set of 'free variables of a (denoted by FV(e) and later defined) is a 

subset of V. 

a set of Environments, called Env, ranged over by P. P1. 

Env 	E 	Env, 	where Envy  = V - OVal. 
V C Varfin 

Therefore an environment P 6 Envv  binds variables in V to denotable values in 
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DVaI. We will write P: V meaning that P € V > OVal where the intended set 

OVal should be understood from the context. 

A particular pair <xc ,  in P will be also be written as: x=c. 

7. the set of the free variables FV(e) for any expression e, and the set of the 

free variables FV(d) and that of the defined variables DV(d) for any definition 

d. They are defined as the table 2-1 shows. 

We will say that an expression (or a definition) is closed if the set of its free 

variables Is empty. 

Examole 12. 

a = Cxint, y=bool. f=int—+int) E TEnv. where V=(x.y.f). 

Xz: in z+x: mt E  Abstracts. 	Indeed aUz=in01 V U (z} z+x: mt (see also 

Example 13 below). 

P = (x=5. y=true. f=).z: mt. z+x: mt) € Envy . 

FV(z+x) =(Z. x} and FV( Az: mt. z+x: int) =(x). 	 0 

For defining the static semantics we also need some formulas which allow 

us to express the well-formedness property of the expressions and the 

definitions of our language L. Now we introduce those formulas and we give 

their intuitive meaning. 

For expressions we have: 

aI -Ve.T 

which means that, given the type environment a: V such that FV(e) E V. e is 

well-defined (or well-typed) and e has type T.  (We need cx  for knowing the 

types of the free variables in 8.) 

For definitions we have: 

 

which means that. given the type environment a: V such that FV(d) E V. d Is 

well-defined (or well-typed). (We need a  for knowing the types of the free 

variables in d. 



For expressions: 

m t x bop( ..........) if e 	then e. 	e2 

FV 0 0 Cx) U 1  FV(e 1 ) FV(e0) U  FV(e1)  U  FV(e2 ) 

Id in 9
-

1(e) 

FV I FV(d) U  (FV(e) \DV(d) ) I 	(f) Li  FV(e) 

For Abstracts: 	FV(Xx: T0 . e: T 1 ) = FV(e)\Cx) 

For definitions: 

x:T- e 	f(x:T 0):T 1 =e 

FV 	FV(e) 	FV(e)\Cx) 	 FV(d)\DV(d) 

DV 	Cx) 	 (U 	 DV(d) 

dO and dl 
	

P (with p:V) 

FV I FV(dO) U  FV(dl) 
	

U 	FV(p(x)) 
xEV 

DV I DV(dO) U  DV(dl) 
	

V 

Notes. 

T.TØ .T 1  C ETypes. 

If f(x: T0): T 1  = e and f € FV(e) then I € FV[f(x: 7'0 ) : 	= e]. 

If rec f(x: T0) : T 1  = a and I C FV(e) then f it FV[rec f(x: T0) : T, = a]. 

Table 2-1: 	Free and Defined Variables for Expressions and Definitions. 
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iii) 	FV  d:/3 	(where 0 E TEnv) 

which means that: FV(d) E V and for g1__1 type-environments a: V —> DTypes if 

d is well-defined then d agrees with B', i. e. if in the definition d a 

(functional or individual) variable x is bound to a value v then /3(x) is the type 

of v. 

iv) 	al- d:I3  

which is an abbreviation for the formula a 	d. 	d:.8", where . denotes 

the logical and of the two subformulas. (Often the comma is not written.) 

Now we give the axioms and rules of inference for the formal definition of 

the formulas introduced above. These axioms and rules define the static 

semantics. Unless otherwise specified, they hold for any V E Var and any 

a c TEnvv = V + DTypes. 

In what follows al-.,. stands for al-V...  where V=dom(a), and l-d: /3 

stands for l- d:$ where FV(d)EV. 

For expressions: 

Numbers 

N. 	a I- m: mt 	for any m € N. 

Truthvalues 

T. 	a I- t: bool 	for any t € T. 

(Individual) Variables 

a(x) 	T 

V. 	 for any (individual) variable x. 

a I-  x: T 
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Basic Operators 

a I- e0 : T0  .....a I- en-1 : T_1 

 

a I- bop(e0 	 : T 

if T 
bop : 7*0X 
	XT

-1 
 - T. 

Conditional 

a I- e: bool. 	a I- e: T 	a I- 92: T 

 

a I-  if oo  then e 1  else e2  : T 

Let-clause 

aF-d:fl, 

L. 	 where 2: DV(d). 

a Fv  let d in e: T 

Note. 

As usual, if a: V and 13: V0  then a(/3] C V U  V0  - DTypes and it is defined as 

follows: 

1I(x) 	if x € V0  

a(J3](x) = 

a(x) 	if x € V-V0 . 

Application 

a F- e: T0  

A. 	 if CZ(f) = T0— T,. 

Abstracts 

a[(x=r0)J I- e: 

Ab. 

a F (Xx: T0  o: T 1 ); (T0  - 71) 



136 

Note. 

This rule says that. if we know that a has type T1  knowing that x has type T0  

then we conclude that Xx: T0.  a:  T 1  has type r0  - 

Since Abstracts only occur during execution, static semantic rules for them 

would not be necessary. We give them for technical reasons. The same holds-

for Environments. 

For definitions: 

Simple definitions 

a Fe: T 

Si. 

a F (x: T = e) 

82. 	F(x:T=e) : (x=T) 

Function definitions 

cr[Cx = T0)] I- e: T 1  

Fl. 

a I- f(x: T 0 ) : T 1  = e 

F2. 	I-  Mx: T0); T 1  = a) : Cf = T0  - T 1 ) 

Recursive definitions 

cr[Brv0] Fd 

Ri. 	 where V. = FV(d)flDV(d). 

a I- rec d 

I- d:2 

R2. 

F (rec d):a 

Here is an example of application of rule Ri: 



137 

from 

0W : mt - 	int)] - f(x: int) : mt = If x=O then 1 else x 	f(x-1) 

and 

I-  f(x: int) : mt = if x=0 then 1 else x • f(x-1) : Cf = mt - int) 

we can derive: 

0 I- rec f(x: int) : mt = If x=O then 1 else x • f(x-1) 

Notes. 

ON Is the type-environment B restricted to Vol 

V0  is the set of recursively defined (functional) variables in roc d. which 

also occur as free variables in d. 

If DV(d)EFV(d)  then V0=DV(d). In that case by the Strong Agreement 

Theorem. given at the end of this subsection, which asserts that 

domaln($) = DV(d). we could replace the premises of rule Ri by the following 

ones: 	I -d:B 	and 	a(8] I -  d. 

Simultaneous definitions 

al - do 	crl -dl 

AND 1. 

a I- dO and dl 

l - dO:BO 	l-dl:2i 

AND2. 

F dO and dl : 80 U  01 

Environments. 

For some type-environment 0: dom(P) 

if DV(dO) fl  DV(dl) = 0. 

if DV(dO) fl  DV(dl) = 0. 

Vx € dom(P) 	a I- p(x):/3(x) 

El. 	 if FV(P) E dom((z). 

cr1-p 
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Vas.t. a I - p 	Vx Edom(P). 	aI-p(x):.8(x) 

E2. 

F- p:fi 

If FV(P) E dom(a). 

The above rules establish the validity of the formulas cr1—p and 1-p:I3 by 

considering one element of P at a time. 

Examøle 13. 

Let 	be {y=bool. z=intj. 

aUx=int)) I-  z: irit 

a[(x=int}] F- x: mt 

(Z((x=int)] I- z+x: mt 

a 1- f(x: int) : mt = z+x 

by rule V. 

by rule V. 

by 1.2 and rule B. 

by 3. and Fl. 

Now we give the Strong Agreement Theorem we have anticipated in this 

section. 

Theorem 1: Strona Agreement Theorem. 	In the language L if l - , d: .8 

for some VEVSr then dom(.8)=DV(d). 

Proof: By structural induction. 

For simple definitions and function definitions it is obvious, because 

DV(x: T=e) = Cx) 	and 	DV(f(x: T0): T 1 =e) = CO. 

For recursive definitions the thesis derives from DV(rec d) = DV(d) and 

the fact that the same 0 occurs in the premise and the conclusion of rule 

R2. 

The simultaneous definitions case is analogous to the recursive definition 

case. 	 0 



2. 1. 3 Dynamic Semantics for 1. 

Now we will define the Dynamic Semantics for our language L. by giving 

axioms and rules of inference in much the same way as we defined the static 

semantics. 

In order to do so we will first introduce some definitions and useful notions. 

1. Agreement of an environment P with a type-environment cx. 

Given p E Envy and ct € TEnvw such that V £ W. the agreement of an 

environment P with a type-environment a,  denoted by P: a, is defined as 

follows: 

P:a 	1ff 

x € V. 	((p ix C N 	a(x) = int) 

A (p.:x'€ T 	a(x) = bool) 	 (1) 

A (Yy C V. p(x) = Ày: T0 . e: T 1 D 	(z (x) = T0  - T. 

where T0 . T 1  C ETypes) J. 

Therefore. P: a means that a  is a type-environment "corresponding" to the 

environment P in the sense specified by (1) above. Notice that dom(P) can 

be a subset of dom(a). 

(This notion of agreement between an environment P and a type-environment 

a is slightly different from the one given in (Plotkin 811 page 84. where P and 

a are assumed to have the same domain.) 

Example 14. 

Given 	P 	1x=5. 	y=6 1. 	a 	= 	[x=int). 	a2 	= 	[x=int, 	yint}. 

a3 = (x=irit. yint. zint}. and a4 = (xint. ybool}. we have: P: a2. P:cx3. 

However. P: cxi or P: a4 does not hold. 
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Weil-formedness of an expression and a definition w. r. t. 	a 

type-environment a •  

(I) Given e E Exp and a C TEnVv. S. t. FV(e) E V. the well-formedness 

of the expression a w. r. t. the type-environment a denoted by W(e, a) is 

defined as follows: 

Wv (9 . (r) 	iff 	3r € ETypes. a I- a: T 

(II) Given d € Del and a C TEnVv. s. t. FV(d) S V. the wall-lormedness of the 

definition d w. r. t. the type-environment a. denoted by Wv(d ,  (z). is defined 

as follows: 

W(d.a) 	iff 	3,0 € TEnvDv(d). 	a i-'d and F- d:$. 

Example 15. 

Lot a be [x=int. 	y=int]. 	V be N. y), 	a be x+5 and d be 

f(x: int) : mt = if x0 then 1 QL 	x+f(x-1). We have that Wv(e. ) holds 

with Tjnt. and W(da) holds with 13={f: int— int}. 

Expression Configurations and Definition Configurations w. r. t. 	a 

tvpe-enviroment a 

Given a € TEflvv. the set Er a  of Expression Configurations is defined as 

follows: 

Era = { <P. e> a €Exp and Wv(e.a) a ndjp:a a nd FV(e) c  }. 

Analogously we define the Definition Configurations as follows: 

Dra  = ( <P. d> I d £ Defj  a nd  . Wv(d. a) and p: a and FV(d) € V J. 

The set of Configurations r a  is Era  U  Dra . 

These notions are introduced because we are interested in giving the dynamic 

semantics of expressions (and definitions) which are not closed, i. a. whose 

set of free variables is not empty. We need. in fact, to express the dynamic 
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semantics of let-expressions by giving the semantics of its subexpressions, 

which do not need to be closed. 

Notice also that the set of configurations Is parameterized by 

type-environments and therefore. the transitions from configurations to 

configurations (later defined) belong to different formal theories, each of 

which is indexed by a different type-environment. (This point. however, has 

only a theoretical relevance.) 

Example 16. 

Given al = (x=int). a2 = (x=booU. a3 = (y=int). and 7 = <(x=5). x+3>, we have: 

7 £ Erai . 7 it Er because a2(x)=bool and 7 it Er a3 because xCFV(x+3) 

but x%dom((z3). 

4. Terminal Configurations. 

Among the configurations we distinguish the following: 

I) Terminal Expression Configurations: 

-rEr is the largest subset of 	U 	EI a ,  such that V'y E  TEr the second 
a E TEnv 

component 0. 9. the expression) of 7 is an element of DVaI = N + T + 

Abstracts. 

ii) Terminal Definition Configurations: 

TDr is the largest subset of 	U 	Dr.. such that V7 £ TDr the second 
a € TEriv 

component 0. 9. the definition) of 7 is an element of Env. 

The set of the terminal configurations iT is TEr U TDr. 

Example 17. 

<tx=5). 8' E TEr. <(x5). x+3' it TEr. 	<(x=5). (f=>z: mt. x+z: intP E TOr. 
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5. Transition Systems w. r. t. a type-environment a. 

A transition system w. r. t. a type-environment at is a triple <ra . Ta . 	a>  

where ra  is the set of Configurations. Ta = -rr fl ra  is the set of Terminal 

Configurations, and —>, is a subset of r  X  ra  such that V 7 E Ta. 

V7.' € F. not(/ -4 7) 

Since by the definition we will give; ---~ tz . may only relate pairs of expression 

configurations or definition configurations, the binary relation 	can be 

partitioned into two binary relations ___'~ a,e U 	such that 

a,e £ Et' axEra  and 	E DraXora . 

An element of 	will be written as ra <PO.eO> -- 	 <P1.el> and an 

element of 	as 1a  <PO.dO> 	<P1.dl>. 

If the environment component is unchanged (I. a. P0=P1) we write also 

i 	eO 	el (or P a dO + dl). 

In what follows we will write p1-... instead of 

Now we give the rules and the axioms for the Dynamic Semantics of L. 

Let us assume that p C Env, and a € TEnvw S. t. P: a  (and therefore V E W). 

For expressions: 

Variables 

V. 	PI-  x 	) P(x) 	ifxEV 

Basic Operators 

Pre 1  

Bi. 	 for iO,l.... 

P I-  bop( ..........) - 	 bop(.. . . 

82. 	P I-  bop(c0 .c 1 . . . . c,,... 1 ) - 	 C,., 

if c0.c. ..... c,,... 1  € N + T 	and 	QQ(C0.C 1 .. . .c,..,... 1 ) 	C,.,. 



143 

Notes. 

Rule 81 allows the arguments to be evaluated In a non-deterministic way. 

For instance +(+(1.2).+(3,4)) can be rewritten into +(3.+(34)) or 

+(+( 1.2) .7). They are both eventually rewritten into 10. 

in rule 82 bo2 stands for the mathematical function corresponding to bop. 

Conditional 

P F-  ee' 

Ci. 

P rife then 90 else  91 — jfe' then e else 91 

P I-  if tt then eo  else e — 

P 1-  if ff then 90  else e l  

Note. The above rules force the evaluation of the predicate of a conditional 

before evaluating any of its arms. 

Let-clause 

P F-  d 	> 

U. 

PF- let di.ae —> let dne 

P LO O] t- e - 	e 

 

P r l et P0 tae 	let  PO  in  e' 

P F- let p0  in c — C 	 where c € N + T. 

Note. 	The above rules force a sequential evaluation of the expression 

let d in e. We first evaluate the definition d and then we evaluate the 

subexpression e in a suitable new environment. 

For example, we have: 

0 F- let (x=2) in x+3 > jf (x=2)  in 2+3 	because (x2) F- x —> 2. 
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Application 

P1- 9 - 9' 

Al. 

P 1-  1(9) - 1(9') 

A2. 	Pt-  f(c) 	let x:T0 =cjae 

where c 6 N + T and P(f) = Xx: T0 . e: 

Notes. 

These rules correspond to a call-by-value mode of evaluation. 

In order to avoid an extra rewriting we could have rule A2 as follows: 

P 1-  f(c) - 	(x=c) in e (see below the dynamic semantics for Simple 

Definitions). 

Notice that we have not given rewriting rules for elements in N+T. They 

are, in fact. second components of Terminal Expression Configurations. 

For definitions: 

Simple Definitions 

Pl-  e + 

Si. 

P I-  x: T = e - x: T = 

S2. 	P 1- x: T = con - 	(x =con) 	if con € N + T. 

Note. We could keep in the environments the type information corresponding 

to individual variables. We could have Cx = <con: T>) instead of having 

Cx = con) (Burstall and Lampson 841. For simplicity reasons we do not do so. 



Function Definitions 

Fl. 	P I-  f(x: T0): T 1  = a —> (f = Xx: T0. (i.i PV0  in e) : T 1 ) 

where V0  = FV( a) Mx) 

Recursive Definitions 

P\V0E-d 	', d' 

RI. 	 where V0  = DV(d) fl FV(d). 

P F-  Ld 	rec d' 

R2. 	P F-  rec P0  - 	x = con I (x = con) € P0  and con C  N + T } 

U 

( f = Xx: T0.  (j.j Urec P0 ) \(x)] Ln e): 

(f = Xx: T0 . : T 1 ) C p0  } 

Notes. 

p\V0  is the function defined as follows: 

(P\V)x) = p(x) 	if x it V0 . 	otherwise undefined. 

Let dom(P) be V. We have: FV(d)V because 	.d> C Dt. 

(1) 

Since 

V0EFV(d) we get: '/ E V. 

The effect of the rules Ri and R2 is to first evaluate a recursive definition 

with no knowledge about the recursively defined variables (P\V 0  is used) and, 

when no further evaluation is possible (i. e. a definition of the form 	P0  is 

obtained), a new environment P0  is created. i5,is like P 0  except that, for any 

x € domain(P 0) the free variables occurring in P0 (x) (and they can only occur 

in Abstracts) are bound as in rec P0 . 

We will give some examples of this rule in what follows. 
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Simultaneous Definitions 

	

PdO 	dO' 

 

PrdO.agd1 - dO'd1 

	

Ptd1 	dl' 

 

	

P I-  dO and dl 	- 	dO gad dl' 

P 1-  P0 w1d P1 	P0[P1] 

Note. The static semantics tells us that domain(P0) fl domain(P1) = 0. 

Therefore: P0[P1] = P1CPO] = P0 U  P1. 

Notice that no dynamic semantics rules are given for definitions which are 

environments. They are, in fact. the second components of Terminal 

Definition Configurations. and they cannot be rewritten. 

2. 1. 4 Some Examples of the Operational Semantics of the Language L 

Now we would like to show some examples of use of the operational 

semantics definitions we have given. 

Example 18. 

Suppose we are given the expression (4+(2+1))+(2+1) and we would like to 

evaluate it in the environment P = 0. Since the environment does not play any 

interesting role. we will write configurations as expressions only. We leave to 

the reader the obvious static semantics analysis. 	The dynamic semantics 

gives the diagram of rewritings of figure 2-5. Therefore the application of the 



(4+(2+1))+(2+1) - (4+3)+(2+1) - 7+(2+1) - 7+3 - 10 

(4+(2+1))+3 -.- (4+3)+3 

Figure- 2-5: The possible rewritings of a simple expression. 

dynamic semantics rules is non-deterministic and one may be interested In 

looking for strategies for choosing the redexes to be reduced In the "best 

possible way" (e. g. for obtaining the shortest sequence of rewritings). 

Obviously this problem is. in general, undecidable, and therefore one can 

only hope to give "restricted" solutions. 

The problem is somehow more complicated if one would like to avoid repeated 

evaluations of common subexpressions. We will deal with that issue later on 

by providing a structural operational semantics definition, for which redundant 

evaluations of recursive functions applications will not occur. 

In our structural style of giving the operational semantics definitions we 

keep separated the two concerns of correctness and efficiency of reductions 

(this motivation was already in the Burstall-Darlington transformation approach 

for recursive equation programming). That separation of concerns may be 

viewed in logical terms as the separation between Model Theory (for dealing 

with correctness) and Proof Theory (for dealing with efficiency). One can 

therefore apply what is already known in those theories and apply the relevant 

techniques when studying correctness and efficiency of operational semantics. 

Let us now took in detail at a particular sequence of rewritings for the 

given expression (4+(2+1))+(2+1) . If we write the "full proof" of such a 

sequence we have the diagram of figure 2-6. That sequence requires 8 

applications of the rules 81 or 82. and we consider the rewritings from 
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(4+(2+1))+(2+1) - 

ti 

4+(2+1) -, 4+3 

t 61 

2+1 -- 3 

t 62 

(4+3)+(2-i-1) 	> 	7+(2+1) - 	7+3 --- 10 

tj.. 	 t 13 	tB2 

	

4+3 -'7 	2+1 -'3 

	

t82 	 t82 

Figure 2-6: Proof of the rewritings of a simple expression 

(using rule Bi). 

"4+(2+1)+(2+1)" to "10" as done In 8 steps. although the "surface transitions" 

are only 4. 

Is there any way of reducing the number of steps for making the rewriting 

process "faster"? 

The two underlined uses of rule 81 (see figure 2-6) could have been reduced 

to one only. by using the following rule: 

P 1-  o f 	con 

B1. 

P i-  bop( ..........) 
	

bop ( .... con. ...) 

for i0.1.... and con €N+T. 

where -' denotes the transitive closure of -. 

The resulting sequence of reductions is given in figure 2-7. 	This example- 

illustrates that the structural approach we presented (when we used rule Bi 

instead of 61) is, in a sense, too structural because any transformation of a 

subexpression has to be represented as a transformation of the given 

expression (thereby using extra deduction steps). 

We will examine again the issue of using 	(or 	*) instead of - in 

Appendix C. 
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(4+(2+1))+(2+1) 	 > 7+(2+1) 	- 	7+3 	10 

f61 	 t 6 	1B2 

4+(2+1) —+ 4+3 + 7 	 2+1 	3 

tB1 	t62 	 t82 

2+1 -, 3 

t 52 

Figure 2-7: 	Proof of the rewritings of a simple expression using rule Bl 

(instead of rule 51). 

The following example will 	illustrate the 	"theorem 	proving" view of the 

operational semantics definitions. 

Example 19. 

Suppose we want to 	evaluate the 	expression "i.t 	y: int=7 	j 	x+y" 	in 	the 

environment P = (x=5. 	z=3). 	We have: 	P:V where V=(x.z). 	Let the type 

environment a  be (x=int. z=int). 

Static Semantics. 

Suppose 	6 	: 	(y) 	—p 	DTypes 	s. t. 	3(y)=int. We 	use 	a 	linear Hubert-like 

presentation of the proof. as follows: 

a[13] 	I- x: irit by V 

a(6] 	I- y: lilt by V 

a01 Ix+y:int by 1.2.8. 

al-7:int by  

al- (y:int=7) by S1,4. 

I- (y: mt = 7): 	Cy = int) by S2 

a I- let y: mt = 7 in x + y: mt by 3.5.6. L. 

Dynamic Semantics 

1. 	P 1-  y: mt = 7 	- 	fy = 71 by S2 



5 = 

tL2 

4 

t Bi 

3 

t  

6 	= 

t L2 

7 

T 81 

6 

t  

10 = 11 

tL2 tL3 

9 

t B2 

2 

t Li 

1 

t S2 

150 

Pr let  .y:int=7itx+y 	> l ot  

PECy=7)Jry 9 7 

PRY =7)Jl-x+y - x+7 

p I - j{y=7) —in x+y - 	l et (y=7)iax+7 

PRY- = 7)] l- x - 5 

P(Cy=7)]F-x+7 - 5+7 

Prj.(y=7)jax+7 	l et  

P((y7))5+7 - 12 

P r l et  (y=7)J5+7 —  le t (y= 7)iii 1 2 

P r let  fy=7}j12 - 12  

by U. 1 

by V 

BI 

L2 

by V 

BI 

L2 

by B2 

by 9. L2 

by L3. 

0 

Figure 2-8 presents the above proof in a tree-like fashion. In that figure the 

numbers stand for the corresponding transitions of the proof and I 

denotes that the final configuration of the transition i is the same as the initial 

configuration of the transition J. 

Figure 2-8: Schema of transitions for let y: mt = 7 in x + y, 

where x is bound to 5. 

The numbers denote the transitions given in the text. 

The process of deriving the transitions justifying a surface transition", is a 

theorem proving process. 

In order to illustrate this point, let us consider. for instance, the initial 

configuration of the transition 8: 
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<(x=5.z=3}. 	lot  

It matches the conclusion of rule 1.2 for P = (x=5z=3) and P0  = (y=7). We may 

try to show the premise of that rule (which becomes a subgoal to be shown) 

by finding the expression el such that: 

PEP01 F-x+7 - el 
	

(2) 

In order the find el. since (2) matches the conclusion of the rule 61. we 

have to find an expression e2 such that: 

P(P0]rx 	e2. 

However, we could have also looked for an expression e3 such that: 

PIP0] I-  7 - e3. Unfortunately e3 does not exist and a backtracking step 

would have been necessary. 

This process of replacing goals by subgoals and remembering the, rules 

we have to apply for obtaining the proof of a goal from the proofs of the 

subgoals. Is exactly what Is done in theorem proving. 

Therefore, what is known in the theory of the automated deduction can be 

used in the context of our operational semantics definitions. Later on (In 

Section 2. 5 and Appendix C) we will show how to define theories for 

formalizing the deduction process inherent in those definitions. 

The operational semantics given in this section has been implemented on 

the DEC-10 Prolog system [Byrd et al. 801 at the Department of Computer 

Science in Edinburgh. Details on the implementation are found in Section 

2.6. 
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2. 2 Some Remarks on the Structural Operational Semantics of the Language L 

We would like to study some problems concerning the semantics definition 

of the language L we have given in the previous section and we will propose 

some possible solutions. 

This study will also provide the motivations for the definition (given in the 

following section) of the memofunction language, called memoL. in which 

redundant evaluations of recursive calls are avoided. 

In particular, we will define the syntax and the semantics of memoL so 

that only one binding for each recursively defined function occurs during 

execution. The uniqueness of those bindings allows us to identify the place 

where we will store the memoinformation. 

Unfortunately for the language L. according to our dynamic semantic rules. 

the uniqueness of the bindings does not hold (see below). In order to regain 

the validity of that property we will restrict In a suitable way the set of 

expressions of memoL w. r. t. those of L. 

2. 2. 1 Multiøle occurrences of bindings for the language L 

Let us first analyse the mechanism of variable binding when evaluating 

expressions with recursive definitions. 	We will see that the binding for 

recursive defined functions is. in most cases. recorded "too often. 

Suppose we want to evaluate in the empty environment the following expression 

(where we do not write the type information for sake of simplicity): 

let rec  f(x) = if x0 then 1 else x•f(x-1) in f(3) . 	 (expl) 

By rule Fl we have: for any P E Env 

p l f(x) = if x0 then 1 else x-f(x-1) —3 (f=Xx. (let pUt) in IF)) 

where IF stands for if x0 then 1 else x-f(x-1). 

By rule Al we get: 

0 - rec (f(x)lF) 	, rec tf=Xx. (let 0 in IF) }. 

because (PW})I(f)=0. and from expi we obtain: 
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Let  rec (fXx. (j.j 0 i n 	J in 1(3). 	 (exp2) 

By 82 we have: 

0 	rec (f=)x. (j 	0 	IF) } - (f=Xx. j1 rec (f=Xx. J 	0 Jj. IF) in let 	in IF}. 

Thus from exp2 we obtain: 

iI [ f=kx. Let j 	(fXx. let 0 in IF) i n 	0 in IF] in 1(3) 	 (exp3) 

We will write (F-REC) instead of {f=Xx. let rec (f=xx. let 0 in IF) in jgj 0 in 

IF). 

The next deduction step produces from exp3 the expression: 

Let (F-AEC) in jI (x=3) in let rec (fXx. let 	IF) In let  Jn IF 	(oxp4) 

Then we get: 

let  (F-REC) in jj (x3) in let 	in let 0 in IF 	 (exp5) 

After a few steps we derive: 

i1 (F-REC) in J1 (x=3) in ii (F-REC) in let 0 in 3' 

[ Let (x=2) in j  (F-REC) in let 0 in 2-

(j (x=1) in (F-REC) in let in 1- 

i 	(x=O) j. j (F-REC) Lrj l et 0 in if x0 then 1 else x-f(x-1)1]]. 

There are two causes for inefficiency here. 

One is due to the presence of expressions like 	let 0 In e 	which can be 

easily avoided by adding the rule: 

L4. PI l et 0inee 

We can avoid the generation of let 0 i e Ln  expressions by adding to rule Fl 

the condition 'if PrVQ 00" and introducing the following: 

F1'. 	P I-  f(x: 70) : r 1 =e —> (f=Xx: T0.  e: T 1  ) 
	if pf (FV(e)\(x))=0. 

The second cause of inefficiency is due to the repeated occurrences of the 

bindings for 1. It seems that there is not a simple remedy for that problem. 

However, assuming that FV(e) E (x, f), one can see that axiom R2 is 

equivalent to the following: 
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R2'. P F-L9Q..P 0 	P0 . 

provided that only one binding occurs for any functional variable In the 

expression of the "surface transition". (This condition will be somehow relaxed 

In Section 2. 4). 

Let us now give an example of application of the rules F1' and R2'. 

Suppose we want to evaluate in the empty environment the following 

expression: 

let rec f(x) = if x=O then 1 else x"f(x-1) in f(3). 

We have: 

O I-  lot rac f(x) = j.f x=O then 1 else x•f(x-1) La f(3) 	> 

Lqj rec (fXx. IF) j..  f(3) 	 by F1' 

(where "IF" stands for "11 x=O then 1 else x-f(x-1)") 

let - 	(frXx. IF) in f(3) 	 by R2'. 

We then get: let 	IF) In ii (x3) in if x=O then 1 else x•f(x-1) 

let ff=Xx. IF) in ii (x=3) i n 

(1= Xx. IF) La W (x=3) in 3" I.t (x=2) La 2"  ji (x= 1) In 1" 

Lj (x=O) in if x=O then 1 else x"f(x-1) 

—) X 6 

Now the binding for I occurs only once. 

Therefore rule R2' is the one we would like to have for our memofunction 

language memoL. because using that rule only one environment is created 

during the evaluation of recursive functions. As we already mentioned, that 

uniqueness of environment will allow a simple semantics definition of memoL. 

Unfortunately rule R2' makes the presence of the keyword rec immaterial. 

while in the language L the presence of rec is. in general, relevant. 

For instance, in L the evaluation of let f(x)=O in let rec f(x)=f(x) in f(2) does 

not terminate, while the evaluation of l e t f(x)0 In I..t f(x)f(x) in f(2) yields 

03 
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As shown In Section 2. 4. It turns out that If we would like to keep the 

agreement" of the semantics of the language memoL, which uses rule R2', 

with the one of the language L. which uses rule R2, we must assume that 

f(x)=g 	is a recursive definition of f, if f occurs free in e. 

The hypothesis that FV(e) E (x, f) for R2' may seem quite restrictIve, but 

we can satisfy it by applying the following program transformations: (1]. (2] 

and (3]. 

(1] 	If f(x) = e and the variable y of aground typed (i.e. boot or int) 

belongs to FV(e). then we can transform f(x) = e into r(x. y) = a and we can 

replace the calls of f in the given program by suitable calls of F. 

This transformation technique Is quite common in applicative programming, 

and it is used for passing global variables among function calls. 

(In Appendix B we give the extension of the structural operational semantics 

rules for allowing functions with more than one argument.) 

ExamQle 20. 

We can transform: 

let  rec g(y) = lot 	= if x=0 then 0 else y+f(x-1)) 

j.jyO then 0 el se f(y)+g(y-1) 

in g(m). 

into: 

let rec g(y) = let rec (f (x, y) = if x=0 then 0 else y+f(x-1. y)) 

LajiyO then 0 elsef(y.y)+g(y-1) 

in g(m). 

m 2 Both expressions evaluate to 	I 
i =0 

LEI 



If we have an expression like the following one: 

ii y=el in let 	= ............ y. . . in e 	where 

FV(el)=ø. 	and 	FV(. . .x...........) = (x.y.f). we can transform it into: 

l et 	...........el 	..iae. 

If we have a recursive definition of the form: 

rec [f(x) = ... ........g. . . and. g(x) = . . .g...........}. we can construct 

a function which Is the pair <f.g' as follows: 

LqQ <f.g>(x) = <. . .7T1<f.g> ....... 7T2<f.g>. 

7T20. 9 . .......7T1 <f. g>. . . 

This transformation has been derived from (Landin 641. 	 0 

Notice that the transformations we presented above can be easily generalized, 

but we will not do so here. 

2. 2. 2 Further Discussions 

Let us now suggest another possible variant of the dynamic semantics 

rules for recursive definitions with the aim of reducing their complexity. The 

rule under examination is again rule R2. 

Let us first consider the following example. 

Let P0  be [fXx: mt. (if x=0 then 1 else x-g(x-1)) : int: 

g=Xy: mt. (II y=0 then 1 else yf(y-1)) : kit: 

h=Xz: mt. (if z=0 then 1 else 2h(z-1)) : intj. 

We have: f(x)=g(x)xI and h(z)2
z  

When rewriting rec P0  using R2, we need to write a definition of the form 

(rec P0) \(x) for the binding of f. But a simple syntactic analysis of the 

environment P0  shows that the use of (rec p0)\(x. h). instead of (rec 

in the binding for 1 is also correct, because never f (or the functions invoked 

by f) need to refer to the binding for h. 

In general we can replace rule R2, by the following R2: 
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R2. P I-  rec P0 - (x=con I (x=con) € P. and con € N+T) 	U 

{f=Xx: T0. (i&U(i. p0)\(x)]rV0  in e): 

(f=Xx: T0 . e: T 1 ) € p0 J 
where V0  is the- smallest set of variables s. t. 

(FV(e)\{x)) E V0  

it g € V. and (gXy: T0 . body: T 1 ) € P. then (FV(body)\(y)) E V0 . 

In intuitive terms. V0  is the set of all variables whose value is necessary when 

evaluating f. 

We leave to the reader the formal proof of the equivalence between R2 and 

R2. 	 0 

The operational semantics we have presented. is according to the static 

binding mechanism and it works correctly only for closed expressions. (See 

also Section 2. 4. for a deeper discussion on these issues'. ) 

For example, Lel y=3 Jj. j.q.t f(x)=x+y  in iI y2 in f(2) evaluates to 5 (not to 

4). because the static binding for y in x+y is 3. 

For open expressions the rules we have given reduce, for instance. 

lot f(x)=xl-y in let y=2 in f(2) to 4. while the correct evaluation (using the 

static binding) gives 2+y" (or 'error, as one might desire. for denoting that 

the variable y in x+y is not bound). 

A solution to those problems can be achieved via closures or via stratification 

of the environments: they have to be structured as stacks' of sets of 

<variable, value> pairs. not as sets" of pairs as in the approach we presented. 

That change of the environment structure is necessary for representing the 

nesting of the recursive calls and keeping track of the links between binding 

occurrences of the variables and the corresponding bound occurrences. 
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2. 3 Use of memofunctions for avoiding repeated computations in recursive 

programs 

In this section we will present the operational semantics of an applicative 

language where memofunctions are used in order to avoid repeated 

evaluations of recursive calls. The use of memofunctions is the first step 

towards methods of allowing "communications among function calls for a fast 

evaluation of applicative programs. We will say something about those methods 

at the end of the thesis. 

The memo Information for a given function is stored in a 'place' (called 

'rote' in (Michie 68]) associated with the function definition, and it consists of 

the argument-value pairs already computed. The memo Information can be 

looked up and updated by the various function calls. so  that they may know at 

run time the results of previous computations and Increase their efficiency. 

The memo information is available within the scope of the function definition 

only. It is automatically discarded when the evaluation is outside the relevant 

scope. 

The reader may contrast this approach with the one implemented in (Burstall. 

Collins and Popplestone 711 pages 209-214, where memo information is not 

dynamically updated during recursive function evaluations. 

We give the operational semantics for memofunctions using the structural 

method i Ia [Plotkin 811. 

We stick to the idea of introducing as fewer notions as possible, which is 

one of the basic principles of Plotkin's method. In particular we want only to 

modify the notion of Environments by binding the function symbols to the 

corresponding lambda expressions and the sets of the argument-values pairs 

already computed. 
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Our semantics definitions for memofunctions can also be viewed as an 

experiment in testing how far one can stick to the principle of not introducing 

extra notions, without making the semantics rules too restrictive or too hard to 

understand. 

The result of that experiment is quite satisfactory: indeed the semantic rules 

for our language with memofunctions turn out to be not very complicated, at 

the expense of a slight restriction on the set of Expressions (see below) 

We can also give the operational semantics of memofunctions using 

Landin's style and introducing the transition rules for an SECDM machine 

(where M stands for the Memo component). but we will not do so here. 

Let us give first a. simple example of use of memofunctions. Suppose we 

want to evaluate the following expression: 

let mfib(n) = j n1 then 1 else mfib(n-1) valueof mflb at n-i 

+ mfib(n-2) valuoof mfib at n-2 

in mfib(4). 

We use the expression "mfib(n) valueof mfib at n to denote that the value of 

mfib(n) has to be stored in the memo of the function mfib. 

The argument-value pairs already computed can then be looked up in order to 

avoid redundant computations. 

The following fig. 2-9 gives a pictorial view of a possible computation 

sequence. Using the memo information we saved many computation steps. 

As an introductory example of the syntactic notations we will define and 

use in this section. let us present in detail the steps from expression ( 1 ) to 

expression (2) of fig. 2-9. 

Let us focus our attention to the first occurrence of mfib(1) in (1). Using the 

syntactic sugar of our language memoL, it will be written as 

mfib(1) valueof mfib at 1. 

We also explicit-ly write for mfib: (i) its binding: 
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mfib(4) 	 memo:0 

mfib(3) + mfib(2) 

•.....* mfib(2)+mflb(1) + mflb(2) 	 0 

•-3 x (mflb(1)+mflb(0))+mflb(1) + mflb(2) 	C) 	 (1) 

•+* (1+mflb(0) )+mflb( 1) + mfib(2) 	 (<1.1>) 	 (2) 

..•-..* (1+1)+mfib(1) + mfib(2) 	 (<1.1). <0. i 

— 	2+mfib(1) + mfib(2) 	 (<l.1>.<0.1>.<22>) 

- 	2+1 + mflb(2) (by memo lookup) 	 (<1.1>. <0. 1>.<2.2>) 

- 	3 + mfib(2) 	 (<1. 1>. <0.1). (2.2>. <3.3)) 

- 	3+2 (by memo lookup) 	 (<1.1>.<0.1>.<2.2>.<3.3>) 

— 	5 	 (<1.1>.<0.1>.<2.2.<3.3>. 

<4. 5>) 

Figure 2-9: Computing the Fibonacci Numbers using Memofunctioris. 

mflb=A.11 nl then 1 else mflb(n-1) valueof mflb al n-i 

+ mflb(n-2) yalueof mfib at n-2, 

denoted by MFIB. and (ii) its memo, initially empty, denoted by 0. Therefore 

we have: 

Let {MFI8. 0  in mfib(1) valueof mfib at 1  

We then get: 

Let  (MFIB. 0] in letmemo (mfib(1)1) in 1 

where a so-called memoenvironment Cmfib(1)=1) is created. It is then 

"propagated to the left" towards its corresponding environment {MFIS. o}. 

After a few steps we get the expression (2): 

!.t [MFIB. c<i. i>] in.  1 	. 

where the pair 0, 1' has been included in the memo for mfib. 

As we will see in the Dynamic Semantics rules for the language memoL. the 

creation of the letmemo expression is done by the rule VF3 and the 

"propagation to the left" is done by the rule MPr. 
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The memoenvironment (mflb( 1)=1). which temporarily stores the 

information that mfib has value 1 at 1. has been propagated to the left until an 

enclosing environment with a binding for mftb has been encountered. 

Indeed by rule MPr we will force the propagation to the left in all cases. 

except when we meet an' expression of the form: 

Let p in letmemo (f(a)b) in e 	with IF € dom(p). 

in which case we update the memo for f in P. thereby deriving P1. and we 

get: let in e. 

The problem of identifying the occurrence of the environment where the 

computed argument-value pairs have to Inserted, will be addressed In the 

following section. It turns out. that by restricting the occurrences of the free 

variables In the definitions we can easily solve that problem. As we will see 

later on. the relevant environment is the innermost one where there exists a 

binding for the same function symbol occurring In the letmemo expression. 

We could have followed other approaches for defining the operational 

semantics of memofunctions. 

As we already remarked. we could have introduced extra notions in the 

semantics definitions choosing, for instance, an SECD style a la Landin, or 

we could have used more elaborate structures for defining the environments 

with memo information. 

An alternative approach could have been the use of a recursive language 

different from the language L. as a basis for the definition of its variant with 

memofunctions. 

An interesting choice could have been a language whose definitions are of the 

form: - 

(1) 	d : : = x: T = e I f(x: T0): T 1 	e I f(x: T0 ) : T 1  rec= a I dO and dl 

where by rec= we mean that the free occurrences of f in a are recursively 

defined (Burstall and Lampson 841. 
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On the contrary the language we considered. following (Plotkin 811. has 

definitions of the form: 

(2) 	d : := x:T = e I f(x:T0): T 1  = el fgQ,d I dO and dl. 

where the construction of recursive definitions is more liberal. 

For definitions of the. form (2) . using the structural semantics approach, 

it seems difficult to give the semantics of 	d in terms of the environment 

to which 	evaluates, without (I) either Introducing extra notions or (Ii) 

using extra primitives (like the substitution operator or the fix' operator 

(Burstall and Lampson 84]) or (iii) forcing at run time the repetition of the 

bindings for the recursive functions (and in this case there is not a unique 

environment with which the memo must be associated). 

We think that the approach we will present here has Its virtues and it 

shows also an interesting application of the structural semantics definitions in 

a case where functional features are mixed with Imperative ones (functIonal, 

in fact. is the underlying language, and imperative is the updating of 

memos). 

Our language for memofunctions. called memoL. is formally defined by 

the following sets. It will be defined with reference to the language L (see 

Sect. 2.1). 

Basic Sets 	. . . (as for the language L) 

Derived Sets 

Constants 	con € Con = N+T 

con ::= mit 

Expressions 	e E Exp 

e : : = . .. (as for the language L) I 9 1  valueof f at 9
0  

Definitions 	d E Def 



d : : = x: T=e I f(x: T0) : T,=e I d0  and d 1  

Notes. 

The Intuitive semantics of "e 1  valueof t at 9
0 . is that "the value of e 1  is the 

result of evaluating f at 00". 

A simpler syntax would have been: f$(eO) where $(. . . ) denotes the function 

application with use of the memo information. We do not choose that syntax 

because. as we will see later, the valueof at construct gives us the advantage 

of storing for each function evaluation more than one entry in the memo 

environment. 

During evaluation, definitions become environments, as for the language 

L. and expressions may become of the form: 	letmemo /L  in o. 	whore /L  is 

a MemoEnvironment (later defined). 

letmemo expressions are a way of "temporarily" storing argument-value pairs. 

For example: 

let [fx.x2 .f<2.4>)} in .. .letmemo (f(3)=9) 

stores the information that 
32=9 

 That expression, via the memo propagation 

rule MPr. will eventually be transformed into: 

LQI [f=)tx.x2 .C<2.4>.<3.9>J) ía.. 

where the information 
32=9 

 has been "permanently" stored in the environment 

for f. 

We assume that: FV(e)=ø for x: T=,  and FV(e)C(x.ti for f(x: Ta): 7* 1 =9. 

(FV(e) denotes the set of free variables of the expression e of memoL. which 

will be formally defined later. ) Notice that, in order to satisfy the above 

hypotheses for the free variables, we may transform our programs in the way 

we suggested in the previous section 2. 2. 1. 	 0 
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Under the hypotheses of point (3) above. it turns out that we need not 

distinguish between recursive and non-recursive definitions and we may 
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consider all functions to be recursively defined. indeed we assume that if an 

occurrence of a free variable f exists on the right hand side of the definition 

f(x: Ta): T 1  = e. it has to be considered as recursively defined (see Section 

2. 4). This is why there is not a rec d clause for Definitions in memoL. 

Since all function definitions are recursive, a better syntax would have been 

f(x: T0): T 1  rec= e. but for simplicity we adopted the shorter form given above. 

The computations evoked by the programs written in the language 

memoL, are quite efficient and via the use of memofunctioris the repeated 

evaluation of recursive function calls is avoided. 

2. 3. 1 Static Semantics for mernoL 

Through the static semantics analysis we perform the type-checking and 

we will discard expressions and definitions which are not well-formed. 

We need to define some auxiliary sets. The sets of 1) Variables: V. 

2) Expressible Types: 	ETypes. 3) Denotable Types: Dlypes and 

Type-Environments: TEnv are the ones introduced for the language L. 

set of Denotabie Values: OVal. dv € DVal. 

DVaI = N + T + (Abstracts XMemos) where Memos = P(ConXCon). 

rnem € Memos. (As usual P(S) denotes the set of subsets of S). 

set of Environments: Env. p € Env. 

Env = 	 Envy where  Envy = V 	DVaI. 
V E Var 

We write P: V for denoting P € 

Given a functional variable, say f, we bind it to a pair whose first component 

is the corresponding lambda expression. and the second component is the set 

of the argument-value pairs already computed for f. 

If p(f) 	= <abstract. [<c 0 . C 1 >. . . .)> we will also write p as follows: 

(f=abstract. C<c 0 . C 1 >. . . . L. .. J. 
set of MemoEnvironments: MemoEnv. AL C  MemoEnv. 

MemoEnv 	 MemoEnv where MemoEnv = V 	P(ConxCon). 
V c Var 
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We write (L:  V for denoting /L € MemoEnv. 

If /h(f) = (<c 0 .c 1 >. <c2 .c3). . .) we will also write /h as: (f(c0)=c 1 .f(c2)=c3 .. 

Given a functional variable f. L(f) gives us the set of the corresponding 

argument-value pairs already computed. 

(The notion of MemoEnvironments has been introduced for reasons of 

simplicity: see the related discussion in Section 2. 3. 3). 

Example 21. 

Given W(x. f). P=(x=5: f=)z: mt. z+2: mt. (<6. 8>. <13. 15>)) £ Env. 

Given V(f). /L1=(f(6)8) and /h2=(f(6)8. f(13)=15) are both members of 

Mem OEflVv. 

8) set of free variables FV and defined variables DV. 

Those sets are defined as for the language L. The only differences are as 

follows: 

el vplueof f at e0 	letmemo $L in 8 

FV FV(el) U  FV(e0 ) 	 FV(e) 

x: T=e 
	

f(x: T 0  ) : T
1 =9 
	

P (if P: V) 

FV FV(e) (1) 	 FV(e)\Cx) (2) 	U FV(!i(P(x))) (3) 
xEV 

Notes. 

By hypothesis we have: FV(e) = 

By hypothesis we have: FV(e) C  (x..f). 

7TI.  is the identity function if P(x) € N+T. if P(x) € AbstractsXMemos. 

is the first projection function. We assume that if Xx: T0 . e: 7 1 =7T1(p(f)) then 

FV(Xx: T0.  e:  7 1 ) = FV(e)\(x) S (0. IT1 allows us to obtain the X-expression 

bound to a function symbol and discard the memo. 

We also extend the definition of the defined variables by assuming that for 

any jL € MemoEnv. DV(A) = V. 



As for the expressions and definitions of the language L we introduce the 

following formulas: 

a 	a: r a 	d. and 1v  d:, with the usual meaning. 

We will feel free to write a1.. . instead of aI - . . where V=dom(a). 

We will only give the Static Semantics rules which are different from (or 

have to be added to) the rules of the language L. 

Let us assume that (I) a€TEnv. (Ii) FV(e) E V for any expression e s. t. 

al-e: T. and (lii) FV(d)EV for any definition d s. t. al-d. 

Memo 	a I- e: T 1 , al- e0 : T0  

if (f) = T0—•/T1  

a F e 1  valueof f At e: T
i 

 

This rule says that 01  valueof f al e is well-formed if a l  and eo are well-

formed. and the type of f agrees with those of e o and 

Lotmemo 

For some type-environment 13: W 

aI - e:r. 

a I- (letmemo /1. in e): T 

where the predicate L: 13 for .LL 6 MemoEnvw  is defined as follows: 

IL: 13 m Vf € W. V<a. b> € /L(f). VT0  T 1  C ETypes. 

13(f)=T0—*r1 it! (11 I-  a: T0  and 13 i-  b: T 1 ), 

The above rule says that a letmemo /L in e expression is well-formed if (i) o is 

well-formed and (ii) for any memo information "f(a)=b" in IL we have that f 

has type itt a has type T0  and b has type T 1 . 

Therefore the predicate A:.8 is true iff the memo information in /L 'agrees' with 

the type-environment 13. 

For instance: 
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(f=inrint)r f(2)+5: mt. 	(f(3)=8): Cf=intint) 

{f=int --- int)i--  (letmemo (f(3)=8) Ia f(2)+5) : mt 

(We have given the static semantic rules for letmemo expressions, although 

they arise during execution only, for technical reasons. The same applies for 

environments.) 

Function d efinitions 

a[(x=T0 . f=7-0---> 7-1)] 1-e:T1 

 

a 1- f(x: T 
0  ) : T

1  = 

t-  (f(x: T 
0 

 ) : 7' 1  = e) : Cf = 

Note. In the premise of rule 1. we included the type information for f. 

because by hypothesis the definition f(x)=e in memoL is a recursive definition. 

Environments. 

The rules for Environments are like the ones for the language L. 

We 	need 	only 	to 	define 	aI-P(x):.8(x) 	in 	the 	case 	where 

P(x) € Abstractsx Memos. 

Suppose that for f€V and P(f)=<Xx: T0 . e:  T1 . mem>. We have by definition: 

at-<Xx: T0 a:  T 1 , mom>: dt !fi (aUf=T0— ) r 1 )],- ( Xx: T0.  a: T 1 ): T0— 'T 1  and 

dtT0 +T 1  and V<a.b>Emem. al-a: T0  and al-b: T1.). 

Having given the Static Semantic rules for the language memoL we have 

defined the expressions and definitions which we consider to be well-formed. 

The Dynamic Semantics rules given below, will be applied only to them. 



168 

2. 3. 2 Dynamic Semantics for memoL 

We first introduce, as for the language L. the notions of 1) agreement of 

an environment P with a type-environment a, denoted by p: a 2) well-

formedness of expressions (or definitions). 3) Expression Configurtions and. 

Definition Configurations w. r. t. a type-environment Z. 4) Terminal 

Configurations and 5) Transition Systems w. r. t. a type-environment a. The 

only difference is that, instead of DVaIN+T+Abstracts, we now consider 

DVal=N+T+ (Abstracts xMemOS). 

Let us define an auxiliary notion: 	the Atomic Expression-Contexts. called 

AEContexts. ranged over by CE ]. 

An atomic expression-context is an expression with a hole instead of a 

subexpresslon at depth P. 

For example. "x+( ] 	and "_if x= 1 then [ ] else 3 	are Atomic 

Expression-Contexts, but "x+(y+(• 1) 	is not. 	The formal definition of 

AEContexts is as follows: 

Cf I : : = bop(. . . .( ].. . .) I it (1 then e 1  else °2 	!QI P in ( 

I ii e0  then El else e 2  I let x:T = ( 1 in e 

I j e0  then e 1  else I  I let f(x: T0): T 1  = ( I in e 

I (1 vaiueof f at e0 	I ff1 

I 9 1 
 valuooff(] 

The following rules for the definition of the Dynamic Semantics of the language 

memoL have to be added to (or they replace) the rules we have already given 

for the language L. 

As usual, we assume c 0 .c 1 . . . C Con and e € Exp. 

We will write pi. . . instead of 

Vaiuepf 	 > 

VF1. 

p - e valueof I at 9 	> 9 1  valueof f at 
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P 	•> 

VF2. 

P 1- e l valueof f 1 O + e'  valusof f 

p i-  c 1  valueof f at c0  - letmemo (f(c 0)=c 1 ) i n  

if c0 . c, € Con and <C0 . C 1 > it 7T2(P(f)) 

p i-  e valueof I at c 0  - c 1  

if c0 . c 1  E  Con and <c0 .c 1 > £ 7T2(P(f)) 

Rules VF1 and VF2 are obvious because we need to evaluate e l and 90  when 

evaluating e l  vatueof I at e0 . 

Rule VF3 generates a letmemo expression to be "propagated to the left". 

Rule VF4 says that if the pair <c 0 ,c 1 > already exists in the memo for f. we 

need not update that memo (therefore no letmemo expression should be 

generated) and we can substitute c 1  for the expression e to be evaluated. 

Memo prooaaatl on 

MPr. 	P I-  CUetmemo /.L  in 	— letmemo IL —in C[e] 

for any atomic expression context CE] * IQIP in C  s. t. DV(P)ODV(IL) 0ø. 

Note. 	if IL={f(c0)=c 1 } then the condition DV(P)flDV(/.L)*ø is equivalent to 

fEDV(P). 

Using the MPr rule, the memo information /L is "propagated to the left", 

towards the corresponding environment. 

Memouodatina 

MU. 	p t-  let P0  in letmemo (f(c&=c,)  in e —+ let P 1  in e 	if I C DV(p 0 ) 

where P 1  = P0 [f I <7T1(P0 (f)). 7T2(P0 (f))U(<c 0 .c,>)>} 

Note. The pair <c0 . c' is inserted in the memo component of the binding for I 

in P0 . MU is the rule which can be applied to letmemo expressions when we 

cannot apply MPr. 
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it is essential that during the evaluation of a given expression. only one 

environment with a binding for f occurs In It. so that the environment with 

which the pair <c0 .c 1 > should be associated. is uniquely determined. (That 

fact is not true for the language L. while It is true for the language memoL) 

Function and Memo application 

P I-  e 

Al. 

P r-  f(e) —+ f(e') 

P F-  f(c0) — c 1 	 If co , c 1  E Con and 'c0 . C 1 > E 1T2(P(f)) 

P I-  f(c0) — let x: TO = C0  in e 	 where 1T1 (P(f)) = Xx: r0 . e: 

if c0  € Con and <colci>  it 772(P(f)) for some C 1  

Note. Rule Al evaluates the argument of a function application. 

Via rule A3 we evaluate the application in the usual way. If no memo for the 

argument c0  occurs in the binding of f. Otherwise via rule A2, we use the 

memo Information and we produce "in one step" the result. 

Definitions. 	Function definitions 

Fl. p F- f(x: T 0 ) : T 1  = e 	' Cf = <Xx: T0 . a:  T 1 , 0>) 

Note. The definition is transformed into an environment with an initial "empty 

memo". i.e. with no argument-value pairs in it. 

2. 3. 3 Alternative rules for memoL 

This last section is about an alternative definition of the semantics rules 

for memofunctions which turns out to be equivalent to the one we presented 

above. We describe it here because it shows that the use of the tetmomo 

expressions and the memoenvironments does not contradict the principle of 
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not introducing extra notions in the structural operational semantics 

definitions. As we will see below, that use is only a 'temporary' way of 

denoting the changes of environments which can be expressed, maybe in a 

less Intuitive manner, without letmemo's or memoenvironments. 

Instead of using rules VF3. MPr and MU we could -  use the following one: 

VF3'. t-  <P01  c 1  vaiueof f at C0' ---> <P 1 . C 1 > 

where (i) an "old" configuration, 1. 9. an "old" <environment, expression' 

pair, is transformed into a "new" one with a possible change of the 

environment, and (ii) P 1  = P0 [f I <71(p0 (f)) .1T2(p0(f)) U (<c0 .c 1 >))J. 

I. e. p 1  Is like p0  except that the memo information for the function f has been 

updated by the pair <c0
1
c 1 >. 

In order to denote that updating of the environment, In what follows we will use 

the shorter form: 	P 1  = P0Cf(c0)=c 1 ). 

Now, since environments may be changed. in order to use VF3', we need to 

modify the other rules of the language memoL. In particular. rules Al and L2 

become: 

I-  (P. 9> — <P , . 9 , > 

Al'. 	 and 

r- (p.f(e)> —+ <P'.f(e')> 

I- <PP&o —> <P', e'> 

L2'. 

I-  <P. !Get P0  i n 	- 	< 0, lot a0  in 9'> 

where a and 	are defined as follows. 

Let p: V. p0 : V0 . and P' be (P(P01) (f (CO 
 )=C 

1 ).  We have: 

(j) if fEV J  then a=p and 0`0 P0 (1(c0)=c 1 ), because the relevant environment for 

f is P0  and we must update the memo of f in P 0 ; 

(ii) if fEy-V0  then a=p(f(c 0)=c,) and  00=p0,  because if f%dom(p 0) the 

updating of the memo must occur in the environment of the given 

configuration. 
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Notice that. if P(P&P', we have: a=p and 

As we have seen, the definition of a and cFO  is a bit complex. Therefore we 

prefer, instead of the rule L2'. the simpler rules VF3. MPr and MU. Indeed 

they express In an algorithmic way the same changes of environments evoked 

by L2'. 	 0 

2. 3. 4 An Example and Some Remarks on the Semantics of memoL 

Here Is an example of application of the dynamic semantic rules for the 

language memoL. It is an extended analysis of the example given in fig. 2-9. 

Example 22. 

Let us consider the following program for computing the fibonacci function 

mfib(x) for x=4. (The name mfib instead of fib is because we use the 

language memoL.) 

let mflb(x: int) : mt = if x=O then 1 else (it x=1 then 1 else 

(mfib(x-1) valueof mfib at x-1) + (mfib(x-2) valueof mfib 	x-2)) 

in mfib(4). 

For simplicity reasons from now on we will not write the type information. Let 

IF be the expression defining mfib(x). We have: 

0 t-  lot mfib(x)=IF in mfib(4) -) let CmfibXx. IF. O} in mfib(4) 

We obtain: 

0 t-  let (mfib=Xx. IF. 0) in let (x4) in if x0 then 1 else 

(if x=1 then 1 else (mfib(x-1) vaiueof mfib 	x-1) + 

(mfib(x-2) valueof mfib atx-2)) 

t Cmfibx. IF. 01 in let (x4) in 

(mfib(3) valueof mfib at 3) + 

(mfib(x-2) vaiueof mfib at x-2) 

Here -f denotes the transitive closure of 

(The above derivation is one among many that are possible.) 

By applying the rules for let-expressions. vaiueof-expressions and basic 

operators, we obtain: 
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let 	IF. ) in j..t  (x=4) in 

(j (x=3) in (mfib(2) valueof mfib Al 2) + (mfib(x-2)valueof mflb at x-2) 

valueof mfib at 3) + (mfib(x-2) valueof mfib a A x-2) 

—f let (mfib=Xx. IF. 0) in j (x4) in- 

(let x=3) in (let Cx=2) in (mfib(1) valueof mfib at 1) + 

(mfib(x-2) valueof mfib at x-2) valueof mfib at 2) 

+ (mfib(x-2) vpluepf mfib at x-2) yalueof mfib gj 3) 

+ (mfib(x-2) vplueof mfib at x-2) 

-.- 
	

lot 	IF. 0) inlet Cx=4J in 

(let fx=3) In. (let (x=2) in (J 	(x=1) in 1 valueof mfib at 1) + 

(mflb(x-2) valueof mfib at x-2) valueof mfib at 2) + 

(mfib(x-2) vplueof mfib at x-2) valueof mfib at 3) + 

(mflb(x-2) valueof mfib al x-2) 

	

as before with "P instead of "—let 	in 1" 

as before with letmemo Cmfib(1)=1) In 1" Instead of "1 valueof mfib at P 

- let (mfib=Xx. IF. W. 1>) In jj (x=4) in 

(let 	in (let fx=2) in 1 +(mfib(x-2) valueof mfib 	x-2) 

vplueof mfib at 2) + (mfib(x-2) valueof mfib at x-2) 

valueof mfib at 3) + (mfib(x-2) valueof mfib at x-2) 

Notice that we propagated the memo information mfib( 1) =1. before carrying 

on any other transformation of subexpressions. 

The evaluation may go on in the following way: 

- 	. . . (let (x=2) in (1+(mfib(0) valueof mfib at 0))) valueof mfib at 2 . 

(let (x2)in(1+( (lot (x0)inl) 

valusof mfib at 0) ) ) valueof mfib at 2 . 

(let (x=2) in (1+( 1 valueof mfib at 0) ) ) valueof mfib at 2 . 

(let {x=2) in (1+(letmemo (miib(0)=1) in 1) ) ) valueof mfib at 2 . 

(mfib=Xx. IF. C<O. 1. 0. 1>)) in ji x=4 in 

(let Cx=3) in Met Cx2) in (1+1)) valueof mfib at 2) + (mfib(x-2) valueof 
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mfib at x-2) valueof mfib c it 3) + (mfibx-2 valueof mfib at x-2) 

- as before with "2" instead of "1+1 

- as before with "2" instead of "let Cx=2) in 2 

- as before with "letmemo (mflb(2)=2) in 2" instead. of "2 vpiueof mfib at 2" 

(mfib=Xx. IF. (<2.2>. <0. 1>. <1. 1>)) in let (x=4) in 

(let 	in. 2+(mfib(x-2) valueof mfib at x-2) valueof mfib at 3) + 

(mfib(x-2) vplueof mfib &t x-2) 

by following the same sequence of reductions as above, we obtain: 

— 'Iet (mflb=)Lx. IF, (<2, 2>. <0.1>. 0. 1>)) inlet (x=4) in  

(j. (x=3) in 2+(mfib(1) valueof mfib Al 1) valueof mfib at 3) + 

(mfib(x-2) valueof mfib at x-2) 

and in one step of deduction, by using the memo information, we get: 

((let (x=3) in 2+( 1 valueof mfib &t 1)) valueof mfib at 3) + 

((J..i (x=3) in 2+1) valueof mfib at 3) + 

Notice that no memo updating is necessary (and therefore no generation of a 

letmemo expression occurred) because in the memo for mfib we have already 

the pair 0, 1>. Then we have: 

-. 	i1 Cmfib=Xx.lF, (<2.2>. <0.1>. 0. 1>) in j 	(x=4) in 

(3 valueof mfib at 3) + (mfib(x-2) valueof mfib at x-2) 

- as before with letmemo (mfib(3)=3) in 3" instead of "3 valueof mfib at 3" 

—' let Cmfib=Xx. IF, C<3.3>.<2,2>,O.1>,<1,1) ja. let  (x=4) 

in 3+mfib(x-2) valueof mfib at x-2 

-' 	in let Cx=4) in 3+(mfib(2) valueof mfib at 2) 

. 	in let (x4) in 3+(2 valusof mfib at 2) 

In the last step we used the memo information for mfib(2). Then we get: 

- let ... in let Cx=4) in 3+2 - 	5. 	 01  

Now we would like to make a few remarks about the evaluation we have 

shown in the above example and about the given dynamic semantics rules. 

Remark 1. The evaluation sequence for computing the value of mfib(4) is one 
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of the many that are possible. We will see that the Church-Rosser property 

holds for our dynamic semantics rules. 

Remark 2. 	In the evaluation sequence we presented. the updating of the 

memo component for mfib is done as soon -as possible. Indeed we gave 

priority to the rules VF3. MPr and MU. This decision makes it possible to 

avoid the recomputation of identical function applications. 

These priority choices were also adopted in our Prolog implementation of the 

memoL semantics (see Sect. 2. 6). 

If the memo information is stored and used according to the priorities we have 

indicated, a complexity reduction from exponential time to linear time can be 

achieved, as the Fibonacci example shows. 

(Similar work of establishing priorities among rules in order to find the optimal 

reduction sequences has been done for the X-calculus by J. J. L6vy (Lóvy 801 

and others.) 

Remark 3. 	When one uses the memoL language for avoiding repeated 

evaluations of recursive functions, the construct e 1  valueof f at e0  is used with 

e 1 =f(e0). Therefore the evaluation of e 1  will result in a repeated evaluation of 

the argument e0
, 

In order to avoid such inconvenience one may extend the syntax of the memoL 

language by considering expressions of the form: memo f(e) as an 

abbreviation for "f(e 0) valueof I at e 0 . The corresponding rules are: 

P l e 

 

P j-  memo f(e) -- memo f(e') 

P I-  memo f(c) - f(c) valueof f at c 

Another solution to that problem is to write !Qi  z=e0  in (f(z) valueof I at z) 

instead of f(e0) vaiueof f at e0 . 

It is not difficult to prove the semantic equivalence of all those alternative 
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definitions, by using for instance, v-transition systems (Hennessy and Wei 

82]. 

Remark 4. Constructs of the form e 1  valueof f at 80  may have an interesting 

use for denoting*communications" among evaluations of expressions. 

In particular we may write the following definition for computing the binomial 

coefficients, taking advantage of the fact that bin(n, m)=bin(n. n-m): 

bin(n. rn) = jf m=O QL  n=m then 1 

ei( bin ( n-i. rn-i) valueof bin at (<n-i. rn-i> and <n-i, n-m>)) + 

(bin( n-1. m) valueof bin at (<n-i. m> and <n-i, n-rn-i>)). 

where we used the notation: 	e valueot f at (e and e. 	and . . .) as an 

abbreviation for ((e valueof f gi e) valueQj I at e.). 

According to the above definition, after the computation of bln(n-1,m-i) and 

bin(n-1.m). we also know the values of bin(n-1,n-m) and bin(n-1,n-m-1). 

In fig. 2-10 we have shown a sequence of calls which may be evoked by 

let bin (n.m)=.. . (as above)... in bin(73). 

Notice that an improvement of efficiency has been achieved with respect to 

both the usual recursive definition and the definition which avoids commutative 

redundancy (Cohen 831. 

Let [n. m] denote the binomial coefficient bin( n.m). 

With reference to fig. 2-10 the sequence of recursive calls, evaluated without 

use of the memo information when computing bin(7.3), is: 	[7.3]. [6.2]. 

[5.1]. 	[4.0]. 	[4.1]. 	[3.0]. 	[3.i]. 	[2.0]. 	[2.11. 	[1.01. 	[5.2]. 

[4.2]. They are denoted by solid arrows. 

The sequence of memoupdatings is: [4.0]. [4.4]. [3.0]. [3.3]. [2.0]. 

[2.2]. [1.0], [1.1]. [2.1]. [3.1]. [3.2]. [4.1]. [4, 3]. [5,11. 

[5.4]. [4.2]. [5.2]. [5.3]. [5.2]. [6.3]. 

In fig. 2-10 dashed arrows denote the memo updatings. Underlined values are 

stored in the memo-environment because of the valueof at constructs. 



[7.3J 

/ 
[6. 2]-----[] 

[5.1] 	[5.2]____..[jj 

[4.0] 	[4.1] 	[4.2] 	{.4J_] 

[3.0] 	[3. 1]_-_.,.[.] 

/X— \ -- ' 
(2.0] 	[2.1] 	[2...2] 

/\ 

Figure 2-10: 	Computing binomial coefficients. 

Use of memo for [ii. m] = {n. n-rn] 
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2. 4 Some properties of the operational semantics definitions and program 

annotation methodology 

In this section we will study some properties of the operational semantics 

definitions we have given in the previous sections. Some of those: properties 

are quite important as, for instance, the fact that for a given class of 

expressions the operational semantics of the language memoL with memo 

information agrees (In a sense later specified) with the operational 

semantics of the language L. while avoids redundant evaluations of recursive 

calls. 

We also suggest a programming methodology based on annotations as follows 

(see also fig. 2-11). 

LY 

P € C(L) 	 - M(P) C C(memoL) 

SL  /memoL 

D 

Figure 2-11: The Program Annotation Methodology for avoiding 
repeated functions calls. 

We will define a class C(L) of programs written in the language L and a 

method M for annotating thorn, thereby deriving the class C(memoL) of 

programs in the language memoL, so that the evaluation of any program 

P € C(L) can be more efficiently performed. Correctness is preserved by 

requiring the commutativity of the diagram in fig. 2-11. 

The class C(L) of programs is defined by imposing some restrictions on the 

occurrences of the free variables in the definitions. The translation M consists 

in substituting some occurrences of the function applications "f(e) " by 

"f(e) valueof f at e. 
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In what follows we will give more details about the definitions of C(L) and 

M which make the diagram of fig. 2-11 commute, and we will propose two 

such pairs <C(L). W. 

As we already mentioned, more general results could be obtained by 

defining an operational semantics for a language with memofunctions if we did 

not stick to the principle of not introducing extra notions in the structural 

operational semantics definitions. 

2. 4. 1 Relationship between the language L and memoL. Pr000sal of a 

program transformation methodology. 

The relationship between the language L and the language memoL can be 

best understood in the frameworks of the program transformation and the 

program annotation methodologies. 

Given a program P in a class C(L) of programs, written in the language 

L. in order to improve its efficiency, we may derive the program T(P). called 

the transformed program. so  that efficiency of execution is improved, while 

correctness is preserved. 

1(P) € C(L) 

sem 

P€C(L) 	 D 

/ 
M 	-. 	 ,,,/"memosem 

M(P) e C(memoL) 

Figure 2-12: Relating two operational semantics: sem for the language L 

and memosem for the language memoL 



180 

We need the upper triangle of the diagram of fig. 2-12 to commute. and we 

need that the evaluation of T(P) is more efficient than the one of P. 

The efficiency in evaluating C(L) programs can be inferred from the 

definition of the semantics function "sam", if we assume that the interpreter for 

the language L is directly derived from that definition (Cardelil 831. 

Instead of transforming programs we may annotate them (Schwarz 821. 

I. a. translate them into programs in an extended language. for which we 

provide, once and for all, an efficient evaluator. Therefore given a program 

P 6 C(L), we can translate it Into the program M(P) in the language memoL. 

and If the lower triangle of fig. 2-12 commutes, by evaluating M(P) using 

memosem" we get the desired result in an efficient way. (In our case 

redundant evaluations of recursive calls are avoided.) 

The translation M from the language L to the language memoL we will propose 

is quite straightforward and it does not require any difficult step, unlike the 

eureka Steps" of the program transformation technique. 

The transformation technique* and the "annotation technique" can also be 

compared in the following way. Let us assume that, given a semantics 

function s, we have for each program p an associated complexity measure 

C S (p) . which in intuitive terms, gives us the cost of evaluating p using s. 

In the transformation technique we have a fixed semantics function. say sem. 

and we look for a transformed program T(p) such that sem(T(p)) = sem(p) 

and C sem ( T ( P ))  < Csem (P). 

In the annotation technique we factorize, so to speak. the "transformation" T 

into two steps: an annotation "M" and an imøroved semantics "impsem" (for 

an extended language) with the aim of getting: C) m pSem (M ( P ))  < Csem ( P ) . 

and impsem(M(p)) = sem(p). (see fig. 2-13). 

That factorization gives us: 

i) more flexibility in making program improvements, in that we are not forced 
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to code the improvements as changes in the program text, but we can get 

them through the semantics of the extended language. and 

II) it allows us to structure and classify program improvements as deriving 

from classes of annotations. 

T(p) 

;  

T 	 sem 

em zs  ( I  

p 

Zimpsem 

M(p) 

Program Transformation: 

Csem (T(P)) <C 	(p) sem 

Program Annotation: 

Cimpsem (M(P)) < 

Figure 2-13: Program Transformation and Program Annotation. 

With reference to the fig. 2-12 we need to show that: (1) the given 

operational semantics definitions for our languages L and memoL make the 

diagram commute, and (2) the memoL operational semantics avoid redundant 

evaluation of recursive functions calls. 

Point (1) holds for two classes of programs as introduced by the Definitions 

2 and 9 (see Theorems 7 and 11). Notice also that most programs which do 

not belong to those classes can easily be transformed into equivalent 

programs belonging to them, by using the techniques mentioned in Section 

2.2. 

Point (2) is immediate, because the VF4 rule (see Section. 2.3) avoids 

repeated evaluations of recursive function calls. 

in order to prove the main theorems. I. e the agreement of the semantics 

definitions of the languages L and memoL for the two classes of programs we 

consider. let us first show that the Church-Rosser property holds for those 

definitions. By that property we can pay no attention to the nondeterminism of 

the semantics rules. 
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2. 4. 2 The Church-Rosser property for the oøerational semantics of the 

language L 

Let us consider the case in which functional variables have arity n=1. 

(The general case for arity nO can be shown with no extra difficulties). 

The rules of the dynamic semantics definition of L are deterministic in the 

sense that: 

VP E Envy. Ve € Exp. 3  a unique e' S. t. Pt-  e — e'. if P1-  e— e' holds for 

some e', 

with the only exception of the rule 61 for the basic operators and the rules 

AND1 and AND2 for and-definitions. 

Given a set S with a binary relation — c SXS we say that (S. —+) is 

Church-Rosser 1ff V  s.u.v € S If S 	U and s 	v then 3t C  S s. t. 

u - t and v — t. 	— 	denote the reflexive transitive closure of 	. 

We can show that the set of configurations r with the relation — is Church-

Rosser by applying the following strong confluence result. 

(S. —) is strongly confluent ItT Vs. u.v € S If S 	u and a — v then for 

some t C  S u 	t and v 	t, where 	denotes the reflexive closure 

of 	. 

Strong confluence implies the Church-Rosser property. (Huet 801. 

By the nondeterminism we may have from both P 1- eO — eO' and 

P I-  el — el': 

Pr bop(. . . .eO.....el. . .) 	+ bop(. . . eO ...... el.. . .) and 	- 

Pt- bop(.. . .eO.....el.. . .) - 	bop(. . . .eO..... 

From both bop(. .. . eO ...... el.. . .) and bop(.. _90.... eO.....el'.. .. ) 	we 

obtain bop(. . . eO ...... el'. . .). because the redexes eO and el are 

disjoint. One can analogously deal with the non-determinism arising from 

and-definitions. 

This concludes the proof of the Church-Rosser property. 

Notice that the above proof does not require the rewriting system to be 

notherian (Huet and Oppen 80). 



2. 4. 3 The Church-Rosser property for the operational semantics for the 

language memoL 

The proof Is similar to the above one for the language L. 

The only nondeterministic rules. which are in memoL and not in L. are the 

rules for the valueof at constructs and the memo rules. There are the following 

cases: 

one may apply the rule VF1 or the rule VF2, to the expression 

el valueof f . eO. 	By Strong Confluency we get the Church-Rosser 

property. 

one may apply the rule VF2 or the rule VF4, to the expression 

e valueof f at co , 	in this case, after the application of VF2 we can still apply 

VF4, because the memo information in P is not changed by VF2. By Strong 

Confluency we get the Church-Rosser property. 

one may apply the memopropagation rule (MPr) or any other rule, say A. 

to CEletmemo jL  In 	In this case we notice that there are no rules for 

transforming expressions of the form letmemo IL in e, except those which can 

be applied for transforming e. 

Therefore if the memopropagation rule and rule A can both be applied to the 

expression C(Ietmemo /L in el, the latter rule should be applicable also to 

GEe]. Thus it can be applied to letmemo IL in C[e]. We have the following 

commutative diagrams: 

(I) if R changes CE. . .1 into C'[. . .1: 

Pt-  C(Ietmemo IL  in el — (by R) C'[Ietmemo At in a] 

.L(by MPr) 	 L(by MPr) 

PI-  letmemo /1.  in C[e] 	(by R) 	letmemo IL in C'[e] 	 and 
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(ii) if A changes e into e': 

P1-  C[letmemo jL  Ln a] —( by R) Cfletmemo (L i n  

I(by MPr) 	 l(by MPr) 

P(-  letmemo CL j .  C[O] — (by A) letmemo hL in CEo'] 

By Strong Confluency we got the Church-Rosser property. 

Analogously one deals with the case when MU and any other rule can be 

applied. 

Having proved that the Church-Rosser property holds for the Dynamic 

Semantics rules for the language L and mamoL we can proceed towards the 

proof of the commutativlty of the diagram of fig.2-11 without caring about the 

possible nondeterminism. 
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2. 4. 4 Consistency of the operational semantics for the lannuages L and 

m em oL 

The commutativity of the diagram of fig. 2-11 holds for a class of 

programs which we- will define here. They- are programs expressed' by 

elementary expressions which are expressions with no free variables and such 

that the right hand sides of their definitions have no free variables (except 

formal parameters or recursive function symbols). The commutativity holds 

also for another class of programs defined in the following subsection 2. 4. 5. 

Let us start by giving some definitions. 

Definition 2: eO is an elementary exoression. and we write eO C  elExp. 

ift eQ € Exp of the language L and 

FV( a) =0 for any x: 'r=e definition occurring in eO 

Me) E Cx) for any f(x: T0): T 1 =o definition occurring In @0 

FV(a) E Cx.f) for any rec Ux: 70) : T 1 =g definition occurring in eO, and no 

other kinds of definitions occur in @0. 	 0 

We also say that an abstract Xz: T0.  a:  T1  is an elementary expression if a is an 

elementary expression. (z should not be considered while computing the free 

variables of the definitions in e.) 

An environment p € Envy  (for the language L) is called an elementary 

environment (and we write P C elEnv) iff V  x C  V. 	P(x) C  elExp. 

An elementary expression context DL ..] € elExp—contexts is an elementary 

expression with a hole s. t.' when filling that 'hole" with the expression e we 

have: D(e] € elExp. (The easy formal definition is left to the reader. ) 

For simplicity we will not write types in definitions. 

We define a translation relation M: elExp (In L) 	Exp (In memoL) 

which derives from the following elementary translations Ti (removing 	's) 

and 12 (introducing valueof at): 
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for any elExp-context DC. . .1 and any occurrence of the expression f(el) 

where f is free in DCf(el)]. 

(Ti) let rec 	= let  

(T2) lot f(x)=e I n 	=41  let f(x)=e i n 	valueof f at all 

with the condition that all occurrences. of rec should disappear in the 

translated expression (otherwise it would not be an element of Exp in memoL). 

We recall that in memoL all function definitions are recursive, though rec does 

not occur in them. 

In defining the translation M. the translation T2 need not be applied to all 

subexpressions to which it is applicable. 

We will often write M(e) meaning any expression @1 S. t. (a 	el) € M. 

Given an environment P E elEnv for the language L we denote by N(P) 

the corresponding environment for the language memoL. where every abstract 

occurring in P is paired with an empty memo, and all occurrences of 

expressions of the form "j..t  rec P0 in e are replaced by ne". (This last 

modification corresponds to the replacement of the rule R2 by the rule R2' as 

suggested in Section 2. 2). 

For instance, 

if P = [x=5. f=Xx: int. l et  rec(f=)x: int. ifx=0 then 1 else  

if x0 then 1 else x-f(x-1): Intl 

then 	N(P) = [x5. f<Xx:int. jix=O  then 1 elsexf(x-1):int. 0>). 

Rewritings in the language L will be denoted by "el (L) —  e2". while the 

ones in the language memoL by 'e1 (memoL) —  e2. 

We will say that an expression e is irreducible iff a € N+T. 

In the language L we will write Ptaøl 	e2 	to assert that: 

(L)_* <P, t> and t is irreducible 1ff 

(L)* <P, P and t is irreducible. 

Analogously in the language memoL for the rewriting (memoL)_* 
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In order to prove the commutativity of the diagram of fig. 2-11 let us start 

with some preliminary lemmas. 

In what follows we will write pl-e... instead of 	 and we assume that 

FV(e)Edom(P). When we assume that PEEnvv.  we also Impilcitely assume 

that a€TEnv  with p: a  and yEW. 

Moreover, when we write 	let f(x)=e in E[f(ol) ] 	(or similarly defined 

let-expressions), the occurrence of f in f(el) is supposed to be free in 

E[... ]. so that the relevant binding for It is f(x)=e. 

Lemma 3 shows the commutativlty of the diagram 2-11 for a very simple class 

of expressions. 

Lemma 3: V  p € eIEnv. V 80 E  elExp (in L) fl  Exp (in memoL) (I. e. no 

rec. valueof at, letmemo occur in eO). 

Pt-  90 (L)_*  t and t is irreducible 	1ff 

N(P) I-  eO (momoL)_+*  t and t is irreducible. 

Proof: Immediate by definition of elExp. In fact. since V 0=ø. the Fl rules 

for L and memoL turn out to bind f to the same abstract. 	 0 

The following lemma 4 tells us that the replacement of an occurrence of 

f(el)" by 'f(el) valueof I at el" does not introduce any extra non terminating 

computation. 

Lemma 4: V p € GIEflVv. 

V D[ lot f(x)e in E(f(el)i] € elExp fl  Exp (in memoL) we have that: 

Pt-  D[lot f(x)e in E[f(el)]] (memoL)__*  ti and ti is irreducible iff 

Pt- D{ji f(x)=e in E(f(el) valueof f at eli] (memoL) — 	t2 and t2 is 

irreducible. 

Proof: It is enough to notice that the propagation of a letmemo construct 

for the function f is bound to terminate, because in the outside 

let-expression there is a binding for f. 	 0 
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The following basic Lemma 5 says that the memo information does not affect 

the result of the computation. 

Lemma 5: V  P E elEnvv. 

if 	Pt-  let f(x)=e in E[f(eO) I 

	

t [f=Xx. a, memo U C<c(i.cl>)} in E[f(cO) 1 	 (1) 

- 	let (f=Xx.e.memo U C<cO.cl>}J in E[cl] 	 (2) 

(by memo lookup) 

then p1-  let {f=Xx. e, memo' J in E[f(cO)] 	 (3) 

let (f=Xx. G. memo } j .  E'[cl 1 	 (4) 

(by evaluating f(cO)) 

whore E'[... J possibly differs from E[... ] for updatlngs of memo 

components. • 

Proof: - 	 - We will give the proof under the hypothesis that 

valueof at constructs are used only in expressions of the form: 

f(e) vaiueof f at a. 

If <CO. c1>Ememo the lemma is obvious. Otherwise, it is the case that for 

deriving (1) we have: 

p1-  tat (f=Xx. e. memo l) in D[f(cO) valueof f at cO] 	 (0.1) 

	

let [f=Xx. a, memo2} in D'[cl valueof f at co] 	 (0.2) 

—+ let (f=Xx.e.momo2 U (<cO.cl>)} inD'{c1] 

_.3* ( 1 ) 

where <cO.cl> % memol U memo2 and D'[. . . ] possibly differs from 

D[... ] for updatings of memo components. 

In order to derive (4) from (3) we make the same steps we made for 

deriving (0.2) from (0. 1). Notice also that' in (3) and (4) we used the 

same variable memo (not two different ones as in (0. 1) and (0.2) ), 

because by hypothesis in 'memo' there exist all the argument-value pairs 

computed while evaluating f(cO) to ci. 0 
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We can now prove a theorem which establishes the consistency of the 

operational semantics of the language memoL with respect to the one of the 

language L. (Previously we also called that property "agreement' between the 

two semantics.) 

Theorem 6: V p € elEnvv. V eO € elExp. 

Pt-  oO (L)_*  t and t is Irreducible if? 

N(P) I-  M(eO) (memoL)+*  t and t is irreducible. 

Proof: Any expression derived by translating a given expression eO using 

M can be obtained by a sequence of elementary translations Ti. removing 

followed by a sequence of elementary translations T2. introducing 

valueof at's. 

In writing the relation symbols (L) 	and (memoL) —> (and their reflexive 

and transitive closures) 	we will omit the qualifications (L) 	and (memoL) 

when they are easily understood from the context. 

Part 1 	Removing rec's. 

Suppose M(eO)=eO. The thesis holds by Lemma 3. 

Part 1. 1 

Suppose that 	M(eO) 	is 	obtained 	from 	eO 	using 	only 	one elementary 

translation Ti. 

Let eO be D(let rec f(x)=e i n 	and M(eO) be D(iet 	f(x)=e in eli. 

In L we have: 

p1- D[iI rec f(x)=e in all 

—> Duet rec (f=>'x. 	let 0 in a) in all 

Met rec (f=Xx.e) in ell 

—> 

 

Met (f=Xx. 	let rec (f=Xx. a) in a) in ell. 

In memoL we have: 

N(P) I- Met 	in ell 

0112-1(fXx. 9) in all, 

where for simplicity we have not written the empty memo. 	We will do the 

same in what follows. 
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Now we will reason by induction on the number of the recursive calls of f 

we need to evaluate el. 

Base case. Obvious because there are no calls of the function f. 

Step case. Suppose el 0  E[f(c)]. and suppose that the occurrence of I 

in 1(c) is free in el. 

In L: p1- D(let (f=Xx. lot rec ff=kx. 	Lao) in E[f(c)]] 

-' 	D(LI Cf=Xx. let rec ff=Xx. el in a) in 

E[I1 xc in let rec Cf=Xx. a) in a]]. 

In memoL: N(P) F D(j.i (f=Xx.a) in E(f(c)J] 

- D[j (f=Xx. a) in E[Let x=c in a]] 

D(ji (f=Xx. a) in E[Let xc in j (f=Xx. e) in a]] 

where 01  holds because the free occurrences of f in e are bound to Xx. a. 

(Recall that FV(o) E (x. f), because eO € elExp.) 

By Induction hypothesis we have that for the. expressions within the context 

EL . . I the following holds: 

VP C  elEnv. Pt-  Lei x=c in let rec ff=Xx. a) in a (L)*  t 	and 	t is 

irreducible 	iff 

N(P) I-  J1 x=c  in j 	(f=Xx. a) in @ (memoL) ---> 14  t and t is irreducible. 

Since FV(j.t x=c in let  r. (frXx.e) in a) = FV (let x=c in l et (fXx.e) in a) 

= 0, the context in which E[... ] occurs does not matter, using the 

above conseguence of the induction hypothesis we got that: 

VP C elEnv. 

Pt-  eQ (L) — ' D{ let (f=Xx. let rec (f=Xx. a) in a) in Ect]] and t is 

irreducible iff 

N(P) I-  M(eO) (memoL) —+ D(let (fXx. a) in Ect]] and t is. irreducible. 

By induction hypothesis (since the number of recursive calls of f in Etti 

are fewer than the ones in E(f(c)]) and by Lemma 3. taking into account 

that the contexts D(. . . I and E[. . .1 are not changed by the translation M. 

we get the thesis. 
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Notice that in the proof we did not care about the nondeterminism in the 

rewritings. because the Church-Rosser property holds for the dynamic 

semantics rules of the languages L and memoL. 

Part 1. 2 

Suppose M(eO) is obtained from eO by more than one elementary 

translation Ti. 

If for each instance of an elementary translation Ti there is a 

subexpression e 1  of eO such that it includes the translated expression and 

FV(e 1 )=ø, and all subexpressions (l} are pairwise disjoint, the thesis 

can be proved by structural induction using the result of Part 1. 1. 

If the subexpressions fe 1 } are not pairwise disjoint, let us consider, 

without 	loss 	of 	generality, 	the 	case 	where 

eO 	 rec f(x) = D(Le I rec f(x)=e in 	el] Jn. e2] and 

M(eO) M C[jt f(x)=Dfl f(x)=e in el] in e2}. 

By Part 1. 1 we have that: 	for all P E elEnv. 

P1-  D(J..t rec f(x)e in el] (L)+* t and t is irreducible 	iff 

N(P) I-  D[lot f(x)e i n 	(memoL) 	It  t and t is irreducible. 

Therefore. since the free occurrences of f in e2 are bound in eQ and 

M(eO) to expressions which will be evaluated in any context to the same 

value, we get the thesis. 

Part 2 Introducing valueof's. 

M(eO) is obtained from eO' by zero or more elementary translations T2 

(introducing valueof at's), where eO' is obtained from eO by elementary 

translations Ti (removing reC's) only. 

We will make the proof by induction on the number of the elementary 

translations T2. 

The induction hypothesis is as follows: 

(aO). P1- C{1 	f(x)=e in D(f(el)]] (L)__* t and t is irreducible 	iff 

(bO). N(,O)r M(C) [l et f(x)eLaM(D)(f(e1)]] ( m e moL)* t and t is 

irreducible, 
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where from Cf. . . J to M(C) {... J we made n translations T2 and maybe 

some translations Ti (and analogously for D(. . . 1) 

As usual. we assume that the occurrence of f in f(el) is free in D(f(el)]. 

Let us assume that the (n+1)st translation T2, which transform f(el) into 

f(el) vplueof f el, is made outside -  the r. h. s. of a definition. (The 

other case where the (n+1)st translation 12 occurs within the r. h. s. of a 

definition can be proved in an analogous way). We need to show that 

introducing that extra valuoof at construct does not change the result of 

the computation, I. e. 

(bO). N(P)l-  M(C)[j..t f(x)=e in M(D)(f(el)]J (memoL)_*  t and t is 

irreducible 1ff 

(b). 	N(P)l-  M(G)[ji f(x)=e In M(D)(f(el) valuepf f Al all] 

(memoL) -4' t and t Is irreducible. 

Then we will have that the Inductive step Is valid: U. a. (aO) 1ff (b) . and 

we get the thesis. 

We will not care about the nondetermlnlsm In the rewritings because the 

Church-Rosser property and Lemma 4 hold. 

In memoL we have for the given expression in (bO): 

N(P) 1-  M(C) [J.i f(x)=o  j  M(D) Mal) ]] 
	

(0) 

- M(C) (let (f=Xx.e.ø) in M(D) Mel) ]J 
	

(1) 

-' M(C) (let (f=Xx.e.memoi) in M(E)(f(cO)lJ 
	

(2) 

M(C) (let (f=Xx. e.rnemo2) in M(F)(cl]] 
	

(3) 

For the given expression in (b) we- have: 

N(P)IM(C) [l et  f(x)ejaM(D)Mel) valueoffell] 
	

(4) 

-f M(C) (let (f=Xx. e.memoi) in M(E)(f(cO) valueof fat ell] 
	

(5) 

- 	M(C) (let (f=Xx. e. memol) in M(E) (f(cO) valueof f at cO]} 
	

(6) 

- M(C){Iet Cf=Xx.e.memo2)  in M(F)(cl vaIueoffatcO)] 
	

(7) 
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The steps from (4) to (5) are the ones made from (0) to (2). The steps 

from (5) to (6) are analogous to those made from (1) to (2). (The 

context M(E) [... ] and memol are not changed because all 

memoupdatlngs were done-while deriving (5) from (4).) 

We derive (7) from (6) in the same way as we derived (3) from (2). 

Now there are two cases: 

<cO.cl' 6 memo2. 

<cO.cl> it memo2. 

(No other cases occur. because f is a deterministic function, and 

therefore. if <CO, c>€memo2 then c=cl.) 

Case 1. From (7) we get. using VF4: 

- M(C)[ Let (f=Xx.e.rnemo2)IaM ( F ) (c 1 ]]  

which is equal to (3). 

Therefore. 	N(P) - ( 3) 	(8. 1). 

Case 2. From (7) we get. using VF3 and MPr: 

- M(C)[j1 [f=Xx.e.(<cO.c1>)Umemo2} i n 	 (8.2) 

By computational induction on the number of the recursive calls of f. 

Lemma 4, Lemma 5 and Church-Rosser property we have: 	- 

N (p) F (3) 	(8.2). 

(Recall that PI-Let P0  in c - C if c€Con. for any p0 .) 	 0 

The extension of the Theorem 6 to the case in which functions have more than 

one argument is immediate. 

The following Theorem establishes the commutativity for the diagram of fig. 

2-11 for closed expressions. 

Theorem 7: V  closed expression e 6 elExp. øt-  e (L)*  t and t is 

irreducible 1ff øt M(e) (memoL)*  t and t is irreducible. 

Proof: Corollary of the Theorem 6. 	 0 
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2. 4. 5 Extending the results on the consistency of the semantics for the 

languages L and memoL 

We will now extend the results presented In the subsection 2. 4. 4. Let us 

first make. some remarks and give some examples which elucidate the 

difference between the semantics of the language L and the one of the 

language memoL. 

Remark 1. 	The semantics of the language L is according to the "static 

binding" mechanism. 

This is the binding method used in X-calculus (Barendregt 811 and it is based 

on the textual occurrences of the variables before evaluation. The bindings 

for the language L can be determined by the following equivalence: 

1.txeJ.flQ' 

(See also some examples below.) 

Remark 2. 	The semantics of the language memoL is according to the 

"dynamic bindings mechanism. 

It means that the binding of a variable f is delayed until f is used and it is 

made by using the innermost definition of f in whose scope that f occurrence 

exists at run time. 

Example 23. 

let y3in. l e t f(x)x+y1n  let y2jnf(2) (L)_* 5, 

because by the static binding y in x+y is bound to 3. 

let y3 in let f(x)x+y in let y=2 in f(2) (memoL) — 	4• 

because by the dynamic binding, when f is called the innermost binding for y 

gives it the value 2. 	 o 
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Example 24. 

I-  let  f(x)=3 in.  (Let f(x)=f(x) In f(2)) (L)_*  3• 

0 I- let f(x) =3 in let f(x) =f(x) in f(2)) in memoL fails to have normal form. 

Notice that let f(x)=3 in l et rec.  f(x)=f(x) in f(2) in L fails to have normal 

form, while it is not an expression in memoL. 	 0 

Example 25. 

01-iig(x)=3ia [let 	jag(y)) jf(2)] (L) 	5 

because the given expression, using the static binding is equivalent to: 

Igi f(y) = (j g(x) = x+3 in g(y)) Jj. f(2) and therefore to: 

letf(y) =y+3jf(2). 

The given expression In memoL falls to have normal form because f(2) is 

replaced. during the evaluation, by IQ.t  g(x) = x+g(x) in g(2) which. using the 

dynamic binding, has no normal form. 	 0 

Therefore, looking for an improvement of the results of the previous theorems 

6 and 7 (see Section 2.4.4) while preserving the commutativity of the diagram 

in fig. 2-11. we have at least to satisfy the conditions under which the 

dynamic binding mechanism evaluates expressions in the same way as the 

static binding mechanism does. 

We will be able to achieve only partial results because. in general, the 

problem of knowing whether an expression evaluates to the same value in a 

static binding regime and in a dynamic binding regime is unsolvable. This is 

due to the fact that the only way of checking that equivalence of regimes for 

expressions with procedures as parameters of procedures, is to evaluate the 

expressions themselves. 

We can extend the results of the previous subsection as follows. 

Let us give first the following definitions with their explanation. 
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Definition 8: 	We say that a set of variables is simple 1ff they are of 

ground type. (1. 9. either bool or mt for our language L.) 	 0 

Definition 9: a is an SDExoression (and we write e € SDExp) 

iff a € Exp (for the language L) and 

for each variable there is only one occurrence as 

a defined variable _qr as an argument variable. and 

a is a closed expression 0. 9. without free variables) aMA 

any definition occurring in a is of one the following kinds only: 

3. 1 x: 'r=e with FV(e) simple or 

3.2 f(x: T0) : T I  =e with FV(e) simple or 

3.3 rec f(x: To): T1 =e with FV(e)\(f) simple or 

3.4 dl and d2 where dl and d2 are of kind 3.1 .....3.4. 	 0 

Examole 26. 

j  y: int=5 Ia lot 	tnt) : tnt = 2+y i n 	is not an SD Exp because y is 

used both as a defined variable and as an argument variable. 

let y: int=3 in j.e-t  f(x: tnt) : mt = x+y in f(2) 	is in SDExp and not in elExp. 

let rec x: int=x+l Jj. x+5 is not an SDExpression. 

let x: int=2 in let x: lnt=3 in x 	is in elExp but not in SDExp. because two 

bindings for x occur. 

J.I  y: int=3 in jJ rec f(x: tnt): mt = if x=O then y else y-f(x-1) i n 	is in 

SDExp, but not in elExp. 

Expressions 2. and 5. show that SDExp is not included in eiExp. 

Here is an SOExpression for computing 0 2+1 2+. 	+7 (for simplicity we. do 

not write the types in definitions) 

let rec  sq(x) = if x0 then 0 else sq(x-1)+2x-1 

Ia let  iQ. sumsq(y) = if y=O then 0 else sq(y)+sumsq(y-1) 

i n  sumsq(7). 	 o 

The basic idea of the above definition of SDExp is to avoid those expressions 

which may have different value when evaluated with the static binding or 
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dynamic binding mechanism and for which the presence of rec's is significant. 

(The name SDExp suggests the invariance of the value w. r. t. the static or 

dynamic binding regime.) 

For instance, we do not allow in SDExp the following expressions El and E2 

(where ........" stands. for any expression with a free. occurrence of f. and 

the subscripts are used for distinguishing the different occurrences): 

.1Q.I f(1)(x)=e  in. (ii f(2)(x)=.... 	. 	. . . f. . . ) 	 (El) 

i.I f (5)  (x) = (let f (6) (x)=. . 	. . ia. . . 	. . ) In f f9 ,. . . . 	 (E2) 

in which 

a variable occurs free in the scope of its own definition (see occurrence 

f (3)  in El, and f (7)  in E2) and 

it is used in expressions to be evaluated (see occurrence f (4)  in El and 

f ($)  and f (5)  In E2) and 

it is "enclosed in the scope of different bindings for it (see bindings f (1)  

and f (2)  for f (3)  in El. and bindings f (5)  and f (6)  for f (Ø)  in E2). 

For the above expressions the presence of rec is significant. Indeed rec in 

front of f (2) (x) In El would make the binding of f f3 , in El to be f (2)  Itself and 

not f (1)  (analogously for rec in front of f (6) ). 

Let M(e). for any e€Exp (in L) . denote the expression a after erasing all 

roe occurrences and replacing some occurrences of f(e1) by 

1(el) valueof f at el". 

Theorem 10: VP c Envy. Ve C  Exp s. t. let P in a C  SDExp. 

PF- a (L)*  t and t is irreducible iff 

N(P) F-  M(e) (memoL) — ' t and t is irreducible. 

Proof: Similar to the proof of Theorem 6. 

We do not present it here because it is a bit lenghty. The proof is based 

on the fact that free variables in SDExp are simple. They can only be 

bound once and they cannot interfere with the argument variables. 0 
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The following Theorem gives us the main result, I. a. 	the diagram of 

fig. 2-11 commutes for programs denoted by expressions in SDExp. 

Theorem 11: Ve € SDExp 	ør 9 (L)+* t and t Is Irreducible iff 

01-  M(e) (memoL)_*  t and t is irreducible. 

Proof: Corollary of - Theorem 10. 

2. 4. 6 Main Results and Some Final Examples 

We have proved (see Theorems 7 and 11) that the commutativity of the 

diagram 2-11 holds for: 

- M being a translation which erases all occurrences of rec and it introduces 

'f (9) valueof f At e expressions instead of some occurrences of "f(e)" where 

f Is any recursively defined function: 

- C(L) being a class of programs described by Elementary Expressions (see 

Definition 2) or by SDExpressions (see Definition 9). 

From those results we proved the correctness of the program annotation 

methodology when we perform the translation M on programs denoted by 

Elementary Expressions or SDExpresslons. and the evaluator of the annotated 

programs implements the rules of the operational semantics of memoL as 

given in Section 2. 3. 

One can extend those results by allowing programs to be made of 

expressions whose closed s ubexpressions are either Elementary Expression or 

SOExpress ions. 

For instance, by the above results, the. following annotated program, 

using the M translation, computes the binomial coefficients: 

bin(n. m) = if m=0 or n=m then 1 

else(bin(n-1.m-1) vaiueof bin at (<n-1.m-1> and <n-1.n-m)) + 

(bin( n-1. m) valueof bin at (<n-i. m' and <n-1, n-rn-l>)) 

and avoids all redundant function evaluations. 
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We recall that redundant calls In this case cannot be avoided "at compile time" 

by using Cohen's methods nor the tupling strategy. (in [Cohen 831 pages 

293-294 it is given a "run time" method by which the derived program depends 

on the values of n and m.) Fal 

Another familiar example is the Fibonacci program. By the translation M 

we can obtain the following expression: 

l e t mfib(n) = II n1 then 1 else mfib(n-1) vplueof mfib at n-i 

+ mfib(n-2) valueof mflb at n-2 

in mfib(m), 

It avoids redundant recursive calls and it achieves the same linear time 

performances of the program given in (Burstail and Darlington 771 page 49. 

which was derived by transformation at the expense of a "eureka step". 0 

The following annotated program computes 02+12~ . 
. . +n2 . in the case 

where multiplications by 2 only are allowed. Using the valuepf at construct the 

repeated evaluation of recursive calls is avoided, and a linear running time 

algorithm is obtained. 

let sq(x) = if x=O then 0 else sq(x-1)+2x-1 

in  ii sumsq(y) = if y=O then 0 else [sq(y) valueof f at yl + sumsq(y-1) 

in sumsq(n). 
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The same linear time performance is achieved by the following program. 

written In the recursive equations style: 

sumsq(n) =1T1(t(n)) 

t(0) 	= (0.0) 

t(n+1) 	=<sq(n+1). sumsq(n+1)> 

= <sq(n)+2n+1. sq(n)+2ri+1+sumsq(n) 

= <a+v. a+y+b> where a. b'=t(n) 

L 	 v=2n+1 

which can be obtained by using the tupling strategy. Indeed one can 

easily see that the pair <sq(n), sumsq(n)> determines a cut in the m-dag for 

the function sumsq. 0 

Notice that the memo approach for saving redundant evaluations we have 

presented, works for first order functions. An extension to the case in which 

one deals with higher-order functions, is possible, provided that the values of 

the arguments range over domains for which the equality predicate Is 

decidable, in that case one can effectively test whether or not an entry of the 

memo-table is relevant for the function call to be evaluated. 

We leave that extension to elsewhere. 

2. 4. 7 On the position of the memofunctions definitions 

Before closing this section we will now make a few remarks on where one 

should place the memofunction definitions. 

The memo component of the environments avoids redundant computations 

of recursive calls when those calls are depending on a unique 'father call' with 

which the memo is associated (see in section 2. 4. 6 the example of the 

binomial coefficients program). 

Avoidance of redundant computations is also achieved when the memo is 

associated to a definition whose scope includes recursive calls, as the 

following example shows. 
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Example 27. In the expression: 

let f(x) = fl p(x) then a(x) else b(x.f(cx) .f(dx)) j .  t(f(rx) .f(sx)) 

U we change f(cx)" into f(cx) valueof f 	cx (and analogously for f(dx)) 

repeated evaluations of the function f are avoided not only inside each of the 

calls f(rx) and f(sx) . but also outside them. 

For instance, given let 	valueof f gj x in plus(f(2).f(2)) 	we get 6. 

by evaluating only once f(2) according to the definition "f(x)=x+1". For the 

second call of f(2) we use the memo information. 	 0 

The "communication" outside the scope of the "father-call" shown in the 

above example could n o t have been achieved via the methods indicated In 

(Cohen 831. Moreover, having the memo component associated with the 

definition of the functional variable to which it refers, has the advantage of 

being able to discard, during computation, the relevant memo information 

when no longer needed. 
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2. 5 Formal Theories for Structural Operational Semantics 

In this section we will see how one can Interpret the structural operational 

semantics rules in formal theories and we will present two different 

approaches. They allow us to translate in two different ways the operational 

semantics rules into a deductive system a Ia Prolog [Roussel 75. Warren 771. 

The language we will consider here is a very simple one. It Is made out of 

expressions only. They are defined as follows: 

= 0 I S(e) I e1+e2 	 e C  Exp 

We leave to the reader the extension of our results to a more realistic 

programming language. We give the operational semantics by the following 

axioms and rules: 

Si. e+0 — e 

S2. el+S(e2) - Sse1+e2 

 

S(e) —s S(e') 

el - el' 	 e2 > e2 

35. 

el+e2 	e1'+e2 	 e1+e2 	el+e2' 

We look for a theory T and an interpretation function t: ExpXExp 	Formulas 

s. t. V  9, 9' € Exp. 	R(e.e') 	iff T F t(e.e') where R(e..e') is the relation 

O 	+ a' (or its reflexive transitive closure —) as introduced in the 

operational semantics. We will give two solutions to that problem. 

Our first solution is for the case: 

R(e..e') 	8 - a' and t(e.o') 	9 --,>  a'. 

Our second solution is for the case: 

R(e. e') 	a 	a' and t(e. e') 	F(s) 	F(e') 	where F is a unary relation 

symbol and 0  is the usual implication for logical theories (see Appendix C). 



2. 5. 1 First Interpretation 

We consider a first order'language Las a quadruple (S. V,O,R). where: 

S = {1..V.=} Is a set of logical connectives, 

V = 	(x, y.z.. . 	J 	is a countable set of variables. 

0 = 	(opl.op2.... } 	is a set of operators with arity. 

R = 	(ri. r2... . . ) 	is a set of relation symbols with arity. 

Parentheses are used as auxiliary symbols. 

For 	the 	notions 	which 	are 	not 	defined 	here, 	the 	reader may 	refer 	to 

EShoenfield 67. Monk 76]. 

We choose: 	0 = f0. S1. 	2}' 	V = () 
and R = (2}' where the subscripts 

denote the arity. 

Terms are built from the operators in 0 as usual. 	We have: 	Terms = Exp. 

Atomic formulas are of the form el - 	e2, where el. e2 £ Exp. 

The equality symbol =, and the universal quantifier symbol V  will not be used. 

Formulas are 	defined 	as 	the 	smallest set containing 	atomic formulas 	and 

closed w. r. t. 	1 and D. 	Closure w. r. t. 	Vv for any v 	€ 	V. 	is not necessary 

here. because V = {}. 

As logical rules we consider. as usual. the modus ponens rule MP: 

A. AB 

We do not need the generalization rule G: 

A 

for v1  € V because V=( 1. 
Vv. A 

We can dispense with nonlogical rules by adopting the following nonlogical 

axioms S' (Shoenfield 671: 

Si'. e+O 	e. 
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S2'. el+S(e2) 	S(el+e2). 
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(e 	e') 	(S(e) -- S(e')). 

(el — el') 	(e1+e2 - el'+e2). 

S5'. (e2 - 	e2') D  (el+e2 - el+e2'). 

We can easily build a term model for this theory.. 

We will use the standard notion of models for first order theories (Monk 76). 

In particular. if U is a model and 0 is a formula U 0 0 means that' 0 is true in 

U. Ifrisa set offormulas, Ur means that V0Er. U0. lfkisaclass 

of models K i 	means that V  U € K. u o r. 

Let us consider the structure U = (Terms.fR) . where f is such that f o Is the 

term Q. f5 : Terms—) Terms is s. t. fs 	 — (t) =8(t) and f:  Terms2 Terms is s. t. 

f(t1.t2) = tl+t2. 

A associates with the binary relation symbol - 	the binary relation 

= E TermsXTerms defined as follows: 

ti 	t2 iff ti - t2 can be derived from the set of axioms and rules 

S=(Si .....S5). 

As usual the satisfiability relation M l= 0 for a formula 0 in the structure M is 

defined, by induction on the formulas as follows: 

M I= ti — t2 ill ti=t2 	 for any term ti and 1:2. 

M i 10 ITt not(M10) 	 for any formula 0 

M 1= Øb' 1ff either not(Ml0) or (M14) 	for any formula 0 and V. 

As for any first order theory the completeness theorem holds and we have: 

S'l-O 1ff S'IO, 

Theorem 12: e — e' using S1. . . . , S5 1ff S'F -  e —) e'. 

Proof: (only if part) By induction of the length of the derivation of e — e' 

from the-axioms and rules Si .....S5. 

(if part) S're - 	e' iff S'ie + e'. 	Since UIS' (as one can easily 

verify). U 	e 	e'. By definition of U we have e > e'. 	 0 

The logical theory we have presented allows a direct implementation of 
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the operational semantics definitions using a first order deduction system. In 

particular one can use PROLOG. and in the next section we will indeed present 

such approach. 

The Second Interpretation of the operational semantics rules into formal 

theories is presented in Appendix C. We confined it there because it is a study 

more related to the formalism we are using. i. e. the generalized deductive 

definitions, rather than the operational semantics of memofunctions. 
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2. 6 Prolog implementations of Structural Operational Semantics 

We implemented the structural operational semantics definitions both for 

the language L (see Section 2. 1) and the language memoL (see Section 2.3) 

using the DEC-10 Prolog (Byrd etal. 80. Clocksin and Mellish 811. 

Let us first consider the implementation of the semantics for the language L. 

2. 6. 1 Implementation Syntax for L 

Expressions 	 e 6 Expressions 

e : = 0 I 1 I. . . 	 Natural Numbers 

I true I false 	 Boolean Values 

l v(x) I . . . I v(f)... 	 Individual and Functional Variables 

I succ I plus(el.e2) I . . . 	Successor and Arithmetic Functions 

I eq(el..e2) I if(e0.ele2) 	Equality Predicate and Conditional 

I Iet(d.e) 	 Let-expression 

I fapp(v(f) .e) 	 Function Application. 

Types 
	 typ. typO. typi 6 Types 

typ : = mt I bool 
	

integer and boolean types 

I typo —3$ typi 
	

functional types 

Definitions 
	 df € Definitions 

df : = def(v(x) . typ. exp) 
	

simple variable definition 

I deff(v(f) .typ.v(x) .exp) 
	

function variable definition 

I rec(df) 
	 recursive definition 

i andd(dfl.df2) 
	

simultaneous definition 

P 
	 environments 
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Environments 	 P. P1 € Environments 

P : : = nil-env 	 empty environment 

I env(bind(v(x) .val) .P1) 	generic environment 

Values 
	

val € Values 

val : : = 0 I 1 I 
	

Natural Numbers 

I true I false 
	

Boolean Values 

I Iambda(v(x) typ, e) 
	

Lambda Expressions 

Notes 

Constants are either Natural Numbers or Boolean Values. 

Terminal Expressions are either Natural Numbers or Boolean Values 	or 

Variables. 

The only Terminal Definitions are the Environments. 

Only first-order functions are allowed. 

Auxiliary definitions for the Dynamic Semantics of 

O,erators 

rewriting of configurations 

reflexive transitive closure of - 

functional types 

association of environments and transitions, e. g. Ro : ti —> t2 

All operators are left associative. 

Predefined Predicate and Functions 

Goal: 	 Success if: 

isconst(X) 	 X is a constant. 

terminal(X) 	 X is a terminal expression or a terminal definition. 

free_var(X. Y) 	X is an expression or a definition and V is the list of 

its free variables. 
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deflned_var(X.Y) 	as for free-var. Y is the list of defined variables in X. 

Set Manipulation 

Sets are represented as lists. 

Goal Success if: 

seturiion(X.Y.Z) Z = X U 'y' 

member(X.Y) X € y 

setminus(X.Y.Z) Z = X-Y 

setinters(X.Y.Z) Z = X 1)  Y 

Environment Manipulation 

update-env : Environments X  Environments  X  Environments —> goal 

avoi&.set : Environments X  Set(of Variables) X  Environments - goal 

restrict_to_set : Environments X  Set(of Variables) X  Environments - goal 

apply--any : Environments X  Variables X  Values — goal 

recur-env : Environments X  Environments X  Environments - goal 

Goal: 	 Success if: 

update_env(RoO. Rol, FinRo) 	FinRo = RoO(Rol] (where -(.1 denotes 

the usual function updating so that Rol 

supersedes RoO). 

avoid_set(Ro.X. LeftRo) 	 LeftRo is s. t. dom(LeftRo) = dom(Ro)-X 

and Vx € dom(LeftRo). LeftRo(x)=Ro(x). 

restrict_to_set(Ro.X. ReRo) 	 ReRo is s. t. dom(ReRo)=dom(Ro) fl  X 

and Vx € dom(ReRo). ReRo(x)=Ro(x) 

apply_env(Ro.X.Val) 	 X is bound to Val in the environment Ro. 

recur_env(Ro. Ro. RecRo) 	 rec RoRecRo (see rule R2) 



2. 6. 2 Dynamic Semantics for L 

In the implementation Ro: A ' B denotes P1-  A - B. For instance, we 

will write Ro: Iet(R. C) — C Instead of: Pt-  Wt A in. C 	C. 

In the implementation -' denotes the "terminal reflexive transitive closure" of 

—+ in the sense that Ro: E - 	Efln holds iff: 

] E0
1 

E 1 .. . . . E 1, for n0 and Ro: E0  —+ E l 	. Ro: E_ 1  - E and E0=E. 

E0=EfIn hold and 

Efin is a terminal expression (or a terminal definition). 

Lines starting with % are comment lines. 

A: -B. C,. . . F . means "if B and C and . . . F succeed then A succeeds". 

A: -. means that A succeeds. 

More details on the PROLOG syntax and the PROLOG system we used may be 

found in (Clocksin and Mellish 811. In particular the reader may refer to that 

book for the explanation of the semantics of the goal "!" which controls the 

backtracking mechanism. For understanding its use the following may suffice: 

A: -B. C.....F.! means that if B and C and. . . and F succeed then A succeeds 

and it is not possible to have a success for A in any other way (even If other 

clauses of the form A: -. or A: - . . . . exist) 

%Evaluation to terminal (or normal) form. 

Ro: E - 	E :- terminal(E), I. 

Ro: E__*  E2 :- Ro: E —> El. Ro: El —>' E2. 

%Variables. 

Ro: v(X) -+V 	 :- apply_env(Ro.X.V). 1. 

%Arithmetics. 

Ro: succ(N) ---- M 	 :- integer(N). M is N + 1. I. 

Ro: succ(E) —) succ(E1) Ro: E — El. 

Ro: plus(M.N) 	S 	 :- integer(M).integer(N).S is M + N. I. 

Ro: plus(El.E2) 	plus(Ell.E2) :- Ro: El -' Eli. 

209 



210 

Ro: plus(Ei.E2) - plus(Ei,E21) :- Ro: E2 - E21. 

(Analogously for other arithmetic functions) 

Ro: eq(MN) - true :- integer(M)integer(N). 	M = N. 

Ro: eq(M.N) - false :- integer(M).integer(N). 	not(M = N).!. 

Ro: eq(El.E2) -9 eq(Eii..E2) :- Ro: 	El - 	Eli. 

Ro: eq(El.E2) -9 eq(E1.E21) :-Ro: E2 -> E21. 

%Conditlonpl. 

Ro: if(E0. El, E2) -9 El :- Ro: 	E09 true.!. 

Ro: if(E0.E1.E2) - E2 :- Ro: 	EQ -> false.!. 

Ro: if(E0.Ei.E2) -9 if(EOi.E1..E2) 	:- Ro: 	E0 -+ E01. 	!. 

%Let clause. 

Ro: let(nil_env. E) -+ E : - !. 	% inserted for efficiency. 

Ro: let(D0.E) -9 Iet(D1.E) :- Ro: 	DO - 	Dl.!. 

Ro: let(D.E) -9 let(D.E1) :- terminal(D). 	uodate env(Ro. D. Aol). 

Ro: let(D.E) -9 E 	 :-terminal(E)J. 

%Function application. 

Ro: fapp(v(F).E) -> fapp(v(F).El) :- Ro: E-9 El.!. 

Ro: fapp(v(F) . C) -> let(env(bind(v(X) . C) . nil -env) . Body) 

- is_const(C). 

apply_env(Ro. F. lambda(v(X) .. Body)).!. 

%Simple definitions. 

Ro: def(v(X).T.E) 9 def(v(X),T.Ei) 	 :- Ro: E -> El. 

Ro: def(v(X) .T. E) -9 env(bind(v(X) . E) . nil -env) 	: - is const(E)J. 

%Function definitions. 

Ro: deff(v( F) . T. v(X) . E) 9 env( birid(v( F). lambda(v(X) . T. let(d. E))). 

nil-env)  

- free_var( E. FVE). setminus(F\JE. [XI. V). 

restrict-to-set( Ro. V. D). 



%Recursive functions. 

Ro: rec(D) - 	rec(01):- defined_var(D.DVD). free_var(DFVD). 

setinters(DVD. FVDVO). avoid_set(Ro.VO. Aol). 

	

Rol: D 	Dl. !. 

Ro: rec(D) - Rol 	:- terminal(D). recur_env(D,D. Aol). 

%And definitions. 

Ro: andd(DO.D1) - 	Rol 	 :- terminal (DO). terminal (D1). 

update_env(DO. Dl. Rol) .!. 

Ro: andd(DO.Dl) - andd(DO1..D1) :- Ro: DO - DOl. 

Ro: andd(DO.Dl) - andd(DO.D11) :- Ao: Dl - 011. 

%Faiiure. 

Ro: E - 	El: - nI. write(' 	Evaluation fails for 

print(E). write(' in the environment: ). 

print( Ro) . fail. 

%Evaluation in a given environment. 

eevai(RoE) :- Ro: E 	Enf, nl, write('ln the environment: 

print(Ro). write(' the expression <or definition>: 

ni, print( E). write(' reduces to: '). print(Enf). 

%Evaluation. 

eval(E) 	:- eevai(niLenv.E). 

The "s make the system more space efficient. 	The failure clause is for 

debugging purposes. 

2. 6. 3 Pragmatics for L 

Here is an example session for the language L using the DEC-10 Prolog 

system at Edinburgh University. 	The user should have access to the files 

. pro(3120. 3134). 

run prolog 
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Edinburgh DEC-10 Prolog 

I ?- ['sysoO. pro']. 

yes 

?- eval( Iet(def(v(x) . mt. 2) . plus( minus(v(x) . 1) .4))) 

In the environment: C ) the expression <or definition>: 

let x: int==2 in x-1+4 	reduces to: 	5 

yes 

I ?- 	 and the system waits for another query. 

There Is a tracing facility to show the "surface transitions". 	It can be 

switched on by typing: step. and it can be switched off by: no -step. 

I ?- step. 

yes 

I?- evaI(let(def(v(x),lflt.2).PIUs(mmnuS(V(X).l) 4fl )  

let x: int==2 in x-1+4 —> let (x==2) in x-1+4 —+ 

let (x==2) in 2-1+4 	) let (x==2) in 1+4 	> 

let Cx==2) in 5 	 + 5 

yes 

I ?- 

Notice the "pretty print" 	let x: int=2 in x-1+4 	instead of 

let(def(v(x) . mt. 2). plus(minus(v(X) . 1). 4)). We will not describe here the 

details of the pretty print syntax. 

Using the- backtracking facility of PROLOG we can obtain from a given 

expression (or definition) all the rewriting sequences which are possible. 

Backtracking is activated while looking for a new binding of a given variable. 

Let us consider the following example. Suppose we have the goal: 

go(X) : - eval (plus (minus (2. 1). plus(3. 1))). where the variable X occurs. 



Then if we ask: go(X). we get the answer: 

2-1+3+1 	1+3+1 	1+4 	5 	x = 

and by typing :" and RETURN we can get another reduction sequence for the 

given expression. We can continue that process and we can get all the 

reduction sequences. A general formula -  for computing their number will be 

given in subsection 2. 6. 7. 

In our case we have the two sequences: the one given above and 

(2-1)+(3+1) - (2-1)+4+ 1+4+5. 

Since the failure clause interacts with the backtracking mechanism, in order to 

observe the various reduction sequences we provide the user with a system 

called "syspar. pro (which should be used instead of "sysOO. pro". ) 

Let us turn now to the implementation of operational semantics for the 

language memoL. Since it is very similar to the language L. we will mention 

only the features which are different. 

2.6. 4 Implementation Syntax for memoL 

Expressions 
	 e E Expressions 

e ::= ... (as for L) 

I vof(eO.v(f).el) 
	

valueof expression 

I letm(memel.e) 
	

letmemo expression 

Definitions 

(as for the language L without recursive definitions) 

Constants 	 con € Constants 

con : : 	0 I 1 I ... I true I false 

Environments 	 P € Environments 
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P : : = nil-env 
	 empty_environment 

env(bind(v(x) .val) .p) 
	

binding a simple variable 

I env(bind(v(f) .ie(val,IL)) .P) 	binding a function variable 

Memos 
	

LL € Memos 

= nil-mom 
	 empty-memo 

I mom (pair(conO. con l) ./L) 
	

memo with <conO. con 1> 

Memoelements 
	 memel € Memoelements 

memel : : = mel(v(f) .conO. con 1) 
	

remembering f(conO) =conl 

In the implementation we did not use MemoEnvironmerits and we used 

instead Memoelements. The relationship among the two notions is that a 

memoelement Is a memoenvironment where there is only one function symbol 

and it is bound to an argument-value pair only. The possibility of using in our 

implementation Memoelements instead of MemoEnvironments is due to the fact 

that we give priority to the application of the 'memopropagation" and 

memoupdatlng rules. In that case. in fact. only one memoelement at a time 

is propagated towards the environment where it should be stored and therefore 

in any 'letmemo /L in e expression we have: 

At M (f(c0)=c 1 } for some f £ V. c0  and c 1  € Con. 

Manipulation of Memos. 

memo_update : Environments X  Memoelements X  Environments - goal 

in-memo : Environments X  Variables  X  Constants X  Constants ---* goal 

memo_update(RoO. mel(v(F) . CO. Cl). RoU): this goal succeeds if RoU is 

an environment where the memo for the function F has been updated with the 

pair <CO Cl>. 
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iri_memo(Ro.F.CO.C1): this goal succeeds if in the environment Ro, the 

memo for the variable F has the pair <CO.Cl>. 

2. 6. 5 Dynamic Semantics for memoL 

The Dynamic Semantics for the language memoL is very similar to the one 

for the language L. The differences are the following ones: 

%Memo uodatlnp and Memo nrooagation. Letmemo expressions. 

% (Initial clauses of the program). 

Ac: E — El : - propmemo. 

E =.. [let; Env. letm(me$(v(F) . CO. C1) .Exp)]. 

Env = env(A. B). deflned_var(Env, DVE). member(F. DyE), 

memo_update(Env. mel(v(F) .CO.C1). NewEnv). 

El =.. (let. NewEnv. Expi. retract( (propmemo)).1. 

Ro: E — El :- propmemo. 

E =.. [Fu I Argi]. memberpos(Ietm(M. Exp) .Argl. P). 

repl(P.Argl.Exp. NewArgi). NowExp =.. C Fu I NewArgi]. 

El =.. (letm. M. NewExp] . I. 

%Functlon application. 

Ro: fapp(v(F).E) — fapp(v(F).El) 	 :- IRo: E —> El.!. 

Ro: fapp(v(F).CO) —+ Cl 	 :- is_const(CO). 

in_memo(Ro. F. CO. Cl).!: 

Ro: fapp(v(F) .CO) - let(env(bind(v(X) . CO), nil -env) .Body) : - 

is_const(CO). 

not(inmemo(Ro. F. CO. -)) , 

apply_env(Ro.F.ie (lambda (v(X)._,Body),_fl. 

%valueof at 

Ro: vof(El.v(F).EO) - vof(El.v(F).EO1) :- Re: EO —) EOl. 

Re: vof(E1.v(F).EO) ., vof(Ell.v(F).EO) :- Ac: El - Eli. 

Ro: vof(Cl.v(F) .CO) - letm(mel(v(F) .CO.Ci) 
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- is_const(cO). ts_const(C1). 

not( in_memo( Ro. F. CO. Cl)) . asserta( (propmemo)) .!. 

Ro: vof(E. v(F) . CO) — Cl 	: - ls_const(CO). ln_memo(Ro. F. CO. Cl).'. 

%Functiori definitions. 

Ro: dff(v(F) . T. v(X) . E) 	+ env(bind(v(F). ie(lambda(v(X) . T. E). 

nhl_mem)) . nil_env) : - I. 

Remarks. 

not(X) is a goal which succeeds if the goal X fails, and viceversa. 

When an expression of the form letmemo (f(cO)=cl I in ci is generated 

(by rule VF3) we will propagate the information f(cO)=c1 by inserting it in 

the memopart of the environment where f is bound. This is done by asserting 

the goal propmemo via 	asserta((propmemo)) 	and invoking the 

memopropagation clauses as often as possible, by locating them at the 

beginning of the program. (Indeed Prolog gives priority to the rules one writes 

first. ) 

We will not explain in detail here the clauses for memopropagation and 

memoupdating. They implement the rules MU and MPr. without Introducing 

the notion of atomic expression-contexts. We did so for reasons of efficiency. 

We analyzed and manipulated the structure of the expression where the 

memopropagation and memoupdating should take place by using the PROLOG 

built-in predicate . . (Clocksin and Mellish 811. It provides a way of 'visiting 

a structure's by giving its functor" and its arguments'. 	For instance. 

+(2. 3) =.. (4-. 2. 31 and Ietm(memei. e) 	.. (letm, memei. e]. 

Two functions are used: 

memberpos: expressions X  list of expressions X  integer + goal. 

integer X list of expressions X  expression X  list of expressions 	goal. 

memberpos(ei. Eel .....en]. k) succeeds if k=i. i. e. the expression ei is the 

i-th expression in the given list. 

repl(kJel .....ek.....en].ekl.E) succeeds if E = Eel ..... eki .....en]. 

where the k-th element is replaced by eki. 
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A list of the form (el, e2.. 	en] is also represented as (ellA] where 

A = (e2.....en]. 

When function definitions are evaluated we do not build closures, but we 

bind the functions to their corresponding lambda expressions. That Is correct 

because for t(x: T0): 7 1 =9- definitions we assume that: FV(e) E Cx. 9. . Indeed 

correctness holds under weaker hypotheses on FV(e) (see Sect. 2.4). 

2. 6. 6 Pragmatics for memoL 

In order to evaluate expressions or definitions in the language memoL the 

user of the DEC-10 Prolog system should have access to the files 

*prl(312031341 and type: 

('sysOl. pry]. 	The system answers as follows: 

sysOl. pri 

I ?- 

then one could ask. for Instance, for the evaluation of the fibonacci function 

using memo information by typing: 	mflb(4). and one gets: 

In the environment ( ) the expression <or definition>: 

let mfib(x)==if x=O then 1 else if x=1 then 1 else 

[mfib(x-1) valueof mfib at x-1] + [mfib(x-2) valueof mfib at x-21 

in mfib(4) reduces to: 5. 

In our Prolog implementation fibonacci(5) is computed in about 14 

seconds using the L version and about 9 seconds using the memoL version. 

Indeed the direct implementation of the operational semantics rules make the 

computations to be very slow. That is due to the fact that structural rules often 

force "unnecessary deduction steps (as shown in Example 18 of the previous-

section 2. 1) and the fact that, in general. Prolog works as a blind theorem 

prover. Despite the heavy inefficiency problems our implementations were of 

great help in checking the correctness of our semantics rules. 
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2. 6. 7 On the number of different reduction sequences 

As we mentioned in the previous section. our Prolog implementation of 

the operational semantics rules provides also a way of computing all reduction 

sequences of a given expression to be evaluated. In this section we give a 

formula for counting their number. Through this analysis we can measure the 

parallelism inherent in the evaluation of an expression and we also have an 

indirect proof of the correctness of our Prolog implementation. 

Let us first consider the simple case of expressions with binary operators 

only. This simple case allows us to study the reduction sequences of 

arithmetic expressions, like for instance. (5+3)-(4-1). This expression can 

be reduced in two different ways: 

(5+3)-(41) — 8-(4•1) —> 8-4 	4 and 

(5+3)-(41) - (5+3)-4 —) 8-4 ---  4. 

Let us define the following rewriting systems on Terms. t € Terms. 

t is either 	c 	or 	I ti t2 where ti t2 C Terms. 

The only rewriting rule is: 	I C C 	 C. 

The stroke operator I (analogous to the one introduced by (Rosenbloom 50]), 

stands for any binary operator (as a prefix) 

Example 28. The term lllcciccicc can be reduced in 8 ways. 

ticiccicc 	- llccicc 	Icicc 

V X\N 
ill cciccfcc 	- lllcccicc llciccc 	b Ilccc 	icc -> c 

><  

lllcciccc 	Ill cccc 

 

Lemma 13: Given two ordered sequences of ii and 12 objects, the 

numbers of different ordered sequences derived by merging them and 

preserving their suborders is [.t1+2. k 1}. 
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Proof: After merging the two given sequences, the resulting one has 

11+12 objects. The number of ways of picking from it Li objects is equal 

to the number of ways of merging those Li objects in the sequence with 

12 objects. 	 0 

Let us associate to each term t a pair of numbers <n. 1.> where' n is the 

number of different reduction sequences in which we can reduce t, and t is 

their common length. (Obviously, for any given term t all reduction 

sequences of t have the same length.) With the Irreducible term c we 

associate the pair <1,0>. 

Theorem 14: 	If t = I ti t2 and <ni. Li> and <n2, 12> are the pairs 

associated with ti and t2 respectively, then <n1-n2-(f1+12,11]. 

11+12+1 Is the pair associated with t. 

Proof: The first component of the pair associated with t Is obtained as 

follows. There are n 1  reduction sequences of length 1 1  when reducing ti 

to c. for 1=11.2. A reduction sequence for t can be obtained by 

interleaving a reduction sequence of ti with a reduction sequence of t2 

and finally reducing icc to c (and this last reduction can be done in a 

unique way). The number of those interloavings is given by the previous 

lemma. The second component of the pair associated with t is 21+12+1 

because for reducing t to c, we may reduce ti to c in Li steps. t2 to c in 

L2 steps and then icc is reduced to c in 1 step. 0 

In general one can prove that when m-ary operators (with m ) 0) are 

involved we can associate with t = I t 1 . . . tm  the pair: 

m 
<flj.'fl2.. 	 Li+i> 

i= 1 

where n 1 . L> is the pair associated with t 1  for i=1, . . . . m 

This result derives from the previous result and a simple generalization of the 

binomial coefficients [Cohen 781. 
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2. 7 Annotations denoting communications and communicating agents 

This section outlines two other approaches to communications and 

parallelism in recursive equation programs. which I have pursued after the 

work described above. To keep the length of the thesis within reasonable 

bounds I give only a brief account of them here; The interested reader may 

refer to (Pettorossi and Skowron 82b. Pettorossi and Skowron 82a, Pettorossi 

80b. Pettorossi and Skowron 831. 

The first approach uses annotations (Schwarz 781 to denote communications. 

the second one introduces communicating agents. 

2. 7. 1 Annotations denoting communications 

Some of the ideas for the annotation language introduced in [Pettorossi 

80b] are taken from [Dennis 74. Kahn and MacQueen 77. Hewitt and Baker 

78, Hoare 78, Lauer, Torrigiani and Shields 79. Milner 801. The major 

features of our approach are: 

communications may be optional (written between slashes. 1. 9. I. . . I) or 

compulsory (written between exclamation marks. I. e. I...!). If optional they 

do not influence program correctness, but they improve program efficiency. 

There are either broadcast communications. 	or point-to-point 

communications. Point-to-point communications are messages sent to 

queues, which are available (for reading and writing) to all computing agents. 

I. o. all processes which perform the applications of recursive equations. 

Queues are not 'private as in (Kahn and MacQueen 771. and they have 

names. 

There are mechanisms for serializing read and write operations on queues. so  

that agents may be delayed when they refer to the queues used by writer 

processes. 

Communications denote facts. i. e. pieces of truth. The semantics of the 

data in the queues does not depend on when data are written or read. nor on 

the agents which operate on them. 



221 

More details can be found in (Pettorossi 80b1. 

We give here a simple example. 

Program Fl 

fib(n) = If n=O or n=l then 1 !send(Lqueue 0). send( 1.puoue 1)! 

gise  z !send (z. queue n)! 

where z=flb( n-i) +b !receivetoken ( b. queue n-2)1 

In Program FL which compute the familiar Fibonacci function, there are 

queues 	whose 	names 	are 	natural 	numbers. 	The 	annotation 

lreceivetoken(b.queue n-2)l means that a compulsory communication must 

take place between the computing agent which evaluates b and the queue n-2. 

That agent Is blocked until a"token" (1. 9. an Integer) Is placed into that 

queue, so that it can receive it by performing a receivetoken operation. 

lsond(1 . oueue 0). send(1. aueue DI means that, after the evaluation of 

fib(0) [or fib( 1) 	the computing agent has to send to both queues 0 and 1 

the value of fib(0) [or fib(1) ]. The meaning of !send(z.aueue fl)' is 

analogous. 

Program Fl has linear running time and it avoids repeated evaluations of 

recursive calls. Therefore it is an improvement upon the exponential running 

time program derivable from the Fibonacci definition. 	 0 

We give now another example where the use of compulsory 

communications avoids the repeated evaluation of function calls. 

Let us consider the program: 

Program F2. 1 

sumsq(n) = if n0 then 0 else sq(n)+sumsq(n-1) 

sq(n) = if n0 then 0 else sq(n-1)+ 2n-1 

22 	2 
where sumsq(n)0 +1 +. . .+n (see Sect. 2.4). 

Obviously the running time for the above program is proportional to n 2 . We 

can make it linear by adding some compulsory communications and using an 

auxiliary function as follows: 



Program F2.2 

sumsq(n) = Ji n=O then 0 else sq(n)+sumSql(fl - 1) 

sumsql(n) = jf n=0 then 0 el se z+sumsq1(n-1) !receivetokefl(Z, queue n)i 

sq(n) = j1 n=0 then 0 !send(0. Queue 

else  z !seii(z. queue n)! 

where z = sq(n-1)±2fl-1 

The function sumsq(n) is only required for the activation of the function 

sq(n). while sumsql(n) does the job of summing up the squares produced by 

sq(n). 

A receivetoker, operation does not erase the received value from the 

corresponding queue: we say that it is not erasina communication. There are 

also other kinds of annotations denoting erasing communications: they are 

useful for solving synchronization problems (Pettorossi 80b1. 0 

A final example shows the use of optional and broadcast communications. 

Suppose we are given the following program, written in a HOPE-like notation, 

which computes the set of all leaves of a binary tree. 

Program F3. 1 

data btree(num) == niltree 4-+ tip(num) ++ btree(num)Abtree(flum) 

dec leaves : btree(num) 	set(num) 

Ieaves(niltree) = 0 

leaves(tip(t)) = (L) 

leaves(tlAt2) = leaves(tl) U leaves(t2) 

In order to compute the result we need in any case to perform the 

complete visit of the given btree, but an increase of efficiency is possible if we 

speed up the set-union operation. No matter what algorithm we choose for 

implementing that operation. it will require less time if we keep the sets 

involved as small as possible. This can be achieved by establishing some 

communications. 
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As soon as a leaf value, say 1. has been found, we can broadcast that 

information. In this way. when the value L is encountered again, we may 

return C) instead of M. 

We can annotate program F3. 1 and obtain the following one: 

Program F3. 2 

data btree(rium) == niltree ++ tip(num) ++ btree(num)Abtree(num) 

dec. fastleaves : btree(num) 	set(num) 

fastleaves(niltree) = C) 

fastleaves(tip( L) ) = if L€z /received(z) / 	then C) 

jg (2.)  /broadcast( I-) / 

fastleaves(tlót2) = fastleaves(tl) U fastleaves(t2) 

where we used the following primitive operations for broadcast 

communications: 

broadcast(n) where n is a data value, and 

received (z) 	where z is a (local) variable. 

Their meaning can be explained by assuming that there exists a global variable 

SET. Initialized to the empty set. which can be updated and looked up during 

computation. 

broadcast( 2.) makes SET to become SET U (1): 

received(z) binds z to the current value of SET. 

By convention, the local variable z is bound to the empty set. if received(z) is 

not executed. 

(Recall that communications between slashes are optional.) 

Program F3. 2 is an improvement upon program F3. 1 because. by referring to 

the global variable SET, we do not collect leaves values already considered. 

One can easily verify that, as usual. optional communications in program 

F3. 2 do not affect program correctness but only program efficiency. 	 0 
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2. 7. 2 Communicating Agents 

This approach to communications In applicative languages is presented in 

[Pettorossi and Skowron 82b]. That work is motivated by the need of having a 

way of controlling, point-to-point communications, so that they take place only 

"locally", and their routing, when many communications must occur. will not 

require much computational overhead. 

For that purpose we introduced the notion of computing agent as a triple: 

< agn. msg >: : expr, 

where a An is an agentname. rnsg is a message associated with the agent and 

expr is an expression which should be worked on by the agent agn. 

A recursive equation program is a set of rules for transforming sets of agents 

(written on the left hand side of the rules) Into new sets of agents (written on 

the right hand side of those rules). The computation proceeds by 

nondeterministic application of a rule at a time, using a pattern matching 

mechanism a la Hope (Burstall. MacQueen and Sannella 801. 

Here is a simple example. 

Program F4, written in our language which we call Hope-C, sorts two bags 

(i.e. multisets) S and I of integers using two computing agents P and Q. 

associated with S and T. respectively. (This problem is due to Prof. Dijkstra. ) 

P and Q stop when S and T are transformed into S' and T' such that: 

ISI=IS'I. ITI=lT'l. S U T = S' U T', a 4 b for any a 6  5' and any b € T'. 

Program F4 

(<P, v): :S) = (P.max(S)>: :S) 

(Q. V>: : T) == (<Q. min(T)>: : TI 

(<P. M,: : S. <Q, m>: :1) = (<P. V>: :S-M+m, 

<Q.V': :T-m4-M) if M> m 

V (signifying 'no value') does not match any integer. 
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S-n means "subtract integer n from bag S": S+n  means "add integer n to bag 

S .. . 

Rule a. says that the agent P computes the maximum integer in the bag S 

and stores it in its message. Analogously for rule b. 

Rule c. says that whenever the agents P and Q have computed the values of 

their messages. they can swap them and update their bags accordingly. 

The computation goes on by successive swappings of elements between P and 

Q. so that eventually each element in S is not greater of each element in T. 

Program F2 evokes, for instance, the following computation: 

<P, V>: : ( 1. 1.3). Q. V>: : (2.2) J 
---), (by a) (<P.3>: :(1. 1.3). Q, V>: : (2.2) } 	P computed max(fl. 1.3)) 

— (by b) (<P.3>:: (1. 1.3). <Q.2>: : (2.2) } 	Q computed min((2.2)) 

— (by c) (<P.V::(1.1.2). Q.V>::(2.3)) 

P and Q swapped their messages and updated their bags. 

— (by b) [<P.V: :(1. 1.2). <Q.2>: : (2.3) } 	Q computed min ((2.3)) 

— (by a) (<P.2>:: Cl. 1.2). <Q.2: : (2.3) } 	P computed max((1. 1.2)). 

The computation halts here because no rule can be applied. 

In general. program rules can be partitioned into two groups: 

rules concerning one agent only: they specify the agent behaviour "in 

isolation", I. a. when no interaction from other agents should be taken into 

account (see rules a. and b. of Program F4): 

rules concerning more than one agent: they specify the interaction among 

agents and the way they cooperate with each other (see rule c.). 

The evaluation process may be performed in a parallel way. Indeed, for 

each computation step. we can apply many rules at a time, provided that for 

any pair of rules the corresponding pair of sets of agents to which they are 

applied, are disjoint. 

In particular in Program F4 we can reduce in one step 
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(<P. 7>:: 0. 1.3). <Q. 7>: : (2.2) ) 	to 	(<P.3':: 0. 1.3). <Q.2>: : C2.2) ) 

by a parallel application of rules a. and b. 

In order to compare our approach with the one in [Milner 801. we give 

here the CCS program corresponding -to program F4. 

Program F4. 1 

P(S) 	ax. (max(S)). if max(S) >x then P (S-max(S)+(x)) 

else (S). NIL 

Q(T) 	= (min(T)).13y. jt y> rnin(T) then Q(T-min(T)+(y)) 

else (T). NIL 

NIL denotes the CCS agent which "does nothing", and the communications 

between P and Q occur through the ports a and 13, while ports 'Y and 8 are 

used for sending out the resulting bags. 

In program F4.1 the final result is obtained by one extra exchange of values 

w. r. t. the ones required in Program F4. 

Program F4 can be improved by observing that elements can be swapped 

only once. Therefore we can save in separate subbags the elements received 

from the other agent and, in that way, we can speed up the computation of 

max and mm. The improved rules a. and c. are given below. The bag of the 

agent P is split into bags SO and Sr. where Sr stores the elements received 

from agent Q. Initially. SOS and Sr0. 

(Analogously for the bag ofthe agent Q. ) 

a'. (<P.7>: : (S I Sr) ) = (<P. max(S)>: : (S I Sr) ) 

C'. (<P. M>: : (S I Sr) . <Q. m': : (T I Tr) } 	(<P. ': : (S-M 	I Sr+m) 

	

(T-m 	I Tr+M) 	if M>m 

0 
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As a final example let us consider again the program for computing 

.+n2 . when multiplications by 2 only are allowed (see section 2.4 and 

program F2. 1 in this section) 

We have the following computing agents: 

<sumsq, res': : k where res stores the sum of the squares already computed 

and k is such that (1 2+.  . . + k2)+res=1 2+. . . 

for any k. 0kn. 	<sq•k. p>: : k where p is either the 'empty valued V  or 

k2 . 

Notice that the name of the agent is parametrized by 	-k. This 

parametrization technique is useful when recursive calls have to be 

implemented via computing agents. For details see (Pettorossi and Skowron 

82b]. 

As usual V  does not match any Integer. 

Program F5 

1. 	Csumsq.V>: : K) 6== (<sumsq.O': : K. sq.K.V: : K) 	 11 k)O 

2.1(<sq.k.V::k) 	<===(<sq.k.V'>::k. <sq.k-1.V'>::k-i) 	 .jfk>O 

2.2 	sq.0.V>: :0) 	4== C<sq•O.O>: :0) 

2.3 (<sq.k+1.V: : K+1. <sq-kkto2: : K) 6= (<sq-k+1.kto2+2k+1>: : k+1. 

sq - K. Kto2>: : K) 

3. 	(<sumsq. res>: : k. <sq.k. kto2>: : k) 	(<sumsq. res+kto2>: : k- 1) 

Initially there exists only the agent <sumsq.V>: : n. 

The result of the computation is given by the message component of the agent 

sumsq when it cannot longer be rewritten (i. e. when its expression is -1). 

Rule 1. initializes the computation. Rules 2. 1. 2.2 and 2.3 compute the 

values of k2  for k0,. . . n by storing them in the message component msg of 

the agents <sqk. msg>: : k. Notice the way in which recursion is implemented, 

and recursive calls are suspended, using the value V 



228 

Rule 3. realizes the interaction between the agent sumsq and the various 

agents sq•k's. sumsq reads their messages and garbage-collects them. 

Indeed sq•k does not occurs in the r. h. s. of rule 3. 

At the and of the computation there exists the agent sumsq only. 

The recursive generation of the agents sq"k's can be avoided using the 

following program where there exists only one agent sq. together with sumsq, 

and it stores in Its message the list of pairs [k, k 2] for k=0. . . . n. 

denotes list concatenation. During the computation. sq satisfies the 

following "agent invariant": 

<sq. (k. k2]: . . : (0. 0]: : n-k 	for k=0.. . . n. 

Program F5. 1 

C<sumsq.V>: : ni 4== (<sumsq0>: : n. <sq.(0.OD: : n) 	 if n0 

(<sq. (k, kto2i: b: : m) 6== (<sq (k+1. kto2+2k+11: (k. kto2]: I>: : rn-li 	If m>0 

(sumsq.res>: :k. <sq.(k.kto2l:t: :p) 4==i (<sumsqres+kto2: :k-l. 

<sq. 2.':: p1 

At the end of the computation the desired result is given by the message 

component of the agent sumsq. The agent sq is not garbage-collected. 	0 

We are currently working on the development of the computing agents 

approach, and on the formalization of methods for proving the correctness of 

their behaviours. 

In [Pettorossi and Skowron 831 complete logical theories are given for 

reasoning about parallel computations evoked by. sets of agents. 



2. 8 Conclusions 

In the first part of the thesis we analyzed a method for deriving program 

by transformations [Burstall and Darlington 771. 

When using that approach the programmer first writes a very simple and 

maybe inefficient program, whose -  correctness can easily be shown and then 

he tries to transform it in a more efficient one, by applying transformation 

rules which preserve correctness. 

We devoted our attention to functional languages and. in particular. to 

recursive equation languages. They have been advocated because they allow 

easy proofs of program correctness and they are quite suitable for program 

transformation. We were able to convert many "ad hoc" heuristics and 

techniqueè, previously described In the literature, to a powerful strategy. 

called "tupling Strategy". 

The main Idea consists In the "synchronization" of function evaluations, which 

share common subcomputations. Once the commom expressions are 

evaluated, their values are "sent" to the functions which need them. In that 

way. improvements in efficiency can be achieved, and we showed that optimal 

algorithms can be derived for recurrence relations evaluation. 

The gain in efficiency relies on the fact that. using the tupling strategy. 

"general recursive" programs can often be transformed into "linear recursive" 

ones. We can then apply various techniques. already studied by other 

authors, for efficiently implementing linear recursion without using stacks. 

The tupling strategy also allows tupled functions to be evaluated in a 

concurrent way because the various components can be independently 

evaluated. However, they need to be- synchronized, so that the computation 

of the common subexpressions is not repeated. 
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We compared the power of the tupling strategy with other methods for 

eliminating redundancy in recursive programs, as the ones recently published 



230 

in (Cohen 831. 	It turns out that they are all particular cases of the tupling 

strategy. 

At the end of the first part of the thesis we showed a limitation result". 

We presented a class- of recursive program schemas for which the tupling 

strategy cannot eliminate all redundant computations (if the number of the 

tupied functions is fixed at compile time). That result suggested us to look for 

ways of realizing communications among function calls at run time". 

In the second part of the thesis we looked at the memofunctlons approach 

(Michie 681 as a first method of realizing run time communications among 

functions calls. We provided their operational semantics, and we presented 

their first formal treatment. 

We gave an operational semantics definition for a language with 

memofunctions and a corresponding one for a language without 

memofunctions and we proved their consistency. In the sense that memoing 

improves efficiency and it preserves correctness. 

We implemented our operational semantics definitions in Prolog and we studied 

various formal theories in which one can embed them. 

Finally we mentioned some other approaches of allowing communications 

among functions calls. Those ideas of ours are still under development and 

they will be the object of our future study. 



Appendix A 

THE STATIC SEMANTICS FOR RECURSIVE EQUATIONS PROGRAMS 

Let us first define the following three kinds of formulas: 

p I- e 	meaning that the expression e is well-formed w. r. t. 

the program p: 

p l d 	meaning that the definition d is well-formed w. r. t. the 

program p: 

p I-  req 	meaning that the recursive equation req is well-formed 

w. r. t. the program p. 

We also need the following definitions: 

the set of the free variables occurring in an expression e 

(denoted by FV(e)) and in a definition d (denoted by FV(d)); 

the set of the defined variables occurring in a definition d 

(denoted by DV(d)) and in a program p (denoted by DV(p)). 

The following tables define FV(e) for any e € Exp. FV(d) and DV(d) for 

any d € Def. and DV(p) for any program p. 
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0 	 m 	t 	x 
	

bop,( 	 ff 90  then 81  else e. 

FV(e) 	0 	0 	Cx) 
	

U 1  FV(e 1 ) 	 FV(e0) U FV(e 1 ) U FV(e2) 
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I 	e where d 
	

f( .) 

FV(e) I (FV(e)\DV(d)) U FV(d) 	{f} U (U 1  FV(e 1 )) 

Notice that the FV(cons(. . ..be.. . .)) can be derived using the definition 

of FV(bop,( .... ......)) because cons E  Sop. 

d 	xe 	<x 1  ..... 

FV(d) FV(e) 	 FV(e) 

DV(d) I 	{x} 	( x i ,  - - - Xnl 

Given p = [f 1 (. . . 	 . fn ( ... 	 we define: DV(p) = (f 1 .. . 

Now we can state axioms and derivation rules for well-formedness for 

basic expressions, expressions, definitions and recursive equations. We will 

state those notions with respect to a given program p. 

This will allow us to define the notion of well-formedness of a program p as 

follows: 

Definition 1: A program p = [req 1  .....req} is well-formed iff Vi 1in 

req 1  is well-formed with respect to p. 

For basic expressions and expressions we have: 

P m for any mEN 

pl-  t for any tET 

p I -  x for any individual variable-x C IVar 

	

p 	be 1 .. .. .p I-  be 

for be 1  .....be € BasExp 

p 1- cons(be 1 . ... ben) 



pt-a 1 . 

p F- bap (e l 	 . e) 

p F- 80. p F- e l ,p I- e? 

p F- Lt e then 81 else 82 

for e'... . . e, € Exp 

for 8 1g. .. . e € Exp 
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Notice that. In order to conclude the well-formedness of the expression 

11 00 then e l  ALaa 02  we do not check whether or not 90  is a boolean 

expression. Indeed we do not include any typecheckirig consideration in the 

definition of weli-formedness. 

We could have easily extended our rules to Incorporate such typechecking, as 

we have done elsewhere in the thesis. 

We omitted it here because now we are only Interested In the issue of how free 

variables and defined variables effect well-formedness of recursive equations 

programs. 

p F- e. 	pI - d 

for e € Exp. d C  Def. DV(d) E FV(o) 

p i-  a where d 

for e'.. . . . e, C Expand f € FVar 

p I- f(e 1 .. . . . e,) 

For definitions:. 

p i 8 

for a € Exp and x % FV(e) 

p 1- x=g 

pi-  e 

for e € Exp and (x,, ... Xn  ) fl FV(e) = 0 
p 1- <X 	. . 



For recursive equations: 

pI-be 1 ....pl- be.ple 

If TEDV(p) and FV(e) E [Dvp U (U1  FV(be 1 ))] 

p 1f(bQ 1 ... .bad 	Q 

Notice that we did not allow recursion in definitions, so that for instance 

x = x+2 is not a well-formed definition. Notice also that if the recursive 

equation f( ... ) 6== a is well-formed w. r. t. the program p then f € DV( p). 

Some other constraints can be introduced into the static semantics. In 

particular we can consider as well formed only recursive equation programs, 

whose functions are defined in such a way that they provide a disjoint and 

exhaustive" case analysis on the structure of their data domains (Darlington 

78]. 

For example, we can consider as well-formed only those programs whose 

definition for a function f defined on natural numbers, provides the values of 

f(0) and f(succ(n)). Analogously, for a function g operating on lists, we 

can consider as well-formed only those programs which have the following 

definitions: 

g(nil) 6= e 	and 	g(a:: ) 4== a 2 . 

These constraints can be incorporated in the static semantics, but we did not 

do so. because it goes beyond our objectives here. 
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Appendix B. 

OPERATIONAL SEMANTICS FOR N-ARY FUNCTIONS 

In this Appendix we would like to present an extension of the structural 

operational semantics definitions for including functions with nO arguments. 

This extension is significant because in Chapter 2 we did not allow higher 

order functions, and therefore we could not use "curried functions". This 

appendix Is an improved version of what Is presented in [Plotkin 811 pages 

117-121. 

We need some extra auxilIary sets: 

a set of Formals. called Forms, ranged over by form. 

form : : • I x: T  form 

where T € (mt, boon and x is an individual variable. 

a set of Actual Expressions. called AcExp, ranged over by ae. 

ae : : = 	I a. ae 

a set of Actual Expressible Ty pes. called AcETypes. ranged over by eat. 

aet : : = e I T aet 	where T C (int. boon 

Notice that • and -, 	 are overloaded symbols. They will be used in what 

follows as "nil" and "cons" for lists. 

We also-need to change some of the definitions we have already given for 

the language L. 

In Expressions instead of 	f(e) 	we have: 	f(ae) 

In Definitions we have: 

d : : = . . . (as for the language L)... I form=ae I f(form): T=e 
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Denotable Types, ranged over by dt € DTypes, are modified as follows: 

dt : := T I aet —  T 	where T E (Int.bool) 

We need to change the notion of Abstracts, as well. 

Let us consider the function 1: Forms - AcEtypes s. t. 

i) T(.) = 0 	and ii) T(x: T  form) = ( T. T(form)). 

We define the predicate form: :i9 with formEForms and G€TEnv  as follows: 

form: :.8 

I) •: : 0 and it) 	 If x it DV(form) U  domain(.6). 

(x: r,  form) : : (X=T) U 13 

We have: Abstracts = (Xforrn. e: T I a[46] 
 FV U OV(form) . 

T 

for some a: V and FV(e) E V and form: :.6 } 

The definitions of the free variables and defined variables are as follows: 

For Expressions: 

FV(.) = 0 	FV(e.ae) = FV(e) U  FV(ae) 

For Abstracts: FV( Xform.e: T  ) = FV(e)\DV(form) 

For Definitions: 

form=ae 	 f(form): 

FV 	 FV(ae) 	FV(e)\DV(form) 

DV 	DV(form) 	 CO 

where DV : Forms 	2' ' is defined as follows: 

DV(.) = 0 	and 	DV(x:T.form) = (x) U  DV(form). 

Here are the rules for the Static Semantics, where a1. 	stands for 

al- . . 	and a(46)l-.. . stands for a(f3iF- u OV(?orm)' . 	where form: :,8. 

Actual Expressions. 

AE1 	at- .:.. 

	

al- e:T 	cri -  ae:aet 

AE2 

Of 1 (e,ae): Ur,  aet) 



Application (updated) 

a I-  ae: aet 

A. 	 - 	if (f) =aet - at 

a I-  f(ae) at 

Abstracts (updated) 

aLB] 1- a: T 

Ab. 	 if form::.B 

a - (Xform.e:T) : (T(fOrm) —) T) 

Definitions 

[form=ae] 	1. 1 a I -. = 

a I-  (x:T)=e. a I- formae 

1.2 

a I-  (x:Tform) = (e.ae) 

form: :,0 	a t- ae:T(form) 

2. 

I- (form=ae):B 

[f (form) : T=] 

F a: T 

if form: :,0 

a F- f(form) : T=G 

1-  (f(form) : T=e): (f=T(form) -> T) 

Note. DV(form) = domain(R) . 
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For the extended definition of the Dynamic Operational Semantics we need 

to Introduce the following notions as well. 

Given an actual expression ae and a type environment a E TEnvV  S. t. 

FV(ae) S V. we define the following well-formedness formula: 

Wv (ae.a) 1ff 3  aet C AcETypes. a 1- ae:aet. 

The set of Actual Expression Configurations w. r. t. a type environment a: V is: 

AEr2  = (<P. ae) I W(ae. a) and P: a and FV(ae) E V). 

The set of Terminal Actual Expression Configurations. TAEr. is 

a subset of 	U 	AEra  s. t. 7 6 TAEr iff the second component of 7 

a € TEnv 
is of the form 	92 : : = S 1 c.72 where c € DVal = N+T+Abstracts. 

We define a transition relation r X r  where 

r. = Era U AEr2  U Dra  and we can partition that relation in the three 

subrelatlons a,ae and 

We allow ourselves to use the usual abbreviations. In particular, an element 

of will also be written as ta  <P0. ae0> - <P1.ael>. If P0=P1 we also 

write PO j -  ae0 - ael. 

We define: 

the set of Actual Constants. ranged over by acon € ACon. 

acon : : = . I con. acon 	where con E N+T 

an auxiliary function mkenv: Forms X  Acon - Env s. t. 

mkenv(S.S) = 0 

mkenv((x: T.form),(con. acon)) = Cx=con) U mkenv(form.acon). 
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The transition rules for the Dynamic Semantics definition are modified as 

follows. We write 0-... instead of 

Actual Expressions: 

P F a " a' 

 

P I-  (e.ae) —+ (e'.ae) 

P i-  ae -- ae' 

 

P I-  (e.ae) — (e.aa') 

Notice that. contrary to what is done in (Plotkin 811 page 121, we allow for 

nondetermlnlstic evaluation of the expressions In actual expressions. 

Application 

P I-  ae— ae' 

Al. 

P I-  f(ae) — f(ae') 

A2. p r f(acon) 	—let 	= acon in a 	if p(f) = )'.form. e: T 

Rules Al and A2 determine call-by-value evaluations. 
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Definitions 

P I-  a 	> ae' 

[form = ae] 1. 

P r form = ae ---> form = ae' 

2. P I-  form = acon " P0  where P0  = mkenv(form. acori) 

[f(form):Te] Pt_f(form):TeCf>tfOrm.(L-tPFV1fle)n} 

where V = FV(e)\DV(form). 



Appendix C 

FORMAL THEORIES FOR OPERATIONAL SEMANTICS 

In this appendix we consider a second approach for embedding structural 

operational semantics definitions into formal theories. The first one was 

presented In Section 2. 5. 

This approach is motivated by the desire of identifying the rewriting relation 

(denoted by ) for terms and the implication relation (denoted by ) for 

formulas. Having one notion only, instead of two distinct ones, the deduction 

process may be made more efficient, because we can realize the 

improvements mentioned at the end of section 2. 1 (where we suggested the 

use of rule 81" instead of rule 61) . As we will see, we will find useful to 

introduce the reflexive transitive closure (denoted by _*) of the "one step" 

rewriting relation . 

We will define two versions of this second approach and we will compare 

them. In both versions the meaning of the symbol 	(which we will call "hook" 

for avoiding confusion) is similar to the one of the logical implication. 	The 

second version differs from the first one in that the reflexivity and transitivity 

properties hold for hook. 

For studies on logics with non-standard notions of implication the interested 

reader may refer to (Anderson. Belnap and Wallace 60, Anderson and Belnap 

621. In this appendix. D denotes also the computation process of rewriting 

which was denoted by - in Section 2. 5. 
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We consider a first order language where we choose 0 = (00 . S i . +2}. 

V= (}. andR=  tF1I. 
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As usual, the subscripts denote the arities. 

Terms are built as In the first interpretation (see Section 2. 5) 	Le. 

Terms=Exp, e € Exp. 

e : : = 0 I S(e) I el + e2 

Atomic formulas are of the form: 	Fe, where e E Exp, i. e. terms are injected 

in the atomic formulas via the unary relation symbol F. 

The set -  of Formulas (denoted by Fima) is defined as the smallest set 

containing atomic formulas and closed w. r. t. 3  (1. e. hook) and 1. 

Instead of writing atomic formulas as Fe" we will often write them as e' only: 

the reader will understand from the context whether 	stands for the term 

or the formula "Fee (because, obviously, arithmetical operators require terms 

as operands. while 1 and 3  require formulas). 

0, ØDIp 

The modus ponens (MP). 1. 9. 	 for any formula 0 and IP. is the only 

rule of inference we have. 	 Ir 

We will consider the theory T with the following set A of axioms: 

Al. F(x+0) 	 D F(x) 

F(x+S(y)) 	D F(S(x+y)) 

(F(x) D F(y) ) 	D (F(S(x)) 0  F(S(y))) 

(F(x) D F(y) ) 	0  (F(x+z) D F(y-i-z)) 

AS. (F(x) D F(y)) D (F(z+x) D F(z+y)) 

Let r be a set of formulas s. t. A E r. By Gen(r) we denote the intersection 

of all sets A  of formulas s. t. i) T E A, ii) each instance of one of the 

nonlogical axioms Al, . . . . A5 is in A and iii) b. € A whenever 0 € A and 

0071 -  E A, 

We write F1Ø or (r-A) 1Ø to denote that 0€Gen(r). 

If r=A we will also write tØ instead of AIØ. 

If rØ we will say that 0 is a proper r-theorem. 

If i0 we will also say that 0 is a proper theorem, instead of a proper 

A-theorem. 



We can define the notion of a proper r-proof, as follows: 

Definition 1: 	A finite sequence <tb", .........of formulas, with m>O, 

S. t. 	 and for each km one of the following holds: (i) ip, € 1'. (ii) 

is an instance of. one of the axioms Al..... A5, 	jjj 	 for 

some j<i and k<i. is called a proper r-proof for 0. 

Notice that we do not include in point (ii) of the above definition the instances 

of logical axioms, as. for example OJ('6"0). This limitation is necessary for 

establishing the connection between the deduction process (using "hook as 

implication) and the process of computing the value of a given term (using 

"hook" as rewriting), as the following Theorem 5 shows. 

One can prove the following properties for D, as usually done in a first order 

theory: 

Theorem 2: Let 	E Flma such that A C rn& and 0.'" € FIma. 

(I) If &cr and AØ then T0; 

if rDo then 19DO for some finite subset e of r; 

if rIx for each XE& and 	0, then rDØ; 

if r I> 0 and ri(0D). then rc'; 

if rDo then 	where I-  denotes the usual "logical consequence" 

notion (where logical axioms also are allowed in proofs). 

Here is presentation a la Hubert of the proof that r D F(S(S(S(0)))) where 

r = A U  CF(S(0) + S(S(0)))). We will feel free to omit the symbol F for 

formulas and the parentheses for the argument of S. 

1. 30+830 given 

2. (S0+SSO) D  S(S0+S0) 42 

3. S(S0+S0) 1.2.MP 

4. (30+30) 0  3(80+0) A2 

5. (S0+S0 	S(SO+0)) D (S(S0+S0) 	SS(S0+0)) A3 

6. S(S0+S0) 	SS(S0+0) 4,5, MP 

7. 88(30+0) 3,6. MP 

243 
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S. S0+O D  so 

(S0+O SO) M (S(SO+O) 3 SSO) 

8(30+0) n 880 

(S(SO+O) 0  880) 	(SS(SO+O) D  SSSO) 

SS(SO+O) 	SSSO 

SSSO 

Al 

A3 

8.9. MP 

A3 

10, 11, MID 

7. 12. MP 

Now we will prove some theorems about the theory we have introduced. 

Let us first prove the following lemmas. 

Let , denote the relation defined by axioms and rules Si,. . .85 (see Section 

2.5). 

Lemma 3: If a ' b then a 0  b. 

Proof: By Induction on the length of the derivation of a - b. 	 0 

Lemma 4: Any formula 0 s. t. DO has one of the following forms: 

either F(el) 	F(e2) 

or(F(el) 	F(e2)) D(F(S(el)) 	F(S(e2))) 

or (F(ei) 	F(e2)) 	(F(el+e) ' F(e2+e)) 

or (F(ei) D F(e2)) D  (F(e+ei) 	F(e+e2)) 

for some e. el. e2 € Exp. 

Proof: By induction on the number m of applications of the MP rule. 

Base If m=O the lemma is obvious. 

Step Suppose the lemma valid for m. If we apply the MP rule to any two 

formulas of the above specified forms we get a formula of the form 

F(el) DF(02) 0 

Theorem 5: Va, b € Exp a —± b iff D F(a) D F(b) 

Proof: (only if øart). By induction on the length m of the deduction of 

a 	b. 

Base If m=1 a --->b is an instance of Si (or S2). Using axiom Al (or A2) 

we can derive 	F(a) 	F(b). 
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Step Suppose the theorem valid for a length m s. t. mi. Suppose that a 

b has been derived in m steps by using in the m-th step rule S4. 

(The- other cases in which in the m-th step we used axiom Si or S2 or 

rules 83 or 85 are analogous.) Therefore a — b is of the form al+a2 

al'+a2 and we have a derivation of al —> aT' in n<m steps. 	By 

induction hypothesis we have: I> F(al) 	F(al'). By axiom A4 we have: 

(F(al) 0  F(al')) D (F(al+a2) 3  F(al'+a2)) and by modus ponens we 

derive: F(al+a2) f F(al'+a2). 

(if fl). By induction on the length m of the deduction of F(a) D F(b) 

Base If m1 and D F(a) D F(b) then F(a) D F(b) is an instance of a 

non-logical axiom Al or A2. Using Si or 82 we have a 
- b. 

Step Suppose If 	F(a)DF(b) then a ---), b" valid for any deduction 

D F(a) D F(b) with length m s. t. m>nl for some n. There are 2 cases: 

F(a) 0  F(b) is an instance of axiom Al (or A2). By axiom Si (or 

S2) we can derive a —> b. 

F(a) 	F(b) is derived by modus ponens from 0 and 

0 M (F(a) 	F(b)) for some formula 0. By Lemma 4 0 is of the form 

F(c) 	F(d) where c. d E Exp. By induction hypothesis we have c ' d. 

There are 3 subcases: 

a=S(c) and b=S(d). By applying rule 83 we can derive a —f b from 

c - d. 

a=c+e and b=d+e for some e € Exp. As subcase 1). applying rule 

34. 

a=e+c and b=e+d for some a € Exp. As subcase 1). applying rule 

S5. 	
0 

Proposition - 6: If D F(el) 0  F(e2) then el ~e2. 

Proof: From the if-part of Theorem 5 and Lemma 3. 	 0 

Theorem 5 allows for the hook symbol, denoted by D, the same 
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interpretation given to -'>, I. e. we can interpret F(a) D F(b) as 'in one 

computation step from the expression a we can derive the expression b". 

Theorem 5 holds because in the definition of the "proper proof of 0 from A". 

I. e. Ut> 0. we excluded the use of logical axioms. (Otherwise Lemma 4 on 

which Theorem 5 relies, would not hold. ) 

Indeed. If we allow logical axioms In the proofs we had to consider formulas 

as, for instance. F(3) 0  (F(7) 3  F(3)). (from the logical axiom 

0 D 0P D 0) ) for which the interpretation of 0  as does not make sense. 

Here is another example. For any formula 0 we can prove that 1-  0 0 0 

(where I- denotes logical theorems) and, obviously, the interpretation of ' as 

-, I. e. reduction in one step of the computation", would not be acceptable. 

Unfortunately. for the notion of a proper proof we have introduced, the 

analogous of the Deduction Theorem Is not valid. indeed the following 

implication does not hold: for any el . e2 € Exp. 

If AU(F(el)) t> F(o2) then A t> F(el) m F(e2). 

A class of counterexamples can 	be given 	because for any 

o C  Exp. Indeed AU(F(e)) t F(e) obviously holds, while A t> F(e) D F(e) 

does not hold (see Proposition 6). 

However, one may want to have the Deduction Theorem valid for keeping for 

the 'hook' symbol that basic property of the logical implication. For regaining 

the validity of the Deduction Theorem we will introduce a slightly different 

notion of "proper proof" (thereby defining the second version of our 

interpretation of the operational semantics), while maintaining a simple 

computational interpretation for the 'hook' symbol . 

Definition 7: 	We define __)z E EXPXEXP as the reflexive transitive 

closure of +. i.e. a 	' b iff (3nO s. t. a -)b0  and b0— ' b 1  and 

and b_1 —> b and b=b) or a=b. 

Let us consider the following two axiom schemata (valid for any 

9,el.e2.e3 6 Exp): 
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RA. Reflexivity axiom : F(e) =1  F(e) 

TA. Transitivity axiom: (F(el)F(e2)) D ((F(e2)F(e3)) D (F(e1)F(e3))) 

if r = AU(RA.TA). instead of I' I> 0 we will also write 	0. 

if r = AU(RA.TA}UB. instead of I' 1> 0 we will also write B 	0. 

Analogous properties to the ones stated for Theorem 2 hold also for l*. 

Notice that also for * we do not allow instances of logical axioms. 

Lemma 8: Any formula 0 s. t. E 0 has one of the following forms: 

either (i) F(el) D F(e2) 

or (ii) (F(el) 	F(e2)) 	(Fe3 	F(e4)) 

or (iii) (F(el) 	F(e2)) D ((F(e2) 	F(e3)) D (F(el) D F(e3))). 

for some al. e2.e3.e4 € Exp. 

Proof: Analogous to the proof of Lemma 4. Notice that any Instance of 

the RA (or TA) Is of the form i (or l:iiu). 

Theorem 9: Ya b € Exp a - b 1ff D*  F(a) D F(b). 

Proof: (only if part). If a=b then l 	F(a) 	F(b) by RA. If ab then 

we can reason by induction on the number n of contraction steps. 

Suppose ab0  and b0— b 1  and. . . and b_ 1 — b=b. I. e. we derived b 

from a in n+1 contraction steps. 	By induction hypothesis we have 

D 1  F(a) D F(b0) and l*  F(b0) D F(b 1 ) ... and l 	F(b_ 1 ). Using TA 

and MP we get 	F(a) D  F(b). 

(if _Dart). By induction on the length m of the proof l 	F(a) 	F(b). 

If m=O and F(a)F(b) and ab we have a._*b  by reflexivity. 

If m=O and F(a)F(b) and ab we have a_*b  by axioms Al or A2. 

If m=n+1. F(a)F(b) is derived from 0 and 0 0  (F(a)F(b)) where 

0 	(F(c)F(d)) by Lemma 8. By induction hypothesis we- have: c_+*d. 

Suppose l 	(F(c)F(d)) 	(F(a)F(b)) is a proof of length k with kn. 

Let us reason by induction on k. 

If k=O the given formula is an instance of axiom A3 or A4 or A5. There 

are two cases: 

- if c=d then a=b and we get a_*b  by reflexivity: 
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- if cd, from c ---)"d we get cd. Since k0, a=C(c] and b=C(d] for 

some context C. By applications of axioms 83 or S4 or S5 we get a —  *b. 

If k=h+1 for some h)O. (F(c)F(d)) 0  (Fa)F(b)) is obtained from 

(F(a)F(c)) 3 ((F(c):DF(d)) D (F(a) 3F(b))) as an instance of TA 

(and therefore d=b) and F(a) 3F(c). 

By induction hypothesis on m we have a_*c. Since 	 we get: 

a*d and a*b, because db. 	 0 

Lemma 10: For any e € Exp, any formula 0 s. t. (F(e)) 	0. i.e. 0 is 

derived from F(e). or from any instance of the axioms Al... . A5. RA and 

TA, has one of the following forms: for some a, b, c. d E  Exp 

(i) F(a) . 	(ii) F(a) 	F(b) . 	(iii) (F(a) D F(b)) 	(F(c) 3  F(d)) 

(iv) (F(a) M F(b)) D ((F(b) D F(c) ) D (F(a) D F(c))). 

Proof: Analogous to the proof of Lemma 4. Formulas of form (i) can be 

derived by MP from the ones of form (ii) using F(e) (or other formulas of 

form (i) previously derived) . 0 

Lemma 11: For any e. el, e2 C Exp.j f (F(el)) l* F(e) D F(e2) then 

*F(e) 3 F(e2). 

Proof: In the proof (F(el)} 	F(a) 3  F(e2) every formula derived from 

F(el) by MP is of the form F(a). Let C be the set of formulas (F(c)) 

5. t. 	c C Exp and F(c) occurs as an element in the proof 

(F(el)) F(e) F(e2). By Lemma 10 any application of MP involving a 

formula in C produces a formula. which also is in C. A formula of the form 

F(e) 3 F(e2) can be obtained only from formulas of the form (ii). (iii) or 

(iv) (as given in Lemma 10). Therefore the formulas in C can be 

discarded from the proof (F(el)) D' F(e) 3  F(e2) . thereby obtaining the 

proof Dm F(e) 3  F(e2). 0 

The following theorem holds for D. 

Theorem 12: 	Deduction Theorem for Q.. 	V el.e2 C  Exp. 

if (F(el)) Dk F(e2) 	then 	0* F(el) 0  F(e2). 
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Proof: 	If el=e2. DO F(el) 	F(el) because F(el) 	F(el) is an 

instance of the axiom RA. 

If el;fie2 we reason by Induction on the length m of the formal proof 

< o'' 0m-1> of F(e2) 	0m-1  from (F(e)). 

By Lemma 10 F(e2) is derived by modus ponens MP from 

(F(el)) DO F(a) and (F(el)} DO F(a) 	F(e2) for some a € Exp. By 

induction hypothesis from (F(el)) DO F(a) we get: DO F(el) 	F(a). 

We also have, as an instance of axiom TA: 

* (F(el) D F(a)) D ((F(a) 	F(e2)) D (F(el) 	F(e2)) for any 

a. el.e2 £ Exp. 

ByMPwehave: 	D ((F(a) D F(e2) D (F(e1) DF(e2)). 	 (1) 

By Lemma 11 from (F(el)) DO F(a) 	F(e2) we get: 

DO F(a) 	F(e2). 	 (2) 

and by MP from (1) and (2) we obtain: DO F(el) D F(e2). 	 0 

The converse of the Deduction Theorem is stated by the following 

proposition. 

Proposition 13: 	V el,e2 € Exp. 	if D*  F(el) 	F(e2) then 

(F(el)) D*  F(e2). 

Proof: 	Obviously if DO 0 then (F(el)) DO 0. 	Thus. from 

DO F(el) D F(e2) we have: 	(F(el)) l 	F(el) 0  F(e2). 	Since 

(F(el)) DO F(el). we get the thesis by MP. 	 0 

Moreover, as one can easily see. V  el, e2 E Exp ff (F(el)) E F(e2) then 

(F(el)) DO F(e2). and if (F(ei)) DO F(e2) then (F(el)) I -  F(e2), where 

r i- 0 denotes the usual notion of I'-theorem in a first order theory. 

Theorem 14: Veal €.Exp e'e1 iff (F(s)) DO F(el). 

Proof: ye. el € Exp. e - 	el iff DO F(e) D F(el) by Theorem 9. 

DO F(s) 	F(el) iff (F(e)) DO F(el) by Theorem 12 and Proposition 13. 

0 
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Therefore the notion of computation according to our operational semantics 

rules corresponds to the notion of l 	proof. 

In general Va. e' C Exp I> F(e) D Re') 	iff 	F(e) D F(e') does not hold 

(a. g. consider the case e=e'). however the following theorem holds. 

Theorem 15: 	(F(e)) D Re!) 	iff (F(e)) I 	F(e'). 

Proof: (only if oart) . Obvious. 

(if_øart). By induction on the length t of the derivation of  

If 1=0: e=e' and obviously (F(e)) D F(e). 

Assume the theorem true for L=k. 

Suppose that  

We have (F(e)) I> F(ek).  We also have I> F(ek) D  F(ek,.l) by Theorem 

5. 

Therefore (F(e)) D F(ek)  M  F(ekPl). 	By modus ponens we get the 

thesis. 	 0 

This second version of the second interpretation for the operational 

semantics rules has a particular merit w. r. t. the first version. In order to 

illustrate it let us consider the following tree presentation of the proof of 

{S0+SS0} D SSSO, we have given earlier. 

S0+SSO D 	S(S0+S0) 	D 	 SS(S0+0) 	D 	SSSO 

T 	 T 	 t 

A2 	 S0+S0 ' S(S0+0) 	S(S0+0) ' SSO 

t 	 t 

A2 	 SO+0 SO 

1 

Al 

The arrow t shows an application of the MP rule. 

Here is a proof of (S0+SSO} D' SSSO. 

S0+SSO 	 given 

(S0+SSO) 	S(SO+S0) 	 A2 
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S(S0+SO) 	 1.2MP 

S0+S0 S(SO+0) 	 A2 

S0+0 SO 	 Al 

(80+0 D SO) 	(SS0+0 	SS0) 	 A3 

S(SO+O) D SSO 	 5.6.MP 

(SO+SO S(SO+O)) 	((ssO+o 	SSO) 	(SO+SO M SSO)) TA 

(SS0+0 	SSO) 	(SO+soDsso) 	 4.8.MP 

SO+SODSSO 	 7.9.MP 

(s0+so D  SSO) 	(s80+s0 	sss0) 	 A3 

S(SO+S0) D SSSO 	 1O.11.MID 

SSSO 	 3,12, MP 

It can be depicted as follows: 

SO+SSO 	 S(S0+SO) 	 SSSO 

t 	 t 

A2 	 80+80 D SSO 

r MP twice from TA 

S0+S0 D S(SO+0) 	S(S0+0) D SSO 

t 

A2 	 80+0 D SO 

T 

Al 

In that proof we see that the "surface expression (the one in which we 

are interested) is transformed only twice, instead of three times, as in 

SO+SSO} D SSSO, at the expense of making the "supporting proofs" more 

elaborate by using the transitivity axiom. 

The number of applications of the- modus ponens rule (MP) in the two cases is 

the same. 	Regarding the modus ponens application as the time unit, we 

could say that the two proofs have the same "time complexity". 	But those 

proofs have different "timeXspace complexity": 	the surface expression. in 
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fact, which is usually bigger than the other expressions, is transformed fewer 

times in the P * proof w. r. t. the P proof. Therefore we could say that In 

D proofs have better tlmeXspace efficiency.  

The result of Theorem 14 can be extended to the case in which the set of 

premises for L is not a singleton set -, but any. set of atomic formulas. That 

case provides a model for the concurrent evaluation of expressions. Notice, 

however, that particular care should be taken because 

if {F(el).F(e2)} D F(e) then (F(el)}I> I F(e) or (F(e2)J F(e), but 

In general not both, because the arithmetic value of el may be different from 

the one of e2. Therefore, from Theorem 14 we will have that: 

el - e or e2 - a, but we do not know which of the two subformulas 

holds. 

In order to avoid that ambiguity, we may associate the tag '1' with F(el) and 

the tag '2' with F(e2). We will then associate with any formula of the form 

F(e) s. t. (F(el),F(e2)} D* F(e) the tag '1' (or '2') according to the fact 

that the final application of MP for deriving the F(e) in question, was made by 

using F(ek) 3  F(e) where '1' (or '2') was the tag of F(ek). 

Therefore, the second version we presented for the interpretation of the 

operational semantics (I. e. the one which uses the extra axioms RA and TA) 

allows the parallel evaluation of various expressions, with the advantage of 

making the deductions needed for evaluating an expression, available also for 

other evaluations. 

For instance, if we have to evaluate both 5+(3+2+1) and (3+3)+7 we may 

use, during the evaluation of the second expression, the- fact 

"* F(3+3) J  F(6)" derived in evaluating the first expression, in that way in 

parallel computations we may eliminate redundant deductions, at the expense 

of keeping track of the already proved facts. 

In order to use the result of Theorem 9 for evaluating expressions, we need to 



253 

be sure that 	F(a) 	F(b) holds for a#b. Only in that case, in fact, we 

know that at least one computation step has been performed when replacing a 

by b. By Iterating this derivation procedure. we eventually get the value of the 

given expression a. 
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C. 1 Models 

We would like to present the models for the theories defined by the axioms 

A and the axioms A U  (RA. TA). 

We first consider the theory for the A axioms. 

Let us define a class K of models U s. t. U = (Terms.f. RJ where Terms=Exp, 

f is defined as in the first interpretation (see Sect. 2.5. 1) and for the unary 

predicate symbol F the relation R has the property that Ve. a' £ Exp the 

following two conditions are equivalent: 

(RI) if FR  (e)then FR  (e') 	and 	(Ru) a -> a', 

where as usual. 	is the relation derived from axioms and rules S1. 	S5 

(see section 2. 5). 

The satisfiability relation U 1= 0 for a formula 0 in a structure U is defined as 

follows: 

U fr F(e) 	1ff FR(e) 

U 1= 0 	iff either not(U 1 0) or U 

We will say that U is a model of 0 if U I= 0. 

K I= 0 means that V  U E  K. U 0 0. 

Lemma 16: K I= A. 

Proof: For Al: we need to show: K I= F(x+O) 	F(x). 

Suppose: U V F(x+O) 	F(x) for some U E K. We have: 

U 	F(x+O) 	Itt FR(x+O) 	and 	U V F(x) 	iff 	1 FR(x). 

Thus 1(x+O — x) but this contradicts Si. 

For A3: we need to show: K (Fx D Fy) D (FSx D FSy). 

Suppose: (1) U 1 Fx 0  Fy and. (ii) U V FSx FSy for some U € K. 

By (I) we have: x 	y and therefore Sx —) Sy by 33. This contradicts 

(ii). 

Analogously for the axioms A2. A4 and A5. 	 0 
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Theorem 17: V e, e' 6 Exp. 	1> F(e) D F(e') 	iff K 	F(e) 	F(e'). 

Proof: (only if part). By Theorem 5 Y9  e' C  Exp. 	1> F(e) 3  F(e') iff 

o 	e'. 

Suppose K V F(e) D F(e'). For some U € K. 	U b F(e) D F(e'). We 

get: U 1 F(e) and U Od F(e'). 	Thus FR(e)  and 	F(e'). 	This 

contradicts the definition of R in K. 

(if _part). Assume K l F(e) D F(e'). To show: e - e'. 

Assume 1(o - a'). 	By definition of K: a - a' 1ff (if FR(e)  then 

FH(e') )  for any model U € K. By 1(e - a') we have FR(a)  and IF(e') 

for any model U C K. Contradiction. 	 0 

Theorem 18: 	Let r be a set of atomic formulas. 	if r D 0 then 

A U r t 0. 

Proof: If r D 0 than r U A I-  0. By Completeness Theorem A U r 

0 

Theorem 19: Ve,e' £ Exp. 	jt(F(e)) D F(e') then AU  (F(e)) 1 F(e'). 

Proof: It is a corollary of Theorem 18. 	 0 

The reverse implication of Theorem 19 is also true, as we will show in 

Theorem 24. 

Now we turn to the definition of the models of the theory for A U  ERA. TA] 

axioms. 

We will characterize the relation l 	using the class K' of models. 

A model U € K' is a triple [ Terms, f. R J where Terms and f are defined as in 

K and R has the property that for all e. e' E Exp the following two conditions 

are equivalent: 

(Ri) 	if RR(e)  then F9 (e') 	and 	(RID 	e -" e' 

where 	is the reflexive transitive closure of the relation 	as derived from 

the axioms S1. . . . , S5 (see section 2.5). 
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Lemma 20: K' I= A U  [RA.TA}. 

Proof: Analoguos to the proof of Lemma 16. 	 0 

Theorem 21: 	Ye. e' E Exp. 	 F(e) D F(e') 	iff 

K' t= F(e) 0  F(e'). 

Proof: 	(only if part). 	Assume 	* F(e) D F(e'). We have: 

A U  (RA. TA) I- F(e) D F(e') where F F 0 denotes the usual notion of 

F-theorem in a first order theory (including logical axioms in proofs). 

By the Completeness Theorem: A U  (RA. TA) 1 F(e) D (a'). 

By Lemma 20 we get: K' l F(e) =1  F(e'). 

(if _part). Assume K' 	F(e) D Re'). 

For any U e K'. U 	F(e) D F(e') ift a - 	e' (by definition of K') iff 

Dx F(e) D Re') (by Theorem 9). 	 0 

Theorem 22: Let r be a set of atomic formulas and A be the set of 

axioms Al ..... A5, lfrD*0 then 	AU(RA. TA) UF0. 

Proof: If r I 0 then 	F U A  U  (RA. TA) t-  0. By the Completeness 

Theorem we get the thesis. 	 0 

Theorem 	23: 	Ve, e' 	E 	Exp. 	[F(e)) 	1 	F(e') 	1ff 

AU (RA, TA) U  (F(e)) 	F(e'). 

Proof: (only if part). See theorem 22. 

(if _part). Assume A U  (RA. TA) U  (F(e)) 1= F(e'). 

From the hypothesis we get: 	A U  (RA.TA.F(e)) 1- F(e') by the 

Completeness Theorem. 

By the Deduction Theorem we have: A U  (RA, TA) I- F(e)F(a'). 

By the Completeness Theorem we get: A U  (RA, TA) 1= F(e) Fe'). 

Since K' t A U  (RA, TA) we get: K' I F(e) 	F(e') . then by Theorem 

21 we have: DI F(e) 0  F(e'). 	Since (F(e)) Dx F(e) and 

(F(e)) 	F(e) =1  F(e'). by MP we get: (F(e)} I>m F(a'), 	 0 

Theorem 24: Ve.e' € Exp. [F(e)) t F(e') 1ff AU (F(e)) 1= F(e'). 
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Proof: Since (F(e)) D F(e') implies A U  (F(e)) 0 F(e') (see Theorem 

19) 	it is enough to show that: 	if A U  (F(e)) I= F(e') then 

A U  (F(e). RA, TAI I= F(e'). because A U  (AA. TA. F(e)) 	F(e') 	1ff 

(F(e)) I 	F(e') by Theorem 23 1ff (F(e)) D F(e') by Theorem 15. 

Assume AU (F(e)) 	F(e') and AU (F(e). RA. TA) V F(e'). 

Thus for some U s. t. U A U (F(e). RA. TA) we have U 9 F(e') 

We have: U l A U  (Fe) and therefore, since A U  (F(e)) t= F(e'). we get 

U Fe'. Contradiction. 	 0 
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C. 2 Summary of results 

The following tables summarize the main definitions and results of Section 

2. 5 and this Appendix. 

OPERATIONAL SEMANTICS 

e : : = 0 I S(e) I el+e2 	 e € Exp 

Axioms and rules S: 

Si. e+O --- 3 a 	 S2. ei+S(e2) —3 S(ei+e2) 

a 3 a' 

S3. 

S(e) 	3 S(e') 

el 	3 ei' 

54. 	 S5. 

e2 —3 e2' 

el+e2 —3 eI'+a2 	 al+a2 3 e1+e2' 

FIRST INTERPRETATION IN A FIRST ORDER THEORY. (Section 2.5) 

Atomic formulas: e —3 e' 	e, e' € Exp 

Formulas: 	the least set containing atomic formulas and closed w. r. t. 

1 and 3 . 

Axioms: logical axioms and nonlogical axioms S': 

Si'. g+Q —3 a 

ei+S(e2) -- S(e1+e2) 

(a -3 a') 	(3(e) 	3 S(e')) 

(el - 9.1') D  (91+e2 - el'+e2) 

(e2 --3 e2') D (e1+e2 —3 e1+e2') 

0. 

Inference rule: modus ponens (MP) 

Theorem. 	9 —3 a' in S jjt  S' I-  a —3 a'. 



C. SECOND INTERPRETATION IN A FORMAL THEORY 

First version: 

Atomic formulas: F(e) 	 e € Exp 

Formulas: 	the least set containing atomic formulas and closed w, r. t. 

and -I. 

Axioms A: Al. F(e+O) D F(e) 

F(el+S(e2)) D F(S(el+e2)) 

(Fe D Fe') D (F(Sefl D F(S(e'))) 

(Fel D Fe l') D (Fe1+e2) D F(el'+e2)) 

(F92DFe2') D (F(el+e2) DF(el+e2')) 

(For simplicity reasons we did not write some obvious parentheses). 

0. 
Inference rule: modus ponens (MP) 

Ir 

D 0 	means that 0 can be derived from the A axioms using MP (logical 

axioms are not allowed). If l' 0 we say that 0 is a proper theorem (in the 

first version). We will also write A D 0 instead of simply c 0. 

r D 0 	means that 0 can be derived from the formulas r. the axioms A and 

MP (logical axioms are not allowed). In that case we say that 0 is a proper 

r-theorem (in the first version). 

Theorem. 	Ve, e' € Exp. 	e , e' iff D F(e) 	F(e'). 

Note. The analogous of the Deduction Theorem does not hold: 	 - 

If (F(e)) D Re') it does not follow that E F(e) D F(e'). 

Second version: as in the 1st version. except the following 2 extra axioms: 

RA. Ve € Exp. F(e) 	F(e) 

TA. Vel.e2.e3 € Exp. 

(F(el)DF(e2)) 	((F(e2)F(e3)) 0  (F(el)F(e3))) 
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Da 0 	means that 0 can be derived from the axioms A U  (RA, TA) using MP 

(logical axioms are not allowed). If D *  0 we say that 0 is a proper theorem 

(In the second version). 

r I 0 	means that 0 can be derived from the formulas r, the axioms 

A U.  (RA U  TA) using. MP (logical axioms are not allowed). In that case we say 

that 0 is a proper r-theorem (in the second version). 

Theorem. 	Ve, e' € Exp. 	e - 	e' 	Itt 	D F(e) 	F(e) 	1ff 

(F(e)) D*  F(e'). 

- 	denotes the reflexive transitive closure of 	. 

Note. 	The analogous of the Deduction Theorem does hold. 

Theorem. 	(F(e)) D F(e') 	lit (F(e)) I 	F(e') 	(ft 

AU (F(e)) 1= Re') 	1ff AU  (RA, TA) U  (F(e)) 	F(e). 



Appendix 0 

TABLE OF SYMBOLS 

domain(f) domain of the function f. also written as dom(f). 

A \ B xEA\B 	iff 	xEA 	and 	x%B. 

f ( a I b I function updating. 	f(alb](x) 	= f(x) 	if x 30  a. 	f(alb)(a) 	= b. 

f f A function restriction. 	domain(frA) = domain(f) 	fl  A. 

f \ A function difference. domain(f\A) = domain(f) - A. 

f C g ] updating the function f by the function g. 

if x € dom(g) then f(gJ(x) = g(x) else f(g](x) = f(x). 

+ disjoint union of sets 	or 	integer addition. 

FV(e). 	FV(d) free variables in an expression e and a definition d 

(Sect. 	2.1). 

DV(e). DV(d) defined variables in an expression e and a definition d 

(Sect. 	2.1). 

M(e) translation from an expression e to M(e) by erasing all 

keywords rec, and replacing some occurrences of 	f(e1) 	. 

where f is recursively defined, 	by "f(el) 	valueof f at el". 

(Sect. 	2.4) 

EL . .1 an atomic expression context (Sect. 	2.3) 

or an expression context (Sect. 	2.4) 

term rewriting (ti - 	t2) 	or function definition (f : 	A 	8) 

or 	logical implication. 

transitive closure of —>. 
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reflexive transitive closure of + or 

terminal reflexive transitive closure of '- 

(see the Prolog implementation: Sect. 2. 6). 

functional types (see the Prolog implementation). 

(L) 	 rewritings of expressions in the language L. 

(memoL) — 	rewritings of expressions in the language memoL. 

o ( el / x 	substitution of the free occurrences of the variable x 

in an expression e by the expression el. 

Pa9102 	equivalence of two expressions (see Sect. 2. 4). 

(We may omit to write a). 

Prael 3 e2 	rewriting of the expression el into e2 

in the environment P and the type-environment a 

(see Chap. 2). (We may omit to write a). 

a FV  o:t 	well-formednoss for the expression e (Sect. 2.1). 

a 	d 	well defined definition d (Sect. 2. 1) 

FV  d: 13 	(strong) agreement of a definition d and a type-environment 13. 

P: a 	 agreement of an environment P and a type-environment a. 

L: a 	 agreement of the memo environment /L with the 

type-environment a, 

r 1> 	4 is a proper r-theorem. 

(Logical axioms are not allowed in proofs). 

it means: (Al, . . . . A5, RA, TA) l 	. 

B 	 it means: B U (Al ..... A5. RA. TA) i 	. 

r I- 	 usual notion of r-theorem in first order theories. 

(Logical axioms are allowed in proofs). 

U 	 satisfiability relation for a formula 6 in a structure U 

logical implication or hook". 
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