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ABSTRACT

We study some methodologies for applicative language programming and
we address the problem of improving efficiency in recursive equation programs

by establishing suitable communications between subcomputations.

We first use the program transformation approach and we show that.
using the generalization strategy and the tupling strategy. optimal algorithms
may be obtained for the evaluation of linear recurrence relations in semiring
structures. We also show that using the “tupling strategy” one may transform
general recursion into linear recursion. This allows an efficient
implementation of recursion without stacks and its direct transiation into
while-loop programs. Much other work in the area of program transformation
turns out to be a special case of tupling strategy application.

We prove that for some classes of recursive equation programs it is impossible

to avoid redundant computations by the use of the tupling strategy.

We aiso use the approach called "program annotation”, by which we can
dynamically specify communications between subcomputations. This method
ailows us to avoid redundant computations when the tupling strategy cannot
work.

We apply the memo-function idea and we define the operational semantics of
an applicative language with memo-functions providing their first formal

treatment.

We aiso study the relationship between formal theories and operationai
semantics definitions and we describe the implemention of a deductive system

for the concurrent evaluation of expressions using such definitions.

We finally say something about other methods for denoting
communications in applicative languages and we study how efficiency
improvements can be made by introducing concurrent computing agents and

allowing messages among them.
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INTRODUCTION

One of the major problems in the technology of the software production is
the specification and the verification of programs. A lot of research efforts
are directed towards the definition of specification methods so that program
development can be done without great difficulties and program correctness
can easily be shown. In order to achieve those goals. among the various
suggestions. applicative or functional programming has been advocated
[Backus 78] because:

- it allows for proof techniques which are particularly appealing due to their
simple logic and algebraic nature. and

- it allows for paraile! execution of programs. Thus it overcomes some of the
constraints due to the sequentiaiity of the von Neumann based programming
languages. which often forces an "over-specification” of the algorithms.

For functional programming the “specification languages” and the "@xecution
languages” are not so far apart. and that fact tends to make the correctness

proofs more transparent and simpler.

As an introduction to functional programming and its applications. the
reader may refer to [Henderson 80. Darlington. Henderson and Turner 82}.
Various applicative languages have been proposed over the last two decades.
Among them we recall LISP [McCarthy et al. 62I. PROLOG [Kowalski 74].
LUCID [Ashcroft and Wadge 77]. FP systems [Backus 78]. ML [Gordon. Milner
and Wadsworth 79]1. SASL (Turner 761. KRC [Turner 81lal. NPL (Burstail 77]
and HOPE (Burstall. MacQueen and Sanneiia 80].

We will focus our attention to the ones which are more reiated to the



recursive equations language as defined in [Burstall and Darlington 771. For
that class of languages. which include NPL. HOPE and KRC. the operational
semantics can be given in terms of rewriting rules (though some problems
arise due to the nondeterminism and the possible overlapping of rules)
(Boudol 83. Huet and Lévy 791 |

A model for the computation of recursive functions based on rewriting systems
is described already in [Kleene 67] Chapter 11. where the "replacement rule”
and the “substitution rule® are used for rewriting “oid” terms into "new" ones.
More recently. various people have been studying computation processes with
equations and rewritings (see. for instance. [O’Donnell 77, Hoffmann and
O’Donnell 82. Dershowitz 83]). Those computation processes seem to have

interesting features and allow for short and elegant proofs of correctness.

However., Iin this style of programming. we have often to solve an

efficiency problem. Indeed it may be difficult to specify efficient computations
using equations. The program transformation methodology [Burstall and
Darlington 771 offers a solution to that difficulty. We investigate that

methodology and how we can get through it very efficient aigorithms (at least
for specified classes of programs) .

Using transformations we can derive from ridiculous programs some
reasonable programs [Burstall and Darlington 77] and also from reasonable

programs some clever and very efficient ones:

ridiculous > reasonable -—--————————- > clever
programs Burstall programs this programs
and thesis
Darlington

In Section 1.1 - 1.7 of Chapter 1 we derive optimal algorithms for the

evaluation of linear recurrence relations. We do so by introducing new



generalization strategies and applying the “tupling strategy” (whose definition
is given in Section 1.2) [Pettorossi 77] to make subcomputations to interact
and cooperate as desired. Our results can be viewed as an answer to
Professor Dijkstra’s scepticism in the use of the transformation approach for
the development of very efficient algorithms [Dijkstra 82]. Similar work has
been done in [Reif and Scherlis 82] where efficient graph algorithms. as

Tarjan’s strong connectivity algorithm. are derived by transformation.

We look at the tupling strategy as a first approach to communications in
applicative languages. in the sense that several functions can communicate
among each other (thereby allowing for greater efficiency) when they are
components of a function which is the tuple of all of them. The various
examples given in this thesis will elucidate that idea.

Tupling also allows the parallel evaluation of expressions, because we can

compute the components of a tupled function in a concurrent way.

When programming with equations. another possible cause of inefficiency
is their recursive structure. That structure. while allowing straightforward
proofs of correctness [Burstaif 691, may not be desirable because
implementing recursion is in general expensive. In Sections 1.8 - 1.9 we
deal with that problem and we see that using symbolic evaluation and tupling
strategy. one may transform recursive equations programs into new programs
which have a particular form of recursion. called linear recursion. That kind
of recursion is flowchartabie (and sometimes with good efficiency [Chandra
731). and therefore those programs can easily be rewritten into while-loop
programs. Such translation can be done using a bounded number of data
locations and that number is equal to the number of the functions which need
to be tupled together.

Much other work done in program transformation can be viewed as a special

case of application of the tupling strategy (see in particular {(Cohen 83D .



Other causes of inefficiency in recursive equations programs already
studied in the literature include:
- the elimination of intermediate data structures using the composition strategy
[Feather 79. Wadler 81, Scherlis 80] and
- the avoidance of multiple traversal of data structures
[Pettorossi 77. Feather 79. Wadler 81]. We investigate in some detail this last

issue in Section 1. 10.

We conclude the first chapter of the thesis with a result (see Section 1. 8)
concerning the limitations of m'e tupling strategy: we show that there exists a
class of computations for which the elimination of repeated evaluations of
recursively defined functions cannot be obtained by applying the tupling
strategy. (We use techﬁiques similar to the ones described in [Paterson and
Hewitt 70].) That negétiva resuit is the reason for the study presented in the
second part of the thesis. There we adopt another approachA to efficiency

improvements.

We consider a computer architecture in which programs can run in a
parallel and concurrent way [Dariington and Reeve 811 and they can cooperate
using some communication facilities. )

Parailelism alone is not a good solution for gaining efficiency. because it may
require an exponential amount of resources (as the familiar example of the
Fibonacci function shows). Therefore. together with paralleiism. we also
need some communications among programs.

As a first step in this direction we use memo-functions for improving efficiency
by remembering aiready computed values.

in Sections 2.1 - 2.4 we define two simple applicative languages. the first
without memo-functions and the second with memo-functions. We give their

structural operational semantics [Plotkin 81] (without using labelled transition

systems [Plotkin 82]) and we prove their “consistency". thereby showing that



the evaluator for memo-functions improves efficiency while preserves

corractness.

The use of memo—-functions in recursive equations programs can also be
considered in the framework of the "program annotation methodology® as first
examined in [Schwarz 82]. In that methodology the process of increasing

efficiency is factorized in two phases:

1. the definition of an evaluator for an "extended" recursive
equations language where one can specify via annotations how

recursive programs are evaluated,

2. the synthesis of the relevant annotations for improving the

performances of the given programs.

In Section 2.5 we analyze some properties of the given operational
s_emantics definitions and we study various ways in which it can be embedded
in formal theories. Those embeddings show how the computational process
can be viewed as a theorem proving activity in suitable theories.

In Section 2.6 we describe a Prolog implementation of those operational

semantics definitions.

Finally we say something about other ways of allowing communications
and parallelism in recursive equations programs. We introduce the notion of
computing agents as entities which perform the evaluation of expressions. and
we examine various methods of denoting communications among them. The
aim is. as usual. the increase of efficiency through agents cooperation. This
work is only briefly introduced at the end of the thesis. and the interested
reader may refer to [Pettorossi 81a. Pettorossi and Skowron 82a. Pettorossi
and Skowron 82b. Pettorossi and Skowron 83i. Related work is done in
{(Dennis 74. Kahn and MacQueen 77. Hewitt and Baker 78. Hoare 78. Miiner

801.



... quia per facilia ad difficilia oportet devenire.
(... for difficult things ought to be reached by way of easy ones. )

"De Modo Studendi” (Thomas Aquinas. 1225-1274)



Chapter 1

DERIVING EFFICIENT APPLICATIVE PROGRAMS :
COMMUNICATIONS VIA TUPLING STRATEGY

1. 1 introduction

In this part of the thesis we will analyse the program transformation
technique a la Burstall-Darlington [Burstall and Darlington 77] for deriving
correct and efficient programs.

We will consider a particular class of programs concerning the evaluation of
linear recurrence relations., and we will try to' derive them by applying the
transformation technique. In the course of the derivation we will discuss the
power of the transformation strategies and we will compare the efficiency of
the programs we obtained with that of already known aigorithms. We will also
be concerned with the comparison of the program transformation technique a
la Burstall-Darlington [Burstall and Darlington 77] with the stepwise refinement
technique advocated by Dijkstra and Wirth (Wirth 71].

The choice of a particular class of problems is motivated by the need of a
concrete test-case. so that we could compare the features of the program
transformation technique in a domain where other techniques have been found
very valuable. A similar approach has ailready been taken in the past and. for
instance. in [Darlington 781 we can find a detailed study of the derivation of
sorting algorithms. We think that those results and ours show some very good
features of the program transformation technique and give interesting insights
on the power of the transformation strategies.

The particular case of the Fibonacci function is first considered and a
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comparison with the conventional matrix exponentiation algorithm is made.
Then we generalize the derivation of the program for computing the Fibonacci
function to the case of linear recurrence relations with constant coefficients.
it turns out that the rules and the strategies one uses for Fibonacci are
powerful enéugh to lead in the general case also. to an efficient aigorithm in a
quite straightforward way.

The choice of the evaluation of linear recurrence relations was suggested to us
by Professor Dijkstra. who considered it to be a challenging one for exploring
the practical interest of the program transformation technique. especially in

contrast with the use of the stepwise refinement technique.

1. 2 Preliminary considerations and definitions

Transforming recursive equations is a good methodology for writing
correct and efficient programs [Burstail and Darlington 771. Following this
methodology the programmer is first asked to be concerned with program
correctness only and then, at later stages. with efficiency considerations.
The original version of the program. which he may easily prove correct. is
transformed (perhaps in several steps) into a program which is stili correct.
because the rules used for the transformation preserve correctness. and it is
more officient because the evoked computations save time and/or space.
Several papers have been written about this methodology concerning:

(i) systems for transforming programs [Bauer et ai. 77]. [Darlington and
Burstalil 76}. [Feather 781. [Scherlis 801, (Darlington 811, [Feather 82}:

(ii) various rules for making such transformations [Arsac and Kodratoff 821,

[Chateiin 771. [Pettorossi 78]. [Pettarossi 77]. [Schwarz 78]. (Manna and
Waldinger 791. [Scherlis 80]1. [Wand 80} and

(iii) some theorias for proving the correctness of the transformations [Bauer et
al. 78]1. [Huet and Lang 78], [Kott 78].

The given lists of references are not to be considered as exhaustive. For a
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more extensive bibliography one may refer to [Burstall and Feather 77].

(Partsch and Steinbriiggen 81] and [Partsch and Steinbriggen 83].

Unfortunately for the -program transformation methodology a general
framework in which one can prove that transformations improve efficiency while
preserving correétness. is not fully available yet. First steps in this direction
were done in [Wegbreit 76. Scherlis 801.

One might wonder in fact whether it is important to develop such a general
framework at ail: it might be the case that using the transformation
methodology one can derive algorithms which have a limited degree of
efficiency only. and that if one wanted to write very efficient programs one
would be forced to adopt other programming techniques. as for example. the
stepwise refinement technique [Dahl et al. 72]. [Wirth 711. But this does not
seem to be the case. at least for particular classes of algorithms, as
demonstrated in this thesis for algorithms which evaluate linear recurrence -
relations. Working out the details of the program transformation. we show
that very high levels of efficiency can be achieved.

in order to be able to reason about the program transformation approach in a
precise way we will now introduce a suitable formal system. Our presentation
is somehow inspired by Chapter XI of Kieene's book “Introduction to
Metamathematics” [Kleene 671 and more recent work on the theory of formal
languages (see for instance [Hopcroft and Uliman 79D . However the main
inspiration is the recent work by G. Plotkin on a structural approach to
operational semantics definitions [Plotkin 81].

We first define the language in which we write our recursive—equations

programs. We consider the following basic sets:

1. Numbers me€E€EN N (0.1.2....1

2. Truthvalues teT T

{tt. ff)
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3. Individual Variables X.y.2.... € WVar

4. Functional Variables (with arities) f.g.... € Fvar = U, FVvar,.

where Fvar, is the set of functional variables with arity |.

5. Basic Operators (with arities) bop, € Bop = U; Bop;. where Bop,

is the set of basic operators with arity i.

The set Var = IVar U FVar is a (possibly infinite) denumerable set of

symbols.

Notice that the set Numbers and possibly other basic sets we may want to
define, as for instance Lists. Trees, etc.. can be introduced by using
constructors. which will be considered as basic operators. We may in fact
define the set Constr of constructors. ranged over by cons € Constr & Bop.
Elements of Constr have arities as all basic operators do.

For instance. using the constructors 0 (with arity zero) and succ (with arity

one) we can define Numbers as follows:

N = {.0, succ(0),succ(succ())....)
Using the constructors "empty”. “tip® and “node” we can define the set of
Trees-of-numbers. as the follows:

- "empty” denotes the empty tree:

- "tip(n) " denotes the tree with one tip only whose number is n:

- "node(tl.12) " denotes the tree with the two subtrees t1 and t2.

Starting from these basic sets we can define the following derived sets:

Basic Expressions be € BasExp

be ::=mijtlx|cons(....,be.,...)

Expr ion e € Exp
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e::=belbopi(...,e....) | if 8 then e, else e,
ewheread ! f(....8....)

Definitions d € Def
d::=x=e | $xq.....X, =@ where n32
The angle—brackets in (x1. - ,x"> denote the n-ary tupling operator. Wae

assume that for any k21 there exists in Bop a k-ary tupling operator. and that

the unary tupling operator is the identity function.

/8 iv s req € Req
req ::=1(....be....) & e
We may use = instead of &, when no confusion arises with the equaiity
predicate.

(The notion of Basic Expressions., as particular kinds of Expressions. is
needed only for the definition of the left-hand-sides of the Recursive

Equations) .

Programs are sets of recursive equations.
For example :

t(x) &= if x=0 thepn 1 elsg@ x - f(x—1)
is a recursive equation and it denotes a program which is made out of that
recursive equation only. Sometimes we do not use the if-then-slse construct
and we break a recursive equation into several ones. For instance the
following two equations:
1{q0)] &= 1
f(succ(n)) &= succ(n) - f(n)
are equivalent to the one given above. Notice that here we assumed n € |Var.
We also omitted (as we will often do) the curly brackets to group together

recursive equations to form a program.
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Moreover., we like to avoid recursive equations such as:

f(n) & m-n because the variabie m is not defined

2 2, 2

or f(n) & a2+n where z=3n because z does not occur in a“+n",

In the Appendix A we will give the static semantics for recursive equations
(this terminology comes from [Plotkin 81]). so that we may restrict ourselves
to well-formed recursive equations only. and we may avoid the anomalous

cases given above.

We should complete the presentation of our language for recursive

equations programs by giving also its dynamic operational semantics. i.e. the

rules for evaluating expressions.

However. in the second part of the thesis we will define the operational
semantics of a simple applicative language L. which could be considered as
an extension of the recursive equations language introduced here. Therefore
we ask the reader to refer to the definitions given there.

For the time being we hope that he may be satisfied by knowing that
expressions are evaluated by the use of a deductive system (similar to the one
used in [Kieene 671 Chapter Xi) . which replaces instances of left hand sides of
recursive equations by the corresponding instances of right hand sides (in any
context they might occur) and performes the operations denoted by the basic

operators.

Now we will introduce some more concepts for reasoning about
transformations of recursive equations programs.
“New" programs can be derived from “old® programs. by using rules and/or

strategies.

Here are the most usual ruies one encounters in the literature.
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1. Definitions Rule. It consists in the introduction of a new recursive
equation. say f(...) &= e. so that the “left hand side” f(...) Is not an
instance of any left hand side of equations already existing in the program.

We say that an expression e, is an instance of an expression e, iff there is a
substitution O so that d(e,) =e,: in that case we may say that e; matches e,
(one-way unification) .

Here are some examples: f(succ(n)) Is an Instance of f(m). where

og(m)=succ(n). g(succ(n).m) is nat an instance of g(p.succ(q)).

2. | tiation ARule. This rule consists in the introduction of an
instance of an existing equation. This rule already occurs in [(Kleene 671
where it is called "substitution rule”.

For Instance g(n.0) & 0 can be obtained via Instantiation from

g(n.m) & m - fact(n) .

3. Unfolding Rule. In an aiready existing equation. an occurrence of an
instance of the l.h.s. of an equation is replaced by the corresponding
instance of the associated r. h.s. ., thereby producing a new equation.

Here is an example. Suppose we are given the following program:

(0 &= 1

f(sucec(n)) &= n-fin),
Then we could derive by instantiation the equation:

t(suce(succ(n)) &= succln) - f(succi(n))
and then by unfolding we get:

t(succ(succ(n)) & succ(n) - (n - f(n)). a
This rule has been aiready considered in [Kieene 67] Chapter 11. where it is
called "replacement rule". It is also the rule used in term rewriting systems
(see for instance [Huet and Oppen 801) for defining computations using rewrite

rules.

4, Foiding Rule (as the unfoiding rule. interchanging | . h.s. and

r.h.s.)
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5. Whaere-Abstraction Rulg. Given a recursive equation f(...) & e

such that e = Cle’] where C is a context denoting that the subexpression e’
occurs in e. we introduce the new equation f(...) & Clzl where z=e’
provided that z is a “new"® variable symboi. i.e. a variable symbol not

occurring In 1(...) & o.

6. Laws Rule. We can define a new equation by transforming a
subexpression using some rules which hold in the aigebra of the basic
operators. For instance f(succ(n)) & n - f(n) can be transformed into

f(succ(n)) &= f(n) - n because - Is commutative.

Strategies for transforming programs are ways Iin which new function
definitions may be derived. New derived functions may be introduced in the
given program using the "definition rule”.

Well-known strategies are the following ones [Burstall and Darlington 77):

1. Composition. If a subexpression f(g(x)) occurs in an expression e.
we define h(x)=f(g(x)) and replace f(g(x)) by h(x) in e.
Using this strategy one may derive a new program which. hopefully, is more
efficient. For instance. one may avoid the construction of intermediate data
structures. which are the output of g and the input for f. Some examples are
in [Burstall and Darlington 77, Feather 79, Scheriis 80].
The composition strategy is also very useful when the output of f does not
depend on the entire output of g. In that case we can obtain some of tﬁe

advantages of the lazy evaluation mechanism.

2. Tupling. (In the literature this strategy has been also called pairing.
when only two functions are considered) ( [Burstail and Darlington 771 page 49).
If in an expression e. the functions f;(x). f,(x)., .... f (x) occur. we may
define h(x)=<f, (x).f,0x)..... fa(x)>.  Then in e we will use Ti(h(x)) instead

of f,(x). where Ti denotes the i—th projection function. for i=1..... n.
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The use of the tupling strategy is very useful if the functions f,(x) N e
have all to access the same data structure x (and no other function is using
x). The use of x will then be restricted to the computation of h(x) and the
store used by x can be released as soon as h(x) has been computed. This
allows great improvements in “timeXmemory" efficiency while executing
recursive equations programs (Pettorossi 77].

The use of the tupling strategy is aiso very effective when common
subexpressions occur in evaluating several functions. Tupling those functions
together results in an improvement of the performances. Various examples of

that fact will be given later in the thesis.

3. Generalization. It could be of two kinds.

i) Generalization from gxpressions to functions.

If an expression e occurs in a program and the variables x,.....x, occur free
in it. then we may define a new function f via the equation f(x,.....X,) &= o
and replace e by f(x,..... x,) itself (Burstall and Feather 771. Generalizations

of this kind are somewhat similar to those in [Aubin 79] and [Boyer and Moore
751.

ii) Generalization from functions to functions.

it can be done in two different ways. The new function can be introduced

either by cases or by implicit definition (Pettorossi and Burstall 82].

Definition by cases.
Let us consider the following program:
( HKbey,....) &9, .... f(be,,....) &eop ]

‘which defines the function f and let us suppose that some constants. say

Cqvvvrs Cym- Occur in the expressions e,..... e, We can gensralize those
constants to variables. say y;.....Y,. and define the same function f as
follows:

{fC...) & f2C....cq.....cp).

1200044 Yoo Yy) € 04 . .. 1200 YY) & el ]
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where ey, ..., e’ are expressions which can easily be derived from
For example. from:

{ 1€O)=1. f(n+D)=(n+1) <f(n) } we get:

{ fCm)=f2(n. 1) . f2(0.y) =y, f2(n+1.y)=(n+1) -f2(n.y) }.

Implicit definition.

Given the program:
[ ftbeyy....) & @, .... f(bey,....) &0, }
which defines the function f. we can introduce the new functions
g.C...). .... gn(. ..) by implicit definition. using the following recursive
equation:

(...) &EFC...g,C..0..... GmC. ...
where F is a functional which we have to invent and which may depend on the
arguments of f as waell.
For example. given the program:
{ Gta.b.)=a. G(a.b.1)=b. G(a.b.n+2)=G(a.b.n)+G(a.b.n+1) }
we may introduce by implicit definition the new functions p(n) and q(n) using
the equation:
G(a.b.n) = F(a.b.n.p.q) = p(n)-a + q(n) -b.
The explicit definition of p(n) and q(n) gives us:

p(M=G(1.0.n) and q(n)=G(0.1.n).

We will see some more examples of those generalization strategies in

what follows.

The basic idea of the program transformation techniq'ue as introduced by
Burstall and Darlington (Burstall and Darlington 771, is to derive from a given
recursive equations program. another one which computes the same function

in a more efficient way.
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In such a derivation two major issues are to be considered: equivalence and

efficiency.

The egquivalence issue consists in the fact that the derived program., say

P’. should be aquivaient to the given one. say P. in a strong sense, i.e. VYx if
P(x) terminates and computes the value f(x) then P’'(x) terminates and
computes the same value f(x).
Sometimes one may encounter a “termination problem”. Indeed. using the
strategies and the ruies we have listed above. the derived program P’(x) may
fail to terminate for input values for which P(x) terminates.
Let us see the following example.
Given the program: 1. f(0) &< 0

2. f(succ(n)) &= f(n).
we can get by instantiation from 2:

3. f(succ(succ(n))) & t(succ(n))
by unfolding from 2 and 3:

3’. f(succ(succ(n)) & f(n)
and eventually by folding f(n) in 2 using 3’ we get:

2, f(succ(n)) &= f(succ(succ(n)).
Now the derived program (equations 1 and 2°) for the function f terminates
only for the input 0. and therefore it does not compute the function computed
by the given program (equations 1 and 2). which was the constant function
yielding always the vaiue 0. 0
Work related with this equivalence issue was done in {Kott 78. Scherlis 80].
In order to make sure that termination is preserved. Kott suggested a method
based on counting the number of foidings and unfoldings. while Scherlis
adopted transformation rules which correspond to a restricted use of the ones

we have presented above.

The efficiency issue is related to the time and/or memory requirements in

running a derived program with respect to a given one.
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in [Burstail and Darlington 771 the time requirement considered is the number
of recursive calls necessary to compute the result. We will also use such a
measure in the next sections when deriving efficient algorithms for evaluating
linear recurrence relations.

Ways of improving memory requirements via program transformation or
“destructiveness analysis®" have been considered in [Pettorossi 78] and [Mycroft

811.
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1.3 Deriving an algorithm for computing the Fibonacci function in logarithmic

time

We start off from the familiar definition:

B Program P1

1. fib(0) =1

2. fib(1)y =1

3. fib(n+2) = fib(n+1) + fib(n) for n?0

and we look for a logarithmic running time program for computing the
Fibonacci function. (In (Burstall and Dariington 77] a linear running time
program is obtained.) We will use the transformation method and its

strategies for dariving "new" (and more eftficient) programs from "old" ones.
Obviously Program P1 is a well-formed program (see Appenvdix A).

As it has been the case for many other functions (see for instance. the
factorial function in (Burstall and Feather 771). in order to improve the running
time efficiency we can apply the "generaiization strategy” already described.
by transforming the constant 1 in equation 1 into the variable a, and the

constant 1 In equation 2 Into the variable a,.

These variables will be considered as extra arguments of a new function.
as usuaily done when using the generalization strategy [Burstall and Feather
771. Therefore we get the following generaiized Fibonacci function:

(GENERALIZATION EUREKA)

4. G(ag.a4.0 = a,

5. G(ag.ay. 1) = a,

6. Glag.a,.n+2) = G(ag.a,.n+1) + G(ag.a,.n) for n20

The word “eureka® which annotates the above generalization step. is used
throughout this paper as in [Burstall and Darlington 77], for denoting

unobvious steps in the transformations of our programs.
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The function G has been obtained by applying the generalization with _definition
by cases (see Section 1.2).
it allows us to compute the Fibonacci function starting from any two initial

values ag and a,.

Obviously we can derive the following program for computing fib(n):

Program P1.1

fib(n) = G(1.1.n) for n20
G(ao.a1,0) = a,
G(ao.a1,1) = a,

G(ag. ay. n+2) = G(ao.a1.n+1) + G(ag.a,.n)  for n30

e o » N

Program P1. 1 is well-formed.

Looking for a fast way of computing G. we need to relate G(ag. a;.n+2)
not to G(ao,a1.n+1) and G(ag.ay.n) as in equation 6. but to "more distant"
values. say G(a,.a;.n) and G(ag.a,.n-1). This can be achieved by using

the “unfolding rule”. We get:

G(ao. a,.n+2) G(ao.a1,n+1) + G(ao,a1, n)

i

2~G(ao. a;.n) + G(ao.a1,n—'l)

by unfolding G(a,. a4. n+1) using 6.

We can iterate this unfolding process and we get:
G(a,. a,. n+2) = 3-G(ag.a,. n-1) + 2-G(ay.an-2)

by unfolding G(ag. a,.n) in the previous expression.

Eventually we get:

G(ag.ay.n+2) = cy-Glag. a,.0) = cy-a,+cy-a,.

where the two vaiues c, and c, depend on n. i.e. the “distance” of
G(ag.ay.n+2) from G(a,y.a,. 1) and G(ag.a,.0).

This reasoning motivates the following "eureka step” (more "ad hoc" than the

'
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previous generalization eureka). by which we generalize the constants c, and

cy and we introduce the implicit definition of two new functions p(n) and gq(n):

8. G(ag.ay.n) =p(n)-ag+qlnl)-a, (LINEAR COMBINATION EUREKA)
This "eureka" is an application of the generalization by impligi finiti as

introduced in Section 1. 2.

The program transformation process continues. as usual. by looking for
an explicit definition of the newly introduced functions p(n) and q(n).
From 4 and 8 (for n=0) we get: a, = p(0) -a, +q(0) -a,. Since this equality.
should hold for all values of a; and a,. we have q(0) = 0 and hence
p(o) =1,
.Analogously from 5 and 8 (for n=1) we get: a, = p(1)-ag + q(]) -a,. which
yields p(1) = 0 and q(1) = 1.
From 6 and 8 (for n+2 instead of n) we get:
G(ag.a4y.n+1) + G(ag.ay.n = p(n+2) -ag5 + q(n+2) - a,
By 8 we: have.
p(n+1) -ag + q(n+1) -a, + p(n) -ag + q(m) -a, = p(n+2) a5 + q(n+2) - a,
and therefore. since this equality should hold for all values of a5 and a,;. we

get: p(n+2) = p(n+1) + p(n) and q(n+2) = q(n+1) + qln).

By 4. 5 and 6 we get: p(n) =G(1.0.n) and gq(n) = G(0.1.n).
Thus the LINEAR COMBINATION EUREKA can be rewritten as follows:
8. G(ao.a1.n) =G(1.0.n) -a4 + G(0.1.n) -3,

Since the function G(ag.a,.n) computes the Fibonacci function starting
from the initial values a, and a,. if we substitute in 8" fib(n) for a, and

fib(n+1) for a, we get that G(a,. a,.n) is equal to fib(2n): thus!:

8°. fib(2n) = G(fib(n). fib(n+1) . n)



24

=G(1,0.n) -fib(n) + G(O0.1.n) -fib(n+1) by 8’

This equation allows to derive a logarithmic running time algorithm for
computing the Fibonacci function., because the argument 2n has been divided
by 2 and because analogous equations can be derived for G(1.0.n) and

G(0.1.m.

However, in order to obtain equation 8" using the program transformation
technique. we need a second generalization step. by which we will obtain a
general formula for computing G(ao.a1. n) in logarithmic time for any value of

the variables aga, and n.

From equation 6 we can generalize the constant 2 6ccurring in
G(ao. a,.n+2) into a new variable. say k. which will be. as usual, an extra
argument . of the resulting function. Therefore we define the function
F(ao.a1.n,k) as follows: |

9. F(ag.ay.n.k) = Glag. ay. ntk) (GENERALIZATION EUREKA)

(for the function F)
Now we look for the explicit definition of F. in terms of the argument k just
introduced. We obtain:
Flag. a4.n.0) = G(ay. a4.n)
Flay.a,.n. 1) = G(ay. a,.n+1)

F(ag.ay.n. k+2) = G(ag. a,. n+k+2)

Glagy. a,. n+k+1) + G(ay. a,. n+k) by unfolding (using 6)

= F(ag.ay.n. k+1) + Flag.a,y.n. k) by folding (using 9)

Now it is possible to make for F the same transformation steps made for
G. because F and G obey the same recurrence reiation.
We can apply for F the “linear combination eureka® (see equation 8) . and we
get:

F(ao.a1.n,k) = r(k) -G(ao.a1.n) + s(k) -G(ao,at,n-ﬂ).
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because G(as.a,.m. G(a,. a,.n+1) and k play for F the role of a;.a; and n

respectively for G.

Looking for the explicit definition of r(k) and s(k) we obtain (by making

the same derivations performed for the function G) that:

r(Q)

1. r(1) =0, r(k+2) = r(k+1) + r(k) and
s(0)

0. s(1) =1, s(k+2) = s(k+1) + s(k).

Thus we have as before:

r(k) =G(1.0.k and s(k) = G(0.1.k).

We get: _
F(ao.a1.n.k) = G('l,O,k)'-G(ao, a;.n) + G(0.1.k) -G(ao,a1.n+1)

and from it we obtain, using 9, the following equation:
9'. G(ag.ay.n+k) = G(1.0.K) -G(ag.a,.n + G(0.1.k) -G(ay.ay.n+1)
(EFFICIENCY EQUATION)

Equation 9’ allows us to achieve the logarithmic running time algorithm we -
were looking for. In fact., if we want to compute fib(2k) we need to compute
G(1.1.2k) (by equation 7) and for computing G(1.1.2k) according to
equation 9°, we need only to know G(1.0.k). G(1.1,k), G(0.1.k) and
G(1.1.k+1) which are values of the function G around the point k. As we
already mentioned. this division by 2 of the relevant argument allows the
desired efficiency.

From equation 9° we can dérive the new program P2 for computing the

Fibonacci function:
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~ Program P2
10. fib(O®) =1 by 1
11, fib(1) =1 by 2
12. fib(2k) = G(1.1.2K) by 7

= G(1.0.K) -G(1,1.k) + G(0.1.K)-G(1,1.k+D by 9’
13. fib(2k+1) = G(1.1.2k+1) by 7

= G(1.0.K) -G(1.1.k+1) + G(0.1.Kk) -G(1.,1.k+2) by 9’
14. G(ag.ay.0 = ag ‘ by 4
15. G(ag.a,. = a, by 5

16. G(ao. a,. 2k)

G(1.0.k) -G(ag.a,. 0 + G(0.1.k -G(ay. a,. k+1)

by 9’
17. G(ag.a,.2k+1) = G(1.0.K) ~G(ag. a,.k+1) + G(0.1.K -G(ay. a;. k+2)
by 9’

Unfortunately. as one éan see from fig.1-1., program P2 may evoke
computations with redundant evaluations. In order to guarantee a logarithmic
running time for P2 one should avoid them (or, at least. prove them to be
suitably bounded) .

Notice that redundant evaluations can be detected by symbolic evaluation
alone. using "unfolding”: in our-case. for example., when computing fib(2k).

we will compute G(1.0.k/2) 4 times (see fig. 1-1).

But this difficuity can be easily solved by using the “tupling strategy”
[Pettorossi 771. The “tupling strategy” consists in defining a new function as
the tuple of all functions which require common subcomputations. We will
apply it by "tupling” together G(1.0.k). G(1.1,.k), G(0.1.k) and G(1.1.k+1)

because they all need the computation of G(1.0.k/2) (see fig. 1-1).
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fib(2k)
by 12

G(1.0.k) G(1.1.K G(0.1.K G(1.1.k+1)

G(1,0.k/72) G(1.0.k/2) G(1.0.k/2) G(1.0.k/72)

by 16 by 12 by 16 by 13

Figure 1-1: Redundant computations in program P2:
G(1.0. k/2) occurs 4 times in evaluating fib(2k) .
(Suppose k even.)

Therefore we will define the following auxiliary function t(k):
18. t(k) = <G(1,0.K).G(0.1.kK).G(1.1.K.G(1.17.k+1)> (TUPLING EUREKA)
The order in which the individual functions G’'s occur in t(k) is
immaterial. The explicit definition of the function t(k) can easily be derived by
standard applications of the “folding” and "unfolding” rules using equations 4,

5. 6 and 9’ and we get:

<1.0.1. D
<G(1.0.2k). G(0.1.2k). G(1.1.2K), G(1,1.2k+1)>

19. t(O)

20. t(2k)
=<G(1.0.k)-G(1.0.k) + G(O, 1.k) -G(1.0.k+1),

G(1.0.K) +G(0. 1.k + GC0. 1.k -G(0.1.k+1).
G(1.0.K) -G(1.1.K) + GCO. 1.k G(1.1.k+1).
G(1.0.K) +G(1.1.k+1) + G(O.1.K -G(1.1.k+2)>
by 9’
= <a’+b%, b(2a+b). ac+bd. ad+b(c+d)> where <a.b.c.d> = t(k)

by 6 and 9’
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<G(1.0.2k+1), G(O,1.2k+1). G(1,1.2k+1)., G(1.1,2k+2)>

21. t(2k+1)
«2ab+b2, (a+b)2+b>. ad+blc+d). alc+d)+b(2d+c)>

where <a.b.c.d> = t(k)

Therefore we can now obtain the following nonredundant program P3.

which computes the Fibonacci function in logarithmic time.

~ Program P3
10. fib(0) =1
1. fibCD =1
12°. fib(2k) = ac+bd whera <a.b.c.d> = t(k)
13", fib(2k+1) = ad+b(c+d)  where <a.b.c.d> = t(K)
19. t€0) = <1.0.1. 1
20. t(2K) = <a®+b>. b(2a+b) . ac+bd. ad+b(c+d)>
where <a.b.c.d> = t(k)
21. t(2k+1) = <2ab+b>., (a+b)2+b%. ad+bl(c+d). alc+d)+b(2d+c)>

where <a.b.c.d> = t(k)

Notice tﬁat. instead of ‘tupling” the functions which cause redundant
computations in equation 12. namely G(1.0.k). G(0.1.k)., G(1,1.k) and
G(1.1.k+1). as we did. we could have tupied the functions G(1.0,k),
G(O0.1.K). G(1.1.k+1) and G(1.1.k+2) which cause redundant computations
in equation 13. The resulting program would have been equivalent to program
P3. In Section 1.8 we wiill discuss that fact and we will see other interesting

properties of the tupling strategy.

We also can simplify program P3 using the foillowing equation which can
be derived from equations 7 and 18:
22. fib(n+1) = w3(t(n))

where. in general. Ti(<e0.e1...., ek>) = ei for i=0,....k.
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Notice that 7i denotes the (i+1)st projection function. it is not a usual
convention. but it will shorten our notations in what follows. When no
confusion arises. we will feel free to use Ti to denote the i-th projection as
welt.

We obtain program P4.

—

Program P4
10. fibCO) =1
22. fib(n+1) = w3(t(n)) ‘ where m3(<e0.01,02.683>) = a3
19. t(O) =¢1.0.1. 1 ,
20. t(2k) = <a°+b>. b(2a+b) . ac+bd. ad+b(c+d)>
where<a. b, c.d> = t(k)
21. t(2k+1) = <2ab+b>. (a+b)2+b(2) . ad+b(c+d). alc+d) +b(2d+c)>

where <a.b.c.d> = t(k)

We coulid aiso have derived the equation: |

22°. fib(n) = m2(t(n)) for n20

and we could have used it in program P4 instead of equations 22 and 10.
But. in evaluating m2(t(n)) we shouid avoid computing all 4 components of
t(n) . because otherwise we would also compute m3(t(n)) which is equal to
fib(n+1) . and it seems awkward to compute fib(n+1) while computing fib(n).
A solution to this inconvenience can be obtained by using a “call by need”
evaluation mode for the projection function 72 or by introducing suitable
conditional expressions (see Example 9 Section 1.8.3).
in fig.1-2 the reader may have a synoptic account of the program

transformation steps we have made so far..
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Program P1 (1.2, 3): Definition. Exponential time.

$

Generalization Eureka (4.5, 6) defining G(ag.a,.n)

i

Program P1,1 (7.4.5.6). Exponential time.

Figure 1-2:

$

Linear Combination Eureka.for G(ao.a1. n) (8")

Generalization Eureka defining F(ag.a,.n. k) (D

Efficiency Equation (99
i

Program P2 (from 10 to 17). “Almost” logarithmic time.

4 functions require common subcomputations.

4

Tupling strategy with 4 functions (19,20.21)

$

Program P£3 (10.11.12°,.13°.19.20.21). Logarithmic time.
As the 2X2 Matrix Exponentiation Method.

13

Simplification strategy (22)

1)

Program P4 (10.19.20.21.22). Logarithmic time.

As program P3, but fewer squations.

Deriving logarithmic running time algorithms for computing the
Fibonacci function. (We have annotated the transformation steps
and the programs with the corresponding equation numbers. )
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1.4 A comparison with other aigorithms -

Linear recurrence relations can also be evaluated in logarithmic time

using the well-known matrix exponeantiation method [(Milier and Brown

66. Hoggatt 69]. We will recail it in the case of the Fibonacci function
evaluation. Directly from the definition. we have:
fib(2) ' T 1 fib(1)

fibC1) 1 0 fib(0)

and. in general. we have:

fib(k+1) [ fibcn 1 .
=M . =M - for k*0
fib (k) fib(0) 1
1 1
where M =
1 0

Therefore. in order to compute fib(k+1) we have to compute Mk. This
matrix can be computed in logarithmic time. because we can compute the
values of M.M2. M4. Ms, ... by successive squarings starting from the matrix M
and then we can multiply together those matrices whose exponents contribute
to a sum equal to k [Miller and Brown 66, Hoggatt 69, Steinbriiggen 771.

n i
More formally. we have: M*= [I M% 2, where the b,’s are defined by

the binary expansion of k. i.e. k

Example 1. For computing fib(14). since 13 = 1+4+8, we have:
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fib(14) 1 1

fib(13) | 1 1

11 I’s 3 34 21 1
(1 o] |3 2] |21 13 1

(377 233 1

(233 144 [1
Thus fib(14) = 337 + 233 = 610. a

What kind of relationship exists between the matrix exponentiation method
and our method as defined by program P4? The answer to fhis question is
given by the following fact. which shows that the 4-tuple t(k) directly

corresponds to m" for any k#0.

T 1 c b
Fact1 Let M be . Mk be and t(k) be defined as in
T 0] |d a
program P4, Vk20 t(k) = <a.b.c.c+d>.
Proot By induction on K. : a

It is very interesting to notice that the use of the tupling strategy. wh'ich
we applied in the transformation approach only for avoiding redundant
evaluations of common subexpressions, "rediscoverad”. as Fact 1 indicates.
the matrix exponentiation approach. by satfsfying the apparently unrelated
requirement of improving efficiency. But the relationship between the two
approaches can be shown to be even stronger. as we will now indicate.

The matrix exponentiation method can be improved because the following
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Fact 2 allows us to derive the matrix M2k from the matrix Mk, for any k#0. by
knowing only the 2 elements of the last column of Mk [(Miller and Brown 686].
Fact 2. Under the hypotheses of Fact 1, Vk20 d=b and c=a+b. i.e. the
matrices Mk’s are symmetric and they have only two independent elements,
namely a and b. Proof. By induction on k. O
From Fact 2 it follows that in order to derive M2 from M¥ it is enough to
know only one row or one column of Mk. That property is indeed valid for any
llnear recurrence relation with constant coefficients, as we will see in the next

section.

Can we ‘rediscover” the improved version of the matrix exponentiation
method (in which we compute only two elements of the matrices Mk, for any
k20. by using Fact 2) by applying the tupling strategy for avoiding redundant
computations so that only two functions (instead of four as we did in the
definition of t(k)) are tupled together? |
The answer is "yes” and the corresponding program can be derived from
program P2 as follows.

The technique used is an application of what we may call a simplification
strategy. We can transform equations 12 and 13 for minimizing the number of
distinct values occurring in them.
12°. fib(2k) =G(1.0.k) -G(1,1.k) + G(O0.1.K) -G(1,1.k+1) by 12
=G(1.0.KkK) - (G(1.0.K)-G(1.1.0) + G(O0.1.k)-G(1.17.1))
+ G(0.1.k) - (G(1,0.K)-G(T.1.1) + G(0.1.k)-G(1.1.2))
by 9°
=(a-i~t'))2+b2 where a.b = G(1.0.k). G(0.1.k)
by 4.5 and 6

Analogously:
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G(1.0.k) ~G(1.1.k+1) + G(O,1,k) -G(1.1,k+2) by 13

13°. fib(2k+1)

(a+b)2 + 2b(a+b) where a.b = G(1.0.k). G(0.1.k) by 9°

Analogously we may transform equations 16 and 17 and we get:

G(ag.ay. k) = G(1.0.K) -ag + G(O0.1.k) -a, by 8°
G(ay. ay.k+1) = G(1.0.k) ~G(ag.a;. 1) + G(0. 1.k -G(ay.a,.2) by 9’

= G(1.0.K) -ay + G(0.1.Kk) - (ag+ay) by 4.5 and 6
G(a,. a,.k+2) = G(a,. a,. k+1) + G(a,. a,.k) by 6

G(1.0.K -a, + G(0. 1.k - (ag+a,)+ G(ay. a,. k)

by above equation for G(ag. a,. k+1)

G(1,0.k) a, + G(0.1.k) (a°+a1) _
+ G(1.0.k) G(ao,a1,0) + G(0.1.k) G(ao,a1.1) by 9’ A

G(1.0.K (agtay) + G(0.1.K) (ay+2a,) by 4 and 5

Therefore we get the following program P2. 1 from Program P2:

Program P2, 1
10. fib(0) =1
1. fib(D =1
12°. fib(2k) = (a+b) 2+b® where a.b = G(1.0.k) . G(0. 1.k
13", fib(2k+1) = (a+b)2+2b(a+b) where a.b = G(1.0.k), G(O. 1,k

14. G(ao.a1,0) = a,

15. G(ao.a1.1) a,

16°. G(ay.a,.2k) G(1.0.k) -G(ag.ay. k) + G(0.1.k) -G(ag.a,y.k+1) by 9°

p2a0+2a1 pa+(ag*a,) qz

where p.q = G(1.0.k),G(0. 1.k)
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G(1.0.k) -G(ajy. a,. k+1) + G(0.1.k) -G(ag. a,. k+2)
by 9’

17", G(ag. a,. 2k+D

pza1+2( ag*a,) pq+(a°+2a1) q2
where p.q = G(1.0.k).G(0.1.k)

Program P2.1 still suffers from the presence of redundant computations
(see fig. 1-3).
fib(2k)

by 12

G(1.0.k) G(0.1.K

G(1.0.k/2) G(1.0.k/2)

by 16’ by 16’

Figure 1-3: Redundant computations in program P2. 1:
G(1.0.k/2) occurs twice in evaluating fib(2k) .
(Suppose k even.)
They are caused by the functions G(1.0.k) and G(0.1.k) and therefore

we will use the "tupling strategy” defining the foilowing auxiliary function r(k):

23. r(k) = <G(1.0.Kk). G(O.1,.k)» (TUPLING EUREKA)

<1.0»

24, r(Q®)

25. r(2k) <G(1.0.2K). G(0.1.2k)>
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= <p2+q2.2pq+q2> where <p.q> = r(k) . by 16°
26. r(2k+1) = <G(1,0.2k+1), G(O0.1,2k+1)>
= <2pq+q2, (p+q)2+q2> where <p.q> = r(k) by 17°

Therefore we can transform program P2.1 into program P3.1 where no
redundant computations occur and. as required, we tupled only two functions.

The running time for P3. 1 is again logarithmic.

i Program P3. ]
10. fib(0) =1

11. fib(1) =1

12°. fib(2k) = (a+b)2+b2 where <a.b> = r(k)

13", fib(2k+1) = (a+b)2 + 2b(a+b) where <a.b> = r(k)

24, r(0) =<1,0»
r(k)

25. r(2K) = <a>+b>. 2ab+b> where <a. b>

r(k)

26. r(2k+1) = <2ab+b>, (a+b)2+b> ara <a.b>

The straightforward correspondence between program P3.1 and the matrix

exponentiation method is stated by the following fact:

1 [e b
Fact 3 Let M be . ™" be and r(k) be defined as in
1 0 d a
program P3.1. Vk20 r(k) = <a.b>.
Proof By induction on K. g

As we simplified Program P3 and we obtained program P4. we can
simplify program P3. 1 also. by using once more the efficiency equation 9°.
For n20. we have:

7°. fib(n) =G(l.1.m) by 7
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=G(1.0.n)-G(1,1.0) + G(0.1.nM -G(1.,1. D) by 9°
=G(1.0.n) + G(0.1.n) by 4.5
= a+b where <a.b> = r(n) by 23

Therefore we can get the following program P4. 1:

—

Program P4.1

10. fib(O)

1
11. fib(1)

1
7. fib(n+2) = a+b whare <a.b> = r(n+2) for n20

24, r(0) =<1.0

25. r(2k) = <a>+b>.2ab+b> where <a.b> = r(k)

26. r(2k+1) = <2ab+b2. (a+b)2+b>  where <a.b)

r(k)

Notice that program P4.1 has less equations than program P3.1. but it
determines exactly the same sequence of computations. as it can be proved
by induction on k.

The following fig. 1-4 summarizes the last transformation steps we have

performed.

instead of using the simplification strategy and the tupling strategy. we
can get program P3.1 directly from program P1 by discovering an efficiency
equation a bit more "clever” than 9’ as foliows. We could have thought of
expressing G(1.0.k) and G(0.1.k) in 9’ in terms of the Fibonacci function for
reducing the number of different functions to be computed. This can be done
by extending the definition of the Fibonacci function so that
fib(n+2) = fib(n+1) + fib(n) hoids for n 2 -2. Therefore. if we want to have

fib(0) = 1 and fib(1) = 1. we must have fib(-1) = 0 and fib(-2) = 1. Thus:

27. G(1.0.k) = fib(k=2) by 4. 5 and 6
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Program P2 (from 10 to 17). "Almost” logarithmic time
|

Simplification strategy (12°.13%.16". 179
i
Program P2.1 (10.11. 12°.13",14.15.16°. 17°) . "Almost” logarithmic time.
2 functions require common subcomputations.

$

Tupling strategy with 2 functions (24,25, 26)
i
Program P3.1 (10.11.12%, 13-, 24, 25.26). Logarithmic time.

As the 2X2 Matrix Exponentiation Method with 2 independent values.

13

Simplification strétegy 7))
i

Proaqram P4.1 (10.11.7°,24,25.26). Logarithmic time.

As Program P3.1. but fewer equations.

Figure 1-4: Alternative derivation of Iograrithmic running time algorithms
for the Fibonacci function. (Transformation steps and programs
are annotated with the corresponding equation numbers.)

28. G(0.1.k) = fib(k=-1) by 4. 5 and 6

We can then rewrite the EFFICIENCY EQUATION as foliows.:
9°. G(ay,. a,.n+k) = fib(k—-2) -G(ao. a,.n) + fib(k-1) -G(a,. a,. n+1)
for n20. k20

Using 9" we get the following program for computing the Fibonacci function:

10. fib(0Q)

1} ]
— —t

11. fib(1)
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29. fib(2K) = G(1.1.2K by 7
= fib(k-2) - fib(k) + fib(k-1) - fibCk+1) by 9" and 7
= (a+b) 2 + b2 where a.b = fib(k-2) . fib(k-1) by 3
30. fib(2k+1) = G(1,1,2k+1) by 7
= fib(k=2) - fib(k+1) + fibCk=1) = fib(k+2) by 9% and 7
= (a+b)2 + 2b(a+b) whare a.b = fib(k=2) . fib(k=1) by 3

By equations 23. 27 and 28 it turns out that equations 29 and 30 ére the same
as 12" and 13", Therefore applying the tupling strategy by defining
r(n) = <fib(n-2).fib(n-1)> we can get again program P3. 1.

It is very interesting to notice that the cleverness of discovering 9", starting
from 9° (including also the extension of the Fibonacci function definition) can
be obtained via the application of a very simple strategy. i.e. the
simplification one. Therefore. in some particular cases. the basic strategies
are indeed very powerful and they allow us to obtain results which can be

othaerwise derived only by “intelligent” reasoning.

Linear recurrence relations may also be solved using the genserating
functions _method [Liu 68] . Applying that method it is possible to derive an
explicit formuia for the nth element of the series which satisfies a given
recurrence relation. That formula contains in general an exponentiation to the
nth power which allows a logarithmic running time algorithm. For example.
for the Fibonacci relation. fib(n) is equal to(Anﬂ—Bnﬂ)/s/E‘T. where
A= (1+V5)/2 and B = (1-v5)/2 . Therefore as far as running time is
concerned. the program we obtained using the transformation technique is not

less efficient, at least asymptotically.
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1.5 The general case of homogeneous linear recurrence relations

In this section we deal with the general case of homogeneous linear
recurrence relations with constant coefficients (whose definition will be
recailed later) and we show that analogous steps to those presented for
deriving an efficient algorithm for computing the Fibonacci function can be

performed in that case as waell.

We will follow for the general case. the transformation steps indicated in
fig. 1-2 (from program P1 to program P2) and the ones indicated in
fig. 1-4 (from program P2 to program P3.1): in fact the genseralization
eurekas and the linear combination eurekas can be applied in the same
manner. so that we can derive an algorithm for evaluating any homogensous
linear recurrence relation in logarithmic time.

Therefore. as the matrix exponentiation metﬁéd is a general method for
evaluating linear recurrence reiations. so is our transformation method. This
is an interesting fact because it shows the “uniform”™ power of the
transformation strategies with respect to a given class of problems. just as
“paradigms” (Floyd 791 in the stepwise refinement technique has a uniform

power for solving problems in a given class.

Let us consider a general homogeneous linear recurrence relation of

order r.
4.1 h(Q) = hg
h(1 = hy
h(r=1) =h,_,
h(n) = bg h(n-r) + ... + b, h(n-1) for n¥r

We will also write h(n) = L(h(n=-r), ..., h(n-1)) where the polynomial
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r=1

Lixg. ... cXpeq) = Z b, x is a linear polynomial in the variables x,. ... . X

with the constant coefficlents bo' Cee ,br_1.

The ganeralization eureka introduces the following function H (analogous

to the function G(ao.a1, n).

p—

4.2 | H(hy.....h_,.00 = hy
H(hg.....h_q.0=1) = h_,
HChg. ... .h_q.n) = LCHChg. ... B n=n) ... HChg Rpeq. N=10)
for n¥r

The general form of the linear combination eureka (analogous to equation

8°) is:

FS
w
I
”~~
¥

Q
>
3
o

'

= H(1.0.....0.m ~hg +... + H(0.0.....1.m ~h_,

r=1
L H(nmh
i=0

where we denoted by H;(n) the term H(Q,...0.1.0,.. .. 0.n)

i r—1=
tor i=0.,....r-1.
If we take ho""'hr—1 to be equal to r consecutive values of
H(ho,...,h,_1.n) for n=k.k+1..... k+r-1. then from the linear combination

eureka. we can derive the following general form of the efficiency equation. as
we did in deriving the equation 9°:

4.4 H(hg.....h_;.m+k) = H(1,0.....0.m) -H(hg. . ... ey KO+, .
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r-1
= H(m) H(h,, . ... h
L H 0

i=0
which can be proved by induction on k using equation 4.3.

Therefore we have the following equations:

r—1
4.4,1 h(2K) = H(0 ..... hr_1.k+k) = ): H'(k) H(l'lo ..... hr_1.k+i)
i=0
r-1 )
4.4.2 h(2k+1) = HChg, .. .. h,_,.k+k+1) = ‘Zo H,(k) H(h0 ..... hr_1.k+|+1)
':.'

which are analogous to the equations 12 and 13 of Section 1.3.
For avoiding redundant computations In computing h(2k) and h(2k+1) we

need to apply the tupling strategy (as we did in deriving equation 18) to the

following 2r functions: Hglk). .... H,_4(k). HChg. .... h_y. K.
H(hg.. ... h_q. k#r=1) . Out of these 2r values. only r are independent. In
fact. as for the equations 16’ and 17°. we can express H(h,. ... che_y. k+) for
i=0..... r in terms of the H;(k)’s for 0<j&r-1. using the equation 4.4. We
have

r—1
4.5 H(hg, ....h_4 kD = i=Eo H (k) HChg. ... hey. i+ for OSi<r by 4. 4

Therefore we can rewrite the equations 4.4, 4.4.1 and 4.4.2 as follows:

r—1 r—-1
4.4 Hhg.....h_pmekd= L H(m [ L Hk HChg. ... hp i+ ]
i=0 j=0
r—-1 r=1
4.4.1° h(2 = L H [ L Hk HChg . ... h_q.i+D1
i=0 j=0
r=0 r=1
= L H0 UL Hon,,]
i=0 j=0
r=1 r=1
4.4.2° h(2k+D) = L HKO [.g H;(k) HChg. . ... hp_q.i+j+ D]

i=0 j=0
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r=1 r=1
= L Ho [T Hk hy,ld
i=0 j=0

where h, stands for h(i) for 0<i<2r-1.
The hy’s for 0%iS2r-1 can be computed once and for ali. using the equations

4.1. Then we can apply the tupling strategy. as we did in equation 23, for

computing the r independent values by defining the following function t(k) !

"

A
I
~~
)
o

4.6 t(k) =<HO,0..... 0.k)., HCO.1..... 0.k). .... H(0.,0..... 1.k)»>

Ho(k) . Hy(ky, ..., H,_,(K)> (TUPLING REKA)

Now we can derive the equations for computing t(k) using equation 4.6 and
the efficiency equation 4.4’., in much the same way as we derived equations

24, 25 and 26.

4.7 t(0) = (Hg(0) . H (O ... .. H,_,(0)> by 4.6
=<1.0..... 0> ' by 4.2
4.8 t(r=1) = <Hy(r-1 . H (r=1)..... Hp_ (r=1)> by 4.6
=<0.0..... 1 by 4.2
4.9 t(2k) = <Hgy(k+k) ... .. H,_q Ck+k) > by 4.6
r=1 r=1 o
=< L H [T HUHG+DI L.
i=0 j=0
r=1 r=1
'Eo H (k0 '20 H;(k) Hp_ Ci+d] > by 4. 4°
= =

4. 10 t(2k+1) = <Ho(k+k+1) .. ... Ho_y (k+k+1)> by 4.6
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=1 r-1
<

= H (k) ~Hg(k+ 1+, .. .. H (k) = H_, (k+1+D) > by 4.4
i o i -1
i=0 i=0
r=1 r=1
=< L HU [ L Hk Holi+j+D1. . ...
i=0 j=0
r=1 r=1
L HUOU L Hitk) H_ Gi++D1> by 4.5
i=0 =0

We have now completed the task of deriving a general program (given below)
for evaluating any homogeneous linear recurrence relation of order r in

logarithmic time.



45

Recursive program for evaluating linear recurrence relations
(as given by equations 4. 1)
h(0) = hg by 4.1
h(r—-1) = h,_q by 4.1
r—=1 r=1
h(2k) = L a L a; hti+)
i=0 =0
: where @ag.. ... a,_qy = t(k) by 4.4.1' and 4.6
r-1 r-1
h(2k+1) = T a L a; h(i+j+1)
i= j=0
: where @g..... a,_y = t(k) by 4.4.2° and 4.6
to) =<1.0..... o by 4.7
t(r-1 =<0,0..... » by 4.8
r—1 r=1 r—1 r—1
H2k) =< L a [ L a-moctCi+»l..... L al L apmr=10ti+)1>
i=0 j=0 i=0 j=0 :
where ag. . ... - = t(k) ‘by 4.9
r=-1 r=1 o r-1 r=1 )
t(2k+1) = <.E a,[.z a; - TOCtCi+ji+10)1 .. ... _{; a,[_{j a; - Tr=1Ct(i++1)) 1>
i=0 =0 i=0 j=0
wheaere @ag. . ... a,_ = t(k) by 4. 10
Remarks
1. The precomputation of the h(i) ‘s and the t(i) ‘s for r€if2r-1 is required
and it can be done using equations 4. 1 and definitions 4.2 and 4. 6.
2. Ti(<ag..... a,_y) =a fori=0..... r-1 a
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As a consequence of the program we have just derived one can say that.
in general. any homogeneous linear recurrence relation of order r (in which a
generic value depends on r preceding values) can be evaluated in logarithmic

time if we. compute r values simultaneously (see equation 4.6).

Exampie 2
Given the following linear recurrence relation:
p(0) =1
[p(n) = 2-p(n-1) forn20

we have r=1 and therefore all summation operators occurring in the general
program vanish.

Moreover. since r=2r-1=1 we have to compute only the value of p(1). which is
equal to 2.

We have: p(2k) = ao-ao-p(O) = ag. p(2k+1) = ao-ao-pﬂ) = 2a§.

o = <ag>: WO = <13 2K =<ag> (ke = < 2ag>

and therefore we get (by forgetting the unit-tupling operator) :

p(O) =1
p(2K) =a  where ay = t(Kk)
p(2k+1) = 23(2, wherg ag = t(k)
tC0) =1
t(2K) = a2  where ag = t(k)
t(2k+1) = 23> where ag = t(k)

Since p(k) and t(k) obey the same equations. p(k) =t(k). Thus the program
we obtained can be further simplified as follows:

1

p(d)
p(2K) = p2li)
p(2k+1) = 2+p2(K) | a

Example 3

Let us consider the following recurrence relation:
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a0 =1

d(n =2

d(2) =0
| d(n) = d(n-1) + 2d(n-3)  for n>2

We have: r=3. 2r-1=5. Thus we have to compute d(i) for i=3.4.5 and
we get: d(3)=2. d(4)=d(5)=6. We also have:
1(0)=<1.0.0>, t(1)=<0.1,0>, t(2)=<0,0.1>, t(3)=¢<2.0.1>, t(4)=<2.2.D.
1(5)=¢<2.2. P because for i=3.4.5 and j=0.1.2:

TiCtn)

mi(t(i-1)) + 2-7j(t(i-3)). (In fact the components of t(i) satisfy
the same recurrence relation given for d(n). as one can see from equation

4.2 and 4.6). We can then derive:

d(2K) = ag- (3gd(0) + a,d(1) + 3,d(2)) + a,(agd(1) + a,d(2) + a,d(3))

+ ay(ayd(2) + a,d(3) + a,d(4))

2 2
ag + 4aoa1 + 4~a1a2 + 6a2 where <ajy.ay.ay = t(k)

and analogously:

d(2k+1) = Zag + 2a$ + 6a§ + 4aoa2 + 12 a,a, where <aj.a;.ay> = t(k)

We aiso have:

_ .2 2 2 2 2
t(2k) = <ag + tt»a,a2 + 232. 2aoa1 + 232. a; + 232 + 2aoa2 + 2a1a2>
where ‘ag. ay.ax> = t(k)
t(2k+1) = <4a,a +2a2+4a a +2a2 a2+4a a +232 2a.a,+2a,a,+2a.a +a2+332>
0<2 1 192 2 0 192 2 01 0<2 1927 < 2

where @g.ay.ay’ = t(k)

The resuiting program is the foliowing:

[(d0) =1
d(1y =2
a2y =0
d(2) =a°

a + 4ab + 4bc + 602 where <a.b.c> = t(k)
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d(2k+1) = 2a° + 20% + 6c° + 4ac + 12bc where <a.b.c> = t(k)
t(0) =<1.0,0
t(2k) = <a2 + 4bc + 202. 2ab + 202. b2 + c2 + 2ac + 2bo

where <a.b.c> = t(k)

{(2k+1) = <dac + 2b° + 4bc + 2¢>. a° + 4bc + 2¢°.2ab + 2ac + 2bc + b> + 3¢

where <a.b.c> = t(k)

Notice that once we computed the expressions for t(2k) and t(2k+1), since
they hold for any k20. we can discard from the program the equations for
t(1).....t(r-1). This fact is a general property and it could also be applied
for the d’s values. so that we could have eraséd the equations for d(1) and

d(2). a

At the end of this section we would like to derive a for—ioop program
equivalent to the general recursfve program we have given. This fov-loog
program will be a generalization of the one presented in [Wilson and Shortt
80]. which had to be proved correct at the expense of many theorems and

long proofs and worked only for Fibonacci recurrence relations.

Unfortunately the recursion which occurs in the given general recursive
program is not a tail-recursion and therefore its translation into a for-loop

program is not immediate.

Nevertheless such a translation is possible [Walker and Strong 72}
because of the equivalence between the following recursive schema S and the
flowchart F in fig. 1-5. Suppose we are given the following recursive definition

of the function g(k):
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e it zero(k)
g(k) = a(g(b(k))) if even(k) (Schema S)
c(g(d(k))) if odd (k)

whare zero(k). even(k) and odd(k) test whether k is zero. even or odd.
respectively.
It can easily be proved by induction on the depth of recursion that g(k) can be

computed by the flowchart program (with one stack) given in fig. 1-5.

We can apply that equivalence result of the schema S and the flowchart F
for computing the recursively defined function t(k) which occurs in our
program. Since in that program the b and d operations correspond to integer
divisions by 2. the content of the stack at the label L in the flowchart F is the
binary expansion of k. We assume that the empty stack represents the binary

expansion of 0.

Therefore we can obtain the following for—iocop program for evaiuating in
logarithmic time any homogeneous linear recurrence retation of order r. as

given by the equations 4. 1.
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(Flowchart F)

aven(k) odd(k)

zero(k)

k := b(k) 1= d(k)
push a T:=e u —_—
n
top a top ¢
} T:=am empty T:i=c(T b
stack 1
pop output T pop

Figure 1-5: The flowchart F corresponding to the program schema S.
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For-loop Program for Evaluating Linear Recurrence Relations

(as given by equations 4. 1)

: h(n)=L(h(n-r)..... h(n-1)) for n2r }

{ b20: h(0)=hg: ...: h(r=1=h__,:

if n=0 then B(0).2:=0.0
else begin m.i. 2:=n.0.log nj. QP

whilg iX2 do B(i).m.i:=rem(m/2).m/2.i+1 od end:
2 ,
{n= T BW-2' and £ =(ogny]

i=0
t(o) =<1.0.,.... 0>
t(r-1):=<0.0..... 1
for i=r to 2r-=1 do h(i):= LCh(i=r) ., ... LhGi=1))

i) s =<L(mOtCi-r)) ., ....MOCECi-)) .. ... 2
LCTr=1CtCi=r)) .. ... 7Tr=1C-1)) )
od:

T:=t(0) ;
for p=2 downto 1 do

if B(p) =0 then

1 1

r- -
Ti=< ¥ (D [ L T(T) -mOCtGi+IT ... ..

i=0 i=0

r=1 r=1
L mi(T) [ L 7T -mr=1CtCi+) )1 >

i=0 j=0
eise (3
r-1 . r=1
Ti=< L WD [ L (T -m0CtCi+j+1))1 ... ..

i=0 j=0

r-1 r=1
L T [ Y T -Tr=1(t(+j+1))1 >

i=0 =0 PSRN
&
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od:
r=1 r=1
if 8(0)=0then H:= ¥ Ti(T) [ L T(T) -h(i+j))]
i=0 j=0
r=1 r-1
alsg Hi= L Ti(T) [ L Ti(T) -h(i+j+1))1:
i=0 j=0
{ H=hm ]}

(1) The binary expansion of n is stored in the array B(i)
for i=2,....0
(2) Computation of the values h(r)....h(2r-1).t(r) ... L2r-1) .

L(S) Computation of T. T =1t(n/2) ifniseven. T = t((n=1)/2) if nis oad. 0

The method presented here allows also é fast evaluation of
non-homogeneous linear recurrence relations. because in that case the resuilt
is the sum of two terms: one corresponding to the associated homogeneous
relation. which we can evaluate in logarithmic time. and the other one being a
particular solution of the given non-homogeneous relation [Liu 681]. The
method can also be used when.we have a set of mutual depending linear
recurrence reiations (with constant coefficients). In fact it is always possibie
to reduce such a set. via substitutions. to a set of independent relations [Liu
68] and solve them simuitaneously using the tupling strategy.

Furthermore. one can apply the general algorithms we have given in this
section to recurrence relations holding in other algebraic structures. different
from the one of the integers v;rith usual addition and multiplication for which we
presanted it. This is what is stated in the following Fact 4. Let us first recall
a few basic definitions.

A semiring is an algebra (S.+.-+)., where S is a set and + and - are two

binary operations on S. such that:
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i) + is associative and commutative.
ii) - Is associative.
iibh - distributes over + on both sides, i.e. a-(b+c)=(a-b)+(a-c)
and (b+c) -a=(b-a)+(c-a).
An element i of S is an identity for the operation op iff
Vx €S (xop i) =(iopx)=x. (We used an infix notation for op).
An element a of S is an absorbent element for the operation op iff

Vx €S (xopa)=(aopx) =a.

Notice that we could have written “the identity for +° instead of "an identity
for +* because If there is an identity then it is unique. In fact, suppose there
are 2 identities, 0 and 0’ say. By definition we have:

Vx € S O0+x=x+0=x and Vx. €8S O0'+x =x+0" = x.

' Instantiating the first for 4x=0’ and the second for x=0 we get 0+0'=0=0°.
Analogously one could show that the ébsorbent element for an operation is
unique (if it exists) .

A semiring (S.+. ) with identity elements 1 for - and 0 for + is also denoted
by (S.+.-.0.1). |
Fact 4. The recursive program and the for-loop program we have given for
the evaluation of linear recurrence relations with constant coefficients are valid
in any semiring structure (S. +, ). which has

i) an identity element for - (let us call it 1). and

ii) an absorbent element for - (let us call it 0) which-is an identity for +.

Proof. The various steps we made for going from the given equations 4.1 to
the final programs are basaed on the efficiency equation 4.4. We have to show
that equation 4.4 holds in any semiring structure satisfying the given

hypotheses. We will prove that property by induction on <k. m>.
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For k=0 and m=0:

r—1
H(hg.. ... hp4.0) = ) H;(0) HChg..... by D
i=0
= 1+HChg.. ... h_,.0) + O-HChg.....h_y. D + ..
+ 0-HChg.....h_4.0=D
= H(hg. ... she . O)
Analogous equalities can be proved for k=0 and m=1...., r—-1 as follows.

Suppose now that equation 4. 4. is valid for k=0 and any m<p with p#r-1. Let

us show that it holds for m=p+1.

HChg. ... .he_4.p+1) = by H(hg. . ... Rpeq. PH1=N)+. .. +b_,-HChg. . ... hpy. P)
by 4.1
r-1 _
= bg- L Hi(p+1-r) HChg. . ... hpg D+ L.
i=0
r=1 _
+b,_,- 'Zo H(p) H(hg. . ... hp_y. D
':
by inductive hypothesis
r=1
= ¥ Hi(p+1) H(hg. .. .. Ry . D
i=0

by P;ypotheses on the semiring structure and equations 4. 1.

Therefore equation 4.4 holds in a semiring structure for k=0 and any
m20.
Now suppose that equation 4. 4 holds for any m20 and any k&p with p#r-1. Let

us show that it hoids for k=p+1.

HChg. ... .h,_y.m+p+1) = by-HChgy. .. .. Ry m+p+1-r) +
+ b, -HChg. .. .. R,_q. M+p) by 4.1
r=1
=bge [ L H(m) HChg..... he_y pr1-r+D1 + ...

i=0
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r=1
+ by ['Zo H,(m) H(hg. . ... h,_y. P+ ]
i=
by inductive hypothesis
r-1
= L H(m) HChg.....h_ . p+1+D
i=0
by hypotheses on the semiring structure and equations 4. 1. |

The programs we have given can be used. for instance. in the semiring
of truthvalues B = ({true. faise). V. A, false. true). and the semiring M of the
real numbers R with +* and the usual minimum and addition operations
M = (R U (+°®), min, +, 4%, 0)., and the subsemiring of M obtained by
considering nonnegative real numbers only.

Example 4. Let us consider the folldwing recurrence relation in M:

[d4(0) =0

d(1 =2

d(2) = +=

d(n) = min(d(n-1), d(n-3)-2) for n>2

.

We get the following logarithmic running time program for computing
d(n):
d(0) =0

d(2k) min(a + min(a+0, b+2.c+%), b + min(a+2, b+, c-2).

c + min(a+®, b—-2.¢c-2))

min(2a. a+b+2. b+c-2.2c-2) where <a.b. c>=t(Kk)

and analogously:

d(2k+1) min(2a+2. a+c—-2.2b-2. b+c-2. 2c-2) whare <a.b. c>=t(k)

t(0) = <0, +®°, +o
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t(2k) = <min(2a. b+c-2.2c-2) . min(a+b. 2c~2) . min(a+c, 2b.b+c. 2c)>
where <a.b.c>=t(k)
t(2k+1) = <min(a+c-2.2b-2.b+c-2, 2¢-2). min(2a.b+c-2.2c-2) .,

min(a+b.a+c, 2b. b+c. 2¢c-2)> where <a.b.c>=t(k)
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1.6 Comparing the transformation technique and the stepwise rafinement

technique

In this section we would like to compare the transformation technique
{Burstall and Darlington 77] and the stepwise refinement technique [Wirth 711
making some general comments and discussing their features when these
techniques are applied for writing programs which evaluate linear recurrence

relations.

Both techniques indeed have their merits. For computing the solution of
recurrence relations the stepwise refinement method uses structured
concepts. lilke matrices and binary representations. but it seems to require
more creative thoughts than the transformation technique. In particular in the
stepwise refinement approach. the programmer has to be familiar with the fact
that given two matrices:

Tatb b c+d d

A= and A’ = for some a. b. c and d

we have that: A-A° = A'-A = .

where e = ac+bd and f = d(a+b)+bc.

The knowledge of that fact is an a priori requirement for devising a
suitable loop structure and. if the program is not organizaed using such a loop.
it seems very hard. or even impossible. to achieve the desired logarithmic
efficiency [Gries and Levin 80. Urbanek 80. Wilson and Shortt 80. Pettorossi

80al.

This situation fits very well with the analogy given in [Burstail and Feather
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771. concerning the stepwise refinement technique and the transformation
techniqu‘e, which are respectively compared with sculpture and plasticine
modelling. In sculpture. we all know that once the outline of a statue is
carved in a rock. there is very little possibility for changing the basic idea of
the artistic composition. in our program. using the stepwise refinement
technique. the “outline of the statue” consists. in the 6utermost loop for
performing the successive squarings of the matrix:

11

That loop has to be controlled by the binary representation of the value n
for which we would like to compute the solution of the recurrence relation (see
[Wilson and Shortt 801). Different approches to the outermost loop could
have made a logarithmic running time almost imposslble to be achieved in a

simple way.

On the contrary. we showed in the previous sections that- using the
transformation technique a very efficient program can be obtained. without a
deep knowledge of recurrence relations or matrix theory. The transformation
technique. via its strategies. led us to the desired algorithm without great
effort.

Obviously, in transforming programs we have to make some clever steps.
called °eurekas” [Burstall and Darlington 77]. which are not always easy to
make. However. we have strategies. such as composition. tupling.
generalization. simplification. etc. [Burstall and Feather 77]. which help us to
produce eurekas and allow us to improve program performances. These
strategies play the analogous role of the programming paradigms. which help
the programmer in choosing the suitable loop structures. when using the
stepwise refinement technique [Fioyd 79l. The situation of program

construction using the two techniques may be depicted as in ﬁg. 1-6.
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program specifications program specifications
paradigms strategies
ioops and invariants inventions eureka steps
by (possibly
a program refinement step automatic)

transformation

A 4
a program version

S

(i) The Stepwise Refinement Technique (i) The Transformation Technique

Figure 1-6: tTl'ua Program Construction C_lycle accordin
o the Stepwisae Refinement Technique an
the Program Transformation Technique.

We are not claiming that the transformation method is better than the
stepwise refinement method. but we would like to stress that in our examples
some very interesting features of the program transformation technique with
respect to the stepwise technique have been expioited. In particular we have
seen that. using standard strategies. it was relatively simple to derive the
various "eureka" definitions for our programs. while it seems difficuit to
directly formuiate the compiex loop invariant of an iterative program for solving
recurrence relations in logarithmic time [Wilson and Shortt 80]. In particuiar
the notion of matrix as grouping of values for a fast evaluation of recurrence
relations has been derived by simple application of the tupling strategy. while

that notion is in some sense "primitive" (i.e. not derivable) in the construction
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of an efficient program using the stepwise refinement technique. it is
interesting to notice that. in deriving our programs. the simultaneous
evaluation of some expressions for avoiding redundant computations.
automatically achieved the desired logarithmic performance. One might say
that it was the efficiency requirement itself which. via the tupling strategy
application. “"rediscovered” for us the notion of matrix. Indeed it aiso
~rediscovered” the notion of symmetric matrix. as we showed towards the end
of section 1. 4.

Another possible advantage of the program transformation approach is the fact
that it can easily be used in the functional style of programming. advocated in

{Backus 78].

In the last part of this section we would like also to stress the strong
connection between the task of devising loops and the one of finding eurekas. .
already mentioned in [Burstall and Feather 77]1. Related work in this direction
has been done in [Broy and Krieg—Briickner 80l.

The “eureka” steps are "intelligent” steps as the inventions of loops invariants
are. For these inventions. creativity and programming oxperience play a
crucial role. For example. the -“linear combination eureka” has been as
crucial as the idea successive squaring of matrices is for the stepwise
refinement technique. but we think that such a eureka is. in some sense, less
difficult.

One can often observe an interesting correspondence between the eureka
steps and the loops invariants. This correspondence is not claimed in
general., but it is valid when the recursive program has a “simple” kind of
recursion (which includes tail-recursion) easily translatabie into a loop. In

order to clarify the ideas we will now give the following two examples.
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Example S5
In [Burstall and Darlington 771 the following program for computing the
Fibonacci function in linear time is given:

[ fib(0

=1
| flb(1) =1
fib(n) = u+v where <u.v> = g(n-1)
gt =<1, b
g(n) = <u+v. w where <u.v> = g(n-1)

It is based on the eureka step which consists of defining the function
g(n) = «fib(n).fib(n-1)> for n21. On the other hand. the iterative program
for computing the same function in linear time may be written as follows:

{ n20}
i.u.v:=-1,1.0:
{ «w.w = «fibCi+1) . fib(D)> and i<n-1 }
while i<n-1 do
t:=u+v; vi=u; u:=st: Q=i+l
d

{ n20 and u = fib(n) }

One can easily see that the two auxiliary variables u and v of the iterative
program are equal to the projections of the function g defined in the eureka
step. We have in fact: g(i+1)=<u.v>. a
Example 6 (From section 1. 4)

Since r(n) = <G(1.0.n). G(0.1.n)> (see equation 23) using equations 27
and 28 we have: r(n) = «fib(n-2) ., fib(n-1)>. Therefore we can transform

program P3. 1 into the following:
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Program P3.2
r
fib(m) = T1(r(n+1)
r0) = <1.0
2 2 2
r(2k) =<« " +b".2ab + b> where <a.b> = r(k)
r(2k+1) = <2ab + b2, (a+b)Z + b>  whare <a.b> = r(k)

where T1(<@0.01>) = al.

For this recursive program we can derive the following iterative version:

2 ,
{ n>0 and £ = (log(n+1)j and n+1= [T B -2}

u.v:=1,0: =0
p:=2;
(= { w.w = <fib(m-2), fib(m=1)> =
= <tib2(k=2) +fib2(k=1) ., 2fib(k~2) fib(k—=1) +fib’(k=1)> it m=2k

<Ofib(k=2) fib(k=1) +fib2(k=1) . (fib(k=2) +fib(k=1)) Z+fib%(k-1)>  if m=2k+1

/] .
where If £=p then m=0 glse m= T B -2"P71 ]
i=p+1

uev?, 2uvev?

while p2?0 do if B(p) =0 then u.v :

2uv+v2, (u+v) 2+v2:

o
0
o
c
<
"

i { n20 and v = fib(n) }

This iterative program can easily be derived from the general for-loop
program (actually only from the fragment for computing T) given in section
1.5 by recalling that:

i) T=t(n/2) if nis even and T = t((n-1)/2) if n is odd. and
ii) in order to compute fib(n) \;ve need only to compute the second projection
of t(n+1), because in the general for-loop program the function t plays the

role of the function r in program P3.2 and in our case
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r(n+1) = <fib(n—=1).fib(n)>. Therefore t(n+1) can be obtained as the value of
the variable T in the general program assuming that the array B8 contains the
binary expansion of n+1 and the for-loop is performed for all digits in B.
To complete the derivation of our iterative program from the general one. it is
enough to consider that in our case T is <u.v> and t(0) = <1.0>, t(1) =<0, 1,
t(2) = <1, 1> and t(3) = <1,2>,
The expression for <fib(m=-2). fib(m-1)> in the invariant | can be obtained
from the equation 23 on which the recursive program P3.2 is based. In fact.
since r(m) = <G(1.0.m).G(0.1.m)> = «fib(m-2),fib(m-1)> using equations
25 and 26. we have:

<«fib(m-2) , fib(m-1)> =
ib2(k=2) + fib(k=1), 2-fib(k-2) fib(k-1) + fib>(k=1)> if m=2k

<2-fib(k-2) fib(k=-1) + ﬁbz(k—'l) , (fib(k=2) +fib(k=1) )2 + fibz(k—'l)> if m=2k+1
‘a
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1.7 More on the comparison with other_algorithms

One of the first papers which. to our knowledge. has been published on
the mechanical evaluation of linear recurrence relations is [Miller and Brown
661.

Several other papers have been recently published on that topic during the last
tew years [Shortt 78, Gries and Levin 80. Urbanek 80. Wilson and Shortt
80, Pettorossi 80al and we think that it is appropriate to relate those results
with the ones we presented In the previous sections.

In [Miller and Brown 66] the key ideas for achieving an algorithm which
requires an O(kalog n) muitiplication for computing the n-th term of a linear
recurrence relation of order k are already developed. In that paper the matrix
multiplication method is used. and there are some insights for an O(kzlog n
algorithm. when it is said that *we need to know only a single row or column
of (the matrix] A,". But then the authors (page 189) say that the matrices "are
filled in by use of the recurrence relation” and this approach. if taken in a
naive way requires k extra multiplications for each element of the matrices.
Therefore they get an O(kslog n) aigorithm.

indeed in order to compute the product of two kXk matrices in semiring
structures we need. in general. at least k3 multiplications ( [Jerrum and Snir
82D .

(Gries and Levin 801 (page 69) showed how to use only K2 multiplications to
“fill in the rest of [the matrices]". in order to do so the authors take
advantage of the particular structure of the matrices involved. Such a
structure. however, was aiready known to the authors of [Miller and Brown
661.

A last comment on [Miller and Brown 66] paper: some of the computation
steps presented there are a bit awkward for the following two reasons: i) the
multiplication by the matrix U-I corresponds to an "opposite movement” in the

recurrence relation to be evaluated in the sense that. for instance. in the
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sequence { f; | i20 )} they must compute f, for computing f,_,. and ii) in the
final matrix multiplication. denoted there by BU,. they need to know all the

values of U,. while in general a row of B and a column of U, would suffice.

In (Shortt 78] the author gives an algorithm for computing Fibonacci
numbers in O(log n) steps using only a fixed amount of storage. That
algorithm corresponds to one requiring O(kzlog n) muitiplications (where k=2
since the Fibonacci relation is of order 2). It has been generalized to any
order-k Fibonacci number in (Wilson and Shortt 80]l. where order-k Fibonacci

numbers. denoted by Fibk(n) . are defined as follows:

Fib*(1)=0. .... Fib*(k-1) =0.
Fib*(K) =1.
k k k
Fib (n)= ¥ Fib (n-i) for N2k 1.

- i=1

Although the authors of that last paper do not give a detailed complexity
analysis of their aigorithm, it is easy to see that it still requires O(kzlog n)
multiplications and a constant number of auxiliary memory cells
(FCO).,.... F(k-1).F2(0),....F2(k=-1)). apart from the ceii(s) needed for
the binary re;;resentation of the input number n for which Fibk(n) should be

computed .

Let us recall the Wilson-Shortt algorithm. which we will write using the
syntax adopted in [Wilson and Shortt 80]. (For the time being. the reader
should not pay attention to the fact that some instructions are put within square

brackets and marked by [1]....[5].)
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—

b

The Wilson-Sho Algorithm

Given k and n. where 25k<n:
begin
[ for i=0 10 k-2, F(i):=0: (i

F(k-D:=1: ]

L: = flog,nyi:

for i=0 tg L. b(i):=ith bit of the binary representation of n:

/* the most significant bit is b(0) */

for step = 1 to L. da:

[ for d=0 tg k-1, (21
d ' k=1 k=j=1
Fa(d):=[ } F(j( t F(d-h))1+ )} F(j) [F(k+d-j) - i F(d+D1: ]
j=0 h=0 j=d+1 i=1
if b(step) =0 then [ for d=0 to k-1. F(d):=F2(d): ] (31
else [ da:
for d=0 o k-2. F(d):=F2(d+1):
(41
k=1
F(k=1):= } F2(i):
i=0
end ]:
end
return [ F(O) ]: (51

end

This algorithm is not completely satisfactory because of the following reasons:
i) it does not allow us to compute general order-k Fibonacci numbers

F*n) for n<k and
ii) it performs some unuseful computations.

Point i) can be easily remedied. realizing that:
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vd 0€d<k-1. F(d) gives indeed the d-th Fibonacci number.

For point i) we notice that in the main loop of the Wilson-Shortt algorithm,
driven by the index "step”. a new k-tuple of Fibonacci numbers is computed
trom an old one. while the result to be returned at the end of the computation
is a component only. namely F(0). of the last computed k-tuple. in
particular when computing the nth Fibonacci number. that aigorithm computes
also the (n+1)th..... (n+k-1)th numbers. Therefore a way of giving a
solution to the problem of point ii) is the following: when computing the mth
order-k Fibonacci number one should use the Wilson—-Shortt algorithm with n

initialized to m—(k-1) and then return as resuit F(k—1). instead of F(O).

As we already pointed out in [Pettorossi 80al. the Wilson-Shortt algorithm
is quite interesting because it shows that for computing general order—k
Fibonacci numbers in logarithmic time it is sufficient to know only k
consecutive values of the Fibonacci sequence. This fact indeed can be
generalized to any homogeneous linear recurrence relation Ch.l.r.r. for
short) of order k. as we have shown in Section 1. 5.

A first step in this direction was made by [Urbanek 801. where an O(kalog n)
algorithm for solving h.l.r.r. of order k is presented. There it is clearly
stated that. for the initialization step. one could repiace kXk matrices (as
used in the matrix multiplication method) by column vectors of length k.

We can summarize the results presented in the papers we mentioned in the

following table.

[Miller and Brown 66]:
Computation of order—k homogeneous linear recurrence relations.
Complexity: Time: O(k3 log n) muitiplications. Hints for an

O(k2 log n) aigorithm.

Space: O kz)
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{(Shortt 78}

Computation of order-2 Fibonacci numbers.

Complexity: Time: O(k2 log n) multiplications.
Space: O(k)

[Wilson and Shortt 801:

Computation of order—k Fibonacci numbers.

Complexity: Time: O(k2 log n) multiplications.
Space: O(K)

{Urbanek 80]:
Computation of order—k homogeneous linear recurrence relations.
Complexity: Time: O(k3 log n) multiplications.

Space: O(K%). Hints for OCK) .

[(Gries and Levin 80]:
Computation of order—k homogeneous linear recurrence relations.

Complexity: Time: O(k2 log n) muitiplications.

Space. O( kz) .

In those papers the correctness proof of the proposed algorithms was done via
theorems.

In [Pettorossi 80al we show that the [Wilson and Shortt 801 algorithm can be
derived by transformations from the usual kXk matrix muitiplication method if
we use a concise representation of the matrices invoilved as vectors of length
k. Indeed the usual algorithm based on matrix multiplications can be written as
follows (for the time being do not consider the square brackets around some

instructions) :
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_ The Matrix Multiplication Algorithm
Given k and n. where 2<k<n:

begin
[ Pr=M: ] (i
L:= tog,ny:

for i=0 to L. b(i):=ith bit of the binary representation of n:
/* the most significant is b(0) */
for step = 1 to L. do: [ M2:=PXP : ] 21
if b(step) = 0 then [ P:=M2 ] eise [ P:=M2XM ]:

(31 (41
end
return [ py 1: 151
end
111, .. 1]
100...00
where M =|010. . . 00| is a kXk matrix and p,, is the element
000 . . . 10}

of the lower right corner of the kXk matrix P.
We proved that there exists an “extract” operation such that for any matrix

computation above written within square brackets. the following diagram

commutes:
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operation (il of the Matrix Muitiplication

Algorithm within square brackets

matrices matrix
operands result
extract extract
| Y
vectors of vector of
vaiues values

corresponding operation [i] within équare

brackets for Wilson—Shortt Algorithm

The interasted reader may see the details in [Pettorossi 80a).
In Section 1.5 we derived via transformations an algorithm whose features can
be described as follows:
[Pettorossi and Burstall 82]:
Computation of order—-k homogeneous linear recurrence relations
over semirings.

Compiexity: Time: O(k2 iog n) muitiplications.

Space: 0O(k)

In Section 1.5 we also showed that for any sequence {G(i)} of values
defined by a homogeneous linear recurrence relation of order k with constant
coefficients we can express G(2m).G(2m+1)..... G(2m+k-1) in terms of
G(m) ,G(m+1),.... G(m+k-1). That means that ‘“suitable® recurrence
formulae. as defined in [Wilson and Shortt 801 page 69. exist for any

homogeneous linear recurrence relation.
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A last remark concerns the length of the correctness proof. Some pages
of Theorems and Lemmas were necessary in [Wilson and Shortt 80] to show
the correctness of the algorithm.
in Section 1.5 using the program transformation technique we are able to
show. without much effort. the correctness of our iterative algorithm. which is
a generalization of one by Wilson-Shortt. starting from the generai definition of
the linear recurrence relations. We obtained that derivation by a simple
application of some strategies. weil-known in the program transformation

methodology.
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1.8 On _the application of the tupling strategy. the general method and some
of its properties

In this section we will make some comments on the tupling strategy as we
used it in Sections 1.3 and 1.5. and we will present some of its properties.
A first comment concerns the fact that in the program P2 (see Section 1.3)
the tupling strategy could have been applied in a different way. But. as we
already mentioned. the resulting program would have been equivalent to the
program P3 (see Section 1.3) ("equivalent” here means that the programs
determine the same computations for any input) . Indeed we will show that the
elimination of redundant subcomputations evoked by equation 13 in program
P2 avoids also the redundant subcomputations evoked by equation 12 and
viceversa.
A second comment is related to the symbolic evaluation analysis needed for
discovering commaon -subcomputations. We will show that an interesting
property. which we will call safety property. holds for the tupling strategy. It
can be formulated as follows: if the analysis of the redundancy is not
complete and we “tuple together” only some of the functions which determine
redundant (sub)computations. then the *undiscovered” redundancy still
remains and it can be avoided by applying again the tupling strategy itself.
We will then give some other examples of the application of the tupling
strategy. We will aiso present a “limitation resuit” and we will exhibit a class of
program schemata for which the tupling strategy cannot completely avoid
redundancy in recursive calls. (The same result hoids for any other method

which makes use of a bounded number of memory cells.)
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1.8. 1 An ailternative use of the tupling strate in program

Looking at equation 13 of program P2 by symbolic evaluation we discover

the common subcomputations as illustrated in fig. 1-7 (analogous to

fig. 1-1).
fib(2k+1)
by 13
G(1.0.Kk G(1.1.k+1) G(0.1.k G(1.1.k+2)
G(1.0.k/72) G(1.0.k/2) G(1.0.k/72) G(1.0.k/72)
G(1.0.k/4) G(1.0.k/4) G(1.0.k/4) G(1.0.k/4)

Figure 1-7: Redundant computations in program P2.
G(1.0.k/4) occurs 4 times in evaluating fib(2k+1) .
(Suppose k/2 even).

We will use the tupling strategy by defining the ‘following function z(k):

Z(k) = <G(1.0.K).G(0,.1.K.G(1.1.k+1).G(T1.1.k+2)>.

Using the equations 4.. 5. and 6. of Section 1.3 we get the explicit definition

for z(k) ., as follows:

z(0) = <G(1,0.0).G(0.1.0).G(1.1.1.G(1.1.2)»

=«1.,0.1.2
z(2k) = <G(1.0.2k).G(0.1.2K).G(1.1.2k+1).G(1.1.2k+2)>

=<G(1.0.K) -G(1,0.K)+G(0.1.k) -G(1.0.k+1).

G(1,0.K) -G(0., 1. k)+G(0, 1.k) -G(0. 1. k+1),
G(1.0.k) -G(1. 1. k+D)+G(0, 1.k) -G(1., 1. k+2).
G(1.0.K) -G(1. 1. k+2)+G(0.1.K) -G(1.1.k+3)> by 9’

= <a%+b2. b(2a+b) . ac+bd. ad+b(c+d)> where <a.b.c.d> = z(k)

and analogously,

z(2k+1) = <G(1.0.2k+1).G(0.1.2k+1).G(1.1.2k+2).G(1.1.2k+3)>

= 2ab+b2. (a+b) 2+b2. ad+b(c+d) . a(c+d) +b(2d+c)>
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where <a.b.c.d> = z(k)

We also have:

fib(2k) = G(1.1.2K)
=G(1.0.K)-G(1.1.K+G(0.1.K) -G(1.1,k+1) by 9°
= a(d-c) +bc where <a.b.c.d> = z(k)
fib(2k+1) = G(1.1.2k+1)
=G(1.0.K) *G(1.1, k+1)+G(0.1.k) -G(1,1,k+2) by 9°
= ac+bd where <a.b.c.d?> = z(K)

and we can derive the following program for computing the Fibonacci function

in logarithmic time:

— ’ Program P3.2
fib(0) = 1

fib(1) =1

fib(2k) = a(d-c)+bc _ where <a.b.c.d> = z(k)

fib(2k+1) = ac+bd where <a.b.c.d> = z(K)

2(0)  =<1.0.1.2

2(2K) = <a>+b>, b(2a+b). ac+bd. ad+b(c+d)>

' where <a.b.c.d> = z(K)
2(2k+1) = <2ab+b>, (a+b) 2+b>. ad+b(c+d) . alc+d)+b(2b+c)>
L where <a.b.c.d> = z(k)

Fact 5. Program P3.2 computes the same function computed by program P3
(see Section 1.3).
Proof. It is enough to prove that:

2(K) = <a.b.d.c+d> where <a.b.c.d> = r(k). immediate by induction on k. [J

The same aliternative method of appiying the tupiing strategy in program
P3 we have now shown. could have been used also in the program for
evaluating linear recurrence relations. with the rosult of deriving a program

equivalent to the one we presented in Section 1. 5.
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1.8.2 A "safety property” for the tupling strategy

We will study the “safety property” of the tupling strategy by first

presenting an example of its use.

We take our example again from the evaluation of linear recurrence relations.
As we aiready mentioned the safety property is a guarantee against the
incomplete analysis of redundancy.

Suppose that in the program P2 of Section 1.3 we discovered. through
symbolic evaluation. that the functions G(1.0.k) and G(1.1.k) require the
computation of G(1.0.k/2) (see equation 12.) and we did not realize that
also functions G(0.1.k) and G(1,1.k+1) require it.

in that case we would have defined. instead of the function t(k) of equation
18. . the following function p(k):

p(k) = <G(1.0. k) .G(1.1.k)> (PARTIAL TUPLING EUREKA)

We can easily derive that:

p(0) 1.

p(2K) = <a>+G2(0.1.K) . ac+G(0.1.K) -G(1.1.k+1)>

wheare <a.c> = p(k)
p(2k+1) = <2aG(0.1.k)+G2(0.1.k), aG(1. 1. k+1)+G(0, 1. K (c+G(1. 1. k+1))>

where <a.c> = p(k)

Thus we get from program P2 the following program:

(fib(0) =1
fib(1) = 1
fib(2K) = ac+G(0.1.K -GC1.1,k+D) where <a.c = p(k)
fib(2k+1) = a-GC1. 1. k+ D +G(0. 1.k - (c+G(1.1.k+1))  where a.c> = p(k)

together with the above equations for p(0). p(2k) and p(2k+1) and

Lthe equations 14. 15. 16 and 17 for G(ag. a,. k) (see Seaction 1.3).

If we look for more redundancies we may discover (see fig. 1-8) that we need

to tuple the functions p(k). G(0.1.k) and G(1.1.k+1).
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fib(2k)
p(K) G((0.1.k) G(1.1.k+1)
G(0.1.k/2) G(0.1.k/2) G(0.1.k/2)

Figure 1-8: Redundant computations in evaluating fib(2k) .
G(0.1.k/2) occurs 3 times. (Suppose k even.)

Therefore. applying the tupling strategy again. we will define:

q(k) = <p(k), G(O0.1. k). G(1,1,.k+1)> and we get:

q(0) «1. 1>, 0.

q(2K) = <«a>+b%. ac+bd>. b(2a+b). ad+bl(c+d)>
where <a.c>.b.d> = q(k)
q(2k+1) = <<2ab+b>. ad+b(c+d)>. (a+b)2+b%, alc+d)+b(2d+c)>
where <«a.c.b.d> = q(k)

Here is the resulting program for computing the Fibonacci function.

fib(0) =1
fib(1) =1
fib(2k) = ac+bd where <<a.c>.b.d> = q(k)
fib(2k+1) = adfb(c+d) whaerg <<a.c>.b.d> = q(k)

together with the equations above for q(0), q(2k) and q(2k+1).

This program is equivaient to program P3 of Section 1.3 because we have that
t(k) of program P3 is equal. by definition. to the 4-tuple
TI(TI(q(K))). T2(q(k)). T2(Ti(qg(k))) . m3I(q(K))>,

Now we can generalize the resuit we have obtained in the above example.

Suppose we are given a recursive equation program of the form:



i) & rcg(py(k))..... g(p,(k)). K
g(h) & s(g(q (h))..... glgpth)). b
where f and g are two functional variables. p,....p,. q4....q, are basic

operators. and r and s are-basic operators or if-then—-aise.

k and h denote tuples of arguments. If k is <ky..... k> then p(K) is

PlKy. ... k) . Anaiogously for h.

The resuits we will present here couid be further generalized:

i) by considering more than two function definitions (not f and g only. as in
our case).

ii) by allowing the p;’s and the q,'s to have different arities:

iii) by allowing r and s to be of the form: if-then-selseif-then-...-glse.

Without loss of generality. let us assume that three different calls of the
function g require the sa.me subcomputatlon.
The situation can be depicted in fig. 1-9 where 1 £ r,s.t & n and
1 € u.v.w € m. In such a situation there are three function calls. namely
glp, (k). glpglk)) and g(p,(k)). which all require the computation of
Q(QU(P,(K)))~
Therefore we have: qu(pr(g)) = q,(p(K)) = q,(p (k).

There are two cases depending on whether or not the analysis of the

redundancy is complete.

Case 1. The analysis of the redundancy is not compilete.

Without loss of generality. let us assume that in applying the tupling strategy
we pair together only the functions g(p,(k)) and g(pg(k)). Therefore we
define the function:

a(k) = <g(p (k). glp,(K))>.

We now assume (Uniquengss Assumption) that. for a given "decrement

function® da. there is a unique way of expressing a(k) as follows:
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£CK)

P, ps pt

g(pr(g)) : g(ps(g)) g(pt(p)

t=g(qu( pr(_lg) ))

Figure 1-9: Computations which share the same subcomputation.

a(k) = <lala,.a,.t.kl. 2ala,.a,.t. kP> where t = calay. a,. ki

where <a,.ay> = a(da(k))
where
(i) 1a[a1.a2,t.5] (i.e. the °first component” for a) and 2a[a1.a2.t.m (i.\.
the "second component® for a) are two expressions with possible occurrences
of the variables a,. a,. t and k. and
(ii) ca[a1,az.5] (i.e. the "common subterm® for a) is an expression (with
possible occurrences of the variables a,. a, and k) equal to g(q,(p,(K))).
For exampie. in the case of the Fibonacci evaluation, when we obtained the

function p(k) (see this Subsection) . we have:

lala,. a,.t. kI: if k=0 then 1 elseif even(k) then aj+G>(0.1.k)

oise 2-2,G(0.1.K0+G2(0. 1.k
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2a[a,.a2,t.5]: if k=0 then 1 alseif aven(k) then a1a2+G(0, 1.0 -G(1.1.k+1)
else a;-G(1. 1.k+1+G(0.1.K) * (a,+G (1. 1.k+1))
cala,. a,. LR a,

da(k): if even(k) then k/2 glse (k-1)/2.

in most of the examples we have studied the Uniqueness Assumption does
hold by ailowing only "standard applications® of the tupling strategy. A formal
definition of the "standard application” notion will not be given here. because
it has only a technical relevance for expressing the conditions under which the
Uniqueness Assumption is valid.
We only say that, when defining the tupled function a(k). the standard
application forces cala,.a,.kl to be a, (or a,) if a; (or a,) is the common
subterm of the components of a(k).
We also assume that for the decrement function a “termination condition”®
hoids. in the sense that the sequence of recursive calls of

(a(da" (k) I n > 01} is well-founded.

Case 2. The analysis of the redundancy is compilete.
The tupling strategy gives us the following function c(k):
clk) = <g(p,(K)). glp(k)). g(p(K))>.
By the Uniqueness Assumption. given the "decrement function® dc. there is a
unique way of expressing c(k) as follows:
c(k) = <lcley.cy.cq.1. Kl 2clcy.Cy.Cq. t.kl. 3clcy.cy.Cq. 0 kD
where t= cclcy.c,. C3. ki
where <c,.C,.C3> = c(dc(k))
where
(i) 1cf...l. 2cf...]l. 3cl...] and ccl...] are eoxpressions with possible
occurrences of the variables c,. Cy. C3. and k. and
(ii) the expression ccl...] is equal to g(qu(pr(p)), i.e. the "common

subterm® shared by the projections of c(k).
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Fact 6. If da(k) = dc(k) then
lalay.a,.t. Kk = ‘lc[a,.az.g(ptma(p)).t,]g

2a[a1.a2,t,5] 2c[a1.az,g(pt(da(g)))-.t._lg
cala,. a,. Kk =cc[a1.a2.g(pt(da(5))).l_<]

Proof. Immediate consequence of the Uniqueness Assumption. because the

common term t is the same for a(k) and c(k). a
Now the “safety property® for the tupling strategy can be defined as
foliows:

1. given a recursive equations program p. where all functions in the
set F = (f,.....f, ) share the computation of a term t. if the
tupling strategy is applied to the functions in a subset S of F.
thereby defining the new function a. then in the resulting program
the functions in F - S ‘and the tupled function a still share the

computation of t:

2. if we apply again the tupling strategy to the functions in
{a)U F - S. then the resuiting program is equivalent to the one
obtainable from the program p by tupling together all functions in

F.

Fact 7. With reference to the definitions given above. if da(k) = dc(k) then
the safety property holds for the tupling strategy.

Proof. We have to show that we can pair together the functions a(k) and
g(p,(K)). They share the same subcomputation of the term t = g(q,(p,(k)))
because qu(pr(_lg)) = q,(py(k)). and therefore pairing is indeed possible.

We can then define the new function: b(k) = <a(k). g(p,(k)>. In order to
complete the proof we need to show that:

c(k) = Ti(alk)). mM2(a(k). glp,(k))>. That equality can easily be shown

by recursion induction. using the resuits of the previous Fact 6. a
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Remark. The proof of the “safety property" has been greatly simplifled by the
Uniqueness Assumption. As it stands. our proof is essentially based on the
isomorphism between the two n-tuples <. .. <X, Xp>. Xg. .... Xp and

‘X1, Xz. Xa. Xn>.

The resuit we have obtained can be generalized to any k-tuple of function
calls (not triples only) and any number df intermediate steps (not two
successive pairings only).

We aiso think that the safety property holds under much weaker hypotheses

than the Uniqueness Assumption: we leave that study for elsewhere.

1. 8.3 Application of the tupling strategy

Let us consider the class ( S, | n#0 )} of recursive program schemata each
of which is of the foliowing form:

S.: f(x)

n = a(x) if pO0)
f(x) = b(x.f(c,(x)) ..... f(cn(x))) otherwise

Without loss of generality we may restrict our attention to the case n = 2 . Let

us denote c, by ¢ and c, by d. We have:

82: 1189 ax) it p(x)

f(x)

b(x.flc(x)).f(d(x))) ' otherwise
We will now study some properties of the tupling strategy for the schema S,.

Those properties can easily be extended to any schema S for any n.

We will follow the terminology introduced in {(Cohen 83l.
Wae assume that the functions a. b. ¢. d and p are strict and their evaluation
has no side effects. Under these hypotheses the cail by value mechanism
allows us to compute f(x) as the least fixed point of Sz- The parameter x

stands for either a scalar or a k-tuple (for k22).
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Definition 1: The descent tree for 82 is a tree whose root is f(x) and if

f(y) is one of its nodes. then f(c(y)) and f(d(y)) are the son-nodes of
that node.
Sometimes we allow ourselves to use variants of descent trees. where we
avoid writing the function symbol f and/or the argument symbol x and/or the

parentheses.
Notice that the descent tree for Sz Is an infinite tree.

Figure 1-10 shows the “upper part® of the descent tree for 82'

t(x)
f(c(x)) f(d(x))

— T~

ftc(ec(x))) f(d(c(x))) f(c(d(x))) f(d(d(x)))

Figure 1-10: “Upper part® of the descent tree for S,

in the descent tree some of the nodes may be identified if we assume that
some condltions hold for the functions ¢ and d.
For example. if c(d(x)) = d(c(x)) the "upper part" of the descent tree for S,

will look like the directed acyclic graph (dag) in fig. 1-11.
f(x)
f(c(x)) f(d(x))

f(c(c(x))) fle(d(x))) f(d(d(x)))

Figure 1-11: “"Upper part® of the descent tree for S2 if c(d(x)) = d(c(x))

A descent tree with some nodes which are identitfied is called a compressed

descent dag.
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Under a given interpretation. if a compressed descent dag does not have two
distinct nodes which can be Identified. then it is called a minimal compressed
descent dag. (It is also called a dependency graph In [Bird 801.) It denotes
the computation of f(x) without redundancy. if we assume that it is truncated
in such a way that the arguments occurring in the leaves make the predicate

p(x) to be true.

Let D be the domain where the function f is defined. It can be partitioned in
two subdomains as follows:

D=BUR. s.t. BNR =9, where Vx € B. p(x) = true and

Vx € R. p(x) = false.

We say that B is the set of hase cases and R is the set of recursive cases.

Let us consider a set of functions S = { h,; | for i>0 }. We say that the frontiet
condition holds for S w.r.t. the function f itf
vx € B. vh,e€s. [ hx) and ath(x)) are defined and

if fthy(x)) is defined then f( h(x)) = ath(x)) ].

In other words. Vx € B. VYh, €S. [f p(x) =true then p(h(x)) = true, i.e.

if x is a base case for f then h,(x) is a base case as well.

Now we give an algorithm for the application of the tupling strategy. as a

method of transforming the schema S, to derive a more efficient program

schema.

1. Derive_the minimal compressed descent dag (cailed m-dag) of

the function defined by 82. via symbolic evaluation.

2. Let a "cut” in an m-dag be a set of nodes s.t. if we remove
them. together with the incoming and outgoing edges. the m-dag
is divided into two disconnected graphs.

In the m-dag derived in Step 1. we determine a totally ordered
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sequence of cuts (possibly not disjoint) which is consistent with
the function calls relationships. i.e. the cut which includes a
“son node” does not precede the cut which includes the "“father
node" (unless both nodes are in both cuts). Those cuts are such
that the function calls occurring in a cut can be evaluated using

only the function calls of the cut which immediately follows it in

the total order (Cut Isolation Property) .

. I (-] er the f lon cal in ac d th racursive

definition in terms of the function calls of the cut which foliows (in

the total order of the cuts) .

. Check the base cases definitions so that the recursive definition

found in the previous step is well-founded.

Express the evaluation of the given function in terms of the tupled

functions.

The following examples will clarify the ideas.

Example 7.

Consider the familiar problem of the towers of Hanoi. with 3 pegs A.B and

C.

peg C as an auxiliary peg. under the constraint that no disk can be piaced on

It is required to move a pile of n disks with n? 0 from peg A to peg B using

top of a smaller one.

The solution may be expressed by the following recursive program:

f(n.A.B.C)
f(n.A.B.C)

skip ifn=20

f(n-1.,A.C.B)::AB: :f(n-1.C.B. A ifn21

where f(n.A.B.C) moves n disks from peg A to peg B using C as auxiliary

peg. XY denotes the move of the top disk from peg X to peg Y, :: denotes the

concatenation of moves and “skip” is the "empty move”.
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Notice that the above definition of the function f is an instance of the schema
Szc

Step 1. m—-dag for f(n.A.B.C):

nABC

' p-2B C A n-2 ABC n-2CAB' «— cut n-2
L--_.E _____ 7\4: _____ j__..'
n-3ACB n-3BAC n-3CBA
— - - - T == -—-— —-—:
in-4 BCA n-4 ABC n—-4 C A B) «— cut n—4
L._-...__...__.___.______-..__.'

Step 2. A set of function calls which produces cuts in the m-dag is:
(f(k.B.C.A). f(k.A.B.C). f(k.C.A.B) ) (see cuts (n-2) and (n-4)).
Step 3. Tupling the above functions together we have:

r(k) = <f(k.A.B.C). f(k.B.C.A). {(k.C.A.B)>

(The order of the functions is not significant.)
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r(0) <skip. skip. skip>

r(k) <(u::AC::v) ! AB :: (w::CB:1w.

(vi:BA::w) . BC:: (u::AC::v),

(w::CB::u) :: CA . (v::BAI wk by unfolding (assuming k#2)
where <u.v.w> = r(k-2)

=<x::AB::z, y::BC::x. z.:CA::y>
wherg x = u::AC::v, y=v::BA::w, Zz=w::CB:!:u

where <u.v.w> = r(k-2)

Step 4. In order to achieve a well-founded definition of the function r(k).
since r(k) calls r(k-2) and we have already the definition of r(0). we need to
give the definition of r(1). By unfolding we get:

r(1) = <AB.BC.CA>

Step 5.
f(n.A.B.C) = skip ifn=0
f(n.A.B.C) = AB ifn=1
f(n.A.B.C) =f(n-1,A.C.B)::AB: :f(n-1.C.B.A)
= (u:tAC: V) AB::(w::CB::w)
where <u.v.w> = r(n=2) ifn32

Putting together the above equations for f (see Step 5.) and the ones for r we

have a linear recursive program for solving the Hanoi towers problem.

(Notice that the original straightforward solution did not exhibit a linear
recursion.)

The fact that we obtained a linear recursion is a general property of the
application of the tupiing strategy because cuts are totally ordered and the Cut

Isolation property holds.

When a linear recursion is obtained. it can always be removed without use of

a stack. Here we will not go into the details of this subsidiary probiem. The
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interested reader may refer to (Paterson and Hewitt 70. Walker and Strong
72. Chandra 73. Swamy and Savage 79]1. By applying the recursion removal
techniques described in those papers. one may obtain various iterative
algorithms. for solving the Hanoi towers problem. (Therefore those algorithms
do not need any proof of correctness. unlike the ones in [Hayes 77. Er 82D .
We only recall that the recursive schema RH (fig. 1-12) can be transiated into

the flowchart FH of fig. 1-13 (see [Walker and Strong 72D .

e0 ifn=20
Schema RH: f(n) = {el ifn=1
a(f(n-2)) ifna#2

Figure 1-12: Recursive Schema for the Towers of Hanoi problem

We get the following iterative program for moving a tower of n disks ffom peg
A to peg B:

[ijn = 0 then res : = skip

elsgif n = 1 then res : = AB

alse begin if even(n) then r : = <skip. skip. skip>

<AB. BC. CA>:

gise r :

while n >3 dor :=«<rl1::AC::r2::AB::r3::CB::rl.
r2::B8A::r3::BC::r1.:AC::r2.
r3::CB::r1::CA::r2: :BA::r3:

res :=r1::AC::r2::AB::r3::CB::rtl

end

whare ri denotes the i—th component of r. for i=1.2. 3.
The assignment for obtaining the “new" value of r from the "old” one is a
"parallel assignment®, i.e. the components on the r.h.s. are all referring to

the old values.
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input n Flowchart FH

if even(n) then F := 60

gisg F .= el

yes

n<2? »= output F

no

n:=n+2 = F := a(F)

Figure 1-13: Flowchart Schema for the Towers of Hanoi problem

Example 8.

it is taken from (Bird 80] pp. 409-410.

Consider the following mutually recursive definitions of f and g:

f(n) =1 if n€1
f(n) = 2-f(n-2) - 3-g(n-1 otherwise
gin) =1 if n&1
g(n) = f(n-1) + gln=-1 otherwise

Step 1. m-dag for f and g:
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_—————— o=~
)

g(n-l)——Ig(n—.’?) =t g(N-3) == g(nN-4) ——

N,

f(n) * f(n-2) | f(n-3)
hr—-—_ Ni ’ .
cut n-2 cut n-3
Steps 2. 3 and 4.
p(n) = <g(n).f(n),.f(n=1)>
We get:
p(n) =<1,1, 1 ifn <1
p(n) = < (n=-1) + g(n-1). 2-f(n-2) - 3-g(n=-1), f(n-1)>
=«v + U, 2w - 3u., v where <u.v.w> = p(n-1) gtherwise -
Step 5.
f(n) =1 ifn €1
f(n) = 2w -~ 3u _ where <u. v. w» = p(n-1) otherwise

Notice that the tupling strategy may determine the evaiuation of unnecessary
expressions (see for instance the v component in the second equation of Step
5).

In order to avoid that difficulty we may use a “"call by need" approach to the
computation of the various components of the tupled functioﬁs occurring in
where clauses. or we may introduce suitable conditional expressions (see the

following examplie) .
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Example 9.
This example Is taken from [Atkinson 81]. It is the “cyclic Towers of Hanoi®
problem. This problem is a simple modification of the standard one: the 3
pegs are supposed to be cyclically arranged and the moves are allowed in the

clockwise direction only (i.e. AB. BC. and CA are the only moves allowed) .

e A:n o A0

—> clock(n.A,.B.0C) —> \

[ J [ 4 [ J [ J
c:0 Bv:O c:0 Q__n

Only ciockwise moves availabie: AB., BC. CA

)
|??
3
.
>
Q

—> anticlock(n,A.8,C) —

Only clockwise moves available: AC. CB. BA

Figure 1-14: The Cyclic Towers of Hanoi problem.
The “clock"™ and "anticlock” functions.
*X:n" means °n disks are in the peg X".

The solution may be expressed as follows (see also fig. 1-14):
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RECURSIVE CYCLIC TOWERS OF HANOI
Moving a tower of n disks from peg A to peg B. Allowed moves: AB. BC. CA.

clock(n.A.B.QC) skip ifn=20

clock(n.A.B.C)

anticlock(n-1.A.C,B)::AB: : anticlock(n-1.C.B. A
itn21

anticlock(n.A.B.C) skip ifn=20

anticlock(n.A.B.C) antictock(n~-1.A.B.C)::AC: :clock(n-1.B8.A.C)

::1CB: ! anticlock(n-1.A.B.C) if 21

Step 1. m-dag as in fig. 1-15.

c(n, ABC)
ain-1.ACB) ain-1.CBA)

a(n-2,ACB) c(n-2,BCA) c(n-2.CAB) a(n-2,CBA)

c(n-3.CAB) a(n-3, ACB) a(n-3, BAC) ain-3. CBA) c(n-3.BCA)

Figure 1-15: The m-dag for the Cyclic Towers of Hanoi probiem.
c(n.xyz) stands for clock(n.x.y,2).
a(n.xyz) stands for anticlock(n,x.y,z).
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Steps 2. 3 and 4.
We write cin.x.y.2) for clock(n.x.y.2) and ain.x.y.2) for
anticlock(n.x.y.2). We define:
t(n.A.B.C) = <ec(n.C.A.B)., a(n.A,.C.B). a(n.B.A.C).

a(n.C.B.A). c¢(n.A.B.C). c(n.B.C.A) >,

We have:
t(n.A.B.C)
t(n.A.B.C)

<skip. skip. skip. skip. skip. skip> ifn=0

1]

<t4:: CA: :t3, t2::AB::t1::BC::t2, t3.:BC. :t5::CA: :t3.
t4: : CA: :t6: : AB: :t4, t12: :AB: :t4. 13::.:BC: .t

where <t1.12.t3.1t4,.1t5.t6> = t(n-1.A.B.C) ifn 21

Step 5.
clock(n.A,B.C) = skip fn=0
clock(n.A.B.C) =t2::AB::t4

where <t1,t2.t3.t4,t5.t6> = t(n-1,A.B.C) ifn 21

We can easily obtain an iterative solution using the same technique we applied

in the standard Towers of Hanoi problem.
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ITERATIVE CYCLIC TOWERS OF HANOI
Moving a tower of n disks from peg A to peg B. Ailowed moves: AB. BC. CA.

if n = 0 then res := skip
ais@ begin T : = <skip. skip. skip. skip. skip. skip>:
whilen > 1 do T :=«<T4::CA:: T3,
T2::AB::T1::BC::T2.
T3::BC::T75::CA:: T3.
T4::CA::T6::AB:: T4,

T2::AB:: T4,
T3::BC::T2>:
n:=n-1
od
res :=T2::AB:: T4
end
As usual Ti denotes the i—-th component of T for i = 1.....6, and the

assignment from the “old® value of T to the "new" one is a parallel
assignment.

Notice that an iterative solution for the Cyclic Towers of Hanoi problem was
claimed to be not easy to find ( [Atkinson 81] page 118).

The iterative algorithm we have presented produces exactly the same sequence
of moves which is produced by the recursive algorithm. As we already
remarked in the previous example. we could improve the iterative algorithm
taking into consideration the fact that in the tuple T only the components T2
and T4 are needed for computing the final sequence of moves. The
‘introduction of suitable conditional expressions may realize that improvement.

In particular. by unfolding we can get:
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-i_fn=0t_n_9£res = skip
if n =1 then res := AB
ifn=2thenres := AB: :BC:: AB::CA: . AB
else begin
. (as above) . ..

end
L

Example 9. 1

in this example we derive an iterative algorithm for computing the “fusc®

function defined as follows:

[fusc(0) =0

fusc(1) =1

fusc(2n) = fusc(n)

fusc(2n+1) = fusc(n) + fusc(n+1)

Our derivation is an answer to Prof. Dijkstra’s challenge ( [Dijkstra 82]

pages 215.230). and it can be contrasted with the one given in [Bauer and

Wdossner 81] pages 288-290. There the iterative algorithm is obtained at the

expense of a "linear combination eureka step” which is not straightforward.

The m-dag for fusc(n) is given in fig.

n_odd
fusc(2n+1)

fusc(n) fusc(n+1)

fusc((n=1)/2) fusc((n+1)/2)

Figure 1-16: The m-

1-16.

n_even

fusc(2n+1)

fusc(n) fusc(n+1)

fusc(n/2) fusc(n/2 + 1)

dag for the fusc function.
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At any given level the m-dag can be cut by the pair

fusc(n). fusc(n+1)>. Therefore we can apply the tupling strategy and we

get:
lfusctn) = m1(g(n))
g(0) =<0,
g(2n) = «fusc(2n) . fusc(2n+1)>
= «fusc(n). fusc(n)+fusc(n+1)>
= <Uu, u+v> where <u.w=g(n)
g(2n+1) = <u+v, v where <u,v>=g(n)

The above linear recursion can be transformed into an iterative program using
the same schema-flowchart equivalence used in Section 1.5 for recurrence

relations. Wae get:

{n20}
if h=0 then B(0).2:=0.0
alse begin m.i. £:=n.0. log n|:

while iS2 do B(i).m.i:=rem(m//2). m//2.i+1 od and:
{BIL. . 0] stores the binary digits of n. The most significant one is B(2) ]

w.v,p =<0, 1, 2L

[ <u.w = <fusec(m).fusc(m+1)> and
2 .
m=ifp>LthenOelse T B(-27P1]
i=p+1
while p20 do if B(p)=0 then v := u+v @ise U = u+v;
p:=p-1od _
i [ <u.v> = <fusc(n).fusc(n+1)> = g(n) }

Note. // denotes the integer division.

The above program has a logarithmic running time as Prof. Dijkstra’s one.
(given below) . Unfortunately it uses logarithmic space requiring the array B
(aithough that is not a great disadvantage. because B stores the binary digits

of n and we can assume that they are given us for free).
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In [Pettorossi 84] it is shown that., by applying the generalization strategy
w.r.t. the initial values of u and v. we can obtain. after suitable
transformations and instantiations. the following program:
i (n30]
Ww.v.q := <0.1P.n:
while G20 do if even(q) then v : = u+v glse u : = u+v:

q:=q//2 od

{ u=fusctm }
L

which is exactly the one suggested by Prof. Dijkstra.

1.8.4 Limitations of the tupiling strategy

In this subsection we will show a “limitation resuit®. it holds for the
tupling strategy as well as for any other method which avoids redundancy in
recursive calls. under the hypothesis that only a bounded amount of memaory

cells can be used.

That hypothesis is not very restrictive because. if we allow for unbounded
number of memory cells. we can avoid redundant computations in recursive
calls by implementing the recursion using stacks and tables of already .
computed values. as done in the memo—function technique [Michie 68]. The
description of more advanced methods (such as the “overtabulation” and
"gxact tabulation”) which make use of an unbounded number of memory celis
can be found in (Bird 80l].

Let us consider the following recursive program schema:

S,: f(x) = alx) if p()
f(x) = b(x,f(c(x)) . f(d(x))) otharwise
Theorem 2: For any integer n there exists an interpretation for the

function symbols and predicate symbols of S, such that f(x) cannot be

computed using less than n memory cslis.

Proof: (see [Paterson and Hewitt 70}) .
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The above theorem implies that for any schema S, for n 2 2 (see Sect.
1.8.3) the tupling strategy cannot avoid redundancy in recursive calls.
because with the tupling strategy. we are able to memorize only a fixed
number of intermediate results (corresponding to the vaiues of the functions
calls in sach cut).

Even if we assume commutative redundancy (i.e. c(d(x)) = d(c(x))
whenever p(x) is false). the tupling strategy cannot completely avoid
redundancy. The statement of this fact is in [Cohen 83]. but his inductive
proof (see pages 289-290) is not satisfactory. As it has been presented. his
proof would be valid for asserting the need of n memory cells for evaluating
the function f(x) defined by the schema S, under the assumption (which we
will call "A1") that "c(c(x)) = d(c(x)) whenever p(x) is false".

This is not the case because any minimal compressed descent dag for S2

under the assumption Al is o-f the form t(k) for some k (see fig. 1-17).

o

t{1) =o and t(n) =

Figure 1-17: Dags t(n) forn 2 1.
n is the number of nodes from the root to the leftmost leaf.

and any t(n) can be evaluated using at most two memory cells,

in the remaining part of this subsection we give a non-inductive proof of the
above theorem under the commutative assumption that “c(d(x)) = d(c(x))
whenever p(x) is false”.

As it has been pointed out by [Paterson and Hewitt 70] the proof can be
described using a pebble game over the minimal compressed descent dag of

f(x).
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Let us consider the indexed set of grids as defined in fig. 1-18.

grid(1) = o and grid(n) =

4

I I, e o1 ihe andes (m tha Tirst row of gri
grid(n) .

If the left-upper corner (calied root) corresponds to the f(x,) call and a
vertical [or horizontal] arc connects the node for f(y) with the node for
f(d(y)) [or f(c(y)) ] then grid(n) is the minimal compressed descent dag for
the free interpretation of S,. called |I,. s.t. p(c'd‘xo) is true iff i+j#n for the
given x,. In that case. in fact, the nodes in the diagonal side of grid(n)
correspond to base cases.

(For the notion of "free interpretation” see [Paterson and Hewitt 70D .

Notice that the m-dags are in the form of grids because of the commutativity
hypothesis.

The pebble game over a grid(n) is described by the following rewrite rules:

R1. For any leaf: o} - o

R2. For any subconfiguration: I—O - I—o

The minimum number of pebbles necessary for placing one pebble in the root
is equal to the minimum number of memory cells necessary to compute f(xo)
(see [Paterson and Hewitt 70D .

An arc is a vertical or _horizontal line connecting two adjacent nodes of a grid.
Arcs are oriented °left-to-right” and "top-down”,

A path is a sequence of adjacent arcs. which agrees with their orientation.

A pebbled grid is closed if for every path from the root to a leaf there exists

one pebble in one of its nodes.
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Notice that during the game a closed grid may become open. During the
game a node may be pebbled more than once.
Lemma 3: The only move which makes an open grid to become closed is
R1.
Proof: Immaediate.
Lemma 4: During the game. whenever an open grid(n) becomes closed
we need at least n pebbles in that closed grid.
Proof: Let us denote the nodes in the grid(n) by the <row.column>
indexes (<i.jp> | 1€i€n, 1€j&n, i+jSn+1}. Suppose that the move which
closes an open grid(n). puts a pebble in the leaf <i.]>. Let us consider
a path from the root. which does not have any pebble prior to that move.
That path crosses i-1 columns and j-1 rows (see fig. 1-19 where the

crossings have been denoted by arrows) .

=

<1. D

+0—O—O <1.m>
<i.j»
b

Figure 1-19: Closing grid(n) by a pebbie in <i.j>.

Since all paths. branching off that path should be closed. we must
intersect with a pebbie all columns below that path and all rows to the
right of that path and we need the pebble in <i.j>.  Thus we neéd at least
(i-1)+(j=-1)+1 = i+j—1 pebbles to close an open grid(n).

Since n = i+j=1 for any leaf position <i.j>. the proof of Lemma 4 is

compieted.
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A method (let us cail it M) of using exactly i-1 pebbles to close the i-1

columns below an open path which intersects them is the following:

- Place a pebble anywhere in the leftmost column:

— Let <r.c> be the <row.column> position of the pebbie placed in
the c column. Place the pebble in column c+1 in the row
position r’ s.t. r'# r-1.

Analogous method can be defined for using exactly j-1 pebbles to close

the j—1 rows on the right of an open path.

Two ways of applying the above mentioned method are the following:

1. place the pebbles on the leaves. (In this case the method M

is applied with r’ = r—1 for any column position c.)

- 2. place the pebbles on the "highest® row position -below the open
path and on the "leftmost” column position on the right of the
open path (In this case the method M is applied with r'2r).

We depicted this second way in the figure 1-19.

Lemma 5: If an open grid(n) is closed and it has m#n pebbles. we can
conclude the game of placing a pebble on the root of grid(n) using no
more than m pebbles.

Proof: By induction on n. For n=0 it is obvious. Suppose the iemma
true for n-1. we show it for n. Suppose the open grid(n) has been
closed using m#n pebbles.

Let us consider the following sequence of grids. all subgrids of grid(n):
grid(n—-1) with root <1.2>, grid(n-2) with root 2,.2>..... grid(1) with
root <n-1. 2>,

When the grid(n) becomes closed. say after the move r. grid(n-1) with
root <1.2> either has been closed by that same move r or it was already
closed. By the lemma 4 and the induction hypothesis we have at least

n-1 pebbles for closing the grid(n-1) with root <1.2>. We can then
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conclude the game for closing such grid(n-1) placing 1 pebble in
position <1,2>. We have then at least n-2 pebbiles at our disposal for
concluding the game for the grid(n-2). by applying the induction
hypothasis again. Eventuaily we get to the situation where
grid(n-1)..... grid(1) are all closed with pebbies in their roots (see the

figure 1-20). We used n-1 pebbles.
n

1:—0——0—-—0——0 grid(n-1)

] |
H grid(n-2)

grid(n):

% grid(.l)

Figure 1-20: Closing n-1 grids In grid(n).

Since grid(n) is ciosed and we have at our disposal m#n pebbles. there
must ba at least one pebbie in the first column. We will then be able to
conciude the game for grid(n) applying rule R2 (one or more times) and
therefore using no more than m pebbles.

Lemma 6: The number of memory cells necessary to compute f(x) of 82
under the free interpretation I, and the commutative hypothesis. is not
less than the minimum number of pebbles placed in a closed grid(n)
which was open in the previous move.

Proof: The number of memory cells necessary to compute f(x) of S2
under ln is at least equal to the minimum number of pebbles necessary
i) to close an open grid(n) and ii) to finish the pebble game for grid(n).

keeping it always closed. By Lemma 5§ condition ii) can be dropped.

From the previous lemmas 4 and 6 we conclude that for any n there exists

a commutative interpretation for S, such that n memory cells are needed for
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evaluating f(x) and avoiding redundancy. This concludes the proof of Cohen’s
statement ( [Cohen 83] page 288) we promised at the beginning of this

subsection.

As a final remark. we will show the foillowing upper bound resuit.

Theorem 7: n pebblés suffice to pebble the root of grid(n) for any n > 1.

Proof: lBy complete induction on n. For n = 1 it is obvious. Assume that
the theorem holds for any k € n-1 then we can shows that it holds for k =
n as follows. Let us refer to the figure 1-20. Starting from an empty
grid(n) we can place a pebble in <1.2> using n-1 pebbies. With the
remaining n-2 pebbles we place a pebble Iin <2,2> and so on (by
complete induction). Therefore we can place n-1 pebbles as shown in
the figure 1-20 using n-1 pebbles only. One extra pebble place in <1.

allows us to conclude the game having eventually oniy 1 pebbie in <1, 1>.
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1.9 The tupling strategy compared with other methods of eliminating

redundancy in recursive calls

in the literature we can find various methods for eliminating redundant

computations in recursive programs. We can divide them. into two groups:
the first one for which the number of extra memory ceils for storing aiready
computed values is input-independent (Group G1). and the second one for
which the number of extra memory cells is input-dependent (Group G2).
Group G1 includes:
1.1 Variable smali-table heuristic methods [Hilden 761
1.2 Descent-conditions—based strategies for:

1.2.1 explicit redundancy

1.2.2 common generator redundancy

1.2.3 commutative periodic redundancy [Cohen 83l

1.3 Tupling Strategy [(Pettorossi 771

Group G2 includes:

2.1 Memo-functions [Michie 681

2.2 Overtabulation techniques [Bird 80]

2.3 Exact tabulation techniques [Bird 80]

2.4 Descent-conditions—based strategies for commutative redundancy

{Cohen 83].

We would like to show that the tupiing strategy is indeed a generalization of the
methods listed in Group G1. The methods in Group G2 allow for an
unbounded number of memory ceils and therefore comparing the tupling

strategy with them is not particularly significant.

As far as Hilden’s methods are concerned. we will only say that they are
of a heuristic nature and we can never be sure of avoiding redundant

computations when applying them.
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The comparison in which we are most interested is the one between the tupling
strategy and the descent—-condition-based strategies of group G1 [Cohen 83].
in what follows we will show that the tupling strategy is indeed a proper

extansion of Cohen’s methods.

Our work was done independently from Cohen’s and this section is devoted to

clarify the relationship between his rasuits and ours.

Let us consider the following schema:

S,. fx) = a(x) if p(x)
f(x) = bix, f(c(x)). fCd(x)) otherwise

Tupling vs. explicit redundancy.
There is explicit redundancy if c(x) = d(x). In that case the m-dag for f(x)
is:
f0 = fle(o) = f(c2x) = ...
A cut in m-dag is any function call of the form f(c'(x)) for i20. Therefore. by
a trivial application of the tupling strategy. we tuple one function only. say
f(c'(x)). and we express it in terms of the subsequent cut. fc” 0. as

.

follows:

f(c'(0) = b(x.2.2) where z=f(c (x))  for i30

Step 5 of the application of the tupling strategy gives us:

f(x) = a(x) if p(x)

f(x) = b(x.z.2) wherg z = f(c(x)) otherwise

which is exactly the same program schema we get by applying Cohen’s explicit

redundancy strategy.

In order to compare the tupiing strategy with the common generation
redundancy and the commutative periodic redundancy strategies given in
[Cohen 83] we need only to deal with the latter one because the former is a

special case of it. However. in order to make the presentation as clear as
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possible, we will consider the two cases separately. We will also show some

improvements to Cohen’s methods.

Tu.gling vs. commoan-—generator redundancy.
In the common-generator-redundancy we- have that:
1. e = g™x and d(x) =g" (0
for some function g(x). for some non-negative integers m and n
and for all x € R (i.e. such that p(x) is false).
2. the frontier condition holds for (g'(x) | 0<i€max(m.n)}.
Without ioss of generality we may assume that m and n are relatively prime.

The descent tree generated by f(x) is represented in figure 1-21.

f(x)
f(g™(x)) f(g™(x))
1(g®™(x)) g™ 1(g®"(x))
Figure 1-21: Descent tree for common generator redundancy.

In the expressions of the form f(gp(x)) occurring in it. we have p = im+jn for
some integers i.j. Since every natural number greater than (m-1) (n-1) -1
can be expressed as im+jn, for integers i.j and m and n relatively prime
{Cohen 801. and m and n are typically small. at the nodes of the descent tree
we have almost all f(gP(x)) for p 2 0.

Therefore ’ghe computation of f(x) can be performed according to the foilowing
m-dag:

0 —> Hg(x) = flg20) —> (g () = ... —> 1g" ().

where we know that a recurrence relation of order k. with k=max(m,n). holds
among the nodes of the m-dag. because f(x) = b(x.f(gm(x)),f(gn(x))). in

the above m-dag t is such that p(gt(x)) = true and
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Vv.q«<t p(gq(x)) = false. Thus f(gt(x)) = a(gt(x)). A cut for the above
m-dag can be chosen to be a sequence of k adjacent function calls. We tuple

cl-'M(x) » in terms of

them together and we can express <f(gq(x)). ....fCg
<f(gq_1(x)) ..... f(gq-k(x) )> using the second equation of S,.

Notice that the frontier condition ensures that the recursion of the tupled
functions is well-founded. In fact the frontier condition tells us that if p(gt(x))
is true. then also p(gw(x)) is true for 0 < i € max(m.n). Therefore we can
start the recursion from the k-tuple: <f(g' '(x))..... 1(g'™ 0>, In fact.

since k=max(m.n) we are sure that the frontier condition hoids fbr ali

functions in that k-tupls. if it hoids for gt(x).

The above k-tuple of values corresponds exactly to the values BACKglil for
"i=1.....max(m.n) of Cohen’s solution (see [Cohen 83] page 277). In our
solution we avoid the need for the extra location BACKg{0l. which is used by

Cohen.

Let us call "permanent® memory ceils the ones needed when entering and
exiting a recursive call of the tupled function. and "temporary” memory cells
the o.nes needed during a recursive call.

The interesting point of the application of the tupling strategy is not the use of
one permanent memory cell less (i.e. BACKgIOD . but the fact that we are
able to distinguish between the need for permanent and the need for
temporary memory cells (or. as in Cohen’s terminology. non-iocal and local

memory celis) .

Tupling vs. commutative periodic redundancy.

In the commutative periodic redundancy we have that:

1. ¢ = d'(x) for some i and | for all x € R
2. c(d(x)) = d(c(x)) for ail x € R

3. the frontier condition hoids for { c™d"(x) | 0Smc<i. 0€n<j, m+n>0 }.

Let e(x) be c'(x) (which is aiso equal to dl(x).
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The m-dag for the computation of f(x) looks like this (Cohen 83]:

f(x)

f(ex)

=D
where each rectangie is of the form shown in fig. 1-22.

fCy) - 'y — o - %y
i ' i

fce'd% — fc'd'y — . - #c'd 'y P
! i : '

e ' = e dy — — w7y
t - + +

Figure 1-22: A "rectangie” for the commutative periodic redundancy.

y ranges over o"x for k30.

Therefore a cut of the m-dag can be obtained by tupling together the following

function calls. i. e@. the ones which occur in a rectangle:
Clx) = <«f(x) . fcld. ... %,
fic'd® . fe'do. .. tetd o,
e 'd% . fao . L. e TTd oo,

We can express the function calls occurring in a cut in terms of the function

calls occurring in a subsequent cut. as was shown by [Cohen 83] page 283.
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We will not go into the details here. The interested reader may refer to
Cohen’s paper. In that paper the redundancy of recursive calls is avoided by
keeping in permanent memory cells the values of the function calls which
realize the cut C(x). Some extra iXj temporary memory cells are needed:
they are the array ARGUMENTIO: (i-1),0: (j-1 1.

Notice that the frontier condition. as in the case of the common-generator-
redundancy. ensures that the recursive definition of C(x) is well-founded. In
fact, if p(x) = true. i.e. x is a base case. then all arguments of the function
calls in C(x). i.e. cMd"(x) for 0Sm<i, 0€n<j. m+n>0. are also base cases.
In other words. for any m and n satisfying the above constraints, if f(eMd"(x))
is defined then it is equal to acc™ad"(x)). by the frontier condition.

in the case of commutative periodic redundancy we can apply the tupling
strategy in a different way. by using cuts corresponding to the first row and
the first column of the above mentioned rectangles. This is done by defining
the following function:

D(x) = <f(x). tcl. ... fcld .

fe'd%0 .

f(c'd%>.

in order to elucidate the correspondence with Cohen’s solution, let us store
the values f(x).f(c%d'x).. ... (%’ '%) in the array BACKAIO: (j-1)] and the
values f(c1dox) ..... f(cHdox) in the array BACKc(1:(i-1)1 (Cohen uses
instead the array BACKcl0: (i-1)1). We use iXj temporary memory cells of the
array ARGUMENTIO: (i-1).0: (j-1)]1 and one extra temporary ceil Temp. which
initially gets the value BACKdI0] (which is aiso equai to BACKc{0)).

We can express D(x) in terms of D(e(x)) . using the following program written

in an Algol-like notation.
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Temp: =BACKd[O]:
for M from (i-1) step -1 until 0 do
begin
BACKdI(j-D1: =
if pCARGUMENTM. (j-1) D
then a( ARGUMENTIM. (j-1 D
else b(ARGUMENTIM, (j-1)]. BACKdI(j-1].
if M=0 then Temp else BACKc(MD :

for N from (j-2) step -1 until O do
BACKAINLI: =
if p(ARGUMENTIM. ND
then a(ARGUMENTI[M. ND
else b(ARGUMENTIM. N1, BACKdIN]. BACKdIN+1D :
if M#¥0 then BACKcIMI: =BACKd[0]

end

The reader may refer to Cohen’s paper for an explanation of the above
program and why it indeed computes D(x) from D(e(x)). That program is a
variant of the one used in Cohen’s "improved solution” (see page 284 [Cohen
83D . We only added the pieces of code which are underiined. Those
additions are needed because we are using the temporary cell Temp instead of

the permanent cell BACKcIOl.

As we already mentioned. the important issue here is not the saving of
one permanent memory cell. but the fact that. through the application of the
tupling strategy. we are able to distinguish between the need of permanent

cells and the need of temporary cells.

So far we have shown that Cohen’s methods for avoiding redundancy in
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recursive calls can be considered as particular cases of application of the
tupling strategy. We will now show that the tupling strategy is a proper
extension of those methods. In order to do so we have only to refer to the
Towers of Hanoi example for which the tupling strategy can be applied as
shown in subsection 1.8.3. but none of Cohen’s method can (as aiready

stated in [Cohen 83] page 295) .



1. 10 The tupling strategy and the use of data structures

We would like to present another important use of the tupling strategy for
improving programs via transformations.
The basic idea consists in tupling together those functions whose evaluation
requires the same data structure. It turns out that if during the computation
we reduce the number of "passes” over a given data structure. we improve the
time X space performances. because we can release storage sooner. Some
preliminary results in that direction were published in [Pettorossi 771. and they
were applied in [Feather 79I]. Related work can be found in [Wadler
81. Scherlis 80l: their methods also allow to improve the timeXspace

performances.

Instead of defining a formal framework and formally proving the properties
of that use of the tupling strategy. we prefer to give two examples from which
the réader may gain deeper insights. together with concrete programming
suggestions. The definition of a formal framework is left for future

investigation.

The first introductory example is about the computation of the difference
petween the smatlast and the biggest leaf of a binary tree.
The following HOPE-like program [Burstall. MacQueen and Sannelia 80] solves

the probiem.
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data btree(num) == niltree ++ tip(num) ++ btree(num) Abtree(num)

dec min2: btree(num) —? num

--~ min&(niltreg) = +=
--~- min(tip(n)) =n
--- min2(t14t2) = min (Min2(t1) ., min2(t2))

dec max2: btree(num) —> num

--- max&(niitreg) = -=
--- max2(tip(n)) =n
——- max2 (t14t2) = max (max2(t1). max2(t2))

ac task: btree(num) — num

——= task(t) = max2(t) - min2(t)

Since min2(t) and max2(t) both have the argument t. even though it is not a
common subexpression. just a simple variable, we tupie them together and we
define the function p(t) = <minZ(t). max2(t)>.

By instantiation we get:

dec p: btreetnum) —> numXnum

=== p(niiltreg) = <+™, -
-== p(tip(nM)) =<n,m
--- p(t14at2) = <min(al.a2). max(bl.b2)> where <al.b>=p(t1)

<a2. b2>=p(t2)

--- task(t) = m2(p(t)) - TI(p(t))

One can easily see that the derived program is more timeXspace efficient than
the given one. because after the evaluation of p(t1) the storage used by tl
can be released. while after the evaiuation of max2(t1). we cannot. because

t1 is necessary for computing min2(t1).

Let us now give a more interesting (though more complex) example

concerning the destructive evaluation problem (Pettorossi 78].
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Given a term to be evaluated. we want to mark the occurrences of its
function symbols so that. during evaluation. the cells storing the arguments of

the marked functions can be released without effecting the correctness of the

result.
Let A = (f.g.h....} be a (finite or denumerably infinite) ranked aiphabet
and V = {x.y.Z....} a (finite or denumerably infinite) set of variables. We

define the set TA v of A—terms over V as follows:

- for any x € V x> € TA’v (variable terms)
- for any f € A with rank (or arity) n. for any tl1.....tn € TA'v
<ftl...tn> € TA.v (application terms)

For simplicity we also write x instead of < for any x € V.

Let us consider an evaluation function "eval® from TA"V to a given domain
D. We assume that "eval” uses a variable-environment p: V —> D for
assigning values in D to variables and a function-environment for assigning
functions to ranked symbols in A. We aiso assume that "eval® corresponds to
the call-by-value evaluation rule and it evaluates its arguments In the

left-to-right order. with the exception.that variable terms are evaluated after

application terms.

For instance. for the term <f x < g x z> < h y> > the order of evaluation of the
subterms is denoted by the integers associated with their leftmost symbols as
follows: < f7 x6 < g3 x1 z2 > < h5 y4 > >, where subterms with smaller numbers
are evaluated first.
in intuitive terms. the- evaluation proceeds as a “left-to-right” and "bottom-up”
visit of the tree one can associate with a given term by the following
correspondence:
<ftl ... tn> < f

N

tt ... tn
Let us now extend our alphabet A so that for each symbol a € A we have a

*marked symbol” @ (with the same arity) also belonging to A.
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We extend the "eval" function as follows:

for any f (with arity n) € A, for any t1.....tn € TA'V after the evaluation of
F tl...tn> we have that V x € Vs.t. 3 ti 1Ki€n and ti = x. P(x) is undefined.

in other words. <f t1...tn> is the “destructive version® of < ftl...tn >
(Schwarz 78. Pettorossi 78]. i.e. it destroys the values of ail variables

occurring as immediate arguments of f .

Example 10.

<Tx<gxz>chy>>, <f<gxz>y <hy»>> are terms correctly marked.

The first one Is maximally marked. while the second is not (because the'
leftmost f also could have been marked).

<fx<gxz>y?>is not correctly marked because g destroys the value of x

which will be used by the function f.

The following program Progl written in a HOPE-like style optimally marks

a given T, ,~term.
’

Program Progl

Q

ata term == vn(name) ++ an(namae, list term)

(W}

dec mark: term — term

——- mark(n) & mark2(n. ®

dec mark2: term X set name — term
--- mark2(vn(namel).v) & vninamel)
—-—— mark2(an(namel. 2n).v) & an(namelm. mark2list(Zn, v U w))
Mgnamelm=ﬁvnw=¢ghe_nn—a7n—§
glsg namel

where w = singlevar( £n)
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ec singlevar: list term — set name

--= singlevar(nil =9
--- singlevar(vn(namel): : t&) & {(name1) V singlevar(t?)
--- singlevar(an(namel.t21)::tR) &= singlavar(tf)

dec mark2list: list tarm X set name —7 list term
-—— mark2list(nit, v) & nil
--- mark2list(vn{namel): :tL v) &= vn(name1) : : mark2list(tl, v)
--- mark2listtan(namel.t&1)::t2,v) & mark2(an(namel.tLl),
v U varinapp(t?))

T mark2list(t2, v)

ec varinapp: list term —> set name

--- varinapp(nil) &= 9
--- varinapp(vn(namel)::t2) €= varinapp(tf)
-~- varinapp(an(namel,tf1)::t2) &= allvar(t21) VU varinapp(t)

dec allvar: list term —> set name

-=~ allvar(nib &= ¢
-—= allvartvninamel) : :t&) & (name1) U ailvar(tf)
--~ alivar(an(namet.tL1): :t2) & allvar(t21) U alivar(t®)

Let us make a few comments to help the readability of our program.
1. ¥yn and an are constructors for variable-terms and application-terms
respectively. name is supposed to be a primitive data type.
2. The second argument of mark?2 is the set of variables which are required in
future computations.
3. singlevar. given a list of terms. builds the set of variabie terms occurring
at the top level of that list,.

4., mark2list behaves as mark2 for a list of terms.
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5. varinapp. given a list of terms. builds the set of all variables occurring
in application-terms of that list.

6. allvar. given a list of terms. builds the set of all variables occurring in
those terms.
For instance; if t = [ x. < fy < h z > > 1 then singlevar(t) = ( x 1},

varinapp(t) = (y. z}. allvar(t) = (x. y. z}.

Looking at the definition of mark2 we see that both functions singlevar and
mark2iist use the list £n. Therefore we tuple them together and we get:
H(2n,v) = <singlevar(2n) . mark2iist( £n.v U singlevar(2n))> .

We obtain:
H{nil, 9) &= <P, nib
H(va(name1)::t2,v) &= <(namel} U singlevar(t?). vninamel) ::
mark2list(t& . v U {(name1} VU singlevar(tl))>
& < {namel} VU a. vn(namel)::Db >
whare <a.b> = H(tL,v VU (namel1b)
H(an(namel.tf1)::t2,v) &= <singlevar(t),
mark2 (an(name1l.t£1). v U singlevar(tl)
U varinapp(t2) ) : : mark2list(t2, vUsinglevar(t2))>
& <a. mark2(an(namel.t£1). vUaUvarinapp(tl) )::b>

where <a.b> = H(t2,v)

in the definition of H. both functions varinapp and H use the list t&. We tuple
those functions together and we get (after “flattening” the pair of functions in
H):

K(t2,v) = <singlevar(t2), mark2list(t2,v U singlevar(tf)). varinapp(t2)>

We obtain:
K(nil, ) & «p.nil. P
K(va(namel)::t2, v) &= < (nameol1} VU a. vn(namel)::b. ¢

where <a.b.c> = K(t&,v U {namel))



K(an(namel.ti)::tl,v) &= <a. mark2 (an(name1l.t21), vUa Uc)::b.

allvar(t21) U c> where <a.b.c> = K(t2.,v)

By unfolding in the equation for K(an(namel.tf1)::t2, v) the definition of
mark2 we get the expreassion:

<a. an(namelm.mark2list(t1,vU aUc U w }::b. alivar(t4l) U o

whgre namelm = jf (vU a VU c) N w=¢ then namel else namel

where w = singlevar(t21)

where <a.b.c> = K(t2.v)
We see that both mark2list and allvar visit the same data structure t21.
Therefore we are led to the following definition:
L(&n.v) =
<singlevar( £n) , mark2list(£n.v U singlevar(Zn)). varinapp( 2n). allvar(2n)>
and we obtain:
L(nil. v & <P, nil. o, »
L{vn(name1): :t2,v) &= «namel} U a, vn(namel)::b, ¢. {(namel} U &

where <a.b.c.d> = L(t2.v U {(namel))

L{an(namel.te1)::t2,v) & <a, an(nameim.b::b. dl1 V¢, d1 VU

where nameim =if (vUaUc) Nal=¢

then namel gise namel
where <al.bl.cl.d?> = L(t&1.vVU a VU ¢)

where <a.b.c.d> = L(t2.v)

The resuilting final program Prog2 is as follows:
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- Program Prog?2

data term == vn{name) ++ an(name. list term)

ec mark: term —> term

... (defined as above) . ..
dec mark2: term X set name —> term
--- mark2(vn(namel) .v) & vn(namel)
--- mark2(an(namel. £n).v) &= an(namelIm, m2(L(2n.,Vv)))

where namelm = if v N T1(L(2n,v)) =@

then name gise namel
dec L: list tearm X set name —> (set name X list term X set name X set name)

... (defined as above). ..

where i denotes the i-th projection function. for i=1,. .. 4,

The Hope implementation [Burstaill, MacQueen and ‘Sannella 80] of Prog1 and
Prog2 on the DEC-10 at Edinburgh University confirms the expected

improvements of the program performances.

Now we will make a few remarks about the derivation from Progl to
Prog2. We leave to the reader the task of abstracting from those remarks the

related general properties of the tupling strategy.

Remark 1. The recursive structure of the functions in the derived program
Prog2 is similar to the one of the given Progl. For exampie in Prog2 the
definition of L(an(namel.tf1)::t2,...) is in terms of L(t21....) and
L(t2....). and in Progl the definition of allvar(an(namel.t21)::t2) is also

in terms of ailvar(t£1) and allvar(t) .

Remark 2. As we already noticed. the use of the tupling strategy may

force us to compute vaiues not strictly necessary.
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For instance In the definition of L one sees that it is not necessary to compute
the value of cl. As usual this inconvenience may be avoided in two ways:

- by applying a cali-by-need (meta)rule of evaluation when evaluating tuples.
or

- by explicitly defining some suitable auxiliary functions. This second way can
be implemented in our case as follows.

The computation of the c1 component in the definition of L is avoided by

writing:
"where <al.bl.d1> = M(t21, vU aU ¢c)*
instead of: "whare <al.bl.cl.dl> = L(t21, vV aUo)°®

and defining the function M as follows:

M(t21.v) =

<singlevar(t21) ., mark2list(t2£1, v U singlevar(t21)) . allvar(t1)>.

We have:
M(nit.v) &= <P, ,nil. P
M(vn(namel): :tL,v) &= «(namel} U a. vn(namel)::b.{namel} U &>

where <a.b.d> = M(tL.v U {(namel})
M(an(namel.tf1)::tl.v) &= <a., an{nameim.bl)::b. d1 V &>
where namelm = jf(vUaUgc) Nal=¢

then namel else namel

where <al.bl.d1> = M(t21, vU a U @)
where <a.b.c.d> = L(t2.v)
Making an extensive use of this second way of avoiding the above mentioned
inconvenience. we may obtain a final program where in the mark2 definition in
Prog2. instead of Mi(L(2n.v)). we have Ti(H(2n.v)) for i=1.2.
The reader may easily verify that the final program includes. together with the
definitions of the functions L and M. aiso the definition of H and K suitably
“linked”. so that for instance. in the definition of H we have the following

equation:
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H(an(namel.t£1)::t2,v) & <a. mark2(an(namel.tf1), vUaUc¢c):: b
where <a.b.c> = K(t2,v). ‘
Analogously, In the definition of K we have the equation:
K(an(namel.tf1)::t&,v) & <a, an(nameim.bl)::b.d1 U &
where nameim = if (vVUaUgc) Nal=9¢
th_ep_m elsg- namel
whare <al.bl.d> = M(t21, vV a VU ¢)

whare <a.b.c.d> = L(tR, v).

Remark 3. This remark concerns a property which is analogous to the
"safety property” described in section 1. 8.
The need to tuple together various functions can be discovered “incrementally”
(by using the unfolding ruie or symbolically evaluating programs). while new
tupled definitions are synthesized from old ones. This is elucidated by the
process we foliowed in the apove example, starting from the function H and
deriving the need of defining the function K and then the function L.
The process of tupling functions together is bound to terminate because the
initial program has a finite number of defined functions. and new tupled
functions are. so to speak. members of the powerset of the set of the given

initial functions.

Remark 4. When applying the tupling strategy one should comply with the
following “independence requirement”: the functions which are tupied together
shouid have arguments which (once instantiated) do not depend on other
functions of the same tupie.

We may see the reason for that requirement considering program Progl.

After noticing that both singlevar and mark2list visit the list £n we could have
defined the function H as follows:

H(2n.2) = <singlevar(4n), mark2list(in.z)>.

Unfortunately. this bairing does not satisfy our independence requirement.
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because in Progl z is instatiated as "v U singlevar(2n) " and singlevar(2n) is a
component of the H(2n. 2).
Indeed it is impossible to write the third equation for H. In fact:
Han(namel.t21)::t2,2) & <a, mark2(an(namel.t21), zUvarinapp(tl) ):: b>

where <a.b> = H(t2,2)
and by unfolding the mark2 definition. we get:

& <a. an(namelm. mark2list(t21, zUvarinapp(t2)
Usinglevar(tf1))) :: b

where <a.b> = H(t2,2)
Now singlevar(t21) is an argument of mark2list(t21....) and we cannot
express them as components of the function H(t21....) despite the fact that
they both visit the list t&1. The composition strategy solves that problem as our

previous definition of H shows.
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1. 11 Conciusions and some motivations for communications in applicative

languages

In this first part of the thesis we considered a strategy cailed "tupling
strategy” for transforming applicative programs. and making them more:
officient. That strategy avoids redundant computations by the “synchronized
gvaluation® of a predefined set of functions. In that way intermediate
computed values may be used in more than one evaluation. and data
structures may be kept in memory for the minimum amount of time.

We showed that the use of the tupling strategy allows us to achieve very
efficient programs at least for certain classes of problems (as for instance for
the evaluation of linear recurrence relations ).

We also showed that there are classes of functions for which the complete
av_oidance of repeated computations requires an unbounded number of function
evaluations to be synchronized. Therefore. fér those classes. the tupling
strategy is not powerful enough. That fact provides the motivation of the
second part of the thesis. which is concerned with various approaches for
allowing °run—-time communications” among function evaluations. (Applying
the tupling strategy can be viewed as establishing “compile-time
communications®.)

in particular we envisage a computing environment where tasks are performed
by a network of computing agents performing subtasks in a concurrent way.
Those agents may communicate with each other and help each other towards
the achievement of a common goal.

In the second part of the thesis we will consider a very simple way of
ostablishing run-time communications. It consists in remembering already
computed values and allowing computing agents to access them. This idea is
taken from [Michie 681 and we will apply it also to the case whaere agents (or

subtasks) are evoked by recursive functions catls.
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Chapter 2

OPERATIONAL SEMANTICS OF MEMOFUNCTIONS

In this chapter of the thesis no new programming ideas are introduced.
except for some suggestions concerning the program annotation methodology
(Schwarz 82] (see Section 2.4) and communications among processes in
applicative languages (see Section 2.7).

We give the definition of the operational semantics of a simple applicative
language in which repeated evaluations of recursive calls are avoided using

memofunctions {(Michie 681.

We store the "memo information® in environments which during the
computation are discarded as soon as possible. We destroy all
argument-value pairs of the memo component of the environments when

exiting the scope of the memofunction definitions.

We start off by presenting in Section 2.1 and 2.2 the method of
"generalized inductive definitions® as used in [Plotkin 81]. and we first apply it
for describing the operational semantics of a simple applicative language
without memofunctions. (Section 2. 1 is an improved version of what can be
found in [Plotkin 81} Chapter 3 and 4}.

That semantics definition is later used for proving the correctness of the
operational semantics of memofunctions given in Section 2. 3.

In Section 2.4 we present that correctness proof by showing that the
transformation of functions to memofunctions does not effect the result of the

computation.
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in Section 2.5 and in Appendix C we present some techniques for
embedding generalized Inductive definitions,. also called “structural

definitions”, into formal theories.

Section 2.6 is devoted to the description of Prolog impiementations of the

operational semantics rules.

Finally. in Section 2.7 we introduce some work we have done on
"annotations denoting communications” and "computing agents” in applicative

languages.
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2.1 Structural Operational Semantic Definition of the Language |

We will consider a simple recursive language L. whose abstract syntax is

defined by the following basic and derived sets.

Basic Sets. Numbers meN-=1(0.1....) (@)
Truthvalues t € T = (true. faise} (2)
Variables X.¥.Z..... f.g.... € Var (3
Basic Operators bop, € Bop = 8 Bop, (i is the arity) (4)
Types T € Typ = (int.'t__)gol)

Notes.

(1) For each basic set we give its name (e.g. Numbers). the metavariable
ranging over it (e.g. m) and its symbol (e.g. N).

(2) Instead of "true” and “false” we may use "tt" and "ff".

(3) Variables have arities. We assume that individual variables (e.g.
X.y.Z....) have arity 0. and functional variables (e.g. f.g....) have arity 1.
This last assumption is made only to simplify the notation. In Appendix B we
will give the rules for extending the operational semantics to functions with
arity n20.

(4) Basic operators have arities and we assume that bop; has arity i. Bop; is
the set of all basic operators with arity i. The if-then—else construct is an

elemeant of Bopa.

Derived Sets.  Expressions o€ Exp

@::=miti|x]|bopleg. ...) |if e, then e, gise a,

lletd ine | f(e)

Definitions depD

[ 'T: - . -
d::=x: elf(x."‘o)."'1 elrecdldoandd1
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We used the usual BNF notation. Thus, for instance. e ::= ... I x| ...
means that any (individual) variable x € Var is an expression. The same
meaning can be expressed as follows: Exp = ... + Var + ... where +

denotes the. disjoint union of sets.

Exampie 11.
5+3 and if @q(2.y) then x else 3 are expressions in L.
eq denotes the equality predicate and we can write it as the infix =.

f(x: int) : int = plus(x.2) is a definition in L. a

in the language L we can write expressions which denote "programs” for
computing the value of (possibly) recursively defined functions.

For instance. we can write:

let rec fact(x: int) : int = if x=0 M 1 alse x - fact(x-1)
in fact(5)
which will be evaluated to S!.
Note.
In order to define the operational semantics of the language L we will need to

extend the set "Definitions” by the set "Env" of environments. ranged over by

p. Environments occur only during evatuation.

2. 1.1 Preliminary remarks and a simple example

Before presenting the operationali semantics of L. using generalized

inductive _definitions [Shoenfield 67. Plotkin 811, let us make the following

remarks.

(1) We will introduce as_few auxiliary notions as possible. This shouid be

contrasted. for instance. with the SECD machine approach (Landin 661 in
which the operational semantics of an applicative language is given through

the use of auxiliary concepts such as the stack S. the environment E. the
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control C and the dump D. Following [Plotkin 811. we avoid the use of auxiliary
concepts and we consider as primitive concepts only the expressions and the
dofinitions to be evaluated. The operational steps for evaluating a given
expression (or definition) will be represented by a syntactic modification of the
axpression (or definition) itseif.

(2) The problems related to the parsing of expressions and definitions are
avoided by considering only their abstract syntax.

(3) We will specify the transformations of the expressions (or definitions) in a
structural way. using formal theories. Those theories have axioms which
specify how transformations of "basic expressions” are to be realized. and
rules of inference which define the transformations of "compound expressions®
in terms of the transformations of the “componvent expressions” (Analogously
for definitions) .

(4) An important advantage of a structurat approach to the operational
semantics is that via generalized inductive definitions, it is poésible to prove
properties of programs using the structural induction method [Burstall 69].

Some examples are given in [Plotkin 81].

In what follows we will write e, —> e,,, to denote that there is a transition
from the expression e, to the expression 8,41- We will also say the;t e, rewrites
into e,,,. or e, is transformed into e,,,.

Often we will also use the A-calculus terminology [Barendregt 811, which could
be applied to any rewriting system. For instance we will use the concepts of

"contraction®, "redex”. “reduction”., etc.

Let us look now at an example of a very simple- theory for specifying the
operational semantics of arithmetic expressions. with + oniy.
We have:
i) the axiom schema:

+(m.n) —> s where s=n+m.
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which stands for all axioms which are its instances for any n.m € Numbers
and

ii) the rule schema r:
e —> e

+(....0....) = +(....8'....)

which stands for ali its instances obtained by instantiating the expressions e
and e’ in any argument position.

Using those axioms and rules we may reduce the expression 3+(7+2). according
to the diagram of fig.2-1. where by the subdiagram of fig. 2-2 we mean that
the transition e —> e’ holds because sube —> sube’ holds and we can apply
rute r. A pictorial view of the transformations evoked by our semantic

definitions can be given as in fig. 2-3.

r 3+ (7+42) — 3 +9— 12
tr
7+2—>9

Figure 2-1: The evaluation of a simple expression.

e — e
tr
sube —> sube’

Figure 2-2: Deriving a transition from a sub-transition.

sube [or sube’l is a subexpression of e [or e°l.

-
We could express the meaning of that figure by saying that in order to justify a

“surface transition” (e.g. e5; = e, ) we need a (possibly ampty) tree of
subtransitions (e.g. eg, - ©44- -+ Bgp — 9,4,) connected by applications
of rules (e.g. fo1- fo2- .-.) ending with “axiom transitions” (e.g.

€on - a4p) -
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8g - 8, - =% — m -
t roq t t t
o1 7 €11
T Too

Figure 2-3: A sequence of transitions.
In the figure 2-3 the tree of subtransitions is very “thin®, bécause we
considered rules with one premise only. More generally, a “surface -
transition® e —> e’ is justified by rule r and k subtransitions. as the diagram of

fig. 2-4 shows.

el —™ a1’ " ek — ek’

.

Figure 2-4: An elementary transition with more than one premise.
Notice that a transition e —> e’ can be viewed as a theorem which is proved
by applying rule r. once we proved the transitions el —> el1’. .... ek —> ek’.
This proof-theoretical view of transitions is quite interesting and it will be
adopted later when considering transitions (and their derivation from other

transitions) as theorems in (possibly different) formal theories.
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2. 1.2 Static_ Semantics of |

In order to provide the definition of the operational semantics of our
language L. we need to give a set of axioms and a set of rules for
transforming. expressions. and definitions. Since not. all expressions (and
definitions) in the language L are welil-formed. we first select a subset of them-
to which axioms and transformation ruies may be applied. by using a method
called static semantics [Plotkin 81]. For instance. the expression
"(1+3) +faise” will not be considered to be well-formed. and aithough it might
be transformed into "4+failse". we do not do so.

The static_semantics is a deductive sysfem for performing the typechecking
and deducing weli-formed compound expressions from well-formed component
subexpressions (and analogously for definitions). For an introductory exampile

of use of the static semantics see Appendix A.

Let us now introduce the static semantics for L.
We first consider the following auxiliary sets:
1. a set V of variables which is a finite subset of Var, i.e. V Sﬂn Var,
2. a set of Expreossible Types. cailed ETypes. ranged over by et. The
elements of ETypes are the types of the expressions. We choose for our
language L:

et ::=T7T where T € Typ

Therefore expressions may be evaluated to either an integer or a boolean
value only, because we have Typ = (bool, int}.

3. a set of Denotable Types. called DTypes. ranged over by dt. The

elements of DTypes are the types of the values- which are bound to variabies
(defined in the definitions).

We choose for our language:
dt ::=T | T, T, where 7, T, T € Typ.
Therefore variables may have one of the foilowing types:

int. bool. int —> int. int —> bool. bool — int. bool — booi.
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4. a set of Type—Environments. called TEnv., ranged over by @.8, ...

TEnv = L TEnv, where TEnv, = V —> Dtypes.
V Eqn Var

Therefore a type—-environment @ € TEnv, binds variables in V to denotable
types in DTypes. (We used the symbol }, to denote the disjoint sum
operation.) We will write @:V meaning that @ € V —> DTypes where the
intended set DTypes should be understood from the context.
A particular pair <x. 7> in @ will also be written as: x=7.
5. a set of Denotable Values. called DVal. ranged over by dv.
(This set and the set of Environments (see 6.) are needed only for the
dynamic semantics definition, but we introduce them here for convenience
reasons. ) The elements of DVal are the values to which variables are bound in
the environments. We choose:
dv € DVal = N+T+Abstracts. where + denotes the disjoint sum. N is the set of
natural numbers, T is (tt. ff}, and Abstracts is the following set:
{Mx: et0. e: 0t1 | @llx=6t0N Fy 4, @:6t]

for some a@:V and FV(e) € V}.
Abstracts is a set of constructs of the form Ax:et0.e:etl where x is a variable
of type et0 and e is an expression of type etl. satisfying the property written to
the right of the vertical bar |. Informalily. that property says that from the type
information given by the type environment @ and the fact that x has type et0,
we can.derive that e has type etl. (The formal definition o‘f - will be given
later on.) In the definition of Abstracts the set V is constrained by the fact
that the set of “free variables” of @ (denoted by FV(e) and later defined) is a
subset of V.

6. a set of Environments, cailed Env, ranged over by P. P1.

Env = L Env,, where Env,, = V —> Dval.

V Cpa Var

Therefore an environment p € EnvV binds variables in V to denotable values in
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Dval. We will write P:V meaning that @ € V — DVal where the intended set
Dval should be understood from the context.

A particular pair <x,c> in P will be also be written as: x=c.

7. the set of the free_variables FV(e) for any expression e. and the set of the
free_variables FV(d) and that of the defined _variables DV(d) for any definition
d. They are defined as the table 2-1 shows.

We will say that an expression (or a definition) is closed if the set of its free

variables is empty.

Example 12.

@ = {x=int, y=bool. f=int—>int} € TEnv,,. where V={x.y.f}.

Az:int. z+x:int € Abstracts. Indeed al{z=int)] F, {z} ¥*x:int (see aiso
Example 13 below).

P = (x=5, y=true. f=Az:int.z+x:int}- € Env,,.

FV(z+x) ={z.x} and FV(Az:int. z+x: int) =(x}. : O

For defining the static semantics we also need some formulas which allow
us to express the well-formedness property of the expressions and the
definitions of our language L. Now we introduce those formuias and we give
their intuitive meaning.

For expressions we have:

i ak,eT
which means that. given the type environment a:V such that FV(e) S V, o is
well-defined (or well-typed) and e has type 7. (We need @ for knowing the
types of the free variables in a.)
For definitions we have:

i at,d
which means that. given the type environment &:V such that FV(d) € V., d is
well-defined (or well-typed). (We need @ for knowing the types of the free

variables in d.)
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For_expressions:

' m|t|x ‘ bop(....e,....)lQGOMQ1MG2

Fv | o] oo | U Fve | FV(ey U FV(e, U FV(ey
| letdine [ f(a)

FV | FV(d) U (FV(e)\DV(d)) l (VU FV(e)

For Abstracts: FV(Ax: To-€: Ty = FV(e)\(x)

For definjtions:

x:T=e@ f(x:To):T1=e rec d
Fv FV(e) FV(e) \{x} FV(d)\DV(d)
DV {x} {f} ovd)
d0 and d1 P (with p: V)
Fv FV(d0) U Fv({dT) v) FV(P(X))
X €V
Dv Dv(d0) U DVv(d1) \"}

Notes.
1. T.7,.7, € ETypes.
2. ff(x:Ty: 7T, =@ and f € FV(e) then f € FV[f(x:Ty): T, = a].

3. Ifrec f(x: Ty): T, =@ and f € FV(e) then f £ FV[rec f(x: Tp): 7, = o].

Table 2-1: Free and Defined Variables for Expressions and Degfinitions.
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i) by d: 8 (where 8 € TEnv)

which means that: FV(d) € V and for all type—-environments @:V —> DTypes if
d is weli-defined then °d agrees with 8", i.e. if in the definition d a
(functional or individual) variable x is bound to a value v then 8(x) is the. type

of v.

iv) a I—v d: 8
which is an abbreviation for the formula "« l-v d. i-v d: 8", where °.° denotes

the logical "and® of the two subformulas. (Often the comma is not written.)

Now we give the axioms and rules of inference for the formal definition of

the formulas introduced above. These axioms angj rules define  the static

semantics. Uniess otherwise specified. they hold for any V & Var and any
@ € TEnv,, =V —> DTypeé.

In what follows al-... stands for a!l-v. .. where V=dom(a@), and Fd:A8

stands for F,d: 8 where FV(d)CV.

For expressions:

Numbers

N. a k- m:int for any m € N.

Truthvalues

T. a l-t:bool foranyte€eT.

(Individuai) Variables

a(x) =T

V. ; for any (individual) variable x.
arFx:T
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Basic Operators

a bk 8g: To- a ©n-1' Th-1
B.
a - bop,(eq.. ... 01T
if ‘rbopn: TOX, . )<7'n_1 > T,
Conditionai
a - 8y bool., @ - e, 7. akfF 0, T
C.
a kit 8y then e, else e, : 7
Let-clause
atld:8 aifl Fe: T
L. . where 8:DV(d).
@t ,letdine: T
Note.

As usual.if a@:V and B:V0 then a(B] € v U Vo —7 DTypes and it is defined as

follows:
B(x) if x € VO
a(Bi(x) =
a(x) if x € V-Vo.
Application
Qe TO
A. if @(f) = 7557,
a b f(e): T,
Abstracts
al{x=Tg] - ea: T,
Ab.

a + (Ax: Tg- €T (Tg—> T
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Note.

This rule says that. if we know that e has type 7, knowing that x has type To-
then we conclude that Ax: T,. e: T, has type T, —> T,.

Since Abstracts only occur during execution. static semantic rules for them
would not be necessary. Wa give them for technical reasons. The same hoids-

for Environments.

For definitions:

Simple definitions

abtkeT
S1.
alk(x:T=a)
S2. F(x:T=8): {(x=T)

Function definitions

alfx = Tyl F e: T,

F1.
a I-f(x:To):T1 =9

F2. F R T:T, =@ & (f=Tyg—> T

Recursive definitions

Fd: B8 a[BrVOI - d

R1. where Vg = FV(d) NDV(d) .
@ - rec d
Fd:8
R2.
- (rec d): B

Here is an examplie of application of ruie R1:
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from
OUF : int—> int}] | f(x:int) :int = if x=0 then 1 else x = f(x-1)
and

F f(x:int) :int = if x=0 then 1 gisg@ x * f(x-1):{f = int —> int)

we can derive:

¢ I~ rec f(x:int) :int = if x=0 then 1 alsg x - f(x-1).

Notes.

1) BrV, is the type-environment B restricted to V.

2) Vg, is the set of recursively defined (functionai) variables in rec d. which
also occur as free variables in d.

3) It DVI(YSFV(d) then V,=DV(d). In that case by the Strong Agreement
Theorem. given at the end of this subsection. which asserts that
domain(B) = DV(d). we could replace the premisas of rule R1 by the following

ones: Fd:8 and afB] +d.

Simultaneous definitions

a - do at d1
AND1. if DV(d0) N DV(d1) = ¢,
a - do and d1

- d0: 80 Fdl:81
AND2. if DV(d0) N DV(d1) = @.
F d0 and d1 : 80 U 81

Environments.
For some type-environment 8. dom(p)
Vx € dom(p) a - px):B(x

E1. ) if FV(p) € dom(a).
atp
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Vvas.t. alp Yx € dom(pP). a b pix):B(x)

E2.
Fp:R
If FV(p) © dom(a@).
The above ruies eastablish the validity of the formulas a@l-Pp and FpP:8 by

considering one element of P at a time.

Example 13.

Let @ be {y=bool. z=int}.

1. al{x=int)] I z:int by rule V.

2. al{x=int}] I x:int by rule V..

3. af{x=int)] - z+x: int by 1.2 and rule B.

4. @ - f(x:int):int = z+x by 3. and F1. a

Now we give the Strong Agreement Theorem we have anticipated in this

section.

Theoram 1. Strong Agreemeaent Theorem. in the language L if K,d: 8
for some VEVar then dom(A8)=DV(d).

Proof: By structural induction.
For simple definitions and function definitions it is obvious. because
DV(x: T=@) = (x} and DV(f(x:7y:7,=e) = {f).

. For recursive définitions the thesis derives from DV(rec d) = DV(d) and
the fact that the same 8 occurs in the premise and the conclusion of ruie
R2.

The simuitaneous definitions case is analogous to the recursive definition

case. O
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2. 1.3 Dynamic Semantics for t

Now we will define the Dynamic_Semantics for our language L. by giving
axioms and rules of inference in much the same way as we defined the static
semantics.

In order to do so we will first introduce some definitions and useful notions.

1. Agreemant of an environment P_with ae-environment @,

Given p € Env,, and a € TEnv,, such that V& W. the agreement of an
environment P with a type-environment &, denoted by pP. @, is defined as
follows:

p.:a iff
vx €V. [(P(x) €N 2 W) =int)
A (P(X) €T 2 a(x) = bool) H
A (Yyev., px) =AyiTheT, 2  a&x) =Ty—> T,
where T,. T, € ETypes) }.

Therefore. P: @ means that @ is a type-environment “corresponding’ to the
environment P in the sense specified by (1) above. Notice that dom(p) can
be a.subset of dom(a).

(This notion of agreement between an environment P and a type-environment
a is slightly different from the one given in [Plotkin 81] page 84. where P and

@ are assumed to have the same domain. )

Example 14.
Given P = (x=5. y=6}. a1 = ([x=int}. @2 = [x=int. y=int}.
a3 = {x=int. y=int. z=int}. and @4 = {x=int. y=bool}. we have: p:a2. p:a3.

However, P: @1 or P: @4 does not hold.
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2. Well-formedness __of _an _ expression __and a definition w.r.t a

type-environment @.

(i) Given e € Exp and @ € TEnv,,. s.t. FV(e) € V. the well-formedness
of the expression @ w.r.t. the type—environment &, denoted by W,(e.®) . is
defined as foilows:

Wy (e. @) iff 37 € ETypes. ¢l a: T

() Given d € Def and @ € TEnv,,, s.t. FV(d) € V, the well-formedness of the
definition d w.r.t. the type—environment @, denoted by W, (d.®) . is defined
as follows: '

wy(d. @ iff 3B € TEnVpy 4y ald and Fd:8.

Example 15.

Let @ be ({x=int, y=int}., V be (x.y). e be x+5 and d be
rac f(x:int) :int = jf x=.0 then 1 glse x+f(x-1). We have that W, (e. @) holds
with T=int. and Wy (d. @) holds with B={f:int—>int}.

3. Expression Configurations and _Definition Configurations w.r.t. a

type-enviroment &.

Given a € TEnvv. the set Era of Exprassion Configurations is defined as

foliows:

EC, = { .o | @ € Exp and Wy(e.® and P: @ and FV(e) cv}.

Analogously we define the Definition Configurations as follows:

OF, = { «.d> | d € Def and W, (d. @) and P: @ and FV(d) €V ].

The set of Configurations I, is El, U DT,.
These notions are introduced because we are interested in giving the dynamic
semantics of expressions (and definitions) which are not ciosed. i.e. whose

set of free variables is not empty. We need. in fact. to express the dynamic
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semantics of let-expressions by giving the semantics of its subexpressions,
which do not need to be closed.

Notice also that the set of configurations Is parameterized by
type-environments and therefore. the transitions from configurations to
configurations (iater defined) beiong to different formal theories, each of
which is indexed by a different type—-environment. (This point. however. has

only a theoreticai relevance. )

Exampie 16.
Given @l = {x=int). @2 = {x=bool}. @3 = {y=int}, and ¥ = <{x=5}. x+3>. we have:

v € ET v £ El,, because @2(x)=bool and 7 £ EC 4 because XE€EFV(x+3)

al’
but x¢dom(a3) .

4. Terminal Configgrgtioné.

Among the configurations we distinguish the foilowing:

i) Terminal Expression Configurations:

TET is the iargest subset of U EC,. such that Yy € TEL the second
a € TEnv

component (i.e. the expression) of 7 is an element of Dval = N + T +

Abstracts.

ii) Terminal Definition Configurations:

TDTI is the largest subset of U DOl ,. such that V¥ € TDI the second
@ € TEnv

component (i.ae. the definition) of ¥ is an slement of Env.

The set of the terminal configurations Tl is TEL U TDI.

Example 17.
«x=5), 8 € TEl., <«(x=5}. x+3 £ TET, «{x=5). (f=Az:int.x+z:int}> € TOT.
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5. Iransition Systems w.r.t. a lype—environment @.

A transition system w.r.t. a type-environment & is a triple ‘Pa' Ta- -')a’
where I, is the set of Configurations. Tg = T N T, is the set of Terminal
Configurations., and —>, is a subset of Fa X Fa such that V7Y ET,

vy: € Ty not(y =>4, ¥)

Since by the definition we will give: __>a:~ may only relate pairs of expression
configurations or definition configurations. the binary relation —'%a can be
partitioned into two binary relations —>, = U —>4,4 such that

a,e

a6 S EF XEly and —>, 4 € or x0Tl .

An element of __>a.e will be written as I, <0.60> —> <pl.el> and an
element of _-)a.d as [, <0.d0> — «<pl1.dD>.

If the environment component is unchanged (i.e. PO0=P1) we write aiso

P Iy e0 —™ ol (or p I'ado—) dl).
In what follows we will write pl-. .. instead of Dl-a. ..

Now we give the rules and the axioms for the Dynamic Semantics of L.
Let us assume that P € Env, and @ € TEnv,, s.t. p:a@ (and thereforg V S W) .

For exprassions:

Variables

V. PEx = P if x €V

Basic Operators

B1. fori=0.1.
P I bopl....8....) —> bop(....8....)

B2 P I boplcg.cy. .. .. Cp-y) —> Cn
if Cg-Cqr v v - - Ch—q E N+ T an bop(cg.Cy. . ... c“-,) = Cp.
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Notes.

1) Rule B1 allows the arguments to be evaluated in a non-deterministic way.
For instance +(+(1.2).+(3.4)) can be rewritten into +(3.+(3.4)) or
+(+(1.2).7). They are both eventuaily rewritten into 10.

2) In rule B2 bop stands for the mathematical function corresponding to bop.

Conditionai
PFre — @
Cc1.
P r if e then e, aise o, —>if e’ then 8, gise o,
ca. P I if tt then e, gise e, — &g
C3. P - if ff then e, eise e, — e,

Note. The above rules force the evaluation of the predicate of a conditional

before evaiuating any of its arms.

Let-clause
Prd — da
L1.
Prletdine — letd ine
PRyl e - e’
L2.
PIletpyine —> lat Pyin e
L3. Prletpyinc —> c whera ¢c € N + T.
Note. The above rules force a sequential evaluation of the expression

let d in . We first evaluate the definition d and then we evaluate the

subexpression e in a suitable new environment.

For example. we have:

@ I let (x=2) in x+3 —> let (x=2) in 2+3 because {x=2} - x —> 2.
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Application
Pre —™ @&
Al.
P fte) —> f§fla")
A2. P rftc) — letxiTg=cine
wherec € N+ T and RP(f) = Ax:Tg5. e:T,.
Notes.

1) These rules correspond to a call-by-value mode of evaluation.
2) In order to avoid an extra rewriting we could have rule A2 as follows:
P F fc) — let {x=c) in @ (see below the dynamic semantics for Simple

Definitions) .

Notice that we have not given rewriting rules for elements in N+T. They

are. in fact. second components of Terminal Expression Configurations.
For definitions:

Simple Definitions

plre —> @&
S1.
PrxT=e —> x.T =g’
32. P I-x:T=con — (x=con} if con € N+ T,

Note. We could keep in the environments the type information corresponding ’
to individual variables. We could have {x = <con: T}, instead of having

{x = con)} [Burstail and Lampson 84]. For simplicity reasons we do not do so.
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Function Definitions

Iz
-~
e
-
<
o
S
o
-
N

F1. PEITY: Ty=0 —> (f=rT, (
where Vg = FV(ea) \(x}

Recursive Definitions

P\Vy - d — d’
R1. where Vg = Dvd) N FV(d).

P rrecd — recd’

R2. P - rec Py —> { x=con| (x=con) € pyand con € N+ T }
U
{ 1=1Ax:7T, (lat ((rac Py \(x}]l in @) : T, (@)

I (f=Ax:Tg5.@:T,) € P, }

Notes.
(1) p\V, is the function defined as foilows:

(P\V,),(x) =pP(x) ifx £ V,. otherwise undefined.
(2) Let dom(pP) be V. We have: FV(dICV bécause P.d € Df'a. Since
VoEFV(Q) we get: V, cv.
(3) The effect of the rules R1 and R2 is to first evaluate a recursive definition
with no knowledge about the recursively defined variables (P\V, is used) and.
when no further evaluation is possible (i.e. a definition of the form “rec P," is
obtained) . a new aenvironment 50 is created. 50 is like Py except that, for any
x € domain(Py) the free variables occurring in Py(x) (and they can only occur
in Abstracts) are bound as in rec Py.

We will give some examples of this ruie in what follows.
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Simultaneous Definitions

P I-do0 —> dO’

ANDT.
P I d0 and d1 —> d0’ and d1
pPrdl —> di"
AND2.
P  d0 and d1 —> dO and dV’
ANDS3. P + PO and P1 —> POLPI]

Note. The static semantics telis us that domain(P0) N domain(p1) = 9.

Therefore: POIP1] = P1PO] = PO UV PT.

Notice that no dynamic semantics rules are given for definitions which are
environments. They are. in fact. the second components of Terminal

Definition Configurations. and they cannot be rewritten.

2.1.4 Some Exampies of the Operational Semantics of the Language L

Now we would like to show some examples of use of the operational

semantics definitions we have given.

Exampie 18.
Suppose we are given the expression (4+(2+1))+(2+1) and we would like to
evaiuate it in the environment p = ¢. Since the environment does not play any
interesting role. we will write configurations as expressions only. We leave to
the reader the obvious static semantics analysis. The dynamic semantics

gives the diagram of rewritings of figure 2-5. Therefore the application of the
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(4+(2+1))+(2+1) =2 (4+3)+(2+71) —> 7+(2+1) — 7+3 —> 10

l L !

(4+(2+1))+3 —> (4+3)+3

Figure-2-5: The possible rewritings of a simple expression.

dynamic semantics rules is non-deterministic and one may be interested in
looking for strategies for choosing the redexes to be reduced in the “bast
possible way®" (e.g. for obtaining the shortest sequence of rewritings).
Obviously this problem is. in general. undecidable, and therefore one can
only hope to give "restricted” solutions.

The problem is somehow more complicated if one would like to avoid repeated
evaluations of common subexpressions. We will deal with that issue later on
by providing a structural operational semantics definitvlon. for which redundant

evaluations of recursive functions applications will not occur.

In our structural style of giving the operational semantics definitions we
keep separated the two concerns of correctness and efficiency of reductions
(this motivation was aiready in the Burstall-Darlington transformation approach
for recursive equation programming). That separation of concerns may be
viewed in logical terms as the separation between Model Theory (for dealing
with correctness) and Proof Theory (for dealing with efficiency). One can
therefore apply what is aiready known in those theories and apply the relevant

techniques when studying correctness and efficiency of operational semantics.

Let us now look in detail at a particular sequence of rewritings for the
given expression (4+(2+1))+(2+1). If we write the “full proof" of such a
sequence we have the diagram of figure 2-6. That sequence requires 8

applications of the rules Bl or B2. and we consider the rewritings from
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(4+(2+1))+(2+1) — (4+3)+(2+1) — 7+(2+1) —> 7+3 — 10

tB1 t 81 t B1 t B2
4+(2+1) = 4+3 4+3 = 7 2+1 > 3
T B1 t 82 t 82
2+1 > 3
t B2

Figure 2-6: Proof of the rewritings of a simple expression

(using ruie B1) .

"4+(2+1)+(2+1)" to "10" as done in 8 steps. although the "surface transitions”

are only 4,

iIs there any way of reducing the number of steps for making the rewriting
process “faster”?

The two underlined uses of rule B1 (see figure 2-6) could have been reduced

to one only. by using the foliowing rule:

P I e, —" con

81",
P IFbopl....e....) —>" bop(....con....)

for i=0.1.... and con € N+ T.
where —>' denotes the transitive closure of —>.

The resulting sequence of reductions is given in figure 2-7. This example-
illustrates that the structural approach we presented (when we used rule Bl
instead of B1") is. in a sense. too structural because any transformation of a
subexpression has to be represented as a transformation of the given
expression (thereby using extra deduction steps).

We will examine again the issue of using —' (or —=) instead of —> in

Appendix C.



149

(4+(2+1))+(2+ 1) 5" 7e2e) St 743 = 10
t 81" t 81" t B2
4+(2+1) " 443 — 7 2+1 - 3
tB1" 1t B2 t B2
2+1—> 3
t B2

Figure 2-7: Proof of the rewritings of a simple expression using rule B1"

(instead of rule 81) .

The following example will illustrate the “theorem proving™ view of the
operatlbnal semantics definitions.

Example 19.

Suppose we want to evaluate the expression “let y:int=7 in x+y" in the
environment P = {x=5. z=3). We have: p:V where V=(x.z]. Let the type
environment @ be {x=int, z=int}.

Static_Semantics.
Suppose B8 : (y} — DTypes s.t. B(y)=iat. We use a linear Hilbert-like

presentation of the proof. as follows:

1. aiB] I x:int by V

2. a(B] Fy:int by V

3. aBl Fx+yint by 1.2.8B.
4, al-7:int by N

5. al-(yiint=7) by S1.4.

6. I (y:int=7): {y = int) by S2

7. al-lety:int=7in x + y:!int by 3.5.6.L.

Dynamic_Semantics
1. Plylint=7 —> {y=7)} by S2



150

2. Plrletylint=7inx+y — let{y=7linx+y by L1.1
3. PUly=7Nt+ry — 7 . by V

4. Py =N rFrx+y —2> x+7 by 3.B1
5. prletly=7)inx+y — letly=7)inx+7 by 4.L2
6. Ply=71tx — 5 by V

7. Ply=7MFx+7 —> 5+7 by 6. B1
8. Prietly=7inx+7 —> letly=7)in5+7 by 7.L2
9. Ply=7NFS5+7 — 12 by B2
10. pPrletly=7)in5+7 —> letly=7)in 12 by 9.L2
M. Prletly=7)in12 — 12 by L3.

a
Figure 2-8 presents the above proof in a tree-like fashion. In that figure the
numbers stand for the corresponding transitions of the proof and | = |
denotes that the final configuration of the transition i is the same as the initial
configuration of the transition j.

-

2 = 5 = 8 = 10 = M

t L1 t L2 tL2 t L2 t L3
1 4 7 9
t s2 t B1 t 81 t B2

3 6

tv tv

Figure 2-8: Schema of transitions for let y:int =7 in x + vy,

where x is bound to 5.

The numbers denote the transitions given in the text.

The process of deriving the transitions justifying a "surface transition™, is a
theorem proving process.
In order to iliustrate this point. let us consider. for instance. the initial

configuration of the transition 8:
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<{x=5, z=3)}, let{ly=7)Inx+ 7>
it matches the conclusion of rule L2 for P = {x=5.2z=3) and Py = {y=7). We may
try to show the premise of that rule (which becomes a subgoal to be shown)

by finding the expression el such that:
PPyl Fx + 7 —> el 2)

in order the find 1. since (2) matches the conclusion of the rule Bl. we

have to find an expression @2 such that:

PPyl I x — e2.
However, we could have atso looked for an expression 3 such that:
PPgl + 7 —> e3. Unfortunately e3 does not exist and a backtracking step

would have been necessary.

This process of replacing goals by subgoais and remembering the rules
we have to apply for obtaining the proof of a goal from the proofs of the
subgoals. is exactly what is done in theorem proving.

Therefore. what is known in the theory of the automated deduction can be
used In the context of our operational semantics definitions. Later on (in
Section 2.5 and Appendix C) we will show how to define theories for

formalizing the deduction process inherent in those definitions.

The operational semantics given in this section has been implemented on
the DEC-10 Proilog system [Byrd et al. 80] at the Department of Computer
Science in Edinburgh. Details on the implementation are found in Section

2.6.
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2.2 Some Remarks on_the Structural Operational Semantics of the Language L

We would like to study some problems concerning the semantics definition
of the language L we have given in the previous section and we will propose
some possible solutions.

This study willi also provide the motivations for the definition (given in the
following section) of the memofunction language. called memol. in which

redundant evaluations of recursive calls are avoided.

In particular, we will define the syntax and the semantics of memolL so
that only one binding for each recursively defined function occurs during
execution. The uniqueness of those bindings allows us to identify the "place”
where we will store the memoinformation.

Unfortunately for the language L. according to our dynamic semantic rules.
the uniqueness of the bindings does not hoid (see below). In order to regain
the validity of that property we will restrict in a suitable way the set of

expressions of memolL w.r.t. those of L.

2. 2.1 Multiple occurrences of bindings for the language L

Let us first analyse the mechanism of variable binding when evaluating
expressions with recursive definitions. We will see that the binding for
recursive defined functions is. in most cases. recorded "too often”.

Suppose we want to evaluate in the empty environment the foilowing expression
(where we do not write the type information for sake of simplicity):
let rec f(x) = if x=0 then 1 alse x-f(x-1) in f(3). (exp1)

By ruie F1 we have: for any p € Env

p I~ H(x) = if x=0 then 1 else x-f(x=1) —> [f=Ax. (lat AT (N in IF) ]

where |F stands for if x=0 then 1 else x-f(x-1).

By rule R1 we get:
®  rec (f(x)=IF) —> rec {f=Ax. (lat ¢ in IF) }.

because (P\(N)[(f1=P. and from expl we obtain:
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let rec {f=Ax. (lat ¢ in IF) } in f(3). (exp2)
By R2 we have:
¢ I rac {f=Ax. (lat @ in IF) } —> {f=)x.let rac (f=Ax.laet @ in IF) in let @ in IF}.

Thus from exp2 we obtain:

let {f=Ax. lot rec (f=Ax.let ¢ in IF) in let @ in IF] in f(3) (exp3)
We will write (F-REC) instead of {f=Ax.let rec {f=Ax.let # in IF} in let @ in
iIF}.
The next deduction step prbduces from exp3 the expression:

let (F-REC) in let {x=3) in let rec (f=Ax.lat ® in IF) in let @ in IF (exp4)
Then we get: .

let (F-REC) in let {(x=3} in lgt (F-REC} in let ¢ in IF (exp5)
After a few steps we derive:
let {(F-REC) in let {x=3) in let (F-REC]) jn let ® in 3-

[ let {x=2) in let (F-REC) in let ¢ in 2-

{ let (x=1) in let (F~REC} jn tet @ in 1-
[ let (x=0) in let {F-REC) in iet ® in if x=0 then 1 alse x-f(x—1)111.

There are two causes for inefficiency here.
One is due to the presence of expressions like let @ in e which can be

easily avoided by adding the rule:

L4. PplrletPpine — e

We can avoid the generation of let ¢ in @ expressions by adding to rule F1
the condition “if pPf Vo¢¢' and introducing the following:

F1'. P FfxiTy:T=a —> (f=hx:Tg.e:T) it Pl (FV(e)\ix})=9.

The second cause of inefficiency is due to the repeated occurrences of the
bindings for {. It seems that there is not a simple remedy for that probiem.
However, assuming that FV(e) &€ ({x.fl, one can see that axilom R2 s

equivalent to the following:
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R2°. P I rec Py =7 Py,
provided that only one binding occurs for any functional variable in the
oxprassion of the °“surface transition®. (This condition will be somehow relaxed

in Section 2. 4) .

Let us now give an exampie of application of the rules F1° and R2’.
Suppose we want to evaluate in the empty environment the following
axpression:

let rec f(x) = if x=0 then 1 glse x-f(x-1) in f(3).

We have:
® I let rec f(x) = if x=0 than 1 alse x-f(x—-1) jn f(3) —>
—> lat rac {f=Ax.IF) jn f(3) by F1’

(where "IF" stands for "if x=0 then 1 aglse x-f(x—=1)")

—> let {(f=Ax.IF) in f(3) by R2‘.
We then get: let (f=Xx. IF} in let (x=3) in if x=0 then 1 else x-f(x-1)

—>* lot {f=Ax.IF} in let {x=3) in 3-f(2)
—> = let {f=Ax. IF) jn let {x=3) in 3-let (x=2} in 2-let (x=1} in 1-
let (x=0} in if x=0 then 1 gise x-f(x-1)
—>* 6
Now the binding for f occurs only once.
Therefore rule R2’ is the one we would like to have for our memofunction
language memal. because using that rule only one environment is created
during the evaluation of recursive functions. As we already mentioned. that

uniqueness of environment will allow a simpie semantics definition of memoL.

Unfortunately rule R2° makes the presence of the keyword rec immaterial.
while in the language L the presance of rec is. in general. reievant.
For instance. in L the evaluation of let f(x) =0 in let rec f(x)=f(x) in f(2) does

not terminate. while the evaluation of let f(x)=0 in jet f(x)=f(x) in f(2) vyields

0.
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As shown in Section 2.4, it turns out that if we would like to keep the
"agreement” of the semantics of the language memolL. which uses rule R2’,
with the one of the language L. which uses rule R2, we must assume that

f(x) =@ is a recursive definition of f. if f occurs free in .

The hypothesis that FV(e) < (x.f) for R2° may seem quite restrictive. but

we can satisfy it by applying the following program transformations: {11. (21
and (3].
{1 if f(x) = e and the variable y of “ground type” (i.e. bool or int)

belongs to FV(e). then we can transform f(x) = @ into f (x.y) = e and we can
replace the calls of f in the given program by suitable calls of F.

This transformation technique is quite common in applicative programming.
and it is used for passing global variables among function calis.

(In Appendix B we give the extension of the structural operational semantics
rules for aliowing functions with more than one argument.)

Example 20.

We can transform:

let rec g(y) = let rec(f(x) = l_[ x=0 then 0 gise y+f(x—1))

in if y=0 then 0 sise f(y)+g(y-1)

h!

ing(m).
into:

—_—— ———

let rec g(y) = let rec (f(x.y) = if x=0 then 0 gise y+f(x—1.y))
n

in if y=0 then 0 eise f(y.y)+g(y-1)
in g(m).
o o2
Both expressions evaluate to )} i, O

i=0
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[2] |f we have an expression like the following one:
lety=el injet f(x) =...x....f...y...in e whers
FV(el)=¢9., and FV(...x...f...y...) = {x.y.fl, we can transform it into:

let t(x)=...x...1...01...in a. a

{31 If we have a recursive definition of the form:
rec [f(x) = ...f...x...g... and g(x) = ...g...x...f...]. we can construct
a function which is the pair <f.g> as follows:
rec <f.gx(x) =< . .Mk, g .. .x... T2, g. .
R (#~X¢ S+ IR SR i I (O« DD

This transformation has been derived from [Landin 64]. a

Notice that the transformations we presented above can be easily generalized,

but we will not do so here.

2.2. 2 Further Discussions

Let us now suggest another possible variant of the dynamic semantics
rules for recursive definitions with the aim of reducing their complexity. The
rule under examination is again rule R2.

Let us first consider the following example.
Let Py be {f=Ax:int. (if x=0 then 1 else x-g(x=1)) :int:

g=Ay:int. (if y=0 then 1 else y-f(y-1)) :int;

h=XAz:int. (if z=0 then 1 else 2-h(z-1)):int}.

We have: f(x)=g(x)J=xi and h(2) =27,
When rewriting rec P, using R2. we need to write a definition of the form
(rec Py \ix} for the binding of f. But a simple syntactic analysis of the
environment P, shows that the use of (rec Py \x. h}. instead of (rec Py) \(x}.
in the binding for f is also correct. because never f (or the functions invoked
by f) need to refer to the binding for h.

In general we can replace rule R2. by the following R2":



157

R2°. P I rec Py —> {x=con | (x=con) € P, and con € N+T} u

{f=Ax: T4. (lotl(rac Py \ (XN V, in @) 1 7,

| (f=Ax: Tg-0:Ty) € po}

whare V, is the-smallest set of variables s. t.
1. (FV(a)\x)) € Vg
2. if g € Vg and (g=My: T body: T,) € pg then (FV(body)\yD) S V.
In intuitive terms. V, is the set of ali variables whose value is necessary when
aevaluating f.
We leave to the reader the formal proof of the equivalence between R2 and

R2". a

The operational semantics we have presented. is according to the static
binding mechanism and it works correctly only for closed expressions. (See
also Section 2. 4. for a deeper discussion on these issues.)

For example. let y=3 in let f(x)=x+y in let y=2 in f(2) evaluates to 5 (not to
4) , because the static binding for y in x+y is 3.

For open expraessions the ruies we have given reduce, for instance,.
let f(x)=x+y in lat y=2 in f(2) to 4. while the correct evaluation (using the
static binding) gives "2+y" (or "error". as one might desire. for denoting that
the variable y in x+y is not bound).

A solution to those problems can be achieved via ciosures or via “stratification”
of the environments: they have to be structured as “stacks" of sets of
<variable.value> pairs. not as "sets" of pairs as in the approach we presented.
That change of the environment structure is necessary for representing the

nesting of the recursive cails and keeping track of the links between binding

occurrences of the variables and the corresponding bound occurrences.



158

2.3 Use of memofunctions for avoiding repeated computations in recursive

programs

in this section we will present the operational semantics of an applicative
language where memofunctions are used in order to avoid repeated
ovaluations of recursive calls. The use of memofunctions is the first step
towards methods of allowing "communications among function calls® for a fast
evaluation of applicative programs. We will say something about those methods

at the end of the thesis.

The memo information for a given function is stored in-a ‘place’ (called
‘rote’ in [Michie 68]) associated with the function definition. and it consists of
the argument-value pairs already computed. The memo information can be
looked up and updated by the various function calls. so that they may know at
run time the results of previous computations and increase their efficiency.
The memo information is available within the scope of the functioﬁ definition
only. It is automatically discarded when the evaluation is outside the relevant
scope. |
The reader may contrast this approach with the one implemented in [Burstail.
Coilins and Popplestohe 711 pages 209-214, where memo information is not

dynamically updated during recursive function evaluations.

We give the operational semantics for memofunctions using the structural

method a la [Plotkin 81].

We stick to the idea of introducing as fewer notions as _possible. which is
one of the basic principles of Plotkin's method. In particular we want oniy to
modify the notion of Environments by binding the function symbols to the
corresponding lambda expressions and the sets of the argument-values pairs

aiready computed.
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Our semantics definitions for memofunctions can also be viewed as an
experiment in testing how far one can stick to the principle of not introducing
extra notions. without making the semantics rules too restrictive or too hard to
understand.

The result of that experiment is quite satisfactory: indeed the semantic rules
for our language with memofunctions turn out to be not very complicated. at

the expense of a slight restriction on the set of Expressions (see beiow).

We can also give the operational semantics of memofunctions using
Landin‘s style and introducing the transition rules for an SECDM machine

(where M stands for the Memo component) . but we wiil not do so here.

Let us give first a.simple example of use of memofunctions. Suppose we
want to evaluate the following expression:
let mfib(n) = if n€1 then 1 alse mfib(n—-1) valueof mfib at n-1

+ mfib(n—-2) valueof mfib at n-2

in mfib(4).
We use the exprassion "mfib(n) valueof mfib at n* to denote that the value of
mfib(n) has to be stored in the memo of the function mfib.
The argument-value pairs ailready computed can then be looked up in order to
avoid redundant computations.
The following fig.2-9 gives a pictorial view of a possible computation

sequence. Using the memo information we saved many computation steps.

As an introductory example of the syntactic notations we will define and
use in this section. et us present in detail the steps from expression (1) to
exprassion (2) of fig.2-9.

Let us focus our attention to the first occurrence of mfib(1) in (1). Using the
“syntactic sugar® of our language memoL. it will be written as
mfib(1) valueof mfib at 1.

We also explicit-ly write for mfib: (i) its binding:
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mfib(4) memo: {}
—>* mfib(3) + mfib(2) 0
—>= mfib(2)+mfib(1) + mfib(2) 0
—x (mﬂb('l)+mﬂb(0))+mfib(1) + mfib(2) ] N
—>* (1+mfib(0) Yy +mfib(1) + mfib(2) {(<1. ) (2)
—>* (1+1)+mfib(1) + mfib(2) {(<1.1>.<0. 12}
—> 2+mfib(1) + mfib(2) {<1, 1>,<0,1>.<2.2>)}
— 2+1 + mfib(2) (by memo lookup) (<1, 1>, <0, 1>, <2, 2)
— 3 + mfib(2) {<1. 1>.<0. 1>, <2,2>, <3, 3}
—> 3+ 2 (by memo lookup) {<1,1>.<0,1>,<2.2>, <3, )
— 5 (<1, 1>,<0,1>,¢2.2>. <3, 3.

<4, 5)

Figure 2-9: Computing the Fibonacci Numbers using Memofunctions.

mfib=An. if n<1 then 1 eise mfib(n-1) valueof mfib at n-1
+ mfib(n-2) vailueof mfib at n-2,

denoted by MFIB. and (ii) its memo. initially empty. denoted by {}. Therefore
we have:

let {MFIB, 0} in mfib(1) yalueof mfib at 1 ... 1
We then get:

let {MFIB. (@} in letmema {mfib(D)=1}in 1 ...
where a so-called memoenviranment {mfib(1)=1) is created. It is then
"propagated to the left" towards its corresponding environment {MFIB. 0}.
After a few steps we get the expression (2):
—>= let {MFIB. {<1.D}} in 1 ...
where the pair <1, 1> has been included in the memo for mfib.
As we will see in the Dynamic Semanfics rules for the language memolL. the
creation of the letmemo expression is done by the rule VF3 and the

"propagation to the left” is done by the rule MPr.



161

The memoenvironment {mfib(1)=1}. which temporarily stores the
information that mfib has value 1 at 1. has been propagated to the left until an
enclosing environment with a binding for mfib has been encountered.
indeed by rule MPr we will force “the propagation to the left” in all cases.

excaept when we meet an exprassion of the form:
let P in iletmemo (f(a)=b} in e with f € dom(pP).

in which case we update the memo for f in P. thereby deriving P1. and we

get. let P1 in e.

The problem of identifying the occurrence of the environment where the
computed argument-value pairs have to inserted, will be addressed in the
following section. It turns out. that by restricting the occurrences of the free
variables in the definitions we can easily solve that problem. As we will see
later on. the relevant environment is the "innermost” one where there exists a

binding for the same function symbol occurring in the letmemao expression.

We could have followed other approaches for defining the operational
semantics of memofunctions.
As we already remarked. we could have introduced extra notions in the
semantics definitions choosing. for instance. an SECD style a la Landin. or
we could have used more elaborate structures for defining the environments

with memo information.

An alternative approach could have been the use of a recursive language
different from the language L. as a basis for the definition of its. variant with
memofunctions.

An interesting choice could have been a ianguage whose definitions are of the

form:

N d: :=xiT=e|fx:T):T;=e | f(xTy): T, rac= e | dO and d1
where by rec= we mean that the free occurrences of f in e are recursively

defined [(Burstall and Lampson 84].
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On the contrary the language we considered. following [Plotkin 81]. has
definitions of the form:
(2) d::=x:T=e|f(x:T°):T1=eirecdldOangd1,

whare the construction of recursive definitions is more liberal.

For definitions of the form (2). using the structural semantics approach.
it seems difficult to give the semantics of “rec d" in terms of the environment
to which °"d" evaluates. without (i) either introducing extra notions or (ii)
using extra primitives (like the substitution operator or the -fix" operator
{Burstall and Lampson 841) or (iii) forcing "at run time" the repsetition of the
bindings for the recursive functions (and in this case there is not a unique

environment with which the memo must be associated) .

We think that the approach we will present here has its virtues and it
shows also an interesting application of the structurai semantics definitions in
a case where functional features are mixed with imperative ones (functional.
in fact. is the underlying language. and imperative is the updating of

memos) .

Our language for memofunctions. called memolL. is formaily defined by

the following sets. It will be defined with reference to the language L (see
Sect. 2. 1) .-
Basic Sets ... (as for the fanguage L)

Derived _Sets

Constants con € Con = N+T
con ::= mijt
Expressions 8 € Exp
@ ::= ... (as for the language L) | e, valueof f at =S

Definitions d € Def
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d::= x:T=e | f(x:To):T1=e | doﬂd1
Notes.
(1) The intuitive semantics of "9, valueof f at e, is that "the value of e, is the
resuit of evaluating f at e,5".
A simpler syntax would have been: f$(e0) where $(...) denotes the function
application with use of the memo information. We do not choose that syntax
because. as we will see later., the valueof at construct gives us the advantage
of storing for each function evaluation more than one entry in the memo
environmaent.
(2) During evaluation. definitions become environments., as for the language
L. and expressions may become of the form: letmemo & in eo. where KL is
a MemoEnvironment (later defined) .
letmemo expressions are a way of "temporarily” storing argument-value pairs.

For example:
let (f=Ax.x%. (<2.4}} in .. .letmemo (f(3)=9) in e

stores the information that 32=9. That expression, via the memo propagation

rule MPr. will eventuaily be transformed into:
2 :
lot {f=Ax.x .(<2.4>,<3.9}} in...0

where the information 32=9 has been “permanently” stored in the environment
for f.

(3) We assume that: FV(e)=¢ for x: T=e, and FV(e)S(x,f} for f(x: To? ' T4=8.
(FV(e) denotes the set of free variables of the expression e of memoL. which
wiil be formaily defined later.) Notice that. in order to satisfy the above
hypotheses for the free variables. we may transform our programs in the way

we suggestied in the previous section 2.2. 1. O

Under the hypotheses of point (3) above. it turns out that we need not

distinguish between recursive and non-recursive definitions and we may
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consider all functions to be recursively defined. Indeed we assume that if an
occurrance of a free variable f exists on the right hand side of the definition
f(x:Ty): 7T, = @. it has to be considered as recursively defined (see Section
2.4). This is why there is not a rec d clause for Definitions in memolL.

Since all function definitions are recursive., a better syntax would have been

f(x: Ty): T, rec= e. but for simplicity we adopted the shorter form given above.

The computations evoked by the programs written in the language
memolL. are quite efficient and via the use of memofunctions the repeated

ovaluation of recursive function calils is avoided.

2.3. 1 Static Semantics for memolL

Through the static semantics analysis we perform the type-checking and

we will discard expressions and definitions which are not weli-formed.

We need to define some auxiliary sets. The sets of 1) Variables: V.,
2) Expressible Types: ETypes. 3) Denotable Types: DTypes and
4) Type—-Environments: TEnv are the ones introduced for the language L.
5) set of Dengtable Values: DVal. dv € DVai.
Dvat = N + T + (AbstractsXMemos) where Memos = P(ConXCon).
mem € Memos. (As usual P(S) denotes the set of subsets of S).

6) set of Environments: Env. P € Env.

Env = T Env, where Env,, = V —> Dval.

V € Var
We write p:V for denoting p € Env,,.
Given a functional variable. say f. we bind it to a pair whose first component
is the corresponding lambda expression. and the second component is the set
of the argument-value pairs aiready computed for f.
it p(f) = <abstract.{<cy.cy>. ... we will ailso write p as follows:
{f=abstract. (<cg.c>. .. . }:. .. ],

7) set of MemoEnvironments: MemoEnv. £ € MemoEnv.

MemoEnv = ) MemoEnv,, where MemoEnv,, = V —> P(ConXCon) .
Vv € var
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We write K:V for denoting £ € MemoEnv,,.

If £() = {<cq.Cy>. <Cy.Cx ...} we will also write i as: (f(cy) =cy. f(cy) =cg4. . . ).
Given a functional variable f. #(f) gives us the set of the corresponding
argument-value pairs already computed.

(The notion of MemoEnvironments has been introduced for reasons of

simplicity: see the related discussion in Section 2.3.3).

Example 21.
Given W=(x. ). p={x=5: f=Az:int. z+2:int. (<6.8>.<13.15>}} € Env,,.
Given V={f}, WL1=(f(6)=8) and k2={f(6)=8. f(13)=15] are both members of

MemoEnvv.

8) set of free variables FV and defined variables DV.

Those sets are defined as for the language L. The only differences are as

follows:
el valueof f at 99 I letmemo &£ in e
FV | FV(el) U FV(eo) | FVv(e)
x: T=@ | fx: 7): Ty=e | p (if p:V)
FV | FV(a) (1) | FV(el)\{x} (2) ' U FV(Ti(p(x))) (3)
x €V
Notes.

9.

(2) By hypothesis we have: FV(e) < {x.f}.

(1) By hypothasis we have: FV(e)

(3) 7l is the identity function if P(x) € N+T. If P(x) € AbstractsXMemos. 71
is the first projection function. We assume that if Ax: To-©: T,=E1(pP()) then
FV(Ax: Tg- ©: T = FV(e)\(x) € (. m1 allows us to obtain the A-expression

bound to a function symbol and discard the memo.

We aiso extend the definition of the defined variables by assuming that for

any £ € MemoEnv,,. DV(&) = V.



166

As for the expressions and definitions of the language L we introduce the
following formulas:

at,e:7, @tk,d. and bk, d:8, with the usual meaning.

We will feel free to write @l-... instead of al-,... where V=dom(a).
We will only give the Static Semantics rules which are different from (or

have to be added to) the rules of the language L.

Let us assume that (i) @€TEnv,. (i) FV(e) & V for any expression e s.t.

atg: 7. and (li) FV(A)SV for any definition d s.t. ald.

Memo . .
=0 a I-e1.1'1, al €y To

if a(f) = To_')T1
at e, valueof f at @,: 7,

This ruie says that e, valueof f at e, is well-formed if e, and ey are well-

formed. and the type of f agrees with those of 8y and e,.

Letmemo

For some type-environment 8: W

abkag:T, w: B

a - (letmemo £ ine): T

where the predicate 4: 8 for 4 € MemoEnv,, is defined as follows:
KB =VfeW. VY<a b €pu). V7,. T, € ETypes.

B(H=Ty—>7, iff (B|-a:Tygand 8~ b:T,).
The above rule says that a letmemo 4 in e expression is weli-formed if (i) e is
weil-formed and (ii) for any memo information "f(a)=b" in 4 we have that f
has type T,—> 7, iff a has type 7, and b has type 7,.
Therefore the predicate &: 8 is true iff the memo information in & "agrees” with
the type-environment 8.

For instance:
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{t=int—2int} f(2)+5:int. {f(3) =8}: {f=int—int)

{f=int—=2inti- (letmemog (f(3)=8} in f(2)+5):int

(We have given the static semantic rules for letmemo expressions. although
they arise during execution oniy. for technical reasons. The same applies for
anvironments. )

Function definitions

al{x="T,. f=T°—> THEFe:T,

C!l"f(X:To)IT,=9

2. P TY: T, =8): (f=T5>7T,)
Note. In the premise of rule 1. we included the type information for f.
because by hypothesis the definition f(x) =e in memoL is a recursive definition.
Environments.
The rules for Environments are like the ones for the language L.
We need only to define alp(x):B(x) in the case where
pP(x) € AbstractsXMemos.
Suppose that for feV and p(f)=<«xx: To-©: 7. mem>. We have by definition:
@ <Ax: Ty, : T, mem>: dt iff | (alf=Ty=>T Hr(Ax: T5.@: T):Ty~>7T, and

dt:To—éT1 a_f]_d_ V<a.b>€mem. df-a: To and arb: T1, ) )

Having given the Static Semantic rules for the language memolL we have
defined the expressions and definitions which we consider to be well-formed.

The Dynamic Semantics rules given beiow. will be applied only to them.
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2.3.2 Dynamic Semantics for memol

We first introduce. as for the language L. the notions of 1) agreement of
an environment P with a type-environment &, denoted by pP:a. 2) well-
formedness of expressions (or definitions) . 3) Expression Configurations and.
Definition Configurations w.r.t. a type-environment &. 4) Terminal
Configurations and 5) Transition Systems w.r.t. a type-environment &. The
only- difference is that. instead of DVal=N+T+Abstracts. we now consider
Dvai=N+T+ (AbstractsXMemos) .

Let us define an auxiliary notion: the Atomic Expression—Contexts. called
AEContexts, ranged over b{( Cl1l.

An atomic expression—-context is an 4expression with a "hole” instead of a
*subexpression at depth 1.

For example. "x+[ 1" and “if x=1 then [ 1 else 3" are Atomic
Expression-Contexts. but "x+(y+[ 1D° is not. The formal definition of

AEContexts is as follows:

ad
~
—d

Ctl::=bopC....[1....) 1 ifl]1then e, 8lsee,!| l8tpP in

—

X

~
1
I5
)

| if eg then [ ] else e, | le

jr—.
—n
~
x

| ifegthen e, eise (11 le

lat T Ty =1[line

I [1 valueof f at g, | fl1

| e, valueof f at (1
The following rules for the definition of the Dynamic Semantics of the language
memoL have to be added to (or they repiace) the rules we have already given

for the language L.

As usuai. we assume Cy.Cy. .. € Con and e € Exp.
We will write pI-. .. instead of pl-,. ..
Vaigegf oI 90 -_ elo

VF1.

P e, valueof f at e, — e, valueof f at ey

1
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pl-e1—‘>e;'1

VF2.
P I e, valuegff_a_t,eo—-) e’; valueof f at e,

VF3. P I c, valueof f at c, — letmemo (f(cy) =cy}) in c4
if cg.Cc4 € Con and <cgy.cp> £ M2(P ()
VF4. p I~ e valueof f at c, - c,
it cg.cq4 € Con and <cy.cp € M2(P(N))
Rules VF1 and VF2 are obvious because we need to evaluate e, and e, when
evaluating e, valueof f at a,.
Rule VF3 generates a letmemo expression to be "propagated to the left".
Rule VF4 says that if the pair <cgy.c,> already exists in the memo for f. we
need not update that memo (therefore no letmemo expression should be

generated) and we can substitute c, for the expression e to be evaluated.

Memopropagation
MPr. P  Clletmemo 4 in el — fetmemo 4 in Clel

for any atomic expression context C[ 1 # let P in [ ] s.t. DV(P)NDV(L) #9D,

Note. If u={f(cy)=c,} then the condition DV(R)NDV(W)#9 is equivalent to
feEDV(P) .
Using the MPr rule. the memo information & is “propagated to the left",

fowards the corresponding environment.

Memoupdating
MU. P I let Py in letmemo (f(cy)=cyl in @ —> let P, in e it f € DV(Py)

where P, = Py[f | <M1(PL(N) . T2(PH(H))U(<cy. c 2P ]

Note. The pair <06.c1> is inserted in the memo component of the binding for f
in Py. MU is the rule which can be applied to ietmemo expressions when we

cannot apply MPr.



170

it is essential that during the evaluation of a given expression. only one
environment with a binding for f occurs in it. so that the environment with
which the pair <cy.c,> should be associated. is uniquely determined. (That

fact is not true for the language L. while it is true for the language memoL} .

Function and Memo application

Pre—e
Al.
P f(a) — f(a")
A2. P I f(cy — cq if cg.cqy € Con and <cgy.cp € M2(P (D)
A3. P IFflcy) —> letx:Tg=cgine where m1(P(H)) = Ax: Tg. @1 Ty~

if cg € Con and <cj.cy> £ m2(P(H) for some c,

Note. Rule Al evaluates the argument of a function application.
Via rule A3 we evaluate the application in the usual way. if no memo for the
argument c, occurs in the binding of f. Otherwise via rule A2, we use the

memo information and we produce “in one step” the resulit.

Definitions. Function definitions
Fl. PFRfxT:T, =8 > (f= Ax:T5.0:T,. 9]}
Note. The definition is transformed into an environment with an initial "empty

memo”. i.e. with no argument-vaiue pairs in it.

2. 3.3 Altarnative _rules for memol

This last section is about an alternative definition of the semantics rules
for memofunctions which turns out to be equivalent to the one we presented
above. We describe it here because it shows that the use of the latmemo

expressions and the memoenvironments does not contradict the principle of
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not introducing extra notions in the structural operational semantics
definitions. As we will see below. that use is only a “temporary” way of
denoting the changes of environments which can be expressed. maybe in a

less intuitive manner. without letmemo’s or memoenvironments.

Instead of using rules VF3. MPr and MU we could use the foillowing one:

VF3'. I <Py. c4 valueof f at cy - P,. cp
where (i) an “old" configuration. i.e. an "oid" <environment. expression>
pair. is transformed into a "new" one with a possible change of the
environment. and (i) Py = Po[f 1 TI(PH(N) . T2(P(N) U (<cy. cpb].
i.e. P, is like Py except that the memo information for the function f has been
updated by the pair <Cg-C¢>.
ln order to denote that updating of the environment, in what follows we wiil use
the shorter form: P, = Pylf(cy =c,). '
Now. since environments méy be changed. in order to use VF3’, we need to
modify the other rules of the language mémoL. In particular. rules Al and L2

become:
F<P.e> —> <p’, a8
Al’. and
F<R.f(a)> —> ', f(a’)>

- <PlPgl. @ —> <, 0"

F<P.] tPoi_ne>—> <g. let 04 in @

where O and O, are defined as follows.

Let P:V. P4 Vy. and P’ be (PIPD (f(cy) =c,). We have:

(i) if feV, then 0=pP and Oy=Pqlflcy) =c,}. because the relevant environment for
fis Py and we must update the memo of f in Py:

(i) it fev-vV, then J=p{f(cy) =c4} and OJ,=p,. because if f¢dom(Po) the
updating of the memo must occur in the environment of the given

configuration.
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Notice that. if PlPgl=P’. we have: O0=pP and 0,=P,.

As we have seen. the definition of 0 and O, is a bit complex. Therefore we
prefer. instead of the rule L2°. the simpler rules VF3, MPr and MU. Indeed
they express In an algorithmic way the same changes of environments evoked

by L2°. a

2.3.4 An Example and Some Remarks on the Samantics of memol,

Here is an example of application of the dynamic semantic rules for the
language memoL. It is an extended analysis of the example given in fig. 2-9.
Example 22.

Let us consider the following program for computing the fibonacci function
mfib(x) for x=4. (The name mfib instead of fib is because we use the
language memoLl.) '

let mfib(x: int) : int = if x=0 then 1 else (if x then 1 elise

(mfib(x-1) valueof mfib at x—1) + (mfib(x-2) valueof mfib at x-2))
in mfib(4) .
For simplicity reasons from now on we will not write the type information. Let

IF be the expression defining mfib(x). We have:
® I lot mfib(x)=IF in mfib(4) —> lat {mfib=Ax. IF. #} in mfib(4)

We obtain:
® F let {(mfib=Ax.IF.#) in let (x=4) in if x=0 then 1 else

(if x=1 then 1 else (mfib(x—1) valueof mfib at x-1) +

(mfib(x-2) vaiueof mfib at x-2))

—" let {mfib=Ax. IF.®} in lot (x=4)} in

et
at

(mfib(3) valueof mfib at 3) +

(mfib(x-2) valueof mfib at x-2)
Here —' denotes the transitive closure of —.
(The above derivation is one among many that are possible.)
By applying the rules for let-expressions. valueof-expressions and basic

operators. we obtain:
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+

—5 let {mfib=Ax. IF, ®) in let (x=4) in
(let (x=3) in (mfib(2) valueof mfib at 2) + (mfib(x—2) valueof mfib at x-2)
valueof mfib at 3) + (mfib(x-2) valueof mfib at x-2)

—" let {mfib=Ax. IF, #) in let {x=4} in

(et {x=3) in (let {x=2) in (mfib(1) valueof mfib at 1) +
{mfib(x-2) valueof mfib at x-2) valueof mfib at 2)
+ (mfib(x-2) valueof mfib at x-2) valueof mfib at 3)
+ (mfib(x~2) valueof mfib at x-2)
—" It {mfib=\x. IF. 9} in let (x=4) in
(let (x=3) in (let (x=2) in (let {x=1) in 1 valueof mfib at 1) +
(mfib(x—-2) valueof mfib at x—2) valueof mfib at 2) +
(mfib(x-2) valueof mfib at x~2) valueof mfib at 3) +
(mfib(x-2) valueof mfib at x~2)
—> as before with "1" instead of "let {x=1} in 1"
—> as before with "letmemo (mfib(1)=1} in 1" instead of "1 valueof mfib at 1"
—" lat (mfib=Ax. IF, (<1. D} in let x=4) in
(let (x=3) in (let {x=2) in 1 +(mfib(x-2) vaiueof mfib at x—2)
valueof mfib at 2) + (mfib(x-2) valueof mfib at x-2)
valueof mfib at 3) + (mfib(x-2) valueof mfib at x-2)
Notice that we propagated the memo information mfib(1) =1, before carrying
on any other transformation of subexpressions.

The evaluation may go on in the following way:

+

—> ... (let (x=2) in (1+(mfib(0) valueof mfib at 0))) valueof mfib at 2 . .
—" ... (et {(x=2) in (1+((let {x=0) in 1)
valueof mfib at 0))) valueof mfib at 2 .

(let {x=2} in (1+(1 vaiueof mfib at 0))) valueof mfib at 2 ...

ﬁ
—> ... (lat {(x=2} in (1+(letmemo {mfib(0) =1} in 1))) valueof mfib at 2 . ..
—>  let {mfib=Ax. IF, {<0. 1>, <1, >}} jn let {x=4) in

(let (x=3) in ((let (x=2} in (1+1)) valueof mfib at 2) + (mfib(x—2) valueof
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mfib at x-2) valueof mfib at 3) + (mfib(x-2) valueof mfib at x-2)
—> as before with "2" instead of "1+1°
- —> as before with "2" instead of "let {x=2} in 2"
—> as before with “letmemo {mfib(2)=2) in 2" instead. of "2 valueof mfib at 2"
—" lat (mfib=Ax. IF. (<2, 2>, <0. 1>. <1, 1>)) in let {(x=4) in
(let (x=3) in 2+(mfib(x-2) valueof mfib at x-2) valueof mfib at 3) +
(mfib(x-2) valueof mfib at x-2)
by following the same sequence of reductions as above. we obtain:
—" let {mfib=Ax. IF, {<2. 2>, <0, 1>, <1, D)) in let (x=4} in
(let {x=3) in 2+(mfib(1) valueof mfib at 1) valueof mfib at 3) +
(mfib(x-2) valueof mfib at x-2)
and in one step of deduction. by using the memo information. we get:
— ... ((let (x=3) in 2+(1 valueof mfib at 1)) valueof mfib at 3)+ . ..
—> ... ((let {x=3) in 2+1) valueof mfib at 3) + ...
Notice that no memo updating is necessary (and therefore no generation of a

letmemo expression occurred) because in the memo for mfib we have already

the pair <1. 1>. Then we have:

—')+le_t {mfib=Ax. IF, (<2, 2>, <0, 1>, <1, 1>} in let (x=4} in

(3 valugof mfib at 3) + (mfib(x-2) valusof mfib at x-2)
—> as before with “letmemo {mfib(3) =3} in 3" instead of "3 valueof mfib at 3"
—" let (mfib=Xx. IF. (<3.3>. <2.2>.<0. 1>, <1, 1>} in let {x=4)

in 3+mfib(x~-2) valugof mfib at x-2

— | in lot {x=4) in 3+(mfib(2) valueof mfib at 2)

-

— |

i

in let-{x=4} in 3+(2 valueof mfib at 2)
In the last step we used the memo information for mfib(2). Then we get:

—> let ... in let {x=4) in 3+2 —> 5. =

Now we would like to make a few remarks about the evaluation we have
shown in the above example and about the given dynamic semantics rules.

Remark 1. The evaluation sequence for computing the vaiue of mfib(4) is one
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of the many that are possible. We will see that the Church-Rosser property

holds for our dynamic semantics rules.

Remark 2. in the evaluation sequence we presented. the updating of the
memo component for mfib is done "as soon as possible”. Indeed we gave

priority to the ruies VF3, MPr and MU. This decision makes it possible to
avoid the recomputation of identical function applications.

These priority choices were also adopted in our Prolog implementation of the
memol semantics (see Sect.2.6).

If the memo information is stored and used according to the priorities we have
indicated. a complexity reduction from exponential time to linear time can be
achieved. as the Fibonacci example shows.

(Similar work of establishing priorities among t;ules in order to find the optimal
reduction sequences has been done for the A-caiculus by J.J. Lévy [Lévy 80]
and others. ) '

Remark 3. When one uses the memol. language for avoiding repeated
evaluations of recursive functions. the construct e; valueof f at 8y is used with
e,=f(a,) . Therefore the evaluation of e, will result in a repeated evaluation of
the argument e,.

" In order to avoid such inconvenience one may extend the syntax of the memoL
language by considering expressions of the form: "memo f(e)" as an

abbreviation for "f(eo) valueof f at e5". The corresponding rules are:

Pl-rea—e

MAT.

o I memo f(e) — memo f(ae’)

MAZ2. P I memo f(c) —> f(c) valueof f at c

Another soiution to that problem is to write let z=9g in (f(z) valueof f at 2)
instead of f(e,) valueof f at e,.

it is not difficult to prove the semantic equivaience of all thosé alternative
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definitions. by using for instance. v-transition systems [Hennessy and Waei
82].
Remark 4. Constructs of the fbrm e, valueot f at e, may have an interesting
use for denoting "communications™ among evaluations of expressions.
In particular we may write the following definition for computing the binomial
cosefficients, taking advantage of the fact that bin(n. m)=bin(n. n-m):
bin(n.m) = if m=0 gr n=m then 1

eisa(bin(n-1. m-1) valueof bin at (<n—1,. m-1> and <n—-1.n-m>)) +

(bin{(n-1. m) valuegof bin at (<n—-1. m> and <n-1.n-m-1)),

whare we used the notation: e valueof f at (8g and e, and ...) as an
abbreviation for ((e valueof f at egy) valueof f at 8. ..
According to the above definition, after the computation of bin(n-1,m-1) and
bin(n-1.m) . we also know the values of bin(n-1.n-m) and bin(n-1.n-m-1).

in fig. 2-10 we have shown a sequence of calls which may be evoked by

let bin(n.m)=... (as above)... in bin(7.,3).

Notice that an improvement of efficiency has been achieved with respect to
both the usual recursive definition and the definition which avoids commutative
redundancy [(Cohen 83]. |
Let [n.m] denote the binomial coefficient bin(n.m) .

With reference to fig. 2-10 the sequence of recursive calls. evaluated without
use of the memo information when computing bin(7.3). is: [7.3]. [6.2].
[5.1]. [4.0]. [4.1]. [3.0]. [8.1]. [2.0]. [2.1]. [1.0]. [5.2].
[4.2]. They are denoted by solid arrows.

The sequence of memoupdatings is: [4.0]. [4.4]. [3.0]. [3.3]. [2.0].
[2.2]. [1r.0]. [1.1]. [2.1]. [8.1]. [8.2]. [4.1]. [4.3]. [s5.1].
[5.4]. [4.2]. [5.2]. [5.3]. [6.2]. [6.3].

in fig. 2-10 dashed arrows denote the memo updatings. Underiined values are

stored in the memo-eanvironment because of the valueof at constructs.
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[7.3]
[61{--*[&&]
N —— .
[(5.7] [5-2]-—~-=[5.3] (5.4]
//‘\"’74 T ‘_‘_':'_'_"“' -
[4.0] [4.7] [4.2] [5_3] [4.4]
N e
[3.0] [3.1]----=[3.2] [3.3]

SN

(2. °] [2.1] [2.2]

/N

[1.0]---->[L1]

Figure 2-10: Computing binomial coefficients.

Use of memo for [n.m] = [n.n-m]
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2.4 Some properties of the operational semantics definitions and program
annotation_methodology

in this section we will study some properties of the operational semantics
definitions we have- given in the previous sections. Some of those: properties
are quite important as. for instance. the fact that for a given class of
expressions the operational semantics of the language memoL with memo
information "agrees” (in a sense later specified) with the operational
semantics of the language L., while avoids redundant evaluations of recursive
calls.
We also suggest a programming methodology based on annotations as follows

(see aiso fig.2-11).

P € C(L) =~ M(P) € C(memolL)

SL ) Smemol.

D
Figure 2-11: The Program Annotation Methodology for avoiding

repeated functions calls.

We will define a class C(L) of programs written in the language L and a
method M for annotating them. thereby deriving the class C{(memolL) of
programs in the language memoL. so that the evaiuation of any program
P € C(L) can be more effiéiently performed. Correctness is preserved by
requiring the commutativity of the diagram in fig. 2-11.

The class C(L) of programs is defined by imposing some restrictions on the
occurrences of the free variables in the definitions. The translation M consists
in substituting some occurrences of the function applications "f(e)" by

“f(e) valueof f at &”.
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in what follows we will give more details about the definitions of C(L) and
M which make the diagram of fig.2-11 commute. and we will propose two

such pairs <C(L). M>,

As we already mentioned. more. general resuits could be obtained by
defining an operational semantics for a language with memofunctions if we did
not stick to the principle of not introducing extra notions in the structural

operational semantics definitions.

2. 4.1 Relationship between_the lanquage L and memol. Proposal of a
program transformation methodology.

The relationship between the language L and the language memoL can be
best understood in the frameworks of the program transformation and the

program annotation methodologies.

Given a program P in a class C(L) of programs. written in the language
L. in order to improve its efficiency. we may derive the program T(P). called
the transformed program. so that efficiency of execution is improved. while

correctness is preserved.

T(P) € C(L)
T sem
sem
P e C(L - 0
M- >~ memosem

M(P) € C(memoL)

Figure 2-12: Relating two operational semantics: sem for the language L

and memosem for the language memoL



180

We need the upper triangle of the diagram of fig. 2-12 to commute. and we

need that the evaluation of T(P) is more efficient than the one of P.

The efficlency in evaluating C(L) programs can be Iinferred from the
definition of the semantics function "sem”, if we assume that the interpreter for

the language L is directly derived from that definition [Cardelli 83].

Instead of transforming programs we may aanotate them [Schwarz 82].
i.e. transiate them into programs in an extended language. for which we
provide, once and for all. an efficient evaiuator. Therefore given a program
P € C(L), we can translate it into the program M(P) in the language memolL.
and if the lower triangle of fig. 2-12 commutes. by evaluating M(P) using
*memosem® we get the desired result in an efficient way. (In our case
redundant evaluations of recursive calls are avoided.)

The translation M from the language L to the language memoL we will propose
is quite straightforward and it does not require any difficult step. uniike the

"eureka steps” of the program transformation technique.

The "transformation technique® and the "annotation technique” can also be
compared in the following way. Let us assume that. given a semantics
function s. we have for each program p an associated complexity measure
c (p). which in intuitive terms, gives us the cost of evaluating p using s.

In the transformation technique we have a fixed semantics function. say sem.
and we look for a transformed program T(p) such that sem(T(p)) = sem(p)
and Cggn (T(P)) < cgnip).

In the annotation technique we factorize. so to speak. the "transformation” T
into two steps: an annotation "M" and an improved semantics "impsem” (for

an extended language) with the aim of getting: (M(p)) < Csom(P) -

Cimpsem
and impsem(M(p)) = sam(p). (see fig. 2-13).
That factorization gives us:

i) more flexibility in making program improvements. in that we are not forced
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o code the Improvements as changes in the program text. but we can get
them through the semantics of the extended language. and
i) it allows us to structure and classify program improvements as deriving

from classes of annotations.

T(p) Program Transformation:
T : sem Csem(T(P)) < Cyom(P)
sem
p - d
M impsem Program Annotation:
M(p) cimpsem(M(p)) ¢ CgomipP)

Figure 2-13: Program Transformation and Program Annotation.

With reference to the fig. 2-12 we need to show that: (1) the given
operational semantics definitions for our languages L and memoL make the
diagram commute. and (2) the memoL opérational semantics avoid redundant
evaluation of recursive functions calls.

Point (1) holds for two classes of programs as introduced by the Dsfinitions
2 and 9 (see Theorems 7 and 11). Notice also that most programs which do
not belong to those classes can easily be transformed into equivalent
programs belonging to them. by using the techniques mentioned in Section
2.2,

Point (2) is immediate. because the VF4 rule (see Section. 2.3) avoids

repeated evaluations of recursive function calls.

in order to prove the main theorems. i.e the agreement of the semantics
definitions of the languages L and memoL for the two classes of programs we
consider. let us first show that the Church—Rosser property holds for those
definitions. By that property we can pay no attention to the nondeterminism of

the semantics rules.
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2.4.2 The Church—-Rosser property for the operational semantics of the
lanquage L

Let us consider the case in which functional variables have arity n=1.
(The general case for arity n#0 can be shown with no extra difficuities) .
The rules of the dynamic semantics definition of L are deterministic in the
sense that:
Yp € Envy. Ye € Exp. 3 a unique e’ s.t. PI e—>e’. if P e—>e’ holds for
some @',
with the only exception of the rule Bl for the basic operators and the rules
AND1 and AND2 for and-definitions.
Given a set S with a binary relation — € S$SXS we say that (S, —) s
Church—-Rosser iff V s,u.v € S jf s —>* u and s —>=* v then 3t € S s.t.
u —>*tand v —>*t. —>* denote the reflexive transitive closure of —.
We ca'n show that the set of configurations I' with the relation —> is Church-
Rosser 'by applying the following 'stror;g confiluence” result.
(S. —™) is strongly confiuent iff Ys.u.v € S if s — u and s — v then for
some t € S u —01 t and v —01 t. where ﬁo'? denotes the refiexive closure
of —. »
Strong confluence implies the Church—Rosser property, [Huet 80l.
By the nondeterminism we may have from both p + e0 — 0’ and

P el — el

P bop(....80..... el...) —> bop(....80",.... el....) and
Prbop(....80.....81....) = bop(....a80,..., atl’....).

From both bop(....80°..... el....) and bop(....e80.....81",...) we
obtain bop(....e0"..... el’....). because the redexes e0 and el are

disjoint. One can analogously deal with the non-determinism arising from
and-definitions.

This concludes the proof of the Church-Rosser property.

Notice that the above proof does not require the rewriting system to be

noétherian [Huet and Oppen 80].
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2.4.3 The Church—-Rosser property for the operational semantics for the
language memol .

The proof is similar to the above one for the language L.
The only nondeterministic rules. which are in memoL and not in L. are the
rules for the valueof at constructs and the memo rules. There are the following
cases:
(1) one may apply the rule VF1 or the rule VF2, to the expression
o1 vajueof f at e0. By Strong Confluency we get the Church-Rosser
property.
(2) one may apply the rule VF2 or the rule VF4, to the expression
e yalueof f at c,. In this case. after the application of VF2 we can still apply
. VF4, because the memo information in P is not changed by VF2. By Strong
Confluency we get the Church-Rosser property.
(3) one may apply the memopropagation rule (MPr) or any other rule. say R.
to Clletmemo 4 in el. in this case we notice that there are no rules for
transforming expressions of the form letmemo &£ in e. except those which can
be applied for transforming e.
Therefore if the memopropagation rule and rule R can both be applied to the
expression Clletmemo KL in el. the latter ruie should be applicable also to
Clel. Thus it can be applied to letmemo 4 in Clel. We have the following
commutative diagrams:
(i) if R changes Cl...]l into C'[.. . I
Pt Clietmemo &4 in @l —>(by R) C’lletmemo & in el
4 (by MPr) {(by MPr)

P letmemo 4 in Cle] —>(by R) ietmemo 4 in C’le] and



184

(ii) if R changes e into e’
Pt Clletmemo & in 1 —>(by R} Clletmemo & in o'l
i (by MPr) { (by MPP)
P letmemo & in Clel —>(by R) l|etmemo 4 in Cle’]

By Strong Confluency we get the Church-Rosser property.

Analogously one deals with the case when MU and any other rule can be

applied.

"Having proved that the Church—Rosser property hoids for the Dynamic
Semantics rules for the language L and memolL we can proceed towards the
proof of the commutativity of the diagram of fig. 2-11 without caring about the

possible nondeterminism.
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2.4. 4 Consistency of the operational semantics for the languages L and

memol

The commutativity of the diagram of fig. 2-11 holds for a class of
programs which we- will define here. They. are programs expressed by
olementary exprassions which are expressions with no free variables and such
that the right hand sides of their definitions have no free variables (except
formal parameters or recursive function symbois). The commutativity hoids

aiso for another class of programs defined in the foilowing subsection 2. 4.5,

Let us start by giving some definitions.

Definition 2: e0 is an glemantary expraession. and we write a0 € elExp.

iff ©0 € Exp of the language L and

FV(e) =9 for any x: T=e definition occurring in e0

FV(e) S (x} for any f(x: Ty): T,=e definition occurring in a0

FV(e) € (x.f} for any rec f(x: Ty : T,=e definition occurring in 0. and no

other kinds of definitions occur in e0. O

We ailso say that an abstract Az: T, ©: T, is an elementary expression if e is an
elementary expression. (z should not be considered while computing the free'
variables of the definitions in a.)

An environment P € Env, (for the language L) is called an eglementary

aenvironment (and we write P € elEnv,) iff ¥V x € V. pP(x) € elExp.

An glementary exprassion_context D[...] € elExp—contexts is an elementary
expression with a "hole” s. t.. when filling that "hole” with the expression e we
have: Dlel € glExp. (The easy formal definition is left to the reader.)

_ For simplicity we will not write types in definitions.

We define a translation relation M: eiExp (in L) = Exp (in memol)
which derives from the following elementary translations Tl (removing rec’s)

" and T2 (introducing valueof at):
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for any elExp—context D[(..:.] and any occurrence of the expression f(el)
where f is free in DIlf(e1)].

(T1) let rec f(x)=e In o1 = let f(x) =06 in al

(T2) let f(x)=e [n D{f(eN)] => lot f(x)=e in DIf(e1) valueof f at o1l

with the condition that all occurrences of rec should disappear in the
translated expression (otharwise it would not be an element of Exp in memolL) .
We recall that in memolL all function definitions are recursive, though rec does
not occur in them.

In defining the translation M. the translation T2 need not be applied to alil

subexpressions to which it is applicable.

We wiil often write M(e) meaning any expression e1 s.t, (e = a1) € M.

Given an environment p € elEnv,, for the language L we denote by N(p)
the corresponding environment for the language memol. where every abstract-
occurring in P is paired wlth' an empty memo, and all occurrences of
expressions of the form "let rec PO in e" are replaced by "e". (This last
modification corresponds to the replacement of the ruie R2 by the rule R2’ as
suggested in Section 2. 2).

For instance.
if P = {x=5. f=Ax!int. let rec {f=Ax:int. if x=0 then 1 gise x-f(x~1):int} in

if x=0 then 1 glse x-f(x—1):int}

then N(pP) = {x=5. f=<Ax:int. if x=0 then 1 eise x-f(x=1):int. #].

Rewritings in the language L will be denoted by "el (L) —> e2". while the

ones in the language memolL by "e@1 (memolL) — e2".
We will say that an expression e is irreducible iff @ € N+T,

in the language L we will write Pf'ael = g2 to assert that:
FgP.el (LY—™>* <P, and t is irreducible iff
FgP. e2> (LY—™=* <p. v and t is irreducible.

Analogously in the language memoL for the rewriting (memobL) —>*.
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in order to prove the commutativity of the diagram of fi‘g. 2-11 let us start
with some preliminary lemmas.
in what follows we will write pl-e. .. instead of p'i-ae. .. and we assume that
FV(e)Sdom(p). When we assume that P€Env,,. we also implicitely assume
that ®€TEnv,, with p: @ and VEW.
Moreover., when we write let f(x)=e in E[f(el)] (or similarly defined
let-exprassions) . the occurrence of f in f(el) is supposed to be free in

E[...]. so that the relevant binding for it is f(x)=e.

Lemma 3 shows the commutativity of the dilagram 2-11 for a very simplie class
of expressions.
Lemma 3: VY P € aiEnv,,. V a0 € alExp (in L) N Exp (in memoL) (i.e. no
rec. valueof at. letmemo occur in e0),
Pl-re0 (LY—>* t and t is irreducible iff
N(b) I- 0 (memoL)—* t and t is irreducible.

Proof: Immediate by definition of elExp. In fact. since V°=¢, the F1 rules

for L and memol turn out to bind f to the same abstract. a

The following lemma 4 tells us that the replacement of an occurrence of
“f(el1)" by "f(el) valueof f at 81" does not introduce any extra non terminating
computation.

Lemma 4: Y p € elEnv,,.

v D[let f(x)=e in Elftel)]] € elExb N Exp (in memolL) we have that:

Pt D[let f(x)=e in Elf(e1)]] (memoL)—>* t1 and t1 is irreducible iff

pr Dlet f(x)=e in Elf(el) valueof f at e11] (memolL)—>* t2 and t2' is

irreducible.

Proof: It is enough to notice that the probagation of a letmemo construct

for the function f is bound to terminate. because in the outside

let-expression there is a binding for f. a
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The following basic Lemma 5 says that the memo information does not affect

the resulit of the computation.

temma §5: V p € elEnv,,.

if Pk let f(x)=e in E[f(a0) ]
—"  let [f=Ax.e.memo U {<c0.c1>}} in E[f(cO) ] (n
- let {f=Ax.e.memo U (<c0.c1>}} in E[c1] 2)

(by memo lookup)

then Pt let {f=Ax.e.memo'} in E[f(c0) ] (3
=" et [f=kx.e.merﬁo } in E'[c1] (4)
(by evaluating f(c0))
where E'[...] possibly differs from E[...] for updatings of memo
components.
Proof: - - - =~ < We will givé the proof under the hypothesis that
valueof at constructs are used only in expressions of the form: .
f(e) valueof f at e.
If <c0.c1>eémemo the lemma is obvious. Otherwise. it is the case that for
deriving (1) we have:
pl- tet {f=Ax.e.memo1} in D[f(c0) valueof f at c0] (0.
+

—> let {f=Ax.e.memo2} in D'[c1 valueof f at c0] (0.2)
—> et {f=Ax. 8. memo2 U (<«c0.c1>}} in D'[c1]

—* (D
where <«0.c?> £ memol U memo2 and D’[... ] possibly differs from
D[... ] for updatings of memo components.

in order to derive (4) from (3) we make the same steps we made for
deriving (0. 2) from (0. 1). Notice aiso that in (3) and (4) we used the
same variable "memo” (not two different ones as in (0.1) and (0.2)),
because by hypothesis in "memo” there exist all the argument-vaiue pairs

computed while evaiuating f(c0) to c1. O
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We can now prove a theorem which establishes the consistency of the
operational semantics of the language memoL with respect to the one of the
language L. (Previously we also called that property "agreement” between the

two semantics. )

Theorem-6: V P € elEnv,. Y a0 € elExp.

P e0 (LY—™* t and t is irreducible iff

N(P) F M(e0) (memolL)—* t and t is irreducible.

Proof: Any expression derived by translating a given expression €0 using
M can be obtained by a sequence of elementary transiations T1, removing
rec’s, followed by a sequence of elementary translations T2, introducing
valueof at’s.

In writing the relation symbols (L)—> and (memolL)—> (and their reflexive
and transitive closures) we will omit the qualifications (L) and (memol)
when they are easily understood from the contekt.

Part 1  Removing rec’s.

Suppose M(e0)=e0. The thesis holds by Lemma 3.

Part 1.1

Suppose that M(eQ) is obtained from o0 using only one eiementary
translation T1.
Let 80 be Dllet rec f(x)=e in e1] and M(e0) be Dilet f(x)=e in ell.
In L we have:
pt Dliet rec f(x)=e in a1l

—> Dllet rec {f=Ax. let ¢ in e) in 1]

= Dllet rec {f=Ax. e} in o1l

—> Dllet (f=Ax. lat rec {f=Ax. @) in 8} in o1l.
In memoL we have:
N(p) I Dllat f(x) =6 in e1]

—> Dllet (f=Ax. e} in a1].

where for simplicity we have not written the empty memo. We will do the

same in what follows.
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Now we will reason by induction on the number of the recursive cails of f
we need to evaluate el. 4
Base case. Obvious because there are no calils of the function f.
Step case. Suppose o1 = Elf(c)]. and suppose that the occurrence of f
in f(c) is free in o1,
In L: Pl D[let {f=Ax. let rac (f=\x.e) in e} in Elf(c)]]

—>x D[let (f=Ax. let rec {f=Ax.e) in e} in

Ellet x=c in let rec (f=Ax.e} in el].

in memoL: N(P)F D{let (f=Ax.e) in Elf(c)1]

—> D[ let (t=Ax. @) in Ellat x=c in el]

~ D[let (f=Ax. @) in Ellet x=c in let {f=Ax. e} in el]
where ® holds because the free occurrences of f in @ are bound to Ax.e.
(Recall that FV(e) S (x.f. because e0 € elExp.)
By induction hypothesis we have that for the. expressions within the context
EL. . .] the foilowing holds:
Yp € elEnvy. A let x=c jn let rec {f=Ax.@) in & (LY==t and tis
irreducibl‘e iff
N(P) I lat x=c in let {(f=Ax.e) in ® (memol)—>*t and tis irreducible.
Since FV (let x=c in let rec (f=Ax.8) in ) = FV(let x=c in let {f=Ax. e} in &)
= ¢. the context in which E[... ] occurs does not matter. using the
above conseguence of the induction hypothesis we get that:
Vp € slEnv,,.
Pr a0 (L)—>* D[let (f=Ax.let rec (f=Ax.e} in e} in Elt]] and t is
irreducibie iff
N(P) I M(e0) (memoL)—>* D(let (f=Ax. e} in Eltl1] and t is.irreducible.
By induction hypothesis (since the number of recursive calls of f in Elt]
are fewer than the ones in Elf(c)]) and by Lemma 3. taking into account

that the contexts D[...] and EI[...] are not changed by the transiation M.

we get the thesis.
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Notice that in the proof we did not care about the nondeterminism in the
rewritings. because the Church-Rosser property holds for the dynamic
semantics rules of the languages L and memolL.

Part 1.2

Suppose M(e0) is obtained from e0 by more than one elementary

transtation T1.

if for each instance of an elementary translation T1 there is a
subexpression e, of 60 such that it includes the translated expression and
FV(e)=9. and all subexpressions {9_,} are pairwise disjoint. the thesis
can be proved by structural induction using the resuit of Part 1. 1.

If the subexpressions {ei} are not pairwise disjoint. let us consider.
without loss of generality, the case where
60 = Cflet rec f(x) = Dllet rec f(x)=e in ell in e2] and
M(e0) = C[let f(x)=Dllet f(x)=e in 1] in e2].

By Part 1.1 we have that: for all p € elEnv,,.

pr D[let rec f(x)=e in e1] (L)—™>* t and t is irreducible iff
N(P) - D[let f(x)=e in @1] (memolL)—>* t and t is irreducible.

Therefore. since the free occurrences of f in e2 are bound in e0 and
M(e0) to expressions which will be evaluated in any context to the same
value. we get the thesis.

Part 2 Introducing valueof’'s.

M(e0) is obtained from e0’ by zero or more eiementary translations T2
(introducing valueof at’s). where e0Q’ is obtained from e0 by slementary

translations T1 (removing rec’s) only.

We will make the proof by induction on the number of the eiementary
transiations T2.

The induction hypothesis is as follows:

(a0). ptr C[I_e_t f(x) =8 in D[f(el)]] (L)—™=t and tis irreducible iff
(b0). N(P)IF M(C)[let f(x)=8 in M(D)I[f(e1)1] (memoL)—>* t and tis

irreducible.



192

where from C[...] to M(C)[...] we made n transiations T2 and maybe
some translations T1 (and analogously for DI. . .])
As usual. we assume that the occurrence of f in f(el) is free in Dif(el)].

Let us assume that the (n+1) st translation T2, which transform f(e1) into

f(el) valueof f at el1. is made outside the r.h.s., of a definition.

other case where the (n+1)st translation T2 occurs within the r. h. s.

(The

of a

definition can be proved in an analogous way). We need to show that

introducing that extra yalueof at construct does not change the result of

the computation, i.e.:

(b0). N(P)IF M(C)[lat f(x)=e in M(D)I[f(e1)]] (memoL)—>* t and tis
irreducible iff
(b). N(P)F M(C)[let f(x)=e in M(D)If(el) valueof f at ell]

(memol)—*t and tis irreducible.

Then we will have that the inductive step is valid: i.e. (a0) iff (b)), and

we get the thesis.

We will not care about the nondeterminism in the rewritings because the

. Church—Rosser property and Lemma 4 hoid.

in memolL we have for the given expression in (b0):
N(P) - M(C) [let f(x) =8 jn M(D)[f(e1)1]
—> M(C) [let (f=Ax.e.9) in M(D)[f(e1)]]
—>»* M(CO) [let {f=Ax. @.memo1} in M(E)f(c0)1]
—" M(C) [let (f=Ax. 8. memo2) in M(F)(c11]

For the given expression in (b) we- have:

N(pP) - M(C) [let f(x)=e in M(D)If(el) valueof f at e11]
—" M(C) [Ist (f=Ax. 8. mema1} in M(E) [f(c0) valueof f at a11]
—>* M(C) (let {f=Ax. @.memo1} in M(E) (f(c0) valueof f at c01]

—" M(C) [let (f=Ax. 8. memo2} in M(F)Ic1 valueof f at c0l]

g0

(2)
(3)

(4)
(5
(6)
7
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The steps from (4) to (5) are the ones made from (0) to (2). The steps

from (5) to (6) are analogous to those made from (1) to (2). (The

context M(E)[...] and memol are not changed because all
memoupdatings ware done.while deriving (5) from (4). )

We derive (7) from (8) in the same way as we derived (3) from (2).

Now there are two cases:

(i) <c0.c1> € memo2.

(i) <c0.c? £ memo2.

(No other cases occur. because f is a deterministic function, and

therefore. if <c0.c>€memo?2 then c=cl.)

Case 1. From (7) we get, using VF4:

—> M(C) [let {f=Ax. e. memo?2} in M(F)Ic11] (8.1

which is equal to (3). .

Therefore. N(P)F (3) =~ (8. 1),

Case 2. From (7) we get. using VF3 and MPr:

—" MO) [1et {f=Ax.e. {<c0.c1>)Umemo2} in M(F)(c11]. (8.2)

By computational induction on the number of the recursive calls of f,

Lemma 4. Lemma 5 and Church—-Rosser property we have:

N(p) bt (3) = (8.2).

(Recall that Priet Py in ¢ —> ¢ if c€Con. for any Py. ) a
The extension of the Theorem 6 to the case in which functions have more than
one argument is immediate.

The following Theorem establishes the commutativity for the diagram of fig.

2-11 for closed exprassions.

Theorem 7: V ciosed expression e € olExp. ®F e (L)—™>*t and t is

irreducibie iff ¢ M(e) (memolL)—>*t and t is irreducible.

Proof: Caoroliary of the Theorem 6. d



194

2.4.5 Extending the results on the consistency of the semantics for the
languages L and memol

We will now extend the results presented in the subsection 2.4.4. Let us
first make. some remarks and give some exampies which elucidate the
difference between the semantics of the language L and the one of the

language memoL.

Hemark 1. The semantics of the language L is according to the “"static
binding" mechanism.

This is the binding method used in A-calculus [Barendregt 81] and it is based
on the textual occurrences of the variables before evaluation. The bindings

for the language L can be determined by the foliowing equivalence:
let x=e in e = (Ax.e)e.

(See also some examples beiow.)

Remark_ 2. The semantics of the language memolL is according to the
"dynamic binding” mechanism.

It means that the binding of a variable f is delayed until f is used and it is
made by using the innermost definition of f in whose scope that f occurrence

axists at run time.

Example 23.

@ lat y=3 in lat f(x)=x+y in let y=2 in f(2) (LY—>* 5,

because by the static binding y in x+y is bound to 3.

Pt~ let y=3 in let f(x)=x+y in iet y=2 in f(2) (memoL)—>* 4,

because by the dynamic binding. when f is cailed the innermost binding for y

gives it the value 2. -]
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Example 24.
o let f(x)=3 in (let f(x)=f(x) in f(2)) (LY—™>* 3.
9 - lat f(x)=3 in (let f(x)=f(x) in f(2)) in memoL fails to have normal form.
Notice that let f(;() =3 in lot rec f(x)=f(x) in f(2) in L fails to have normal

form. while it is not an expression in memoL. : |

Exampie 25.
o let g(x)=3 in [let f(y)=(lat g(x)=x+g(x) in g(y)) in f(2) ] (L) —>* 5,
because the given expression. using the static binding is equivalent to: .
lat fCy)
let f(y)

(let g0x) = x+3 in g(y) ) in f(2) and therefore to:

y+3 in 1(2).
The given expression in memoL fails to haveAnormal form because f(2) is
replaced. during the evaluation. by let g(x) = x+g(x) in g(2) which. using the

dynamic binding. has no normal form. g

Therefore. looking for an improvement of the results of the previous theorems
8 and 7 (see Section 2. 4.4) while preserving the commutativity of the diagram
in fig. 2-11. we have at least to satisfy the conditions under which the
dynamic binding mechanism evaluates expressions in the same way as the
static binding mechanism does.

We will be able to achieve only partiai results because. in generai. the
problem of knowing whether an expression evaluates to the same vailue in a
static binding regime and in a dynamic binding regime is unsolvable. This is
due to the fact that the only way of checking that equivalence of regimes for
expressions with procedures as parameters of procedures. is to evaluate the

expressions themselves.

We can extend the resuits of the previous subsection as follows.

Let us give first the foilowing definitions with their explanation.
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Definition 8: We say that a set of variables is simple iff they are of

ground type. (i.e. either bool or int for our language L.) ad

" Definition 9: e is an SDExpression (and we write e € SDExp)

iff @ € Exp (for the language L) and

1. for each variable there is only one occurrence as
a defined varlabie gr as an argument variable. and

2. o is a closed exprassion (i.e. without free variables) and

3. any definition occurring in e is of one the following kinds only:
3.1 x: T=e with FV(e) simple or
3.2 f(x: Ty):T,=e with FV(e) simple or
3.3 rec f(x: Ty T,=e with FV(e)\{f) simple or
3.4 d1 and d2 where d1 and d2 are of kind 3.1...., 3. 4. (]

Example 26.
1. let y:int=5 in let f(y:int):int = 2+y in f(4) is not an SDExp because y is
used both as a defined variable and as an argument variable.
2. let y:int=3 in let f(x:int) . int = x+y in f(2) is in SDExp and not in elExp.
3. let rec x:int=x+1 in x+5 is not an SDExpression.
4. let x:int=2 in let x:int=3 in x is in elExp but not in SDExp. because two
bindings for x occur.
5. let y:int=3 in let rec f(x:int) :int = if x=0 then y eise y-f(x—1) in f(y) is in
SDExp. but not in elExp.
Expressions 2. and 5. show that SDExp is not included in elExp.

6. Here is an SDExpression for computing 02+12+. . .+72 (for simplicity we. do

not write the types in definitions) :

ot rec sq(x) = if x=0 then 0 eise sq(x—1)+2x-1

in let rec sumsq(y) = if y=0 then 0 else sq(y)+sumsq(y=-1)

in sumsq(7). O

The basic idea of the above definition of SDExp is to avoid those expressions

which may have different value when evaiuated with the static binding or
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dynamic binding mechanism and for which the presence of rac’s is significant.
(The name SDExp suggests the invariance o_f the value w.r.t. the static or
dynamic binding regime.)

For instance. we do not allow in SDExp the following expressions E1 and E2
(where "...f..." stands. for any expression with a free occurrence of f. and

the subscripts are used for distinguishing the different occurrences) :

lot fqy(x)=e in (et foy(X)=... . fig). .. in .. .Fay...) (ED
lot fgy(x)=(lat frg, ()= . fzy. . in. . . fig).. ) infig). ... (E2)
in which

(i) a variable occurs free in the scope of its own definition (see occurrence
fi3y in E1. and f,, in E2) and

(ii) it is used in expressions to be evaluated (see occurrence fq) in E1 and
figy and f.q, in E2) and

(iii) it is "enclosed” in the scope of different bindings for it (see bindings f”)
and f,, for f 5, in E1. and bindings f 5, and fg) for fig, in E2).

For the above expressions the presence of rec is significant. indeed rec in
front of f,,(x) in E1 would make the binding of f(3y In E1 to be f,, itseif and

not f ,, (analogously for rec in front of fi5)) -

Let M(e). for any e€Exp (in L). denote the expression e after erasing all
rec occurrences and replacing some occurrances of “f(el)” by

“f(el1) valueof f at e1".

Theorem 10: VP € Env,,. Ve € Exp s.t. let P in @ € SDExp.

Pt-e (LY—™>* t and t is irreducible  iff

N(P) - M(8) (memol)—>* t and t is irreducibie.

Proof: Similar to the proof of Theorem 6.

We do not present it here because it is a bit lenghty. The proof'is based

on the fact that free variables in SDExp are simple. They can oniy be

bound once and they cannot interfere with the argument variabies. a
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The following Theorem gives us the main result, i.e. the diagram of
fig. 2-11 commutes for programs denoted by expressions in SDExp.
Theorem 11: Ve € SDExp o e (L—>* t and t is irreducible iff

orF M(e) (memoL)—>* t and t is irreducibie.

Proof: Corollary of- Theorem 10. g

2.4.6 Main Results and Some Final Examples

We have proved (see Theorems 7 and 11) that the commutativity of the
diagram 2-11 holds for:
- M being a translation which erases all occurrences of rec and it introduces
"f(e) valueof f at @* expressions instead of some occurrences of “f(e)* where
f is any recursively defined function: '
- C(L) being a class of programs described by Elementary Expressions (see

Definition 2) or by SDExpressions (éee Definition 9) .

Ffom those results we proved the correctness of the program annotation
methodoiogy when we perform the translation M on programs denoted by
Elementary Expressions or SDExpressions. and the evaluator of the annotated
programs impiements the ruies of the operational semantics of memoL as

given in Section 2. 3.

One can extend those resuits by allowing programs to be made of
expressions whose closed subexpressions are either Elementary Expression or

SDExpreaessions.

For instance. by the above results. the. foilowing annotated program,
using the M transiation. computes the binomiai coefficients:
bin(n.m) = if m=0 or n=m then 1
elsa(bin(n-1.m~-1) valueof bin at (<n-1.m-1> and <n-1,n-m>)) +
(bin(n-1. m) vaiueof bin at (<n-1.m> and «n-1,n-m-1>))

and avoids all redundant function evaluations.
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We recall that redundant calls in this case cannot be avoided "at compile time"
by using Cohen’s methods nor the tupling strategy. (I!n [Cohen 83} pages
293-294 It is given a "run time" method by which the derived program depends

on the values of n and m. ) O

Another familiar example is the Fibonacci program. By the transiation M
we can obtain the following expression:
let mfib(n) = if n<1 then 1 alse mfib(n-1) valueof mfib at n-1
+ mfib(n-2) valueot mfib at n-2
in mfib(m),
It avoids redundant recursive calls and it achieves the same linear time
performances of the program given in [Burstall and Darlington 77] page 49.

which was derived by transformation at the expense of a "eureka step”. a

The following annotated program computes 02+12+...+n2, in the case

where muitiplications by 2 only are allowed. Using the valueof at construct the
repeated evaluation of recursive calls is avoided. and a linear running time

algorithm is obtained.

let s

(x) = if x=0 then 0 glse sq(x-1)+2x-1

£0

in let sumsq(y) = if y=0 then 0 eise [sq(y) valueof f at yl + sumsq(y-1)

in sumsq(n).
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The same linear time performance is achieved by the following program.

written in the recursive equations style:

psumsq(n) Tl (t(n))

t(0)-

0.

t(n+1) <sq(n+1), sumsq(n+1)>

<8q(n)+2n+1, 3q(n)+2n+1+sumsq(n)>

<a+v, a+v+b> where <a. b>=t(n)

v=2n+1
which can be obtained by using the tupling strategy. Indeed one can
easily see that the pair <sq(n). sumsq(n)> determines a cut in the m—-dag for

the function sumsq. A a

Notice that the memo approach for saving redundant evaluations we have
presented. works for first order functions. An extension to the case in which
one deals with higher—order functions. is possible. provided that th'e values of
the arguments range over domains for which the equality predicate Iis
decidable. In that case one can effectively test whether or not an e'ntry of the
memo-table is relevant for the function call to be evaluated.

We leave that extension to eisewhere.

2.4.7 On the position of the memofunctions definitions

Before closing this section we will now make a few remarks on where one

should place the memofunction definitions.

The memo component of the environments avoids redundant computations
of recursive calls when those cails are depending on a unique "father call® with
which the- memo is associated (see in section 2.4.6 the example of the
pinomial coefficients program).

Avoidance of redundant computations is also achieved when the memo is
associated to a definition whose scope includes recursive calls. as the

following example shows.
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Examplg 27. In the expression:

let f(x) = jf p(x) then a(x) gise b(x.f(cx),f(dx)) in t(f(rx). f(sx))

if we change “f(cx) " into "f(cx) vyalueof f at cx” (and analogously for f(dx))
repeated evaluations of the function f are avoided not only inside each of the
calls f(rx) and f(sx). but also outside them.

For instance. given let f(x)=x+1 valueof f at x in plus(f(2),f(2)) we get 6.
by evaluating only once f(2) according to the definition “f(x)=x+1". For the

sacond cail of f(2) we use the memo information. a

The "communication” outside the scope of the "father—call" shown in the
above example could not have been achieved via the methods indicated in
{Cohen 83]. Moreover. having the memo component associated with the
definition of the functional variable to which it refers. has the advantage of
being able to discard. during computation. the relevént memo information

when no longer needed.
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2.5 Formal Theories for Structural Operational Semantics

In this section we will see how one can Interpret the structural operational
semantics rules in formal theories and we will present two different
approaches. They ailow us to translate in two different ways the operational
semantics rules into a deductive system a la Prolog [Roussel 75. Warren 77].
The language we will consider here is a very simple one. It is made out of
expressions only. They are defined as foilows:

e::=0 ]| S(a) | el+a2 @ € Exp
We leave to the reader the extension of our results to a more realistic
programming language. We give the operational semantics by the following
axioms and rules:
S1. e+0 — e
82. e1+S(82) — S(el+e2)

e — o
S3.
S(e) — S(e")
el — el’ e2 — a2’
S4. SS.
el+e2 — el’'+e2 al+e2 — al+e2’

We look for a theory T and an interpretation function t: ExpXExp —> Formulas
s.t. VYV a.e € Exp. R(e.e") iff T I-t(e.e’) where R(e.e’) is the relation
e —> e (or its reflexive transitive closuré —>*) as introduced in the
operational semantics. We will give two solutions to that problem.

Our first solution is for the case:

R(e.e) =9 —> @ and t(e.8’) =g —> g".

Our second solution is for the case:

R(e.e’) = e —>* @' and t(e.e’) = F(g) D F(e’) where F is a unary relation

symbol and 2 is the usual implication for logical theories (see Appendix C).
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2.5.1 First Interpretation

We consider a first order language L as a quadruple (S.V.0.R). where:

S={7.2.v.=} is a set of logical connectives.

V= {x.y.z....} is a countable set of variables.

O = {opl.0p2....} is a set of operators with arity.
R={r1.r2....} is a set of relation symbols with arity.

Parentheses are used as auxiliary symbols.

For the notions which are not defined here., the reader may refer to
[Shoenfieid 67. Monk 76].

We choose: O = {05.5;.+,}. V = {} and R = {—>,}. where the subscripts
denote the arity.

Terms are buiit from the operators in O as usual. We have: Terms = Exp.

Atomic formulas are of the form e1 —> e2, where el1.e2 € Exp.

The equality symboi =. and the universai quantifier symbo! V wili not be used.
Formulas are defined as the smallest set containing atomic formulas and
closed w.r.t. 71 and °O. Closure w.r.t. Vv for any v € V, Is not necessary
here. because V = {}.

As logical rules we consider. as usual. the modus ponens rule MP:

A. A>DB

B
We do not need the generalization rule G:

A

for v, € V because V={].
Yv; A
We can dispense with nonlogical rules by adopting the following noniogical
axioms S’ [Shoenfield 67]:
S1’. e+0 —7 a.
S2’. 91+S(e2) — S(el+e2).
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S3'. (e —> &) 2 (S(e) —™ S(e”)).
S4'. (81— el’) 2 (el1+82 —™ el1'+e2).
S5'. (82 — 82’) O (el1+82 —> al1+02’).

We can easily build a term modei for this theory.
We will use the standard notion of modaeis for first order theories [Monk 76].
In particular. if U is a model and ¢ is a formula U F ¢ means that @ is true in
U. If T is a set of formulas, U ET means that Vo e I. U F ®. If Kis a class
of models KFT meansthatV U € K. U FT.
Let us consider the structure U = (Terms.f.R). where f is such that f, Is the
term 0, fg: Terms—>Terms is s.t. fg()=S(t) and f,: Terms®—>Terms is s.t.
f,(11,12) = t1+t2.
R associates with the binary relation symbol —> the binary relation
= C TermsXTaerms deflned as follows:

t1 = t2 iff t1 — t2 can be derived from the set of axioms and rules

As usual the satisfiability relation M F ¢ for a formula @ in the structure M is
defined. by induction on the formulas as follows:
M EtT — t2 iff ti==t2 for any term t1 and t2.
M E 19 Iff not(ME®P) for any formula ¢
M E o2¥ iff either not(tMF®) or (MF¥)  for any formula ¢ and ¥.
As for any first order theory the compieteness theorem holds and we have:
S'k9 iff S'ES. '
Theorem 12: e — e’ using S1.....85 iff S'IFe—> e’.

Proof: (only if part) By induction of the length of the derivation of 8 —> o’
from the-axioms and rules S1. ..., SS5.

(if part) S'tre — e’ iff S'Fe —> e'. Since UES’ (as one can easiily
verify). U F e — @'. By definition of U we have e —> @', a

The logical theory we have presented allows a direct implemaentation of
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the operational semantics definitions using a first order deduction system. In
particular one can use PROLOG. and in the next section we will indeed present

such approach.

The Second Interpretation of the operational semantics rules into formal
theories is presented in Appendix C. We confined it there because it is a study
more related to the formalism we are using. i.e. the generalized deductive

definitions, rather than the operational semantics of memofunctions.



2.6 Proloq implementations of Structural Operational mantics

We lmplemented the structural operational semantics definitions both for
the language L (see Section 2. 1) and the language memol (see Section 2. 3)
using the DEC-10 Prolog [Byrd et al. 80. Clocksin and Maeilish 81].

Let us first consider the implementation of the semantics for the language L.

2.6.1 Implementation Syntax for L

Expressions a € Expressions
e::= 0111L.. Natural Numbers
| true | faise Boolean Values
fv(xd) | ... 1 v(D... individual and Functional Variables
| succ | plus(el.e2) | ... Successor and Arithmetic Functions

| eq(el.e2) | if(e0.081, 82) Equality Predicate and Conditional

| tet(d. ) Let—-expression
| fapp(v(f).e) Function Application.
Types typ. typO. typl € Types
typ ::=int | bool integer and boolean types
| typ0 —$ typl functionai types
Definitions df € Definitions
df : : = def(v(x) . typ. exp) simple vériable definition
| deff(v(f) . typ.v(x) . exp) function variable definition
| rec(df) recursive- definition
i andd(dfl.df2) simultaneous definition

| P environments



Environments P. P1 € Environments
P .= nil_env empty environment

| env(bind(v(x) .vab).Pp1) generic environment
Vaiues val € Values
vat ::=0111... Natural Numbers

| true | faise Boolean Vaiues

| tambda(v(x).typ.e) Lambda Expressions
Notes

i) Constants are either Natural Numbers or Boolean Values.

ii) Terminal Expressions are either Natural Numbers or Boolean Vaiues.

Variables.
iii) The only Terminal Definitions are the Environments.

iv) Only first-order functions are allowed.

Auxiliary definitions for the Dynamic Semantics of L
1. Operators

- rewriting of configurations
—* reflexive transitive closure of —>
—3 functional types

association of environments and transitions. e.g. Ro : t1 — t2

All operators are left associative.

2. Predefined Predicate and Functions

Goal: Success_if:

is_const(X) X is a constant.

tarminal (X} X is a tarminal expression or a terminal definition.
free_var(X.,Y) X is an expression or a definition and Y is the list of

its free variables.

07

or
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defined_var(X.Y) as for free_var. Y is the list of defined variables in X.

3. Set Manipulation

Sets are represented as lists.

Goal Success _if:
setunion(X.Y.,2) Z=XUYy
member(X.Y) X€eyY
setminus(X.Y.2) Z = X-Y
setinters(X., Y. 2) Z=XNnyYy

4., Environment Manipulation

update_env . Environments X Environments X Environments —> goal

_avoid_set : Environments X Set(of Variables) X Environments —» goal

restrict_to_set : Environments X Set(of Variables) X Environments — goal

apply_env : Environments X Variables X Values —> goal

recur_env : Environments X Environments X Environments —> goal

Goal:

update_env(Ro00. Rol. FinRo)

avoid_set(Ro. X, LeftRo)

restrict_to_set(Ro. X. ReRo)

apply_env(Ro. X, Val)

recur_env(Ro. Ro. RecRo)

Success if:

FinRo = RoO[Ro1] (where -[-] denotes
the usual function updating so that Rol
supersedeoes Ro0).

LeftRo is s.t. dom(LeftRo) = dom(Ro)-X
and Vx € dom(LeftRo). LeftRa(x)=Ro(x).
ReRo is s.t. dom(ReRo)=dom(Rao) N X
and ¥x € dom(ReRo). ReRo(x)=Ro(x)

X is bound to Val in the environment Ro.

P rec Ro—RecRo (see ruie R2).
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2.6.2 Dynamic Semantics for L

in the implementation Ro: A — B denotes P A — B. For instance. we
will write Ro: {et(R.C) — C instead of: Pl let Rin C — C.
in the implementation —>* denotes the “terminal reflexive transitive closure” of

—> in the sense that Ro: E —>* Efin holds iff:

E,=Efin hoid and

2) Efin is a terminal expression (or a terminal definition).

Lines starting with % are comment lines.

A:-B.C....F . means "if B and C and ... F succeed then A succeeds”.

A:—-. means that A succeeds.

More details on the PROLOG syntax and the PROLOG system we used may be
found in [Clocksin and Mellish 81]1. In particular the reader may refer to that
book for the explanation of the semantics. of the goal °!* which controis the
backtracking mechanism. For understanding its use the following may suffice:

A:-B.C..... F.! means that if B and C and. ..and F succeed then A succeeds

and it is not possible to have a success for A in any other way (even Iif other

clauses of the form A: -, or A:- ... . exist).

% Evaluation to terminal (or normai) form.

Ro: E —™* E :- terminal(E), I

Ro: E—>* E2 :- Ro: E—> E1. Ro: E1 —* E2.

%Variables.

Ro: v(X) —V :— apply_env(Ro. X. V). I.

%Arithmaetics.

Ro: succ(N) — M- =~ integer(N), Mis N + 1., I,

Ro: succ(E) —> succ(E1) Ro: E — E1.

Ro: plus(M.N) —> S : - integer(M) . integer(N) .S is M + N. !,
Ro: pius(E1.E2) —> plus(E11.E2) :- Ro: E1 —> E11.
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Ro: plus(E1,E2) —> plus(E1,E21) :- Ro: E2 —> E21.
(Analogously for other arithmetic functions)

Ro: eq(M.N) —> true

integer(M) ,integer(N). M = N. !

[

Ro: eq(M.N) —> false integer(M) , integer(N) . not(M = N) 1.
Ro: eq(E1.E2) —> eq(E11.E2) = Ro: E1 — E11.

Ro: eq(E1.E2) — eq(E1.E21) Ro: E2 — E21.

%Conditionat.

Ro: if(E0.E1.E2) — E1 := Ro: EO — true.!.

Ro: if(EO0.E1.E2) — E2 : = Ro: EQ — faise.!.

Ro: if(E0.E1.E2) — if(EO1,E1.E2) :- Ro: EO — EO1. 1.

%Let clause.

Ro: let(nil_env.E) — E :— 1. % inserted for efficiency.

Ro: iet(DO,E) — let(D1.E) = Ro: DO — D1.1.

Ro: let(D.E) — let(D.ED) -:- terminal(D) . update_senv(Ro.D.Rol),
Rol: E — E1. L

Ro: tet(D.E) — E 1= terminal(E) . !,

Y%Function_application.
Ro: fapp(v(F). E) —> fapp(v(F).E1) :- Ro: E—> E1.1.

Ro: fapp(v(F),C) —> let(env(bind(v(X),C). nil_env), Body)
i - is_const(C) .,
apply_env(Ro. F. lambda(v(X) . _, Body)).!.
%Simple definitions.
Ro: def(v(X) . T.E) —2 def(v(X) . T.E1) = Ro: E—> EI1.
Ro: def(v(X),T.E) —>» env(bind(v(X),E).nil_env) .~ is_const(E) . !.

Y% Function definitions.

Ro: deff(v(F),T.v(X).E) — env(bind(v(F). lambda(v(X).T.let(d.E))).
nil_anv)
: - free_var(E. FVE) . setminus(FVE, (X]. V).

restrict_to_set(Ro. V. D).



%Recursive functions.

Ro: rec(D) — rec(D1): - defined_var(D,DVD). free_var(D.FVD).
setinters(DVD. FVD.V0) . avoid_set(Ro.V0.Rol).
Rol: D — D1. .

Ro: rec(D) —> Rol ' - terminal(D). recur_env(D,D,Rol).

%And definitions.

Ro: andd(DO0.D1) — Rol 1= terminal (DO) . terminal(D1) .

update_env(DO.D1.Rol) . !.

Ro: andd(DO0.D1) — andd(D01.D1) :- Ro: DO — DO1.
Ro: andd(DO0.D1) — andd(D0.D11) :- Ro: D1 — D11,
%Failure.

Ro: E —>* E1: - nl. write(’ *** Evaluation fails for ).
print(E) . write(’ in the environment: "),
print(Ro) . fail.

%Evaluation_in _a given ironment.

eeval(Ro.E) :- Ro: E —=* Enf. ni. write('In the environment: ).
print(Ro) . write(’ the expression <or definition>: ).
nl, print(E) , write(’ reduces to: ‘). print(Enf).

%Evaluation.

eval(E) : - gaval(nil_env.E) .

The !'s make the system more space efficient. The failure clause is for

debugging purposes.

2.6.3 Pragmatics for L

Here is an example sassion for the language L using the DEC-10 Proiog
system at Edinburgh University. The user should have access to the files
* pro(3120. 31341

. run proiog
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Edinburgh DEC-10 Prolog

| ?- [‘'sys00. pro’l.

yes

| ?2- eval(let(def(v(x) .int. 2) .plus(minus(v(x), .4,

in the environment: {) the expression <or definition>:

et x: int==2 in x-1+4 reduces to: 5
yes
t ?- and the system waits for another query.
There is a tracing facility to show the “surface transitions®. It can be

switched on by typing: step. and it can be switched off by: no_step.
| ?7- step.

yes
| 72— eval(let(def(v(x).Int, 2), plus(minus(v(x).1),4))).

let x: int==2 in x-1+4 —> let (x==2} in x-1+4 —>

let (x==2} in 2—-1+4 —>  let {(x==2) in 1+4 —

let (x==2} in 5 —> 5

yes

| ?-

Notice the “pretty print” let x:int== in x—-1+4 instead of

let(def(v(x) ,int. 2) . plus(minus(v(x).1).4)). We will not describe here the

details of the pretty print syntax.

Using the- backtracking facility of PROLOG we can obtain from a given
exprassion (or definition) all the rewriting sequences which are possible.
Backtracking is activated while looking for a new binding of a given variable.
Let us consider the following example. Suppose we have the goal:

go(X) : - evai(plus(minus(2.1) . plus(3. 1))). where the variable X occurs.
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Then if we ask: go(X). we get the answer:

2-1+3+1 —> 1+3+1 —> 1+4 — § X=...
and by typing “:" and RETURN we can get another reduction sequence for the
given expression. We can continue that process and we can get ail the
reduction sequences. A general formula for computing their number will be
given in subsection 2.6.7.
In our case we have the two sequences: the one given above and
(2-1)+(3+1) —> (2-1)+4 —> 1+4—>5,
Since the failure clause interacts with the backtracking mechanism. in order to
observe the various reduction sequences we provide the user with a system

called "syspar. pro” (which should be used instead of "sys00. pro®.)

Let us turn now to the implementation of operational semantics for the
language memolL. Since it is very similar to the language L. we will mention

only the features which are different.

2.6.4 Implementation ntax for mem

Expressions e € Expressions
e.::=...(as for L)

| vof(e0,v(f) . el) valueof expression

| letm(memsl. e) letmemo expression
Definitions

(as for the language L without recursive definitions)

Constants con € Constants

con ::= 011 11... ] true | failse

Environments P € Environmaents
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P .= nil_env empty_environment
| env(bind(v(x) . val).p) binding a simple variable

| env(bind(v(f) ,ie(val.&)).p) binding a function variable

Memos K € Memos
A= nil_mem empty-memo

| mem(pair(con0.conl) . &) memo with <con0.con?P>
Memoelements memel € Memoelements
memel ::= mel(v(f),con0.conl) remembaring f(con0)=conl

In the implementation we did not use MemoEnvironments and we used
instead Memoelements. The relationship among the two notions is that a
memoelement iIs a memoenvironment where there_is only one function symbol
and it is bound to an argument-value pair only. The possibility of using in our
implementation Memoelements instead of MemoEnvironments is due to the fact
that we give priority to the application of the "memopropagation® and
"memoupdating” rules. In that case. in fact. only one memoelement at a time
is propagated towards the environment where it should be stored and therefore
in any "letmemo & in 8" expression we have:

K = {f(cg)=c,]} for some f € V. ¢4 and c,; € Con.

Manipulation of Memos.
memo_update : Environments X Memoelements X Environments —> goal

in_memo : Environments X Variables X Constants X Constants —> goal

memo_update(Ro0. mei(v(F).C0.C1), RoU): this goal succeeds if RoU is
an environment where the memo for the function F has been updated with the

pair <C0.C1>.
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in_memo(Ro.F.C0.C1): this goal succeeds if in the environment Ro. the

memo for the variable F has the pair <C0.C1P>. A

2.6.5 Dynamic Semantics for memol

The Dynamic Semantics for the language memol is very similar to the onse
for the language L. The differences are the foilowing ones:
%Memo updating and Memo propagation. atmemo rassions.
% (lnitial clauses of the program).
Ro: E — E1 :- propmemo,
E =.. [let- Env, letm(mel(v(F).CO0.C1).Exp)l.
Env = env(A, B). defined_var(Env, DVE), member(F, DVE).
memo_update(Env, mel(v(F).CO0,C1), NewEnv),
E1 =.. [ let. NewEnv, Expl. retract((propmemo)). !.
Ro: E — El1 :- propmemo. .
E =.. [ Ful Argll. memberpos(ietm(M, Exp) , Argl.P),

repl(P,Argl.Exp. NewArgl). NewExp =.. [ Fu | NewArgil.
El =.. [ tetm, M, NewExpl ., |

%EFunction application.
Ro: fapp(v(F).E) —> fapp(v(F).E1 - Ro: E—> E1.L.

Ro: fapp(v(F).C0) —> C]1 ! — is_const(CO),
in_memo(Ro.F,.CQ.C1).!.
Ro: fapp(v(F).C0) —> let(anv(bind(v(X),CO0).nil_env).Body) :-
is_const(CO0) .
notCin_memo(Ro, F,C0.)),
apply_eanv(Ro. F.ie(lambda(v(X),_, Body). )). I,
%_valueof at_.
Ro: vof(E1.v(F).E0) —> vof(E1.v(F).,EO1) :- Ro: EO — EOI.
Ro: vof(El1.v(F).EQ0) — vof(E11.v(F).E0) :- Ro: E1 — EI1.
Ro: vof(C1.v(F).C0) —2 letm(mei(v(F),.C0.CT
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.= is_const(c0) ., is_const(C1).
not(in_memo(Ro.F,C0.C1)), asserta((propmemo)) .!.
Ro: vof(E.v(F).C0) — C1 : = is_const(CO0), ih_memo(ﬂo.F.CO.CU AN
% Function definitions.
Ro: deff(v(F),T.v(X).E) —> env(bind(v(F). ie(lambda(v(X) . T.E).

nil_mem)) , nil_env) .-},

Remarks.
1)) not(X) is a goal which succeeds if the goal X fails. and viceversa.
2) When an expression of the form letmemo {f(c0)=c1} in c1 is generated

(by rule VF3) we will propagate the information “f(c0)=cl1” by inserting it in
the memopart of the environment where f is bound. This is done by asserting
the goali “propmemo” via asserta( (propmemo)) and invoking the
memopropagation clauses as often as possible. by locating them at the
béginning of the program. (Indeed Prolog gives priority to the rules one writes
first.)

3) We will not explain in detail here the clauses for memopropagation and
memoupdating. They implement the rules MU and MPr, without introducing
the notion of atomic expression—contexts. We did so for reasons of efficiency.
We analyzed and manipulated the structure of the expraession where the

memopropagation and memoupdating shouid take place by using the PROLOG

built-in predicate =.. [Clocksin and Meliish 81]. It provides a way of "visiting
a structure” by giving its “functor® and its "arguments”. For instance.
+(2,3) =.. [+,2,3] and letm(memel.e) =.. [letm., memel. 8l.

Two functions are used:

memberpos: expressions X list of expressions X integer —> goal.

repl : integer X list of expressions X expression X list of expressions —> goal.

memberpos(ei.lel..... anl. k) succeeds if k=i. i.8. the expression i is the
i-th expression in the given list.

repi(k.lel..... ek..... en}.ek1,E) succeeds if E = [ol..... ekl..... en].

where the k—-th element is repiaced by ekl.
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4) A list of the form [e1.e2.....enl] is also represented as {ellA]l where
A=1l[e2..... enl
S) When function definitions are evaluated we do not build closures. but we

bind the functions to their corresponding lambda expressions. That is correct
because for f(x: Tg) : T ,=e-definitions we assume that: FV(e) € {x.f}.. indeed

correctnass holds under weaker hypotheses on FV(e) (see Sect. 2.4).

2.6. 6 Pragmatics for memol

In order to evaluate expressions or definitions in the language memoL the
user of the DEC-10 Prolog system should have access to the files
* pri(3120,3134] and type:

['sysO1. pri‘l. The system answers as follows:

sysO1. prl
| 7=
then one could ask. for instance. for the evaluation of the fibonacci function
using memo information by typing: mfib(4). and one gets:
In the environment ( } the expression <or definition>:

let mfib(x) ==if x=0 then 1 eise if x=1 then 1 else

[ mfib(x-1) valueof mfib at x-1] + [mfib(x-2) valueof mfib at x-2]

in mfib(4) reduces to: 5.

in our Prolog implementation fibonacci(5) is computed in about 14
seconds using the L version and about 9 seconds using the memoL version.
indeed the direct implementation of the operational semantics rules make the
computations to be very siow. That is due to the fact that structural rules often
force “unnecessary” deduction steps (as shown in Example 18 of the previous:
section 2. 1) and the fact that, in generai. Prolog works as a biind theorem
prover. Despite the heavy inefficiency problems our impleméntations were of

great help in checking the correctness of our semantics rules.
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2.6.7 On the number of differeant reduction segquences

As we mentioned in the previous section. our Prolog implementation of
the operational semantics rules provides also a way of computing all reduction
sequences of a given expression to be evaluated. In this section we give a
formula for counting their number. Through this analysis we can measure the
“parallelism” inherent in the evaluation of an expression and we also have an

indirect proof of the correctness of our Prolog implementation.

Let us first consider the simple case of expressions with binary operators
only. This simple case allows us to study the reduction sequences of
arithmetic expressions, like for instance. (5+3)-(4-1). This expression can
be reduced in two different ways:

1. (5+3)-(4-1) — 8-(4-1) —™ 8-4 —> 4 and
2. (5+43)-(4-1) — (5+3)-4 —™ 8-4 — 4.
Let us define the following rewriting systems on Terms. t € Terms.

t is either ¢ or I t1 t2 where t1.t2 € Terms.

The only rewriting rule is: lce — | c.

The stroke operator | (analogous to the one introduced by [Rosenbicom 501).
stands for any binary operator (as a prefix) .

Exampie 28. The term liicciccice can be reduced in 8 ways.

s liclicclicc ————= jlccicc ————=|cice

fllcciccice ———e Hiccclcc llclccc ——= {lccC —— jcCc — ¢

lllcciccc >—(- HHlceee /

Lemma 13: Given two ordered sequences of 21 and 22 objects. the
numbers of different ordered sequences derived by merging them and

preserving their suborders is [21+22, 21].
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Proof: After merging the two given sequences. the resuiting one has
21+22 objects. The number of ways of picking from it 21 objects is equal
to the number of ways of merging those £1 objects in the sequence with

22 objects. a

Let us associate to each term t a pair of numbers <n. £> where n is the
number of different reduction sequences in which we can reduce t. and L is
their common length. (Obviously. for any given term t all reduction
sequences of t have the same length.) With the irreducible term ¢ we

associate the pair <1.0>,

Theorem 14: Ift = | t1 t2 and <1,21> and <n2.£2> are the pairs
associated with t1 and t2 respectively. then <nl-n2-[21+22, 21].
£1+22+1> is the pair associated with t.

Proof: The first component of the pair associated with t is obtained as
fo!l-ows. There are n, reduction sequences of length 2, when reducing ti
to ¢. for i=1.2. A reduction sequence for t can be obtained by
interleaving a reduction sequence of t1 with a reduction sequence of t2
and finally reducing lIcc to ¢ (and this last reduction can be done in a
unique way). The number of those interieavings is given by the previous
lemma. The second component of the pair associated with t is L1+22+]
because for reducing t to c. we may reduce t1 to c in £1 steps. t2 to c in

22 steps and then Icc is reduced to c in 1 step. .|

In generai one can prove that when m-ary operators (with m 2 0) are
involved we can associate with t= | t,...t  the pair:

m
VR FERET N TLPE S 1[0+ #2025 ]-.. [ JUO Sy '):1 i+
=
where <n,, £> is the pair associated with t, for i=1..... m.
This result derives from the previous resuit and a simple generalization of the

binomial coefficients [Cohen 78].
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2.7 Annotations denoting communications and communicating agents

This section outlines two other approaches to communications and
parallelism in recursive equation programs. which | have pursued after the
work described above. To keep the length of the thesis within reasonable
bounds | give- only a brief account of them here. The interested reader may.
refer to [Pettorossi and Skowron 82b. Pettorossi and Skowron 82a. Pattorossi
80b. Pettorossi and Skowron 83).

The first approach uses anngtations [Schwarz 78] to denote communications.

the second one introduces communicating agents.

2.7.1 Annotations danoting communications

Some of the ideas for the annotation language introduced in [Pettorossi
80b] are taken from [Dennis 74. Kahn and MacQueen 77, Hewitt and Baker
78. Hoare 78. Lauer. Torrigiani and Shields 79. Milner 80l. The major
features of our approach are:

i) communications may be gptional (written between slashes. i.e. /.../) or
compulsory (written between exclamation marks. i.e. 1...1D. If optional they
do not influence program correctness. but they improve program efficiency.

i) There are weither broadcast communications. or point—-to-point
communications. Point-to-point communications are messages sent to
queues. which are available (for reading and writing) to all computing agents.
i.e. all processes which perforfn the applications of recursive equations.
Queues are not “private” as in [Kahn and MacQueen 771. and they have
names.

There are mechanisms for serializing read and write operations on gqueues. so
that agents may be deiayed when they refer to the queues used by writer
processes.

iiil Communications denote facts. i.e. pieces of truth. The semantics of the
data in the queues does not depend on when data are written or read. nor on

the agents which operate on them.
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More details can be found in [Pettorossi 80bl.
We give here a simple exampie.
B Program F1
fib(n) = if n=0 or n=1 then 1 !send(1.queue 0). send(1.gueue 1)!
else z !send(z.queue n)!

where z=fib(n-1)+b {receivetoken(b. queue n-2)!

In Program F1, which compute the familiar Fibonacci function. there are
queues whose names are natural numbers. The annotation
Ireceivetoken(b. queus n-2)! means that a compulsory communication must
take place between the computing agent which evaluates b and the queue n-2.
That agent is blocked until a “token” (i.e. an integer) Is placed into that
queue. so that it can receive it by performing a receivetoken operation.
Isend(1.qusue 0). _md_ﬂ.gy_ggg 1)} means that, after the evaluation of
fib(0) [or fib(1) ]. the computing agent has to send to both queuss 0 and 1
the value of fib(0) [or fib(1)]. The meaning of lsend(z.gueue m! is
analogous.

Program F1 has linear running time and it avoids repeated evaluations of
recursive calls. Therefore it is an improvement upon the exponential running

time program derivable from the Fibonacci definition. O

We give now another example where the wuse of compulsory
communications avoids the repeated evaiuation of function calls.
Let us consider the program:

Program F2.1

sumsqg(n) if n=0 then 0 gise sq(n)+sumsq(n—-1)

i

sq(m if n=0 then 0 eise sq(n-1)+ 2n-1

where sumsq(n)=02+12+. . .+n2 (see Sect. 2.4).

Obviously the running time for the above program is proportional to nZ.  We
can make it linear by adding some compulsory communications and using an

auxiliary function as follows:
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- Program F2.2

sumsq(n) if n=0 then O alse sq(n)+sumsqi(n-1)

sumsql(n) = if n=0 then 0 else z+sumsql(n-1) !receivetoken(z., gqueue nt

sq(n) if n=0 then 0 'send(0. gueue o)
aelse z !send(z. gueus !

where z = sq(n-1)+2n-1

The function sumsq(n) is only required for the activation of the function
sq(n) . while sumsql1(n) does the job of summing up the squares produced by
sq(n).

A receivetoken operation does not erase the received value from the
corresponding queue: we say that it is not_erasing communication. There are
also other kinds of annotations denoting erasing communications. they are

useful for solving synchronization problems (Pettorossi 80bl. a

A final example shows the use of optional and broadcast communications.
Suppose we are given the following program. written in a HOPE-like notation,
which computes the set of all leaves of a binary tree.

i Program F3. 1
data btree(num) == niltree ++ tip(num) ++ btree(num) Abtree(num)
dec leaves : btree(num) —> set(num)

0
{2}

-—— leaves (niitree)

--- leaves(tip(2))

-—— [gaves (t14t2) leaves(tl) U leaves(t2)

in order to compute the resuit we need in any case to perform the-
complete visi-t of the given btree. but an increase of efficiency is possible if we
speed up the set—union operation. No matter what aigorithm we choose for
implementing that operation. it will require less time if we keep the sets
involved as small as possible. This can be achieved by establishing some

communications.
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As soon as a leaf value, say £. has been found. we can broadcast that
information. In this way. when the vaiue £ is encountered again., we may

return ( instead of {2}.

We can annotate program F3.1 and obtain the following one:
Program F3. 2
data btree(num) == niltree ++ tip(num) ++ btree(num)Abtree(num)
dec fastleaves : btree(num) — set(num)

0

-~-- fastleaves(niitree)

--~ fastleaves(tip(2)) = if R€z /recaived(2)/ then
else (2} /broadcast(2)/

--- fastleaves(t14t2) = fastieaves(tl) U fastieaves(t2)

where we used the following primitive operations for broadcast
communications:

broadgast(n) where n is a data value. and

raceived(z) where z is a (local) variabie.

Their meaning can be explained by assuming that there exists a global variable
SET. initialized to the empty set. which can be updated and looked up during
computation.

(i) broadcast(2) makes SET to become SET U (£):

(ii) received(z) binds z to the current vaiue of SET.

By convention. the local variabie z is bound to the empty set. if raceived(z) is
not executed.

(Recali that communications between slashes are optional.)

Program F3.2 is an improvement upon program F3.1 because. by referring to

the global variable SET. we do not coilect ieaves values already considered.

One can easily verify that, as usual. optional communications in program

F3.2 do not affect program correctness but only program efficiency. a
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2.7.2 Communicating Agents

This approach to communications in applicative languages Is presented in
[Pettorossi and Skowron 82b]l. That work is motivated by the need of having a
way of controlling. point-to—point communications. so that they take place only
"tocally”. and their routing. when many communications must occur. will not
require much computational overhead.
For that purpose we introduced the notion of computing agent as a triple:

<agn. msg > :: expr.

where agn is an agentname. msg is a message associated with the agent and
expr is an expression which shouid be worked on by the agent agn.
A recursive equation program is a set of rules for transforming sets of agents
(written on the left hand side of the rules) into new sets of agents (written on
the right hand side of those rules). The computation proceeds by
nondeterministic application of a rule at a time. using a pattern matching

mechanism a la Hope [Burstall, MacQueen and Sannella 80].

Here is a simple example.

Program F4. written in our language which we call Hope-C. sorts two bags

(i.e. muitisets) S and T of integers using two computing agents P and Q.

associated with S and T. respectively. (This problem is due to Prof. Dijkstra.)

P and Q stop when S and T are transformed into S° and T’ such that:

ISI=IS’l. ITI=ITl. SUT=8"UT', as<bforanya € S and any b € T'.
Program F4

a. (<P, V»::8) &= (<P, max(S)»>: : S}

b. (<Q.¥>:: T} & (<Q. min(T)>:: T} .

c. (¢P.M>::8, «Q.m>::T} & (<P, V5! :S5-M+m,

Q. T-m+M} iiM>m

V (signifying ‘no value’) does not match any integer.



S—-n means “subtract integer n from bag S": S+n means "add integer n to bag

S".

Rule a. says that the agent P computes the maximum integer in the bag S
and stores it in its message. Analogously for rule b.
Rule c. says that whenever the agents P and Q have computed the values of
their messages. they can swap them and update their bags accordingly.
The computation goes on by successive swappings of elements between P and

Q. so that eventually each element in S is not greater of sach element in T.

Program F2 evokes. for instance. the following computation:
[¢P.9>::{1.1.3). «Q.9::(2.2) }
—>(by a) {<P.3::(1.1.3). <«Q.¥::(2.2} } P computed max({1.1.3D
—>(by b) {<P.3::{1.1.3). <Q.2::(2.2) } Q computed min((2.2}).
—>(by c) {<P.¥::{(1.1.2), <«Q.¥>::{2.3)} }

P and Q swapped their messages and updated their bags.

—>(by b) {<P.¥>::(1.1.2). <«Q.2>::{2.3) } Q computed min({2.3))
—>(by @) {<P.2::(1.1.2). <Q.2>::{2.3) } P computed max({1.1.2}).

The computation haits here because no rule can be applied.

in general., program rules can be partitioned into two groups:
(i) rules concerning one_agent only: they specify the agent behaviour "in
isolation”, i.e. when no interaction from other agents should be taken into
account (see rules a. and b. of Program F4) .
(ii) rules concerning mbre than one agent: they specify: the interaction among

agents and the way they cooperate with each other (see rule.c.).

The evaluation process may be performed in a paraliel way. Indeed. for
each computation step. we can appily many rules at a time, provided that for
any pair of rules the corresponding pair of sets of agents to which they are
applied. are disjoint.

In particular in Program F4 we can reduce in one step
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{(<P.9>::(1.1.3), «Q.¥::{2.2) } to ({<P.3::(1.1.3). <Q.2::(2.2} }

by a parallel application of rules a. and b.

In order to compare our approach with the one in [Miiner 80]. we give

here the CCS program corresponding to program F4.

Program F4. 1

P(S) & ax. B(max(S)). if max(S) >x then P (S-max(S)+(x})
else ¥(S). NIL

Q(T) & T(mIn(T)). By. if y’min(T) then Q (T-min(T) +{y})
alse B(T). NIL

NIL denotes the CCS agent which "does nothing”. and the communications
between P and Q occur through the ports @ and 8., while ports ¥ and 08 are
used for sending out the resuiting bags.

In program F4.1 the final resuit is obtained by one extra exchange of values

w.r.t. the ones required in Program F4.

Program F4 can be improved by observing that elements can be swapped
only once. Therefore we can save in separate subbags the elements received
from the other agent and. in that way. we can speed up the computation of
max and min. The improved rules a. and ¢. are given below. The bag of the
agent P is split into bags SO0 and Sr. where Sr stores the elements received
from agent Q. Initially. S0=S and Sr=$.

(Analogously for the bag of the agent Q. )
a. {P.¥::(SI18SN} & [P.max(S)>::(S18n ]}
¢’ [P.M::(SISN. «Qm::(TiTnN} & [<P.¥::(S-M | Sr+rm) .,
Q.Y (T-m | Tr+M) } if M>m
a
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As a final example let us consider again the program for computing
12+. . .+n2, when multiptications by 2 only are allowed (see section 2.4 and
program F2. 1 in this section) .

We have the following computing agents:

(i) <sumsq.res>:: k where res stores the sum of the squares already computed
and k is such that 1%+, . +Kk5 +res=12+. . .+n2:

(i) for any k. 0SkS€n, | <sgq-k.p>::k where p is either the "empty value” V or
K.

Notice that the name of the agent is parametrized by "-k*. This
parametrization technique is wuseful when recursive calls have to be
implemented via computing agents. For details see [Pettorossi and Skowron

82bl.

As usual V does not match any integer.

~

Program F5
1.  {<sumsq."V>::Kk) & (<sumsq.0>:: Kk, <sq-k, ¥>::k} if k20
2.1 (<sq-k.V>::K} & (<sq-k.V::k, <8q-k-1,V>::k-1) if k20

2.2 {<8q-0,.¥>::0) &= {<8q-0.0>::0)
2.3 («<sq-k+1, Y k+1, <sq-k.kto2>::k} & (<sq-k+1, kto2+2k+1>: : k+1,
<sq- K. kto2>: : k)

3. (<sumsqg.res>::k, <sqg-k. kto2>::k} &= (<sumsq.res+kto2>::k-1)}

initially there exists oniy the agent <sumsqg.V>::n.
The resuit of the computation is given by the message component of the agent

sumsq when it cannot longer be rewritten (i. e. when its gxpression is -1).

Ruie 1. initializes the computation. Rules 2. 1. 2.2 and 2.3 compute the
values of k2 for k=0....n by storing them in the message component msg of
the agents <sq-k. msg>: : k. Notice the way in which recursion is implemented.

and recursive calls are suspended. using the vaiue V.
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Rule 3. realizes the interaction between the agent sumsq and the various
agents sqg-k’s. sumsq reads their messages and garbage-coliects them.
Indeed sq-k does not occurs in the r. h.s. of rule 3.

At the end of the computation there exists the agent sumsqg only.

The recursive- generation of the agents sq-k's can be avoided using the
following program where there exists only one agent sq. together with sumsq.
and it stores in its message the list of pairs [k. kzl for k=0....n.

denotes list concatenation. During the computation. sq satisfies the

following "agent invariant™:

<sq. [k.K3:..:00.0D:: n-k for k=0....n.
Program FS5. 1
1. (<ksumsq.V>: ‘n) & {(<sumsq.0>: :n. <sq.[0.0::n} if n20
2. (<sq.[k.kto2]: £>: : m) &= (<sq. [k+1. kto2+2k+1]: [k, kto2]: £>::m-1} if m?0
3’. {<sumsq.res>:: K. <sq. [k, kto2]: &>::p} & {<sumsq.res+kto2>: :k-1.
<sq. &>::p}

At the end of the computation the desired result is given by the message

component of the agent sumsq. The agent sq is not garbage-collected. a

We are currently working on the development of the computing agents
approach. and on the formalization of methods for proving the correctness of
their behaviours.
in [Pettorossi and Skowron 83] complete logical theories are given for

reasoning about paratiel computations evoked by. sets of agents.
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2.8 Conclusions

in the first part of the thesis we analyzed a method for deriving program
by transformations [Burstall and Darlington 771.
When using that approach the programmer first writes a very simple and
maybe inefficient program. whose correctness can easily- be shown. and then
he tries to transform it in a more efficiont one. by applying transformation
rules which preserve correctness.
We devoted our attention to functional fanguages and. in particular. to
recursive equation languages. They have been advocated because they allow
easy proofs of program correctness and they are quite suitable for program
transformation. We were able to convert many "ad hoc" heuristics and
techniques. previously described in the literature. to a powerful strategy.
called "tupling strategy"”.
The main idea consists in the "synchronization” of function evaluations, which
share common subcomputations. Once the commom expressions are
evaluated. their vaiues are "sent” to the functions which need them. In that
way. improvements in efficiency can be achieved. and we showed that optimal

algorithms can be derived for recurrence relations evaluation.

The gain in efficiency relies on the fact that. using the tupiing strategy.
“general recursive” programs can often be transformed into "linear recursive”
ones. We can then apply various techniques. already studied by other
authors. for efficiently implementing linear recursion without using stacks.

The tupling strategy aliso allows tupled functions to be evaluated in a
concurrent way because the various components can be independently
evaluated. However. they need to be- synchronized. so that the computation

of the common subexpressions is not repeated.

We compared the power of the tupling strategy with other methods for

aeliminating redundancy in recursive programs., as the ones recently pubilished
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in (Cohen 83]. It turns out that they are all particular cases of the tupling

strategy.

At the end of the first part of the thesis we showed a "limitation result”.
We presented a class- of recursive program schemas for which the tupling
strategy cannot eliminate all redundant computations (if the number of the
tupled functions is fixed at compile time). That result suggested us to look for

ways of realizing communications among function cails "at run time”.

in the second part of the thesis we looked at the memofunctions approach
[Michie 68] as a first method of realizing run time communications among
functions calls. We provided their operational semantics, and we presented
their first formal treatment.
We gave an operational semantics definition for a language with
memofunctions and a corresponding one for a language without
memofunctions and we proved their consistency. in the sense that memoing
improves efficiency and it preserves correctness.
We implemented our operational semantics definitions in Proiog and we studied

various formal theories in which one can embed them.

Finally we mentioned some other approaches of alilowing communications
among functions calls. Those ideas of ours are still under development and

they will be the object of our future study.
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Appendix A
THE STATIC SEMANTICS FOR RECURSIVE EQUATIONS PROGRAMS

Let us first define the following three kinds of formulas:

1. p Foe meaning that the expression e is well-formed w.r.t.

the program p:

2. pkd meaning that the definition d is well-formed w.r.t. the

program p:

3. p req meaning that the recursive equation req is well-formed

w.r.t. the program p.

We also need the following definitions:

1. the set of the free variables occurring in an expression o

(denoted by FV(@)) and in a definition d (denoted by FV(d)):

2. the set of the defined variables occurring in a definition d

(denoted by DV(d)) and in a program p (denoted by DV(p)).

The foilowing tables define FV(e) for any e € Exp. FV(d) and DV(d) for

any d € Def. and DV(p) for any program p.

° |

| t' X 'bopi(...,e,,...) | if oy then e, eise e,

m
Fveer | 8 | 0] ea| u Fucep | Fviey U FV(ey U FV(ey
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) | e where d | fC....0....)

Fv(e) l (FV(e)\DV(d)]1 U FV(d) l {f} v (U, FViep)

Notice that the FV(cons(....be....)) can be derived using the definition
of FV(bop((....8;....)) because cons € Bop.
d | x=a l 1 S Xy =
FV(d)

Dv(d)

FV(@) \ FV(e)
{x

{x}

Glven p = [f,(...) &=e,....1,(...) &0y}, we define: DV(p) = {f,....1f}.

Now we can state axioms and derivation rules for well-formedness for
basic expressions. expressions. definitions and recursive equations. We will
state those notions with respect to a given program p.

This will allow us to define the notion of well-formedness of a program p as
follows:
Definition 1: A program p = {req,.....req,} is weli-formed iff Vi 1<i<n
req, is well-formed with respect to p.
For basic expressions and expressions we have:

ptkm foranym €N
plt foranyteT

p I- x for any individual variable x € IVar

pbey. ....p I be,

for be,.....be, € BasExp
p I cons(be,....bey)
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plFe,.... p!-en

for 9;.....0, € Exp
pl-bc:p(e1 ..... e,)
p I-e-o. p l-e,. p I-e2

fore,.....e, € Exp

p Fif 8g then e, eise e,

Notice that, in order to conclude the well-formedness of the expression
if 8, then e, alsa e, we do not check whether or not 8y is a boolean
expression. Indeed we do not include any typechecking consideration in the
definition of weill-formedness.

We could have easily extended our rules to Incorporate such typechecking. as
we have done elsewhere in the thesis.

We omitted it here because now we are only interested in the issue of how free
variables and defined variables effect well-formedness of recursive equations

programs.

p Fe. pkd

for @ € Exp. d € Def, DV(d) € FV(a)

p - e where d

pFe,....pke,

fore;.....e, € Exp and f € FVar |

For definitions:.

ple
for e € Exp and x £ FV(a)

p I x=e

ple

for e € Exp and (x,.....x,) N FV(e) = ¢
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For recursive equations:

ptbey...pFbe,p e

if feEDV(p) and FV(e) & [DV(p) Uy, FV(be,))]
p I f(bey....bey) &= g9

Notice that we did not allow recursion in definitions. so that for instance
X = x+2 is not a well-formed definition. Notice also that if the recursive

equation f(...) & e is weli-formed w.r.t. the program p then f € Dv(p).

Some other constraints can be introduced into the static semantics. In
particuiar we can consider as well formed only recursive equation programs.
whose functions are defined in such a way that they provide a “disjoint and
exhaustive" case analysis on the structure of their data domains (Darlington
781.

For example, we can consider as welil-formed only those programsA whose
definition for a function f defined on natural numbers, provides the values of
f(0) and f(succ(n)). Analogously. for a function g operating on lists. we
can consider as well-formed only those programs which have the following
definitions:

g(ni) & o, and gla:: &) & e,
These constraints can be incorporated in the static semantics. but we did not

do so. because it goes beyond our objectives here.
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Appendix B.
OPERATIONAL SEMANTICS FOR N-ARY FUNCTIONS

In this Appendix we would like to present an extension of the structural
operational semantics definitions for including functions with n20 _arguments.
This extension is significant because in Chapter 2 we did not allow higher
order functions., and therefore we could not use "curried functions”. This
appendix is an improved version of what is presented in [Plotkin 81] pages
117-121.

We need some extra guxiliary set§:>
1) a set of Formals. called Forms., ranged over by form.

form .= ® | x: T, form
where T € {int, booll and x is an individual variable.

2) a set of Actual Expressions. called AcExp. ranged over by ae.

ae . .= ®| e, ae
3) a set of Actual Expressible Types. called AcETypes. ranged over by eat.

aet .. = e | T, aet where 7 € (int. bool}

Notice that @ and _.,_ are overioaded symbols. They will be used in what

follows as "nil" and "cons" for lists.

We also-need to change some- of the definitions we have aiready given for
the language L.
(1) in Expressions instead of f(e) we have: f(ae)
(2) In Definitions we have:

d::=...(as for the language L)... | form=ae | f(form): T=g
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(3) Denotable Types. ranged over by dt € DTypes. are modified as follows:
dt ::=Tlaet—> T where T € {int. bool)
(4) We need to change the notion of Abstracts. as wsll.
Let us consider the function T: Forms —> AcEtypes s.t.
i) T(e) =@ and ii) TG T, form) = (7, T(form)) .
We define the predicate "form: : 8 with form€Forms and BETEnv as follows:
form:: 8

i) @:9 and i if x £ DV(form) U domain(8).
(x: T.form) :: {x=T) U B

We have: Abstracts = {AMorm.e: 7 | @Bl Fy | 5yitormy © 7
for some @:V. and FV(e) € V and form:: 8 }
(5) The definitions of the free variables and defined variables are as follows:
For Expressions:
FV(e) = ¢ FV(e.ae) = FV(e) V FV(ae)
For Abstracts: FV( Aform.e: T ) = FV(e)\DV(form)

For Definitions:

form=ae f(form): T=e
FVv FV(ae) FV(e)\DV(form)
pDv DV(form) {f}

where DV : Forms — 2Var is defined as follows:

DV(e) = ¢ and DV(x: T,.form) = {x} U DV(form).

Here are the rules for the Static _Semantics. where a&l... stands for
al-,... and a@(B1t... stands for a{8lF, U DV(torm)- - - Where form: ' 8.
Actual Expressions.

AE1 at o e

al-g:T a |- ae: aet

AE2

@ - (e.a0): (T, ast)
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Application (updated)

a | ae: aet
A. - if a(f)=aet —> ot
a b f(ae): et

Abstracts (updated)

aifl Fe: T
Ab. if form:: 8
a - (AMorm.e:T) : (T(form)—>T)

Definitions

(form=asel l.ial-e=e

alb (x:T)=e, a I form=ae

1.2
al (x:7,form) = (e.ae)

form: : 8 a  ae: T(form)

F (form=ae): 8B

(f(form) . T=@al

alBl Fa: T
1. if form:: 8

a I f(form) : T=e

2.  (f(form):T=e): {(=T(form) —> T}

Note. DV(form) = domain(8).
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For the extended definition of the Dynamic Operational Semantics we need
to introduce the following notions as waell.
Given an actual expression ae and a type environment @ € TEnv, s.t
FV(aa) € V. we define the following well-formedness formula:
Wy (ae. @) iff 3 aet € AcETypes. @ - ae: aet.
The: set of Actual Expression Configurations w.r.t. a type environment &:V is:
AET, = (<P.ae> | Wy(ae.® and P: @ and FV(ae) S V). |
The set of Terminal Actual Expression Confi ions. TAEL, is

a subset of U AET , s.t. 7 € TAEL iff the second component of ¥
a € TEnvv
is of the form Y2 .:=e|C,72 whare ¢ € DVal = N+T+Abstracts.

We define a transition relation _>cz c I'a X I'a wheore

r, = Ef, VU AEl, U DI, and we can partition that relation in the three

subrelations —)a_e. _)a,ae and -'>a,d'

We allow ourselves to use the usual abbreviations. In particular, an element

of —> will also be written as I, <pO.an> —> <«P1,ael>, If PO0=P1 we also

a, ae
write PO Fa as0 — ael.

We define:
1. the set of Actual Constants. ranged over by acon € ACon.
acon .= @ | con.acon where con € N+T

2. an auxiliary function mkenv: Forms X Acon — Env s.t.

mkenv(e. ®) = @

mkenv((x: T.form) . (con. acon)) = {x=con) U mkenv(form. acon).
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The transition rules for the Dynamic Semantics definition are modified as

follows. We write pF. .. instead of pi—a. ..

Actual Expressions:

P re—a@a
AE1T.
P r (ea.ae) — (e’.ae)
P I ae — ae’
AE2.

P Fr (e.ae) — (eo.ae’)

Notice that. contrary to what is done in [Plotkin 81] page 121. we allow for

nondeterministic evaluation of the expressions in actual expressions.

Application

P I ae——ae’

Al.
p I ftag) — f(ae’)

A2. p r ftacon) — let form = acon in e if P(f) = ANform.e: T

Rules A1 and A2 determine call-by-value evaluations.
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Definitions

P ae — ae’

{form = ael 1.

P I form = ae — form = ae’

2. P form = acon — Po where Po = mkenv(form. acon)

(f(form): T =] P F f(form): T = —> {f = AMorm. (let PIV in &) : 7}
where V = FV(@)\DV(form) .
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Appendix C
FORMAL THEORIES FOR OPERATIONAL SEMANTICS

in this appendix we consider a second approach for embedding structurai
operational semantics definitions into formal theories. The first one was
presented in Section 2. 5.
This approach is motivated by the desire of identifying the rewriting relation
(denoted by —>) for terms and the implication relation (denoted by 3) for
formulas. Having one notion only. instead of two distinct ones. the deduction
process may be - made more  efficient, because we can realize the
improvements mentioned at the end of section 2.1 (where we suggested the
use of rule B1' instead of rule B1). As we will see. we will find useful to
introduce the reflexive transitive closure (denoted by —>*) of the "one step”

rewriting relation —>,

We will define two versions of this second approach and we will compare
them. In both versions the meaning of the symbol 2 (which we will call *hook"
for avoiding confusion) is similar to the one of the logical implication. The
second version differs from the first one in that the reflexivity and transitivity
properties hoid for hook.

For studies on logics with non-standard notions of implication the interestad
reader may refer to [Anderson. Belnap and Wallace 60, Anderson and Beinap
62]. in this appendix. 2 denotes also the computation process of rewriting

which was denoted by — in Section 2. 5.

We consider a first order language where we choose O = {0g.5,.+,]}.

v={}. and A = {F,}.
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As usual., the subscripts denote the arities.

Torms are built as In the first interpretation (see Section 2.5). i.e.

Terms=Exp. e € Exp.

e ::=01]S(a) | el + a2
Atomic formulas are of the form: Fe. where @ € Exp. i.a. terms are injected
in the atomic formulas via the unary reiation symbol F.
The set of Formulas (denoted by Flma) is defined as the smallest set
containing atomic formulas and closed w.r.t. 2 (i.e. hook) and 7.
Instead of writing atomic formulas as "Fe" we will often write them as "e" only:
the reader will understand from the context whether “e” stands for the term “"e"
or the formula "Fe” (because. obviously. arithmetical operators require terms

as operands. while 71 and 2 require formulas).

$. 9OV
The modus ponens (MP), i.e. —— for any formula ¢ and ¥. is the only

rule of inference we have. v

We will consider the theory T with the following set A of axioms:
Al. F(x+0) 3 F(x)
A2. F(x+S(y)) D F(S(x+y))
A3. (F(x) 2 F(y)) 3D (F(S(X)) D F(S(y)))
A4. (F(x) D F(y)) 2 (F(x+2) 3 F(y+z))
AS. (F(x) 2 F(y)) 3 (F(z+x) 2 F(z+y))

Let I' be a set of formulas s.t. AS I'. By Gen(I') we denote the intersection

of all sets & of formulas s.t. iy ' € 4, ji) each instance of one of the
nonlogical axioms Al..... A5 is in & and iii) ¥ € A whenever 9 € A and
PIY-€ A,

We write D@ or (I'-A) D¢ to denote that p€Gen(I) .

If '=A we will also write D¢ instead of AD¢@.

If 'D® we will say that ¢ is a proper ['~theorem.

if D9 we will also say that ¢ is a proper theorem. instead of a proper

A~-theorem.
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We can define the notion of a proper I'-proof. as foilows:

Definition 1: A finite sequence NLTEEEE ¥ _,> of formulas. with m>0,

m-1

s.t. ‘Vm_1’-'¢ and for each i<m one of the following holds: (i) ¥, el b

¥, is an instance of one of the axioms Al..... A5, (iib ¥, = ¥;2¥; for

some j<i and k<i. is called a proper I'-proof for @.
Notice that we do not include in point (ii) of the above definition the instances
of logical axioms. as. for example #=2(¥3¢). This limitation is necessary for
establishing the connection between the deduction process (using "hook" as
implication) and the process of computing the value of a given term (using
"hook” as rewriting). as the following Theorem 5 shows.
One can prove the following properties for D, as usually done in a first order
theory:

Theorem 2: Let I'. A C Fima such that A € POA and ¢.¥% € Fima.

() if ACT and AD¢ then I'D @:

(i) if TDP then 8D for some finite subset ® of T;

Cii) if TDX for each X€A and AD@®, then I'D¢;

(iv) if TD® and I'D(¢2¥) ., then I'DY;

(v) if 'D® then I'rd, where I~ denotes the usual "logical consequence”

notion (where logical axioms also are allowed in proofs) .

Here is presentation a la Hilbert of the proof that I' D F(S(S(S(0)))) where
' = AU (F(S(0) + S(S(D))}. We will feel free to omit the symbol F for

formulas and the parentheses for the argument of S.

1. S0+SS0 given
2. (S0+SS0) 2 S(S0+SM A2

3. S(S0+S0) 1.2. MP
4, (S0+S0) 3 S(S0+0) A2

5. (S0+S0 = S(S0+0)) 2 (S(S0+S0) 2 SS(S0+0)) A3

6. S(S0+S0) 2 SS(S0+0) 4.5. MP
7. SS(S0+0) 3.6. MP
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8. S0+0 2 S0 Al

9. (80+0 2 80) 2 (S(S0+0) O SS0) A3

10. S(S0+0) 3 SS0 8.9. MP
11. (S(S0+0) 2 S80) 2 (SS(S0+0) 2 SSS0) A3

12. SS(80+0) 3 S8SSs0 10.11.MP
13. S8S80 7.12. MP

Now we wiil prove some theorems about the theory we have introduced.
Let us first prove the following lemmas.
Let — denote the relation defined by axioms and rules S1...,S5 (see Section

2.5.
Lemma 3: If a —> b then a # b.
Proof: By induction on the length of the derivation of a — b. - a

Lemma 4: Any formula ¢ s.t. D@ has one of the following forms:
either F(e1) 2 F(e2)
or (F(el) 3 F(e2)) D (F(S(e1)) 3 F(S(e2)))
or (F(el) 2 F(e2)) 2 (F(el+e) 2 F(e2+e))
or (F(el) 2 F(e2)) 2 (F(e+el) D F(e+82))
for some a.e1.02 € Exp.
Proof: By induction on the number m of applications of the MP rule.
Baseg If m=0 the lemma is obvious.
Step Suppose the lemma valid for m. If we apply the MP rule to any two
formulas of the above specified forms we get a formula of the form

F(al) 2 F(e2). ]
Theorem-5: Ya,b € Exp a—> b iff D F(a) D F(b)

Proof: (on_ly if part). By induction on the length m of the deduction of
a —> b.

Base If m=1 a~—7b is an instance of S1 (or S2). Using axiom Al (or A2)

we can derive D F(a) D F(b).
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Step Suppose the theorem valid for a length m s.t. m?1. Suppose that a
—> b has been derived in m steps by using in the m-th step rule S4.
(The other cases in which in the m-th step we used axiom S1 or S2 or
rules S3 or S5 are analogous.) Therefore a — b is of the- form al+a2
—> al’+a2 and we have a derivation of al — al’ in n<m steps. By
induction hypothesis we have: D F(al) 2 F(al’). By axiom A4 we have:
(F(al) 2 F(al’)) D (F(al+a2) D F(al’+a?)) and by. modus ponens we
derive: F(al+a2) D F(al’'+a2).

(if part) . By induction on the length m of the deduction of F(a) 2 F(b).
Base If m=1 and D F(a) 2 F(b) then F(a) 2 F(b) is an instance of a
non-logical axiom Al or A2. Using S1 or S2 we have a — b.

Step Suppose ‘if DF(a)DF(b) then a—>b" valid for any deduction
D F(a) 2 F(b) with length m s.t. m>n>1 for some n. There_are 2 cases:
(i) F(a) 2 F(b) is an instance of axiom Al (or A2). By axiom S1 (or
S2) we can derive a —> b,

(i) F(a) 2 F(b) is derived by modus ponens from ¢ and
$ > ‘(F(a) 2 F(b)) for some formula . By Lemma 4 ¢ is of the form
F(c) 2 F(d) where c.d € Exp. By induction hypothesis we have ¢ — d.
There are 3 subcases:

1. a=8(c) and b=S(d). By applying rule S3 we can derive a — b from
c — d.

2). a=c+e and b=d+e for some g € Exp. As subcase 1), applying rule
S4.

3). a=e+c and b=e+d for some 9 € Exp. As subcase 1). applying ruie

S5. d

Proposition-8: If D F(el1) 2 F(e2) then el#e2.

Proof: From the if~part of Theorem 5 and Lemma 3. O

Theorem 5 allows for the "hook" symbol. denoted by 2. the same
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interpretation given to —>. i.e. we can interpret F(a) 3 F(b) as "in one
computation step from the expression a we can derive the expression b".
Theorem 5 holds because in the definition of the "proper proof of ¢ from A",
i.e. "D ¢", we excluded the use of logical axioms. (Otherwise Lemma 4 on
which Theorem 5 relies. woulid not hold.)

Indeed. if we allow logical axioms in the proofs we had to consider formulas
as, for instance. F(3) 2 (F(7) 3 F(3)). (from the logical axiom
® 2 (¥ 2 ¢9)) for which the interpretation of 2 as —> does not make sense.
Here is another example. For any formuia ® we can prove that F ¢ O ¢
(where I denotes logical theorems) and. obviously. the interpretation of 2 as

—>. i.e. “reduction in one step of the computation”. would not be acceptable.

Unfortunately. for the notion of a proper proof we have introduced. the
analogous of the Deduction Theorem is not valid. Indeed the following
implicatidn does not hoid: for any e1.e2 € Exp.

it AU(F(e1)} D F(e2) then A D F(el) 2 F(e2).

A class of counterexamples can be given because for any
© € Exp. Indeed AU(F(e)) D F(e) obviously haolds, while A D F(a) 2 F(a)
does not hold (see Proposition 6) .
However., one may want to have the Deduction Theorem valid for keeping for
the ‘hook’ symbol that basic property of the logical implication. For regaining
the validity of the Deduction Theorem we will introduce a slightly different
notion of “proper proof; (thereby definingA the second version of our
interpretation of the operational semantics). while maintaining a simple
computational interpretation for the 'hook’ symbol 3.

Definition 7: We defin@ —>* C ExpXExp as the rafiexive transitive

closure of —>. i.e. a —> b iff (In20 s.t. a—>b, .and bg—>b, and

and b,_,—>b, and b,=b) or a=b.

Let us consider the following two axiom schemata (valid for any

e.91.82.83 € Exp):
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Reflexivity axiom : F(e) = F(e)
Transitivity axiom: (F(el1)2F(e2)) 2 ((F(e2)2F(e3)) 2 (F(e1)2F(e3)))

AU{RA,TA). instead of ' D ¢ we will also write D* 9.
AU({RA.TAIUB. instead of ' D ¢ we will aiso write B D* ¢.

Analogous properties to the ones stated for Theorem 2 hold also for D*.

Notice that also for D* we do not allow instances of logical axioms.

Lemma 8: Any formula ® s.t. D* ¢ has one of the following forms:

either (i) F(el) 2 F(e2)

or (ii) (F(el) D F(e2)) 2 (F(e3) @ F(e4))
or (i) (F(el) 2 F(e2)) O ((F(e2) 2 F(e3)) O (F(el) 2 F(e3))).

for some e1.02.e3.64 € Exp.

Proof: Analogous to the proof of Lemma 4. Notice that any instance of

the RA (or TA) is of the form (i) (or (iii)).

Theorem 9: Va.b € Exp a —>* b iff D* F(a) 2 F(b).

Proof: (only if part). |If a=b then D* F(a) 2 F(b) by RA. Iif a#b then

we can reason by induction on the number n of contraction steps.

Suppose a—>by and by—>b, and... and b,_,~>b,=b. i.e. we derived b
from a in n+1 contraction steps. By induction hypothesis we have
D* Fla) 2 F(by and D* F(by 2 F(b,) ... and D* F(b,_,). Using TA

and MP we get D* F(a) 2 F(b,).

(if_part). By induction on the length m of the proof D* F(a) 2 F(b).

If m=0 and F(a)>F(b) and a=b we have a—>*b by reflexivity.

If m=0 and F(a)>F(b) and a*#b we have a—>*b by axioms Al or A2.

If m=n+l. F(a)2F(b) is derived from ¢ and ¢ 2 (F(a)>F(b)) where

9

= (F(c)3F(d)) by Lemma 8. By induction hypothesis we-have: c—>*d.

Suppose D* (F(c)3F(d)) 3 (F(a)2F(b)) is a proof of length k with k&n.

Let us reason by induction on k.

If k=0 the given formula is an instance of axiom A3 or A4 or A5. There

are two cases:

- if c=d then a=b and we get a—>*b by reflexivity:
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- if c*d, from c—>*d we get c—"'d. Since k=0. a=Clcl and b=Cld] for
some context C. By applications of axioms S3 or S4 or S5 we get a—> *b.
If k=h+1 for some h20. (F(c)?F(d)) 2 (F(a)>F(b)) is obtained from
(F(a)2F(e)) 2 ((F(e)2F(d)) 2 (F(a)2F(b))) as an instance of TA
(and therefore d=b) and F(a)>F(c).

By induction hypothesis on m we have a—>*c. Since c—>*d. we get:

a—>*d and a—>*b. because d=b. a

Lemma 10: For any e € Exp. any formula # s.t. {(F(e)} D* ¢, i.e. 9is
derived from F(e), or from any instance of the axioms Al....A5.RA and
TA. has one of the following forms: for some a.b.c.d € Exp

(i) F(a). (i) F(a) 2 F(b), Ciii) (FCa) 2 F(b)) 2 (F(e) 2 F(d))

Civ) (Fta) D F(b)) 2 ((F(b) @ F(e)) @ (F(a) 2@ F(c))).

Proof: Analogous to the proof of Lemma 4. Formulas of form (i) can be .
derived by MP from the ones of form (ii) using F(e) (or other formulas of

form (i) previously derived) . ‘ O

Lemma 11: For any e.el,e2 € Exp. if (F(el)} D* F(e) 2 F(e2) then
D* F(e) 2 F(e2).

Proof: In the proof {F(el)) D* F(a) 2 F(e2) every formula derived from
F(el) by MP is of the form F(a). Let C be the set of formulas (F(c))
s. t. c € Exp and F(c) occurs as an element in the proof
(F(e1)) D* F(e) 2 F(e2). By Lemma 10 any application of MP involving a
formula in C produces a formula. which also is in C. A formuia of the form
F(ae) 2 F(e2) can be obtainea only from formuias of the form Cii). Ciii) or
(iv) (as given in Lemma 10). Therefore the formulas in C can be
discarded from the proof (F(e1)} D* F(a) 3 F(e2). thereby obtaining the-
proof D> F(e) 3 F(e2). ]

The following theorem holds for D*.

Theorem 12: Deduction Theorem_ for DX, vV el1.e2 € Exp.

if (F(e1)) DP* F(e2) then D* F(al) 2 F(e2).
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Proof: If el1=e2, D* F(el) 2 F(el) because F(el) D F(el) is an
instance of the axiom RA.

if 91#e2 we reason by induction on the length m of the formal proof
P ¢

By Lemma 10 F(e2) is derived by modus ponens MP from

m-1> of F(e2) = @ __. from (F(e)}.
(F(e1)) D* F(a) and {F(e1)} D* F(a) O F(e2) for some a € Exp. By
induction hypothesis from (F(el)} D* F(a) we get: D* F(el) O F(a).
We also have. as an instance of axiom TA:
D* (F(el) 2 F(a)) 2 ((F(a) 3 F(e2)) D (F(el) O F(e2)) for any
a.el,e2 € Exp.
By MP we have: D* ((F(a) D F(e2) @ (F(el) 2 F(e2)). n
By Lemma 11 from (F(e1))} D* F(a) 2 F(e2) we get:

D* F(a) D F(e2). (2
and by MP from (1) and (2) we obtain: Dx F(al) 2 F(e2). : a

The converse of the Deduction Theorem is stated by the following
proposition.

Proposition 13: vV el.e2 € Exp. if D* F(el) 2 F(e2) then
(F(eD)} D* F(a2).

Proof: Obviously if D* ¢ then (F(el)}) D*x 9. Thus. from
D* F(el) D F(e2) we have: {(F(el)) D* F(el) 2 F(e2). Since
{(F(el)} D* F(el). we get the thesis by MP. O

Moreover, as one can easily see. V e1.82 € Exp if (F(el)} D F(e2) then
(F(al)} D* F(e2). and if {(F(el)} D* F(e2) then {(F(el)} I~ F(e2). where
I I- ¢ denotes the usual notion of I'-theorem in a first order theory.

Theorem 14: Ve,91 € Exp e—>*91 iff (F(a)} DX F(el).

Proof: Ve.el € Exp. e —>* a1 iff D* F(e) 2 F(el1) by Theorem 9.

D* F(e) 2 F(el) iff (F(e)) D* F(el) by Theorem 12 and Proposition 13.

a
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Therefore the notion of computation according to our operational semantics

rules corresponds to the notion of D* proof.

In general Va.e’ € Exp D F(e) O F(e’) iff D=* F(e) D F(e’) does not hoid
(e.g. consider the case e=e’) . however the following theorem holds. |

Theorem- 15: (F(a)} D F(a) ifft (F(e)} D* F(ae").

Proof: (only if part). Obvious.

(if part). By induction on the length £ of the derivation of e=>e’.

If £=0: e=e’ and obviously (F(e)} D F(e).

Assume the theorem true for L=k,

Suppose that e=—2e,~7... e, e, =6 .

We have (F(e)} D F(e,). We also have D F(e) 2 F(e,,,) by Theorem

5.
Therefore (F(e)} D F(e) = F(e,,,). By modus ponens we get the
thesis. a
This second version of the second interpretation for the operational
semantics rules has a particular merit w.r.t. the first version. In order to

illustrate it. let us consider the following “tree presentation” of the proof of

{S0+SS0} D SSS0. we have given earlier.

so+sso D S(S0+80) - SS(S0+0) 2 5880
T t T
A2 S0+80 2 S(S0+0) S(S0+0) 2 SS80
| T T
A2 S0+0 =2 SO
1
Al

The arrow T shows an application of the MP rule.
Here is a proof of {S0+SS0} D* SSSO.
1. 80+SS0 given
2. (S0+SS0) 2 S(S0+SM) A2
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3. S(S0+S0) 1.2.MP
4. S0+S0 O S(S0+0) A2
5. S0+0 2 SO Y
6. (S0+0 2 S0) 2 (S(S0+0) 2 SS0) A3
7. S(S0+0) 2 SS0 5.6, MP
8. (S0+S0 2 S(S0+0)) 2 ((S(S0+0) 2 SS0) O (S0+S0 > SSO) ) TA
9. (S(S0+0) O SS0) 2 (S0+S0 > SS0) 4,8, MP
10. S0+S0 2 SS0 7.9.MP
11. (S0+S0 2 SS0) 2 (S(S0+S0) 2 SSS0) A3
12. S(S0+S0) 2 SSSO 10, 11. MP
13. SSS0 ' 3.12.MP

It can be depicted as follows:
[ so+sso o S(S0+S0) > SSS0

| t _ ot

A2 S0+S0 2 SSO

T MP twice from TA

N

d S0+S0 2 S(S0+0) S(80+0) 2 SSO

T *

A2 S0+0 2 SO
T
Al

In that proof we see that the "surface expression" (the one in which we
are interested) is transformed  only twice. instead of three times. as in
{S0+SS0} D SSS0. at the expense of making: the “supporting proofs" more
elaborate by using the transitivity axiom.

The number of applications of the- modus ponens rule (MP) in the two cases is
the same. Regarding the modus ponens application as the time unit. we
could say that the two proofs have the same “time complexity". But those

proofs have different “timeXspace complexity”: the surface expression. in
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fact. which is usually bigger than the other expressions. is transformed fewer
times in the D* proof w.r.t. the D proof. Therefore we could say that in

D* proofs have better timeXspace efficiency.

The result of Theorem 14 can be extended to the case in which the set of

premises for D* is not a singlieton set. but any. set_of atomic formulas. That

case provides a model for the concurrent evaluation of expressions. Notice.

however, that particutar care should be taken because

if {F(e1).F(e2)]} D* F(e) then {F(e1)} D* F(e) or {F(e2)} D* F(e). but

in general not both., because the arithmetic value of @1 may be diffaerant from
the one of e2. Therefore., from Theorem 14 we will have that:
el —2* e or e2 —>* o, but we do not know which of the two subformulas
holds.

In order to avoid that ambiguity. we may associate the tag ‘1 with F(e1) and
the tag ‘2" with F(e2). We will then associate with any formula of the form
Fle) s.t. [F(el).F(e2)} D* F(e) the tag ‘1’ (or ‘2°) according to the fact
that the final application of MP for deriving the F(e) in question. was made by

using F(e,) 2 F(e) where 1’ (or ‘2‘) was the tag of F(ey).

Therefore, the second version we presented for the interpretation of the

operational semantics (i.e. the one which uses the extra axioms RA and TA)
allows the paralilel evaluation of various expressions. with the advantage of
making the deductions needed for evaluating an expression. available also for
other evaluations. '
For instance. if we have to evaluate both 5+(3+2+1) and (3+3)+7 we may
use, during the evaluation of the- second expression, the- fact
"D* F(3+3) 2 F(6)" derived in evaluating the first expression. In that way in
parailel computations we may eliminate redundant deductions. at the expense
of keeping track of the already proved facts.

In order to use the result of Theorem 9 for evaluating expressions. we need to
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be sure that D* F(a) 3 F(b) hoids for a#b. Only in that case. in fact. we
know that at ieast one computation step has been performed when replacing a
by b. By iterating this derivation procedure. we eventually get the value of the

given exprassion a.



C.1 Models

We would like to present the models for the theories defined by the axioms

A and the axioms A U {RA.TA}.

We first consider the theory for the A axioms.
Let us define a class K of modeis U s.t. U = {Terms.f.R} where Terms=Exp.
f is defined as in the first interpretation (see Sect. 2.5.1) and for the unary
predicate symbol F the relation R has the property that Ve.e' € Exp the
following two conditions are aquivalent:
(R _if Fg(e) then Frte" a'nd (Rii) e —> @'.
where as usual. —> is the relation derived from axioms and rules S1..... S5
(see section 2. 5).
The satisfiability relation U k @ for a formula ¢ in a structure U is defined as
follows:
U EF(e) iff Fgle)
Uk@2DY iff gither not(tU E @) or U F ¥.

We will say that U is a model of ¢ if U F 9.
KE® meansthatV U e K. U FE 9.

Lemma 16: K E A.

Proof: For Al: we need to show: K E F(x+0) 2 F(x).

Suppose: U ¥ F(x+0) 2 F(x) for some U € K. We have:

U E F(x+0) iff  Fg(x+0) and U ¥ F()  ift TFg(x).

Thus 1(x+0 —> x) but this contradicts S1.

For A3: we.need to show: K E (Fx 2 Fy) 2@ (FSx 2 FSy).

Suppose: (i) U F Fx 2 Fy and. (i) U ¥ FSx D FSy for some U € K.

By (i) we have: x — y and therefore Sx —> Sy by S3. This contradicts
i) .

Analogously for the axioms A2, A4 and AS. ]
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Theorem 17: VY e.e € Exp. D F(a) 2 F(a’) iff KE F(e) 2 F(a).

Proof: (gnly if part). By Theorem 5§ Ve.e’ € Exp. D F(e) 2 F(e") iff
e — e, '

Suppose K ¥ F(e) 2 F(e). For some U € K. U ¥ F(e) 2 F(e’). We
get: U I F(e) and U ¥ F(e). Thus Fg(e) and TIFg(e). This
contradicts the definition of R in K,

(if part). Assume K F F(@) D@ F(e’). To show: e —> e’.

Assume “1(e —> @’). By definition of K: e —> e’ Iff (if Fg(a) then
Fg(e’)) for any model U € K. By "I(e —> @’) we have Fgp(e) and "IFzle")

for any model U € K. Contradiction. d
Theorem 18: Llet ' be a set of atomic formuias. ¥ T D ¢ then
AUTEQ®,

Proof: If D ¢ then UA - ¢. By Completeness Theorem A U T'EFo.
a

Theorem 19: Ve.e’ € Exp. if (F(e)) D F(e’') then A U (F(e)) F F(e'.).

Proof: It is a corollary of Theorem 18. |

The reverse implication of Theorem 19 Is also true. as we will show In

Theorem 24.

Now we turn to the definition of the models of the theory for A U {RA , TA}

axioms.

We will characterize the relation D* using the ciass K’ of modeils.
A modei U € K’ is a triple { Terms.f.R } where Terms and f are defined as in
K and R has the property that for all @.8’ € Exp the foilowing two conditions

are equivaient:
(R if Rg(e) then Fg(e”) and (Rii) e —*g¢g’

where —* is the reflexive transitive closure of the relation —> as derived from

the axioms S1..... S5 (see section 2. 5).
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Lemma 20: K' EA U [RA.TA}.
Proof. Analoguos to the proof of Leamma 16. (g

Theorem 21: Ve.e’' € Exp. D* F(e) 2 F(e) iff

K" E F(ae) 2 F(a").

Proof: (only__if part). Assume D* F(e) 2 F(e’). We have:

A U (RA,TA} I F(ae) 2 F(e’) where I' I ¢ denotes the usual notion of
I'-theorem in a first order theory (inciuding logical axioms in proofs) .

By the Completeness Theorem: A U (RA. TA} EF(a) 3 (e7.

By Leamma 20 we get: K’ F F(e) 2 F(e").

(if part). Assume K’ E F(e) 2 F(e').

For any U € K'. U E F(e) D F(e’) iff @ —* @' (by definition of K’) iff
D* F(e) D F(e’) (by Theorem 9). _ a

Theorem 22: Let ' be a set of atomic formulas and A be the set of

axioms Al,.... A5. fTD*x¢ then AU ({RA,TAIUT E ¢,

Proof: f T D* ¢ then ' U AU (RA.TA} - ¢. By the Complieteness

Theoram we get the thesis. .}

Theorem 23: Ve. e’ € Exp. {F(a)} D F(e" iff
AU (RA.TAl U (F(e)} F F(e").

Proof: (only if part). See theorem 22.

(if part). Assume AU {RA,TA} U (F(e)} F F(a’).

From the hypothesis we get: A U [RA,.TA.F(e)} I F(a) by the
Completeness Theorem.

By the Deduction Theorem we hava: A U (RA.TA) I~ F(e8)3F(a").

By the Compieieness Theoram we get: A U {RA.TA)} F F(e)2F(a’).

Since K" F A U {RA,TA) we get: K’ F F(a) 2 F(e'). then by Theorem
21 we have: D* F(e) 2 F(e). Since (F(e)} D=* F(e) and

(F(e)) D* F(e) @ F(e). by MP we get: (F(a)} D* F(e"). a

Theorem 24: Ve.e’' € Exp. {F(e))} D F(e") iff AU (F(@)} E F(e").



Proof: Since (F(e)) D F(e’) implies A U (F(e)} F F(e') (see Theorem
19). it is enough to show that: if A U (F(e)) E F(e) then
A U (F(e).RA.TAl} F F(e'). because A U {RA.TA.F(e)} F F(e’) iff
(F(e)) D* F(e') by Theoream 23 iff (F(e))} D F(e’) by Theorem 15.
Assume A U (F(@)) E F(e') and A U (F(a).RA.TA)} ¥ F(e").

Thus for some U s.t. U E AU (F(e).RA, TA) we have U ¥ F(a’)

We have: U E A U (Fe} and therefore. since A U (F(e)) F F(e’'). we get
U E Fe’. Contradiction. O
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C.2 Summary of rgsuits

The following tables summarize the main definitions and results of Section
2.5 and this Appendix.
A. OPERATIONAL SEMANTICS
e::= 0| S(a) | e1+e2 e € Exp
Axioms and rules S:

S1. e+0— e S2. el1+S(82) —» S(el+e2)

e—> o

S3.
S(a) — S(e”)

el — al’ a2 —> e2’
S4. SS.
el+e2 — el'+e2 al+e2 — al+e2’

B. FIRST INTERPRETATION IN A FIRST ORDER THEORY. (Section 2.5)

Atomic formulas: e —> e’ e.e’ € Exp
Formulas: the least set containing atomic formulas and cilosed w.r.t.
71 and 3,

Axioms: logical axioms and nonlogical axioms S°:
S1’. e+0— e
S2°. e1+S(e2) —> S(el+e2)
S3'. (e — @) 2 (S(8) — S(e"))
S4’. (@1 —> al1’) 2 (al+e2 — al1'+82)
S5'. (@2 — e2’) 2 (e1+82 — al+82")

p. oY%

Inference rule: modus ponens (MP)
"2

Theorem. e—> e inS if S IFe— e’
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C. SECOND INTERPRETATION IN A FORMAL THEORY

First version:

Atomic formulas: F(e) e € Exp
Formulas: the least set containing atomic formuias and closed w.r.t.
2 and L.

Axioms A: Al. F(e+0) D F(e)
A2. F(el1+S(e2)) D F(S(el+e2))
A3. (Fe @ Fe’') 2 (F(S(e)) 2 F(S(e)))
A4. (Fel 2 Fel’) O (F(el+e2) 2 F(el'+e2))
A5. (Fe2 D Fe2') O (F(el+e2) @ F(el+e2"))

(For simplicity reasons we did not write some obvious parentheses) .

. ¢>V%
inference rule: modus ponens (MP)
[ 4
D o means that ¢ can be derived from the A axioms using MP (logical
axioms are not allowed). If D ® we say that ¢ is a proper theorem (in the

first version). We will also write A D ¢ instead of simply D ¢.

r'p e means that ¢ can be derived from the formulas I', the axioms A and
MP (logicai axioms are not ailowed) .' In that case we say that ¢ is a proper
I'~-theorem (in the first version) .

Theorem. Ve.e' € Exp. o —> e’ iff D F(e) 3 F(e").

Note. The analogous of the Deduction Theorem does not hold:

If (F(a)} D F(e’) it does not follow that D F(a) 2 F(e").

Second version: as in the Ist version. except the foillowing 2 extra axioms:
RA. Ve € Exp. F(a@) 2 F(ag) |
TA. Vel.e2.e3 € Exp.

(F(e1)3F(e2)) 2 ((F(e2)3F(e3)) 2 (F(e1)2F(a3)))
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D* ¢ means that ¢ can be derived from the axioms A U {RA, TA) using MP
(logical axioms are not allowed). If D* ¢ we say that ¢ is a proper theorem
(in the second version) .

F Dx ¢ means that ® can be derived from the formulas I'. the axioms
A U. {RA U TA} using. MP (logical axioms are not allowed). In that case we say
that @ is a proper I'-theorem (in the second version).

Theorem. Ve.e’ € Exp. e —>* @’ iff D* F(e) D F(e") iff
(F(a)} D* F(a").

—>* denotes the reflexive transitive closure of —)..

Note. The analogous of the Deduction Theorem does hold.

Theorem. (F(e)) D F(e’) Ift (F(e)) D* F(e') Iff

AU (F(e)l EF(e) iff AU (RA.TA) U (F(e)} F F(e").
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Appendix D
TABLE OF SYMBOLS

domain(f) domain of the function f. also written as dom(f).

A\B x €A\B iff x €A and x £ B.

flaib]l function updating. flalbl(x) = f(x) if x # a. flaibl(a) = b,
frA function restriction. domain(ff A) = domain(f) N A,

f\A function difference. domain(f\A) = domain(f) - A,

flg]l updating the function f by the function g.

if x € dom(g) then flgl(x) = g(x) glse flgl(x) = f(x),

+ disjoint union of sets or integer addition.

FV(e). FV(d) free variables in an expression e and a definition d
(Sect. 2. 1.

DV(e) . DV(d) defined variables in an expression e and a definition d
(Sect. 2. 1).

M(e) transiation from an expression e to M(e) by erasing all

keywords rec. and repiacing soma occurrences of “f(el1) ",

where f is recursively defined. by "f(al) valueof f at 81",
(Sect. 2. 4)

El...] an atomic axpression context (Sect. 2.3)
or an axpreassion context (Sect. 2. 4)

— term rewriting (t1 —> t2) or function definition (f : A —> B)
or logical implication.

— transitive closure of —>,
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—x reflexive transitive closure of —> or
terminal reflexive transitive closure of —>
(see the Prolog implemeantation. Sect. 2.6).
-4 functional types (see the Prolog implementation).
L— rewritings of expressions in the language L.
(memolL)—> rewritings of expressions in the language memol.
elel /xl substitution of the free occurrences of the variable x
in an expression @ by the expression el.
Pl-ae‘l“’ez equivalence of two expressions (see Sect. 2.4).
(We may omit to write @) .
Prge1—e2 rewriting of the expression el into e2
in the environment P and the type—environment @

(see Chap. 2). (We may omit to write @),

a I-v e:t weoll-formedness for the expréssion e (Sect. 2.1).

ak, d well defined definition d (Sect. 2. 1)

l-v d: 8 (strong) agreement of a definition d and a type-environment 8.
P agreement of an environment P and a type—environment &,

L agreement of the memo environment 4 with the

type-environment &,
rp¢ £ is a proper ['-theorem.

(Logical axioms are not allowed in proofs).

D & it means: {Al.....A5.RA, TA) D ¢&.
B D £ it means: B U (Al..... A5.RA.TA} D £.
' I-¢ usual notion of I'-theorem in first order theories.

(Logicai axioms are allowed in proofs).
U EE& satisfiability reiation for a formula § in a structure U

ED0Y logical implication or "hook".
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