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Abstract

In this thesis I investigate the modelling of cognitive development with construct-
ivist neural networks. I argue that the constructivist nature of development, that is,
the building of a cognitive system through active interactions with its environment,
is an essential property of human development and should be considered in models
of cognitive development. I evaluate this claim on the basis of evidence from cortical
development, cognitive development, and learning theory.

In an empirical evaluation of this claim, I then present a constructivist neural net-
work model of the acquisition of the English past tense and of impaired inflectional
processing in German agrammatic aphasics. The model displays a realistic course of
acquisition, closely modelling the U-shaped learning curve and more detailed effects
such as frequency and family effects. Further, the model develops double dissociations
between regular and irregular verbs. I argue that the ability of the model to account
for the human data is based on its constructivist nature, and this claim is backed by
an analogous, but non-constructivist model that does not display many aspects of the
human behaviour. Based on these results I develop a taxonomy for cognitive mod-
els that incorporates architectural and developmental aspects besides the traditional
distinction between symbolic and subsymbolic processing.

When the model is trained on the German participle and is then lesioned by re-
moving connections, the breakdown in performance reflects the profiles of German
agrammatic aphasics. Irregular inflections are selectively impaired and are often over-
regularized. Further, the model shows frequency effects and the regularity-continuum
effect that are also observed in aphasic subjects. The model predicts that an aphasic
profile with selectively impaired regular inflections would be evidence for a locally
distinct processing of regular and irregular inflections.

Based on these results, I propose that inflectional processing, often claimed to in-
volve qualitatively distinct mechanisms including a mental rule, is better explained by
a model that operates with a single mechanism for both regular and irregular inflec-
tions but develops dual representations in a constructivist learning process.

The arguments from biology, development and learning theory together with the
empirical results presented in this thesis make a strong case for modelling cognitive

development with constructivist neural networks.
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Chapter 1

Introduction

The question of how we learn and acquire knowledge of the world has kept philosoph-
ers busy since ancient times, and more recently, psychologists, linguists, biologists and
many other researchers have joined in to find answers to this fundamental problem.

This thesis is based on one particular theory of knowledge acquisition, constructivism.

1.1 Constructivism

Constructivism is the epistemological notion that knowledge is actively constructed
by a learner. As such it stands against two other important theories: empiricism, which
claims that knowledge arises from sensory experience alone, and rationalism, where
knowledge derives from domain-specific innate principles.

The constructivist view is based on the insight that a subject can have no access
to an external reality but can build knowledge only on the basis of stimulation of
the sensory neurons, in which the nature of the stimulus is not encoded (von Foer-
ster, 1973). To build knowledge thus amounts to constructing an interpretation of the
world that is based on nothing more than different patterns of sensory neural activa-
tion in the subject. It is in principle impossible to evaluate what the relation between
that interpretation and the (inaccessible) reality is. The role of an external reality in
constructivism is to constrain, but not to determine, the construction of a cognitive
system in an evolutionary way: cognition is adaptive and serves the organization of
experience, and when this organization fails the constructed knowledge becomes use-
less and is devalued in favour of another interpretation. The structure and order of
the external world do not exist in an objective sense but are imposed by the subject to
create a viable interpretation that allows him to function in it (von Glasersfeld, 1984).

Constructivist theories have had a great influence in the study of cognitive de-

velopment, namely through Jean Piaget’s Epistemological Constructivism. Piaget

1



2 1. Introduction

claimed that all knowledge derives from active interactions with the environment and
that information is never just passively recorded by the child, but integrated into her
cognitive schema and thus interpreted in terms of what is already known. Through
learning, the child adapts her cognitive schema and becomes able to integrate more
unusual information. In this way, child and environment exist in a balanced state
where the child adapts the world to herself, and adapts herself to the world.

In this thesis, constructivism is viewed from such a developmental perspective
and I focus on the notion that the learner develops through interactions with its en-
vironment to build more complex knowledge structures and representations based on
simpler ones. The motivation behind this approach is to contribute to a recent renewed
interest in development (Karmiloff-Smith, 1992; Elman, Bates, Johnson, Karmiloff-
Smith, Parisi, and Plunkett, 1996) and the relationship between brain and cognitive
development (Johnson, 1997; Quartz and Sejnowski, 1997), and to develop alternat-
ives to theories that deny the importance of development for the understanding of
cognition and instead rely on strong nativist assumptions in their explanations (e.g.
Chomsky, 1980; Pinker, 1984; Piattelli-Palmarini, 1994). The contributions made here
to these issues are in the form of constructivist neural network models of develop-

mental phenomena.
1.2 Principles of Neural Networks

Output

Hidden Layer

Input

Figure 1.1: A simple neural network with three layers that are fully interconnected by
weighted connections.

Neural networks represent a relatively new framework for modelling cognitive
development and processing (e.g., Rumelhart, McClelland, and the PDP Research
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Group, 1986b; McClelland, Rumelhart, and the PDP Research Group, 1986; Ellis and
Humphreys, 1999), and they have been successful in suggesting alternative explana-
tions to more traditional box-and-arrow models and processing theories that rely on
symbolic processing (see e.g. Elman et al., 1996). Neural networks come in many differ-
ent shapes, but they all consist of a number of simple processing elements (called units
or nodes) that are linked by weighted connections (often called weights) (figure 1.1). A
unit in a neural network can receive external input or input from other units through
the weights. In the most common case, a unit adds up the inputs and computes its
output as a function of that net input. The activation function can be linear, but of
more interest are non-linear functions such as threshold functions or logistic functions
(figure 1.2). In a threshold function, the unit is activated when the input exceeds a
threshold value. Such a function is not differentiable which is necessary for some
learning algorithms, but a sigmoid function is, while maintaining a close resemblance
to a threshold function. Most networks also contain a bigs unit which is always active
and has connections to the other network units. The effect of a bias unit is to adjust

the threshold or the “default” value of an activation function (0 in figure 1.2).

a: step function

1

08

06F

output

0.4

02

output

b: logistic function

1

08

06

o4t

02

input

Figure 1.2: Activation functions for units in a neural network. a.: a threshold function
with the threshold value 0. b.: a logistic function.

Learning in neural networks proceeds by adjusting the connection weights
between the units. There are paradigms for supervised and unsupervised learning,
but in this thesis only supervised learning is considered. In supervised learning, a
network is presented with an input and a target value. The output produced by the
network in response to the input is compared with the target value, and the weights
are adjusted so that in a subsequent presentation of the same input/target pair, the

network output is more similar to the target. Different algorithms for adjusting the



4 1. Introduction

weights exist: for networks without a hidden layer (so-called perceptrons), the per-
ceptron algorithm (Rosenblatt, 1958) is often used, whereas the best known method
for networks with hidden layers (so-called multi-layer perceptrons) is the backpropaga-
tion algorithm (Rumelhart, Hinton, and Williams, 1986a).

1.3 Why Modelling?

The neural networks developed in this thesis are fully implemented models, and the
importance of modelling as a means of scientific investigation is stressed here by mak-
ing a distinction between models which represent fully specified systems (these can be
formalized algorithmic or implemented as a computer program), and theories, which
represent less specified intuitions about a process.

But why is modelling important?

A model that is based on a theory enforces a full specification of the details of that
theory. As such it helps to uncover gaps, contradictions and so-called “magic steps”
where the process described by the theory is underspecified. A model can also bring
to light additional assumptions that have to be made in putting the theory to work,
such as extra mechanisms and parameters, and the format of the data on which the
modelled process operates.

A working model can then be used to test the underlying theory by comparing its
performance with empirical observations. The weakness of underspecified theories
is that they may not be falsifiable because their claims and prediction are too gen-
eral. Falsifiablity, however, is the defining characteristic of scientific theories (Popper,
1959), and a model is precise enough to allow its falsification by data for which it can-
not account. In that case, the model can then be refined or modified, along with its
underlying theory.

Apart from testing a theory, a model can also generate predictions. The compon-
ents of the model can be changed in ways that would be difficult to do in the original
system (e.g., lesioning connections in a neural network to model brain lesions), and
the resulting behaviour can be observed. By varying different aspects of the model
independently from each other it becomes possible to assess their importance for the
modelled process.

When several theories aim to explain the same data, the common principle to
choose between them is Occam’s Razor: the idea that the simpler theory be preferred.
The simplicity of a theory can be expressed in the strength of the assumptions it makes,

and a model can help to evaluate these assumptions and thus contribute to the com-
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parison of theories.

Although a model is often developed as a specification of a theory, neural network
models of cognitive processing are sometimes not explicitly based on a theory except
the vague notion that the observed data can be generated on the basis of complex,
nonlinear associations between stimuli. It is therefore important, when a working
model has been developed, to formulate the theory that it expresses. This process
makes it necessary to distinguish between implementational details of the model and

central aspects of its functioning.

Similarly, it is important to consider whether the obtained results are really the
consequence of the processes that are claimed to be modelled, or whether they rely on
what are considered the implementational details of the system. For example, much of
the criticism of the historically most important language processing neural network,
Rumelhart and McClelland’s (1986) past tense model, showed that its success hinged
on the distribution and representation of the training data (Pinker and Prince, 1988;
Lachter and Bever, 1988); aspects that were not considered central to the theory mod-
elled by Rumelhart and McClelland.

Finally, a model always involves an abstraction of the original process. Ideally, all
non-essential and uninteresting aspects of the original system are abstracted away in a
model, and in this way it becomes possible to identify which are the essential aspects
of the original system for the modelled function. These features will differ depending
on the level that is modelled. For example, while a model of neural response proper-
ties might not work if it does not take the functioning of individual ion channels into
account, this might be unnecessary in a neural model of ocular dominance formation.
Therefore, in developing a model care has to be taken not to abstract away too much,

namely properties of the original system that are essential for its functioning.

1.4 Aim of the Thesis

The central aim of this thesis is to argue that constructivist learning is one such an es-
sential feature of cognitive development and should not be abstracted away in models
of development, and to empirically test this claim by modelling the acquisition of the
English past tense and impaired adult processing in agrammatic aphasia with con-

structivist neural network models.
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1.5 Outline of the Thesis

The thesis is organized in two parts.

In chapters 2, 3 and 4 I will develop the argument for constructivist learning based
on different aspects of cognitive development, and in chapters 5 and 6 I will use a
constructivist neural network for the modelling of the acquisition of the English past
tense and impaired processing in German agrammatic aphasics, respectively. Based on
these results, I will develop a new taxonomy for cognitive models, and a new theory
of inflectional processing that is based on constructivist learning.

Chapter 2 reviews the role of activity in the development of the cortex across sev-
eral levels of organization, and from the earliest stages of development to old age. I
will argue that activity, often derived from sensory experience, has profound influ-
ences on the development of the cortex which is thus shaped in a constructivist way.

In chapter 3 I then discuss how brain development is related to cognitive devel-
opment, and I review evidence that initially limited cognitive abilities that are due to
immature brain systems allow the gradual building of complex representations and
the acquisition of adult competence. Together with chapter 2, this suggests a con-
structivist view of cognitive development: a changing brain structure gives rise to
changes in cognition, which in turn lead to new experiences that change the structure
of the brain even further. The chapter closes with a description of the most influential
constructivist theory of cognitive development, that of Jean Piaget.

Chapter 4 takes a theoretical standpoint and I discuss how constructivist learn-
ing differs from learning in static systems. I will review arguments that several prin-
cipled limitations of static learning are overcome in constructivist systems, undermin-
ing strong claims about human learning that have been made on the basis of static
systems. Together with the two previous chapters, this result makes the argument for
constructivist models of cognitive development: if cognitive development proceeds in
a constructivist way and constructivist learning is fundamentally different from learn-
ing in static systems, then this constructivist property should not be abstracted away
from in models of cognitive development.

The chapter continues with a review of constructivist neural network algorithms
and I develop a taxonomy of such networks. Then, I describe in detail a new construct-
ivist algorithm (CNN) for the simulations in the subsequent chapters. The chapter
closes with a brief review of previous constructivist neural network models of cognit-
ive development.

In chapter 5 the CNN is used to model the acquisition of the English past tense and
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is evaluated against human data and against previous models. I first give an overview
of the English past tense and its acquisition by children, and I proceed by discussing
the most relevant previous models, both connectionist and symbolic. Then, the exper-
iments with the new model are described. The CNN model closely simulates child
development data and performs better than the previous models. I argue that these
results are due to the CNN's constructivist nature, and this claim is backed by analog-
ous non-constructivist network models that fail to display many aspects of the human
behaviour. Based on this result I propose a new taxonomy for describing cognitive
models.

In chapter 6 the CNN model is applied to an aspect of impaired adult language
processing, namely, to the simulation of verb inflections in adult German agrammatic
aphasics. Here, the constructivist learning process leads to a dissociation between reg-
ular and irregular verbs that has traditionally been attributed to two qualitatively dis-
tinct mechanisms. On the basis of the model I develop a novel account of inflectional
processing that argues for a single mechanism employing dual representations.

Chapter 7 discusses the main results of this thesis:

¢ Cognitive development proceeds in a constructivist way in which the cortex de-
velops guided by the experience and activity of the learner. This constructivist
property is central and should not be abstracted away in models of cognitive

development.

e Models of cognitive development can be classified along four dimensions to es-
tablish a basis for their comparison: symbolic vs. subsymbolic processing, homo-
geneous vs. non-homogeneous architecture, single mechanism vs. multiple mechanisms,

and static architecture vs. constructivist development.

e Inflectional processing, which has been argued to involve qualitatively distinct
mechanisms including a mental rule, is better explained by a model that operates
with a single mechanism but develops dual representations in a constructivist
learning process. This model accounts for details of the acquisition of the English
past tense better than previous, fixed-architecture models, and, when lesioned
it represents a valid and accurate model of impaired inflectional processing in

agrammatic aphasia.

o Constructivist neural networks represent a valid formalization of constructivist

theories of cognitive development.



1. Introduction




Chapter 2

Activity-Dependent Cortical
Development

A central aspect of constructivist learning is that learning itself creates and modi-
fies the architecture of the learning system. For learning in humans and animals this
means that the external environment leads to neural activity through sensory exper-
ience, and this activity will effect “useful” changes in the neural architecture of the
brain. In constructivist learning, this modified architecture would then allow differ-
ent representations of experience, leading to further changes in neural architecture.
This chapter reviews how activity, spontaneous or environmentally derived, can ef-
fect changes in the neural architecture mainly of the cortex.

The development of the nervous system proceeds in two overlapping stages. In the
first stage, which does not involve activity-dependent processes, the basic architecture
and coarse connection patterns are laid out. In the second stage this initial architecture
is refined in activity-dependent ways. However, these two stages cannot be entirely
separated, and recently it has become clear that processes that were thought to be
activity-independent do in fact rely on the spontaneous activity of neurons (e.g. Herr-
mann and Shatz, 1995; Catalano and Shatz, 1998). On the other hand, even detailed
patterns of neural connectivity might emerge independent from experience (Crowley
and Katz, 1999).

This chapter reviews the processes that lead to the mature state of the nervous
system, with an emphasis on the neocortex. The first two sections give a brief over-
view of the principles of neural structure and function and the basic architecture of the
neocortex. Activity-independent developmental mechanisms from the early stages of
embryonic development to the establishment of coarse connections between neurons
are described in section 2.3. In the subsequent sections, starting with section 2.4, I dis-

cuss developmental mechanisms on different levels that depend on spontaneous or
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10 2. Activity-Dependent Cortical Development

environmentally derived neural activity. Section 2.5 reviews activity-dependent plas-
ticity on the subcellular level of ion channels, section 2.6 describes the influence of
activity on neurite outgrowth and morphology, and section 2.7 discusses how connec-
tions between neurons are established in activity-dependent ways using the example
of ocular dominance column formation in the primary visual cortex. Recently, trophic
factors, especially the neurotrophins, have emerged as substances to translate short-
term neural activity into long-term morphological changes, and in section 2.8 I review
the current state of knowledge about their function. Moving on to the level of the
cortex, constraints on the formation of specialized cortical areas from an initially equi-
potential protocortex are discussed in section 2.9. Activity-dependent plasticity does
not end with development, and in section 2.10 I review evidence for changes in the
adult brain that are due to the exposure to complex environments and the learning of
complex tasks. The last section, section 2.11, puts the chapter in the general context of
the thesis by discussing whether all activity-dependent neural changes can be viewed
as evidence for constructivism or if other theories, such as selectionism, should be

favoured.

2.1 Principles of Neural Function

The nervous system is very complex. Billions of neurons from hundreds of cell types
develop and interact in myriad ways, and therefore every concise description must

make many generalizations. This section is no exception.

2.1.1 Neural Structure

A neuron consists of a cell body (soma), several dendrites and often just a single axon
that is covered with a myelin sheath (fig. 2.1). Information processing within a neuron
proceeds through electrical impulses in the form of a depolarization of the cell mem-
brane. The flow of information is often viewed as from the dendrites via the soma to
the axon (from top to bottom in fig. 2.1). Dendrites receive inputs from other neurons,
and the signals so generated travel along the dendrites to the soma. There, if the sig-
nals are strong enough, they may initiate an action potential, which travels along the
axon at high speed and without loss, through the rapid opening and closing of ion
channels that are permeable to sodium (Na™) and potassium (K*). At the tip of the
axon sits a presynaptic bouton that forms part of the synapse by which one neuron can
transfer information to another. Dendrites often have small protrusions called spines

which form the preferred location of axodendritic synapses.
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Aol dendrites

Figure 2.1: A typical pyramidal neuron, showing the cell body, apical and basal dend-
rites, and the axon (which is foreshortened here) where synapses with several other
postsynaptic neurons are formed. (From Kandel et al., 1991)

2.1.2 Synaptic Communication

Neurons communicate via synapses, most of which are chemical synapses (fig. 2.2).
When an action potential reaches the presynaptic terminal at the tip of the axon, the
depolarization of the cell membrane causes the opening of calcium (Ca®") channels
and the influx of extracellular Ca?*. The increased Ca®* concentration leads synaptic
vesicles to fuse with the cell membrane and to release neurotransmitters into the syn-
aptic cleft.

The postsynaptic terminals of neurons have receptors to which the neurotrans-

mitters can bind. There is a great variety of neurotransmitters that require specialized

receptors and that have different effects on the postsynaptic neuron. The most com-
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Figure 2.2: The stages of synaptic transmission at chemical synapses. See text for
details. (From Kandel et al., 1991)

mon neurotransmitter in the brain is glutamate, and it binds to different receptor types,
the best known of which in the central nervous system are a-amino 3 hydro 5 methyl
4 isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA). Binding of
glutamate to an AMPA receptor results in the opening of Na™ and K+ channels, lead-
ing to influx of Na™ and outflux of K* and the depolarization of the cell membrane.
The function of the NMDA receptor is slightly more complicated and its importance in
the activity-dependent development of neurons will become clearer below: the Ca®*
channels controlled by NMDA receptors are blocked by a magnesium (Mg?*) ion at
resting potential. An initial depolarization of the membrane removes the Mg?* block
and allows Ca®* to flow into the cell, leading to a further depolarization of the mem-
brane along with other effects that Ca?* may have in second messenger functions and
neural plasticity (see below). In this way, an NMDA receptor is gated by both voltage

and the neurotransmitter glutamate (Kandel and Schwartz, 1991).
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Because glutamate leads to a depolarization of the neural membrane it is called an
excitatory neurotransmitter.

There are also inhibitory neurotransmitters, the most well known being y-amino-
butyric acid (GABA). GABA mainly causes the opening of chlorine (C17) channels,
counteracting the excitatory influx of Na* into the cell and thus reducing or prevent-
ing depolarization. Inhibitory synapses are most often found on the cell body, al-
lowing them to modulate the excitatory signal effectively, as opposed to excitatory
synapses which are usually located at the dendrites.

The effects of synaptic transmission are not limited to the opening of ion chan-
nels and the depolarization of the postsynaptic membrane. Far more complex ef-
fects on post- and presynaptic neurons are mediated through second messenger sys-
tems. Receptor families for second messenger systems include metabotropic receptors
which respond to so-called adrenergic neurotransmitters but also to GABA, glutam-
ate, serotonin, and neuropeptides, and tyrosine-kinase (TrK) receptors responding to
hormones, growth factors (e.g. neurotrophins), and neuropeptides. The binding of
substances to these receptors can trigger long chains of chemical reactions which lead
to much longer lasting changes in the cell. Many of these changes depend on intracel-
lular calcium, [Ca?*];, which seems to play an essential role in the activity-dependent
development and plasticity of neurons.

Highly diffusible gases like nitric oxide (NO) and carbon monoxide (CO) may also
effect long lasting changes in a cell. These gases are released by other neurons and
can easily permeate the membranes of neighbouring cells, and they can therefore act
independently from receptors.

In summary, neurons can interact in varied ways through neurotransmitters,
second-messenger substances, and diffusible gases, transmitting action potentials but

also effecting longer lasting changes in the cell.

2.2 Structure of the Neocortex

The highest level of information processing in the human brain occurs in the cortex.
The cortex is responsible for the high-level processing of sensory inputs that have been
gated via the thalamus, for the generation of motor commands, and for practically all
high-level cognitive functions.

The human cortex is a highly convoluted sheet folding around the other parts of
the brain (fig. 2.3). It is 24 mm thick, and stretched out it covers an area of roughly
2400 cm? (Shepherd, 1994). Each mm3 of cortex contains roughly 100,000 neurons
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Figure 2.3: The human cortex. (Modified from Kandel et al., 1991)

and 1,000,000,000 synapses (Churchland and Sejnowski, 1992); these numbers are even
greater in the primary visual cortex. On the outside the cortex is surrounded by the
protective pial surface and on the inside by the white matter which contains myelin-
ated axons.

There are about 25 different types of neurons in the cortex, but 80% of all neurons
are pyramidal cells, so-called because of their pyramidal shape (see fig. 2.1). These
neurons have a dendritic branch pointing towards the surface of the brain, and an
axon which is orthogonal to the brain surface, usually stretching below the cortex into
the underlying white matter. These axons can form connections with remote cortical
neurons and with subcortical structures, indicating the role of pyramidal neurons in
the communication between different areas of the nervous system.

Non-pyramidal neurons typically have round cell bodies with axons branching
within their own regions. The role of these neurons is in local processing within an
area. The overall interconnectivity within the brain is sparse: a cortical neuron is on
average connected to only 3% of the neurons underlying that mm? of cortex (Church-
land and Sejnowski, 1992).
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The other major group of cortical cells are glial cells which outnumber neurons by
a factor of 10 to 50. The traditional view has been that glial cells provide a scaffold-
ing for neurons and a chemically stable extracellular environment, as well as forming
myelin sheaths around neural axons and removing debris after neural death, but that
they play no role in information processing (Kandel, 1991a). Recent evidence (Araque,
Parpura, Sanzgiri, and Haydon, 1999), however, suggests a possible active role for cor-
tical and peripheral glial cells in the modulation of neural synaptic transmission.

Although many different cortical areas can be distinguished on the basis of their
cytoarchitecture (as famously undertaken by Brodmann, 1909, see fig. 2.12 on page 38),
the basic overall structure of the cortex is rather uniform: one can distinguish six lay-
ers throughout the cortex that are characterized by specific cell types and connection

patterns (fig. 2.4).
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Figure 2.4: The layered structure of the cortex. The left side shows incoming, the right
side outgoing connections. This figure shows the primary visual cortex where layer
IV can be subdivided into four sub-layers, and where layer V is particularly small.
(Modified from Kandel et al., 1991)

The six cortical layers are numbered beginning with the outermost layer 1. This
layer contains some neuron bodies, as well as axons running laterally to the surface
of the brain that synapse with apical dendrites for local processing. Layers II and III
contain mainly small and large pyramidal cells, respectively. These layers process the
output signals to other areas of the cortex. Layer IV is the terminal for inputs from the

thalamus and it contains mainly non-pyramidal cells such as stellate cells with small
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cell bodies and often spiny dendrites. Layer V contains the largest pyramidal cells
that send their outputs to areas outside the cortex. The lowest layer, layer VI, contains
pyramidal cells that project back to the thalamus.

Although these six layers exist in all areas of the cortex, their thickness may vary
considerably. Specifically, layer IV which receives sensory inputs via the thalamus, is
expanded in the main sensory areas, and in the primary visual cortex it can be divided
into four sub-layers (fig. 2.4). Layer V is thin in sensory areas but thick in the motor
areas, containing very large pyramidal cells that project to the whole central nervous

system (CNS). By contrast, the size of layer IV in the motor areas is markedly reduced.

2.3 Activity-Independent Developmental Mechanisms

This section gives an overview of the processes of nervous system development that
are independent from neural activity. While neural activity is obviously absent in the
early stages of development, even at relatively late stages development can proceed
independently from activity. On the other hand, some processes that have generally
been considered as activity-independent have recently been found to involve activity-
dependent components. Hence, the two stages of early activity-independent and later
activity-dependent development cannot be clearly separated.

Much of the evidence relating to neural development is conjectural, and in the
following only a superficial review of the main results can be given. For a much more
detailed treatment of cortical development, see (Price and Willshaw, in press).

2.3.1 Precursor Proliferation

The early embryo differentiates into three distinct cell layers making up the so-called
embryonic disc: an outer layer called ectoderm, a middle layer called mesoderm, and an
inner layer called endoderm. The nervous system has its origin in the region of the
ectoderm called neuroephithelium. Its development is triggered by signals from the
adjacent mesoderm. A section of the ectoderm thickens, forming the neural plate. The
edges of the neural plate roll up, forming the neural tube which is the basis of the spinal
cord and brain.

2.3.2 Neurogenesis

New neurons for the CNS are generated in the so-called proliferation zone surround-
ing the central ventricle of the embryonic brain. Here the precursor cells (neuroblasts)

differentiate through repeated cycles into neurons, glial cells, and new germinative
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cells (from which further neurons and glial cells are produced). The question of when
generated cells acquire their identity (i.e., cell type) has not yet been conclusively
answered. It seems, however, that the type of a specific cell is determined both by

lineage (i.e., the identity of the ancestor cell) and by cell-cell interactions.

2.3.3 Cell Migration

Once a neuron has been “born” it migrates to its final position. Migration proceeds
along radial glial cells that only exist during this stage of embryonic development.
These glial cells play a permissive rather than an instructive role for neurite migration,
i.e., they allow the neurite to grow along its fibres but do not instruct it to select specific
target areas (Gasser and Hatten, 1990).

In the cortex the migration proceeds in an inside-out sequence: earlier neurons
migrate to deeper layers of the cortical plate, and later neurons migrate past them into
more superficial layers.

Cell migration seems to be controlled at least partly by Ca** and by neurotrans-
mitters: blockade of Ca?* channels and of NMDA receptors selectively inhibits migra-
tion, while it is accelerated by the application of glutamate (Komuro and Rakic, 1992,
1993).

2.3.4 Axonal Outgrowth

Neural differentiation, that is, the outgrowth of axonal and dendritic processes from
the neuron body, starts during or shortly after migration. The maturation process is
very drawn out and in fact extends far into adulthood.

In the developing nervous system axons often have to travel across long distances
along complex pathways, and yet their final innervation patterns are very precise. The
mechanisms by which axons find their targets has been the focus of extensive research.
In order to find a target, outgrowing neurites develop at their tip an enlargement called
a growth cone (fig 2.5). From the growth cone project several thin extensions called
filopodia which are responsible for its forward movement. The filopodia constantly
extend and retract in response to signals in the extracellular environment (see below).
As the axon extends, new cell membrane is synthesized in the soma, packaged into
vesicles and transported to the growth cone. In the growth cone these vesicles are
fused into the expanding surface membrane.

Outgrowing axons show a high specificity in finding their appropriate target areas

and in forming connections with other neurons. The mechanisms by which this spe-
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Figure 2.5: A growth cone from a neuron isolated from the marine snail Aplysia cali-
fornica. The filopodia extending from the growth cone are clearly visible. Scale bar =
5um. (From Forscher and Smith, 1988)

cificity is achieved have been extensively investigated in studies of neural regeneration
after axons have been artificially severed, or by studying developing neurons in vitro
or in the embryo while manipulating the extracellular environment. Whereas many
aspects of axonal pathfinding remain unclear, from these studies a varied picture has
emerged (Jessell, 1991; Gilbert, 1997; Purves et al., 1997).

The pathfinding of axons and the formation of specific connections is generally be-
lieved to involve an early, activity-independent phase followed by a later phase which
depends on neural activity and in which connections are refined. These two phases do
not occur in two distinctive time periods, but rather, activity-independent and activity-
dependent mechanisms seem to overlap and interact during development. Further,
different mechanisms are employed to different degrees in various parts of the de-
veloping nervous system (Goodman and Shatz, 1993). In the following, the activity-
independent mechanisms are described that lead to the outgrowth and pathfinding of

axons.

2.3.4.1 Stereotropism

An outgrowing axon can be guided by physical cues in its environment, following the
path of least resistance, e.g., along channels between cells. This form of axon guidance
is called contact guidance, or stereotropism. It has also been shown that abrupt changes in
the direction of the growth cone trajectory can be triggered by its contact with certain
cells, often immature neurons (these are called guidepost cells). Stereotropism can only

give rough directional cues to the axon and is alone insufficient to explain the highly
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specified connectivity patterns between neurons.

2.3.4.2 Haptotaxis

An axon can also be guided by gradients of adhesive molecules in the extracellu-
lar matrix (haptotaxis). The growth cone has receptors for certain molecules that are
present on the surface of surrounding glial cells (cadherins and CAMs) and in the extra-
cellular matrix (especially laminin), and it can recognize small differences in the con-
centration of these molecules across its surface. This mechanism allows the growth
cone to move up the concentration gradient (see Goodhill, 1998, for a mathematical
analysis of this process). Certain molecules are expressed only at certain stages of ax-
onal outgrowth and in restricted areas of the developing nervous system, providing

the axon with multiple guidance cues.

2.3.4.3 Labelled Pathways Hypothesis

Another mechanism for guided axonal growth is by labelled pathways: here, the axon
grows along another earlier axon. The growth cone can distinguish between different
axons and only uses very specific ones as scaffold, while others in its vicinity are ig-
nored even when the guiding axon is artificially destroyed. This highly selective mech-
anism relies on the time-dependent expression of adhesive cell-surface molecules by
the neurons and it leads to the growth of axonal bundles (fascicles) where axons grow

along each other over large distances and separate only in the target region.

2.3.44 Chemotropism

Important guidance cues for an outgrowing axon can also come from diffusible mo-
lecules generated by the target cell (chemotropism). In vitro experiments have shown
that target tissue can attract the appropriate growth cone from a distance (chemoattrac-
tion). Different targets seem to secrete different chemoattractants. More recently it has
been shown that growth cones respond to certain factors not only with attraction, but
also with repulsion (chemorepulsion) (e.g. Goodman, 1996): the growth cone changes
its path, and on contact with the repellent it collapses. The role of chemorepulsion in
the guidance of axons might be as important as that of chemoattraction, and the path
of an axons is likely to be guided by a combination of the two. The same substance
can act as an attractor to one axon and a repellent to another, allowing for the estab-
lishment of precise connections e.g., in the retinotectal pathway (Goodman and Shatz,

1993). More recent results have shown that the same substance can even act as an at-
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tractive or repellent cue for the same growth cone, depending on the internal state of
the growth cone (Mueller, 1999).

Investigations of the innervation of the limb muscles by motor neurons in verteb-
rates, and the development of projections from retinal neurons to the brain indicate
that even in the outgrowth of single axons several of the described guidance mechan-
isms are at work simultaneously.

Once an axon has reached its target area it can form very specific connections with
other neurons. Migrating axons encounter many possible target cells and yet the se-
lected targets are very specific. This becomes especially evident in the optic tectum
of lower vertebrates where connections are highly ordered and form a point-to-point
correspondence between the retinal and the tectal cells. This precise target selection
appears to depend on adhesive or repellent gradients that enable the axon to find a
small target area. The actual formation of synaptic connections then relies on compet-

ition between several neurons (see next section).

2.3.5 Synapse Formation

The main studies of synapse formation come from the neuromuscular junction (NMJ)
where neural axons form synapses with a muscle fibre. Forming a synapse involves
changes both in the pre- and postsynaptic structures as the result of an initial contact
between an axonal growth cone and the target cell. The muscle fibre has receptors for
the neurotransmitter acetylcholine (ACh) that are initially distributed evenly over its
surface. As the axon approaches and the growth cone makes an initial unspecified
contact with the fibre, the ACh receptors relocate to the site of the contact. Addition-
ally, new receptors are generated at that site, resulting in a density about 10,000 times
higher than at sites away from the contact. This process does not result from pre-
synaptic activity (i.e., release of ACh) but is due to cues from a diffusible substance
released by the axon. At the same time the axon terminal accumulates synaptic ves-
icles containing neurotransmitter, and the membranes of both axon and fibre thicken
at the site of the contact. When a synapse has formed in this way, ACh receptors on
the muscle fibre which are not at the synaptic site die. The receptors at the synaptic
site change their properties towards higher conductance and shorter opening times,
allowing for more precise synaptic transmission.

After the axon makes the initial contact with the muscle fibre, other axons are at-
tracted to the same region and form additional synapses with the fibre. Through a

process of competition between these axons all but one are eliminated so that eventu-
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ally each fibre is innervated only by a single axon (Purves and Lichtman, 1980). At the
same time the surviving axon becomes more complex: it increases its endplate area

and acquires more release sites.

2.3.6 Cell Death

Neural cell death is an integral part of the development of the nervous system. During
embryonic development a large overproduction of neurons occurs, and subsequently
up to half of all generated neurons are lost in all areas of the nervous system (reviewed
by Oppenheim, 1991). Neural cell death is regulated by a combination of intrinsic and
extrinsic factors. Receptors on the cell can respond to extrinsic death signals that trig-
ger a cascade within the cell leading to its degeneration. Other receptors respond to
extrinsic trophic factors that suppress an intrinsic automatic suicide program. A com-
mon view is that such extrinsic trophic factors, like the neurotrophins (see section 2.8)
are released by target neurons in limited supply, thus leading to competition between
the innervating neurons. Indeed neural activity or membrane depolarization reduces
cell death (e.g., Ghosh, Carnahan, and Greenberg, 1994), indicating that active neur-
ons might have an advantage in the competition for neurotrophins. In this way, active
neurons stabilize through the uptake of trophic factors, whereas their unsuccessful
competitors die.

The function of programmed cell death remains elusive: possibilities range from
the correction of erroneous projections, the creations of pathways for axon outgrowth,
and transient functions for certain populations, to the creation of sexually dimorphic
structures. A popular hypothesis is that the generated surplus of neurons allows for
the above mentioned competitive processes to occur and thus provides a mechan-
ism to achieve the right amount of target innervation (Purves and Lichtman, 1985),
although this might be an overly simplistic view (Price and Willshaw, in press).

2.3.7 Summary of Activity-Independent Development

In its early stages, from generation of neural precursor cells to neurite outgrowth,
the development of the nervous system proceeds largely independently from neural
activity. Even some early aspects of synapse formation are activity-independent. Fi-
nally, some of the mechanisms of cell death seem to be mediated by intrinsic, activity-
independent signals.

The next sections discuss those aspects of neural development that are dependent

on activity, often generated through sensory inputs from the external environment
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of the organism. This type of development is therefore often also termed experience-

dependent development.

2.4 Activity-Dependent Developmental Mechanisms

In recent years it has become clear that neural activity affects and often controls the
function and morphology of the nervous system on different levels. Since function
and morphology in turn influence neural activity, there exists a feedback loop in which

the nervous system controls itself in a constructivist way (fig. 2.6).
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Figure 2.6: The feedback loop between neural activity and structure. Neural struc-
ture is determined by innate principles (genes) together with neural activity. Activ-
ity can change neural morphology within the boundaries of innate constraints. The
neural structures in turn constrain neural activity, thereby changing the mechanisms
that change them. The red arrow indicates the subject of the present chapter.

From a constructivist perspective aiming to relate the development of brain and
cognition to interactions with the environment, the main interest is in neural activity
that derives from sensory inputs. However, spontaneously generated neural activity
also plays an important role in the shaping of neural circuits, especially in prenatal
development. Although this type of architectural change might be called construct-
ivist if different activity leads to different architectures, it is clearly of less interest in
establishing a connection between learning and brain development.

In the following sections the role of activity in brain development is described on
the subcellular and cellular levels, on the level of connections between neurons, and
on the larger scale level of functional areas in the cortex, both in the developing and

adult brain.
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2.5 Effects of Activity on the Subcellular Level

Neural activity can influence several subcellular aspects of cell functioning and
thereby modulate the cell’s response properties. The feedback loop between activity
and structural change therefore exists even on the lowest levels of neural networks.

Neurotransmitters, especially those that interact with metabotropic receptors, can
induce changes in ion-channels, in neurotransmitter receptor properties, and in the ex-
pression of genes. These changes have long-lasting effects on the response properties
of a neuron. The sustained opening and closing of ion channels induced by second
messenger systems modulates the rapid response properties of cells on a timescale
from seconds to minutes (Kandel et al., 1991). Neurotransmitters, via second messen-
gers, can also change the properties of their own receptors: for example, the num-
ber of activating receptors (AMPA) is down-regulated after prolonged neural activity
whereas the number of inhibitive receptors (GABA) is up-regulated (Shaw and Scarth,
1991). In this way, a neuron can stabilize its activity pattern so that its firing properties
depend on the history of its recent activation (Turrigiano, Abbott, and Marder, 1994).

The expression of genes, including those for channels and receptors, can also be in-
fluenced by neural activity via second messenger systems (Armstrong and Montminy,
1993). This process can introduce enduring activity-dependent changes in neural func-
tionality.

2.6 Effects of Activity on Neurite Outgrowth and Morphology

Apart from sub-cellular properties of neurons, activity also has a strong influence on
neural morphology. Activity can influence the speed of neurite outgrowth from the
cell body and its final function (axon or dendrite). Many of these effects are mediated
through changes in intracellular calcium ([Ca**];) which can occur through direct in-
flux of Ca®* through voltage-sensitive Ca?* channels or NMDA channels, or through
the second messenger-induced release of Ca?* from intracellular stores.

The Ca?* theory of neurite outgrowth (e.g. Kater and Mills, 1991, fig. 2.7) proposes
an optimal level of [Ca?*];: at very low levels no outgrowth occurs. At slightly higher
levels outgrowth is optimal; even higher levels halt it, and at very high levels a re-
traction of neurites occurs. Different research has indicated that the axon grows out
from the site of the cell body with the lowest [Ca%*]; concentration (Mattson, Murain,
and Guthrie, 1990) or that the longest neurite becomes the axon (Goslin and Banker,

1989), but these results can be reconciled with the Ca?* hypothesis: at the site of low-
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est [Ca®"]; concentration the outgrowth rate will be highest and lead to the longest

neurite, which then becomes the axon.
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Figure 2.7: The Ca?" theory of neurite outgrowth. There is an optimal level of [Ca?*];,
below which no outgrowth occurs and above which neurites retract. (Adapted from
Kater and Mills, 1991)

Whereas most of the mechanisms for axon guidance are independent of electrical
activity (see section 2.3.4), the rate of outgrowth is thus activity-dependent. This res-
ult has been further confirmed by Cohan and Kater (1986) who found that neurite
outgrowth is reversibly halted and growth cone morphology changed by electrical
activity, and that these effects depend on the rate, pattern and duration of the stim-
ulation (Fields, Neale, and Nelson, 1990). However, even in axon guidance there
is growing evidence for activity-dependent mechanisms in addition to the activity-
independent ones: chemotropism (see section 2.3.4.4) can be effected by gradients
of substances such as neurotransmitters and neurotrophins that are released in an
activity-dependent way. Growth cones can detect this gradient and turn towards its
source (Zheng, Felder, Connor, and Poo, 1994; Ming, Lohof, and Zheng, 1997), and
[Ca®*]; in the growth cone seems to be important in this process. Furthermore, action
potential activity seems to be important for the pathfinding and branching of thalamic
axons innervating layer IV in the cortex in fetal cat development (Herrmann and Shatz,
1995).

Dendritic morphology is strongly influenced by neural activity. Neurotrophins, a
group of substances that are released and taken up in activity-dependent ways (see
section 2.8), exert strong influences on the shape and complexity of dendritic branches
(McAllister, Lo, and Katz, 1995; McAllister, Katz, and Lo, 1996, 1997). Dendritic sub-

structures can also be controlled by activity: the dendrites of neurons in the mam-
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malian brain are initially smooth but soon extend thin filopodia. These form into, or
are replaced by, spines which are the sites of synapses with axons from other neurons.
Maletic-Savatic, Malinow, and Svoboda (1999) investigated the influence of neural
activity on the formation of filopodia and spines in rat hippocampal slices and found
that the synaptic activation of NMDA receptors induced the localized formation of
filopodia and spines. They speculated that this mechanism could lead to the activity-
dependent generation of new synapses. Changes of dendritic morphology caused by
electrical activity have also been observed in mature neurons (Schilling, Dickinson,

Connor, and Morgan, 1991).

2.7 Effects of Activity on Connections Between Cells: Ocular
Dominance Columns in the Primary Visual Cortex

Optic Nerve

Lateral Geniculate
Nucleus (LGN)

Primary Visual Cortex
Layer IV

Ocular Dominance
Stripes

Figure 2.8: The mammalian visual pathway. For clarity, only the pathways of the right
visual field are shown. Retinal ganglion cells from both eyes project to the LGN where
they innervate separate layers (here the LGN layers have been simplified to two). The
geniculate neurons in turn project to separate patches in layer IV of the ipsilateral V1
(ocular dominance stripes). (Adapted from Goodman and Shatz, 1993)

A well-studied example of activity-dependent mechanisms in the formation of pre-
cise connections is the development of the primary visual cortex (V1, also called area
17 or striate cortex). V1, like all other cortical areas, has six layers. In contrast to other
areas, however, layer IV can be subdivided into four sub-layers that are characterized

by different cell types and inputs from different layers of the lateral geniculate nuc-
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leus (LGN) (fig. 2.4 page 15).

V1 is the first cortical structure to receive visual input via the thalamus. Fig. 2.8
shows the visual pathway from the eyes to the cortex. The rods and cones of the retina
transform light into action potentials that are conducted to the retinal interneurons
and further to the retinal ganglion cells. The axons of these cells form the optic nerves
which project to the LGN of the thalamus. Neurons from the right visual field of both
eyes project to the left LGN and neurons from the left visual field to the right. In the
thalamus the axons from both eyes innervate separate layers so that each layer re-
ceives input from only one eye. The geniculate neurons project mainly to the spiny
stellate neurons in area IV of V1 where axons from different eyes segregate into dis-
tinct, regularly alternating patches, or stripes (fig. 2.9). These patches form the ana-
tomical basis for the eye-specific columnar organization of V1, the ocular dominance
columns (ODC) (Hubel and Wiesel, 1963). ODC exist in many mammalian species, in-
cluding humans (Hitchcock and Hickley, 1980), but not in lower vertebrates where the
optic tecta in both hemispheres are innervated only by neurons from the contralateral
eye. The width and pattern of ODC, however, vary between species (for an overview

see e.g., Swindale, 1996).

Figure 2.9: A complete reconstruction of the ocular dominance stripes in the primary
visual cortex of a macaque monkey. Alternating black and white stripes indicate re-
gions that respond only to one eye. (From LeVay ef al., 1985)

How do ODC form in the visual cortex? In newborn cats there are no ODC and

geniculate axons representing both eyes completely overlap (fig. 2.10 a). These initial
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overlapping projections are sparse, and three to four weeks after birth axonal branches
selectively retract to form non-overlapping areas accompanied by extensive sprouting
and synaptogenesis in the segregated areas (Antonini and Stryker, 1993a, fig. 2.10 b.).
This process is completed at around six to eight weeks in the cat (LeVay, Stryker, and
Shatz, 1978).
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Figure 2.10: Normal and abnormal development of ocular dominance columns. See
text for explanation. (Modified from Goodman and Shatz, 1993)

The formation of ODC has been demonstrated to be based on visually driven or
spontaneously occurring neural activity. Stryker and Harris (1986) blocked all neural
activity in the optic nerve of newborn cats by injecting the antagonist tetrodotoxin
(TTX), and as a consequence ODC failed to form (fig. 2.10 c.). Similar results have
been obtained by rearing kittens in total darkness and by suturing both eyes (Caplan,
Christen, and Duffy, 1985; Swindale, 1981, 1988).

In contrast to cats, in macaque monkeys ODC develop pre-natally and are some-
times fully formed at birth (Horton and Hocking, 1996). While these results question
the role of visually-driven neural activity in ODC formation, there is strong evidence
that spontaneous neural activity is required. The layered structure of the LGN where

each layer is innervated only by axons from one eye develops pre-natally in all species,
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but it seems to be caused by highly correlated waves of spontaneous activity sweep-
ing over the embryonic retina (Galli and Maffei, 1988; Shatz and Stryker, 1988; Penn,
Riquelme, Feller, and Shatz, 1998). Recent results show that this spontaneous correl-
ated firing of retinal ganglion cells does not only drive the eye-specific innervation of
the LGN layers, but that it is transmitted to the LGN cells, leading to highly correlated
bursts of action potentials in the geniculocortical pathway (Mooney, Penn, Gallego,
and Shatz, 1996). Thus, even in the absence of visual experience cortical V1 cells can
receive correlated input from the different LGN layers through correlated spontaneous

activity.

Further experiments have established competition between geniculate cells as the
most likely mechanism of ocular dominance formation. The geniculate axons repres-
enting both eyes compete for synaptic connections with cortical neurons, and the out-
come of this competition is driven by neural activity. This process was demonstrated,
among others, by Hubel and Wiesel (1963); Hubel, Wiesel, and LeVay (1977); Shatz and
Stryker (1978) and Antonini and Stryker (1993b) by occluding one eye in neonate cats
and monkeys. The result of even a brief period of such monocular deprivation was a
marked alteration of normal ODC development: while both retinal ganglion and gen-
iculate cells of the re-opened eye responded normally to visual input, in V1 the axons
from that eye occupied a much smaller space than usual, whereas the axons from the
open eye had expanded and occupied a larger area than their usual share (fig. 2.10
d). These results cannot be explained merely by postsynaptic atrophy caused by the
disuse of the affected neurons, because the closing of both eyes did not equally result
in the global shrinkage of axonal arbours, and because in monocular deprivation the
ocular dominance stripes for the open eye did not only remain the same but instead ex-
panded. Therefore these results suggest an activity-based competition for cortical area
between the geniculate neurons representing both eyes where the region of the closed
eye shrinks due to a competitive disadvantage. This theory is further confirmed by ex-
periments in which one eye was occluded and at the same time postsynaptic activity
was blocked (Reiter and Stryker, 1988). In this case, the cortical cells responded better
to the closed eye, which is in agreement with Hebbian learning (Hebb, 1949) where the
synapses between co-active neurons strengthen and those between non co-active neur-
ons might weaken: the activity of neurons from the occluded eye was more strongly
correlated with that of the silenced cortical neurons (both were reduced) and as a con-
sequence these synapses were strengthened, while synapses from the non-correlated

open eye did not strengthen (Crair, 1999).
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The described alterations in the structure of ocular dominance columns can be
induced only during a certain critical period in early postnatal life (until six to eight
months in the cat, four to five years in the human), and monocular deprivation after
this period does not lead to a re-organization of the ODC. However, the absence of
visual input in early postnatal life can prolong this critical period (Caplan et al., 1985).
This result makes it unlikely that the critical period is genetically specified; instead, it

seems to rely on the onset of neural activity in the visual pathway.

Is the formation of ocular dominance columns specific to the regions in which it
normally occurs, possibly mediated by molecular markers in these regions, or are they
an outcome of a more general competitive process between neurons? This question
was addressed by Constantine-Paton and Law (1978) by grafting a third eye onto a
frog embryo. The retinal ganglion cells of the extra eye innervated one optic tectum
along with the axons from the normal eye. The optic tectum in lower vertebrates is
normally innervated only by one eye and therefore does not form ODC. However,
when in the three-eyed frog one tectum was abnormally innervated by retinal gan-
glion cells from two eyes, the axons from both eyes segregated and formed eye-specific
stripes. Since normally the tectum does not form these stripes, an explanation based
on molecular cues seemed less likely than one based on activity-mediated competi-
tion between the axons. Further studies clearly established the role of pre- and post-
synaptic activity in the formation and stabilization of these eye-specific tectal stripes
(Cline, Debski, and Constantine-Paton, 1987; Constantine-Paton, Cline, and Debski,
1990). Additional evidence against a purely molecular marker-based formation of
ODC came from studies where an eye in Xenopus was compounded by two half-eyes
(Fawcett and Willshaw, 1982) or where parts of a developing eye were removed and
the remainder grew into two identical half-eyes (Ide, Fraser, and Meyer, 1983). In each
case, the single eye projections to the tectum developed ODC, indicating competition
between the two halves.

The question of how neural competition leads to the formation of ocular domin-
ance columns was investigated by Stryker and Strickland (1984): they blocked syn-
aptic transmission to the optic nerves by application of TTX but implanted electrodes
to allow for their controlled stimulation. They found that synchronous stimulation of
the nerves from both eyes prevented the formation of ODC. By contrast, when both
nerves were stimulated asynchronously, ODC formed normally. This result suggested
that not neural activity per se, but its temporal and spatial pattern was essential for

the normal development of ODC. A similar result was obtained by rearing goldfish
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in stroboscopic light (Schmidt and Eisele, 1985). In goldfish and other lower verteb-
rates, retinal projections to the optic tectum form a coarse topographic map that is later
refined by visual experience. The refinement consists in the retinal axons restricting
the area of the optic tectum to which they project their branches by retracting from
inappropriate areas. However, in goldfish that were reared in stroboscopic light after
crushing the optic nerve, the usually observed refinement of the topographic map
did not occur.! Stroboscopic light presumably leads to the simultaneous firing of the
retinal ganglion cells from both eyes, indicating that asynchronous activation which
results from the spatial and temporal light pattern in a normal environment is essential
for normal visual development.

Thus, the formation of ocular dominance columns in the primary visual cortex
seems to be based on activity-mediated competition between neurons from both eyes.
When axons from both eyes are always synchronously active, none of them have a
competitive advantage and the columns fail to form. Only through activity that is
more correlated between axons from one eye than between axons from different eyes
does the competition lead to a segregation of axon terminals into discrete areas.

The functional role of ocular dominance columns remains unclear, and possibly
they have no function at all (Swindale, 1996). Stereopsis, which is important for depth
viewing, would be an intuitive candidate, but squirrel monkeys have been shown to
possess stereopsis even without ODC (Livingstone, Nori, Freeman, and Hubel, 1995).
The results for three-eyed frogs described above as well as results from modelling
(Goodhill, 1992; von der Malsburg and Willshaw, 1976) indicate that ocular dominance
columns might emerge incidentally in the formation of two (or more) topographic
maps on a single area of cortex.

The cellular mechanisms responsible for the formation of ODC have been argued
to involve Hebbian synapses (see e.g., Goodman and Shatz, 1993). A Hebbian synapse
can act as a coincidence detector where the connections from all inputs that simultan-
eously activate the postsynaptic cell are strengthened. In this way, cells from one eye
that show correlated activity due to the correlated visual input develop strong connec-
tions with a particular cortical cell. An input to the same cortical cell from the other
eye, by contrast, will show decorrelated activation and its connection will therefore be
weakened (cf. Willshaw and von der Malsburg, 1976).

Such a Hebbian mechanism might involve NMDA receptors on the postsynaptic

membranes of cortical neurons (Goodman and Shatz, 1993), because they need an ini-

!The retinotectal systems of fish and frogs do not have a critical developmental period so that synaptic
changes can be effected throughout life.
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tial depolarization to remove an Mg?* block from their channels before glutamate has
a depolarizing effect (see section 2.1.2). In this way, an NMDA channel can be opened
by the coinciding activity within a certain time window of two or more presynaptic
cells. The changes affecting the synapses could involve long term potentiation (LTP),
an increase of synaptic efficacy after stimulation that is also found in hippocampal
cells during learning. Evidence for this theory is that NMDA activated channels are
permeable to Ca?* which seems to play a role in LTP-like changes to synaptic strength
(Kandel, 1991b).

NMDA receptors exist in V1 and they display a functional decline towards the end
of the critical period (Fox, Sato, and Daw, 1989). Further, infusion of NMDA receptor
antagonists prevents the effects of monocular deprivation (Kleinschmidt, Bear, and
Singer, 1987). The most direct evidence for the proposed role of NMDA channels is
that visual experience triggers a rapid increase in the number of NMDA receptors in

visual cortex (Quinlan, Philpot, Huganir, and Bear, 1999).

2.8 Mechanisms of Neural Plasticity: The Role of Neuro-
trophins

What are the mechanisms translating correlated and decorrelated neural activity into
the observed long term structural changes such as axonal and dendritic remodelling,
changes in synaptic efficacy, and the formation of new synapses (synaptogenesis)? In
answering this question two types of change in neural structure have to be distin-
guished: one is the strengthening or weakening of existing synapses, and the other, the
increased sprouting of axons and dendrites and the establishment of new synapses.

The activity-dependent regulation of NMDA receptors, as well as many other as-
pects of activity-dependent neural plasticity, have recently been found to involve neur-
otrophins.

The neurotrophins are a group of four structurally related proteins: Nerve Growth
Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3 (NT-3),
and Neurotrophin-4/Neurotrophin-5 (NT-4/5), and they bind to two types of recept-
ors, TrK and p75.

Especially NGF has long been implicated in regulating long-term survival and dif-
ferentiation of neurons especially in the peripheral nervous system (PNS) (reviewed
e.g. in Purves, 1988; Lewin and Barde, 1996), but BDNF also plays a role in the survival
of cortical neurons, perhaps through the upregulation of intracellular Ca** (Ghosh

et al., 1994). The role of the neurotrophins in the modulation of synaptic efficacy and
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the activity-dependent regulation of neural morphology has only recently been estab-
lished (reviewed by e.g., Black, 1995; Thoenen, 1995; Katz and Shatz, 1996; Lu and
Figurov, 1997; McAllister, Katz, and Lo, 1999).

Neurotrophins satisfy four conditions that elucidate their role in the activity-
dependent regulation of neural function: they are synthesized in activity-dependent
ways, they are secreted in activity-dependent ways, they are taken up in activity-
dependent ways, and they effect dramatic yet specific changes in neural function and
morphology. In this way, neurotrophins can act as a target-derived, retrograde mes-
senger to effect both pre- and postsynaptic changes in active neurons. These aspects

are reviewed in the next subsections.

2.8.1 Activity-Dependent Neurotrophin Synthesis

While in the PNS neurotrophins are expressed by different cells in both activity-
independent and activity-dependent ways, in the CNS they are predominantly ex-
pressed by neurons in an activity-dependent way. The activity-dependent synthesis
of neurotrophins has been demonstrated in various experiments, and it has become
clear that different neurotransmitters can selectively regulate expression of different
neurotrophins in different areas of the nervous system. The expression of BDNF and
NGF mRNA in cultured hippocampal neurons is mediated by non-NMDA glutamer-
gic receptors, but not by NMDA receptors (Zafra et al., 1990), and by depolarization
and impulse activity (Lu, Yokoyama, Dreyfus, and Black, 1991). This mechanism re-
lies on Ca?t influx into the cell (Tao et al., 1998). In the CNS, an activity-dependent
down-regulation of BDNF and NGF occurs through the inhibitory neurotransmitter
GABA (Lindholm et al., 1994). These changes are rapid and pronounced: for example,
BDNF mRNA increased ten-fold within three hours after stimulation of hippocampal
neurons (Zafra, Castrén, Thoenen, and Lindholm, 1991). Sensory input has also been
shown to strongly regulate neurotrophin expression: keeping adult rats in the dark
leads to a significant reduction of the mRNA of BDNF and of that of its receptor TrKB
in the visual cortex, and normal levels are restored after re-exposure to light (Castrén,
Zafra, Thoenen, and Lindholm, 1992). Similarly, the stimulation of rat whiskers in-
creases BDNF mRNA in the barrel cortex (Rocamora, Welker, Pascual, and Soriano,
1996). Neurotrophins can even affect each other’s synthesis and the synthesis of their
own receptors: for example, NT-3 is up-regulated by BDNF (Lindholm et al., 1994),
and NGF regulates the mRNA of NGF receptor (Lindsay et al., 1990).



2.8. Mechanisms of Neural Plasticity: The Role of Neurotrophins 33

2.8.2 Activity-Dependent Neurotrophin Release

Not only the synthesis, but also the postsynaptic release of neurotrophins in the CNS is
rapidly regulated by neural activity (Blochl and Thoenen, 1995; Wang and Poo, 1997).
For example, BDNF release from depolarized hippocampal postsynaptic neurons in-
creased fivefold within 30 minutes after stimulation (Goodman et al., 1996). Simil-
arly, NGF release from hippocampal neurons is increased by depolarization with po-
tassium and glutamate and can be suppressed by AMPA antagonists. The release
depends on intracellular Ca?* and is mediated by sodium influx via sodium chan-
nels and non-NMDA glutamate receptors (Thoenen, 1995; Blochl and Thoenen, 1996).
Neurotrophins can also induce their own release, indicating a potential positive feed-
back loop (Canossa et al., 1997).

The sites of neurotrophin release have been identified to be primarily at dendrites
(Thoenen, 1995; Blochl and Thoenen, 1996). However, anterograde transport and a
presynaptic release have recently been reported (reviewed by Altara and DiStefano,
1998), suggesting that the role of neurotrophins might stretch far beyond that of a

target-derived retrograde signal.

2.8.3 Activity-Dependent Neurotrophin Uptake

Theoretically, neurotrophins that are released from depolarized postsynaptic dend-
rites could affect all synapses in their vicinity. One argument against this hypothesis
is their highly localized release (Wang, Berninger, and Poo, 1998). However, it has also
been shown that the uptake of neurotrophins by presynaptic neurons is dependent on
depolarization of the cell membrane (Birren, Verdi, and Anderson, 1992; McAllister
et al., 1996; Gottschalk, Pozzo-Miller, Figurov, and Lu, 1998; Boulanger and Poo, 1999).
Effects on presynaptic neurons were observed in the presence of neurotrophins after
depolarization, but not for neurotrophins or depolarization alone. In this way, only
presynaptic neurons that participate in the activation of the postsynaptic cell will be

affected by the neurotrophins.

2.8.4 Synaptic Effects of Neurotrophins

Neurotrophins can effectively modulate the efficacy of synapses in different ways and
on different timescales. Different neurotrophins, especially BDNF and NT-4/5, have
been found to rapidly increase synaptic transmission (Levine, Dreyfus, Black, and
Plummer, 1995b, 1996; Wang and Poo, 1997). This effect occurs within minutes after
application of the neurotrophins and can persist for hours (Kang and Schuman, 1995).



34 2. Activity-Dependent Cortical Development

One mechanism by which synaptic efficacy is regulated by neurotrophins is
through an increased release of neurotransmitter, especially glutamate (Knipper et al.,
1994; Lessmann, Gottmann, and Heumann, 1994; Wang and Poo, 1997; Sala ¢t al., 1998).
Evidence for this mechanism has been gained from showing that both blockade of
TrKB, the BDNF receptor, and of glutamergic receptors suppress the observed effects.
Alternatively, neurotrophins (NT-3) can suppress GABAergic function, thus increasing
postsynaptic action potentials (Kim, Wang, Olafsson, and Lu, 1994). Further evidence
for the effect of neurotrophins on neurotransmitter release comes from the finding that
neurotrophins rapidly increase [Ca®"]; in the presynapse, which is a prerequisite for
neurotransmitter release (Berninger et al., 1994; Levine, Dreyfus, Black, and Plummer,
1995a).
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Figure 2.11: Schema of activity-dependent effects of the neurotrophins (esp. BDNF) on
synaptic transmission. Black arrows indicate the traditional model of synaptic com-
munication, blue and magenta the pathways of post- and presynaptically released
neurotrophin, respectively. Green arrows indicate the effect of normal synaptic trans-
mission on neurotrophins, yellow the effect of neurotrophins on themselves or on
other neurotrophins, and red arrows show the effects of neurotrophins on synaptic
transmission. Red dotted lines show secondary effects. The figure generalizes over
neurotrophins and timescales.

A second, postsynaptic mechanism of synaptic modulation is the increased ex-
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pression of neurotransmitter receptors through neurotrophins. It has been shown in
both developing and adult neocortex that application of BDNF or NGF leads to the in-
creased expression of NMDA receptors and to changes in receptor properties (Muzet
and Dupont, 1996; Bai and Kusiak, 1997; Jarvis et al., 1997; Suen et al., 1997; Levine,
Crozier, Black, and Plummer, 1998), as well as increased expression of AMPA recept-
ors (Narisawa-Saito et al., 1999). Visual experience also leads to a rapid increase of
NMDA receptors in the visual cortex (Quinlan et al., 1999).

Modulation of neural excitability is effected through the neurotrophin-induced
expression of ion channels in the postsynaptic membrane (reviewed in McAllister
et al., 1999). Different neurotrophins can have different effects on channel expression:
whereas e.g., BDNF increases the number of sodium and calcium channels, leading
to increased neural excitability, NT-3 mediates the expression of potassium channels,
having the opposite effect (Lesser, Sherwood, and Lo, 1997). These subtle and varied
effects of different neurotrophins indicate an instructive rather than a permissive role
of neurotrophins in synaptic modulation (McAllister et al., 1999).

Finally, BDNF also plays a role in long-term potentiation (LTP) of hippocampal
synapses (Akaneya, Tsumoto, Kinoshita, and Hatanaka, 1997; Kang, Bonhoeffer, and

Schuman, 1998). LTP is believed to form the basis of learning and memory in the brain.

2.8.5 Morphological Effects of Neurotrophins

Besides modulating the efficacy of existing synapses, the neurotrophins have also
strong influences on neural morphology. It is interesting to note that these effects are
independent from the actual existence of synapses; all that is needed are receptors for
the neurotrophins (Katz and Shatz, 1996). In this way, the morphology of axons and
dendrites can be regulated at early stages, and neurotrophins might even be involved
in activity-dependent synaptogenesis.

Evidence for the role of neurotrophins in axonal development, which is gener-
ally believed to proceed independently from activity (see section 2.3.4), is not very
abundant, but two possible mechanisms have been described: first, gradients of target-
derived non-NGF neurotrophins seem to play a role in chemotropic axon guidance
(Ming et al., 1997), although there is clear evidence for many non activity-dependent
mechanisms (cf. section 2.3.4.4). Second, neurotrophins regulate the sprouting and
complexity of axons: Cohen-Cory and Fraser (1995) showed that injection of BDNF
into the optic tectum of Xenopus tadpoles led to rapidly and persistently increased

axon branching and complexity, whereas the injection of BDNF antibodies reduced ar-
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borization and complexity. Similar results have been found in cultured axons (Inoue
and Sanes, 1997). Effects of NGF on axon sprouting have also been observed in adult
rat brains (Isaacson, Saffran, and Crutcher, 1992).

The effects of the neurotrophins on dendritic branching are far more established
and it has become clear that they play indeed a central role in regulating the complex-
ity of developing dendrites (Purves, Snider, and Voyvodic, 1988; Snider, 1988; Ruit
and Snider, 1991) and the number of dendritic spines (Shimada, Mason, and Morrison,
1998). Different neurotrophins lead to increased dendritic growth in different parts of
the nervous system, and the roles of the individual neurotrophins can be very specific:
in neocortical pyramidal neurons, basal and apical dendrites of the same neuron are af-
fected by different neurotrophins (McAllister et al., 1995), and different neurotrophins
act on neurons in different cortical layers: while BDNF increases the complexity of
basal dendrites in layer IV visual cortex, NT-3 inhibits dendritic growth in this layer.
These roles are reversed in layer VI, where NT-3 stimulates dendritic growth which
is inhibited by BDNF (McAllister et al., 1997). Growth of basal dendrites in layers
V and VI is further enhanced by NT-4 (McAllister et al., 1995). Again, these highly
specific effects of different neurotrophins indicate an instructive role for dendritic de-
velopment. However, conflicting results suggest that the presence of afferents, but
not neural activity is required to initiate dendritic branching, while the formation of
dendritic spines requires activity (Kossel, Williams, Schweizer, and Kater, 1997).

There is so far only sparse evidence that neurotrophins are involved in synaptogen-
esis (Snider and Lichtman, 1996). However, in the hippocampus BDNF and NT-3 lead
to a dramatic (seven-fold) increase in synaptogenesis with different effects: BDNF reg-
ulates the creation of excitatory and inhibitory synapses, whereas NT-3 induces form-
ation of excitatory synapses only (Vicario-Abejon, Collin, McKay, and Segal, 1998).

2.8.6 Neurotrophins and Ocular Dominance Column Formation

Given the strong evidence for the role of neurotrophins in regulating many aspects
of neural plasticity, it comes as no surprise that they have a profound influence on
the development of ocular dominance columns in the primary visual cortex: applica-
tion of NGF can prevent the effects of monocular deprivation in the rat visual cortex
(Maffei et al., 1992; Berardi et al., 1993), and anti-NGF antibodies disrupt normal devel-
opment of the visual system (Berardi, Cellerino, Domenici, Fagiolini, Pizzorusso, Fa-
giolini, Pizzorusso, Cattaneo, and Maffei, 1994). More importantly, infusion of BDNF

or NT-4/5 into cat primary visual cortex prevents the formation of ocular dominance
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columns (Cabelli, Hohn, and Shatz, 1995), and blockade of BDNF and NT-4/5 recept-
ors has the same effect (Cabelli, Shelton, Segal, and Shatz, 1997). Blocking NGF and
NT-3, however, does not affect column formation. These results indicate that a specific
amount of BDNF and/or NT-4/5 needs to be present in V1 to enable the formation
of ocular dominance columns. This claim has been strengthened by recent models
that define competition between synapses for limited amounts of neurotrophic factors
as the basis for their formation (Elliott and Shadbolt, 1998; van Ooyen and Willshaw,
1999). An oversupply of neurotrophins (Cabelli et al., 1995) as well as the absence of
neurotrophins (Cabelli ef al., 1997) eliminate this competition.

In summary, depolarized postsynaptic neurons release neurotrophins as retro-
grade signals that increase the synaptic efficacy of co-active presynaptic neurons and
thus implement a Hebbian-type coincidence detector. The increase in synaptic effic-
acy might be effected through the expression of NMDA receptors and the increase of
presynaptic glutamate release, and through the upregulation of [Ca?*]; in the presyn-
apse. These mechanisms, together with the other evidence discussed in this section,
suggest that the neurotrophins play a strong role in modulating different aspects of
activity-dependent neural plasticity, in the developing and in the mature nervous sys-

tem.

2.9 Neural Activity and Regional Specification of the Cortex

The general structure of the cortex is rather homogeneous throughout (see section 2.2):
all cortical areas have six layers, and the number of different neural types in a “radial
traverse” through the layers is remarkably constant, with the exception of the primary
visual cortex, where the number of cells is much higher. The basic scheme of output
connections from the individual layers to other cortical and subcortical structures is
constant as well, with layer 6 neurons projecting to the thalamus, layer 5 neurons to
other subcortical areas, and neurons in layers 2 and 3 projecting intra-cortically.
However, there are also significant differences between cortical regions that have
allowed for the distinction of separate regions based on their cytoarchitecture alone
(Brodmann, 1909, see fig. 2.12). These differences consist in the thickness of the indi-
vidual layers which can vary considerably over the regions (see section 2.2). Further
differences can be found in the properties of individual cells, such as the distribution
of receptors, cell size and density, and also in the connections from the thalamus and
to other subcortical regions (O’Leary, 1989). Often these cytoarchitectonally different

regions can be related to functional regions.
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Figure 2.12: Cytoarchitectonally different areas as found by Brodmann (1909)

How do these areas come about? Much of the answer to this question remains un-
clear, but two main theories have been formulated: the protomap theory (Rakic, 1988)
maintains that precursor cells in the ventricular zone are already committed to gen-
erate neurons that are destined for specific functional regions, which implies that the
functional specification of cortical regions is genetically predefined. By contrast, the
protocortex view (O’Leary, 1989) holds that the developing cortex is less differentiated
and that specialized areas emerge due to input from subcortical or from other cortical
structures.

There is considerable evidence favouring the protocortex hypothesis: when neur-
ons from late foetal visual cortex are transplanted into the sensorimotor cortex they
develop the characteristics of their destination area and not of the area from which
they originate (O'Leary and Stanfield, 1989; O’Leary, Schlaggar, and Stanfield, 1992).
Similarly, when in ferrets retinogeniculate pathways were re-routed to project to the
somatosensory or auditory area of the thalamus which project to the somatosensory
and auditory cortex, respectively, the response properties of those cortical neurons
resembled those usually found in the visual cortex, developing orientation and dir-
ection selective cells (Frost, 1981; Sur, Garraghty, and Roe, 1988). The new area was
functional and the ferrets could perform visual discrimination tasks. This result was
taken as evidence that cortical neurons process information in a principled way and

area specificity is established through the specific inputs from the thalamus.
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The question why, given that the cortex is initially little differentiated and can pro-
cess inputs from different sensory modalities, the overall organization of functional
areas is very similar between individuals has been addressed by Johnson (1993b) and
Johnson, Oliver, and Shrager (1998). They attributed the inter-individual similarity in

brain structure to different extrinsic and intrinsic constraints.

Constraints that are extrinsic to the cortex are derived from the environment, or
from subcortical brain structures. Among environmental constraints one can dis-
tinguish the species typical environment (STE) and the individual specific environ-
ment (ISE) (Johnson and Morton, 1991). The STE is normally shared between all mem-
bers of a species, e.g., gravity and patterned light for all organisms, and the exposure
to language for humans. Alterations to the STE such as dark rearing or monocular
deprivation often have drastic effects on cortical development (see section 2.7). On
the other hand, the ISE is different for every individual and it includes the specific as-
pects of the environment of the developing organism, e.g., social interactions and the

particular language to which a child is exposed.

Constraints dependent on subcortical areas have been shown in the above-
mentioned transplantation and re-routing studies: a cortical area takes on a specific
function and representational structure based on the thalamic (or, for higher areas,
presumably the cortico-cortical) input it receives. Another type of sub-cortically me-
diated constraint emerges through the immaturity of developing sensory channels:
Turkewitz and Kenny (1982) have argued that initial limitations in the functioning of
sensory channels can be beneficial to development. For example, the inability of an in-
fant to focus on most objects significantly reduces the complexity of the world which
she has to learn to represent, and more complex representations can be gradually built
while the sensory system develops. This starting small hypothesis will be discussed in

greater detail in the next chapter.

A third sub-cortical constraint has been investigated in chick imprinting: a new-
born chick imprints preferentially on a mother hen that is present at hatching, and
only in the absence of a hen it imprints on other objects. This mechanism has been
shown to be mediated sub-cortically: the chick has an innate predisposition to orient
towards conspecifics which then allows it to construct cortically based representations
of the mother hen. In this way, a sub-cortical attention bias leads to the development

of specific cortical representations (Johnson and Morton, 1991).

Intrinsic constraints on cortical plasticity are present in the uniform six-layered

structure of the cortex (see section 2.2), but also in the time course of cortical develop-
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ment: different cortical areas mature at different rates (Chugani, Phelps, and Mazzi-
otta, 1987; Huttenlocher, 1990; Turkewitz and Kenny, 1982), and within a given area
the deeper cortical layers develop prior to the more superficial layers. From this de-
velopmental schedule it follows that some of the cortico-cortical feedback pathways
from higher to lower cortical areas (e.g., higher visual areas to V1) mature before their
corresponding feed-forward pathways, which might guide the development of these
feed-forward pathways.

The final set of constraints on cortical plasticity are dynamic constraints. It has been
hypothesized that the cortex is traversed by a wave of plasticity mediated by trophic
factors that induces high plasticity at its peak and that reaches different cortical areas
at different times (Thatcher, 1992). At the peak a high degree of synaptogenesis occurs,
and synaptic loss takes place after the wave has passed.

These sets of constraints together with the Hebbian-based competitive and cooper-
ative mechanisms outlined in section 2.7 are assumed to be responsible for the com-
mon clustered, topographically and hierarchically organized representations in differ-
ent areas of the cortex (Johnson, 1993b; Oliver, Johnson, and Shrager, 1996).

Despite these constraints on cortical plasticity, however, there are sometimes con-
siderable differences between individuals in the size of functionally defined brain re-
gions: two- to threefold differences have been reported in human primary visual cor-
tex (Stensaas, Eddington, and Dobelle, 1974; Leuba and Kraftsik, 1994) and the sensor-
imotor cortex (White et al., 1997) as well as in the rat somatosensory system (Riddle
and Purves, 1995).

2.10 Plasticity after Development

Brain plasticity does not end with development. In fact, many researchers now argue
that there is no real distinction between development and adult plasticity, since the
same mechanisms are at work at all stages of life and new information is learned and
stored in the brain even in adults. On the other hand, many activity-dependent ad-
justments to neural structures can be effected only during a certain critical period. Such
a critical period exists for example in the formation of ocular dominance columns (see
section 2.7) where monocular deprivation prevents column formation only during the
first few weeks of life. How can these conflicting results be reconciled?

Black and Greenough (1986) have argued for two complementary types of devel-
opment and learning processes: experience-expectant and experience-dependent learning,

which are supported by different underlying neural processes. Experience-expectant
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learning describes adaptation to aspects of the environment that are shared by all
members of a species. In their view, learning this type of information involves an
initial overproduction of synapses followed by a selective stabilization of useful and a
pruning of surplus connections. As a consequence, experience-expectant processes are
subject to a critical period, because once the surplus connections have been pruned,
further large-scale adjustments can no longer be made. The formation of ocular dom-
inance columns represents such an experience-expectant process, and interference
with it through dark rearing or monocular deprivation during the critical period leads

to profound and irreversible alterations to the neural system.

Experience-dependentlearning describes those aspects of the environment that are
unique for each individual and that allow adaptation to the specific circumstances
in which an individual exists. This type of learning requires life-long flexibility and
therefore cannot be subject to a critical period. Black and Greenough (1986) argued
that experience-dependent learning involves mainly constructivist processes, that is,

the directed construction of new synapses.

The distinction between experience-expectant and experience-dependent learn-
ing resembles the distinction made by Johnson and Morton (1991) between the
species-typical environment and the individual specific environment (see section 2.9).
However, a significant difference between these categorizations is that Black and
Greenough (1986) associate different neural mechanisms with theirs (see Johnson,
1993c¢)’, although a distinction between different neural mechanisms is not always
possible: for example, as was described in section 2.7, in the formation of ocular dom-
inance columns as an instance of experience-expectant learning, axons retract from
inappropriate areas, but the sprouting of axons within the correct areas is also a signi-
ficant factor in the establishment of the final pattern. Both selective and constructive
mechanisms seem therefore to be at work also in experience-expectant learning. The
relationship between selectionist and constructivist learning is further discussed in

section 2.11.

In the study of cognitive development, experience-dependent learning is the more
interesting case because it reflects individual differences in neural structure that are
the outcome of different experiences. Furthermore, experience-expectant learning is
confined to early developmental stages and thus plays no role in adult plasticity. This

section will therefore focus on the study of experience-dependent learning.

Experience-dependent learning is often studied by comparing rats that are reared

in different types of environment or adult rats that are placed in such environments
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(reviewed in Greenough, Black, and Wallace, 1987; Rosenzweig, 1996). This envir-
onmental complexity paradigm distinguishes between three conditions: in the Environ-
mental Complexity Condition (EC), groups of up to twelve rats live in big cages with
many different toys that are exchanged on a regular basis, and the rats can exercise in
running wheels or walk through mazes. The Social Cage Condition (SC) sees small
groups of rats, mostly just two, in normal laboratory cages without any objects to play
with. In the Individual Cage Condition (IC) rats are kept individually in small cages,

again without objects, and sometimes in dim light.

Rats from EC environments show substantial differences in their brain size and
anatomy compared with both SC and IC rats: their cortex is thicker in many areas
with larger neural cell bodies, and there are more glial cells. Detailed studies have
revealed that the structure of neurons is also more complex: in V1, there are about 20%
more dendrites per neuron (Greenough and Volkmar, 1973), and there are also more
dendritic spines (Globus, Rosenzweig, Bennett, and Diamond, 1973). Synaptic density
per neuron in upper visual cortex is 20% to 25% higher than in other rats (Turner and
Greenough, 1985), but differences also exist in the auditory and the frontal cortex and
in subcortical structures. Synaptic changes in the cerebellum due to motor activity
have been shown to persist for at least four weeks after training, even without any
further training (Kleim, Vij, Ballard, and Greenough, 1997). An interesting result is
that merely observing a complex environment does not lead to these changes, but an

active interaction with the EC environment is necessary (Ferchmin and Bennett, 1975).

More recently it has also been shown that an enriched environment influences
the rate of neurogenesis in adult mice hippocampus (Kempermann, Kuhn, and Gage,
1997), suggesting the possibility of a novel mechanism of brain plasticity that involves
the generation of new neurons in response to interactions with the environment. Most
importantly, in contrast to long-established textbook knowledge, neurogenesis in the
hippocampus of adult humans has recently been reported (Eriksson et al., 1998). Al-
though it is not clear yet whether the newly generated neurons are functional and
whether activity influences neurogenesis in humans as well, this new result suggests
the possibility of a role of neurogenesis in constructivist learning (Gould, Tanapat,
Hastings, and Shors, 1999).

That the morphological changes of neural structure in adult brains are task specific
has been demonstrated by training rats on complex maze tasks requiring visuospa-
tial memory after occluding one eye and surgically disconnecting the two cerebral

hemispheres (Chang and Greenough, 1982). After training, the side of visual cortex
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receiving input from the non-occluded eye showed more growth in dendritic branch-
ing than the other side. Similarly, training adult rats on specific motor skills leads to
localized growth in the cortical areas that are responsible for the control of the trained
limbs (Greenough, Larson, and Withers, 1985).

Further experiments established that the generation of new synapses seems in fact
to be due to the learning of novel tasks rather than to the exercising of already exist-
ing abilities. Black, Isaacs, Anderson, Alcantara, and Greenough (1990) examined the
brains of four different kinds of rats that had lived in different experimental environ-
ments: Acrobatic Condition (AC) rats learned different obstacle paths over a period
of 30 days involving balancing, see-saws and rope bridges. Forced Exercise Condi-
tion (FX) rats walked on a treadmill for long times, Voluntary Exercise Condition (VX)
rats had free access to a running wheel, and Inactive Condition (IC) rats were kept in
normal laboratory cages. Therefore, AC rats had to learn continually during their ex-
ercise, whereas FX and VX rats exercised essentially without learning anything. At the
same time, FX and VX rats made more than ten times the number of repetitive loco-
motor movements than the AC and IC rats. In this way, learning (in AC rats) could be
dissociated from exercise (in the FX and VX rats). When Black et al. examined the cere-
bellar region of the different rat populations, they found striking dissociations. Most
significantly, whereas there was evidence for the creation of new blood vessels in FX
and VX rats, the AC rats showed evidence for synaptogenesis. These results indicated
that exercise alone leads to the formation of new blood vessels, presumably to support
the increased metabolic activity of the neurons involved in the movements, while only

learning seems to lead to the formation of new synapses.

2.11 Does Activity-Dependent Mean Constructivist?

This chapter has reviewed the activity-dependent development of the cortex across
different levels, from the sub-cellular level to the functional specialization of cortical
areas, both in development and adulthood. The aim of this review has been to make
the point for constructivist brain development in which the environment instructs the
brain as to what connections to form and how to modulate the properties of neur-
ons. There are, however, other possibilities by which activity could modulate brain
structure. Neural activity could perhaps only trigger an intrinsic genetic program for
a prespecified brain development, and in the absence of relevant activity some genes
would not be expressed. However, there is considerable evidence against this genetic

prespecification as a general mechanism: first, the genetic information available (per-
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haps 100,000 genes in mammals) is not sufficient to specify the full connectivity pattern
between all neurons (as many as 10'* synapses). Second, in evolution the number of
genes has not kept pace with the increasing complexity of the brain: while the total
amount of DNA per cell is roughly the same between mouse and human, the human
brain is far more complex (Changeux, Heidmann, and Patte, 1984). Third, organisms
with identical genes show significant variation in synaptic organization (Macagno,
Lopresti, and Levinthal, 1973), which would not be expected if brain organization was

strictly prespecified.

However, in investigating the role of neural activity on brain development it is im-
portant to consider whether activity is only permissive for other mechanisms to shape
development, or whether it is instructive and directly moulds neural connections. For
example, in the formation of synapses, target neurons could have molecular markers
that are recognized by certain neurons with complementary markers (the chemoaffin-
ity hypothesis), but actual innervation could require activity. While this mechanism
might exist at some stages of cortical development, e.g., the early stages of axon guid-
ance, much of the evidence reviewed in this chapter points instead towards an in-
structive role of neural activity. A distinction between instructive and permissive roles
for neural activity can be made by varying the pattern, but not the overall amount of
activity, assuming that instructive activity will lead to different neural architectures in
response to different activity patterns (Crair, 1999). Such experiments have been con-
ducted in the formation of ocular dominance column by Stryker and Strickland (1984,
see section 2.7): when neural activity between the two eyes was artificially correlated,
ocular dominance columns failed to form. Decorrelated activity, however, induced
ODC formation. Further experiments in ODC formation also support an instructive
role for neural activity: when a third eye was grafted onto a frog and made to in-
nervate the optic tectum, ODC suddenly formed (Constantine-Paton and Law, 1978).
This result makes the presence of molecular markers for ODC formation unlikely but

instead indicates that ODC form based on an instructive, competitive process.

In many cases of neural plasticity, the instructive role of activity seems to be me-
diated via neurotrophins (McAllister et al., 1999): the complex and very specific roles
that different neurotrophins play in different cortical layers and even at different parts

of one neuron (see section 2.8.5) make a purely permissive role unlikely.

It is important to note that not only activity from sensory input but also spon-
taneous neural activity can act in an instructive manner: correlated waves of neural

activity in the developing mammals guide the innervation of LGN neurons by retinal
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cells and, in some species, the early stages of ocular dominance column formation.
After eye opening, this spontaneous activity is replaced with sensory input that is
more highly correlated within eyes than between eyes. In this way, only a single con-

structive mechanism is required for pre- and postnatal development.
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Figure 2.13: Postnatal development of the brain. (A) A normal brain at birth (left) and
at six years of age (right). (B) The duration of human brain growth (measured in brain
mass), based on 4,000 neurologically normal subjects. (C) A Golgi-stain of neurons in
the parietal cortex of a neonate human (left) and in a six-year-old (right). An increased
cell body size and markedly increased branching are clearly visible. (From Purves
et al., 1996)

An alternative way in which activity could guide brain development in a non-
constructivist way is to act in a selectionist way where an initial overproduction of syn-
apses (or other neural structures) is followed by the activity-dependent selective sta-
bilization of some and the loss of other synapses (Changeux et al., 1984; Edelman, 1987;
Changeux and Dehaene, 1989). The initial neural structures in this paradigm would be
generated independently from activity through a process combining both genetic and
intrinsically generated signals, thus limiting the range of possible functions that could
be computed by the cortex. The selectionist view has received support from studies

reporting a significant overproduction of synapses in the cortex followed by a loss of a
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large percentage (Huttenlocher, 1979, 1990), although these data are hard to interpret
conclusively (Huttenlocher, 1990; Quartz and Sejnowski, 1997). Although a significant
loss of connections does occur, there is evidence that it might not be the predominant
factor in postnatal development. For example, despite the retraction of axon collat-
erals from inappropriate regions in the formation of ocular dominance columns (see
section 2.7) and in other regions of the nervous system, the major factor in brain de-
velopment is more likely to be the progressive construction and elaboration of neural
structure (Purves et al., 1996). The size of the brain quadruples after birth (fig. 2.13
A) and growth extends over more than the first two decades of life (fig. 2.13 B). This
growth involves a significant increase in cell body size and the continuous elaboration
of neural structures (fig. 2.13 C): the mean total length of dendrites in layer III of the
human primary visual cortex at birth is only 30% of the maximum, and in layer V,
60%. Furthermore, only about 10% of all synapses in V1 are present at birth (Hutten-
locher, 1990). The maximum number of synapses in V1 is reached at age eight months,
and subsequently there is a decline by up to 50% until age 11 years. However, the final
number of synapses is still three to four times higher than at birth, indicating that elab-
oration and loss of connections go hand in hand. Purves et al. (1996) argued that a net
elimination of synapses occurs only for neurons without dendritic processes, whereas
neurons with more complex dendritic geometries show a net gain. Hence, instead of
a general process of selective synaptic elimination there seems to be a process of con-
structive synaptic rearrangements to ensure appropriate levels of convergence in the

input to each neuron, and appropriate divergence in the output.

But how can the extensive loss of synapses fit into a constructivist framework of
brain development? It is often assumed that constructivism exclusively refers to the
addition of structure whereas selectionism refers to its loss. However, constructivist
development does naturally involve a regressive element which is needed to correct
for stochastic growth (Quartz and Sejnowski, 1997), or for synaptic overproduction in
response to salient experiences (Greenough et al., 1987, fig. 2.14). I would like to argue
that perhaps surprisingly the distinction between selectionism and constructivism lies
not in the loss of connections, but in the way in which structure is created: selection-
ism involves an initial overproduction of structure that is not goal-directed but that
is genetically or even randomly based. By contrast, the formation of connections in
the constructivist framework is goal-driven from the onset. More strictly speaking,
selectionism attributes all goal-directedness to the loss of connections, whereas con-

structivism also assumes goal-directedness in their construction.
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Figure 2.14: Constructivist synaptogenesis involves a regressive element. Arrows in-
dicate salient experiences leading to a burst of localized synaptogenesis followed by
the loss of excessive synapses (red curves). The net effect of these repeated growth-
pruning cycles is an increase in synaptic numbers per neuron (blue curve). (Adapted
from Greenough et al., 1987)

The evidence for constructivist cortical development should not be taken as an ar-
gument for fabula rasa learning and development. Instead, the development of the
brain relies on complex interactions on multiple levels between intrinsic constraints
such as genetic predispositions, and extrinsic constraints such as species-typical and
species-specific environment (Elman et al., 1996; Johnson, 1997). These interactions
have become evident for example in the discovery that neurotrophins that act in
activity-dependent ways also lead to expression of genes to alter the structure and
functioning of ion channels (section 2.8.4), and in the discussion of constraints on cor-
tical plasticity (section 2.9) where the regional specification of an initially equipoten-
tial protocortex is guided by several extrinsic constraints. Constructivist development
therefore proceeds through the progressive elaboration of neural structures and the
activity-dependent modulation of their functioning, involving constructive and re-

gressive events, always within the framework set by the general intrinsic constraints.

2.12 Chapter Summary

This chapter has reviewed the role of activity in the formation of cortical circuits.

Whereas initial phases of neural development are independent of activity, activity
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does have a strong influence on the subcellular properties of neurons regulating their
response properties, on the rate and direction of neurite outgrowth, and especially
on axonal and dendritic morphology and synapse formation. In this way, activity is
crucial, through interactions with intrinsic constraints, in the shaping of neural cir-
cuits and cortical areas of specialization. While some of these effects rely on (prenatal)
spontaneous neural activity, alterations of sensory experiences in early development
have profound effects on cortical organization. Two complementary developmental
mechanisms might be at work: one, referring to learning about the species-typical, or
experience-expectant environment that is shared by all members of a species, is subject
to a critical period that often stretches over a relatively brief period in early postnatal
life. The other, referring to individual specific, or experience-dependent environment
is more flexible and allows for life-long modifications of neural structures. Both mech-
anisms, however, involve constructive and regressive events, leading to a net increase
in structure. The effect of activity on neural architecture does not end with devel-
opment: throughout life, new experiences create new structures, and the learning of
complex tasks leads to more complex, yet localized and task-specific modifications of

neural morphology.

Many of the activity-dependent effects on development seem to rely on neuro-
trophins, which in the past few years have become an attractive candidate for retro-
grade signals exerting pre-synaptic effects in activity-dependent ways. Perhaps the
role of neurotrophins in neural plasticity can be integrated with the longer established
roles of Ca?* in neurite outgrowth and that of NMDA receptors as coincidence de-
tectors in Hebbian synapses. This possibility arises because neurotrophins have been
shown both to rapidly upregulate [Ca®"]; and NMDA receptors.

In studying whether activity-dependent neural development is constructivist, that
is, whether activity is directly guiding the construction of neural circuits, alternat-
ive views have to be considered, namely, a genetic pre-specification of connections
that is merely enabled by activity, or the selective stabilization of a subset of intrins-
ically pre-specified connections. While there are clear arguments against a full pre-
specification of precise connection patterns, selectionist views have gained much pop-
ularity. However, a re-evaluation of the data used to back selectionist views (Purves
et al., 1996; Quartz and Sejnowski, 1997), together with new data suggest a progressive
elaboration of neural structures rather than synaptic elimination as the main element
in the construction of cortical circuits in which synaptic loss might have the role of

error-correction or fine-tuning after exuberant growth. It therefore seems that the cor-
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tex develops in a constructivist way, in which neural activity, both spontaneous and
experience-dependent, interacts with intrinsic constraints on multiple levels to shape

the developing and adult brain.
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Chapter 3

Constructivist Cognitive
Development

The previous chapter reviewed how the developing and adult brain is shaped by activ-
ity that is often derived from sensory stimulation. It was shown that experience has a
profound impact on the developing neural structures, and in section 2.10 I reviewed
evidence that complex experience leads to complex brain structures in the form of
more dendrites and spines, in areas specific for the processing of the domain in which
the experience is made. However, these results alone do not answer the question of the
relationship between brain structures and cognitive abilities. What is needed is evid-
ence of how brain activity relates to cognition, and more specifically, how changes in
the brain’s architecture correlate with changes in cognitive abilities during develop-
ment and in adult learning.

The view that it is important to study the brain in order to understand cognition
is by no means universally accepted. A belief held by some people is that the neural
and cognitive levels are independent of each other, and that the brain is just one pos-
sible substrate in which cognitive mechanisms are implemented. According to this
view which is called Functionalism in philosophy, it is useless and perhaps even to
be avoided to study the brain with respect to cognition, because the cognitive level
is autonomous and answers about the functioning on this level can be found within
itself (e.g. Fodor, 1983; Pylyshyn, 1980).

One of the best arguments against this view is the evidence reviewed in the pre-
vious chapter: if the execution of the program modifies the architecture on which it
is implemented, and the modified architecture in turn changes the program, then a
distinction cannot be made between the two, and both have to be studied with re-
spect to their interactions. The ways in which the program (environmental input as

processed by the brain) modifies the architecture (the brain), was described in the pre-
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vious chapter. The ways in which the architectural changes of the brain correlate with
changes in cognitive functioning is the topic of this chapter.

Another argument against the Functionalist view is that it is impossible to tell how
far the architecture of the brain can change while the cognitive “algorithm” remains
the same (Churchland, 1986). The answer to this question seems to be “very little”, and
in chapter 4 it will be shown that systems that modify their architecture in response
to learning have fundamentally different properties from fixed-architecture systems.
Therefore, it seems worthwhile and justified to investigate how brain and cognition,
and especially brain development and cognitive development relate to each other, and
this new area of research has already led to many valuable insights into the nature of
the developing brain and mind (e.g., Elman et al., 1996; Johnson, 1997)

In this chapter, several aspects of cognitive development are discussed that share
a recourse to evidence or assumptions about the gradual development of neural ar-
chitectures and that stress the importance of development in understanding the adult
mind. In section 3.1 I will review different ways in which the relationship between
brain activity and cognitive functioning can be studied, and I will then discuss a rep-
resentative theory of linking neural and cognitive development, namely, the idea that
face recognition is subserved by two independent neural systems that develop differ-
ently. A further important theory how neural development guides cognitive develop-
ment has been formulated as the “Starting Small” or “Less is More” hypothesis which
claims that initially restricted cognitive capacities are essential for the acquisition of
adult competence. This hypothesis is discussed in section 3.3. In section 3.4 I then de-
scribe the most influential theory of cognitive development, Piaget’s Epistemological
Constructivism, which has as its central assumption that the child actively builds its

cognitive system through interactions with the environment.

3.1 How to Study Brain and Cognition

The study of correlates between brain activity and cognition is based on different
methods for visualizing and measuring brain activity. In the following sections, the
most important of these methods are described. Measurements of brain activity can
be made during the performance of a cognitive task, and changes in the task can be
correlated with changes in brain activity. Other methods rely on the analysis of im-
paired processing where a specific lesion causes specific cognitive deficits. However,
these methods are problematic and might not be well suited to help understanding

the intact brain.
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Studying the developing brain, that is, correlates between structural and behavi-
oural change, is more difficult because it requires a diachronic approach. Most straight-
forwardly, the onset of a certain cognitive ability would be attributed to the devel-
opment of underlying neural structures, and this approach can also be used for the
termination of an ability (e.g., the inability to reach native competence in a language
when it is learned after a certain age). Unfortunately, however, such a straightforward

relationship does usually not exist.

3.1.1 Measuring and Visualizing Brain Activity

Several methods have been developed to measure and visualize the activity of neurons
in response to certain tasks, and this section gives a brief overview of the more popular

methods.

3.1.1.1 Single and Multiple Cell Recording

The activity of single neurons or of small groups of neurons can be recorded with
microelectrodes that are inserted into the brain to record extracellular or intracellular
potentials. This method offers a very high spatial and temporal resolution. In humans,
cell recordings are made only in patients undergoing brain surgery, but studies in
behaving animals have revealed much about the functional anatomy and plasticity of
the brain. Beside its invasive nature, the problem with cell recodings is that neurons
are examined individually, and it can be very difficult to find a neuron that is involved
in the processing of a certain task. Recently, progress has been made in recording
simultaneously from multiple cells, which allows the investigation of the interactions

between populations of cells (e.g. Nirenberg and Latham, 1998).

3.1.1.2 Optical Dyeing

In animal experiments, changes in neural activity can be visualized directly with
voltage-sensitive optical dyes (e.g. Salzberg, Obaid, Senseman, and Gainer, 1983). The
advantage of this method is that it can easily be repeated for different tasks. It also
allows for the mapping of relatively large areas of the brain. More recently, more
sophisticated reflection measurements have been developed that are independent of
dyes (Grinvald et al., 1986).
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3.1.1.3 Event-Related Potentials

Changes in the electrical potential of the brain can be recorded in an electroencephalo-
gram (EEG). Here, several electrodes are placed on the scalp of a subject and electrical
brain potentials are recorded. By itself this method is of limited use because such
potentials are very noisy and the spatial resolution is poor, i.e., it is difficult to say
in which brain area a recorded change is taking place. More useful are event-related
potentials (ERP) that can be mathematically extracted from EEG recordings by aver-
aging over several EEG recordings that are time-locked to a certain sensory stimulus
or motor event (e.g. Hillyard and Picton, 1987). Then, a specific response (a positive or
negative waveform) can be observed at a certain time interval after the stimulus or mo-
tor event. These responses are usually characterized by their directionality (positive
or negative) and their delay (in msec) after the event. Since its introduction, significant
progress has been made in identifying specific ERPs for certain aspects of sensory per-
ception. Additionally, High-Density (HD) ERPs have allowed for a better localization
of the source of the recorded activity (e.g. Csibra, Tucker, and Johnson, 1998).

ERP is perhaps the most widely used method to study the connection between
brain activity and behaviour. This is because it is non-invasive, has a high temporal
resolution, does not restrict the movements of the subject as much as e.g., PET and MRI
scans (see below), is not noisy, and is relatively inexpensive. Therefore, this method
can also be applied to the study of infants (e.g. McIsaac and Polich, 1992; Nelson and
Collins, 1992).

3.1.14 MEG

Related to EEG recording is the magnetoencephalogram (MEG) that measures the mag-
netic field changes that are due to the electrical activity of neurons (e.g. Williamson,
Lii, Karron, and Kaufman, 1991). Similarly to EEG, magnetometers are placed around
the skull of a subject and the response to sensory stimuli is measured. While MEG
is much less sensitive to noise, localization is worse than with EEG. Recently, meth-
ods for combining EEG and MEG recordings have been proposed (Baillet, Garnero,
Marin, and Hugonin, 1999) to improve localization of the activity within the brain and

to reduce the sensitivity to noise.

3.1.1.5 PET

Positron Emission Tomography (PET) is based on visualizing changes in regional

blood flow in the brain that are due to metabolic demands of neural activity. It is
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based on the idea that a brain region that becomes active will receive an increased
blood supply. To visualize this increased blood flow, a slightly radioactive substance
is injected into the blood and monitored with external radiation detectors (e.g. Raichle,
1985). The spatial resolution of PET scans is in the range of 5-10 mm and thus very
good. The precise location of an event in the brain is achieved by combining PET
with anatomical imaging methods such as MRI. The temporal resolution of PET scans
is, however, not very high, because increased neural activity is not measured directly

and the increase in blood flow lags behind the increase of activity in a specific area.

3.1.1.6 fMRI

Functional magnetic resonance imaging (fMRI) is related to PET in that it visualizes the
increased blood flow that results from neural activity in a specific area of the brain. In
contrast to PET, however, it does not require injection of a radioactive substance and
can therefore be applied more widely. fMRI takes advantage of the differences in the
magnetic field between oxygenated and deoxygenated blood which is visualized as
differences in the intensity of magnetic resonance images by placing the head of the
subject in a huge magnetic coil.

To account for normal background activity of the brain, measurements are usually
made by means of a contrastive method: the brain is imaged alternatively under two
different conditions (e.g., silent reading and reading aloud). Then, the activity profiles
for both conditions are subtracted, and the remaining area of activity is then associated
with the difference between the two tasks (e.g., the articulation in the aloud reading
task).

Like PET, fMRI provides a very good spatial resolution (down to 1 mm) but a
less accurate temporal resolution (several seconds). It can be combined with ERP to
yield both good spatial and temporal resolution. Currently, research is under way to
develop real-time fMRI (Voyvodic, 1999) that allows an on-line observation of brain

activity during a behavioural task.

3.1.2 TMS

A new method to establish a causal link between cortical activation and cognitive
function is transcranial magnetic stimulation (TMS). This technique consists of applying
a short, strong magnetic pulse to the brain by means of a small coil that is held to the
head of the subject. The pulse essentially induces a temporary, reversible disturbance
in the area under the coil. While TMS relies on the exact timing of the pulse, repetitive
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transcranial magnetic stimulation (rTMS) produces a sustained series of pulses and can
impair functioning of the underlying brain area over a longer period, stretching to
several minutes after the end of stimulation. The precise way in which TMS affects
neural functioning, however, remains unknown (Wassermann and Grafman, 1997):
it induces activation in a focal area presumably by depolarizing the cell membranes
there, but at the same time it impairs the normal functioning of the affected neurons.
TMS is especially powerful when combined with other imaging techniques such as
PET (Paus et al., 1997), EEG (Ilmoniemi ef al., 1997) and fMRI (Terao et al., 1998). This
combination allows for the investigation of neural connection patterns by following
the path of TMS-induced activation, and of the precise site of the TMS stimulation.

In summary, several methods for recording electrical activity and blood flow in the
brain exist to unravel the relationship between behaviour and brain activity. While
some of these methods, such as ERP and MEG, offer a very high temporal resolution
with a low spatial resolution, others such as PET and fMRI have a high spatial and a
lower temporal resolution. Combining two methods from different groups can give a
high temporal and spatial accuracy in a single experiment. However, not all methods
are suitable for studying young children: methods can be invasive or they are intim-
idating to an infant (like the noise and vibration of fMRI experiments), and therefore

ERP and MEG seem to be the prime candidates for studies with young children.

3.1.3 Animal Studies

While invasive methods such as recording from cells and dyeing of cortical cells are
not applied in the study of humans, they are commonly used with animals such as
cats, monkeys, and rats (see also chapter 2). The results from these studies are then
sometimes transferred to humans, but there are serious problems when they have
been derived only from a single non-human species, because evolutionary differences
between that species and humans might be ignored (Preuss, 1995). Better results can
be achieved by comparing several evolutionary close relatives of humans and extra-
polating from these studies to the human case. Such comparative studies have been
encouraging. For example, recent research involving nine different mammalian spe-
cies has shown that the schedule of human brain development can be mapped onto
the maturational schedules of other species (Finlay and Darlington, 1995; Clancy, Dar-
lington, and Finlay, in press). This is because the ordering and relative spacing of
neural developmental events is very similar across all mammalian species, and the

data from other mammals can be mapped onto the human developmental course with
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a nonlinear function. As a result, events that have not yet been observed in human
development can be predicted from the animal data with considerable precision, and

can then be correlated with observed changes in cognitive behaviour.

3.1.4 Impaired Processing

Specific lesions in the brain can lead to specific impairments in cognitive processing. It
is therefore tempting to assume that the area affected by a lesion is responsible for the
aspect of cognitive processing that is impaired. Similarly, some developmental dis-
orders such as Specific Language Impairment (SLI) are claimed to lead to very specific
impairment profiles and are therefore sometimes thought to impair an isolated func-
tional module. The inference from impaired processing to the unimpaired brain has
been very popular and historically influential. There are, however, serious problems
associated with this view: it stems from an assumption that development is largely ge-
netically determined with a unidirectional development from genes via brain structure
to brain function. In this view of development, functional modules are predetermined
and fixed and they can be selectively impaired even early in development.

However, another view of development that is more in line with constructivism
stresses the bidirectional interactions between the levels of genes, brain structures,
brain function, and experience (Gottlieb, 1992). In this view, an early lesion or a ge-
netic disorder forms merely an additional constraint on the possible developmental
outcome, and the mature system will therefore not correspond to the “normal” ma-
ture system minus the lesioned modules, but will be totally different from a system
that developed without impairment. As a consequence it is more likely that deficits
will never be entirely domain-specific, and, significantly, the seemingly intact func-
tioning of a certain behaviour might be subserved by other cognitive processes than
in the normal brain (Karmiloff-Smith, 1998).

Much of the evidence for the plasticity of the developing cortex has been reviewed
in the previous chapter, and this evidence has been further backed up by studies of
language development after early brain lesions (for a review see Bates, 1999). Chil-
dren with early (before 6 months age) damage to one side of the brain usually seem to
reach a level of language processing in the normal range (Lenneberg, 1967), although
they display moderate to severe delays in reaching early language milestones (Bates,
Thal, Finlay, and Clancy, in press). Significantly, unlike adults, children do not show
a double dissociation between the two hemispheres: whereas adults with left hemi-

sphere damage are usually more language impaired than with right hemisphere dam-
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age, in children no such difference in impairment can be observed.

Furthermore, even in normal development major reorganizations of brain areas
occur. For example, in infants under 18 months of age, the difference in the brain’s
response to familiar and unfamiliar spoken words is bilateral with a slightly stronger
response on the right. Only after this age a reorganization in the brain occurs and the
response difference between familiar and unfamiliar words becomes stronger in the
left hemisphere (Mills, Coffey-Corina, and Neville, 1997). This example is just one of
several cases where cognitive functions in children seem to be subserved by different
neural systems than in the adult.

The impaired-processing approach to understanding brain function is also prob-
lematic for the adult brain. Traditionally, double-dissociations have been used to
identify brain regions that are responsible for a specific function: when a lesion in
one area impairs a specific function A and not another function B, and when a lesion
in a different area leads to the opposite profile, the assumption seemed plausible that
functions A and B were subserved by two separate “modules” that could be independ-
ently impaired. However, more recent research (Shallice, 1988; Plaut, 1995) has shown
that this inference cannot be made: double dissociations are possible without modules
and can emerge from different lesions to a non-modular system. I will return to this

point in the discussion of my simulations of agrammatic aphasia in chapter 6.

3.1.5 Modelling

Modelling, mainly with neural networks, is another possibility for generating hypo-
theses about the relationship between neural and cognitive development. The mod-
elling approach was already discussed in section 1.3, and a new model of past tense
acquisition and aphasic inflectional processing will be introduced in chapters 5 and 6.
These models make empirically testable predictions about the types of representations
that develop and the structures that support them.

3.1.6 Indirect Methods of Studying Cognitive Development

Because young infants cannot be verbally instructed or made to cooperate in experi-
mental situations, several methods have been developed to analyze their response to
stimuli These methods are based on the infants’ natural tendency to attend to novel
and interesting stimuli. In the preferential looking method, infants are presented with
two different stimuli and the time they spend looking at each is recorded. A related

method is habituation, where the same stimulus is presented repeatedly until the infant
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loses interest, which is marked by a reduction in the time it spends looking at it. Then,
a novel stimulus is presented, and if the infant looks at this novel stimulus longer then
it can be inferred that it can distinguish between the two stimuli. On the other hand,
if looking time does not increase, the infant probably cannot distinguish the new from
the old stimulus.

Other methods to establish an infant’s response are to measure its sucking rate
with sensors on a dummy (e.g. Williams and Golenski, 1979), or its heart rate (e.g.
Casey and Richards, 1988). Both sucking rate and heart rate increase for a stimulus
that is perceived as novel by the infant.

The marker task paradigm (Johnson, 1997) can be applied to link cognitive and brain
development: this method is based on specific behavioural tasks that have been re-
lated to certain brain regions in adults and non-human primates with one or several
of the methods described above. When infants are studied on the same behavioural
task at different ages, it can be inferred how changes in performance relate to known
aspects of brain development. However, the marker task is associated with similar
problems as the inference from impairment to the normal brain: the developing brain
undergoes significant reorganization, and different regions of the brain might be re-

sponsible for a specific behaviour at different ages.

3.2 Correlates of Brain and Cognitive Development

While the methods described in the previous sections allow for finding correlations
between neural and cognitive activity, it is often very hard to establish a clear cause
and effect relationship between the two. In some instances, however, the most plaus-
ible explanation of improved cognitive behaviour can be the development of the un-
derlying neural substrates. One such area has already been alluded to in section 2.10
and concerns experiments with rats that are kept under varying environmental con-
ditions, and the analysis of the effects these different environments can have on the
brain. The most fundamental result of these studies is that rats that are kept in the En-
riched Condition (EC) and the Acrobatic Condition (AC) develop bigger brains with
more dendrites, spines, and synapses, whereas inactive (IC) or merely exercising (FX
and VX) rats show no such effects. At the same time, EC and AC rats develop en-
hanced learning and problem solving abilities: in general, the more complicated the
task, the more likely it is that EC rats perform better than EC or IC rats (reviewed in
Rosenzweig, 1996). However, the precise relationship between learning and synaptic

development remains unclear (Greenough et al., 1987).
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Moreover, in linking brain and cognitive development, it is generally very hard
to time lock specific events in cognitive development with events in brain develop-
ment. For example, nonlinear outcomes can arise from linearly progressing underly-
ing events (Elman et al., 1996), and therefore a sudden burst in cognitive competence
that can be observed in many domains need not coincide with a nonlinear change in
brain development. In fact, recent research has made it necessary to revise certain as-
sumptions about neural events triggering specific behavioral events such as language
development (Bates et al., in press).

Despite these problems, significant progress has been made in relating brain and
cognitive development in a new research area termed “Developmental Cognitive
Neuroscience” (Johnson, 1993a, 1997).

3.2.1 The Case of Face Recognition

One area of research has been concerned with the neural basis for the development of
face recognition in the infant (e.g. Johnson, 1997). This skill is interesting as an example
of human perceptual abilities, and in contrast to language development it can also be
investigated with other animals.

Research in face recognition has produced two seemingly conflicting types of res-
ults: infants as young as 10 minutes preferentially visually track face-like images as
opposed to images with scrambled features or blank face outlines (Johnson and Mor-
ton, 1991). At the same time, however, investigations using static images and the
preferential looking paradigm have failed to establish a difference between face-like
and other patterns in the first 2 or 3 months of life, and have therefore suggested a
gradual learning of facial features over the first few months of life (Johnson, Dziur-
awiec, Bartrip, and Morton, 1992).

Much of the neural evidence of face processing has come from studies of chick im-
printing. Young chicks imprint the first salient moving stimulus and, after a few hours
of exposure, develop a strong and robust preference for this stimulus over others. The
brain region involved in imprinting is in the chick forebrain which is thought to corres-
pond to human cortex. Interestingly, however, a lesioning of this area before or after
training on an object leads to a severe impairment of imprinting preference only when
the object does not resemble a mother hen. By contrast, if the object looks similar to
a hen, imprinting is unaffected by the lesion (Davies, Horn, and McCabe, 1985). Fur-
ther experiments have established that chicks seem to have an innate predisposition

to attend to objects resembling a mother hen. These results led to the proposal that
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there are two independent brain systems that control imprinting in the chick (Horn,
1985; Johnson, Bolhuis, and Horn, 1985). The first system controls a predisposition of
the chick to orient towards hen-like objects, and the second system acquires informa-
tion about the objects to which the chick attends. Current evidence suggests that these
two brain systems are independent from one another and that there seems to be no
information exchange between them (Johnson, 1997).

The theory of chick imprinting has also been applied to infant face recognition,
where evidence for a comparable development comes from studies of cortical devel-
opment. These studies show that in the first 2 or 3 months of life, visually guided
behaviour by the child is mainly controlled by subcortical structures (superior col-
liculus and pulvinar), and only later on cortical structures start to control sub-cortical
processes (Johnson, 1997). At the same time, results from brain damaged patients and
imaging studies indicate that in adults, face recognition seems to be largely depend-
ent on cortical structures. The importance of the cortex for face recognition and the
very early preference of infants for face-like stimuli can be reconciled by assuming
two separate processes for face recognition in human infants as well. Johnson and
Morton (1991) argued that the prespecified bias to orient to human-like faces, which is
mediated by the sub-cortical visuo-motor pathway, biases the visual input to the de-
veloping cortical systems towards human faces and thus allows the gradual build up
of cortical representations for facial features. When the cortical areas mature they be-
gin to exert influence on the behaviour of the child, perhaps through inhibition of the
earlier, subcortical systems. Evidence for this process is that visual tracking of faces in
the infant sharply declines between 4 and 6 weeks after birth (Johnson, Dziurawiec,
Ellis, and Morton, 1991), along with other reflex responses assumed to rely on sub-
cortical circuits, which might indicate a developing cortical inhibition of subcortical
processes.

Taken together, these results suggest a way in which different neural pathways
might guide the development of face recognition, from an initial, subcortical bias to a
later, developing construction of cortical representation for faces, and the behaviour
displayed by infants is a consequence of the developmental state and the interactions

of these pathways.

3.3 Starting Small

Several researchers have argued that the processing limitations of a young learner due

to the immature neural systems can be actually beneficial to learning. This so-called
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Less is More or Starting Small hypothesis is in contrast to the claim that a young learner
is qualitatively the same as an adult and learning can be idealized as a jump from the
initial to the final state (the continuitiy hypothesis, Pinker, 1984). Instead, it emphasizes

the role of development for reaching the state of adult competence.

Turkewitz and Kenny (1982) argued that the development of perceptual organ-
ization is based on competition within and between different sensory domains, and
that limitations of these systems serve to guide this competition. They argued that
early competition is mainly within domains to reach a stable organization without
interference from other domains. Once other domains have matured enough, this ad-
ditional information leads to a perturbation in the Piagetean sense, resulting in the

re-organization of the system to integrate the information from different domains.

Turkewitz and Kenny (1982) predicted that this process could be disrupted by
either delaying the availability of sensory input in a certain domain, or by making
information from other domains prematurely available. The normal case, where a
certain domain is initially unavailable and then becomes available as development
progresses, was claimed to be advantageous over both of these cases. Significantly,
Turkewitz and Kenny claimed that the early unavailability of processing capacities
constitutes an advantage over a situation in which they are available from the be-
ginning. Turkewitz and Kenny (1982) speculated for example that it is beneficial for
children to be able to focus visually only on a narrow range about 10 inches away from
the eyes. This limitation might serve to filter out a visually overly complex world and
might be needed to learn that the perceived size of objects shrinks with increasing dis-
tance. Most significantly, because young children only focus on things close enough
to be touched or grasped, this limitation might be a prerequisite for the integration of
different sensory modalities.

The first case of disruption of the normal starting-small development, which con-
cerns the unavailability of sensory input from one domain and could therefore be
termed “staying small”, has been backed by investigations with congenitally deaf
people. Neville and Lawson (1987a,b) investigated with ERPs the processes under-
lying visual attention to central and peripheral stimuli. They found that different
pathways and mechanisms are involved in processing these different types of stim-
uli, and this result was backed empirically by an anatomical study of rhesus monkeys
(Baizer, Ungerleider, and Desimone, 1991). When comparing the visual processing
of hearing and congenitally deaf adults, Neville and Lawson found no difference for

central stimuli. For peripheral stimuli, however, the deaf subjects showed a markedly
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stronger increase in the respective ERP response. At the same time, the deaf subjects
showed a behavioural advantage over hearing subjects in that they were significantly
faster to detect the direction of motion of peripheral targets. A control group, hearing
subjects born to deaf parents who undergo much of the altered language experience
of the deaf, showed responses like other hearing subjects and no elevated response to
peripheral stimuli. Similarly, subjects who had become deaf after the age of 4 years did
not display the effects of congenitally deaf subjects either (Neville and Lawson, 1987c).
Neville and Lawson hypothesized that the changes observed in the congenitally deaf
subjects were the results of compensatory hyperactivity of remaining sensory systems
together with the functional reallocation of auditory and/or multimodal areas. As a
consequence of auditory input not being available, the cortical areas that normally de-
velop to process auditory input were partly taken over to process peripheral visual

input, leading to a behavioural modification in deaf subjects.

Comparable results have been obtained by Cohen et al. (1997) in experiments with
blind subjects. In people that have been blind from an early age, primary visual cortex
can be activated by Braille reading and other tactile tasks (Sadato et al., 1996). In order
to examine the functional relevance of this activation, Cohen et al. transiently dis-
rupted functioning through a TMS stimulation of the visual cortex. They found that
this disruption induced errors in the identification of Braille and embossed Roman
letters by the blind subjects, but the same stimulation had no effect on the same task
in normal-sighted subjects. Instead, TMS stimulation of the visual cortex in sighted
subjects disrupts their visual performance (Amassian et al., 1989). The results of this
study indicate that in blind people, visual cortex can take on a functional role in so-
matosensory processing, perhaps partly accounting for the superior abilities of blind
people in this domain. This process might be based on the absence of inter-sensory

competition at the relevant stage of neural development.

The second way in which the orderly process of inter-sensory competition can be
disrupted is the premature availability of a sensory domain (Turkewitz and Kenny,
1982). This scenario, which could be termed “starting big”, was investigated by Kenny
and Turkewitz (1986) by prematurely opening the eyes of newborn rat pups. These
experimental rats displayed a different homing behaviour from control rats when the
home could be identified by visual cues: while control rats increased homing until
Day 14 and then decreased, the experimental rats increased homing throughout the
experimental period. When visual cues were removed and replaced with an odour

trace instead, the experimental rats showed the same behaviour as the controls. These
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results indicate that a normal behavioural pattern can be disrupted by the premature

availability of sensory information.

Other evidence for the Stating Small hypothesis has come from studies of language
acquisition. Neville (1995) studied early and late learners of American Sign Language
(ASL) and found that late learners did not have the same level of mastery as early
learners. While this effect is often attributed to a biological, age-related critical period
for language learning (e.g., Lenneberg, 1967) after which native competence can no
longer be achieved, Neville argued instead for a “Less-is-More” hypothesis, claiming
that the processing capacities of late learners were too advanced and that late learners
therefore learned and stored signs as a whole. Early learners, by contrast, had limited
processing capacities which forced them to break signs down into their components,
increasing subsequently the ability to generalize to new situations by re-combining
these components in different ways. This claim was backed by an analysis of the errors
made by late learners: they used signs as they had been learned in a holistic, “frozen”
way without adapting them to new situation. Further evidence for this hypothesis
was established by Cochran, McDonald, and Parault (1999) who tried to counteract
the “starting big” effect in adult learners by introducing an additional distraction task
during the learning of ASL signs, or by alternatively forcing learners to break down
the learned signs into their components by focusing on parts of each sign. They found
that this procedure did indeed reduce the amount of “holistic” errors in comparison
with control subjects, indicating that artificially limiting cognitive resources can have
a similarly beneficial effect on learning as limited resources in young learners.

Modelling studies about “starting small” were done by Elman (1993) in a connec-
tionist simulation: Elman trained a recurrent neural network (Elman, 1990) on sen-
tences of a semi-artificial language comprising subject-verb agreement in number, dif-
ferent verb roles, and embedded sentences. When the recurrent network was trained
with a full set of complex sentences from the outset it was unable to learn the task of
predicting the next letter in the input sequence. The network did learn the task, how-
ever, when either the complexity of the sentences was gradually increased through
training, or when the processing capabilities of the network were initially restricted
(by resetting the recurrent connections at certain intervals) and this restriction was
then gradually relaxed. Elman compared the increase of the network’s processing
power with a maturational increase of a child’s memory span, arguing in line with
Newport (1990) that an initial restricted memory span of the child was essential for

acquiring a system as complex as natural language: the network/child would first
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learn basic distinctions between nouns, verbs, and relative pronouns, and singular
and plural, which would otherwise be obscured by more complex structures, as a
necessary basis for more difficult analyses of complex structures with embedded sen-
tences. The processing restrictions were thus essential for focusing learning on the
subset of facts that laid the foundations for future learning success. A more recent
re-implementation of these experiments (Rohde and Plaut, 1999), however, failed to
confirm Elman’s results but instead found advantages in starting big. Rohde and Plaut
argued that recurrent neural networks extract simple, short-range regularities before
more complex ones even in the absence of initial processing limitations, and that El-
man’s (1993) results were an artifact of his simulation parameters. While Rohde and
Plaut claimed that their results were evidence against a Starting Small hypothesis, it
is unclear whether these arguments do not merely give evidence that recurrent neural
networks are natural “small” learners and are thus not suitable as models of syntactic
learning in adults.

Taken together, the results from early and late language learning and from the de-
scribed animal experiments offer compelling evidence for a theory of learning where
initial processing limitations are beneficial to the learner. They suggest that the time
course of cortical development is paramount for allowing cognitive development in

which a final stage of normal adult functioning is reached.

3.4 Piaget’s Constructivism

One of the most important theories of cognitive development is without doubt Jean
Piaget’s theory of constructivism (e.g., Piaget, 1937, 1980). Piaget was originally a
biologist, and his theory of cognitive development is inspired by biological processes
of ontogenetic adaptation to provide a biological explanation of knowledge. Piaget’s
writings are known for being often very unclear and not making concessions to the
reader, and furthermore, his theories developed and changed throughout his long ca-
reer. A good overview of a later outline of his theories is (Piaget, 1980). Good second-
ary sources are (Boden, 1994) and (Glasersfeld, 1995).

Piaget recognized the study of development as essential for understanding the ma-
ture cognitive state. According to his theory, the child passes through a succession of
certain developmental stages, each of which is built on top of the previous one. The
child’s knowledge is neither innate (as proposed in nativism) nor just passively re-
corded from the world (as claimed in empiricism), but is instead constructed through

active interactions with the environment. This constructivist process can be described
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by two central terms: assimilation and accommodation.

Assimilation describes the integration of new knowledge into the existing cognit-
ive frame. This does not mean, however, that the knowledge is merely recorded and
stored; instead, every sensory input is always interpreted in terms of what is already
known. It is obvious that at certain stages only certain knowledge can be assimilated:
new information is represented as a variation of the old knowledge, and those aspects

of the new information that do not fit into the present frame will be ignored.

When the child reacts to something that has been assimilated and expects a certain
effect, this expectation might turn out to be wrong because the knowledge was inad-
equately represented in the current frame. This violation of expectations can take the
form of surprise or disappointment, creating a perturbation that leads to the process of

accommodation.

Accommodation involves the adaptation of the cognitive frame to new information
in order to eliminate a perturbation. The original situation that led to the perturbation
is re-analyzed and new, previously ignored features might be discovered that require
an adjustment of the cognitive frame. Accommodation leads to a higher stage of in-
telligence where subsequently new, more complex information can be assimilated. It
is important to note that accommodation is driven by violated expectations (i.e., per-
turbations) and not by unusual stimuli per se.

Assimilation can be considered as a process of generalization: new information is
represented as a variation of what is already known, leading to the same reaction in the
child. By contrast, accommodation is a process of specialization: a schema is broken
down into sub-schemata, each of which then yields a different reaction. These two
processes work in a circular way to reach ever higher cognitive stages, and the driving
force behind this development is equilibration. Equilibration can be described as the
motivation to eliminate perturbations to reach a stable state that yields a consistent
idea of the world. In equilibration, the threat to the unity of the whole by splitting
schemas into sub-schemas is weighed against the inability to represent distinctions,
and schemas are therefore changed as little as possible, but as much as necessary to

account for new information.

From his theory of cognitive development, Piaget predicted that every child passes
through a certain series of developmental stages, and he and his collaborators de-
signed many experiments to test and describe these stages. These experiments involve
the concept of object permanence where the child learns that objects that disappear from

view do not cease to exist; conservation, where the child learns that water poured from



3.5. Chapter Summary 67

one glass into another one of a different size does not change its volume; seriation,
which involves learning to sort a number of sticks according to length, and the balance
scale task, where the child learns to predict the movement of a scale which has weights
attached on both sides at different distances of the fulcrum.

Piaget maintained that the stages of increasing intelligence and abilities through
which the child passes are not the realization of something innate but an authentic
construction. What is innate are general learning mechanisms together with equilibra-
tion that drives learning. Assimilation and accommodation further require the innate
ability to detect regularities and similarities, to remember previous experiences, and
to judge the similarities.

Language is, according to Piaget, rooted in prelinguistic sensorimotor intelligence,
ranging from birth to about 1.5 or two years of age: the child learns language structure
by structuring objects, real or imaginary, in her environment.

Although Piaget’s theory has been very influential, it is associated with many prob-
lems. Piaget never managed to formalize his proposed developmental mechanisms
which led to a rejection of his theory by many (e.g., Piattelli-Palmarini, 1980, 1994).
Furthermore, more recent research has shown that Piaget significantly underestim-
ated the abilities of very young children, and that the detailed time scales he associated
with each of his proposed stages are more flexible than he believed. For example, an
infant recognizes certain linguistic properties such as her native language as opposed
to other languages, speech rhythm and intonation very early in life, much before the
end of the sensorimotor stage, and therefore this stage cannot be the prerequisite of
some basics of language development.

However, the advent of neural network models that learn from experience and
build internal representations has re-awakened interest in Piaget’s theories (e.g., Bates
and Elman, 1993; Elman et al., 1996), and recently, constructivist neural network mod-
els have been proposed as a formalization framework of these theories (Quartz, 1993;
Quartz and Sejnowski, 1997; Mareschal and Shultz, 1996). This point will be discussed

in more detail in the next chapter.

3.5 Chapter Summary

In this chapter I have reviewed the relationship between brain development and cog-
nitive development. While it is difficult to establish a causal link between the two,
several strands of research suggest such a link. One of them is concerned with direct

studies of neural and cognitive functioning, and after reviewing methods of invest-
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igating this link I presented in more detail one exemplary theory of how neural de-
velopment leads to cognitive changes, the case of face recognition. The next section
presented evidence for the Starting Small hypothesis that emphasizes the importance
of progressive neural development to reach adult competence, contradicting theories
that see children as partly functional, but essentially equivalent to adults. This evid-
ence comprises studies with congenitally deaf or blind human subjects that display
an altered cortical organization, and animal studies in which the eyes of rat pups are
prematurely opened, leading to abnormal homing behaviour. The chapter closed with
the outline of Piaget’s theory of constructivist development that equally stresses the

importance of development in constructing an adult mind.



Chapter 4

Constructivist Modelling

The characteristics of a learning algorithm can be viewed from a theoretical basis: what
is the time complexity of a specific algorithm? What assumptions have to be made a
priori to make learning feasible in a certain system? How can learning be characterized
in principle? These questions have also been addressed with respect to constructivist
neural networks, and one result has been that such algorithms are fundamentally dif-
ferent from fixed-architecture systems and that they can overcome some of the latter’s
principled limitations. In the rest of this chapter, a general theory of learning, induct-
ive inference, is described (section 4.1). This theory has been applied to explain human
learning, which has led to certain strong assumptions about what and how humans
can learn in principle (section 4.2). A successful formalization of constructivist learn-
ing has provided an alternative theory of human learning that is more powerful and
does not rely on these strong assumptions (section 4.3). Empirically, the characterist-
ics of constructivist algorithms can be studied in neural network algorithms in which
learning involves structural change, and section 4.5 develops a taxonomy of such al-
gorithms as currently exist. The new constructivist neural network algorithm that I
developed for the simulation experiments in this thesis is described in section 4.6. Fi-
nally, section 4.7 gives a brief overview of previous models of cognitive development
that were developed on the basis of another constructivist neural network algorithm,

cascade correlation.

4.1 Inductive Inference

The dominant formal theory of learning is learning by induction, or inductive infer-
ence (e.g., Shavlik, 1990). In this theory the learner is presented with a set of classified
examples, and the goal is to identify the nature of each class and to assign new, unclas-

sified examples to one of the learned classes. Examples are sets of feature attributes
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together with the class labels, e.g., (“feathers, two legs, beak”, “bird”) for the class
bird, or (“bring”, “brought”) for the class past tense of bring. This type of learning is
also called concept learning because all examples of a certain class can be said to form
the concept of that class.

Formally, learning by induction consists of inferring a function f that maps a
datum to a class, based on a set of examples z; that are labelled as belonging to a cer-
tain class, i.e., (z;, f(x;)). The possible functions, or hypotheses, are assumed to be from
a finite or infinite hypothesis space. Inductive inference is seen as a search through this
hypothesis space, where hypotheses that are incompatible with the encountered ex-
amples are rejected until, in the ideal and non-infinite case, the only remaining hypo-
thesis is the correct one (see e.g. the candidate elimination algorithm, Mitchell, 1982).!

4.1.1 The Need for Bias

In its simplest case, the search through the hypothesis space is random. It is clear,
however, that this search strategy is infeasible: in an infinite hypothesis space the
probability of finding the correct hypothesis tends towards zero. Therefore, some sort
of a priori restriction has to be put on the hypothesis space or the search algorithm, or
both (Blumer, Ehrenfeucht, Haussler, and Warmuth, 1988). Such restrictions are called
the bias of the learner, and there are two kinds of biases: a restricted hypothesis space bias
and a preference bias.

A restricted hypothesis space bias (RHSB) restricts the size of the hypothesis space
by excluding a priori certain hypotheses from being considered by the learner. In a
hypothesis space defined by logical conjunctions, for example, hypotheses containing
a logical or could be excluded. In neural network learning, the number of hidden units
restricts the possible functions that can in principle be learned: for example, without
any hidden units, the network is restricted to the learning of linearly separable func-
tions. The danger in introducing an RHSB into a system is of course that it might
exclude the correct hypothesis. In this case, the learner will never succeed, and it will
not even necessarily find a best approximation to the correct function. For example,
when a single-layer perceptron is trained on a non-linearly separable problem with
the standard perceptron learning algorithm, its weights do not converge but oscillate.
Therefore, in introducing an RHSB the nature of the target hypothesis has to be anti-
cipated, which is often not possible.

'This algorithm was already formulated by Conan Doyle (1890), where Sherlock Holmes tells Wat-
son: “How often have I said to you that when you have eliminated the impossible, whatever remains,
however improbable, must be the truth?”
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A preference bias (PB) introduces an ordering over all hypotheses in the hypothesis
space, and the learner chooses the most preferred (often, the simplest) hypothesis that
is consistent with the data. This is the well-known principle of Occam’s Razor. The
problem here is that a PB does not necessarily give a time benefit in learning. For
example, if the PB prefers short hypotheses, whenever the learner chooses a certain
hypothesis it has to make sure that there are no shorter hypotheses available that are
also consistent with the data. To avoid this prohibitive search for shorter hypotheses,
often the preference ordering is achieved with heuristic procedures (Shavlik, 1990),
or more complex hypothesis are constructed on the basis of the currently preferred
simpler one. In neural network learning there is no a priori global preference bias, but
a partial ordering is achieved through the learning algorithm, e.g., gradient descent.
Here, each new hypothesis is only a slight modification of the previous one, resulting

from the gradual adjustment of the weights.
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Figure 4.1: Effects of different bias on the modelling of a function sampled from noisy
data. The function (dotted lines) is sampled with Gaussian noise (points) and mod-
elled by three different functions (solid lines). a.: the bias is too strong, restricting the
class of models to linear functions. The data cannot be faithfully represented. b.: The
bias is well-chosen and the model gives a good approximation of the original function.
c.: the bias is too weak and the model overfits, leading to poor generalization.

Another reason for introducing bias into a learner is noisy training data. In this
case, an assumption (i.e., bias) has to be made about the function from which the data
is sampled, to reach a trade-off between modelling the original function and modelling
the noisy data. Figure 4.1 shows an example of modelling a function that is sampled
with Gaussian noise. In fig. 4.1a., the bias is too strong in that only linear functions can
be learned, and therefore the data cannot be represented faithfully. Fig. 4.1b. shows
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a good choice of bias for the given data set and the modelled function is close to the
original. In fig. 4.1c. the model is too unrestricted and overfits the data by modelling

the noise, which leads to poor generalization abilities.

4.1.1.1 The Bias/Variance Dilemma

Since a bias excludes many hypotheses from needing to be tested, learning in a more
biased learner requires less data to succeed than a less biased learner. For example,
a learner that is restricted to linear functions needs only two data items to determine
the particular function. However, a strong bias comes at the expense of possibly ex-
cluding the target hypothesis. In a less biased learner the chance to exclude the target
hypothesis becomes smaller, but many more hypotheses will be consistent with a data
set and thus more examples are needed to find the correct one. This trade-off is called
the bias/variance dilemma (Geman, Bienenstock, and Doursat, 1992).

In neural network learning, solving the bias/variance dilemma amounts to finding
an appropriate architecture, or more specifically, a suitable number of hidden units for
the network. With a low number of hidden units the network has a high bias and
can only learn simple functions. In the extreme case of no hidden units at all, only
linearly separable functions can be learned. By contrast, with many hidden units the
bias decreases and more complex functions can be learned, but at the same time the
number of parameters (weights) that have to be adjusted increases, requiring a larger
training set and perhaps leading to overfitting.

Bias and variance in neural networks can be quantified in the following way (Ge-
man ¢t al., 1992): the hypothesis space can be thought of as containing all functions that
a neural network with a given architecture can in principle learn. Based on different
samples from the function to be approximated, different functions will be generated.
The network bias is then the average Euclidean distance between the generated func-
tions and the target function in the hypothesis space. The network variance on the
other hand is the average Euclidean distance from any learned function to any other.
Network bias thus describes how different the learned approximations are from the
target function, whereas the variance describes the “variety” of approximations that
can be learned. This quantification shows that a bias is always defined in terms of
the target function, and therefore a “weak” bias (e.g., 50 hidden units in a neural net-
work) might still be “high” independent of the variance in that it excludes the target
function (which might require 60 hidden units to be computed). On the other hand, a
“strong” bias (e.g., no hidden units at all) can be “low” if the target function is simple
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(i.e., linearly separable), and in this case variance will also be low. In the general case,
however, there is a trade-off between bias and variance. The network error can then be
decomposed into a bias and a variance component (Geman et al., 1992), and the goal

is to reduce both components.

4.2 Human Learning as Inductive Inference

Considering human learning as a form of inductive inference has led to a number of
strong claims about innate knowledge that have dominated especially the field of lan-
guage acquisition research for many years. Two main problems have to be addressed
in human inductive inference: how does the learner know that the current hypothesis

is not overly general? And where do the hypotheses come from?

4.2.1 Overly General Hypotheses

A problem faced by a general inductive learner that learns one class from positive data
only (i.e., from data labelled as belonging to this class) is when to know that the correct
hypothesis has been found. As discussed before, the learner chooses a new hypothesis
and rejects it if data is encountered that is inconsistent with this hypothesis. But what
happens if the learner settles on a hypothesis that is too general for the data? With
positive data only, a hypothesis like “Every possible data item belongs to this class”
will never be disproved. There are only two ways out of this problem: either, negative
data has to be provided that is labelled as not belonging to the class (or as belonging
to another class if multiple classes exist), or the learner has to be biased in a way to a
priori exclude overly general hypotheses.

This insight has had fundamental implications for theories of child language ac-
quisition. Here, the child has to learn only one class, the correct grammar of her
language. The data consist of the utterances heard by the child, and all of them are
implicitly taken to be grammatically correct, that is, they all constitute positive ex-
amples. However, it has been claimed that grammars as complex as those for natural
languages cannot be learned based on positive examples alone by a general inductive
learner (Gold, 1967). Since empirical data suggest that negative evidence, i.e., correc-
tions of wrong utterances by the parents, are generally not available to the child (Mar-
cus, 1993), the child is claimed to need an innate bias that restricts the class of gram-
mars she can learn. This innate bias is the Universal Grammar postulated by Chomsky
(1965). Chomsky (1980) formulated the problem of language acquisition in terms of

an inductive learner: the child’s initial hypothesis space, Sy, is genetically restricted
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to contain precisely all possible human languages. Language acquisition consists in
using some relevant experience E to test a succession of grammars Sy, Sp, S3, ..., until
a steady state S; is reached which corresponds to the adult competence. The interest
of the linguist lies in determining the nature of the initial state Sy, which can be de-
rived from studying E and S;: those aspects of the final state S that cannot be derived
from the experience £ must be predetermined in Sy. Chomsky’s conclusion was that
the initial state Sy must contain certain very specific linguistic knowledge such as the
structure dependence of rules and knowledge about bound anaphora as well as gen-

eral elements of semantics, phonetics, and phonology.

4.2.2 Fodor’s Paradox

Fodor (1975, 1980) used the properties of a general inductive learner to argue directly
against Piaget’s constructivist position. His argument was that it is theoretically im-
possible to learn more complex concepts or representations than those initially present
in a system’s hypothesis space. Therefore even the most complex representations
would have to be innate instead of being constructed by the learner, thus undermining
Piaget’s constructivist theory.

Fodor argued that since the initial hypothesis space must already contain the target
hypothesis, nothing new can in principle be learned. Instead of learning, one should
therefore speak of a fixation of belief, that is, the settling on one of the pre-defined hy-
potheses. In this way, everything that can be learned in principle must be innate—the
learner just “discovers” a more complex hypothesis instead of constructing it on the
basis of simpler ones. This view has been taken further to call for the abandonment
of the notion of “learning” (Piattelli-Palmarini, 1994). In particular, Piaget’s notion of
constructing new, more complex hypotheses on the basis of other, simpler ones, was

thought to be untenable.

4.3 A Formalization of Constructivist Learning

The problems faced by an inductive learner that have been outlined in the previ-
ous section all stem from the basic assumption that the hypothesis space is pre-
determined, static, and external to the learner. On the other hand, Piaget’s construct-
ivist theory, which postulated a stage-wise construction of the hypothesis space, was
not formalized and thus under-specified.

More recently, however, constructivist learning has been formalized on the basis of

neural network learning (Quartz, 1993). This formalization is made in the framework
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of the probabilistic PAC-learning (Valiant, 1984) which has become the standard model
of inductive inference in machine learning (e.g. Dietterich, 1990) and which will be

outlined here briefly.

PAC learning is, in contrast to the general inductive learner (Gold, 1967), not con-
cerned with what type of functions are in principle learnable, but which problems are
learnable in feasible (i.e., polynomial) time from a restricted class of representations.
Further, the definition of learning is fundamentally different in the PAC framework.
Instead of finding, after an arbitrary amount of time, a hypothesis that correctly classi-
fies all data, PAC learning sacrifices correctness for feasible learning time: a concept is
learned when the algorithm constructs with the probability 1 — § a hypothesis g from
a restricted hypothesis space G so that with probability 1 — ¢, g classifies all examples
correctly. ¢ is called the confidence parameter and e the error parameter. What the learner
does is thus to probably find a hypothesis that classifies the examples approximately
correctly. Hence the name: Probably Approximately Correct (PAC) learning.

How can the PAC framework be applied to learning in neural networks? The ini-
tial network architecture G can be identified with the initial restricted hypothesis space
G in PAC learning (Baum and Haussler, 1989): the network architecture is defined by
its fixed connectivity pattern together with a set of functions F; that each node i can in
principle compute. This initial architecture of the network allows only for a certain set
of hypotheses to be computed and corresponds therefore to the restricted initial hy-
pothesis space. Learning in the network corresponds to eliminating hypotheses from
this space: through an error-correcting measure (such as the é-rule for weight adapt-
ation, Widrow and Hoff, 1960; Rumelhart et al., 1986b) the network adjusts its free
parameters and settles on a particular architecture with specific weights (computing
a particular function) which can then be defined by its connectivity and the specific
functions fi, fo,... , fp computed by the nodes 1...n. This final architecture (with the
associated function that is computed in it) corresponds to a specific hypothesis g from
the initial space G. Structure and function in neural networks are therefore closely

related, making them attractive for the investigation of general learning properties.

A fixed-architecture network restricts the space of hypotheses that it can compute.
Its architecture constitutes a bias in the sense discussed above: in designing the net-
work architecture, the possible solution space for a certain task has to be taken into
consideration. This is usually done by choosing different numbers of hidden units
through trial-and-error and then using the architecture that yields the best results:

with too few hidden units the network has a strong bias that can prevent it from learn-
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ing the target function, and too many hidden units will lead to overfitting of noisy

data and poor generalization.

In order to overcome the limitations introduced by an a priori fixed hypothesis
space, a neural network (or any learner) can allow for an increase of the initial hy-
pothesis space and thus adjust its bias in a problem-specific way to become able to
represent hypotheses that were not part of the initial space. For neural networks, with
their equivalence between structure and hypothesis space, this means that they have
to allow for modifications of their structure as a function of learning. Such construct-
ivist neural networks start with no or very few hidden units and add units as learning

progresses.

With no hidden units, a constructivist neural network has a high bias and is there-
fore limited in the types of functions it can learn. Through the gradual addition of
hidden units while more data is encountered, the bias weakens in a way that is ap-
propriate for the target function. It has been shown that a gradual weakening of the
bias, where the learner does not pick up the idiosyncrasies of the data, can avoid the
bias/variance dilemma and decrease variance simultaneously (White, 1990). In this
way, the bias will become designed for the problem at hand and will therefore not ex-
clude the correct hypothesis, at the same time avoiding the search through areas of the
solution space that are far removed from the target function. In this way, construct-
ivist neural networks effectively conflate the restricted hypothesis space bias and the
preference bias: between node insertions, the network’s hypothesis space is fixed and
is searched by adapting the connection weights. When a new unit is inserted, the hy-
pothesis space is increased to include more complex hypotheses that require the extra
unit to be represented, and the RHSB is relaxed. Because units are inserted one after
another, this imposes a preference bias to test simpler hypotheses (that require fewer
hidden units) first.

For a constructivist learning theory to be plausible these structural modifications
must be based on general principles as a function of learning and not be motivated by
the specific task to be learned. Otherwise, an arbitrary process might transform the

learner into the target state and trivialize the explanation of learning (Pinker, 1984).

This view of learning shifts the emphasis away from searching through a set of
hypotheses to finding the representations on which hypotheses can be constructed. It
has been shown that networks that add structure while they learn are complete repres-
entations, i.e., they are capable of learning in polynomial time any problem that can be

learned by any other algorithm in polynomial time (Baum, 1989). By contrast, train-
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ing a fixed size network is NP-complete? (Judd, 1988), even when it has as little as
three hidden units (Blum and Rivest, 1988). Therefore, constructivist neural networks
are not only attractive from a learning theoretic point of view but should also display
good practical properties.

These learning theoretic results also shed a different light on human learning: in-
nate knowledge needs to be presupposed only if a static hypothesis space is assumed.
By contrast, when learning is viewed as constructivist, the hypothesis space grows
and enables the learner to construct more complex hypotheses on the basis of simpler
ones, corresponding to the developmental theory of Piaget (1980). In chapter 2 I re-
viewed how the human cortex develops in an activity-dependent, constructivist way.
Neural measures of representational complexity have been considered by Quartz and
Sejnowski (1997) who argued that the degree of dendritic arborization constitutes such
a measure. The reasons to choose dendritic development as a measure of represent-
ational complexity are that dendritic growth introduces only localized changes into
the overall system (locality), and that the local changes do not undo previous learn-
ing (stability). Dendritic growth is significantly more protracted than axonal growth
and continues throughout life. The development of dendritic trees in the cortex thus
addresses the core problem facing a learner: that of developing representations suit-
able for learning a task. Constructivist learning thus satisfies both neurobiological and
learning theoretic constraints and can offer a powerful model for human learning and

development.

4.4 The Argument for Constructivist Models of Cognitive De-
velopment

Chapter 2 reviewed evidence that the cortex develops in many parts in a constructivist
way and builds structures based on sensory experience. Chapter 3 related brain devel-
opment to cognitive development, showing how changes in cortical structure correlate
with cognitive change and how initial limitations of processing capacities might be an
important prerequisite to successful learning in the child. Taken together, these res-
ults give evidence for constructivist theories of cognitive development. Finally, in this
chapter it was argued that constructivist learning systems are fundamentally differ-
ent from static systems. Therefore, the constructivist aspect of cognitive development

might be central, and by abstracting it away in models of cognitive development they

2An NP-complete problem belongs to the class of the most complex problems that cannot be solved
in polynomial time; these problems are therefore considered to be computationally intractable.
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might miss an essential aspect of what they aim to model. Models of cognitive devel-
opment that are based on fixed-architecture neural networks can offer new insights
into processes of associative learning based on distributed representations and can in-
form further research in human development (see e.g. Seidenberg, 1994), but it has
been shown (Quartz, 1993) that such models, contrary to common arguments (e.g.
Chater and Oaksford, 1990) do not offer an alternative to nativist theories of devel-
opment. Rather, they serve as an illustration of such theories and of the problems
faced by static learners. Constructivist neural network models on the other hand com-
bine associative learning based on distributed representations with a plausible learn-
ing process that allows them to develop an architecture appropriate for the learning
task, avoiding the necessity to choose an arbitrary architecture corresponding to innate
knowledge. It is therefore a promising direction of research to model developmental
processes in constructivist neural networks.

The following section gives an overview of constructivist neural network al-
gorithms and develops a taxonomy for them. Section 4.6 then describes the new al-
gorithm that was developed for the cognitive simulations in chapters 5 and 6.

Another group of networks that change their architecture during or after learning
and that are often reviewed in connection with constructivist networks (e.g. Ash and
Cottrell, 1995; Quinlan, 1998) are selectionist networks. These networks delete connec-
tions or units from an initially pre-specified architecture, often to improve generaliz-
ation ability. But since they do not solve the problem of a pre-specified hypothesis
space and do not allow for a problem-dependent weakening of the restricted hypo-
thesis space bias which is fundamental here, they will not be discussed further.

4.5 Constructivist Neural Network Algorithms

The motivation for developing constructivist (or constructive, or generative) neural
network algorithms has mainly come from practical problems associated with fixed
architecture networks. As discussed in the previous sections, the choice of the correct
number of hidden units for a multi-layer perceptron is crucial but has to be established
on a trial-and-error basis. Further, the time necessary to train fixed-architecture net-
works is often prohibitive. One reason for this is that in a big network, many paramet-
ers (weights) have to be adjusted requiring a lot of training data. Another reason is the
“herd effect” (Fahlman and Lebiere, 1990a): due to the error reduction algorithm, all
hidden units will often try to correct each error and long training is necessary before

different units start to specialize on sub-problems. Finally, for the backpropagation
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and other related algorithms, convergence cannot be proved and they might get stuck

in so-called local minima, never finding a good solution to a problem.

Constructivist algorithms come in many flavours, but common to most of them is a
repeated two-stage learning process: the network is trained with some error-reduction
algorithm in the current architecture. When the network error no longer decreases, an
architectural modification, i.e., insertion of one or several units, is made, and training

continues with the new architecture.

The following sections develop a taxonomy of constructivist neural network al-

gorithms.

4.5.1 Perceptron-based Algorithms

The most common perceptron-based constructivist algorithms are restricted to one
output unit and to binary (0 and 1) or bipolar (-1 and +1) input/output values. They
perform a classification of the inputs into two classes. This well-defined task has al-
lowed for theoretical proofs of their convergence which is an advantage over the other

types of constructivist algorithms that are described in later sections.

The well-known restriction of perceptrons, i.e., networks without a hidden layer, is
that they can only learn linearly separable problems (Minsky and Papert, 1969). A per-
ceptron implements a straight decision boundary in the input space, and training its
weights corresponds to adjusting this straight boundary so that the inputs requiring
the output 0 (or -1 in the bipolar case) get separated from those requiring the out-
put 1. Convergence of the perceptron training algorithm is guaranteed if the learning
problem is linearly separable (Minsky and Papert, 1969), but for non linearly separ-
able problems like the famous XOR, a stable weight-setting cannot be found and the
weights oscillate. Several alternative algorithms have been developed to lead to a sta-
bilization of the weights for non linearly separable problems, most notably the Pocket
algorithm (Gallant, 1990) and the Thermal Perceptron (Frean, 1992). These algorithms

are often used in training perceptron-based constructivist networks.

Constructivist perceptron-based algorithms build one or more hidden layers and
thus allow the network to solve even non linearly separable problems. There are in
principle two ways of doing this: re-representing the data so that it becomes linearly

separable, and constructing non-linear decision boundaries from linear segments.
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4.5.1.1 Input Re-Representation

The first class of algorithms re-represents the input in the constructed hidden units in
such a way that the problem becomes linearly separable. In this case the hidden layer
can be viewed as the new input to a conventional perceptron that is built on top of it.
In these types of algorithms, each layer has connections only to the layer directly be-
neath it. Examples of this type of algorithm are the Tiling (Mézard and Nadal, 1989),
Sequential (Marchand, Golea, and Ruan, 1990), and Higher-Order Network (HON)
(Redding, Kowalczyk, and Downs, 1993) algorithms, all of which differ in the way in
which they re-represent the input data. In the Tiling algorithm, a hierarchy of hidden
layers is constructed so that all patterns belonging to the same class have identical hid-
den representations. From these hidden representations the desired output can then
be learned with the perceptron algorithm. The Sequential algorithm builds a single
hidden layer by removing all those inputs from the training set that are classified cor-
rectly by the network and adding hidden units until all inputs have been accounted
for. The HON algorithm adds hidden units that compute linear combinations of the
inputs until they become linearly separable, and in a second step converts the resulting

HON into a simple feed-forward network, minimizing the fan-in of hidden units.

4.5.1.2 Decision-Boundary Construction

The second way of solving the problem of non-linear separability is to enable the net-
work to learn a non-straight decision boundary, and this approach is taken, for ex-
ample, in the Tower, Pyramid (Gallant, 1990) and Upstart (Frean, 1990) algorithms. In
these algorithms, the output unit always sees the original input, but the construction
process inserts additional units that enhance the output in such a way that decision
boundaries can be constructed as a combination of straight elements. In the Tower
and Pyramid algorithms, a new unit is added on top of the single output unit and
connected to the input layer and the immediately preceding (Tower) or all preceding
(Pyramid) units. The Upstart algorithm tries to classify as many inputs as possible into
two classes, and then adds units that are trained to compensate for the two types of er-
ror made by each unit (“wrongly positive” or “wrongly negative”). The trained units
are then inserted into the network with weights big enough to override the original
mis-classification. The precise nature of the non-linear decision boundaries generated
by the Tower, Pyramid, and Upstart algorithms is analyzed in (Chen et al., 1995).

All of these perceptron-based algorithms can be shown to converge in principle.

The convergence proofs are based on showing that each unit insertion improves the
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classification accuracy of the network by at least one data item. More recently, these
convergence proofs have been extended to multi-category, real-valued versions of the
described algorithms (Parekh, Yang, and Honovar, 1995, 1997a,b; Yang, Parekh, and
Honovar, 1996).

4.5.2 Error-Modelling Algorithms

A second class of constructivist neural network algorithms can be called error-
modelling because they insert hidden units that are trained to minimize an objective
error function, independent from the input data. These algorithms are based on multi-
layer perceptrons that are trained with the backpropagation (Rumelhart et al., 1986a)
or quickprop (Fahlman, 1989) algorithms. The network is trained until error reduction
stagnates, and a new unit is inserted to reduce the residual error. In the simplest case,
like Dynamic Node Creation (Ash, 1989) and Constructive Backpropagation (Hirose,
Yamashita, and Hijyta, 1991), a new unit is inserted into the single hidden layer of
a backpropagation network and the whole network is retrained to reduce the sum
squared error. Despite their simplicity, these networks have been shown to converge
faster than fixed-architecture networks, and Hirose ef al.’s (1991) algorithm includes a
pruning stage after the network has converged to find a minimal architecture. How-

ever, generalization abilities were not tested in these networks.

4.5.2.1 Cascade Correlation

The other side of the spectrum is taken by the best-known constructivist algorithm,
Cascade Correlation (Fahlman and Lebiere, 1990a,b), and this algorithm has been ap-
plied to the modelling of cognitive development (see section 4.7). In the Cascade Cor-
relation algorithm, the network starts out with just the input and the output units that
are fully interconnected. Training is divided into two phases: in the output phase, where
only the weights leading to output units are adjusted (with the quickprop algorithm,
a faster alternative to backpropagation, Fahlman, 1989), the network is trained on the
data until the error reduction stagnates and an improvement is no longer possible
within the current architecture. In the following input phase, a pool of hidden units
that are only connected to the input units and any previously inserted hidden units
are trained to maximize the covariance of their activation with the remaining network
error. When these correlations no longer increase, the one unit with the highest cor-
relation is inserted into the network as a new hidden layer, and the input weights to

this unit are frozen. The unit is then fully connected to the output. With this new
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architecture, the network enters once more the output phase and training continues.
Since each new hidden unit receives input both from the input units and from previ-
ously added hidden units, the network can build representations with ever increasing
complexity on top of each other. Benchmark tests performed with Cascade Correla-
tion showed a significant improvement in speed and generalization capability over
backpropagation in certain classification tasks. Fahlman and Lebiere (1990b) argued
that this improvement was due to having a single unit in each hidden layer, avoid-
ing the “herd effect” where all units simultaneously change their weights to solve the
same problem, and to the freezing of the input weights which ensured that the newly
inserted hidden unit remained a “feature detector” for those aspects of the error that
dominated at the time of its insertion.

Straightforward extensions of Cascade Correlation have been developed, e.g.,
FlexNet (Mohraz and Protzel, 1996), which allow the insertion of multiple units in
multiple hidden layers of the network and do not freeze the input weights. These
variations improve the benchmark performance, albeit at the expense of running time.
Fujita (1992) introduced a correlation function that took the interdependence of hid-
den unit activations into account and achieved smaller network architectures at the
expense of longer running times.

An analysis of the Cascade Correlation algorithm (Hwang, You, Lay, and Jou, 1996)
showed, however, that it is not well suited for smooth interpolation in regression prob-
lems. This is due to two problems: first, higher order hidden units have a higher fan-in
than lower ones (since they receive input from the input layer as well as from all lower
hidden units), yet they use the same fixed activation function. Second, the correlation
criterion for candidate nodes pushes them into their saturation region, resulting in a

zigzag decision boundary.

4.5.3 Data-Modelling Algorithms

The third group of constructivist network algorithms can be called data-modelling al-
gorithms, because they build a representation of the data space in the hidden layer and
use this representation to produce the output. Algorithms from this class might be the
most interesting ones because they use principles that can be argued to be biologically
plausible such as receptive fields that respond only to a small region of the input space.
Furthermore, building the representation of the input space can in principle be done
in an unsupervised way and these algorithms show how aspects of supervised and

unsupervised learning can be combined.
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A general principle underlying many of the data-modelling algorithms is the initial
assumption that similar inputs lead to similar outputs, and the constructivist process
is used to account for exceptions to this assumption.

Data-modelling networks are often based on Radial Basis Function (RBF) networks
(Moody and Darken, 1989). In contrast to multi-layer perceptrons with a logistic
threshold function, RBF networks have a hidden layer of units with Gaussian activ-
ation functions that respond to inputs within a certain region as opposed to inputs
above a threshold (fig. 4.2). The hidden units cover the whole input space and the
output is produced based on the activations of the hidden units. Problems facing RBF
networks are (a) the question of how many hidden units to use and (b) where to place
them in the input space. When two similar inputs are covered by the same receptive
field, they will produce a similar output, but this is not always desired. The construct-
ivist algorithms discussed in this section offer various solutions to the questions of

number and placement of the hidden units.
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Figure 4.2: A three-dimensional Gaussian activation function that acts as a receptive
field to nearby inputs. A. Viewed from the side with a signal activating the receptive
field. B. Three-dimensional view, C. Viewed from the top.

The GAL network (Alpaydin, 1991) implements what is basically a nearest-
neighbour algorithm for the classification of input patterns: when an input does not
belong to the same class as the inputs covered by its nearest hidden unit, a new unit
is inserted for this input. Since the construction of the hidden layer depends substan-

tially on the order of presentation, the network also has a dream state: an exemplar
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unit is activated randomly, and the input pattern is re-created. Then this exemplar
unit is disabled, and if the network still responds with the correct class, it is deleted.

A different approach is taken in the Node-Splitting algorithm (Wynne-Jones, 1993):
here, the hidden layer is grown by splitting existing nodes, and the criterion for split-
ting is the degree of oscillation of weight updates. The idea here is that an oscillating
unit is used for conflicting purposes and could benefit from splitting. The algorithm
works well with Gaussian activation functions.

The Resource-Allocating Network (RAN, Platt, 1991) constructs the hidden layer
of an RBF network based on the principle that new units are allocated for unusual
patterns. Unusualness is defined by two criteria: the current input has to be dissimilar
from other inputs, and it also has to create a high output error. The distance that an
input must have from its nearest unit to qualify for insertion of a new unit is shrunk
(exponentially) during the course of training, the idea being that the network initially
learns the global easy mappings, while local exceptions are learned as the distance
limit shrinks. The RAN also adjusts the centres of the Gaussian units in a way so
that units that decrease the error for an input are pulled towards this input and units
that increase the error are pushed away. Problems of the RAN are that it can produce
too many units for noisy data, leading to overfitting. Another problem is the setting
of the parameters, especially of the minimal distance that a pattern may have to an-
other while still being treated as an exception. Everything smaller that the minimum
distance will be generalized away. The latter problem has been addressed in a prob-
abilistic version of the algorithm (Roberts and Tarassenko, 1994).

4.5.3.1 Growing Neural Gas and Supervised Growing Neural Gas

Two related very effective algorithms for constructing a hidden layer of Gaussian re-
ceptive fields are the Growing Cell Structures (GCS) (Fritzke, 1994b) and Supervised
Growing Neural Gas (SGNG) (Fritzke, 1994a, 1995). SGNG is based on an unsuper-
vised algorithm, Growing Neural Gas (Fritzke, 1995), a constructivist version of the
Neural Gas algorithm (Martinez and Schulten, 1991) that learns the topology of the
input space by constructing a layer of prototype units. The GNG network starts with
two hidden units. When a data item is presented, the closest prototype unit together
with its (topologically defined) neighbours are moved towards the data. This move-
ment ensures that units are actually placed in those regions of the input space where
data actually occurs. Then, the distance from the closest (winning) unit to the data

item is added onto a local error counter of the winning unit. At regular intervals, new
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units are inserted between the unit with the highest local error and its highest-error to-
pological neighbour. The idea here is that a unit which is responsible for a large area of
the data space will accumulate a high error because it is the nearest unit for far away
inputs, and will therefore become the preferential location for the insertion of new
units. Similarly, a unit in a very dense area of the data space will accumulate error
through a high number of short distances to the data items for which it is the winner,
and more units will thus be inserted in such a region as well. With this algorithm,
the network architecture comes to faithfully represent the distribution and density of
the data items. A problem of the GNG algorithm that it shares with all unsupervised
constructivist algorithms is that it potentially grows forever and will eventually alloc-
ate one unit for each data item. Possible stopping criteria are a maximum number of
units, or a maximum distance from any data item to its nearest unit.

The SGNG algorithm (Fritzke, 1994a) is a straightforward extension to GNG. It
works in a supervised way where the constructed GNG layer becomes the hidden
layer of a radial basis function network. Each hidden unit is therefore associated with
a Gaussian activation function whose width is determined by the average distance
to its neighbours. In this way, the receptive fields generated by the Gaussian units
partially overlap and cover the whole of the input space.

For the SGNG, the unsupervised GNG algorithm is modified so that the local error
of the hidden units is no longer determined by their distance to the input data, but by
their contribution to the output error. Therefore, a hidden unit whose activation leads
to a high output error will become the preferred location for the insertion of new units.
This is the case when similar input data, activating the same hidden unit, require dif-
ferent outputs which therefore cannot be learned by weight adaptation alone. Then,
hidden units will be inserted in this region, partitioning the input space to account for
the different outputs. A restriction of SGNG is that the input space is effectively con-
sidered to be smooth, assuming that similar inputs will lead to similar outputs: nearby
units always move towards the input signals, not taking into account that similar in-
put signals might lead to very different outputs if they belong to different classes. A
new unit that is placed on an exceptional (i.e., error-creating) input will therefore sub-

sequently be pulled away from this input by other, nearby input signals.

4.6 The CNN Algorithm

For the simulations described in this thesis a new constructivist algorithm, Construct-
ivist Neural Network (CNN), was developed. This algorithm is largely based on the



86 4. Constructivist Modelling

SGNG algorithm, but includes some aspects of the RAN. Like in SGNG, each hid-
den unit has a local error counter, and new units are inserted in regions of the input
space that create a high error. Hidden units are interconnected with edges to express
neighbourhood relations, and the width of each receptive field is calculated as the av-
erage distance to its topological neighbours. The neighbourhood relations can change,
which is expressed by an aging of the edges, and units without any edges will be de-
leted. The movement of the hidden units in response to inputs is a combination of
the SGNG and the RAN methods: when the activation of the winning unit is below
a threshold 6,., the unit is moved towards the input in an SGNG-like way to avoid
units that do not respond to any input signal. By contrast, when the unit activation
exceeds this threshold, the unit is moved so as to reduce the output error, i.e., when
a higher unit activation decreases the output error it is moved towards the input, and

otherwise it is moved away.

The CNN algorithm implements lateral inhibition between the Gaussian units in
the hidden layer: the maximally activated receptive field suppresses the activation
of all other fields. Lateral inhibition is also found in biological neural networks (e.g.
Eysel, 1992).

For the weight update in the CNN, the quickprop algorithm (Fahlman, 1989) is
used because it leads to faster convergence than the backpropagation algorithm and
its variants. Quickprop assumes that the dependency of the network error on a single
weight is parabolic, and each weight modification step consists in a direct “jump”
to the minimum of that parabola by using the second derivative of the weight-error
function.

The most significant difference to both GNG and RAN is that the CNN network
is initially fully connected between the input and the output layers. In this way, the
network can learn as much of the task as possible without any hidden units, and the
hidden layer is constructed to account for those aspects of the problem that cannot
be learned in the direct connections alone. Without the hidden layer, the network is
effectively a single layer perceptron that can learn only linearly separable problems.
Trained on the quickprop algorithm, it will place the decision boundary in a way to
minimize the residual error. The hidden units will then be placed in those regions of
the data that lie on the “wrong side” of the decision boundary. Therefore, the CNN al-
gorithm combines Input-Re-Representation and Data-Modelling aspects. The hidden
layer models the data space, but it merely provides an additional representation to the

original input representation.
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The CNN algorithm is described in detail in the following.
The task to be learned by the network is given by a number of input/target pairs

(x,t) € R x RT: for each I-dimensional input signal x, the network has to produce

the corresponding T'-dimensional target signal t.
The CNN network consists of

a set of I input units which take the activation of the input signal x, and a bias

unit that is always active
a set of T' output units.

a set H of hidden units, with each unit ¢ € H obtaining a position pos, € R in

input space.

a set W of weighted connections w;; from the input (and bias) and hidden units

j to the output units ¢

a set IV of edges between pairs of hidden units. These edges define neighbour-

hood relations and are not weighted.

The CNN algorithm works as follows:

3

2

Start with two hidden units @ and b at random positions pos, and pos, in R’.
Get an input/target pair (x, t).

Determine the nearest unit ¢; and the second nearest unit ¢; to the input signal x
(by measuring the Euclidean distance ||x — pos,. || between the input signal and

the unit positions).

If ¢; and ¢; are already connected by an edge, reset the age of this edge to zero. If
there is no such edge, create it and thus make ¢; and ¢, topological neighbours.

Compute the activation values of the hidden units: each hidden unit has a Gaus-

sian activation function act, of the form
_ lix—pos||
acte(x) = & o ! 4.1)
where x is an input signal and o, is the standard deviation (width) of the Gaus-
sian. o is the average length of all edges emanating from unit c: If N, denotes
the set of all direct topological neighbours of unit ¢, then

1
oc=1— Y |lpos, — pos,|| (4.2)
|Nc| deN,
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Due to the lateral inhibition in the hidden layer, the activation of all but the
winning unit are suppressed:

‘v’i?#lacti =0 (43)
6. Compute the activation values of the output units. An output unit has a logistic
activation function of the form
(x) = 1 @9)
. 1 + e~ Zjen,r wijactj(x) :
7. Compute the output error as
1 I
- o g
SB =5 Z(tz —0j) (4.5)
i=1
8. Add the output error to the local error variable of the winning unit ¢;:
Aerre, = SE (4.6)
9. Move the winning unit ¢;: if act.(x) is smaller than an activation threshold 6,
move ¢; towards x by a fraction ¢ of the total distance:
Apos,, = €(x — pos,, ) (4.7)
If if act.(x) is greater than 0,.;, move ¢; according to the following equation:
2
Apos,, = EOT(t —0)w, (x — pos,, )act,, (x) (4.8)
c1
10. Increment the age of all edges emanating from the winning unit ¢;.
11. Remove all edges with an age larger than a,,;. If this results in units having no

more emanating edges, remove them as well.

After having presented all input-target pairs once (i.e., after each epoch), do the

following:

12.

13.

Adapt the weights according to the quickprop-algorithm (Fahlman, 1989).

Decrease the local errors of all hidden units by multiplying them with a constant
d:

Yierre, = d - erve; (4.9)
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14. If the average squared error has not changed more than a value e during an

interval patience, insert a new hidden unit as follows:

(a) Find the hidden unit ¢ with the highest accumulated error.

(b) Insert a new hidden unit r halfway between ¢ and its neighbour f with the

largest error:
pos, = 0.5(pos, + posy) (4.10)

(c) Insert edges connecting the new unit » with ¢ and f, and remove the ori-

ginal edge between g and f.

(d) Decrease the local errors of ¢ and f by multiplying them with a constant

parameter a.

errqy = aerry (4.11)

erry = Qerry (4.12)
Initialize the error of the new unit r as

erry = 0.5(erry + erry) (4.13)
Initialize the weights from the new unit r to the output units i as

wir = 0.5(wiq + wif) ] 7 (4.14)

15. If the sum squared error is smaller than a value erry,i,, stop. Otherwise go back

to step 2.

The unit movement in equation (4.8) is derived from the gradient descent rule. The

dependency of the output error E on the hidden unit position pos; can be rewritten as

OE  O0E 0o Odact;

dpos; o dact; pos; (4.15)
with

OF

5o — (o=t (4.16)
and

do 0
ﬁacti - 8actg zi:a{,tiwi =W; (417)
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and

g;:); - apisf-(’;i?ﬁ = j—gﬂcte‘ (x — pos;) (4.18)
and therefore

Bgfs.i B *f?(t —OlwilE — Dok )aeh (4.19)

Note that due to the definition of o (equation 4.2) it depends on pos; and should be
considered in the above derivation (4.18) . However, there was no empirical advantage
of that more complex unit movement over the one derived here.

The simulations of English past tense acquisition and agrammatic aphasic inflec-
tion processing were performed both with the CNN algorithm (chapters 5 and 6) and
the SGNG (Westermann, 1997, 1998; Westermann, Willshaw, and Penke, 1999). The
CNN algorithm led to much shorter training times (approximately 25% of SGNG) with
fewer units generated in the hidden layer (also about 25% of SGNG). The numerical
values for the parameters used in the simulations with the CNN algorithm are given
in table 5.4 on page 111.

The next section gives a brief overview of models of development that were based
on the cascade correlation algorithm (see section 4.5.2.1), before the simulations with
CNN are described in detail in the next two chapters.

4.7 Previous Developmental Models with Constructivist
Neural Networks

Cascade correlation networks have been used to model a number of developmental
problem solving tasks that had been first described by Piaget. These tasks generally
follow a well-defined succession of stages, and the challenge of a model is not only
to account for behaviour within a certain stage, but also for the transitions between
stages.

Of particular interest is the cascade correlation model of the balance scale task
(Shultz and Schmidt, 1991; Shultz, Mareschal, and Schmidt, 1994), because it offers
a comparison with previous fixed-architecture neural network as well as rule based
models.

In the balance scale task, which was developed by Inhelder and Piaget (1958), the
child is shown a balance scale that is supported by blocks so that it stays in a horizontal

position. Then, a number of different weights are placed on different evenly spaced
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pegs on either side of the fulcrum. The child’s task is to predict what will happen
when the supporting blocks are removed. This task requires the child to integrate
weight and distance information: the correct answer can be found by multiplying for
each arm of the scale the product of weight and distance from the fulcrum (i.e., the
torque), and predicting that the arm with the higher torque will move down, or, for an

equal torque, the scale will be balanced.

In children, performance on the balance scale task is characterized by four stages
that can be described by increasingly powerful rules (Siegler, 1976, 1981): Stage 1 re-
lies exclusively on weight information: the child predicts that the side with the greater
weight will go down. Stage 2 is still based mainly on weight information, but if
weights are equal on both sides, distance information is taken into account. Chil-
dren at stage 3 correctly solve simple problems, but they get confused when one side
has greater weight and the other has greater distance. Stage 4 involves near perfect
performance. Stage 4 may not be reached by many people at all, and if it is reached
it might not indicate the understanding of the underlying principle of torque (Shultz
et al., 1994).

McClelland (1989) and McClelland and Jenkins (1991) modelled the balance scale
task in a fixed architecture backpropagation network. The network had two hidden
units each for processing weight and distance information. The training data was
chosen so that it consisted mainly of cases in which the weights on each side of the
scale were equidistant from the fulcrum, emphasizing weight as the predictive factor
of scale behaviour. This bias was meant to reflect the experience of children lifting up
objects, but having limited experience with torque. The network progressed through a
sequence of stages where performance on each stage was in line with the above rules.
However, the net failed to reach a consistent level of Stage 4 performance. Further-
more, in a detailed analysis of the model, Raijmakers, van Koten, and Molenaar (1996)
argued that the changes observed between the stages in the model were not discon-

tinuous and did not correspond to the transitions observed in children.

Shultz and Schmidt (1991) and Shultz et al. (1994) applied a constructivist cascade
correlation network to the same task. They adopted the same “environmental bias”
in that most training patterns had equidistant weights. Additionally, they trained the
network incrementally, i.e., they added new training patterns throughout the train-
ing process. After each output epoch, the model’s performance was evaluated based
on the correspondence to one of the four rules. This model progressed through the

described stages in an orderly sequence, with soft transitions between them. Skip-
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ping of stages and regression to previous stages was also observed . This behaviour
was argued to correspond to children’s learning (Shultz, Schmidt, Buckingham, and
Mareschal, 1995). In contrast to McClelland’s (1989) model, the cascade correlation
network developed strong stage 4 performance, and it did not rely on a hand-crafted
separation of weight and distance information in the hidden units. Shultz et al. (1994)
concluded that the constructivist network performed more like children than the fixed-
architecture backpropagation net (McClelland, 1989), with fewer assumptions about
initial architecture and processing differences in the hidden units. They argued that
the success of their model was based on the addition of hidden units during the learn-
ing process, allowing the network to capture fine-grained distinctions between dif-
ferences on the weight and distance dimensions. The addition of a new hidden unit
triggered the quick progression from one developmental stage to the next.

Other developmental phenomena that were successfully modelled with cascade
correlation networks include seriation, i.e., sorting a set of objects along a specified
dimension (Shultz et al., 1995), integrating the concepts of distance, time, and velocity
(Shultz et al., 1995), and the acquisition of personal pronouns (Shultz and Oshima-
Takane, 1994).

4.8 Chapter Summary

This chapter has reviewed the learning theoretic issues relating to constructivist learn-
ing. These are built on the insight that every successful learner needs a bias, but that
a prespecified bias is problematic if the solution to a learning problem cannot be an-
ticipated. Constructivist learners, in particular constructivist neural networks with
their equivalence between architecture and hypothesis space, avoid these problems by
relaxing the bias during the learning process through the addition of structure. Con-
structivist learning is therefore not subject to the strong assumptions that have been
made about human learning when viewed from a fixed hypothesis space perspective,
namely, the postulation of an innate Universal Grammar and Fodor’s paradox that has
argued that learning is in principle impossible. The subsequent sections developed a
taxonomy for existing constructivist neural network algorithms, and the new CNN
algorithm that is used in the simulation experiments (chapters 5 and 6) was described
in detail. The chapter closed with a brief review of a previous constructivist network
modelling the balance scale task.



Chapter 5

Modelling the Acquisition of the
English Past Tense

Models of learning the English past tense have in the past ten years become represent-
ative of different theories of language acquisition and cognitive processing in general.
While connectionist approaches (e.g., Rumelhart and McClelland, 1986; MacWhinney
and Leinbach, 1991; Plunkett and Marchman, 1993) have maintained that both reg-
ular and irregular past tense forms can be produced in a homogeneous architecture
by a single process, dual mechanism accounts (Pinker and Prince, 1988; Kim, Pinker,
Prince, and Prasada, 1991; Pinker, 1991; Marcus et al., 1995; Clahsen, 1999a) argue for
two qualitatively distinct mechanisms where regular forms are produced by a rule and
irregular forms in an associative memory.

The simulation of past tense acquisition is well suited for evaluating the useful-
ness of constructivist models of cognitive development. This is because a considerable
number of different past tense models already exist, and they have been evaluated and
compared against each other in detail. Moreover, the existing models have led to close
investigations of children’s past tense acquisition, so that detailed human data are now
available. Finally, the past tense is a “quasi-regular” systems which consists of a rule
together with a set of exceptions to that rule. Such systems exist similarly in other
cognitive domains (Seidenberg and McClelland, 1989).

The rest of this chapter is organized as follows: section 5.1 gives an overview of the
inflectional system of the English past tense, and section 5.2 describes how children
acquire the past tense and the specific errors they make. Section 5.3 describes the best-
known previous models of past tense acquisition, both connectionist and rule-based.
The simulation experiments with the new constructivist algorithm are outlined in sec-
tion 5.4, and in section 5.5 the simulation results are reported in detail. To assess the

validity of constructivist learning, these results are compared with a non-constructivist
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version of the algorithm in section 5.6. The overall results are then discussed in sec-
tion 5.7.

5.1 The English Past Tense

The English Past Tense comprises regular and irregular verbs. The vast majority of
all verbs are regular and their past tense is formed by adding the ending -ed to the
verb stem. Depending on the phonological properties of the verb stem, this ending
is realized as /d/ (use—used), /t/ (look—looked), or /1d/ (want—wanted). The regular
past tense is thus completely predictable from the verb stem, and this fact has made it
the prime candidate for a mental rule.

Irregular verbs, which number only about 160, form the past tense in different
ways ranging from keeping the present tense form (e.g., hit — hit) over a vowel change
(e.g., sing — sang) to completely idiosyncratic relationships between the stem and the
past tense form (suppletion, e.g., go — went). Most irregulars have no added suffix
though some do (burn—>burnt, deal—dealt, lose—lost). Despite their irregularity, within
the irregular verbs there are several sub-classes that are characterized by similar trans-
formations from the stem to the past tense form (e.g., sing—sang, ring—rang, spring—
sprang, or blow—Dblew, grow—grew, know—knew, throw—threw).

Although English has fewer irregular than regular verbs, irregular past tense forms
occur much more frequently: according to a frequency corpus for the English language
(Francis and Kucera, 1982), 86% of all past tense types' are regular and 14% irregular.
Counting past tense tokens®, however, regular forms account for only 40% and irregu-
lars for 60% of all verbs. In fact, of the ten most frequent past tense forms in (Francis
and Kucera, 1982) (said, came, went, made, took, knew, thought, got, saw, looked), nine are

irregular.

5.2 Acquisition of the English Past Tense

Research in the acquisition of the English past tense and its characteristic error patterns
(e.g., Berko, 1958; Brown, 1973; Kuczaj, 1977; Marcus et al., 1992) has identified three
stages of acquisition with smooth transitions between them.

In the first stage, a child uses relatively few past tense forms. These are mainly the

ones that are most frequent in adult speech, and they are thus mostly irregular. At this

'Each verb counted just once in a corpus.
?Each form counted as often as it occurs in a corpus.
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stage, a child might therefore use the past tense forms said, came, went, took, knew, and

looked, and not mark any other verbs for past tense.

In the second stage, which starts at around 29 months of age, the number of past
tense forms produced by the child increases. At this stage, an interesting phenomenon
occurs: irregular past tense forms that had been produced correctly in stage one are
now sometimes overregularized: for example, the past tense of come might now be pro-
duced as comed, or even as camed. Marcus et al. (1992) examined in detail the overgen-
eralization behaviour in children and found rates of 2.5% of all past tense forms. All
come-, came-, and comed-type productions occurred simultaneously (but note that at
stage one all marked past tense forms are correct), and none of these forms was dom-

inant at any time during this stage.

Marcus et al. (1990) argued that the beginning of the overregularization phase co-
incides with the point at which the past tense is reliably marked by the child, that
is, when sentences like “Yesterday I play.” no longer occur. This phase stretches up
to school age, with a consistently low rate of overregularizations. There is no across-
the-board overregularization of all verbs simultaneously. Instead, each verb shows a

specific course and timing of these errors.

Marcus et al. (1992) found a clear frequency effect in the number of overregular-
izations: irregulars with a high frequency in parental speech were overregularized
significantly less often than those with low frequency. A second factor that influenced
the overregularization rate is the similarity of an irregular to other irregulars: families
of irregulars, i.e., groups of irregulars that rhyme or share a final consonant cluster
protect each other from errors. In particular, family size (token frequency) is signific-

antly negatively correlated with overregularization rate (Marcus et al., 1992).

Two factors that have been shown not to influence the error rate are the phonolo-
gical similarity between the verb stem and the past tense form, and the similarity of

irregular stems to regulars (Marcus et al., 1992).

At the third stage of past tense acquisition the child finally produces both irregular
and regular forms correctly. However, even for adults overregularizations sometimes

occur.

The characteristic developmental profile in which irregular forms are first pro-
duced correctly, then overgeneralized until they are finally produced correctly again,
is referred to as U-shaped learning, and the modelling of this specific profile has been

the major challenge to all models of past tense acquisition.
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5.3 A Survey of Past Tense Models

The apparent distinction in the processing of regular and irregular English past tense
forms has resulted in several models that have claimed a representational distinction
between these forms. The dominant view until 1986 was that regular past tense forms
are produced by a rule which might be genetically specified or has to be learned by
the child, and the representations of irregular verbs were stored in a rote-like list. This
view was challenged by connectionist models (Rumelhart and McClelland, 1986) that
were based on the claim that both regular and irregular verbs can be learned by a
single associative mechanism in a homogeneous architecture. The following sections
describe the connectionist and symbolic models and theories of past tense acquisition

that have played a major role in this long-raging debate.

5.3.1 Rumelhart and McClelland’s Two-Layer Model

The connectionist model by Rumelhart and McClelland (1986) (henceforth R&M) was
the first to challenge a rule-based account of regular verb inflection while accounting

for psychological data such as the U-shaped learning curve:

We have, we believe, provided a distinct alternative to the view that chil-
dren learn the rules of English past-tense formation in any explicit sense.
We have shown that a reasonable account of the acquisition of past tense
can be provided without recourse to the notion of a “rule” as anything
more than a description of the language. (Rumelhart and McClelland,
1986, p. 267)

Due to its implementation in a two-layer network which has limited power, and
the resulting need to encode the input and output data in an implausible way, the
R&M model is now mainly of historical interest. However, it initiated an extensive
debate on the representation of inflection, and more generally, on the existence of
symbolic rules and representations in the brain which continues even after 13 years
(see e.g. Elman et al., 1996; Marcus, 1998a,b; Marcus, Vijayan, Rao, and Vishton, 1999;
McClelland and Plaut, 1999; Marcus, 1999a; Seidenberg and Elman, 1999a,b; Marcus,
1999b; Christiansen and Curtin, 1999; Marcus, 1999¢).

The R&M model elicited detailed criticisms addressing both its implementational
details and the general ability of associative models to account for rule-like behaviour
(e.g. Pinker and Prince, 1988; Lachter and Bever, 1988; Prasada and Pinker, 1993).
These criticisms in turn resulted in a variety of improvements and extensions to the
R&M model (Egedi and Sproat, 1991; MacWhinney and Leinbach, 1991; Plunkett and
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Marchman, 1991; Daugherty and Seidenberg, 1992; Hare and Elman, 1992; Plunkett
and Marchman, 1993; Cottrell and Plunkett, 1994). Modelling the acquisition of past
tense has since become a benchmark test for the validity of theories of human language
learning in general.

Much of the criticism against the R&M model was directed towards its architecture
and data-encoding and will therefore not be discussed here. However, other points
were more instructive and played an important role in the design of further models.
These points will be discussed here briefly.

Pinker and Prince (1988) closely analysed the architecture, training, and perform-
ance of the R&M model. Their most relevant criticism concerned the model’s simula-
tion of a U-shaped learning curve: U-shaped learning in the model was, in their view,
based on a manipulation of the input data: while initially the network was trained only
on the ten most frequent verbs of which eight were irregular, in the second phase of
training 410 more verbs were added to the corpus, 80% of which were regular. There-
fore the network, which had initially learned to produce the 10 most frequent verbs
correctly, was now swamped with regular verbs and started to overregularize the ini-
tially correct verbs. Such sharp discontinuities, however, do not exist in the linguistic
environment of a child and therefore cannot be used to explain U-shaped learning in
children. Longitudinal studies of children show that the proportion of regular verbs
in their speech is stable at around 45-60% and does not show a sudden change from
20% to 80% as in R&M’s model (Marcus et al., 1992).

Another point raised by Pinker and Prince concerned the generalization capabil-
ities of R&M'’s network: Of the 72 regular test verbs, 20 were produced incorrectly,
corresponding to an error rate with regular test verbs of almost 30%. They argued that
this error rate was implausibly high.

Lachter and Bever (1988) added a further criticism which is of relevance beyond the
specific model: they argued that rules were implicitly hardwired into the architecture
of the network and the data representation; the network did therefore not learn the
past tense without any rules as claimed by R&M. They claimed that without these
encoded so-called TRICS (“The Representations It Crucially Supposes”), the network

would have been unable to learn the past tense.

5.3.2 MacWhinney and Leinbach’s Backpropagation Model

MacWhinney and Leinbach (1991) (henceforth, M&L) presented an improved version
of R&M’s past tense model, employing the backpropagation algorithm and inserting
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layers of hidden units, using a more realistic data encoding and a more realistic train-
Ing corpus.

The model had two hidden layers with 200 units each and direct one-to-one “copy-
connections” from the input to the output layer. It was trained with the backpropaga-
tion algorithm (Rumelhart et al., 1986a).

The training corpus for M&L’s model corresponded to the actual frequencies of
English verbs in a comprehensive corpus of English word frequencies (Francis and
Kucera, 1982). The most frequent verbs in this corpus were presented to the network
at each epoch, while the least frequent verb was presented only at every 700th epoch.
In total, during the training the network was presented with 1.3 million verb tokens,
corresponding to 5481 types of all inflectional forms, without any abrupt transitions in
the data set like in the model of R&M. The verbs were represented in a template format
where each phoneme was encoded by phonological feature vectors. The full verb was
presented in a left-aligned template, and the coda of its final syllable additionally in
a right-aligned template. The output contained the left-aligned representation of the
past tense form. (For further details of the data encoding which is also employed in

the simulations reported in this thesis see section 5.4.2).

The M&L model learned to produce the past tense for all of the regular verbs in
the training set, but only for 93 of 103 (90.3%) of the irregular verbs. It further failed to
account for a U-shaped learning curve: although overgeneralization of irregular verbs

occurred, there was no phase of an initial correct usage of those verbs.

After training, M&L tested their network on 13 untrained irregular verbs. How-
ever, it is misleading to test a model on irregular verbs which are by definition not
predictable. Instead, a model should be tested on pseudo-words that have been tested
with humans as well, and the performances of the model and the human subjects
should be compared. A corpus of such pseudo-words now exists (Prasada and Pinker,
1993).

Although the M&L model was a clear improvement of the R&M model in terms of
network architecture and a more realistic data set, its learning success of only 90.3% of
irregular verbs and its failure to account for a U-shaped learning curve do not make it

a realistic model of child past tense acquisition.

The M&L model was criticized by Ling and Marinov (1993) for arbitrary design
decisions such as direct copy-connections from the input to the output layer, biasing
it to preserve the stem. This and other features of the model were argued not to be

motivated out of general considerations, but as specifically addressing the problems
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of the earlier R&M model.

MacWhinney (1993) described a simplified version of the M&L model which used
only a single hidden layer, no direct “copy-connections”, and a single right-aligned
templated input representation. This time the model was trained on 1,200 verbs for
24,000 epochs. Again, the revised model learned all of the regular but only 90.0% of
the irregular verbs correctly.

The revised model was tested on the set of 60 pseudo-verbs that had been de-
veloped by Prasada and Pinker (1993) to investigate human inflection of novel words.
These pseudo-verbs were divided into irregular-like and regular-like groups, each
consisting of three sub-classes: prototypical, intermediate, and distant. Pseudo-verbs
in different sub-groups were similar to different existing verbs to different degrees,
with prototypical being the most and distant the least similar. The results of testing
these pseudo-verbs on human subjects showed one basic result: the tendency to in-
flect pseudo-irregulars as irregular decreased with decreasing similarity to existing
irregulars. By contrast, the tendency to inflect pseudo-regulars as regular is high inde-
pendently of their similarity to existing regulars.

The test case for associative models in the generalization task is the inflection of
the distant regular-like pseudo verbs: here, a regular inflection should be produced
which is not based on the similarity to existing verbs, indicating that the regular case
has been learned as the default.

MacWhinney (1993) claimed that the revised model performed similar to the hu-
man subjects tested by Prasada and Pinker (1993) in that it produced regular forms
even for the distant pseudo-regulars. However, these results are inconclusive in that
although the network was trained for 24,000 epochs, its generalization ability was as-
sessed at 4,200 epochs. At that point, however, the performance for the irregular verbs
was only 80% which indicates a higher tendency of the model to regularize and thus
might give an overly optimistic picture of its ability to regularize novel words. The real
challenge of a model is to produce all (or most) irregulars in the training set correctly

and still produce the regular ending for novel words.

5.3.3 Plunkett and Marchman’s Incremental Model

Plunkett and Marchman (1991, 1993) conducted detailed experiments of past tense
acquisition, investigating which factors influence learning success and a U-shaped
curve. They constructed a set of artificial verbs that consisted of 3 phonemes each

with syllable structures permitted in English, and assigned arbitrary past tense forms
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to these verbs. The four possible past tense transformations were identity mapping
(in English e.g., hit—hit), vowel change (draw—drew), arbitrary (go—went), and regu-
lar (Iook—looked). Experiments were conducted with three-layer backpropagation net-

works.

Plunkett and Marchman (1991) systematically varied the number of verbs in their
artificial language falling into the four past tense classes as well as their token fre-
quency. They found that the learning success depended on interactions between class
size and token frequency, and the type of transformation. Although they claimed to
have found U-shaped learning curves in the simulations, it is unclear whether specific
verbs were initially produced correctly and subsequently overregularized, or if oscil-

lations between correct and overregularized inflection occurred from the beginning.

Plunkett and Marchman (1993) used the same artificial verbs to investigate the
influence of an expanding verb corpus on performance. A new verb with a token
frequency of 5 or 3 was added to the corpus every 5 epochs for the first 100 epochs,
and every epoch thereafter. This discontinuity in the training set growth was likened
to the vocabulary burst in children. Although Plunkett and Marchman observed a
decrease in the performance of the network which they explained as U-shaped learn-
ing, again it is unclear whether verbs that had initially been produced correctly were
subsequently overregularized, or whether the decrease in irregular performance was
due to the verbs that had been newly introduced into the training set and were over-
regularized from their first occurrence onwards. Marcus (1995) analyzed the reported
performance of the network in detail and noted that the onset of overregularizations
coincided with the increase in frequency with which new verbs were introduced into
the training corpus (i.e., epoch 100). This is in contrast to children where the vocabu-

lary burst occurs about a year before the onset of overregularization.

Plunkett and Marchman (1996) replied to this criticism by presenting modified
simulations in which the corpus was expanded at a constant (not reported) rate. They
showed that the onset of overregularization starts at different points of vocabulary
size for different simulations. However, there are three problems with this statement:
first, as mentioned before, it is unclear whether the errors concern only new irregulars.
Second, Plunkett and Marchman (1996) reported a decrease in the number of correct
irregulars, but it was not clear whether all incorrect irregulars were overregulariza-
tions. Other possible errors are irregularizations to another verb class, or the failure to
produce an output at all. Third, it is unclear if the rate of introduction of new verbs

was the same for all reported simulations, or if that rate has an effect on the onset of
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overregularizations. In any case, Plunkett and Marchman (1996) concluded that a dis-
continuity in the expansion rate was neither a necessary nor sufficient condition for
the onset of overregularization. Instead, the number of regular verbs in the corpus

was a better predictor.

5.3.4 Daugherty and Seidenberg’s Model

Another three layer backpropagation network for past tense acquisition was presented
by Daugherty and Seidenberg (1992) (henceforth D&S). The input and output were in
a phonological template format like in the M&L model, and 423 training verbs were
presented to the network according to their frequency. This network learned all of
the regular and 84.3% of the irregular verbs. D&S did not aim to model the devel-
opmental profile of past tense acquisition but instead examined the trained network
for its generalization ability and for frequency effects. In this way, the model is one
of adult language processing and not of acquisition. D&S identified regular verbs
that have no irregular neighbours (“entirely regular verbs”, e.g., like) and those that
rhyme with irregulars (“inconsistent regulars”, e.g., bake rhyming with make). They
showed that entirely regular verbs had less errors than inconsistent regulars, which in
turn performed better than irregulars. These results corresponded to human response
latencies in past tense generation (Seidenberg and Bruck, 1990; Seidenberg, 1992) but
were not consistent with rule-based accounts of regular inflection (Pinker, 1991). How-
ever, frequency effects that are found in human subjects for irregulars but not for regu-
lars could realistically be modelled only when a modified corpus with fewer irregular
verbs was used. With this new corpus consisting of 309 regular and 24 irregular verbs,
all of the regular and 92% of the irregular verbs were learned, and there was an in-
teraction between frequency and mean squared error only for irregulars but not for
regulars. Furthermore, the second model displayed the same consistency effect as the
first model. D&S therefore argued that these phenomena that were taken as evidence
for a dual mechanism theory of inflection (Pinker and Prince, 1988; Pinker, 1991) could
be modelled in a connectionist network.

The D&S model was the first to account for more detailed aspects of adult language
processing, but the modelling of the acquisition of the past tense was not attempted,
and it is unclear whether the model would have shown a realistic acquisition profile.
Furthermore, the corpus was the smallest of all simulations (333 verbs) with a relat-
ively big hidden layer size of 200 units. It is unclear how the model would have scaled

up to a training corpus of the more usual size of 1,000 to 1,600 verbs. Nevertheless,
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the model was valuable because on the one hand it could account for human data that
is not predicted by dual mechanism theories, and on the other hand it modelled data
that was generally taken as evidence for such dual mechanism theories in a single,

connectionist architecture.

5.3.5 Ling and Marinov’s Rule-based Model

MacWhinney and Leinbach (1991) pointed out that is is easier to criticize connection-
ist models than rule-based theories: whereas models spell out the precise learning
mechanisms and data in detail and their performance can be closely investigated, rule-
based accounts of past tense acquisition existed only as a theory, leaving many aspects
of their implementation underspecified. For a comparison between associative and
rule-based theories, a symbolic model of past tense acquisition would be needed.

This challenge was taken up by Ling and Marinov (1993) (henceforth L&M), who
presented a symbolic, rule-based model for the acquisition of the English past tense.
This model is a general symbolic patterns associator (SPA) based on the ID3 algorithm
(Quinlan, 1986). ID3 is a decision tree algorithm to induce classification rules from a
set of classified examples. Attributes that are the most discriminating in a subset are
chosen as the root of subtrees, and subtrees are built recursively until all elements in a
subset belong to a single concept. The SPA is a modification of this N-to-1 classification
system to form a general N-to-M pattern associator that builds an individual decision
tree for each of the N inputs.

In order to carry out comparisons between the SPA and M&L'’s connectionist
model, L&M used the same training data as M&L. They performed different simu-
lations with different representations of the verbs and with both phoneme-based and
feature-based representations of the verbs.

The SPA learned 99.6% of the regular and 96.6% of the irregular training data. It
was thus the best of all models in learning irregulars. In order to assess the generaliz-
ation ability of the SPA, L&M tested their network on the set of 60 pseudo-verbs de-
veloped by Prasada and Pinker (1993) that had also been tested with human subjects.
In these tests, the SPA matched the psycholinguistic data more closely than R&M'’s net-
work model and was similar to a re-implementation of the M&L model (MacWhinney,
1993).

Ling and Marinov (1993) claimed to have modelled all three stages of the U-shaped
learning curve successfully: frequent irregular verbs were initially produced correctly,

then overgeneralized, and finally produced correctly again. This effect, however, was
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caused by manipulating a parameter (m) that determined how often a verb had to
be encountered until it was considered an exceptional rather than a regular word.
This parameter was initially set to the value 2, so that the most frequent irregular
verbs, occurring more than two times in the initial training phase, would be learned
as exceptions and their correct past tense form was produced. In a second stage, m
was then set to 6, so that all irregular verbs that occurred less than six times were
regularized. For the verbs that had occurred more than two but less than six times,
overgeneralization therefore followed on a phase of initial correct production. During
the rest of the training, m was left constant at the value 6, so that eventually most
irregular verbs, occurring more than six times, were produced correctly. The idea

behind adapting this generalization parameter was that

Presumably, children initially learn most verbs as exceptions, so in the ini-
tial stages of our simulation we set m to be very small, thus even with
few examples the SPA builds very large trees accounting for all individual
verbs. When more regular and irregular verbs are seen, children start to
generalize. This can be modelled by allowing for a largerm.  (Ling and
Marinov, 1993, p. 260)

This way of modelling, however, is no more plausible than the abrupt change in the
input data in the R&M model. Here, an assumption about the learning of past tense by
children is hard-wired into the model through a parameter change, without providing
any external motivation for this change. It is precisely the assumption which was hard-
wired into the SPA that a successful simulation of a U-shaped learning curve should
explain. The transition from the initial storage of verbs as exceptions to the generaliz-
ation between verbs is what has to be explained; hard-wiring this phenomenon into a
model does not give any insights into the underlying mechanisms.

A second point to note about the SPA is that although it was presented as a sym-
bolic alternative to connectionist models, it makes clear that the boundaries between
symbolic and subsymbolic systems are blurred. Ling (1994) argued that their model
was symbolic because it had localist representations on the phoneme level whereas
the M&L model had distributed feature vector representations of phonemes. How-
ever, this type of symbolic model is a long way from the symbolic accounts of verb
inflection that suggest a rule in the formation of the regular past tense. In the sense of
models of inflection, the SPA can therefore not be regarded as a symbolic alternative to
associative, single-mechanisms models. Instead, it is a non-connectionist associative
single-mechanism model.

Although the SPA had its merits in providing detailed comparisons between a
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symbolic and a connectionist system, it does not constitute an adequate model of past

tense learning.

5.3.6 The Dual Mechanism Theory

The Dual Mechanism Theory (DMT) (Pinker and Prince, 1988; Pinker, 1991; Marcus
et al., 1995; Pinker, 1997a,b; Clahsen, 1999a) is an extension of the traditional rule/rote
distinction between regular and irregular verbs. This traditional view was based on
the insight that the regular inflection is productive and is readily applied to new
words, suggesting a mental rule in its production. However, a rote-like representa-
tion of irregulars cannot capture sub-regularities such as, in the English past tense, the
sub-groups bleed, feed, breed, lead, read etc., or ring, sing, spring. Such similarity effects
between irregulars can best be captured in an associative-memory-like lexicon. The
DMT thus postulates two separate, encapsulated mechanisms in the production of
regular and irregular forms: regulars are produced “on the fly” by the application of
a rule, whereas irregulars have entries in an associative mental lexicon, together with
their inflected forms.

To produce a participle, first the lexicon is searched for a corresponding entry, and
if no such entry is found, the rule is applied. In the DMT the rule therefore has a
default status since it is applied whenever no lexical entry is found. Kiparsky (1982)
called this process the Elsewhere Condition: specific rules (i.e., irregular inflections) are
applied first; the default is the applied “elsewhere”. A proposed mechanism for the
interaction between lexicon and rule is the Blocking Principle: when a lexical entry is
found, it blocks the application of the rule. This mechanism implies that the rule is
applied whenever a word has no lexical entry, for whatever reason.

The main appeal of the DMT lies in its explanation of several aspects of adult lan-
guage processing, and it will therefore be discussed in more detail in chapter 6 where
impaired adult processing is modelled with a constructivist network model.

Although the dual mechanism theory has become a dominant theory of inflectional
processing (see Pinker, 1994, 1999) and seems intuitively attractive to explain a wide
range of data, a closer look reveals serious problems that make it seem untenable.
In this and the following chapter, simulations with the constructivist model are used
to develop an alternative theory of inflectional processing that can account better for
empirical data, and that does not rely on two distinct mechanisms to account for the
dissociations between regular and irregular verbs.

Here I will only discuss one aspect of the DMT that relates to acquisition. A wider
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discussion of the DMT will follow in sections 6.3 and 6.9.

Acquisition phenomena such as the U-shaped learning curve have not been expli-
citly addressed in the DMT, and in fact it is not straightforward to account for them.
A recent discussion of the DMT (Clahsen, 1999a) uses acquisition as one point of evid-
ence for the DMT, but it does not go beyond describing the differences between regular
and irregular verbs in the acquisition profile. For a more plausible theory, however,
it is necessary to discuss precisely how the proposed mechanisms can account for the

observed behaviour.

How could U-shaped learning arise in the DMT? The lexical entry for, say, come —
came would initially have to block the application of the default rule so that the correct
came would be produced. At the second stage this lexical entry would have to weaken
enough not to block the default rule anymore, and comed would be applied. Finally,
it would again become stronger, and the irregular form came would be produced once
more. The decrease of the strength of a lexical entry is not plausible, however, since
the verb is not heard less often in the second phase of learning. A special problem is
posed by forms such as camed: how can the output of the associative memory, came, be
used as input for the rule, where the /d/ is attached? As soon as the entry in the asso-
ciative memory is found, the rule is blocked! An alternative explanation of U-shaped
learning is that the default rule is learned and strengthens over time, indicating a com-
petition rather than a blocking between the rule and the lexicon. In this view, initially
only the lexical entries exist and all past tense forms are produced correctly. The de-
fault rule, however, would gradually strengthen with linguistic experience, until it
overrides the lexical entries and even irregular verbs are produced as regulars. With
more linguistic experience the irregular lexical entries would again become stronger
than the rule, leading to correct inflections. This explanation raises further questions
about the specifics of the interaction between rule and memory: how is the blocking
principle dependent on the strength of a rule and a lexical entry? And what happens
with regular verbs that are stored in the lexicon at stage 1? According to Pinker (1991),
no regular verb has a lexical entry for its inflected forms, and therefore these regu-
lars would have to be eradicated from the associative lexicon once the rule is learned.

Given the mechanisms of associative memories, this is an unlikely scenario.

These questions hint at the major flaw of the DMT: it is seriously underspecified,
and possible specifications raise problems because they either could not work in prin-

ciple, or would not account for the data.

In the following sections, a new model of past tense inflection is presented. This
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model is based on a single, associative mechanism. It develops in a constructivist
way, displaying the U-shaped learning curve observed in children and leading to a
functional dissociation between regular and irregular inflections. As such, it stands

between homogeneous connectionist and hybrid dual mechanism models.

5.4 Experiments

The constructivist model of past tense acquisition described here is based on the CNN
algorithm developed in section 4.6. The next section describes how this algorithm can
be applied to the modelling of past tense acquisition with its regular and irregular
cases. Then, the data and simulation procedure are described.

5.4.1 Constructivist Modelling of Past Tense Acquisition

As detailed in section 4.6 the CNN starts with direct connections from the input to
the output layer and just two units in the hidden layer, each therefore covering half
of the input space. The CNN tries to learn the task with this architecture by adjusting
its weights and the position of the hidden unit receptive fields, and when the error
no longer decreases, a new unit is inserted into the hidden layer. The position of
insertion is determined by the error that has been caused by treating inputs within
one receptive field as similar: the unit that has previously caused the highest error
is shrunk and the new unit is inserted next to it. The idea here is that a unit that
produces a high output error is inadequate (because it covers inputs with conflicting
outputs), and more structural resources are needed in that area of the input space.
Since on insertion of a unit the sizes of the receptive fields are shrunk so that they
slightly overlap, this in effect leads to a more “fine-grained” resolution in that area. At
each epoch, the receptive fields are tuned to respond more to inputs for which they
can reduce the error.

Figure 5.1 shows a hypothetical start and end state in a two-dimensional input
space for past tense learning. While initially only two receptive fields cover the whole
space, later hidden units are inserted to account for the specific learning task. Because
in the simulations the verbs are represented phonologically, similar sounding input
verbs initially fall into the same receptive field even when they require different out-
puts (e.g., fear and hear requiring feared and heard, respectively). During the training of
the network new receptive fields are inserted in the area of such verbs, and eventually
similar verbs with dissimilar past tense forms will be discriminated. When similar

verbs have the same output class, however, (e.g., look and cook with looked and cooked),
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Figure 5.1: Gaussian receptive fields covering the input space at the beginning (left)
and the end (right) of learning.

no new receptive field will be inserted there and one such field will cover different
verbs without producing output error. Thus, the internal structure of the network will
adapt to reflect the learning task. This task-dependent adaptation is in contrast to static
systems and to systems that incorporate a pre-programmed development such as an
extension of short-term memory span, where the final architecture is independent of
the specific problem being learned (see e.g., Elman, 1993).

Figure 5.2 shows the architecture of the CNN. It consists of an input layer taking
a phonological representation of the verb stem, and an output layer with one unit for
each possible output class (see below). The hidden layer initially consists of only two
units but is constructed during the learning process. There are full direct connections
from the input to the output layer (IO), and also each hidden unit is fully connected to
the output layer (HO).
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Figure 5.2: The initial architecture of the CNN. The input and output layers and the
hidden and output layers are fully interconnected. The weighted connections dis-
played here from the input layer to each hidden unit can be equivalently viewed as a
position of the hidden unit in the input space; this is the view elaborated in the text.

5.4.2 Data

To allow for comparisons between the CNN and previous models, the present experi-
ments employed the same verb corpus and representation format as MacWhinney and
Leinbach (1991) in their backpropagation network and Ling and Marinov (1993) in the
symbolic SPA model.

This corpus is derived from the Francis and Kucera (1982) corpus of English word
frequencies. MacWhinney and Leinbach (1991) retained only one past tense form
where many were possible for one verb (e.g., hang—hanged /hung) and further elim-
inated all verbs with more than three syllables as well as all homophones. Hence the
corpus does not contain ambiguities that would arise from a purely phonological rep-
resentation of verbs. From the resulting 6940 most frequent verb forms that included
all different inflectional forms, for the experiments described here the 1404 stem/past
tense pairs, corresponding to 24802 tokens, were extracted. For the simulations, 8000
tokens were randomly extracted from this corpus according to the frequency of their
past tense forms. The structure of the resulting training corpus is summarized in
table 5.1. The whole training corpus is given in appendix A.

The verbs were transcribed using UNIBET (MacWhinney, 1991) where each phon-

eme is encoded by a single ASCII-character. Some examples of phonological transcrip-



5.4. Experiments 109

| [ Types |  Tokens |

regular 943 (88.4%) | 4579 (57.2%)
irregular | 123 (11.6%) | 3421 (42.8%)

| total [ 1066  (100%) | 8000 (100%) |

Table 5.1: The structure of the training corpus

tions are shown in table 5.2.

| Verb | Transcription |
bring brIN
explain Iksplen
point p2nt
recognize | rEkIgn3z
shake Sek

Table 5.2: Some examples for the phonological transcription of verb pairs following
UNIBET.

The transcribed verbs were then transformed into a left-justified phonological tem-
plate of the form CCCvvCCCVvVCCCVVCCC, where C stands for a consonant and V for a

vowel.? Table 5.3 shows the template-encoding for the verbs in table 5.2.

Verb Templated Representation |
bring br-I-N------------
Template = CCCVVCCCVVCCCVVCCC
explain -—-I-ksp--l--e-n--
Template = CCCVVCCCVVCCCVVCCC
point p--2-nt--—-—-—————-

Template  CCCVVCCCVVCCCVVCCC
recognize r--E-k--I-gn-3-z--
Template CCCVVCCCVVCCCVVCCC
shake Geesigre Jpemim i s s
Template CCCVVCCCVVCCCVVCCC

Table 5.3: Some examples for the template encoding of verbs.

For the input to the model each phoneme was encoded by a subsegmental fea-
ture vector. Vowels were described by the eight features front, centre, back, round, high,

middle, low, and diphthong. The ten consonantal features were voiced, labial, dental, pal-

*Several experiments were run with left- and right-aligned input data, but the results for all of them
were very similar, and here only results for left-aligned inputs are presented.
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atal, velar, nasal, liquid, trill, fricative, and interdental. The presence of a feature in a
phoneme was encoded by 1, absence by 0. In order to have feature vectors of equal
width for both vowels and consonants, two zeroes were added to the right of each
vowel-feature vector. The feature vectors for each phoneme are given in appendix B.
The input to the network consisted thus of 18 10-item-feature vectors, i.e., 180 units.

In contrast to other models of past tense acquisition, in the CNN the formation of
the past tense was viewed as a classification task: instead of producing the phono-
logical form of the past tense, the network had to learn a class that determined how
the past tense was formed from the verb stem (adapted from Pinker and Prince, 1988).
This classification was based on a product-oriented approach (Bybee and Moder, 1983)
where similar past tense forms are grouped together even when their stems are differ-
ent. For example, the class /z/ — /U/ (where /z/ stands for an arbitrary phoneme
and /U/ is the UNIBET notation of the vowel in e.g., stood) contained the verbs un-
derstand, withstand, overtake, stand, shake, and take, and the class /z/ — /6/ (/6/ being
the UNIBET notation for the vowel in e.g., stuck) comprised string, strike, swing, stick,
fling, cling, spin, hang, and dig. This classification resulted in 23 classes, one for the
“stem + -ed” (regular) class and 22 for the different irregulars. These classes are listed
in appendix C.

Viewing past tense formation as a classification task eliminates several confound-
ing variables. No past tense form is inherently more difficult to learn than any other,
and the similarity between stem and past tense is no predictor for acquisition time
(Marcus et al., 1992). By contrast, in simulations, complex transformations are harder
to learn than simple ones. Viewing past tense learning as a classification task elimin-
ates this disparity between human data and modelling.

In training the CNN, the whole training set of 8000 stem/past-tense-class pairs
was presented to the network in random order at each epoch. Weight update took
place after every epoch, and hidden units were inserted depending on the learning
progress (as described in section 4.6). The network was tested for its performance on
the training set prior to each insertion.

The parameters used for the training of all networks are given in table 5.4.

5.5 Results

Apart from using the CNN algorithm, the simulations were also performed with a
slightly modified version of Supervised Growing Neural Gas (Westermann, 1998). The

results were very similar to those reported here, the main difference being that the
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| Constructivist Parameters |

¢ 0.2 | fraction by which the winning unit is moved

Qi 0.2 | threshold that determines which type of hidden unit
movement to use

Oiciai 1000 | maximum age of edges before they are removed

d 0.1 | factor by which node errors are decreased after each
epoch

e 0.1 | error decrease considered sufficient during patience

patience 10 | interval (in epochs) during which error decrease is
measured to decide whether a new hidden unit is to
be inserted

Quickprop Parameters (see Fahlman, 1988)

I 1.75 | maximal allowed jump-size

io 0.2 | learning rate for input-output weights

Cho 0.5 | learning rate for hidden-output weights

sigprimeof f set 0.1 | value added to sigmoid-prime to avoid flat spots

slopedecay -0.0001 | factor added to slope to prevent large weights

€T min 0.0005 | error at which training is stopped

Table 5.4: The parameters used in the training of the CNN model. For the algorithm
itself see page 87 ff.

new algorithm learned in about 25% of the time of SGNG and built smaller networks
(about 25% of the hidden units of SGNG). This indicates that the main results of the
simulations are not an artifact of the specifics of the algorithm (note, however, that the
constructivist nature of the algorithms does make a difference, see below).

Six networks were trained with different initial random settings of the weights.
The results reported in the following are averaged over these networks which all be-
haved very similarly. In some cases examples from a selected (typical) individual net-
work are given.

An output class was counted as correct when its unit, but no other output unit, had

an activation value over 0.7.

5.5.1 Learning

After an average of 1672 epochs, the CNN had learned to classify 100% of the regular
and 100% of the irregular forms correctly. Table 5.5 compares the learning results of
the CNN with the R&M, M&L, D&S and SPA models. While all models performed
nearly equally well for the regular verbs, the CNN outperformed the other models for

the irregular verbs, followed by the symbolic SPA. This success seems to be a direct
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R&M M&L D&S SPA || CNN

Verb types 420 1,650 333 1,038 | 1,066
Percentage correct

Regulars 98.0 100.0 100.0 99.6 || 100.0
Irregulars 950 90.7 920 96.6 | 100.0

Table 5.5: The performance on the training data of five past tense models: R&M =
Rumelhart and McClelland (1986), M&L = MacWhinney and Leinbach (1991), D&S =
Daugherty and Seidenberg (1992), SPA = Ling and Marinov (1993), CNN = the present
model.

consequence of the ability of the network to allocate structure (hidden unit receptive

fields) where needed and thus specifically for the harder-to-learn irregular verbs.

5.5.2 Developing Network Architecture

The trained networks constructed hidden layers with between 97 and 212 receptive
fields (mean: 127.67), i.e., on average each of the receptive fields accounted for 8.35
verbs. However, a closer analysis of the distribution of these receptive fields over the
input space showed a large difference between regular and irregular verbs: the 123 ir-
regular verb types were distributed over 70.2 receptive fields, i.e., each irregular verb
claimed an average of 57% of a receptive field. By contrast, the 943 regular verb types
were distributed on average over just 90.7 receptive fields (some of which covered
both regular and irregular verbs), i.e., each regular verb claimed on average just 9.6%
of a receptive field, with the number of regular verbs in a single receptive field ranging
from 1 to 83. This result clearly shows the advantage of constructivist as opposed to
fixed-architecture models in that no a priori decision has to be made about the number
and location of hidden units. Each hidden unit processes only a small subset of the
verbs and can therefore learn the correct output effectively. The final network archi-
tecture reflects the properties of the learning problem, in this case, a number of large
receptive fields for the regular verbs and small, fine-grained receptive fields for the
more difficult irregular verbs.

During the training, an average of 7.5 units were removed from the hidden layer
because they had no neighbours left. Furthermore, an average of 21.8 units in the hid-
den layer were non-functional with all weights to the output layer having the weight 0.
This result illustrates that regressive events play a role in constructivist learning, and
in a larger system the freed up units could be recruited by a network solving another
task.
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5.5.3 U-shaped Learning Curve

The most striking feature of past tense acquisition in children is the U-shaped learn-
ing curve (see section 5.2). However, most of the existing models have been unable to
provide a realistic account of the emergence of U-shaped learning (see section 5.3):
whereas R&M relied on the assumption that the learning environment of a child
changes from a first stage of mainly irregular verbs to a second stage of mainly reg-
ular verbs and chose their training data accordingly, M&L’s model could not account
for any unlearning of irregular forms. In the SPA, U-shaped learning was achieved
by the explicit manipulation of a learning parameter. Plunkett and Marchman (1993)
were able to show U-shaped learning in an environment where the training corpus
was slowly expanded. However, it might be more plausible to assume that while the
learning environment of the child is static, the child himself is undergoing changes that
will influence the processing of the environmental input (see also Elman, 1993). There-
fore, it was interesting to investigate the behaviour of the CNN in a non-incremental
training environment.

The CNN displayed a U-shaped learning curve for many of the irregular verbs in
the training corpus, where a period of overregularization (i.e., a classification of the
verb as belonging to the regular class) was preceded by a phase of correct classifica-
tion. Corresponding to psycholinguistic evidence (Marcus et al., 1992) the irregulars
generally displayed so-called micro U-shaped learning, i.e., a phase of correct produc-
tion followed by overregularizations at individual times for different verb (as opposed
to across-the-board U-shaped learning affecting all verbs simultaneously, which does not
occur in children).

Figure 5.3 shows six typical overregularization profiles: several frequent verbs
were never overregularized (say), others displayed phases of alternating overregu-
larization and correct production at different times during learning (stick, feed, creep,
sink), and some verbs displayed a long phase of overregularization from the beginning
(bleed).

As Plunkett and Marchman (1996) have pointed out, it is not straightforward how
data from a network simulation should quantitatively be compared with data from
children: at a given time in training, a non-stochastic network consistently only pro-
duces one output for each verb whereas the production of a child might fluctuate.
Further, in testing the network at each epoch, all 1,066 verb types will be classified
each time, while a child will produce only a fraction of his vocabulary at a given ses-

sion. However, qualitative comparisons between different kinds of errors can be made
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say stick

feed creep

sink bleed

0 500 1000 500 1000
Epoch Epoch

Figure 5.3: Typical overregularization profiles for different verbs during the training of
the CNN. A “spike” represents the occurrence of an overregularization. The network
was trained for 1358 epochs and constructed 108 hidden units until all forms were
learned.

between children and network models.

In children’s acquisition of the English past tense, a frequency effect has been found
(Marcus et al., 1992): past tense forms that are frequent in the speech of adults talking
to the child are significantly less overregularized by the child than infrequent ones. In
the simulations this effect can be easily tested because all inputs to the network are
known. In line with Marcus et al. (1992), the frequencies of all training verbs were
converted to logs because a frequency difference from 1 to 10 is expected to have a
larger effect than one from 1001 to 1010.

A clear frequency effect was found in the simulations: overregularization rates
were correlated negatively with the input frequency: the mean correlation of —0.39 is
very similar to that of children where the correlation was —0.37 when parental input
to the child was counted (Marcus et al., 1992).

A further effect that has been found in children’s overregularizations is a family ef-
fect: groups of similar sounding verbs protect each other from overregularization. To

investigate this effect, like in (Marcus et al., 1992) the family size of each verb was com-
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puted by adding the frequencies (not log frequencies) of all verbs that rhymed with it
in both stem and past tense. Also like in (Marcus et al., 1992), to prevent a confounding

with the frequency effect, the frequency of the verb itself was not counted.

Like for children, a family effect was found in the simulation: family size was
correlated negatively with overregularization rate (mean correlation —0.107). Again,
this value is very close to the one established by Marcus et al. (1992) which was —0.08.

In summary, the CNN was successful in closely modelling a U-shaped learning
curve in past tense acquisition, and its performance corresponded to the details of
children’s past tense learning, displaying a frequency effect and a family effect on

overregularization rate.

How does the U-shaped learning in the CNN occur? Since the verb set was held
constant throughout the training, the change in network performance can only be a
consequence of the internal reorganization of the network architecture, and specific-
ally, of the construction of the receptive field hidden layer. Initially, the network has
only two hidden units which are of little use since they each cover about half of all
verbs with their varied past tense forms, and the network therefore has to rely on the
direct input-output connections for producing the past tense forms. Given these re-
strictions, the network initially learns to produce the past tense forms of the frequent
irregulars (because of their high token frequency) and of the regular verbs (because of
their high type frequency).

During the training process, however, the CNN gradually constructs its hidden
layer and adds more receptive fields, which leads to the reorganization of the internal
representations mainly of irregular verbs onto the hidden layer. In the hidden layer,
localist, identity-based representations are constructed in addition to the original dis-
tributed representation in the input layer. These identity-based representations are
utilized predominantly by the irregular verbs which form the exceptions from the reg-
ular case. The construction process leads to a phase in which the localist representa-
tions in the hidden layer are already used, but where the few receptive fields are large
and include regular as well as irregular verbs. At this stage, the receptive fields cause
errors even for irregular verbs that had initially been produced correctly through the
direct input-output connections. This phase, in which the localist representations are
still too coarse to be useful for every verb, corresponds to the overregularization stage
in children. It is evident that with this mechanism, different verbs would be overregu-
larized at different times, depending on whether they are covered by an individual or

conflicting receptive field.
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Figure 5.4: The learning curves for the regular and irregular past tense forms in the
intact network and with a lesioned hidden layer. The network had learned all verbs
after 1358 epochs. For the training parameters see table 5.4.

The process of internal reorganization of the network’s representations is illus-
trated in figure 5.4. This figure plots the learning curve for regular and irregular past
tense forms as a function of training epoch. To illuminate the role of the hidden layer
in producing the past tense classes of verbs, it was lesioned (the connections from the
hidden to the output layer deleted) at different stages during training after the net-
work had been trained with the intact architecture up to that point, and the change
in performance was observed. The resulting “lesion-"curves for regular and irregular

verbs are also plotted in the figure.

Initially, with only a few hidden units, lesioning the hidden layer has no strong
effect on network performance: with or without the hidden layer, performance on the
irregular verbs quickly reaches 55%. It then stabilizes at this level until at about epoch
150 a rapid re-organization takes place: while in the intact network irregular perform-
ance quickly improves, when the hidden layer is lesioned it drops significantly to un-
der 10%. By contrast, the performance for regular verbs is not affected by the lesioning
of the hidden layer: with or without the hidden layer, it increases gradually from 80%
to 100%.

This result indicates that even the representations of initially correctly classified
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irregular verbs are shifted from the direct connections into the growing hidden layer,
leading to a breakdown of performance when the hidden layer is lesioned. This reor-
ganization and the further growth of the hidden layer lead in many cases to the tem-
porary wrong production of initially correct irregular past tense forms. The internal
reorganization of the network due to a constructivist adaptation of its structure can
therefore account for the unlearning of initially correct outputs and for the U-shaped

learning curve in the acquisition of the English past tense.

5.5.4 Generalization to Novel Verbs

Generalization to novel verbs is a good test case for the internal representations de-
veloped in a model. To evaluate how human subjects inflect novel words, Prasada
and Pinker (1993) developed 60 pseudo-verbs and asked subjects to produce the past
tense forms of these verbs. The pseudo-verbs were designed to resemble existing
regular and irregular verbs to various degrees. Prototypical pseudo-irregular verbs
rhymed with prototypes of existing irregular clusters; examples are spling and cleed.
Intermediate pseudo-irregulars were derived from the prototypical pseudo-irregulars
by changing either its initial or its final consonant cluster (e.g., ning and cleef). Dis-
tant pseudo-irregulars were derived by changing both the initial and the final conson-
ant cluster of the prototypical pseudo-irregulars (e.g., nist, gleef). Prototypical pseudo-
regulars rhymed with many regulars and were designed to have the same vowels as
the pseudo-irregular items (e.g., plip, greem). Intermediate pseudo-regulars were very
different from existing regular and irregular verbs, beginning with consonant cluster-
vowel sequences and ending with vowel-consonant cluster pairs not found in English
(e.g., smeej, ploab). Distant pseudo-regular verbs were even more different to existing
verbs: they additionally contained final consonant clusters not found in English (e.g.,
ploamph, smeerg). The subjects were asked to produce past tense forms for each verb,
and they were encouraged to supply multiple forms if they felt them to be appropri-
ate. Then, they had to rate the likelihood of their chosen form to be the “correct” past
tense form of the verb.

These experiments had two important results: first, the tendency to inflect pseudo-
irregulars as irregular decreased with growing distance from existing irregulars.
Second, for pseudo-regulars, regular inflection was high for all groups and did not
depend on the similarity to existing regular verbs. Prasada and Pinker interpreted
these results as evidence for the dual mechanism theory where irregular forms are

stored in an associative memory and regulars are produced by a rule.
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The trained CNN was tested on its generalization to these novel verbs. The set of
60 pseudo verbs was transcribed phonologically (appendix D) and presented to the
fully trained network. To emulate the situation in the human experiment where the
production of multiple past tense forms for each verb was encouraged, all activated

outputs that were over the threshold of 0.7 were counted.
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irregular inflections produced
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Pseudo-irregulars Pseudo-regulars

Figure 5.5: Generalization of the CNN to the different classes of pseudo-verbs, in com-
parison with humans, the SPA, the revised M&L network and the R&M network. P
= Prototypical, I = Intermediate, D = Distant. The results are averaged over the six
trained networks.

The results of the generalization experiments are shown in figure 5.5 which addi-
tionally shows the performance of the human subjects and of the R&M, SPA, and the
revised M&L models. The CNN had a stronger tendency to regularize novel irregular-
like pseudo-verbs than human subjects but displayed the same tendency as humans in
regularizing more verbs with increasing distance from existing irregulars. This tend-
ency is shared by all other models, reflecting the associative-memory nature of their
storage of irregulars.

For regular-like pseudo-verbs, the CNN performed more like the human subjects
than any of the other models: on average, 28.5 of the 30 pseudo-regulars were regu-
larized, independent of their similarity to existing regular verbs. Even for the most
dissimilar group, 9.5 out of the possible 10 regular classifications were produced. This
result is in contrast to the other models that show a decline of regular inflection for

intermediate and distant pseudo-regulars, and it touches on the main problem of ho-
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mogeneous architectures: when both regulars and irregulars are stored in associative
memory, similarity effects occur as well for regulars. * The CNN avoids this problem
by exploiting multiple representations for verbs (distributed and localist). It should
be noted again, however, that this dissociation between regulars and irregulars in the
model is an emergent property of the learning process and is not based on an explicit

a priori distinction between regular and irregular verbs.

5.5.5 Emergent Dissociations

Functional dissociations between regular and irregular verbs that can be observed
in psycholinguistic experiments and also in certain neurological disorders such as
agrammatic aphasia and Specific Language Impairment (SLI) have been taken as the
main evidence supporting the dual mechanism theory in which these forms are pro-
duced by qualitatively distinct mechanisms supported by different neural substrates
(e.g., Pinker and Prince, 1988; Pinker, 1991; Marcus et al., 1995; Clahsen, 1999a, see

secion 5.3.6).

100 T T
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irregularg
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% still correct

hidden-output input-output
Connections lesioned

Figure 5.6: The effect of lesioning different pathways on the production of regular and
irregular past tense classes.

In the CNN model described here, however, a dissociation between regular and

irregular verbs emerged as a direct outcome of the constructivist process, without

*But see (Daugherty and Seidenberg, 1992), where for another set of pseudo-verbs no similarity effects
for regulars occured, albeit in a network that had been trained with a very small corpus; see section 5.3.4
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having to rely on distinct mechanisms. During learning, the two pathways, the dir-
ect input-output connections and the hidden layer, developed to take on specialized
functions. While the regular past tense class was produced mainly through the direct
Input-Output (IO) connections, most of the irregular classes were produced in the de-
veloping hidden layer and the Hidden-Output (HO) connections (see figure 5.4). The
double dissociation between regular and irregular verbs in the CNN model is demon-
strated by lesioning both the IO and the HO pathways selectively (figure 5.6): lesion-
ing of the HO pathway in the fully trained network left the production of the regular
verb class intact (98.5% correct on average) but severely impaired the production of
irregular classes (only 4.5% correct on average). 66% of the irregular errors in this
case were overregularizations, and in the other cases the network failed to produce
any output. By contrast, lesioning the IO connections yielded the opposite profile:
here, the production of the irregular classes was less impaired than that of the regular
verbs (50.0% vs. 27.4% correct). This functional modularization was not pre-specified
but developed solely through the construction of the hidden layer in response to the
learning task, and the resulting shift of the internal representations of the irregular
verbs to this hidden layer.

The CNN thus suggests an explanation for the dissociations between regular and
irregular verbs in human language processing that does not rely on distinct processing
mechanisms in separate neural substrates. This aspect of the CNN model will be ex-
amined more closely in the next chapter, in which the specific deficits in the inflectional

processing of German agrammatic aphasics are modelled.

5.5.6 Producing Past Tense Forms from Class Information

It is not obvious that from the class-information that is learned by the network model, a
phonological output form can be easily learned. Without showing that this is possible,
one could speculate that a rule is implicitly assumed in constructing the regular past
tense form based on the class information, undermining the claim that the construct-
ivist model does not learn in a rule-based way (Marcus, personal communication).
Although similar experiments as those described here have also been performed with
a phoneme-input-to-phoneme-output mapping and yielded similar results (Wester-
mann, 1997), here an additional experiment was performed in which an extra layer
was trained to produce the phonological form of the past tense based on the verb stem
together with the learned past tense class. This additional layer can then be integrated
with the phoneme-to-class network (fig. 5.7).
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Figure 5.7: The extended network model in which the phonemic past tense form is
learned on the basis of the phonemic input and the learned inflectional class.

This network component consisted of two layers: the input layer received the tem-
plated phonological representation of the verb stem, and additionally had 23 units for
the inflection class information. There was no hidden layer, and the task was to pro-
duce in the output layer an equally templated phonological representation of the past
tense form of the verb. The weights were adjusted with the quickprop algorithm, with
the same parameters as those in table 5.4.

Evaluation proceeded as follows: every output unit with an activation value over
a threshold of 0.7 was set to 1.0, and all other units to 0. Then, for each output slot
the nearest phoneme was computed by measuring the cosine between the output and
phoneme vectors. A closest match was only counted if the cosine was larger than 0.7.

After 210 epochs the network produced all of the 1,066 phonological past tense
forms correctly. Since the network had no hidden units, this result shows that the
mapping from the stem plus inflection class to the phonological form of the output
is a linearly separable problem. The phonological forms of the 60 pseudo verbs were
also produced correctly from the input stem and the class output produced in the
generalization test, with the exception of a few /th/ that were produced as /z/ - the
network had a German accent!

The phonological representation of the past tense can thus be produced either dir-
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ectly in a three layer constructivist network (Westermann, 1997), or in an additional
network that is trained on top of the class-learning model presented here. Neither
of these processes relies on an explicitly defined rule, and in both models a realistic

course of acquisition could be shown.

5.6 Non-constructivist Training

In the previous section it was shown that the CNN outperformed previous models in
simulating the acquisition of the English past tense: it displayed a U-shaped learning
curve, showed a family effect and a frequency effect in overregularizations, general-
ized realistically to novel verbs, and developed double dissociations between regular
and irregular verbs. In order to establish whether the model’s performance was in-
deed due, as argued, to its constructivist nature, different static, non-constructivist
network (NCN) versions of the model were trained on the same data set. For this, the
NCN started with a fixed number of hidden units, and no new units were inserted dur-
ing the training. In order to avoid dead units (i.e., receptive fields not responding to
any of the input verbs), the units were randomly placed on the input verbs. The NCNs
were based on one of the CNN networks in which the final number of hidden units
was 108. To assess the importance of hidden layer size, three non-constructivist simu-
lations were carried out with hidden layer sizes of 78, 108, and 138 units, respectively.
The training parameters were the same as in the constructivist case (table 5.4), without
those relating to the construction of hidden units. They are repeated in table 5.6 for

clarity. The network state was saved every 10 epochs.

| Hidden Unit Parameters ‘

€ 0.2 | fraction by which the winning unit is moved
Oact 0.2 | threshold that determines which type of hidden unit
movement to use
; — 1000 | maximum age of edges before they are removed
[ Quickprop Parameters (see Fahlman, 1988) |
7 1.75 | maximal allowed jump-size
Qio 0.2 | learning rate for input-output weights
Ctho 0.5 | learning rate for hidden-output weights
sigprimeof f set 0.1 | value added to sigmoid-prime to avoid flat spots
slopedecay -0.0001 | factor added to slope to prevent large weights
ETTmin 0.0005 | error at which training is stopped

Table 5.6: The parameters used in the training of the NCN models.



5.6. Non-constructivist Training 123

Superficially, the results of the NCN resembled those of the constructivist mod-
els. The three networks learned all of the regular and irregular inflection classes after
750, 970, and 1000 epochs, respectively. This is faster than the constructivist versions
that averaged 1672 epochs, which is due to the fact that receptive fields were initially
placed on the verbs, and because the hidden layer was not gradually constructed.
Note, however, that since the full network had to be trained from the beginning, the
total CPU-time for training was higher for the non-constructivist networks than for

the constructivist ones.

stick creep
feed bleed
sink say .
0 200 460 660 860 0 200 460 660 800
Epoch Epoch

Figure 5.8: Overregularization profiles for the same verbs as in figure 5.3, but this time
for the non-constructivist network with a hidden layer size of 108 units. This network
was trained for 970 epochs.

However, none of the static networks displayed a U-shaped learning curve in the
way the CNN did. Instead, they behaved more like conventional neural networks:
with very few exceptions, overregularizations occurred only for a brief period at the
beginning of the training, and there was no period of correct production of the irreg-
ular verbs before the onset of overregularization. Figure 5.8 shows the overregulariz-
ation profiles for the six verbs referred to in fig. 5.3 for the constructivist models, this

time for the non-constructivist network with a hidden layer size of 108 units, the same
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Figure 5.9: The overregularization rate for the constructivist and the non-constructivist
networks. The CNN was trained for 1358 epochs and constructed 108 hidden units.
The NCN had 108 hidden units and was trained for 970 epochs.

size as the fully trained CNN used for fig. 5.3.

Figure 5.9 displays the overregularization rates for one CNN and the correspond-
ing NCN. While the overregularization rate in the CNN reaches a plateau at 5 to 7%
and then gradually decreases to 0%, the NCN overregularizes only very briefly.

In contrast to the CNN, all three static networks failed to display a family effect
for overregularizations. The average correlation between family size and overregular-
ization rate was 0.05, compared with -0.11 for the CNN model and -0.08 for children.
However, all NCN showed a strong frequency effect (mean correlation between fre-
quency and overregularization rate = -0.46, CNN: -0.37, children: -0.37).

The generalization behaviour of the static networks matched human performance
less closely than that of the CNN. Figure 5.10 shows the average generalization of the
static networks compared with humans and the CNN, again on the 60 pseudo-words
from (Prasada and Pinker, 1993, cf. fig. 5.5, p. 118). The static networks failed to model
the effect that intermediate pseudo-irregular verbs were less often inflected as irreg-
ular than prototypical pseudo-irregulars. Performance for pseudo-regulars was very
good, however, and the static network outperformed all previous past tense models

except for the CNN, suggesting that a non-homogeneous architecture can be beneficial
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Figure 5.10: The generalization to novel words by the NCN, compared with humans
and the CNN. P = Prototypical, I = Intermediate, D = Distant. Results are averaged
over the three NCN and six CNN.

even in a non-constructivist system.

In summary, although the static networks learned all regular and irregular inflec-
tion classes, they did not display a realistic U-shaped learning curve, they failed to ex-
hibit a family effect in overregularizations, and they modelled generalization to novel

irregular verbs less well than their constructivist cousins.

Why do the static networks do worse in accounting for the human data of past
tense acquisition? The fact that the NCN do not display the behaviour of the CNN
and of children can explained by the absence of an internal reorganization of the verb
representations. Whereas in the CNN the representations for the irregular verbs are
shifted to the developing hidden layer, in the static version the full hidden layer is
available from the start. Figure 5.11 shows the learning curve for regular and irregular
past tense classes in the NCN with 108 hidden units. This figure corresponds to fig. 5.4
(p- 116) for the constructivist case where the network developed 108 hidden units dur-
ing training. In the NCN, lesioning the hidden layer leads to a breakdown in irregular
performance from the beginning, while regular performance is only slightly impaired.
There is thus no gradual re-location of representations to the hidden layer; instead,
the separation between regulars and irregulars occurs already at the beginning of the
training.

The early availability of the full hidden layer leads to a less pronounced dissoci-

ation between regular and irregular verbs than in the constructivist case: more regular
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Figure 5.11: The learning curves for the regular and irregular past tense forms in the
intact non-constructivist network with a hidden layer size of 108 units, and with a
hidden layer that was lesioned at different stages of training, for the non-constructivist
network with a hidden layer size of 108 units.

verbs rely also on the hidden layer, and more irregulars on the direct IO connections.
Figure 5.12 shows the effect of lesioning the HO connections and the IO connections
on the preservation of regular and irregular forms in the constructivist and the static
networks. In the static networks, when the HO connections are lesioned, fewer of
the regular verbs are preserved than in the CNN, indicating that in those networks
more regular verbs rely on the hidden layer for correct production. Similarly, more
irregulars are preserved than in the CNN, showing that in the static networks more

irregulars are produced in the IO connections alone.

With lesioned IO connections the results are similar: in the static networks, more
regular forms are preserved than in the CNN, and fewer irregular forms are preserved.
Significantly, the static networks do not display a double dissociation: for both lesion-

ing the HO and the IO connections, regulars are more preserved than irregulars.

This result is also a consequence of the early availability of the full hidden layer:
the hidden layer is not employed specifically for the hard, irregular cases, but is used
by both regular and irregular verbs early on. This is an example of the “herd effect”
(Fahlman and Lebiere, 1990a) where all units in a network try to solve each problem

and fail to separate into solving different sub-problems.



5.7. Discussion 127

100

i constr regulars

FRHSE ' : static regulars =
constr irregulars
static irregulars | |

90 -

80

70

60

50 -

% still correct

40

30

20

10

hidden-output input-output
Connections lesioned

Figure 5.12: Preservation of regular and irregular forms when the hidden-output
weights and the input-output weights are lesioned, in the constructivist and the static
networks (averaged over six constructivist and three static networks).

5.7 Discussion

The simulations described in this chapter constitute empirical evidence that construct-
ivist neural networks can model the acquisition of the English past tense more closely
than other models that rely on fixed architectures. The ability of the CNN to develop
its structure in response to the specifics of the learning task not only allowed it to alloc-
ate more structure to the difficult-to-learn irregular verbs, but also led to a U-shaped
learning curve with realistic frequency and family effects, based on the internal reor-
ganization of representations, and to emergent functional dissociations between reg-
ular and irregular verbs. The model thus closely followed the developmental profile
observed in children, and reflected in its final architecture properties that are found
in adult language processing: it generalized to novel verbs in a way comparable to
humans, inflecting pseudo-irregulars depending on their similarity to existing verbs
but regularizing pseudo-regulars independently of their similarity to existing regu-
lars. The CNN therefore learned the regular inflection as the default case, applying
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it to unseen verbs irrespective of how closely they resembled any existing verbs. Le-
sioning experiments illustrated the double dissociation between regular and irregular
verbs that emerged in the CNN.

The only difference between the constructivist and the non-constructivist networks
was that in the CNN the hidden layer was gradually built in response to the training
data, whereas in the NCN the whole layer was available from the start. The compar-
ison between these two models, in which the CNN modelled the human data more
closely than the NCN, therefore suggested that for the modelling of human develop-

mental data a constructivist approach might be necessary.
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Figure 5.13: The learning curves for the regular and irregular past tense forms in the
intact network and with a lesioned hidden layer (cf. fig 5.4, p. 116). Additionally, the
number of hidden units is plotted. The network was trained for 1358 epochs, devel-
oping a hidden layer with 108 units.

The CNN presents further evidence that sudden, nonlinear changes in behaviour
need not be based on similar changes in the structure from which the behaviour
emerges (e.g. Elman ef al., 1996). The rapid re-organization of the network’s internal
representations that leads to a U-shaped learning curve is not triggered by a non-
linearity in the growth process: figure 5.13 displays again the learning curves for reg-
ular and irregular verbs in the intact and lesioned constructivist network (cf. fig. 5.4),

but this time the number of hidden units is plotted as well. The dramatic and rapid in-
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ternal reorganisation of the irregular representations onto the hidden layer that starts
around epoch 160 and is nearly completed after 40 epochs, takes place during a linear

growth of the hidden layer.

While the dissociation in the processing of regular and irregular verbs in children
and adults has led to the postulation of a mental rule, the experiments presented here
have shown how such a dissociation can emerge from a constructivist learning process
in the absence of an explicitly defined rule. Instead, the algorithm allocates structure
where and when necessary to solve the problem of past tense inflection, and this pro-
cess leads to a functional dissociation between verb types. The extraction of a rule
from this architecture represents an abstraction of the observed regularities and is a
separate process from learning the past tense inflection system. In this way, the rule is

a consequence, not the origin, of the learning process.

It is interesting to note that the previous model that was closest in performance to
the CNN is the symbolic SPA (Ling and Marinov, 1993; Ling, 1994): it performs well on
learning the training data (table 5.5) and on generalizing to novel verbs (fig. 5.5), but
it was not tested for frequency and family effects, or for functional dissociations. The
SPA was developed as an alternative to neural network models of past tense inflection,
contributing to the debate between “symbolic” and “subsymbolic” processing. While
Ling (1994) attributed the success of the model to its symbolic nature, in the light of
the present results a more convincing explanation might be that its success was due to
its constructivist nature: the SPA builds a decision tree based on ID3 (Quinlan, 1986),
adding branches in response to the training data as it is encountered. Like in the CNN,
the final architecture of the decision tree is thus a direct outcome of the structure of the
training data. Based on this view it seems plausible that the dichotomy constructivist
vs. non-constructivist is more fundamental than the traditional symbolic vs. subsymbolic
distinction that previous past tense models have aimed to emphasize. Direct compar-
isons between symbolic and subsymbolic models can thus only be made either within
or without the constructivist framework, with constructivist models conforming better

to evidence from neural and cognitive development.

However, the distinction between symbolic and subsymbolic processing is still rel-
evant (see e.g., Smolensky, 1988; Fodor and Pylyshyn, 1988; Seidenberg, 1994; Mar-
cus, 1999a; Seidenberg and Elman, 1999b; Marcus, 1999b; Christiansen and Curtin,
1999; Marcus, 1999¢; McClelland and Plaut, 1999; Elman et al., 1996; Marcus, 1998b):
in contrast to the SPA, the CNN was able to model realistically a U-shaped learning

curve, and this ability was based on its connectionist architecture which allowed for
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the re-location of representations from one set of weights to another and led to an
associative-memory based family effect in overregularizations.

Finally, it is important to note that much of the criticism against connectionist mod-
els of cognitive development implicitly assumes that such models have a homogen-
eous architecture, e.g., a common three-layer backpropagation network (e.g. Clahsen,
1999a). In such models it is indeed difficult to find the detailed functional dissoci-
ations that exist in human processing (but see differing opinions such as Plunkett and
Marchman, 1991, 1993; Daugherty and Seidenberg, 1992; Elman et al., 1996; Plunkett
etal.,1997). However, the CNN is a non-homogeneous neural network: with the grow-
ing hidden layer, two pathways develop: the direct connections from the input to the
output layer, and the hidden layer. As such, the CNN is a counterexample to the close
association of neural network models with a homogeneous architecture.’?

In contrast to the dual mechanism theory that postulates two qualitatively distinct
processing mechanisms in the production of regular and irregular forms, the CNN
shows how a distinction between these inflection types can emerge based on a single
associative mechanism.

Taken together, these results suggest a classification of models of cognitive devel-

opment along four dimensions:

1. symbolic vs. subsymbolic processing
2. homogeneous vs. non-homogeneous architecture
3. static architecture vs. constructivist development

4. single mechanism vs. multiple mechanisms

The CNN is, in this classification, a subsymbolic, non-homogeneous, construct-
ivist single-mechanism model. The neural networks of R&M, M&L, D&S and P&M
are subsymbolic, homogeneous, static single-mechanism models, the SPA is a sym-
bolic, (presumably) non-homogeneous, constructivist single-mechanism system, and
the (not implemented) dual mechanism theory is a hybrid, non-homogeneous, static
multiple-mechanism theory. The results described in this chapter suggest that sub-
symbolic, non-homogeneous, constructivist single-mechanism systems might repres-

ent the most realistic models of past tense and, perhaps, cognitive development.

°The question of how to describe the non-homogeneous architecture will be discussed further in
chapter 6.
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5.8 Chapter Summary

The acquisition of the English past tense has become a benchmark test for different
modelling paradigms. In this chapter, a constructivist neural network (CNN) model of
past tense acquisition was presented and its performance was compared directly with
other, previous models. In contrast to the previous models, the CNN learned all train-
ing data and displayed a realistic, U-shaped learning curve, modelling even detailed
phenomena of children’s overregularization. In comparisons with a non-constructivist
version of the same model it was established that this close modelling of the human
data was due to the constructivist growth process that allocated resources where and
when needed and led to a rapid, non-linear internal reorganization of representations
and a functional dissociation between regular and irregular inflections. The CNN also
generalized well to novel verbs, indicating that it had learned the regular inflection as
the default. Based on these results, a new four-dimensional classification for cognitive
models was suggested.

In the next chapter the CNN is extended to model impaired adult inflectional pro-
cessing, and based on this model an alternative to the dual mechanism theory of verb

inflection is developed.
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Chapter 6

Modelling Inflectional Processing in
Agrammatic Aphasia

6.1 Introduction

In order to understand the mechanisms of language and cognitive processing, invest-
igating the course of acquisition of language and cognitive skills is one useful aspect.
Therefore, in the previous chapter a model of English past tense acquisition was de-
veloped that could account for the phenomena occurring in child language acquisition
such as a U-shaped learning curve and overregularization effects. Based on these res-
ults, it was argued that the cognitive architecture underlying verb inflection could be a
constructivist learning system that develops two types of representation for each verb
and produces the inflected form based on a single associative mechanism.

In this chapter, this model is extended to account for adult language processing,
which is the second main aspect in the study of the language system. As in children’s
acquisition of the English past tense, studies of adult language processing have indic-
ated a dissociation between regular and irregular cases. The model developed here
explores the case of participle inflections in agrammatic aphasia to examine whether
the developed dissociations correspond to those found in impaired adult processing.

At the same time as turning from child language acquisition to adult processing,
empirical research has turned to other languages than English, because English con-
founds frequency and regularity: the regular English past tense applies to the major-
ity of all verbs, and it is therefore impossible to decide whether the regular case is
learned as a rule or because of its majority, making a distinction between rule-based
and associative systems difficult. However, frequency and regularity are not neces-
sarily correlated. For example, in the German participle, the regular case applies to

less than half of all verb tokens, and in the German plural, only 7% of all noun tokens

133
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take the -s plural which has been argued to be the regular ending (Marcus et al., 1995).
By studying these so-called minority defaults, it becomes possible to separate regularity

and high frequency.

6.1.1 Dissociations in Adult Inflectional Processing

The evidence for dissociations between regular and irregular inflections in adult pro-
cessing has been established through a variety of approaches, and in different lan-
guages and inflectional systems. These results have mainly been taken as evidence
for the dual mechanism theory of inflection (e.g. Marcus et al., 1995; Pinker, 1997a,b;
Clahsen, 1999a), albeit without contributing anything to its specification.

Novel words are readily inflected as regular unless they are similar to existing ir-
regulars (e.g., Prasada and Pinker, 1993; Marcus et al., 1995; Clahsen, 1997, see also the
previous chapter), and regularly inflected unusual words (e.g., verbs that are derived
from nouns, or originally irregular nouns that are presented as proper names, e.g.,
“John and Julia Child” are the “Childs”, not the “Children”) are judged as better by
subjects than those inflected as irregulars (Kim ef al., 1991; Marcus et al., 1995). In visual
lexical decision tasks where subjects have to decide as quickly as possible if a string
seen on a screen is an existing word, frequency effects are found for irregulars but
not for regulars (Prasada, Pinker, and Snyder, 1990; Clahsen, Eisenbeiss, and Sonnen-
stuhl, 1997b), although other researchers have reported frequency effects for regularly
inflected forms as well (Baayen, Dijkstra, and Schreuder, 1997). Moreover, incorrectly
inflected regular and irregular forms, respectively, result in different response times
in sentence matching experiments (Clahsen et al., 1997b) and they elicit different ERPs
(Weyerts et al., 1997; Penke et al., 1997; Say, Kleingers, Clahsen, and Munte, 1998).

Results from priming experiments show a less clear-cut distinction between regu-
lars and irregulars. In these experiments, an inflected form of a word (e.g., laughed) is
shown to a subject on a screen, followed by the stem of that word (laugh). Having seen
the first word might reduce the response time for deciding if the second stimulus is in
fact an existing word. Such priming effects have been reliably found for regulars (e.g.,
seeing looked reduces the response time for a subsequent look), but different research-
ers have reported different results for irregular cases, from no priming via reduced to
full priming (see Clahsen, 1999a, for references). Recent results have also established
different ERPs in the priming of regular and irregular English past tense forms (Munte
et al., 1999).

Dissociations between inflection types have also been found in children with de-
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velopmental disorders, namely Specific Language Impairment (SLI) and Williams
Syndrome. While it does not seem, as sometimes argued (e.g. Ullman and Gopnik,
1999), that these disorders allow a dissociation of language abilities from other aspects
of cognition (Bates et al., in press), they nevertheless show a dissociation within the
language system (which might stretch into other cognitive domains as well) between
regular and irregular cases (Clahsen and Almazan, 1998). In Williams Syndrome, des-
pite a low IQ, inflection of regular verbs is not impaired, whereas irregular inflection
is impaired. The opposite profile can be found in SLI subjects where regular inflection
is more impaired than irregular inflection.

Significantly for the simulation in this chapter, dissociations between regular and
irregular inflections have also been found in impaired adult processing, namely, in
acquired agrammatic aphasia. Here, subjects show difficulties in producing irregular
participles (Penke, Janssen, and Krause, 1999, these results will be discussed in more
detail below as they form the basis of the simulations presented in this chapter). How-
ever, priming experiments with English agrammatic aphasics (Marslen-Wilson and
Tyler, 1997, 1998) have established the somewhat confusing result that irregular prim-
ing is preserved whereas regular priming is not. The opposite case was found in a
subject with more extensive brain damage, particularly in the right hemisphere. These
subjects were not assessed for their ability to produce regular and irregular inflec-
tions, however, although their comprehension was selectively disturbed for regular
cases. The significance of a possible selective impairment of regulars will be discussed
below.

The rest of this chapter is organized as follows: in section 6.2, the structure of
the German participle is described. Section 6.3 returns to the dual mechanism the-
ory already briefly described in section 5.3.6 and discusses it in the broader context of
adult language processing. Section 6.4 gives details about agrammatic aphasia and the
dissociations between inflection classes that have been observed in this disorder. Sec-
tions 6.5, 6.6, and 6.7, respectively, describe the adaptation of the constructivist model
to the participle task, the training data, and the training procedure. The results of the
simulations are reported in section 6.8, and section 6.9 discusses how they contribute

to the understanding of inflection processing in humans.

6.2 The German Participle

German participles are comparable in usage to the English past tense in describing an

event in the past. There are three groups of participles: Weak participles are formed by



136 6. Modelling Inflectional Processing in Agrammatic Aphasia

a (prosodically determined) prefix ge-, the verb stem, and the ending -t, e.g., sagen (say)
— gesagt (said), lachen (laugh) — gelacht (laughed). Strong participles take the ending
-en, e.g., geben (give) — gegeben (given) and they may also change the verb stem, e.g.,
gehen (go) — gegangen (gone), nehmen (take) — genommen (taken). A few strong verbs
have idiosyncratic participle forms, e.g., sein (be) — gewesen (been). The third group
are mixed verbs that take the weak ending -t but change their stems like strong verbs:
wissen (know) — gewusst (known), denken (think) — gedacht (thought). Like in English,
the participles are combined with a modal verb (sein (be) or haben (have)) to form
different perfective tenses (present perfect, past perfect, future perfect). It is generally
claimed that the weak verbs form the regular class, while strong verbs are irregular,
and the terms regular and irregular will here be used in this sense.

The CELEX database (Baayen, Piepenbrock, and van Rijn, 1993) lists 3015 German
participles with a frequency of at least one. After cleaning out some obvious errors
and homophones and choosing the more frequent of different participle forms of one

stem, the remaining corpus of 2992 verb types has the distribution shown in table 6.1.

type token

Regular | 1936  (647%) | 40196  (46.9%)
Irregular | 956  (32.0%) | 41276  (48.1%)
Mixed 100 (3.3%) | 4243 (5.0%)

| Sum 2992 (100.0%) | 85715 (100.0%) |

Table 6.1: Distribution of the participles of the different verb groups in German (ana-
lyzed from the CELEX database).

As indicated above, in contrast to English, German does not have a majority of reg-
ular tokens, and the majority of types is less pronounced than in English (cf. table 5.1,
p. 109).

6.3 The Dual Mechanism Theory Revisited

In this section I am returning to the Dual Mechanism Theory (DMT) that was already
briefly discussed in the context of past tense acquisition (section 5.3.6).

The DMT was developed to account for the dissociations between regular and ir-
regular inflections (Pinker and Prince, 1988; Pinker, 1991), and in turn these dissoci-
ations have been taken as evidence for the DMT (Marcus et al., 1995; Jaeger et al., 1996;
Marslen-Wilson and Tyler, 1997, 1998; Clahsen, Bartke, and Gollner, 1997a; Ullman
et al., 1997; Clahsen and Almazan, 1998; Clahsen, 1999a; Ullman and Gopnik, 1999).
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Regular and irregular inflections are claimed to be processed in locally distinct brain
areas, by qualitatively different processing mechanisms. Similar dual-route models
have also been described to account for the reading of familiar and non-words (e.g.
Coltheart, 1978; Reggia, Marsland, and Berndt, 1988; Coltheart, Curtis, Atkins, and
Haller, 1993), arguing for the rule-based production of “regular” pronunciations and
a lexical look-up for exceptions and nonwords. In the DMT, these mechanisms are
claimed to be a mental rule for the regular case, and an associative memory-type lex-
icon for irregulars. However, although the DMT has become a dominant theory of
inflection processing (Pinker, 1994, 1999) a closer look reveals serious flaws that will

be discussed in the following sections.

6.3.1 Why the Dual Mechanism Theory Does Not Work

The DMT was originally formulated in a criticism of Rumelhart and McClelland’s
(1986) neural network model of English past tense learning (Pinker and Prince, 1988).
It was born out of the insight that the regular past tense ending -ed is productive and
readily applies to novel verbs, whereas irregular verbs show associative effects such as
phonologically similar sub-groups (sing, ring, spring). Therefore, an intuitively attract-
ive assumption was to postulate two separate mechanisms in their production. But
there are two main problems with the DMT that make it seem untenable as a general
theory of inflectional processing: first, although it can intuitively describe the dissoci-
ations between regular and irregular inflections, it is too underspecified to explain in
detail how inflections are produced. Second, although it could account for the data at
the time of its publication, newer evidence contradicts its most fundamental predic-

tions.

6.3.1.1 Underspecification of the Dual Mechanism Theory

The DMT is highly underspecified. In particular, if regular and irregular forms are
produced by different mechanisms, it is necessary to explain how these mechanisms
interact to produce an inflected form. One such explanation was put forward by Mar-
cus et al. (1995): they argued for a Blocking Principle in which an entry in the associative
lexicon blocks the application of the mental rule. Although this principle can intuit-
ively explain why novel verbs and verbs that are derived from nouns are preferentially
inflected as regulars (i.e., because they do not have a lexical entry), its formalization
has not been achieved. Nakisa, Plunkett, and Hahn (1997) performed comparisons

of implemented single- and dual-mechanism models of inflections and showed that
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a dual mechanism implementation incorporating the Blocking Principle yields no ad-
vantages in the performance of single-mechanism models. This is because in an associ-
ative memory, activation of an entry is not binary, but entries can be partially activated
depending on their similarity to the input. Therefore, a similarity threshold parameter
has to control whether the lexical entry is chosen or the the default rule is activated.
However, the setting of this parameter is problematic: if a regular verb is similar to an
irregular, this irregular might wrongly be activated and produce an irregular inflec-
tion. To avoid this, the threshold must be high enough not to activate e.g., feel when
the past tense of peel is to be produced, or hear for fear, fly for try, or wake for ache. At
the same time, the threshold must be low enough to account for the irregularization of
novel words that are similar to irregulars (e.g. Prasada and Pinker, 1993), where e,g,
spling will be inflected as splang. The problem of having to find a suitable threshold
parameter arises from the fact that in the DMT, irregular inflections can be produced
based on the similarity to other existing irregulars, whereas regular inflections of both
existing and novel verbs, neither of which have lexical entries, are solely based on
the dissimilarity to existing irregulars. In their implementations, Nakisa et al. (1997)
found that no value of the threshold parameter accounted for these cases, given a
realistic distribution of regular and irregular verbs. Thus, while it is important to spe-
cify the interactions between associative and rule mechanism, the implementation of
the Blocking Principle proposed by Marcus et al. (1995) did not yield positive results.
Indeed, a recent comprehensive exposition of the dual mechanism theory (Clahsen,
1999a) makes no reference at all to possible interactions between the two mechanisms,
leaving the theory even less specified than before.

Another aspect where the DMT is underspecified concerns what exactly is stored
in the lexicon for the formation of irregular past tenses. Pinker (1991) claimed that
irregular forms are stored fully in the lexicon and used this as the explanation why
irregular, but not regular forms can occur in compounds (e.g., mice-infested vs. xrats-
infested), namely, because they are not assembled by a rule but are retrieved from the
lexicon.! However, if full irregular forms are stored it is hard to explain the productive
use of irregular inflection. For example, a pseudo verb that is similar to an existing
irregular should then produce the past tense of that irregular. In the case of spling,
which is similar to spring, the past tense would be produced by retrieving the full

"Whether the “no regulars in compounds” rule holds for German as well is highly controversial: here,
the regular genitive ending -s occurs in composita (e.g., Landesverriter) as well as the arguably regular
plural ending -en (e.g., damenhaft) (Penke, personal communication). Clahsen (1999b), however, defends
the rule even for German by claiming that the genitive -s is really a linking morpheme, and that -en is not
a regular plural.
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stored form associated with spring, i.e., sprang. In this view there is thus no way in
which novel irregular past tense forms can be produced, a prediction that is clearly
out of line with the evidence (Prasada and Pinker, 1993).

A different approach to lexical storage is taken in Minimalist Morphology (Wun-
derlich and Fabri, 1995): here, each irregular stem is connected to a transformation
rule (e.g., spling—| ... @ ... ] ), whereas regulars are combined with a separate lexical
entry of an inflectional ending ( [ -ed ]). While such a system can account for novel
irregulars, it now becomes more difficult to distinguish between those items for which
the regular rule has been applied and that cannot be used in compounds, and those for
which an irregular rule has been applied and that can occur in compounds. While this
point might seem pedantic, it is often on these detailed questions that formalizations
fail.

6.3.1.2 Blends between Regulars and Irregulars

Both in language acquisition and in adult language processing, forms can be found
that combine regular and irregular elements. Such forms should not exist according
to the DMT where processes are strictly separated and encapsulated.

One example of such blends are German mixed verbs: these verbs, which repres-
ent about 5% of all participle tokens, combine a strong stem change with the weak -t
ending (e.g., denken—gedacht). Therefore, either an interaction between regular and ir-
regular mechanisms must be assumed, or -t has to be considered as both a weak and a
strong ending because mixed participles are stored as full forms in the lexicon. Neither
option agrees well with the DMT, and mixed verbs are usually ignored in discussions
of how the DMT can explain verb inflection (e.g. Clahsen, 1999a).

A similar problem of blending between the two mechanisms concerns the acquisi-
tion of the English past tense: here, children occasionally make mistakes such as broked
and tooked, where the regular ending is attached to an irregular past tense form (e.g.,
Marcus et al., 1992). In the DMT, the activation of an irregular entry would have to be
strong enough to produce a form like broke which would then have to act as input to
the rule mechanism which is not blocked by the activated irregular entry. While such
a scenario is in theory possible, its formalization poses a difficult challenge when a
threshold parameter for the interactions between the mechanisms is assumed.

Further, the DMT cannot account for a grading of regularity: it has been estab-
lished in different inflectional systems that regular inflections can be graded depend-

ing on their similarity to irregulars: in the generation of English past tense forms,
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regulars that are similar to irregulars show higher response latencies than those that
are dissimilar to irregulars (Seidenberg and Bruck, 1990; Seidenberg, 1992). In Ger-
man agrammatic aphasics, irregular-like regulars are more impaired than other reg-
ulars (Penke ef al., 1999). Further, regular forms that are claimed to be produced by
a rule in all cases have been shown to be instead stored in the lexicon under certain
circumstances: in Dutch, regular noun plurals ending in -en behave like irregulars in
response-time experiments, indicating that they are stored in the lexicon (Baayen et al.,
1997). In the English past tense, frequent regular past tense forms are less prone to mis-
pronunciations than infrequent ones; a result that can be best understood by assuming
the storage of the inflected form (Stemberger and MacWhinney, 1986). These results
directly contradict the predictions of the DMT where the regular inflection is created
“on the fly” and not stored, and they seem to be more in line with a view of regularity
as a continuum (e.g. Daugherty and Seidenberg, 1992; Westermann, 1995).

6.3.1.3 Impairment Profiles

It is unclear whether an agrammatic aphasia profile exists where regular verbs are
selectively impaired and irregulars are preserved. Although such profiles have been
reported in the English past tense based on priming (Marslen-Wilson and Tyler, 1997,
1998) and production and reading (Ullman et al., 1997) experiments, in English the
issues of regularity and separable ending are confounded because the regular case
is the only one that receives an ending. A selective impairment for regulars could
therefore be an impairment of suffixation in general. This confound is avoided in e.g.,
the German participle where both regular and irregular verbs have separable endings
(-t and -en, respectively). For German, in 11 agrammatic aphasic subjects studied by
Penke et al. (1999) none showed a selective sparing of irregulars. More research will
be needed to resolve this question.

6.3.2 Summary for the Dual Mechanism Theory

Taken together, the DMT seems like a good first approximation of the mechanisms
of verb processing, explaining dissociations between regular and irregular inflections.
However, it does not stand up to formalization and is directly contradicted by more
recent data. The postulation of two mechanisms might therefore be a post hoc ration-
alization of the observed dissociations.

In the rest of this chapter I will develop a theory of inflectional processing that

is based on the constructivist CNN model, and I will show how a single mechanism
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together with a constructivist learning process can lead to a system with emerging
double dissociations between regular and irregular verbs. I will show how the empir-
ical data contradicted by the DMT can be modelled with the CNN.

6.4 Agrammatic Aphasia

Agrammatic (Broca’s) aphasia is a language disorder that is typically caused by a
stroke or injury affecting the posterior portion of the third frontal convolution of the
cortex (the peri-Sylvian region, Broca’s area), and the surrounding motor and pre-

motor areas as well as underlying white matter and the insula (figure 6.1).

"0 men “12mm. +24 mm

Figure 6.1: Area of brain damage in a subject that displayed agrammatic aphasia. The
upper four images are 3D reconstructions based on a structural MRI scan. The bottom
five images show transverse sections through the patient’s brain, showing the deeper
regions of the damage to the left frontal and temporal lobes. There is extensive damage
to Broca’s area and the surrounding areas, but no damage to the right hemisphere.
(Reprinted from Marslen-Wilson and Tyler, 1998).

Patients suffering from a lesion in this area often show the symptoms typical of
agrammatic aphasia: slow, halting speech which is telegraphic in that many non-
essential words are left out and sentences are formed just with important content-
words. Goodglass (1976) gave an example from the speech of a patient who is trying
to explain that he has returned to the hospital for work on his gums:

Ah ... Monday ... ah, Dad and Paul Hanney [referring to himself by his
full name] and Dad ... hospital. Two ... ah, doctors... ,and ah ... thirty
minutes ... and yes ... ah ... hospital. And, er, Wednesday ... nine o’-
clock. And er Thursday, ten o’clock ... doctors. Two doctors ... and ah
... teeth. Yeah, ... fine. (cited from Ellis and Young, 1988)

Comprehension in agrammatic aphasia is also impaired, especially when it in-
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volves more complex syntactic knowledge such as passives and embedded sentences.
In a sentence such as “The girl is kissed by the boy”, aphasics might therefore have
difficulty in deciding who is kissing whom.

One of the characteristic symptoms of Broca’s aphasia that is of interest here is
the tendency to omit or substitute inflectional morphemes. Where a word without
an inflectional morpheme is a real word in itself (e.g., English walked — walk), the
inflectional morpheme is often omitted. In cases where omission of the morpheme
would lead to a non-existing word (e.g., Italian rossa — ross), it is either preserved or

substituted with another morpheme (e.g., r0sso) (Grodzinsky, 1984).

Investigating the precise nature of the inflectional morphology deficits in agram-
matic aphasia can therefore lead to insights into the representation of inflections in the
brain. For this purpose, Penke et al. (1999) analyzed data from eleven German agram-
matic aphasics who had been classified with the Aachen Aphasia test-battery (Huber,
Poeck, Weniger, and Willems, 1993). All subjects were right-handed native speakers
(age 22-63, average age 50), without language problems prior to aphasia, and had
suffered a left hemispheric insult at least three years prior to the investigations. Their
behaviour had therefore stabilized.

The subjects each had to produce 39 regular and 39 irregular participles in a sen-
tence completion task, transforming a given first person singular present verb (e.g.,
(ich) gebe) into the appropriate participle (gegeben). Penke et al. varied the verbs that
were used in the experiments with respect to lemma frequency, participle frequency,
and frequency of ablaut patterns, and they analyzed their results for regular and irreg-
ular errors, overregularizations and irregularizations, frequency effects, and effects of

ablaut-patterns on error rates.

Penke et al. (1999) found that six of the subjects produced significantly more errors
with irregular than with regular participles. Two subjects made too few errors for
statistical evaluation, and three subjects showed no significant difference in error rates
between regular and irregular participles. They also found that the subjects with no
impairment of regular verbs tended to overregularize irregular participles, while they
only rarely irregularized regular participles. Further, when the subjects were tested on
the inflection of pseudo-verbs, all but one preferred the regular to the irregular case,
a result that is in line with data from unimpaired subjects (e.g. Prasada and Pinker,
1993). Taken together, whereas a selective impairment of irregulars occurred in 6 of the
11 subjects, none of the subjects displayed a selective impairment of regulars. Penke

et al. interpreted their results as evidence for a theory of verb inflection where regular
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and irregular participles are produced by two qualitatively distinct mechanisms, affix-

based for the regulars, and stored for the irregulars.

The aim of the constructivist network simulations described here was to model the
results obtained by Penke et al., while providing an alternative explanation that does

not rely on a qualitative distinction between regular and irregular verbs.

The results obtained by Penke et al. were slightly re-interpreted for the simulations
reported here: whereas Penke et al. did not analyze errors that were not overtly marked

as participles, these were counted as wrong for comparison with the simulations.

6.5 The Network Model

The simulations described here employed the CNN network model that was also used
for the modelling of past tense acquisition in the previous chapter. Additionally, simu-
lations were run with the Supervised Growing Neural Gas algorithm (Fritzke, 1994a),
with very similar results (Westermann ef al., 1999).

Figure 6.2 shows the network architecture. Like in the past tense model, the input
layer takes a phonological representation of the verb infinitive, and the output layer
has one unit for each possible output class (see below). The hidden layer initially con-
sists of only two units but is grown during learning. There are full direct connections
from the input to the output layer, and each inserted hidden unit is fully connected to

the output layer.
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Figure 6.2: The initial architecture of the network. The input and output layers and
the hidden and output layers are fully interconnected.
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6.6 Data

German verbs are often formed by modifying other existing verbs with a separable
prefix or particle, e.g., in the CELEX database the simplex verb fahren (drive) occurs in
28 composite forms (hinausfahren, losfahren, hinfahren, festfahren, vorfahren, radfahren,
ausfahren, fortfahren, mitfahren, auffahren, anfahren, abfahren, zuriickfahren, heimfahren,
hochfahren, umfahren, weiterfahren, totfahren, zusammentfahren, zufahren, durchfahren, her-
anfahren, einfahren, vorausfahren, vorbeifahren, nachfahren, wegfahren, fahren). Since a pre-
fix does not alter the way in which the participle of a simplex verb is formed, all com-
posite forms were combined into one simplex form, e.g., the 28 types made from fahren
were added up into the single type fahren. This simplification of the corpus consider-
ably altered its type distribution (table 6.2): the total number of types reduced from
2992 to 1140, showing that 1852 types in the original corpus (table 6.1, p. 136) were
composite verbs. The type frequency of regular verbs increased dramatically from
64.7% to 86.7%, indicating that most of the composite verbs that were lost in the sim-

plex version were irregulars.

type token

Regular | 988  (86.7%) | 40196  (46.9%)
Irregular | 139  (12.2%) | 38190  (44.6%)
Mixed 13 (1.1%) | 7329  (8.5%)

| Sum 1140  (100.0%) | 85715 (100.0%) |

Table 6.2: The distribution of the different verb groups in the simplified corpus.

Many verbs in the corpus had a very low token frequency and hence for the simu-
lations, all verbs with a frequency of less than 5 were removed, except those that had
been used by Penke ef al. (1999) in their experiments with agrammatic aphasics. While
the resulting number of verb types of this reduced corpus was just 664, the token dis-
tribution was well preserved in comparison with the full corpus (table 6.3).

type token

Regular | 518  (78.0%) | 39275  (46.5%)
Irregular | 134  (20.2%) | 41090  (48.5%)
Mixed 12 (1.8%) | 4280 (5.0%)
| Sum | 664 (100.0%) | 84645 (100.0%)

Table 6.3: Distribution of the corpus when low frequency verbs were removed.

The 664 participles were classified according to the way in which their participles
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are formed, resulting in a total of 22 classes, one of which was the “stem + -t” (regular)
class, six were for mixed verbs, and 15 for irregular verbs (see appendix F).

Each phoneme was represented by a 7-bit feature vector with features such as fric-
ative, plosive, voiced etc. for consonants, and front, high, open etc. for vowels. Presence
of a particular feature was encoded with 1 and absence with 0 (see appendix G).

For the training of the network, the phonological representation of the infinitive of
each verb was then inserted into a template consisting of three syllables: XCCCVVCC-
XCCCVVCC-XCCCVVCC; C stands for consonant, V for vowel, and X for whether the
syllable is stressed or not. Since the endings of verbs are significant for the determin-
ation of the participle class, the verbs were right-aligned in this template so that the
endings occurred in the same slots. Table 6.4 shows examples of the template repres-

entation.

empfinden 0---E-m-1pf-I-n-0d--@-n-

schreiben (PR 1Sr-W---0b--@-n-
fliessen 0-——-——- 1fl-i---0s--@-n-
sein Drmmomt O=r=omms lz--W-n-

Template XCCCVVCCXCCCVVCCXCCCVVCC

Table 6.4: Template representation of the verb infinitives.

The resulting network had 150 input units (three syllables with seven phonemes
each represented by seven features, plus one stress-bit per syllable), and 22 output

units for the 22 inflection classes.

6.7 Training

The task to be learned by the network was the mapping from the phonological rep-
resentation of the verb infinitive to the class of its participle. Like in the English past
tense, viewing the learning of the participle as a classification task avoids confound-
ing it with phonological details such as different pronunciation of participle forms
depending on the last stem phoneme (holen — geholt vs. landen — gelandet), and the
phonologically determined prefix ge-. It assumes a component that, given the phono-
logical representation of the infinitive and the participle class, can produce the phon-
ological form of the participle (it was shown in the previous chapter for the English
past tense that this transformation can be learned in a single layer perceptron).

From the corpus of 664 simplex verbs 20000 verb tokens were randomly extracted

according to their frequency. To ensure that each verb occurred at least once, all verb
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types which had not been randomly selected were added onto the resulting corpus
with a token frequency of one (this applied to 18 verbs). The full training corpus is
listed in appendix E.

The structure of the resulting training corpus is shown in table 6.5. The regular
case in this data set applies to 78.0% of all verb types, but only to 46.5% of tokens. This
is in contrast to the English past tense, where the regular case forms the majority of
both types and tokens (see table 5.1, p. 109). The German participle thus is an example
of a minority default when token frequencies are considered.

type token

Regular | 518  (78.0%) | 9306  (46.5%)
Irregular | 134  (20.2%) | 9717  (48.5%)
Mixed 12 (1.8%) 995 (5.0%)
| Sum [ 664 (100.0%) | 20018 (100.0%) |

Table 6.5: The structure of the training corpus.

Five constructivist networks were trained on this corpus as outlined in section 6.5
with different random initial weight settings. The training parameters of the network
are shown in table 6.6. The networks were tested before the insertion of a new hidden
unit. An output class was counted as correct when the corresponding unit, but no
other unit, had an activation value over 0.7.

Perfect classification of all verbs was reached after an average of 2386 epochs, ran-
ging from 1498 to 3121 epochs.

6.7.1 Developed Network Structure

The final structure of the CNN networks consisted of an average of 179.8 hidden units
(receptive fields, rfs, ranging from 119 to 211), corresponding to an average of 3.69
verbs per unit. However, as an outcome of the constructivist growth process, in each
network there were hidden units (mean: 68.2) with all weights turned to zero that
therefore did not contribute to the computation of the output. These units were dis-
regarded in the further analysis of the network structure.

Like in the English past tense simulations, the distribution of regular and irregular
verbs revealed a significant difference: on average, each regular verb used only 16.5%
of a receptive field, whereas irregulars used 55.8%, and mixed verbs 80.0%. The pre-
ferred allocation of resources to the irregular/mixed verbs thus occurred even when

the regular case applied to less than 50% of all verb tokens (and could thus in theory
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| Constructivist Parameters |

€ 0.08 | fraction by which the winning unit is moved

Ouct 0.2 | threshold that determines which type of hidden unit
movement to use

Tivigiis 2000 | maximum age of edges before they are removed

d 0.1 | factor by which node errors are decreased after each
epoch

e 0.1 | error decrease considered sufficient during patience

patience 10 | interval (in epochs) during which error decrease is
measured to decide whether a new hidden unit is to
be inserted

| Quickprop Parameters (see Fahlman, 1988)

7 1.75 | maximal allowed jumpsize

L 0.2 | learning rate for input-output weights

Qho 0.5 | learning rate for hidden-output weights

sigprimeof f set 0.1 | value added to sigmoid-prime to avoid flat spots

slopedecay -0.0001 | factor added to slope to prevent large weights

€T Tinin 0.0005 | error at which training is stopped

Table 6.6: The parameters used in the training of the CNN model for modelling agram-
matic aphasia. For the algorithm itself see page 87 ff.

be considered as irregular). The determining factor for resource allocation in the net-
works seems to be the size of verb classes counted in verb tokens: the smaller the class
size in tokens, the more hidden units are allocated per verb in that class because they
form hard-to-learn exceptions (correlation “class size in tokens” with “hidden units

per class” = -0.79).

Numerical evidence for the uneven distribution of the rfs in the input space comes
from computing the mean and standard deviation of the average distance from each
unit to its nearest neighbour, and comparing the result with a random distribution of
the units in the input space. For an example trained network with 109 hidden units
the mean distance from a hidden unit to its nearest neighbour was d = 5.06 with a
standard deviation o = 4.0987. This result was compared with averaging over 100
trials with 109 randomly distributed units which yielded d = 8.9706 and o = 4.3581. d
being smaller in the network than in the random distribution indicates that the units

populate only a subspace of the input space.
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6.8 Lesioning Experiments

In order to model the results obtained with the agrammatic aphasics (Penke et al.,
1999), the network models were lesioned in different ways. It was assumed that the
removal of connections in the network model corresponds to the destruction of neural
tissue in the brain by a stroke or injury.

The output in the network model is produced through two sets of connections:
the direct connections between the input and the output layer that existed prior to the
training of the network, and the connections from the growing receptive field layer to
the output layer. The role of these two pathways was investigated by lesioning them
individually, and by randomly lesioning the whole network to different degrees.

6.8.1 Localized Lesioning
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Figure 6.3: Double dissociation between regular and irregular (and mixed) verbs when
lesioning the two sets of connections in the network, averaged over four networks.
Note that performance for mixed verbs in the HO condition is 0.0.

Like in the English past tense simulations, lesioning the individual sets of con-
nections in the CNN resulted in a double dissociation between regular and irregular
verbs, with mixed verbs behaving more like irregulars. Four of the five networks
showed a marked difference between regular and irregular performance, and for the

remaining one there was no difference between regular, irregular and mixed perform-
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ance.

Figure 6.3 shows the results of lesioning the IO and HO connections for the four
models that displayed a difference between regular and irregular performance. Le-
sioning the connections from the hidden to the output layer (HO) resulted in a marked
decrease of the performance of irregular and mixed verbs, with regular inflections re-
maining nearly fully intact. Lesioning the direct connections from the input to the
output layer (IO) resulted in the opposite profile: performance on regulars was signi-
ficantly more decreased than on irregular and mixed verbs.

HO-lesioning therefore resulted in a performance of the model that corresponds to
the results for agrammatic aphasics reported by Penke et al. (1999): six of the eleven
tested aphasic subjects made significantly more errors with irregular verbs than with
regulars. Lesioning the connections from the receptive fields to the output layer in the
network thus modelled the basic deficit in the inflection of agrammatic aphasics.

Based on this result, the performance of the four HO-lesioned CNN models was
investigated with respect to the more detailed results found by Penke et al..

The eleven aphasic subjects investigated by Penke et al. fall into two groups: six
produced significantly more errors with irregular participles than with regulars, and
three showed no significant difference between regular and irregular participles (two
made too few errors to establish a significant difference, and although they made more
mistakes with irregulars they therefore cannot be attributed to any of the groups).
These results were reflected in the five runs of the CNN where four of the lesioned
networks displayed significantly more irregular than regular errors (mean 89.6% and
2.0%, respectively), while the fifth had a similar error rate for both irregulars and reg-

ulars (56.0% and 49.3%, respectively).

6.8.1.1 Overregularization and Irregularization

Penke et al. (1999) found that all subjects who made more errors on irregulars than
on regulars overgeneralized the regular ending -t to irregular verbs, but they only
rarely irregularized regular verbs (i.e., their regular errors consisted mainly in using
a wrong suffix like -e or none at all). Testing the four corresponding CNN models for
this behaviour showed a good match with the aphasics (fig. 6.4a): the networks over-
applied the regular class to 73.7% of all wrong irregulars (aphasics: 63.3%), but only

6.5% of all regular errors were irregularizations (aphasics: 14.3%).2

*The other errors that can be made by the CNN models are no output, or ambiguous output when
two (or more) output units are strongly activated.
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The networks that corresponded to the investigated aphasic subjects could thus
model both overregularization and irregularization behaviour closely, both qualitat-

ively and quantitatively.
a. Overregularization vs. Irregularization Errors b. Inflection of Pseudo-Verbs
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Figure 6.4: a. Overregularization vs. irregularization errors in the HO-lesioned CNN
models, averaged over four networks. b. Inflection of pseudo-verbs in the HO le-
sioned CNN models, averaged over five networks.

6.8.1.2 Inflection of Pseudo-verbs

Penke et al. (1999) also tested their aphasic subjects on the inflection of pseudo-verbs
that were chosen to be dissimilar to existing verbs (brewen, elmen, kersen, krelchen, and
telpen). According to the results for the English past tense (Prasada and Pinker, 1993),
normal subjects should tend to regularize such verbs. Penke ef al. found that this
was also true for the aphasic subjects: each of the eleven subjects was asked twice to
inflect each of the five pseudo-verbs. Of the resulting 110 participle forms, 65 (59.1%)
were regular, but only 4 (3.6%) irregular. (The rest were either no output or several
output units activated simultaneously.) In the five CNN networks, of the 25 produced
pseudo-verbs, 15 (60%) were classified as regular and none (0%) as irregular (fig. 6.4b).

This result provides an extremely close match to the aphasic data.
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6.8.1.3 Frequency Effect for Irregular Participles

Based on the assumption of two qualitatively distinct processing mechanisms, Penke
et al. (1999) predicted and found a frequency effect in the aphasic inflection of irregu-
lars, but not of regulars: there were significantly more errors for infrequent irregulars
than for frequent ones, but no such effect occurred for regulars.

Penke et al. constructed groups of low and high frequency verbs by choosing a
subset of their test verbs and dividing them into groups with a participle frequency of
less than 50 and a lemma frequency of less than 250, and with a participle frequency
of over 50 and a lemma frequency of over 250.

The same verbs were used in analyzing the four CNN models that showed select-
ive impairment of irregulars, and here as well a small frequency effect for irregulars
but not for regulars was found: the error rate for low frequency irregulars (93.3%) was
significantly higher than for high frequency irregulars (89.0%) (Wilcoxon, p = 0.068),
but error rates for regulars did not differ statistically (1.7% for low frequency and 2.4%

for high frequency regulars, p = 0.273).

6.8.1.4 Regularity Continuum

Based on a previous neural network model of the acquisition of the German participle
(Westermann, 1995), I had argued that regularity and irregularity are two ends of a
continuum: a regular verb can be said to be “very regular” if it is similar to other
regulars and dissimilar to irregulars. It is “less regular” if it is dissimilar to other
regulars but similar to irregulars. The reverse is true for irregulars (see also Daugherty
and Seidenberg, 1992)

This assumption is attractive because it integrates mixed verbs which fall between
regular and irregular verbs in the way they are formed. Mixed verbs are generally ig-
nored in the DMT because they are hard to consolidate with the qualitative distinction
between regulars and irregulars.

In a regularity continuum it would be predicted that “less regular” regulars, being
more similar to irregulars, should be more error prone than “very regular” regulars.
Penke et al. (1999) analyzed the distribution of verbs with respect to stem vowels and
found that for the stem vowel <e>, irregulars outnumber regulars, whereas for the
stem vowels <au>, <6>, <d> and <ii>, regulars outnumber irregulars. Therefore,
regular verbs with <e> should have a higher error rate because they are similar to
irregulars. For irregular verbs, more overregularizations should occur for verbs with
<au>, <0>, <d> and <ii> than for <e>, because they are “less irregular”.
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This prediction was confirmed in the analysis of the aphasic data: all regular suffix-
ation errors occurred with <e>-regulars. To control for the observed frequency effect
for irregulars (see section 6.8.1.3), Penke et al. considered only low-frequency irregu-
lars. For these irregulars, significantly more errors were made for verbs with <au>,
<6>, <d> and <ii> than with <e>. While Penke ¢t al. interpreted their results within
the framework of a qualitative distinction between regulars and irregulars (allowing
grading effects for both mechanisms with the qualitatively distinct verb groups influ-
encing each other), a more plausible interpretation is that of a regularity continuum
where one mechanism underlies the production of both forms.

Testing the four irregular-impaired CNN models for the regularity-continuum ef-
fect yielded the same pattern of results: when tested on the same verbs as the aphasics,
4 out of 5 of the regular errors were for the stem vowel <e>, indicating that these verbs
are affected more like irregulars. At the same time, all of the low-frequency irregulars
on <au>, <6>, <d> and <ii> were overregularized, whereas the 3 only correct irreg-
ulars were for the stem vowel <e>.

The effect of an influence of ablaut-clusters on both regular and irregular verbs is
a confirmation of the argument for viewing regular and irregular verbs as two ends
of a continuum. This continuum, which was found in the aphasic subjects, was thus

closely modelled in the constructivist neural network model.

6.8.2 Global Lesioning

As shown in the previous section, the lesioning of the HO pathway in the CNN model
can account for a selective impairment in the inflection of irregular verbs and thus
model the performance of agrammatic aphasic subjects. This selective and total lesion-
ing of one pathway might suggest that the processing of regular and irregular verbs is
subserved by locally different brain structures (though based on a single mechanism)
that can be selectively affected by a stroke. Although this position has been argued
by some researchers (Jaeger et al., 1996; Ullman et al., 1997; Marslen-Wilson and Tyler,
1997, 1998), there exist considerable difficulties in the interpretation of their results,
and in the methodology of some of these studies (Seidenberg and Hoeffner, 1998).
The most extensive study (Jaeger et al., 1996) used PET to visualize active brain areas
during the production of regular, irregular, and pseudo-verb past tense inflections.
While they identified uniquely activated brain areas for each verb type, there were also
unique areas for each combination of two of the three verb groups. This result makes it

difficult to establish a neural dissociation between the processing mechanisms for the
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different verb types. The most serious problem with the study of Jaeger et al. was, how-
ever, that the groups of regular, irregular and pseudo-verbs were presented to subjects
in blocks of 46 items each, so that it was very likely that the subjects developed differ-
ent strategies for producing the different past tense forms that were due to different
priming effects for the three verb groups. While this experimental design was a ne-
cessary consequence of using the PET imaging technique which has a low temporal
resolution and thus requires the repeated processing of similar stimuli, it effectively
invalidates the results of the study. Seidenberg and Hoeffner (1998) gave a compelling
alternative explanation of the data that does not postulate different neural structures
for the processing of regular and irregular verbs: the observed patterns of brain activ-
ity could simply result from irregular verbs being more difficult to process and thus
generating more brain activity, and from the strongly primed regular verbs employing

working memory.

Another study reported a selective deficit of agrammatic aphasics with regular
verbs (Ullman et al., 1997). However, their results were based on only a small number
of items per condition and a small subject pool, and in their experiments the different
verb groups were not matched for frequency which is a strongly confounding factor
(see section 6.8.1.3). Further, despite the higher frequency of irregulars, for the studied
group of five patients with a phonological deficit for which a selective impairment of
regulars was claimed, the difference between regular and irregular impairment was

not statistically reliable (Joanisse and Seidenberg, 1999).

The studies by Ullman et al. (1997) and Marslen-Wilson and Tyler (1997) have yiel-
ded conflicting evidence of which areas might subserve which verb types. Specific
impairment for irregulars was attributed to right hemispheric damage by Marslen-
Wilson and Tyler, to left temporal-parietal cortex by Ullman et al., and to the left mid-
temporal gyrus and various other areas by Jaeger ef al. (1996). Impairment of regular
inflection was said to be caused by damage to the left temporal-parietal lobe (Marslen-
Wilson and Tyler) which is the same area responsible for irregular deficits in (Ullman
etal.), by a frontal lobe /basal ganglia system (Ullman et al.), and by the left dorsolateral
prefrontal cortex (Jaeger et al.). Therefore, at best it can be said that the data supporting

different neural subsystems for regular and irregular verbs is very inconclusive.

Therefore, in addition to lesioning specific connections in the CNN as described in
the previous sections, one model was lesioned globally: over 200 trials, the network
was lesioned in 5%-steps by randomly removing weights from both pathways without
making a distinction between the IO and the HO connections. The result of this global
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Figure 6.5: Performance on regulars vs. irregulars for 200 lesioning trials at 20 lesion-
ing steps each (in 5%-steps) of one CNN model. The model was fully trained and
had constructed a hidden layer with 159 units. Colour indicates degree of lesioning:
black is less, yellow is more severe. Data for the aphasic subjects are marked by green
circles. To separate overlapping dots, a small noise factor (Gaussian with zero mean
and o = 0.5) was added on each data point.

lesioning is shown in figure 6.5. The 4000 lesioned networks showed some variety
of regular vs. irregular errors, but, like with the aphasic subjects, there was never a
selective sparing of irregulars with a breakdown of regular participles (top left of the
plot). Instead, in most cases impairment of irregulars was stronger than of regulars
(below the diagonal).

The data for the eleven aphasic subjects from (Penke ef al., 1999) are also displayed
in figure 6.5. All aphasic data are within the range of performance predicted by the
simulations, showing that although there is variability in the performance of agram-
matic aphasics, different lesioned CNN networks can model the performance of each
of them. The model is not over-general, however: like in aphasic subjects, a selective
sparing of irregulars with a breakdown of regular inflection did not occur in any of

the lesioning trials.

Why does global lesioning in the CNN lead to a profile in which irregular par-
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a: Lesioning of the Input-Output Connections b: Lesioning of the Hidden-Output Connections
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Figure 6.6: Performance on regular and irregular participles when the input-output
(a) and hidden-output (b) connections are selectively lesioned at different degrees in
one CNN. The results are averaged over 100 trials.

ticiples are more impaired than regulars? An answer to this question can be found
in the profiles for lesioning the individual pathways at different degrees. Figure 6.6
shows the breakdown of regular and irregular inflection when the IO and the HO con-
nections are lesioned (averaged over 100 trials in one network). Surprisingly, when
the IO connections are lesioned (fig. 6.6a), both regulars and irregulars decline at the
same rate, until 90% of the connections have been removed. Between 90% and 100%
lesioning there is a sudden recovery of both regulars and irregulars which is stronger
for irregulars and leads to the dissociation displayed in figure 6.3. This recovery is due
to the distribution of weights in the IO pathway. Many of these connections are inhib-
itory, suppressing the activation of the wrong inflection class by other IO connections.
This profile is due to the distributed representation of the input: overlapping repres-
entations between classes make the inhibition of wrongly activated classes necessary,
and with increased lesioning this inhibition is lost. This becomes evident at a lesion
rate of 90% with the worst performance on both regulars and irregulars: here, the great
majority of wrong outputs is ambiguous, i.e., more than one output class are activated
above threshold. By contrast, the HO connections from one receptive field usually
contain only one that is strongly excitatory, and a few others are strongly inhibitory.
Therefore, the HO weights do not tend to activate a wrong output class. This different
weight structure can be explained by the localist nature of the receptive fields: due to
the constructivist growth process, receptive fields tend to cover only verbs from one

class. Therefore, representations for different classes do not overlap and inhibition is
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not required.

When all of the IO connections are lesioned, they no longer activate wrong classes
and the production of all participles is taken over by the HO connections. As discussed
before, the hidden layer develops to handle mainly irregular verbs, which leads to an
improved performance of irregulars vs. regulars when the IO connections are totally
lesioned. Interestingly, when all of the IO connections are lesioned, 28% of the regu-
lar vebs are still produced correctly, indicating that they are produced in the hidden
layer. On the other hand, when the HO pathway is lesioned, only 2% of the regular
verbs are produced wrongly, indicating that 98% of the regular verbs are produced
in the IO pathway. This result indicates that some regular participles are produced
independently both in the IO pathway and in the hidden layer. This result corres-
ponds to psycholinguistic evidence that some regular past tense forms are also stored
in memory (Stemberger and MacWhinney, 1986).

Lesioning of the HO connections leads to a nearly linear decline for irregular verbs
without affecting regular verbs at all (fig. 6.6b). The hidden layer produces mainly
irregulars, and the HO connections are very specific. The loss of a single HO connec-
tion can therefore disrupt the inflection of all verbs covered by the receptive field of a
hidden unit.

Given the individual lesioning profiles it becomes clear why global lesioning leads
to a stronger impairment of irregulars: while the IO lesioning affects regular and ir-
regular verbs equally, lesioning the HO connections selectively impairs irregular in-
flections. In sum then, irregular verbs are affected more by a global lesioning, and the
selective sparing of regular inflections cannot be taken as evidence for two separate
mechanisms, or even two locally distinct processing areas, for regular and irregular

inflections.

A lesioning profile in which irregulaf inflections are selectively spared could only
arise from a total lesioning of the IO connections together with no or weak lesioning
of the HO connections. Based on the CNN model therefore the prediction is made that
a selective impairment of regular inflections would be evidence for a locally separated
processing of regular and irregular inflections. The question whether this would also
imply two separate mechanisms for regulars and irregulars as proposed by the DMT,

will be discussed below.
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6.9 Discussion

The results presented in this chapter show that the CNN model not only can ac-
count for the course of acquisition of past tense inflection (chapter 5), but lesioning
the trained network also yields results that are compatible with impaired adult inflec-
tional processing. Together, these results suggest that the CNN constitutes a valid,
implemented model of human inflectional processing.

At the same time, the CNN avoids the problems of the dual mechanism theory (see
section 6.3), i.e., underspecification and contradiction of the empirical data.

In contrast to the DMT, the CNN is a fully specified, fully implemented model. The
main problem of the DMT, the need to specify the interactions between rule mechan-
ism and associative lexicon, does not arise in the CNN. This is because the CNN em-
ploys only a single mechanism, associative learning, and the IO and HO connections
organize interactively to produce the correct output. Whereas in the DMT regular
verbs have no lexical entries and the regular inflection is only applied when no lex-
ical entry is activated, in the CNN both regular and irregular verbs lead to a weight
adaptation during learning, and therefore even those regulars that are very similar to
irregulars are inflected correctly.

Further, the CNN can naturally account for combinations between regular and
irregular forms such as blends (camed) in acquisition, and for German mixed verbs:
each verb is produced through an interaction (excitatory and inhibitory) between the
IO and HO connections, and the degree of regularity is determined by the activation
of the regular class. Blends between classes are possible when several of them are
activated concurrently.

Unlike the DMT, the CNN can also account for the similarity effects of regulars that
have been observed in aphasics (Penke et al., 1999) and normal subjects (Seidenberg
and Bruck, 1990; Seidenberg, 1992). There are no qualitatively distinct mechanisms
in the production of regulars and irregulars. Instead, they form two ends of a con-
tinuum being produced by a single mechanism, but based on two representations.
The regularity of a verb is determined by the degree of activation in both pathways,
and therefore not only irregulars but also regular verbs are represented in a graded
fashion. Further, the CNN shows that the observed selective impairment of irregulars
in aphasics (Penke et al., 1999) cannot be taken as evidence for two different mech-
anisms or even localized processing areas for the production of irregular and regular
inflections.

Finally, while in the DMT, where the two mechanisms would be supported by dis-
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tinct neural substrates, a selective sparing of irregulars is clearly possible, the CNN
makes different predictions: a global lesioning of the network leads to the observed
profile of a selective sparing of regulars. Based on the model, the prediction is made
that the discovery of a selective sparing of irregulars (in systems where both regulars
and irregulars have inflectional endings) would be evidence for a locally distinct pro-
cessing for regular and irregular verbs. However, as shown in the model, this can be
achieved with a single mechanism in which the two processing areas closely interact.
The observed range of human aphasic data, however, could be modelled by globally
lesioning the CNN without assuming locally distinct processing areas. The model can
thus simultaneously account for the considerable variability between aphasic subjects

and the absence of certain profiles (selective irregular sparing).

6.9.1 Isthe CNN an Implementation of the Dual Mechanism Theory?

Although the CNN was shown to account for data that contradicts the DMT, the model
might at first sight be viewed as an implementation of the DMT that provides merely
its specification: the direct IO connections and the HO connections via the constructed
hidden layer could be viewed as two functionally distinct processing pathways. The
hidden layer with its overlapping receptive fields acts as an associative memory and
it develops to process mainly the irregular verbs, whereas the IO connections could be
said to implement the default regular case.

However, there are significant differences between the CNN and the DMT that
make it clear that the CNN represents an alternative to the DMT, not its instantiation:

¢ The qualitative distinction between the mechanisms for regular and irregular in-
flections lies at the heart of the DMT. However, in the CNN a single associative
mechanism is employed. The difference to previous single-mechanism models
is that the CNIN is a constructivist model that develops a non-homogeneous ar-
chitecture.

e The DMT postulates an encapsulation and strict separation of the two pathways,
or mechanisms. By contrast, the interaction between the IO and HO connections
is the basis of the functioning of the CNN model. Each verb, regular, irregu-
lar, and mixed, produces activation in both pathways, and the correct output
is generated through these interactions. In addition, the development (weight
setting and unit creation) of the IO and HO connections are highly interdepend-

ent: a hidden unit is only created when the correct output cannot be learned in
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the direct connections and the already existing hidden units, and the growth of
the hidden layer leads to a rapid re-organization of the representations of some
verbs from the IO to the HO connections (section 5.5.5). Many of the weights of
the HO connections are negative, indicating that the response generated in the

IO connections is often controlled and overridden by the HO connections.

e The DMT postulates two modules in the traditional sense (e.g. Fodor, 1983), and
these modules are claimed to be the explanation for the observed double dis-
sociations in inflectional processing. By contrast, the CNN, although it has a
non-homogeneous architecture, cannot be said to be modular in this sense. The
“pathways” are not encapsulated, not independent from each other, and they do
not clearly separate regular from irregular verbs but instead represent two ends
of a regularity-continuum. Therefore, the pathways in the CNN should be re-
garded as areas of specialization instead of as modules. Several researchers have
called into doubt the assumption that double dissociations imply different pro-
cessing modules. Shallice (1988); Farah (1994); and Plaut (1995) demonstrated
this empirically for a connectionist model of word reading. The CNN is there-
fore another example of how double dissociations can arise in a non-modular,
non-homogeneous system through different types of damage (instead of dam-

age to different modules).

In summary, although the CNN superficially resembles a dual route model, it con-
tradicts the three basic tenets of the DMT: modularity, encapsulation, and a qualitat-
ive distinction between the processing mechanisms. The CNN represents therefore
a model that is more closely related to traditional connectionist models than to the

hybrid (symbolic + associative) DMT.

6.9.2 How Inflections are Learned and Stored

In this section I will formulate, based on the results from the CNN model, a new theory
of the processing of verb inflections.

Whereas the DMT proposes two mechanisms operating on a single representation
of a verb stem, the CNN develops so that a single mechanism operates on two rep-
resentations of the verb. The direct phonological input is used in the IO pathway to
produce the output. For verbs for which the output cannot be learned through this
structural representation alone, the CNN develops through a constructivist process

additional representations in the hidden layer. In contrast to the structure-based input
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representations, these new representations are identity-based and localist: the activ-
ation of a hidden unit receptive field only indicates the presence of a certain input,
without information about its structure. The CNN is therefore a single mechanism,
dual representation model.

This dual representation view sheds a different light on the dissociations between
regular and irregular forms. The DMT does not assume that any regular verbs are
produced by the irregular mechanism, or vice versa. The common aphasic profile
where both regular and irregular cases are partially impaired (albeit to different de-
grees) is therefore often attributed to performance errors or the unpredictability of
aphasic impairment (Penke, personal communication). A more compelling explana-
tion is offered by the CNN: here, the dissociations that become visible in the lesioning
trials are not clearly along the lines of regulars vs. irregulars. Instead, all verbs for
which the inflection class cannot be learned in the direct IO pathway are shifted to the
developing hidden layer and the HO pathway. This shift concerns regular, irregular,
and mixed verbs, to different degrees. The dissociation between verbs is thus bet-
ter described as easy vs. difficult, with the difficult forms relying on the hidden layer,
whereas easy forms are produced in the IO-pathway alone. This distinction can ac-
count better for the data such as mixed verbs, a regularity continuum, or the different
aphasic profiles.

But what factors determine whether a form is easy or difficult? The fact that the
empirical results from past tense acquisition and agrammatic aphasic processing could
be modelled in the CNN where inflection is viewed as a classification task indicates
that the difficulty is not in the transformation of the stem to the inflected form. Instead,
the degree of difficulty is determined by several interacting distributional factors that
can be derived from the principles of associative learning:

1. Frequency: a frequent transformation is easier to learn than an infrequent one.
Therefore, inflection classes with a high summed token frequency will be easier

to learn than those that only apply to rare verbs.

2. Class size: a transformation that applies to many different verbs is easier to learn
than one that just applies to one verb. Therefore, inflection classes with many
members (counted in types) are easier to learn than those confined to only a
small group of verbs.

3. Similarity of class members to members of other classes: the inflection class of a

verb is easier to learn if other similar verbs share the same class, and it is harder
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if similar verbs belong to different classes.

4. Ambiguity of inflectional morpheme: an inflection is easier to learn if it ap-
plies uniquely to members of its class, i.e., if it does not exist in other contexts
as well. For example, the -ed suffix in English is highly indicative of the past
tense/ participle: an analysis of the CELEX corpus showed that 99.6% of all word
types in English that end in -ed are past tense/participle forms, and furthermore,
none of the other 0.4% (bed, bobsled, embed, featherbed, hundred, shed, shred,
sled, wed) can be separated into an existing word + -ed. By contrast, the German
irregular participle ending -en is much more ambiguous: it also occurs in verb
infinitives (gehen, to go), noun plurals (Wiesen, meadows), and as part of noun

singulars (Drachen, kite).

These factors influence each other, and further research will be needed to estab-
lish in detail how they interact. But they show a fundamental difference to the reg-
ular/irregular dichotomy: while for each verb its regularity can be defined in isola-
tion based on that verb alone, a verb’s “easiness” can only be established by taking
into account the frequency and distributional properties of all other words in the lan-
guage corpus. Nevertheless, these factors show that the reqular—irregular distinction
is a good first approximation of the easy—difficult distinction: the regular inflection,
although it does not apply to the most frequent individual verbs, is the single most
frequent inflection in both English and German: 57.2% of English past tense tokens
and 46.9% of German participle tokens are regular. At the same time, these classes are
also the biggest in type size (88.4% and 64.7%, respectively). The third point, similarity
of class members to members of other classes, does not separate along the lines of reg-
ular and irregular verbs, however: many regular verbs are similar to irregulars which
should make them harder to learn in this view. And in fact the regularity continuum
that has been shown for aphasics indicates that regulars that are similar to irregulars
are more prone to impairment than others, that is, they rely more on storage in the
lexicon.

A similar analysis of factors influencing errors in past tense formation has been
conducted with human subjects. Marchman (1997) tested school-aged children on an
elicited past tense production task and observed the produced errors. She analyzed
for each tested verb its frequency, the number of similar sounding stems with a similar
mapping pattern to the past tense (“friends”), the number of similar sounding stems
with different past tense forms (“enemies”), and phonological characteristics of the

stem and past tense forms. Based on these analyses she defined different “vulnerab-
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ility levels” expressing the predicted susceptibility to production errors. Verbs with a
high vulnerability had, among others, a low frequency and many “enemies”. March-
man found a significant relationship between item vulnerability and error rate, and
this result indicates that item frequency and similarity of class members to members

of other classes are predictors for errors in humans as well.

The final factor determining how “difficult” a form is, namely, uniqueness of the
inflection, has been investigated by Baayen et al. (1997): based on response-time ex-
periments they claimed that in Dutch the plural suffix -en, despite its high frequency
and productivity, is nevertheless stored in the lexicon. They attributed this storage
to the fact that -en is mainly used as a verb ending and it is therefore time-costly to

disambiguate noun plurals with -en.

Taken together, although the dissociations of verbs into easy and difficult corres-
ponds largely to the regular-irregular dissociation, it nevertheless suggests that the
regular case is a post-hoc extraction and idealization of the developed structure of
the inflectional processing system. In order to make parsing by the listener easier,
the speaker can then apply the extracted “regular”, which is highly indicative of its
function, to novel forms. For example, since -ed is highly indicative of past tense,
the speaker will apply it to novel words such as to out-Gorbachev or to rhumba to pro-
duce out-Gorbachev’d and rhumba’d. In this view, the regularization of unusual and
noun-derived verbs is motivated out of semantic rather than phonological/lexical
principles.

The results presented in this and the previous chapter therefore suggest a novel
account of inflection learning and processing: it is a dual representation, single mech-
anism system that emerges from a constructivist learning process. This mechanism
leads to a realistic acquisition profile with its characteristic errors, and the lesioned
mature system displays the same deficits as agrammatic aphasics. The system separ-
ates verbs along the lines of easy vs. hard to learn/process and can thus better explain
empirical results that have been taken to be evidence for the dual mechanism theory.

A way to test the validity of the model empirically is to abandon the regu-
lar/irregular distinction in favour of an easy/hard distinction, by identifying “hard”
regulars and “easy” irregulars. Such a distinction should then better predict impair-
ment profiles in agrammatic aphasics. Although this has already partly been done by
Penke et al. (1999) who found grading effects also for regulars (see section 6.8.1.4),
more research along these lines will be needed to empirically verify the dual-

representation model of verb inflection.
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Recently, a similar model to the CNN was suggested (Joanisse and Seidenberg,
1999, henceforth J&S ) that accounted for the impairments of inflection in agrammatic
aphasia (fig. 6.7). Like in the CNN, the input layer of this neural network model con-
sists of a templated phonological form of the verb and additionally a layer of semantic
units where each verb is represented by one individual unit. The input layer com-
ponents feed into a hidden layer with 100 units which in turn feeds into the output
layer where a phonological templated form of the verb is produced. Additionally, the
hidden layer feeds back into the semantic input component. Both the semantic com-
ponent and the output layer are recursively connected to so-called “clean-up units”.

Lesioned for
phonological deficit

(CCVVCCC-VC)
162 Units

Lesioned for © (100 hidden units)

semantic deficit / \
Speech
Input

] Distributed Features

20 units
600 Word units Distributed Features
1 Past Tense unit ccvvcce-ve
162 Units

Gaussian Noise for
semantic deficit

Figure 6.7: The J&S model. Modified from (Joanisse and Seidenberg, 1999)

This model was trained on 600 present tense/past tense verbs, of which 64 were
irregular, according to their frequency, and it had to learn four tasks: “speaking” con-
sisted in producing the present or past tense form as output based solely on the se-
mantic input. “Hearing”consisted in learning the semantic representation based on
the phonological input. “Repeating” involved taking a phonological code as input
and producing the same code at the output. “Transforming” consisted in producing
the past tense form based on the phonological and semantic input together. The fully
trained model was then lesioned in different subcomponents to simulate semantic and
phonological deficits (see fig. 6.7). J&S found that inducing a “phonological deficit” af-
fected regular and irregular forms alike, while a “semantic deficit” lesioning together

with Gaussian noise in the semantic component affected mainly irregulars. These res-
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ults are very similar to those for lesioning the IO and HO connections in the CNN
model (fig. 6.6). Why is this?

In both the CNN and the J&S networks, the output is produced on the basis of
two representations of the input: one is the distributed phonological representation,
the other is a localist representation. In the CNN this essentially localist representa-
tion is developed in the growing hidden layer, in the J&S network it consists of the
semantic component where each verb is represented by a dedicated single unit. In
both networks, lesioning the connections from the distributed representations leads to
impairments of both regular and irregular verbs, whereas lesioning the localist com-
ponent impairs mainly the irregulars. The difference between the two networks is
that in the CNN the localist representation is developed constructively and is based
on the phonology of the stem, whereas in the J&S network it is arbitrary (one localist
unit per verb) and pre-specified. The J&S network therefore corresponds more closely
to a non-constructivist version of the CNN (see section 5.6) with one hidden unit per
verb. Although such a network develops a double dissociation as well, I showed in
section 5.6 that this dissociation is less pronounced than in the constructivist case and

that several aspects of the data cannot be modelled in such an architecture.

The J&S network takes into account that often a semantic deficit is correlated with
problems in producing irregular inflections (Marslen-Wilson and Tyler, 1998; Clahsen,
1999a) and explains such irregular deficits on the basis of a semantic impairment.
However, experiments show that semantic and irregular deficits can be decorrelated
in certain priming experiments (Marslen-Wilson and Tyler, 1998). Further backing
for this result comes from the CNN model that shows irregular deficits without a se-
mantic component. The explanation for the correlation between semantic and irreg-
ular deficits could instead be that both rely on identity-based representations of the
verb: neither the meaning nor the past tense form of an irregular verb can be pre-
dicted from its structure. The semantic component in the J&S model thus takes the
place of any identity-based representation. However, the fact that this semantic com-
ponent contains a unit for each regular and irregular verb would most likely prevent it
from modelling more detailed aspects of agrammatic aphasia such as frequency effects
and a regularity continuum (see sections 6.8.1.3 and 6.8.1.4). These effects emerge in
the CNN as a result of the constructivist growth process and the allocation of receptive

fields mainly to irregular verbs.

Nevertheless the &S model presents further evidence in addition to that provided

by the CNN, that double dissociations can emerge without a modular system, and in
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the absence of qualitatively different mechanisms for the inflection of different verb
types. Additionally, the J&S model illustrates that a full model of speech production

needs to incorporate a semantic component.

6.10 Chapter Summary

In this chapter the CNN model developed for modelling the acquisition of the English
past tense was extended to account for impaired processing in German agrammatic
aphasia. Lesioning the network at specific locations resulted in dissociations between
regular and irregular verbs that are also found in aphasic subjects, and even detailed
effects such as a frequency effect for irregular preservation and a regularity continuum
effect could be modelled. Even a global, unspecific lesioning lead to dissociations that
match the profiles of eleven investigated aphasic subjects.

While the observed double dissociations between regular and irregular verbs are
often taken as evidence for the dual mechanism theory that postulates separate mech-
anisms for the production of both verb types, I argued that this theory fails on the
grounds of underspecification and contradictions to the established data. Based on
the modelling results I proposed as an alternative a dual representation theory where
the inflection processing system develops in a constructivist process to provide two
representations for verbs, based on which a single mechanism produces the inflec-
tions of both regulars and irregulars. This system separates verbs not along the lines
regular/irregular, but along easy/difficult, and I discussed what makes a verb easy or
difficult to process. I predicted that a separation along these lines will account better

for the impairment profiles found in agrammatic aphasia.
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Chapter 7

Discussion

The aim of this thesis has been two-fold. One aim was to discuss the viability of con-
structivist models of cognitive development. The reasoning behind this point was that
the cortex develops its architecture in many parts in an activity-dependent way, and
that this activity can arise from sensory experience (chapter 2). Furthermore, changes
in cortical architecture go hand in hand with cognitive development (chapter 3). From
a theoretical perspective it can be shown that static and constructivist learning sys-
tems differ in fundamental ways, a point that can be illustrated by means of neural
networks (chapter 4). Therefore, the ability of a learning system (e.g., the cortex) to
change its architecture as a function of learning is a fundamental property of that sys-
tem, and abstracting away from it in models might prevent the successful modelling

of cognitive development.

The second aim was to empirically investigate the idea that constructivist neural
networks can be successfully applied to the modelling of cognitive development. For
this purpose, constructivist neural network (CNN) models of inflectional processing
were developed. The first model simulated the acquisition of the English past tense
(chapter 5). This small aspect of cognitive development was chosen because it has
acquired a high significance in evaluating different cognitive theories against each
other, and because it has been extensively studied empirically. By viewing the pro-
duction of past tense forms as a classification task, a connection was made to broader
aspects of cognitive development that are often based on the ability to categorize and
classify (e.g. Lakoff, 1986). The past tense models displayed the same developmental
profile that is also observed in children in that many irregular verbs were overreg-
ularized after a period of correct production (the U-shaped learning curve), and de-
tailed aspects of this profile such as family effects for similar sounding irregulars and

frequency effects on the overregularization rate could also be modelled. The fully
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trained model was tested on its performance with pseudo-verbs that had also been
tested on human subjects, and again a good match to the human data was obtained.
Most significantly, the model tended to regularize novel verbs that were dissimilar to
any existing verbs, indicating that it had learned the regular case as the default “rule”.
I suggested that the realistic performance of the model was due to its constructivist
nature, and this claim was backed by a set of analogous, but static networks that per-
formed worse than the constructivist version and did not display a realistic acquisition
profile. Comparisons with previous models gave further evidence for the suitability
of constructivist models of cognitive development: although the CNN performed bet-
ter than all of the previous models, the model that came closest to it was the equally
constructivist symbolic SPA. Based on these results I suggested a new taxonomy for
models of cognitive development that allows a better comparison between them: such
models should be distinguished along the dimensions symbolic vs. subsymbolic pro-
cessing, homogeneous vs. non-homogeneous architecture, static architecture vs. constructivist
development, and single mechanism vs. multiple mechanisms. 1 argued that subsymbolic,
non-homogeneous, constructivist single-mechanism systems like the CNN might be

the most suitable models of cognitive development.

A second set of experiments addressed impaired adult processing. For this pur-
pose, the CNN was fully trained on German participles, and then connections were
lesioned in different ways and the resulting breakdowns in performance were invest-
igated. The network developed specialized processing areas in two pathways, and
the selective lesioning of the connections from the constructed hidden to the output
layer resulted in an impairment profile that corresponded closely to that observed
in a study with German agrammatic aphasics: performance on irregular verbs was
selectively impaired, and the model displayed detailed aspects of the human impair-
ment such as frequency effects and a stem-vowel effect for regulars (“regularity con-
tinuum”). When the model was lesioned globally by randomly removing connections
in either pathway, it reflected the spectrum observed in the human aphasic subjects
(selective irregular impairment or equal impairment of regulars and irregulars), and
like in human subjects, a selective sparing of irregulars was never observed. Such a
selective irregular sparing could, however, be obtained by lesioning only the connec-
tions from the input to the output layer. This result led to the prediction that a human
profile in which irregulars are selectively spared would be evidence for a locally dis-
tinct processing of regular and irregular verbs because processing areas could then be

selectively affected by a stroke, whereas the selective sparing of regulars did not allow
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this prediction because such a profile could be obtained even by a global, non-selective

lesioning of the network.

Based on the results of this second group of experiments I proposed a new model
of inflectional processing that differs both from homogeneous associative models and
from a dual mechanism theory. This model is based on the constructivist development
of a dual-representation processing system, where a distributed structural representa-
tion of each verb is supplemented by a localist, identity-based representation for those
verbs whose inflection cannot be learned based on the former representation alone.
The inflected form of a verb is then produced by a single mechanism operating on
these two representations. Instead of a dichotomy regular vs. irreqular that lies at the
basis of the dual mechanism theory, I proposed a split that develops along the lines of
easy to learn/process vs. hard to learn/process. Whereas regularity and irregularity are bin-
ary grammatical descriptions and the regularity of each verb is determined in isolation
based on how its participle is formed, the “processing difficulty” of a verb is determ-
ined by all other verbs (and other words) in a corpus based on their distributional
properties. Although this distinction roughly corresponds to the regular-irregular di-
chotomy, the match is not perfect. I suggested that the notion of “regular” is a post-
hoc extraction and generalization of the “easy” group of verbs, and I predicted that a
re-analysis of aphasic data along the “easy”—"hard” distinction would yield a clearer

selective impairment profile.

Perhaps like other abstract linguistic categories, the notion of “regularity” is a
projection of formal linguistic analysis onto the human data. Because according to
formal linguistics, human language data does not correspond to the abstract “com-
petence” but is instead corrupted as “performance”, data that does not correspond to
the predictions of the formal theory can therefore be attributed to performance. In the
DMT which predicts a clear split between regular and irregular forms, “performance”
would be drawn in to explain cases in which this split is less clear, i.e., where some reg-
ulars behave like irregulars and vice versa. However, this approach makes the DMT
hard to falsify on the basis of such data. Falsifiability is, however, a prerequisite for
scientific theories (Popper, 1959).

In contrast to the DMT, the CNN model shows how the actual human data can
be modelled without recourse to a competence-performance distinction and it there-
fore represents a better model of inflectional processing than theories based on formal
linguistics. Whereas the abstract category of “regularity” remains a good formal de-

scription of language structure, the fallacy is in drafting it into service as a processing
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category, as done in the DMT.

In a recent paper, Mayall (1998) discussed aspects that increase the validity of con-
nectionist models of cognitive neuropsychological disorders. Like the CNN model
of aphasic processing discussed here, such models simulate the effects of strokes or
brain injury by lesioning connections and units. According to Mayall, a model should
behave normally prior to the lesioning, it should account for the sometimes consider-
able variability between patients suffering from the deficit that is modelled, it should
include multiple symptoms that are displayed by patients, and it should try to in-
corporate different syndromes within a model following different lesions and display

double dissociations in performance.

These requirements are met in the CNN model: its normal functioning before sim-
ulating impairment was demonstrated in the acquisition of the English past tense, and
in its generalization behaviour to novel words. In the model of aphasic processing, dif-
ferent degrees of random lesioning led to a variability in performance that matched
the spectrum displayed by the human subjects but that was not overly general in
producing every possible profile. Different symptoms of aphasic processing such as
frequency effects for irregulars, overregularizations, and a regularity-continuum ef-
fect were modelled. While no selective impairment of regular inflection in German
aphasics has been reported, the model predicted that such a profile would be evid-
ence for a locally distinct processing of regular and irregular inflection. By selectively
lesioning the developed pathways (or, areas of specialization), double dissociations
emerged in the model. In this way, the CNN meets the criteria for a valid model of a

cognitive disorder.

A final aspect discussed by Mayall (1998) is the ability of a model to account for
rehabilitation and recovery after a stroke. This point was not extensively studied in
the CNN and it will be an interesting area of further research. Preliminary experi-
ments have elucidated several important constraints on the modelling of rehabilita-
tion: should the network be allowed to grow new units in the hidden layer, or should
re-training proceed in the lesioned architecture? If the insertion of units continues after
the lesion, the network will eventually reach perfect performance again, a result that is
inconsistent with the human data. By contrast, re-training in the lesioned architecture
led to a decrease in the performance of regulars because the remaining connections
re-organized themselves to handle both regulars and irregulars. To my knowledge,
no studies of the recovery of inflection processing in aphasics exist, and such a study

would be valuable in understanding the mechanisms underlying rehabilitation. An-
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other question raised by the model is what effects different degrees of lesioning of the
two pathways have on the re-learning of irregular and regular inflections. This ques-
tion is closely linked to the previous one, because even severe lesioning can be com-
pensated by allowing the model to grow new units during re-learning. In this case,
a severe lesioning of the hidden-output connections leads to a breakdown of irregu-
lars, and re-training would temporarily decrease performance on regulars while all
verbs are produced in the input-output connections, until enough hidden units have
been created to process the irregulars again. A specific lesioning of the input-output
connections leads to a breakdown for the regulars, and these would be re-learned
by inserting hidden units for them. Although a re-trained network in such a scen-
ario would reach perfect performance on both regulars and irregulars, even regulars
would then be treated as exceptions (with the “rule processing area” being destroyed),
which should result in no—or only weak—dissociations between regulars and irregu-

lars. This prediction of the model could also be tested empirically.

7.1 Connectionism and Constructivism

“Can Connectionism Save Constructivism?” This was the title of a recent paper by
Marcus (1998a). In it, Marcus discussed claims made in (Elman et al., 1996) that con-
nectionist models presented there represent a formalized framework of constructivist
learning, avoiding pre-specifications both of representations and of functional mod-
ules. Marcus rightly pointed out that the homogeneous, fixed-architecture networks
to which these claims referred had instead a pre-specified architecture that could be
viewed as a functional module in the nativist sense, and that they were unable to learn
qualitatively new representations in a constructivist sense. This point had already
been discussed by Quartz (1993) and is also the topic of chapter 4 of this thesis. Al-
though Marcus conceded that his criticism was addressed only towards models of
the type presented in (Elman et al., 1996), namely fixed-architecture, homogeneous
backpropagation or recurrent backpropagation networks, he briefly discussed argu-
ments by Mareschal and Shultz (1996) for cascade-correlation networks as construct-
ivist models of cognitive development (see also section 4.7). Marcus rejected these
models for two reasons: his first point was that, even when the models can account
for the human course of development, there is “absolutely no guarantee that the solu-
tion that the model finds will be the same as the one human finds [sic], that the model
can find a solution given a realistic training regime, or that this model has anything to

do with human developmental psychology.” (Marcus, 1998a, p. 174). This criticism is
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puzzling as it addresses the basic understanding of what models are. Mareschal and
Shultz (1996) reported various cascade-correlation models that simulated the develop-
mental stages of children in different Piagetean tasks. Naturally this can be no proof
that humans develop in the same way, but this needs to be shown by data for which
the model cannot account and that thus falsifies the model. Then, a new model would
have to be developed that accounts for both the previous and the new data. Until then,
however, it is legitimate to assume that the current model is a valid model of the devel-
opmental process. When there are two models that account for the same data, then the
one which has fewer initial assumptions (about architecture, representations, learning
mechanisms etc.) is to be preferred according to the principle of Occam’s Razor. In
the case of the constructivist models presented by Mareschal and Shultz (1996), they
are at present the only models accounting for the developmental data, and Mareschal
and Shultz argued convincingly why their models display the stages also observed in
children while other models do not. Marcus” rejection of them must therefore itself be

rejected.

Marcus’s (1998a) second criticism of cascade-correlation models was that, like
fixed-architecture systems, they were not able to learn new representations and thus
did not avoid Fodor’s paradox (see section 4.2.2). He argued that instead the networks
merely order the hypotheses that they test so that they try linearly separable ones first,
then the ones that can be computed with one hidden unit, then the ones with two hid-
den units, and so on. In learning theoretic terms, what Marcus argued is that cascade-
correlation networks have a constant restricted hypothesis space bias, but the growth
of hidden units implements a preference bias to try simpler hypotheses first. How-
ever, as I have argued in chapter 4, constructivist learning systems effectively conflate
these two biases. Every constant architecture (between node insertions) corresponds
to a fixed hypothesis space which is searched by the network by weight adaptation.
Insertion of a new hidden unit then enlarges this hypothesis space to include functions
that could not be computed in the previous architecture. This node insertion therefore
relaxes the bias on the hypothesis space, but simultaneously imposes an ordering on
the hypotheses in that none of the more complex ones could be tested before the unit
was inserted. However, nothing prevents the network from converging on a hypo-
thesis that is less than maximally complex (given a certain architecture), for example
when new units are inserted too quickly—this point amounts to the problem of set-
ting the unit insertion interval against the weight adaptation rate which needs further

investigation. Therefore, although Marcus is correct in stating that constructivist net-



7.1. Connectionism and Constructivism 173

works realize a preference bias, contrary to his claims these networks become able to
represent more complex hypotheses as learning progresses.

In addressing the suitability of connectionist models for constructivist theories it
is useful to make a distinction between learned and emerging concepts, and Marcus’
rejection of constructivist models results from a failure to make this distinction. A
concept that is learned consists generally of a mapping from the input to the output
representations in a network, and for the learning to be successful, the information that
separates members of a concept from non-members must be somehow present in the
input data. For example, in the CNN, where the mapping from a phonological input
representation to inflection classes is learned, verbs belonging to different classes must
have different phonological representations to be distinguishable. Both input and out-
put representation are pre-specified, and Marcus is right in arguing that the concept of
“inflection class” is not newly learned. However, he takes this as an argument against

connectionist networks for constructivist learning:

It is here that the grand dreams of empiricist learning — starting from raw
sensation and bootstrapping all the way up to a full adult conceptual sys-
tem — fall hardest. A real system of representational emergence would de-
velop new concepts where there were none; the models of [Elman et al.
(1996)], however, do not deliver. [ ... ] Rather the problem here is that
[(EIman et al., 1996)] never give an account of how a single output rep-
resentation might ‘emerge’; instead, every single output representation in
every single model is prespecified. (Marcus, 1998a, p. 161)

Although this point is directed against the fixed-architecture networks described
in (Elman et al., 1996), it applies equally to supervised constructivist networks such as
cascade-correlation or the CNN. However, the place to look for new representations is
not the pre-specified output layer, but in what lies between the input and the output
layers. In the CNN, regularity is nowhere specified in the input and output repres-
entations, but it emerges as a concept based on the distribution of the verbs together
with the model’s constructivist learning process. The concept of regularity, which in
the CNN manifests itself both in processing (regularization of pseudo-verbs) and ar-
chitecture (the IO connections as an emerging area of specialization for regulars that
can be selectively impaired by lesioning this pathway), is therefore genuinely new in
the constructivist sense.

Although the CNN relies on pre-specified input and output representations, this
does not mean that these representations are necessarily innate. Their prespecification

in the model is a simplification because only a very small aspect of language (let alone,
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cognitive) processing is modelled. This simplification does not invalidate the claim
made here that the CNN is a constructivist learning system: “regularity” emerges as a
higher, more complex concept that is built on top of the input and output representa-
tions. Constructivism does not mean that nothing is innate (as Marcus (1998a) claims
of the (Elman et al., 1996) version of constructivism). Rather, constructivist learning
systems are based on an innate core (e.g., Piaget, 1980) that consists at least of the
learning mechanisms and perhaps basic representations.

Similarly, Clahsen (1999a) claimed that the CNN is not constructivist because it
has two pathways of which one processes the regular and the other the irregular
verbs. However, Clahsen failed to acknowledge that the pathways developed by the
network are not pre-specified to process these verb types, but their functional spe-
cification emerges from the structure of the training data combined with the learning
algorithm (see above). Furthermore, not only the functional specialization but also
the physical existence of two pathways can be the direct outcome of the complexity
of the learning task: in a network that starts with no hidden units at all, only the dir-
ect input-output connections exist and the network can learn only linearly separable
problems. If the task is linearly separable, no second pathway will ever develop. In
a non-linearly separable problem hidden units will develop, but again their number
will depend on the complexity of the problem. To describe the CNN as consisting of
“two qualitatively distinct representational devices, a set of direct input-output con-
nections (essentially made for handling regular inflection) and a set of hidden layer
units (which act as a memory for irregulars”) (Clahsen, 1999b) is therefore misleading.
More appropriately, one could describe them as “a direct pathway for that subset of
the data that is linearly separable, and another one that develops to account for the
remaining non-linearly separable subset”.

Taking these arguments together, Marcus’s (1998a) question, “Can Connectionism
Save Constructivism”, can be answered with “Yes, when the connectionist networks
themselves are constructivist.” The modelling of different aspects of cognitive devel-
opment with such networks will be a fruitful area of future research.



Appendix A

Corpus for the Past Tense
Acquisition Simulations

Nr. of types: 1066
Nr. of tokens: 8000
Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
act acted &kt &ktld 3 1
add added &d &dId 23 1
aid aided ed edId 2 i
aim aimed em emd 3 1
ask asked &sk &skt 94 1
bay bayed be bed 1 1
beg begged bEg bEgd 6 1
bow bowed bl bld 1 1
cry cried kr3 kr3d 11 1
die died d3 d3d 26 1
don donned dan dand 1 1
dry dried dr3 dr3d 1 1
end ended End Endld 15 1
eye eyed 3 3d i 1
fit fitted fIt fItld 1 1
fix fixed fIks fTkst 2 1
hop hopped hap hapt 2 1
hug hugged hég hé6gd 1 1
lie lied 13 13d 1 1
lug lugged leég logd 2 1
mop mopped map mapt 1 1
nod nodded nad nadld 18 1
opt opted apt aptld 1 1
owe owed 0 od 7 1
own owned on ond 6 1
pat patted p&t p&tlid 5 1
pay paid pe ped 17 1
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176 A. Corpus for the Past Tense Acquisition Simulations
Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
ply plied pl3 pl3d 1 1
pop popped pap papt 3 1
rap rapped r&p r&pt 1 1
rip ripped rlp rlpt 3 |
rob robbed rab rabd 1 1
rub rubbed r6b rébd 5 1
shy shied S3 S3d 1 1
sip sipped sIp sIpt 1 1
sum summed s6m somd 1 1
tie tied 3 t3d 5 1
tip tipped tlp tipt 1 1
top topped tap tapt 1 1
try tried tr3 tr3d 39 1
tug tugged tog togd 1 1
use used juz juzd 48 1
VOW vowed vl vld 1 i}
wad wadded wad wadld 1 1
wax waxed wé&ks w&kst 1 1
abet abetted 6bEt 6bEtId 1 1
ache ached ek ekt | 1
arch arched artS artSt 1 1
back backed b&k b&kt 6 1
balk balked bOk bOkt 1 1
bang banged b&N b&Nd 1 1
base based bes best 2 1
bolt bolted bolt boltld 1 1
bore bored bor bord 2 1
bump bumped bémp bémpt 2 1
burn burned bérn b6rnd 4 il
buzz buzzed b6z b6zd 2 1
call called kOl kOld 53 1
calm calmed kam kamd 1 1
care cared kEr kErd 4 1
chew chewed tSu tSud 1 1
cite cited s3t s3tld 4 1
clip clipped klIp klIpt 2 1
cock cocked kak kakt 1 1
comb combed kom komd 2 1
cook cooked kUk kUkt 1 1
curl curled kérl kérld 5 1
dare dared dEr dErd 4 1
dart darted dart dartld 2 1
dash dashed d&S d &St 1 1
deem deemed dim dimd 1 1
deny denied dIn3 dIn3d 3 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
dine dined d3n d3nd 1 1
dive dived d3v d3vd 2 1
doom doomed dum dumd 1 1
down downed dln dind 2 1
doze dozed doz dozd 2 1
drag dragged dr&g dr&gd 3 1
drip dripped drlp drlpt 1 1
drop dropped drap drapt 19 ]
duck ducked dék dékt 3 1
dump dumped démp démpt 1 1
earn earned 6rn érnd 2 1
echo echoed Eko Ekod 2 1
edge edged EdZ EdZd 2 1
envy envied Envi Envid 1 1
face faced fes fest 7 1
fade faded fed fedId 5 1
fail failed fel feld 12 1
fear feared fIr fIrd 4 1
file filed £31 £31d 2 1
fill filled fIl fIld 14 1
fire fired f3r f3rd 6 1
flip flipped fllp flIpt 1 1
flog flogged flag flagd 2 1
flop flopped flap flapt 3 1
flow flowed flo flod 2 1
fold folded fold foldld 2 1
form formed fOrm fOrmd 5 1
fuse fused fjuz fjuzd 2 1
gain gained gen gend 9 1
gape gaped gep gept 2 1
gasp gasped g&sp g&spt 1 1
gaze gazed gez gezd 4 1
glow glowed glo glod 2 1
grab grabbed gr&b gr&bd 5 1
grin grinned grin grind 9 1
grip gripped grlp gript 2 1
grok grokked grak grakt 1 1
halt halted hOIt hOIltld 1 1
hand handed h&nd h&ndld 6 1
hate hated het hetld 6 1
haul hauled hOl hOld 1 1
head headed hEd hEdId 9 |
heal healed hil hild 2 1
help helped hElp hElpt 11 1
hire hired h3r h3rd 1 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
hiss hissed hls hlst 1 1
hook hooked hUk hUkt 1 1
hope hoped hop hopt 11 1
hunt hunted hént héntld 1 1
hurl hurled hérl hé6rld 1 1
jerk jerked dZerk dZeérkt 4 1
join joined dZ2n dZ2nd 11 1
jump jumped dZ6mp dZ6mpt 9 1
kick kicked klk kIkt 4 1
kill killed kIl kild 17 1
kiss kissed kls klst 7 1
lack lacked 1&k 1&kt 4 1
land landed 1&nd 1&ndId 3 1
lash lashed 1&S 1&St 2 1
last lasted 1&st 1&stld 1 1
leak leaked lik likt 1 1
lean leaned lin lind 13 1
leap leaped lip lipt 6 1
lick licked 1Tk 1Tkt 3 1
lift lifted 1Ift 1IftId 9 1
like liked 13k 1Bkt 11 1
line lined I3n 13nd 5 1
list listed st 1Istld 3 1
live lived 1Iv IIvd 18 1
lock locked lak lakt 1 1
long longed ION IONd i 1
look looked 1Uk 1Ukt 98 1
loom loomed lum lumd 1 1
love loved l6v levd 14 1
lure lured lur lurd 1 1
lurk lurked lork l6rkt 1 1
mail mailed mel meld 2 1
mark marked mark markt 1 1
miss missed mls mlist 3 1
move moved muv muvd 48 1
muse mused mjuz mjuzd 1 1
nail nailed nel neld 2 1
name named nem nemd 4 1
near neared nlr nird 1 1
need needed nid nidId 21 1
note noted not notld 8 1
obey obeyed obe obed 2 1
ooze oozed uz uzd 1 1
open opened opétn opénd 34 1
pace paced pes pest 4 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
pack packed p&k p&kt 1 1
park parked park parkt 5 1
part parted part partld 1 |
pass passed p&s p&st 21 1
peck pecked pEk pEkt 1 1
peel peeled pil pild 1 1
peer peered plr plrd 2 1
pick picked plk plkt 17 1
pile piled p3l p3ld 1 1
plan planned pl&n pl&nd 8 1
play played ple pled 19 d
poke poked pok pokt 2 1
pose posed poz pozd 1 1
post posted post postld 1 1|
pour poured por pord 9 1
pray prayed pre pred 2 |
pull pulled pUIL pUld 24 1
pump pumped pémp pémpt 1 1
push pushed pUS pUSt ) 1
race raced res rest 2 1
rage raged redZ redZd 1 1
rain rained ren rend 1 1
rake raked rek rekt 1 1
rear reared rlr rird 3 1
reel reeled ril rild 1 1
rely relied 13 rl13d 1 1
rest rested rEst rEstld 5 |
risk risked rIsk riskt 1 1
roar roared ror rord 1l 1
rock rocked rak rakt 2 :
roll rolled rol rold 18 1
rule ruled rul ruld 5 1
rush rushed 65 r6St 3 1
sail sailed sel seld 3 1
save saved sev sevd 2 1
scan scanned sk&n sk&nd ] 1
seat seated sit sitld 2 1
seem seemed sim simd 106 1
show showed So Sod 39 1
sigh sighed s3 s3d 8 1
sign signed s3n s3nd 4 1
size sized s3z s3zd 1 1
skim skimmed skIm skImd 1 1
skip skipped sklp skIpt 1 |
slam slammed sl&m sl&md 5 i
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
slap slapped sl&p sl&pt - 1
slip slipped sllp slipt 8 1
snap snapped sn&p sné&pt 4 1
SNow snowed sno snod 1 1
soar soared sor sord 1 1
spot spotted spat spatld 2 1
spur spurred spér spérd 2 1
stay stayed ste sted 19 1
stem stemmed stEm stEmd 2 1
step stepped stEp stEpt 12 1
stir stirred stér stord 4 1
stop stopped stap stapt 39 i
suck sucked s6k sbkt 1 1
suit suited sut sutld 2 1
sway swayed swe swed 3 1
talk talked tOk tOkt 16 1
team teamed tim timd 1 1
tend tended tEnd tEndId 2 1
term termed torm tormd 1 1
test tested tEst tEstld 3 1
tick ticked tlk tTkt 1 1
time timed t3m t3md 1 1
tire tired t3r t3rd 2 1
toss tossed tOs tOst 9 1
trip tripped trlp tript 1 1
trot trotted trat tratld 2 1
tuck tucked tok tokt 2 1
turn turned torn tornd 89 1
urge urged 6rdZ 6rdZd 6 1
vary varied vEri vErid 4 1
veer veered vir vird 1 1
view viewed viu vjud 1 1
vote voted vot votld 5 1
wail wailed wel weld 1 1
wait waited wet wetld 21 1
walk walked wOk wOkt 46 1
want wanted wOnt wOntld 62 1
warm warmed wOrm wOrmd 3 1
warn warned wOrn wOrnd 5 1
wash washed wOS wOSt 2 1
wave waved wev wevd 5 1
whip whipped wlp wlpt 3 1
whiz whizzed wlz wlzd 2 1
wing winged wiIN wiINd 2 1
wink winked wINk wINkt 1 1




181

Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
wipe wiped w3p w3pt 3 1
wire wired w3r w3rd 1 1
wish wished wiS wiSt 18 1
work worked work woérkt 21 1
yank yanked j&Nk j&Nkt 2 1
yell yelled jEl jEId 4 1
admit admitted 6dmlt 6dmItld 9 1
adopt adopted 6dapt 6daptld 7 1
agree agreed bgri 6grid 17 1
allow allowed 611 6l1d 4 ! |
amend amended 6mEnd 6mEndId 1 1
amuse amused émjuz 6mjuzd 2 ]
apply applied 6pl3 6pl3d 7 |
argue argued argju argjud 8 1
avoid avoided 6v2d 6v2did 3 1
await awaited 6wet 6wetld 1 1
award awarded 6wOrd 6wOrdld 1 1
belch belched bEItS bEItSt 2 1
belie belied bIl3 bIl3d 1 (1
blaze blazed blez blezd 1 1
blink blinked bIINk bIINkt 1 1
block blocked blak blakt 1 1
bloom bloomed blum blumd 2 I
blurt blurted blé6rt blértld 1 1
blush blushed bl6S bl6St 1 1
bogey bogeyed bogi bogid 2 1
brush brushed br6S br6St 4 1
carry carried ké&ri k&rid 15 1
cause caused kOz kOzd 17 1
cease ceased sis sist 3 1
chant chanted tS&nt tS&ntld 5| 1
check checked tSEk tSEkt 5 1
chill chilled tSI1 tSIld 1 1
choke choked tSok tSokt 2 1
claim claimed klem klemd 10 1
clamp clamped kl&mp kl&mpt 1 1
clasp clasped kl&sp kl&spt 1 1
clean cleaned klin klind 3 1
clear cleared kllIr klIrd 5 1
click clicked klTk klIkt 1 il
climb climbed kI3m ki3md 9 1
close closed kloz klozd 17 1
coast coasted kost kostld 1 1
count counted klnt kintld 4 1
cover covered k6vér kévérd 3 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
crack cracked kré&k kr&kt 4 1
crash crashed kr&S kré&St 1 1
crawl crawled krOl krOld 4 1
creak creaked krik krikt 1 1
Cross crossed krOs krOst 9 1
crowd crowded krld krldld 1 1
curse cursed kérs kérst 4 1
dance danced d&ns dé&nst 3 1
decry decried dIkr3 dIkr3d 1 1
delay delayed dlle dlled 1 1
dodge dodged dadZ dadZd 1 1
doubt doubted dit d1tld 3 1
draft drafted dré&ft dré&ftld 1 1
drape draped drep drept 1 1
dream dreamed drim drimd 3 1
dress dressed drEs drEst 4 1
drift drifted drlft driftld 1 1
drown drowned drin drind 1 1
elect elected IIEkt IIEktId 1 1
empty emptied Empti Emptid 2 1
enjoy enjoyed IndZ2 IndZ2d 13 1
ensue ensued Insu Insud 1 1
enter entered Ent6r Ent6rd 23 1
erect erected IrEkt IrEktld 1 1
evoke evoked Ivok Ivokt 1 il
exist existed Igzlst IgzIstld 9 1
exude exuded Igzud Igzudld 2 1
fancy fancied f&nsi f&nsid 1 1
favor favored fevér feverd 4 1
flare flared flEr flErd 1 1
flash flashed fl&S fl&St 3 1
flick flicked flIk flTkt 1 1
float floated flot flotld 2 1
flood flooded fled fledId 2 1
focus focused fokés fok6st 5 1
force forced fors forst 4 1
frown frowned frin frind 1 1
glare glared glEr glErd G 1
gleam gleamed glim glimd 1 1
glint glinted glint glintld 1 1
gloat gloated glot glotld 1 1
gouge gouged gldZ gldZd 1 1
grant granted gr&nt gré&ntld 3 1
grasp grasped gré&sp gré&spt 2 1
greet greeted grit gritld 3 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
groan groaned gron grond 2 1
grope groped grop gropt 4 1
growl growled grll grlld 1 1
grunt grunted gront grontld 2 1
guess guessed gEs gEst 4 1
guide guided g3d g3dld 1 1
heave heaved hiv hivd 2 1
honor honored anér an6rd 1 1
hurry hurried héri hérid 4 1
imply implied Impl3 Impl3d 1 1
infer inferred Infér Inférd 2 1
issue issued ISu ISud 4 1
judge judged dzedZ dze6dzd 2 1
knock knocked nak nakt 5 1
labor labored lebé6r lebérd /| 1
laugh laughed 1&f 1&ft 17 1
learn learned lérn lérnd 11 1
level leveled 1Evél IEv6ld 1 1
limit limited IImé6t IImé6tId 2 1
lower lowered lor lord 2 1
lurch lurched l6rtS 16rtSt 1 1
march marched martS martSt 1 1
marry married mé&ri mé&rid 6 i
merit merited mEr6t mEr6tld 2 1
mount mounted milnt mintld 5 1
nudge nudged n6dZ n6dZd 1 1
occur occurred 6kér 6kérd 17 1
offer offered Ofér Oférd 15 1
order ordered Ordér Ordérd 11 1
paint painted pent pentld 4 1
pause paused pOz pOzd 10 1
phone phoned fon fond 1 1
pinch pinched pIntS pIntSt 2 1
pitch pitched pItS plItSt 3 1
place placed ples plest 11 1
plant planted pl&nt pl&ntld 3 1
plead pleaded plid plidId + 1
pluck plucked plok plokt 2 1
plump plumped plémp pléempt 1 1
point pointed p2nt p2ntld 15 1
poise poised p2z p2zd 1 1
pound pounded pind plndld 2 1
press pressed prEs prEst 3 1
print printed print printld 2 1
prove proved pruv pruvd 13 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
quiet quieted kw36t kw36tld 1 1
quote quoted kwot kwotld 3 1
raise raised rez rezd 20 1
range ranged rend”Z rendZd 7 1
reach reached ritS ritSt 36 1
react reacted ri&kt ri&ktld 3 1
refer referred rlfér rlférd 4 1
relax relaxed rll&ks rIl&kst 3 1
reply replied ripl3 rlpl3d 17 1
rouse roused rlz rlzd 1 1
savor savored sevbr sevord 1 1
scare scared skEr skErd 2 1
scoop scooped skup skupt 1 1
score scored skor skord 4 1
scowl scowled ski1l sk1ld 1 1
seize seized siz sizd 3 1
sense sensed sEns sEnst 5 1
serve served sbrv sbrvd 21 1
shape shaped Sep Sept 2 1
share shared SEr SErd 3 1
shave shaved Sev Sevd 1 1
shift shifted SIft SIftld 5 1
shout shouted Sit S1tld 9 1
shove shoved Sé6v Sévd 3 1
shrug shrugged Sr6g Sregd 1 1
sidle sidled s3dél s3de6ld 2 1
slash slashed sl&S sl&St 2 1
slice sliced sl3s sl3st 2. 1
slump slumped slemp slempt 2 1
smash smashed smé&S sm&St 8 1
smell smelled smEl smEld 2 1
smile smiled sm31 sm3ld 20 1
smoke smoked smok smokt 2 1
snake snaked snek snekt 1 1
snarl snarled snarl snarld 3 1
sniff sniffed snlf snlft 3 1
snort snorted snOrt snOrtld 4 1
sound sounded sind sIndId 12 1
spare spared spEr spErd 2 1
stain stained sten stend 2 1
stalk stalked stOk stOkt 3 1
stall stalled stOl stOld 2 1
stare stared stEr stErd 19 1
start started start startld 49 i
state stated stet stetld 10 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
steer steered stlr stlrd 3 1
stoop stooped stup stupt 1 1
storm stormed stOrm stOrmd 1 1
strut strutted strot strétld 1 1
study studied stodi stedid 11 1
surge surged s6rdZ sérdZd + 1
swarm swarmed swOrm swOrmd 2 1
swirl swirled swobrl sworld 1 1
swish swished swliS swlSt 1 1
taste tasted test testld 3 1
thank thanked T&Nk T&Nkt 3 1
total totaled tot6l toteld 4 1
touch touched t6tS totSt 10 1
track tracked tr&k tr&kt 1 1
trade traded tred tredld 1 1
trail trailed trel treld 1 1
train trained tren trend 1 1
treat treated trit tritld 7 1
trust trusted trést tr6stld 1 1
twine twined tw3n tw3nd 1 1
twist twisted twlst twlstld 3 1
utter uttered 6tér 6térd 1 1
visit visited vIz6t viz6tld 10 1
waste wasted west westld 2 1
watch watched watS watSt 25 1
water watered wOt6r wOt6rd 1 1
weigh weighed we wed 4 1
whack whacked wék w&kt 2 1
wheel wheeled wil wild 1 1
whirl whirled woérl world 1 1
widen widened w3dén w3dénd 1 1
wield wielded wild wildId 1 1
wince winced wins winst 2 1
worry worried wéri wérid 1 1
wreck wrecked rEk rEkt 1 1
yield yielded jild jildId 3 1
abound abounded 6blnd 6blndId 1 1
absorb absorbed 6bsOrb 6bsOrbd 1 1
accept accepted IksEpt IksEptld 12 1
accuse accused 6kjuz bkjuzd 2 1
adjoin adjoined 6dZ2n 6dZ2nd 1 1
advise advised 6dv3z 6dv3zd 4 1
afford afforded 6ford 6fordld 2 1
allege alleged 6lEdZ 6lEdZd 1 1
amount amounted 6mint 6mintld 1 1




186 A. Corpus for the Past Tense Acquisition Simulations
Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
answer answered &ns6r &nsé6rd 20 1
appeal appealed 6pil 6pild 1 1
appear appeared oplr 6plrd 45 1
arouse aroused 6rlz 6rlzd 2 1
arrest arrested 6rEst 6rEstld 1 1
arrive arrived 613v 6r3vd 12 1
assert asserted bsért 6sortld 3 1
assign assigned 6s3n 6s3nd 1 1
assist assisted 6slst 6slstld 1 1
assume assumed 6sum 6sumd 7 1
assure assured 6Sur 6Surd 5 1
attach attached 6t&tS 6t&tSt 1 1
attack attacked 6t&k 6t&kt 5 1
attend attended 6tEnd 6tEndId 10 1
attest attested 6tEst 6tEstld i! 1
babble babbled b&b6l b&béld 1 1
beckon beckoned bEk6n bEk6nd 3 1
behave behaved blhev blhevd 2 1
bellow bellowed bElo bElod 2 1
belong belonged bIION bIIONd 4 1
bestow bestowed blsto blstod 2 1
borrow borrowed baro barod 2 1
bother bothered baDér baDérd 4 1
bounce bounced blns blnst 4 1
cackle cackled k&ké6l k&kold 2 1
caress caressed kb6rés kérost 1 1
center centered sEntér sEnt6rd 2 1
change changed tSendZ tSendZd 9 1
charge charged tSardZ tSardZd 4 1
circle circled sbrkel sébrk6ld 3 1
clutch clutched kl6tS kletSt 3 1
commit committed ké6mlIt ké6mlitld 3 1
comply complied kémpl3 kémpl3d 1 1
concur concurred kénkér kénkérd 1 1
convey conveyed kénve kénved 1 1
couple coupled k6p6l képo6ld 2 1
create created kriet krietld 5 1
crouch crouched krltS kr1tSt 5 1
damage damaged d&mldZ d&mldZd 1 1
dangle dangled d&Ngél d&Ngéld 1 1
darken darkened darkén darkénd 5 1
decide decided dIs3d dIs3dId 31 1
deduce deduced dIdus dIdust 1 1
defeat defeated dIfit dIfitld 1 1
defend defended dIfEnd dIfEndId 4 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
demand demanded dImé&nd dImé&ndld 12 1
depart departed dIpart dIpartld 2 1
depend depended dIpEnd dIpEndId 6 1
depict depicted dIpIkt dIplktld 2 1
design designed dIz3n dIz3nd 3 1
desire desired dIz3r dIz3rd 3 1
detest detested dItEst dItEstld 1 I
devise devised dIv3z dIv3zd 1 1
devote devoted dIvot dIvotld 6 1
differ differed dIfér dIférd 4 1
direct directed dé6rEkt dérEktld 2 1
divide divided déevad dev3dId 2 1
double doubled d6bél déebéld 1 1
emerge emerged ImérdZ Imé6rdZd 7§ 1
employ employed Impl2 Impl2d 1 1
enable enabled Ineb6l Ineb6ld 3 1
endear endeared IndIr IndIrd 2 1
engage engaged IngedZ IngedZd 1 1
engulf engulfed Ing6lf Ing6lft 2 1
enlist enlisted Inllst InlIstld 1 i
escape escaped Iskep Iskept 2 1
escort escorted IskOrt IskOrtld 3 1
esteem esteemed Istim Istimd 1 1
evolve evolved Ivalv Ivalvd 1 1
excite excited Iks3t Tks3tld 1 1
excuse excused Ikskjuz Ikskjuzd 2 1
expand expanded Iksp&nd Iksp&ndId 2 1
expect expected IkspEkt IkspEktld 10 1
expose exposed Ikspoz Ikspozd 1 1
extend extended IkstEnd IkstEndId 3 1
falter faltered fOltér fOlt6rd 1 1
figure figured flgjér fIgj6rd 8 1
finger fingered fINg6r fINg6rd 1 1
finish finished fInIS fInISt 7 1
follow followed falo falod 26 1
fumble fumbled fémb6l fémbe6ld 2 1
gather gathered g&D6r g&Dé6rd 9 1
giggle giggled glg6l glgobld 1 1
glance glanced gl&ns gl&nst 11 1
gobble gobbled gabél gabé6ld 2 1
ground grounded grind grindld 1 1
handle handled hé&ndo6l hé&nd6ld 1 1
happen happened h&pén h&pénd 28 1
harass harassed hér&s h6r&st 1 1
hasten hastened hesé6n hesé6nd 4 1




188 A. Corpus for the Past Tense Acquisition Simulations
Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
hinder hindered hindér hindé6rd 1 1
huddle huddled h6dél hédéld 3 1
ignore ignored Ignor Ignord 9 1
import imported Import Importld 1 1
impose imposed Impoz Impozd 2 1
inform informed InfOrm InfOrmd 11 1
injure injured IndZé6r IndZé6rd 1 1
insist insisted Inslst InsIstld 12 1
intend intended IntEnd IntEndId 2 1
intone intoned Inton Intond 1 1
invite invited Inv3t Inv3tld 6 1
jingle jingled dZINgel dZINgéld 1 1
lessen lessened 1Esén 1Esénd 3 1
linger lingered IINg6r 1INg6rd 2 1
listen listened 1Is6n IIsénd 6 1
loathe loathed loD loDd 2 1
locate located loket loketld 3 1
lounge lounged 1IndZ 1IndZd | 1
manage managed mé&nldZ mé&nldZd 5 1
matter mattered mé&tér mé&térd 2 1
mumble mumbled m6mbé6l mémb6ld 1 1
murmur murmured mérmér moérmérd 6 1
mutter muttered mé6tér mé6térd 8 1
notice noticed not6s noté6st 4 1
object objected 6bdZEkt 6bdZEktld 4 1
oblige obliged 6b13dZ 6bl3dZd 1 1
obtain obtained bbten ébtend 3 1
occupy occupied akjbp3 akj6p3d 2 1
oppose opposed 6poz 6pozd 2 1
permit permitted pérmlt p6rmItld 5 1
plague plagued pleg plegd 1 1
please pleased pliz plizd 4 1
pledge pledged plEdZ plEdZd 1 1
plunge plunged pléndZ pléndZd 4 1
ponder pondered pandér pandérd 1 1
praise praised prez prezd 4 1
preach preached pritS pritSt 1 1
prefer preferred prlfér priférd 8 1
prompt prompted prampt pramptld 1 1
pursue pursued pérsu pérsud 1 1
rattle rattled r&t6l r&told 1 1
reason reasoned rizén rizénd 1 1
recall recalled rIkOl rIkOld 5 1
reduce reduced rIdus rIdust 3 1
refuse refused rlfjuz rlfjuzd 19 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
regain regained rigen rigend 1 1
regard regarded rlgard rIgardld + 1
reject rejected rIdZEkt rIdZEktld 3 1
relate related rllet rlletld 4 1
remain remained rImen rImend 27 1
remark remarked rImark rImarkt 13 1
remind reminded rIm3nd rIm3ndld 12 1
remove removed rImuv rImuvd 2 1
render rendered rEndér rEndérd 1 1
repair repaired rIpEr rIpErd 1 1
repeat repeated rlpit rlpitld 3 1
report reported rlport rIportld 9 1
resent resented rIzEnt rlzEntld 3 1
reside resided rlz3d rlz3dId 1 1
resign resigned rlz3n rlz3nd 3 1
resist resisted rlzlst rlzlstld 3 1
result resulted rlz6lt rlz61tld 14 1
resume resumed rlzum rlzumd 3 1
retain retained rlten rltend 3 1
retire retired rlt3r rit3rd 1 1
retort retorted rItOrt rItOrtld 1 1
return returned rltérn rltérnd 32 1
reveal revealed rlvil rlvild 7 1
review reviewed rlvju rlvjud 3 1
revise revised rlv3z rIv3zd 1 1
scream screamed skrim skrimd 5 1
search searched s6rtS s6rtSt 3 1
select selected s6lEkt s6IEktId & 1
settle settled sEt6l sEt6ld 15 1
shower showered Slr Slrd 1 1
shriek shrieked Srik Srikt 1 1
shrill shrilled Srll Srild 1 1
signal signaled slgneél sIgno6ld 1 1
single singled sINg6l sINgéld 2 1
sizzle sizzled slz6l slz6ld 1 1
sketch sketched skEtS skEtSt 1 1
smooth smoothed smuD smuDd 1 1
snatch snatched sné&tS sné&tSt 2 1
soothe soothed suD suDd 1 1
sprint sprinted sprint sprintld 1 1
square squatted skwEr skwErd 2 1
squeak squeaked skwik skwikt 1 1
strain strained stren strend 3 1
streak streaked strik strikt 1 1
stress stressed strEs strEst 7 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
stroke stroked strok strokt 1 1
submit submitted sbbmlIt s6bmlItld 3 1
suffer suffered sbfér s6ford 8 1
supply supplied s6pl3 s6pl3d 3 1
swerve swerved Sworv swérvd 2 1
switch switched swltS swltSt 4 1
thrash thrashed Tr&S Tr&St 1 1
thrive thrived Tr3v Tr3vd 3 1
travel traveled tré&veél tr&vold 5 1
tumble tumbled tobmb6l témb6ld 3 1
twitch twitched twltS twltSt 2 1
unfold unfolded 6nfold 6nfoldId 2 1
unlock unlocked 6nlak é6nlakt 1 1
vanish vanished v&nlS v&nlSt 4 1
wander wandered wandé6r wandeérd 2 1
wiggle wiggled wlgbl wlgbld & 1
wobble wobbled wabé6l wabéld 1 1
wonder wondered wbéndér woéndérd 14 i
wrench wrenched rEntS rEntSt 1 1
abandon abandoned 6b&ndén 6b&nd6énd 2 1
account accounted 6kint 6k1ntld 2 1
achieve achieved 6tSiv 6tSivd 5 1
acquire acquired 6kw3r 6kw3rd 5 1
address addressed 6drEs 6drEst 2 1
adjourn adjourned 6dZ6rn 6dZ6rnd 1 1
advance advanced 6dvé&ns 6dv&nst 2 1
appoint appointed 6p2nt 6p2ntld i 1
approve approved 6pruv 6pruvd 5 1
arraign arraigned 6ren 6rend 2 1
arrange arranged 6rendZ 6rendZd 1 1
assault assaulted 6sOlt 6sOltId 1 1
attempt attempted 6tEmpt 6tEmptld 4 1
attract attracted 6tré&kt 6tr&ktld 3 1
average averaged &vrldZ &vrldZd 6 1
believe believed b6liv bélivd 15 1
breathe breathed briD briDd 3 1
broaden broadened brOdén brOdénd 2 1
capture captured k&ptSér k&ptSérd 2 1
caution cautioned kOS6n kOSé6nd 1 1
cherish cherished tSErIS tSErISt 3 1
chuckle chuckled tS6ko6l tSekeld 2 1
clamber clambered kl&mbér kl&mbérd 1 1
clatter clattered kl&t6r kl&t6rd 3 1
collect collected k6lEkt k6lEktId 2 1
combine combined k6émb3n k6mb3nd 3 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
command | commanded | kém&nd k6émé&ndld 3 1
comment commented kamEnt kamEntld 3 1
compare compared kémpEr kémpErd 3 1
compile compiled k6mp3l k6émp3ld 1 1
compose composed kémpoz kémpozd 1 1
concede conceded kénsid kénsidld 2 1
concern concerned kébnsérn kébnsé6rnd 1 1
condemn condemned kéndEm kéndEmd 2 1
conduct conducted kénd6kt k6ndoktld 3 1
confess confessed kénfEs k6nfEst 1 1
confide confided k6nf3d k6nf3did 3 1
confuse confused kénfjuz kénfjuzd 1 1
connect connected ké6nEkt ké6nEktId 1 1
consist consisted kénslst ké6nslstld 7 1
contact contacted kant&kt kant&ktld 2 1
contain contained kénten kéntend 18 1
contend contended kéntEnd ké6ntEndId 3 1
control controlled kéntrol kéntrold 3 1
convene convened kénvin ké6nvind 1 1
correct corrected k6rEkt k6rEktld 1 1
counsel counseled k1ns6l klns6ld 1 1
declaim declaimed dIklem dlklemd 1 1
declare declared dIkIEr dIklErd 12 1
decline declined dIkI3n dIkl3nd 6 1
deliver delivered dIlIvér dIlIvérd 5 1
deplore deplored dIplor dIplord 1 1
deserve deserved dIzé6rv diz6rvd 2 1
despise despised dIsp3z dIsp3zd 2 1
develop developed dIvEl6p dIvEl6pt 15 1
discuss discussed dIské6s dIské6st 3 1
dislike disliked dIsl3k dIsl3kt 4 I
dismiss dismissed dIsmls dIsmlist 2 1
display displayed dIsple dIspled 4 1
dispose disposed dIspoz dIspozd 1 1
disrupt disrupted dIsr6pt dIsr6ptld 1 1
disturb disturbed dIsté6rb dIst6rbd 1 1
divorce divorced dévors dé6vorst 1 1
embrace embraced Imbres Imbrest 2 1
enclose enclosed Inkloz Inklozd 1 1
entitle entitled Int3t6l Int3t6ld 1 1
entreat entreated Intrit Intritld 1 1
examine examined Igz&mbén Igz&m6nd 2 1
exclaim exclaimed Iksklem Iksklemd 2 1
exhaust exhausted IgzOst IgzOstld 1 1
explain explained Iksplen Iksplend 18 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
express expressed IksprEs IksprEst > 1
fashion fashioned f&S6n f&S6énd 1 1
flatten flattened fl&t6n fl&tond 1 1
flatter flattered fl&tor fl&térd 2 1
flicker flickered filk6r fllk6rd 1 1
furnish furnished férnlS fornISt 1 1
gesture gestured dZEstS6r dZEstSérd 1 1
glimpse glimpsed glimps glimpst 1 1
imagine imagined Imé&dZén Im&dZénd 6 1
impress impressed ImprEs ImprEst 2 1
improve improved Impruv Impruvd 3 1
include included Inklud InkludId 16 1
indulge indulged Ind6ldZ Ind6ldZd 1 1
inflict inflicted InflTkt Infllktld 2 1
inquire inquired Inkw3r Inkw3rd 8 1
install installed InstOl InstOld 1 1
involve involved Invalv Invalvd 10 1
journey journeyed dZ6rni dZ6rnid 1 1
measure measured mEZ6r mEZ6rd d i |
mention mentioned mEntSén mEntSé6nd 5 1
obscure obscured abskjur abskjurd 1 1
observe observed 6bz6rv 6bzé6rvd 6 1
perform performed p6rfOrm pbrfOrmd 5 1
persist persisted pérslst pbérslstld 3 1
possess possessed p6zEs p6zEst 8 1
precede preceded prlsid prisidld 1 1
predict predicted pridIkt pridlktld 1 1
prepare prepared pripEr pripErd 5 1
present presented prizEnt prizEntld 9 |
pretend pretended pritEnd prIitEndld 2 1
prevail prevailed prlvel priveld 2 1
prevent prevented privEnt prIvEntld 3 1
proceed proceeded prosid prosidld 8 1
produce produced prédus prédust 6 1
profess professed pré6fEs profEst 2 1
proffer proffered prafér praférd 1 1
promise promised prameés prameést 7 1
propose proposed prépoz prépozd 8 1
protect protected protEkt protEktld 1 1
protest protested protEst pré6tEstld 7 1
provide provided pré6v3d prév3dId 11 1
provoke provoked prévok prévokt 1 1
publish published p6blIS poblISt 2 1
purport purported pérport pérportld 1 1
quarrel quarreled kwOr6l kwOré6ld 1 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
radiate radiated rediet redietld 1 1
realize realized ri6l3z ri6l3zd 17 1
receive received rsiv rlsivd 18 1
recount recounted rIkint rIk1ntld 1 1
recover recovered rIk6vér rIkéverd 1 1
reflect reflected rIflEkt rIflEktId 8 1
release released rllis rllist 1 1
relieve relieved rlliv rllivd 1 1
replace replaced rlples riplest 5 1
request requested rIkwEst rIkwEstId 2 1
require required rTkw3r rIkw3rd 8 1
reserve reserved rlzérv rlz6rvd 2 1
resolve resolved rlzalv rlzalvd 2 1
respect respected rIspEkt rIspEktld 1 1
respond responded rIspand rIspandld 6 1
restore restored rlstor rIstord 1 1
retreat retreated rltrit rltritld 3 1
revolve revolved rlvalv rlvalvd 1 1
satisfy satisfied s&t6sf3 s&t6sf3d 2 1
scatter scattered ské&tér sk&tbrd 1 1
screech screeched skritS skritSt 2 1
shatter shattered S&t6r S&térd 2 1
smolder smoldered smoldér smoldérd 2 i
snicker snickered snlkér snlkérd 2 1
snuggle snuggled sn6gobl sn6g6ld 2 1
sponsor sponsored spansér spansérd 1 1
squeeze squeezed skwiz skwizd 2 1
stagger staggered st&gbr st&gbrd 1 1
stiffen stiffened stlfén stlfend 2 i
stretch stretched strEtS strEtSt 10 1
stumble stumbled stébmb6l stbmb6ld 6 1
subside subsided s6bs3d sbbs3dId 2 1
succeed succeeded sbksid sbksidId 7 1
suffuse suffused s6fuz sbfuzd 3 1
suggest suggested s6dZEst s6dZEstld 12 |
support supported sé6port sé6portld 6 |
suppose supposed sépoz s6pozd 3 1
survive survived sbrv3v sbrv3vd 3 1
suspect suspected s6spEkt s6spEktld 8 1
swagger swaggered sw&gbr swé&gbrd 1 1
swallow swallowed swalo swalod 1 1
testify testified tEst6£3 tEst6f3d 4 |
tighten tightened t3tbn t3tond 2 1
tremble trembled trEmbé6l trEmbéld 2 1
trouble troubled trobol tr6bo6ld 2 1




A. Corpus for the Past Tense Acquisition Simulations

Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
undress undressed 6ndrEs 6ndrEst 1 1
unscrew unscrewed 6nskru 6nskrud 1 1
venture ventured vEntSér vEntSérd 1 1
violate violated v36let v36letld 1 1
welcome welcomed wElkém wElk6émd 5 1
whisper whispered wlspbr wlspérd 7 1
whistle whistled wls6l wls6ld 1 1
witness witnessed wltnés wltn6st 1 1
wrangle wrangled r&Ng6l r&Ng6ld 1 1
wrinkle wrinkled rINk61 rINk6ld 1 1
announce announced 6nlns 6nlnst 21 1
approach approached 6protS 6protSt 10 1
assemble assembled 6sEmb61 6sEmbé6ld 3 1
brighten brightened br3tén br3ténd i i
campaign | campaigned | k&mpen k&mpend 1 1
collapse collapsed k6l&ps k6l&pst 3 1
commence | commenced kémEns k6mEnst 2 1
complain complained kémplen kémplend 9 1
complete completed kémplit kémplitld 2 1
comprise comprised kémpr3z kémpr3zd 1 1
conceive conceived kénsiv kénsivd 3 1
conclude concluded kénklud kénkludId 7 1
consider considered kénsldér kénsIdérd 9 1
conspire conspired kénsp3r kénsp3rd 1 1
continue continued kéntInju kéntInjud 26 1
contract contracted kéntré&kt kéntr&ktld 1 1
convince convinced kénvins ké6nvinst 4 1
denounce denounced dInlns dInlnst 1 1
describe described dIskr3b dIskr3bd 9 1
disclose disclosed dlIskloz dIsklozd 3 1
discount discounted dIsklint dIsk1lntld 1 1
discover discovered dIsk6vér dIské6vérd 11 1
disguise disguised dIsg3z dIsg3zd 1 1
dismount dismounted dIsmint dIsmIntld 1 1
dispatch dispatched dIsp&tS dIsp&tSt 2 1
exercise exercised Eks6rs3z Eksé6rs3zd 2 1
flourish flourished florIS flerISt 1 1
function functioned f6NkS6n foNkSé6nd 1 1
illumine illumined [lumén Iluménd 1 1
increase increased Inkris Inkrist 15 1
interest interested Intrést Intréstld 1 1
maintain maintained menten mentend 3 1
maneuver | maneuvered | ménuvér mé6nuvérd 2 1
minimize minimized mIné6m3z mIn6m3zd 1 1
minister ministered mlIn6stér mIné6stord 1 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
mistrust mistrusted mlstrést mlstréstld 1 1
multiply multiplied mo6lt6pl3 m6lt6pl3d 1 1
organize organized Orgbn3z Orgén3zd 1 1
outweigh | outweighed | ltwe ltwed 1 1
overflow overflowed ovérflo ovérflod 1 1
overlook overlooked ovérlUk ovérlUkt 2 1
persuade persuaded pérswed pérswedld 3 1
petition petitioned p6tISén p6tISend 2 1
practice practiced pré&kt6s pré&kt6st 1 1
progress progressed progrEs prégrEst 3 1
purchase purchased portSés portSest 3 1
question questioned kwEstSén kwEstSénd B 1
register registered rEdZ6st6r rEdZ6stérd 1 1
remember | remembered | rImEmbeé6r rImEmbérd 14 1
resemble resembled rIzEmbeél rlzEmbéld 4 1
schedule scheduled skEdZul skEdZuld 1 1
scramble scrambled skr&mbé6l skr&mbé6ld 3 1
shoulder shouldered Soldé6r Soldé6rd 1 1
sprinkle sprinkled sprINkeél sprINkeld 1 1
struggle struggled strogo6l strogold 1 1
surprise surprised s6pr3z s6pr3zd 2 1
surround surrounded | sérlnd sé6rindld 1 1
threaten threatened TrEtén TrEténd 4 1
transfer transferred tr&nsfor tr&nsférd 1 1
accompany | accompanied | 6kémpni 6k6émpnid 3 1
advertise advertised &dvért3z &dvért3zd 1 1
authorize authorized OTé6r3z OTé6r3zd 2 1
challenge | challenged tS&l6ndZ tS&l6ndZd 1 1
criticize criticized krlt6s3z krlt6s3zd 1 1
determine | determined dItérmé6n dItérmé6nd 2 1
disappear | disappeared | dIs6plr dIséplrd 6 1
disfigure disfigured dIsflgjér dIsflgjérd 1 1
dismember | dismembered | dIsmEmbé6r | dIsmEmbé6rd 1 1
emphasize | emphasized | Emf6s3z Emf6s3zd 1 1
encounter | encountered | InkIntér Ink1ntérd 3 1
encourage | encouraged | InkérldZ Inké6rldZd 1 1
entertain entertained Ent6rten Ent6rtend 1 1
establish established Ist&blIS Ist&blISt 6 1
guarantee | guaranteed g&rénti g&réntid 2 1
improvise | improvised Imprév3z Imprév3zd 1 1
interfere interfered Int6fIr Int6fIrd 1 1
intervene intervened Int6rvin Int6rvind 2 1
interview interviewed | Intérvju Intérvjud 1 1
introduce | introduced Intr6dus Intr6dust 4 1
overreach | overreached | ovéritS ovéritSt 1 1
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
prescribe prescribed priskr3b priskr3bd 1 1
recognize recognized rEkIgn3z rEkIgn3zd 9 1
replenish replenished | rIplEnIS rIplEnISt 1 1
supervise supervised sup6rv3z sup6rv3zd 1 1
surrender | surrendered | sérEndér s6rEndérd 3 1
symbolize | symbolized sImb613z sImb613zd 1 1
telephone | telephoned tEl6fon tEl6fond 6 1
accomplish | accomplished | 6kamplIS 6kamplISt 2 1
disapprove | disapproved | dIs6pruv dIs6pruvd 1 1
discipline | disciplined dIséplén dIséplénd 1 1
experience | experienced | Iksplribns Iksplri6nst + 1
relinquish | relinquished | rIIINkwIS rIIINkwISt 2 1
scandalize | scandalized | sk&nd6l3z | sk&nd6l3zd 2 1
scrutinize | scrutinized skrutén3z skrutén3zd 1 1
specialize | specialized spES613z spES613zd i i
straighten | straightened | stretén streténd 5 1
lay laid le led 8 1
go went g0 wEnt 168 3
undergo underwent 6ndérgo énd6rwEnt 1 3
bid bid bld bld 1 3
cut cut k6t k6t 6 3
hit hit hit hit 16 3
let let IEt IEt 10 3
put put pUt pUt 48 3
set set sEt sEt 27 3
wet wet wEt wEt 1 3
beat beat bit bit 6 3
cast cast ké&st ké&st 2 3
cost cost kOst kOst 2 3
shut shut Sét Set 1 3
burst burst bérst bérst 3 3
split split spllt spllt 4 3
upset upset 6psEt 6psEt 6 3
spread spread sprEd sprEd 6 3
thrust thrust Trost Trost 2 3
fall fell fOl fEl 30 4
feed fed fid fEd 4 4
hold held hold hEld 38 4
lead led lid 1Ed 25 4
meet met mit mkEt 29 -+
read read rid rEd 10 4
bleed bled blid blEd 1 4
speed sped spid spEd 3 4
befall befell bIfOl bIfEl 1 4
uphold upheld 6phold 6phEld 1 4
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
hide hid h3d hid 3 5
light lit 13t 11t 3 5
slide slid sl3d slid 7 5
eat ate it et 9 6
give gave glv gev 101 6
forgive forgave ferglv fergev 1 6
bend bent bEnd bEnt 5 7
lend lent IEnd IEnt 1 7
send sent sEnd sEnt 21 7
build built bIld bIlt 7 7
spend spent spEnd spEnt 15 74
deal dealt dil dElt 4 8
feel felt fil fEIt 88 8
keep kept kip kEpt 41 8
mean meant min mEnt 18 8
weep wept wip wEpt 3 8
creep crept krip krEpt 5 8
kneel knelt nil nElt 4 8
leave left liv IEft 48 8
sleep slept slip slEpt 6 8
sweep swept swip swEpt 3 8
get got gEt gat 117 9
lose lost luz 10st 22 9
shoot shot Sut Sat 9 9
forget forgot forgEt férgat 10 9
buy bought b3 bOt 6 10
seek sought sik sOt 11 10
bring brought brIN brOt 41 10
catch caught k&tS kOt 19 10
fight fought 3t fOt 7 10
teach taught titS tOt 7 10
think thought TINk TOt 102 10
run ran rén r&n 43 11
sit sat slt s&t 46 11
ring rang rIN r&N 7 11
sing sang sIN s&N 11 11
sink sank sINk s&Nk 4 11
spit spat splt sp&t 3 11
swim swam swim swé&m 3 11
drink drank drINk dr&Nk 9 11
spring sprang sprIN spr&N 5 11
dig dug dlg dé6g 2 12
hang hung h&N h6N 11 12
spin spun spln spén + 12
cling clung KIIN kI6N 5 12
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.
fling flung fIIN fleN 5 12
stick stuck stlk sték 2 12
swing swung swiN SwW6N 12 12
strike struck str3k strok 16 12
string strung strIN str6N 1 12
fly flew f13 flu 10 13
blow blew blo blu 6 13
draw drew drO dru 22 13
grow grew gro gru 20 13
know knew no nu 138 13
throw threw Tro Tru 21 13
withdraw withdrew wIDdrO wlDdru 2 13
bind bound b3nd blnd 1 14
find found f3nd find 85 14
wind wound w3nd wlnd 4 14
bear bore bEr bor 5 15
ride rode r3d rod 20 15
rise rose 13z 1oz 15 15
tear tore tEr tor 3 15
wake woke wek wok 4 15
wear wore wEr wor 14 15
arise arose 613z 6roz 5 15
awake awoke 6wek 6wok 3 15
break broke brek brok 23 15
drive drove dr3v drov 18 15
shine shone S3n Son 2 15
speak spoke spik spok 24 15
steal stole stil stol 4 15
swear swore swEr swor 4 15
write wrote r3t rot 59 15
choose chose tSuz tSoz 15 15
stride strode str3d strod 4 15
strive strove str3v strov : | 15
take took tek tUk 133 16
shake shook Sek SUk 17 16
stand stood st&nd stUd 59 16
overtake overtook ovértek overtUk 1 16
withstand | withstood wlTst&nd wlTstUd 1 16
understand | understood 6ndé6rst&nd | 6ndérstUd 1 16
hear heard hilr hérd 44 17
say said se sEd 579 18
flee fled fli flEd 4 18
make made mek med 140 19
sell sold sEl sold 34 20
tell told tEl told 96 20
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Stem Past Tense Stem Past Freq. | Infl. Class
Phon. Trans. | Phon Trans.

come came ké6m kem 212 21

become became bIk6m blkem 81 21

see saw si sO 122 22

undo undid 6ndu 6ndId 1 23
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Appendix B

Phoneme Transcription for the
English Past Tense Simulations

| Consonants |
p 0100000000 pack
t 0010000000 tick
k 0000100000 come
b 1100000000 be
d 1010000000 dig
g 1000100000 g0
m 1100010000 make
n 1010010000 know
N 1001110000 sing
1 1011001000 laugh
T 1010000100 rush
f 0110000010 free
v 1110000010 vote
S 0010000010 see
Z 1010000010 use
S 0001000010 show
Z 1001000010 age
j 1001001010 use
h 0000100010 help
w 1100001010 wish
T 0010000011 throw
D 1010000011 bathe
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| Vowels |
i 1000000000 heat
I 0100100000 hit
e 1000010000 ate
E 1000011000 bet
& 1000001000 add
u 0011100000 choose
U 0111100000 cook
o 0011010000 cope
@) 0011001000 cost
a 0100001000 box
6 0100010000 clung (schwa)
1 1011101100 found
2 1011110100 moisten
3 1000101100 hide
$ 0000000000 “empty”

Consonantal features are: voiced, labial, dental, palatal, velar, nasal, liquid, trill,
fricative, interdental.

Vowel features are: front, center, back, round, high, middle, low, diphthong, not
used, not used.



Appendix C

Classification of English Past Tense
Forms

| Regular verbs |

| 1 regular look — looked |
| Irregular verbs |
2 go— went
3  no-change hit — hit
4 O—E fall — fell
5 3=1 light —¥ lit
6 I—e give — gave
7 End — Ent bend - bent
8 i—Et keep — kept
9 _—adt lose — lost
10 _—-Ot bring — brought
11 =& sit — sat
12 I-6 hang =5 hung
13 _—=U draw — drew
14 3-1 find — found
15 _—0 wear — wore
16 _—=U take — took
17 hear — heard
18 _—E say — said
19 make — made
20 E—o tell — told
21 6—e come — came
22 see — saw
23 do — did

The 23 English past tense classes. Note that some classes have only one member;
for these classes only the verb is given. _stands for any vowel.
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Appendix D

The Past Tense Simulation
Pseudo-Verbs

| Prototypical-Irregular | Intermediate-Irregular | Distant-Irregular |

spling splIN fring frIN trisp trlsp
skring skrIN ning nIN nist nlst
sprink sprINk frink frINk blip bllp
cleed  klid cleef Kklif gleef glif
preed prid preek  prik keeb kib
queed kwid queef  kwif meep mip
cloe klo foa fo goav gov
froe fro voa Vo joam dZom
plare  plEr jare dZEr flape flep
quare kwEr grare  grEr blafe blef

| Prototypical-Regular | Intermediate-Regular | Distant-Regular
plip plip brilth  brIID frilg frllg
glip gllp glinth  glinD krilg krllg
brip brlp plimph plImf trilb trllb
gloke glok ploab  plob ploamph plomf
proke prok ploag  plog ploanth  plonD
greem grim smeeb  smib smeelth  smilD
pleem plim smeeg  smig smeenth sminD
treem  trim smeej  smidZ smeerg  smirg
slace  sles smaib  smeb smairg smerg
nace  nes smaig  smeg smairph  smerf

The 60 pseudo-verbs developed by Prasada and Pinker (1993) and their UNIBET tran-
scriptions.
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Appendix E

Corpus for the German Aphasia

Simulations

Nr. of types: 664
Nr. of tokens: 20018

Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
abgrenzen abgegrenzt "&p-grEn-ts@n ) 1
abriegeln abgeriegelt "&p-ri-g@In 2 1
abschirmen abgeschirmt "&p-Slr-m@n 5 1
abstatten abgestattet "&p-St&-t@n 2 1
achten geachtet "&x-t@n 7 1
ahnden geahndet ‘an-d@n 3 1
ahnen geahnt ‘a-n@n 4 1
anekeln angeekelt "&n-e-k@In 3 1
anprangern angeprangert "&n-pré&-N@rn 4 1
anreichern angereichert "&n-rW-(@rn 1
anspornen angespornt '&n-SpOr-n@n 2 1
anstrengen angestrengt '&n-StrE-N@n 4 1
antasten angetastet "&n-t&s-t@n 4 1
antworten geantwortet "&nt-vOr-t@n 11 1
anwidern angewidert '&n-vi-d@rn 2 1
anwurzeln angewurzelt "&n-vUr-ts@In 2 1
anzetteln angezettelt "&n-tsE-t@In 1 1
arbeiten gearbeitet '&r-bW-t@n 99 1
atmen geatmet ‘at-m@n 1 1
aufbahren aufgebahrt ‘Bf-ba-r@n 1 1
aufbiirden aufgebiirdet ‘Bf-bYr-d@n 4 1
auffrischen aufgefrischt 'Bf-frI-S@n 2 1
aufschliisseln | aufgeschliisselt | ‘Bf-SIY-s@In 2 1
aufstocken aufgestockt '‘Bf-StO-k@n 1 1
aufwiihlen aufgewdiihlt ‘Bf-vy-l@n 2 1
ausbeuten ausgebeutet ‘Bs-bX-t@n 2 1
ausbriiten ausgebriitet 'Bs-bry-t@n 1 1
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E. Corpus for the German Aphasia Simulations

Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
ausdorren ausgedorrt 'Bs-d/-r@n 1 1
aushecken ausgeheckt '‘Bs-hE-k@n 1 1
aushoéhlen ausgehohlt ‘Bs-h—l1@n 2 1
auslosen ausgelost ‘Bs-lo-z@n 6 1
ausloschen ausgeloscht ‘Bs-1—S@n 7 1
ausmerzen ausgemerzt ‘Bs-mEr-ts@n 3 1
ausrotten ausgerottet "‘Bs-rO-t@n 7 1
ausschmiicken | ausgeschmiickt | ‘Bs-Smy-k@n 1 1
ausstatten ausgestattet "Bs-Sté&-t@n 21 1
baden gebadet ‘ba-d@n 2 1
bahnen gebahnt ‘ba-n@n 1 1
bannen gebannt 'b&-n@n 9 1
bauen gebaut 'bB-@n 170 1
bellen gebellt 'bE-1@n 1 1
bessern gebessert 'bE-s@rn 8 1
beten gebetet 'be-t@n 3 1
betten gebettet 'bE-t@n 9 1
beugen gebeugt 'bX-g@n 10 1
bilden gebildet ‘bIl-d@n 59 1
billigen gebilligt 'bI-lI-g@n 21 1
blenden geblendet '‘bIEn-d@n 3 1
blicken geblickt ‘blI-k@n 2 1
blattern geblattert 'bIE-t@rn 3 1
bohren gebohrt ‘bo-r@n 3 1
brauchen gebraucht ‘brB-x@n 16 1
breiten gebreitet ‘brW-t@n 7 1
bremsen gebremst ‘brEm-z@n 6 1
buchen gebucht ‘bu-x@n 6 1
bandigen gebandigt 'bEn-dI-g@n 4 1
biicken gebiickt 'bY-k@n 3 1
biindeln gebiindelt ‘bYn-d@In 2 1
biiflen gebiiflt ‘by-s@n 6 1
danken gedankt ‘d&N-k@ 5 1
dauern gedauert 'dB-@rn 6 1
decken gedeckt 'dE-k@n 38 1
dehnen gedehnt ‘de-n@n 15 1
deuten gedeutet ‘dX-t@n 24 1
dichten gedichtet ‘dI(-t@n 2 1
dienen gedient ‘di-n@n 9 1
drehen gedreht ‘dre-@n 14 1
drillen gedrillt ‘drl-l@n 2 1
drohen gedroht ‘dro-@n 6 1
drosseln gedrosselt 'drO-s@In 2 1
drucken gedruckt ‘drU-k@n 17 1
driangen gedrangt "drE-N@n 19 1
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Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
driicken gedriickt ‘drY-k@n 31 1
ducken geduckt ‘dU-k@n 3 1
dulden geduldet ‘dUl-d@n + 1
dammen gedammt ‘dE-m@n 3 1
dampfen gedampft 'dEm-pf@n 3 1
diingen gediingt ‘'dY-N@n 1 1
ebnen geebnet ‘ep-n@n 2 1
ehren geehrt ‘e-r@n 15 1
eignen geeignet 'W-gn@n 39 1
einbiirgern eingebiirgert "'Wn-bYr-g@rn 1 1
eindecken eingedeckt "'Wn-dEN-k@n 4 1
einen geeint "W-n@n 2 1
einengen eingeengt "Wn-E-N@n 6 1
einfloflen eingeflof3t "Wn-fl—s@n 1 1
einigen geeinigt "W-nl-g@n 13 1
einkerkern eingekerkert "Wn-kEr-k@rn 5 1
einschrinken | eingeschrankt | "Wn-SrEN-k@n 20 1
einschiichtern | eingeschiichtert | "Wn-SY(-t@rn 3 1
einwurzeln eingewurzelt "'Wn-vUr-ts@In 2 i
eindschern eingedschert "Wn-E-S@rn 1 1
enden geendet "En-d@n 1 1
erben geerbt "Er-b@n + 1
erden geerdet ‘er-d@n 2 1
ernten geerntet ’Ern-t@n 6 1
fahnden gefahndet ‘fan-d@n 2 1
falten gefaltet "f&1-t@n 2 1
fassen gefaldt "f&-s@n 93 1
fegen gefegt 'fe-g@n 1 1
fehlen gefehlt 'fe-l@n 14 1
feiern gefeiert "fW-@rn 22 1
feilen gefeilt "fW-1@n 1 1
fertigen gefertigt "fEr-tI-g@n 32 1
fesseln gefesselt 'fE-s@In 10 i
festigen gefestigt 'fEs-tl-g@n 9 1
feuern gefeuert 'fX-@rn 7 1
filmen gefilmt "fIl-m@n 2 1
filtern gefiltert "fll-t@rn 1 1
flaggen geflaggt "fl&-g@n 2 1
flicken geflickt "flI-k@n 2 1
fliichten gefliichtet "flY(-t@n 12 1
fliisstern gefliistert "flYs-t@rn 3 1
folgen gefolgt 'fOl-g@n 28 1
foltern gefoltert "fOl-t@rn 2 1
fordern gefordert "fOr-d@rn 145 1
formen geformt "fOr-m@n 8 1
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E. Corpus for the German Aphasia Simulations

Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
forschen geforscht "fOr-5@n 2 1
fragen gefragt 'fra-g@n 68 1
freuen gefreut "frX-@n 6 1
frithstiicken gefriihstiickt "fry-stY-k@n 2 1
funken gefunkt "fUN-k@n 2 1
fallen gefallt "fE-1@n 15 1
falschen gefdlscht 'fEl-S@n 3 1
farben gefarbt "fEr-b@n 5 1
fordern gefordert "f/r-d@rn 25 1
fligen gefligt "fy-g@n 27 1
fiihlen gefiihlt "fy-1@n g 1
fiihren gefiihrt 'fy-r@n 463 1
fiillen gefiillt ‘fY-l@n 21 1
fiirchten gefiirchtet "fYr(-t@n 6 1
flttern gefiittert "fY-t@rn 2 1
glauben geglaubt 'glB-b@n 26 1
gliedern gegliedert ‘gli-d@rn 14 1
gliicken gegliickt ‘glY-k@n 9 1
glithen gegliiht ‘gly-@n 1) 1
griinden gegriindet ‘grYn-d@n 38 1
griifien gegriifst ‘gry-s@n 3 1
gucken geguckt ‘gU-k@n 2 1
haben gehabt 'ha-b@n 166 1
hacken gehackt 'h&-k@n 1 1
handeln gehandelt 'h&n-d@In 44 1
hassen gehasst 'h&-s@n 1 1
heften geheftet "hEf-t@n 1 1
hegen gehegt 'he-g@n 1 1
heilen geheilt "hW-l@n H 1
heiraten geheiratet '"hW-ra-t@n 24 1
heizen geheizt "hW-ts@n 5 1
hemmen gehemmt 'hE-m@n 7 1
herrschen geherrscht "hEr-S@n 2 1
hetzen gehetzt 'hE-ts@n 6 1
hindern gehindert "hIn-d@rn 19 1
hissen gehisst "hI-s@n )} 1
hoffen gehofft 'hO-f@n 7 1
holen geholt ‘ho-1@n 49 1
horchen gehorcht 'hOr-(@n 3 1
hungern gehungert 'hU-N@rn 1 1
hdmmern gehammert 'hE-m@rn 2 1
hédngen gehangt 'hE-N@n 19 1
hérten gehartet 'hEr-t@n 3 1
haufen gehauft 'hX-f@n 3 1
horen gehort 'h—r@n 174 1
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Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
hiillen gehtillt ‘hY-l@n Z 1
hiiten gehiitet "hy-t@n 4 1
impfen geimpft Im-pf@n 3 1
irren geirrt 'T-r@n /4 1
jagen gejagt ‘ja-g@n 8 1
kaufen gekauft 'kB-f@n 32 1
kehren gekehrt "ke-r@n 59 1
ketten gekettet 'kE-t@n 1 i
kippen gekippt ‘kI-p@n 2 1
klagen geklagt ‘kla-g@n 15 i]
klammern geklammert 'kl&-m@rn 7 1
klappen geklappt 'kl&-p@n 9 1
klatschen geklatscht 'kl&-tS@n 3 1
klauen geklaut ‘kIB-@n 2 1
kleben geklebt ‘kle-b@n 1 1
kleiden gekleidet '’kIW-d@n 9 |
klemmen geklemmt 'kIE-m@n 5 1
klettern geklettert 'kIE-t@rn 3 1
klingeln geklingelt 'kII-N@In 2 1
klopfen geklopft 'klO-pf@n 2 1
klaren geklart ‘kl)-r@n 32 i
knallen geknallt '’kn&-1@n 1 1
kneten geknetet "kne-t@n 2 1
knicken geknickt "knl-k@n 4 1
knipsen geknipst "knlp-s@n 1 1
kniipfen gekniipft "knY-pf@n 9 1
kochen gekocht "kO-x@n 8 1
koppeln gekoppelt "kO-p@In 6 1
kosten gekostet "kOs-t@n 19 1
kreuzen gekreuzt "krX-ts@n 1 1
kriegen gekriegt "kri-g@n 6 1
kranken gekrankt 'krEN-k@n 4 1
krénen gekront ’kr—n@n 6 1
kriimmen gekriimmt ’krY-m@n 4 1
kdmmen gekammt ’kE-m@n 3 1
kdampfen gekampft 'kEm-pf@n 16 1
kiihlen gekiihlt ‘ky-l@n 1 1
kiimmern gekiimmert ’kY-m@rn 6 1
kiindigen gekiindigt ‘’kYn-dI-g@n 52 1
kiirzen gekiirzt kYr-ts@n 15 1
kiissen gekiisst 'kY-s@n 4 1
lachen gelacht "1&-x@n 7 1
lagern gelagert "la-g@rn 10 1
landen gelandet '1&n-d@n 13 1
langen gelangt "1&-N@n 22 1
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E. Corpus for the German Aphasia Simulations

Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
lasten gelastet '1&s-t@n 14 1
lauern gelauert 'IB-@rn 1 1
launen gelaunt 'IB-n@n 2 1
leben gelebt ‘le-b@n 30 1
legen gelegt "le-g@n 301 i
lehnen gelehnt 'le-n@n 73 1
lehren gelehrt ‘le-r@n + 1
leisten geleistet 'IWs-t@n 42 1
leiten geleitet TW-t@n 71 1
lenken gelenkt 'IEN-k@n 21 1
lernen gelernt 'IEr-n@n 66 1
leuchten geleuchtet "IX(-t@n 1 1
leugnen geleugnet "IX-gn@n + 1
lieben geliebt 'li-b@n 10 1
liefern geliefert "li-f@rn 56 1
loben gelobt "lo-b@n 2 1
locken gelockt '10-k@n 2 1
lohnen gelohnt 'lo-n@n - 1
lacheln gelachelt '1IE-(@In 2 1
lahmen gelahmt 'I)-m@n 6 1
loschen geloscht ‘1/-5@n 4 1!
losen gelost 'l—z@n 137 1
liiften geliiftet 1Yf-t@n 2 1
machen gemacht 'mé&-x@n 440 1
magern gemagert ‘ma-g@rn 3 1
mahnen gemahnt ‘ma-n@n :: 1
malen gemalt ‘ma-1@n 13 1
mauern gemauert ‘'mB-@rn 3 1
meinen gemeint ‘mW-n@n 58 1|
meistern gemeistert ‘mWs-t@rn 2 1
melden gemeldet ‘mEl-d@n 58 1
merken gemerkt ‘mEr-k@n 20 i
mieten gemietet ‘mi-t@n 5 1
mildern gemildert ‘'mll-d@rn 3 1
mimen gemimt ‘mi-m@n 1 1
mindern gemindert ‘mIn-d@rn 4 1
mischen gemischt ‘'ml-5@n 3 1
morden gemordet ‘mOr-d@n 2 1
mustern gemustert ‘'mUs-t@rn 4 1
méhen gemaht ‘m)-@n 2 1
masten gemastet ‘'mEs-t@n 1 1
mafigen gemafigt ‘m)-sl-g@n 1 1
miinzen gemiinzt ‘mYn-ts@n 2 1
nachahmen nachgeahmt ‘nax-a-m@n 2 1
nageln genagelt 'na-g@In 2 1
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Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
neigen geneigt nMW-g@n 13 1
nutzen genutzt 'nU-ts@n 39 1
ndhen gendht n)-@n 5 1
ndhern gendhert n)-@rn 3 1
nahren gendhrt n)-r@n 7 1
nétigen genotigt 'n—tl-g@n 11 1
niitzen gentitzt nY-ts@n + 1
opfern geopfert 'O-pf@rn 7 1
ordnen geordnet ‘Or-dn@n 41 1
paaren gepaart ‘pa-r@n 3 1
pachten gepachtet "p&x-t@n 1 1
packen gepackt 'p&-k@n 17 1
parken geparkt ‘p&r-k@n 2 1
passen gepafdt "p&-s@n 23 1
peilen gepeilt ‘pW-l@n 2 1
peinigen gepeinigt ‘PW-nl-g@n 2 1
pellen gepellt ‘pE-l@n 1 1
pflanzen gepflanzt "pfl&n-ts@n 4 1
pflastern gepflastert "pfl&s-t@rn 1 1
pflegen gepflegt ‘pfle-g@n 18 1
pfliigen gepfligt "pfly-g@n 2 1
pilgern gepilgert ‘pll-g@rn 1 1
plagen geplagt ‘pla-g@n 3 1
planen geplant ‘pla-n@n 57 1
platzen geplatzt pl&-ts@n 4 .
plaudern geplaudert ‘pIB-d@rn 1 1
pliindern gepliindert ‘pIYn-d@rn 2 1
polstern gepolstert 'pOl-st@rn 1 1
prallen geprallt ‘pr&-1@n 2 1
predigen gepredigt ‘pre-dI-g@n 2 1
prellen geprellt ‘prE-1@n 2 1
pressen geprefit ‘prE-s@n 10 1
proben geprobt ‘pro-b@n 1 1
pragen gepragt ‘pr)-g@n 20 1
priifen gepriift ‘pry-f@n oF 1
pumpen gepumpt ‘PUm-p@n 3 1
putzen geputzt ‘pU-ts@n 1 1
quiélen gequalt 'kv)-1@n 6 1
raffen gerafft 1&-f@n 1 1
rahmen gerahmt ‘ra-m@n 3 1
rammen gerammt 'r&-m@n 3 |
rasen gerast ‘ra-z@n 2 1
rauben geraubt 'rB-b@n 8 1
rauchen geraucht ‘rB-x@n 2 1
rechen gerecht tE-(@n 24 1
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E. Corpus for the German Aphasia Simulations

Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
rechnen gerechnet TE(-n@n 89 1
reden geredet 're-d@n 21 1
regeln geregelt 're-g@In 12 i
regen geregt 're-g@n 21 1
reichen gereicht TW-(@n 25 1
reifen gereift rTW-f@n 6 1
reihen gereiht TW-@n 6 1
reinigen gereinigt TW-nl-g@n 4 1
reisen gereist TW-z@n 21 I}
reizen gereizt TW-ts@n 13 1
retten gerettet 'TE-t@n 30 1
richten gerichtet rI(-t@n 151 1
roden gerodet 'ro-d@n 1 1
rollen gerollt 10-1@n 7 1
ruhen geruht Tu-@n 4 1
runden gerundet 'rTUn-d@n 2 1
rutschen gerutscht rU-tS@n 3 1
ritseln geratselt 'r)-ts@In 1 1
raumen geraumt IX-m@n 40 1
roten gerotet T—t@n 1 1
riicken gertickt TY-k@n 20 1
rithmen gerithmt ry-m@n 4 1
rithren gertihrt ry-r@n 8 1
riisten gerlistet TYs-t@n 29 1
riitteln gertittelt TY-t@In 3 1
sacken gesackt 'z&-k@n 2 1
sagen gesagt 'za-g@n 440 1
sammeln gesammelt 'z&-m@In 23 1
schaden geschadet ‘Sa-d@n 3 1
schalten geschaltet 'S&I-t@n 27 1
scharen geschart ‘Sa-r@n 3 1
schauen geschaut ‘SB-@n 2 1
schaufeln geschaufelt 'SB-f@In 2 1
scheitern gescheitert 'SW-t@rn 26 1
schellen geschellt ‘SE-1@n 1 1
schenken geschenkt 'SEN-k@n 27 1
scheuen gescheut 'SX-@n 6 1
schicken geschickt 'SI-k@n 39 1
schildern geschildert ‘SIl-d@rn 16 1
schimpfen geschimpft 'SIm-pf@n 3 1
schlachten geschlachtet 'Sl&x-t@n 6 1
schleppen geschleppt ‘SIE-p@n 6 1
schleudern geschleudert 'SIX-d@rn 9 1
schleusen geschleust 'SIX-z@n - 1
schlucken geschluckt 'SIU-k@n 3 1
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Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
schmecken geschmeckt ‘SmE-k@n 2 1
schmeicheln geschmeichelt | ‘SmW-(@In 3 1
schmieden geschmiedet ‘Smi-d@n 5 1
schmieren geschmiert ‘Smi-r@n 2 1
schminken geschminkt 'SmIN-k@n 3 1
schmuggeln geschmuggelt | 'SmU-g@In 4 1
schmalern geschmalert ‘Sm)-1@rn 1 1
schmiicken geschmiickt ‘SmY-k@n 6 1
schnallen geschnallt 'Sn&-l@n 4 1
schnappen geschnappt ‘Sné&-p@n 2 1
schnitzen geschnitzt 'Snl-ts@n 5 1
schniiren geschniirt ‘Sny-r@n 3 1
schonen geschont ‘So-n@n 3 1
schrauben geschraubt ‘SrB-b@n 3 1
schrecken geschreckt 'SrE-k@n 2 1
schrumpfen geschrumpft ‘SrUm-pf@n 5 1
schulen geschult ‘Su-l@n 4 1
schwanken geschwankt 'Sv&N-k@n 2 1
schwemmen geschwemmt ‘SVE-m@n 1 1
schwenken geschwenkt 'SvEN-k@n 3 1
schwitzen geschwitzt 'Svl-ts@n 2 1
schwiachen geschwacht 'Sv)-(@n 7 1
schadigen geschddigt ’S)-dI-g@n 5 1
schamen geschamt 'S)-m@n 1 1
schanden geschdndet ‘SEn-d@n 2 1
scharfen gescharft ‘SEr-f@n 3 1
schdtzen geschatzt 'SE-ts@n 32 1
schopfen geschopft 'S/-pf@n 8 1
schiiren geschiirt ‘Sy-r@n 2 1
schiitteln geschiittelt 'SY-t@In 1 1
schiitten geschiittet ‘SY-t@n 3 1
schiitzen geschiitzt 'SY-ts@n 30 1
segnen gesegnet 'ze-gn@n 3 1
sehnen gesehnt ‘ze-n@n 2 1
senken gesenkt 'ZEN-k@n 18 1
setzen gesetzt 'zE-ts@n 335 1
sichern gesichert ‘zI-{(@rn 70 1
sichten gesichtet "ZI(-t@n 1 1
siedeln gesiedelt 'zi-d@In 5 1
siegen gesiegt 'zi-g@n 8 1
sondern gesondert ’zZOn-d@rn 4 1
sorgen gesorgt 'z0r-g@n 18 1
spannen gespannt 'Sp&-n@n 32 1
sparen gespart ‘Spa-r@n 21 1
speichern gespeichert 'SpW-(@rn 1 ]
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E. Corpus for the German Aphasia Simulations

Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
speisen gespeist ‘SpW-z@n 4 |
spenden gespendet ‘SpEn-d@n 6 1
sperren gesperrt ‘SpE-r@n 25 1
spicken gespickt 'Spl-k@n 2 1
spiegeln gespiegelt 'Spi-g@In 2 1
spielen gespielt 'Spi-l@n 88 1
sprengen gesprengt 'SprE-N@n 5 1
spritzen gespritzt 'Sprl-ts@n 3 1
spucken gespuckt 'SpU-k@n 2 :
spliren gesptrt 'Spy-1@n 9 1
staffeln gestaffelt 'Sté&-f@In 3 i
stapeln gestapelt 'Sta-p@In 3 1
starten gestartet 'St&r-t@n 20 1
stauen gestaut ‘StB-@n 1 1
stecken gesteckt "StE-k@n 25 1
steigern gesteigert 'StW-g@rn 22 1
stellen gestellt 'StE-1@n 667 1
stemmen gestemmt 'StE-m@n 1 1
stempeln gestempelt 'StEm-p@In + 1
steuern gesteuert 'StX-@rn 11 1
stiften gestiftet 'StIf-t@n 4 1
stillen gestillt 'Stl-1@n 3 1
stimmen gestimmt 'StI-m@n 49 1
stolpern gestolpert 'StOl-p@rn 1 1
stopfen gestopft 'StO-pf@n 5 1
stoppen gestoppt 'StO-p@n 8 1
strafen gestraft ‘Stra-f@n 1 1
straffen gestrafft 'Str&-f@n 1 1
strahlen gestrahlt ‘Stra-1@n 8 1
streben gestrebt ‘Stre-b@n 10 1
strecken gestreckt ‘StrE-k@n 9 1
streifen gestreift 'StrW-f@n 1 1
streiken gestreikt 'StrW-k@n 5 1
streuen gestreut ‘StrX-@n 5 1
strauben gestraubt ‘StrX-b@n Z 1
stromen gestromt 'Str—m@n 1 1
stufen gestuft 'Stu-f@n 4 1
stutzen gestutzt 'StU-ts@n 1 1
starken gestarkt 'StEr-k@n 9 1
storen gestort 'St—r@n 20 1
stiilpen gestiilpt 'StYl-p@n 1 1
stiirmen gestiirmt ‘StYr-m@n 1 1
stiirzen gestiirzt ‘StYr-ts@n 34 1
stiitzen gestiitzt 'StY-ts@n 21 1
suchen gesucht 'Zu-x@n 155 1
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Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
sden gesat 'z)-@n 4 1
sagen gesagt 'z)-g@n 1 1
saubern gesdubert 'zX-b@rn 2 i
saumen gesaumt zZX-m@n 1 1
sithnen gesiihnt ‘Zy-n@n 3 1
stindigen gestindigt 'zYn-dI-g@n 1 1
tadeln getadelt 'ta-d@In 1 1
tanken getankt "t&N-k@n 1 1
tanzen getanzt "t&n-ts@n 4 1
tarnen getarnt "t&r-n@n 2 1
tauchen getaucht "tB-x@n 12 1
taufen getauft "tB-f@n 4 1
tauschen getauscht "tB-S@n 22 1
teilen geteilt tW-l@n 102 1
testen getestet tEs-t@n 4 1
tilgen getilgt "tIl-g@n 8 1
tippen getippt ‘tl-p@n 1 1
trauen getraut ‘trB-@n 6 1
trennen getrennt ‘trE-n@n 39 1
trocknen getrocknet "trOk-n@n 6 1
trommeln getrommelt ‘trO-m@In 3 1
traumen getraumt ‘trX-m@n 6 1
trosten getrostet "tr—s-t@n 1 1
tritben getriibt "try-b@n 1 1
tatigen getatigt 't)-tl-g@n 5 1
tauschen getduscht tX-5@n 12 1
téten getotet ‘t—t@n 46 1
tlirmen getiirmt ‘tYr-m@n 2 1
wachen gewacht 'v&-x@n 3 1
wagen gewagt 'va-g@n 16 1
wahren gewahrt 'va-r@n 5 1
wandeln gewandelt 'v&n-d@In 20 1
wandern gewandert 'v&n-d@rn 7 1
wappnen gewappnet 'v&p-n@n 2 1
warnen gewarnt 'v&r-n@ 15 1
warten gewartet 'v&r-t@ 18 1
wechseln gewechselt 'VEk-s@In 15 1
wecken geweckt 'VE-k@n 14 1
wehren gewehrt 've-r@n 5 1
weigern geweigert 'vW-g@rn 8 1
weihen geweiht 'vW-@n 20 1
weilen geweilt 'vW-1@n 7 1
weinen geweint 'vW-n@n 8 1
weiten geweitet 'vW-t@n 5 1
werten gewertet 'ver-t@n 33 1
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E. Corpus for the German Aphasia Simulations

Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
wetten gewettet 'vE-t@n 1 1
widmen gewidmet 'vIt-m@n 33 1
winken gewinkt 'vIN-k@n 2 1
wirbeln gewirbelt 'vIr-b@In 1 1
wirken gewirkt 'vIr-k@n 23 1
wirtschaften gewirtschaftet | "vIrt-S&f-t@n 1 1
wischen gewischt 'vI-S@n 3 1
wohnen gewohnt 'vo-n@n 17 1
wollen gewollt 'vO-l@n 15 1
wundern gewundert 'vUn-d@rn 3 1
wahlen gewdahlt 'v)-l@én 107 1
wahren gewahrt 'v)-r@n 23 1
wilzen gewalzt 'vEl-ts@n 6 1
warmen gewarmt 'VEr-m@n 3 1
wiinschen gewtinscht 'v¥Yn-S@n 27 1
wiirdigen gewtirdigt vYr-dI-g@n 14 1
wiirgen gewilirgt vYr-g@n 2 1
wirzen gewiirzt "vYr-ts@n 1 1
zahlen gezahlt "tsa-l1@n 51 1
zaubern gezaubert "tsB-b@rn 3 1
zehren gezehrt "tse-r@n 1 :
zeichnen gezeichnet ‘tsW(-n@n i 1
zeigen gezeigt ‘tsW-g@n 135 1
zerren gezerrt "tsE-r@n 2 1
zeugen gezeugt "tsX-g@n 4 1
zielen gezielt "tsi-l@n 4 1
zieren geziert "tsi-r@n 4 1
zollen gezollt 'tsO-1@n 1 1
zumuten zugemutet ‘tsu-mu-t@n 4 1
zuspitzen zugespitzt "tsu-Spl-ts@n 4 1
zweifeln gezweifelt "tsvW-f@In <! 1
zahlen gezahlt 'ts)-1@n 20 1
zogern gezogert "ts—g@rn 3 1
zlichten gezlichtet 'tsY(-t@n 1 1
zligeln geziigelt "tsy-g@In 2 1
ziinden gezlindet ‘tsYn-d@n b 1
andern geandert ‘En-d@rn 60 1
argern gedrgert ‘Er-g@rn Z 1
auflern geduflert "X-s@rn 33 1
offnen geoffnet ’/f-n@n 41 1
tiben getlibt 'y-b@n 29 1
blasen geblasen ‘bla-z@n 8 2
braten gebraten ‘bra-t@n 1 2
essen gegessen "E-s@n 14 2
fahren gefahren 'fa-r@n 85 2
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Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
fallen gefallen "f&-1@n 93 2
fangen gefangen 'f&-N@n 51 2
fressen gefressen "frE-s@n 9 2
geben gegeben ‘ge-b@n 494 2
graben gegraben ‘gra-b@n 8 2
halten gehalten 'h&l-t@n 216 2
hauen gehauen 'hB-@n 2 2
heifien geheiflen "hW-s@n 7 2
kommen gekommen 'kO-m@n 348 2
laden geladen "la-d@n 80 2
lassen gelassen "1&-s@n 96 2
laufen gelaufen "IB-f@n 47 2
lesen gelesen "le-z@n 52 2
messen gemessen ‘mE-s@n 40 2
raten geraten ‘ra-t@n 38 2
rufen gerufen "ru-f@n 99 2
schaffen geschaffen 'S&-f@n 120 2
schlafen geschlafen ‘Sla-f@n 15 2
schlagen geschlagen ‘Sla-g@n 164 2
sehen gesehen 'ze-@n 393 2
spalten gespalten 'Sp&l-t@n 9 2
stoflen gestofien 'Sto-s@n 45 2
tragen getragen tra-g@n 159 2
treten getreten ‘tre-t@n 128 2
wachsen gewachsen 'v&k-s@ 65 2
waschen gewaschen 'v&-S@n 9 2
befehlen befohlen b@-’fe-l1@n 11 3
bergen geborgen 'bEr-g@n 19 3
bersten geborsten 'bEr-st@n 1 3
brechen gebrochen 'brE-(@n 93 3
dreschen gedroschen ‘'drE-S@n 1 3
empfehlen empfohlen Em-"pfe-1@n 30 3
fechten gefochten "fE(-t@n 3 3
flechten geflochten "fIE(-t@n 2 3
gelten gegolten ‘gEl-t@n 4 3
heben gehoben 'he-b@n 90 3
helfen geholfen "hEl-f@n 35 3
melken gemolken ‘'mEl-k@n 1 3
nehmen genommen ‘ne-m@n 703 3
schelten gescholten 'SEl-t@n 1 3
scheren geschoren ‘Se-r@n 1 3
schmelzen geschmolzen ‘SmEl-ts@n 2 3
schwellen geschwollen 'SvE-l@n 1 3
sprechen gesprochen ‘SprE-(@n 286 3
stechen gestochen 'StE-(@n 8 3
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E. Corpus for the German Aphasia Simulations

Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
stehlen gestohlen ‘Ste-1@n 21 3
sterben gestorben 'StEr-b@n 75 3
treffen getroffen "trE-f@n 135 3
verderben verdorben fEr-"dEr-b@n 4 3
werben geworben 'vEr-b@n 29 3
werden geworden 'ver-d@n 1546 3
werfen geworfen 'vEr-f@n 100 3
beifien gebissen 'bW-s@n 6 4
bleiben geblieben 'bIW-b@n 123 4
gleichen geglichen 'gIW-(@n 9 4
greifen gegriffen 'grW-f@n 33 4
leiden gelitten "TW-d@n 8 4
leihen geliehen "TW-@n 5 4
meiden gemieden ‘mW-d@n 1 4
pfeifen gepfiffen ‘pfW-f@n 4 4
preisen gepriesen ‘prW-z@n 3 +
reiben gerieben 'TW-b@n 3 4
reiten geritten 'TW-t@n 3 4
reifien gerissen 'TW-s@n 36 4
scheiden geschieden 'SW-d@n 29 4
schleichen geschlichen 'SIW-(@n 1 4
schleifen geschliffen 'SIW-f@n 3 4
schmeifien geschmissen 'SmW-s@n 3 4
schneiden geschnitten 'SnW-d@n 32 4
schreiben geschrieben 'SrW-b@n 139 4
schreien geschrien 'SrW-@n 5 4
schreiten geschritten ‘SrW-t@n 6 4
schweigen geschwiegen 'SvW-g@n 2 +
steigen gestiegen 'StW-g@n 80 4
streichen gestrichen 'StrW-(@n 16 4
streiten gestritten 'StrW-t@n 3 4
treiben getrieben "‘trW-b@n 22 4
weichen gewichen "vW-(@n 10 4
weisen gewiesen "'VW-z@n 151 4
schworen geschworen 'Sv—r@n 4 5
binden gebunden ‘bIn-d@n 173 6
dringen gedrungen 'drI-N@n 23 6
empfinden empfunden Em-"pfIn-d@n 26 6
finden gefunden 'fiIn-d@n 290 6
gelingen gelungen g@-"1I-N@n 62 6
klingen geklungen 'klI-N@n 6 6
mifllingen mifllungen mls-"II-N@n 3 6
ringen gerungen 'rTl-N@n 24 6
schlingen geschlungen 'SII-N@n 9 6
schwinden geschwunden | ‘Svin-d@n 38 6
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Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
schwingen geschwungen | ‘SvI-N@n 2 6
singen gesungen 'zI-N@n 9 6
sinken gesunken 'zIN-k@n 23 6
springen gesprungen ‘SprI-N@n 15 6
trinken getrunken ‘trIN-k@n 31 6
winden gewunden 'vIn-d@n 38 6
zwingen gezwungen “tsvI-N@n 84 6
wissen gewufst 'vl-s@n 37 7
gehen gegangen ‘ge-@n 324 8
brennen gebrannt ‘brE-n@n 19 9
kennen gekannt '’kE-n@n 232 9
nennen genannt 'nE-n@n 155 9
rennen gerannt TE-n@n 5 9
senden gesandt 'zZEn-d@n 22 9
wenden gewandt 'vEn-d@n 40 9
beginnen begonnen b@-'gl-n@n 109 10
biegen gebogen ‘bi-g@n 4 10
bieten geboten 'bi-t@n 86 10
entrinnen entronnen Ent-"rI-n@n 1 10
fliegen geflogen "fli-g@n 24 10
fliehen geflohen "fli-@n 4 10
flieen geflossen 'fli-s@n 8 10
frieren gefroren 'fri-r@n + 10
gewinnen gewonnen g@-'vl-n@n 94 10
gieflen gegossen 'gi-s@n 3 10
riechen gerochen 'ri-(@n 1 10
schieben geschoben ‘Si-b@n 22 10
schiefien geschossen 'Si-s@n 37 10
schlieffen geschlossen "Sli-s@n 206 10
schwimmen geschwommen | ‘SvI-m@n 7 10
sinnen gesonnen ‘zI-n@n 6 10
spinnen gesponnen ‘SpI-n@n 2 10
wiegen gewogen 'vi-g@n 2 10
stehen gestanden ‘Ste-@n 40 1
denken gedacht "dEN-k@n 126 12
bringen gebracht ‘brI-N@n 351 13
sein gewesen 'ZWn 500 14
gebdren geboren g@-'b)-r@n 36 15
gdren gegoren ‘g)-r@n I 15
wagen gewogen 'v)-g@n 2 15
bitten gebeten ‘bI-t@n 108 16
liegen gelegen ‘li-g@n 40 16
sitzen gesessen ‘zI-ts@n 24 16
konnen gekonnt 'k/-n@n 3 17
mogen gemocht ‘m—g@n 3 17




E. Corpus for the German Aphasia Simulations

Stem Participle Stem Freq. | Infl. Class
Phon. Trans.
ziehen gezogen "tsi-@n 157 18
liigen gelogen ‘ly-g@n 6 19
triigen getrogen "try-g@n d 19
tun getan ‘tun 158 20
diirfen gedurft ‘dYr-f@n 2 21
saufen gesoffen 'zB-f@n 1 22
saugen gesogen 'zB-g@n 2 22




Appendix F

Classification of German Participles

Regular verbs

| 1 regular sagen —  gesagt
Mixed verbs
2 Eo A+t kennen —  gekannt
3 60+t mogen — gemocht
4 wissen — gewuflt
5 denken — gedacht
6 bringen — gebracht
7 dtirfen — gedurft
Irregular verbs
8 no-change lesen —  gelesen
9 E—Olo werden — geworden
befehlen = — befohlen
10 ai—1ji greifen —  gegriffen
schreiben — geschrieben
11 I-U binden — gebunden
12 iI—Olo schliessen — geschlossen
fliegen — geflogen
beginnen — begonnen
13 au—Olo saufen —  gesoffen
saugen —  gesogen
14 id—o liigen — gelogen
15 d—o gebiren  — geboren
16 gehen — gegangen
17 stehen — gestanden
18 sein — gewesen
19 sitzen — gesessen
20 bitten — gebeten
21 ziehen — gezogen
22  tun — getan

The 22 German participle classes. Note that some classes have only one member; for
these classes only the verb is given. Length of the stem-vowel was not distinguished
in this classification.
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Appendix G

Phoneme Transcription for the
German Aphasia Simulations

[ Consonants \
b 1101001 binden
d 1111001 denken
f 1101100 freuen
g 1000001 gucken
h 0001100 helfen
j 1001101 jagen
k 1000000 kleben
1 0111101 lachen
m 0101011 machen
n 0111011 nicken
o 1101000 priifen
T 0000101 rasen
S 1111100 sagen
t 1111000 trauen
v 1101101 wachsen
z 1111101 l6sen
N 0000011 fangen
S 1011100 forschen
( 1001100 fechten
X 1000100 kochen
_ 0000000 -
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G. Phoneme Transcription for the German Aphasia Simulations

Vowels
& 0101000 fallen
a 0101001 sagen
) 0101101 schdmen
/ 0100110 konnen
— 0100111 horen
@ 0100000 sagen
B 0000010 glauben
E 0100100 essen
I 0110100 filmen
O 0100010 formen
U 0110010 gucken
w 0000100 feiern
X 0000110 feuern
b 4 0110110 gliicken
e 0100101 gehen
i 0110101 frieren
o 0100011 holen
u 0110011 rufen
y 0110111 fithren




List of Acronyms

AC............ Acrobatic Condition Page 43

ACH : cavasugs acetylcholine Page 20

AMPA......... a-amino 3 hydro 5 methyl 4 isoxazole propionic acid Page 12
BDNE....suc Brain-Derived Neurotrophic Factor Page 31
CNN.......... Constructivist Neural Network Page 85
CNS.......... central nervous system Page 16

DM csswusies Dual Mechanism Theory Page 104

3 2 Qe Environmental Complexity Condition Page 42
. R Forced Exercise Condition Page 43

GABA «.ovvnes v-aminobutyric acid Page 13
HO............ Hidden-Output Page 120

YC i in s ian i Individual Cage Condition Page 42

P amiasescsiss Inactive Condition Page 43

o venmmmnnias Input-Output Page 120

ISE ovmemamicamn individual specific environment Page 39
11 [ lateral geniculate nucleus Page 25

| 1 1 o long term potentiation Page 31

NEN e non-constructivist network Page 122
NGEwvucsmsn Nerve Growth Factor Page 31
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11 § — neuromuscular junction Page 20

o 1 Neurotrophin-3  Page 31

NT-4/5....... Neurotrophin-4/Neurotrophin-5 Page 31
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] b/ G, ocular dominance columns Page 26

o SR Probably Approximately Correct Page 75
o —— preference bias Page 71

1 L peripheral nervous system Page 31

23 7 ) - L —— restricted hypothesis space bias Page 70
SC.vininn.n. Social Cage Condition  Page 42

Sl s o aninras Specific Language Impairment Page 135
STE coovauavves species typical environment Page 39
ERE oo inviavas tyrosine-kinase Page 13

TEX s tetrodotoxin Page 27

V& vumwaaomein Voluntary Exercise Condition Page 43
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