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Abs t rac t .  Theorem proving is the systematic derivation of a mathcm- 
aticM proof from a set of axioms by the use of rules of inference. We ~re 
interested in a related but far less explored problem: the analysis and 
correction of false conjectures, especiMly where that correction involves 
finding a collection of antecedents that, together with a set of axioms, 
transform non-theorems into theorems. Most failed search trees are huge, 
and special care is to be taken in order to tackle the combinatorial ex- 
plosion phenoraenom Fortunately, the planning search space generated 
by proof plans, see [1], are moderately small. We have explored the pos- 
sibility of using this technique in the implementation of an abduction 
mechanism to correct non-theorems. 

1 Introduct ion 

The problem of building an artificial mathematician to find a mathematical 
proof has been a topic of ranch interest in Artificial Intelligence. We are inter- 
ested in a related but far less explored problem: the anMysis and correction of 
false conjectures, especially where that  correction involves finding a collection 
of antecedents that,  together with a set of axioms, transform non-theorems into 
theorems. More formally, and following [5]: 

Given a set of axioms A and a false conjecture G, i.e. A -~ G does not hold, 
our aim is to identify C such that: 

1 . . 4  A C --* G is a theorem, i.e. the addition of C turns tile non-theorem into 
a theorem; 

2. ,4 A C is satisfiable, i.e. C is con.sistent with the set of axioms; 
3. C --+ G does not hold, i.e. C is nontrivial; and 
4. C is minimal in that  it does not contain any redundant litcrals. 

* We are grateful to Jane Hesketh and tile anonymous referees for their useful com- 
ments on an earlier draft of this paper. The research reported here was supported by 
SERC grant GR/H/23610 to the second and third author~ and ITESM & CONACyT 
studentship 64745 to the first author. 



55 

By way of motivation, consider the following non-theorem ~ 

VN:  nat. double(half(N)) -- N (1) 

where the functions double and half have their natural interpretation returning 
twice and half their inputs, respectively. Clearly, a condition like N < 0 does not 
meet our requirements because it is inconsistent with sor t / type  information. In 
addition, the formula 

VAT: nat. (double(half(N)) = N) --~ (double(hMf(N)) = N) 

is not a useful solution since the condition is trivial. The abduction mechanism 
we present in this paper is capable of finding the condition even(N), which is 
clearly consistent, nontrivial, and minimal. Note that  a condition of the form 
even(N) A N 7 ~ s(0) would not be minimal because the second conjunct follows 
from the definition of the predicate even. 

2 P r o o f  P l a n s  

Reasoning and searching are necessary for the solution to the problem of cor- 
recting a false conjecture. Abduction seems to be a candidate mechanism for the 
former. Abduction, as proposed by C.S. Peirce [13], is a flmdamental form of lo- 
gical inference that  allows us to find hypotheses that  account for some observed 
facts. Its simplest form is: 

F r o m  A --* B,  an d  B 
I n f e r  A as a poss ib le  j u s t i f i c a t i o n  of  B 

Most of the mechanisms for driving the generation of abductive hypotheses are 
based on resoht ion (see [12] or [11] for a survey on abduction mechanisms). 
However, most failed proof search spaces are huge and these mechanisms are 
severely affected by the combinatorial explosion phenomenon, see [16]. 

Fortunately, the planning search spaces generated by proof plans are moder- 
ately small, see [1]. This technique guides the search for a proof in the context of 
tactical style reasoning [8]. Tactic specifications called methods express the pre- 
conditions under which a tactic is applicable and the effects of applying such a 
tactic. The proof plan technique has been implemented in a system called CkAM 
[3] and successfully applied to the domain of inductive proofs [2]. In this paper, 
wc show how to implement an abduction mechanism using plans for inductive 
proofs. The mechanism relies on the meta-level reasoning used for forming a 
proof plan, since it provides a basis for analysing failed proof attempts.  

2 Following the Prolog convention, we denote variables with symbols that start with 
an upper-case letter. 



56 

2.1 Rippling 

The key idea behind inductive proofs is the use of induction hypotheses in com- 
pleting step-case proof obligations. The search control heuristic called rippling 
[4] was designed for this task. It works by applying a special syntactic class of 
rewrite rules called wave-rules. The simplest form of such a wave-rule gives rise 
to the following schema: 

F ( ~ T / : *  i r(r(vll iT (2) 

where F,  S, and T are functors. Note that  T may be empty while S and F may 

not. F and are called wave-function and wave-term, respectively. Wave- 

terms are composed of a wave-front and one or more. wave-holes. Wave-holes 
are the underlined sub-terms of wave-terms. Sub-expressions of the induction 
conclusion that  Mso appear in the hypothesis are either underlined or not en- 
closed by boxes. For our current wave-rule example, F and U would match such 
sub-expressions. Note how the application of (2) has the effect of moving the 
S through the F.  Also, note that  the arrow indicates the direction in which 
wave-fronts are moved within the term structure. 

By marking these wave-terms and tracking their movements, we can ensure 
that  our rewriting makes progress towards the desired effect: the removal of the 
obstructive wave-fronts so that  fertilization can be applied. Fertilization, accord- 
ing to Boyer and Moore, is the process of applying an induction hypothesis. 

2.2 P r o o f  Cr i t i c s  

Experience has shown that  a failed proof a t tempt  may hold the key for discov- 
ering a complete proof. In [9], the author proposes the use of planning critics 
as a mechanism to provide the means of exploiting failure and partial success 
in the search for a proof. Planning critics are aimed at capturing our intuition 
as to how a partial proof can be complet, ed. For this reason, proof critics are 
associated with proof methods. Any time the application of a particular proof 
method fails, a collection (possibly empty) of planning critics is invoked. Their 
application often results in a modification of either the current plan structure, 
the given cor@cture, or the theory in which we are working. 

3 C o r r e c t i n g  F a u l t y  C o n j e c t u r e s  

Our abduction mechanism to correct faulty theorems is built upon CLAM. It 
consists of a collection of proof critics that  define heuristics to detect, isolate, 
and correct some kinds of faults. Generally speaking, the mechanism works as 
follows. Let us assume we are given a conjecture, say G. We first let C~M 
at tempt  to find an inductive proof plan for G. If the conjecture is faulty, this 
process will fail and terminate pointing at an unprovable sub-goal that  arose 
from one case of the inductive proof. According to the point at which failure 
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occurred (c.f. proof methods), a particular collection of critics is then invoked to 
perform a syntactic analysis on the tmprovabte sub-goat. From such an analysis, 
we build the condition that  is to be added to the current conjecture. Often, these 
unprovable sub-goals represent contradictions to either the current set of axioms 
or sor t / type information. 

False conjectures that  exhibit faults in boundary values were successfully 
corrected using the information provided by the base case proof obligation. We 
worked by refinement when a suggested condition from a previous patching at- 
tempt turned out to be necessary but not sufficient. We also corrected false 
conjectures in which the fault exhibited arguments in wrong positions within 
the conjecture structure; this sort of fault can be found in at tempts at proving 
commutativity of operators that  are not Abelian. In the following sections, we 
introduce the definition of some proof critics of the abduction mechanism by 
example. 

3.1 Exploiting Contradictory Blocked Goals 

Consider the non-theorem: 

VA, B :  list(DataType), length(A < >  B) > length(A) (3) 

The recursive definitions of <> ,  >, and length give rise to the rewrite rules3: 

nil <>  U ~ U 

X > O ~ X - r  

0 > X ~ false 

iength(nil) ~ 0 

We at tempt  to prove (3) using the primitive induction on lists selecting A as 
the induction variable 4. The base ease (A - nil) leads to the following sub-goal 

VB: list(DataType), length(B) ~ 0 (7) 

With (7), a nested induction is suggested, vn :: B. This time the base case 
(B = nil) gives rise to a contradictory blocked goal: 

length(nil) ~ O 

0 4 0  

3 The operators ::, <>, and s 0 represent the infix list constructor function, the lists 
concatenation function, and the successor constructor function, respectively. 

4 This will be abbreviated as IndScheme[IndVar]; where IndVar is the induction 
variable, and IndScherne is the suggested induction rule of inference. 
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Definit ion 1 Con t rad ic to ry  Blocked Goals. A goal G is said to be contra- 
dictory blocked if it cannot be further rewritten, all its variables are instantiated, 
and it is false in the domain of the theory in which we are working. 

This contradiction suggests our first patch, namely, to introduce B # nil, i.e. 
the negation of the base case for the most recent induction, as a condition to 
the original conjecture. Note that by omitting this case condition, our method 
guarantees that the contradictory blocked goal will not be experienced again. 
Hence, we have a new conjecture of the form: 

VA, B:  list(DataType). B ~= nil --~ length(d <> B) > length(A) (8) 

With the revised conjecture (8), a Vn :: A induction schema is again suggested. 
This time the base case proof obligation goes through and so does the step case. 
In the step ease we have an induction hypothesis of the form: 

VB: list(DataType). B r nil--~ length(a <> B) > length(a) (9) 

and an initial induction conclusion of the form: 

b # nil -~ l e n g t h ( ~  T <> b) > l e n g t h ( ~  T) (io) 

Rippling-out (I0) with (4) results in: 

# nil --~ length([v0 :: a <> b] T) > l e n g t h ( ~  T) b 

By wave-rule (6) this rewrites both, the right-hand side (RHS), and the left-hand 
side (LHS) of the above formula to give us: 

b ~ nil--+ [s-~ength(a < > b))] T IT > [ s(length(a)) 

and finally, wave-rule (5) gives us: 

b r nil --* length(a <> b) > length(a) 

Note that this expression matches the induction hypothesis (9). We can appeal 
therefore directly to the hypothesis to complete the proof. This process is called 
strong fertilization. 

The critic definition depicted in Fig. 1 provides a general explanation of the 
mechanism. 
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C R I T I C  induct ion  
Input :  Plan, 

node(Plan, [], [] [- Goal), 
current_node(Plan, Address, H ~- G) 

Precondi t ion:  contradictory_blocked_goal(G) 
Patch:  failed_at(Plan, Address, Case), 

; If current goal G is 
; contradictory blocked, 
; negate the condition 
; for the most recent 
; induction and add it 

insert_condition(-~Case, Goal, NewGoal),; as a condition to the 
resume_plan(Plan, [], [] t- NewGoal) ; original goal Goal 

Meanings of the meta-logic terms: 
�9 node(Plan, Address, Sequent) is used to access the sequent recorded at node 

Address. [] denotes the root node. 
�9 current_node(Plan, Address, Seq) is used to get the address of the current 

node, and to access the sequent recorded at that node. 
�9 failed.at(Plan, Address, Case) means that Case is the case at which failure 

occurred in the most recent induction. 
�9 insert_condition(Coati, F, NewT") means NewF is the result of inserting 

condition Cond in conjecture F. 
�9 resume_plan(Plan, Address, Sequent) resumes the proof plan formation of Plan. 

Fig. 1. Exploiting contradictory blocked goals 

3.2 On Fixing Non-Theorems by Refinement 

As the reader may now suspect, it is possible to have a false conjecture in which 
the patch suggested by the above heuristic is not sufficient to transform the non- 
theorem into a theorem. This situation is likely to occur whenever the condition 
consists of either a predicate other than equality or a combination of predicates. 

As a solution to this problem, we have defined a strategy which supports 
the refinement of a previous patch. As will become clear later, our strategy 
exploits both syntactic (rippling) and semantic information. Consider again (1), 
the example conjecture introduced in Sect. 1. The recursive definitions of double 
and half give rise to the following rewrites: 

double(O) ~ 0 

d o u b l e ( ~  T) =V [ s(s(double(X)))]Y (11) 

h f(o) o 
half(s(O)) =~ 0 

h a J f ( ~ T )  ~ [s(half(X).i T (12) 

In addition, we assume that  our theory of natural numbers includes the predic- 
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ates even and oddS: 

even(0) =~ true 

even(s(O)) =~ false (13) 

even(s(s(X__)) t) =* even(X) (14) 

odd(0) ::~ false 

odd(s(0)) ~ true (15) 

odd([s(s(X___)) T) ~ odd(X) (16) 

Furthermore, we assume the wave-rule for the cancellation of the successor flmc- 
tion: 

= x = Y (17)  

We at tempt  to prove (1) using s(s(n)) induction. The first base case (,~" = 0) 
is trivial. It is the second base case (N = s(0)) which is interesting since it gives 
rise to a contradiction, as shown below. 

double(half(s(0))) = s(0) 

double(0) = s(0) 

0 = s(0)  

This suggests our first patch a t tempt  of introducing the condition N r s(0) 
using the strategy defined in the previous section. This gives a new conjecture 
of the form: 

VN:  nat. N 7~ s(0) ~ double(half(N)) = W (18) 

With the revised conjecture, (18), a two step induction is again suggested. This 
time both base cases go through. In the step case our induction hypothesis is: 

n r s(0) --~ double(half(n)) = n (19) 

and the initial induction conclusion takes the form: 

~ T  r s(0)--* d o u b l e ( h a l f ( ~ T ) ) = ~ T  

Rippling-out this formula with (12), (11), and (17) results in: 

~ T  7~ s(0) --* double(half(n)) = n 

At this point, any further rippling is blocked. Note how this formula matches 
the induction hypothesis (19) modulo the antecedent. Although strong fertiliza- 
tion is not possible we are potentially in a position to perform what is defined 
as conditional fertilization, Conditional fertilization extends strong fertilization 

s The predicate odd is not needed, but is included to show that the technique does 
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M E T H O D  conditional_fert i l ize 
I npu t :  H ~- Cic ---* Gic, ; Current Sequent. 

hyp(H, CxH ~ GIH) ; Induction hypothesis. 
Precondi t ions :  exp_at(Gic~ Posn) = G I H ,  ; Matching modulo antecedent. 

tautology(H < >  Czc F- CIH) ; The condition of the hypothesis 
; is provable given what is known. 

Meanings of the meta-logie terms: 
�9 hyp(H, Hyp) means Hyp is in hypothesis list H. 
�9 exp_at(Exp, Posn) is the subexpression in Exp at position Posn. 
�9 tautology(H b- C) is true when the condition C is provable given 

the hypothesis list H. 

Fig. 2. Preconditions of the conditional fertilization method 

with conditional equations. The preconditions to apply conditional fertilization 
are shown in Fig. 2. 

For our example the first precondition holds while the second is obviously 
false. The failure of the fertilize method suggests tha t  our initial condition, N -~ 
s(0), was necessary but not sujficient in order to make (1) into a theorem. 

Our second a t t empt  at  patching (1) is syntactically driven and represents 
a refinement of our first patch. We analyse the second failure with the aim of 
finding a wave-function which will not lead to the blockage experienced in the 
second proof a t t empt ,  i.e. 

# s(0) 

b l o c k a g e  

looking for a wave-rule of the form F ( ~  T) ~ . . . ,  since it al- VV'e are 

lows further  rippling. In addition, we know tha t  F must be of type n a t ~ b o o l .  
i i 

Taking these constraints into consideration there are two 6 candidate wave-rules 
within our theory: (14) and (16). For our current example therefore F may be 
 x.even(x) or  x.odd(x). 

Now we exploit our semantic knowledge. From the first patch a t t empt  we 
know that. 7 F(s(0))  must evaluate to false. Looking at rewrites (13) and (15) 
we see tha t  even is the correct instantiation for F.  The corrected conjecture 
becomes: 

V N :  nat. even(N) --* double(half(N)) = X 

6 Note that wave-rule (12) is ruled-out for type reasons. 
This ensures that the second attempt at patching (1) subsumes the first one. 
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which is actually provable. 
This strategy is captured in the critic definition given in Fig. 3. 

C R I T I C  conditional_fertilize 
Input :  Plan, 

P r e c o n d i t i o n s :  

Patch:  

; Current plan, 
node(Plan, [], [1 b- Goal), ; node, and sequent. 
current_node(Plan, Address, H ~- CIc -* G lc ), 
hyp(H, CZH --~ GIH), 
exp_at(G~c, Posn) = GIH, ; Syntaetiely and 
context(Plan, Address, tndVar, C ondList ), ; semanticly-guided 
exp_at(CIc, Blockage), ; partial wave-rule 
match_wave_rule(Blockage , CondList, F), ; matching. 
subsumption_ehecking( F( IndVar), CondList, N ewCondList), 
insert_eondList( N ewCondList, Goal, NewGoal), 
resume_plan(Plan, [1, [1 ~- NewGoal) 

Meaning of the meta-logical terms: 
�9 context(Plan, Address, IndVar, CondList) is used to access the variable 

which is being inducted upon, and the current set of abducted conditions. 
�9 match_wave_rule(Blockage, Conditions, F) means F is the main functor of a 

wave-rule whose LHS matches Blockage and the definition of F is consistent 
with Conditions. 
subsumption_checking(P, CondList, NewCL) means NewCL is as CondList 
except that the conditions subsumed by the definition of P have been removed. 

�9 insert_condList(List, G, NewG) inserts each condition of List in G. 

Fig. 3. Refining previous patching attempts 

3.3 Lochs  and  D y k e s  

Consider the following faulty conjecture: 

VA, B :  list(T), rev(rev(A < >  B)) = rev(rev(B)) <>  rev(rev(A)) (20) 

This formula is false in that  the RHS has two arguments in wrong positions. We 
assume the rewrite rules derived from the definition of <>  and the following 
rewrite rules: 

r e v ( ~  T) =a [ rev(U) <:> X :: nil T (21) 

rev(nil) =v nil 

rev( U < >  X :: nil T) =~ iX :: rev(U)l I (22) 
I J 



63 

= :* U = V (23) 

We at tempt  to prove (20) using a vn :: A induction. The base case is trivial. 
The step case proceeds as follows. Our induction hypothesis is the following: 

VB:  list(T), rev(rev(a <>  B)) = rev(rev(B)) < >  rev(rev(a)) (24) 

and the initial induction conclusion is: 

r e v ( r e v ( ~  T < >  b)) = rev(rev(b)) < >  r e v ( r e v ( ~ T ) )  

By applying wave-rules (4), (21), and (22), we get 

[vl :: rev(rev(a <>  b))~$--rev(rev(b))<> iv1 :: r ey(rev(a)) ' (25) 

At this point, no further rewriting is possible but weak fertilization is applicable. 
The use of the induction hypothesis as a rewrite rule is called weak fertilization. 
Having fertilized (25), the resulting formula is considered as a sub-goal to be 
proved using (a nested) induction. However, any proof a t tempt  will be fruitless 
because the conjecture is false. The problem is that  we cannot assume this in 
advance. As a partial solution we have implemented a simple counter-example 
finder that  evaluates a few standard instantiations to check whether a given 
formula is trivially unprovable. The counter-example finder provides us with the 
means of detecting a faulty occurrence. 

It is clear that  the LHS of (25) is fully rippled, whereas its RI-IS is blocked. 
According to the rippling paradigm, we say that  the wave-fronts on the RHS 
cannot ripple-out all the way up to the very top of that  side. We may think that  
there is a dyke, i.e. a barrier, in the middle of the loch such that  it is not possible 
for the waves to raise up in the conjecture structure. 

Our failure location process is guided by the partial use of the induction hy- 
pothesis. This process is called lerama calculation [10] and is simply the imple- 
mentation of weak fertilization as a proof critic. It is invoked whenever rippling 
gets blocked and there exists the opportunity to partially exploit the induction 
hypothesis. 

For our example, the lemma calculation technique would first apply the in- 
duction hypothesis to get: 

vl :: (rev(rev(b)) < >  rev(rev(a))) = rev(rev(b)) <>  v 1 : :  rev(rev(a)) 

which generalises to the following lemma: 

VX:  T, VU, V:  list(T). X :: (Y < >  V) = U < >  X :: V (26) 

If an induction proof is able to establish this conjectured formula, the following 
wave-rule would be available: 
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Note how this wave-rule would allow further rewriting and completing the proof. 
As the reader may now notice, (26) is not a valid lemma. But even if it is not valid 
we can still exploit the information that  it provides. If we look carefully at it, 
we will notice tha t  the wave-front term, i.e. X :: . . . ,  introduced by the step case 
proof obligation has to move outwards past both  < >  and U. This observation 
enables to deduce tha t  correcting (20) can be achieved by performing one of the 
following actions: 

- Empty ing  one of the lochs, i.e. to force A = nil or B = nil. 
- Eliminating the dyke, i.e. to force A = B. 

From the above actions~ we prefer the latter. This s t ra tegy has been implemented 
by switching the positions of these variables in one side of the expression, looking 
for a pa t te rn  of the form: 

FI(A, F2(X,B)) = F2(X, FI(A,B))  

or any possible combination~ e.g. F2(X,  F I ( A ,  B))  = FI(A, F2(X, B)). 
The critic definition depicted in Fig. 4 shows the general mechanism. 

C R I T I C  wave 
Inpu t :  

P r e c o n d i t i o n s :  

P a t c h :  

Plan, ; Current plan, node, 
node(Plan, [], Goal), ; and sequent. 
current-node(Plan, Address, H [- G) 
disprove(H ~- G), ~ Current goal is faulty. 
lemma_calculation.applicabte(H ~- G, BlockedSide, RippledSide), 
calculatedJemma(H ~- G, BIockedSide, Lemma), 
lochs_dykes(Lemma, X, Y), ; The suggested lemma 
switch(X, Y, Goal, Side, NewGoal), ; follows the lochs and 
not disprove([] ~- NewGoal) ; dykes patterns. 
resume.plan(Plan, [l, [1 b NewVoal) 

Meanings of the recta-logical terms: 
�9 disprove(Seq) means that it is possible to find a counter-example for Seq. 
�9 lemma_calculation.applicable(Seq, B, R) means that lemma calculation technique 

is applicable. B and R are the blocked and the rippled side~ respectively. 
�9 calculatedJemma(Seq, B, Lemma) calculates Lemma to complete a proof. 
�9 lochs_dykes(Lemraa, X, Y) means that Lerama matches the Iochs and dykes 

patterns and that X and Y are in wrong position within the term structure. 
�9 switch(Expl, Exp2, F, Side, NewF) is used to exchange the positions of 

subexpressions Expl and Exp2 in side Side of F. 

Fig. 4. Exploiting lochs and dykes 
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4 I m p l e m e n t a t i o n  A s p e c t s  

Correcting faulty conjectures by adding conditions gives rise to the problem of 
finding a proof for conditional equations. Generally speaking, we now have goals 
of the form: 

CENJ-  PINt 

where C, P, and S are terms with a distinguished argument, C is the antecedent, 
and S any constructor function. 

These kinds of goals introduce technical problems in proofs by induction. 
This is because the antecedents get in the way in an actual proof. We have 
extended the capabilities of the proof planner to cope in such situations. We 
use two different strategies. In the first one, we allow fertilization once we have 
proved that the condition of the induction hypothesis holds, we called this con- 
ditional weak fertilization. In the second one, we split a proof into cases using 
the condition of the induction hypothesis and its negation. These strategies have 
also been implemented as proof critics, thus preserving the core of the system. 

5 C o m p a r i s o n  t o  R e l a t e d  W o r k  

5.1 R e s o l u t i o n - B a s e d  A b d u c t i o n  M e c h a n i s m s  

As we have previously mentioned, most of the mechanisms for driving the gen- 
eration of abductive hypotheses are based on resolution. [15, 14, 5, 6] have in- 
dependently proposed a mechanism which, roughly speaking, works as follows: 

1. Convert the set of axioms and the given conjecture into clausal form; 
2. Perform, let us say, SLD-resolution, using the set of support strategy. If 

the conjecture is false, this deduction process either does not terminate or 
results in a finitely failed AND/OR proof search tree with the leaves labelled 
as unprovable goals. If sufficient of these goals were true then the conjecture 
would be provable. 

3. Perform an analysis on the unprovable goals and build from it (often more 
than) one condition that logically implies the goal. 

As the reader may now suspect, the search space generated by this procedure 
normally is huge, and so is the number of dead end goals. The latter fact is 
of much importance, since it causes a combinatorial explosion in the process 
of building a consistent, nontrivial, and minimal condition. On the other hand, 
our mechanism avoids the combinatorial explosion because the proof plans tech- 
nique carefully guides the search for an inductive proof and assists the detection, 
isolation, and analysis of faults. 
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5.2 P r e S  

In [7], the authors propose a technique, they call PreS, to correct faulty conjec- 
tures. PreS works as a separate module of an inductive theorem prover. When 
given faulty conjecture G, PreS is aimed at synthesising P such that  P ~ G 
holds. P ' s  definition is built according to the success or failure at establishing 
base and step cases of inductive proofs. We illustrate this by example. 

Consider again non-theorem (1). From Sect. 3.2, we know that  a proof at- 
tempt,  using two step induction, results in 

- success in the first base case (N = 0); 
- failure, in the second base case (N = s(0)); and 
- success in the step case if we take double(half(n)) = n as the induction 

�9 hypothesis, and double(half(s(s(n))))= s(s(n)) as the conclusion. 

PreS records the following observations: 

P(O) is true, P(s(O)) is false, P(s(s(N)))  if P(N) 

which actually is the recursive definition of the predicate even. 
This approach is interesting in that  the definition of P is built using synthesis 

techniques of the proofs as programs paradigm. Regrettably, PreS is explained 
only by example, no general mechanism is defined, and no characterisation of 
failure is provided. For instance, it is not clear how PreS manages, if it does, 
faulty conjectures in which base cases go through and nested inductions (with 
possibly generalisations) are required to complete a proof; which is a common 
situation when proving properties about  lists or trees. Our mechanism, on the 
other hand, captures the restricted way in which the proof of a conjecture that  
exhibits a particular kind of fault can fail, and provides a general mechanism to 
patch such failures. 

6 R e s u l t s  and  Further  Work 

The strategies presented in this paper have been built upon CLAM v3.1 [17] as 
a collection of critics. CLAM v3.1 was especially designed to realise the proof 
critics technique, see [9], described in Sect. 2.2. 

We tested our mechanism by making it correct a set of 45 faulty conjectures 
tha t  included the sorts of faults mentioned in Sect. 3. It proved to be capable 
of correcting 80% of them. It corrected 72.3% of false conjectures with wrong 
definitions in boundary values; 72.3% of faulty conjectures with wrong defini- 
tions beyond boundary values; and 91.67% of non-theorems in which the fault 
consisted of wrong definitions in the properties of operators. Table 1 shows some 
example non-theorems that  were successfully corrected. 

Our approach only finds one among several possible corrections to a non- 
theorem. Such a correction is 

- consistent if a successful proof plan is found; and 
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- non- t r iv ia l  because  it consists of e i ther  the  negat ion of case condit ions 
provided by  a welt-founded rule of inference (ma themat i c~ i  induct ion) ,  or 
well-defined predicates .  

Minimali ty ,  however,  requires a non-tr ivial  subsumpt ion  checking a lgor i thm.  We 
are cur ren t ly  working on this. 

T a b l e  1. Example non-theorems successfully corrected. The predicate oddl returns 
true whenever its input, a list of objects, is of length odd. qrev is the tail reverse 
function, x, y, a, b, and c in this table represent universally quantified variables and 
range over either the Peano natural numbers or lists 

Critic Non-Theorems 

Fig. I 

Fig. 1 
and 

Fig. 3 

Fig. 4 

length(a < >  b) > length(a) 
length(a) < length(a < >  b) 

half(z) < double(x) 
half(x) < z 

x < double(x) 
x + y > x  

x + y > s(z)  
~even(x)  
~odd(x) 

double(half(x)) = z 
double(half(x)) r x 

even(x) --~ even(x + y) 
-even(length(a))  

odd(length(a)) 
a < >  (b < >  c) = (a < >  c) < >  b 

rev(rev(a < >  b)) = b < >  a 
rev(a < >  b) = ray(a) <:> ray(b) 

a < >  rev(b) = qrev(b~ a) 
a < > b = b < > a  

rev(a < >  x :: nil) = rev(a) < >  x :: nil 

Theorems 
Ib # nil --, length(a < >  b) > length(a)  
]b # nil --* length(a) < length(a < >  b) 

x # 0 --* half(x) < double(x) 
x # 0 --, h a l f ( x )  < z 

x # 0 ~ x < double(x) 
y r  

i v > s(0) -~ x + y > s(x) 
odd(x) ~ -~even(x) 
even(x) -~ -,odd(z) 

even(x) ~ double(half(x)) = z 
odd(x) ~ double(half(x)) # x 

even(s) -~ (even(x) -~ even(x + S)) 

oddl(a) --~ -~even(length(a)) 
oddl(a) ~ odd(length(a)) 

a <> (c <> b) = (a <> c) <> b 
rev(rev(b <> a)) = b <> a 

rev(a < >  b) = rev(b) < >  rev(a) 
ray(b) < >  a = qrev(b, a) 

b < > a = b < > a  
Irev(a <> m :: nil) = x :: nil <> ray(a) 

OYSTER has been  especially designed to be  applied in the p rob lem of c o m p u t e r  
p r o g r a m  synthesis.  We would like to app ly  the  s t ra tegies  out l ined in this p a p e r  
in the  correct ion of faul ty  c o m p u t e r  p rog ram specifications. This  process  m a y  
involve the  crea t ion  of guards  to cons t ra in  the  input  domain  of the synthesised 
code. Note  the  s imilar i ty  be tween these  guards  and the condit ions t ha t  t r a n s f o r m  
non - theo rems  into theorems .  
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