
P r o o f P l a n s for t h e C o r r e c t i o n o f Fa l se
C o n j e c t u r e s *

Raul Monroy, Alan Bundy, & Andrew Ireland

Department of Artificial Intelligence
The University of Edinburgh
80 South Bridge, EH1 1HN

Scotland, U.K
raulm, bundy,& air@aisb.ed.ac.uk

Abs t rac t . Theorem proving is the systematic derivation of a mathcm-
aticM proof from a set of axioms by the use of rules of inference. We ~re
interested in a related but far less explored problem: the analysis and
correction of false conjectures, especiMly where that correction involves
finding a collection of antecedents that, together with a set of axioms,
transform non-theorems into theorems. Most failed search trees are huge,
and special care is to be taken in order to tackle the combinatorial ex-
plosion phenoraenom Fortunately, the planning search space generated
by proof plans, see [1], are moderately small. We have explored the pos-
sibility of using this technique in the implementation of an abduction
mechanism to correct non-theorems.

1 Introduct ion

The problem of building an artificial mathematician to find a mathematical
proof has been a topic of ranch interest in Artificial Intelligence. We are inter-
ested in a related but far less explored problem: the anMysis and correction of
false conjectures, especially where that correction involves finding a collection
of antecedents that, together with a set of axioms, transform non-theorems into
theorems. More formally, and following [5]:

Given a set of axioms A and a false conjecture G, i.e. A -~ G does not hold,
our aim is to identify C such that:

1 . . 4 A C --* G is a theorem, i.e. the addition of C turns tile non-theorem into
a theorem;

2. ,4 A C is satisfiable, i.e. C is con.sistent with the set of axioms;
3. C --+ G does not hold, i.e. C is nontrivial; and
4. C is minimal in that it does not contain any redundant litcrals.

* We are grateful to Jane Hesketh and tile anonymous referees for their useful com-
ments on an earlier draft of this paper. The research reported here was supported by
SERC grant GR/H/23610 to the second and third author~ and ITESM & CONACyT
studentship 64745 to the first author.

55

By way of motivation, consider the following non-theorem ~

VN: nat. double(half(N)) -- N (1)

where the functions double and half have their natural interpretation returning
twice and half their inputs, respectively. Clearly, a condition like N < 0 does not
meet our requirements because it is inconsistent with sor t / type information. In
addition, the formula

VAT: nat. (double(half(N)) = N) --~ (double(hMf(N)) = N)

is not a useful solution since the condition is trivial. The abduction mechanism
we present in this paper is capable of finding the condition even(N), which is
clearly consistent, nontrivial, and minimal. Note that a condition of the form
even(N) A N 7 ~ s(0) would not be minimal because the second conjunct follows
from the definition of the predicate even.

2 P r o o f P l a n s

Reasoning and searching are necessary for the solution to the problem of cor-
recting a false conjecture. Abduction seems to be a candidate mechanism for the
former. Abduction, as proposed by C.S. Peirce [13], is a flmdamental form of lo-
gical inference that allows us to find hypotheses that account for some observed
facts. Its simplest form is:

F r o m A --* B, an d B
I n f e r A as a poss ib le j u s t i f i c a t i o n of B

Most of the mechanisms for driving the generation of abductive hypotheses are
based on resoht ion (see [12] or [11] for a survey on abduction mechanisms).
However, most failed proof search spaces are huge and these mechanisms are
severely affected by the combinatorial explosion phenomenon, see [16].

Fortunately, the planning search spaces generated by proof plans are moder-
ately small, see [1]. This technique guides the search for a proof in the context of
tactical style reasoning [8]. Tactic specifications called methods express the pre-
conditions under which a tactic is applicable and the effects of applying such a
tactic. The proof plan technique has been implemented in a system called CkAM
[3] and successfully applied to the domain of inductive proofs [2]. In this paper,
wc show how to implement an abduction mechanism using plans for inductive
proofs. The mechanism relies on the meta-level reasoning used for forming a
proof plan, since it provides a basis for analysing failed proof attempts.

2 Following the Prolog convention, we denote variables with symbols that start with
an upper-case letter.

56

2.1 Rippling

The key idea behind inductive proofs is the use of induction hypotheses in com-
pleting step-case proof obligations. The search control heuristic called rippling
[4] was designed for this task. It works by applying a special syntactic class of
rewrite rules called wave-rules. The simplest form of such a wave-rule gives rise
to the following schema:

F (~ T / : * i r(r(vll iT (2)

where F, S, and T are functors. Note that T may be empty while S and F may

not. F and are called wave-function and wave-term, respectively. Wave-

terms are composed of a wave-front and one or more. wave-holes. Wave-holes
are the underlined sub-terms of wave-terms. Sub-expressions of the induction
conclusion that Mso appear in the hypothesis are either underlined or not en-
closed by boxes. For our current wave-rule example, F and U would match such
sub-expressions. Note how the application of (2) has the effect of moving the
S through the F. Also, note that the arrow indicates the direction in which
wave-fronts are moved within the term structure.

By marking these wave-terms and tracking their movements, we can ensure
that our rewriting makes progress towards the desired effect: the removal of the
obstructive wave-fronts so that fertilization can be applied. Fertilization, accord-
ing to Boyer and Moore, is the process of applying an induction hypothesis.

2.2 P r o o f Cr i t i c s

Experience has shown that a failed proof a t tempt may hold the key for discov-
ering a complete proof. In [9], the author proposes the use of planning critics
as a mechanism to provide the means of exploiting failure and partial success
in the search for a proof. Planning critics are aimed at capturing our intuition
as to how a partial proof can be complet, ed. For this reason, proof critics are
associated with proof methods. Any time the application of a particular proof
method fails, a collection (possibly empty) of planning critics is invoked. Their
application often results in a modification of either the current plan structure,
the given cor@cture, or the theory in which we are working.

3 C o r r e c t i n g F a u l t y C o n j e c t u r e s

Our abduction mechanism to correct faulty theorems is built upon CLAM. It
consists of a collection of proof critics that define heuristics to detect, isolate,
and correct some kinds of faults. Generally speaking, the mechanism works as
follows. Let us assume we are given a conjecture, say G. We first let C~M
at tempt to find an inductive proof plan for G. If the conjecture is faulty, this
process will fail and terminate pointing at an unprovable sub-goal that arose
from one case of the inductive proof. According to the point at which failure

57

occurred (c.f. proof methods), a particular collection of critics is then invoked to
perform a syntactic analysis on the tmprovabte sub-goat. From such an analysis,
we build the condition that is to be added to the current conjecture. Often, these
unprovable sub-goals represent contradictions to either the current set of axioms
or sor t / type information.

False conjectures that exhibit faults in boundary values were successfully
corrected using the information provided by the base case proof obligation. We
worked by refinement when a suggested condition from a previous patching at-
tempt turned out to be necessary but not sufficient. We also corrected false
conjectures in which the fault exhibited arguments in wrong positions within
the conjecture structure; this sort of fault can be found in at tempts at proving
commutativity of operators that are not Abelian. In the following sections, we
introduce the definition of some proof critics of the abduction mechanism by
example.

3.1 Exploiting Contradictory Blocked Goals

Consider the non-theorem:

VA, B : list(DataType), length(A < > B) > length(A) (3)

The recursive definitions of <> , >, and length give rise to the rewrite rules3:

nil <> U ~ U

X > O ~ X - r

0 > X ~ false

iength(nil) ~ 0

We at tempt to prove (3) using the primitive induction on lists selecting A as
the induction variable 4. The base ease (A - nil) leads to the following sub-goal

VB: list(DataType), length(B) ~ 0 (7)

With (7), a nested induction is suggested, vn :: B. This time the base case
(B = nil) gives rise to a contradictory blocked goal:

length(nil) ~ O

0 4 0

3 The operators ::, <>, and s 0 represent the infix list constructor function, the lists
concatenation function, and the successor constructor function, respectively.

4 This will be abbreviated as IndScheme[IndVar]; where IndVar is the induction
variable, and IndScherne is the suggested induction rule of inference.

58

Definit ion 1 Con t rad ic to ry Blocked Goals. A goal G is said to be contra-
dictory blocked if it cannot be further rewritten, all its variables are instantiated,
and it is false in the domain of the theory in which we are working.

This contradiction suggests our first patch, namely, to introduce B # nil, i.e.
the negation of the base case for the most recent induction, as a condition to
the original conjecture. Note that by omitting this case condition, our method
guarantees that the contradictory blocked goal will not be experienced again.
Hence, we have a new conjecture of the form:

VA, B: list(DataType). B ~= nil --~ length(d <> B) > length(A) (8)

With the revised conjecture (8), a Vn :: A induction schema is again suggested.
This time the base case proof obligation goes through and so does the step case.
In the step ease we have an induction hypothesis of the form:

VB: list(DataType). B r nil--~ length(a <> B) > length(a) (9)

and an initial induction conclusion of the form:

b # nil -~ l e n g t h (~ T <> b) > l e n g t h (~ T) (io)

Rippling-out (I0) with (4) results in:

nil --~ length([v0 :: a <> b] T) > l e n g t h (~ T) b

By wave-rule (6) this rewrites both, the right-hand side (RHS), and the left-hand
side (LHS) of the above formula to give us:

b ~ nil--+ [s-~ength(a < > b))] T IT > [s(length(a))

and finally, wave-rule (5) gives us:

b r nil --* length(a <> b) > length(a)

Note that this expression matches the induction hypothesis (9). We can appeal
therefore directly to the hypothesis to complete the proof. This process is called
strong fertilization.

The critic definition depicted in Fig. 1 provides a general explanation of the
mechanism.

59

C R I T I C induct ion
Input : Plan,

node(Plan, [], [] [- Goal),
current_node(Plan, Address, H ~- G)

Precondi t ion: contradictory_blocked_goal(G)
Patch: failed_at(Plan, Address, Case),

; If current goal G is
; contradictory blocked,
; negate the condition
; for the most recent
; induction and add it

insert_condition(-~Case, Goal, NewGoal),; as a condition to the
resume_plan(Plan, [], [] t- NewGoal) ; original goal Goal

Meanings of the meta-logic terms:
�9 node(Plan, Address, Sequent) is used to access the sequent recorded at node

Address. [] denotes the root node.
�9 current_node(Plan, Address, Seq) is used to get the address of the current

node, and to access the sequent recorded at that node.
�9 failed.at(Plan, Address, Case) means that Case is the case at which failure

occurred in the most recent induction.
�9 insert_condition(Coati, F, NewT") means NewF is the result of inserting

condition Cond in conjecture F.
�9 resume_plan(Plan, Address, Sequent) resumes the proof plan formation of Plan.

Fig. 1. Exploiting contradictory blocked goals

3.2 On Fixing Non-Theorems by Refinement

As the reader may now suspect, it is possible to have a false conjecture in which
the patch suggested by the above heuristic is not sufficient to transform the non-
theorem into a theorem. This situation is likely to occur whenever the condition
consists of either a predicate other than equality or a combination of predicates.

As a solution to this problem, we have defined a strategy which supports
the refinement of a previous patch. As will become clear later, our strategy
exploits both syntactic (rippling) and semantic information. Consider again (1),
the example conjecture introduced in Sect. 1. The recursive definitions of double
and half give rise to the following rewrites:

double(O) ~ 0

d o u b l e (~ T) =V [s(s(double(X)))]Y (11)

h f(o) o
half(s(O)) =~ 0

h a J f (~ T) ~ [s(half(X).i T (12)

In addition, we assume that our theory of natural numbers includes the predic-

60

ates even and oddS:

even(0) =~ true

even(s(O)) =~ false (13)

even(s(s(X__)) t) =* even(X) (14)

odd(0) ::~ false

odd(s(0)) ~ true (15)

odd([s(s(X___)) T) ~ odd(X) (16)

Furthermore, we assume the wave-rule for the cancellation of the successor flmc-
tion:

= x = Y (17)

We at tempt to prove (1) using s(s(n)) induction. The first base case (,~" = 0)
is trivial. It is the second base case (N = s(0)) which is interesting since it gives
rise to a contradiction, as shown below.

double(half(s(0))) = s(0)

double(0) = s(0)

0 = s(0)

This suggests our first patch a t tempt of introducing the condition N r s(0)
using the strategy defined in the previous section. This gives a new conjecture
of the form:

VN: nat. N 7~ s(0) ~ double(half(N)) = W (18)

With the revised conjecture, (18), a two step induction is again suggested. This
time both base cases go through. In the step case our induction hypothesis is:

n r s(0) --~ double(half(n)) = n (19)

and the initial induction conclusion takes the form:

~ T r s(0)--* d o u b l e (h a l f (~ T)) = ~ T

Rippling-out this formula with (12), (11), and (17) results in:

~ T 7~ s(0) --* double(half(n)) = n

At this point, any further rippling is blocked. Note how this formula matches
the induction hypothesis (19) modulo the antecedent. Although strong fertiliza-
tion is not possible we are potentially in a position to perform what is defined
as conditional fertilization, Conditional fertilization extends strong fertilization

s The predicate odd is not needed, but is included to show that the technique does

6]

M E T H O D conditional_fert i l ize
I npu t : H ~- Cic ---* Gic, ; Current Sequent.

hyp(H, CxH ~ GIH) ; Induction hypothesis.
Precondi t ions : exp_at(Gic~ Posn) = G I H , ; Matching modulo antecedent.

tautology(H < > Czc F- CIH) ; The condition of the hypothesis
; is provable given what is known.

Meanings of the meta-logie terms:
�9 hyp(H, Hyp) means Hyp is in hypothesis list H.
�9 exp_at(Exp, Posn) is the subexpression in Exp at position Posn.
�9 tautology(H b- C) is true when the condition C is provable given

the hypothesis list H.

Fig. 2. Preconditions of the conditional fertilization method

with conditional equations. The preconditions to apply conditional fertilization
are shown in Fig. 2.

For our example the first precondition holds while the second is obviously
false. The failure of the fertilize method suggests tha t our initial condition, N -~
s(0), was necessary but not sujficient in order to make (1) into a theorem.

Our second a t t empt at patching (1) is syntactically driven and represents
a refinement of our first patch. We analyse the second failure with the aim of
finding a wave-function which will not lead to the blockage experienced in the
second proof a t t empt , i.e.

s(0)

b l o c k a g e

looking for a wave-rule of the form F (~ T) ~ . . . , since it al- VV'e are

lows further rippling. In addition, we know tha t F must be of type n a t ~ b o o l .
i i

Taking these constraints into consideration there are two 6 candidate wave-rules
within our theory: (14) and (16). For our current example therefore F may be
 x.even(x) or x.odd(x).

Now we exploit our semantic knowledge. From the first patch a t t empt we
know that. 7 F(s(0)) must evaluate to false. Looking at rewrites (13) and (15)
we see tha t even is the correct instantiation for F. The corrected conjecture
becomes:

V N : nat. even(N) --* double(half(N)) = X

6 Note that wave-rule (12) is ruled-out for type reasons.
This ensures that the second attempt at patching (1) subsumes the first one.

62

which is actually provable.
This strategy is captured in the critic definition given in Fig. 3.

C R I T I C conditional_fertilize
Input : Plan,

P r e c o n d i t i o n s :

Patch:

; Current plan,
node(Plan, [], [1 b- Goal), ; node, and sequent.
current_node(Plan, Address, H ~- CIc -* G lc),
hyp(H, CZH --~ GIH),
exp_at(G~c, Posn) = GIH, ; Syntaetiely and
context(Plan, Address, tndVar, C ondList), ; semanticly-guided
exp_at(CIc, Blockage), ; partial wave-rule
match_wave_rule(Blockage , CondList, F), ; matching.
subsumption_ehecking(F(IndVar), CondList, N ewCondList),
insert_eondList(N ewCondList, Goal, NewGoal),
resume_plan(Plan, [1, [1 ~- NewGoal)

Meaning of the meta-logical terms:
�9 context(Plan, Address, IndVar, CondList) is used to access the variable

which is being inducted upon, and the current set of abducted conditions.
�9 match_wave_rule(Blockage, Conditions, F) means F is the main functor of a

wave-rule whose LHS matches Blockage and the definition of F is consistent
with Conditions.
subsumption_checking(P, CondList, NewCL) means NewCL is as CondList
except that the conditions subsumed by the definition of P have been removed.

�9 insert_condList(List, G, NewG) inserts each condition of List in G.

Fig. 3. Refining previous patching attempts

3.3 Lochs and D y k e s

Consider the following faulty conjecture:

VA, B : list(T), rev(rev(A < > B)) = rev(rev(B)) <> rev(rev(A)) (20)

This formula is false in that the RHS has two arguments in wrong positions. We
assume the rewrite rules derived from the definition of <> and the following
rewrite rules:

r e v (~ T) =a [rev(U) <:> X :: nil T (21)

rev(nil) =v nil

rev(U < > X :: nil T) =~ iX :: rev(U)l I (22)
I J

63

= :* U = V (23)

We at tempt to prove (20) using a vn :: A induction. The base case is trivial.
The step case proceeds as follows. Our induction hypothesis is the following:

VB: list(T), rev(rev(a <> B)) = rev(rev(B)) < > rev(rev(a)) (24)

and the initial induction conclusion is:

r e v (r e v (~ T < > b)) = rev(rev(b)) < > r e v (r e v (~ T))

By applying wave-rules (4), (21), and (22), we get

[vl :: rev(rev(a <> b))~$--rev(rev(b))<> iv1 :: r ey(rev(a)) ' (25)

At this point, no further rewriting is possible but weak fertilization is applicable.
The use of the induction hypothesis as a rewrite rule is called weak fertilization.
Having fertilized (25), the resulting formula is considered as a sub-goal to be
proved using (a nested) induction. However, any proof a t tempt will be fruitless
because the conjecture is false. The problem is that we cannot assume this in
advance. As a partial solution we have implemented a simple counter-example
finder that evaluates a few standard instantiations to check whether a given
formula is trivially unprovable. The counter-example finder provides us with the
means of detecting a faulty occurrence.

It is clear that the LHS of (25) is fully rippled, whereas its RI-IS is blocked.
According to the rippling paradigm, we say that the wave-fronts on the RHS
cannot ripple-out all the way up to the very top of that side. We may think that
there is a dyke, i.e. a barrier, in the middle of the loch such that it is not possible
for the waves to raise up in the conjecture structure.

Our failure location process is guided by the partial use of the induction hy-
pothesis. This process is called lerama calculation [10] and is simply the imple-
mentation of weak fertilization as a proof critic. It is invoked whenever rippling
gets blocked and there exists the opportunity to partially exploit the induction
hypothesis.

For our example, the lemma calculation technique would first apply the in-
duction hypothesis to get:

vl :: (rev(rev(b)) < > rev(rev(a))) = rev(rev(b)) <> v 1 : : rev(rev(a))

which generalises to the following lemma:

VX: T, VU, V: list(T). X :: (Y < > V) = U < > X :: V (26)

If an induction proof is able to establish this conjectured formula, the following
wave-rule would be available:

64

Note how this wave-rule would allow further rewriting and completing the proof.
As the reader may now notice, (26) is not a valid lemma. But even if it is not valid
we can still exploit the information that it provides. If we look carefully at it,
we will notice tha t the wave-front term, i.e. X :: . . . , introduced by the step case
proof obligation has to move outwards past both < > and U. This observation
enables to deduce tha t correcting (20) can be achieved by performing one of the
following actions:

- Empty ing one of the lochs, i.e. to force A = nil or B = nil.
- Eliminating the dyke, i.e. to force A = B.

From the above actions~ we prefer the latter. This s t ra tegy has been implemented
by switching the positions of these variables in one side of the expression, looking
for a pa t te rn of the form:

FI(A, F2(X,B)) = F2(X, FI(A,B))

or any possible combination~ e.g. F2(X, F I (A , B)) = FI(A, F2(X, B)).
The critic definition depicted in Fig. 4 shows the general mechanism.

C R I T I C wave
Inpu t :

P r e c o n d i t i o n s :

P a t c h :

Plan, ; Current plan, node,
node(Plan, [], Goal), ; and sequent.
current-node(Plan, Address, H [- G)
disprove(H ~- G), ~ Current goal is faulty.
lemma_calculation.applicabte(H ~- G, BlockedSide, RippledSide),
calculatedJemma(H ~- G, BIockedSide, Lemma),
lochs_dykes(Lemma, X, Y), ; The suggested lemma
switch(X, Y, Goal, Side, NewGoal), ; follows the lochs and
not disprove([] ~- NewGoal) ; dykes patterns.
resume.plan(Plan, [l, [1 b NewVoal)

Meanings of the recta-logical terms:
�9 disprove(Seq) means that it is possible to find a counter-example for Seq.
�9 lemma_calculation.applicable(Seq, B, R) means that lemma calculation technique

is applicable. B and R are the blocked and the rippled side~ respectively.
�9 calculatedJemma(Seq, B, Lemma) calculates Lemma to complete a proof.
�9 lochs_dykes(Lemraa, X, Y) means that Lerama matches the Iochs and dykes

patterns and that X and Y are in wrong position within the term structure.
�9 switch(Expl, Exp2, F, Side, NewF) is used to exchange the positions of

subexpressions Expl and Exp2 in side Side of F.

Fig. 4. Exploiting lochs and dykes

65

4 I m p l e m e n t a t i o n A s p e c t s

Correcting faulty conjectures by adding conditions gives rise to the problem of
finding a proof for conditional equations. Generally speaking, we now have goals
of the form:

CENJ- PINt

where C, P, and S are terms with a distinguished argument, C is the antecedent,
and S any constructor function.

These kinds of goals introduce technical problems in proofs by induction.
This is because the antecedents get in the way in an actual proof. We have
extended the capabilities of the proof planner to cope in such situations. We
use two different strategies. In the first one, we allow fertilization once we have
proved that the condition of the induction hypothesis holds, we called this con-
ditional weak fertilization. In the second one, we split a proof into cases using
the condition of the induction hypothesis and its negation. These strategies have
also been implemented as proof critics, thus preserving the core of the system.

5 C o m p a r i s o n t o R e l a t e d W o r k

5.1 R e s o l u t i o n - B a s e d A b d u c t i o n M e c h a n i s m s

As we have previously mentioned, most of the mechanisms for driving the gen-
eration of abductive hypotheses are based on resolution. [15, 14, 5, 6] have in-
dependently proposed a mechanism which, roughly speaking, works as follows:

1. Convert the set of axioms and the given conjecture into clausal form;
2. Perform, let us say, SLD-resolution, using the set of support strategy. If

the conjecture is false, this deduction process either does not terminate or
results in a finitely failed AND/OR proof search tree with the leaves labelled
as unprovable goals. If sufficient of these goals were true then the conjecture
would be provable.

3. Perform an analysis on the unprovable goals and build from it (often more
than) one condition that logically implies the goal.

As the reader may now suspect, the search space generated by this procedure
normally is huge, and so is the number of dead end goals. The latter fact is
of much importance, since it causes a combinatorial explosion in the process
of building a consistent, nontrivial, and minimal condition. On the other hand,
our mechanism avoids the combinatorial explosion because the proof plans tech-
nique carefully guides the search for an inductive proof and assists the detection,
isolation, and analysis of faults.

66

5.2 P r e S

In [7], the authors propose a technique, they call PreS, to correct faulty conjec-
tures. PreS works as a separate module of an inductive theorem prover. When
given faulty conjecture G, PreS is aimed at synthesising P such that P ~ G
holds. P ' s definition is built according to the success or failure at establishing
base and step cases of inductive proofs. We illustrate this by example.

Consider again non-theorem (1). From Sect. 3.2, we know that a proof at-
tempt, using two step induction, results in

- success in the first base case (N = 0);
- failure, in the second base case (N = s(0)); and
- success in the step case if we take double(half(n)) = n as the induction

�9 hypothesis, and double(half(s(s(n))))= s(s(n)) as the conclusion.

PreS records the following observations:

P(O) is true, P(s(O)) is false, P(s(s(N))) if P(N)

which actually is the recursive definition of the predicate even.
This approach is interesting in that the definition of P is built using synthesis

techniques of the proofs as programs paradigm. Regrettably, PreS is explained
only by example, no general mechanism is defined, and no characterisation of
failure is provided. For instance, it is not clear how PreS manages, if it does,
faulty conjectures in which base cases go through and nested inductions (with
possibly generalisations) are required to complete a proof; which is a common
situation when proving properties about lists or trees. Our mechanism, on the
other hand, captures the restricted way in which the proof of a conjecture that
exhibits a particular kind of fault can fail, and provides a general mechanism to
patch such failures.

6 R e s u l t s and Further Work

The strategies presented in this paper have been built upon CLAM v3.1 [17] as
a collection of critics. CLAM v3.1 was especially designed to realise the proof
critics technique, see [9], described in Sect. 2.2.

We tested our mechanism by making it correct a set of 45 faulty conjectures
tha t included the sorts of faults mentioned in Sect. 3. It proved to be capable
of correcting 80% of them. It corrected 72.3% of false conjectures with wrong
definitions in boundary values; 72.3% of faulty conjectures with wrong defini-
tions beyond boundary values; and 91.67% of non-theorems in which the fault
consisted of wrong definitions in the properties of operators. Table 1 shows some
example non-theorems that were successfully corrected.

Our approach only finds one among several possible corrections to a non-
theorem. Such a correction is

- consistent if a successful proof plan is found; and

67

- non- t r iv ia l because it consists of e i ther the negat ion of case condit ions
provided by a welt-founded rule of inference (ma themat i c~ i induct ion) , or
well-defined predicates .

Minimali ty , however, requires a non-tr ivial subsumpt ion checking a lgor i thm. We
are cur ren t ly working on this.

T a b l e 1. Example non-theorems successfully corrected. The predicate oddl returns
true whenever its input, a list of objects, is of length odd. qrev is the tail reverse
function, x, y, a, b, and c in this table represent universally quantified variables and
range over either the Peano natural numbers or lists

Critic Non-Theorems

Fig. I

Fig. 1
and

Fig. 3

Fig. 4

length(a < > b) > length(a)
length(a) < length(a < > b)

half(z) < double(x)
half(x) < z

x < double(x)
x + y > x

x + y > s(z)
~even(x)
~odd(x)

double(half(x)) = z
double(half(x)) r x

even(x) --~ even(x + y)
-even(length(a))

odd(length(a))
a < > (b < > c) = (a < > c) < > b

rev(rev(a < > b)) = b < > a
rev(a < > b) = ray(a) <:> ray(b)

a < > rev(b) = qrev(b~ a)
a < > b = b < > a

rev(a < > x :: nil) = rev(a) < > x :: nil

Theorems
Ib # nil --, length(a < > b) > length(a)
]b # nil --* length(a) < length(a < > b)

x # 0 --* half(x) < double(x)
x # 0 --, h a l f (x) < z

x # 0 ~ x < double(x)
y r

i v > s(0) -~ x + y > s(x)
odd(x) ~ -~even(x)
even(x) -~ -,odd(z)

even(x) ~ double(half(x)) = z
odd(x) ~ double(half(x)) # x

even(s) -~ (even(x) -~ even(x + S))

oddl(a) --~ -~even(length(a))
oddl(a) ~ odd(length(a))

a <> (c <> b) = (a <> c) <> b
rev(rev(b <> a)) = b <> a

rev(a < > b) = rev(b) < > rev(a)
ray(b) < > a = qrev(b, a)

b < > a = b < > a
Irev(a <> m :: nil) = x :: nil <> ray(a)

OYSTER has been especially designed to be applied in the p rob lem of c o m p u t e r
p r o g r a m synthesis. We would like to app ly the s t ra tegies out l ined in this p a p e r
in the correct ion of faul ty c o m p u t e r p rog ram specifications. This process m a y
involve the crea t ion of guards to cons t ra in the input domain of the synthesised
code. Note the s imilar i ty be tween these guards and the condit ions t ha t t r a n s f o r m
non - theo rems into theorems .

68

References

1. Bundy, A.; The Use of Explicit Plans to Guide Inductive Proofs. In 9th Conference
on Automated Deduction. Lusk, R. and Overbeek, R.(Eds.). (1988) 111-120. Longer
version available from Edinburgh as DAI Research Paper No. 349.

2. Bundy, A. and van Harmelen, F. and Hesketh, J. and Smaill, A.: Experiments with
Proof Plans for Induction. Journal of Automated Reasoning 7 (1991) 303-324.

3. Bundy, A. and van Harmelen, F. and Horn, C. and Smaill, A.: The Oyster-Clam sys-
tem. In Proceedings of the 10th International Conference on Automated Deduction.
Springer-Verlag. Stickel, M.E. (Ed.). (1990) 647-648.

4. Bundy, A. and Stevens, A. and van Harmelen, F. and Ireland, A. and Smaill, A.:
Rippling: A Heuristic for Guiding Inductive Proofs. Artificial Intelligence 62 (1993)
182-253.

5. Cox, P.T. and Pietrzykowski~ T.: Causes for Events: Their Computation and Ap-
plications. Lecture Notes in Computer Science: Proceedings of the 8th International
Conference on Automated Deduction. Siekmaun, J. (Ed.) Springer-Verlag. (1986)
608-621.

6. Finger, J.Jo:RESIDUE: A deductive approach to design synthesis. Research Report
STAN-CS-85-1035. Stanford University (1985).

7. Franova, M. and Kodratoff, Y.: Predicate Synthesis from Formal Specifications.
Proceedings of ECAI-92. (1992) 87-91.

8. Gordon, M.ff. and Milner, A.J. and Wadsworth, C.P.: Edinburgh LCF - A mechan-
ised logic of computation. Lecture Notes in Computer Science 78 (1979).

9. Ireland, A.: The Use of Planning Critics in Mechanizing Inductive Proofs. Inter-
national Conference on Logic Programming and Automated Reasoning - LPAR
92, St. Petersburg. Lecture Notes in Artificial Intelligence 624. Voronkov A. (Ed.).
Springer-Verlag. (1992) 178-189.

10. Ireland, A. and Bundy, A.: Using Failure to Guide Inductive Proof. Technical
Report, Department of Artificial Intelligence (1992). Available from Edinburgh as
DAI Research Paper 613.

11. Monroy, R.: Abduction Mechanisms. Working Paper No. 254, Department of Ar-
tificial Intelligence, Edinburgh Univerisity (1994).

12. Paul, G.: Approaches to Abductive Reasoning: an Overview. Artificial Intelligence
Review, vol. 7, 109-152. Khwer Academic Publisher (1993).

13. Peirce, C.S.: Collected papers of Charles Sanders Peirce. Vol. 2, 193. Harston, C.
and Weiss, P. (Eds.) Harvard University Press. (1959).

14. Poole, G. and Goebel, R. and Aleliunas, R.: Theorist: a logical reasoning system
for defaults and diagnosis. The Knowledge Frontier: Essays in Representation of
Knowledge. Cercone, N. and McCalla, G. (Eds.), Springer-Verlag (1987) 331-352.

15. Pople, H.E.: On the Mechanization of Abductive]Logic. Proceedings of the third
IJCAI. Nilsson, N. (Ed.). (1972) 147-152.

16. Selman, B. and Levesque, H.L.: Abductive and Default Reasoning: A Computa-
tional Core. In Proccedings of the 8th National Conference on Artificial Intelligence.
(1989) 343-348.

17. van Harmelen, F.: The CLAM Proof Planner, User Manual and Programmer
Manual. Technical Paper 4. Department of Artificial Intelligence, Edinburgh Uni-
versity. 1989.

