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Abstract. 

Industrial drying operations are highly energy intensive, usually utilising a 

primary energy source to provide the necessary heat for the production of a 

wide range of materials. The use of hot air as the heat and mass transfer 

medium leads to a resultant loss of energy through the venting of humid 

exhaust streams. 

An absorption heat transformer pilot plant was designed and constructed to 

investigate the potential of recovering this waste heat. Using a two stage cycle, 

simulated dryer exhaust streams were successfully dehumidified and reheated. 

The first stage of the transformer employed a direct contact process which used 

a concentrated absorbent solution, in this case aqueous lithium bromide 

solution, to reduce the humidity of the gas stream. This stage was followed by 

an indirect contact process using a novel absorption column to reheat the 'dry' 

gas. It was found that, based on initial water vapour partial pressures of around 

0.2 bar, exit partial pressures as low as 0.04 bar were achievable. Temperature 

lifts of 50 - 70 degC were possible in the reheat column, while the maximum 

exit gas temperature achieved was 160 T. 

In conjunction with the experimental studies, a computer simulation program 

was also written. Results of the model show that the absorption process was 

extremely rapid, occurring within the first 5 cm (6%) of the absorption column. 

A good comparison between the experimental and computer results was 

achieved. A preliminary design of an industrial heat transformer was also 

proposed following an industrial case study of a spray drying operation. 
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One man's "magic" is another man's 

engineering. "supernatural" is a null 

LSISIU 

Excerpts from the Notebooks of Lazarus Long; 

taken from "Time enough for love" by Robert Heinlein 

The reason atoms become chemistry 

professors has got to be that something 

in nature does not like laws of chemical 

equilibrium or the law of gravity or the 

laws of thermodynamics or any other 

Raw that restricts the molecules' 

freedom. They only go along with laws 

of any kind because they have to, 

preferring an existence that does not 

follow any laws whatsoever. 
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temperature and pressure (Chapter 5, Equations 5.2, 
5.3 and 5.4 see also Brunk [241) [-] 

, 9 Coefficients used to calculate 
voidage (Chapter 5, Equations 5.15, 5.16 and 5.17). [-1 

'y Liquid phase activity (Chapters 2 and 7). [-] 
Sz Slice thickness, used in simulation models. [m/ ft] 
€ Voidage. 

[-] 

E Heat exchanger effectiveness. [-J 
C Exergetic efficiency of a heat pump cycle. [-J 
) Enthalpy of the steam in the reheat column. [Jg'] 
A Wilson activation energy (Chapter 7). 

[-] 

i Viscosity [g m's'/ lb hr - 'ft - '] 
p Density [kg m 3 ] 

_AGE ax  Excess Gibbs free energy (Chapter 2) [kJkg'] 
hE Excess heat of mixing (Chapter 2) [kJkg'] 
Ali Change in enthalpy. [Jg'] 

S Change in entropy. [Jg'K 1 ] 

AT Temperature difference. [degC] 
Ev Atomic diffusion volume (Chapter 5, Equation 5.13) [-] 

A, B, C Antoine constants (Chapter 7, Equation 7.1) [-] 
A0 Available heat transfer area [m 2] 

Aann  Cross sectional annular area in reheat column. [m 2] 

C Stream heat capacity = (th. cp). [JK'] 
COP Coefficient of performance. [-] 

COP, Enthalpic coefficient of performance. [-] 
D Diffusivity. [cm 2s'/ ft 2hr'] 

E' 1 , E"ij Constants used to find the Wilson Energy 
of a binary mixture with components 'i' and 'j' 
(Chapter 7, Equation 7.4). [J kmol'K 1 ] 

FG, FL Mass transfer coefficients for the gas and 
liquid phases. [(lb.mol) hr 1 ft 2 ] 

Fr Circulation ratio = LiBr mass flow/ Steam mass flow. [-] 
G Total gas mass flow. [(lb mol) hr 1 ft 2 ] 

G' Gas mass velocity. [lb hr-'ft-2] 



xxxvii 

Symbol Description 

H Gas humidity. {g- Ff20 (g- dry air)] 

L, L' Liquid flowrate. [lb hr - 'ft - '] 
M Molecular weight. [lb (lb.mol)'] 

M0 Mass transfer rate (Chapter 4. Tables 4.8 and 4.9) [gs'm 3 ] 
Nu Nusselt number. 

[-] 

Q Heat. [W or Wm 2 1 
Qo Heat transfer rate (Chapter 4, Tables 4.8 and 4.9) [kWm 3] 
PT System pressure (Chapter 7) [bar/ psi] 
Pr Prandtl number. 

[-] 

R Gas constant (Chapter 7. Equation 7.4)) [J kmol' K - '] 
%RH Percentage water vapour relative humidity in gas stream. [-] 

Re Reynolds number. [-] 
Sc Schmidt number. [-] 
T Temperature. [°C/ K] 

U0 Overall outside heat transfer coefficient (HTC)o. [Wm 2 K 1 ] 

(U.A)o External HTC x External surface area. [WK'] 
V Molar volume of refrigerant component (See Chapter 7). 

[cc g.mol'] 
W Work. [W] 

nter Specific interfacial area [m'] 
aj , bij  Concentration dependent constants used to calculate 

the interfacial temperature (Chapter 5, Equations 5.2 and 5.3) [-] 
Cp Specific heat capacity. [Jg'K 1 ] 
d Diameter [m] 

dff Hydraulic mean diameter [m] 
ds Equivalent spherical diameter of packing. [m] 
h Enthalpy of the LiBr solution. [Jg'] or 

Stream heat transfer coefficients [Wm 2 K 1 ] 
ht  Liquid holdup, used in calculating voidage 

(Chapter 5, Equations 5.14 and 5.16) [-] 
k, k' Empirical coefficient used in simulation model 

(Chapter 5, Equations 5.17 and .5.18) [-] 
k 1 , k 2 , k3  Constants used to find the interfacial 

temperature or pressure (Chapter 5, Equation 5.1) [-] 
k Thermal conductivity [Wm'K'] 

rh Mass fiowrate. [gs'] 
p Partial or vapour pressure of a component. [bar] 
w LiBr concentration. [%w/w] 
x Liquid mole fraction. 

[-] 

y Vapour mole fraction. [-] 



xxxviii 

Subscripts 
CW Cooling water. 

G Gas stream. 
HP Heat transformer. 
HT Heat pump. 

H20 Water vapour. 
I Inner absorption tube of the reheat column. 
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id The Efficient Use of Energy. 

Process integration and energy efficiency were not commonplace within the 

chemical industry until the 1970s because energy was cheap and fuel resources 

were thought to be inexhaustible. The oil crises of 1973/74 and 1979 caused oil 

prices to escalate, forcing companies to look at ways of conserving energy. 

Pinch technology and process heat integration methods were developed as a 

result and are now common design features of modern chemical plants. 

1 
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The current oil price has dropped considerably since 1979 and immediate fuel 

shortages are no longer a problem. However, new problems are being faced by 

the chemical industry, in particular the environmental impact of burning fossil 

fuels. 

The majority of the electricity generated in Britain, in 1990, came from the 

burning of fossil fuels- oil, gas or coal. About a quarter of the electricity 

consumed came from nuclear fuels whilst only 2 % came from renewable energy 

sources [218]. An approximate breakdown of the primary energy consumption 

within the European Community, in 1984, is shown in Figure 1.1 [25]. Despite 

the fact that the bar chart dates from 1984 the relative percentages of each 

category will have remained approximately constant and are indicative of the 

whole Community as well as individual countries. 

= Area where heat pump contributions 
would help to reduce energy consumption. 

Figure 1.1: Fuel consumption in the EC for 1984. 

Figure 1.1 highlights two main areas where savings could be achieved. Zegers 

[25], indicated that the potential savings within the building sector were 

between 8- 13 % and those within the industrial sector about 10 %. Heat pump 

cycles were proposed as the means to achieve these savings, see Section 1.2. For 

example, the heating of a building requires temperatures in the range 70- 90 °C, 

which can easily be obtained by heat pump cycles. The cycles are more efficient 

than conventional boilers and thus reduce the amount of oil burnt in providing 
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heat. In the industrial sector, further savings could be achieved if the maximum 

temperature possible within a cycle could be increased above 120 "C, thereby 

extending the applicability and attraction of such a system. Several innovative 

research projects have been established with the aim of reducing primary 

energy consumption and recovering waste heat. 

Carbon dioxide causes the 'greenhouse effect', which helps to sustain an 

environment suitable for life on earth. However, the average temperature of the 

earth had increased by just over 0.5 "C over a period of 100 years up to 1988 

and it is expected that it will continue to rise in the future. The reason for this 

is the increase in the amount of carbon dioxide in the atmosphere, caused by 

man's activities- burning fossil fuels, burning rain forests and intensified 

farming techniques. The amount of carbon dioxide in the atmosphere increased 

by 11 % over the period 1954- 1988 [132]. 

In Germany there are strict regulations relating to carbon dioxide emissions 

requiring companies to reduce emissions by making processes more efficient. 

Encompassed in these regulations is the requirement that each company reduces 

its overall energy consumption rather than shifting the burden to the power 

stations, which must burn more fuel to meet increased power demands. Indeed 

a carbon tax may be introduced, in Europe, in an attempt to reduce carbon 

dioxide emissions. 

Nuclear power does not produce carbon dioxide, however, it is unlikely that 

there will be a major switch to nuclear power in Britain. In order to establish 

an extensive nuclear network the short term result would be an increase in the 

consumption of fossil fuels, while the nuclear infrastructure is established. 

Hence, any gains achieved by switching to nuclear power could only be realised 

in the long term. 



Chapter 1. Introduction. 	 4 

Another alternative is the use of renewable energy sources such as wind, water, 

solar power and even biomass heat sources. Biomass and geothermal projects 

are not as widespread as the other renewable energy sources, which have gained 

more recognition. Several large scale projects are currently operating using 

solar power. Indeed there are examples of absorption heat cycles which provide 

heating and air conditioning for buildings by utilising solar energy as the heat 

source ([162], [55]). 

Windmills and waterrnills were commonly used for the grinding of corn prior to 

the introduction of electricity. Coupled with today's technology these methods 

are capable of generating several megawatts of electricity. In California there 

are huge wind farms with approximately 14 thousand wind turbines providing a 

combined power output of 1210MW of electricity. There are also several wind 

turbines projects in Canada, Denmark, the Netherlands and also in Britain. A 

prototype wave power generation scheme was also built on the Island of Islay in 

1991. 

These projects are environmentally sound but the visual impact of these 

projects is large. Any major switch to renewable energy sources must be 

investigated thoroughly before implementation and it is unlikely that the energy 

policy in Britain will change in the near future. Therefore the environmental 

pollution caused by burning fossil fuels should be minimised by making 

processes more efficient, reducing the primary fuel consumption, and also by 

recovering waste heat. 

The EC currently provides financial assistance for innovative projects which try 

to address some of the environmental problems faced today, one such scheme is 

THERMIE. Other funding can be obtained from the British government for 

energy saving projects, providing that the project has financial support from at 
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least one industrial company, for whom the project would directly benefit. The 

type of projects receiving assistance focus upon increasing the efficiency of 

processes and the reduction of atmospheric pollutants such as carbon dioxide, 

sulphur dioxide and nitrous oxides [26]. 

L 	Heat Pump Technollogy0 

The potential for energy recovery within the chemical industry is huge. Current 

environmental concerns, as well as economic issues, are helping to establish 

energy recovery systems within the industry. 

The simplest way to recover waste energy is the exchange of heat between a 

waste heat stream and an incoming stream. However, the majority of this waste 

heat is available at low temperatures, 40- 80 °C, where it is uneconomical to 

recover, requiring the upgrading of the heat to a level suitable for use. Heat 

pump cycles are capable of extracting heat from a low temperature stream, and 

upgrading it to a higher, more useful level (see Section 1.2.1), at the expense of 

using a small amount of high grade energy. They are extremely versatile and 

are used for a wide variety of heating and cooling duties. 

The most commonly used heat pumps are vapour compression cycles, which 

utilise the evaporation and condensation of a refrigerant fluid at different 

pressure levels to extract and deliver the heat at the desired temperatures. A 

compressor provides the driving force to move the fluid around the circuit. 
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Another type of cycle is the absorption heat pump, which again operates at two 

pressure levels. The refrigerant is vaporised in a low temperature. low pressure 

evaporator, extracting heat from the surroundings. It is then absorbed into a 

liquid absorbent, releasing medium grade heat. The absorbent solution, 

containing the refrigerant, is pumped to a high pressure, where the absorbent is 

regenerated by evaporating the refrigerant using a high grade heat source. Pure 

refrigerant vapour is then transferred to a condenser, which again releases 

medium grade heat. The liquid refrigerant is then returned to the low pressure 

evaporator, while the liquid absorbent is returned to the absorber. In this cycle 

there is no need for a compressor as the working fluid is transferred between 

pressure levels using pumps. However, their use is not as extensive as vapour 

compression cycles. Comprehensive descriptions of these systems are provided 

in Section 1.2.2. 

Heat pumps have also been used to minimise the effect of 'pinch' points which 

occur within heat integrated systems. In a chemical process it is common to 

have a set of streams which must be cooled and a set which must be heated. 

Rather than using cold and hot utilities, respectfully, for each stream, it is 

common to devise a system to minimise the use of these utilities by integrating 

the heat transferred between hot and cold streams. 

All the streams to be cooled are grouped together, as are the streams which 

must be heated. The results can be shown graphically on a composite curve 

graph, Figure 1.2a), where the streams being cooled are above those being 

heated. A 'pinch' point occurs in a process when the difference in the 

temperature between the two composite curves is less that required for 

exchanging heat across the streams. Conventionally, it was necessary to remove 

the 'pinch' point by adding heat to the 'hot side' of the process. However, this 

adds to the excess heat present below the 'pinch', which must be removed by 

using a cold utility stream, for example cooling water, Figure 1.2a). 
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Alternatively, some of the excess heat below the pinch point can be used as the 

heat source for a heat pump cycle. The cycle upgrades the heat to a level 

suitable for delivery at a temperature above the 'pinch' point. Figure 1.2b). The 

resultant effect is a reduction in the amount of hot and cold utilities required by 

the process [71]. 

= Original curves 

= New curves with heatcycle -. - -. 
	in position— transferring heat 

across the pinch point. 

Temperature 

LOCATION OF 
PINCH POINT 

STREAMS TO 
BE COOLED  

Amount of hot utility 
to be added 

01 

Energy supplied from the hot utility less (Q - W) 

VFA 

(Q + W) 
HOT SIDE OF PROCESS, 
WHERE THERE IS  HEAT 
DEFICIT. 

STREAMS TO 
BE HEATED 

Minimum heat exchange 

COLD SIDE OF PROCESS, 
WHERE EXCESS HEAT IS 
REJECTED 'JO THE COLD 
wry. 

F .."ir'C!i 
POINT 

Q HEAT 
PUJtP CYCLE 

W 

Amount of cold 
utility to be added 	 Enthalpy change 	Heat rejected to cold utility less (Q- W) 

Figure 1.2: Utilisation of a heat pump cycle to overcome a 'pinch' point within 
a process. a) Composite Curves. 	b) Schematic of process with heat pump. 
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1.2.1 Vapour Compression Cycles. 

%Z low 

Figure 1.3: Vapour compression heat pump. 

A vapour compression cycle consists of a condenser, an evaporator, a 

compressor and an expansion valve, Figure 1.3. The principal aim is to transfer 

heat from one temperature level to another, using a working fluid, commonly 

called a refrigerant. It is necessary to use a high grade energy source 

(electricity, steam, gas engine) to drive the compressor, however the amount 

used is less than the amount of heat delivered (or removed) by the cycle. 

Q0 + W = 	 (1.1) 
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The liquid refrigerant in the low pressure evaporator is vaporised using heat 

from a low grade temperature heat source, usually at or below ambient 

temperature depending on the duty. The refrigerant vapour is then compressed 

and flows into the high pressure condenser, where it condenses releasing its heat 

of condensation to the surrounding heat sink. The release of heat occurs at a 

higher temperature than the original heat source, Equation 1.1. The cycle is 

completed by throttling the liquid back to the low pressure evaporator via an 

expansion valve. 

The cycle can operate in two ways, as a heat pump upgrading heat from one 

temperature level to another, or more commonly as a refrigerator, whose uses 

range from domestic appliances to industrial chillers. The efficiency of the cycle 

is based upon the amount of heat removed in the evaporator, which provides 

the cooling. In Japan and the United States vapour compression cycles are 

extensively used for air conditioning in cars and buildings. 

Refrigerants. 

The majority of vapour compression cycle machines use CFCs 

(chlorofluorocarbons) as the working fluid. The main refrigerants currently used 

are Ru 1 and R12, which are used in a wide range of sectors (domestic, 

commercial, industry, transport and air conditioning) [184]. R12 has a low 

boiling point, -29.8 °C and is therefore widely used in domestic and retail 

freezers, where it is necessary to chill food to 3- 4 °C and also for freezing down 

to temperatures around -20 °C. The main use of R11 is as the working fluid for 

air conditioning units, which operate at higher temperatures, the normal boiling 

point for Ml is 23.8 °C. Other working fluids which have been used in 

compression cycles are ammonia, R22 (chiorodifluoromethane), propane and 
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butane. CFCs were thought to be the ideal working fluid as they are nontoxic, 

nonflammable, compatible with common lubricants, exhibit good 

thermodynamic properties and they are extremely stable. However, they are 

now seen to be causing the destruction of the ozone layer [132]. In 1974 it was 

proposed that CFCs were causing the breakdown of ozone, which subsequently 

led to the creation of an ozone hole over the South Pole. The resultant effect is 

that more of the sun's harmful UV- rays reach the Earth's surface, Figure 1.4a). 

SUNLIGHT 
	 SUNLIGHT 

40% INCOMING RADIATION 
REFLECTED 

Re- EMITTED HEAT 

15% ABSORBED IN 
ATMOSPHERE 

CO,. CFCorCH 
MOt.ECULE 

© 

45% REACHES SURFACE 

EARTH 

DEFLECTION BACK TO SURFACE 
(INCREASING SURFACE TEMPERATURE) 

Figure 1.4: a) Ozone hole above South Pole. b) Distribution of the sun's energy. 
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The problem stems from the fact that CFCs are highly stable. When 

refrigerants leak from equipment, they do not break down but accumulate 

within the stratosphere, where the majority of ozone exists. Once in the 

stratosphere they break down with the aid of UV- radiation resulting in the 

formation of reactive chlorine radicals (Cl-) which then break down ozone into 

its constituent oxygen molecules in a chain reaction. 

CFCs have also been associated with the increase in global warming, commonly 

referred to as the 'greenhouse effect'. The main atmospheric pollutants are 

carbon dioxide, methane and CFCs, which create a screen around the globe and 

reflect heat radiated from the surface back to the ground causing a rise in 

temperature, Figure 1.4b) ([132]). Therefore their use is being phased out under 

the terms of the Montreal Protocol which favours refrigerants with a low ODP 

(ozone deletion potential) and low GWP (global warming potential), see Figure 

1.5. 

Possible replacement refrigerants for CFCs are HFCs (hydrofluorocarbons), 

which include R134a (tetrafluoroethane) and R32 (difluoromethane) as 

substitutes for R11 and R12 (which are the most commonly used refrigerants). 

The use of R22 (HCFC- hydro chiorofluorocarbon) is also expected to increase; 

however, it may still be phased out in the future as it which still contains 

chlorine. 

Further to this, it is felt that the straight replacement of CFCs, like Ru 

(trichlorofluoromethane) and R12 (dichlorodifluoromethane), with a pure charge 

of new refrigerant will not be possible because of the differences in the physical 

properties of the new refrigerants (boiling points, heat capacity, density). The 

use of refrigerant mixtures has been suggested instead. The composition of the 

mixture is such that it closely matches the performance of the cycle using 



RU5 R114 

V 

CFCs 
R113 

R125 

R142b 

0 	
R22 HCFCS REF} 

11 
:ODP 

0 

—H Cs 
Rt52a 

EW REF1 IGERANT 0 
R1.23 	

(DP=0& LOW GW<1 

10.0- 

5.0- 

z 

1.0 - 

z 	- 

R134a 

RI 

0 - 

C, 

0.05- 

R12 

EINCE COUPON 
:1; GWP =1 

Chapter 1. Introduction. 	 12 

CFCs. However, this could lead to the preferential leakage from the apparatus 

of the most volatile component, thereby altering the respective concentrations 

of the refrigerants and possibly the cycle performance. Care must be taken to 

prevent refrigerant leakage otherwise, the cycle would require periodic 'topping 

up' so as to restore the blend to its original composition. Indeed another 

important change which manufacturers face is that the new refrigerants may 

not be compatible with lubricating oils presently used in heat pump equipment, 

making it necessary to develop a range of new oils. 

PRESENT CFCs: HIGH ODP & GWP 

11 I 	 I 

0.2 	0.4 	0.6 	0.8 	1.0 
ODP( OZONE DEPLETION POTENTIAL) 

Figure 1.5: Environmental impact of refrigerants. 
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1.2.2 Absorption (Cycles. 

Absorption cycles utilise the exothermic heat liberated upon the mixing of the 

refrigerant vapour and absorbent streams used in the cycle, to generate useful 

heat. An absorption cycle operates at two pressure levels and consists of four 

main components: 

o Evaporator- Liquid refrigerant is vaporised by taking heat from the 

supplied heat source. 

o Condenser- Heat is removed from the refrigerant vapour causing it to 

condense and release heat to a heat sink. 

o Absorber- The liquid absorbent, weak in refrigerant, is mixed with pure 

refrigerant vapour. The refrigerant is absorbed into the solution releasing 

the heat of mixing and condensation, which is removed by an external 

heat sink. 

o Generator- After absorbing the refrigerant vapour, the absorbent solution 

is restored to its original concentration by evaporating the refrigerant, 

using an external heat source. 

Single stage cycles operate at two pressure levels, in a heat pump the 

evaporator- absorber pair operate at low pressure, whilst the condenser-

generator pair operate on the high pressure side of the cycle. The opposite is 

true for a heat transformer. Both types of absorption cycle usually operate at 

three temperature levels, which are classified as 'low'. 'medium' and 'high'. 

Absorption heat pumps, like vapour compression heat pumps, take heat at a 

low energy level and upgrade it to a useful level by using a small amount of 

high grade energy, Figure 1.6. Whereas a heat transformer takes an 
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energy stream, usually a waste heat stream, and generates a stream at a high 

temperature level, at the expense of downgrading the remainder to a low 

temperature level, which is usually ambient. Typical temperatures, which can 

be achieved in the absorber, range from 100- 170 °C, while waste heat streams 

are usually in the range 60-90 °C. 

Temperature 	 Temperature 

High &cde  energy 

energy 

Low grade energy 

 

Low grade energy 

Process 	 Process 

Figure 1.6: a)Heat pump 	b)Heat transformer. 

Absorption cycles each include two pumps and an expansion valve to allow the 

transfer of streams between vessels, see Figures 1.7, 1.8 and 1.9. The main 

vessels of a single stage cycle are essentially heat exchangers, which are easy to 

manufacture and are mechanically simple. In some cases turbulence promoters 

are inserted to improve mass and heat transfer within a vessel. There is no need 

for specialised or complex equipment, therefore the system requires less 

maintenance and hence costs less to operate than a vapour compression heat 

pump. 
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Essential to the operation of an absorption cycle is the choice of working fluid 

pair. The majority of cycles used currently use either ammonia/ water or 

water/lithium bromide as the working medium. Both these fluid pairs have 

operating limitations and research is being carried out to find new fluid pairs. 

The main problems associated with using ammonia/ water are that there is a 

small difference between the boiling points of ammonia and water. The 

consequence of this means that a rectification stage is required to ensure 

complete separation of the refrigerant from the absorbent after the generator. 

Ammonia/ water is not suited for high temperature operation as the system 

would need to be operated at a very high pressure in order to achieve the high 

exit temperature from the absorber. 

The water/ lithium bromide fluid pair is prone to crystallisation at high 

concentrations and low temperatures. It is not recommended that this fluid pair 

be used for chilling duties where the evaporator temperature drops below about 

5 °C, as this could lead to problems with the water freezing. Chapter 2, 

'Absorption working fluids', discusses the selection and evaluation of fluid 

working pairs in more detail as well as providing examples of systems utilising 

different working fluids. 

Heat Pumps. 

In heat pump cycles the generator uses high grade energy to regenerate the 

strong absorbent solution from the absorbent- refrigerant mixture delivered 

from the absorber. Useful heat is extracted in the absorber and condenser 

stages at a moderate temperature level, whilst low grade heat is used to 

vaporise the refrigerant in the evaporator. Refrigeration cycles are primarily 

concerned with the amount of heat removed in the low temperature evaporator. 

a 
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Figure 1.7: Absorption heat pump. 
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Absorption cycles are commonly used as chillers and air conditioners in Japan 

and the USA, using gas as the high grade heat source in the generator ([39], 

[158], [160]). Other absorption cycles utilise solar power as the heat source for 

the generator, these are generally for domestic heating and air conditioning 

duties ([205], [55]). 

Heat pump cycles are often used to provide hot water and heating for domestic 

buildings with several examples of large scale heat pumps found in Japan and 

Sweden ([93], [151], [1131). Typical working fluid pairs are ammonia/ water and 

water/ lithium bromide. One project in Japan used a heat pump to recover 

waste heat from a water stream and used it to preheat a boiler feed stream[151]. 

Due to special tariffs, natural gas is the most commonly used energy source used 

in the generators of absorption heat pump cycles in Japan, thereby promoting 

the use of absorption heat recovery, chilling and air conditioning units. 

Heat Transformers. 

Heat transformers (sometimes called 'Reverse heat pumps' or 'Type II heat 

pumps') are used to upgrade and recover waste heat, which can then be used 

elsewhere. The transformer cycles have an economic advantage over 

conventional heat pump cycles as they do not require high grade energy to 

operate. Several industrial absorption heat transformers use waste heat as the 

energy source, greatly reducing running costs as these heat sources are usually 

free and in some cases may have a negative cost. Therefore, if the waste heat 

was not utilised by the cycle there would be a subsequent cost associated in 

disposing of the heat (eg. rejection of heat to a cooling tower). Indeed the only 

primary energy required for a heat transformer is that used to operate the 

solution pumps present in the cycle. 



Chapter 1. Introduction. 	 18  

Q medium 
	

Q)  high 

EVAPORATOR 
	

ABSORBER 

PUMP 0 --- LOW-PRESSURE 

 ifiGH PRESSURE PUMPE.L 

 ------------- 

PANSION 
VALVE 

REFRIGERANT 
CIRCUIT 	 ABSORBENT CJ[RCU]IT 

CONDENSER 	 GENERATOR 

Q low 	 Qmeciium 

Figure 1.8: Absorption heat transformer. 
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In order to maximise the temperature generated in the absorber it is common 

practice to preheat the strong absorbent solution stream entering to the 

absorber with the hot, weak absorbent solution leaving the column. Figure 1.9 

illustrates this feature of an absorption heat transformer (A.H.T) cycle. 

Q medium 
	

Q high 

EVAPORATOR 

SOLUTION HEAT 
EXCHANGER 

'EXPANSION 
PU 
	

VALVE 

CONDENSER 	 GENERATOR 

low 
	

Q medium 

Figure 1.9: Absorption heat transformer with solution heat exchanger. 

A heat transformer upgrades a proportion of the incoming energy at the 

expense of downgrading the remainder of the heat to a low temperature level, 

therefore the quantity of heat produced is less than the original amount, 

although it is of higher quality, Figure 1.6. The opposite is true for a heat pump 

cycle: a low grade energy stream is upgraded to a moderate level using a small 

amount of high grade energy. As such the quantity produced in the cycle is 
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greater than the high grade energy used, but it is of a lower quality. The 

efficiency of heat pump cycles will be discussed in more detail in the following 

Section 1.3, 'Performance Criteria'. 

The relative temperature and pressure levels for each of the components in the 

cycle can be shown using either a Van't Hoff or a P-T-x diagram, Figure 1.10, 

which also shows the relative concentration of the absorbent solution at each 

point. The P-T-x diagram is useful for design purposes as it allows the engineer 

to specify the expected pressure and temperature levels within the cycle and 

hence the required absorbent concentrations. The diagram shown is for the 

water/ lithium bromide working pair. It can be seen from the diagram that the 

pressure levels for a. heat transformer cycle, using water/ lithium bromide are 

0.05 bar and 1 bar. The corresponding temperatures are 35 °C in the 

condenser, which is a reasonable temperature for a cooling water stream. and 

100 °C in both the evaporator and generator, with an exit absorber 

temperature of around 160 °C. Care must be taken to ensure that the cycle 

does not operate to near the crystallisation line as this would inevitably cause 

operating difficulties. The maximum recommended lithium bromide 

concentration is 66- 68 %w/w, see Chapter 4, 'Experimental Studies'. 

Hybrid Cycles. 

In an attempt to make absorption cycles more efficient several researchers have 

been working on the development of advanced absorption cycles. Some 

examples of advanced cycles can be found in papers by S. Arh and B. Ga.peri 

[8] and W. Hölbling et al [140]. An example of an advanced cycle is proposed in 

Figure 1.12. The system couples two single stage cycles together, thereby 

enabling the use of different working fluid pairs in each cycle. An example of 
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20 	40 	60 	80 	100 	120 	140 	160 
Temperature 

( C) 

Figure 1.10: Representation of a heat transformer cycle on a P-T-x diagram, for 
H2 0/ LiBr. 
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Figure 1.11: Representation of an A.H.T on a Van't Hoff plot. 

this would be to have ammonia/ water operating in the low temperature cycle, 

with the evaporator operating at temperatures below zero, without difficulty; 

while the high temperature cycle could be operated with water/ lithium 

bromide without the need for an excessively high pressure on the absorber side, 

which would be necessary if ammonia/ water was used. 

Another example of an advanced cycle is shown in Figure 1.13, which is 

commonly called a double effect cycle because of the double evaporator-

absorber pair, although there is only one generator- condenser pair [140]. The 

cycle is designed to achieve a higher exit temperature from the second absorber, 

than would be possible with a single stage system. However, in order to achieve 

a higher temperature lift the efficiency of the cycle is reduced because a greater 

heat load is required in the generator, which has a larger absorbent solution 

inventory. A variation of this system uses a double generator- condenser pair 
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Figure 1.12: Example of a two stage absorption heat transformer. 

and a single absorber- evaporator pair. Various other combinations of heat 

pump and transformer cycles are discussed in a paper by Alefeld [25]. 

Chemical Heat Pumps. 

Solid chemical absorbents have also been used in heat pump cycles, where a 

refrigerant is absorbed into a solid absorbent, releasing the heat of reaction 

which is transferred to the heat sink. Once the absorbent is saturated with 

refrigerant it is then necessary to regenerate the absorbent bed by supplying 

heat to evaporate the refrigerant, which means that the cycle operates 

periodically. An example of a periodic cycle uses methanol as the refrigerant 

and calcium chloride as the solid absorbent, Figure 1.14 [25]. A continuous 

cycle could be designed which would have two units in parallel, with the process 
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Figure 1.13: Representation of a double effect heat transformer. 
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Figure 1.14: Example of a chemical heat pump- periodic operation. 
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switching beds when one cycle needs to be regenerated. Again, the use of solar 

energy as a heat source has been suggested. In order to make these cycles more 

efficient, studies have been carried out in order to enhance the heat and mass 

transfer characteristics of the absorbent bed. 

2.3 Performance Criteria. 

The most commonly used performance criterion for heat pump cycles is the 

coefficient of performance (COP). It is a measure of the amount of useful energy 

produced in a cycle divided by the amount of energy consumed. The COP of a 

cycle depends on its mode of operation- i.e whether it operates as a heat 

transformer (HT), heat pump (HP) or cooler respectively (Equations 1.2, 1.3 

and 1.4). 

COPHT 
Heat produced in absorber 

Heat consumed in the evaporator and generator 
(1.2) 

COPHP= Heat produced in the condenser and absorber 
(1.3) 

Heat consumed by the generator 

COPC00I 	
Heat extracted in evaporator 	

(1.4) e,- = 
Heat consumed in generator 



Chapter 1. Introduction. 	 26 

The COP only gives a measure of the amount of heat produced it does not take 

into account the quality of the heat produced. A heat transformer must have a 

COP less than one, due to the fact that a proportion of the incoming energy has 

been upgraded to a higher quality, at the expense of downgrading the remainder 

to a lower level. Whereas, in a heat pump, a high grade energy stream is used 

to generate a larger quantity of lower quality heat. A better measure of the 

quantity of the heat produced is the enthalpic coefficient of performance, 

Equation 1.5. Another criterion which was proposed by Rivero and Le Goff 

[195] was the exergetic effectiveness of the cycle, defined as (,equation 1.6. The 

exergy terms are determined from a knowledge of the stream enthalpies and 

entropies (LH -T 0 zS, where T0  is taken as ambient temperature). 

COPEnth = 
Net enthalpic increase in the absorber 

(1.5) Net decrease in the evaporator and generator 

Net exergy gain 
Net exergy supplied (1.6) 

The temperature lift achieved by the cycle is another criterion which is used to 

measure the effectiveness of a cycle, it is a measure of the increase in 

temperature of the process stream being heated. Another definition, which is 

useful when considering a heat transformer cycle, is the difference between the 

exit temperature from the absorber and the temperature of the heat source. 

The heat source is usually a waste heat stream which is used in the evaporator 

and generator. The temperature lift therefore gives a measure of the effective 

temperature upgrading achieved by the heat transformer. 
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An important design parameter, which has been used by many workers, is the 

circulation ratio (F r ). It is the ratio of the absorbent solution mass fiowrate to 

the mass fiowrate of the refrigerant vapour. The ratio defines the fiowrates of 

the streams around the cycle and hence the sizes of the individual components, 

which is turn can be used to give a rough costing of the system. 

2.4 Scope of Project. 

1.4.1 Energy Use in Drying. 

Drying is a highly energy intensive operation and most industrial dryers operate 

on a single pass. Around 90 % of dryers employ hot gas as the heat transfer 

medium, discharging a hot, humid exhaust stream directly to atmosphere. It is 

a commonly used unit operation and each drying operation is product specific 

with some products being heat sensitive and others requiring drying to a 

specific moisture content. In wood drying it is important to ensure that the rate 

of drying does not cause the wood to warp. Table 1.1 [186] lists some of the 

dryer types currently used as well a brief description of their operation. 

Approximately LilOm year - ' is spent in the UK chemical industry [228] on 

providing energy for the drying of a wide range of products, examples of which 

are listed in Table 1.2 with further examples given in Masters' book 'Spray 

drying' (pp471- 475) [170]. 
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[Dryer 
] 

Brief description 	 1 
Flash Feed is exposed to a very hot gas stream for a few seconds- very 

high heat transfer rates. 
Tray Material is supported on trays and gas passed over/ through. 
Conveyors Material flows along a belt with gas passed over/ through. 
Rotary Product conveyed and showered into a rotating cylinder with 

hot gases passing over. 
Spray Feed sprayed into drying chamber- dried by direct contact with 

hot gas (co-/ counter- current flow). 
Fluidised bed Material to be dried is fluidised in a bed. Drying is achieved 

by fluidising with hot gases; may also have indirect contact 
heating coils within bed to aid the drying process. 

Table 1.1: Brief description of a variety of drying operations. 

Industry J 	Product 

Agriculture Wood Fertilisers 
Biochemical Pharmaceuticals Yeast products 
Chemical Ceramics Detergents 

Dyestuffs Plastics 
Food Baby food Egg- white, yolk, whole 

Fish Milk- dried/ condensed 
Fruit Vegetables 

Manufacturing Brick China clay 
Gypsum Paper/ board 

Plaster Plaster board 
Textiles Tiles 

Table 1.2: Range of products dried industrially. 
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Spray Drying. 

The product being dried usually enters the top of the drying chamber as a 

slurry. Nozzles or atomisers ensure that the feed stream gets evenly distributed 

within the chamber, which improves the mass and heat transfer between the hot 

gas stream and the solid particles. The inlet droplet size and the flow 

distribution within the drying chamber greatly affect the drying properties of 

the material being dried. A group at the AEA laboratory, SPS (Separation 

Process Services), have carried out extensive research into the modelling of the 

spray drying chamber, in an attempt to gain a better understanding of the 

drying mechanisms within the drying chamber [183]. It is essential that careful 

temperature control of the drying process is maintained to ensure that the dried 

solid meets the desired product specifications and that the final dried product 

does not become too dry otherwise it may decompose. 

In most drying operations the exhaust gas stream has to be cleaned prior to 

discharge, as it usually contains fine particles of the dried product. There are 

different ways in which the gas can be cleaned before discharge including 

venturi scrubbers, cyclones, bag filters and electrostatic precipitators. These 

can be used individually or in conjunction with each other in order to improve 

the removal of particles from the exhaust gas stream. However, the stream is 

then usually vented to atmosphere without any heat recovery. The temperature 

of dryer exhaust streams is typically between 60- 80 °C, which is too low a 

temperature to justify heat recovery on economic grounds. In addition 

conventional methods of heat recovery could not be used because the process 

streams are humid gases. 
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The exhaust gas from the stack often causes an unsightly, visible plume that 

may still contain some fines material which could be deposited over the 

surrounding area. As most dryers use direct fired burners to generate the high 

temperatures required for drying, the exhaust gas stream contains carbon 

dioxide which is also released into the atmosphere. Therefore, economical and 

environmental reasons are forcing companies to look at ways to recover and 

recycle heat. 

L42 Heat Recovery From Dryers. 

In the UK, the 'Energy Technology Support Unit' (ETSU) set up a program to 

increase the energy efficiency of dryers [119]. They found that potential savings 

of around 20 % could be achieved with little or no expenditure. The following 

were identified as areas where improvements could be achieved through better 

care of the dryers: 

o Prevention of gas leaks into/ out of the chamber. 

o Making sure the drying unit is kept clean. 

o Better temperature control. 

o Optimisation of the dryer conditions and flows. 

The heat recovery from exhaust gas streams would also help to reduce the 

energy consumption of the dryer and therefore improve the dryer efficiency, 

however, this requires a greater investment by the company. Several booklets 

and guides have been produced by ETSU to increase energy efficiency awareness 
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and to encourage others to adopt heat recovery methods [121]. The scheme was 

set up in 1978 and by December 1985 250 demonstration projects had been 

established. It was estimated that savings of around 1.5 Mtce year' 1,  valued 

at £30M had been achieved [119]. 

In an industrial spray drying operation, typical inlet gas temperatures are 500 

°C, whilst saturated exhaust gas is vented at temperatures between 60- 80 °C 

(absolute humidity 0.16- 0.56 g- J2O (g-dr air)). The scope for energy recovery 

is immense, particularly if the latent heat associated with the water content of 

the gas stream can be recovered. Some operations do attempt to recover the 

sensible heat associated with the exhaust gas stream, Figure 1.15 [31]. Another 

option for the recovery of heat is to use a conventional heat pump. However, in 

order to recover the latent heat the water vapour must he condensed, which in 

turn saturates the exhaust gas and leads to a visible plume from the stack. 

L403 Project Aims 

In order to recover and recycle the heat currently vented to atmosphere from a 

spray drying operation it was necessary to develop a system which 

simultaneously dehumidified and reheated the exhaust gas stream. The stream 

would then be suitable for recycle to the drying chamber, thereby reducing the 

overall energy consumption of the drying operation. For the process to be 

economically viable the temperature of the exit gas stream had to be boosted 

from around 80 °C to between 150- 200 T. As well as reheating the gas stream 

it was also necessary to dehumidify the gas prior to recycling to the dryer inlet, 

otherwise the mass transfer driving force within the drying chamber would be 

'Mtce year' = Million tonne coal equivalent per year 
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Figure 1.15: Examples of simple heat recovery from dryers. 
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reduced because of the increase in the partial pressure of water, thereby 

decreasing the efficiency of the drying process. 

An absorption heat transformer was chosen as a means of dehumidifying and 

reheating the gas stream by direct contact with an absorbent stream. The 

water in the gas stream acts as the refrigerant, which was absorbed into the 

absorbent solution causing the temperature to increase. Figure 1.16 shows a 

simplified diagram of an open loop heat transformer. Lithium bromide was 

chosen as the absorbent solution for this study as it is highly hygroscopic and 

has favourable heat transfer properties. 

DIRECT 	 HOT WARM, 	
CONTACT 

HUMID ABSORBER >  DRY 
AM 	

ABSORBER 
Am 

EXPANSION 

AMBIENT PRESSURE 	 PUMP 	
VALVE 

VACUUM 

ABSORBENT CIRCUIT 

CONDENSER 	
GENERATOR 

Q 
medium 

Figure 1.16: Single stage open loop absorption heat transformer. 
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An experimental pilot plant was constructed to investigate the performance of 

this type of heat transformer, Chapter 3 'Design and Construction'. Initial 

expectations were to achieve an exit temperature from the absorber of between 

150- 200 °C, whilst also dehumidifying the gas stream from an initial absolute 

humidity of 0.20 g- F120 (g- dry air) '  to between 0.03- 0.05 g- r2O (g- dry air) 

Experimental results are presented and discussed in Chapter 4 'Experimental 

Studies'. Coupled with the experimental studies a computer model was written 

to simulate the absorption process, see Chapter 5, 'Computer Simulation 

Studies'. A study of the spray drying process was also undertaken, details and 

results of this study are provided in Chapter 6, 'Industrial Case Study'. 



2. IL Overview. 

At present the application of absorption heat cycles (pumps and transformers) 

is restricted. Absorption cycles are mainly used for air conditioning and chilling 

duties. There are also a few examples of solar assisted absorption cycles which 

provide cooling and air-conditioning in buildings. The most common working 

fluid pair used in absorption cycles is water/ lithium bromide (LiBr). However, 

the use of water/ lithium bromide has its limitations because of crystallisation 

problems. 

35 
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It has therefore become necessary to find alternative working fluids for 

absorption cycles for use in both industrial and domestic applications. 

Extensive work has already been carried out into finding new working fluids, as 

well as the development of new absorption cycles thereby ensuring the 

continued advancement of absorption technology. 

A further area of research involves the use of heat transformers as heat recovery 

systems with the ability to achieve exit temperatures of around 200 °C from the 

absorbers. However, this would require working fluids which were capable of 

operating at high temperatures without decomposing. 

The use of vapour compression cycles as refrigerators and heat pumps is more 

widespread. However, as a result of the Montreal Protocol it has become 

necessary to replace the CFC working fluids commonly used in these cycles. 

Therefore there is a potential market for reliable and efficient absorption cycles 

which would replace vapour compression units. 

The following sections in this chapter deal with the applications of absorption 

cycles and the working fluids currently used in these systems. The potential for 

operating absorption cycles with new working fluids is also discussed. 

2.1 ]EHsto]ry. 

The principles of absorption heat generation date from the beginning of the 191h 

Century when Leslie devised the first absorption cycle. Two vessels, one 

containing sulphuric acid the other water, were connected via a tube. A hand 

pump was used to establish a vacuum within the system thereby increasing the 
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rate of absorption of water into the sulphuric acid. As water vapour was 

absorbed into the acid, the temperature in the water vessel decreased because 

heat was being used to evaporate the water, which was being transferred to the 

acid vessel. Eventually the water temperature dropped to 0 °C, causing the 

remaining liquid to freeze. This process operated intermittently and once the 

mixture had reached a state of equilibrium it was then necessary to regenerate 

the sulphuric acid [15]. 

In the 1850 E. Carré developed the idea further and constructed a sulphuric 

acid/ water engine for the purpose of producing ice. F. Caxrg then patented a 

design for an absorption chiller which used ammonia and water as the working 

pair in 1862 ([141] and [209]). Vapour compression cycles were also under 

development around the same time and they became the preferred system for 

refrigeration because they were more efficient than the absorption cycles. 

The manufacture of absorption machines experienced a renaissance following 

World War I as energy costs rose and the potential for utilising waste energy 

became important. In 1918 Altenkirch outlined the principles for the absorption 

heat transformer (described in Chapter 1, 'Introduction'). Nesselmann (a 

colleague of Altenkirch for some years) provided more comprehensive details of 

the absorption heat transformer in 1933 [210]. 

In the United States in the late 1950s, heat pump cycles, using ammonia/ water 

as the fluid pair, were developed for air conditioning duties. Indeed this type of 

absorption heat pump cornered the market until the mid 1970s, when reliability 

problems forced many manufacturers to stop making these units [39]. 
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2.2 Desirable Fluid Properties. 

As the drive to conserve energy becomes more important, the potential 

applications for absorption heat pumps and heat transformers increases making 

it necessary to develop systems to cope with this. Ammonia/ water and water/ 

lithium bromide systems are limited in their uses making it necessary to find 

new working fluids. The selection of an optimal working fluid pair for a 

particular application is an important parameter as it directly affects the cycle 

design and operation. 

In order to evaluate new working fluids, criteria must be established to screen 

potential candidates. A range of the most important criteria used to evaluate 

potential refrigerant and absorbent mixtures have been proposed, a summary of 

which is provided in Table 2.1 ([3], [19]. [145] 1  [168], [194]). 

The ideal working fluid pair should contain a refrigerant with a high latent heat 

of vaporisation. A large latent heat minimises the flow of refrigerant around the 

cycle, per kW of heat delivered. As a result the capital and operating costs of 

the cycle are reduced. From that point of view water is a particularly good 

refrigerant because its heat of vaporisation is 2257 kJkg. Other potential 

refrigerants are trifluoroethanol (TFE), 2210 kJkg', and hexafluoroisopropanol 

(HFIP), 3604 kJkg' [152]. 

The difference between the pressure levels of the cycle should be kept as small 

as possible in order to minimise pumping requirements. The low pressure side of 

the heat transformer should be greater than 1 bar, so as to avoid using vacuum 

equipment. The high pressure side should not exceed a maximum pressure of 25 

bar, thereby removing the need for expensive, high pressure equipment. In 

addition, it is not recommended to operate the cycle at pressures less than 0.01 
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Property Reason 

Large heat of vaporisation 
(refrigerant) 

Reducing the fluid flow in the 
refrigerant circuit. 

Low pressure differential 
between pressure levels 

Reduces the required pumping 
energy. 

Large difference in the boiling 
points of the refrigerant and absorbent 

No rectification 

Low solution viscosity Reduces the pumping energy 
High solution density Reduces the pumping energy 
Low solution heat 
capacity 

Lower heat flux- smaller, 
cheaper exchangers 

High thermal and chemical 
stability of both fluids 

Do not want decomposition 
during normal operation 

Feasible pressure range Do not want to operate at high 
pressures. Easier to construct- less 
weight; cheaper. 

Feasible temperature range Solution must be able to meet 
design requirements 

Nontoxic 
Nonflammable 
Noncorrosive 
Cheap  
Low environmental impact 
Readily available 

Table 2.1: Desirable mixture properties. 
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bar or greater than 50 bar as this adds considerably to the equipment cost. 

The minimum difference in boiling points between the components should be 

greater than 150 degC so as to avoid the need for a rectification stage. The 

solution viscosity should be less than 10 cp (100 Nsm 2 ) and the specific gravity 

at least 1.5, which means that the solution pumping requirements are kept low. 

The heat capacity of the solution should also be as small as possible, thereby 

reducing the heat flux in the solution heat exchanger and hence reducing its size 

and cost. 

In addition to meeting the above thermodynamic and transport property 

requirements, it is necessary to ensure that the fluid pair has a low toxicity, is 

nonflammable and that its ecological impact is low. In Britain the COSHH' 

regulations control the use of hazardous chemicals. These regulations should be 

consulted to ensure that the correct safety precautions are adhered to during 

normal operation of the absorption cycle[122]. Low cost and high availability 

are also important features which must be investigated when choosing a fluid 

pair. Finally, the corrosive nature of the fluids affects the choice of construction 

materials and hence the capital cost of the equipment. Therefore, it is desirable 

to use a non- corrosive mixture so as to avoid the use of expensive and exotic 

construction materials. All of these factors must be considered when evaluating 

fluid pairs for a particular application. 

'Control of Substances Hazardous to Health 
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23 Absrnption Cycle Applications. 

Table 2.2 illustrates some of the applications of industrial absorption units. 

Other examples of industrial applications have been reported by Plöcker [115] 

and also by CADDET 2[71].  CADDET also provides some examples of 

operating experiences with absorption heat transformers. 

.3i2 bnidistHa11 Applications. 

The literature reviewed only contained a few examples of industrial absorption 

cycles. As such, operating experience with these systems was limited. The 

following section provides more background on the operating conditions and the 

performance of each of the examples as summarised in Table 2.2. Details of 

operational problems experienced with these examples are also discussed. 

Domestic solar absorption chiller, Colorado, USA. Evacuated tubular 

solar collectors, using ethylene glycol/ water as the fluid in the collectors, were 

used to provide heat for an absorption unit. The generating temperature ranges 

between 70- 88 °C. Water/ lithium bromide was used as the working fluid pair 

in a state of the art chiller. As a comparison the operating temperature in the 

generator would need to be 90- 180 "C if ammonia/ water was used as the 

working fluid pair, depending on the type of heat rejection equipment. The 

duty of the chiller was 10.6 kW. [55] 

2 CADDET= Center for Analysis and Dissemination of Demonstrated Energy Technologies 
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Operation I Working fluid J Duty Installed I Use  

Absorption H2 0/ LiBr 11 kW 1977 Space cooling [55] 
cooler 
Heat pump H 2 0/ LiBr 1 MW Oct. Water heating [151] 

1980 using waste heat 
Heat pump 1120/ LiBr 7 MW Nov. Heat to district [93] 

1984 heating using 
excess steam 

Heat H2 0/ LiBr 6.7 MW Oct. Produces steam [23], 
transformer 1985 from waste heat [149] 
Heat H 2 0/ NaOH 200 kW 1993 Inc. energy [58] 
transformer efficiency in 

a pulp mill  
Absorption 1120/ LiBr n/a n/a Chilling. [158], 
machines Heating.  

 

Table 2.2: Industrial examples of absorption cycles. 

Heat pump. Dyeing plant, Osaka, Japan. This particular absorption 

cycle recovered heat from a waste water stream which was available at a 

temperature between 20- 50 °C. The heat source used in the generator was city 

gas, which was readily available and relatively cheap. The government 

promoted the use of non- petroleum fuel sources and a special tariff was 

available for use in energy saving applications. Hot water obtained from the 

unit is delivered at a temperature of about 80 °C. 

A vapour compression heat pump was also considered instead of the absorption 

cycle. However, the efficiency of compression cycles drops drastically as the 

operating temperature increases, whereas the performance of absorption cycles 

remains approximately constant. Therefore the absorption cycle was the 

preferred option due to its greater flexibility of operation. The waste water 

stream was alkaline, a consequence of the dyeing process. Therefore the 

material of construction of the unit was stainless steel (type 316), which was 

also compatible with concentrated lithium bromide solutions. [151] 
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Heat pump. District heating, Trollháttan, Sweden. Two waste energy 

streams from a chemical plant were available at 150 °C and 60 °C (excess 10 bar 

steam and cooling water). They were used as the heat sources for an absorption 

heat pump. The heat pump had a duty of 7 MW, which was used to provide 

hot water to the district heating system at a temperature between 57- 75 T. 

The working fluid pair used was water/ lithium bromide. Corrosion inhibitors 

were added to the solution to prevent corrosion. The cycle had been 100 % 

reliable and worked well even under part load. [93] 

Heat transformer. Ethylene amine plant, Delfzijl, Netherlands. A 

heat transformer with a maximum capacity of 6.7 MW was commissioned in 

Delfzijl in October 1985. The unit was capable of producing 11 tonnes hour' 

of steam at 145°C and 4.6 bar. Water/ lithium bromide was chosen as the 

working fluid. The materials of construction were titanium and stainless steel. 

After six months of trouble free operation at maximum capacity the 

transformer began to leak due to corrosion. The unit continued to operate at 

30% of its maximum capacity without difficulty. 

A study was set up to find ways to reduce the corrosion occurring in the 

transformer. Extensive studies were carried out using different compounds to 

try and find the best inhibitor and the optimum concentration required. At the 

time of construction of the unit there were only about 15 industrial heat 

transformers being used worldwide and operating experience was limited. The 

company felt that a data base should be set up cataloguing operating 

experience and problems, in an attempt to prevent the same problems being 

made by someone else. [149] 



Chapter 2. Absorption Working Fluids. 	 44 

Heat transformer. Evaporation plant, Lund, Sweden. Following the 

successful testing of a 10 kW pilot plant, a full scale heat transformer was 

constructed at a pulp and paper mill in Lund, Sweden. The unit had a capacity 

of 200 kW and was designed to reduce the live steam consumption of the 

evaporation plant by 18.5 %. The heat transformer was incorporated into the 

last evaporator effect of the process and boosts the temperature of the unit 

from 70-101 °C. The working fluid pair in the unit was water/ sodium 

hydroxide, which was chosen because the operators were already familiar with 

its use. An extensive experimental study is under way to test the unit and find 

the optimal operating conditions. 

Tokyo Gas Company Ltd. Absorption machines. In Japan absorption 

air conditioning equipment is readily used ([158], [159], [160]). There are three 

types of absorption machine manufactured by Tokyo Gas Company Limited. 

these are summarised in Table 2.3. 

Type Absorption refrigerating Absorption water Absorption 
machine chiller- heater heat pump 

Function Chilled water Chilled water Hot water 
(4- 15 °C) (4- 15 °C) (50- 80 °C) 

Hot water Steam (140 °C 
(40- 80 °C) or higher) 

Input Steam, City gas, City gas, waste 
to generator hot water exhaust gas hot water, 

waste steam 
Application Air- conditioning, Air- conditioning Hot water, 

cooling for process and heating heating 

Table 2.3: Types of absorption machine used in Japan. 

Absorption machines gained widespread acceptance in Japan following technical 

improvements back in the early 1970s, which made them more efficient, smaller 

and more reliable. These machines have played a major role in providing 

heating and air-conditioning for both individual buildings and district plants. 
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85 % of the machines used were of the chiller- heater type, which were 

developed in 1968. In 1983 a double effect type machine was introduced onto 

the commercial market. Since then, technological advancements have resulted 

in improvements to the double effect cycle. The areas where the heat pump was 

developed included increasing the efficiency of the solution heat exchangers, and 

also reducing the amount of absorbent fluid circulating in the system. Gas was 

used as the heat source for the generator because it was available at a special 

tariff. The machines had an expected lifetime of 15 years. 

The most common working fluid pair used for absorption chillers was water/ 

lithium bromide because water has a high latent heat of vaporisation and also 

because lithium bromide is relatively harmless and chemically stable. 

Ammonia/ water was not used because of its toxic and flammable nature. 

Research in Japan is currently under way to develop a machine which uses air 

as the low temperature heat source, instead of water which is currently used. 

However, during the winter months, when the unit is required for heating, the 

outside air temperature is around 0 °C. At such a low temperature it is difficult 

to use water as the refrigerant. Therefore, a double effect absorption unit has 

been developed which uses R22/ TEGDME (tetra ethylene glycol 

dimethylether) on the low pressure, low temperature side and water/ lithium 

bromide on the high pressure, high temperature side. Another alternative which 

had been suggested was the replacement of water with methanol, thus 

permitting a source temperature less than 0 °C because the freezing point of 

methanol is -97.7 °C. 
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2.3.2 Research Applications. 

A summary of recent research activities relating to all aspects of absorption 

cycles and working fluids is provided in Table 2.4. These examples will be 

discussed in the following section. 

University of Salford, UK. Theoretical and experimental studies. 

Several papers on the topic of heat pumps and transformers were published by 

the group at Salford between 1986- 1988. The papers comprised both 

experimental and theoretical work. The- experimental setup consisted of a small 

glass heat pump from which the performance could be assessed depending on 

the operating conditions and the working fluid. 

The fluids used for the experimental studies were aqueous solutions of lithium 

bromide, lithium chloride, calcium chloride and a (1:1 %w/w) mixture of 

lithium chloride- calcium chloride. Lithium bromide was studied as a possible 

absorbent because of its high solubility in water. favourable heat transport 

properties (high density, low heat capacity) and negligible vapour pressure in 

solution. However, its use was limited due to the risk of crystallisation at high 

concentrations and also its corrosive nature. Lithium chloride and calcium 

chloride were chosen as alternative working fluids because they were not as 

corrosive and were also cheaper than lithium bromide. Unfortunately their 

thermodynamic properties are not as good as those of lithium bromide. 

Analysis of the experimental results for the heat pump showed that aqueous 

lithium chloride cycle achieved higher temperature lifts than a unit using 

aqueous calcium chloride, however, the COP was lower. 
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Institute Working fluid Mode I Research I Reference 
Uni. of Salford, UK H20/ CaC1 +LiC1 HT/ Theor' & [83], 

1120/ LiC1, 1120/ HP Exptt [84], [111], 
CaC1, H20/ LiBr, [61], [62] 
NH3/ H20  

Uni. of Salford, UK H2 0- ethylene HP Expt' [85] 
glycol/ LiBr cooler  

Uni. di Napoli, H2 0/ H2SO4 HT Expt' [27] 
Italy ___ __________ 
Ecole Nat. Sup. Glycerol/ water HP Theor' [94] 
d' Ing', Toulouse, 
France 
Lab. de Energia NH3/ LiNO3  HT/ Theor' [109] 
Solar (UNAM), HP 
Temixco, Mexico 
Uni. of Tech., Delft Trifluoroethanol/ HT Theor' [224], [232] 
Netherlands Pyrrolidone  Expt 1  
Lab. des Sciences, Water/ ethylene HT Theor1  & [100], [103] 
Nancy, France glycol  Expt 1  
NRC, Ottawa, H 2 0/ NaOH HP Theor' [207] 
Canada 
NCL, Pune, H 20/ Lii HT/ Theor1  [76], [77], 
India.  HP _____ [78] 
E.N.S.I.G.C. H 2 0/ CaCl2- LiCJ HP Theor' [47] 
Toulouse, France. 
C.N.R Institute, NH3- 1120/ KOH HP Theor1  [59] 
S. Lucia, Italy.  
U.ni. of Padua, 1120/ LiC1 HT Theor': [199], [200], 
Italy ____ drying [201] 
Uni. of Lund, 1120/ NaOH, HT/ Expt' & [1], [42], 
Sweden H 20/ LiBr HP Theor' [43], [45], 

(see also [58], [70], 
Table 2.2) [128], [129], 

 [130], [131] 

Table 2.4: Absorption heat pump and heat transformer research activities. 

HT- Absorption heat transformer; HP- Absorption heat pump 
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The theoretical studies investigated the performance of both absorption heat 

pumps and heat transformers. The following working fluid pairs were used-

water/ calcium chloride.,water/ lithium chloride (heat pump) and water/ 

lithium bromide, water/ lithium chloride and arnmonia/ water (heat 

transformer) [107]. The results for the heat transformer showed that the COP 

for aqueous calcium chloride was best at low temperatures; while lithium 

chloride solutions were better at high temperatures. 

All the papers reviewed indicated that as the flow ratio (absorbent/ refrigerant 

mass flow) was increased there was a. corresponding drop in the COP. This was 

due to the fact that as the ratio was increased more fluid was circulated around 

the system leading to greater heat losses, an increase in the pumping duty and 

also the heat load of the solution heat exchanger. 

Another project conducted at the University of Salford was a feasibility study of 

an absorption cooler using water/ lithium bromide [68]. Experimental results 

showed that temperatures of around 10 °C could readily be obtained in the 

evaporator without crystallisation problems being encountered. A later study 

used a ternary mixture of water- ethylene glycol/ lithium bromide in an 

attempt to achieve lower operating temperatures in the evaporator. Ethylene 

glycol was used because it has a low freezing point, -11.5 °C, and a high 

miscibility in water. However, adding ethylene glycol to the solution increased 

its viscosity and so a mole ratio of 1 part ethylene glycol: 15 parts water was 

used. Results show that a temperature of 8 °C was possible in the evaporator. 

The heat loads and the COP of the ternary working fluid were higher than of 

the binary mixture. 
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Universita' di Napoli, Italy. Theoretical modelling. A simplified model 

of a heat transformer was developed to investigate the optimum operating 

conditions for the cycle. The performance criteria studied were the COP, the 

enthalpic efficiency and enthalpic value of the heat. The working fluid pair 

chosen was water/ sulphuric acid. This mixture was chosen in preference to 

water/ lithium bromide because it did not suffer from crystallisation problems 

at high absorbent concentrations. Ammonia/ water was discarded as a viable 

option because of its toxicity, flammability and the need for a high operating 

pressure. The results of the study indicate that the temperature lift was 

limited, suggesting that a two stage process would be preferable. 

Ecole Nationale Supérieure d' JEngénieurs, Toulouse, France. 

Theoretical modelling. A simulation model investigating the performance 

of an absorption heat pump cycle utilising water/ glycerol as the working pair 

was studied by this group. Glycerol was chosen as the absorbent fluid instead of 

the commonly used lithium bromide because it is non-corrosive and does not 

pose any crystallisation problems. However, the separation of the water from 

the solution mixture was incomplete, which affected the performance of the 

cycle. In addition, the maximum operating temperature of the system could not 

exceed 200 °C because of glycerol decomposition. This restricted the 

applications which would be suitable for operation with this particular fluid 

pair. 

The cycle was simulated in two different modes: partial evaporation with 

complete condensation of the vapour and partial evaporation with partial 

condensation followed by total condensation, Figure 2.1. The performance of 

the two stage condensation (rectification) cycle was greater than that of the 

single stage, total condensation cycle. In addition, it was also possible to achieve 

99 %w/w pure water vapour from the evaporator using the two stage process. 
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Figure 2.1: Partial evaporation with a) total condensation 	b)two stage con- 
densation. 

Laboratorio de Energia Solar de la UNAM, Temixco, Mexico. Heat 

pump simulation studies. The simulation of an absorption heat pump cycle 

operating at an evaporator temperature of -10 °C was carried out using 

ammonia/ lithium nitrate. The generator operated at a temperature of around 

90 °C, which was of particular interest when using solar energy as the heat 

source for the cycle because it was generally available at this temperature. 

Ammonia/ water was not a feasible alternative because a generator temperature 

of 115 °C would be required in order to produce an evaporator temperature of 

-10 °C. The thermodynamic data used in this research was taken from a paper 

by Ferreira [125]. The results obtained from the simulation study indicated that 

the circulation ratio was as an important design parameter. The Carnot COP 

and the enthalpic COP were also presented for a range of operating 

temperatures. 
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Delft University of Technology, Delft, Netherlands. Absorption heat 

transformer test plant. The Refrigeration Laboratory at Delft University 

have carried out a wide range of research on absorption systems. Their 

investigations include a domestic absorption heat pump, using a ternary 

mixture of methanol/ lithium bromide- zinc bromide as the working fluid. 

Other work involved a solar driven refrigeration machine, using ammonia/ 

water as the working mixture and also fundamental research into heat and mass 

transfer phenomenon in falling film absorbers. The latest project concerned the 

design and construction of a 20 kW heat transformer. 

After an extensive literature survey the group selected trifluoroethanol (TFE)/ 

pyrrolidinone (Pyr) as the most promising working pair despite the relative 

toxicity and cost of TFE. Advantages of this pair included a difference in 

boiling points between the components of 171 °C, avoiding the need for 

rectification; high solubility of the refrigerant in the absorbent; no 

crystallisation of the solution; and moderate refrigerant vapour pressures at 

high temperatures, thereby, reducing equipment costs. The solution also has a 

low viscosity and is thermally stable up to 200 °C. 

A computer simulation model of the heat transformer was also developed in 

conjunction with the test rig to validate results [232]. The work of Zhuo 

investigated the influence of varying the operating conditions of the transformer 

so as to find its optimum performance. The two parameters which were of 

primary interest were the exit temperature and the amount of useful heat 

delivered. 
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Laboratiore des Sciences, Nancy, France. 'Reverse-rectification' heat 

pump. There is a demand for heat pumps to deliver heat at temperatures 

greater than 150 °C. However, it is difficult to construct a heat pump to achieve 

this. Common working fluids are unsuitable for such high temperatures: 

aqueous lithium bromide is highly corrosive, ammonia would require very high 

operating pressures and fluorocarbons are thermally unstable. A novel heat 

pump was constructed based on a multi-stage absorption column. Pure liquid 

absorbent enters at the top of the column where it is mixed with the refrigerant 

vapour causing the temperature of both streams to increase, the heat of 

absorption is then extracted. A test rig using a pentane/ octane mixture as the 

working pair obtained an exit temperature of 115 °C. The system was also 

successfully tested with a water/ ethylene glycol mixture achieving an exit 

temperature of 185 °C. 

National Research Council, Canada. Theoretical absorption heat 

pump for wood drying. An open cycle absorption heat pump has been 

designed with a view to recovering waste heat from a wood drying operation. 

The cycle was designed using sodium hydroxide which is less corrosive and 

cheaper than lithium bromide. The purpose of the plant was to reheat and 

dehumidify an air stream from inlet conditions of 77 °C and 0.15 g- H o  

(g- dry air)' to 106 °C and 0.11 g- Ho (g-dry air)—I , using a 60 %w/w sodium 

hydroxide solution. The next stage of this study was to be the construction of a 

laboratory scale rig to test these design conditions. However no other papers by 

this research group were found and so it was not known how well the cycle 

performed. 
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National Chemical Laboratory, Pune, India. Performances of a heat 

pump and a transformer. Design data were provided for various absorption 

cycles using a water/ lithium iodide mixture as the working medium. The 

cycles investigated were an absorption heat pump for cooling and heating and a 

heat transformer ([76], [77], [78]). The group also determined experimental 

thermodynamic data for the binary mixture, presenting it in a form suitable for 

use in computer programs. Thermodynamic data was also produced for a 

variety of other working fluid pairs ([751, [79]). 

E.N.S.LG.C., Toulouse, France. Theoretical studies and data 

measurements. The ternary mixture, water/ calcium chloride- lithium 

chloride (1: 1 %w/w), was proposed as an alternative working fluid mixture for 

use in absorption heat pump cycles. The preliminary experimental program 

established a set of reliable thermodynamic equations for this ternary fluid. 

Simulation studies investigating the performance of a heat pump cycle found 

that the COP of the cycle, operating with the ternary mixture, was inferior to a 

cycle employing water/ lithium bromide. It was concluded that the combination 

of cycle performance and fluid cost made the ternary mixture a viable 

alternative for use in absorption cycles ([47]). 

C.N.R Institute, S. Lucia, Italy. Theoretical study of an absorption 

heat pump. A novel absorption heat pump cycle was proposed, which used 

two refrigerant- absorbent mixtures. The proposed working fluids were 

ammonia/ water and water/ potassium hydroxide. Conventional absorption 

cycles utilising ammonia/ water as the working mixture require rectification to 

ensure complete separation of the ammonia and water in the evaporator. This 

particular cycle replaced the normal evaporator used with a desorber, Figure 

2.2. The water/ ammonia mixture leaving the absorber entered the desorber, 
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where rich potassium hydroxide solution absorbed the water. The ammonia was 

then evaporated and returned to the absorber. In the generator water was 

vaporised, before then being fed to the condenser. The liquid water was then 

mixed with the ammonia vapour in the absorber. Early analysis of the 

performance of the heat pump was encouraging, however, a more detailed study 

and optimisation was being conducted. 

GENERATOR 	

water vapour__ 

weak KOH 
solution 

SOLUTION HEAT 
EXCHANGER 

rich KOH 
solution 

water/ ammonia 

ammonia vapour 

Figure 2.2: Absorption cycle operating with NH 3/ H 2 0 and H 20/ KOH. 

University of Padua, Italy. Theoretical studies with reference to air 

dehumidification. Scalabrin developed an absorption system for the 

dehumidification of dryer exhaust streams. A schematic of the drying operation 

with the absorption cycle is shown in Figure 2.3. The absorption system 

proposed uses a direct contact process to dehumidify the dryer exhaust stream 
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with aqueous lithium chloride. The absorbent solution is then regenerated by 

using an external air source to strip the absorbed water from the liquid stream. 

The materials being dried are heat sensitive, therefore the temperature of the 

dryer was low, ranging between 20- 48 °C. 

humid air 

Figure 2.3: Open cycle low temperature dryer- dehumidifier. 

The purpose of the research was to verify the validity of using an absorption 

system to dehumidify dryer exhaust streams. A simulation model of the 

absorption and desorption processes was developed, which was used to predict 

the efficiency of the system operating over a range of conditions. 

University of Lund, Sweden. Theoretical and Experimental Studies. 

A wide range of activities have been undertaken by the Chemical Engineering 

Department (I) in Lund. The research covers both theoretical and experimental 

studies. Some of the work was concerned with developing a heat recovery 

system for the pulp and paper industry. In fact, a large scale (200 kW) heat 

transformer, using aqueous sodium hydroxide as the working fluid, was 

commissioned in 1993 at a local pulp and paper mill (Section 2.3.1). 
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Other research includes theoretical studies investigating the efficiency of both 

absorption heat pumps and transformers; the development of two computer 

simulation packages; experimental property prediction of lithium bromide. The 

simulation packages allow process flowsheets of different absorption systems to 

be designed. The program is highly flexible and estimates operating conditions 

and heat output for any system input [58]. The working fluid used in these 

computer packages is aqueous sodium hydroxide. 

Summary. The research applications mentioned above cover a broad range of 

topics. These include heat pumps for air-conditioning, cooling and heating; and 

heat transformers. Several of the workers (University of Salford, United 

Kingdom; National Chemical Laboratory, India) provided details of the 

operating conditions and theoretical performance for heat pump and 

transformer cycles. These are of particular use in the design of absorption 

cycles. The working fluids are becoming more specialised for each application, 

in an attempt to increase the performance of the cycle. For example, ethylene 

glycol was proposed as a third component in the mixture water- lithium 

bromide in an attempt to lower the evaporator temperature in a chilling 

application without causing freezing. Other workers have investigated the 

potential of utilising absorption cycles in novel applications. 
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2.4 Existing Working Fluids. 

Early absorption machines used ammonia/ water as the working fluid pair for 

applications such as refrigeration and chilling. The main reasons for the use of 

ammonia were its ready availability, low cost and high heat of vaporisation 

(1261 kJkç') Other favourable properties of the mixture are its negative heat 

of absorption and thermal and chemical stability. 

However, ammonia is toxic and flammable. In Japan it is difficult to 

commercialise equipment which uses ammonia because of strict legislations 

[118]. It is also necessary to provide a rectification section to ensure the 

complete separation of the ammonia and water, making the cycle more complex. 

The use of ammonia/ water for high temperature applications is also restricted 

because ammonia exhibits high vapour pressures at high temperatures. 

In the 1950s lithium bromide became the preferred working fluid in absorption 

cycles. It exhibited the same favourable properties as ammonia/ water but was 

nontoxic. In addition there was no need for a rectification section as lithium 

bromide has a negligible vapour pressure. The flow of refrigerant around the 

system was reduced as the heat of vaporisation of water, the refrigerant, was 

about twice that of ammonia (2260 kJkg'). 

An absorption cycle using water/ lithium bromide does not need to operate at 

high pressures. It can be seen from the Figure 2.4 that a pressure of a few bar 

enables operation at a high temperature. In most cases the high pressure side of 

the cycle would be atmospheric, while the low pressure side operates at an 

easily achieved vacuum. 

However, lithium bromide does have limitations. Lithium bromide mixtures are 
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prone to crystallisation at high concentrations and low temperatures. The 

solubility line for aqueous lithium bromide is shown on the P-T-x diagram, 

Figure 2.4. Normally heat pump applications use lithium bromide at 

concentrations up to about 65 %w/w. These cycles can be operated without 

much difficulty providing the temperature of the concentrated absorbent was 

maintained above 45 °C (crystallisation temperature of a 65 %w/w solution). In 

such systems, during shut down of the plant, it would be necessary to dilute the 

absorbent concentration to less than 60 %w/w so as to prevent crystallisation. 

(The crystallisation temperature of a 60 %w/w solution is about 10 °C.) 

Another disadvantage of aqueous lithium bromide as a working fluid was that 

hot, concentrated solutions of lithium bromide are highly corrosive. Therefore, 

it is necessary to use either an expensive construction material, such as stainless 

steel (type 316), or corrosion inhibitors to reduce the corrosiveness of the 

solution. 

25 Potential Working Fluids. 

An extensive literature search was carried out by Robert Macriss [168] for the 

American Institute of Gas Technology, revealing over 300 publications 

concerning absorption working fluids. About half the papers contained primary 

sources of thermodynamic data on absorption working fluids. However, gaps in 

the data were identified, thereby hindering the development of new absorption 

systems. A lot of thermodynamic data remains 'in- house' because of its 

commercial relevance. Macriss' survey identified 20 different possible 

refrigerants and 59 absorbents, including binary, ternary and multicomponent 

systems. The key fluid systems are listed in Table 2.5. 
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LiBr concentration. (%v/w) 

Temperature ( C) 

Figure 2.4: Vapour liquid equilibrium data for 1120/ LiBr. 

NH3 ! H 2 0 CH30H/ LiBr- ZnBr2  R22/ DMETEG * 

NH3- H 2 0/ LiBr CH30H/ ZnBr2 * R124/ EFTE 
NH3- H 2 0/ LiNO 3  CH 3 NH 2- 1120/ LiBr R133a/ NMP 
H2 0/ LiBr * R21/ DMETEG R133a/ DMETEG 
1120/ LiBr- LiC1 R22/ DMF TFE/ DMEDEG 
H2 0/ LiBr- ZnC1 2  I R22/ DMEDEG TFE/ NMP 
CH3 0H/ LiBr * 

Table 2.5: Key absorption fluid systems identified by Macriss. 

multiple sources quoted 
See Tables 2.11 and 2.12 for further details on these working fluids. 
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Instead of using water as a refrigerant, methanol has been suggested for use in 

chilling applications where the evaporator temperature is below 0 °C. Three 

component systems (NH 3- H 20/ LiBr; NH 3- H2 0/ LiNO3 ; 1120/ LiBr- ZnC1 2 , 

CH3 0H/ LiBr- ZnBr 2 ) have also been proposed. For example, lithium bromide 

can be added to the ammonia/ water system to reduce the water partial 

pressure and thus avoid the need for rectification. Another reason for adding a 

third component to a mixture is to reduce costs of the working fluid, without 

drastically affecting the cycle efficiency. This is the case with zinc chloride 

which has been added to binary mixtures of lithium bromide solutions. 

The search for new absorption fluid pairs can be split into two categories: 

organic and inorganic systems. The University of Graz, Austria and the 

University of Essen, Germany, have carried out extensive searches for new 

organic absorption fluid mixtures. In addition some Japanese scientists have 

examined the thermophysical properties of electrolytic salt solutions. For 

example, Kashiwagi investigated the influence of additives on the performance 

of an absorption cycle when combined with commonly used absorption fluid 

pairs [152}. The work of each of these research groups is discussed in the 

following sections. 

Commercial studies have also been carried out in order to establish new 

compression and absorption cycle working fluids. Access to this information was 

restricted and therefore not available for review. However, it was felt that, with 

respect to absorption working fluids, similar selection procedures and indeed 

final proposed mixtures to those presented here were obtained. 
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2.5.1 Organic Fluid Systems.. 

Both of the research groups discussed below, although using different selection 

criteria, adopt an initial screening process to find the most promising fluid 

pairs. Further tests were then carried out to evaluate the best mixtures. The 

initial screening processes used in theses studies focused upon using predictive 

methods to establish potential fluid mixtures. 

University of Graz, Austria. 

Extensive work was carried out at the University of Graz, Austria by Moser, 

Narodoslawsky and Otter ([88], [89], [60]) into the thermodynamic properties of 

new working fluids. 

The experimental determination of thermodynamic properties is time 

consuming and costly especially when screening a large number of compounds 

to investigate their potential as absorption working fluids. Therefore, 

Narodoslawsky ([87], [88], [89]) established fundamental criteria based upon 

pure component and mixture properties that were used to screen potential 

refrigerant- absorbent mixtures. A summary of the pure component properties 

are listed in Table 2.6 and the desirable mixture properties outlined in Table 2.7 

(Reproduced from [89]). 

The mixing properties of the fluid system were based upon finding the 

maximum excess Gibbs free energy of the mixture, AGEMax  and its location. 

Xmaa,. The Gibbs free energy is temperature dependent and related to the heat 

of mixing, Ah E , by Equation 2.1. However, the equation was difficult to solve 

and a simpler one parameter equation was proposed by Narodoslawsky, 
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Equation 2.2, where 'd' was the coefficient of temperature dependence. 

In addition, the excess Gibbs free energy can be related to the components' 

activity coefficients, using Equation 2.3. Therefore, if AG aX  was known for 

a particular mixture, it would then be possible to determine the activity 

coefficients of the components. Hence, for a given mixture composition and 

temperature it would be possible to determine the vapour pressure of the 

mixture. Consequently, the operating conditions of an entire absorption cycle 

can be simulated and studied from a knowledge of the mixture properties. 

Critical Critical Reduced Latent heat 
pressure temperature I  boiling point of vaporisation 

AHP Refrigerant High Low [High High 
Absorbent Low 

[ 

High [Low High 	—d 
AHT Refrigerant Low High Low High 

Absorbent Low High High High 

Table 2.6: Desirable critical parameters for working fluids mixtures. 

I 	G ax 	I 	Xmax 	I 	AhE 	- 	d 	II 
AHP -1000 to -2000 Jmo1' High Moderately exothermic Greater 

to slightly endothermic than 1 

AHT 	Slightly positive 	Medium to 	Exothermic 	Less 
to highly negative 	high 	than 1 

Table 2.7: Mixture criteria for optimum working pairs. 

8(zGEIT) 
- zhE 	 (2.1)  

ô(11T) 	- 	 (.) 

AG E = d.hE 	 (2.2) 

AG  E 
 =(xln-y) 	 (2.3) 

Narodoslawsky [87] also investigated the effect of varying the parameters LGE, 

x and d on the performance of both absorption heat pump and heat transformer 

cycles. The loci of the optimal mixture properties for both of these systems are 
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illustrated on a Gmehling 3  diagram, Figure 2.5. The results obtained indicated 

that the most interesting fluid combinations for both absorption heat pump and 

heat transformer applications appeared in quadrants III and IV, Figure 2.5. For 

absorption heat pump applications it was desirable to have a fluid pair which 

exhibited a moderately exothermic to slightly endothermic heat of mixing, while 

the Gibbs free energy was negative and weakly dependent on the temperature. 

Fluid mixtures for heat transformer applications had to have a heat of mixing 

which was highly exothermic and a negative Gibbs free energy, although a 

slightly positive Gibbs free energy was tolerated. In boths cases a strong 

negative deviation from Raoult's Law was required indicating that the 

refrigerant and absorbent have a strong affinity for each other. 

A computer program was written by the Graz researchers [60] to evaluate the 

mixing properties of different fluids and to assess their potential as absorption 

working fluids. The UNIFAC4. computer package was used to calculate the 

physical properties of the pure components and hence the mixing properties. 

The UNIFAC model is used for a wide range of chemical engineering purposes. 

It is a renowned as a reliable computer package.(see Section 2.6). 

The results from the screening process highlighted 12 possible refrigerants, 

which are listed in Table 2.8, and 36 possible absorbents. The refrigerants 

suggested were all hydrocarbons- alcohols and amines. Details of the 

performance of different types of refrigerants with a variety of different 

absorbent molecules is provided in the following paragraphs. A short list of the 

most promising fluid combinations is provided in Table 2.9. 

3 Gmehling, J and Kolbe, B: "Fluid phase equilibria". Volume 13 (1983); pp227- 242. 
4 UNIversal Quasi Chemical functional Groups activity coefficients 
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Y>1 

y<1 

E Figure 2.5: AG M,,, versus Lhshowing areas of optimal working pairs. 
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Refrigerant Chemical 
formula 

Boiling point 
(°C) 

Heat of 
vaporisation (Jmo11) V 

Carbon tetrachloride CC14  76.6 30010 
Chloroform CHC13  61.1 29720 
N- hexane C6 H14  68.7 28870 
N- propanol C3 H7 0H 97.2 41780 
Ethanol C2 H5 0H 78.4 38760 
Methanol CH30H 64.6 35270 
N- propylamine C3 H7NH2  48.7 29720 
Ethylamine C2 HS NH2  16.5 28050 
Methylamine CH3 NH2  -6.2 24570 
Dimethylamine (CH3 ) 2 NH 6.8 26500 
Trimethylamine (CH3 )3N 2.9 24110 

11  Diaminoethane (CH 2 NH2 ) 2  117.3 41860 

Table 2.8: Proposed refrigerants by the University of Graz. 

Discussion of refrigerants with various absorbents: 

Hydrocarbons. Partially halogenated hydrocarbons were more promising 

refrigerants than fully halogenated hydrocarbons. Unfortunately only carbon 

tetrachloride and chloroform were tested using the UNIFAC model, as no other 

halogenated molecules were available. Therefore, chloroform was the preferred 

refrigerant. The most suitable absorbents for use with chloroform were ethers, 

esters and ketones. Table 2.9 lists the best combinations of absorbents with 

chloroform these include two ketones- acetophenone (APN). N- methyl 

pyrrolidinone (NMP) and one ester- diethylmalonate (DEM). However, the use 

of chloroform was discouraged because of its toxicity. 

Alcohols. Alcohols also showed particular promise as refrigerants. However, 

two of the most important criteria for the selection of a working pair are the 

difference in the boiling points of the two components and also the heat of 

vaporisation of the refrigerant. If an alcohol were used as a refrigerant there 

a 
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would need to be a trade- off between the two because as the refrigerant's 

molecular weight increased, the boiling point and heat of vaporisation also 

increased. Therefore, the best refrigerants were felt to be methanol and ethanol, 

which both had reasonably high heats of vaporisation and moderate boiling 

points. The use of methanol was restricted to low temperature as it 

decomposed at temperatures above 120 °C. 

Long chain alcohols have also been used as absorbents in combination with 

alcoholic refrigerants. The results indicate that, the higher the degree of 

substitution on the long chain alcohol, the more suitable it is for use as an 

absorbent working fluid. The addition of an amino group to the absorbent helps 

to increases the LG ax  and Xma of the mixture and hence its performance. 

The use of an aromatic alcohol, with a rising number of hydroxylic groups, as 

an absorbent is also highly promising. Two possible absorbents are 

dihydroxybenzene (DHB) and trihydroxybenzene (THB). However, care must 

be taken when the benzene derivatives (DHB, THB) because of their 

carcinogenic nature. 

It is also possible to use ethers as absorbents; however, IG a  falls as the 

number of ether groups and the chain length of the ether increases. Lower 

molecular weight alcohols shift the location of LG az  to higher refrigerant 

concentrations, Xmas,. Therefore, the most interesting combination of alcohol-

ether would be methanol and dimethyl ether tetra ethylene glycol (DMETEG). 

Ketones are of particular interest as absorbents, especially heterocyclic 

molecules such as NMP. The mixing properties improve as the molecular weight 

of the refrigerant decreases. The best combination is methanol- NMP. 
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Amines. Amines can be used as refrigerants with long chain alcohols as the 

absorbent. The longer the alcohol chain and the more hydroxyl groups on the 

absorbent, the more interesting the combination. The best combinations are 

diaminoethane with either 1,4 butanediol or glycerol. 

Refrigerant Absorbent LB.Pt 
(degC) 

Refrigerant Absorbent LB.Pt 
 (degC) 

CHC13  APN 142.9 C 2 11 5 011 THB 230.6 
CHC13  DEM 137.9 C3 H70H DHB 187.8 
CHC13  NMP 139.9 C3 H70H THB 211.8 
CH3 0H NMP 136.4 (CH 2 NH 2 ) 2  1,4- BD 117.7 
C 2 11 5 0H DHB 206.6 (CH2 NH 2 ) 2  GLY j 	171.7 

Table 2.9: Proposed working fluids pairs by the University of Graz. 

University of Essen, Germany. 

An extensive experimental program was carried out at the Institut für 

Angewandte Thermodynamik und Klimatechnik, University of Essen, by 

Benade, Bokelmann, Ehmke, Renz, Nowaczyk, Schmidt and Steimle. The scope 

of their study was to find promising working pairs for use in absorption cycles 

and determine the main properties of the mixture. The basis of their studies 

concentrated upon finding a fluid pair which had high thermal and chemical 

stabilities and which also exhibited a high solubility of the refrigerant in the 

absorbent. Their research was concentrated on organic systems. 

The high solubility of a system depended upon the formation of hydrogen bonds 

between the molecules [114]. It was therefore, necessary to use a refrigerant 

which was a polar, covalent molecule with a strong electron affinity, while the 

absorbent had to be an electron donor. 
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The main refrigerant groups were: alcohols, carboxylic acids, halogenated 

hydrocarbons and primary/ secondary amines. The main absorbent groups 

were: alcohols, esters, ethers, ketones and carboxylic acids. 

Pointwise measurements of the solubility of 150 fluid pairs were taken and the 

most promising were investigated further. These studies led to the identification 

of ten possible fluid pairs, which are listed in Table 2.10 ([17], [18], [19], [114]). 

The next stage of the project was to obtain accurate property measurements for 

the fluid pairs. The properties investigated were the fluid density, viscosity, heat 

capacity and the excess heat of mixing. The thermal stability of the systems 

were also investigated. Charts for the vapour pressure and phase equilibrium for 

these systems have also been produced. 

Refrigerant 
(Electron 
acceptor) 

Absorbent 
(Electron 
donor) 

LB. Pt 
(degC) 

Refrigerant 
(Electron 

 acceptor) 

Absorbent 
(Electron 
donor)  

AB. Pt 
(degC) 

TFE DMPU 158 HFIP Sul 229 
TFE NMP 127 PFPA DMETEG 178 
TFE Pyr 171 R22 DMETEG 234 
HFIP DMPU 174 R22 DMETrEG 257 
HFIP DMETEG 217 R123a DMETEG 281 

Table 2.10: Proposed working fluid pairs by the University of Essen. 

The TFE- NMP system operated very well over a wide concentration range 

enabling it to used at low evaporator temperatures and high generator 

temperatures. The vapour pressure at low temperature is below atmospheric 

pressure. Therefore there was a possibility of operating a two stage system 

without operating at too high a pressure on the high pressure side of the second 

stage. Another possible working fluid pair, which was proposed was the system 

TFE- Pyr, which could achieve an exit temperature of around 200 °C leaving 

the absorber [19]. This particular working pair was used in the experimental 

work of Westra [224] and also the simulation studies of Zhuo [232], although not 

at very high temperatures. The use of dimethylpropyleneurea (DMPU) as an 
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absorbent in combination with TFE also showed favourable results, although 

this combination was not a good as the fluid pairing of TFE- Pyr. 

The major drawback with these systems is that TFE is highly toxic and 

flammable and therefore its use as a refrigerant should be discouraged. Another 

drawback of the TFE- NMP system is that the difference in the boiling points is 

only 127.4 °C, which is less than for the ammonia/ water system, making it 

necessary to provide a rectification stage. 

Systems containing hexafluoroisopropanol (HFIP) have also been tested 

successfully but it is unlikely that it will be used in absorption cycles because it 

is toxic, see Tables 2.11 and 2.12. The same is true for pentafluoropropionic 

acid (PFPA). The working fluid pairs of dichiorotrifluoroethane (R123a)-

DMETEG and chiorodifluoromethane (R22)- DMETEG have successfully been 

tested. However, the cycle performance achieved was less than that for the fluid 

combination of TFE- NMP. Both of the mixtures do have certain advantages 

over TFE- NMP as they both have low toxicities and flammabilities. Also the 

difference in the boiling points of both mixtures is greater than 200 degC 

therefore there is no need for rectification. The refrigerant R22 has also been 

tested with DMETrEG and the results obtained indicate that this combination 

is better than that of R22- DMETEG. The potential use of R22 as a refrigerant 

is promising but its use for high temperature applications is restricted because 

of the high pressures which would be required. 
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Abbreviation Chemical 
name 

B.Pt 
(°C)  

Toxic Flamm. 

CHC13  Chloroform 61.1 High Low 
CH3 0H Methanol 64.6 High High 
C2 H5 OH Ethanol 78 High High 
C31170H N- Propanol 97.2 High High 
(CH2 NH 2 ) 2  Diaminoethane 

or ethanediamine 
118 Mod- high Mod 

HFIP Hexafluoroisopropanol 58 High Low 
PFPA Pentafluoropropionic acid 96- 98 High Low 
R21 Dichlorofluoromethane 9 High Low 
R22 Chlorodifluoromethane -41 Low Low 
R123a Dichiorotrifluoroethane 29 Low Low 
R124 Chiorotetrafluoroethane -12 Low(?) Low 
R133a Chiorotrifluoroethane 6 High Unknown 
TFE Trifluoroethanol 74 High Mod 

Table 2.11: Summary of organic refrigerants. 

2.5.2 Inorganic Fluid Systems.. 

Much of the work undertaken using inorganic fluid systems was based upon 

extending the operating limits of the binary fluids of ammonia/water and 

water/ lithium bromide by addition of one or more component. The paper by 

Kashiwagi [152] gives an extensive review of possible additives for both systems 

as well as some organic fluid mixtures. 

Other electrolytic solutions. 

Chaudhari et al [111] have carried out experiments using lithium chloride, 

calcium chloride and a composite mixture of both as an alternative to lithium 

bromide. These chemicals do not pose a health risk and calcium chloride is far 

cheaper than lithium bromide. In addition, lithium chloride is less soluble than 
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Abbreviation Chemical B.Pt Toxic Flamm. 
name (°C)  

1 1  4- BD 1,4- Butanediol 235 Mod Low 
APN Acetophenone 202 High Low 
DEM Diethylmalonate 199 Low Low 

or ethylmalonate  
DHB Dihydroxybenzene 285 High Low 

or 1,4- benzenediol 
or hydroquinone  

DMA N, N- dimethylacetamide 165 Mod Low 
DMF N, N- dimethylformaznide 153 Low- mod Mod 
DMPU 1,3- dimethyl 3,4,5,6-tetra 

hydro-2(1H) pyrimidinone 232 Low (?) Low 
(Dimethyipropyleneurea)  

DTG Dimethyl ether tetra 
or DMETEG ethylene glycol 275 Low Low 
or TEGDME  
DTrG Dimethyl ether 216 Low Low 
or DMETrEG triethylene glycol  
DMEDEG Dimethyl ether 162 Low Low 

diethylene glycol  
ETFE Ethyl tetrahydro 158 Unknown Unknown 
or EFTE furfuryl ether  
GLY Glycerol 289 Low Low 

or glycerine  
NMP N- methyl pyrrolidinone 201 Low- mod Low 
Pyr Pyrrolidinone 245 Low Low 
Sul Sulfolane 287 Low- mod Low 

(Tetramethylene sulfone)  
THB 1,2,3- Trihydroxybenzene 309 High Low 

Pyrogallol 

Table 2.12: Summary of organic absorbents. 

Toxicity and flammability data taken from SAX[198]. 
N.B. Flammabilities were calculated from the British Standard, 

using the flash point (F.Pt) of the chemical: 
F.Pt <32 °C 	High 
32°C<F.Pt<60°C Mod 
60 °C < F.Pt 	Low 
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lithium bromide, which restricts the range of operating conditions of a cycle 

employing this mixture. Using these alternatives the performance of a heat 

pump was not as good as with the water/ lithium bromide fluid pair although 

the results were comparable. 

Patil et al ([75], [79], [80]) carried out an experimental programme to 

investigate a wide range of binary electrolytic solutions. The properties 

examined included vapour pressure, solubility, specific gravity, heat of mixing 

and VLE data for the solution. The results are documented in several papers 

and are in a form suitable for inclusion in a computer program. Therefore these 

equations could be used for simulation studies, allowing comparison of different 

working fluid mixtures and removing the need for individual experimental 

studies. The vapour pressure of the each of the fluid mixtures is characterised 

by equation 2.4. The parameters A, B and C are concentration dependent and 

are defined by the Equations 2.5, 2.6 and 2.7 (concentration units: %w/w). 

log 10  P(kPa) = A + B 
	C 

T(K) 
+ 

T2(K2) 	
(2.4) 

	

A = A 0  + A1 .x + A 2 -x 2  + A3 .x 3 	 (2.5) 

	

B = B0  + B1 .x + B2 -x 2  + B3 .x 3 	 (2.6) 

C = Co  + CI-x+ C2 -x 2  + C3 -x 3 	 (2.7) 



Chapter 2. Absorption Working Fluids. 	 73 

Additives for the water/ lithium bromide system. 

Several studies have been carried out using a variety of salt compounds in an 

attempt to improve the operability and efficiency of the water/ lithium bromide 

system. Table 2.13 lists some of the compounds which have been used and the 

reasons for their use. 

lyoki [147] and Eisa et al [851 have also suggested that ethylene glycol could be 

added to the binary mixture for use in refrigeration equipment. The ethylene 

glycol would reduce the freezing temperature of the water allowing a lower 

temperature to be achieved in the evaporator. However, the viscosity of the 

ternary mixture increases as ethylene glycol is added. The mole ratio of water 

to ethylene glycol used by Eisa was 15:1 and that used by lyoki was 10: 1. Eisa 

reported that the ternary mixture actually gave a higher COP than that of 

water/ lithium bromide. 

Additive Reason 

Lithium iodide Lower crystallisation temperature. 
Lithium thiocyanate Greater cycle efficiency. 
Lithium nitrate Lower CryStn  temp. Corrosion inhibitor. 

Industrial high temperature amplifier. 
Lithium chloride Greater efficiency- but reduces operating range. 
Ethylene glycol Greater efficiency. Lower crystallisation temperature. 
Zinc chloride Greater efficiency. Lower crystallisation temperature. 
Lithium chloride! 
lithium thiocyanate  

Lower crystallisation temperature. 

Lithium molybdate, 
Lithium chromate 

Corrosion inhibitors. 

Table 2.13: Additives for the water/ lithium bromide working fluid. 
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Example of a multicomponent system. 

lyoki and Uemura [148] have investigated the influence of adding other 

components to the binary working fluid of water/ lithium bromide in an 

attempt to reduce the risk of crystallisation. Initial work concentrated on the 

addition of zinc chloride to the binary system, which worked satisfactorily. 

Subsequent work involved the addition of calcium bromide to the ternary 

mixture. The optimum weight ratio was found to be 1.0: 1.0: 0.13 for each of 

lithium bromide, zinc chloride and calcium bromide respectively. The thermal 

and, physical properties of the system were then determined experimentally and 

reproduced in a form which could easily be incorporated into a computer 

simulation program. 

A comparison of the P-T-x plots for H 2 0/ LiBr system (Figure 2.4) and for the 

H2 0/ LiBr + ZnC12  + CaBr2  system (Figure 2.6) has shown that the solubility 

range and the maximum concentration of the solution have been increased 

through the inclusion of additives. The cost per kilogram for a 50 %w/w 

solution has been reduced from £26 (LiBr) to £18 

(1.0: 1.0: 0.13- LiBr: ZnC1 2 : CaBr2 ). 5  It can be seen from the P-T-x diagram 

that for a given pressure and concentration, the temperature of the 

multicomponent mixture is lower than that of the binary, thereby reducing the 

maximum possible temperature within a cycle. 

5The prices only serve to give an indication of the difference in costs of the two systems. 
The chemical were priced at 1993 levels and were taken from a commercial catalogue dealing 
with small quantity chemicals. The cost for bulk purchases of these chemicals would be less 
than this. 
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Figure 2.6: Vapour liquid equilibrium data for H 2 0/ LiBr + ZnC1 2  + CaBr2 . 
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2.6 Computer Packages and Models. 

Physical Property Prediction. 

Property prediction for highly non- ideal mixtures of polar, H-bond and 

electrolytic molecules can be achieved in two ways [106]. The first method 

involves the interpolation/ extrapolation of experimental data, which is fitted to 

a suitable model. There are several models currently available to achieve this. 

They include methods by Margules (quadratic, cubic and 4" order equations), 

Van Laar and Wilson. The Van Laar equations are the easiest to use and only 

involve two parameters. 

There are other methods of property determination which are based upon the 

size and number of interactions between the functional groups of a compound. 

The ASPEN+ software utilises several of these methods- Amborse, Benson, 

Bondi, Joback, Lydersen, Reichenberg and UNIFAC- to estimate the pure 

component and mixture properties of a wide range of compounds [9]. ASPEN+ 

is a particularly useful computing package because as well as predicting the 

properties of compounds held within its own data banks, it can also be used to 

estimate the properties of user defined fluids, based upon the group 

contributions within the molecule. 

The UNIFAC method makes use of the liquid phase activity coefficient to 

estimate the physical properties of a mixture. It is a reliable and well known 

computer package, however, it is only available for organic compounds and 

water. There are a large number of functional groups available (44) but data for 

interaction pairs is limited. The vapour- liquid equilibria determined by 

UNIFAC are generally accurate. However, the package has experienced some 
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problems in predicting the heat of mixing. Larsen' proposed a modified 

UNIFAC, which compromises the number of different functional groups (21) 

available in order to provide better temperature dependence, giving better 

prediction for the heat of mixing. The interaction pairings of the modified 

model are shown in Figure 2.7 Otter [60]. 

M U M 	 0 00Cc 	zz  lizi 

00 L8Ez 	ZL0cc 0 
0< 

Figure 2.7: Available groups and interactions for the modified UNIFAC model. 

6 Larsen, B. L et a! : Industrial Engineering Chemical Research. 1987. Volume 26. p 2274  
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2.6.2 Water/ Ethylene Glycol Mixture Property 

Prediction.  

An example of property prediction using the ASPEN+ computer package was 

carried out for the water/ ethylene glycol mixture. The mixture physical 

properties which were determined included the enthalpy, entropy, heat capacity 

and density of the liquid. In addition, the activity coefficients, viscosity and 

thermal conductivity for the individual components were also estimated. 

F- T- x and T- x- y diagrams were constructed from the derived data and 

compared with actual data supplied by ICI, Figures 2.8 and 2.9. The two data 

sets showed slight discrepancies between the dew and bubble point curves, 

Figure 2.9. However, it was not felt that these differences would give a false 

indication of the suitability of this mixture for use in an absorption cycle. The 

ASPEN+ program therefore provided the preliminary data needed for the 

preselection of a working fluid, thereby saving time and money. Prior to the 

selection of water/ ethylene glycol as a working fluid pair, a detailed 

experimental programme would need to be undertaken to establish more 

accurate physical properties. 
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27 Choke of Working Fluids for Heat 

Recovery from Dryers. 

The objectives of this project were to dehumidify and reheat humid dryer 

exhaust gas streams. In the current application, the absorbent used for both 

operations was aqueous lithium bromide. Each of the operations is discussed 

separately because this was felt to be the only was to achieve both requirements 

of dehumidifying and reheating the gas streams. 

207i1 Open Cycle Drying and Dehmidffication. 

It was decided that the best way to dehumidify the humid gas stream was by 

direct contact with a hygroscopic solution. Two researchers have already 

proposed dryer- dehumidifier units which have adopted this principle ([199], 

[200], [201] & [207]). Scalabrin's work was based upon the drying of sensitive 

materials. The working fluid chosen for the absorber was aqueous lithium 

chloride, which did not pose as serious a health hazard as lithium bromide, 

while exhibiting similar thermodynamic properties (see Section 2.3.2). The 

other application, proposed by Snelson [207], involved the design of an 

absorption heat pump for a wood drying operation in Canada and utilised 

aqueous sodium hydroxide as the working fluid. 
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In choosing a working fluid to dehumidify the gas it was necessary to consider 

additional requirements to those given in Section 2.2. As the working fluid was 

in direct contact with the humid gas stream it was necessary to ensure that 

there was as little carry over of the absorbent into the drying process as 

possible. These were several reasons for this: 

a The absorbent could cause contamination of the dried product, which in 

turn may result in product degradation. 

a There would be a subsequent loss of absorbent which would require 

replacement. Hence the use of a cheap working fluid would be desirable. 

As the dehumidification process was an open loop cycle, extreme care had be 

taken to ensure that the absorbent was nontoxic, nonflammable and also highly 

soluble in water, without risk of crystallisation at high concentrations. There 

were several probable candidates for use as the absorbent, these are listed in 

Table 2.14. Sodium hydroxide, which is widely used throughout the chemical 

industry, has already been suggested as a possible working fluid ([207], [58]). 

However, it crystallises at high concentrations and low temperatures. Therefore 

a study of suitable additives would need be undertaken to minimise this risk 

(similar to that carried out for lithium bromide). Sulphuric acid was also 

considered as an absorbent for use in the dehumidification process, however, 

because of its corrosive nature it would be necessary to use graphite as the 

construction material for the cycle equipment. Another possible absorbent fluid 

which was considered for this direct contact absorption operation was ethylene 

glycol. However, like sulphuric acid, it exhibits appreciable vapour pressures at 

the temperatures used in the process. Therefore, the absorbent would be 

continually passed back to the main drying process. 
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El_Absorbent  Absorbent 

LiBr CaC1 2  
LiC1 CaBr2  
LiNO3  ZnC12  
Lii ZnBr2  
NaOH Ethylene glycol 
KOH H2SO4 

Table 2.14: Possible absorbents for use in a direct contact dehumidifier with 
water as the refrigerant. 

To conclude, it would appear that each of the absorbents discussed above had 

limitations. Therefore, the adoption of a multicomponent mixture, similar to 

that proposed by lyoki [148], would best meet the dehumidification requirements 

needed for the recycling of humid gas streams to the main drying process. 

2.7.2 High Temperature Organic Absorption Working 

Fluids. 

The other aspect of this particular project was concerned with achieving exit 

temperatures from an absorption cycle of around 200 °C. The system in these 

studies used water- lithium bromide as the working fluid and results using this 

mixture were promising. However, as previously discussed, this fluid pair was 

prone to crystallisation problems at high concentration. 

Future experimental work will endeavour to find new working fluid pairs for use 

in high temperature absorption systems. The fluid mixtures will need to be 

stable at temperatures above 200 °C. In addition, the operating pressure of the 

high pressure side of the cycle should be limited to a few bar, thereby removing 

the need for expensive, high pressure equipment. The organic working fluid 
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which appeared the most promising with respect to their pure component and 

mixture properties, as discussed previously, are listed in Table 2.15. Care should 

be taken when using TFE because of its toxic nature. However, as the reheat 

absorber was part of a closed loop system the risk of exposure was reduced. 

ft Refrigerant Absorbent 

TFE NMP 
TFE DMPU 
TFE Pyr 
Diaminoethane Glycerol 
Diaminoethane 1,4- Butanediol 

Table 2.15: Potential working fluid combinations to be tested. 

28 Conclusions. 

Most absorption systems are used for domestic and commercial air-conditioning 

units, in which gas is utilised as the heat source (particularly in Japan). There 

are also several applications in which waste heat is recovered from chemical 

processes and recycled for use elsewhere. Examples of these systems have been 

discussed earlier in this chapter, Section 2.3. In general the adoption of 

absorption cycle technology is limited, with the most commonly used 

absorption working fluids being ammonia/ water and water/ lithium bromide. 

Research into new working fluid pairs and advanced cycles is currently underway 

in an attempt to make absorption cycles more efficient and reliable. The 

potential application of these new working fluids will help to extend the range 

of uses for absorption cycles and will overcome some of the present limitations. 

Extensive searches at the University of Graz, Austria and the University of 

Essen, Germany have screened great number of potential working fluids. These 
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studies have concentrated upon the use of organic fluids. At the University of 

Graz the screening of these fluids was undertaken using the UNIFAC computer 

program. The work carried out at University of Essen involved taken pointwise 

solubility measurements of 150 promising fluid pairs. The most promising pairs 

are currently being tested further. Other studies have involved the search for 

additives to ammonia/ water and lithium/ bromide systems in an attempt to 

extend their operational limits. 

A major constraint on the adoption of absorption heat pumps and transformers 

in industry is the lack of readily available design data, as highlighted by 

Macriss. This makes it difficult for the design engineer to assess the potential 

performance of different cycles operating with different working fluids. In an 

attempt to make absorption cycles more widely accepted there must be an 

increase in the availability of thermodynamic data on working fluids, which can 

be used for preliminary design calculations. This could potentially lead to an 

increase in the number absorption cycles used industrially. 



3d Design. 

An absorption heat transformer pilot plant was designed and constructed for 

the purpose of recovering waste heat from humid gas streams, using a 

concentrated lithium bromide solution. The humid gas streams used in these 

studies were representative of exhaust gas streams leaving industrial spray 

drying units. The experimental apparatus was designed as an open loop cycle 

(see Chapter 1, Figure 1.16) and allowed the dehumidification and reheating of 

gas streams, enabling recirculation of the gas back to the spray drying chamber. 

Therefore, an industrial heat transformer cycle would reduce the energy 

consumption of the dryer by recovering the waste heat associated with the 

exhaust gas, which is presently vented to atmosphere. 
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In order to dehumidify the gas stream, it was necessary for the humid gas and 

concentrated lithium bromide streams to be in direct contact. It was also 

decided that the absorber should contain packing so as to maximise the 

absorption of water vapour into the absorbent solution. The temperature of the 

gas and liquid streams rises due to the heat released as the water vapour is 

absorbed, resulting in a dehumidified and reheated gas stream leaving the 

absorption column. 

The weak lithium bromide solution, containing the absorbed water, was 

regenerated by flashing the solution into a low pressure generator, where the 

absorbed water was evaporated. Electrical heaters were used to supply extra 

heat to the generator in order to maintain the absorbent solution at a desired 

concentration. The lithium bromide solution was then recirculated to the top of 

the absorption column and the procedure repeated. The evaporated water from 

the generator was condensed at a low temperature, in this case ambient, and 

collected in a receiver. As the system was an open loop heat transformer cycle, 

there was no need for a refrigerant evaporator. 

In addition to the design of the absorption cycle, it was also necessary to design 

a system for generating humid gas streams, similar to those created in an 

industrial spray drying plant (details of which are described below). 
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The absorbent solution used in these studies was aqueous lithium bromide 

solution, containing 1%w/w lithium nitrate, which was added to inhibit 

corrosion. However, it was prone to crystallisation at high concentrations and 

low temperatures. Lithium bromide was chosen because of its hygroscopic 

nature, exhibiting very low water partial pressures at elevated temperatures. 

Due to the corrosive and oxidising nature of the absorbent solution care had to 

be taken in its handling. The apparatus had to be constructed of stainless steel 

(type 316) and glass. 

3.1.1 Design Basis. 

The capacity of the experimental heat transformer was based on several 

criteria 1 : 

o The heaters used to generate steam to simulate the humid airstream had 

a maximum power consumption of 3 kW, corresponding to a maximum 

steam flowrate of approximately 1.2 gs (including heat losses). 

o The diaphragm metering pump used in the studies had a maximum 

capacity of 4 mls' 

o The maximum superficial gas velocity in the absorber was initially set to 2 

ms'- allowing the column to be sized for a given gas flowrate. 

o Where possible, existing pieces of equipment were used in preference to 

buying or manufacturing new equipment (which would have delayed 

construction). 

'See Appendix C 'Sample Calculations', Section C.1 
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As the profile within the absorption column was unknown it was decided that 

the column should be of appreciable length. It was also decided that the holdup 

of the working fluid should be kept to a minimum, with respect to cost and also 

safety. The holdup in the generator, which was also used as the main storage 

vessel during shut down, was approximately 4 litres. 

Also, the absorbent generator had to accommodate two heating elements, which 

had to be covered at all times. Therefore, the diameter of the vessel was large 

enough to position the two heaters side- by- side, while enough working fluid 

was used to ensure the elements were immersed in liquid. 

3.1.2 Single Stage Pilot Pliant. 

The initial work carried out on this project involved the design of a single stage, 

open loop absorption cycle consisting of a packed absorption column, a 

generator, a condenser/ receiver, a vacuum system and a humid gas generation 

system. It was preferable that the system was flexible so that it could be 

operated with either co- or counter- current flows of liquid and gas streams. As 

a direct consequence of the problems of absorbent crystallisation, the plant was 

designed for quick and easy dismantling to permit cleaning of the blockage. 

The system was fully lagged to minimise heat losses during normal operation. 

The operating pressure of the generator and condenser/ receiver was typically 

0.05- 0.1 bara requiring a system which could achieve the desired vacuum. The 

absorber and humid gas generation equipment were operated at atmospheric 

pressure, avoiding the need to design a system capable of operating at elevated 

pressures. 
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Generation of Humid Gas Streams. 

The simulated humid gas stream was created by mixing dry air with separately 

generated steam. The temperature of the humid gas stream was controlled by 

adjusting the power input to an electrical heater, prior to its entry to the 

absorber. Initially a small blower was used as an air source; at a later stage a 

compressed air supply replaced the blower. A valve was used to control the air 

flowrate entering the absorber, with flowrates measured on a rotameter. Typical 

flowrates ranged from 1- 6 gs'. 

Immediately after the rotameter, the cold air was preheated to a temperature of 

approximately 100 °C, so as to prevent condensation when the air and steam 

were mixed. The steam was generated in a lagged, glass boiler which had 

aluminium end plates. Electrical heaters were mounted into these end plates 

and used as the heat source for the boiler. The maximum power input to the 

heaters was 3 kW, corresponding to a maximum steam flow of about 1.2 gs'. 

The complete humid air generation setup is shown in Figure 3.1. 

The steam flowrate was metered in three ways, allowing a comparison to be 

made between methods and thus validating each result. The three methods for 

calculating the steam flow are summarised below: 

o Power input to steam generator. It was assumed that the heat of 

evaporation was 2557 Jg'. 

Power input 
= 	2257 	

[gs' = W/Jg] 	(3.1) 
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Figure 3.1: Equipment used to generate a simulated spray dryer exhaust stream. 
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o Inlet water head device. Fresh water was fed into the boiler when the 

level dropped, Figure 3.2. The amount of water entering the boiler was 

measured using a flowmeter. The water flowrate was measured in units of 

cc. min . 

Flowrate 
= 
	

19s -1 = cc.3 1 1g.cc 1 ] 	 ( 3.2) 
PW 

o Humidity and temperature of the humid air stream. These were measured 

periodically, and allowed the calculation of steam flowrate, see Equations 

3.3, 3.4, 3.5 and 3.6. 

%RH = P1 100 	 (3.3) 
p (T) 

moles water 
Pi = Y1-PT = Yi' = 	 (3.4) 

moles water + moles air 

moles water = (moles air). 	 [mols'.(—/—)] 	(3.5) 
1 - 

= 18.(rnoles air). 	
%RH.p (t) 

100 - %RH.p(t) 
[gs = (g.rnol)'.mols'.(—/—)] 

(3.6) 

The pipework used in this section of the apparatus was mainly constructed from 

copper and plastic. The cold air supply was first of all routed through plastic 

tubing, allowing flexibility and ease of adjustment. As the pipework contained 

only air and water there were no problems with corrosion. 

Absorption Column. 

The first absorption column was constructed from stainless steel tube, 50 mm in 

diameter and 800 mm in length. Seven thermowells were positioned at 100 mm 

intervals down the length of the column; the first of which was positioned 50 
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Figure 3.2: Representation of the constant head device used to measured water 
flow into the steam boiler. 

mm from the top. The thermowells, which were made from 1.5 mm stainless 

steel tubing with a drop of silver solder at one end, were used to house type K 

thermocouples. These were used to give an indication of the temperature profile 

within the column. In addition to these thermocouples, the inlet and outlet 

temperatures of the gas and lithium bromide streams were also measured. 

A glass X- piece was positioned directly beneath the stainless steel column, 

Figure 3.3. The bottom leg of this glass section served as a reservoir for weak 

lithium bromide solution, prior to its transfer to the generator. A level 

controller was fitted into the left- hand arm of the X- piece, which used the 

height of the liquid to periodically open and close a solenoid valve controlling 

the flow of liquid into the generator. The purpose of this device was to prevent 

the suction of air into the low pressure generator by ensuring that liquid was 

always present in the bottom section of the X- piece. The level control consisted 

of three electrodes, Figure 3.4, which were secured in a piece of PTFE rod, this 
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Figure 3.3: Single stage packed absorption column. 
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was in turn was mounted into a 12 mm Swagelok fitting. The electrodes were 

sheathed in a PTFE sleeving in order to prevent erroneous signals being sent to 

the controller and triggering the solenoid valve, caused when the liquid solution 

dripped onto the electrodes. 

The three electrodes required for the liquid controller were: 

o Common- always submerged in the liquid solution, acting as a reference 

electrode. 

o High level- when the liquid reached this electrode a signal was sent to the 

controller relay, caused the solenoid valve to open. The pressure 

differential between the absorber and generator causes the liquid to be 

sucked into the generator. 

o Low level cut off- when the liquid level dropped below the height of this 

electrode, the solenoid valve shut and stopped the transfer of liquid to the 

generator. 

The absorber was operated in two modes allowing either the cocurrent or 

countercurrent flow of the gas and liquid streams, Figure 3.5. This enabled 

comparative studies of the dehumidification and reheating capabilities of each 

configuration to be assessed. In both cases, the lithium bromide and humid gas 

streams were in direct contact with each other to facilitate the absorption of 

water vapour. The column was also randomly packed with 15 mm Fenske 

helices, Figure 3.6, so as to enhance the mass transfer rate of water vapour 

between the phases. 
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Figure 3.4: Level controller on bottom section of the absorber. 

Experiments carried out using the packing indicated that the voidage of the 

packed column was very high, at 0.925; with an effective interfacial area of 250 

m 1  (surface area / packed volume). One advantage of operating with such a 

high voidage was that the pressure drop across the column was low. Another 

useful measurement for assessing the packing is the equivalent spherical 

diameter of the packing, which was calculated to be 9 mm. This values was 

used to calculate mass transfer coefficients for the computer model, outlined in 

Chapter 5 'Computer Modelling'. 

In order to ensure an even distribution of concentrated lithium bromide solution 

throughout the absorption column, a liquid distributor was designed. This 

consisted of a small piece of stainless steel rod with several angled holes drilled 

in it, this directed the liquid flow to all cross sections of the column, Figure 3.7. 



Chapter 3. Design and Construction. 

LiBr FLOW IN 	 LiBr FLOW IN 

DUT 

3AS FLOW IN 

N 
1justab1e pipework a 
asy conversion betw 
D—/counter— current 
f humid gas 

LiBr FLOW OUT 

 

LiBr FLOW OUT 

 

Figure 3.5: Modes of operation for the absorption column. 
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Figure 3.6: Random packing of glass Fenske helices within absorber column. 
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Figure 3.7: Inside the top of the absorption column. 

A further design feature of the column was a packing support, which was made 

from a thin piece of PTFE sheet with several holes drilled in it to let the gas 

permeate through the column, while retaining the packing in position. 

The concentrated lithium bromide solution leaving the generator was pumped 

into the top of the absorption column, using 6 mm stainless steel tubing. 

However, as a direct result of the low liquid flowrates used, typically 2- 4 mls', 

the stream temperature dropped several degrees. Therefore, provision had to be 

made to ensure that the lithium bromide stream entering the absorber was 

maintained at the desired temperature. Therefore, it was necessary to heat the 

liquid absorbent stream using an electric heating element, which was made from 

Inconel 800 and could be adjusted to allow the inlet temperature of the stream 

to be independently controlled. 
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Lithium Bromide Generator. 

The concentrated lithium bromide solution reservoir was made of glass, 102 mm 

in diameter and 600 mm in length. When the equipment was not in use, care 

was taken to ensure that the solution did not crystallise and solidify during 

storage. Therefore, the solution was diluted to a concentration of between 55-

60 %w/w, at which point the crystallisation temperature is less than normal 

room temperature (T Cry3ta 1jj 3at j © 60%w/w - 10 °C). 

The vessel was operated under vacuum, typically in the range 0.05- 0.10 bara 

and at temperatures of between 90- 100 °C. The normal range of operating 

concentrations corresponding to these conditions were 60- 68 %w/w. Figure 3.8. 

The purpose of this section of the apparatus was to store lithium bromide 

solution at the desired operating condition. Weak solution from the absorber 

was flashed into this vessel periodically by means of a brass solenoid valve, 

which was activated by the level controller, see Section 3.1.2. The flowrate of 

the concentrated solution leaving the generator was controlled by regulating its 

flow through the stainless steel diaphragm metering pump. 

It was necessary to use two electric bayonet heaters to provide extra heat to the 

generator to ensure that the lithium bromide solution was maintained at a 

constant concentration during normal operation, Figure 3.8. Otherwise there 

would be insufficient heat to evaporate the water and the solution would 

become progressively weaker. The heaters consisted of an inner heating element 

surrounded by an outer quartz sheath (supplied by Electrothermal Engineering 

Ltd.). A variable power source was used to control the amount of heat supplied 

to the vessel, up to a maximum of 800 W. The heaters were not affected by 

continuous immersion in hot, concentrated lithium bromide solution. However, 
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Figure 3.8: Experimental apparatus for the lithium bromide generator. 
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there was a potential hazard associated with diluting the hot, concentrated 

absorbent solution with water during shutdown of the apparatus, which could 

rupture the heaters or even the vessel due to thermal shock. The dilution of the 

concentrated lithium bromide solution and also the flushing of the absorbent 

pipework with water was carried out in order to minimise the risk of 

crystallisation. 

Both ends of the glass column were sealed with stainless steel flanges, using 

PTFE 0- rings to ensure that a good seal was obtained. As this section of the 

apparatus was operated under a strong vacuum it was important to remove the 

possibility of air leaks into the system. All pipe connections onto the flanges-

flowrates into/ out of the vessel, thermowell, heater connections- were made 

using readily available, stainless steel Swagelok pipe connections. These fittings 

were screwed into holes drilled in the flanges and PTFE tape wrapped round 

the screwed end of each fitting to ensure that a secure and airtight connection 

was established. 

The instrumentation on the lithium bromide generator consisted of a type K 

thermocouple to measure the vessel temperature and a pressure gauge which 

measured the vacuum within the system. The flowrate of concentrated lithium 

bromide solution leaving the vessel was controlled by varying the stroke length 

of the metering pump. It was possible to infer the inlet flowrate of the weak 

solution to the vessel by the summation of the flowrate of concentrated solution 

leaving the generator and the amount of water collected in the receiver. Finally, 

the power input of the electrical heaters was measured and recorded. Therefore, 

by knowing all the flowrates and enthalpies of the streams, as well as the extra 

heat input, it was possible to determine a heat balance for the vessel. This 

could be compared to theoretical calculations and also used to assess the 

performance of the equipment. 
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Condenser- Receiver. 

The condenser used in the pilot plant was a standard Corning glass condenser 

with a diameter of 76 mm. The cooling medium used within the coil was water. 

Typical flowrates of the cooling water were between 12- 17 mls'. This 

corresponded to a temperature lift of only a few degrees and ensured that all of 

the water vapour from the generator was condensed. As the vacuum system was 

run continuously during normal operation, any water vapour present in the air 

stream after the condenser could have reduced the vacuum pump efficiency and 

caused operating difficulties, therefore, a high cooling water flowrate had to be 

maintained in the coil. 

The condensed water was collected in a 500 mm length of glass, which had the 

same diameter as the condenser. Attached to the side of this receiver was a 

graduated scale, Figure 3.9. From measurements of the amount of condensate 

collected over a period of time, an estimation of the flowrate of water vapour 

from the generator and hence the amount of water absorbed from the humid 

gas stream could be determined. A later development to this system was the 

addition of a pressure differential gauge which was calibrated to measure the 

rate of condensate collection automatically, the data was then stored in a file for 

later analysis. Signals were sent directly to a PC, where the readings were 

converted to fiowrates. When the condensate level in the receiver exceeded 400 

mm, the vacuum was switched off and the valve at the bottom of the receiver 

opened, thereby draining the condensate from the receiver. 
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Figure 3.9: Condenser- receiver arrangement. 
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Ancillary Equipment. 

Associated with the pilot plant were several pieces of ancillary equipment which 

were required for normal operation, these are described below. 

Metering pump. The metering pump could accommodate three pump heads 

in parallel, although only two were required. The pump heads were used to 

deliver concentrated lithium bromide to the absorption columns, for both the 

single stage and double stage plants. They were manufactured from stainless 

steel (type 316) and were capable of flowrates of between 0- 4 mls'. The 

pumps were calibrated under normal operating conditions, with the vacuum 

system switched on, thus developing a large back pressure against which the 

pumps had to pull. As the low pressure generator was positioned close to the 

pump, problems with cavitation were experienced at the highest flowrates. 

However, reliable and reproducible flowrates were obtained at lower flowrates 

(up to a stroke length of 80 % of the maximum). 

Solenoid valve. A brass solenoid valve, with 6 mm connections, was used to 

control the flow of weak lithium bromide solution from the absorber to the 

generator. The valve was actuated by an impulse from an RS liquid level 

sensing relay, which was triggered by a signal from one of the level control 

electrodes, either high (open valve) or low (close valve). The default position of 

the valve was closed. 

Vacuum pumps. Two Edwards vacuum pumps were used to generate the 

high vacuum required during normal operation. Both pumps were frequently 

lubricated to maintain good seals between the bushes and the impeller casing, 
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reducing the risk of seizure. The pumps were typically operated continuously 

over an eight hour period, with short breaks to allow drainage of the receiver. 

As a result, the pumps tended to become extremely hot, causing the lubricating 

oil to evaporate. Therefore the pumps were 'topped- up' with oil at the end of 

each series of experiments. 

Humidity probe. The relative humidity and temperature of the gas stream 

were measured using a Lee- Integer high temperature humidity probe, type 

CH30. Readings were fed to a meter, via a 6 pin DIN connection, where the 

results were displayed. Initially, using the single stage pilot plant, the readings 

were manually converted to give an estimate of the steam flow, using Equations 

3.3, 3.4, 3.5, 3.6. In the later two stage plant, the readings were input into a 

PC, which automatically calculated the flow and stored the data in a file for 

later analysis. 

The operating temperature range for the probe was -40 to +125 ° C, while the 

specifications for the humidity sensor indicated that readings between 20- 90 

%RH varied linearly. The typical operating conditions for the probe were in the 

range of 60- 100 °C and 10- 100 %RH. The head of the probe contained separate 

sensors for the humidity and temperature readings. It was protected by a metal 

surround with several slots, allowing the gas to flow over the sensors. A PTFE 

sheath, Figure 3.10, encased the head to filter out any contaminants in the 

stream and thus prevent damage to the humidity sensor. Indeed, malfunction 

while operating in a lithium bromide environment resulted in several different 

humidity sensors being used. The probe was received from the manufacturer 

precallibrated, although it was checked upon arrival against known water partial 

pressures generated above different concentrations of sulphuric acid solutions. 
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Two humidity measurements were required- before and after dehumidification-

however, there was only one humidity probe requiring the transfer of the probe 

between sampling points. The gas stream passing through the absorption 

column was at an elevated temperature and as such, it could cause injury upon 

direct exposure to the hot stream. Therefore, the sampling port, Figure 3.10, 

was designed to allow the insertion of the probe, prior to exposure to the hot 

stream. This was achieved by securing the probe into the end of a small section 

of copper pipe. The probe was inserted as fax as a gate valve, which was closed 

when not in use. Once in position, the valve could be opened and the probe 

pushed fully into the sample port so as to lie directly in the main flow of gas. 

This ensured that accurate measurements were obtained. After taking a 

reading, the probe was withdrawn, the valve closed and the probe removed from 

the sample port. 

3.2.3 Two Stage Pilot P11ait0 

Following an extensive experimental study using the single stage heat 

transformer, another pilot plant was designed and constructed. The second heat 

transformer incorporated new ideas, which were developed as a consequence of 

the earlier experiments. However, the basic layout and structure of the system 

remained the same. The humid gas generation apparatus, the lithium bromide 

generator and the condenser/ receiver all remained unchanged. The only design 

changes were related to the absorber, which was split into two stages. These are 

as follows: 
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Figure 3.10: Diagram of humidity sampling point, with probe in position. 
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o Direct contact dehumidification of a humid gas stream. Followed by, 

o Indirect reheating of the gas stream using a mixture of concentrated 

lithium bromide and low pressure steam. 

Further developments included the automatic logging of all the temperatures 

onto a PC. Manually recorded data- i.e. the power input to all the heaters used, 

all the stream fiowrates and also the vacuum on the low pressure side of the 

apparatus- were input to the computer. All data was stored in files, allowing 

analysis at a later date. (Further details of the instrumentation and the 

software written to log the data is contained in Section 3.2.3). 

Dehumidification Column. 

The design of the dehumidification column was based upon the absorption 

column used in the single stage plant. Several designs were investigated and 

their dehumidification performance assessed, details of which are summarised in 

Chapter 4 'Experimental Studies". Within each of the different column types 

five thermocouples were evenly spaced at 100 mm intervals, providing a rough 

temperature profile for the column. The different columns tested are discussed 

below in more detail: 

Falling film column: A plain section of glass, with a diameter of 38 mm and 

length of 600 mm, was initially tested. The rationale behind this change 

was to test the dehumidification potential of a falling film absorber. This 

absorber could be operated at gas flowrates up to 5 gs' (corresponding 

to a superficial velocity of 4.3 ms') without the risk of flooding. 

Experiments with the column were not very promising and a 
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redistribution plate was designed and positioned half way down the 

column, Figure 3.11. The aim of this modification was to improve the 

liquid- gas contact by redirecting the liquid flow away from the wall of the 

column. It was observed that the modification did improve the liquid- gas 

mixing above the redistributor plate. 

Figure 3.11: Liquid redistributor used in falling film column. 

Packed column: Following tests with the falling film absorber, it was decided 

to fill the column with Fenske helices, Figure 3.6, and to test the 

dehumidification potential of a packed column. The packing helped to 

increase the surface area available for mass transfer. It was, however, 

necessary to restrict the gas flowrate to a maximum of 4 gs 1  due to the 

risk of flooding above this flowrate. 

Condenser: A condenser, with the same dimensions as the previous columns, 

was also tested. Cooling water, flowing in a internal coil, was used to 

roughly control the temperature in the upper section of the column. By 

setting the inlet lithium bromide concentration and maintaining a set 

temperature at the top of the column, it was possible to gain a degree of 

control over the partial pressure of the exit gas. The cooling water 

maintained a uniform temperature throughout the column, carrying away 

the heat of absorption and condensation of the water. The cooling coil 

also increased the surface area within the column which was available for 

mass transfer. Problems were experienced due to flooding at higher gas 
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flows. It was therefore, necessary to restrict the gas flowrates through the 

column to a maximum of 2 gs', corresponding to a superficial gas 

velocity of 1.7 ms'. 

Reheat Column. 

An indirect contact absorption column was designed to reheat the dehumidified 

gas stream and to achieve as high an exit temperature as possible. The column 

consisted of an inner heat pipe, which contained the hot medium; around this 

the dehumidified gas was circulated, Figure 3.12. High temperatures were 

generated within the inner tube by absorbing low pressure steam into 

concentrated lithium bromide solution. An important design feature of the 

column was the need to maximise the heat transfer to the externally flowing 

gas, this was achieved by placing a highly extended surface of closely packed 

fins on the outside of the high temperature 'absorption pipe'. The hot 

absorbent mixture flowed down the inner tube of the column, while the gas 

being heated flowed countercurrent to it, in the annular space between the inner 

tube and outer absorber shell. 
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The column was manufactured especially for this project by Cal- Gavin Ltd. of 

Birmingham. The inner tube of the column, the 'absorption pipe', contained a 

turbulence promoting insert in order to fulfill the following: 

To help direct the flow of hot liquid to the wall and hence increase heat 

transfer to the external gas stream. 

To promote turbulence within the liquid layer and thus increase the heat 

transfer. 

To help maximise the contact between the liquid and steam phases with a 

resultant increase in mass transfer. 

The inner and outer tubes and the turbulence promoting insert were made from 

stainless steel (type 316). The extended surface area was made from copper, as 

it was not subject to corrosion through contact with lithium bromide. 

A later modification to the lithium bromide pipework of the reheat column, 

Figure 3.14, involved the addition of a bleed valve to remove inerts from the 

system. During experimental trials it was discovered that gases were present 

within the column, which led to a reduction in the steam partial pressure in the 

column, resulting in a decrease in the maximum obtainable gas exit 

temperature. As well as bleeding the column of inerts it was also necessary to 

ensure that no further gas could get into the system. Therefore, the liquid pipe, 

which delivered the weak lithium bromide solution to the X-piece of the 

dehumidification column, was extended to ensure that it was submerged in 

liquid at all times, reducing the risk of air entrainment. 
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Figure 3.12: Experimental setup for the reheat column, showing the steam supply. 
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32 Construction. 

3.2.1 Materials of Construction. 

The experimental apparatus was constructed from glass, stainless steel (type 

316) and copper. Glass was used for some of the vessels, while the stainless steel 

was used for all lithium bromide pipework, fittings and vessel flanges. The use 

of copper was restricted to areas where lithium bromide was not present, for 

example the steam generation system. A brass solenoid valve was used to 

transfer the weak lithium bromide solution from the absorber to the generator. 

The valve operated satisfactorily throughout the tests and did not appear to 

suffer from any corrosion in the presence of hot lithium bromide solution. 

PTFE 0-rings were used to seal the surface between the glass rims of vessels 

and the end flanges. These 0- rings were not affected by the presence of hot, 

concentrated lithium bromide solution and provided a good seal for the 

equipment when operated under vacuum. 

3.2.2 Layout0 

Main Framework. 

The layout for the single and double stage heat transformer rig was essentially 

the same. The single stage process acting as the prototype for the later two 

stage version, which incorporated several design changes. Therefore, only the 

layout of the two stage process shall be discussed in this section. A compact 
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plant was designed and constructed to allow easy access to all parts of the 

apparatus. The framework for the plant was constructed using sections of 

Dexion. This allowed ease of construction and resulted in a frame which was 

flexible and easily adjusted. The final plant layout is shown in Figure 3.13. 

REHEATER 

	

STEAM 	 REHEAT 

	

SUPPLY 	 COLUMN 

DEHUMIDIFICATION 

	

I 	II  
CONDENSER! 1 I 	I I 	II 	COLUMN 

	

RECEIVER 	GENERATOR I 

FEI 
ICOMPUTER`I 

VACUUM PUMPS 

METERING PUMP II 	 F 	II 
(WITH 3 HEADS) 	 ROTAMETER 

Figure 3.13: Front and end elevation showing layout of experimental apparatus 
(only main pieces of equipment shown.) 

The position of the glass columns could be readily adjusted by altering the 

length of the securing bolts, which held the columns in place. Such an 

arrangement allowed the columns to be moved without placing undue stress on 

the glass sections. 
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All pieces of equipment and electrical connections were positioned above floor 

level and a plastic 'drip mat' placed beneath the rig helped to contain any spills 

of lithium bromide. The electrical wiring was made safe through insulation and 

attachment to the main frame, preventing any hazards associated with trailing 

cables or contact with any spilled liquid. 

Lagging on the apparatus was secured using detachable tag ties, which allowed 

quick and easy access to individual components of the apparatus. In all cases 

the lagging used to minimise heat losses from the rig was a type of densely 

packed glass wool, approximately 20 mm thick. 

Lithium Bromide IPipework. 

The lithium bromide was delivered from the generator to the metering pump 

heads and then to each individual column via 6.3 mm stainless steel pipework. 

The pump was mounted above ground level to allow the liquid lines to be 

installed, while also providing easy access for cleaning, in case of crystallisation 

in the line. External heating for each of the lithium bromide lines was required 

in order to control and maintain a desired temperature for the lithium bromide 

solution, these are shown in Figure 3.14. 

During shutdown, the valve below the generator was closed and the pipework 

flushed with hot water to minimise the risk of crystallisation. The apparatus 

was filled with lithium bromide solution by opening the charging valve and 

switching on the vacuum system, effectively sucking the solution into the 

generator. 
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Figure 3.14: Diagram of lithium bromide pipework, including reheaters. 
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Assembly of Glass Sections. 

Care was taken so as not to stress the joints when assembling QVF glassware as 

this could lead to glass failure. Figure 3.15 shows the arrangement necessary for 

for joining a glass section to an end flange. A similar setup was required when 

joining two sections of glass together. 

BOLT 

COMPRESSION 
WASHERS 

PTFE 0-RING 

PACKING 

COLLAR 

WASHER 

NUT 

Figure 3.15: Assembly of QVF glass. 

First of all, a collar, with three securing holes, and a packing ring were placed 

over the end of the glass. The packing secures the collar in position, over the 

end of the glass. It was essential that the packing was properly fitted, otherwise 

the collar will not lie perpendicular to the glass section, resulting in a poor seal. 

The end flange was held in place by three, evenly spaced, bolts. Overtightening 

the bolts was prevented by including several compression washers, as shown in 

Figure 3.15. The number of washers used was dependent upon the diameter of 

the glass section, details of which were taken from a QVF handbook. The 
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correct tension was achieved when the washers were compressed to a 

predetermined length, as set out in the QVF handbook. A PTFE 0-ring was 

also used to ensure a good seal between the glass and flange. 

3.23 Instrumentation and PC Interfacing. 

The computer used for data logging and storages was a PC with a 80286 

coprocessor and a PCL- 812 instrument interface. Details of the 

instrumentation used on the rig are provided below. 

Data Readings. 

The instrumentation on the rig mainly consisted of logging the temperatures in 

the system. A list of the temperatures measured is provided on the next page. 

The temperature readings were fed into two PCLD- 889 amplifier/ multiplexer 

boards. Signals from the instrument box were fed through an interface box, 

which filtered out any noise from the signals and ensured that a clean voltage 

was fed to the PC- mounted PCL-812 card. The readings from PCL-812 board 

were converted from voltages into temperatures using TurboC program routines. 

The values were displayed on screen and also output to data files for future 

reference. The voltage range used for the temperatures was -10 to +10V (-2048 

to +2048 bits), corresponding to a temperature precision of 0.12 °C bit'. 
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Thermocouple Description/ 
Number Position 

1-5 Five thermocouples placed at increasing distance 
down the length of the dehumidification column, 
giving a temperature profile. 

6 Positioned after the air preheater. 
7 Air inlet to dehumidification column. 
8 Air outlet from dehumidification column. 
9 LiBr inlet to dehumidification column. 

10 Cooling water to dehumidification column. 
11 Cooling water from dehumidification column. 
12 LiBr outlet from dehumidification column. 
13 LiBr inlet to reheat column. 
14 Steam inlet to reheat column. 
15 LiBr outlet from reheat column. 
16 Air outlet from reheat column. 
17 Temperature of weak lithium bromide stream prior to 

entry to the evaporator. 
18 Evaporator temperature. 
19 Cooling water to condenser. 
20 Cooling water from condenser. 
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In addition to the automatic data logging of the temperatures, the amount of 

condensate collected in the receiver was recorded by using a differential pressure 

gauge. The vacuum and temperature of the generator were also recorded and 

used to estimate the lithium bromide concentration (using the equations given 

by Brunk [24]). A composition meter was also developed, which monitored and 

displayed the concentration of the lithium bromide solution independently to 

that shown on the PC. Chapter 7, 'Electronic Composition Meter', discusses the 

development and potential applications of this device. Measurements which 

were taken manually and input into the PC are listed below: 

Vessel Description of the manual data recorded 

Dehumidification Metering pump setting for flow of lithium bromide. 
column: Flowrate of water to the steam generator. 

Dry air flowrate. 
Pressure drop across the column. 
The relative humidity and temperature of the gas 
steam entering and leaving the column. 
Power input (voltage and current) to steam boiler. 

Reheat column: Metering pump setting for flow of lithium bromide. 
Steam flowrate to reheat column. 
Power (voltage and current) to steam heater. 
Pressure drop across the column 

Generator: Power (voltage and current) to the generator. 

Miscellaneous: Cooling water flowrate to the condenser. 

Software. 

A TurboC program was written to monitor and display the various 

temperatures, flowrates and pressures throughout the system. Figure 3.16 

shows the main display screen of the data monitoring program. All of the 

temperatures and flows for each piece of equipment in the rig were shown. In 
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conjunction with the visual display of readings, all the readings taken were 

logged in data files, providing a comprehensive record of the operation of the 

system. As the apparatus operated at a steady state it was only necessary to 

sample data every 30 seconds. 

- DEHUMIDIFICATION COLUMN:= <Fl> TO STOP 	Mon Nov 0109:00:30 1993 
INLET: 
LiBr : Flowrate 	(ml/s) = 4.53 Steam/ air: Air flow 	(g/s) = 2.00 

(g/s) = 7.35 : Steam flow 	(g/s) = 0.15 
Concentration (%) = 65.3 : Humidity (%RH) = 45.5 
Temperature (CC) = 101.1 : Temperature () = 97.3 

OUTLET: 
LiBr: Concentration (%) = 62.2 Steam/ air: Steam flow 	(g/s) = 0.03 

Temperature () = 135.2 : Temperature (CC) = 95.2 

REHEAT COLUMN: 
INNER TUBE: 
LiBr Flowrate 	(g/s) = 6.35 

Steam flowrate 
Steam temp. in 

(g/s) = 0.16 
(°C) = 99.9 

LiBr concentration 	(%) = 65.3 OUTER SHELL— GAS 
LiBr temp. in 	(°C) = 101.2 Inlet Temperature (cC) = 95.2 
LiBr— steam temp. out ( (C) = 156.3 Outlet Temperature (cC) = 150.4 

_

(iINIRATOR: 

[Temperature 	(cC) 	= 97.3 Pressure (bar) = 0.075 Concentration (%) = 65.3 

MISCELLANEOUS: 
Amt. transferred (g/s) 	= 0.12 T_amb 	(°C) = 25.3 OPERATION MODE =2 
Amt. collected (g/s) 	= 0.11 	 STATUS = 0 

Figure 3.16: Graphical representation of data monitoring program. 

The alteration of the manual readings. such as flowrates and humidities, were 

carried out interactively with the computer through the use of pop- up 

windows. Figure 3.17 shows the steps required to change the lithium bromide 

flowrate of the reheat column. A popup menu containing a list of options which 

could be changed or evaluated was activated by clicking the left hand button of 

the mouse, when it was positioned on the main reheat window. The arrow keys 

were then used to scroll through each of the options shown, before selecting the 

desired variable. By pressing the (RETURN) key a further window was 

displayed showing the current setting, this value was changed by typing in a 

new value and pressing (RETURN) again. The main display was restored by 
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pressing (ESC) to remove the pop-up windows. There were four main popup 

windows for each of the different sections of the main display- the 

dehumidification and reheat columns, the generator and some miscellaneous 

readings. 

DEHUMIDIFIC 	 Mon Nov 01 09:00:30 1993 
Use <UP> and <DOWN> keys to I 

ET: 	Scroll through options. 

: 	 : 

LiBr: Flowrate Press <RETURN> to select option 	air Air flow 	(g/s) = 2.00 

	

Hit <ESC> to exit. 	 Steam flow (us) = 0 15 
Conc ntrz 	 Humidity (%RH) = 45.5 
Temperature ( CC) 	= 101.1 	 : Temperature (ct) = 97.3 

OUTLET: 
LiBr: Concentration (%) 	= 62.2 	Steam! air: Ste 

Temperature ( 0C) 	= 135.2 - REHEAT COLUMNT 

I REHEAT COLUMN: ___________ LiBr pump setting 	r Li Br pump setting Steam flow (cc/mm) 
INNER TUBE: 	 Power to steam genr 	F Old setting : 50 

I LiBr Flowrate 	(g/s) = 6.35 	Pressure drop (cm) 	New setting: 13  

j LiBr concentration 	(%) = 65.3 	Column heat balance 
LiBr temp. in 	(°C) = 101.2 	Column performance ) = 95.2 H 
LiBr— steam temp. out ( t) = 156.3 	New filename (REHEAT) 	V)  = 150.4 

- GENERATOR: 
[_Temperature 	( (C) 	= 97.3 Pressure (bar) = 0.075 Concentration (%) = 65.3 

Amt. transferred (g/s) 	= 0.12 T.amb 	() = 25.3 OPERATION MODE = 2 11 Amt. collected (g,'s) = 0.11 STATUS = 0 11 

Figure 3.17: Monitoring program showing additional windows with options avail-
able for changing settings and carrying out preliminary analysis. 

It can be seen from Figure 3.17 that as well as changing manual variables, the 

heat balance and performance of the column could also be evaluated. Once 

again, this data was stored in a file for later analysis. The online determination 

of several performance criteria was also performed, these are summarised below: 
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Vessel Criteria 

Dehumidification column: Heat balance. 
Exergy balance [Base Temperature, T0, set to 20 IC]. 

Temperature change in the gas stream. 
Amount of water absorbed. 

Reheat column: Temperature change for the external 
gas stream and the lithium bromide 
flowing in the inner tube. 
Heat balance. 
Exergy balance. 

Generator: Heat balance. 
Exergy balance. 
Graphing program to display the variation 
in the lithium bromide concentration in 
the generator. 

Miscellaneous: Overall coefficient of performance of 
the heat transformer. 
Exergy balances for whole system- yield, 
effectiveness, losses. 
Graphing program to display the difference 
between the amount of water condensed to that 
transferred in the gas stream, as estimated from 
the difference in the gas humidity readings. 



4d Background. 

An open loop absorption heat transformer pilot plant was designed and tested 

for the purpose of dehumidifying and heating humid gas streams. The system 

was directed towards the recovery of waste heat from the humid exhaust 

streams of spray dryers. Conventional methods of heat recovery can not readily 

be applied to the recovery of energy from humid gas streams due to 

condensation problems and also heat transfer difficulties prevalent with gases at 

low temperatures. In the studies carried out, different absorption systems 

operating under a wide range of conditions were investigated and the 

performance of the cycles assessed, with respect to their dehumidification and 

reheating capabilities. 

124 
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The design objectives were based upon recovering waste heat from a humid gas 

leaving a spray drying chamber at a humidity around 0.20 g- 2o (g-dry air)_'  

and a temperature around 100 °C. A system capable of obtaining an exit gas 

stream with a humidity of between 0.03- 0.05 g- j20 (g-dry air)—'  and a 

temperature in the range 150- 200 °C was sought. The stream would then be 

suitable for recycle to the drying chamber and thereby, reduce the energy 

consumption of the drying operation. 

4. 1.1 Overview. 

Initial experiments using a single, packed absorption column for both 

dehumidifying and heating duties did not achieve the objectives set out at the 

start of the project. This was because in order to achieve a high exit 

temperature, a high inlet gas humidity was required. Conversely, to achieve a 

low gas exit humidity, the gas exit temperature must also be low. Therefore it 

was decided to split the operation into two absorption stages: a direct contact 

dehumidification stage followed by an indirect contact reheating stage. The 

results obtained for both of these heat transformer cycles are discussed in the 

following sections. Results are presented in chronological order, see below: 

o Single stage studies- influence of variables on performance [Section 4.2]. 

o Two stage heat transformer- 

- Dehumidification column experiments [Section 4.3]. 

- Reheat column experiments [Section 4.4]. 

- Prediction of gas exit temperature from inlet conditions [Section 4.5]. 

- Two stage heat transformer cycle performance [Section 4.6]. 
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The data obtained for the single stage rig was used as the basis for deciding the 

experiments to be undertaken using the double stage absorption cycle. 

Following the presentation of the experimental results obtained for both pilot 

plants, a review of the performance of the two stage cycle is provided. A brief 

investigation of the accuracy of the results and the errors associated with the 

experimental trials is then discussed in Section 4.7. The last section in this 

chapter (Section 4.8) lists the main conclusions of these experimental studies 

and also outlines recommendations for future studies. 

4.1.2 Operating Variables. 

The single and double stage absorption cycles involved the same process 

streams- a gas stream and a liquid absorbent stream (aqueous lithium bromide). 

The two pilot plants were designed to investigate the effects of varying the 

operating parameters associated with the two streams. The main variables 

investigated are listed below. 

Gas stream: Flowrate (gs'). 
Inlet temperature (°C). 
Humidity (9-jq 2 0 (g-dry air) ' ). 

Absorbent stream: Inlet concentration (%w/w). 
Flowrate (gs 1 ). 
Inlet temperature (°C). 

Table 4.1: Main operating variables investigated. 

In addition to these operating variables, there were other factors which affected 

the performance of the absorption columns including the column design- packed 

or falling film absorber- and also the mode of operation- co/ counter current 

flow of the gas and liquid streams. 
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42 Single Stage Cycle: Experimental 

Results. 

The first absorption heat transformer cycle which was designed and constructed 

incorporated a packed absorption column. The packing, which had an effective 

interfacial area of 250m', was used to find the best operating conditions 

necessary to obtain the objectives of dehumidifying and reheating a humid gas 

stream. Thermocouples were positioned evenly down the length of the column 

to give a rough indication of the temperature profile within the column, from 

which deductions about the absorption process were derived. 

4.2.1 Programme of Experiments. 

The experimental programme initially undertaken was designed to cover as 

broad a range of operating conditions as possible. As there were several 

variables of interest within the system, each one is discussed separately. Most of 

the experiments were operated for cocurrent operation except where indicated 

(Section 4.2.7). 

Operating Ranges. 

The range of gas fiowrates used in these studies was 0.2- 2.04 gs 1  (dry basis), 

while the inlet humidity range used varied between 0.1- 3.45 g-Ho (g-dry air) ' , 

The inlet temperatures of the humid gas stream used were between 61- 107 °C; 

however, the majority were around 100 °C. 
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The lithium bromide concentrations used ranged between 56- 70 %w/w, while 

the stream flowrates were between 1- 4 m1s 1  (approximately 1.7- 6.8 gs 1 ). In 

all experiments the lithium bromide inlet temperature was kept above 100 °C in 

order to minimise the risk of crystallisation. In most cases the inlet temperature 

was set at approximately 100 °C. Some experiments were carried out using 

higher temperatures, up to a maximum of 138 °C, in order to determine the 

consequent variation of the gas exit temperature. 

Operational Problems. 

Much useful experimental data were obtained after initial operating problems 

were solved. The main problems encountered were difficulties with the humidity 

probe; problems with generating a reliable steam supply for the humid gas 

streams; and inaccurate determination of the lithium bromide concentration in 

the generator. 

Problems with the humidity probe arose due to the condensation of water 

vapour on the sensor, which produced nonsensical readings which were 

consequently of little value. The difficulties with the steam generating system 

were due to leaks in the joints of the apparatus and these were easily rectified 

by tightening the connecting bolts between the glass sections. Lastly, the 

determination of the lithium bromide concentration was carried out using 

readings of temperature and pressure. Initially, a pressure gauge with an 

accuracy of ± 0.05 bar was used. This was clearly unacceptable as a huge error 

was obtained during normal operation because the low pressure side of the 

equipment was held under a vacuum of between 0.05- 0.15 bar, corresponding to 

an error of ± 100 - 33.3 %. Therefore, the gauge was changed to a pressure 

differential sensor, with an accuracy of + 0.001 bar which allowed more 
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accurate values for the lithium bromide concentration to be evaluated. A full 

discussion of errors is covered in Section 4.7. 

Following these early operating problems, it was decided to cross check the 

results obtained by different methods, thereby minimising measurement errors 

in the apparatus, ensuring that the results obtained were reasonable and that 

there were no problems with the pilot plant. For example, once steady state 

had been reached, it was possible to calculate the amount of water absorbed 

from the gas stream by measuring the difference between the inlet and outlet 

humidity readings and also directly from the amount of condensate collected in 

the condenser/ receiver. 

4.2.2 Effect of Varying the Gas Fliowrate. 

Table 4.2 summarises experimental results for a limited number of runs at high 

and low gas humidities, over a range of gas flowrates. The influence of the gas 

flowrate upon the performance of the absorber, when operated at approximately 

constant inlet humidity, was not felt to be significant. 

The range of the experimental points was limited and the readings not very 

consistent. However, the gas exit temperature did drop slightly when the 

flowrate was increased due to the extra heat required to raise the gas 

temperature. This is best demonstrated by the results at low gas humidities 

where the temperature lifts were smaller and any decrease in exit temperature 

was more pronounced. The effects of the variation of the inlet gas humidity and 

lithium bromide concentration had more effect upon the exit gas temperature 

than the variation of the gas flowrate. This prevented any in depth analysis of 
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rnç H PHoi. PH2O0  TG 1  TG 0  WLjBr. Fr 
(gs') (g- Ff20 (bar) (bar) 

(9-dry air)-1 ) 

(°C) (°C) (%w/w) (-)  

0.40 1.25 0.67 0.61 101 130 65 8.6 
0.50 1.00 0.62 0.56 100 130 63 8.6 
0.50 1.20 0.66 0.60 100 137.5 65.5 7.1 
0.60 0.92 0.59 0.54 101 128 66 7.8 
0.60 0.93 0.60 0.55 99.5 133 T 65 7.7 
1.00 0.20 0.24 0.21 100 110 64 21.3 
1.52 0.13 0.17 0.15 101 108 65 21.7 
2.04 0.11 0.15 0.14 100 103 66 19.2 

Table 4.2: Cocurrent results showing the effect of changing the gas flowrate for 
high/ low humidity ranges. LiBr stream conditions: Flowrate = 3.4 gs'. Inlet 
temperature 100 °C. 

these results, but did highlight the importance of the inlet absorbent 

concentration and gas humidity. It should also be noted that, at low inlet gas 

humidities which were typical of spray dryer exit conditions, the exit water 

vapour partial pressures were still too high to permit recycling of the gas 

stream. In addition, the exit gas temperatures were far below expectations. 

4.23 Effect of Varying the Gas Humidity. 

As the variation of the gas flowrate did not greatly affect the exit gas stream 

conditions, a range of gas flowrates were used to investigate the influence of 

varying the inlet gas humidity upon the exit stream conditions. The results 

which have been summarised in Table 4.3 are grouped into three categories-

very high, high and low gas humidities. 
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The gas streams with the highest inlet humidities produced the greatest 

temperature lift of 47 degC. However, the exit humidity was not reduced 

significantly and was still exceptionally high, making the stream unsuitable for 

recycling. 

rhc  H pH2oi. PH2O0 7hH2O TGj. TGOUt Fr  
(gs') (g- Ff20 (bar) (bar) 

(g-dry air)-I ) 

(gs') (°C) (°C) (-) 

0.20 3.45 0.85 0.82 0.12 100 147 6.2 a) 

0.40 1.25 0.67 0.61 0.11 101 130 8.6 
0.40 1.90 0.75 0.71 0.15 100.5 138 5.6 
0.50 1.20 0.66 0.60 0.13 100 137.5 7.2 
0.60 0.92 0.59 0.54 0.11 101 128 7.8 
0.60 0.93 1 0.60_1 0.55 0.10 99.5 133 7.7 
1.00 0.63 0.50 0.44 0.14 100 130 6.8 
0.58 0.35 0.36 0.06 0.18 99 116 21.2 b) 
1.00 0.20 0.24 0.21 0.03 100 110 21.5 
1.52 0.13 0.17 0.15 0.03 101 108 21.8 

Table 4.3: Cocurrent results showing the effect of changing the gas humidity at 
different gas fiowrates. LiBr stream conditions: Flowrate = 3.4 gs'. Concentra-
tion s65 %w/w. Inlet temperature 100 °C. 

The dehumidification results from the high humidity runs resulted in an average 

amount of water of roughly 0.12 gs being absorbed into the concentrated 

lithium bromide solution. The change in lithium bromide concentration was 

therefore only 2 %w/w. As a cross check, the equilibrium vapour pressure of 

water above a 63 %w/w solution of lithium bromide at 133 °C was 0.45 bar. 

However, the exit water vapour partial pressure from the table of results was 

0.55 bar. It can be seen from Figure 4.1 that there was a sharp drop in gas 

temperature at the bottom of the absorption column for both temperature 

profiles. The reason for this was most probably a result of heat losses to the 

surroundings. 
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A closer inspection of the experiment, carried out operating with the highest 

inlet gas humidity, showed that if the temperature recorded within the column, 

which was 155 °C, was coupled with the exit absorbent concentration of 64 

%w/w, the corresponding equilibrium water vapour partial pressure was 0.80 

bar. This was in close agreement with the actual result obtained, 0.82 bar (see 

Table 4.3, Point a) ), and suggested that the streams leaving the column were 

close to thermal and mass equilibrium. Therefore, the performance of the 

column agreed reasonably well with the theory, the difference in the 

temperatures being due to heat losses in the gas pipework. 

Results for the low humidity gas streams exhibited far lower temperature lifts 

than the high humidity streams. This was because of a much lower equilibrium 

temperature between the gas and lithium bromide streams due to the low water 

vapour partial pressure. The exit temperatures obtained would not make an 

absorption heat recovery process an economical operation on an industrial scale. 

The exit water vapour partial pressures obtained from these results were also 

higher than the initial project objectives and as such the gas stream was not 

felt to be suitable for recycling to the drying chamber. The best 

dehumidification result was obtained for a gas flowrate of 0.58 gs 1  and an inlet 

humidity of 0.35 g-H20 (g-dry air)' (see Figure 4.1 and Table 4.3, Point b) ). 

The result did appear to be atypical and suggested that there was an error in 

determining the exit gas stream conditions. This was entirely possible as the 

stream flowrates were quite small (see Section 4.7). It was felt, however, that 

the result did serve to show the difference in the exit gas conditions when the 

absorber was operated under different conditions. 
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The temperature profiles for two experimental runs a) and b) are shown in 

Figure 4.1. It can be seen that both profiles exhibit a rapid increase in the gas 

temperature over the first 20 cm of the absorption column, before the 

temperature levels off suggesting that thermal equilibrium was reached quite 

quickly. 

Gas conditions: 
Humidity: 

Gas fiowrate 
Inlet Steam fiowrate 

Inlet temperature 

a) b) 
High Low 
0.20 gs' 0.58 gs 1  
0.69 gs 1  0.20 gs' 
100 °C 99 °C 

Outlet Steam fiowrate 0.55 gs' 0.03 gs' 

	

Outlet temperature 147 °C 	116 °C 

	

Lithium bromide 
	 Flowr ate 2gs -I 	2 gs' 

	

conditions: 
	

Concentration 67 %w/w 65 %w/w 

	

Inlet temperature 100 °C 	105 °C 

The above results clearly demonstrate that it was not possible to combine the 

dehumidification and reheating operations in one stage. Experiments carried 

out using a gas stream with a low inlet humidity only resulted in a small gas 

stream temperature lift . This was due to the low water vapour partial pressure 

and thus low equilibrium absorbent temperature generated in the absorber. 

Similarly, a large temperature lift was only achieved when the absorber was 

operated with a gas stream with a high initial humidity, which remained very 

high upon leaving the absorber. 
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Figure 4.1: Comparison of gas temperature lifts for high and low gas humidities. 
Operating in cocurrent mode. 
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4.2.4 Effect of Varying the Lithium Bromide 

Concentration. 

WLiB ,ri,, rc H PH2 O1 PH2 o0 TG,,., LTG 

(%w/w) (gs') (g- 	f2 (bar) 

(g-ary at?)  

(bar) (°C) (°C) (degC) 

56 0.50 1.00 0.62 0.58 103 122 19 
56 0.50 1.00 0.62 0.59 100 119 19 
63 0.50 1.00 0.62 0.58 104.5 136 31 
63 0.50 1.00 0.62 0.56 100 130 30 
65 0.60 0.93 0.60 0.55 99.5 133 34 
66 0.60 0.92 0.59 0.54 101 128 27 
70 0.60 0.93 0.60 0.53 103 146 43 
70 1.00 1.07 0.63 0.60 105 142 37 
70 1.00 1.08 0.63 0.60 103 142 39 

Table 4.4: Cocurrent results showing the effect of changing the LiBr concentra-
tion. LiBr flowrate set to 3.4 gs', inlet temperature 100 °C. 

The concentration of lithium bromide solution was the most important variable 

in achieving a high temperature lift as can be seen from Table 4.4. There 

appears to be a linear relationship between the temperature lift and lithium 

bromide concentration, see Figure 4.2. However, the risk of crystallisation 

limited the maximum operating concentration possible with this system. The 

maximum absorbent concentration which was used was set to just under 70 

%w/w. The crystallisation temperature of this solution was around 100 °C, 

which was the operating temperature of the generator. 

For the most part, the exit temperatures achieved were in agreement with VLE 

data based upon the exit absorbent concentration and water vapour partial 

pressure, with the assumption that the liquid and gas streams were in 

equilibrium. 
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Figure 4.2: Gas temperature lift versus inlet LiBr concentration. 



Chapter 4. Experimental Studies. 	 137 

4.2.5 Effect of Varying the Lithium Bromide F1iowrate 

WLjBr1 i2 H Ta A.WLB Lrnjj-2 0 

(%w/w) (gs') 

(g- dry 

 

(g- 1120 (°C) (%w/w) (gs') 

M67 0.20 3.45 147 2.3 0.12 
67 0.20 3.45 147.5 2.8 0.22 
66 0.20 3.45 144 3.0 0.33 

3.4 65.5 0.50 1.20 137.5 2.4 0.13 
5.1 65 0.50 1.20 131 2.4 0.20 
6.8 65 0.50 1.20 137.5 2.4 0.26 

1.7 65 0.98 0.26 107 1.1 0.03 
2.6 64 0.98 0.18 107 0.5 0.02 
3.4 64 1.00 0.20 110 0.6 0.03 
3.4 65 1.52 0.13 108 0.6 0.03 
5.1 65 1.50 0.13 106 0.5 0.04 
6.8 65 2.00 0.20 112 0.8 0.08 

Table 4.5: Cocurrent results showing the effect of changing the LiBr fiowrate. 
Gas and LiBr inlet temperatures both approximately - 100 °C. 

There was no noticeable change in the exit gas temperatures achieved by 

varying the lithium bromide flowrate, Table 4.5. The data are also graphically 

shown in Figure 4.3. The set of points with the lowest inlet stream humidities 

(Line 3) showed an increase in the gas exit temperature from the absorber. 

There was a slight drop in gas exit temperature at the highest inlet humidities, 

although from the limited number of points drawn it was not possible to draw 

firm conclusions from the data. 
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Overall, the results plotted show little change in the exit temperatures for the 

range of conditions tested. This insensitivity in the results was attributed to 

two main factors. As water vapour was absorbed, at small liquid flows, there 

was a large decrease in the concentration of the absorbent stream, which 

resulted in lower equilibrium temperatures for a given water vapour partial 

pressure; whereas for high lithium bromide flowrates, the concentration 

differences were lower but the streams had larger heat flows. This meant that 

more heat was required to raise the temperature of the liquid stream and so the 

exit temperatures were much the same as for low liquid flowrates. 

Gas humidity 3.45 g—H 2  0 (g—dry air) 

Gas humidity 12 g—H 20 (g—dry air) 

Gas humidity approx 02 g—H 2  0 (g—dry air) 

0 	1 	2 	3 	4 	5 	6 	7 
Lithium Bromide flowrate (gs ') 

Figure 4.3: Variation of gas exit temperature with LiBr flowrate. 
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Figure 4.4 shows that a linear relationship existed between the amount of water 

absorbed and the absorbent flowrate. The effect was more pronounced for the 

gas streams with high inlet humidities. A look at the concentration change in 

the absorbent solution in Table 4.5 shows that the variation for each set of 

results was approximately the same. This meant that, as the lithium bromide 

fiowrate was increased there was a corresponding rise in the amount of water 

transferred, thereby maintaining approximately the same exit lithium bromide 

concentration over the range of fiowrates tested. 

Gas humidity 3.45 g—H 2  0 (g—dry air) 

Gas humidity 1.2 9—H2 0 (g—dry air) - 

Gas humidity approx. 02 g—H 2  0 (g—dry air) 

1 	2 	3 	4 	5 	6 	7 

LiBr flovrrate (gs ) 

Figure 4.4: Variation in the dehumidification of humid gas streams for different 
LiBr flowrates. 
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The results obtained for gas streams with higher inlet humidities (Lines 1) and 

2), Figure 4.4) were consistently higher than those of the lowest humidity 

streams (Line 3),Figure 4.4). This was due to the higher water vapour partial 

pressures present in the column, which resulted in a greater mass driving force 

and caused more water to be absorbed into the concentrated lithium bromide 

solution. In addition, the higher partial pressure meant that the equilibrium 

temperature within the column was also considerably higher than that obtained 

with a low humidity gas stream. 

Effect of Varying the Inlet Stream Temperatures. 

A few of the experimental runs, Table 4.6, were undertaken at higher inlet 

stream temperatures so as to evaluate the influence that the inlet temperatures 

exerted upon the outlet conditions. 

H I Tin  T out wLiBr1 TLjBri n  

(gs 1 ) (g- H20 (°C) (°C) (gs 1  (%w/w) (°C)  

(9-dry air)-1)(9-dry  
[ 

0.50 1.00 100 130 3.4 63 100.5 

0.50 1.00 104.5 136 3.4 63 138 

0.50 1.40 107 127 3.4 56 113.5 

0.50 1.40 100 126 3.4 57 102 

11 2.00 0.20 110 	1112 6.8 65 	1100 ]I 
Table 4.6: Cocurrent results showing the effect of changing the LiBr inlet tem-
peratures of the gas and liquid streams. 

However, there was only a few degrees increase in the gas exit temperature, 

when the column was operated with an inlet gas flowrate of 0.5 gs 1  and an 

inlet lithium bromide temperature of 138 °C. Hence, only a limited increase exit 

gas temperature was obtained for a huge increase in the inlet stream 

temperature. It was concluded that the exit conditions were only dependent 
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upon the lithium bromide concentration and gas humidity, which determined 

the point of thermal and mass equilibrium. The extra heat supplied at the top 

of the column only served to maintain a higher temperature throughout the 

column, against heat losses to the surroundings. 

4.2.7 Rests For Countercurrent Operation.  

A series of results was obtained for countercurrent operation of the absorber, 

Table 4.7. It was felt that by operating the column in such a mode, the 

dehumidification of the gas stream would be increased because the least humid 

gas would come into contact with the most concentrated lithium bromide 

solution, thus maximising the mass transfer rate at the top of the absorber. 

7i2 G  H PH2 0I PH2o0 T out  752LiBr 1  WLjBr n  TL iB ri  

(gs') (g 	I2O 

(g- dry airY ' ) 

(bar) (bar) (°C) (°C) (gs) (%w/w) (°C) 

0.50 0.80 0.56 0.52 101 105 3.4 58 102 
0.50 0.80 0.56 0.52 100 116 3.4 58 130 
0.50 1.00 0.62 0.59 100 112 2.6 58 101 
0.50 1.00 0.62 0.58 100 110.5 3.4 58 100 
0.50 1.00 0.62 0.58 100 107 r 	3.4 58 100 

1.00 0.20 0.24 0.15 106 101 5.1 65 100 
1.00 0.50 0.44 0.41 107 105 3.4 f_58 100 

1.51 0.28 0.31 0.22 104 110 6.8 65 101 
1.52 0.27 0.30 0.25 100 110.5 5.1 65 99 

2.00 0.12 0.16 0.14 86 102 5.1 65 101 
2.00 0.12 0.16 0.13 61 99 5.1 65 100 

Table 4.7: Results for countercurrent operation of the single stage absorber. 

Analysis of the results clearly show that cocurrent operation gave higher 

temperature lifts (for a given set of operating conditions) than countercurrent 

operation, see Figure 4.5. This was attributed to the fact that the inlet lithium 
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bromide temperature was cooling the gas stream at the top of the column, prior 

to it leaving. The temperature profile for countercurrent operation, Figure 4.5, 

shows how temperature within the column was maintained at approximately 

130 °C throughout the column, but dropped dramatically upon exit. It was also 

noted that as the gas inlet temperature was reduced the exit temperature 

remained approximately constant. It was therefore concluded that the exit gas 

temperature was dependent upon the inlet lithium bromide temperature. 

a) 	b) 
Counter- Co- current 

Gas conditions: 	 Gas fiowrate 0.50 gs' 0.50 gs' 
Inlet Steam flowrate 0.50 gs' 0.50 gs' 

Inlet temperature 100 °C 	100 °C 

Outlet Steam fiowrate 
Outlet temperature 

	

Lithium bromide 	 Flowrate 

	

conditions: 	Concentration 
Inlet temperature 

(see Figure 4.5) 

0.43 gs 1  0.44 gs 1  
110.5 °C 	119 °C 
3.2 gs 	4.8 gs 
58 %w/w 56 %w/w 
100 °C 	100 °C 

The dehumidification of the gas stream, when the absorber was operated in 

countercurrent mode, did not differ greatly from the results obtained for 

cocurrent operation. It was difficult to obtain accurate results for the water 

vapour content of the inlet and outlet gas streams because the fiowrates used 

were so small. Therefore the errors involved in trying to estimate the amount of 

water vapour absorbed were such that it was difficult to discriminate accurately 

between results. However, it can be seen that from an estimate of the VLE 

conditions prevalent in the absorber, that there was reasonable agreement 

between estimated and experimental results. 
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Figure 4.5: Temperature profiles through absorber column, showing differences 
between co- and counter- current operation. 
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In addition, the level of dehumidification was not very good for either co- or 

counter- current operations, due to the increase in temperature within the 

absorption column as the water vapour was absorbed. Therefore, in order to 

improve the dehumidification of the gas stream, it would be necessary to 

operate the absorber with a highly concentrated lithium bromide solution, while 

the temperature used was controlled so as to obtain the desired exit water 

vapour partial pressure. For example, if the absorption column was operated 

with a 65 %w/w lithium bromide solution at a temperature of 80 °C, the 

corresponding partial pressure, at the top of the column, would be 0.035 bar. 

Such a low partial pressure at the top of the column helps to maintain a large 

mass driving force and therefore improve dehumidification of the gas stream. 

Tables 4.8 and 4.9 summarise the differences between the heat and mass 

transfer rates for both co- and counter- current operation. As the internal 

surface area of the absorption column was unknown it was necessary to define 

the heat and mass transfer rates using the internal volume of the absorber as a 

basis. The heat transfer rate was determined from the heat transferred to the 

gas stream, while the mass transfer rate was based on the amount of water 

vapour absorbed into the liquid absorbent stream. It can be seen that results 

for the countercurrent operation of the absorber gave better mass transfer rates, 

for similar operating conditions, than cocurrent operation. The heat transfer 

rates for the countercurrent mode of operation were low because the gas stream 

was effectively cooled by the inlet absorbent stream, thereby improving the 

dehumidification of the gas stream at the expense of reducing the overall gas 

temperature lift. Conversely, the cocurrent mode of operation exhibited high 

heat transfer rates because the gas stream was being progressively heated by 

the water vapour absorbing into the liquid phase. These results also illustrate 

the importance of using a highly concentrated lithium bromide solution to 

achieve a high exit temperature and therefore a high heat transfer rate (and 

also a high mass transfer rate), for cocurrent operation. 
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WLiBr 1  TLiBr.in  Gas 
humidity 

TG.in TG.0j Heat trans 
 rate Qo 

Mass trans 
rate M 0  

(%w/w) (°C) (9-jj20 
I 

(°C) (°C) 

 air)  

(kWm 3 ) (gs'm 3 ) 

65 102 0.10 101 108 11 25 

56 102 1.00 103 122 22 53 
63 101 1.00 100 130 35 88 
70 101 1.10 103 142 45 87 

Table 4.8: Mass and heat transfer rates for cocurrent operation of the direct 
contact absorber. 

WLjBr in  TLiBrin Gas 
humidity 

TG.in TG.,,, Heat trans 
 rate Uo 

Mass trans 
rate K 0  

(%w/w) (°C) (9- jq2o (°C) 
(g-dry air) ' ) 

(°C) (kWm 3 ) (gs'm 3 ) 

65 100 0.10 61 99 33 41 
65 101 0.30 104 110 12 70 
58 100 0.50 107 105 14 52 
58 130 0.80 100 116 17 55 
58 100 1.00 100 1 110 12 54 

Table 4.9: Mass and heat transfer rates for countercurrent operation of the direct 
contact absorber. 
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4.2.8 Temperature Profiles within the Absorption 

Column. 

The exit gas temperatures obtained for all of the results were less than the 

maximum temperature obtained within the column, Table 4.10. The difference 

was due to heat losses as the gas stream left the absorption column. It can be 

seen from Figure 4.6 that at the bottom of the absorber there was a X-piece, 

which was used for the disengagement of the liquid absorbent from the gas (for 

cocurrent operation). Due to difficulties in lagging this section, the heat losses 

from this part of the absorbent were greater than for the main absorption 

column. Consequently, as the exit gas temperature was measured after this 

point, the temperature obtained was lower than expected. It should be noted 

that the thermocouple used to measure the top gas temperature was situated 

away from the absorber and therefore showed a lower temperature than was 

obtained at the top of the main column, due to heat losses along the connecting 

pipework. This was not a serious problem for countercurrent operation as the 

drop in the gas temperature, due to contact with the cool inlet absorbent 

stream, was of greater significance. 

The temperature profiles within the column were all similar to those shown in 

Figure 4.5, for both co- and counter- current operation, where there was a rapid 

rise in the gas temperature before it levelled out, indicating thermal equilibrium. 

It can be seen from Tables 4.10 and 4.11 that the maximum temperature 

obtained for cocurrent operation occurred mostly at the bottom of the absorber. 

By contrast, the results for the countercurrent case showed that the maximum 

was nearer the top of the column. Figure 4.6 shows the relative position of each 

thermocouple in the packed absorber and also the location of the thermocouples 

used to measure the inlet and outlet gas temperatures. Another observation for 

countercurrent operation shows how much lower the exit temperature was 
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Figure 4.6: Position of thermocouples in absorption column. 
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TG0 , 

(°C) 
LTG  
(degC) 

TG,... 
(°C) 

TG.. 
posn. 

TG, 
(°C) 

LTG 
(degC) 

TG.. 
(°C) 

TGmax  
posn. 

147.5 47 160 7 128 26 133 7 

147 47 159 3 122.5 21 126 7 

144 44 159 7 120 20 126 7 

146 43 153 7 127 20 129 5 
142 39 149 7 122 19 130 7 

140 39 150 7 122 19 130 5 

139 39 151 7 119 19 124 7 

138 38 147 7 116 17 126 7 

137.5 37.5 149 7 116 16 128 7 

137.5 37 149 7 116 14 129 3 

142 37 149 7 115 13 118 7 
133 34 142 7 110 9 114 7 
131 32 149 7 108 7 112 7 

136 31 142 7 106 6 110 7 

130 30 144 3/4/7 107 5 116 6 
130 30 137 7 	11107 3 115 7 

130 30 135 7 103 3 106 5 
128 28 132 7 103.5 2 107 5 
128 27 139 7 112 2 118 5 
126 27 131 7  L  

Table 4.10: Comparison of exit and maximum gas temperatures in absorber. 
Cocurrent mode. Inlet gas temperatures 100 °C. 

(°C) 
TG.. , 
(°C) (degC) 

TGmax  
(°C) 

TG,..  
posn. 

101 105 4 129 3 
100 116 16 134 2 
100 110.5 10 131 3 
100 112 12 132 3 
100 107 7 130 2 
106 101 -5 122 3 
107 105 -2 120 3 
104 110 6 130.5 4 
100 110.5 11 127 3 
86 102 16 113 3 
61 99 38 107 3 

Table 4.11: Comparison of exit and maximum gas temperatures in absorber. 
Countercurrent mode. 
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4.2.9 Summary of Resullts0 

As demonstrated above, the dehumidification and reheating of a humid gas 

stream can not be achieved in a single absorption stage. This was a significant 

conclusion and outlined the way forward for this project. Separate operations 

must be used in order to achieve the project aims of dehumidifying a gas stream 

to 0.03- 0.05 g-Ho (gi,.y air)—' and raising its temperature to 150- 200 °C. The 

most important variable in obtaining this was the absorbent concentration, 

which had be as high as possible. 

For the dehumidification stage, which would involve the direct contact of the 

gas and lithium bromide streams, flowing countercurrent to each other, the 

temperature of the lithium bromide stream would need to be controlled so as to 

maintain the desired exit water vapour partial pressure. However, care must be 

taken to minimise the risk of crystallisation of the solution. 

Secondly, the reheating of the 'dry' gas stream would be carried out in an 

indirect reheater. The heating medium used would again be a concentrated 

solution of lithium bromide into which steam would be absorbed. The resultant 

stream would generate temperatures in the range of 170- 190 °C. The exit 

temperatures were taken directly from the lithium bromide VLE diagram where 

solutions in the range 65- 70 %w/w, exerting a water vapour partial pressure of 

1 bar, result in the above temperatures. 
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4 	Two Stage Cycle Dehumdfficafion 

Studies. 

Separate studies were carried out for each of the absorption processes-

dehumidification and reheating- in the two stage heat transformer cycle, 

allowing independent control of the operating conditions in each stage. The 

dehumidification operation was investigated first using three different absorbers 

with the dehumidification capabilities of each one being assessed in turn. The 

three columns used were: 

o Falling film absorber. 

o Packed column. 

o Condenser column with internal heat removal using cooling water. 

Each column used will be explained in detail in the following sections. The 

experimental programmes undertaken investigated the influence of the main 

variables upon the performance for each of the absorbers, as discussed in 

Section 4.1.2 (Table4.1). The absorbers were operated for the countercurrent 

flow of the gas and liquid streams. The maximum operating concentration used 

in the absorbers was limited to 65- 66 %w/w so as to minimise the risk of 

crystallisation. The crystallisation temperature of a 66 %w/w solution of 

lithium bromide was 60 °C, which was lower than the normal operating 

temperature in the absorbers. 

Figure 4.7 shows the arrangement for injecting lithium bromide into the top of 

each of the absorbers. Using of the average absorbent stream concentration in 

the column and the temperature T5, an estimate of the exit water vapour 
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pressure could be made. The average absorbent concentration was used in 

preference to inlet concentration as it was felt that this was more representative 

of the absorption conditions near the top of the column, where most of the 

dehumidification occurred. The temperature was measured from the 

thermocouple positioned at the top of the column (T5), just below the point 

where the lithium bromide stream was injected. The calculated water vapour 

pressure was then compared with the actual water vapour exit partial pressure 

in the gas stream. The exit gas humidity was determined by two methods. 

Firstly, a high temperature humidity probe was used to measure the gas 

humidity directly. The second method involved recording the difference between 

the inlet steam flowrate and the amount of condensate collected in order to 

determine the exit steam flowrate in the gas and hence the exit humidity and 

steam partial pressure. The average of these two results was taken to be 

representative of the exit gas stream. 

403i1 Falling Film Absorber.  

In this absorber, concentrated liquid absorbent was sprayed into the top of a 

glass column with the humid gas streams rising from the bottom. The range of 

gas fiowrates used to test the falling film absorber was between 2- 5 gs', while 

the humidity of the streams was similar to those encountered on industrial 

spray drying operations (typically 0.15 g-HO (g- dry air)—' [0.19 bar]). There 

were no significant differences between each of the results for the different 

operating conditions used, Table 4.12. However, the result taken using a low 

lithium bromide fiowrate was slightly worse than the other results. This may 

have been due to several factors: poor gas- liquid contact or incomplete wetting 

of the absorption column. 
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Figure 4.7: Top of dehumidification column: LiBr inlet. 
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In addition, there was also a larger concentration drop in the absorbent 

solution, giving a lower average concentration and hence a higher vapour 

pressure at T5. The important criteria for assessing the dehumidification 

performance of the column was the exit water vapour partial pressure and the 

agreement between this value and the estimated vapour pressure above lithium 

bromide solution. Figure 4.8 shows that the results for the falling film absorber 

were very scattered and above the equilibrium line. Therefore, although the gas 

streams were being dehumidified, the results were not very good as equilibrium 

was not being achieved, due to poor gas- liquid contact in the column. This 

phenomenon was observed during normal operation since most of the liquid ran 

down the sides of the absorber, as expected. In addition, the liquid flow was felt 

to be laminar and so there was not a great deal of surface renewal within the 

column, which resulted in poor mass transfer. 

rn G 7inH2 o i . T Gj. mH2 oout  TG. PH2o.ut  mLiBr au  WLiBr av  T5 PLiBrv 
(gs') I (gs 1 ) (°C) (gs') (°C) (bar) (gs') (%w/w) (°C) (bar) 
2.00 0.27 72 0.17 75 0.12 8.46 65 94 0.055 

3.00 0.45 97 0.33 76 0.15 4.05 59 86 0.09 
3.00 0.40 90 0.28 84 0.13 6.46 65 94 0.06 
3.00 0.41 91 0.23 73 0.11 7.90 58 81 0.08 
3.00 0.45 94 0.21 74 0.10 8.05 59 87 0.10 
3.00 0.42 98 0.27 83 0.13 8.28 63 90 0.075 
3.00 0.40 96 0.21 83 0.10 8.55 65 93 0.06 

4.00 0.56 100 	
] 

_0.42 
[ 

90 0.14 8.32 64 85 0.055 

5.00 0.62 79 	
] 

_0.29 95 0.09 8.37 62 90 0.08 

Table 4.12: Performance data for the falling film dehumidification column. 
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0.0 	0.05 	0.1 	0.15 	0.2 
Vapour pressure above LiBr solution at thermocouple 5 (bar) 

Figure 4.8: Exit water vapour partial pressure versus vapour pressure for the 
failing ifim absorber. 
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4.3.2Packed Cokimi0 

Following the experiments with the failing ifim absorber, the column was 

packed with 15mm Fenske helices, which helped to improve the gas- liquid 

contact and hence the amount of water absorbed, Table 4.13. The gas flow -rate 

for the packed absorber runs was limited to 4 gs' due flooding problems within 

the column at higher flows. The range of inlet humidities was widened to 

between 0.10- 0.26 g-H20 (g-dry airY' [0.14- 0.29 bar]. This allowed the effects of 

operating the column with a high humidity gas stream to be monitored. Figure 

4.9 shows that the modification to the column did increase the dehumidification 

of the gas stream and also helped reduce the scatter of the results as the 

majority of the points were closer to the equilibrium line. 

rn( 	7nJq2 o 	TGi.  rhHO..t FTGOU  PH20 	rnLiBr00 F 	T5 	PLOr 

(gs'') (gs') 	(°C) (gs_') [ (°C) 	(bar) 	(gs') [ (%w/w) (°C) (bar) 

2.00 0.32 iOi 0.15 88 0.11 8.29 62 97 0.10 

2.00 0.23 100 0.12 84 0.09 8.30 63 92 0.075 
2.00 0.40 99 0.24 91 0.16 8.31 63 99 0.12 

3.00 0.35 96 0.21 87 0.10 4.08 60 95 0.11 
3.00 0.35 69 0.23 79 0.10 4.09 61 84 0.065 
3.00 0.57 72 0.35 84 0.16 4.12 60 91 0.11 
3.00 0.35 67 0.16 80 0.08 8.11 61 85 0.07 
3.00 0.57 71 0.27 84 0.13 8.17 61 90 0.09 
3.00 0.31 98 0.18 89 0.09 8.27 63 95 0.09 
3.00 0.32 100 0.17 90 0.08 8.28 63 96 0.095 
3.00 0.77 99 0.50 100 0.21 8.33 62 105 0.16 
3.00 0.54 100 0.30 95 0.14 8.36 63 101 0.12 

4.00 0.66 98 0.43 89 0.13 8.15 60 95 0.12 
4.00 0.38 100 0.25 89 0.09 8.17 62 93 0.09 
4.00 0.65 96 0.42 96 0.14 8.22 61 100 0.14 
4.00 0.38 71 0.23 

1 
 83 0.08 8.23 62 85 

1 
 0.07 

Table 4.13: Performance data for the packed dehumidification column. 
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Experiments carried out using high humidity gas streams resulted in exit 

conditions which were furthest from the equilibrium line, indicating a high exit 

water vapour partial pressure. A closer inspection of both Table 4.9 and Figure 

4.9 show that these gas streams exhibited higher temperatures at T5 and 

therefore higher exit partial pressures. This was due to the increase in the water 

vapour content in the gas, causing an rise in the amount of absorption into the 

lithium bromide solution. This in turn resulted in an increase in the gas and 

liquid temperatures and therefore decreased the proportion of the vapour 

absorbed because of the increased vapour pressure above the lithium bromide 

solution. 

A few of the experiments were undertaken using lower lithium bromide 

flowrates; the resulting effect was a drop in the dehumidification of the gas 

stream. This was attributed to the larger concentration change in the absorbent 

stream. It was also noted that the lowest outlet vapour pressures were obtained 

at the highest lithium bromide solution concentrations. 

4.3.3 Condenser. 

Further improvements in dehumidification were achieved by replacing the 

packed absorber with a column containing an internal cooling coil, which 

removed the heat of absorption from the absorber and allowed the temperature 

at the top of the column to be controlled. This had the effect of maintaining 

the water vapour pressure above the LiBr solution as low as possible. Therefore, 

the rate of absorption of water into the LiBr solution was increased, reducing 

the exit water vapour partial pressure and improving the gas dehumidification. 

Experiments were carried out varying the same parameters as listed in Table 

4.1 as well as controlling the cooling water fiowrate to the condenser. 
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Due to the large heat transfer surface area of the cooling coil within the 

condenser it was necessary to restrict the maximum gas flowrate to 1.8 gs' to 

avoid the column flooding at higher flowrates. All the experiments were carried 

out for gas streams with of relatively low inlet humidities, between 0.13- 0.24g-

FI20 (g- , air) [0.17- 0.28 bar]. The corresponding steam flowrates used varied 

between 0.15- 0.41 gs, which was close to the limits of accurate measurement 

with the apparatus used. Therefore, errors in the results were larger than in the 

previous column. However, the consistency and reproducibility of the results 

obtained validates the conclusions drawn. 

TTiG rnH2 O 1  Trn,, rnH2 00  Ta0 , Pjq200., rnLiBrav  WLjBr 3  T5 PLBr0  

(gs') (gs') (°C) (gs') (°C) (bar) (gs') (%w/w) (°C) (bar) 

1.00 0.23 98 0.07 60 0.10 4.14 58 66 0.04 
1.00 0.15 80 0.03 65 0.045 8.39 64 70 0.03 
1.00 0.23 98 0.06 61 0.09 8.05 59 68 0.04 
1.00 0.23 73 0.05 60 0.07 8.07 59 66 0.035 

1.20 	1 0.17 1 78 0.03 1 65 1 	0.04 	11 8.38 	1 64 70 0.025 
1.20 0.24 87 0.04 67 0.05 8.37 63 73 0.03 

1.40 0.18 84 0.05 66 0.05 8.38 64 [72 0.025 

1.60 0.23 70 0.05 68 0.05 8.44 62.5 72 0.035 
1.60 0.24 83 0.04 68 0.04 8.40 64 73 0.03 
1.60 0.33 83 0.05 72 0.05 8.47 62 77 0.045 

1.80 0.28 77 0.13 83 0.10 4.12 60 92 0.10 
1.80 0.28 93 0.15 88 0.12 4.12 60 96 0.12 
1.80 0.28 95 0.16 85 0.12 4.09 61 93 0.10 
1.80 0.43 78 0.26 86 0.19 4.11 59 94 0.13 
1.80 0.26 93 0.08 82 0.07 8.19 61 90 0.08 
1.80 0.26 96 0.06 85 0.05 8.38 62.5 93 0.08 
1.80 0.27 78 0.07 62 0.06 8.18 61 68 0.03 
1.80 0.27 96 0.07 72 0.06 8.02 59 79 0.065 
1.80 0.27 102 0.08 61 0.07 8.04 59 66 0.04 
1.80 0.28 71 0.07 82 0.06 8.14 61 91 0.085 
1.80 0.28 71 0.06 87 0.05 8.31 63 94 0.08 
1.80 0.28 71 0.07 85 0.06 8.46 64 93 0.07 
1.80 0.41 98 0.12 88 0.10 8.40 62 96 0.10 

Table 4.14: Performance data for the condenser. 
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The lowest exit gas humidities obtained using the condenser were suitable 

enough to allow the recycling of the 'dried' gas stream. The best results were 

obtained at high cooling water and lithium bromide flowrates, Figure 4.10. The 

highest exit water vapour partial pressures occurred using low flowrates of 

lithium bromide. This was due to a greater drop in the concentration of the 

absorbent stream, as a result the partial pressure above the solution was higher. 

Also, at lower absorbent flowrates, the liquid distribution throughout the 

column was poor. This contributed to higher exit water vapour partial 

pressures due to poor gas- liquid contact which in turn led to a reduction in the 

mass transfer rate. 
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Figure 4.10: Exit water vapour partial pressure versus vapour pressure for the 
condenser. 
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The cooling water fiowrates used in the experimental trials varied between 0.5-

8.9 gs'. It can be seen from Table 4.15 that at the lowest cooling water 

fiowrates, the exit temperatures of the cooling streams were nearly at boiling 

point, therefore very little heat was being transferred at the top of the column. 

In fact, the cooling water exit temperatures were higher than the gas 

temperatures, suggesting that heat was being transferred to the gas stream 

instead of the other way round. Therefore, it can be concluded that at low 

water flowrates very little cooling was achieved with this system. However, even 

at low cooling water fiowrates there was an improvement in the 

dehumidification of the gas stream compared to the other columns tested. This 

was because of better gas- liquid contact due to the large cooling surface area...  

Conversely, for high flowrates, the exit cooling water temperatures were lower 

than the gas temperatures, which was as expected, Table 4.15. This indicated 

that heat was being continually removed from the top of the column, where it 

was most needed. Thereby, ensuring that low exit water vapour pressures were 

obtained. It was therefore concluded that the removal of heat from the absorber 

did improve the absorption of water vapour into the lithium bromide stream. 

Lastly, the temperatures obtained for T5 were consistently higher than the 

actual gas exit temperatures recorded. This was due to heat losses between two 

measurement points, the point T5, near the top of the column and the gas exit. 

As the gas flowrates were small and the heat capacity of the stream was low 

this represented losses of only a few watts. 
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rnG TG j. TG.., T5fi r4cw Tcw i .  cw 
(gs') (°C) (°C) (°C) ]j (gs') (°C) (°C) 

1.00 98 60 66 8.4 47 58 
1.00 80 65 70 8.9 52 55 
1.00 98 61 68 7.5 48 61 
1.00 73 60 66 9.8 46.5 58.5 

1.20 78 65 70 8.7 53 57 
1.20 87 67 73 8.5 53 57 

1.40 84 66 72 8.9 	j 55.5 56.5 

1.60 70 68 72 8.7 54 59 
1.60 83 68 73 8.6 53 57 
1.60 83 72 77 8.5 51 59 

1.80 77 83 92 0.5 24.5 96 
1.80 93 88 96 0.5 25 97 
1.80 95 85 93 0.5 24.5 96 
1.80 78 86 94 0.5 24.5 95.5 
1.80 93 82 90 0.5 22.5 96 
1.80 96 85 93 0.5 25 97 
1.80 78 62 68 7.1 49 62 
1.80 96 72 79 4.0 47 79 
1.80 102 61 66 7.1 49 62 
1.80 71 82 91 0.5 23.5 95 
1.80 71 87 94 0.5 24.5 96 
1.80 71 85 93 0.5 24.5 96 
1.80 98 88 96 0.5 26 96 

Table 4.15: Influence of C.W fiowrate upon exit gas conditions. 
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404 Two stage Cycle: Reheat (Column 

Studes0 

Experiments with the reheat column were directed towards obtaining as high a 

temperature within the absorber as possible. This was achieved by mixing a 

concentrated lithium bromide solution with a low pressure steam source. The 

heat generated from this absorption process was then transferred to a 

countercurrent flowing gas stream. The gas stream being heated flowed in the 

annular space between the outer absorber shell and the inner absorption tube, 

while hot lithium bromide- steam mixture flowed down the inside of the 

absorption tube. A highly extended surface on the absorption pipe helped to 

maximise the rate of heat transfer to the gas. 

The primary operating variables in these studies were the gas and lithium 

bromide flowrates and the LiBr concentration (as detailed in Table 4.1) with 

the addition of a separate steam source. Secondary variables which were also 

studied were the inlet temperatures of the process streams. It was assumed that 

the gas entering the column had previously been dehumidified, in the direct 

contact absorber (Section 4.3), and so the gas humidity was ignored in the tests 

carried out. An important operating criterion used to measure the performance 

of the reheat absorber was the circulation ratio. This was defined as the ratio 

between the lithium bromide and steam mass feeds in the inner tube of the 

column (Fr). This ratio was used in preference to quoting separate flowrates for 

both streams, allowing easier classification and discussion of the experimental 

results. 
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Medium Operation Gas flow TG,,  I T 01, 11 	I Tr!)  Uo 	II 
(gs') (°C) (°C) ('W/m 2 K) 

LiBr Heating 2.00 21 68 70 58 140 ±150 

LiBr Heating 3.00 21 71 73 59 220 ±295 
LiBr Heating 3.00 26 96 100 77 210 ±80 

LiBr Heating 5.00 23 81 88 62 285 ±85 
Heating 6.00 23 73 83 57 280 ±70 

pILiBr  Cooling 5.00 98 55 53 55 290 ±180 

LiBr Cooling 6.00 98 68 63 77 295 ±95 

Steam Heating 2.67 69 98 101 100 120 ±70 

Steam Heating 3.00 21 96 98 97 200 ±385 

Steam Heating 3.00 19 95 100 100 150 ±40 

Steam Heating 4.00 25 101 104 103 240 ±350 

Steam Heating 4.00 32 97 101 100 210 ±240 

Steam Heating 4.00 23 97 100 100 240 ±200 

Steam Heating 4.00 15 99 102 100 250 ±100 
Steam Heating 4.00 11 93 104 100 160 ±20 
Steam Heating 4.00 20 95 101 100 190 ±190 

Table 4.16: Experimental results for the determination of the overall heat transfer 
coefficient for the reheat column. 

4.4.1 Heat Transfer Characteristics of the Reheat 

Absorber. 

Prior to carrying out absorption experiments with the heat exchanger, it was 

necessary to determine the column's heat transfer characteristics. Two modes of 

operation were investigated in this experimental programme, namely the 

heating and cooling of the column. The heating trials were carried out using 

either steam or lithium bromide, flowing in the inner tube of the column, to 

heat externally flowing gas streams. The cooling experiments were achieved by 

removing heat from hot gas streams using cold lithium bromide, Tables 4.16 

and 4.17. The two process streams flowed countercurrent to each other to 

maximise the heat transfer. 
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Gas flow TG,,,, kG I kff2Q  I 	kay hG (*) ReG NUG 
(°C) ('\?Vm'K) (Wm 2K') 11 

(-) (-) 

2.00 45 2.75 N/A 2.75 150 1800 155 ±180 
3.00 46 2.76 N/A 2.76 250 2600 255 ±350 
3.00 61 2.87 N/A 2.87 230 2600 225 ±90 
5.00 43 2.73 N/A 2.73 320 4400 330 ±100 
6.00 40 2.70 N/A 2.70 320 5300 330 ±90 
5.00 76 2.99 N/A 2.99 330 4400 310 ±200 
6.00 83 3.03 N/A 3.03 340 5300 315 1100 

2.67 84 3.05 2.40 2.89 125 2370 120 ±80 
3.00 59 2.86 N/A 2.86 220 2600 215 ±435 
3.00 57 2.85 N/A 2.85 160 2600 160 ±45 
4.00 63 2.89 N/A 2.89 270 3500 260 ±395 
4.00 65 2.90 N/A 2.90 230 3500 225 ±270 
4.00 60 2.87 N/A 2.87 260 3500 255 ±210 
4.00 57 2.85 N/A 2.85 280 3500 270 ±115 
4.00 52 2.81 N/A 2.81 170 3500 170 ±30 
4.00 57 2.85 N/A 2.85 210 3500 210 ±210 

Table 4.17: Nusselt and Reynolds numbers for the gas stream, used to determine 
the heat transfer characteristics of the reheat column. 

* As the majority of the heat resistance in the column was on the gas side 
(constituting approximately 95% of the total heat transfer resistance), an inner 
heat transfer coefficient (h1) of 3000Wm 2 K 1  was assumed. Hence knowing 

Uo, h1 and -'c/k,  it was possible to determine the outside gas heat transfer 
coefficient (hG). It should also be noted that the gas heat transfer coefficient 

was based on the external, smooth tube area and neglected the extended 
surface which was used to enhance the heat transfer. 

(see Appendix C 'Sample Calculations', Section C.2.1.) 



Chapter 4. Experimental Studies. 	 165 

Using dimensional analysis, the data collected was manipulated to give Nusselt 

and Reynolds numbers for the gas streams (Table 4.17). The most general 

expression relating the two dimensionless groups is given in Equation 4.1. The 

constants 'm' and 'c' were determined by plotting Nusselt number against 

Reynolds number on log- log paper, Equation 4.2, where 'm' represented the 

gradient of the line, while the y- intercept was Iog,o(c). 

It was also shown by Reynolds that the Nusselt number was dependent upon 

the Prandtl number according to Pr"'. However, the variation of Pr in these 

tests was minimal, Table 4.18, it was therefore considered to be constant and 

was incorporated into the 'c' term of Equation 4.1. 

Nu = c. Rem 
	

(4.1) 

log(Nu) = log(c) + rn.log(Re); where c = c'. Pr 1/3 
	 (4.2) 

Flowrates Prandtl N umber (*) 

Pr"3  Gas I Vapour Gas I Vapour Average 
(gs') (-) (-) 

2.00 0.00 0.70 - 0.70 0.89 
2.00 0.17 0.70 0.92 0.72 0.90 
2.00 1 	0.67 0.70 0.92 0.76 0.91 

Table 4.18: Variation of the gas Prandtl number with humidity. 

(* assuming average Prandtl numbers over the temperature range 25- 85 °C.) 

'The refinement was due to the influence of molecular diffusion across the boundary layer 
within the fluid being studied, causing a reduction in the rate of heat transfer. However, 
experiments using gases gave good predictions for the HTCs because the rate of heat transfer 
was almost the same as the rate of momentum transfer, implying a Pr of approximately one 
and so its effect upon Nu was omitted. 
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Line (1), Figure 4.11 shows that a linear relationship existed between the 

Nusselt number (for the outside gas heat transfer coefficient in the absorber) 

and the Reynolds number (based on the annular gas flowrate). The method of 

least squares was used to perform a linear regression on the experimental 

points, resulting in a constant of proportionality (c) of 1.28, while the coefficient 

'm' was 0.78, see Equation 4.3. The standard Nu- Re relationship for turbulent 

flow in pipes, as proposed by Sieder- Tate 2,  was also drawn on Figure 4.11, 

Line (2). It can be seen from Figure 4.11 that there was an increase in the gas 

heat transfer coefficient of 12 to 14- fold as a result of the highly extended 

surface on the outside of the inner tube. (see Appendix C 'Sample 

Calculations', Section C.2.2.). 

Nu = 0.41. Re 0 . 78 
	 (4.3) 

It should be noted that in most of the experiments performed, the gas outlet 

temperature was very close to the inlet inner tube temperature. This was a 

consequence of the extended surface on the absorption tube, which gave high 

gas heat transfer coefficients and resulting in close temperature approaches 

between the two process streams at the top of the column. Therefore, the errors 

in the log mean temperature differences, the gas heat transfer coefficients and 

hence the Nusselt numbers were very large. However, because the final data 

points were consistent, the expression given in Equation 4.3 was felt to be valid. 

2 Sieder, E. N. and Tate G. E.; Ind. Eng. Chem., 28, pp1429- 1436 (1936). 
Nu = 0.027. Re°8 . Pr"3 
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Figure 4.11: Determination of the overall heat transfer coefficient for heat transfer 
to the external gas stream. 
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4.4.2 Early Absorption Trials.  

The first absorption experiments carried out using the reheat column were very 

promising. Reasonable gas exit temperatures were achieved using relatively 

high concentrations of lithium bromide solutions. However, the temperatures 

obtained were not as high as expected. This was attributed to the presence of 

inerts within the inner tube of the absorber, which reduced the steam partial 

pressure in the absorber and therefore lowered the maximum absorption 

temperature. 

It was therefore necessary to completely remove or, at the very least, 

significantly reduce the inerts from the absorption column. The modifications 

carried out, as described in Chapter 3 Design and Construction, Figure 3.14, 

involved the addition of a bleed valve to the lithium bromide pipework leaving 

the reheat column; and the extension of the pipe which delivered the weak 

lithium bromide to the liquid reservoir at the bottom of the dehumidification 

column. The bleed valve served to remove inerts at the start of the experiment, 

and replaced them with steam. The dip pipe ensured that the lithium bromide 

solution flowed in a closed circuit and thus prevented any air being sucked up 

into the reheat column. 
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TflLiBr tn  WLjBr in  mRS 

Inner tube 
temperature 

Gas 
temperature 

Top Bottom Bottom Top I  LTG 
(gs') (%w/w) (gs') (°C) (°C) (°C) (°C) (degC) 

4.30 60 0.10 104 121 91 132 41 
4.30 60.5 0.10 100 116 91 126 35 
4.30 62 0.10 99 115 91 126 35 
5.93 61 0.10 99 116 92 127 35 
2.95 61 0.10 96.5 117 95 132 37 
4.51 58 0.12 98 111 71 124 53 
4.51 59 0.12 99 111.5 71 125.5 55 
2.90 60 0.12 98 113 71 134 63 
2.90 61 0.12 99 115 72 137 65 
2.33 61 0.12 103 121 72 140 67 
2.33 61 0.12 98 117 72 138 66 
4.41 61.5 0.16 105 129 103 138 35 

Table 4.19: a) Reheat data for the absorption column before the modifications. 

7:nLiBri,, WLjB mRS 

Inner tube 
temperature 

Gas 
temperature 

Top Bottom Bottom Top LTG 
(gs 1 ) (%w/w) (gs') (°C) (°.C) (°C) (°C) (degC) 

2.06 59 0.12 101 118 62 135 73 
2.06 60 0.12 102 117 62 137.5 76 
2.06 61 0.12 103 118 62 139 77 
2.06 61 0.12 103 120 62.5 141.5 79 
2.06 61 0.16 104 139 58 142 84 
2.06 61 0.16 102 145 82 143.5 62 
2.06 61.5 0.16 103 147 90 145 55 
1.48 62 0.16 93 143 101 147 45 
1.48 62 0.16 103 139 73 147 74 
2.11 58 0.16 106 132 79 131 52 
2.11 59 0.16 101 134 86 130 44 
2.11 60 0.16 102 136 88 133.5 45 
2.11 61 0.16 101.5 139 96 136 40 
2.12 63 0.16 101 140 99 136 37 
2.82 59.5 0.14 100 136 92 131 38 
2.82 61.5 0.14 99 136.5 93 135.5 43 
2.82 63 0.14 99 139 92 138 45 

Table 4.20: b) Reheat data for the absorption column after the modifications. 
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Figure 4.12 shows that the modifications to the pipework did improve the gas 

exit temperatures. Despite the fact that several of the operating parameters 

were varied during these runs, there was a definite increase of a few degrees in 

the exit gas temperatures obtained throughout the concentration range used. 

The 'VLE TEMPERATURE' line was drawn based upon the exit lithium 

bromide concentration and assumed a vapour pressure of 1 bar. The exit 

concentration was chosen this was representative of the maximum achievable 

absorption temperature after the steam has been absorbed. After establishing a 

reliable operating system the operability of the system was investigated. 

16O- 
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150 
0 C.) 

b) 

140 
X 

i 1x 0uiuuui  : 	
a) 

Increase in 
130 exit temperature 

Co 
X 

120 	 < a) Pre— modification 

b) Post— modification 

I 	L I 
57 	58 	59 	60 	61 

	
62 	63 
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Figure 4.12: Improvement in gas exit temperature after modification to the reheat 
column. 
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4.4.3 Effect of Varying the Gas FJlowrate. 

Several gas flowrates were used in the experimental runs in order to determine 

the influence of the flowrate upon the operation of the absorber and the exit gas 

temperatures achieved. It can be seen from Figure 4.13 that although the 

highest gas outlet temperatures were obtained at the highest lithium bromide 

inlet concentrations, a peak in the outlet temperature occurred in each case at a 

gas flowrate of 3 gs'. 

Figure 4.13 shows that as the gas flowrate increased between 2- 3 gs there was 

initially a rise in the gas exit temperature. before gradually decreasing as the 

flowrate was increased to 6 gs 1 . The initial increase in exit temperature was 

due to an increase in overall heat transfer coefficient, increasing the rate of heat 

transferred to the gas stream. Another factor which influenced the exit 

temperatures was the rate of heat loss to the surroundings, which accounted for 

a larger proportion of the total heat transferred at the lowest gas stream 

flowrates. For example, assuming a 20 W heat loss over the column and the 

associated pipework, the corresponding drop in temperature for a gas at 2 gs 

would be 10 degC, whereas if the flow were 3 gs' it would only be 6.7 degC. 

The subsequent drop in the exit temperature above gas flowrates of 3gs' was a 

result of the increased heat content (CG) of the gas stream. Therefore, despite 

an increase in the gas heat transfer coefficient as the Reynolds number rose, 

according to Equation 4.3, there was also a corresponding and greater increase 

in the heat required to raise the temperature of the stream by one degree. 
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MG 	71 LiBr WLIBr 	I flRS 	Fr  I TG1 	Tc0 I 	I Q 
(gs) I (gs') (%w/w) (gs') j (-) 	(°C) (°C) I (degC)  t (W 
2.00 2.81 57 0.16 17.6 66 123 57 114 578 0.20 
2.00 2.82 57 0.16 17.6 93 128 35 71 555 0.13 

3.00 2.06 55 0.12 17.2 81 131 51 1 152 1570 10.27 
3.00 2.81 56 0.16 17.6 85 132 47 141 561 0.25 
3.00 2.82 57 0.16 17.6 82 133 51 152 561 0.27 

Table 4.21: Experimental data showing the influence of the gas flowrate upon 
the gas exit temperature. LiBr concentration range 55-'57 %w/w. 

TflG TflLjB r  WLIBr I mRS I 	F,. TG1  I TG.., TG [Q COP 

(gs 1 ) (gs') (%w/w) I (gs') I 	(-) (°C) 
[ 

(°C) (degC) (W) (W) (_ 
2.00 2.90 60 0.16 18.1 79 128 49 98 621 0.16 
2.00 2.93 60 0.16 18.3 81 129 48 96 621 0.15 
2.00 2.92 60 0.16 18.3 82 130 49 97 621 0.16 

3.00 2.82 59 0.14 20.1 92 131 38 115 585 0.20 
3.00 2.06 59 0.12 17.2 62 135 73 218 570 0.38 
3.00 2.06 60 0.12 17.2 62 138 76 228 570 0.40 

4.00 2.86 58 0.16 17.9 76 127 50 201 647 0.31 
4.00 2.86 58 0.16 17.9 77 129 52 209 667 0.31 
4.00 2.88 59 0.16 18.0 76 128 52 208 681 0.31 
4.00 2.20 60 0.12 18.3 93 134 41 164 530 0.31 

ft5.00 2.84 58 0.16 17.8 80 129 49 246 	1 561 0.44 
5.00 2.88 59 0.16 18.0 80 130 50 252 611 0.41 
5.00 2.92 60 0.16 18.3 80 132 52 261 611 0.43 

6.00 2.87 59 0.16 17.9 T 75 128 53 319 561 0.57 
6.00 2.91 60 0.16 18.2 fl79 131 51 308 621 0.50 

Table 4.22: Experimental data showing the influence of the gas flowrate upon 
the gas exit temperature. LiBr concentration range 58- 60 %w/w. 
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rn G 	TflLjB r  WLjBr 	MRS 	F 
(s') I  (s') (%w/w) I  (gs') I (-) 

TG 1 

1("C)  
TG,,. , I LT 	I Q 	I 	I CI 

(°C) 	I (degC) (W) (W) 	(-) 

2.00 
[ 

2.97  1 62 
[ 

0.16 18.6 82 131 49 98 611 0.16 

3.00 2.82 61 0.14 20.1 93 136 43 128 585 0.22 

3.00 2.33 61 0.12 19.4 72 138 66 198 540 0.37 

3.00 2.82 63 0.14 20.1 93 138 45 136 585 0.23 

3.00 2.06 61 0.12 17.2 62 139 77 232 570 0.41 

3.00 2.33 61 0.12 19.4 72 140 67 203 540 0.37 

3.00 2.06 61 0.12 17.2 62 141 79 237 570 0.42 

4.00 2.22 61 0.12 18.5 93 137 44 178 530 0.33 
4.00 3.00 62 0.16 18.8 82 137 55 222 722 0.31 
4.00 2.25 62 0.12 18.8 93 140 47 188 550 0.34 

2.98 62 0.16 18.6 
] 

_80 136 56 278 611 0.46 

6.00 195 61 0.16 18.4 79:::] 131 52 313 1 621 '0.50 
11  6.00 '3.00 1 62 0.16 1 18.8 1 79 1 134 1 55 1 329 1 621 10.53 

Table 4.23: Experimental data showing the influence of the gas flowrate upon 
the gas exit temperature. LiBr concentration range 61- 63 %w/w. 

rrh 	rnLiBr  WLjBr 	TTiRS 	F 	TG 	TG00  LTG 	Q 	I COP
') (gs') (%w/w) (gs 1 ) (-) 	(°C) (°C) (degC) ('W) (W) j(-) 

2.00 2.90 64 0.16 18.1 	1 82 135 53 105 647 0.16 

3.00 2.82 64 0.14 20.1 91 139 48 143 585 0.24 
3.00 2.82 65 0.14 20.1 92 144 52 156 585 0.27 
3.00 2.82 66 0.14 20.1 92 145 53 158 585 0.27 
3.00 2.82 66 0.14 20.1 92 146 54 162 585 0.28 
3.00 2.82 66 0.14 20.1 92 147 55 164 585 0.28 
3.00 2.29 66 0.12 _19.1 88 149 61 183 570 0.32 

[[4.00 2.28 64 0.12 	T 19.0 94 142 49 195 570 0.34 

1_4.00 2.31 64 0.12 [19.3 94 144 51 202 570 0.35 

5.00 3.04 64 0.16 19.0 80 138 58 289 641 0.45 
5.00 3.08 64 0.16 19.3 80 139 59 297 661 0.45 
5.00 3.01 65 0.16 18.8 79 140 61 305 661 0.46 
5.00 3.02 66 0.16 18.9 80 142 63 313 661 0.47 

6.00 3.05 64 0.16 19.1 78 135 57 344 641 0.54 
6.00 3.02 65 0.16 18.9 76 137 61 364 661 0.55 
6.00 3.04 65 0.16 19.0 77 138 61 366 661 0.55 
6.00 3.00 66 0.16 18.4 76 139 63 377 661 0.57 

Table 4.24: Experimental data showing the influence of the gas flowrate upon 
the gas exit temperature. LiBr concentration range 64- 66 %w/w. 
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Figure 4.13: Effect of gas flowrate upon the exit gas stream temperature. 



Chapter 4. Experimental Studies. 	 17.5 

The circulation ratio used in these tests ranged between 16 and 20, implying a 

relatively high steam mass flows and low lithium bromide flowrates. Therefore, 

the inner tube steam heat capacity was kept low, while the steam partial 

pressure remained high, resulting in high absorption temperatures and hence 

higher gas exit temperatures. 

4.4.4 Effect of Varying the Absorption Conditions.  

In addition to the extended surface on the outside of the absorption pipe, a 

turbulence promoting device was inserted to the inside of the tube. The 

promoter helped both mass and heat transfer within the liquid absorbent: 

o Diversion of the flow of hot absorbent liquid to the wall to improve heat 

transfer to the gas. 

o Increase in mixing between the liquid and steam phases, thus increasing 

mass transfer and the absorption of steam into the absorbent. 

o Promotion of turbulence within the liquid stream, increasing heat transfer. 

It proved extremely difficult to instrument the absorber so as to determine the 

individual phase heat transfer coefficients or the influence of the promoter upon 

heat transfer. As discussed earlier, most of the heat transfer resistance was on 

the gas side and so the effects of the liquid side heat resistances ignored and 

were considered to be constant. The heat transfer coefficient assumed for the 

liquid side was 3000 Wm -'K- ', which was in close agreement to the empirical 

value determined in the computer simulation model (Chapter 5, Section 5.4.2). 
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The main variables influencing the performance of the column are the inlet 

lithium bromide concentration and the circulation ratio. Table 4.25 summarises 

data from the reheat column operating with gas flows of 3 gs and inlet inner 

stream temperatures of approximately 100 °C. 

Variation of the Lithium Bromide Concentration. It can be clearly seen 

from Figure 4.14 that the highest gas exit temperatures were obtained when 

operating the absorber at the lowest circulation ratios (F r ) and highest 

absorbent concentrations. Each of the data sets shows a linear relationship 

between exit gas temperature and lithium bromide concentration, which was 

also seen in the single stage studies (Section 4.2.4). 

160 

150 

0 

:, 140 
S.. 

•0 

130 

120 

110 

100 

LiBr inlet temperature approx 100 C 

GAS FLOW = 3gs 

Fr range 

x 93-15 

o 16-20 

o 21-28 
27-32 

33-50 

o 61-70 

0 

50 	55 	60 	65 
LIBr inlet concentration (%w/ -w) 

LI] 

Figure 4.14: Performance data for the reheat column. 
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F 	lmLiBrin WLiB,-i ,,  MRS 	I _TGi. TG. LTG QG Qi.,Put COP ( 

(-) (gs') (%w/w) (gs 1 ) (°C) (°C) (degC) (W) (W) (-) 	I (-) 
9.3 1.48 62 0.16 101 147 45 137 661 0.21 0.39 

13.3 2.12 64 0.16 99 139 39 118 644 0.18 0.39 

13.9 2.22 62 0.16 89 144 55 165 661 0.25 0.60 

14.3 2.29 66 0.16 86 149 63 189 701 0.27 

14.6 2.34 68 0.16 86 153 67 202 701 0.29 

14.7 2.35 66 0.16 78 145 66 198 666 0.30 
fl80 

14.8 2.36 68 0.16 86 154 68 204 701 0.29 

14.9 2.3 0.16 92 147 55 165 703 0.24 

15.1 2.41 67 0.16 93 150 57 170 717 0.24 

17.6 2.81 56 0.16 85 132 47 140 561 0.25 

17.6 2.82 57 0.16 83 133 51 152 561 0.27 

H68 

19.1 2.29 66 0.12 89 149 61 183 570 0.32 

19.3 2.32 67 0.12 88 150 62 187 610 0.31 

20.1 12.82 66 0.14 92 144 52 156 585 0.27 0.92 

20.1 2.82 66 0.14 92 146 54 162 585 0.28 0.90 

20.1 2.82 66 0.14 92 145 53 158 585 0.27 0.93 

25.3 3.04 65 0.12 88 144 57 169 570 0.30 0.70 

25.6 3.07 66 0.12 88 147 58 175 570 0.31 0.72 

25.7 3.08 64 0.12 90 142 52 156 570 0.27 0.68 

27.3 2.18 63 0.08 77 130 53 159 480 0.33 0.61 

27.3 2.18 63 0.08 77 131 54 163 480 0.34 0.68 

27.3 2.18 65 0.08 77 131 54 163 480 0.34 0.62 

27.9 2.23 62 0.08 94 127 33 98 480 0.20 0.46 

27.9 2.23 63 0.08 94 129 35 104 480 0.22 0.48 

27.9 2.23 64 0.08 94 132 38 113 480 0.24 0.53 

29.5 2.95 61 0.10 95 132 37 112 495 0.23 0.55 

35.2 4.22 50 0.12 83 118 35 105 570 0.18 0.49 

41.1 2.47 57 0.06 82 113 31 93 415 0.23 0.50 

42.2 2.53 64 0.06 83 122 39 117 435 0.27 0.63 

42.3 2.54 60 0.06 82 118 36 109 435 0.25 0.58 

70.8 4.25 57 0.06 93 107 14 42 435 0.10 0.22 

70.8 4.25 57 0.06 93 111 18 54 435 0.12 0.31 

70.8 4.25 58 0.06 94 110 16 48 435 0.11 0.24 

70.8 4.25 59 0.06 72 110 38 114 435 0.26 0.46 

73.0 4.38 67 0.06 83 117 34 102 385 0.26 0.72 

73.3 4.40 67 0.06 83 114 31 93 385 0.24 0.63 

73.5 4.41 61 0.06 86 109 23 69 385 0.18 0.36 

74.5 4.47 62 0.06 85 112 27 81 385 0.21 0.36 

Table 4.25: Performance data for the reheat column for increasing the circulation 

ratio. 
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Variation of the Circulation Ratio. The highest gas exit temperatures 

were obtained when operating the absorber with low circulation ratios. The 

reason for this can be attributed to lower liquid stream heat capacities, 

resulting in greater heat transfer to the gas stream. The gas temperature lifts 

for the lowest ratios vary between 50 and 70 degC, while the maximum 

temperature lift was 72 degC, when the inlet temperature of the gas stream was 

86 °C and the inlet lithium bromide temperature was 112 °C. 

The lowest circulation ratio achievable in these experiments was 9.3, which 

occurred using a steam flowrate of 0.16 gs' (the maximum possible with the 

heaters used) and a lithium bromide flowrate of 1.48 gs'. It was not possible 

to obtain reliable or steady absorbent flows below this. This was probably 

because of the slow or incorrect seating of the non-return valves on the 

diaphragm pump head used for these experiments and also because of the short 

stroke length of the pump. There may also have been problems due to 

cavitation in the pipework because of the small bore pipe used and because the 

generator was positioned quite close to the actual pump, i.e the NPSH was low. 

However, as the lithium bromide solution flowrate decreases towards zero, the 

influence of the steam would become dominant and the maximum gas exit 

temperature will drop to 100 °C. By contrast when the column was operated at 

high circulation ratios there was insufficient steam present in the inner tube to 

cause a large rise in the temperature of the gas stream. At low steam flowrates 

the presence of inerts in the absorber become dominant resulting in a low 

equilibrium vapour pressure and thus a low absorbent maximum temperature 

(see Chapter 5, Section 5.6.2). 
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4.45 Effect of Varyg the Iiciet Stream Temperatures. 

There was no distinct improvement in the exit gas temperature as a result of 

varying the inlet temperature of either the gas or lithium bromide streams. This 

indicated that there was a close temperature approach at the top of the column. 

The highest gas exit temperature obtained was 160 °C, when operating with a 

68 %w/w lithium bromide solution, flowing at 2.36 gs 1  with an inlet 

temperature of 112 °C and a steam flowrate of 0.16 gs 1  (Fr  = 14.8). For 

comparison, the exit temperature obtained when operating under similar 

conditions, but with an inlet lithium bromide temperature of 100 °C was 154 

°C. As the operating conditions were the same in both cases, the maximum 

absorption temperature, estimated from the average absorbent concentration 

and a partial pressure of 1 bar, was 170 °C. The LMTDs were 28 ±4 degC and 

31 ±4 degC respectively, showing a negligible difference between the results 

considering the errors involved. A slightly higher exit temperature was obtained 

in the first run because of the extra heat input at the top of the column ((2.36 

x 1.5 x 12) = 40 W). 

The independence of the gas inlet temperature upon the exit temperature is 

shown in Table 4.26, where the inlet temperature varied between 79- 102 °C. As 

the exit gas temperatures were approximately constant over this range, it was 

concluded that there was a close temperature approach at the top of the 

absorber. The exit gas temperature was therefore dependent solely upon the 

absorbent concentration and steam partial pressure in the inner absorption tube 

The close temperature approach was due to the extremely high gas heat 

transfer coefficients (see Section 4.4.1) generated as a result of the highly 

extended surface area available for heat transfer within the absorption column. 
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TflLiBr n  WLjBr, n  Fr TG Tc0 , ATG QG Qi.p.t 
(g s') (%w/w) (-) (°C) (°C) (degC) (\N') (W') (-) CO!fid  
1.48 62 9.3 102 148 46 139 661 0.21 0.34 
2.06 62 12.9 95 148 52 158 661 0.24 0.47 
2.11 58 13.2 79 131 52 156 620 0.25 0.39 
2.33 65 14.6 82 146 64 193 666 0.29 0.49 
2.36 68 j 	14.8 86 1 158 j 72 j 216 701 j 	0.31 0.70 
2.36 68 1 	14.8 97 1 160 1 63 1 188 701 1 0.27 1 0.59 

Table 4.26: Performance data for the reheat column. Inlet LiBr temperature 
range 111-119 °C, steam fiowrate 0.16 gs'. 

405 Prediction of Exit Temperatures. 

In order to predict the temperature of the gas stream leaving the top of the 

reheat column, it was first of all necessary to establish the maximum absorption 

temperature within the inner tube. The absorption temperature was easily 

determined from the absorbent concentration and steam partial pressure within 

the inner tube. However, as this maximum temperature did not occur at the 

top of the absorption column, Figure 4.15, the available heat transfer area was 

unknown and so the heat transfer calculation was more difficult. However, by 

combining the overall heat transfer coefficient and the heat transfer area in one 

term called (U.A)o 3 ,  the exit stream conditions were determined, providing 

that (U.A)o could be calculated. The method used to find the gas outlet 

temperature is discussed in Section 4.5.2. 

'Analogous to absorption in packed beds where the mass transfer coefficient and the loading 
area, which is variable and thus unknown, are coupled together. 
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Figure 4.15: Graphical representation of the absorption process with heat transfer 
to an external gas stream. 
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As discussed in the previous sections, the primary variables required to achieve 

a high gas exit temperature were the gas fiowrate, the circulation ratio in the 

inner tube and the lithium bromide inlet concentration. Therefore, in order to 

obtain an empirical correlation for (U.A)o, the effects of each of these variables 

must be investigated in turn. The equation for (U.A)o can be expressed in 

terms of the individual heat transfer resistances within the absorber, Equation 

4.4. 

1 	1 	1 	x 
(U.A)o = hG.AO + h1.A1 + k.ALM 	

(4.4) 

The absorbent concentration and circulation ratio were felt to have a minimal 

effect upon the inside heat resistance, therefore the term h1 was considered to be 

a constant. In addition, the wall thermal conductivity did not vary and so the 

third term of Equation 4.4 was also considered to be constant. Therefore, both 

the inside and wall heat transfer resistances were grouped in a single term 'B'. 

Finally, the outside heat resistances, ho, were dependent upon the gas Reynolds 

number (see Section 4.4.1) and so the Equation 4.4 was simplied to a correlation 

relating (U.A)o with Rec (determined from the gas flowrate), Equation 4.5. 

1 
= B + C.Re 	 (4.5) 

(U.A)o 
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It should be noted that a separate correlation was developed to the one 

expressing NUG (and hence h) and ReG (Section 4.4.1) because the previous 

relationship was for simple heating/ cooling of the absorber, whereas this 

correlation was related to the absorption experiments. As mentioned earlier, the 

heat transfer area was not known and so the relationship between the combined 

term (U.A)o and ReG was assumed to be different. 

4.5.1 Influence of Gas F]lowrate upon (U,A)o 

The experimental values for (U.A)o were determined using the standard heat 

transfer Equations 4.6 and 4.7. The results combining the gas Reynolds number 

and (U.A)o are summarised in Table 4.27, for approximately constant inlet 

lithium bromide concentrations and circulation ratios. As the highest exit 

temperatures were only obtained when the absorber was operating with low 

circulation ratios and high inlet concentrations, only data collected under these 

conditions was considered valuable in establishing a correlation for (U.A)o and 

ReG. 

(U A)o QG  
= 	 (4.6) 

ZTLM 

= (Tabs.  - TG,.,)  - ( TLbO - TGbO) Where /TLM 	
Tab3n - 	

(4.7) 
In(- 

TG60 

(T a ban  is the estimated maximum absorption temperature in the absorber.) 



Chapter 4. Experimental Studies. 	 184 

A plot of 10g b  [(U.A)' -B] versus log 10  ReG, Figure 4.16, shows that a straight 

line relationship does exist between the two variables. The correlation relating 

the two variables was determined from linear regression, Equation 4.8. 

(U.A)' = 0.0077 + 3965. Re- 1.3 
	 (4.8) 

The results for (U.A)o and ReG, Table 4.27, do not show any great variation 

over the range of gas flows investigated. Therefore, the previous assumption of 

omitting WLIBr  and Fr from the empirical relationship was justified. Indeed the 

relationship obtained yielded a very good correlation coefficient, based upon the 

line of best fit through the points, of 0.98, indicating a strong linear relationship 

between [(U.A)' - B] and ReG. 

452 Summary of Method to Predict Exit 

Temperatures 

The prediction of the exit temperatures for both the gas and absorbent streams 

can be achieved by using the heat exchanger effectiveness, which was first 

proposed by Nusselt . The method was modified for this particular application 

in order to account for absorption occurring within the inner tube of the 

exchanger. It was assumed that the area available for heat transfer was the area 

between Tb (which was determined from a function expressed in terms of the 

absorbent concentration and steam partial pressure) and the bottom of the 

exchanger, Figure 4.15. The region above this, which was quite small as the 

4 W. Nusselt, Tech Mechanik and Thermodynamik, 1 2 (1930) 
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ReG Fr WLiBr top  Tabsn TG , .,  TIb O  TG,., /TLM QG  (U.A)o 

(-) (-) (%w/w) (°C) (*) (°C) (°C) (°C) (degC) (W) (WK- ') 

1680 18.1 63.8 154 135 141 82 35 106 3.0 

1680 14.4 64.4 154 141 145 82 32 118 3.7 

1680 14.6 65.3 158 146 148 82 31 128- 1 4.1 

2520 14.9 65.5 158 144 137 78 31 198 6.4 

2520 14.6 65.2 158 146 143 82 30 192 6.4 

2520 14.9 66.7 160 147 146 92 29 165 5.7 

2520 14.0 64.5 155 147 149 87 26 180 6.9 
2520 14.3 66.2 160 149 151 86 30 189 6.3 
2520 14.6 67.5 162 153 152 86 29 201 6.9 

3360 14.2 63.1 150 142 141 94 22 192 8.7 

3360 15.3 63.6 153 142 140 91 25 204 8.2 

3360 15.3 63.7 153 143 141 92 24 204 8.5 

3360 15.4 64.2 155 144 142 92 26 208 8.0 
3360 15.5 65.0 157 144 142 1 92 27 208 7.7 

4200 13.8 63.3 150 134 120 78 27 280 10.4 
4200 13.9 64.1 153 136 117 78 27 290 10.7 

4200 14.1 65.2 157 136 121 79 30 285 9.5 

4200 14.5 67.1 161 143 121 79 28 320 11.4 

5040 14.1 62.9 150 136 116 78 24 348 14.5 
5040 13.9 64.1 153 136 112 77 25 354 14.2 
5040 14.2 65.6 158 140 112 77 26 378 14.5 
5040 14.3 

1 
 66.3 159 140 114 77 27 378 14.0 

Table 4.27: Summary of results showing a selection of results for (U.A)o at 
varying gas flowrates for high inlet absorbent concentrations and low circulation 
ratios. 

(* The inner tube temperature at the top of the column was estimated from the 
lithium bromide VLE equations, using an estimate of the average concentration 

in the column- see Appendix C 'Sample Calculations', Section C.2.1.) 
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Figure 4.16: Graph of [(U.A)3' - B] versus ReG. 
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absorption process was extremely rapid, did involve the slight cooling of the gas 

stream as heat was returned to the absorbent mixture in the inner tube. 

However, this was ignored in order to simplify the prediction of the gas exit 

temperature. 

The Nusselt method states that the heat exchanger effectiveness is the ratio of 

the actual heat transferred in the exchanger to the maximum heat that could 

theoretically be transferred between the streams fed, Equation 4.9. 

Actual Heat Transfer 	
(49) 

= Maximum Heat Transfer 

The effectiveness can also be expressed in terms of the stream capacities, 

Equation 4.10. In a normal heat transfer problem, the stream with the smallest 

capacity (Cmjn) would undergo the greatest change in temperature. Therefore, 

the maximum rate of heat transfer, the denominator in Equations 4.11 and 

4.12, could be expressed in terms of the maximum temperature change in the 

stream  and 	Similarly, the actual heat transferred was determined from 

the capacity of the other stream multiplied by its corresponding temperature 

change. 

CL = rnLbO .cpL; CG = rnc.cpG; 	 (4.10) 

The exit absorbent stream conditions were used in determining CL.  This was 

because above the point where the maximum absorption temperature occurred, 

the flowrate of the absorbent stream changed significantly as the majority of the 

5 (T absn  - Ta,,j-  Maximum absorption temperature less the gas inlet temperature. 
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steam was absorbed. Therefore, an extra term would need to be included for the 

steam flow. However, the variation in the absorbent flowrate after the maximum 

absorption temperature had been reached was small. Indeed the only part of the 

absorption column which was of interest in this method was the region between 

the maximum absorption temperature and the bottom of the column. Therefore 

although the absorbent stream conditions- flowrate and concentration- varied 

after the maximum temperature had been reached, the changes were ignored in 

this predictive method in order to make calculations simpler. 

The exchanger effectiveness can be expressed in two different forms, relating the 

stream temperatures and capacities, Equations 4.11 and 4.12, depending on 

which stream has the smallest capacity. Hence, if e were known, then the exit 

stream temperatures could be estimated. Tithe gas stream had the smallest 

capacity, it would first of all be necessary to determine the exit absorbent 

temperature and then solve a heat simple heat balance to find the outlet gas 

temperature. 

CG- (TG.., - TG) 

= 	
when CL = C 

Cmin. (Tab,. - TGI) 	
m in 	 (4.11) 

CL. (Tab. - TL..') when CG = Cmin 	 (4.12) 
min (Tab,. - TG) 

A theoretical equation defining e for a single pass, countercurrent exchanger 

was given by Welty ([117], p395) and is reproduced in Equation 4.14. The term 

NTU (Number of Transfer Units) is defined in Equation 4.13, where (U.A) 0  

was evaluated from Equation 4.8. Therefore, knowing the stream capacities and 

NTU, an estimate of the exchanger effectiveness can be made. Once e has been 
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determined, the exit stream conditions can be found, as discussed previously. 

NTU = (U.A)o 	
(4.13) 

mzn 

1 — e_NTU( 1  Cmaz 

1 — (4znin. ) e_NTU( 1 _ 	) 	
(4.14) 

Cn'sax 
Cvnax 

In summary, the exit stream conditions can easily be determined by following 

the steps outlined in Equation 4.15. 

MG --+ Re --+ (U.A)0  a Cmn  —p IVTU a 
Cinin 	

6 —* Tc 0  or TLOt  
Cmax 

(4.15) 

45.3 Comparison between Experimental and Predicted 

Exit Temperatures. 

In order to verify the validity of the predictive method described in the previous 

section, Section 4.5.2, a series of experimental results was compared with those 

determined numerically. Table 4.28 summarises the data obtained; while the 

second group of results (WLB = 59/60 %w/w) were plotted in Figure 4.17. 

The first set of gas exit temperatures obtained using this predictive method were 

estimated assuming an ideal system with no heat losses. However, more realistic 
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results were then calculated which incorporated heat losses to the surroundings. 

The overall heat transfer coefficient for heat losses to the surroundings was 

assumed to be 1 Wm 2 K 1 , while the heat transfer area was assumed to be 

0.32 m2 . Hence, it was necessary to first of all estimate the gas exit temperature 

for ideal conditions. This temperature was then used to determine the log-

mean temperature difference between the gas stream and the surroundings and 

hence the heat loss term. The exit gas temperature was then refined. 

Experimental    Predicted 	10 
7i2 G LiBri n  rn9 wLB 1  TG,,,,  TG0 E TG DEAL TGLOSSES 11 
(gs') (gs') J (gs') (%w/w) (°C) (°C) (-) (°C) (°C) 	]j 

If 2.00 2.82 0.16 57 66 123 0.81 128 115 

If 3.00 2.82 0.16 57 82 133 0.79 129 121 
5.00 2.82 0.16 57 80 128 0.73 125 120 

2.00 2.90 0.16 60 79 128 0.81 136 123 
3.00 2.82 0.14 59 92 131 0.78 135 126 
4.00 2.88 0.16 59 76 128 0.77 131 124 
5.00 2.88 0.16 59 80 130 0.74 130 124 
6.00 2.87 0.16 59 75 128 0.76 125 120 
2.00 2.97 0.16 62 82 131 0.81 140 127 
3.00 2.82 0.14 61 93 136 0.79 141 132 
4.00 3.00 0.16 62 82 137 0.78 138 132 
5.00 2.98 0.16 62 80 136 0.74 135 129 
6.00 3.00 0.16 62 79 134 0.74 132 127 
2.00 2.90 0.16 64 82 135 0.81 146 132 
3.00 2.82 0.14 64 91 139 0.79 146 137 
5.00 3.04 0.16 64 80 138 0.75 141 135 
6.00 3.05 0.16 64 78 135 0.74 137 133 

Table 4.28: Comparison of experimental and predicted gas exit temperatures 
using exchanger effectiveness model. 

(see Appendix C 'Sample Calculations', Section C.2.3.) 

It can be seen from the results that the experimental exit gas temperatures 

analysed lay consistently between the temperatures predicted for the 'ideal' and 

'heat loss' cases. This suggested that the predictive method could be used as a 

design tool to size and estimate the performance of the reheat absorber 

operating under any conditions. 



Chapter 4. Experimental Studies. 	 191 

Predicted— No heat losses 

-- / 

135- 
Temperature X— over, however 

results still In reasonable 

	

'N 	 agreement 
-'S 	 S  

130- 

Experimental 

125- 

	

 

\ 	

5,. 

/ 	
S 

' S 
Predicted— Heat losses  

120- 
-I t 	1 	1 i 	

I ' 	I 	 I 
2.0 	2.5 	3.0 	3.5 	4.0 4.5 	5.0 	5.5 	6.0 

Gas flowrate (gs ') 

Figure 4.17: Variation of gas exit temperatures for experimental and predicted 
results, with inlet LiBr concentration 59- 60 %w/w. 
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The 'ideal' results generally show that the maximum exit temperature was 

obtained at the lowest flowrate, in this case 2 gs', when the exchanger was at 

its most effective (e at its maximum). However, the effect of introducing heat 

losses to the system caused the position of the maximum exit temperature to 

shift to a gas fiowrate of 3 gs 1 . This agreed with the results for the maximum 

exit temperatures which were obtained in the reheat experiments carried out in 

these studies (Section 4.4.3). This confirmed the conclusion that heat losses at 2 

gs 1 s affected the temperature of the gas stream more than at 3 gs's. The 

predicted decrease above 3 gs' also confirmed that the heat content of the gas 

stream increased at a greater rate than (U. A)0. 

Table 4.29 summaries the data obtained for the reheat absorber by operating it 

with a wide range of gas flowrates, while keeping the remainder of the 

parameters constant (see below). 

LiBr flowrate 
Steam flowrate 

Inlet concentration 
Maximum absorption temperature 

Inlet gas temperature 
Assuming Ujoasea 

and Al...... 

= 4.00 gs 
= 0.20 gs' 
= 68 %w/w 
= 174 °C 
=80°C 
= 1 Wm 2 K 1 ; 

= 0.32 m2  

Figure 4.18 shows how the position of the maximum exit gas temperature was 

affected by heat losses from the gas side. When exit gas temperatures were 

determined for the absorber, operating with no heat losses, the maximum exit 

temperature was obtained at gas flows of 2 gs'. Below this flowrate, the overall 

heat transfer coefficient was so low that the heat transferred was also small, 

despite the stream having a small heat capacity. At higher flowrate, the stream 

heat capacity increased faster than (U. A)o, resulting in a drop in temperature. 

The position of the maximum exit temperature changed to 4- 5 gs when heat 

losses were introduced to the equations. The drop in the exit temperature was 
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LI mG (UA)o NTU e QG TGtTfl PAt TGtaprnqcrc 

(gs') (WK -') 
(-) (-) 

(VT) (°C) (°C) 

1.00 1.80 1.80 0.81 76 156 128 

2.00 4.14 2.07 0.79 160 160 146 

3.00 6.74 2.25 0.77 234 158 148 

4.00 9.52 2.38 0.74 308 157 150 

5.00 12.44 2.49 0.76 376 155 150 
6.00 15.48 2.58 0.75 434 152 148 
7.00 18.63 2.66 0.74 494 150 146 
8.00 21.86 2.88 0.81 1  543 148 144 

Table 4.29: Effect of varying gas flowrate on the predicted gas exit temperature. 

because the rate of heat losses to the surroundings was greater than the heat 

being transferred to the gas from the inner absorption tube. 

4 	Performance of Two Stage Cycle. 

In a heat transformer, a quantity of energy at a moderate temperature level is 

upgraded to a higher level, at the expense of downgrading a proportion of the 

heat supply, usually to ambient temperature. In this particular application, the 

medium grade energy input was supplied to the generator and to the steam 

source for the reheat absorber, which both operated around 100 T. The high 

temperature side of the process was the reheat absorber, which transferred heat 

to the externally flowing gas stream, resulting in exit gas temperatures up to 

150- 160 T. The low grade energy stream was produced in the condenser where 

cooling water extracted the heat from the water vapour leaving the generator. 
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Figure 4.18: Variation of predicted gas exit temperatures for a range of gas 
flowrates. Inlet LiBr concentration = 68 %w/w. 
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The heat transformer used in these studies was designed to obtain the 

maximum exit gas temperature from the reheat absorber. The best results were 

obtained operating with high absorbent concentrations and low circulation 

ratio, which resulted in a high temperature of absorption within the inner tube 

of the reheat column, maximising the rate of heat transfer to the gas stream. 

Typical gas temperature lifts achieved operating with these conditions were of 

the order of 50- 70 degC, corresponding to heat outputs of 100- 350 W, 

depending on the gas flowrate used. The heat input to the generator and steam 

supply was typically 600 W. 

In assessing the performance of the transformer, it should be noted that 

although electrical power, which is considered a primary energy source, was 

used on this experimental rig this was solely for convenience. On an industrial 

unit the energy source could be any low-grade heat available at temperatures 

up to 100 °C, for example, waste steam which could be extremely cheap. 

An interesting feature of this particular absorption heat transformer application 

was that as the heat source required in the generator could be waste heat, the 

operating costs of the cycle would be low. Therefore, the efficiency of the cycle 

was not considered such an important a factor as achieving a high exit 

temperature from the reheat column. However, in order to upgrade the energy 

of the waste stream to as high (and useful) an energy level as possible, the 

capital cost of the system increases. Consequently, the efficiency of the cycle 

can not be ignored when designing the capacity and operating conditions of the 

equipment. 
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40i2 Coefficient of Performance.  

The coefficient of performance (COP) of the cycle was determined from the 

useful heat produced (the heat transferred to the gas stream), divided by the 

heat input. The heat removed in the condenser was ignored as it was of no 

practical use because the temperature was so low. It can be seen from Tables 

4.21, 4.22, 4.23, 4.24, 4.25 and 4.26 that the heat input to the generator and 

also the steam flow in the absorber remains approximately the same for all the 

experimental runs, around 600W. The variation in COP can therefore be seen 

in the heat output from the system, QG  (Equation 4.16). 

QG = MG- cpG .LTG 	 (4.16) 

The lowest COPs of approximately 0.15 were obtained when the rig was 

operated at a gas flow of 2 gs', while the COPs obtained when operating at 6 

gs' were as high as 0.5- 0.55. However, the gas temperature lift when 

operating at a gas flow of 6 gs' was lower than at 3 gs'. Therefore, although 

more heat was being transferred to the gas, the quality of the heat was lower. 

The corresponding CON for gas flowrates of 3 gs 1  were around 0.2- 0.3, 

depending on the operating conditions. 

As previously mentioned a high absorbent concentration and low circulation 

ratio were necessary to achieve a high exit gas temperature, thereby improving 

the system COP (QG  a TG).  Therefore, for a constant gas flowrate, the 

lowest COPs coincided with low exit temperatures, because of unfavourable 

inner tube conditions. 
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4.6.2 Exergy Baances 

The COP of the transformer, although highest when operating at the highest 

gas flows, took no account of the quality of energy delivered, only its quantity. 

A better performance criterion for the reheat column is the exergetic efficiency, 

C. This is the increase in the exergy of the gas stream divided by the exergetic 

loss of the lithium bromide/ steam mixture, Equations 1.4 and 1.5. 

Tables 4.25 and 4.26 show the effect on ç of increasing the circulation ratio. As 

the circulation ratio in the reheat column increased, ( was found to rise to a 

peak value of around 0.9 and then subsequently decreased. Closer inspection of 

the extremities showed that at low circulation ratios (high steam flows, while 

the lithium bromide flow was approximately constant) more heat was required 

for the generation of steam and also in the generator. A large heat load was 

necessary in the generator because more steam had to be evaporated in order to 

restore the absorbent stream to its original concentration. At the other 

extreme, when the heat transformer was operated with high lithium bromide 

and low steam flows (very high circulation ratios), there was a drop in the 

exergetic efficiency of the system. This was because there was insufficient steam 

in the absorption column to generate a high equilibrium absorption 

temperature. Consequentially, there was only a small temperature increase in 

the gas stream, and so the exergy change in the reheat column was small. The 

highest exergy efficiencies occurred when there was sufficient steam present in 

the absorber to give a moderate temperature lift in the gas stream of 40- 50 

degC and the heat input to the system was around 500 W. 

It was therefore concluded that high gas exit temperatures could be achieved 

only at the expense of increased exergy loss from the lithium bromide/ steam 

mixture. More heat was input to the system for diminishing returns. 
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407 Experimental Errors. 

All of the variables measured in the apparatus were subject to errors of one 

form or another, e.g instrument precision, system fluctuations, operator error. 

The precision of various instruments was assessed prior to operation. For 

example, the thermocouples and metering pumps were calibrated and the 

accuracy of the readings determined. However, the normal fluctuations 

experienced when measuring a variable and operator errors could not be pre-

determined. Therefore, it was necessary to estimate their influence upon results 

in order to assess the validity of the experimental data. 

The errors for derived quantities were estimated using simple error rules based 

upon a) the addition of the absolute errors of two values when adding/ 

subtracting; b) the sum of relative errors when multiplying/ dividing two 

quantities; c) errors in log values estimated from the values obtained at their 

limits, based on individual component errors. 6  

4.7.1 ]tinistrument Precision.  

The main readings taken during an experimental run were the temperatures of 

the process stream at various places in the equipment, the vacuum in the 

generator, the stream flowrates and the power inputs to the various heaters. 

'See Appendix C 'Sample Calculations', Section C.2.1) 
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Instrument Error 

Temperature readings ± 0.1 °C 
Pressure readings :E 0.05 bar (or ± 1 "H2 0) 

[pressure gauge used in single stage experiments] 
± 0.005 bar 

[pressure transducer used in two stage experiments] 

Main steam generator: 

Voltage 
Current 

Power 
Error in steam flow 

Steam flowmeter 

(To generate vapour for simulation of 
humid gas streams) 
±5V 
±0.4A 
± 130 W 	(For a steam flow of 0.6 gs'- Q = 1.3 kW 
± 0.05 gs' 	assuming \H2O = 2257 Jg') 
± 0.04 gs' 

LiBr generator : (N.B There were two ammeters in 
the generator. one for each heater) 

Voltage ± 5 V 
Current ± 0.01 A 

Reheat steam boiler: 
Voltage ± 5 V 
Current ± 0.01 A 

Power ± 9 W 	(For a steam flow of 0.16 gs'- Q = 361 W; 
Error in steam flow ± 0.005 gs 1 	assuming AH2O = 2257 Jg) 

Steam flowmeter ± 0.04 gs 

Rotameter flowrate ± 0.1 1.min 1  
Metering pump ± 1 % of stroke length 

± 0.04 m1s 1  
± 0.06 gs' (approx, depends on p) 

Table 4.30: Instrument precision for the AHT. 
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Temperatures.  

The most important readings were the temperatures, which were measured 

using Type- K thermocouples. In the single stage heat transformer cycle, the 

temperatures were measured manually using a Comark, a precalibrated 

electronic thermometer. The two stage cycle involved an automatic data 

collection system, which stored the measured the temperatures at set intervals 

and stored to the readings to a file. 

The temperatures measured on the Comark were accurate to ±0.1 degC, as 

were the readings measured using the PC. However, fluctuations in the 

temperature readings were experienced during normal operation. This was 

probably because the lithium bromide solution dripped over the thermowells in 

the absorber, causing the temperature to rise and fall. As a result the readings 

were only recorded to +1 degC. But, as these results were readily reproduced, it 

was felt that this level of accuracy was sufficient in assessing the performance of 

the cycle. 

4.7.3 JF'owrates0 

Lithium Bromide flowrates. 

The variation in lithium bromide flowrate was controlled by varying the stroke 

length of the metering pump, which was measured in increments of 1 %. The 

resultant accuracy in the stream flowrate was approximately 0.06 gs 1 , as 

determined from the calibration chart. 
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It should be noted that during the calibration of the metering pump, the liquid 

flowrate decreased as the vacuum in the generator was increased, for a given 

pump stroke length. This could have been a result of the non-return valves on 

the pump head not seating properly, causing a backward suction of liquid at 

high vacuums. However, as the results obtained were taken at the normal 

operating vacuum of the generator (0.10 bar) and that the flowrates obtained 

were reproducible, it was felt that the calibration chart determined was 

accurate. 

IH[umid Gas Flowrates. 

The measurement of the gas flowrate was carried out at ambient temperature 

using a precalibrated rotameter, which was accurate to ± 1 l.min 1  (0.01 gs 1  

air). During normal operation, the flowrate was periodically checked to ensure 

that it did not vary much. 

The steam flow, used to generate the humid gas streams, was measured in three 

ways: 

o Flowrate measured on a precalibrated flowmeter. Accuracy ± 2.5 

cc.min 1  (0.04 gs 1 ) 

o Power consumption of the heaters. Accuracy ± 0.05 gs' of steam 

produced for a power input of 1.3 kW. 

o Humidity readings using the humidity probe. Accuracy ± 3 %RH 

(including fluctuations) [ 0.01 gs', for an inlet humidity of 0.25 g-Ho 

(g-dry air)-1)- 
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It should be noted that a lot of problems were experienced with the humidity 

probe. However, when it did operate well, the readings obtained did fluctuate 

by a few percent. The readings obtained for the steam flowrate were therefore 

an average of all three measurements, in order to reduce the likelihood of a 

large error. 

In addition, the amount of water absorbed into the absorbent stream was 

measured in two ways- condensate collection and direct humidity measurement. 

These were averaged, again to reduce the errors. 

Reheat Steam JFlowrates. 

The steam flowrate in the reheat column was measured using two methods-

power consumption in the heater (taking into account heat losses) and the 

input water flowrate to the boiler. The readings for both measurement 

techniques were consistent and in close agreement to each other, therefore an 

average reading was taken for the reheat steam flow. 

4.7.4 Other Measurements. 

The other measurements taken during an experimental runs were the power 

consumption of the lithium bromide generator and the pressure in the 

generator. The error in the power consumption in the generator was ± 13 W, 

which was typically 4 % of the heat load to the generator. Of great importance 

in determining the concentration of the strong lithium bromide solution was the 

pressure, which was accurate to ± 0.005 bar and temperature, accurate to ± 1 
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degC, of the generator. The resultant accuracy in the lithium bromide 

concentration estimated from the VLE chart was ± 1 %w/w, 

Although cooling water was used to remove heat from the condenser, the flow of 

water was not accurately recorded. (The project was principally concerned with 

the high temperature side of the process and not the low, ambient temperature 

side). 

4 	Conclusions. 

Extensive experimental programmes were carried out using, first of all, a single 

stage absorption heat transformer cycle, followed by a double stage operation. 

Considerable data were obtained from both cycles, and these were used to 

establish the best operating conditions necessary to achieve the highest gas exit 

temperature from the absorber. 

4.8.1 Sirge Stage Heat 'Ia1rLsfermer. 

The single stage absorption cycle was initially constructed to simultaneously 

dehumidify and reheat a humid gas stream, by direct contact with a 

concentrated lithium bromide solution. It became evident that it was not 

possible to achieve both objectives in one stage. 
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In order to dehumidify the gas stream, countercurrent operation was found to 

be superior to cocurrent operation, as the 'driest' gas came in contact with the 

most concentrated absorbent solution at the top of the absorption column. 

The highest gas exit temperatures were achieved when operating in cocurrent 

mode. At the top of the column there was a rapid increase in the temperature 

of both process streams as the water from the gas was absorbed into the lithium 

bromide solution. The streams quickly reached thermal and mass equilibrium, 

before exiting at a higher temperature. A linear relationship was found to exist 

between the gas exit temperature and absorbent concentration, which could be 

increased to 70 %w/w before encountering crystallisation problems. 

Two Stage Heat Trasformer.  

Following the experience of using the single stage absorber, it was decided to 

separate the process into two stages- a dehumidification stage, followed by a 

reheating stage. Results from the dehumidification process indicate that the exit 

water vapour partial pressure can be controlled by maintaining a high absorbent 

concentration and low temperature at the top of the column. A heat exchanger, 

using cooling water to remove the heat of absorption from the process streams, 

resulted in a water vapour exit partial pressure of 0.04 bar being obtained. 

The gas stream flowed in an annulus, countercurrent to a hot absorbent mixture 

of lithium bromide! steam (in the inner pipe). The heat which was released by 

the absorption process was transferred to the gas stream. Exit gas temperatures 

in the range 150- 160 °C were attainable in the reheat column when operating 

with a lithium bromide solution of 68 %w/w. A design method for predicting 
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the gas exit temperature from known inlet conditions, was also proposed based 

upon experimental findings. 

4.8.3 Future Work and Deveopmeinits 

The experiments undertaken in this project provided a comprehensive study of 

the potential benefit of heat transformers for dehumidifying and reheating 

humid gas streams using aqueous lithium bromide as the absorbent working 

fluid. Future work would involve the application of new working fluids to 

further extend the results obtained here. Of greatest significance is the 

improvement in the maximum exit temperature possible in a single, or even 

double, stage absorption cycle. The upgrading of medium grade, waste energy 

to higher levels extends the uses to which absorption cycles can be applied. 

The current application could be modified in several ways to give a more 

integrated cycle. As the maximum inlet absorbent concentration in the 

dehumidification column was less than that used in the reheat column, there 

would be a conflict when trying to operate both absorption stage from a single 

absorbent feed source. It was therefore proposed to use the absorbent solution 

leaving the reheat stage to dehumidify the humid gas streams in the direct 

contact absorber. However, the temperature of the solution would be too high 

to provide any reasonable dehumidification of the gas stream. It would 

therefore be necessary to first of all cool this absorbent stream prior to entry to 

the dehumidification column. The strong lithium bromide solution leaving the 

generator could be exchanged with this stream, effectively preheating the 

concentrated lithium bromide solution fed to the reheat column, while also 

cooling the weaker solution going to the dehumidification column. 
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Another change to the current operation would be the pumping of the 

condensate to the steam generator, attached to the reheat column. Therefore, 

should any lithium bromide carry over into the condensate, it would be retained 

in the cycle and not release to the surroundings. These proposed modifications 

are illustrated in Figure 4.19. 

PUMP 	 PUMP 

Figure 4.19: Proposed modification to the two stage absorption heat transformer 
cycle. 

a 



51 I{ntroducton0 

Simulation models of the experimental absorption column were developed to 

provide an insight into the absorption process. A similar model was developed 

by Manole [54] which detailed the temperature profiles and the heat and mass 

fluxes within a falling film absorber, operating with ammonia/ water. Another 

computer model written at the University of Lund [1] looked at different 

absorption cycle configurations, treating the components as 'black boxes', and 

evaluated the performance of the cycles operating under different conditions. 

The working fluid pairs examined using this model were water/ sodium 

hydroxide or water/ lithium bromide. 
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The aims of this particular study were to investigate the effects of interfacial 

conditions upon the rate of absorption and the resultant temperature increase 

in the refrigerant and absorbent streams. The absorption fluid working pair 

used was water/ lithium bromide, for which physical data was readily available 

([24], [165]). 

Results from the simulations are represented graphically in the form of 

temperature profiles for each of the process streams, as well as a profile for the 

interfacial temperature. In some cases mass flow profiles for the refrigerant 

stream have been presented (see Sections 5.5, 5.7 and 5.8). The results obtained 

were also compared to experimental data collected on the test facility (Chapter 

4, 'Experimental Studies') so as to validate the model. 

5 	Modell Development. 

The simulation programs were written in the turbo-C programming language. 

The first program to be written investigated the simple cocurrent absorption of 

steam into a concentrated lithium bromide solution. As the vapour was 

absorbed into the liquid stream there was a release of heat, which caused the 

temperature of both the streams to increase. The absorption process was 

extremely rapid, with a sharp increase in temperature of both streams in the 

upper (inlet) region of the column. This finding was confirmed from early 

simulation runs (see Section 5.5). It was also shown that the streams leaving 

the column were in thermal and mass equilibrium. 
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After establishing this basic absorption model, the principles were extended to 

include simultaneous heat removal to an externally flowing gas stream. The 

program was written so that the external gas stream could flow either co- or 

counter- current to the hot absorbent/ refrigerant mixture. Each variant of the 

program produced a similar gas temperature profile because the temperature of 

the hot absorbent stream remained approximately constant throughout the 

length of the column (see Figure 5.5). 

Lastly, the model was used for the purpose of investigating the dehumidification 

of humid gas streams by direct contact with concentrated liquid absorbent 

solutions. Two modes of operation were considered, namely the co- or counter-

current flow of the humid gas and absorbent streams. 

5.2.1 Absorption Column Representation. 

The absorption column used in the simulation model was based upon the 

experimental apparatus used in the project. The length of the absorber was 

800mm, with an internal diameter of 25mm. In order to provide an accurate 

representation of the temperature and flow profiles, it was necessary to divide 

the column length into cross- sectional slices of equal thickness. Figure 5.1a). 

The thickness of each slice was 0.1mm, which gives a total of 8000 slices for the 

column. Each slice was split into three sections, as shown in Figure 5.1b) for 

cocurrent operation. These were namely refrigerant vapour phase, liquid phase 

and the interface, which was the boundary between the phases. 
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Figure 5.1: a) Overall column representation 	b) Representation of individual 
slice for cocurrent absorption. 

Figure 5.2 is a schematic representation of the absorption process, showing how 

the partial pressure of the water vapour in the bulk gas phase was greater than 

the interfacial pressure, ensuring continued transfer of the refrigerant into the 

liquid phase. The interfacial concentration was higher in refrigerant than in the 

bulk absorbent (and was therefore a weaker solution). The absorbed refrigerant 

was thus transferred to the bulk liquid absorbent down a concentration 

gradient. As well as mass transfer between the phases, heat transfer also 

occurred. Assuming that the interface was in thermal and mass equilibrium, it 

was possible to calculate the interfacial temperature from the interfacial 

pressure and concentration using the equation provided in the paper by Brunk 

[24]. Using the interfacial temperature, the exit temperatures of the bulk gas 

and liquid were then calculated. 
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Figure 5.2: Refrigerant and absorbent conditions at interface. 

The computation for each model was from the top of the column to the bottom. 

For the models where the gas streams flowed countercurrent to absorbent 

stream (i.e absorption with countercurrent heat removal; countercurrent 

dehumidification), it was necessary to assume a set of exit gas conditions at the 

top of the column. In such cases, it was first of all necessary to estimate 

conditions for the gas streams at the top of the column and then continue with 

the simulation process as normal. At the end of the run, when the bottom of 

the column was reached, the stream exit conditions were compared to the initial 

values. If the outlet values were within a specified tolerance the run was 

complete, otherwise the estimated exit conditions of the stream, at the top of 

the column, were adjusted and the run repeated. 

In order to calculate the exit conditions from a slice (temperatures and flows) it 

was necessary to solve a series of equations based upon the mass and heat 

transfer in each of the phases in addition to an overall energy balance for each 

slice. When the heat and mass balances converged to a specified tolerance the 
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model progressed to the next slice and the procedure repeated. Progression 

through the column continued until profiles had been completed for all 8000 

slices. 

5.2.2 Model Basis. 

Each of the models was based upon well established heat and mass transfer 

relationships. The heat and mass transfer coefficients for the gas and liquid 

streams were obtained from empirical equations proposed by Treybal [215]. The 

paper was an investigation of the adiabatic absorption of a solute from a carrier 

gas into an liquid absorbent solution. In an attempt to make the computational 

stages of the model simpler and less time consuming, several assumptions were 

made: 

o The amount of refrigerant transferred to the liquid absorbent was chosen 

as the independent variable. 

o There was no axial dispersion within either the gas or liquid phases. The 

transfer of refrigerant was assumed to be solely perpendicular to the bulk 

flow of the streams. 

o The gas and liquid phases were each well mixed radially and thus the bulk 

conditions were representative of the whole phase. 

o The column packing was completely irrigated, with no stagnant zones. 

o There was thermal and mass equilibrium at the interfacial boundary 

between the gas and liquid phases. 
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The procedure used to determine the exit conditions from a slice, given the inlet 

conditions, initially involved the determination of the exit flows. This was 

achieved by simply varying the flow of each stream by the amount of transferred 

(water) vapour. The interfacial pressure and concentration were then calculated 

from a knowledge of the mass transfer rates in each phase, based upon 

Equations 5.7 and 5.8. 

As the local vapour and liquid at the interface were assumed to be in 

equilibrium it was possible to determine the interfacial temperature, using the 

equations given by Brunk [24], Equations 5.1, 5.2, 5.3 and 5.4 (N.B All the 

constant values are contained in the paper). The interfacial temperature was 

dependent upon the both the interfacial pressure and concentration. Equation 

5.1 was used to calculate a pseudo temperature (T') which was dependent on 

the pressure. Next the concentration terms (a and 0) were calculated. Finally, 

the interfacial temperature was determined by combining each of the terms (T', 

a and 0 , Equation 5.4. 

T' = k
1  - [(4.k2 .(lo.qio (14.5038.P) - k0 )) + k)]'/2 

- 491.67 	(5.1) 
2.(logio (14.5038.P) - k0 ) 

a = E 0 E 0a.x 	 (5.2) 

= 	 (5.3) 

T ' 

(5.4) 
1.8 
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The newly calculated interfacial temperature was then used to determine the 

rate of heat transfer within in each phase. It was then possible to determine the 

exit temperature of the liquid and gas streams from a knowledge of the heat 

transferred within each phase. The effects of heat losses to the surroundings 

were also included in the model. Finally, it was then necessary to carry out an 

overall heat balance for the whole slice, using Equation 5.5. If the heat balance 

was not within a specified tolerance, as in Equation 5.6, it was necessary to 

adjust the amount of water transferred and repeat the above procedure. This 

was repeated until the specified tolerance was met, at which point, the height 

was incremented and the same steps repeated for the next slice. 

(mG.hG) -f- (mL tB r1 .hL 1 ) = (mG 0 .hG0 ) + (mLiBr ot .hLot ) + Qiosse8 (5.5) 

IHEAT IN - HEAT OUTI <iolerance 	 (5.6) 

The core of the problem, which was essentially the same for each of the 

programs, is itemised in below for the absorption of steam into a concentrated 

lithium bromide solution with simultaneous heat removal to an externally 

flowing fluid. A detailed flowsheet of this program is shown in Figure 5.3. 

When considering the simple case of the absorption of steam into the absorbent 

solution, the transfer of heat to the externally flowing fluid was removed. 
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Algorithm for absorption of steam into lithium bromide, with 

simultaneous heat removal to an external fluid. 

Step 1: Set initial amount of refrigerant to be transferred. 

Step 2: Estimate outlet flows of steam and lithium bromide. 

Step 3: Initial guess at the vapour pressure above the absorbent solution at the 

interface. 

Step 4: Calculate mass transfer coefficients for both refrigerant (steam) and 

absorbent (lithium bromide) streams. 

Step 5: Use mass transfer equations to find the interfacial pressure and 

concentration. 

Step 6: Repeat Step 4 & 5 until convergence of the "interfacial pressure". 

Step 7: Calculate heat transfer coefficients for both streams. 

Step 8: Determine the interfacial temperature, assuming that the interface is 

at equilibrium- Tinter face = fn (pinter face, Winterl ace). 

Step 9: Calculate the rate of heat transfer to the external fluid, based on the 

temperatures of the absorption fluid pair, also including heat losses to the 

surroundings (U10333  = 8Wm 2 K 1 ). The overall heat transfer coefficient 

was determined using an empirical equation based upon the flowrate of the 

external gas stream. 

Step 10: Use interfacial temperature and external heat transfer to calculate 

outlet temperatures of both gas and liquid phases. 

Step 11: Convergence of the interfacial temperature. 

Step 12: Perform an overall enthalpy balance on the slice. 
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Step 13: Vary amount vapour absorbed if heat into/ out of slice is not equal to 

the heat out. Repeat procedure 

Step 14: Write results to file. Increment height- continue down through 

column. 

The individual mass transfer equations used in the computer program are given 

below, Equation 5.7 for the gas phase and Equation 5.8 for the liquid phase. It 

should be noted that the transfer of water from the gas phase was taken as 

being positive. In addition, as the paper by Treybal was written in 1969 all the 

variables used were in imperial units and so it was necessary to convert all the 

parameters to SI units. The mass transfer coefficients used in the two mass 

transfer equations were based upon Colburn- Drew relations, Equations 5.9 and 

5.10, for the gas and liquid phases respectively. 

Moles transferred = FG.ln(11 - 
Yinter 

).atnter .c5z 	(5.7) 
- YH 2 0 

Moles transferred = —FL.ln( - 
X20 

(5.8) 
- Xinter 

Specific interfacial surface, aj nt er  [ft2 ft-1];  Slice thickness, Sz [ft]. 

1.195.G 	d,. G' _0.36 	 (5.9) FG = 	2/3 ( (1 - 
wet) ) SC 	( PG (I 

 gas mass flow, G [(lb.mol) hr 1 ft 2]; Gas mass velocity, G' [lb hr- Ift-2]; 

Gas Schmidt number, ScG [-]; Equivalent spherical diameter of packing, d 3  [ft]; 

Gas viscosity, PG  [lb ft - ' hr- '; Wetted voidage, e [-]. 
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25.1.DL.pLd 8 .L' 
FL = 	

dl-ML 	ILL )
°45 .Sc 5 	 (5.10) 

Liquid diffusivity, DL [ft 2  hr']; Liquid density, PL  [lb ft - ']; Average molecular 

weight, ML [lb (lb.mol)']; Liquid viscosity, ILL  [lb ft -1  hr']; Schmidt number, 

ScG [-1; 

5.2.3 Data Sources, 

Most of the physical properties of aqueous lithium bromide solutions were taken 

from work done by McNeely  [172], Brunk [24] and Liu [165]. The heat capacity, 

enthalpy, thermal conductivity and vapour pressure were all determined from 

equations provided by Brunk, while the liquid solution density and viscosity 

were determined from Liu. The correlation for the lithium bromide heat 

capacity was only valid for temperatures up to 100°C. Above this temperature, 

the correlation behaved oddly. Therefore, it was necessary to assume a constant 

value for the stream heat capacity above this temperature based upon the 

concentration of the solution. 

However, data on the diffusivity of the concentrated lithium bromide solutions 

was not readily available. Initially, a constant value for the liquid diffusivity of 

3x10 9m2s' was used, which had been suggested by Le Goff (in a private 

communication). Later, a concentration dependent relationship (based on a 

temperature of 25°C) was used, Equation 5.11. In conjunction with this 

equation, the effects of temperature variation were also considered, Equation 

5.12. Both of the relationships were taken from work carried out by Gierow 

[129]. Indeed the differences in the diffusivities obtained using these two 

methods was not significant. 
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The diffusivity was only used to calculate the liquid mass transfer coefficient, 

Equation 5.10. This equation was only dependent upon the square root of the 

diffusivity, thereby reducing any effects of the approximations used in 

determining the liquid solution diffusivity. It should also be noted that the 

liquid mass transfer coefficient (12. 16 (lb.mol) hr -1  ft - ') was four to eight 

times that of the gas mass transfer coefficient (2- 3 (lb.mol) hr' ft - '). Thus 

the liquid coefficient was not limiting with respect to the mass transfer of 

refrigerant vapour into the absorbent. 

D = [(-0.0713.w) + 5.2665].10 - 	 [CM 2s'] 	(5.11) 

D1 . 1 	D2  -112 
(5.12) 

T1  - 

Finally, the properties of water vapour and air were taken from Perry', the 

Chemical Engineers' Handbook [186] and also Harwoods' Steam Tables [139]. 

The diffusivity of the water- air mixture was calculated from a dimensional 

equation 1  provided in Perry' (p3.285), Equation 5.13, which predicts the 

diffusivity to within ±5 - 10%, based upon the atomic diffusion volumes of each 

component. The mixture enthalpy and heat capacity were also determined 

using the pure component properties and combining them by taken the 

weighted average of the mixture (assumed to be 79% N 2  and 21%02) 

10 3 .T' 75.[(M 
D 	

A + fvIB )/(MA .MB)] °5 
 =  P.[(Ev) 1/3  + (Ev)'3]2 4  

T [K]; P [atm]; D [cm 2s 1 ]; M is the molecular weight and E v the atomic 

diffusion volume. Finally, the wetted voidage of the packed column was 

calculated using Equation 5.14, where h t  refers to the total liquid holdup in the 

column and Edry  the dry column voidage. The dry voidage was determined from 

experiment, whilst the total holdup was calculated from Equations 5.15 and 

'From papers by: Fuller, E. N and Giddings, J. C. J. Gas Chromatography, 3, 222 (1965). 
Fuller, E. N et al. Ind. Eng. Chem., 58(5), 18 (1966) 
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5.16, which were taken from a paper by Shulman et al. [66]. The constants (cr, 

-y and 0) are all empirical constants and are dependent on the packing used in 

the column. It should be noted that Fenske helices were not included in the 

table of values and so the values associated with Raschig rings of a similar size 

were used, giving values of 2.5x10 5 , 0.965 and 0.376 (see paper), for each of the 

constants respectively. 

= Qry - 	 ( 5.14) 

ht 
a.V 

d 

Equivalent spherical diameter of packing, d 3  [ft] 

(5.15) 

(5.16) 

503 Cocurirent Absorption Model. 

5.3.1 Absorption of Steam into Lithium Bromide, 

The first program to be written was used to investigate the absorption of steam 

into concentrated lithium bromide solution. The operating conditions which 

were input were: 

o Steam flowrate (gs') 

o Steam inlet temperature (°C). 

o Lithium bromide inlet concentration (%w/w). 

o Lithium bromide inlet flowrate (gs1). 
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o Lithium bromide inlet temperature (°C). 

o Partial pressure of inerts present in absorption tube (bar). 

All the data was fed into the program automatically, via data files, and the 

results obtained stored in a similar manner. The main operating variables were 

the steam and lithium bromide fiowrates and the lithium bromide 

concentration. Each of these variables was investigated in turn and their 

resultant effects on the performance of the absorption column monitored (see 

Section 5.5). A further development to the program allowed a range of 

operating conditions to be input which resulted in an array of results being 

generated and thus provided a more extensive investigation of the absorber 

performance. The inlet temperature of each stream was also varied but the 

effects were secondary. Further to this, an investigation of the presence of inerts 

within the absorption column was also carried out. The inerts would effectively 

lower the steam partial pressure, and hence lower the maximum temperature 

achievable within the column for the given inlet absorbent concentration. 

5.3.2 Cocurret Absorption with Externa' Heat 

RemovaL 

In addition to the inlet conditions required for the simple absorption program, 

it was also necessary to include data for the external stream being heated. The 

additional data which was input was: 

o Gas flowrate (gs 1 ) 

o Gas inlet temperature (°C). 
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o Mode of operation- either co- or counter- current heat removal 

In the countercurrent heat removal case, where the external gas stream flowed 

countercurrent to the absorbent/ refrigerant mixture, it was necessary to 

estimate exit temperature of the gas stream, at the top of the absorber. This 

was achieved by multiplying the inlet gas stream temperature by a constant, 

determined from the Equations 5.17, which was based upon a correlation 

relating actual experimental exit temperatures with the inlet temperatures of 

gas streams at a flowrate of 3gs 1 . Next, the constant was refined to take into 

account the variation of the gas exit temperature with the stream flowrate. 

Equation 5. 18, which was again based on experimental observations. 

= (0.000168.TG,) + 1.005201; 	 (5.17) 

k = k'.etha.e3 	 (5.18) 

In order to evaluate the rate of heat transfer to the external gas accurately, it 

was necessary to know the overall heat transfer coefficient (HTC). This was 

determined by first of all correlating experimental values for the gas side heat 

transfer coefficient with the external gas flow. The experiment involved the 

heating of a gas stream using an inner heat source of known flowrate and inlet 

and outlet temperatures (see Chapter 4, Section 4.4.1 'Heat Transfer 

Characteristics of the Reheat Absorber' for details), from which accurate data 

could be obtained for the gas side heat transfer coefficient. The correlation 

obtained, Equation 5.19, expresses the gas side heat transfer coefficient as a 

function of the gas side Reynolds number, Re, and Prandtl number, Pr. 

Equation 5.19 was expressed in a form similar to the correlation quoted by 
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Sieder and Tate for turbulent flow in a plain tube (see Chapter 4. Section 4.4.1). 

Nu = 0.41. Re 0.78 	 (5.19) 

In order to determine the overall heat transfer coefficient it was also necessary 

to estimate the liquid side heat transfer coefficient and also the heat resistance 

through the tube wall, which were assumed to be small in comparison to the 

gas side heat resistance. It was therefore assumed that the liquid heat transfer 

coefficient should be 3 kWm 2 K' and that the wall resistance was negligible 

(This assumption was verified within the program, where the liquid HTC was 

estimated from an empirical equation to range between 2.2- 3.5 kWm 2K'). In 

fact the inside HTC could be larger because of the turbulence promoter inserted 

inside the tube to aid heat transfer, again reducing the heat transfer resistances 

on the absorption side. Results obtained indicate that the gas side resistance 

was dominant and accounted for about 95% of the total resistance. 

The overall heat balance for a slice was similar to the simple absorption program 

except that, instead of heat losses to the surroundings from the absorption 

tube, heat was transferred to the gas stream, Equations 5.20 and 5.21. 

Change in heat load in inner absorption tube = Heat to gas stream (5.20) 

[(rn.h)L1 B r  + (mi)Rs]+1 - [(m.h)LiB r  + (rn.\)Rs] = (7n.cp).(T1 - T+1) (5.21) 

The Section 5.6 discusses the results obtained for this particular program and 

compares - the simulated profiles with experimental data. As with the simple 

absorption program, the effect of inerts on the column performance was also 

investigated. 
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5.3.3 Cocirrent Dehumidification of a Humid Gas 

Stream 

Another variant of the model was the dehumidification of a humid gas stream. 

This particular program investigated the cocurrent flow of humid gas and 

concentrated lithium bromide streams, which was essentially the same as that 

described in section 5.3.1. The variables are once again the same, with the 

addition of the gas flowrate. 

The humidities of the gas stream which were considered ranged between 0.10-

0.25 g-Ho (g-dry airY1. This particular range was typical of an industrial spray 

dryer outlet streams. Again, the procedure for calculating results was the same 

as previously discussed and included the loss of heat to the surroundings. 

54 Countercurrent Dehumidification Model. 

In this particular model the humid gas stream flowed up through the absorption 

column, while the concentrated lithium bromide solution flowed by gravity 

down through the column. As previously mentioned, it was necessary to 

estimate the exit conditions of the gas stream at the top of the absorber and 

then proceed with the absorption process, working from the top of the column 

to the bottom. At the bottom, the gas conditions were then compared to the 

initial conditions input. If the flowrate of the water vapour or the calculated 

temperature were not within a specified tolerance they were varied and the 

absorption process was repeated with the new exit conditions. 
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541 Rough Prffle 

In order to run this particular program, it was first of all necessary to determine 

the exit stream conditions of both the gas stream, at the top of the absorber, 

and the lithium bromide, at the bottom of the column. This was achieved by 

initially calculating overall heat and mass balances for the column, using the 

following assumptions: 

o The interfacial pressure at the top of the column was determined from the 

VLE equation, using the inlet lithium bromide concentration and 

temperature to find the corresponding vapour pressure. It was then 

assumed that the exit water vapour and interfacial pressures were not in 

equilibrium. The water vapour partial pressure was then estimated from: 

(Partial pressure)H 2 0 = c. (Interfacial vapour pressure)H 2 o 

In this equation 'c' was a factor which varied depending on the overall 

heat balance of the column. Initially, the factor was set to 1.1. 

o The amount of water absorbed into the lithium bromide solution was 

equal to the difference between the inlet and outlet water vapour flows in 

the gas stream. Therefore, the exit lithium bromide stream conditions 

were determined once the exit water vapour flowrate (and amount of 

absorbed vapour) had be calculated. 

o Finally, the lithium bromide exit temperature was assumed to be equal to 

the interfacial temperature, at the bottom of the absorber. Where the 

temperature was determined from the interfacial pressure, assumed equal 

to the gas inlet partial pressure, and the interfacial concentration, equal to 

the exit lithium bromide concentration. 
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Once the mass balance for the absorber had been determined, it was possible to 

calculate the overall heat balance for the system. The equation for the heat 

balance was rearranged in terms of the exit gas temperature, which was still 

unknown. After the exit gas temperature had been estimated, it was necessary 

to confirm that the result was valid. If for example, the final exit gas 

temperature was less than zero or else greater than the exit absorbent 

temperature, the amount of water transferred was varied and the procedure 

repeated. 

The next stage in this procedure, involved the subdivision of the column into 

eight equal sections. Heat and mass balances for each of the sections were then 

determined, assuming that the amount of water absorbed in each stage was the 

same. Each section was evaluated in succession, starting at the top and working 

down. As, the top temperatures and the fiowrates of each stream were known it 

was only necessary to find the exit temperatures. 

First of all, the exit interfacial temperature was calculated from a knowledge of 

the exit water vapour partial pressure and exit lithium bromide concentration 

for the slice. The exit temperature of each stream was then estimated by taking 

a weighted average of the inlet stream and the interfacial temperatures. The 

actual weightings were not important as accurate exit temperatures were 

determined for each stream at each cross sectional slice within the model. 

Initially the weighting was 60:40 (Tinter : TG), for the gas stream and 95:5 

(Ti nter : TLjBr),  for the liquid phase. The determination of the exit gas 

temperature was weighted towards the inlet gas temperature because of the low 

heat transfer coefficient (HTC) between the gas and the interface. Similarly, the 

exit LiBr temperature was set almost equal to the interfacial temperature 

because the HTC between the liquid and interface was large. 
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The program varied the factor controlling the gas temperature. However, if this 

factor was greater than one or fell below zero then the value was reset and the 

liquid fudge factor' varied. This procedure was repeated until the heat balance 

had converged to a specified tolerance. The algorithm used for estimating the 

gas and liquid stream flows and temperatures in the absorber is detailed below. 

Algorithm for estimating rough exit flows and temperatures for 

the countercurrent dehumidification of a humid gas stream. 

Step 1: Find interfacial vapour pressure above the concentrated lithium 

bromide solution at the top of the absorber. 

Pinterf ace = fn( TLiBr tOP , WLiBr top ). 

Step 2: Set exit gas partial pressure, at top of column, equal to interfacial 

vapour pressure multipied by a factor, which was used because the streams 

were not in equilibrium with each other. 

Step 3: Estimate the amount of water vapour transferred from the difference 

between the inlet and estimated exit flowrates. 

Step 4: Find outlet lithium bromide flowrate and concentration. 

Step 5: Assume that the interfacial vapour pressure, at the bottom of the 

absorber, was in equilibrium with inlet water vapour partial pressure. 

Similarly, the interfacial concentration was assumed to be equal to the exit 

lithium bromide concentration. Hence, find the interfacial temperature and 

set it equal to the exit temperature of the lithium bromide stream. 

Step 6: Perform an overall energy balance on the column and find the exit gas 

temperature. 
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Step 7: Check validity of estimated temperature, vary the amount of water 

absorbed into the absorbent stream if necessary (Repeating Steps 2-6). Else 

continue... 

Step 9: Split column into eight sections. 

Step 8: Assume equal absorption of water vapour in each section. Determine 

mass fiowrates of each stream through the column. 

Step 9: For each section, perform a heat balance. Vary gas exit temperature as 

necessary until the difference in the heat transferred between phases is less 

than a specified tolerance. 

Step 10: Progress to next section, setting the inlet conditions equal to exit 

conditions of previous section. 

Step 11: After establishing the rough temperature and mass profiles within the 

absorber for each section, interpolate for each cross sectional slice, thus 

providing initial estimates of all variables and making computation of the 

precise absorption model easier. 

Once the rough temperature and flows profiles for each of the column sections 

were completed it was possible to estimate the temperature and flow of each 

stream for each slice of the column, by means of linear interpolation. The 

determined values were stored in large data files and used as the initial data 

sets when carrying out the rigorous calculation of the absorption profiles. 

Figure 5.4 illustrates the gas and lithium bromide temperature profiles within 

the absorption column operating with the following conditions. 
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Gas conditions: Gas flow = 2.00 gs* 
Steam flow = 0.23 gs'. Inlet temperature = 86 T. 

Lithium bromide 
conditions: Flow = 5.31 gs'. 	Inlet temperature = 101 °C. 

Inlet concentration = 65 %w/w. 
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Figure 5.4: Approximate stream temperature profiles for the countercurrent de-
humidification process. 
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505 Simple Cocurrent Absorption Results. 

Results for the absorption of steam (the refrigerant vapour) into a concentrated 

lithium bromide solution indicated that the temperature of the lithium bromide 

stream rapidly reached a maximum near the top of the column, while the 

temperature of the refrigerant stream lagged behind. Over the lower half of the 

column, the temperatures of both streams remained approximately constant, 

with the refrigerant temperature only slightly less than that of the liquid 

temperature, Figure 5.5. The steam temperature did not increase as rapidly as 

the liquid temperature because the film heat transfer coefficient (HTC) of the 

refrigerant phase was far smaller than that of the liquid phase. The liquid phase 

HTC was approximately 1200- 2000 BTU hrft 2°F 1  (2.2- 3.5 kWm 2K'), 

indicating a low heat transfer resistance. This was reflected in the temperature 

profile obtained, which showed that bulk stream temperature rose quickly to 

that of the interfacial temperature, while the HTC for the steam was only 

around 2- 3 BTU hr 1 ft 2°F (3.5- 5.4 Wm 2 K), resulting in a more gradual 

increase in the steam temperature. 

The sharp increase in temperature of the lithium bromide was also reflected in 

the rapid absorption of steam into the absorbent solution at the top of the 

column, followed by a more gradual linear decline at the bottom of the absorber, 

Figure 5.6. The exit steam flowrate was approximately 0.035 gs 1 , indicating 

that 0.125 gs' had been absorbed. An approximate calculation indicated that 

the maximum temperature achieved corresponded to the equilibrium 

temperature occurring at the average lithium bromide concentration, assuming 

a steam partial pressure of 1 bar (i.e 66 %w/w -+ 169 °C). 
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Absorption Tube:- 

	

Steam conditions: Flow = 0.16 gs 1 . 	Inlet temperature = 100.3 °C. 
Lithium bromide 

	

conditions: Flow = 2.36 gs 1 . 	Inlet temperature = 111.7 °C. 
Inlet concentration = 68.4 %w/w. 

	

Steam temperature 	 LiBr temperature 
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Figure 5.5: Temperature profiles for the absorption of steam into a concentrated 
LiBr solution, no inerts present. 
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Figures 5.5 and 5.6 illustrate the ideal case of steam absorption into a 

concentrated lithium bromide solution. It would be more realistic to assume 

that there were inerts present in the system. The operation of the absorber 

with inerts present is presented below, with the same inlet stream conditions as 

the previous example with the addition of an inert stream. The initial partial 

pressure of steam was set to 0.7 bar, with the inerts accounting for the other 0.3 

bar. 

LiBr temperature 

100 	110 	120 	130 	140 	150 	160 	170 
Temperature (° C) 

Figure 5.7: Temperature profiles for the absorption of steam into a concentrated 
LiBr solution, inerts present. 
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Figure 5.8: Mass profile of steam flowrate through column, with inerts (0.7bar 
initial partial pressure of stream). 
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It can be seen from Figure 5.7 that the exit gas temperature was reduced by the 

presence of inerts in the absorption column. The inerts reduced the partial 

pressure of steam in the column and as result reduced the maximum achievable 

temperature. For example, if the steam pressure was reduced to 0.7 bar, the 

maximum absorption temperature was reduced by 7 degC to 162 °C. The model 

also predicted a corresponding decrease in the amount of steam absorbed into 

the absorbent solution, Figure 5.8. 

5.5.1 Effects of Varying the Stream Fowrates0 

In the simple absorption model there were only two process streams- refrigerant 

vapour (steam) and liquid absorbent (concentrated lithium bromide solution). 

The following section investigates the effect of varying the flowrate of each of 

the streams upon the exit temperatures from the absorber. A useful parameter 

in quantifying the capacity of the absorber is the circulation ratio, which is the 

ratio between the inlet lithium bromide and steam flowrates. 

Steam Flow. 

A similar range of steam flowrates was tested in the model assuming constant 

absorbent conditions. The inlet solution flowrate was 2.3 gs 1 , with a 

concentration of 66 %w/w. The inlet temperature of both streams were 100 °C. 

Two different setups were analysed: one without any inerts present in the 

absorber; the other with an assumed initial inerts partial pressure of 0.3 bar. 
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In the ideal absorption case with no inerts present, it can be seen that 

increasing the steam flowrate, for a constant lithium bromide flow, resulted in a 

decrease in the exit lithium bromide temperature. The lowest steam flowrate, 

0.06 gs', gave the highest exit lithium bromide concentration, 64.3 %w/w, and 

thus the highest equilibrium temperature, 167.5 T. 

TflRS t0  WLiBrb t  TflRSb t  Tib Ot  

(gs 1 ) (%w/w) (gs') (°C) 

0.06 64.3 0.00 167.5 
0.08 63.8 0.00 165.8 
0.10 63.3 0.00 164.1 
0.12 62.7 0.00 162.5 
0.14 62.5 0.01 161.8 
0.16 62.5 0.03 161.8 
0.18 62.5 0.05 161.8 
0.20 62.5 0.07 161.7 
0.22 62.5 0.09 161.6 
0.24 62.5 0.11 161.4 
0.26 62.5 0.12 161.3 
0.28 62.5 0.14 161.2 
0.30 62.5 0.16 161.2 

Table 5.1: Effect of varying the steam fiowrate on the exit LiBr temperature. 

Table 5.1 shows that all the steam, up to 0.13 gs 1  was absorbed, for a system 

with no inerts. Any increase above this only resulted in a further decrease in 

the exit lithium bromide temperature due to an increased heat load on the 

system. In comparison Table 5.2 shows that under the same operating 

conditions there was a significant decrease in the amount of steam absorbed 

when inerts were present, due a reduction in the steam partial pressure (initial 

inerts pressure was set to 0.3 bar in each case). 

The simulation results show that when the simple absorption model was tested 

with a range of increasing steam fiowrates, when no inerts were present in the 

system, the exit lithium bromide temperature initially decreased by a few 

degrees. At the highest steam fiowrates, the exit temperatures were 
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approximately constant. The initial decrease in temperature was attributed to 

the decrease in absorbent concentration as more steam was absorbed into the 

liquid phase. Above a steam flowrate of 0.13gs 1 , the amount of steam 

absorbed did not increase, therefore the exit absorbent concentration remained 

constant 2  . The exit stream temperature continued to decrease slightly as the 

steam flowrate increased, this was due to the presence of excess steam in the 

absorber, which also required heating. 

rnRS 0  mincriB WLiBrb t  rhRSbO  TjbO t  Exit steam 
(gs 1 ) (gs 1 ) (%w/w) (gs 1 ) (°C) p.p (bar) 

0.06 0.04 65.2 0.03 142.8 0.55 
0.08 0.05 65.2 0.05 151.3 0.62 
0.10 0.07 65.2 0.07 153.3 0.62 
0.12 0.08 65.2 0.09 154.6 0.64 
0.14 0.10 65.2 0.11 155.1 0.64 

Table 5.2: Effect of varying the steam flowrate on the exit LiBr temperature with 
inerts present. Initial inerts partial pressure 0.3 bar. 

By comparison, when the model was operated under the same conditions but 

with inerts present in the gas phase, the exit stream temperature was higher for 

the highest steam flowrates, Table 5.2. When the program was operated with 

inerts present in the gas phase, it was assumed that the phase was well mixed 

and that the inerts did not accumulate at the interface (see Section 5.2.2). This 

was a fair assumption because the absorption model was based on a packed 

column, which gave a large mass transfer area and also served to mix each 

phase. At the lowest steam flows, once the steam has been absorbed into the 

liquid phase the effect of the inerts increased far more than at higher steam 

flows. It was concluded that the equilibrium absorption temperature was 

lowered due to the increased effect of inerts in the system. The exit steam 

partial pressure at the lowest steam flowrate was 0.55 bar, whereas at the 

highest steam flowrate the partial pressure drops to only 0.64 bar. 

2 A good estimate of the exit absorption temperature could be made solely from the average 
lithium bromide concentration and the steam partial pressure. 
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It was also noted that in the system with inerts, the exit absorbent 

concentration remained constant over the range of steam flowrates investigated, 

as did the maximum absorption temperature obtained in the column. This 

suggested that the same amount of steam was absorbed independent of the 

initial flowrate because the absorbent stream conditions were the same for all 

the runs carried out. Therefore, the interfacial conditions remained the same for 

each run. Indeed in all cases tested with inerts present in the gas phase, the 

amount of steam absorbed was only 0.03gs 1 , compared to 0.13gs 1  when there 

are no inerts present. 

0 
Increasing steam flow 

175- (lower Fr) 

170 

165- 

0  Increasing steam flow 

160- 

I 155—  
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!150 
-- --- 

145- ---- Fr = 37. Inerts pressure = 0.3bar 
- - - - - - - 	 ------ Fr = 18. Inerts pressure = 0.3bar. 

Fr = 37. No inerts 
Fr = 18. No inerts 

140- 
64 	 65 	 66 	 67 	 68 

LiBr inlet concentration (%w/w) 

Figure 5.9: Effect of inerts on the exit LiBr temperature, for the simple absorption 
model. 
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The same effects were reproduced over a range of inlet absorbent 

concentrations, see Figure 5.9. Two different circulation ratios were examined, 

assuming constant lithium bromide flow and varying steam flow. All of the 

conditions tested exhibited an increase in exit stream temperature with 

increased absorbent concentration, with the ideal systems (no inerts) 

performing better. Again, it can be seen that increasing the steam flow in the 

ideal system decreases the exit temperature, while the opposite was true for the 

case with inerts present. 

Lithium Bromide Flow. 

The influence of varying the inlet lithium bromide flowrate on the exit stream 

temperature is shown in Figure 5.10. The diagram illustrates the variation in 

exit temperature for four inlet liquid flows over a range of circulation ratios 3 , in 

each case the inlet concentration was 66 %w/w. As expected, the lowest exit 

temperatures occurred at the lowest absorbent flowrate, where there was the 

greatest change in the lithium bromide concentration due to the absorption of 

steam. 

In Figure 5.10 there exist plateau regions (Lines c) and d)). This appeared to 

indicate that this was the point where the maximum amount of steam had been 

absorbed into the liquid phase. Subsequent increases in the steam flowrate 

(decreasing the circulation ratio) caused a further drop in temperature as the 

heat load of the system was further increased without any further absorption 

occurring. 

'Circulation ratio (F,. = Lithium bromide flowrate / Steam flowrate (thLB,. / rnRS) 
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It can also be seen from Figure 5.10 that the exit temperature profiles for 

different inlet lithium bromide flowrates were the same for the same circulation 

ratios (i.e there was an overlap in results, see Lines a) and b) ). The lines a) 

and b) also appear to be approaching an asymptotic value of approximately 171 

°C, which is the equilibrium temperature of a 66 %w/w solution of lithium 

bromide at 1 bar (i.e as the steam flow was decreased (increasing Fr, the 

concentration change in the absorbent decreased to zero). It can therefore be 

concluded the effect of varying the circulation ratio in the absorber had a 

significant effect on the exit temperature obtained in the absorber, independent 

of the absolute value of the lithium bromide flowrate (providing all the steam 

was absorbed). The maximum stream exit temperature was solely dependent on 

the equilibrium conditions between the refrigerant and absorbent phases. 

55.2 Effects of Varying the Lithium Bromide 

Concentration 

The previous sections have highlighted the importance of the absorbent 

concentration in achieving a high exit stream temperature. There was 

effectively a step increase in the exit lithium bromide solution temperature for 

each incremental change in absorbent concentration, over a range of circulation 

ratios, Figure 5.11. 

It can also be seen from Figure 5.11 that the same temperature profiles to those 

of Lines c) and d) in Figure 5.10 were obtained. In addition, the position of the 

constant temperature region experienced for each absorbent concentration 

shifted. The onset of the constant temperature region varied from a circulation 

ratio of 19 when the concentration was 64 %w/w to 17 at 68 %w/w. This 
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Figure 5.10: Effect of varying LiBr inlet flowrate at different inlet concentrations 
on the LiBr exit temperature. 
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observation was as expected because as the inlet concentration of the lithium 

bromide stream increased, the absorption driving force also increased and 

therefore more steam could be absorbed into the liquid before effective 

saturation. The saturation occurred when no more steam could be absorbed 

despite the increase in the steam flowrate (lowering the circulation ratio). 
LiBr inlet concentratic 
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Figure 5.11: Effect of varying the inlet LiBr concentration on the exit LiBr 
temperature. 
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5.53 Effects of Varying the Stream J[iret 

Temperatures 

The variation of the stream inlet temperatures did not affect the exit absorption 

temperature when the absorber was operated at the lowest steam flowrate of 

0.06 gs 1 , Figure 5.12. This can be attributed to the low concentration change 

in the absorbent stream resulting in an extremely high absorption temperature. 

Indeed because the rate of absorption of steam into the lithium bromide was so 

rapid, the temperature of the bulk absorbent stream quickly increased to 

approximately the same as that of the interface. As the interfacial temperature 

was solely dependent on the interfacial concentration and steam partial 

pressure, the effect of varying the inlet stream temperatures were negligible. 

However, as the steam flowrate was increased, there was a distinct increase in 

the exit stream temperatures obtained as the inlet stream temperatures were 

increased. The increase was due to the extra heat added to the system at the 

inlet, allowing a closer approach to the maximum absorption temperature to be 

achieved. The improvement in the exit temperature, for each steam flow, was 

approximately 1 degC for each 10 degC increase in the initial temperature. 

The exit stream temperature was previously shown to increase as the inlet 

absorbent concentration increased. It can be seen from Figure 5.12 that the 

relationship between these variables was linear. The change in the exit stream 

temperature as the absorbent concentration increases does not depend upon the 

initial stream temperature or the refrigerant (steam) flowrate. The increase in 

the exit temperature was approximately 2 degC per percent. 
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Figure 5.12: Effects of varying the steam flowrate and the inlet stream tempera-
tures upon the LiBr exit temperature. 
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5 	Resu'ts for cOocurrent Absorption with 

Externa' Heat RemovaL 

After successfully modelling the absorption of steam into a concentrated 

solution of lithium bromide adiabatically, the computer program was extended 

to investigate the effects of heat removal from the hot absorbent fluid. An 

externally flowing gas stream was used to remove heat from the absorption tube. 

Figure 5.13 shows the setup for countercurrent heat removal. The following 

sections present results for both cocurrent and countercurrent heat removal. 

CONCENTRATED 
LUTION 

;team into inner 
tube, absorbed 
into solution. 

GAS FLOW 	extended surtace 
IN Ar'm.iuLus 	area to aid heat 

transfer 

Figure 5.13: Schematic representation of steam absorption into LiBr solution, 
with simultaneous heat removal by a countercurrent stream of gas. 

-. LiBr 
SOLUTION 
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Countercurrent Heat Removal. 

All of the experiments carried out using the reheat absorber involved the use of 

countercurrent gas streams to remove the heat from the absorption tube. The 

first simulations were carried out using experimental operating conditions, 

enabling a direct comparison to be made between the theoretical and 

experimental results, thereby validating the model. Following a description of 

this, each of the process variables will be discussed in turn with respect to 

gaining a detailed insight of the reheat process. 

Comparison between Experimental and Theoretical Results. 

The experimental apparatus permitted measurements of only the inlet and 

outlet stream temperatures, however, the theoretical results obtained from the 

simulation model were in reasonable agreement with these points. Figure 5.14 

illustrates the temperature profiles of both the external gas stream and of the 

inner absorbent stream. As with the simple absorption model, the lithium 

bromide stream temperature rapidly increased to a maximum as the steam was 

absorbed into the liquid, and then remained at approximately this temperature 

throughout the column. 
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Absorption tube:- 
Steam conditions: Flow = 0.16gs 1 . Inlet temperature = 100 °C. 
Lithium bromide 

conditions: Flow = 2.36gs'. Inlet temperature = 112°C. 
Inlet concentration = 68%w/w. 

Outer annulus:- 
Gas conditions: Flow = 3.00gs 1 . Inlet temperature = 97°C. 

Experimental 
Results:- 	 Gas exit temperature = 160 0 C 

LiBr exit temperature = 159°C 

Gas exit at 0.05m 
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Figure 5.14: Temperature profiles for cocurrent absorption of steam into LiBr, 
with countercurrent heat removal by an external gas stream. 

It can also been seen from Figure 5.14 that the gas temperature drops slightly 
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before exiting at the top of the column. This was due to heat being transferred 

back into the inner absorption tube. As was seen from the simple absorption 

case, Figure 5.5, the steam temperature did not increase as rapidly as the liquid 

phase and so resulted in the transfer of heat from the gas stream. 

Table 5.3 compares the results from the simulation program, for a range of gas 

flowrates, with actual experimental data. The gas exit temperatures predicted 

in most cases agree well with the experimental values. However, the liquid exit 

temperatures were consistently higher than obtained experimentally. It was felt 

that although the VLE data for the lithium bromide was accurate at high 

concentrations, around the temperatures 160- 175°C, the thermodynamic 

properties calculated for the absorbent stream were used at the limits of their 

validity. For example, although the absorbent stream concentration and 

flowrate were measured accurately, the stream density and heat capacity were 

only estimated from the correlations provided by Brunk and Liu. It was 

therefore concluded that the differences in the measured and predicted 

temperature was because the predicted absorbent streams had larger heat 

capacities and/ or densities than the actual streams used in the experiments. 

Hence, the results obtained for the simulation model resulted in higher exit 

absorbent stream temperatures because the predicted heat loads of the streams 

were greater than actually used during the experimental trails. 
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The gas exit temperatures were in reasonable agreement because the overall 

heat transfer coefficient used to determine the rate of heat transfer to the gas 
UA 

stream was based on an empirical. ihe experimental absorber; and the fluid 

properties of gases were well characterised over the temperatures used. In 

addition, the maximum absorbent temperature was felt to be accurate as it was 

based upon the absorbent stream partial pressure and concentration, which 

were both measured. Hence the rate of heat transfer between the inner 

absorption tube and the gas stream were in close agreement for both the 

experimental and predicted results. 

rnG TGbO  TflLjB r  WLjBrj mRS Ti 0  
1]_Experimental Simulation 

TG 0  TrbO  TG 0  TJbO  

(gs') (°C) (gs 1
) I  (%w/w) (gs') (°C) (°C) (°C) (°C) (°C) 

2.00 82 	T 2.30 64 0.16 1 102 11 	141 	1 145 1 146 158 
2.00 79 	T 2.90 60 0.16 101 128 134 136 146 

3.00 89 2.22 62 0.16 101 144 145 142 150 

3.00 92 2.82 66 0.14 101 144 146 151 162 

3.00 93 2.41 67 0.16 100 150 150 155 164 
3.00 97 2361 68 0.16 112 156 165 160 159 

4.00 94 2.27 1 63 0.16 T 101 142 141 145 152 
4.00 92 2.48 65 0.16 [100 144 142 149 156 

5.00 79 2.08 56 0.16 107 130 129 130 137 
5.00 78 2.21 61 0.16 100 134 120 138 147 

6.00 78 2.21 61 0.16 102 131 T 113 138 145 
11 6.00 1 77 1 2.25 1 63 1 0.16 1 101 11 	135 1116 1 141 1 	149 	11 

Table 5.3: Comparison of experimental and computer results. 

Effect of ][nerts on the Absorber Performance. 

As previously discussed in Section 5.5, the presence of inerts in the absorption 

tube lowered the maximum equilibrium temperature because the steam partial 

pressure was effectively reduced. This particular problem was also identified in 

Chapter 4 'Experimental Studies', Section 4.4.2 'Early Absorption Trials', 
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where the maximum achievable gas exit temperature was affected by inerts in 

the vapour space of the absorption tube. 

Figure 5.15 shows that similar temperature profiles were obtained for 

simulations where a gas stream was being heated, with/ without inerts present 

in the absorption tube. The lower portions of the profiles were virtually 

identical, as the gas was heated from its initial temperature. As the 

temperature of the absorbent stream in the inner absorption tube was far hotter 

than either gas stream, the temperature difference between the gas streams and 

the hot absorbent fluid were similar, resulting in a similar rate of increase in the 

temperature of the gas streams. The greatest variation in temperature profile 

occurred at the top of the column, where most of the steam was absorbed. A 

lower maximum absorption temperature occurred when inerts were present in 

the absorption tube because the partial pressure of the steam was reduced. This 

resulted in a lower exit gas temperature for the case with inerts present, Figure 

5.15. 

Absorption tube:- 
Steam conditions: 

Inerts: 

Lithium bromide 
conditions: 

Outer annulus:-
Gas conditions: 

Flow = 0.16 gs 1 . 	Inlet temperature = 100 T. 
Initial partial pressure = n/a 
Initial partial pressure = 0.3 bar 

Flow = 2.36 gs 1 . 	Inlet temperature = 100 T. 
Inlet concentration = 68 %w/w. 

Flow = 3.0 gs'. 	Inlet temperature = 90 °C. 
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Figure 5.15: Effects of inerts, present in the absorption tube, on the gas temper-
ature. 
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Absorption tube:- 
Steam conditions: Flow = 0.16 gs'. Inlet temperature = 100 °C. 
Lithium bromide 

conditions: Flow = 2.36 gs 1 . Inlet temperature = 100 °C. 
Inlet concentration 
range = 65- 68 %w/w. 

Outer annulus:- 

	

Gas conditions: Flow = 3.0 gs 1 . 	Inlet temperature = 90 °C. 

180 

Equilibrium curve, 

(steam partial pressure = ibar) 

V 

v .  

No inerts present 

Inerts present 
(steam partial pressure = 0.7bar) 
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Figure 5.16: Effect of inerts on the gas exit temperature for varying LiBr con-
centration. 
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Figure 5.16 illustrates the variation of the exit temperature over a range of 

concentrations. It can be seen that the exit gas temperature was consistently 

lower by approximately 6 degC when inerts were present in the system. The 

linear dependency of the results on the lithium bromide concentration is again 

evident in the results for the system with and without inerts present. For 

comparison, a line representing the maximum VLE temperature has also been 

drawn (assuming a partial pressure of ibar and an "average" lithium bromide 

concentration). The difference between the actual expected exit temperatures 

and this line was due to the heat transfer resistances in the gas phase. 

The presence of inerts in the absorption tube created a problem when trying to 

maximise the gas exit temperature because of the lower steam partial pressure 

in the absorption tube. It should also be noted that there was a reduction in 

the amount of steam absorbed into the lithium bromide stream because of the 

reduction in the mass driving force. Therefore, the exit lithium bromide 

concentration remained higher when inerts were present in the absorption tube. 

However, this was not enough to offset the reduction in the equilibrium partial 

pressure caused by the inerts and so a lower absorption temperature being 

obtained. As a result, the log- mean temperature difference between the gas 

and absorbent streams at the top of the column was also reduced, for 

simulations carried out with inerts present in the absorption tube. 

Consequently, there was a reduction in the exit gas temperature obtained, for a 

given inlet absorbent concentration. 
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Effect of Varying the Absorption Mixture Stream Conditions. 

The principal variables within the absorption tube which will be discussed, are: 

a Steam flowrate. 

a Lithium bromide flowrate. 

a Lithium bromide concentration. 

The results tabulated below also illustrate the influence of the circulation ratio 

upon the gas exit temperature, which depended upon both the steam and 

lithium bromide flowrates. As the most important system variable was the inlet 

absorbent concentration, a range of inlet concentrations were studied within 

each of the following sections. 

Steam Flowrate. As with the simple absorption model, the effect of 

increasing the steam flowrate in the reheat absorber was investigated. Figure 

5.17 summarises the results obtained for simulation model operating over a 

wide range of inlet lithium bromide concentrations with a gas stream of 3 gs 1  

and an inlet temperature of 90 °C. The results show that there was no 

appreciable difference between exit gas temperatures obtained for the different 

steam flows, over the lower concentrations. There was a slight improvement in 

the gas exit temperature for the lowest steam flowrate over the other results, at 

the highest absorbent concentration. Inspection of the results in Table 5.4 

shows that for inlet steam flowrates of between 0.16 and 0.20 gs 1 , there was an 

excess of steam at the bottom of the absorber. This resulted in exit lithium 

bromide concentrations which were approximately the same, and consequently 
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the maximum absorption and gas exit temperatures were constant. However, as 

the absorbent concentration increased, there was a greater mass driving force 

which resulted in more steam being absorbed into the liquid phase. As a result 

there was a reduction in the exit absorbent concentrations for the higher steam 

flowrates. The lower exit lithium bromide concentration corresponded to a 

decrease in the maximum absorption temperature achieved in the absorber and 

hence resulted in lower exit gas temperatures. 

4 

55 56 57 58 59 60 61 62 63 64 65 66 67 68 
Inlet LiBr concentration (%w/w) 

Figure 5.17: Effect on the gas exit temperature of varying the initial steam flow 
and LiBr concentration. 
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WLiBr top  TTiRS t0p  Fr WLiBrb ot  mRS6 0  Trb . t  TG 0  

(%w/w) (gs) (-) (%w/w) (gs 1 ) (°C) (°C) 

55 0.12 17.3 52.0 0.00 135 129 
56 0.12 17.6 53.0 0.00 137 131 
57 0.12 17.8 54.0 0.00 140 132 
58 0.12 18.0 55.0 0.00 142 134 
59 0.12 18.2 56.0 0.00 144 136 
60 0.12 18.5 56.9 0.00 146 138 
61 0.12 18.7 57.9 0.00 149 140 
62 0.12 18.9 58.9 0.00 151 142 
63 0.12 19.2 59.9 0.00 153 145 
64 0.12 19.4 60.9 0.00 156 147 
65 0.12 19.6 61.9 0.00 159 149 
66 0.12 19.9 62.9 0.00 162 152 
67 0.12 20.1 63.8 0.00 164 154 
68 0.12 20.3 64.8 0.00 168 157 

55 0.16 13.0 51.9 0.03 135 129 
56 0.16 13.2 52.8 0.03 137 131 
57 0.16 13.3 53.6 0.03 139 132 
58 0.16 13.5 54.5 0.02 141 134 
59 0.16 13.7 55.4 0.02 143 136 
60 0.16 13.9 56.2 0.01 145 138 
61 0.16 14.0 57.1 0.01 146 140 
62 0.16 14.2 57.9 0.00 149 142 
63 0.16 14.4 58.9 0.00 151 144 
64 0.16 14.5 59.9 0.00 154 146 
65 0.16 14.7 60.9 0.00 156 149 
66 0.16 14.9 61.9 0.00 159 151 
67 0.16 15.1 62.9 0.00 162 153 
68 0.16 15.2 63.8 0.00 164 156 

55 0.20 10.4 51.8 0.07 135 129 
56 0.20 10.5 52.7 0.07 137 131 
57 0.20 10.7 53.6 0.06 139 132 
58 0.20 10.8 54.4 0.06 140 134 
59 0.20 10.9 55.3 0.05 142 136 
60 0.20 11.1 56.1 0.05 144 138 
61 0.20 11.2 57.0 0.04 146 140 
62 0.20 11.4 57.8 0.04 148 142 
63 0.20 11.5 58.7 0.03 150 144 
64 0.20 11.6 59.5 0.02 152 146 
65 0.20 11.8 60.3 0.01 154 148 
66 0.20 11.9 61.2 0.01 156 151 
67 0.20 12.1 61.9 0.00 159 153 
68 0.20 12.2 1 62.9 0.00 162 156 

Table 5.4: Data summarising the influence of the steam flowrate on the exit gas 
temperature, for a range of inlet LiBr concentrations. 
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The ideal absorption model showed improvement in the exit gas temperature 

for decreasing steam flowrate. However, this system would not be practical in a 

real absorption cycle as there would be inerts present in the system, which 

would have a greater effect on the performance of the absorber when the 

refrigerant flowrates were smaller (see previous discussion). 

LiBr IF'lowrate in Absorption Tube. The following section investigates the 

effect upon the exit gas temperature of varying the inlet lithium bromide 

flowrate. As previously mentioned when the absorption tube fiowrates are 

varied the circulation ratio in the column also varies. Therefore, two cases were 

analysed: one assuming a constant steam flowrate in the column; the other, 

constant circulation ratio. It should be noted that the circulation ratio did vary 

slightly, this was due to the density of the absorbent solution rising for 

increasing inlet concentration. As the inlet lithium bromide flowrate was input 

'm1s 1 ', the mass flowrate of the liquid stream rose as the density increased. 

However, this was thought not to affect the results greatly. 

Figure 5.18 shows that increasing the lithium bromide flowrate, while 

maintaining a constant steam flowrate (increasing the circulation ratio), 

considerably increased the gas exit temperature for a range of inlet lithium 

bromide concentrations. As the steam flowrate was constant in each case, the 

concentration change of the absorbent stream was less than for the case where 

the circulation ratio was kept constant. This resulted in higher exit absorbent 

concentrations being obtained at the higher circulation ratios and hence higher 

absorption and exit gas temperatures, see Table 5.5. This observation agrees 

with the earlier result for the simple absorption model. However, by increasing 

the lithium bromide flowrate, there would be an increase in the pumping 

requirements of the system. 



Chapter 5. Computer Modelling. 	 258 

0 TLiBr tep WLiBr top  mRS F WLjBrb O  TrbO  TGTt OP  

s') (%w/w) (gs 1 ) (-) (%w/w) (°C) (°C) 

2.30 64 0.12 19.1 60.8 156 147 
2.33 65 0.12 19.4 61.8 159 149 
2.37 66 0.12 19.7 62.8 161 152 
2.40 67 0.12 20.0 63.8 164 154 
2.44 68 0.12 20.3 64.8 168 157 

4.98 64 0.12 41.5 62.5 161 151 
5.05 65 0.12 42.1 63.5 164 153 
5.13 66 0.12 42.7 64.5 167 156 
5.20 67 0.12 43.4 65.5 170 159 
5.28 68 0.12 44.0 66.5 174 162 

4.98 64 0.26 19.1 60.8 156 147 
5.05 65 0.26 19.4 61.8 159 149 
5.13 66 0.26 19.7 62.8 162 152 
5.20 67 0.26 20.0 63.8 165 154 
5.28 68 0.26 20.3 64.8 168 157 

Table 5.5: Results for varying the LiBr flowrate with constant steam flowrate 
and approximately constant circulation ratio. 

The results of the simulations with constant circulation ratio and with 

increasing lithium bromide flowrate were essentially the same. The exit 

absorbent concentrations were the same for low and high stream flowrates. The 

resultant effect was that the gas exit temperatures were also the same. 

Another important feature of Figure 5.18 was the increase in exit temperature 

as the inlet absorbent concentration increased. However, there was a physical 

constraint on the maximum lithium bromide concentration within the system 

due to crystallisation problems. Maximum concentration used in these studies 

was therefore set to 68 %w/w, which has a crystallisation temperature around 

82 °C. 
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Figure 5.18: Effect on the gas exit temperature of varying the LiBr flowrate. 
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Influence of Gas Conditions on Absorber Performance. 

The primary aim of the reheat column was to maximise the exit temperature of 

the gas stream. The outside shell variables which were studied were the gas 

flowrate and temperature. 

Influence of Gas Flowrate. Increasing the flowrate of the external gas 

stream improved the rate of heat transfer to the stream (Equation 5.19), 

thereby increasing the gas exit temperature. However, counterbalancing this 

effect was the increase in the heat load of the gas stream as the flowrate was 

increased. This resulted in more heat being required to raise the temperature of 

the gas by 1 degC, thus reducing the maximum exit temperature. Therefore it 

was necessary to optimise the gas flowrate in the absorption column in order to 

achieve as high an exit stream temperature as possible. The range of gas 

flowrates used in these studies was 1- 6 gs'. In all cases the inlet gas 

temperature was set to 90 °C while the inlet steam and lithium bromide 

temperatures were 100 °C. The inlet lithium bromide flowrate was set to 

approximately 1.53 m1s 1 , although the actual mass flowrate did vary slightly 

because the liquid density increased as the absorbent concentration increased 

(In addition the mass flowrate of absorbent through the column increased as 

steam was absorbed). 

The results obtained for the simulation model show that there was an initial 

increase in the exit gas temperature as the gas flowrate was increased from 1 to 

3 gs'. This improvement was due to an increase in overall heat transfer 

coefficient (HTC O ). The rate of heat transfer increased more than the heat 

capacity (the. cp) of the gas stream. Above gas flowrates of 3 gs' the heat 

capacity of the stream became dominant and increased faster than the HTCO, 
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which resulted in the exit gas temperatures dropping. These observations agree 

well with those obtained in Chapter 4, Section 4.4.3 'Effect of Varying the Gas 

Flowrate', where there was similar peak in the gas exit temperatures at a gas 

flowrate of 3 gs', Figure 5.19, again indicating a cross over between the 

dominance of the heat transfer rate of the absorber and the heat capacity of the 

gas stream. 

However, the variation in the predicted exit gas temperatures was not as great 

as the experimental results. This pattern of behaviour was repeated for different 

inlet absorbent concentrations over the range 65- 68 %w/w. It was felt that the 

heat losses to the surroundings were higher than predicted, which resulted in 

better exit temperatures for the simulation model. 

Figure 5.19 also shows that increasing the inlet absorbent concentration 

increases the exit gas temperature by 2degC per percent. It was also shown that 

as the steam flowrate to the absorption tube increased, the gas exit temperature 

decreased due to lower equilibrium absorbent concentrations, Tables 5.6 and 

5.7. In all the simulation runs, for different inlet steam flowrates, the exit steam 

flowrates was zero, indicating that all the steam had been absorbed into the 

absorbent stream. This highlighted the fact that the maximum amount of 

steam absorbed into the lithium bromide was greater than that obtained in the 

simple absorption model. In this particular model, as heat was being 

continuously removed from the absorption tube by the external gas stream, the 

refrigerant and absorbent phases were constantly shifted from an equilibrium 

state. As a result, more steam was absorbed into the liquid phase, resulting in 

lower equilibrium concentrations and also lower gas exit temperatures. 
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Figure 5.19: Variation of the gas exit temperature with gas flowrate, for counter-
current heat removal, over a range of inlet LiBr concentrations. 
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TflG 7 RS O  WLiBr top  Fr  WLiBrb Ot 	j T G,,., TIb O  

(gs') (gs 1 ) (%w/w) (-) (%w/w) (°C) (°C) 

1.00 0.16 64 14.4 60.6 144 157 
1.00 0.16 65 14.6 61.5 146 159 
1.00 0.16 66 14.8 62.3 148 161 
1.00 0.16 67 15.0 62.8 148 162 
1.00 0.16 68 15.2 63.8 	.-ff7 165 

2.00 0.12 64 19.1 60.8 146 156 
2.00 0.12 65 19.4 61.8 148 159 
2.00 0.12 66 19.7 62.8 151 162 
2.00 0.12 67 20.0 63.8 153 165 
2.00 0.12 68 20.3 64.8 156 168 
2.00 0.16 64 14.4 59.9 146 154 
2.00 0.16 65 14.6 60.8 148 156 
2.00 0.16 66 14.8 61.8 150 159 
2.00 0.16 67 15.0 62.8 153 162 
2.00 0.16 68 15.2 63.8 155 165 

3.00 0.12 64 19.1 61.8 147 156 
3.00 0.12 65 19.4 61.8 149 159 
3.00 0.12 66 19.7 62.8 152 161 
3.00 0.12 67 20.0 63.8 154 164 
3.00 0.12 68 20.3 64.8 157 168 
3.00 0.16 64 14.4 59.9 146 153 
3.00 0.16 65 14.6 60.8 149 156 
3.00 0.16 66 14.8 61.8 151 159 
3.00 0.16 67 15.0 62.8 153 161 
3.00 0.16 68 15.2 63.8 156 164 

4.00 0.12 64 19.1 61.8 147 156 
4.00 0.12 65 19.4 61.8 149 158 
4.00 0.12 66 19.7 62.8 152 161 
4.00 0.12 67 20.0 63.8 154 164 
4.00 0.12 68 20.3 64.8 157 167 
4.00 0.16 64 14.4 59.9 146 153 
4.00 0.16 65 14.6 60.8 148 156 
4.00 0.16 66 14.8 61.8 150 158 
4.00 0.16 67 15.0 62.8 153 161 
4.00 0.16 68 15.2 63.8 156 164 

Table 5.6: Results for the simulation model with countercurrent heat removal to 
externally flowing gas stream (1- 4 gs1). 
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TflRS t0  WLiBr top  Fr WLtBrb Ot  TGb O  TrbO  
(gs 1 ) (gs 1 ) (%w/w) (-) (%w/w) (°C) (°C) 

5.00 0.12 64 19.1 61.8 146 155 
5.00 0.12 65 19.4 61.8 149 158 
5.00 0.12 66 19.7 62.8 151 161 
5.00 0.12 67 20.0 63.8 154 164 
5.00 0.12 68 20.3 64.8 157 167 
5.00 0.16 64 14.4 59.9 146 153 
5.00 0.16 65 14.6 60.8 148 155 
5.00 0.16 66 14.8 61.8 150 158 
5.00 0.16 67 15.0 62.8 152 161 
5.00 0.16 68 15.2 63.8 155 164 

6.00 0.12 64 19.1 61.8 146 155 
6.00 0.12 65 19.4 61.8 148 158 
6.00 0.12 66 19.7 62.8 151 161 
6.00 0.12 67 20.0 63.8 153 164 
6.00 0.12 68 20.3 64.8 156 167 
6.00 0.16 64 14.4 59.9 145 153 
6.00 0.16 65 14.6 60.8 147 155 
6.00 0.16 66 14.8 61.8 149 158 
6.00 0.16 67 15.0 62.8 152 161 
6.00 0.16 68 15.2 63.8 154 164 

Table 5.7: Results for the simulation model with countercurrent heat removal to 
externally flowing gas stream (5- 6 gs1). 
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It can be seen from Figure 5.19 that there was a significant improvement in the 

exit gas temperature as the gas flowrate was increased from 1 to 2 gs', for a 

steam flow of 0.16 gs'. This was due to a low heat transfer coefficient obtained 

when operating at a gas flow of 1 gs', which reduced the rate of heat transfer 

to the fluid. The results for 1 gs 1  also show a slight drift at the higher 

concentrations: this was probably due to the program not converging to desired 

conditions within the normal duration of the program cycle. At a flowrate of 1 

gs 1 , the heat load of the gas stream was extremely sensitive to changes and 

took longer to converge than the flowrates. However, the results obtained were 

reasonably consistent and continued to exhibit the expected trends despite the 

poor results obtained for a gas flowrate of 1 gs'. 

Conversely, results obtained for the absorber when operating with a gas 

flowrate of 1 gs 1  and an absorption steam flowrate of 0.12 gs' were highly 

unstable. This was due to the difficulty in obtaining convergence with the 

calculation method used. For countercurrent flows, it was first of all necessary 

to predict the gas temperature at the top of the column before executing the 

program. The program then proceeded to calculate the stream temperature 

profiles, starting at the top of the column and working to the bottom. Once the 

program had reached the bottom of the column, it was necessary to test the 

final gas stream conditions to see if they agreed with the input values. In the 

case of operating with gas flows of 1 gs 1 , the rate of convergence was slow, 

thus resulting in incorrect predicted profiles. 

Gas 1[nlet Temperature. There was little variation in the exit gas 

temperature as the inlet gas stream temperature was varied, Figure 5.20, which 

was also observed in the experiments carried out with the reheat absorber 

(Chapter 4, Section 4.4.5 'Effect of Varying the Inlet Stream Temperatures'). 

This indicated that gas streams were only dependent upon the inner absorption 



Chapter 5. Computer Modelling. 	 266 

conditions for achieving high gas exit temperatures. 

It was therefore concluded that any reasonable inlet temperature could be used 

to achieve a exit gas temperature of between 140- 150 °C, depending on the 

inlet absorbent concentration. Indeed, boosting the inlet temperature from 90 

°C, a typical temperature for a dryer exhaust stream, to 120 °C (achieved 

through preheating with LP steam for example) would only result in an 

improvement of around 1 degC in the exit temperature achieved. Therefore, it 

was felt that preheating of the gas stream was not worth while. Indeed the LPS 

would be better used to provide extra heat within the absorption cycle, where a 

proportion of the heat would be upgraded to around 140- 150 °C. 

Absorption tube:- 
Steam conditions: 
Lithium bromide 

conditions: 

Flow values = 0.16 gs 1 . Inlet temperature = 100 °C. 

Flow = 2.36 gs' 
	

Inlet temperature = 100 °C. 
Inlet concentration 
range = 65- 68 %w/w. 

Outer annulus:- 
Gas conditions: Flow = 3.0 gs'. 	Inlet temperature = 40, 90, 

120 °C. 

Of greater significant was the influence of inerts, upon the exit temperature 

which was also shown on Figure 5.20 for comparison. It would be of greater 

importance to ensure that there were no inerts present in an actual absorption 

cycle, than to worry about preheating the process heat sink stream. Finally, a 

linear relationship was again shown to exist between the gas exit temperature 

and the inlet absorbent concentration. 
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Figure 5.20: Effects on the gas exit temperature for varying its inlet temperature. 
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5.6.2 Cocurreitit Heat Removal. 

Another variant of the simulation model was the cocurrent absorption of steam 

into a concentrated lithium bromide solution with external heat removal to a 

cocurrent gas stream. Similar absorbent stream temperature profiles were 

obtained for this model as for the countercurrent case, Figure 5.21. 

Once again, the interfacial temperature was seen to increase rapidly until it 

reached an equilibrium state as determined from the interfacial concentration 

and pressure. The subsequent dip in temperature occurred as the gas was 

introduced to the column and the transfer of heat to the outer shell began. As 

heat was being continuously transferred to the external gas stream, more steam 

was being absorbed into the liquid phase. Over the bottom portion of the 

column, the absorbent stream temperature levels off as rate of heat transfer to 

the gas stream decreases. The temperature of the absorbent stream then 

remained approximately constant, as the last of the steam was absorbed, 

balancing the rate of heat transfer to the heat of relase from the absorption of 

the steam. 

Absorption tube:-
Steam conditions: 

Lithium bromide 
conditions: 

Inlet temperature = 
Flow value = 

Flow = 
Inlet temperature = 
Inlet concentration = 

100 °C 
0.16 gs 

2.36 gs' 
100 °C 
66 %w/w 

Outer annulus:- 
Gas conditions: Flow = 3.0 gs'. 	Inlet temperature = 90 T. 
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Figure 5.21: Temperature profiles in absorption column, for cocurrent heat re-
moval. 
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iI[nfluence of Lithium Bromide Flowrate. 

The following section deals with the effect of increasing the lithium bromide 

stream flowrate, for constant steam flowrate and constant circulation ratio. The 

tests were carried out assuming an external gas stream with a flowrate of 3 gs 1  

and an inlet temperature of 90 °C. Similar results were obtained as with the 

countercurrent heat removal model. Figure 5.22 again shows the linear increase 

in the gas exit temperature with absorbent concentration. Again, the cases with 

the low steam and high absorbent flows show higher exit temperatures due to 

the higher exit absorbent concentrations, see Table 5.8. 

I 7flLtBr0p 
] 

wLthT 0 , Fr  wLiBrb ot  TGbO  TrbO  

I 	(gs) 	I  (%w/w)  (-) [ 

(%w/w) (°C) (°C) 

2.30 64 14.4 59.9 144 154 
2.33 65 14.6 60.8 146 157 
2.37 66 14.8 61.8 149 160 
2.40 67 15.0 62.8 152 163 
2.44 68 15.2 63.8 154 166 

4.59 64 38.3 62.4 150 161 
4.66 65 38.9 63.4 153 164 
4.73 66 39.5 64.4 156 168 
4.80 67 40.0 65.4 159 171 
4.87 68 40.6 66.4 162 174 

4.59 64 14.4 60.1 145 155 
4.66 65 14.6 61.0 147 157 
4.73 66 14.8 61.8 149 160 
4.80 67 15.0 62.8 152 163 
4.87 68 15.2 63.8 155 166 

Table 5.8: Results for the simulation model with cocurrent heat removal to ex-
ternally flowing gas stream, with varying LiBr flowrate. 

For comparison, the constant circulation ratio case showed a very slight 

improvement in exit temperature when operating with at higher lithium 

bromide flowrates. The difference was due to the higher absorbent stream heat 

capacity which meant that the absorbent stream maintained a higher 

temperature through the absorption column, as heat was transferred to the gas 
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Figure 5.22: Variation of the gas exit temperature with inlet LiBr flowrate, for a 
range of inlet LiBr concentrations. 
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stream. Therefore, the temperature difference between the absorbent and gas 

streams was higher than when operating with a smaller absorbent flow (which 

would lose its heat more quickly). As the inlet absorbent stream concentration 

was increased, corresponding to an increase in the maximum absorption 

temperature, there was a similar increase in the heat transferred to the gas 

stream, thereby decreasing the influence of the absorbent stream heat capacity 

on the exit gas temperature. 

Effect of Varying the Gas Stream Conditions. 

As with the countercurrent heat removal model, the influence of the gas flowrate 

was studied, while operating with an absorbent flowrate of approximately 1.3 

m1s 1 	2.4 gs 1 ). In all cases the inlet gas temperature was 90 °C. 

The results obtained for the cocurrent mode of operation again show the same 

trends as obtained in both the countercurrent heat removal studies-

experimental and theoretical. The cocurrent profiles for the cases with a steam 

flowrate of 0.16 gs' almost exactly follow those of the cases with 0.12 gs 1  but 

with an inlet absorbent concentration which was 1 %w/w lower. Indeed, 

inspection of Table 5.9 shows that the exit absorbent concentrations were shifted 

by 1 % for the higher steam flowrate. A direct comparison between the modes 

of operation for selected results (see following Table) was drawn on Figure 5.24, 

Absorption tube:- 
Steam conditions: 

Flowrate 
Inlet TRS = 100 °C 

Lithium bromide conditions: 
Flowrate = 

Inlet wLiBr = 
Inlet TLiBr = 100 0 C 

a) 	b) 	c) 	d) 
0.12 gs 1  0.12 gs' 	0.16 gs' 0.16 gs 1  

2.33 gs 1  2.44 gs' 2.33 gs' 2.44 gs 1  
65 %w/w 68 %w/w 65 %w/w 68 %w/w 
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Figure 5.23: Variation of the gas exit temperature with gas flowrate, for cocurrent 
heat removal, over a range of inlet LiBr concentrations. 
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conditions. 
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Figure 5.24 shows very little improvement in the exit temperature for the 

countercurrent model over the cocurrent model, when operating with a steam 

flowrate of 0.12 gs', for both concentrations (65 and 68 %w/w). However, 

when the absorber was operated with an initial steam fiowrate of 0.16 gs', 

there was a greater improvement in the exit gas temperature for the 

countercurrent model. 

In the countercurrent model, the gas came into contact with the most 

concentrated absorbent stream at the top of the column, resulting in higher gas 

exit temperatures. However, in the cocurrent mode, heat was progressively 

transferred to a gas stream which was increasing in temperature. Therefore the 

'hottest gas only came into contact with the weakest lithium bromide solution, 

the absorption temperature of which was lower than that for the countercurrent 

model. 

5.6.3 Comparison of Results for Co./ Counter. Current 

Heat Removal. 

The studies of the simulation model with co- and counter- current heat removal 

have exhibited similar results when operating under the same conditions. There 

was a slight improvement in gas exit temperature in the countercurrent model, 

simply because the hottest gas was being heated by the most concentrated, and 

thus hottest, absorbent stream. The similarities arose because of the 

approximately constant temperature profile within the absorption column. As 

shown in the simple absorption model, the steam was quickly absorbed into the 

liquid phase, resulting in a rapid increase in the absorbent temperature. 

Therefore, in both cases the gas stream was being heated by a stream which 
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Eli mG 7flRg t0 	I  WLiBr top 	I Fr 	11 WLiBrb Ot 	I TGb O  TrbO  

[1 (gs') (gs1) 	I (%w/w)  I (-) 	11 (%w/w)  I  (°C) 	I  (°C) 

2.00 0.12 65 19.4 	1 61.8 148 160 
2.00 0.12 66 19.7 62.8 151 163 
2.00 0.12 67 20.0 63.8 153 166 
2.00 0.12 68 20.3 64.8 156 169 
2.00 0.16 65 14.6 60.8 146 157 
2.00 0.16 66 14.8 61.8 148 160 
2.00 0.16 67 15.0 62.8 151 163 
2.00 0.16 68 15.2 63.8 153 166 

3.00 0.12 65 19.4 61.8 149 160 
3.00 0.12 66 19.7 62.8 151 163 
3.00 0.12 67 20.0 63.8 154 166 
3.00 0.12 68 20.3 64.8 157 169 
3.00 0.16 65 14.6 60.8 146 157 
3.00 0.16 66 14.8 61.8 149 160 
3.00 0.16 67 15.0 62.8 152 163 
3.00 0.16 68 15.2 63.8 154 166 

4.00 0.12 65 19.4 61.8 149 160 
4.00 0.12 66 19.7 62.8 151 163 
4.00 0.12 67 20.0 63.8 154 166 
4.00 0.12 68 20.3 64.8 157 169 
4.00 0.16 65 14.6 60.8 146 157 
4.00 0.16 66 14.8 61.8 149 160 
4.00 0.16 67 15.0 62.8 151 163 
4.00 0.16 68 15.2 63.8 154 166 

5.00 0.12 65 19.4 61.8 148 160 
5.00 0.12 66 19.7 62.8 151 163 
5.00 0.12 67 20.0 63.8 154 166 
5.00 0.12 68 20.3 64.8 156 169 
5.00 0.16 65 14.6 60.8 146 157 
5.00 0.16 66 14.8 61.8 148 160 
5.00 0.16 67 15.0 62.8 151 163 
5.00 0.16 68 15.2 63.8 154 166 

6.00 0.12 65 19.4 61.8 148 160 
6.00 0.12 66 19.7 62.8 150 163 
6.00 0.12 67 20.0 63.8 153 166 
6.00 0.12 68 20.3 64.8 156 169 
6.00 0.16 65 14.6 60.8 145 157 
6.00 0.16 66 14.8 61.8 148 160 
6.00 0.16 67 15.0 62.8 150 163 
6.00 0.16 68 15.2 63.8 153 166 

Table 5.9: Results for the simulation model with cocurrent heat removal to ex-
ternally flowing gas stream. 
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had a reasonably constant temperature. 

The exit gas temperature was primarily dependent on the conditions within the 

absorption column- absorbent concentration, flowrate and circulation ratio. 

On a computational note, the cocurrent heat removal model was considerably 

faster than the countercurrent model, in which it was necessary to continue the 

computation cycle until the inlet gas stream conditions were achieved. 

507 Results for the Cocurrent 

Dehumidification Model 

The other aspect of the research undertaken as part of the project was the 

dehumidification of humid gas streams. The dehumidification process was 

carried out by direct contact with a concentrated lithium bromide solution. The 

computer model developed previously for the reheating operation was easily 

adapted to model the dehumidification process. The following section 

investigates the performance of the absorber when operated under a range of 

conditions for the cocurrent flow of humid gas and concentrated absorbent 

solution streams. Attention was paid to both the exit temperature and the exit 

humidity of the gas stream. 

As an initial verification of the accuracy of the model, the computer program 

was input with actual experimental values. The conditions input were obtained 

from early absorption experiments, where the temperature profile within the 

column was recorded at regular intervals. The profiles obtained for the 
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experimental and simulation runs were in reasonable agreement, although the 

simulation liquid temperature remained consistently higher than actually 

measured. The reason for this was probably due to the to inaccuracies in 

predicting the absorbent stream properties. 

Dehumidification column;- 
Lithium bromide 

conditions: 

Gas conditions: 

Experimental 
Result:- 

Flow = 6.8 gs 1 . 

Inlet temperature = 100.0 °C. 
Inlet concentration = 64 %w/w. 
Gas Flow = 2.0 gs'. 
Inlet temperature = 110.0 °C. 
Inlet water vapour flow = 0.40 gs. 

(Humidity = 0.20 g-Ho (g- dry air) ' ) 

Outlet water vapour flow= 0.31 gs 1 . 

(Humidity = 0.15 g-Ho (g- dry air) ' ) 

Outlet water vapour flow = 0.31 gs' 
Exit gas temperature = 112 °C 

It can be seen from Figure 5.25 that the temperature of the absorbent stream 

quickly rose to a maximum as the water vapour was absorbed. Figure 5.26 

confirms that there was a sharp decrease in the humidity of the gas stream as 

the gas and liquid phases approached equilibrium. Thereafter the rate of 

absorption of the water vapour declined. The absorption process continued due 

to heat losses from the system, thereby maintaining a thermal imbalance 

between the phases. As a result more water vapour was absorbed as the 

interfacial temperature dropped. At the bottom of the column the gas, whose 

temperature had been lagging behind that of the liquid phase due to a lower 

heat transfer coefficient, was essentially in equilibrium with the liquid stream, 

indicating that further absorption was not possible. 
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Figure 5.25: Temperature profile in absorber for cocurrent dehumidification of a 
humid gas stream. 
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Figure 5.26: Mass profile of water vapour through the absorber for cocurrent 
dehumidification. 
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5.7.31. Influence of Gas Fllowrate on Dehumidification 

Performance 

Simulation trials were carried out assuming constant absorbent conditions and a 

constant inlet gas humidity of 0.18 g- H2o (g- dry air)-1  for a range of gas 

flowrates. Figure 5.27 shows that there was no significant difference between the 

exit stream temperatures at different gas flowrates, as the absorbent 

concentration increased. Inspection of Table 5.10 shows that for all the gas 

flowrates tested the exit absorbent concentrations remained constant, resulting 

in consistent exit gas temperatures because the equilibrium temperature for a 

particular inlet concentration was the same for each flowrate. 

Further inspection of Table 5.10 also shows that the amount of water vapour 

absorbed was the same for all the gas flowrates, despite the increase in the 

initial water vapour flow necessary to maintain a constant inlet stream 

humidity. As a result the exit humidities were progressively higher as the gas 

flowrate increased, see Figure 5.28, because the amount of water vapour 

absorbed was a decreasing proportion of the initial water content of the gas 

stream. It was therefore concluded that the dehumidification capabilities of the 

absorber were dependent upon the absorbent conditions. A high inlet 

concentration ensured that the amount of water vapour absorbed increased. 

Therefore, the overall vapour absorption would be improved by maintaining a 

high absorption concentration which would be possible by operating the column 

with a higher absorbent flowrate (see Section 5.7.3). 

The results for the dehumidification of a range of gas flowrates, with constant 

inlet humidity, were not very good. The change in gas stream humidity was 

only around 0.01- 0.04 g-Ho (g-dry 	The reason for this can be seen from 

Figure 5.27 which shows an increase in the exit gas temperature in comparison 
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mG mH2 O 0  WLiBr top  mH2Ob O  WLiBrb Ot  TGbO  TIb O, 

(gs 1 ) (gs') (%w/w) (gs') (%w/w) (°C) (°C) 

2.00 0.36 60 0.32 59.2 107 107 
2.00 0.36 61 0.32 60.1 109 109 
2.00 0.36 62 0.31 61.1 111 111 
2.00 0.36 63 0.31 62.0 113 113 
2.00 0.36 64 0.30 62.9 115 115 
2.00 0.36 65 0.30 63.8 117 117 
2.00 0.36 66 0.30 64.7 119 119 
2.00 0.36 67 0.29 65.6 121 121 

3.00 0.54 60 0.50 59.2 108 108 
3.00 0.54 61 0.49 60.1 109 110 
3.00 0.54 62 0.49 61.0 111 112 
3.00 0.54 63 0.48 61.9 113 114 
3.00 0.54 64 0.48 62.8 115 116 
3.00 0.54 65 0.47 63.7 117 118 - 

3.00 0.54 66 0.47 j 64.6 119 120 
3.00 r0.54 67 0.46 65.4 121 122 

4.00 0.72 60 0.68 59.1 108 108 
4.00 0.72 61 0.67 60.0 109 110 
4.00 0.72 62 0.67 60.9 111 112 
4.00 0.72 63 0.66 61.8 113 114 
4.00 0.72 64 0.65 62.7 115 116 
4.00 0.72 65 0.65 63.6 117 118 
4.00 0.72 66 0.64 64.4 119 121 
4.00 0.72 67 0.64 65.3 121 123 
5.00 0.90 60 0.85 59.1 107 108 
5.00 0.90 61 0.85 59.9 109 110 
5.00 0.90 62 0.84 60.8 111 112 
5.00 0.90 63 0.84 61.7 113 114 
5.00 0.90 64 0.83 62.6 115 116 
5.00 0.90 65 0.82 63.5 116 118 
5.00 0.90 66 0.82 64.3 118 121 
5.00 0.90 67 0.81 65.2 120 123 

282 

Table 5.10: Results for the dehumidification simulation model for varying gas 
flowrate. 
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Figure 5.27: Variation of gas exit temperature, with different gas flowrates for a 
constant inlet humidity. 

) 



Chapter 5. Computer Modelling. 	 284 

0 	 0 	 V 

0 

Gas flowrate (gs') 

o4 

o3 

X2 

x 	x 

0175 

.-1 

0.17 

to 

0.165 
01 

0.16 

0.155 

U) 

0.15 

0.145 
41 

0.14 
60 	61 	62 	63 	64 	65 	66 	67 	68 

Inlet LiBr concentration (%w/w) 
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to the inlet stream temperature. The change in the gas temperature increases 

for increasing inlet absorbent concentration. As a result, the partial pressure 

above the absorbent solution increased, effectively reducing the amount of water 

vapour which was be absorbed into the liquid phase. An improvement to the 

dehumidification system would be to remove the excess heat from the system 

and maintain the rate of absorption (see Chapter 4. Section 4.3.3 Condenser') 

Influence of Gas Humidity on Dehumidification 

Performance 

For a constant gas flowrate, the influence of the inlet gas humidity was 

determined, assuming constant absorbent conditions. As with the previous 

section, the dehumidification of the gas stream was slight and the amount of 

vapour absorbed only increased a little with increased absorbent concentration. 

Figure 5.29 again illustrates the increase in the exit stream temperature due to 

the absorption of the water vapour into lithium bromide. 

As the amount of water vapour absorbed was essentially the same, the decrease 

in the gas stream humidity was also the same for the range of conditions 

applied. Hence, the dehumidification performance of the absorber was 

effectively reduced as the inlet gas humidity was increased. 
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ft m( rnH2O 0  WLiBrt 7 H2Ob t  WLiBrb TG_  b Trb  

ft (gs') (gs') (%w/w) (gs') (%w/w) (°C) (°C) 

3.00 0.42 64 0.37 62.9 111 111 
3.00 0.42 65 0.36 63.8 112 113 
3.00 0.42 66 0.36 64.7 114 115 
3.00 0.42 67 0.35 65.6 116 117 
3.00 0.46 64 0.40 62.9 112 113 
3.00 0.46 65 0.40 63.8 114 115 
3.00 0.46 66 0.39 64.7 116 117 
3.00 0.46 67 0.39 65.6 118 119 
3.00 0.50 64 0.44 62.8 114 114 
3.00 0.50 65 0.44 63.7 116 116 
3.00 0.50 66 0.43 64.6 118 119 
3.00 0.50 67 0.43 65.5 120 121 

3.00 0.54 64 0.48 62.8 115 116 
3.00 0.54 65 0.47 63.7 117 118 
3.00 0.54 66 0.47 64.6 119 120 
3.00 0.54 67 0.46 65.4 121 	

1  
122 

3.00 0.58 64 0.52 62.7 116 117 
3.00 0.58 65 0.51 63.6 118 120 
3.00 0.58 66 0.51 64.5 120 122 
3.00 0.58 67 0.51 65.5 121 121 

Table 5.11: Results for the dehumidification simulation model, with varying hu-
midity 
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Figure 5.29: Variation of gas exit temperature and humidity for increasing gas 
inlet humidity. 
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5.7.3 Influence. of Lithium Bromide F1owrate. 

The previous sections have indicated that the absorbent stream conditions 

primarily affect the amount of absorption into the liquid phase. Increasing the 

absorbent concentration did slightly increase the amount of water absorbed. 

However, as previously explained the increased absorbent concentration also 

resulted in an increase in the stream temperature. 

Simulations were carried out using constant gas stream conditions- temperature 

of 90°C and an inlet humidity of 0.18 g-j2o (9-dry a ir ) -1 , at two different lithium 

bromide flowrates. The temperature profiles which were obtained for the two 

flowrates were approximately constant. Figure 5.31, although the exit 

temperature obtained with the higher flowrate was slighter lower due to the 

increased heat load of the lithium bromide stream. 

mG I rnLiBr to  WLiBr top  rnH2 o bO  WLiBrb Qt  TG bO, TrbO, 

[ 

(gs') (gs 1 ) (%w/w) (gs) (%w/w) (°C) (°C) 

3.00 2.93 60 0.50 59.2 108 108 
3.00 2.97 61 0.49 60.1 109 110 
3.00 3.01 62 0.49 61.0 111 112 
3.00 3.06 63 0.48 61.9 113 114 
3.00 3.10 64 0.48 62.8 11.5 116 
3.00 3.14 65 0.47 63.7 117 118 
3.00 3.18 66 0.47 64.6 119 120 
3.00 3.23 67 0.46 65.4 121 122 

3.00 5.27 60 0.49 59.4 108 108 
3.00 5.35 61 0.48 60.3 109 110 
3.00 5.43 62 0.47 61.3 111 112 
3.00 5.50 63 0.47 62.2 113 114 
3.00 5.58 64 0.46 63.1 115 116 
3.00 5.65 65 0.45 64.0 117 118 
3.00 5.73 66 0.44 64.9 119 120 
3.00 5.81 67 0.44 65.8 

1 
 121 122 

Table 5.12: Results for the dehumidification simulation model with varying LiBr 
flowrate (decreasing Fr). 
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Figure 5.31: Effect on the gas exit temperature within the dehumidification col-
umn for varying LiBr flowrate. 
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Figure 5.32: Variation of the exit gas humidity for varying LiBr flowrate. 
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The exit humidity of the gas stream did decrease with the higher flowrate. 

Indeed, the dehumidification capabilities of the absorber improved as the 

lithium bromide concentration increased. At the higher flowrate, the exit 

concentration of the liquid stream was higher therefore the exit vapour pressure 

was lower (despite the increase in the stream temperatures) and hence there 

was an improvement in the dehumidification of the absorber. However, the 

amount of water vapour absorbed into the lithium bromide stream remained 

low, indicating a low level of dehumidification. It was felt that the best way to 

proceed would be to remove the excess heat generated in the absorber and 

control the temperature of the gas and absorbent streams. 

50 Results for the Countercurrent 

Dehumidificafion Model. 

The second dehumidification program was written to investigate the 

enhancement in the absorption of water vapour from humid gas streams for the 

countercurrent flow of the gas and absorbent streams. It was felt that as the gas 

would be contacting the most concentrated lithium bromide solution prior to 

exit at the top of the absorber, that there would be an decrease in the exit gas 

humidity. 
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5.8.1 Simulation Results. 

The simulation model was run firstly with experimental conditions and the 

results obtained compared to the experimental points. It can be seen from 

Figure 5.33 that the experimental temperature profile was in reasonable 

agreement to the profile obtained for the absorbent stream, flowing down 

through the column. The liquid temperature was measured, instead of the gas 

temperature, because liquid droplets enveloped the thermowells causing the 

readings to be higher than expected (see Chapter 4 'Experimental Studies'). 

The predicted exit gas temperature, at the top of the absorption column, was in 

close agreement with the experimental result. However, the bottom gas 

temperature (as measured) was about 15 degC lower than expected. As 

discussed in Section 5.4, this model used a calculation method which started at 

the top of the column and then worked to the bottom. Therefore, it was 

necessary to predict the top gas temperature and then proceed with 

calculations, checking the bottom temperature against the initial gas conditions 

input. Several iterations were required for this procedure. However, as shown in 

Figure 5.33 the bottom gas temperature had not converged to the initial input 

temperature within the maximum cycles (10). 

Dehumidification column;- 
Lithium bromide 

conditions: 

Gas conditions: 

Experimental 
Result:- 

Flow = 5.31 gs 1 . 

Inlet temperature = 101 °C. 
Inlet concentration = 65 %w/w. 
Gas flow = 2.00 gs'. 
Inlet Water vapour flow = 0.23 gs'. 
Inlet temperature = 86 °C. 

Outlet water vapour flow = 0.20 gs' 
Exit gas temperature = 102 °C 
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Figure 5.33: Temperature profile in absorber for countercurrent dehumidification. 
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Figure 5.34: Water vapour fiowrate in absorber for countercurrent dehumidifica-
tion. 
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The profile of the water vapour flowrate through the absorber is shown in 

Figure 5.34. It can be seen that there was a steady rate of absorption of water 

vapour into the lithium bromide stream through most of the column. However, 

at the top the rate of absorption increased dramatically. The improvement in 

absorption also coincided with sharp increases in the temperatures of the gas 

and lithium bromide streams (Figure 5.33). The overall amount of water vapour 

absorbed was 0.06gs, this corresponded to a change in the gas humidity from 

0.11 9- j-,2o (g- dry 	)' to 0.08 g-,2  (g- dry air) ' . 

It was concluded that the sudden variation in the temperature of the two 

process streams was due to the thermal and mass imbalance at the top of the 

column as the concentrated absorbent solution entered the top of the absorber. 

Hence, there was a sharp increase in the water vapour absorbed, which resulted 

in a subsequent release of heat. As the simulation progressed down through the 

column, there was a more gradual increase in the gas stream as heat was being 

transferred from the liquid phase. The interfacial and bulk absorbent stream 

temperatures, which were essentially identical, remained approximately the 

same through the column after an equilibrium state had been reached. 

In addition to testing the model with experimental conditions, another test 

simulation was carried out at a gas flowrate of 3 gs (inlet humidity 0.12 g- 2 o 

(g- dry airY'). The previous studies indicated that maintaining a high absorbent 

concentration in the absorber was important for achieving a high absorption 

temperature. Similarly, for dehumidification, lower vapour pressures were 

exerted above highly concentrated absorbent solutions for a given temperature. 

Therefore, the inlet lithium bromide concentration input was 65 %w/w, which 

was felt to be the maximum absorbent concentration which could have been 

actually used in the experimental apparatus because of the risk of 

crystallisation. The liquid stream flowrate chosen was 7.8 gs', which would not 

vary much in concentration as it flowed through the column. It should be noted 
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that in a full scale absorption heat transformer, there is a price to be paid for 

operating the cycle with a large inlet absorbent fiowrate as this increases the 

total liquid circulating round the cycle and consequently raises the pumping 

costs of the system. 
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Figure 5.35: Variation in temperature profiles for countercurrent dehumidification 
at a high gas fiowrate. 

Similar temperature profiles were obtained for this test as in the previous 

simulation run, Figure 5.35. However, convergence problems were experienced 

in trying to obtain the bottom, inlet gas temperature. 
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The amount of water absorbed was 0.11 gs 1 , which resulted in an exit gas 

humidity of 0.08 g-Ho (g- dry air)-1)i which would be too high if the stream was 

to be recycled back to the drying chamber. Again, a sharp decrease in the water 

vapour flowrate was shown over the top 0.05 cm of the absorption column. 

Observations. 

The results obtained for the countercurrent dehumidification model were not 

very good. Realistic exit gas stream temperatures and water vapour flowrates 

were obtained for the simulation runs carried out. However, there were 

problems in converging the bottom gas temperature to the initial value input at 

the start of the run. Part of the reason was because of the low gas heat load, 

which resulted in large temperature variations as water was absorbed, releasing 

heat. Therefore, although the overall profiles obtained for the model were 

realistic with respect to the absorption process, the actual temperatures output 

from the model were not. The main conclusions from running this model were: 

o Rapid absorption of water vapour at the lithium bromide inlet, as the two 

streams reach equilibrium. The resultant release of heat caused the 

temperature of the streams to change rapidly. 

o Absorbent temperature rapidly increased at the top of the column, before 

progressing through the column at a near constant value, indicating that 

the stream was in near equilibrium with the gas stream. 

o The bulk absorbent and interfacial temperatures were identical over the 

length of the column. This was a result of the very large heat and mass 

transfer coefficients in the liquid phase. 
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o Gradual increase in the gas temperature, as heat was transferred from the 

hotter absorbent stream because the heat transfer coefficient between the 

interface and the gas stream was low. 

o After the initial rapid absorption, the absorption process continued at a 

much slower rate. As heat was being transferred to the cooler gas stream, 

and because of heat losses, there was a constant shift in mass equilibrium 

between the two streams, therefore the absorption process was sustained. 

The simulations carried out with the countercurrent dehumidification model 

were similar, but more difficult to model to those of the cocurrent case. It was 

again shown that the dehumidification of humid gas streams was small, 

principally because the heat of absorption was not being removed from the 

absorber. Therefore, the temperature of the gas and liquid streams increased 

until an equilibrium state was reached where very little further absorption 

occurred. The amount of vapour absorbed was slightly higher for the 

countercurrent model, this was simply because the exit gas stream was 

contacted with the inlet lithium bromide solution. 

5 	Conclusions. 

The results obtained from each of the simulation models compared favourably 

with the experimental data collected (Chapter 4 'Experimental Studies'). The 

program written for simple absorption with heat removal to an external gas 

stream was tested extensively with a range of inlet conditions to find the 

optimum operating conditions necessary to achieving a high gas exit 

temperature. 
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The dehumidification models were not examined in as much detail as the reheat 

process. The reason for this was because the results obtained for the various 

simulation runs carried out did not show a high level of dehumidification. The 

exit gas humidities were higher than those required in order to make the gas 

stream suitable for recycle to the drying process. This highlighted the 

importance of removing the heat of absorption in order to achieve a low vapour 

pressure above the absorbent solution and therefore a low water vapour partial 

pressure. 

In each of the models, the most important variable was the inlet absorbent 

concentration. A high absorbent concentration was required for the reheat 

studies in order to obtain as high an exit gas temperature as possible; in the 

dehumidification studies, lower partial pressures were obtained when the 

concentration in the absorption column was maintained at a high level. A 

summary of the effects of each of the primary variables and the main problems 

in achieving the objectives of the models are given in Tables 5.13 and 5.14. 

Parameter Operating conditions 

LiBr concentration High- to obtain maximum absorption 
temperature. Limited to 68%w/w due to 
crystallisation problems. 

LiBr flowrate High- maintain concentration through column 
(&Circulation ratio)  

Gas flowrate Best results for 3gs 1 - 

Mode of operation Cocurrent absorption of steam into LiBr, 
generating high absorption temperature. 
Countercurrent heat removal to external gas 

Problems Inerts- reduced partial pressure of steam and 
reduced the maximum absorption temperature 

Table 5.13: Optimal operating parameters for the simulation model with cocur-
rent absorption and heat removal to an external gas stream. 
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Parameter Operating conditions 

LiBr concentration High- to maintain lower partial 
pressure. Limited to 65%w/w 

LiBr flowrate High- maintain concentration through column 
Mode of operation Countercurrent flows of gas and LiBr, to 

maximise dehumidification of gas stream 

Problems Need to remove heat of absorption 

II in order to achieve a low water vapour pressure. 

Table 5.14: Optimal operating parameters for the dehumidification simulation 
model. 

Reheat Simulations. 

The objective of the absorption model with simultaneous heat removal to an 

external gas stream was to maximise exit gas temperature. In the experimental 

studies used, the influence of inerts upon the performance of the absorption 

reheat column was recognised as a potential problem. The results presented for 

the simulation models in Sections 5.6.1 and 5.5 confirmed these early 

assumptions. It was also be noted that although every care was taken to ensure 

that inerts were removed from the experimental absorber prior to the start of 

each experimental run, their influence could not be removed completely. 

Therefore, when the column was operated at a low steam flowrate the exit 

temperatures obtained were particularly poor due to the increased effect of the 

inerts lowering the effect steam partial pressure. Hence, although the 

simulations with the ideal model (with no inerts) indicated that the reheat 

absorption column could be operated with low steam flow, in order to achieve 

the highest exit gas temperatures, this was not possible or even practical. 
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Dehumidification Simulations. 

The dehumidification model was written to study the performance of a direct 

contact absorption column for the purpose of removing water vapour from 

humid gas streams. The simulation results obtained were not very good. Ideally 

exit humidities of between 0.03- 0.05 g- H20 (9- dry air)-1 were sought, for the 

purpose of making the humid gas streams suitable for recycling. However, as 

shown in these studies the temperature of the streams increased as the water 

vapour was absorbed into the absorbent stream. Therefore, a modification to 

the dehumidification model would be to include a heat removal routine into the 

program. The aim of the routine would be to remove the heat of absorption 

from the column and therefore operate the column isothermally. As a result the 

vapour pressure of the absorbent stream would be lowered thereby increasing 

the rate of absorption into the liquid and reduce the water vapour partial 

pressure. 

5.9.1 Future Developments. 

The models developed in this project have concentrated solely upon the 

absorption process, either for dehumidification or reheating. Ultimately the 

program would be extended to the whole absorption cycle, allowing detailed 

simulation studies to be carried out quickly without the need to construct a 

pilot plant. In addition, the model could readily simulate different operating 

conditions or even be adapted to for different configurations. 
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The potential development of these programs should not be restricted to the 

investigation of heat recovery and recycling of humid gas streams for spray 

drying. The heat transformer models could readily be used to study many other 

chemical engineering unit operations (e.g distillation). The power of computing 

systems is continually growing, making it progressively easier and quicker to 

model complex systems. Therefore, the development of this model is seen as 

being an important design tool for process engineers interested in incorporating 

a heat recovery system to a process. 

A further development of the model would be to extend its use to include other 

working fluid combinations, provided that physical data were available. The 

benefit is that different absorption fluids could be tested for different operating 

conditions, allowing the performance of each system to be compared with other 

fluid pairs without the need for an extensive experimental programme. 



Hndustn'aR Case Study. 

6. IL Oveitv.ew0 

An extensive study of a spray drying operation was undertaken at ICI (FCMO) 

(now Zeneca plc), at their Grangemouth works, where there are several spray 

drying units. These dryers are the final unit operation in the manufacture of a 

range of products. The investigation was split into two main parts: 

1. An experimental study and assessment of the existing gas cleaning 

equipment, with the aim of gaining a detailed insight of this part of the 

drying operation. 

304 
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2. The applicability and benefits of an absorption heat transformer as a heat 

recovery system for the drying operation. 1  

First of all, a brief overview of spray drying will be outlined, providing the 

necessary background for the remaining sections of this chapter and illustrate 

areas where improvements to the normal drying operation could be made. An 

in depth study of drying is giving in Masters' book 'Spray Drying' ([170]) and 

also in the book by Nonhebel and Moss 'Drying of solids' ([180]), on which 

some of the following points are based. 

6.2 Background to Spray IDryng0 

6.2.2 Dryer Design. 

The four main stages of a spray drying operation were laid out by Masters [170]. 

o Atomization of feed. 

o Spray to gas contact- distribution and mixing. 

o Moisture removal- rate of removal and the final moisture content. 

o Product recovery. 

'Further details of the studies undertaken at ICI (FCMO) are described in the reports-
'Absorption heat recovery from humid airstreams' ([32]) and 'Spray drying- Gas cleaning study' 
([33]). 
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As well as the above design considerations to ensure that the material is dried 

to the correct specifications, it is becoming increasingly important to operate 

the dryer efficiently. Industrial spray dryers require a vast amount of primary 

energy in order to remove moisture from an extensive range of products (see 

Chapter 1 'Introduction', Table 1.2 'Range of products dried industrially'). In 

most cases direct fired burners, Figure 6.1, are used to generate the high 

temperatures required for drying. Dryers usually involve a single pass operation 

with little or no heat recovery; therefore areas of potential savings include: 

o Heat recovery from the exhaust gas leaving the dryer. 

o Regular maintenance of the dryer to prevent leaks and the resultant loss 

of energy. (The dryers are operated under a slight positive pressure; 

therefore any leaks would result in hot gas escaping to the surroundings.) 

Finally, another important issue is the risk of environmental pollution, which is 

becoming increasingly important. There are two main pollution problems 

associated with dryer exhaust streams: 

o Fine particles in the exhaust gas stream being released into the 

atmosphere, which could contaminate the surrounding area. 

a Visible exhaust plumes due to oversaturation of the gas stream as it cools 

down upon leaving the dryer stack, causing a visible nuisance. 

Operating Conditions. 

The conditions of operation are critical to the preservation of the properties of 

the final dried product and its overall quality. These conditions include the 
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product residence time, the gas throughput, stream inlet temperature and water 

vapour partial pressure. Typical particle residence times in dryers range from a 

few seconds to a few minutes (Masters' provides an equation capable of 

determining the residence time based upon the size of the dryer [170], pp62- 64). 

In many cases the product is sensitive to the temperature of operation. If the 

temperature were too high, the product could easily be degraded and if 

flammable might even ignite. It is not uncommon to find that if a dryer were 

operated at too high a temperature, the rate of evaporation from the wet 

material would be so rapid that particles could disintegrate, resulting in a 

greater percentage of small, shattered particles in the exhaust stream. These 

particles would need to be removed from the gas stream prior to discharge to 

the atmosphere. 

As well as controlling the inlet temperature to the dryer, it is also important 

that the gas flow does not lead to 'dead- zone' areas in the drying chamber. 

'Dead zones' occur in areas where there is insufficient gas circulation, causing 

semi- dried product to be deposited on the chamber walls where it builds up. 

The consequences of dead zones' are: 

o The efficiency of the dryer would be reduced. Indeed if 'dead zones' should 

occur it can be concluded that the dryer was not designed satisfactorily. 

o Subsequent build up could lead to over- drying, degradation and possibly 

ignition of the product. 

o Product deposits which require chamber cleaning, usually using water, 

thus increasing the water consumption of the plant. The build up of 

deposits would also result in a drop in the production rate of the final 

dried material. 
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Figure 6.1: Schematic of drying operation, including gas cleaning equipment. 
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Atomization. 

The drying of the product is also affected by the method of delivery of the 

material to the drying chamber. Solid particles are commonly delivered in a 

slurry containing less than 50%w/w solids, the remainder consisting of a 

solvent, which must be removed. In most cases the solvent is water. The slurry, 

upon entry to the drying chamber, is atomized to increase the rate of mass 

transfer of the water to the hot, drying medium, which is typically air. 

The dispersion of the wet product at the top of the drying chamber is a very 

important design feature as it is necessary to ensure that there is an even 

distribution of slurry throughout the chamber. If the slurry were unevenly 

dispersed this could lead to an over concentration of the slurry in one area of 

the dryer, resulting in the slurry taking longer to dry, which could result in wet 

product being discharged from the chamber. 

Various methods are used to inject slurry into the dryer including spinning discs 

or pressure nozzles (Figure 6.2). There are usually several injectors evenly 

spaced around the top of the dryer to ensure an even distribution of feed. 

Problems can be experienced with these injectors as a result of blockages in the 

associated pipework. This is a common problem associated with transporting a 

feed stream containing solid particles. 
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Figure 6.2: Slurry injection methods- a) Spinning curved vane b) Spinning disc 
c) Pressure nozzle. 
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6.22 Gas Cleaning Equipment.  

After the product has been dried it is necessary to separate the solid particles 

from the humid gas produced. Figure 6.1 shows a product discharge point in 

the bottom of the dryer chamber, where the majority of the dried material is 

collected. However, the smaller particles are carried over in the exhaust gas 

stream and these must be separated from this stream, prior to its discharge to 

atmosphere. There are different types of gas cleaning equipment, the most 

common are listed below and also shown in Figure 6.3: 

o Cyclones. 

o Bag filters. 

o Wet scrubbers, mostly commonly used are venturi scrubbers. 

o Gravity settlers. 

o Electrostatic precipitators. 

Cyclones are capable of collecting particles down to a 'cut size' of 5.5 .im. 

The cut size represents the particle size which has a collection efficiency of 50 

%, half of the particles are collected while the remainder pass through. As the 

particle size continues to decrease, the collection efficiency drops further, as 

shown in Figure 6.4. 

Cyclones are can be operated over a wide range of operating conditions, 

between 25- 125 % of the design gas flowrate, without any adverse effects. The 

pressure drop across cyclones is usually 400- 2000 Nm2. 
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Figure 6.3: Examples of gas cleaning equipment a) Cyclone b) Bag filters c) 
Venturi scrubber d) Mop scrubber e) Gravity settler. 
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Collection efficiency [%] 

Particle size 
(equivalent diameter) [pm] 

Figure 6.4: Collection efficiency curves showing typical cutoff sizes for venturi 
scrubbers and cyclones. 

Bag filters. It can also be seen from Figure 6.4 that bag filters have a cut 

size' of 1.5 jim. Wet scrubbers and electrostatic precipitators are also capable of 

removing particles down to a size of 1-2 jim. As with cyclones, the normal 

operating pressure drop is approximately 400- 2000 Nm 2 . Bag filters have a 

very high product recovery rate. However, they are expensive due to high 

capital and maintenance costs. If the dried product has a high market value, 

and a high recovery rate is particularly important, then this may justify the use 

of bag filters to recover the product. 

During normal operation, it is important that the filter cloth does not become 

worn, as this could result in the cloth tearing. The collection efficiency of the 

equipment would be reduced dramatically. As such there would normally be at 

least two filter arrangements, each of which would contain a few filter cloths, 

which would be operated in rotation. Hence one unit would be online while the 

other was under going maintenance! cleaning. 
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An important condition of recovering waste heat from the exhaust gas is that 

the gas is clean, otherwise this could lead to fouling of the heat exchanger. 

Therefore, bag filters are extremely useful in aiding the recovery of heat from 

the exhaust gas stream, as they operate at a constant temperature. The fabrics 

which are used for filters can withstand temperatures up to 130 °C, 

corresponding to typical gas exit temperatures from drying chambers. 

Gravity settlers are only good for removing large particles above 200 jLm 

and as such are not normally used as primary gas cleaning devices. 

Electrostatic precipitators have a very good collection rate, even down to 

small particles of the order 1-2 sum, and negligible pressure drop. However, they 

are not normally used for gas cleaning because of their high capital and 

operating costs. There is also a high risk of explosion due to the high operating 

voltages needed to generate the strong electrical field necessary for recovering 

the small dust particles. 

Wet scrubbers. Finally, venturi and mop scrubbers have a very good 

collection efficiency down to very small 'cut sizes', typically 1.5 m. However, 

to achieve this it is necessary to operate the scrubber at high pressure drops, 

typically 3000- 75000 Nm 2 . The collection efficiency in a scrubber can 

improvedby increasing the pressure drop (see section 6.2.3 and [33]). 

Cyclones, bag filters and electrostatic precipitators allow recovery of the dried 

product for further processing, whereas wet scrubbers rely upon the solid 

particles being transferred from the gas phase into the liquid phase, where they 

form a dilute suspension in the liquid. As the solid concentration in the liquid is 
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low it is not economical to reprocess the liquid stream and recover the solid 

particles. Therefore, scrubbers are not used for initial gas cleaning and are 

usually used in conjunction with other cleaning devices so as to minimise the 

risk of solids escaping. 

In this particular study, a cyclone was used as the first stage of gas cleaning, 

with recovered particles being collected for further processing. The second stage 

of cleaning used a venturi scrubber to ensure that the majority of the fine 

particles were removed from the gas, which was then vented to atmosphere. 

6.2.3 Venturi Scrubbers. 

The most common method of gas cleaning involves the 'wetting- out' of the 

solid particles from the gas stream, either using a venturi scrubber or, as shown 

in Figure 6.3, a mop scrubber. 

While investigating the performance of the gas cleaning equipment at ICI, it 

was felt that the bottleneck in the process was the venturi operation. As such 

this was the area where the study was concentrated. There was considerable 

scope for increasing the dryer throughput by reducing the pressure drop to the 

scrubber. However, it was also important to ensure that the venturi continued 

to operate efficiently, removing virtually all the solid particles from the gas 

stream and minimising the risk of emissions from the dryers. 
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Venturi Operation: 

The venturi, Figure 6.6, operates by injecting water into the flow of dirty gas 

and captures the solid particles, Figure 6.5a). A list of the mechanisms 

employed in the scrubbers are itemised below: 

Primary collection method: 

Direct inertial impaction of the particles into the liquid droplet. 

Secondary collection methods: 

Brownian random motion of small particles. 

Action of turbulent eddies capturing particles in droplet wake. 

Diffusion of particle in flow stream. 

Collection of particles by condensation of water vapour in the gas stream, as 

it is cooled. 

The collection efficiency is directly proportional to the pressure drop across the 

device, which leads to an interesting optimisation problem. The particle capture 

rate could be improved at the expense of increasing the system pressure drop, 

thereby reducing the dryer throughput due to the extra load on the system 

fans. Although the collection efficiency can be improved by increasing the 

pressure drop, the benefits diminish with further increases. Alternatively, the 

scrubber could be operated at a lower pressure drop, which could lower the 
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Figure 6.5: Venturi operation a) Illustration of different methods of particle cap-
ture 	b) Effect of droplet size on particle collection. 
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collection efficiency of the scrubber and thus increase the risk of particle 

emissions. There would, however, be a corresponding increase in the available 

head allowing an increase in the gas throughput. 

Efficient gas cleaning using venturi scrubbers is dependent on many factors-

gas/ liquid contact, liquid droplet size, stream flowrates, an explanation of each 

is provided below. 

o Good liquid distribution over the cross- sectional area of the pipe. The 

collection efficiency of a venturi can drop dramatically due to liquid 

maldistribution and gas bypassing. 

o The ideal liquid droplet size is around 70tm, Figure 6.5b)- the larger the 

droplets the less efficient the collection as the particles pass through the 

gaps between the droplets and are not captured. Smaller liquid droplets 

ensure that the particles impinge upon a liquid droplet. However, if the 

droplets are too small they accelerate too fast and the particle collection 

rate drops more rapidly due to a decrease in the relative velocities of the 

two streams. 

o It is also important to have an adequate and reliable supply of water. The 

water consumption of the scrubber can be reduced by recirculating a 

proportion of the used water; however, this could affect the performance 

of the venturi. In the operation studied, the solid particles were liquid 

soluble, therefore it was important to ensure that the particle 

concentration in the water was as dilute as possible. The risk of liquid 

entrainment is reduced by passing the gas/ coloured liquid mixture 

through a separator. 
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Sections of a Venturi Scrubber: 

There are three main sections in a venturi scrubber- a sharply converging 

section, a narrow throat and lastly a gradual diverging section, Figure 6.6. 

Good gas! liquid 

LIQUID INLET 	
mixing across whole 
throat area essential 

4) 

GAS/ LIQUID 

	

GAS 
	

OUT FOR 

	

IN 
	

SEPARATION 

Relative speed of streams 
GAS: 

LIQUID:  

Figure 6.6: Cross section of a venturi scrubber showing relative speeds of gas and 
liquid. 

Acceleration of the dirty gas stream into throat of the venturi, causes a large 

increase in the stream velocity and a subsequent reduction in pressure 

(potential energy is converted to kinetic energy). The liquid stream is 

injected as a fine mist of small droplets, evenly dispersed across the cross 

sectional area of the venturi throat. 

Acceleration of liquid drops, resulting in the collection of the majority of the 

solid particles as a result of inertial impaction, due to the difference in the 

speeds of the gas and liquid streams. There is a reduction in the particle 

collection as the difference in the stream speeds decreases towards the end 

of the throat section. 
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As the pipe diameter widens the gas stream decelerates quicker than the 

liquid droplets, causing a second collection phase. Towards the end of the 

scrubber, the liquid speed also falls and particle collection drops off to 

zero. In this section, there is a increase in pressure as the kinetic energy of 

the streams is converted back to potential energy. Despite this pressure 

recovery section, there is still a significant pressure drop due to frictional 

losses. 

Immediately following the venturi, the gas/ liquid stream is separated before 

the clean gas is vented to atmosphere. 

Heat Recovery Objectives 

It is desirable and indeed economical to try to recover the waste heat associated 

with the exhaust gas from the drying operation and to utilise the energy again. 

As a result the overall energy consumption of the drying operation would be 

reduced. It was proposed to recycle the exhaust gas to the dryer inlet. However, 

to make this operation economically attractive, it was necessary to reheat the 

stream to as high a temperature as possible. In addition, the humid exhaust gas 

stream must also dehumidified, before it would be suitable for recycling to the 

drying chamber, otherwise there would be an increase in water partial pressure 

at the top of the dryer which would reduce the drying rate. 
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Ideally, the heat associated with the humid gas stream leaving the drying 

chamber could be recovered as the stream is at temperatures between 100- 130 

°C. However, it is not possible to recover this heat as the gas contains a large 

proportion of solid particles, which would foul any heat recovery device used. 

Hence, any heat recovery device must be positioned after the gas cleaning 

equipment. 

The gas leaving the venturi scrubbing unit is typically at a temperature of 

between 60- 80 °C, with a humidity of 0.16- 0.56 g-j-j2 o (g-dry air)—'  (assuming 

that the gas is saturated). As the solid particles from the gas stream get 

'wetted- out', the gas stream becomes saturated with water, which causes a 

drop in the stream temperature. This removes the possibility of heat recovery 

by conventional methods because the temperature is too low. 

Therefore any recovery system needs to be capable of reducing the gas humidity 

as much as possible, as well as reheating the gas to a suitable temperature for 

recycling. Objectives of this study were to dehumidify the gas to a humidity of 

about 0.03 g- 1120 air)—' and to heat the stream to between 150- 200 °C. 

As majority of the heat content of the stream is associated with the latent heat 

of the water vapour, this could be recovered using an absorption system. 

63 Gas Cleaning Study. 

The purpose of the gas cleaning study was investigate the operability of the gas 

cleaning equipment and to highlight potential modifications to the current 

setup which would improve dust removal from the exhaust dryer gas stream. 

Two identical dryers were studied. 
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31 Expermeta THas0 

An experimental programme was set up to monitor the operation of the spray 

dryers at ICI's Grangemouth works and in particular the performance of the gas 

cleaning equipment. The readings which were taken, over a one week period, 

covered the following areas: 

o Gas flowrate and inlet temperature in the drying chamber. 

o Product identification- this was taken to see if there was any difference in 

the dryer performance as a result of drying different products. 

o Solids throughput- initial slurry fiowrate to the dryer, the solids loading 

and the specific gravity of the slurry feed stream. 

o Solids loading on the cyclone. 

o The solids content of the water leaving the venturi. (Using the above 

results on solids content it should have been possible to get an estimate of 

the particle loading in the gas stream leaving the venturi. However, the 

result which was obtained was very small and, because it was evaluated 

from the difference of two large numbers, it was not very accurate). 

o Water fiowrate to the venturi scrubber (measured using an ultrasonic 

meter). 

o Pressure drops across the cyclone and venturi scrubber. 

Four full sets of data were obtained, two for each of the drying units on the 

chemical plant. Several more sets of data, which did not contain details of the 

gas cleaning equipment, were also obtained. All of the data were used to 

calculate heat and mass balances for the whole drying operation and as a result 
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identify potential areas for energy reductions and heat recovery. In addition, 

the exhaust gas stream temperature and humidity readings were used as the 

basis for setting the inlet conditions used in the experimental heat transformer 

rig, Chapter 4 'Experimental Studies'. 

Limitations of the Gas C1eaniirg Equipment. 

The research highlighted that the gas cleaning equipment was the problem area 

for both drying operations. This was due to the exceptionally large pressure 

drops measured across the venturi scrubbers. The reason for this arose from the 

need to increase the dryer production, which in turn resulted in an increase in 

the gas flowrate through the whole drying operation. In order to ensure that 

the exhaust gas stream was clean, the water flow to the scrubber was also 

increased, which consequently had led to an increase in the pressure drop. 

The current cleaning arrangement is now operating far beyond its design 

specifications and changes are now necessary, in order to optimise the system. 

This is particularly relevant to the venturi scrubber. The present gas cyclone 

may also be undersized for the current duty. However, it can operate above its 

design capacity without affecting its collection efficiency to a great extent. 

There may also be problems with liquid re-entrainment in the gas stream 

downstream of the scrubber, which has resulted in some emission problems. All 

of these factors were investigated before proposing areas for improvement to the 

cleaning equipment. 
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Potential Areas for II[mprovements to the Existing System. 

As the scrubbing operation was the last operation prior to the venting of the 

exhaust gas stream it was important that the gas was completely free of 

particles (the design specification is for a final solids loading of 0.0032%w/w 

with respect to the original solids flow). Therefore, a further cleaning stage was 

proposed which would operate in series with the existing gas cleaning 

equipment (full details in the report Spray drying- Gas cleaning study' ([33J). 

The purpose of the extra stage was to ensure that the gas was cleaned to the 

deign specifications and thus minimise the risk of future particle emissions. 

However, an extra cleaning stage would increase the pressure drop across the 

system and may in fact cause the gas throughput to decrease. This could occur 

if the fans were unable to cope with the extra pressure drop across the system. 

Therefore, instead of removing the process bottleneck, the problem would be 

magnified. This problem would be minimised by reducing the liquid throughput 

to the venturi scrubber, thereby reducing the pressure drop and perhaps even 

reducing the risk of liquid re-entrainment in the exhaust gas stream. However, 

it is not known how this change would affect the collection efficiency of the 

venturi scrubber and could only be assessed by implementation. 

In addition, the new cleaning device could be a mop scrubber, which would 

supply its own shaft power and thus overcome the increase in pressure drop. 

The new scrubbing operation would operate countercurrently, Figure 6.7, which 

would mean that the cleanest water was contacted with the cleanest gas. The 

cascading of the water also reduces the water consumption of the scrubbers, 

which was quite high. A full study of the proposed system would need to 

carried out to assess the implications to the drying operation. 
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Figure 6.7: Two stage countercurrent gas scrubbing using a venturi and a mop 
scrubber. 
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6.4 Hndustrn*aR Heat Transformer. 

The second part of the industrial case study concentrated upon the need to 

recover the waste heat associated with the exhaust gas stream from the dryer, 

which was being vented to atmosphere. The investigation led to a preliminary 

design of an industrial heat transformer. Two important considerations of the 

study were the location and size of the heat recovery equipment. 

The transformer would need to be retrofitted into the existing drying setup. It 

was therefore, necessary to design a system which was both compact and which 

could be incorporated into the drying cycle without too much disruption to 

operations. 

A computer model was also written to investigate the potential benefits of a 

heat transformer to the drying operation. The results of this model highlighted 

three main benefits, which could be achieved, these are listed below: 

o Lower energy consumption. 

o Greater dryer throughputs. 

o Cleaner exhaust gases 
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604i1 Design Basis. 

The first stage of heat recovery involved the dehumidification of the humid gas 

stream by direct contact with an absorbent solution. In this case an aqueous 

solution of concentrated lithium bromide was proposed as the absorption 

working fluid. 

After the gas stream has been dehumidified, it was then reheated in a novel 

design of compact heat exchanger, which used an absorbent/ steam mixture as 

the heating medium. A concentrated solution of aqueous lithium bromide was 

again used as the absorbent fluid. 

As well as designing the heat transformer to dehumidify and reheat the exhaust 

gas stream it was also necessary to ensure that absorption system would not 

affect the normal operation of the drying cycle. Further important design 

considerations were: 

o The gas stream must be clean as any particles in the stream would lead to 

contamination of the absorbent solution. Therefore, the proposed 

improvements to the gas cleaning process would need to be carried out 

before implementation of this heat recovery device. 

o Any particles which remain in the gas stream after cleaning could be 

carried back to the dryer. As the particles are dry, they would degrade 

upon contact with hot air, resulting in a carbon build up on the dryer 

chamber walls and maybe inside the reheat column. 



Chapter 6. Industrial Case Study. 	 328 

o There would also be a risk of absorbent carry over, in the gas stream, into 

the dryer. An analysis of the effects of absorbent contamination of the 

product would need to be evaluated, although every precaution would be 

taken to minimise this risk. 

Proposed Design.  

The material of construction for the heat transformer was stainless steel (type 

316) as the absorbent solution proposed, in this case aqueous lithium bromide, 

was corrosive. The design of the heat transformer was based upon the facility 

constructed and tested at Edinburgh University, see Chapter 3 'Design and 

construction'. The reheat column would need to consist of many absorption 

tubes as opposed to the single double pipe exchanger, which was used on the 

small scale heat transformer. Each of the tubes would be fed with separate 

streams of lithium bromide and low pressure steam (LPS), which is readily 

available on site. The absorbent mixture would flow down the tubes while the 

gas would flow countercurrent to this, through the annular spaces been the 

tubes. 

Due to the high risk of lithium bromide crystallisation at low temperatures, it 

may be necessary for the dehumidification column to be operated at a lower 

absorbent concentration than the reheat column because of its lower operating 

temperature. On the pilot plant, crystallisation of the solution was a problem 

which was easily remedied. The pipework was dismantled and then washed 

through with hot water, which dissolved the crystallised solution. However, on 

an industrial process such an occurrence would severely disrupt operations and 

cause severe problems for cleaning. 
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It would therefore be wise to operate the dehumidification column with an 

absorbent solution at a lower concentration than that used in the reheat 

column. Typical operations conditions for each column are listed in Table 6.1. 

Absorbent 	 Gas stream 

	

Dehumidification IN 	65 %w/w. 85 °C 	60-80 °C, 
r1Q 	 I 
U.10 0.56 g- F120 kg- dry air) 

column: OUT -62 %w/w, 80 °C 	80 °C, 0.03 g-  F120 (g-dry air)1 

	

Reheat column: IN 	67 %w/w, 100 °C and 80 °C, 0.03 g- Ff20 (g- dry air) 

LPS ©100 °C 
OUT 	%w/w. 180 °C 	170 °C, 0.03 g- f2O (g- dry air)-1  

Table 6.1: Operating conditions for the absorption heat transformer. 

In addition a separate steam supply would be required to regenerate the 
absorbent under vacuum in the generator. 

Figure 6.8 illustrates different possible configurations which could be adopted to 

ensure that the correct absorbent concentrations were achieved in each column. 

The evaporators would be designed to hold the entire absorbent inventory in a 

dilute state, where there would be no risk of the solution crystallising. Such a 

precaution was necessary to enable the process to be shut down for 

maintenance. In addition, as the drying process was campaign oriented, the 

heat transformer would not be in continuous operation and as such the 

absorbent solution would require frequent dilution to a suitable storage 

concentration, around 60%w/w. This also means that the solution would then 

need to be reconcentrated up to the working concentration of around 67%w/w. 

A further precaution to prevent absorbent crystallisation. was the steam tracing 

of all lithium bromide pipework. 

The generators would be operated under a vacuum of around 0.05- 0.1 bar and 

operate at a temperature of around 90 °C, therefore LP steam, which is readily 

available on site, could be used as the heat source. 
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Figure 6.8: Different design configurations to give the optimum use of lithium 
bromide. a) Single evaporator, separate feeds to each column b) Separate 
evaporators and feeds for each column c) Single evaporator, columns in series, 
with recycle. 
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It should be noted that an exchanger would need to installed on the absorbent 

pipework leading to the dehumidification column, in order to control the inlet 

absorbent temperature. Otherwise, the solution would be too hot, resulting in a 

high water partial pressure and consequentially a higher gas exit humidity. 

Retrofit Installation of the ]Heat Transformer. 

The need for the equipment to be compact was an important design feature of 

the transformer. This applied particularly to this study where the available 

space for installing the rig was limited, see Figure 6.9. The reheat column was 

of novel design and utilised the latest technology in order to maximise the heat 

transfer to the gas stream. The dehumidification column design was based upon 

the column used in the experimental studies, with a packed section to increase 

the area available for mass transfer. The temperature of reheated gas stream 

leaving the heat transformer was set to 170 °C, corresponding to the maximum 

estimated temperature possible with the experimental pilot plant (see Chapter 4 

'Experimental Studies'). Hence, this temperature was used as the basis for this 

particular study. The reheated gas was then suitable for recycling to the inlet of 

the drying chamber, where it replaced the existing dilution air, currently used 

in the dryer to lower the combustion gas temperature to the desired inlet level. 

It is estimated that 90 % of the exhaust gas stream would be recycled, with the 

remainder being vented to atmosphere (Section 6.5 discusses the benefits of 

recycling the gas and uses a computer model to quantify possible heat savings). 

Instead of using a direct contact dehumidification column, which could cause 

problems due to absorbent entrainment in the gas stream, a possible alternative 

method for dehumidifying the gas stream would be to cool the gas. However, 

the gas would need to be cooled to a temperature of 41 'C, in order to meet the 
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Figure 6.9: Proposed position of an absorption heat transformer (single evap-
orator, separate absorbent feed streams) in relation to the dryer and ancillary 
equipment. 
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desired outlet humidity specification of 0.03 g- Ff20 (g- dry airY1. The 

consequence of this is that the gas would require further heating before it would 

be suitable for recycling (see sample calculation for heating requirement in 

Appendix C Sarnp1e Calculations', Section C.3.1). 

A more complex double heat pump arrangement could also be developed. The 

heat given up by the gas stream when it is being dehumidified at the low 

temperature, could be used as the heat source for a compression heat pump. 

The heat would then returned to the gas stream at a higher temperature, in the 

condensation stage of the heat pump. Compression heat pumps have been 

already used for such duties, for example in air conditioning units. It would, 

however, make the whole process rather more complex and also larger in size, 

which would make it more difficult to be installed. 

Finally, another change for an industrial transformer, would be to replace the 

lithium bromide as the absorbent working fluid with sodium hydroxide (caustic 

soda). The advantage of this fluid is that it is used on chemical plants and 

therefore operators would be more used to handling it. However, there are two 

main disadvantages- poorer heat transfer properties and also the risk of 

crystallisation when operating with highly concentrated solutions. Chapter 2, 

Absorption Working Fluids', discussed the merits of aqueous lithium bromide 

as a working fluid in comparison to other fluid combinations. 



Chapter 6. Industrial Case Study. 	 334 

6.5 Computer Mode' Heat Recovery Studies. 

Computer programs were written to investigate the possible benefits that a heat 

transformer would bring to the drying operation. The areas investigated by the 

computer programs were concerned with: 

o Reducing the oil flow to the direct fired burners, while maintaining the 

desired inlet gas flowrate and temperature to the dryer. 

o Increasing the production rate by increasing the gas throughput in the 

drying chamber, assuming a constant oil flowrate and gas inlet 

temperature. 

Both models were only concerned with maintaining the initial operating 

conditions of the dryer and did not investigate possible changes to the dried 

product incurred by varying the operating parameters. The current drying 

operation achieves the desired inlet drying temperature by mixing the hot 

combustion gases from the oil burner with clean ambient air. The incorporation 

of a heat transformer into the drying cycle would remove the need for this 

ambient air. Another consequence of removing the ambient air would be the 

removal of oxygen from the drying atmosphere, resulting in an inert drying 

atmosphere comprising mainly of nitrogen and carbon dioxide. Reheated, clean 

and dehumidified exhaust gas leaving the transformer would replace the dilution 

air. A schematic diagram of the new drying process, incorporating a two stage 

heat transformer, is shown in Figure 6.10. 
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Figure 6.10: Basic simulation model to investigate the improvement in the per-
formance of the spray dryer due to the inclusion of an A.H.T into the drying 
cycle. 
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650L Mode' for Reducing Oil Consumption.  

This particular program was written for the purpose of estimating the possible 

fuel oil savings, a primary energy source, which could be achieved by recovering 

the heat in the exhaust gas stream. The inlet conditions (Table 6.2), were the 

oil flowrate to the burner and the dryer inlet temperature. Using these values, 

the inlet gas flowrate could be determined and also the recycle flow required to 

maintain this desired inlet conditions to the dryer. As the temperature of the 

recycled gas stream was set to 170 °C, less fuel oil was required to achieve the 

set dryer inlet temperature. 

Independent Oil flowrate (kg min - ') 
Inlet dryer temperature (°C) 
(Input at the start of the program.) 

Dependent Combustion gas flow (kg min') 
Total gas flow into dryer (kg min') 
Gas composition- N 2 , CO 2 , H 2 0, 02 and SO 2  (kg min- ') 

Table 6.2: Operating parameters used in the computer model for reducing the 
oil consumption in the spray dryer. 

Several assumptions were made concerning the performance of the dryer as a 

result of recycling exhaust gas: 

o The effect of recycling water vapour to the drying process was neglected: 

the drying rate was assumed to remain constant. 

o The inlet water partial pressure to the heat transformer was set to 0.199 

bar, assuming that the gas leaves the venturi scrubber saturated with 

water vapour at a temperature of 60 °C. 

o Exit water partial pressure from the heat transformer set to 0.064 bar, 

corresponding to the water vapour pressure above a solution of lithium 

bromide with a concentration of 65 %w/w and at a temperature of 80 °C. 
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It was not necessary to incorporate the slurry feed conditions or the product 

rate into the model, as these were assumed to be unaffected by the changes to 

the drying atmosphere. In addition, it was assumed that the amount of water in 

the gas stream entering the heat transformer would remain constant. This was 

a valid approximation as the heat transformer was downstream from the gas 

cleaning equipment. Therefore, the gas stream conditions, temperature and 

humidity, leaving the venturi scrubber were assumed to remain constant. Again, 

this was valid as the gas stream was saturated with water at a temperature of 

60 °C. Finally, the gas stream leaving the absorption heat transformer and 

returning to the dryer had a water partial pressure of 0.064 bar. 

Program Procedure to Determine Oil Savings: 

The program, which was written to determine the maximum possible fuel 

savings to the drying process, involved a simple iteration. The initial gas 

flowrate was maintained by balancing the recycle and combustion gas flowrates, 

while maintaining the set dryer inlet temperature. A range of typical operating 

temperatures was input at the beginning of the program and progression to the 

next temperature occurred when the inlet gas flowrate converged to the initial 

total gas flowrate. The operating procedure is described below: 
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Algorithm for estimating oil saving in a spray dryer. 

Step 1: Input data: oil flowrate, range of inlet temperatures and the 

temperature step size. 

Step 2: Calculate the combustion air flow from the oil flowrate, also the heat 

content and temperature of this stream. 

Step 3: Evaluate the dilution air flowrate to give the desired inlet temperature. 

Step 4: Recycle Y/ N? 

o IV) No recycle- Put results in file. Finish run. 

o 1) Begin iteration loop on recycle flowrate... 

Step 5: Find water in gas stream after venturi scrubber (assume saturated at 

60 °C, giving a partial pressure of 0.199 bar). 

Step 6: Find water content after heat transformer (assume the water partial 

presure in the exit gas is 0.064 bar). 

Step 7: Difference between water in/ out is the amount of water transferred to 

the absorbent stream in the heat transformer. 

Step 8: Set the gas exit temperature leaving the heat transformer to 170 °C. 

Step 9: Recycle gas flow = Total gas flowrate - Combustion gases. 

Step 10: Determine the composition of the recycle gas. 

Step 11: Determine the new oil flowrate and combustion gas flow necessary to 

maintain the set dryer inlet temperature. 

Step 12: New inlet gas flowrate to dryer = Combustion gas + Recycle gas. 

Step 13: Repeat iteration to find recycle flow which will maintain desired inlet 

flowrate. 
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6.5.2 Results Obtained for Reducing Oil F]1owrates 

Table 6.3 illustrates the change in the composition of the drying atmosphere 

which was achieved by recycling exhaust air. Of principal interest was the 

change to the water and oxygen content of the gas stream. The water content 

was increased by approximately 350 %, which could potentially affect the 

drying rate of the slurry. The gas entering the drying chamber was at a very 

high temperature, 500+ ° C, hence the mass transfer driving force at the top of 

the chamber would not be greatly affected by the increase in water content. 

Similarly, the outlet driving force, although reduced slightly would not be 

greatly altered as the exit gas humidity would only be increased from 0.15 to 

0.19 9- H2 o (g-dry air)1 (see Appendix C 'Sample Calculations', Section C.3.2). 

Hence, it was assumed that the effect of the extra water in the gas stream 

would be negligible. This conclusion could only be confirmed by carrying out 

experimental tests, studying the variation in the final product quality with 

changes in the drying conditions. 

The complete removal of oxygen from the drying atmosphere means that the 

dryer could be operated with an inert atmosphere, which is particularly useful 

when drying flammable products. However, precautions must be taken to 

remove the risk of asphyxiation to operators, when carrying out maintenance on 

the drying chamber. Although the percentage of carbon dioxide would be 

increased fourfold, it is not expected that this would affect the drying process. 

Gas composition-
partial pressures N 2  CO 2  H 2 0 SO2 02 

No recycle 0.805 0.028 0.021 0.0002 0.146 
Recycle 0.803 1  0.124 1 0.071 0.0009 - 

Table 6.3: Composition of gas stream entering the dryer. 
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It should be noted that as the gas inlet temperature increases from 500 to 550 

°C, Table 6.4, the total gas flowrate entering the dryer drops from 222 to 199 kg 

min' because a high gas inlet temperature requires less dilution air to lower 

the combustion gas temperature to the desired operating temperature. The 

combustion gas flow was estimated on the assumption that the fuel oil was 

burned using sufficient air to completely oxidise the oil, producing carbon 

dioxide only and no carbon monoxide. The calorific value of the oil was 40.3 MJ 

kg' and the initial oil flow used in determining the stream flowrates in Table 

6.4 was 3 kg min 1 . 

Inlet dryer 
temperature 
(°C) 

Recycle 
gas flow 
(kg min') 

Total gas 
flow in 
(kg min') 

% gas 
recycled 

Oil 
savings (*) 

 (kg min- ') 

Energy 
savings 
(kW)  

COP 

500 181 222 82 0.66 436 0.24 
510 176 217 82 0.63 423 0.23 
520 171 212 81 0.61 410 0.22 
530 166 208 81 0.59 397 0.22 
540 161 204 80 0.57 383 0.21 
550 157 199 79 0.55 369 0.20 

Table 6.4: Possible fuel savings which could be achieved by reheating and recy- 
cling the exhaust gas stream. 

(* Based upon an initial oil flowrate of 3 kg min') 

The oil savings, which could be achieved by installing an absorption heat 

transformer, are approximately 20 %. However, energy is required to operate 

the heat transformer. Although the overall energy consumption of the drying 

operation has increased, the energy is not from a primary source. The 

evaporator requires 689 kW of heat to remove the absorbed water from the 

absorbent solution, while 1157 kW of heat must be removed in the condenser. 

These figures correspond to a lithium bromide solution of 67 %w/w operating 

with a flowrate of 454 kg min' in the reheat column and 65 %w/w and 1252 kg 

min- ' in the dehumidification column. These values are representative of the 

conditions required for this industrial operation. 
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The heat used by the heat transformer was assumed to be constant for all dryer 

operating temperatures, for ease of calculations. As such the COP (coefficient 

of performance of the A.H.T) is approximately 0.22. In the evaporator the 

energy supplied comes from low pressure steam, which is normally readily 

available on site. Indeed any waste heat energy source available at a 

temperature of between 90- 110 °C could be used in the generator. It may even 

be the case that the waste heat stream has a negative value, representing the 

cost involved in disposing of the steam. On many sites, the steam supplied to 

the chemical plants is part of a combined heat and power operation. Therefore, 

an increase in the consumption of low pressure steam could in fact be beneficial 

with respect to generating more power in the steam turbines. Further more, the 

heat removed in the condenser could be used to preheat other process streams. 

As such the heat transformer should not be considered as a 'stand alone' piece 

of equipment but as part of an integrated heat recovery system. 

It can also been seen from Table 6.4 that the recycle gas stream constitutes 

between 79- 82% of the total gas inlet flow, the remainder being purged to 

atmosphere. This has the benefit of reducing the risk of solids escaping to 

atmosphere. 



Chapter 6. Industrial Case Study. 	 342 

6.5.3 Model for Increasing Dryer Throughput. 

A second computer program, which was similar to the 'Fuel saving' model 

(Section 6.5.1), was written to investigate the maximum possible increase in the 

production rate of the dryers which could be achieved by recovering the exhaust 

waste heat from the dryer exhaust. 

In addition to the data input for the 'Fuel saving' model (oil flow and dryer 

inlet temperature, Table 6.2) it was necessary to include details about the 

slurry being dried and also the dryer outlet temperature. These extra details 

were required in order to determine the production increases which could be 

obtained by reheating and recycling a proportion of the exhaust gas stream. A 

full list of the variables used are listed below in Table 6.5. In addition to the 

assumptions made for the previous model, it was also assumed that all pieces of 

equipment (drying chamber. gas cleaning equipment, fans. pumps etc.) would 

be able to cope with the increase in gas flowrate. 

Independent Slurry feed conditions- flowrate (1 min'), specific gravity (-), 
solids content (%w/w) and the desired final moisture 
content (%w/w) 
Outlet dryer temperature (°C) 

Dependent 	Total heat load to dryer (MJ min') 
Evaporative load (MJ min') 
Water removed from slurry (kg min') 

Table 6.5: Additional variables required in the computer model for increasing the 
dryer throughput. 
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Program Procedure for Illincreasing Dryer Throughput: 

As with the previous program, this model involved a simple iteration process, 

which determined the maximum increase in the dryer throughput for a 

particular oil flowrate and operating temperature. The computational 

procedure is described on the next page: 

Algorithm for estimating increase in dryer throughput. 

Step 1: Input data as before, except adding: dryer outlet temperature and 

slurry properties- fiowrate, specific gravity, solids content and the desired 

final moisture content of the dried product. 

Step 2: Calculate the combustion air flowrate from the oil fiowrate, also the 

heat content and temperature of this stream. 

Step 3: Evaluate the dilution air flowrate to give the desired inlet temperature. 

Step 4: Recycle YIN? 

o N) No recycle- Put results in file. Finish run. 

o Y) Begin iteration loop on recycle flowrate... 

Step 5: Find water in gas stream after venturi scrubber (assume saturated at 

60 °C, giving a partial pressure of 0.199 bar). 

Step 6: Find water content after heat transformer (assume the water partial 

presure in the exit gas is 0.064 bar). 

Step 7: Difference between water in/ out is the amount of water transferred to 

the absorbent stream in the heat transformer. 

Step 8: Set the gas exit temperature leaving the heat transformer to 170 °C. 
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Step 9: Estimate the recycle gas flowrate, so as to maintain the set dryer inlet 

temperature. 

Step 10: Determine the composition of the recycle gas. 

Step 11: New inlet gas flowrate to dryer = Combustion gas + Recycle gas. 

Step 1: Find new heat load entering dryer, determine the evaporation load of 

the gas stream (the percentage heat used for evaporation set by initial 

conditions) 

Step 13: Find new slurry flowrate, which corresponds to the increase in 

evaporated water. 

Step 14: Repeat iteration to find recycle flow which will maintain desired inlet 

temperature. 

6.5.4 Results for Increasing Dryer Throughput. 

The results obtained for this computer model were based upon typical 

operating parameters for the dryer and were input at the start of the program. 

The computational method used in this particular computer program dealt 

solely with maintaining the dryer inlet temperature and increasing the recycle 

flowrate accordingly. It can be seen from Table 6.6 that the results obtained for 

the increase in gas flowrate in the dryer are wholly unrealistic. The potential 

increase in throughput indicated by the results would require major redesigning 

of the whole drying operation. A more realistic increase in the production rate 

of the dryers would be around 10%. 
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Inlet dryer 
temperature 
(°C) 

Initial 
gas flow 
(kg min- ') 

Recycle 
gas flow 
(kg min') 

Total 
gas flow 
(kg min') 

% gas 
strm. 
recycled 

% gas 
flow 
increase 

500 222 275 327 84.1 47.3 

510 217 265 317 83.6 46.1 

520 212 255 307 83.0 44.8 

530 208 246 298 82.5 43.3 

540 204 238 290 82.0 42.2 

550 199 230 282 81.5 41.7 

Table 6.6: Flowrates into the spray dryer for different inlet temperatures. 

However, the effects of increased flowrates through the individual pieces of 

equipment would need to be studied in more detail. In particular a thorough 

investigation of the characteristic curve of the fan and also the system curve for 

the whole operation would be required. Any increase in gas flowrate would 

result in a larger pressure drop across the venturi scrubber, which would need 

to be countered by a corresponding increase in the fan throughput. Possible 

changes to the fans to meet this demand could be achieved by increasing the 

fan speed, by increasing the power input or, as may be necessary, replacing the 

existing fans with more powerful ones. 

Another area which would need to be investigated to see if an increase in 

production could be achieved is the slurry feed equipment. It may be necessary 

to add an extra feed atomizer to be able to cope with the increase in 

throughput. Although the installation of an atomizer may be straight forward, 

the extra pressure nozzle (or rotating disc, depending on the method used) may 

affect the flow distribution within the chamber. If the flow patterns within the 

dryer are changed significantly this could affect final product quality. 
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As with the previous study, the new drying atmosphere would become free of 

oxygen, providing an inert drying atmosphere. In conjunction with this there is 

a corresponding increase in the percentage of water in the gas stream (see Table 

6.3). 

6.5.5 Future Work and Deve11opments 

Both of the above models used a 'black box' approach with respect to the 

individual pieces of equipment. It was assumed that any changes to the drying 

operation could be achieved without difficulty and without affecting the final 

product quality. In reality, this would not be the case and a more detailed study 

would need to be carried out which integrated all the pieces of equipment 

together and attempted to simulate the whole drying process. Figure 6.11 

highlights the main areas where changes to the existing programs would need to 

be developed. Additions to the program would include: 

o Determination of the pressure drop through the whole drying operation, 

especially the venturi scrubber and the absorption heat transformer. 

o Collection efficiency of the gas cleaning equipment, at varying gas 

throughputs. 

o Estimation of the performance characteristics of the fan. 

o Detailed study of the drying chamber with particular attention to the 

changes to the drying rate of the product. Any simulation of the drying 

process would be very approximate as it is not fully understood how an 

increase in gas fiowrate would affect the flow patterns within the chamber. 
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An increase in the water content of the inlet gas stream may also affect 

the final product quality obtained from the dryer. 
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Figure 6.11: Proposed detailed simulation model for investigating increased per-
formance of a dryer using an A.H.T, including pressure drops and fan character-
istics. 
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6.6 Genera' Energy Recovery. 

Heat recovery schemes and complete heat integrated systems are becoming an 

important feature of chemical plants. There are many funding programs 

available which encourage users to adopt new and novel ways of recovering heat. 

These schemes include ETSU ('Energy Technology Support Unit') in Britain 

and there are also various European schemes, such as the JOULE experimental 

and THERMIE demonstration programmes. 

6.6.11 HndustriaR Heat Pump Systems. 

Heat pumps, both compression and absorption systems, are seen as efficient 

ways of utilising energy resources. There are many examples of successful 

industrial applications, particularly of compression heat pumps. However, the 

widespread adoption of absorption heat recovery schemes is limited due to the 

overall lack of experience and knowledge that companies have with this 

technology. The following examples illustrate the potential uses of absorption 

heat pumps systems in industry, see also Chapter 2 'Absorption Working 

Fluids'. Each of the examples has operated satisfactorily and generated large 

energy savings quickly, which has in turn led to rapid pay back periods. 

Heat pump. Dyeing plant, Osaka, Japan. An absorption heat pump 

recovers heat from a waste water stream on a dyeing plant. The heat pump had 

a coefficient of performance of 1.41. The pay back period was estimated to be 3 

years based upon fuel savings, which would normally be used to heat the water 

stream. [151] 
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Heat pump. District heating, Trollháttan, Sweden. Another absorption 

heat pump system recovers waste heat available from another chemical process 

as the heat source in this particular example. The output from the heat pump 

is fed to the district heating system. Operating experience indicated that a 

COP of 1.3- 1.8 was possible. The cycle had been 100 % reliable and worked 

well even under part load. [93] 

Heat transformer. Ethylene amine plant, Delfzijl, Netherlands. A 

heat transformer, using aqueous lithium bromide as the absorbent solution, 

with a maximum capacity of 6.7 MW, was commissioned in Delfzijl in October 

1985. The unit was capable of producing 11 tonnes hour -1  of steam at 145 °C 

and 4.6 bar. The primary energy consumption, required for the pumps, was 

only 53 kW. [149] 

Heat transformer. Evaporation plant, Lund, Sweden. Another heat 

transformer using aqueous sodium hydroxide as the working fluid was recently 

commissioned in a pulp and paper mill in Lund, Sweden. The system, which 

was incorporated into an evaporation plant, aims to reduce the steam 

consumption of the plant. It was estimated that the pay back period for the 

heat transformer would about four and a half years. [58] 
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Potentia' Uses for Heat Pumps in Drying 

Processes. 

In addition to the examples highlighted above, the potential use of heat pumps 

systems is widespread. However, as can be seen from these examples, each 

particular application is unique. Therefore, the heat recovery system must be 

tailor made for each case study. 

The heat transformer developed in this study, section 6.4, was designed using 

standard chemical engineering equipment- a packed column for 

dehumidification; an evaporator using steam as the heat source; a condenser to 

remove heat at the low temperature side of the process; and a heat exchanger 

for reheating the exhaust gas stream. The exchanger design was of novel 

construction because of its highly extended surface area. This was required to 

enhance the transfer of heat to the gas phase. Therefore, the use of this type of 

heat recovery device can readily be reproduced without too much specialist 

knowledge. 

As energy concerns become an increasingly important issue, it is worth 

extending the potential use of absorption heat transformers from spray drying 

to other drying methods. There are many different kinds of drying operations, 

some of which utilise hot air as the drying medium- for example fluidised bed, 

tray, band, rotary drum and pneumatic dryers. Other methods such as agitated 

vessel and drum dryers dry the wet product by indirect contact with a heating 

medium. Obviously, direct comparisons can be drawn between spray drying and 

the other 'hot air' dryers, where an absorption heat transformer could easily be 

retrofitted into the drying operation. 
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In timber drying, dehumidifiers are particularly useful for maintaining a dry 

atmosphere during the drying cycle. Figure 6.12 shows how a conventional 

compression heat pump is used to condense the water from the airstream, before 

it then reheats and recycles into the main drying chamber. The temperatures 

involved in timber drying are quite low, only about 80 °C, so as to prevent the 

warping of the wood. There is no reason why a low temperature absorption heat 

transformer could not be designed to carry out this operation. The transformer 

would have the added benefit of not requiring a primary energy source to drive 

any part of the equipment. In fact, it would be entirely possible to use solar 

energy as the energy source, required in the evaporator of the absorption cycle. 

A potential problem resulting from the use of direct contact between the 

absorbent and humid gas streams, is the risk of absorbent contamination of the 

product. The risk of contamination would be minimised by positioning a 

demister pad after the dehumidification stage. However, the use of a direct 

contact dehumidifier could limit the use of this particular design of open cycle 

heat transformer in the food processing and pharmaceutical industries, where 

product purity is of prime concern. 

The reheating of the exhaust air using the indirect contact absorption column 

does not pose contamination problems. In some cases the absorption reheater 

could be used as the main heat source for the drying process. The maximum 

temperature achieved from the test rig used in these studies indicated that 

temperatures around of 150- 160 °C could be obtained. This temperature range 

corresponds to the drying temperature used to dry a wide variety of dried 

products. As well as providing reheating air for recycling, the heat generated in 

the heat transformer cycle could be used directly to dry wet solids in agitated 

vessels. 
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O cT Conc1usons0 

It has been shown that an absorption heat transformer can be used to recover 

and upgrade waste heat from an exhaust gas stream, using low pressure steam 

as a heat source. In addition to heat recovery, other possible benefits which can 

be achieved by including a heat transformer cycle into a spray drying operation 

include: 

o Reduction of the exhaust gas plume leaving the stack. 

a Possible increase in the production rate of the dryer. 

a Utilisation of low pressure steam, which may be readily available as a 

'waste' heat source. 

It was felt that the operating conditions used in spray drying were most 

demanding and, as such, would be the most severe and limiting operating 

temperatures that a heat transformer would be required to operate under. 

Therefore, the technique could be more easily fitted to operations which operate 

at lower temperatures. 

Although the heat transformer apparatus was designed for the purpose of 

testing the applicability of retrofitting the cycle to a drying operation, the 

system could readily be adapted for a wide range of uses throughout the 

chemical industry. 
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71 Intoducfion0 

701i1. History. 

An electronic composition meter was developed which displayed the 

composition of a refrigerant mixture, inferred from measurements of pressure 

and temperature at points in a refrigeration cycle where there was vapour-

liquid equilibrium. 

354 
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The first prototype of the meter was tested on the absorption heat transformer 

(A. H. T) pilot plant described in Chapter 3 'Design and Construction', where 

it was used to determine the composition of an aqueous lithium bromide 

solution. The meter was further developed for use with a binary refrigerant 

mixture and then later extended for use with a ternary component mixture. It 

is also possible to adapt the meter for use with 4- component mixtures whose 

equilibrium relationships are well characterised. 

7O1O2 Applicatrni. 

The primary application of this meter was felt to lie in the refrigeration and air 

conditioning industry. The majority of this equipment currently employs CFCs 

as refrigerants, but under the terms of the Montreal Protocol these must be 

phased out by 1996 (see also Chapter 1 'Introduction'). In many applications 

replacement refrigerants are likely to involve mixtures rather than pure 

substances. 

The switch to refrigerant mixtures is particularly important for the largest 

single users of CFCs: automobile air-conditioning. Constant vibration gives rise 

to leaks and 'topping- up' of the refrigerant fluid is customary every six months 

or so. If a refrigerant mixture is used instead to a single pure component in the 

air- conditioning cycle, there will be preferential leakage of the most volatile 

component (MYC) from the cycle which may lead to changes in the mixture 

properties. Therefore, the 'topping- up' operation must be able to restore the 

refrigerant mixture to its original composition. The electronic composition 

meter provides an instantaneous reading of the refrigerant composition in the 

equipment- allowing the mixture to be restored to its original composition 

quickly and accurately. 
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At present, commonly used methods for measuring the composition of a 

mixture- densitometry and chromatography- tend to take some time and involve 

expensive equipment. The ECO- (Electronic 	mposition) METER gives an 

instantaneous reading from its program. 

70L3 Develiopmeimt 

The stages of development for the device can be split into three main parts, 

each of which is discussed in turn. 

o Prototype composition meter using an EPROM chip to store data. 

- The first meter was used to determine the concentration of an 

aqueous lithium bromide solution in the A.H.T experimental rig. 

This was followed by the adaptation of the meter for use with a 

binary mixture of the new HFC refrigerants, R32 and R134a. 

o Development of the binary refrigerant meter for use with the mixture 

R32- R134a. A HP48 programmable calculator was used to determine the 

composition of the mixture directly using known VLE equations. 

o Extension of the binary meter to determine the composition of a ternary 

refrigerant mixture using a leakage path model developed by Teresa 

Matias in the Department of Chemical Engineering [171]. The calculator 

was programmed with a reduced form of the equations used in this model. 

The ternary refrigerant mixtures investigated were three different blends 

of the refrigerants- R32, R134a and R125. 
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The programming required for the generation of the LiBr- H 2 0 and also the 

R32- R134a data, used in the EPROM meters, was carried out by the author 

using known VLE equations for each mixture. In addition, the software written 

for the binary and ternary mixtures on the HP48 calculator was also 

undertaken by the author. The binary mixture software was written using 

known VLE equations, while the software for the ternary mixture was 

developed from the work of Teresa Matias. 

T 	Lithium Bromide/ Water Composition 

IPredcfion0 

The first ECU- meter was built using standard electronic components with an 

EPROM (Erasable Programmable Read Only Memory) chip to store the 

composition data in a large 2-D array. The lithium bromide concentration was 

inferred from measurements of temperature and pressure in the generator of the 

experimental apparatus, where there was vapour- liquid equilibrium. These 

readings were used to reference a particular composition from the large data 

matrix, Figure 7.1. 

The data was generated from a series of established empirical equations [24], 

describing the properties of aqueous lithium bromide, see Appendix B 'Lithium 

Bromide Physical Property Charts' for VLE equations. The equations were 

programmed into a computer and the compositions determined for a specified 

range of temperatures and pressures. The resulting data array of compositions 

was then transferred to the EPROM chip. 
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In this prototype the temperature and pressure were each converted from a 

voltage by an 8- bit A/D converter to give a hexadecimal number, ranging from 

0 to 256. For example, the pressure range used in the lithium bromide meter 

was 0.05 - 0.301 bar corresponding to the hexadecimal range of 00 - FF 

(256bits). This gave a +0.001 bar discrimination on the pressure reading. The 

temperature range adopted was 85 - 110.6 °C, giving an accuracy of +0.1 degC. 

In total, the number of compositions stored on the memory chip was 65536, with 

each composition being accessed from the two- dimensional matrix of pressures 

and temperatures. Figure 7.1 illustrates that for a pressure- temperature pair of 

(0.09 bar, 100 °C) the composition was 65 %/w, corresponding to the entry in 

the matrix at coordinates (40, 150). Each combination of temperature and 

pressure provides a unique composition reading. 

The composition was displayed as a weight percentage of the less volatile 

component in the mixture, in this case lithium bromide. The solution 

concentration was only displayed to +1 %w/w and therefore only required a 

two digit LED display. The reason only two digits were displayed was for 

simplicity, there was no reason why more accurate data could not be generated 

and stored on the EPROM chip, it would only increase the complexity of the 

display electronics 1  

'All electronic circuitry was developed and produced by Matthew Rea of the Department 
of Chemical Engineering. 
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Figure 7.1: Graphical representation of how the absorbent composition is deter-
mined using pressure and temperature readings. 



Chapter 7. Electronic Composition Meter. 	 360 

73 Binary refrigerant mixture of R32 R134a0 

7.3.1 EPROM chip.  

The second meter to be constructed again used an EPROM chip to store the 

refrigerant data. However, instead of being tested on lithium bromide, the 

components used were R32 and R134a, new 'ozone- friendly' refrigerants which 

could be a potential mixture replacement for pure R12 in refrigeration 

equipment. The data was displayed as the weight percent of R32, the more 

volatile component. 

As with the previous EPROM chip, the data was generated from well 

characterised equilibrium equations for the binary mixture, Section 7.3.2. The 

data was generated and displayed to greater accuracy than the lithium bromide 

meter, in this case ±0.1 %w/w. The temperature and pressure ranges used in 

this meter were set to 0- 35 °C and 4- 16 bar, which were representative of 

typical operating conditions for refrigeration equipment. The precision of the 

readings was therefore 0.14 °C and 0.05 bar respectively. Refrigerant 

compositions were easily reproduced within this operating range and did not 

suffer from any unexpected instrumental drift. In addition to providing a fast 

and accurate measurement of a refrigerant mixture, the readings would also be 

reliable over period of time. 
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7.3.2Determination of the Composition for R3 

R134a0 

The composition of the binary refrigerant mixture of R32- R134a was 

determined using simple vapour- liquid equilibrium equations, which were 

dependent upon the temperature and pressure of the system. In an ideal system, 

the total pressure exerted by a binary mixture can be expressed by Equation 

7.1, where the component vapour pressures are determined using Antione's 

equation, Equation 7.2. However, although it was assumed that the vapour 

phase of this mixture was ideal, the effects of liquid non- idealities had to be 

incorporated into the equations for predicting the composition of the mixture. 

PT = (xi .Pfl + (x2.P2* ); x 2  = (1 - x i ) 	 (7.1) 

In P = A - B 

	

 T + c where T in [K] 	 (7.2) 

The non- ideality of each component in the liquid phase was expressed as an 

activity coefficient, which was determined using the Wilson energies calculated 

for the mixture, Equations 7.3 and 7.4. Component 1 refers to R32, the most 

volatile component. Similar Equations exist for the computation of the activity 

coefficient of R134a, except the subscripts used in Equations 7.3 and 7.4 are 

reversed. 

In y' = —in(x i  + (Al2 .x 2 )) + x 2 .[ 
A l2 	- 

x i  + (A l2 .x 2 ) 	( A 	

A21 	
] ( 7.3) 

21 .x i ) + x2  

V2 	E11 2 	(E'2 .T) 

V1  
Al2  = - - . exp(— 12  

R.T 	
); where T in [K] 	(7.4) 

As the activity coefficient was dependent upon the component mole fractions, it 

was necessary to use an iterative method for accurately predicting the mixture 

composition. After an initial estimate of the mixture composition was made 

using Equation 7.5, which assumed that the system was ideal (i.e. 'y = 1), the 
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component activities could be determined using Equation 7.3. By substituting 

the results obtained for the component activities into Equation 7.5, a better 

estimate of the mixture composition was obtained. The process was repeated 

until the mixture composition was accurate to 0.05 mole fraction. Finally, the 

result was converted to a weight fraction of the most volatile component, in this 

case R32. 
PT - .72.]:); 

= 	 (7.5) 
- 

7.3.3 HP48 programmable calculator. 

Later developments with the binary composition prediction involved the real 

time computation of the refrigerant composition from the temperature and 

pressure readings using the above equations. This was in preference to using the 

EPROM chip, which was essentially just a large lookup' table. 

A programmable calculator, in this case a Hewlett Packard 'HP48', was used to 

store the necessary vapour pressure equations used to compute the refrigerant 

composition (Section 7.3.2). There were two modes of operation for the 

calculator, which were both simple to use. 

Manual- Readings of temperature and pressure were input by the user. The 

result was then displayed as a weight percentage of R32. Also displayed 

were the input readings of temperature and pressure. 

Automatic- The HP48 has an infrared sensor, which was linked to a 

processor board containing the necessary electrical components to convert 

temperature and pressure measurements to digital readings. The sampling 

end of the probe, containing a type- K thermocouple and a pressure 
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transducer, simply attached to any suitable sample point on the 

refrigeration equipment, using a standard stainless steel ' /4 " Swagelok 

fitting. This provided a direct reading of the refrigerant mixture 

conditions in the refrigeration cycle. Final results were in the same format 

as the manual operation- composition, temperature and pressure again 

being displayed. 

7.3.4 Further modifications. 

After the successful testing of the meter using the HP48 calculator, the 

electronic circuit board was further developed by Tim Campbell of Neat 

Systems Ltd. The new circuit, which could easily be reproduced for mass 

production, fitted into the upper section of specially developed sampling device, 

Figure 7.2. The calculator was easily inserted and removed from the sampling 

section of the meter, making it entirely portable, which would be particularly 

useful if there were several sampling points on a refrigeration system. 

74 Ternary refrigerant mixture of R32 

R134a= R1250 

The principle of vapour-liquid equilibrium measurements may be extended in a 

number of ways to determine the composition of a mixture of three or more 

refrigerants, or even take into account the presence of lube oil within the 

refrigerant mixture. Two methods of determining the composition of a ternary 
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Figure 7.2: Diagram of HP48 calculator and measuring equipment. 
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refrigerant mixture are summarised below. They are the leakage path method 

and the multiple measurement method, although all of the work to date has 

been concerned solely with the former for a ternary mixture of R32. R134a, and 

R125. 

7.4.1 Leakage path method. 

This particular method examined the change of composition of a mixture as the 

more volatile components leaked preferentially from the high- pressure side of 

the refrigeration equipment. It has been shown that the path taken by the 

mixture was insensitive to temperature; and that the locus of compositions 

crossed mixture isobars at a steep angle, providing a unique determination of 

the composition of a 'leaked' mixture of known initial composition, thus 

removing the problem of composition determination for mixtures containing an 

azeotrope. 

Figure 7.3 2  illustrates the unique leakage path for each of three favoured 

mixtures of R32/R125/R134a [Blends (a). (b) and (c) ]. The procedure for 

finding the mixture composition first of all used the readings of temperature 

and pressure to find the mass fraction of R134a in the mixture, Figure 7.4. 

Next the mass fraction of R32 was determined using the known leakage paths of 

the different blends, Figure 7.3. The fraction of R125 was then inferred by 

difference. 

2 Data reproduced from a report by Teresa R. Senos Matias 'Differential Leakage in a Closed 
System' [171] 
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Figure 7.3: Leakage paths for R32/R125/R134a, showing temperature sensitivity. 
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Figure 7.4: Variation of the total system pressure as a result of refrigerant leakage, 
from a known initial mixture of R32/R125/R134a. 
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The model developed by Teresa Matias accurately predicted the composition of 

the different refrigerant blends over a full range of possible values (i.e. starting 

from the initial blend composition and finishing when only the LVC remained in 

the system). However, the portable composition meter was increasingly 

inaccurate in predicting the mixture composition as the MVC leaked from the 

system because of the assumptions made in simplifying the model. The 

modifications to the model were necessary in order to reduce the size of the 

composition prediction program and also to speed up it up. This was not felt to 

be a major problem as the meter would only be used to restore the composition 

to its original composition, which it could do quite accurately. Accurate 

monitoring of mixtures which were widely different from the original blend (i.e 

containing very little of the MVC) was felt to be unnecessary. Such depleted 

mixtures would be of less use in refrigeration equipment as the performance of 

the cycle operating under these conditions would be greatly reduced. 

7.4.2 MWfipe Measurement Method 

This model involves inferences from two (or more) points within the 

refrigeration circuit where vapour and liquid are in equilibrium. Therefore, the 

composition of a ternary mixture may be determined uniquely, without 

reference to leakage. This would be the preferred method for large- scale 

equipment on which several sensors would be permanently mounted, providing 

the meter with the necessary data points to determine the mixture composition. 

It would also permit accurate restoration of a desired initial composition in 

multicomponent mixtures whose leakage history was unknown. 
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75 Results and Conclusions. 

lUiBr/ H2 0 composition prediction. During the experimental studies with 

the two stage absorption heat transformer, the composition meter was 

invaluable as it allowed the absorbent concentration to be measured quickly and 

rapidly. As well as providing an estimate of the concentration of the lithium 

bromide solution in the generator, the temperature and pressure of the system 

were also given. The results were accurate over the period of study. 

Composition prediction of new refrigerant mixtures. The binary 

refrigerant meter using the EPROM meter was felt to be limited in its use, as 

the temperature and pressure ranges were preprogrammed into the chip. The 

use of the programmable calculator, although requiring the computation of the 

refrigerant composition each time readings were taken, had the benefit of being 

more versatile. Indeed, the time taken to calculate the refrigerant mixture was 

only a few seconds and so was felt to be a minor drawback of the system. 

Experimental field trials carried out using the binary and ternary meters were 

very promising. The tests were carried out by an independent group, who found 

each meter to provide accurate and reliable results for different refrigerant 

mixtures of pre-determined composition. The meter have also generated a lot of 

interest in the commercial sector, where the potential of such a meter is great. 
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7.5.11 Future deveopmeuts. 

Instrumentation. The sensing probe attached to the meter can be easily 

reproduced using readily available equipment. Although the electrical 

instrumentation was developed especially for this project, it is only an electronic 

printed circuit board which could easily be mass produced. As the same 

readings would be used for all combinations of refrigerant mixtures, the circuit 

would remain the same and could easily be used for different applications. 

Alternative mixtures. The development of this particular device has 

progressed significantly from the initial EPROM meter used to measure the 

composition of an aqueous solution of lithium bromide. The latest meter uses 

simplified VLE equations to estimate the composition of a ternary refrigerant 

mixture, using the leakage path method and provides an accurate measure of a 

ternary refrigerant mixture. 

The next stage of development would be to test the meter with new refrigerant 

mixtures, which are well characterised. The influence of lubricating oil and even 

4 component mixtures could also be investigated. Computational methods have 

been developed in the Department of Chemical Engineering to deal with this. 

Eventually, there would be different computer disks of information for each 

group of mixtures, while the probe would remain the same. Ultimately, a large 

data base of refrigerants could be held on disk. This raises the possibility of 

using the meter to identify an unknown refrigerant mixture simply from 

readings of temperature and pressure. 



OT rJUM 

The main objectives of this project have been met- an open loop absorption 

heat transformer cycle was successfully tested for the purpose of recovering 

waste heat from spray dryer exhausts. However, the initial single stage cycle 

which was first used was surpassed by a two stage absorption process which 

dehumidified and reheat humid gas streams in successive stages. The first 

absorption stage used a direct contact absorption column to dehumidify the 

humid gas stream from an inlet humidity of around 0.20 g- 2o (g- dry air)-1  to 

0.03- 0.05 g-i2o (g- i., air) '  This stage was followed by an indirect contact 

reheat absorber, which reheated the gas to approximately 150- 160 °C. 

371 
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8.1L ExpeirimentaR Studies. 

As discussed in Chapter 4"Experimental Studies' it was not possible to both 

dehumidify and reheat the humid gas stream in one stage. Therefore, the two 

operations were separated into absorption columns. Each of the absorption 

processes was extensively tested over a range of operating conditions, using 

aqueous lithium bromide as the working fluid. 

In the dehumidification column, the humid gas and concentrated lithium 

bromide solution flowed countercurrent to each other so as to maximise the 

absorption of water vapour into the liquid phase. Three different absorbers were 

tested to see which one gave the best dehumidification results. The first 

column, was a simple falling film absorber, which gave poor results because of 

poor liquid- gas contact. The column was then packed with small glass helices, 

which improved the amount of water vapour absorbed, although the results 

were still outside the limits set out at the start of the project. Finally a heat 

exchanger was used as the dehumidification column. Cooling water was used as 

the heat transfer medium to remove the heat of absorption from the top of the 

column. This had the effect of lowering the partial pressure above the absorbent 

solution and therefore increased rate of transfer to the liquid phase. In addition, 

the large surface area of the cooling coil also provided good liquid- gas contact. 

There was a significant improvement in the dehumidification of humid gas 

streams with this column. 

The best results were obtained using an inlet absorbent concentration of 64 

%w/w and a flowrate of 8.5 gs 1  was used, in conjunction with a high water 

flowrate in the cooling coil (approximately 9 gs'). This helped to maintain a 

low vapour pressure above the absorbent solution and therefore improve the 

absorption of water vapour. 
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The reheat experiments involved the heating of the dried gas stream using a 

concentrated lithium bromide and steam as the heating medium. The steam, 

which flowed cocurrent to the concentrated lithium bromide solution, was 

absorbed into the liquid very rapidly. This generated very high temperatures at 

the top of the inner absorption tube. The gas stream flowed countercurrent to 

the absorption mixture, resulting in high exit temperatures at the top of the 

column. The best results were obtained when a lithium bromide solution of 68 

%w/w and low flowrate (around 2 gs 1 ) was used, while the steam flowrate was 

0.16 gs' (Fr  '-' 12- 14). The highest exit gas temperatures were achieved at gas 

flowrates of 3 gs'. 

&1o1 Absorption Working fluids. 

The most common absorption working fluids currently being used are ammonia-

water and water- lithium bromide. In this particular project, the latter pair was 

used because higher operating temperatures were possible, without the need for 

high pressure equipment. In addition, there was no need for a rectification 

section because lithium bromide has a negligible vapour pressure. However, the 

system was limited by the maximum operating concentration possible due to 

crystallisation problems at very high concentrations. The lowest temperature 

point of the cycle was the generator, which was operated under vacuum at a 

temperature of approximately 100 °C. The maximum concentration which could 

be used in the apparatus without the risk of crystallisation was 68- 69 %w/w. 

This problem has led researchers to look for ways to improve the solubility of 

the fluid pair by adding a third component. In addition, research has also been 

carried out into the development of new working fluids. 
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The development of high temperature absorption systems has involved the 

search for suitable fluid mixtures which are stable at temperatures around 200 

°C. The separate studies by the Universities of Graz and Essen have resulted in 

several organic fluid pairs being proposed for use in absorption cycles. 

Extensive experimental studies are needed to measure the performance of the 

working pairs. One of the refrigerants suggested by both groups was TFE 

(trifluoroethanol). However, the component is toxic and so its use would not be 

recommended except perhaps for use in industrial units. The best combinations 

of refrigerant- absorbent mixtures use amines or alcohols as the refrigerant and 

aromatic or cyclic compounds, which have a high stability, as the absorbent. 

Glycerol and 1,4 butanediol were also suggested as absorbents because of their 

high stability. 

Simu'ation Studies. 

The computer models were written to investigate the absorption process in 

detail, with particular reference to the temperature and mass flow profiles 

within the absorber. The models enabled each of the different aspects of the 

heat transformer to be studied: dehumidification of humid gas streams, simple 

absorption of steam into lithium bromide and also heat removal to an external 

gas stream. The results obtained complemented the experimental studies well 

and again showed the importance of the absorbent concentration in achieving a 

high exit gas temperature. 
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0.3 ]Industra1 Heat Recovery. 

A comprehensive study of the industrial spray drying operation and associated 

gas cleaning equipment was undertaken in order to gain an insight into the heat 

recovery and gas recycling requirements of the industrial process. It was 

necessary to design an absorption heat transformer which could easily be 

retrofitted into the existing process. The main benefits of incorporating a heat 

transformer into the drying operation are reduced fuel consumption, a reduction 

in the visible plume caused by venting humid gas to atmosphere and also the 

potential for increasing the dryer throughput. 

The temperature of heat source required for the industrial heat transformer 

would need to be around 100 °C. It was therefore proposed to use LP steam, 

which could be used in both the generator and also directly as the steam supply 

for the absorption tube in reheat column. Indeed any waste heat stream 

available at a temperature around 100 °C could be utilised in the cycle. 

804 Future Work and Recommendations. 

The experimental studies showed the best operating conditions required to 

achieve the objectives of dehumidifying and reheating humid gas streams. 

However, further work needs to examine the actual temperature profiles within 

the column. In the model for the reheat column, results obtained could then be 

compared to the results predicted by the computer model. The temperature 

profiles obtained from the absorption simulation models indicated a rapid rise 

in the temperature of the streams at the top of the column, as the steam was 
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absorbed into the liquid phase. The resultant weak lithium bromide mixture 

then flowed down the column at approximately a constant temperature. The 

temperature of the external gas stream increased more gradually because of the 

lower heat transfer coefficient between the absorption tube and the gas stream 

in the outer annulus of the reheat absorber. 

The direct contact dehumidification column was operated successfully when a 

heat exchanger was used, which allowed the temperature and hence exit water 

vapour pressure at the top of the column to be controlled. However, before such 

a system could be used on an industrial basis, further work needs to be carried 

out to investigate the risk of absorbent carry over into the drying operation. In 

addition, the computer model needs refinement to include the removal of heat 

to a cooling coil, which was used to control the temperature at the top of the 

column. 

As highlighted previously, although water- lithium bromide is a popular working 

fluid pair, new working fluids should be tested to see if they can achieve better 

results for both the dehumidification and reheat processes. Such studies should 

involve computer simulations to first of all identify the best working fluid 

mixtures. Thereafter, the best fluids could be tested in a new pilot plant. 



NOMOMMIEW 	wtti
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A01 Pieparafion of the Working F1ud 

Mxture0 

The absorbent used in these studies was lithium bromide (99% purity) which 

was purchased from Aldrich Chemicals Ltd. Lithium nitrate was used as a 

corrosion inhibitor and was added to the solution in a ratio of 99:1 (LiBr: 

LiNO3). Care was taken when handling these chemicals, as they were both 

oxidants and would cause minor irritation if exposed to skin. It was necessary 

to follow the COSHH regulations concerning the use of these chemicals and 

extreme care was exercised when making up a concentrated absorbent solution. 
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Preparation Procedure. 

Step 1: Ensure that all safety procedures are followed- wear goggles, gloves 

and face mask. 

Step 2: Weigh out desired weights of lithium bromide and lithium nitrate, in a 

ratio of 99:1. 

Step 3: Measure out enough distilled water into a large beaker so that the final 

solution concentration was between 40- 50%. 

Step 4: Add some powder mixture to the distilled water. 

Step 5: Mix solution with a glass rod to ensure that all the powder is dissolved. 

Step 6: Once the solution was made, it was used to charged the apparatus, 

using a vacuum to pull mixture into the lithium bromide generator! 

reservoir. 
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A.2 Startup Procedure- 

Step 1: Switch on computer and start monitoring program 

Step 2: Heat up the system by circulating hot air throughout the absorption 

columns and the associated pipework. Once the apparatus had been 

heated up and all the streams circulated, it quickly came to a steady state 

and continued to operate with only minor adjustments required. 

Step 3: Heat up the lithium bromide solution in the generator and switch on 

the vacuum. Do not allow the solution to become too concentrated 

otherwise this could lead to problems of crystallisation. Maintain at a 

concentration between 50- 55%. 

Step 4: Open bleed valve on reheat column and switch on reheat steam 

generator to remove all inert gases. 

Step 5: Circulate lithium bromide to heat up the pipework and switch on the 

lithium bromide reheaters. 

Step 6: Switch on the steam generator to full power. Once steam is generated, 

reduce the power to give desired inlet gas humidity. 

Step 7: Start to concentrate lithium bromide solution to desired working 

concentration. 

Step 8: Input flowrates of streams and start data logging files on the PC. 

Step 9: Periodically take readings of the inlet and outlet gas humidities and 

input readings. 

Step 10: Vary power input to steam boilers and lithium bromide generator, so 

as to maintain desired flows and concentration. 
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A03 Shutdown Procedure. 

Step 1: Stop the computer program by pressing (Fl). 

Step 2: Switch off steam boilers, for both columns. 

Step 3: Switch off power to lithium bromide generator and reduce vacuum on 

system to about 0.1- 0.2bar, which will still allow liquid to be flashed from 

the high pressure side. 

Step 4: Continue to circulate lithium bromide. Place a beaker of hot water at 

the charging point and close the valve beneath generator, while also 

opening the charging valve. As a result the lithium bromide flow is 

stopped and water is now circulating round the system. This was to flush 

out the lithium bromide pipework and prevent the risk of crystallisation, 

in both the pipework and also the generator when it cools down. 

Step 5: Switch off the metering pump and also the lithium bromide reheaters. 

Step 6: Switch off the vacuum pumps. 

Step 7: Switch of the air heaters and finally the air flow. 



The physical property data used for both the experimental and computer 

simulation studies were mostly taken from the papers of McNeely  [172] and 

Brunk [24], as well as the work of Liu [165]. Graphs of the main physical 

properties are provide below. 

B01 Vapour Pressure Equfflbrium0 

The solution vapour pressure, Equation B.3, was dependent upon the 

temperature of the lithium bromide and also it concentration. The coefficients 
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a and ,8 were derived from the absorbent concentration using 3rd  order 

polynomials, Equations B.1 and B.2. The constants used in the expressions 

depended on the solution concentration. (Full details in [24]). 

a = Ea2 .w 
	

(B. 1) 

/3 = Eb.wt 
	

(B.2) 

logio (14.5038.p) = ko 4 
k 1  

1.8.T' + 491.67 

k 2  
+ (1.8.T' + 491.67)2 

(B.3) 

T'= T—/3 
	

(B.4) 

p [bar]. T I T [°C]. w [%w/w]. 

Only a limited range of lithium bromide concentrations and solution 

temperatures were used to generate Figure B.1. The ranges were applicable to 

the conditions encountered during this project. 
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50 	52 54 56 58 	80 	82 64 66 68 70 
LIBr concentration (%w/w) 

Figure B.1: Vapour pressure equilibrium chart for aqueous lithium bromide so-
lution. 
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B02 Enthalpy. 

A similar equation to the vapour pressure was used to determine the liquid 

enthalpy, Equation B.5, where A, B and C were determined from the solution 

concentration. The terms A, B and C were determined from a standard 

polynomial equation 	A, wa), with the constant values provided in the 

papers by McNeely  [172] and Brunk [24]. Also shown on Figure B.2 is the 

crystallisation line. The line represents temperature at which a particular 

concentration of lithium bromide solution crystallise. 

h = 2.326. [A + B (1.8T + 32) + C (1.8T + 32 )2 1 	(B.5) 

h [kJ kg']. T [°C}. w [%w/w]. Base enthalpy (0 kJ kg') is 0 °C for a 50 

%w/w mixture of water and lithium bromide. 
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Temperature (° C) 

50 	 55 	 60 	 65 	 70 
UBr concentration (%w/-u) 

Figure B.2: Enthalpy chart for aqueous lithium bromide solution. 
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B.3 Density. 

The equation expressing the liquid density was reproduced from the PhD thesis 

of Liu [165], see Equation B.6. Again, it was expressed as a function of the 

absorbent concentration and temperature. 

p = [(11.015 - (20.98. w) + (18.8.w2 ). w 1 "2 . ( 273 + T) ° '5]. 1000 	(B.6) 

p [kg m s]. T [°C]. w [%w/w]. 

50 	 55 	 60 	 65 	 70 
LiBr concentration (%/w) 

Figure B.3: Density chart for aqueous lithium bromide solution. 
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B04 Heat Capacity. 

The lithium bromide heat capacity was determined from Equation B.7, given by 

Brunk [24]. However, it was only valid for temperatures up to 100°C. Above 

this temperature, the correlation behaves oddly. Therefore, it was necessary to 

assume a constant value for the stream heat capacity above this temperature. 

Cp = [ E 	E 0  ai .j. w. 72].  4.168 	 (B.7) 

c [kJ kg- ' K'] T [°C]. w[%w/w] 

0 

0 

°C) 
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50 

30 

10 

50 	 55 	 60 	 65 	 70 
LiBr concentration (%w/w) 

Figure B.4: Heat capacity chart for aqueous lithium bromide solution. 



1*111'1ix. 

The sample calculations summarised in this Appendix cover a wide range of 

topics. The design calculations, equipment sizing and preliminary heat and 

mass balances for the heat transformer cycle all relate to the work covered in 

Chapter 3 'Design and Construction'. The derivation of experimental and 

theoretical heat transfer coefficients relate to Chapter 4 'Experimental Studies'. 

The last section provides some background calculations for Chapter 6 

'Industrial Case Study'. 

'I.'.' 
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CA Design Cacu1Iatons0 

Within this section, basic design calculations for the sizing of the equipment for 

the single stage pilot plant are outlined (supplementary to Chapter 3, 'Design 

and Construction'). In addition, mass and heat balances for the two stage heat 

transformer cycle are presented. 

C. 1.Single Stage Pilot Plant. 

The first absorption heat transformer cycle to be constructed was initially 

designed to provide a maximum gas superficial velocity through an absorption 

column of 2ms 1 . Therefore based upon the fiowrate provided by the air blower 

it was possible to find the appropriate size for the column. The remainder of 

the cycle was designed to be of a comparable size to the absorber. 

Using the air blower, the maximum gas fiowrates possible were around 250 1 

min' 200c (5 gs'). Therefore to achieve a superficial velocity through the 

absorber of 2 ms 1 , the column diameter had to be 2" (0.054 m) (see below). 

Gas flowrate (Qg) = 250 1 min - ' (as measured on the air rotameter) 
Maximum velocity (uG) = 2 ms-1  

Column cross-
sectional area, A 

Internal diameter (d) 

= QG / u 
= (250 x 10-3) / (60 x 2) 
= 2.08 x 10 m2  

=V (4. A)/ 
= 0.05 m ( 2") 
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The heaters used for generating the water vapour necessary to humidify the dry 

gas stream had a maximum capacity of 3kW. Assuming heat losses of 300W, 

the maximum steam flowrate was around 1.2gs 1 . This corresponded to an inlet 

humidity of 0.24 g- H20 (g-  air) 1 , which was typical for spray dryer exhausts. 

Heater power =3kW 
Losses = 300W (10%) 

Maximum steam 
flowrate = 1.2 gs 1  

Gas humidity = (1.2 / 5) = 0.24 g- F!20 (g- dry air)—'  

C.1.2 Cycle Heat and Mass Balances.  

As a design basis, the inlet gas flowrate to the two stage absorption cycle was 

2gs 1 , with an initial humidity of 0.12g- J2° (g- dry air)—] *- In addition, the gas 

stream was assumed to have an inlet temperature of 100°C. By making several 

assumptions about the performance of each of the pieces of experimental 

apparatus- i.e dehumidification column, reheat column, generator and 

condenser- it was possible to determine full heat and mass balances for the open 

loop absorption cycle. The following sections outline the procedure used to 

determine the overall heat and mass balances for the cycle for each of the main 

components, as well as listing the assumptions made. 

Dehumidification Column. 

The dehumidification column was designed to reduce the humidity of a 

simulated dryer exhaust gas stream to a level suitable for recycling. The column 

operated with LiBr and gas streams flowing countercurrent to each other. The 
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assumptions used in order to determine a preliminary mass balance round the 

absorber are detailed below: 

Assumptions: 1) Inlet LiBr concentration = 67 %w/w 
Inlet LiBr temperature = 100 °C 
Concentration change = 1 %w/w 
Exit water vapour partial pressure equal to vapour 
pressure above inlet LiBr solution 

Gas flowrate 
Water vapour flowrate 
Vapour pressure above 

67 %w/w LiBr © 100°C 

Exit water vapour flowrate 

Amount of water absorbed 

= 2 gs 1  
= 0.24 gs' (H = 0.12 g- 1120 (g- dry air)-1 ) 

= 0.07 bar 
= Exit water vapour pressure 
= 0.09 gs 1  

= (0.24 - 0.09) = 0.16 gs 1  

Inlet LiBr conc = (Mass LiBr) / (Mass LiBr + Mass H20 ) 
Outlet LiBr conc = (Mass LiBr) / (Mass LiBr + Mass 1120 

+ Absorbed H 2 0) 

Rearrange in terms of 
LiBr and solve for H 2 0: 

Total water content in 
absorbent stream = 3.18 gs' 

LiBr mass flow = 6.46 gs 1  
Inlet absorbent flowrate = 9.64 gs' 

Outlet absorbent flowrate = 9.78 gs' 
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Reheat Column. 

In the reheat column, it was important to raise the gas stream temperature to 

as high a level as possible. The temperature lift in the single stage absorber was 

assumed to be 70 degC. Therefore, the heat duty in the column was around 180 

W (see below). The inlet LiBr concentration was assumed to be 67 %w/w, the 

same as the dehumidification column. The steam used in the reheat column was 

sufficient to cause a change in the LiBr concentration of 1 %w/w. Using the 

same assumptions as were used in the previous section it was possible to find 

the steam flow required in the reheat column and also the LiBr flowrate. 

Heat to gas (Q) 

Losses 
Total heat required 

Hence, 
(m. h)LB 1  + (m.A)RS 

Rearrange in terms of MRS: 

Steam flowrate 
LiBr inlet fiowrate 

LiBr outlet flowrate 

= m. cp. ATG 
= (2.09. 1. 70) = 150 W 
=20W 
= 170 W 
= Heat released in absorption tube 
= (m. h)LiBr. n  + (m.\)Rs - ( m. h))LjBr oot ' 

['where, mLiBr 0 ,, = mL1B + mRsI 
Heat in = Heat out 
= Q + (m. h))LzBr out  

= 0.1 gs' 
= 6.47 gs' 
= 6.57 gs 1  

Generator. 

The inlet flowrate to the generator was simply the sum of the exit LiBr streams 

from the dehumidification and reheat columns. While the outlet streams from 

the generator were the flows of concentrated LiBr pumped back to the top each 

absorber, in addition to the flow of evaporated water to the condenser. 

Therefore, it was only necessary to determine the heat balance around this 

piece of equipment. The operating conditions in the generator were assumed to 

be 100 °C and 0.07 bar. 
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Inlet LiBr fiowrate 
(© 66 %w/w, 110 °C 

Inlet enthalpy 

Outlet LiBr flowrate 
(© 67 %w/w, 100 °C 

Outlet enthalpy 

= (9.78 + 6.57) gs 
= 280 Jg' 

= (9.64 + 6.47) gs 1  
= 262 Jg 1  

Evaporated water = 0.24 gs 1  
Heat of vaporisation = 2529 Jg1 2  

Heat in = Heat out 
(m. h)LjBr 1  + Q = (m. h))LjBr ou, + ( m..X)H20 a bsorb g d 

Rearrange and solve for Q: 

Q = (16.11 x 262) + ( 0.24 x 2529) - (16.35 x 280) 
= 250W 

Condenser. 

The condenser was operated at the same pressure as the generator, 0.07 bar, 

while the temperature was 20 °C. Cooling water was used as the heat transfer 

medium. It was assumed that the cooling water flowed countercurrent to the 

vapour flow and that it entered the condenser at 15 °C. A temperature change 

of 15 degC was also assumed for the water stream. Therefore, the flowrate of 

the cooling medium was 9.8 gs' ( 590 cc min - '). 

Heat required to condense 
water vapour, from generator (Q) = 

= (0.24 x 2556) = 616 W 
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C.2 Derivation of Experimenta' Resuts0 

A selection of the more complex experimental calculations are provided in the 

following sections. The main equations used in each of the computational steps 

are also included. 

CO2O1 Reheat Ckimim Heat Transfer CharacteHstics 

Calculation of the overall heat transfer coefficient for the reheat column, based 

upon the external, plain tube area, including a simple error analysis is detailed 

below. 

	

QG = UO.AO.LTG LM 	 (C.1) 

	

QG = MG- cpG .zTG 	 (C.2) 

Uo= MG- CPG• /T 
(C.3) 

A 0 . LTLM 

1 	1 	1
(C.4) 

U - h 
+ 

hLiBr ri 	k rLM 
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4, Nu = hG. 
	

(C.5) 
kG 

7r 
Aan n  = 	. [d - d] 	 (C.6) 

mG. dH Re = 	 ( C.7) 
Aa nn. /-G 

TG  PG '  /.LG x 102  kc x 102  

(°C) (kg m 3 ) (gm's') (Wm- 'K -1 ) 

40 1.13 1.85 2.72 
60 1.06 1.9 2.87 
80 1.00 2.0 3.02 
100 0.95 2.1 3.18 
120 0.90 2.2 3.33 
140 0.85 2.25 3.47 
160 1 0.82 2.35 3.61 

Table C.1: Variation of the gas density, viscosity and thermal conductivity with 
temperature. 

1 
PG derived from the ideal gas law: 

Pi. V, - P2.v2 

T1 	 - 	 7'2 	
(C.8) 
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Calculation of overall outside 
heat transfer coefficient 

A0 = 0.055 m 2  
MG = 4 gs 
cpG = 1.0 Jg'k' 

LTG = 101 - 25 = 76 degC 
= 104 - 101 = 3 degC 
= 103 - 25 = 78 degC 

LTLM = 23 degC 
QG = (4 x 1.0 x 76) = 304 W [C.2] 
U0 = 304 / (0.055 x 23) 

= 240 ±350 Wm 2 K' [C.3] 

Calculation of outside gas 
heat transfer coefficient 

d0 
d1 

dLM 

x (Wall thickness) 
k (Wall thermal conductivity) 

hr (HTC for inner tube) 
hG 

Determination of the 
gas Nusselt number 

= 22.2 x 10 m 
= 20.2 x iO m 
= 21.2 x 10 m 
= 1mm = 1 x 10 m 
= 16 Wm - 'K -1  
= 3000 Wm 2 K 1  
= 1/( 1/240 - [1/3000 x (22.2/ 20.2)] 

- [(0.001/16) x (22.2/21.2)] ) 
= 270 Wm 2 K 1  [C.4] 

dH = 50 - 22.2mm = 27.8mm = 2.8 x 10_2  m 
kG = 2.8 x 102  Wm- 'K -1  

NuG = (270 x 2.8 x 102) / 2.8 x 10- 2  
= 270 [C.5] 

Determination of the 
gas Reynolds number 

dH =2.8x10 2 m 
Aann  = 7r/4. [ ( 5 x 10_2)2 - ( 2.2 x 10_2)2]  [C.6} 

= 1.58 x 10 m 2  
iLG = 2 x 10_2  gm's 
Re = (4 x 2.8 x 10-2) / ( 1.58 x 10 x 2 x 10 -2 ) 

= 3500 [C.7] 
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Error analysis for above calculation: 
Absolute error 

in temperatures 
S(zTG) 

ö( T 0 ) 

ö(Tb0t ) 
S(LTLM) 

Total error in U0: 
Relative error 

Absolute error 

= ± ldegC 
= (2/ 50). 100% = ± 4 % 
= (2/ 2). 100% = + 100 % 
= (2/ 38). 100% = + 5.3 % 

(0.74/ 2.94). 100% = + 25.3 % 

=+135.9% 
= + 370 Wm 2 K 1  

C22 Derivation of the Gas Heat Transfer Coefficient. 

This section outlines the calculation steps for the determination of the gas 

H.T.C, using two different methods. Firstly, the heat transfer coefficient based 

upon the experimental correlation developed for the reheat column used in 

these studies. The second correlation is standard equation proposed by Sieder-

Tate for turbulent flow in tubes. 

Calculation of gas heat transfer 
coefficient using Equation 4.3 

MG = 3 gs 
dH =2.8x10 2 m 
kG = 3.3 x 10 Wm-'K-1 

 

Re = (3 x 2.8 x 102) / (1.58 x iO x 2.2 x 10 2 ) 
= 2400 

Nu = 0.41. (2400) 0 . 78  

= 178 
hG = (178 x 3.3 x 102) / (2.8 x 10 2 ) 

= 209 Wm 2K' 

Calculation of gas heat transfer 
coefficient using Sieder- Tate Eqn. 

Nu 

hG 

= 0.027. (2400)0.8.  0.9 
= 12.3 
= (12.3 x 3.3 x 102) / (2.8 x 10 2 ) 
= 14.5 Wm2K1 
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C003 Prediction of the Gas Exit Temperature 

A sample calculation predicting the gas exit temperature from known inlet 

conditions, using the method detailed in Chapter 4 (based upon the 

effectiveness of the heat exchanger) is detailed below. 

Inlet Conditions: 
Inner Tube 

mLiBro = 2.82 gs' 
MRS = 0.14 gs 1  

mLiBrbO = 2.96 gs' 
WLiBr top  = 59 %w/w 

WLjB av  = 58 %w/w 
cp = 1.8 J g'K 1  

Tabsn = 147 °C (based on WLIBr aV  and 1 bar v.p) 

Outer tube (gas): 
MG =3.00 gs' 
dif = 2.8x 10_2  m 

TGbO = 92°C 
cpG = 1.0 J g 1 K' 

Derived values: 
Re = (3.00 x 2.8 x 10-2) / (1.58 x iO x 2.1 x 102) 

= 2530 
B = 1/(hr. A1 ) + x/(k. AR) 

= 1/(3000. 0.051) + 0.001 / (16.0.053) 
= 0.0077 KW' 

(U.A)' = [3695 x (2530)_'] + 0.0077 
= 0.15 KW' 

(U.A)o = 6.7 WK' 
CG = 3.00 x 1 = 3 WK' (Cmtn ) ( Equation 4.10) 

CL = 2.96 X 1.8 = 5.2 WK' (C maz ) ( Equation 4.10) 
NTU = (U.A)o / ( Cmtn) 

= 6.7 / 3 = 2.2 (Equation 4.13) 
= 0.1 (Equation 4.14) 
= [CL. (Tab.. - TL..,)] / [ 	( Tabs, - TG) I [Equation 4.121 
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Calculation of 
exit temperatures: 

TLiBr bot  = 122°C (from a rearrangement of Equation 4.12) 
Q =130W 

No heat losses: 

Tc0 	= [(CL.( Tabs. - TLtBr bot  ) / C] + TGbot  
43 + 92 
= 135 °C 

Heat losses: (Q0838 .-' 29 W (assuming Tam b = 20 °C) 
TG 0  = 126 °C 

Experimental result: 
TG 0  = 131 °C 

C3 HndustiriaR Tiransformer0 

The following calculations refer to the industrial case study, which investigated 

the viability of using an open cycle heat transformer cycle as a heat recovery 

device for the recovery of waste heat from an industrial spray dryer. 

C0301 Dehumidificate by Cooling- Extra Heat Duty. 

In the industrial case study it was proposed to removed the majority of the 

water vapour present in the dryer exhaust stream by cooling the stream. The 

heat of condensation would then be used as the heat source of a compression 

heat pump, which had a COP of 2. The temperature lift in the heat pump cycle 

was set at 35 degC. 

The following calculation illustrates the heat released by a humid gas stream 

with an inlet humidity of 0.16 g- Ho g- dry air '  (Gas flowrate = 157 kg min') 

and at a temperature of 60 °C, the temperature of the gas leaving the gas 
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cleaning equipment. The gas would be cooled to 41 °C, where the saturation 

humidity was only 0.03 g- F120 g- dry air-
1 

 

Inlet water content = 24.34 kg min 
Outlet water content = 4.71 kg min 

Amount condensed = (24.34 - 4.71) = 19.63 kg min 

Heat to be removed per kg = (Latent heat of condensation) + 
(Removal of sensible heat) 

= 2257 + 2(20) = 2297 kJ kg 

Total heat to be removed = (2297 x 19.63) = 45090 kJ min- ' 
= 752 kW 

Use a compression heat pump to return energy to dried 
gas stream: 

COP =2 
Heat output (2 x 752) = 1504 kW 

35 degC 
Outlet TG = 40 + 35 = 75 °C 

Heat required = [( 157 / 60). 1.1. 35] 
= 100 kW 

It can be seen from the calculation that there was a considerable amount of low 

grade heat released by the condensation of the water stream. As only a small 

proportion of the heat was returned to the gas stream, to heat it up to 75 T. 

The remained could be used elsewhere on site. 

C3 	Jtinicrease in Water Content in Drying Chamber.  

It would be impossible to remove all of the water vapour from the humid dryer 

exhaust gas stream, prior to recycling it back to the drying chamber. Therefore, 

the effects of the increased water content of the gas stream are discussed below. 
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At the top of the dryer, the mass transfer driving force evaporating the water 

from the slurry would not be affected by the increased water in the hot gas. 

However, at the outlet from the dryer, where the temperature was only around 

100°C, the effects of the increased water are more pronounced. 

Present setup: 
Total inlet gas flowrate 

Inlet water content 
Inlet humidity 

Water evaporated from 
slurry stream 

Outlet water content 
Total outlet gas flowrate 

Exit humidity 
Exit partial pressure 

Saturation vapour 
pressure (© 100 °C) 

Proposed setup (with AHT): 
Inlet water content 

Inlet humidity 

Outlet water content 
Total outlet gas fiowrate 

Exit humidity 
Exit partial pressure 

= 199 kg min 
= 2.66 kg min' 
= 0.01 g- H20 g- dry air-1  

= 27.0 kg min' 
= 29.66 kg min' 
= 226 kg min 
= 0.15 g- H20 g- dry air '  

= 0.20 bar 

= 1 bar 

= 9.49 kg min -1  
= 0.05 g- H20 g- dry air 

= 36.49 kg min 
= 226 kg min 
= 0.19 g- H20 g- dry air '  

= 0.24 bar 

It can be seen from the above calculation that the exit partial pressure 

increased only slightly from 0.20 bar to 0.24 bar because of the increased initial 

water in the gas stream. Hence, the recycling of the dehumidified and reheated 

exhaust gas was not thought to significantly decrease the performance of the 

dryer. As the exit gas stream temperature was 100 °C, the saturation water 

vapour pressure at the bottom of the drying chamber was 1 bar. Consequently, 

the pressure driving force at dryer outlet would only be reduced from 0.8 bar to 

0.76 bar (5 % reduction). 
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nG 

(gs 1 ) 

F' 
(g- H2  

PH20 

(bar) 
PH2 00t 

(bar) 

(g-_ dry  _air) - ')  

TGj,, 
(°C) 

TG0u , 

(°C) 
TflLjBr  

(gs') 
WLiBr 

(%) 

TLjBri n  

(°C) 

0.20 3.45 0.85 0.74 100 144 6.8 66 100 
0.20 3.45 0.85 0.82 100 147 3.4 67 100 
0.20 3.45 0.85 0.79 100 147.5 5.1 67 101 
0.40 1.25 0.67 0.61 101 130 3.4 65 100 
0.40 1.90 0.75 0.71 100.5 138 3.4 65 101 
0.50 0.60 0.49 0.44 103 122 2.6 62 103 
0.50 1.00 0.62 0.58 103 122 3.4 56 102 
0.50 1.00 0.62 0.59 100 119 3.4 56 100 
0.50 1.00 0.62 0.55 100 128 5.1 58 103 
0.50 1.00 0.62 0.56 100 130 3.4 63 100.5 
0.50 1.00 0.62 0.58 104.5 136 3.4 63 138 
0.50 1.20 0.66 0.56 100 131 5.1 65 100 
0.50 1.20 0.66 0.52 100 137.5 6.8 65 100 
0.50 1.20 0.66 0.60 100 137.5 3.4 65.5 100 
0.50 1.40 0.69 0.67 107 127 3.4 56 113.5 
0.50 1.40 0.69 0.66 100 126 3.4 57 102 
0.50 1.40 0.69 0.62 100 139 5.1 66 100 
0.50 1.40 0.69 0.59 100 140 6.8 66 100.5 
0.50 1.54 0.71 0.68 102 128 3.4 58 101 
0.58 0.35 0.36 0.06 99 116 3.4 65 105 
0.60 0.50 0.44 0.43 102 94 3.4 58 100 
0.60 0.92 0.59 0.54 101 128 3.4 66 101 
0.60 0.93 0.60 0.53 103 146 3.4 70 100 
0.60 0.93 0.60 0.55 99.5 133 3.4 65 100 
0.80 0.63 0.50 0.47 102 122.5 3.4 58 101 
0.98 0.18 0.23 0.20 102 107 1.5 64 100.5 
0.98 0.26 0.29 0.27 104 107 1.7 65 98 
1.00 0.19 0.23 0.14 102 116 3.4 70 104.5 
1.00 0.20 0.24 0.21 100 110 3.4 64 101 
1.00 0.30 0.32 0.26 100.5 116 3.4 70 101 
1.00 0.63 0.50 0.44 100 130 3.4 65 100.5 
1.00 1.07 0.63 0.60 105 142 3.4 70 100 
1.00 1.08 0.63 0.60 103 142 3.4 70 101 
1.20 0.15 0.19 0.15 96 92 3.4 58 96 
1.22 0.41 0.40 0.37 103 115 3.4 58 100.5 
1.50 0.13 0.18 0.14 100 106 3.4 65 97 
1.52 0.13 0.17 0.15 101 108 3.4 65 102 
1.96 0.10 0.14 0.13 102 103.5 5.1 65.5 99 
2.00 0.20 0.24 0.20 110 112 6.8 65 100 
2.00 0.24 0.28 0.24 100 120 5.1 69.5 100 
2.04 0.11 0.15 0.14 100 103 3.4 66 101.5 

Table D.1: Full set of experimental results for the single stage absorber operating 
in cocurrent mode. 



J. S. Currie and C. L. Pritchard. Open cycle absorption heat transformer for 

the recovery of waste heat from dryers. In A. Valero and G. Tsataronis, editors, 

ECOS '92: The International Symposium on Efficiency, Costs, Optimisation 

and Simulation of Energy Systems, pages 599- 606, 151h 181h June 1992. 

Conference held in Zaragoza, Spain. 

C. L. Pritchard and J. S. Currie. Absorption- dehumidification: a 'unit-

operation' for heat recovery from dryers. In P. A. Pilavachi, editor, Energy 

Efficiency in Process Technology, pages 190 -200, 19th 22nd October 1992. 

Conference held in Vouliagmeni (Athens), Greece. 

404 



Appendix E. Publications. 	 405 

J. S. Currie and C. L. Pritchard. Absorption heat recovery and plume reduction 

from humid dryer exhaust streams. In IChemE Research Event , pages 257-

259, 6th 7th January 1993. Conference held in Birmingham, UK. 

J. S. Currie and C. L. Pritchard. Energy recovery and plume reduction from an 

industrial spray drying unit using an absorption heat transformer. Heat 

recovery systems and CHP , Vol. 14 (No. 3), pages 239- 248 1994. 

Special edition containing papers from the 4' International Workshop on Heat 

Pump Research and Applications, part of the CHISA '93 Conference, held in 

Praha, Czech Republic August 29- September 3' 1993. 



I*) M 

K. Abrahamsson and A. Jernqvist. Modelling and simulation of 
absorption heat cycles. 19- 21 January 1994. Prepublished copy of paper 
for IAHP '94 conference in Louisiana. 

Alefeld and Radermacher. Working substances for absorption heat 
pumps, 1980. 
German Patent. GER. OFFEN 2852 312. 

Anon. Fluid pairs for high temperature and industrial applications. In 
W. Raldow, editor, New working pairs for absorption processes, pages 
185-1881 14th - 16th April 1982. Proceedings of a workshop in Berlin. 
Sponsored by : Swedish Council for Building Research. 

Anon. Fluid pairs for multi-stage and novel systems. In W. Raldow, 
editor, New working pairs for absorption processes, pages 189-191, 14 1h- 
16th April 1982. Proceedings of a workshop in Berlin 
Sponsored by : Swedish Council for Building Research. 

Anon. Working group on 'dryers'. In P. A. Pilavachi, editor, Improved 
energy efficiency in the process industries, pages 279- 280, 24- 24th 

October 1990. Brussells, Belgium. 

Anon. Working group on 'Energy and the Environment'. In P. A. 
Pilavachi, editor, Improved energy efficiency in the process industries, 
pages 285- 2861 24 rd 24th October 1990. Brussells, Belgium. 

Anon. All steamed up- airless drying. The Chemical Engineer, (539):16, 
25 March 1993. 

S. Arh and B. Gaper.i. Development and comparison of different 
advanced absorption cycles. Rev. mt. Froid., 13:41-49, January 1990. 

Aspen Technology Inc. ASPEN plus Users Guide, August 1988. pp  5.1 - 
5.9. 

406 



Appendix F. Bibliography. 	 407 

B. L. Backstrom. Process intergration: Absorption heat pumps and flue 
gas cleaning. In T. Saito, editor, Heat Pumps: 'Solving Energy and 
Environmental Challenges'. Proceedings of the 3rd  International Agency 
Heat Pump Conference, pages 139— 144, 121h 151h March 1990. Tokyo, 
Japan. 

H. D. Baehr. New refrigerants- research into their thermodynamic 
property data. In T. Saito, editor, Heat Pumps: 'Solving Energy and 
Environmental Challenges'. Proceedings of the yd  International Agency 
Heat Pump Conference, pages 243— 251, 12th 15th March 1990. Tokyo, 
JAPAN. 

R. Berlocchio. Chiorofluoroinated hydrocarbon- organic solvent couples. 
In Absorption Heat Pumps Congress, pages 45 53, 201h 22nd March 1985. 
Paris. 

R Best. A methanol- lithium bromide, zinc bromide mixture applied to 
solar absorption heat pumps. In Proceeding of the International 
Conference on Solar Building Technology, volume 2, pages 437— 443, 1977. 

G. Bisio. The exergy efficiency of the devices for upgrading thermal 
energy with thermal sources and sinks of finite capacity. In A. Valero and 
G. Tsataronis, editors, EGOS '92: The International Symposium on 
Efficiency, Costs, Optimization and Simulation of Energy Systems, pages 
73— 80, 151h 18th June 1992. Zaragoza, Spain. 

H Bjurström and W Raldow. The absorption process for heating, cooling 
and energy storage- an historical survey. Energy Research, 5:43— 59, 1981. 

H. Bokelmann and G. Alefeld. Advances in Heat Transformers. In 
T. Saito, editor, Heat Pumps: 'Solving Energy and Environmental 
Challenges'. Proceedings of the 3rd  International Agency Heat Pump 
Conference, pages 107— 116, 121 151h March 1990. Tokyo, Japan. 

H. Bokelmann and H-J. Ehmke. Determination of enthalpy- concentration 
diagrams for absorption heat pump working fluids. Ki Klima Kälte 
Heizung, 13(6):241-244, June 1985. 

H. Bokelmann and M. Renz. Thermophysikalische eigenschaften von 
trifluoroethanol- stoffsystemen für absorptionswärmepumpen. Ki Klima 
Kälte Heizung, 11(10):403— 406, 1983. 

H. Bokelmann and F. Steimle. Development of advanced heat 
transformers utilising new working fluids. Rev. mt. Froid, 9:51-59, 
January 1986. 

I. Borde. New working fluids for absorption units utilising low grade heat. 
In W. Raldow, editor, New working pairs for absorption processes, pages 



Appendix F. Bibliography. 	 408 

105-106, 141h - 16th April 1982. Proceedings of a workshop in Berlin. 
Sponsored by : Swedish Council for Building Research. 

I. Borde. Absorption heat recovery systems. In F Moser, editor, 
Proceedings of the Td 	workshop on Research Activities on 
Advanced Heat Pumps, pages 539— 549, September 1988. Graz, Austria. 

I. Borde and M. Jelinek. Absorption heat pumps with organic refrigerant-
absorbent fluid pairs. In F Moser, editor, Proceedings of the 2 
International workshop on Research Activities on Advanced Heat Pumps, 
pages 89— 101, September 1988. Graz, Austria. 

J. W. J. Bouma. Experience with a heat transformer in the chemical 
industry. lEA Heat Pump Centre newsletter, 8(4):12-15, December 1990. 

M. F. Brunk. Thermodynamische und physikalische Eigenschaften der 
L6sung Lithiumbromid/ Wasser als Grundlage für die Proze/3simulation 
von Absorptions- Kälteanlagen. Ki Klima Kälte Heizung, (10):365-372, 
1982. 

CEC. Absorption Heat Pumps Congress, 20 1h  - 22nd  March 1985. Held in 
Paris. Report EUR 10007 EN. 

CEC. Thermie- Promotion of energy technology for Europe, 1992. 
Promotional Literature. 

P. Ciambelli and V. Tufano. The upgrading of waste heat by means of 
water- sulphuric acid absorption heat transformers. Heat Recovery 
Systems and CHP, 7(6):517— 524, 1987. 

E. C Clark. Chemical heat pumps drive to upgrade waste heat. Chemical 
Engineering, pages 50-51, 20 February 1984. 

Executive Committee. Montreal protocol: 1991 assessment. report of the 
refrigeration, air- conditioning and heat pumps technical options 
committee. Technical report, December 1991. 

Coulson and Richardson. Unit Operations. Volume 2. Pergamon Press, 
3rd edition, 1980. 

J. S. Currie. Absorption heat recovery from dryer exhausts. 
Internal literature review, January 1990. 

J. S. Currie. Absorption heat recovery from humid airstreams. Technical 
report, 4  1 November 1991. Internal Zeneca report following work during 
Summer 1991 at Grangemouth works. 

J. S. Currie. Spray drying- Gas cleaning study. Technical report, 1 8'  

October 1991. Internal Zeneca report following work during Summer 1991 
at Grangemouth works. 



Appendix F. Bibliography. 	 409 

R. Dagani. Chemical heat pump cools as well as heats. C and EN, pages 
36 - 37, 20th October 1980. 

P. V. Danckwerts. Significance of liquid film coefficients in gas absorption. 
Ind and Eng Chem, 43(6):1460-1467, June 1951. 

P. V. Danckwerts and A. J. Gillham. Methods for predicting the rates of 
absorption with chemical reaction in packed columns, and tests with 1.5in 
raschig rings. Trans. Instn. Chem Engrs., 44:T42—T54, 1966. 

F. DeMaria and R. R. White. Transient response study of gas flowing 
through irrigated packing. AIChE Journal, 6(3):473-481, September 1960. 

E. Van den Buick. Performance characteristics of open cycle solid 
desiccant heat transformers. In F Moser, editor, Proceedings of the 2" 
International workshop on Research Activities on Advanced Heat Pumps, 
pages 69-77, September 1988. Graz, Austria. 

DeVault. Advanced absorption technology development in the United 
States. In T. Saito, editor, Heat Pumps: 'Solving Energy and 
Environmental Challenges'. Proceedings of the yd  International Agency 
Heat Pump Conference, pages 69-80, 12th 15th March 1990. Tokyo, 
Japan. 

S. Devotta and V. R. Pendyala. Modified Joback Group Contribution 
Method for Normal Boiling Point of Aliphatic Halogenated Compounds. 
Details on the B.Pt of various HFCs, CFCs, HCFCs and BCFCs. 

E. Dietrich, P. Le goff, and M. Barkaoui. Valeur maximale du coefficient 
de performance d'une pompe a chalcur a absorption. Entropie, 
(118):8-23, 1984. 

A. Jernqvist et al. On the efficiencies of absorption heat pumps. Heat 
recovery systems and CHP, 12(6):469 - 480, 1992. 

A. Jernqvist et al. On the efficiencies of absorption heat transformers. 
Heat recovery systems and CHP, 12(4):323-334, 1992. 

S. I. Pereira Duarte and R. Bugarel. Optimal working conditions for an 
absorption heat transformer- analysis of the water- lithium bromide 
theoretical cycle. Heat Recovery Systems and CHP, 9(6):521— 532, 1989. 

K. Eriksson and A. Jernqvist. Heat transformer with self circulation: 
Design and preliminary operational data. Rev. mt. Froid, 12:15-20, 
January 1989. 

M. Erkert and B. Stemmler. Working medium pair for sorption heat 
pumps, 1981. 
German Patent. GER. OFFEN 30 03 471. 



Appendix F. Bibliography. 	 410 

A. B. Brahim et al. Properties and performances of the system calcium 
chloride- lithium chloride- water. In F Moser, editor, Proceedings of the 
International workshop on Research Activities on Advanced Heat Pumps, 
pages 269-277, October 1986. Graz, Austria. 

A. Bothe et al. New working fluid systems for absorption heat pumps. In 
P Zegers and J Miriam, editors, Proceeding of workshop on 'Absorption 
heat pumps', pages 13— 22. CEC, 12th 141h April 1988. Held in London. 
Report EUR 11888 EN. 

A. P. Burdukov et al. Experimental study of the absorption of water 
vapour by thin films of aqueous lithium bromide. Heat Transfer- Soviet 
Research, 12(3):118-123, May- June 1980. 

A. Rojey et al. Heat Transformers: Present state of a new technology. 
Proceedings of the Institution of Mechanical Engineers, 197A:71— 77, 
January 1983. 

B. E. Siddig-Mohammed et al. Study of the operating characteristics of a 
reversed absorption heat pump system (heat transformer). Chem. Eng. 
Res. Des., 61:283-289, September 1983. 

C. Chiappetta et al. Thermophysical properties of hexafluoroisopropanol 
(HFIP). Ki Klima Kälte Heizung, International Edition:15-18, 1989. 

C. Z. Zhuo et al. Steady state dynamic simulation of an absorption heat 
transformer. In F Moser, editor, Proceedings of the T" International 
workshop on Research Activities on Advanced Heat Pumps, pages 335-
345, September 24th - 26th 1990. Graz, Austria. 

D. M. Manole et al. Interplay of heat and mass transfer processes within 
a vertical film absorber. In E. Carnevale et al., editor, Flowers '9. Enery 
for the 21st  Century: Conversion, Utilisation and Environmental Quality, 
pages 791— 798, 6th 86th July 1994. Proceedings of Florence World 
Energy Research Symposium. Held in Florence, Italy. 

D. S. Ward et al. Integration of evacuated tubular solar collectors with 
LiBr absorption cooling systems. Solar Energy, 22:335-341, 1979. 

D. W. Townsend et al. The future of heat engines and heat pumps in the 
process industries. In NW Branch papers No. 3. Institution of Chemical 
Engineers, page 14.1, 1981. 

E. Dietrich et al. Relations between coefficient of performance energy 
storage capacity and temperature lift for thirty working pairs used in 
absorption and adsorption heat pumps. In F Moser, editor, Proceedings of 
the International workshop on Research Activities on Advanced Heat 
Pumps, pages 215-233, October 1986. Graz, Austria. 



Appendix F. Bibliography. 	 411 

G. Aly et al. Integration of absorption heat transformers in the process 
industry- applications in the olechemical, pulp and paper industries. In 
International Conference on Energy Efficiency in Process Technology, 
19 22nd October 1992. Athens. 

G. Cacciola et al. Theoretical performance of an absorption heat pump 
using ammonia- water- potassium hydroxide solution. Heat Recovery 
Systems and CHP, 10(3):177- 185, 1990. 

G. Otter et al. Search for new sorption heat pump working pairs with 
predictive methods in chemical thermodynamics. In F Moser, editor, 
Proceedings of the 2id  International workshop on Research Activities on 
Advanced Heat Pumps, pages 129-141, September 1988. Graz, Austria. 

G. S. Grover et al. Thermodynamic design data for absorption heat pump 
systems operating on water- lithium chloride- Part II Heating. Heat 
Recovery Systems and CHP, 8(5):419-423, 1988. 

G. S. Grover et al. Thermodynamic design data for absorption heat 
transformer systems- Part III Operating on water- lithium chloride. Heat 
Recovery Systems and CHP, 8(5):425-431, 1988. 

H. C. Meacham et al. Status of the double effect absorption heat pump 
(DEAHP). In T. Saito, editor, Heat Pumps: 'Solving Energy and 
Environmental Challenges'. Proceedings of the 3 rd  International Agency 
Heat Pump Conference, pages 537_ 543, 12th 15th March 1990. Tokyo, 
Japan. 

H. J. Laue et al. Overview of industrial heat pump activities in Europe. 
In T. Saito, editor, Heat Pumps: 'Solving Energy and Environmental 
Challenges'. Proceedings of the 3rd  International Agency Heat Pump 
Conference, pages 905- 918, 121ui 151h March 1990. Tokyo, Japan. 

H. Jaster et al. Vapour compression for waste heat recovery. In NW 
Branch papers No. 9. Institution of Chemical Engineers, page 15.1, 1981. 

H. L. Shulman et al. Performance of packed columns. Parts I-Ill. AIChE 
Journal, 1(2):247-264, June 1955. 

I. Borde et al. Development of advanced absorption systems driven by low 
temperature heat sources. In P. A. Pilavachi, editor, Energy Efficiency in 
Process Technology, pages 521- 530, October 191h 22nd 1992. Athens, 
Greece. 

J. M. Landauro- Paredes et al. Experimental study of the operating 
characteristics of a H20/LiBr absorption cooler. Chem. Eng. Res. Des., 
61:362-370, November 1983. 



Appendix F. Bibliography. 	 412 

J. P. Rignac et al. Heat and mass transfers in heap pump absorbers: 
Study of film tubular absorbers with tangential feed and turbulence 
promoters. In Absorption Heat pumps, pages 362-372, 1988. 

K. Abrahamsson et al. Heat transformer systems for evaporation 
applications in the pulp and paper industry. Nordic Pulp and Paper 
Research Journal, 7(1-1992):9-16, 1992. 

K. M. Berntsson et al. Learning from experiences with Heat Transformers 
in Industrial Processes. CADDET. CASU, December 1989. 
Analyses Series No. 2. 

K. Onda et al. Gas absorption with chemical reaction in packed columns. 
Journal of Chemical Engineering in Japan, 1(1):62-66, 1968. 

K. Onda et al. Mass transfer coefficients between gas and liquid phases in 
packed columns. Journal of Chemical Engineering in Japan, 1(1):56-62, 
1968. 

K. P. Tyagi et al. Working fluids for heat transformers. Heat Recovery 
Systems and CHP, 9(2):175— 181, 1989. 

K. R. Patil et al. Thermodynamic properties of aqueous electrolyte 
solutions. 1. vapour pressures of aqueous solutions of LiC1, LiBr and Lii. 
Journal of Chemical Engineering Data, 35:166 - 168, 1990. 

K. R. Patil et al. Thermodynamic design data for absorption heat pump 
systems operating on water- lithium iodide- Part I Cooling. Heat 
Recovery Systems and CHP, 11(5):341— 350, 1991. 

K. R. Patil et al. Thermodynamic design data for absorption heat pump 
systems operating on water- Lithium Bromide- Part II Heating. Heat 
Recovery Systems and CHP, 11(5):351— 360, 1991. 

K. R. Patil et al. Thermodynamic design data for absorption heat 
transformers- Cpart III Operating on water- Lithium Iodide. Heat 
Recovery Systems and CHP, 11(5):361— 369, 1991. 

K. R. Patil et al. Thermodynamic properties of aqueous electrolyte 
solutions. 2. vapour pressure of aq. solutions of NaBr, Nal, KC1, KBr KI, 
RbCI, CsC1, CsBr, CSI, MgCl2, CaC1 2 , CaBr2 , Ca12 , SrC1 2 , SrBr2 , SrI 2 , 

BaC12 , BaBr 2 . Journal of Chemical Engineering Data, 36:225— 230, 1991. 

K. R. Patil et al. Thermodynamic properties of aqueous electrolyte 
solutions. 3. vapour pressure of aq. solutions of LiNO 3 , LiCl + LiNO3  and 
LiBr + LiNO 3 . Journal of Chemical Engineering Data, 37:136— 138, 1992. 



Appendix F. Bibliography. 	 413 

L. Vamling et al. CFC alternatives for high temperature heat pump 
applications. In Heat Pumps- Proceedings of the 4th International 
Conference, pages 71-81, 1991. 

M. A. R. Eisa et al. Classified references for absorption heat pump 
systems from 1975 to May 1985. Journal of Heat Recovery Systems, 
6(1):47— 61, 1986. 

M. A. R. Eisa et al. Thermodynamic design data for absorption heat 
transformers- Part I. Operating on water- lithium bromide. Journal of 
Heat Recovery Systems, 6(5):421-432, 1986. 

M. A. R. Eisa et al. Thermodynamic design data for absorption heat 
transformers- Part II. Operating on water- calcium chloride. Journal of 
Heat Recovery Systems, 6(6):443-450, 1986. 

M. A. R. Eisa et al. A study of the operating characteristics of an 
experimental absorption cooler using water- lithium bromide- ethylene 
glycol as a ternary working system. International Journal of Energy 
Research, 12:459-472, 1988. 

M. Barkaoui et al. Modelisation du desorbeur a film ruisselant. 
Communication presented at the Intl Symp. 'Pompes a chaleur chimiques 
de hautes performances'. 14th 16th September 1988. 

M. Narodoslawsky et al. The influence of excess properties on the 
performance of absorption heat pumps. In F Moser, editor, Proceedings of 
the International workshop on Research Activities on Advanced Heat 
Pumps, pages 199— 214, October 1986. Graz, Austria. 

M. Narodoslawsky et al. New working pairs for medium and high 
temperature industrial absorption heat pumps. Heat Recovery Systems 
and CHP, 8(5):459— 468, 1988. 

M. Narodoslawsky et al. Thermodynamic search for new AHP and AHT 
working fluids. In F Moser, editor, Proceedings of the 2"' International 
workshop on Research Activities on Advanced Heat Pumps, pages 115-
127, September 1988. Graz, Austria. 

M. Narodoslawsky et al. Ethyl chloride: A viable alternative for medium 
and high- temperature compression heat pump cycles. In Heat Pumps-
Proceedings of the 4th International Conference, pages 101-114, 1991. 

M. R. Jeday et al. Evaluation criteria of refrigerant- sorbent pairs for 
absorption heat pumps. In F Moser, editor, Proceedings of the £" 
International workshop on Research Activities on Advanced Heat Pumps, 
pages 103— 113, September 1988. Graz, Austria. 



Appendix F. Bibliography. 	 414 

M. S. Bhatt et al. Thermodynamic modelling of absorption- resorption 
heating cycles with some new working pairs. Heat Recovery Systems and 
CHP, 12(3):225- 233, 1992. 

M. Wimby et al. A large absorption heat pump. In Large Scale 
Applications of Heat Pumps. 3rd International Symposium, pages 21-24, 

27th March 1987. Conference held in Oxford, England. 

N. Bennani et al. Absorption heat pump cycle: Performance analysis of 
water- glycerol mixture. Heat Recovery Systems and CHP, 9(3):257- 263, 
1989. 

N. Issiki et al. Studies of the mechanism and enhancement of absorption 
heat and mass transfer. In Absorption Heat pumps, pages 399-408, 1988. 

N. Kolev et al. Systems containing contact economisers for flue gas heat 
utilisation. In P. A. Pilavachi, editor, Energy Efficiency in Process 
Technology, pages 683- 691, October 191h 22nd 1992. Athens, Greece. 

P. Le Goff et al. Analyses exergetique et economique des pompes a 
chaleur a sorption. 
Communication presented at the Intl Symp. 'Pompes a chaleur chimiques 
de hautes performances'. 14th 16th September 1988. 

P. Le Goff et al. Co-current, counter-current or cross-current gas-liquid 
absorber with integrated or separated heat exchange. 
Communication presented to the Intl W'shop on absorption heat pumps. 
London 12th 14th April, 1988. 

P. Le Goff et al. A gas- liquid absorber with integrated heat exchange for 
reactions with high thermal effect, June 1988. 
Communication to ACHEMA. 

P. Le Goff et al. Modelling of a 'reverse- rectification' absorption heat 
pump. In F Moser, editor, Proceedings of the 2 d  International workshop 
on Research Activities on Advanced Heat Pumps, pages 187- 197, 
September 1988. Graz, Austria. 

P. Le Goff et al. Un nouveau concept: La rectification-inverse. son 
application aux pompes a chaleur a absorption, September 1988. 
Communication presented at Intl Symp. 'Pompes a chaleur chimiques de 
hautes performances. 

P. Le Goff et al. Advances in chemical heat pumps and heat transformers. 
In T. Saito, editor, Heat Pumps: 'Solving Energy and Environmental 
Challenges'. Proceedings of the 3 rd  International Agency Heat Pump 
Conference, pages 117- 126, 12th  15th  March 1990. Tokyo, Japan. 



Appendix F. Bibliography. 	 415 

P. Le Goff et al. A high temperature heat transformer operating by 
'reverse- rectification'. In F Moser, editor, Proceedings of the 5d 
International workshop on Research Activities on Advanced Heat Pumps, 
pages 271— 278, September 1990. Graz, Austria. 

P. Riesch et al. Part-load behaviour of an absorption heat transformer. In 
Large Scale Applications of Heat Pumps. 3rd International Symposium, 
pages 155-160, 25'- 27th  March 1987. Conference held in Oxford, 
England. 

P. V. Danckwerts et al. Kinetics of CO 2  absorption in alkaline solutions. 
Chem. Eng. Sci., 18:63-72, 1963. 

R. Bafiares-Alcántara et al. Development of an expert system for physical 
property predictions. Computers and Chemical Engineering, 9(2):127-
142, 1985. 

R. Best et al. Thermodynamic design data for absorption heat 
transformers- Part III. Operating on ammonia- water. Heat Recovery 
Systems and CHP, 7(3):259-272, 1987. 

R. Best et al. Thermodynamic design data for absorption heat 
transformers- Part IV Operating on ammonia- lithium nitrate. Heat 
Recovery Systems and CHP, 10(5- 6):539— 548, 1990. 

R. Best et al. Thermodynamic design data for absorption heat pump 
systems operating on ammonia- lithium nitrate- Part II Heating. Heat 
Recovery Systems and CHP, 11(2- 3):103— 111, 1991. 

S. C. Bikos et al. Design and energy analysis of absorption- driven 
multiple effect evaporators. In P. A. Pilavachi, editor, Energy Efficiency 
in Process Technology, pages 970— 971, October 19th 22nd 1992. Athens, 
Greece. 

S. K. Chaudhari et al. A comparative study of the operating 
characteristics of water- lithium chloride and water- calcium chloride 
absorption heat pumps. Journal of Heat Recovery Systems, 6(1):39-46, 
1986. 

T. Furukaw et al. High emperature heat storage using hydrate. In 
T. Saito, editor, Heat Pumps: 'Solving Energy and Environmental 
Challenges'. Proceedings of the 3rd  International Agency Heat Pump 
Conference, pages 833— 841, 121h 151h March 1990. Tokyo, JAPAN. 

T. Sonoda et al. Wasted heat recovery and temperature upgrading by 
absorption heat pump and other systems. CLIMA ?OOO- ventilating and 
air conditioning systems, 6(Ch. 122):111-116, 1985. 



Appendix F. Bibliography. 	 416 

U. Nowaczyk et al. Selection and investigation of new working fluid 
systems for absorption heat pumps. In F Moser, editor, Proceedings of the 
International workshop on Research Activities on Advanced Heat Pumps, 
pages 185-198, October 1986. Graz, Austria. 

U. Plöcker et al. Absorption heat transformers for the chemical industry. 
C7iemie Ingenieur Technik, 60(2):103-108, 1988. 

V. M. Kripallani et al. Performance analysis of a vapour absorption heat 
transformer with different working fluid combinations. Journal of Heat 
Recovery Systems, 4(3):129-140, 1984. 

Welty et al. Fundamentals of Momentum, Heat and Mass Transfer. John 
Wiley and Sons, Inc., 1" edition, 1969. 

Y. Nagaoka et al. Research on an air- source gas absorption heat pump 
air conditioner. In T Saito, editor, Heat Pumps: 'Solving Energy and 
Environmental Challenges'. Proceedings of the yd  International Agency 
Heat Pump Conference, pages 81- 91, 12  15th March 1990. Tokyo, 
Japan. 

ETSU. Energy efficiency demonstration scheme report: An assessment of 
'replication', June 1986. Harwell Laboratory, Didcot. Oxon. 

ETSU. Good practice guide: Guidance notes for the implementation of 
heat recovery from high temperature wast gas streams, 1990. Harwell 
Laboratory, Didcot. Oxon. 

ETSU. Energy efficiency publications list, February 1993. Harwell 
Laboratory, Didcot. Oxon. 

Health & Safety Executive. COSHH assessments. HMSO, 1988. 
Published booklet. 

P. D. Fairchild and W. Fulkerson. Energy technology R and D and the 
greenhouse effect. In T. Saito, editor, Heat Pumps: 'Solving Energy and 
Environmental Challenges'. Proceedings of the yd  International Agency 
Heat Pump Conference, pages 231- 241, l2- 151h  March 1990. Tokyo, 
Japan. 

M. B. Fehrm. Exhaust air heat pump potential in Europe. In T. Saito, 
editor, Heat Pumps: 'Solving Energy and Environmental Challenges'. 
Proceedings of the yd  International Agency Heat Pump Conference, pages 
733-745,l2- 15th  March 1990. Tokyo, Japan. 

C. A. I. Ferreira. Thermodynamic and physical property data equations 
for ammonia- lithium nitrate and ammonia- sodium thiocyanate solutions. 
Solar Energy, 32(2):231-236, 1984. 



Appendix F. Bibliography. 	 417 

A. Fredenslund and et al. Group- contribution estimation of activity 
coefficients in nonideal liquid mixtures. AIChE Journal, 21(6):1086- 1099, 
November 1975. 

T. Furukawa and T. Sonoda. Characteristics of H 2 0/LiBr absorption heat 
pump for the temperature change of external fluids. In International 
congress refrigeration, 17th, Vienna, August 1987. 

A. Gidner and A. Jernqvist. Energy conservation in the sugar industry. In 
International Conference on Energy Efficiency in Process Technology, 
19th 22 d  October 1992. Athens. 

M Gierow. Falling film absorbers and generators for absorption heat 
cycles: Comparison of two working pairs using new mass diffusivity data 
and computer simulations. Master's thesis, Department of Chemical 
Engineering I, Lund Institute of Technology, Lund, Sweden., March 1993. 
LUTKDH/ (TKKA- 1001)/ 1- 56/ (1993). 

M. Gierow and A. Jernqvist. Measurement of mass diffusivity with 
holographic interferometry for H 2 0/ NaOH and 1120/ LiBr working pairs. 
19th 21 1h  January 1994. Prepublished copy of paper for IAHP '94 
conference in Louisiana. 

M. Gierow and A. Jernqvist. Selection of working pairs for sorption heat 
pumps- a computer simulation study. 19th 2 11 January 1994. 
Prepublished copy of paper for IAHP '94 conference in Louisiana. 

J Gribbin. Hothouse earth: The greenhouse effect and Gaia. Black Swan, 
1990. 

G Grossman. Adiabatic absorption and desorption for improvement of 
temperature- boosting absorption heat pumps. ASHRAE Transactions, 
88(2):359- 367, 1982. 

G. Grossman. Combined heat and mass transfer in absorption processes. 
In W. Raldow, editor, New working pairs for absorption processes, pages 
115-117, 14t - 16th April 1982. Proceedings of a workshop in Berlin 
Sponsored by : Swedish Council for Building Research. 

H. Halozan. Market niches in Europe. In T. Saito, editor, Heat Pumps: 
'Solving Energy and Environmental Challenges'. Proceedings of the grd 

International Agency Heat Pump Conference, pages 307- 316, l2- 15th 
March 1990. Tokyo, Japan. 

W. T. Hanna and W. H. Wilkinson. Absorption heat pumps and working 
pair developments in the US since 1974. In W. Raldow, editor, New 
working pairs for absorption processes, pages 71-81, l4' - 16th April 1982. 
Proceedings of a workshop in Berlin. Sponsored by: Swedish Council for 
Building Research. 



Appendix F. Bibliography. 	 418 

G. G. Haselden. Alternative cycles for heat pumping. In NW Branch 
papers No. 3. Institution of Chemical Engineers, pages 3.1-3.7, 1981. 

H. T. Haukãs. Future of refrigeration with CFC regulations. In T. Saito, 
editor, Heat Pumps: 'Solving Energy and Environmental Challenges'. 
Proceedings of the 3rd International Agency Heat Pump Conference, pages 
201-211, 12th 15th March 1990. Tokyo, JAPAN. 

R. W Haywood. Thermodynamic Tables in SI metric units. Cambridge 
University Press, 2nd  edition, 1984. 

W. Hölbling et al. The COP of two and three stage absorption heating 
systems. In F Moser, editor, Proceedings of the International workshop on 
Research Activities on Advanced Heat Pumps, pages 255— 267, October 
1986. Graz, Austria. 

T. Heppenstall. Absorption cycle heat pumps. Journal of Heat Recovery 
Systems, 3(2):115-128, 1983. 

R. Higbie. The rate of absorption of a pure gas into a still liquid during 
short periods of exposure. Trans Amer Inst Chem Engr, 35:365-389, 1935. 

H. Hlawiczka. The funding of heat pumps within the German energy R 
and D programme in the sector of end- use technologies- results, 
experiences, evaluation, future prospects. In T. Saito, editor, Heat Pumps: 
'Solving Energy and Environmental Challenges'. Proceedings of the 8'' 
International Agency Heat Pump Conference, pages 369— 383, 12th 15th 
March 1990. Tokyo, Japan. 

D. L. Hodgett. Efficient drying using heat pumps. The Chemical 
Engineer, pages 510-512, July/ August 1976. 

D. L. Hodgett. Absorption heat pumps and working pair developments in 
Europe since 1974. In W. Raldow, editor, New working pairs for 
absorption processes, pages 57-69, 14 1h - 16th April 1982. Proceedings of a 
workshop in Berlin. Sponsored by : Swedish Council for Building 
Research. 

S lyoki and T Uemura. Studies on corrosion inhibitor in water- lithium 
bromide absorption refrigerating machines. Refrigeration, 53(614):3— 7, 
Dec 1978. Japanese. 

S. lyoki and T. Uemura. Studies on the water- lithium bromide- ethylene 
glycol absorption refrigerating machine. Reito (Japan), 56:279 - 2881  
April 1981. 

S. lyoki and T. Uemura. Physical and thermal properties of the water-
lithium bromide- zinc chloride- calcium bromide system. Int J. 
Refrigeration, 12:272 - 277, September 1989. 



Appendix F. Bibliography. 	 419 

P. F. Jansen and J. W. Wormgoor. Performance of and operational 
experience with a large scale heat transformer. In 3rd International 
Symposium on the Large Scale Application of Heat Pumps, pages 45— 49, 
251hi 27th March 1987. Conference held in Oxford, England. 

H. F Gibbard (Jr) and G. Scatchard. Liquid- vapour equilibrium of 
aqueous lithium chloride, fron 25°C to 100°C and from 1.0 to 18.5 molal, 
and related properties. Journal of Chemical and Engineering Data, 
18(3):293-298, 1973. 

S. Kannoh. Heat recovery from warm waste water at dyeing process by 
absorption heat pump. Journal of Heat Recovery Systems, 
2(5/6):443-451, 1982. 

T. Kashiwagi. Advances in working fluids and cycles for absorption 
systems. In T. Saito, editor, Heat Pumps: 'Solving Energy and 
Environmental Challenges'. Proceedings of the 3 d  International Agency 
Heat Pump Conference, pages 93- 105, 12h 151h March 1990. Tokyo, 
JAPAN. 

J. U. Keller. R and D work on heat transformations by absorption 
processes. In W. Raldow, editor, New working pairs for absorption 
processes, pages 121-122, 141h - 16th April 1982. Proceedings of a 
workshop in Berlin. Sponsored by : Swedish Council for Building 
Research. 

W Kern. Economic criteria for application of single stage or double stage 
absorption heat transformers. In 3rd International Symposium on the 
Large Scale Application of Heat Pumps, pages 149— 154, 25th 27th March 
1987. Conference held in Oxford, England. 

C. J. King. The additivity of individual phase resistances in mass transfer 
operations. AIChE Journal, 10(5):671-677, September 1964. 

K. F. Knoche and W. Raatschen. New working pairs for the application 
in absorption heat pumps. VDI- Berichte, (539):181-191, 1984. 

P. Kolbusz. Industrial applications of heat pumps, September 1975. 
Booklet from the ECRC at Capenhurst ECRC/N845. Lit. Survey. 

S. Kurosawa. Technological innovation in gas fired absorption water 
chiller heater. Refrigeration, 62(711):12-23, January 1987. 
Japanese Association of refrigeration. 

S. Kurosawa. Current and future perspectives of absorption heat pumps 
in commercial applications in Japan. In Recent developments in Heat 
Pump Technology, March 1988. 
Jar International Symposium. Held in Tokyo. 



Appendix F. Bibliography. 	 420 

S. Kurosawa. Current states of gas air- conditioning system in japan. In 
Advanced Absorption Workshop, October 1988. 

J. Lawton. Closed and open cycle heat pumping for drying. In NW 
Branch papers No. 3. Institution of Chemical Engineers, pages 9.1-9.7, 
1981. 

R. M. Lazzarin. Solar- assisted absorption heat pumps feasibility. Solar 
Energy, 26:223-230, 1981. 

B. Linhoff and K. J. Carpenter. Energy conservation by exergy analysis: 
The quick and simple way. In World Congress of Chemical Engineering, 
pages 248- 255, 1981. 

B. Liu. Draft of report submitted following work in Chem. Eng. Dept., 
University of Edinburgh. Internal report, 1990. 

B Liu. Pompes è chaleur 2 Absorption pour hautes et tres hautes 
temperatures. PhD thesis, Laboratoire des Sciences du Genie Chimique, 
INP, Lorraine, France, December 1990. PhD Thesis. 

R. Low. Absorption heat pumping- an overview. 
Internal communication. 

Hydronyl Ltd. Tower packings. ICI Engineering Research brochure, 1951. 

R. A. Macriss and T. S. Zamacki. Absorption fluids data survey-
European and Japanese data. In F Moser, editor, Proceedings of the 
International workshop on Research Activities on Advanced Heat Pumps, 
pages 175-183, October 1986. Graz, Austria. 

W. Malewski. Absorption heat pumps for high temperature and industrial 
application. In W. Raldow, editor, New working pairs for absorption 
processes, pages 127-129, 14th - 16th April 1982. Proceedings of a 
workshop in Berlin. Sponsored by : Swedish Council for Building 
Research. 

K. Masters. Spray drying: An introduction to principles, operational 
practice and applications. Chemical and Process Engineering Series. 
Leonard Hill Books, London, 1972. 

Teresa R. Senos Matias. Differential leakage in a closed system. Internal 
report, University of Edinburgh, 1993. 

L. A. McNeely. Thermodynamic properties of aqueous solutions of LiBr. 
ASHRAE Trans., pages 413-434, 1979. 

M. Mentiply. Thermodynamic properties of working fluids. 
Internal literature review, 1990., January 1990. 



Appendix F. Bibliography. 	 421 

A. C. Mercer. Improving the energy efficiency of industrial spray dryers. 
Journal of Heat Recovery Systems, 6(1):3-10, 1986. 

G. Minds and J. Nyvad. New drying methods for aqueous solutions at low 
temperatures. In P. A. Pilavachi, editor, Energy Efficiency in Process 
Technology, pages 179— 189, October 191' 22nd  1992. Athens, Greece. 

G. Moss. Working fluids for heat pumps, 1982. 
European Patent EP65 858. 

S. S. Murthy and A. M. K. Poduval. Performance of a R114 high 
temperature compression heat pump for drying. In F Moser, editor, 
Proceedings of the 31  International workshop on Research Activities on 
Advanced Heat Pumps, pages -, September 1990. Graz, Austria. 

D. Nalto. Alternatives to CFC refrigerants. In T. Saito, editor, Heat 
Pumps: 'Solving Energy and Environmental Challenges'. Proceedings of 
the I' International Agency Heat Pump Conference, pages 713— 720, 
12 1h_  15  1h  March 1990. Tokyo, JAPAN. 

A. E. Nasser and T. R. Osman. Simple LiBr/H20 absorption cycle 
limitations. Applied Energy, 17:251-262, 1984. 

G. Nonhebel and A. A. H. Moss. Drying of solids in the chemical 
industry. Butterworths, 1971. 

Norman. Absorption, distillation and cooling towers, pages 206-213. 

B. Norton and F. N. de Silva. High temperature, pressurized wood 
drying: Experimental and simulation results. In P. A. Pilavachi, editor, 
Energy Efficiency in Process Technology, pages 210— 219, October 19 1

' 

22' 1992. Athens, Greece. 

D. Oakley. Sprays reveal their secrets. The Chemical Engineer, (539):18-
21, 25 March 1993. 

Department of the Envionment- GlobalAtmosphere Division. CFCs in the 
UK refrigeration and air conditioning industries. Usage and the Scope for 
Substitution. HMSO, 1992. 

M. A. Osei-Bonsu and R. J. Treece. The development of absorption cycle 
heat pumps applied to industrial process heat recovery. In 3rd 
International Symposium on the Large Scale Application of Heat Pumps, 
pages 197 - 204, 25th 27th March 1987. Conference held in Oxford, 
England. 

R Perry and D Green, editors. Perry's Chemical Engineers' Handbook. 
McGraw  Hill, 6th  edition, 1985. International Student Edition. 



Appendix F. Bibliography. 	 422 

M. Pflugl and F. Moser. Behaviour of absorbers with falling films of salt 
solutions in heat pump applications. In Large Scale Applications of Heat 
Pumps. 3rd International Symposium, pages 141-148, 25th 27th March 
1987. Symposium held in Oxford, England. 

H. R. C. Pratt. The performance of packed absorption and distillation 
columns with particular reference to wetting. Trans. Instn. Chemical 
Engineers, pages 195-214, 1951. 

C. L. Pritchard. An open cycle heat transformer for waste heat recovery 
from dryers. In F Moser, editor, Proceedings of the grd  International 
workshop on Research Activities on Advanced Heat Pumps, pages 379-
390, September 1990. 

Demonstration project at BIP Chemicals Ltd. Heat recovery form a boiler 
exhaust to pre-heat air to a spray dryer. Journal of Heat Recovery 
Systems, 6(1):11-23, 1986. 

C. Ramshaw. New heat pump. The ICI Engineer. 

D. Reay. Energy conservation in industrial drying. The Chemical 
Engineer, pages 507-509, July/ August 1976. 

D. A. Reay. The energy conservation demonstration projects scheme-
support for heat recovery. Journal of Heat Recovery Systems, 4(1):43-50, 
1984. 

M. Renz and F. Steimle. Comparison of the thermodynamic properties of 
working fluids for absorption systems. In I.I.R Meeting Commun. El- E2 
Jerusalem, 1982. 

R. Rivero and P. Le Goff. On the performance criteria of sorption heat 
pumps and heat transformers. In A. Valero and G. Tsataronis, editors, 
EGOS '92: The International Symposium on Efficiency, Costs, 
Optimization and Simulation of Energy Systems, pages 575- 586, 15-
18 1h  June 1992. Zaragoza, Spain. 

P. A. Rowles. Future prospects for industrial heat pumps in North 
America. In T. Saito, editor, Heat Pumps: 'Solving Energy and 
Environmental Challenges'. Proceedings of the Td  International Agency 
Heat Pump Conference, pages 919- 932, 12th 15th March 1990. Tokyo, 
Japan. 

V. E. Sater and 0. Levenspiel. Two-phase flow in packed beds. I&EC 
Fundamentals, 5(1):86-92, February 1966. 

N. I. Sax. Dangerous properties of industrial materials. Van Nostrand 
Reinhold company Limited, 6th  edition, 1984. 



Appendix F. Bibliography. 	 423 

G. Scalabrin. Liquid sorption drying process utilising mechanical energy 
and desorption by air. In A. S. Mujumdar, editor, Drying of solids, pages 

268-275, 1990. 

G. Scalabrin. Liquid sorption air dehumidification with TVF solution 
reconcentration. Technology Today, (6):326-332, December 1991. 

G. Scalabrin and G. Scaltriti. Liquid sorption drying process utilising 
heat at moderate thermal level. In A. S. Mujumdar, editor, Drying '87; 
pages 270-277, 1987. 

Jirgen Scharfe. New working fluids offer higher performance and new 
applications. In Absorption Heat pumps, pages 342-344, 1988. 

T. K. Sherwood and R. L. Pigford. Absorption and extraction. 
McGraw-Hill, 2nd edition, 1952. 

H. L. Shulman and J. J. De Gouff (Jr). Mass transfer coefficients and 
interfacial areas for raschig rings. Industrial and Engineering Chemistry, 
44(8):1915 - 1922, August 1952. 

I. Shwarts and A. Shitzer. Solar absorption system for space cooling and 

heating. ASHRAE Journal, 19:51- 54, 1977. 

I. E Smith and C. 0. B Carey. Thermal transformers for upgrading 
industrial waste heat. In International Symposium on the Industrial 
application of heat pumps, pages 251- 260. BHRA Fluid Engineering, 
24th 261h March 1982. Paper Hi. 

W. K. Snelson and J. B. Codrington. An absorption cycle heat pump for 
drying applications in Canadian Industry. In Large Scale Applications of 
Heat Pumps. 3rd International Symposium, pages 69-76, 25th 271h March 
1987. Conference held in Oxford, England. 

S. S Stecco and M. J. Moran, editors. 28th  May- 	June 1990. 
Proceedings of Florence World Energy Research Symposium. Held in 
Florence, Italy. 

K. Stephan. Absorption heat pumps and working pair developments in 
the Europe until 1974. In W. Raldow, editor, New working pairs for 
absorption processes, pages 19-35, 14th - 16th April 1982. Proceedings of a 
workshop in Berlin. Sponsored by: Swedish Council for Building 
Research. 

K. Stephan. Absorption heat transformer cycles. NATO ASI Series E, 
Applied Sciences, (53):352- 373, 1983. 



Appendix F. Bibliography. 	 424 

J. T. Strack. A review of R&D activities on industrial heat pumps by a 
Canadian electric utility. In 3rd International Symposium on the Large 
Scale Application of Heat Pumps, pages 177- 1831 25th  27  1h  March 1987. 
Conference held in Oxford, England. 

I. Strqmmen. Incorporation of heat pumps in drying processes. In 
T. Saito, editor, Heat Pumps: 'Solving Energy and Environmental 
Challenges'. Proceedings of the yd  International Agency Heat Pump 
Conference, pages 155- 162, 12th 151h March 1990. Tokyo, Japan. 

S. Suda. Experimental evaluation of the heat pump performance in 
connection with metal hydride properties. Journal of the Less- Common 
Metals, (104):211- 222, 1984. 

R. E Treybal. Mass transfer operations. 

R. E Treybal. Adiabatic gas absorption and stripping in packed towers. 
Industrial and Engineering Chemistry, 61(7):36-41, July 1969. 

K. P. Tyagi. Pressure- temperature- concentration equations for vapour 
absorption binary mixtures. Journal of Heat Recovery Systems, 4(3):181-
185, 1984. 

W. van Gool et al. Heat pumps and exergy analysis. In T. Saito, editor, 
Heat Pumps: 'Solving Energy and Environmental Challenges'. Proceedings 
of the jd  International Agency Heat Pump Conference, pages 639- 646, 
l2' 15 1h  March 1990. Tokyo, Japan. 

Various. Review: the quarterly magazine of renewable energy. Published 
by the Department of Energy, Winter 1990/ 91. 

Various. Review: the quarterly magazine of renewable energy. Published 
by the Department of Energy, Autumn 1991. 

P. V.Danckwerts. Gas- Liquid reactions. McGraw-Hill, 1st edition, 1970. 

S. M. Walas. Reaction kinetics for chemical engineers, pages 136-145. 

K. Watanabe. Current status of thermophysical properties research on 
CFC alternatives. In T. Saito, editor, Heat Pumps: 'Solving Energy and 
Environmental Challenges'. Proceedings of the gJ  International Agency 
Heat Pump Conference, pages 263- 282, 121h 15th March 1990. Tokyo, 
JAPAN. 

The Watt Committee on Energy Working Group on Renewable Energy 
Sources. Renewable Energy Sources. Technical Report 22, The Watt 
Committee on Energy, 1990. Published by Elsevier Applied Science. 



Appendix F. Bibliography. 	 425 

J. J. W. Westra. An absorption heat transformer test plant with 
TFE-pyrrolidinone as working pair. In F Moser, editor, Proceedings of the 
nd International workshop on Research Activities on Advanced Heat 

Pumps, pages 45- 55, September 1988. Graz, Austria. 

E. P. Whitlow. Trends of efficiences in absorption refrigeration machines. 
ASHRAE Journal, pages 44-48, December 1966. 

G. L. Williams. The exhaust air heat recovery heat pump for residential 
applications in Canada. Journal of Heat Recovery Systems, 4(3):165-180, 
1984. 

J. S Williamson, B. H Khoshaim, R Mallory, and A Meiners, editors. 
SOLERAS: Solar Buildings. Proceedings of the 5" Soleras workshop, May 
1984. Held at Riyadh, Saudi Arabia. 

D. Woolnough. It's more than hot air. The Chemical Engineer, (539):35, 
1993. 

S. Yanniotis and P. Le Goff. Absorption- driven multiple effect 
evaporators a study of the absorber- regenerator couple. In P. A. 
Pilavachi, editor, Energy Efficiency in Process Technology, pages 437-
447, October 191h 22nd 1992. Athens, Greece. 

F. Yoshida and T. Tanaka. Air-water contact operations in a packed 
column. Ind and Eng Chem, 43(6):1467-1473, June 1951. 

W. C. Yu and G. Astarita. Design of packed towers for selective chemical 
absorption. Chemical Engineering Science, 42(3) :425-433, 1987. 

C. Z. Zhuo and C. H. M. Machielson. Thermodynamic assessment of an 
absorption heat transformer with tfe- pyr as the working pair. Heat 
Recovery Systems and CHP, 14(3):265- 272, May 1994. Special edition 
containing papers from the 4th  International Workshop on Heat Pump 
Research and Applications, part of the CHISA '93 Conference, held in 
Praha, Czech Republic August 291h  September 3'' 1993. 

K. H. Zimmerman, editor. Heat Pumps: Prospects in heat pump 
technology and marketing. Lewis Publishers, Inc., 28th 30th April 1987. 
Proceedings of the 1987 Internation Energy Agency Heat Pumps 
Conference. Held in Orlando, Florida. 



]I finally got it atogethe000 but It forgot 

where II put t0 

426 


