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Abstract 

In the work we estimate the rate of convergence of the Wong-Zakai type of approx-

imations for SDEs and SPDEs. Two cases are studied: SDEs in finite dimensional 

settings and evolution stochastic systems (SDEs in the infinite dimensional case). 

The latter result is applied to the second order SPDEsof parabolic type-and the 

filtering problem. Roughly, the result is the following. Let W be a sequence of 

continuous stochastic processes of finite variation on an interval [0, T]. Assume 

that for some c > 0 the processes W converge almost surely in the supremum 

norm in [0, T] to W with the rate n for each ic < c. Then the solutions u of 

the differential equations with W converge almost surely in the supremum norm 

in [0, T] to the solution u of the "Stratonovich" SDE with W with the same rate 

of convergence, n for each K .  < a, in the case of SDEs and with the rate of 

convergence n'2  for each it < a, in the case of evolution systems and SPDEs. 

In the final chapter we verify that the two most common approximations of the 

Wiener process, smoothing and polygonal approximation, satisfy the assumptions 

made in the previous chapters. 
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Chapter 1 

Introduction 

This paper is devoted to investigation of the stability of stochastic (partial) differ-

ential equations with respect to simultaneous perturbation of the driving process 

and of the equations coefficients. Although the studied equations are of different 

types they can all be unified and written in an abstract general form 

du (t) = A(t,u(t))dt + 	B(t,u(t))dVV(t), t E [0,T],  

with the initial condition 

U(0) = 
	

(1.0.2) 

Above A, B, j = 1, 2, . . . , r are some abstract functions depending on W, W is an 

r-dimensional Wiener process. Let {Wfl } flEN' be a sequence of r-dimensional pro-

cesses of bounded on the interval [0, T] variation which approximates the Wiener 

process in some appropriate sense. Suppose that we simultaneously approximate 

coefficients A, B by sequences {A fl } flEN, {B fl } flEN, respectively. For every n E N 

let us consider an equation of the form - 

dun 	= A 0 (t, u0 (t))dt + 	B(t, u 0 (t))dW(t), t e [0, T], 	(1.0.3) 

with the initial condition 

U, (0) = 6. 	 (1.0.4) 

Then a natural question arises whether the solutions Un  for the problems (1.0.3)-
(1.0.4) converge, and if yes what the limit is. It is known that if A 0 , B0  converge 

to A, B in some appropriate sense, Wn converges to W in probability uniformly 

in t E [0, T] and the process 

S 1 (t) = 	(W- 1  (s) -  W(s))dW(s) - 5 j1t 

'In the paper we denote by N the sequence of numbers 1, 2 ..... 
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converges in probability uniformly in t E [0, T] to 0 for every j, 1 = 1, 2,... , r then 

the solutions tt of the problems (1.0.3)-(1.0.4) converge in probability uniformly 

in t e [0,T] to a process u which satisfies (1.0.1)-(1.0.2), where the last term in 

(1.0.1) is understood in the "Stratonovich" sense. 

This problem was first considered by E. Wong and M. Zakai ([23], [241). Since 

that time there was a large number of publications devoted to this problem (see 

[5], [6], [1, [12], [20], [21], [251) where the convergence of the solutions a, -4 u 

was studied. However, not many of them give the result on the rate of this 

convergence. In the paper we investigate the rate of convergence, the problem 

which was not well studied in the literature before. 

In the simplest situation where the coefficients A, B are time-independent 

non-random functions equal to A, B n , respectively, the result of the paper is 

the following. Assume that processes W, S converge almost surely to W, 0, 

respectively. Suppose that for a given a> 0 there exists an almost surely finite 

random variable i such that 

sup E  lW(t) - W(t) I + sup E IS(t) 
tE[O,T] 	 tE[O,T] 

1, 

where I I Sj(t) denotes the variation of the process S(t) over the interval [0, t]. 

Let us assume the existence of the solutions Un, U of the problems (1.0.3)-(1.0.4), 

(1.0.1)-(1.0.2), respectively. Then under some smoothness requirements on the 

coefficients A, B we get 

sup I U, (t) -  u(t) : Thc' 
tE[O,T] 

for all ic < a in the case of stochastic differential equations and for all frt < 

a/2 in the case of stochastic evolution systems and stochastic partial differential 

equations. The random variable 77,, is almost surely finite and depends only on K. 

Our interest in the rate of convergence is motivated by the filtering problem 

for partially observable diffusion processes. Let x be the unobservable signal 

component, and let y be the observation. A fairly general filtering problem is 

defined by the system 

dx(t) = h(t,x(t),y(t))dt + a(t,x(t),y(t))dV(t) 

	

+ p(t, x(t), y(t))dW(t), 	 x(0) = 

	

dy(t) = H(t,x(t),y(t))dt + dVV(t), 	 y(0) = 

where h, H, a, pare Rd, jr, Rdxro, R° respectively, valued stochastic processes 

defined for (t, x, y) E [0, T] x R' x R,  and (V W) is an (ro  + r)-dimensional 
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Wiener process independent of the random variables , i. The estimation of the 

signal process x given the trajectories of the observation y is main problem of the 

filtering. It was shown before that under some general assumptions there can be 

constructed a so called Zakai equation, a stochastic partial differential equation 

driven by the observation y, which admits the solution (t, x). The density p of 

the distribution 

P{x(t) e ri y(s), 0 < s < t} 

can be obtained by the normalization 

- 	go(t,x) 
p(t, x) 

- fRd ço(t, x)dx 

Note, that in practice we deal with observations y,-, of bounded variation which 

can be considered as approximations for y. Using Yn  in place of y in the Zakai 

equation we obtain solutions W,. Therefore, it is important to know how fast 

unnormalized densities ço converge to W and normalized densities p converge to 

P given the rate of convergence Yn+ J. 

Structurally the work is presented as follows. Chapter 2 is devoted to stochas-

tic differential equations. The situation where the drift A is Lipschitz-continuous 

is first studied. In this case we obtained the rate of convergence m, ,c < &. 

However, there have been given some examples of non-Lipschitz drifts (see [18]). 

Next we consider the situation where Lipschitz-continuity is replaced by a weaker 

monotonicity condition. In this case we proved slightly slower convergence n, 

In Chapter 3 we study stochasticevolution systems. The equations are studied 

in abstract normal triples V -+ THI - V. The nonlinear operators A, B, j = 
1, 2.... , r, are assumed to depend on w, t and n. We get the rate of convergence 

n, ic < a/2. 

Chapter 4 can be considered as a continuation of Chapter 3. Here we apply 

the result of Chapter 3 to stochastic partial differential equations, A is a second 

order elliptic differential operator, B, j = 1, 2,... , r, are first order differential 

operators. The considerations are made in Sobolev spaces W. 

The filtering problem is considered in Chapter 5. We show that if observation 

processes y satisfy the assumptions made above for W,,, W, then the unnor-

malized densities ço converge to W and normalized densities p converge to p with 

the half rate of the convergence Yn y. 

Finally, in the last Chapter 6 we show that two types of approximations of 

the Wiener process W, smoothing and the polygonal approximation, satisfy the 

assumptions mentioned above. 

5 



The results of the present work are going through the process of publication 

(1101, [11]). 



Chapter 2 

Stochastic Differential Equations 
in Finite Dimensional Case 

2.1 Introduction 

In this chapter we consider stochastic differential equation of the form 

dX(t) = b(t, X(t))dt + o(t, X(t))dVV(t) 	(2.1.1) 

with initial condition 

X(0) = 
	

(2.1.2) 

where W is a Wiener process, and b(t, •), o3(t,  .), j 	1, 2,.. . , r, are vector fields 

mapping Rd  into  Rd  for every t > 0, initial value is a random variable, and 

solution X is a stochastic process with values in Rd.  Here and throughout the 

paper we use the summation convention with respect to the repeated indices. We 

replace the Wiener process with a sequence {W fl } flEN  of processes of bounded 

variation which, for some a > 0, converges almost surely in supremum norm on 

the interval [0, T] to W with the rate n, for each K < a. Hence, we get for 

every n E N the corresponding to (2.1.1) differential equation of the form 

dX(t) = b(t,X(t))dt + cr(t,X(t))dW(t) 	(2.1.3) 

with initial condition 

X(0) = 
	

(2.1.4) 

It is well known (see [51) that the sequence of solutions X n  of problems (2.1.3)-

(2.1.4) converges under some natural conditions in the uniform topology in prob-

ability. The limit, however, is not the solution of problem (2.1.1)-(2.1.2), but of a 

closely related problem with the equation which contains an extra drift term. This 

equation can be considered as equation (2.1.1) with the last differential written 

in the Stratonovich form. We investigate the almost sure convergence X - X 

in the supremum norm on the interval [0, T]. 
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Under additional assumptions the problem admits an obvious solution ([1]). 

Consider one dimensional situation where drift b vanishes, and diffusion a does 

not depend on t. If a is Lipschitz-continuous, equation 

d 
—u(x) = a(u(x)), u(0) = 
dx 

has a unique solution. It is easy to show that X(t) = u(W(t)), X(t) = u(W(t)) 
satisfy problems (2.1.1)-(2.1.2), (2.1.3)-(2.1.4), respectively. Then by Lipschitz-
continuity of u the rates of convergence of solutions X(t) and approximations 

W(t) of the Wiener process coincide. 

Under the same assumptions on coefficients the above scheme can be extended 

to the multi dimensional case. However, this entails additional conditions on the 

coefficients of the equations. As before, set X(t) = u(W(t)), X,,( t) = u(W(t)), 

where u is a solution of the following system of partial differential equations 

= 4(u(x)), u(0) = 
Dxi  

This system is solvable only under Frobenius condition, 

or £ (x) = 
z(a) 

for everyxeRd  and alli=1,...,d, j,1=1,...,r, where 

or 1 (x) = 
z( a) 	k, 	

Dxk 

The above solution requires very strong assumptions on the coefficients of the 

equations. In Theorem 2.3.1 we show that X, converge to X with the same rate, 

n for each ic < a, as in the above solution under Frobenius condition. However, 

only some natural regularity properties are imposed on the coefficients b and 

2.2 Generalities 

In this section we give some general ideas and notations from the Theory of 

Random Processes and Stochastic Differential Equations. 

Let Rd  be a Euclidean space of dimension d with a fixed orthonormal basis, and 

let us denote Xi the j-th coordinate of a point X E Rd. For X, Y e R'1  we denote 
the scalar product of X and Y by XY. For a vector X E Rd we denote its modulus 

by JXJ and for a matrix B E R we denote B= (trBB*)h/2 = (Ek,1(Bk)) 
1/2 

For a real valued function Z its variation over the time interval [0, t] is denoted 

by pIZI(t). 
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For a sequence of real valued stochastic processes {Yfl}flEN  defined on the 

interval [0, T] and a numerical sequence c we will use notation Y = O(a) if 

for some almost surely finite random variable 

IY(t)I 	Ce. 

for all n E  for every t e [0,T] 

2.2.1 Ito Equations in Rd  

Although this is not the topic of the paper, in this section we give the existence 

and uniqueness results for a solution of a SDE in finite dimensional settings. 

Let (1, 3, P) be a complete probability space equipped with complete right-

continuous filtration {}t>0.  Let W = W(t) be a Wiener process relative to 

{.Ft}. Suppose that a d-dimensional vector b = b(t, x) and a d x r matrix a are 

defined for t E [0, T], x C R, w e ft Let be an R 1 -valued F0-measurable 

random variable. We consider equation 

dX(t) = b(t, X(t))dt + o(t, X(t))dW(t), 	X(0) = . 	(2.2.1) 

The vector b is called the drift and the matrix a is called the diffusion of the 

equation (2.2.1). 

Definition 2.2.1. A continuous .F-adapted process which satisfies (2.2. 1) almost 

surely for all t E [0, T] we will call a solution of equation (2.2.1) on the interval 

[0,T1. 

This equation is considered under certain additional conditions. 

Assumption 2.2.1. For any R > 0 there exists a non-negative measurable pro-

cess K(R) such that almost surely 

fo K(R)dt < 00, 

and 

(monotonicity condition) for all x, y E Rd  such that lxi, ll < R, for 

almost all t E [0, T] 

2(x - y)(b(t, x) - b(t, y)) + Ia(t, x) - 0, ( t, y) 2  < K(R)(x - 

(growth condition) for all x E R'1  and almost all t E [0, T] 

2xb(t,x) + la(t,x)1 2  < K(1)(1 + x2 ) 
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The following theorem is the generalization of Ito's classical result on existence 

of a solution of a stochastic equation of type (2.2. 1) with random coefficients. We 

avoided the Lipschitz continuity and replaced it with monotonicity condition. An 

example of a function which satisfies monotonicity but does not satisfy Lipschitz 

condition can be found in [18]. 

Theorem 2.2.1. Under Assumption 2.2.1 there exists a solution X(t) of equation 

(2.2.1). If X(t), Y(t) are two solutions of (2.2. 1) then they are indistinguishable, 

i.e. 

P{ sup IX(t) - Y(t)I > O} = 0. 
tE(O,T] 

The proof can be found in [16]. 

2.3 The Main Results 

Let (Il, .T, P) be a complete probability space equipped with right-continuous 

complete a-algebras {J} > . Let W be an r-dimensional Wiener process, and 

{ Wfl}flEN be its approximation sequence of processes of bounded variation. For 

j,l = 1,2,... ,r define processes 

S4,  (t) = f (WI 	W(s))dW(s) - 

where Jjj is the Kronecker's symbol which assumes 1 if j = 1, and 0 otherwise. 

We assume the following. 

Assumption 2.3.1. There exists a positive number a such that for every ic < a 

and every positive 8 

W—W 

S, =O(n), 

H5nU = O(lnn). 

Let b, a3 , j = 1, 2,... , r, be Borel measurable random vector fields mapping 

[0, oo) x Rd  to R'1 . We consider "Stratonovich" stochastic differential equation 

dX(t) = b(t,X(t))dt + cr(t,X(t))odW(t), 	(2.3.1) 

with the initial condition 

X(0) = 	 (2.3.2) 

The last term in the right hand side of (2.3.1) represents the Stratonovich stochas-

tic integral which can be reduced to the Ito integral by 

a(t, X(t)) o dW(t) = a(t, X(t))dW(t) + u(j)(t, X(t))dt, 
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for every fixed j where 

a. 
a3  (t,x) = o(t,x)—o(t,x). 

z(a) 

Above j, 1= 1,2, ... ,r, i= 1, 2, . 	 ,d. 

For every integer n E N we consider the differential equation 

dX(t) = b(t,X(t))dt + o(t,X(t))dW,(t), 	(2.3.3) 

with the initial condition 

X. (0) = . 	 (2.3.4) 

Suppose that the following is satisfied. 

Assumption 2.3.2. 

Random vector field b is Lipschitz-continuous with respect to x e Rd,  i.e. 

for some constant K 

b(t,x)—b(t,y) < Kx—y 

for all x, y E R' uniformly in t e [0, T], and satisfies linear growth condition 

Ib(t,x)I :!~ K(1+Ix) 

for all  E Rd  and  E [0,T}. 

Random vector field a is from the class Cb"3([0,  T] x Rd)  for every 

j = 1, 2,.. . , r, i.e. it is continuously differentiable with respect to t and 

three times continuously differentiable with respect to x with all derivatives 

bounded by constant K. 

Initial value is an ..T0 -measurable random variable in R'1 . 

Note, that under Assumption 2.3.2 problems (2.3.1)-(2.3.2) and (2.3.3)-(2.3.4) 

admit continuous on the interval [0, T] solutions X, X, respectively. 

Theorem 2.3.1. Under Assumptions 2.3.1, 2.3.2 the sequence of solutions X,, 

of problems (2.3.3)-(2.3.) converges almost surely to the solution X of problem 

(2.3.1)-(2.3.2). Moreover, for any 'y < c 

IX — Xn I = O(n). 

Let us consider a weakened version of Assumption 2.3.2. 

Assumption 2.3.3. 
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Random vector field b satisfies monotonicity condition with respect to 

x E Rd,  i.e. for some constant K 

(x - y)(b(t,x) - b(t,y)) < Kx - y1 2  
for all x, y e R' uniformly in t E [0, T], and satisfies linear growth condition 

	

b(t,x)I 	K(1 + xj) 

for all x E Rd  and t e [0, T]. 

Random vector field ai is from the class C,' 3 ([0, T] x R') for every j = 
1, 2,... , r, i.e. it is continuously differentiable one time with respect to t 

and three times with respect to x with all derivatives bounded. by constant 

K. 

Initial value is an .T0 -measurable random variable in R'. 

/ Basically, this is Assumption 2.3.2 with the Lipschitz continuity of the drift b 

replaced by the monotonicity condition. Clearly, Assumption 2.3.3 ensures that 

problems (2.3.1)-(2.3.2) and (2.3.3)-(2.3.4) have continuous on the interval [0,T] 

solutions X, X, respectively. 

Theorem 2.3.2. Under Assumptions 2.3.1, 2.3.3 the sequence of solutions X 

of problems (2.3.3)-(2.3.4) converges almost surely to the solution X of problem 

(2.3.1)-(2.3.2). Moreover, for any 'y < c 

= O(n 12 ). 

2.4 Auxiliary Results 

Theorems 2.3.1, 2.3.2 will be proved after proving a number of auxiliary proposi-

tions. 

Lemma 2.4.1. Let {fl}flEN  be a family of real valued stochastic processes of 

bounded variation starting from 0; {n}nEN  a family of continuous real valued 

stochastic processes with stochastic differentials 

dço(t) = f(t)dt + g(t)dW(t). 	 (2.4.1) 

Suppose that for some positive numbers ic, K 

Esup <T 	< K, 

Esup<T f(t)r < K, 

Esup <T  I g(t) I  rq < K, 

Esup <T  jV)n(t) Irp <Kn', 
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for each n and some positive integers r, p, q, such that i/p + 11q = 1. Then 
r 

	

Esup / ço(s)d'(s) 	< Cn, 
t<T Jo 

where constant C = C(r, p, T, K) does not depend on n. 

Proof. Integration by parts gives, 

	

fo
t 	 r 

	

Esup 	 dOn 	CrESUP Icon(t)?  0'n(t)I' 

	

t<T 	 t<T 
r 

+ crEsup I f(s)'(s)ds 
t<T  

+ CrESUP/ g(s)(s)dW(s) 
t<TJo 

where Cr  is a constant independent of n. Applying Jensen's, Holder's and Burkholder-

Davis-Gundy inequalities to each term in the right hand side of the last inequality 

we get 
r 

	

Esup / çO(s)d?/'(s) 	Cn', 
t<TJo 

where constant C does not depend on n, which proves the lemma. 	 0 

Lemma 2.4.2. Let {B fl } flE N be a sequence of real valued processes defined on the 

interval [0, T], and let /3, 'y  be positive numbers such that 'y < 0. Suppose that for 

every n, and some r> (/3 - 

/ 	 \1/r 

(E sup pB(t)) 
\ t<T 	/ 

where c,3 may depend on r but not on n. Then 

B = O(n) 

Proof. We have 

P{sup B(t) > n} = P{sup B(t)' > n} 

	

t<T 	 t<T 

< flrYJ B(t)I' < 
t<T 

Therefore, 

P{supB(t) > n} 	 < 00 

t<T 

	

n 	- 	 n 

by the assumptions of the lemma. By Borel-Cantelli lemma there exists a finite 

random variable (.-)' depending on 'y  such that almost surely 

supB(t)l < (n 
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Lemma 2.4.3. Suppose that for a sequence of real continuous stochastic processes 

{n}nEN defined on [0, T] and a positive number 'y 

(. A ir) = O(n), 

for every E > 0 where the stopping time ir is defined as inf{t > 0 : Ie(t)I > el. 
Then 

= O(n). 

	

Proof. Let us denote 	(t) = (t A lrfl ). First, notice that SUPtE[O,T] Ine(t)I _+ 0 
in probability for all E > 0 implies SUPtEIOT) Ie(t)I —* 0 in probability as n -+ 00. 

Indeed, this follows from the relation 

	

{w E 1: sup 	(t)I ~: ö} = {w e Q : sup Ine(t)I > 51 

	

tE[O,T] 	 tE[O,T] 

for 0 < 5 < e. Using this remark, from supte[o,T]  6 (t) I -* 0 almost surely it 

	

follows that 5UPtE[0,TI 	(t) I -+ 0 in probability as n -* 0. Define 

Qn = {w e Q : sup sup jk(t,W) <}. 
k>n tE[O,T] 

It is easy to check that P(U 1 1) = 1. Then there exists N = N(w) such that 

for all n>N 

	

SUP 	 = sup ne(t,W)I :5 776 (w)n, 

	

tE[O,T] 	 tE[O,T) 

where i is an a.s. finite random variable for every 6 > 0. The last inequality 

holds by the assumptions of the lemma. Define 

= sup sup n1'J(t,w)I. 
n~!1 tE[O,T] 

This random variable is a.s. finite. This proves the lemma. 	 El 

Lemma 2.4.4 (Gronwall). Assume that for non-negative increasing continuous 

processes y, Q such that Ey(oo) < 00 and Q(oo) < K the following condition 

holds, 

Ey(r) -!~ E f y(s)dQ(s) + s 

for any stopping time -r. Then 

Ey(oo) < EeK 
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2.5 Proof of the Results 

2.5.1 Proof of Theorem 2.3.1 

We start with rewriting the ordinary and "Stratonovich" equations. Rewrite 

(2.3.1) in the Ito form 

dX(t) = b(t,X(t))dt +t,X(t))dW(t) + c7 ) (t,X(t))dt. 	(2.5.1) % 

Writing out the differential for 01 (t, X,, (t)) and using (2.3.3) we get, 

d4(t,X(t)) = 	aj (t,X(t))dt + 	 aq.
OXk 

+ Oj (al)(t,Xfl(t))dW fl (t)• 	 (2.5.2) 

Rewrite (2.3.3) in the form 

dX(t) = b2 (t,X(t))dt + o(t,X(t))dW(t) 

+ o(t, X(t))d(W(t) - W(t)). 

Integrating by parts the last term and ap plying (2.5.2), we derive 

dX(t) = b2 (t,X(t))dt 

+ cr(t,X(t))dWJ(t) 

+ d(a(t,X(t))(W(t) - W(t))) 

- (W(t) - W(t))u!(t,X(t))dt 	 (2.5.3) 

- (W(t) - 	X. (t))dt 

- (W(t)—W(t)) 	, (t,X(t))dW(t). i(c) 

Let us fix some positive ic < a. Define for any integer R> 0 stopping times 

= inf {t > 0: X(t)l + nk(IW(t) - W(t)I + S(t)) + 	~ R} 
ln n 

= inf{t > 0 : X(t) - X(t)I > e}, 

p RE = r, A ire A T. 

Parameter 5 will be chosen later. While using p R,, for simplicity we will omit 

indices R and E, and simply write p. Using (2.5.1), (2.5.3) for any stopping time 

r and any r = 2,3,... 

Esup IX(t A p) - X,(t A Pfl)I t<r 
(2.5.4) 

~ + 	+ 
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where constant c1  depends only on r, and 

tAp r 

Ii = Esupf (b(s,X(s))—b(s,X(s)))ds 
t <1-  

P 2 - E sup 
tAp 

f 
r 

t ~ r  

tAp 1' 

P 3 - - Esupf (a I) (s,X(s))—u () (s,Xfl (s)))ds 
t<r 

141 = 	EsupI{o(s,Xfl(s))(W,(s)—Wi(s))JS_O \\1tAp  

I  
r 

t<1- 

I 5 = Esup 
tAp 

(We (s) - W(s))4(s,  X(S))ds, 
tr 

= EsuPf 
tAp 

(W(s)—W(s))bk (s,X(s)) 0 	o,4 (s, X(s))dsH 
1jk 

t<T 

r1 
7 - 

- Esup 
tAp 

fo (cri 	l) (s, X(s)) - 	 (s, X( s)))dS 1 ( s )I 
i(a 

t<r  

18i 1 = EsuPf 
tAp 

i(a) 
( s, X(s))dS 1 ( s ) 

t~i- 

By Burkholder-Davis-Gundy and Jensen's inequalities as well as by Lipschitz- 

continuity of b, aj  i  andwe get 

max{I1,I,I} 	c2E
10' 
 sup IX(uApn)_Xn(uApn)d(sApn), 

3 	u<8 

max I 1  < c2(Rlnö n)r_1Ei
n T  

sup X(uAp) 
3,1 	u<s 

where constant c2  = C2 (r, T) does not depend on n and R. Next, by Assump-

tion 2.3.2 and the definition of the stopping time p,, 

max{13  P rjk 
~ kE sup IW(t) - wj(t)I' 4' 5' 6 J j,k 	 t<'rApn 

where constant k 1  = k 1  (r, T, R, E) does not depend on m. 

To estimate I1  it suffices to show that 	(t) 	 A p, X(t A pa))' 

:= S'(t A Pn  A r) satisfy the conditions of Lemma 2.4.1 for every n and 

some p, q, say p = q = 2. Indeed, using the Ito formula and applying (2.5.1) 

we derive ItO differential and conclude that by Assumption 2.3.2 and the 

16 



definition of the stopping time p functions 

09  
A  =  5 z( ) 1 (t,X(t)) + bk(t,X(t))—a ) (t,X(t)) u 

1 h 	
--- 	 1 t)) + 	
aXk 
 u 2(a  (t,X( , 

a2  
+ 

g(t) = 

are bounded uniformly in t e [O,TAp], i.e. assumptions (i)-(iii) of Lemma 2.4.1 

hold. Assumption (iv) is satisfied by Assumption 2.3.1. By Lemma 2.4.1 

maxI' < 
•7,1 

constant k 2  = k2  (r, T, R) does not depend on n. 

Summing up inequalities (2.5.4) by i and using all estimates above we derive 

Ey(r) < cE LT y(s)dQ(s) + kTh, 	 (2.5.5) 

where constants c, k are independent of n, and 

y(t) = 
u<t 

Q(t) = tAp + (Rlns n)r_ h ISn I(tAp n ) 

are increasing by t non-negative and continuous processes, and 

Q,, (t) < T+ (Rln8 n)'. 

Using Gronwall lemma (Lemma 2.4.4) for every ri we have 

E sup X(t) - X(t) < kn" exp{cT + c(R1n5 )r}, 
t<p 

which, under condition Jr < 1, implies for every 0 < it 

	

Esup X(t) - X(t)Ir < 	or   con- 
t<—Pn 

where constant c o  = co  (r, T, R) does not depend on ri. 

For any -y < it choose 0 such that 'y </3 < it, then choose r> (j3 - y) 1  and 

6 < 1/r. By Lemma 2.4.2 almost surely 

	

SUP IX(t) - X(t) < 	 (2.5.6) 
t<p 

17 



where 	is a finite random variable. 

Below we are getting rid of stopping times r and ir. Let us consider processes 

A(t) = IX(t)l + n(IW(t) - W(t) + S(t)p) 
+ 11 t) 

ln5 n 

and 

A(t) = sup A(t). 

Process A(t) is continuous in t for every n, then process A(t) is left-continuous, 

and by Assumption 2.3.1 almost surely finite for any t. Then 

= inf{t > 0: A(t) > R} 

is a stopping time, and inequality A(t) A(t) implies 

r 

for every w and every n. Moreover, almost surely 

lim R = 00. 
R—*oc 

By (2.5.6) the random variable 

71y,R = SUP n7  sup 	IX(t) 
- X. (t) 

	

fl 	t<r 1 A7rAT 

is almost surely finite, and hence for any 'y < ic 

SUP JX(t) - X(t) ~ 
t<TRAAT 

Consider sets 11R = {w: I? > T}. It is obvious that P (U i IR) = 1. Define 

	

for w e hi and 77, = 	for w E hR\(UihR),  R > 2. Then 77.,  is 

almost surely finite and 

SUP IX(t) - X(t) < 
t<,rAT 

for any 'y < 'c. Finally, note that because of the arbiti'ary choice of ic the last 

inequality holds for any 'y < o. It suffices to apply Lemma 2.4.3. The proof of 

the theorem is complete. 
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2.5.2 Proof of Theorem 2.3.2 

This theorem can be proved in exactly the same way as Theorem 2.3.1. However, 

under Assumption 2.3.3 the term I in the proof of Theorem 2.3.1 becomes prob-

lematic. Our aim now is to get a better expansion for IX - For simplicity of 
notations let us denote by F(t) G(t) the integral j  F(s)dG(s). For two vectors 
U, v E R d  the scalar product in Rd we will denote by 'iiv. For simplicity we will 

also drop parameter t. We get the following expansion. By the Ito formula 

IX—Xn 1 2  = 

where 

Jo = 2 (X - X)(b(t, X) - b(t, X)) 

Ii = 2(X - X)(a(t,X) - o(t,X)) . W, 

12 = 2(X - X)a(t, X) . (W - W), 

13  = (X—X fl )o ) (t,X).t, 

14 = 	a(t,X)1 2 .t. 

Next, again by the ItO formula 

	

12 = 	I2k, 

where 

120 = 2(X—X)(W - W,)a(s,X)I 0 , 

121 = - 2(14/i - T47 )o(t, X)(b(t, X) - b(t, X)) t, 

122 = - 2(W - W,)cr(t,X)(a1(t,X) - 0 1 (t,X)) W I , 

123 = - 2(W - W)a(t, X)a 1 (t, X) (W 1  - WI,), 

124 = - ( 147  - 147 )o(t, X fl )o l) (t, X) . t, 

'25 = - 	
at 

126 = - 2(X —X)(Wi - W)—u(t,X fl )bk (t,X fl ) - t, 

127 = - 2(X - X)(W' - W)a l) (t )  X) 

128 = - 2a3  (t, X)u(t, X) t; 

	

123 = 	'23k, 
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Where 

1230 = —(Wi - W) (W 1  

1231 = 2(Wi - W)(W 1  

1232 = 2(W - W)(W 1  

1233 = 2(W—W)(W 1  

1234 = I0, (t,X)I2 . t.  

—W711)a(s,X)a1(s 	 t 
I ) X \I 

ns=o,  

- W)u(t, X)a(t, X) t, 

- W., 	(t Xn)a1 (t, X) bk(t,  X) t, 
DXk 

- W,3a(t,X fl )ah) (t,X fl ) W' n , 

Let us denote 

Jl = 127+13 = _2(XXfl )a L) (t,X).S )  n , 

= 1233+124 = 2(W3  - W)a - (t,X fl )uh) (t,X) n , 

= 14+128+1234 = 0, (t,X)—o(t,X) 2 . 

We have 

Jl = 

where 

J10  = —2S1(X - Xfl)O•i)(S V\It 
./i 

) Is=O, 

J11 = 2S 1 O• aI)(t X)(b(t, X) - b(t, X)) t, 

= 2S 1 O I) (t, X)(oh1(t,  X) - crh(t, X)) • Wz ,  

\ J13 = 	 Orh 	(W' - Wah ), 

J14 =Sj,'Orj .t, 

= 2S(X - X)-a 
at 	

(t, X) t, (a) 

J16 = 2S 1 (X - X)a (t, X)b(t, X) t, ax p(a) 

J17  = 2S 1 (X - X) — ---a (t,X)cx(t,X) 
axp 

J18 = S 1 (X - X—a 1  
x 	

tX)U(q)(t,X)t, 
p 

J19  = 2S 1 _-_U aI) (t X)a(t, X)u 1'(t, X) t; n 

= 	J2k, 
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where 

J2O = 2S(W2 - W)o 3 (s, X fl ) Oh)(8, X) l0, 

J21 = 	2S?o'(t, X fl ) 4,h)(t, X) (W - W), 

J22 = — 2S(W - 	 t, 

J23  = —2S(W - 
axp  

—2S?(W - 
	Ori 

	X " , 	) 	n, 
X, )  

J25  = 	2S(W3 - W)a(t, X fl ) Uh)(t, X) t,
at 

J26  = —2S(W - W)a(t, Xfl) —a(ah)(t, X)b(t, X) t, 

J27  = — 2S(W - W)a(t, X fl ) 	
Or( 

h) X)u(t, X) 
axp

J28  = — S(w - W) a(t,X) 	Uh)(t,X)cY(q)(t,X)ax P 

29 = _2Sa(t, Xfl )_cJh) (t, X)o(t, X) t. 

Note that J19  + J29  + J13  + J21  = 0. Denote 

J1  = J24  + J14  = _2S 1 0, 1) (t, X)O aq) (t, X) Qhq 

Then 

= 

where 

hq 
 I 
t  

— Sj,,' Crj 	 s=o' 

J41 	= 2S 1Sa,) (t, X)O jq) (t, X) 

J42 = 
fl 	(a 1) (t X)-_cr (q) (t, X)bk(t, X) 	t, 

= 
fl 	(a W°, 28i18hi 	)(t,X)O•( aQ)(t,X)O•k(t,X) 

J44  = S j1 SO l) (t ) X)__O• (aq) (t,X)O• (gp) (t,X) .t, 
DXk 

- - sfls 	Ol L) (t, X) 
aXk, 	(a _ 	U q) (t, X) up (t, X)a 2 (t, X) 	t. 

DXk 2  

Then repeating the proof of Theorem 2.3.1 and denoting 

z(t) = sup IX(UApfl) — X(uAp)I 2 ' 
u<t 
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we can get inequality (2.5.5) with y(t) replaced by z(t), which leads to the rate 

n'2  The first term of the right hand side of this new inequality is formed by 

1 + J3  and the second term is formed by 

Il + 	'2k + 	123k + 	E 	Jik + 	 J + 	J4,. 
k=0,1,2,5,6 	k=0,1,2 	k=0,1,2,5,6,7,8 	k=0,2,3,5,6,7,8 	k 

U 

Note, that under the Lipschitz-continuity of the problematic terms 121,  J11  we 

again get the result n. 
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Chapter 3 

Stochastic Evolution Equations 

3.1 Introduction 

In this chapter we consider an abstract form of a stochastic differential equation in 

infinite dimensional settings often referred to as a stochastic evolution equation. 

We consider the stochastic differential equation of the form 

du(t) = (A(t, w)u(t) + f(t, w))dt + (B(t, w)u(t) + g(t, w))dT'V 3 (t) (3.1.1) 

in a normal triple of spaces V - H 	V (see Definition 3.2.1) with the initial 

condition 

	

U (0) = u0 , 	 (3.1.2) 

where W is an r-dimensional Wiener process, A, B, j = 1, 2,... , r are linear 

operators on V for every (t, w), f, gi are stochastic processes in H and u0  is a 

random variable in H. We recall that here and throughout the paper we use the 

summation convention with respect to the repeated indices, i.e. in (3.1.1) we sum 

up the last term with respect to j from 1 to m. 

We approximate the Wiener process W with a sequence { W'11111EN of continu-

ous processes of finite variation in the supremum norm on the interval [0, T] with 

the rate n for each ic < a for fixed a > 0, with some additional assumptions 

on the area process S (see Assumption 3.3.1). Simultaneously we approximate 

operators A, B, processes f, g, and the initial value u0  in the same type of 

topology with the same rate of convergence (see Assumption 3.3.5). We get an 

approximation sequence of the differential equations 

du(t) = (An(t, w)u(t)-i-f(t,  w))dt + (B(t, w)u(t)+g(t, w))dW(t), (3.1.3) 

n e N, considered in the same triple V -* H -+ V with the initial conditions 

	

u(0) = UnO. 	 (3.1.4) 
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The convergence of the sequence of solutions u of problems (3.1.3)-(3.1.4) to 

the solution u of the problem (3.1.1)-(3.1.2) in the supremum norm on [0, T] was 

shown before (see [6]) under the assumption that the last differential in equation 

(3.1.1) is interpreted in the Stratonovich sense. We investigate the rate of this 

convergence. In Theorem 3.3.1 we show that the rate of the convergence u -4 U 

is n'2  for each ic < c. 

The next chapter is devoted to a particular situation of stochastic partial 

differential equations. There we apply the main result of this chapter to the 

situation where A is a second order and Bi are a first order differential operators. 

3.2 Generalities 

Before formulating the result we recall some definitions and fundamental results 

from the theory of stochastic evolution systems, and introduce some notations. 

Throughout the chapter for a Banach space, say U, we will denote its norm by 

lu, i.e. we equip the norm sign with the symbol of the space. 

3.2.1 Normal Triple 

Let U, V be two Banach spaces. We say that the space U is normally imbedded 

into the space V (we denote this by U 	V) if the imbedding is dense (in the 

topology of the space V generated by the norm 	v)  and continuous, i.e. there 

exists a constant N such that j vjv NIuIu  for any v E V. 

Let V, V be two separable Banach spaces, THI be a Hubert space with the 

scalar product denoted by (.,.). 

Definition 3.2.1. The triple (V, THI, V) we will call normal and denote by V 

H -+ V if the space V is normally imbedded into the space THI, which, in return, 

is normally imbedded into the space V, and for some constant K 

(v,h)I < Kvlvlhlvi 	 (3.2.1) 

for all v E V, h E H. 

An important example of a normal triple is the Sobolev space W(R') (the 

space V), L2(Rd)  (the space THI), and (the space V'). Sobolev spaces are 

considered in more details in Chapter 4. 

For any v' e V choose a sequence {h} from TEll such that I h - V'1 v -+ 0 as 

n -* oc. By (3.2. 1) (v, h) converges. Thus for all v e V define a bilinear .  form 

[v,v'] = 1im(v,h). 
fl 00 
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Clearly [v, w] = (v, w) for v, w E H. Therefore, below for simplicity we will use 

the same notations for -the bilinear form [.,.] and the -scalar product in THI, and 

simply denote them by (.,.). 

It is easy to check that it has the following properties: 

it is continuous with respect to both variables, i.e. for all v e V and v' e V 

(V,V')l < NIvIvIv'Iv; 

it coincides with the scalar product in H if v' e IHI; 

if v'(t) is an integrable function on the interval [a, b] taking values in V then 

for every v E V 

(v,fv'(s)ds) = fb 

The form (.,v') defines a linear functional on V for v' e V. Suppose that the 
equality (v, v') = 0 for any v E V implies v' = 0, and assume that any functional 

on V has the form (.,v'), for some v' e V. Then the mapping J.  : v' - (.,v') 

is a one-to-one mapping of V onto the space V*  (here and throughout the paper 

V* denotes the conjugate space for V). Moreover, the following holds. 

Proposition 3.2.1. The mapping LT defines an isometric isomorphism between 

the spaces V and V* .  

We will say that the scalar product in H defines the duality between the spaces 

V and V. 

3.2.2 Hubert Scales 

Here we recall the definition and basic properties of a Hilbert scale. This topic is 

covered in more details in [2] (see §7, Chapter II). 

Let V, IHI be two Hubert spaces with scalar products (• . )v, (•,.), and norms 

I , respectively. Let V be normally imbedded into H, and IvilNi VIV for 
all v E V. Here we show that this spaces can be connected by a Hubert scale 

(see Definition 3.2.2 below), i.e. there exists a Hubert scale such that one of its 

elements Is the space V and another is the space H. We also give some properties 

of the constr'ucted Hilbert scale. 

The following is well-known 

Proposition 3.2.2. There exists a unique self-adjoint positive definite operator 

A defined-on the space V and mapping it onto the space H such that IvIv = IAvIH  
for every v E V. 
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The operator A is called a generating operator for the pair (IHI, V). 

Making use of the spectral decomposition of the identity E,, corresponding to 

the operator A we define powers of this operator by the formula 

coo 
AUv 

= J AUdE,v, 	aER 
0 

(see 3, Chapter II, [2]). 

For every a > 0 the domain of operator AU  we denote by H. For a < 0 we 
define IHIU  as the completion of the space H with respect to the norm = IAU.IIHI. 

It is known that 1HL defined in this way is a Hilbert space for each a E R with 

respect to the scalar product 

Definition 3.2.2. A system of Hubert spaces JH,, JaEiR  is called a Hubert scale if 

for any three real a, 3, 'y such that a < 6 < 'y the space THL is normally imbedded 

into Hp and in turn THI$  is normally imbedded into IHJQ , and for every V E 1HL 

(yy-a)  vj 	:5 IvhlL 	V I]J 

It turns out that by the representation for the operators AU  the system 

IHI,}IIER is a Hubert scale possessing the following properties, 

it is uniquely defined; 

JI-IL = n,,ER ]H[ is dense in the space IHL,, for all a E H in the norm 

the spaces ]HL and THL U  are mutually conjugate with respect to the scalar 

product in H0 . 

The system {THIQ }aER  is called the Hilbert scale connecting spaces V and H. 

Let us choose real a, /3 such that a </3 and define 'y = 2/3 - a. We consider 
the triple of spaces (THIU , H, lHL) ). For any v E THI., h E HO  

(Av,A'h)iI = 

= I(v,Ah)I :5 

and hence we have the following. 

Proposition 3.2.3. The system (H,H,1HL) is a normal triple. 

In view of the last assertion, by the properties of normal triples (see Propo-

sition 3.2.1), the scalar product in THI N  defines the duality mapping between IHL 
and THL) . 
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3.2.3 Ito formula 

Let (ci, F, P) be a complete probability space equipped with a complete right-

continuous filtration {Ft}t>o,  i.e. an expanding system of a-algebras imbedded in 

F. Let us fix a normal triple V c-*  IHI -* V. We will use the following fundamental 

result. 

Theorem 3.2.4 (Ito formula). Let f3i  be a V-valued stochastic process for i = 

1, 2 such that almost surely 

i(t) = v 0  + f v(s)dN(s) + m(t) 

for all t e [0, T], where v 0  is an H-valued F0 -measurable random variable, N is an 

Ft -adapted continuous stochastic process of bounded variation, mi  is a continuous 

Ft-adapted local martingale for each i = 1, 2. Assume there exists a V-valuedFL 

adapted process vi  such that 

= V i M 
for dN x dP-almost every (t, w) E [0,T] x ft Assume, moreover, that almost 
surely 

f
T 

(Iv(s)v + I()Iy + v(s)v(s)Iv)dN(s) < 00. 

Then there exists a set Il' C  such that P(ci') = 1, '(t,w) E Hfor all  E [0,T], 
W E Il', and for all w E ci' 

('vl(0),v2(0)) 
t 	 z t 

+ 	(v i (s),t4(s))dN(s) +
z

(v(s),v 2 (s))dN(s)  
f t 	 ft 

+ 	
(i3i(s),dm2(s)) + J (02(s),dm1(s)) 
 0 

+ (m1 ,m2 )(t). 

This theorem follows directly from Theorem 3.2. (Ito formula for the square 

of the norm), [9] by making use of the formula (i3 1 , 02) =(I' + 2 J 2  - 	- 

Using Theorem 3.2.4 we say that we apply the ItO formula to the scalar product 

(V1, V2) In the triple V -+ H -+ V. 

3.2.4 Stochastic Evolution Equations 

In this chapter we consider the stochastic differential equation of the form 

ft 	

fo

t 
v(t) = v0  + /A(s,v(.$))ds + 	]1(s,v(s))dW 3 (s) 	(3.2.2) 

Jo  
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in a normal triple V -+ THI -+ V on a given complete probability space (ci, F, P) 

equipped with a complete right-continuous filtration {Ft}t E [o,T], (T > 0). The 

equation is considered on the interval [0, T]. Above W is an r-dimensional Wiener 

process, v0 is an F0-measurable random variable with values in THI, and A, T, 

j = 1,.. . , r, are random fields taking values in V and H, respectively, such that 

for each v E V the functions A(t, w)v, IB(t, w)v are measurable in (t, w) (relative 

to the measure dt x dP) and -consistent, i.e. they are Ft-measurable in w for 

each v E V, t e [0,T] 

Definition 3.2.3. We will call an ]HI-solution of the equation (3.2.2) in the triple 

V TEll -+ V on the interval [0, T] an H-valued continuous Ft -adapted stochastic 

process v defined on [0, T] if 

v(t,w) E V for dt x P almost every (t, w); 

there exists a set ci' C ci with P(Q) = 1 such that (3.2.2) holds for 

every w e ci' and t E [0, T], where the equality is understood as the equality 

of elements of V; 

f
T 0  I V(t)12,dt < oo almost surely. 

Although this is not the topic of the present work, we next give assertions on 

the existence and uniqueness of the H-solution for equation (3.2.2). This topic 

is described in more details in [18], [22] (Chapter 3). The existence result is 

formulated under the following assumptions. 

Assumption 3.2.1. 

Semicontinuity of A: the function vA(t, v 1  + ).v2 ) is continuous in )¼ on 
H for all (t, w) E [0,T] x 

Monotonicity of (A, TB): there exists a constant K such that 

2(vi  — v2 ,A(t,v i ) — A(t,v 2 )) + I V (t,v1 ) — 	 ( t, V2) 
12 <

KIvi — v2 12 

for all V1, V2 e V, (t, w) e [0,T] xci; 

Coercivity of (A, TB): there exist constants K, c > 0 such that 

2(v,A(t,v)) + TB(t,v) 	+ 	< 	V 12  

c_ for ally E V, (t,) E [0,T] xci; 
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Boundedness of the growth of A: there exists a constant K such that 

A(t,v)Ivi < Kv v  

for all vEV, (t,w)E[0,T]xfZ; 

 

Evo  < 00; 

The following two theorems are proved in [18]. 

Theorem 3.2.5. Under Assumption 3.2.1 there exists an THI-solution of the equa-

tion (3.22) in the triple V 	IHI —* V on the interval [0, T]. 

The next theorem implies, in particular, the uniqueness assertion for the so-

lution of equation (3.2.2). 

Theorem 3.2.6. Let v,, n = 0,1,..., be THI-solutions of equation (3.2.2) with the 

initial condition v ç  in place of v o , where EIvoI < oo and Eu00  — unoIH --~ 0 as 

n -3oo. Then for any >0 

lim (sup EIvo(t) — v(t)IH + P{supvo(t) - 	E 	0. °° t<T 	 t<T 

3.2.5 Other Notations 

We will also need the following concepts. Let U, V be two separable Banach 

spaces. We will denote by IL(U, V) the vector space of bounded linear operators 

mapping U into V. Stochastic process X will be called measurable in L(U, V) if 

X(t, w) belongs to L(U, V) for every (t, w) E [0,00) x Q, and Xu is a measurable 

process in V for every u E U. Stochastic process Y will be called continuous in 

IL(U, V) if Y(t)u is a continuous process in the space V for all u G U. 

Similarly to the notion of 0 introduced in Chapter 2 we define the following. 

For a sequence of stochastic processes {ffl}flEN  with values in V and a nu-

merical sequence {c} fl EN we write f = 0(c(n)) in V if f(t)v 

for every t E [0, T], for some almost surely finite random variable which 

does not depend on t, n. 

For a sequence of stochastic processes {X fl } fle N with values in TL(U, V) and 

a numerical sequence {a}flEN we write X = 0(cx(ri)) in IL(U, V) if Xu = 

0(c(rt)) in V for all u e U. 
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Let the space U be normally imbedded into the space V, U " V. A random 

process v = {v(t)}tE[o , T] is said to belong to the class C([O, T]; V) fl L2([O, T]; U) 

if v is an .7-adapted continuous process in V and there exists its U-version u 

(i.e. process u with values in U such that almost surely v(t) = u(t) for every 

t e [0, T]), for which f u(t)Idt < oo. 
We call a stochastic process v = {v(t)}j>0 taking values in a separable Banach 

space U a process of bounded variation if for every t > 0 the total variation of v 

over the interval [0, t}, 

VI(t) = sup 	V(tk) - v(tkl)Iu 

is almost surely finite. Above the least upper bound is taking over all (finite) 

partitions 0 = t0  < t1 < . < tn  = t of the interval [0, t]. 

3.3 The Main Result 

Given a complete probability space (ci, F, P) equipped with a complete right-

continuous filtration {F}tE[o,T], T > 0, let W be an r-dimensional Wiener pro-

cess and {W fl } flE N a sequence of r-dimensional continuous processes of bounded 

variation both defined on the interval [0, T]. Let us fix some positive number a. 

Suppose that the following assumption holds. 

Assumption 3.3.1. For any positive ic < a and every ö > 0 

W — Wn = O(n), 

S, = 

(8) 	HSnH = O(lnn), 

where Sn  is an r x r-dimensional process defined as follows, 

S 1  (t) = f(Wi(s) - W(s))dW(s) - 5 j1  t, 

where 8j1  is the Kronecker's symbol which assumes 1 if j = 1, and 0 otherwise. 

Let 1H11  -+ 1H10  —* TEL1 be a normal triple. The scalar product in 11[0  we will 

denote as 

Let A, B, f and g be well-measurable stochastic processes on [0, T] assum-

ing their values in L(THI 1 ,THL 1 ), L(H 1 ,11l), TEL 1  and THI, respectively (here H 

denotes the product space H0  x .•. x TEl0 , m times), and let A n , Bn , fn and  g, 
n E N, be their approximation sequences. Suppose the following holds. 
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Assumption 3.3.2. For every j = 1, 2,. .. , r there exist measurable stochastic 

processes (B (°) ,. .. , B 3()), 	 . . , 	n e N, taking values in L(1H1 1 , 1H1') 

and processes (g3( 0
' 

), . .. ) g 3'), (g (0) 
 ,. . . ) g 

(rn) ), 
n E N, taking values in IHI +1  

such that the processes (v,B 3 (t)w), (v,B(t)w), (v,g(t)) and (v,g 3 (t)) have for 

every v, w E 1H1 1  stochastic differentials 

d(v, B-1 . (t)w) = (v, B °) w)dt + (v, B 1 w)dW 1 (t), 

d(v, B(t)w) = (v, B ° w)dt + (v, B'w)dW(t), 

d(v,g(t)) 	= (v,g ° )dt + 	(v,g 1 )dW 1 (t), 

d(v,g(t)) 	= (v,g ° )dt + (v 	1 )dW,(t) g n . 

Moreover, for every j, k = 1, 2,... , r there exist measurable stochastic processes 
(Bi(kO) ,.  . . , Bi()) taking values in L(]H1 1 , THI') and processes (g1(0) ,.  . . , gi('cm)) 

taking values in such that the processes (v, Bi(')(t)w),  (v, gi(c)(t))  have for 

every v, w E H stochastic differentials 

d(v, B- ( ' ) (t)w) = (v, B 0 w)dt + (v, B-w)dW 1 (t), 

d(v, g(t)) = (v, g)dt + (v, gi(cO)dT,Vl(t) .  

We stress that k 0 above. 

Let I[1I±2 , THI+3 , H4  1H15 , 1H16  be separable Banach spaces such that 1HI, is normally 

imbedded into THIk_l, k = —1,0,. . . , 6, and 11k c4 H c+ IHL k  form a normal triple 

for every k = 1,2,3. We have 

115  4 11 —* 11 	11 	11 	 H-1 " 112 —* 11 3 . 

We use the following notations. The norm in lHIfl  we denote by 1 . La The scalar 

product in THE0  is denoted by (.,.). For a linear operator X mapping H, 6  into THL 

its operator norm is denoted by IXLa,.). If operator X is defined on a subspace 

that is dense in THIN  then XI  denotes the norm of X extended by continuity to 

the whole space 1HI. 

We consider "Stratonovich" stochastic differential equation 

I t 	 I t 

u 	= 	+ 	(A(s)u(s) + f(s))ds + 	(B 3 (s)u(s) + ga(s)) o dW 3 (s) (3.3.1) 

in the triple TEll1  -+ 1HE0  -+ IHI- 1 , where 6 is an .F0-measurable random variable 

with values in 112. Here we used the short notation for the infinite-dimensional 
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analogue of the finite-dimensional Stratonovich differential, 

(B(t)u(t) + g3 (t)) o dT'V 3 (t) = (B(t)u(t) + g(t))dW(t) 

+ B(t)(B(t)u(t) + g(t))dt 

+ 	 + g(t))dt 

for every fixed j. For n e N we consider differential equations 

pt 
u(t) = 6. 

+ J (A(s)u(s) + f(s))ds + j (B(s)u(s) + (s))dW(s) 
0 	 0 

(3.3.2) 

in the same triple H1  Ho H-1 , where 6n  is an F0-measurable random 

variable with values in H1 . 

We assume the following. 

Assumption 3.3.3. There exists a finite random variable ( such that 

	

A(t)Ik,k_2 	C, 
	k=0,1,...,6, 	lf(t)14 	C, 

	

lB3 (t )k,k_1 	C, 	k=-2,-1,...,6, 	9i(t)5 :
~ C 

	

B 1 (t)Ik,k_1 
	

C, ,  

	

lBi (Id ) (t)l 3 , 2 	C, 	 9i(!l)(t)2 	C, 

and for every n e N 

lA fl (t)l k ,k2 	(, 	k = 0, 1, 2 1 
	

lf(t)lo 	C, 
< , 	k = —1,0,1, 

	

lB(t)l k ,k1  :5 C, 	k = —1,0, 	I i( l) 	
~ C, 

for every j, k = 1, 2,. . . , r, 1 = 0, 1,.. . , r and (t, w) E [0, T] x Q. 

Assumption 3.3.4. There exists an almost surely finite random variable C such 
that for some positive ) for every j, I = 1, 2,.. . , r and n e N 

(i) for every v e H1  

(v,Av) + Clvl, 

	

I(Bv,Bv) + (v,BBv) 	CM, 

	

I(v,Bv)l 	Clvl, 

	

(v,B 1 v)l 	Clvl, 
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(ii) for every v E '2 

(Av,Bv) + (v,BAv)I ~ 

The first inequality in the assumption above is the coercivity of the operator 

A n  which we need for the existence of the solution for the equation (3.3.1) in the 

triple 1H11 - 1HI c ]HL 1  (compare with Assumption 3.2.1). The other inequalities 

look less usual, however, are satisfied in Sobolev spaces by Bi defined as the first 
order and A defined as the second order differential operators. This situation is 

the subject of Chapter 4. 

Assumption 3.3.5. 

For every ,c<afor all j,l=l,2,...,r 

A - A n  = O(n) in L(1H1 1 ,IHI_ 1 ), 

B 3  - Bi = O(n) in L(1H12 ,1H11 ) and L(1H1 1 ,1H10 ), 

- 	 = O(n) in L(Hi ,H0); 

For every ic<afor all j,l=1,2,...,r 

f - fn = Q(n) in Ho, 
93  —.g = O(n) in H1 , 

gi(l) - gnl (')  = O(n) in 1H10  

for every ic < a 

- 	 = O(n) in H0 . 

Note that in two assumptions above 1 does not assume value 0. 

Assumption 3.3.6. On the interval [0, T] there exist solutions u, u of the equa-

tions (3.3.1), (3.3.2), respectively, such that u is from the class C([0,T];1H15 ) fl 

Un is from the class C([0,T];]H11 )nL 2 ([0,T];1H12 ). 

Theorem 3.3.1. Under Assumptions 3.3.1-3.3.6 the sequence of solutions u of 

differential equations (3.3.2) converges alinost surely to the solution u of "Stratonovich" 

stochastic differential equation (3.3.1). Moreover, for every it < a 

U - 	 = O(n), 

and 
fT 

u(s) - u(s)Ids = O(n) 
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3.4 Auxiliary Results 

In this section we give some auxiliary statements. They are to be used to prove 

the main result of the chapter. The following lemma is similar to Lemma 2.4.2. 

However, processes are considered in an arbitrary Banach space. 

Lemma 3:4.1.  Let  fi, 'y be two positive numbers, "y < 6. Assume that for a 

sequence of stochastic processes {B fl (t)} flEN , t E [0, T], with values in a separable 

Banach space V, for every n and some r > (,13 
- 

'y) - ' the following condition 

holds, 

(E sup IB(t)I)1/' t<T 

where c ,6  may depend on r but not on n. Then 

Bn  = O(n) in V. 

Proof. We simply set B(t) = IB(t)I v  and apply Lemma 2.4.2 for B. 	LI 

The following statement is a corollary of the Burkholder-Davis-Gundy esti-

mation. 

Lemma 3.4.2 Let {n}nEN  be a sequence of stochastic processes with values in 

a Banach space V. Let a be a positive number. Suppose that for every positive 

ic<a 

= O(n) in V. 	 (3.4.1) 

Let W be a Wiener process, and assume the existence for every ri of the stochastic 

integral of ço with respect to W. Then for every positive 'y < a 

f (s)dW(s) = 0(n 7) in V. 	 (3.4.2) 

Proof. Let us fix any K. Denote G(t) = nI(t)Iv. Let us define for any positive 

integer R a sequence of stopping times 

= inf{t > 0, G, (t) > R}. 

By Burkholder inequality for every number r = 2,3,... 

t 

	

E sup If 	(s)dW(s)I ~ cE sup 	(t)I 	Cn, 

	

t<rAT 0 	 Iv 	t<rAT 

where constant C = C(r, R) does not depend on n. Then by Lemma 3.4.1, 

assigning B"(t) = JAT p(s)dW(s), for every positive 'y < ic 

sup f 	(s)dW(s) 	< iRTh, 	 (3.4.3) 
t<rAT 0 	 V 
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where 	is an a.s. finite random variable. Denote G(t) = sup G(t) and define 
stopping time 

= inf{t > 0, C(t) > R} 

Inequality G(t) < G(t) implies relation 

TR < T 

and, therefore, by (3.4.3), for any 'y < k 

sup I 	(s)dW(s) ~ ThY,Rn 
t<TRAT 	 V 

By assumption (3.4.1) of the lemma process G(t) is bounded above by an 

almost surely finite random variable. This implies almost surely 

lim TR = 00. 
R-*oo 

Introduce sets 1R = {w, TR ~: T}. Obviously, almost every w hits some QR  So 
that, P(U l 1R) = 1. Define 	= 17-Y,R for w E R\(Ui'k), R  

For other values of w define 77.y  = oo. Then i is an almost surely finite random 

variable, and for any 'y < n inequality (3.4.2) holds. 

Finally, note that because ic can be chosen arbitrarily inequality (3.4.2) holds 

forany -y<c. 	 U 

The following two lemmas are technical tools for the estimation of the terms 

of a special form. Let y be a stochastic process with values in a Hilbert space V. 

Assume that process y has a stochastic differential 

dy(t) = a(t)dt + 0(t)dW3 (t), 

where W is an r-dimensional Wiener process. Suppose that processes y, a, 

j = 1, 2, . .. , r satisfy the following conditions, 

fo
y,&2  = 0(1) in V, 	a(t)I,dt = 0(1). 

Let ce be a positive number, and {'b fl } fl EN a sequence of real valued stochastic 

processes, such that for every ic < c 

= O(n). 

Lemma 3.4.3. Under the assumptions above for every r, < c 

f y(s)d(s) = 

providing that this integral exists. 
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Proof. We rewrite the assumptions of the lemma in the form 

sup Iy(t)Iv < , 

t<T 

f a(t)Idt ~ , 

	

sup I b,  (01V 	C, 
t<T 

for an a.s. finite random variable (, 

sup kb(t) 
t<T 

for every positive it < a and some a.s. finite (for every ic) random variables . 
Integrating by parts we get 

(.t 	 3 

j y(s)d'/',(s) = 
0 	 k=1 

where 

On'  W = y(t)O(t) - y(0)(0), 

O(t) = 
- f 

a(s)(s)ds, 

8(t) = 
- 

Below we estimate the terms 9. 

< 
t 	 t 

1/2 

O(t)Iv 	(ft Ia(s)Ids) 	(ft 	(s)ds) 	< 

Assign 	(t) = b(t)(t). By assumptions of the lemma sup t 	(t)v 
Then by Lemma 3.4.2 

O(t)v ~ 

where random variable 77, is almost surely finite. It suffices to notice that the 

random variable ( + 	+ 77,, is a.s. finite. 	 El 

Let 1H12  -* 1H11 —+ 1H10 -+ THI_1 - IHI_ 2  be a system of densely embedded Hubert 

spaces. The norm in IHIk  is denoted by k, the scalar product in 1H10  and the 

duality between 1H1 1  and IHL 1 , as well as 1H12  and THL 2  is denoted by (.,.). Consider 
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stochastic processes y, vn  with values in 1H12 , IHI- 1 , respectively. Assume that 

processes y, v, have stochastic differentials 

dy(t) = a(t)dt + b'(t)dW 3 (t), 

dv(t) = f(t)dt + gnJ (t)dW(t), 

where W is an r-dimensional Wiener process, and W its approximation satisfying 

Assumption 3.3.1. Assume moreover that g3  has a differential 

dg(t) = j(t)dt + q 1 (t)dW(t). 

Suppose that processes y, a, b, Vn fn i g, p, qjl  j, 1 = 1,2,... , r satisfy the 

following conditions, 

y,b = 0(1) in 1H12 , 

f

T  
 a(s)ds = 0(1),  

= 0(1)inTHL 1 , 

f
T 

fn(s)I I ds  = 0(1),  

ji - — 0(1) in 

J
T 

0 
 (s)I2ds = 0(1). 

Let a be a positive number, and {fl}nEN  a sequence of real valued stochastic 

processes, such that for every ic < a 

On = 0(n), 

and for every 5> 0 

k1'H(T) = 0(lnn). 

Lemma 3.4.4. Under the assumption above for every 0 < a 

f 

 t 
(V, (s), y (s)) dOn (5) = 0(n) 

providing that this integral exists. 

Proof. Let us write the assumptions of the lemma in the form 

SUP y(t) 2 	C) 
t<T 

f a(t)Idt 	C, 

SUP I6'(t)1 2  ~ C 
t<T 

supv(t)I_i 
t<T 

f fn (t) i dt < 

sup g(t)_ i 	C, 
KT 

f p(t)dt < 

sup q' (t)I_2 	C, 
t<T 

for an a.s. finite random variable (, 

lkH(T) < 

sup(t) < 
t<T 
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for all 5 > 0, positive ic < a and an a.s. for every 5, ic finite random variables i, 

Let us choose some positive 6, ic such that /3 < ic < a, and fix any positive 

J. We rewrite (V , (t), y(t))d(t) as (v(t), d(y V),, (t))). Here a /3(t) denotes the 

integral f0 a(s)d18(s). Integration by parts gives 

3 	 t 

(vn ,y) 	(t) = 	O(t) 
- f ((s),y. 	(s))d(W(s) - W 1  (s)), 

k=1 	 0 

where 

O(t) = (v(t),y.(t)) 	(V n (0),yI) n (0)), 

02 (t) = - f (fn(8),y 

03 (t) = _f( g ( s ) ,y . n ( s ))dWi( s ) .  

Next, 

-f  0 t 

	 7 

(g(s),y. On (s))d(W(s) - W 1  (s)) = 
 k=4 

where 

04 (t) = - (Wnj 	- T'T/(t))(g(t), y 

+ (Wnj - 	 (gjn 

05 (t) = f(W(s) - W(s))((s),y. 

06 (t) = f( qi1(s)y.n(s))dA fl (s)  

07 

	

= f(wi() - 	 ( gnl 

and the process 

A'n'(t) = f(W(s) - W(s))dW(s) 

by the assumptions imposed on approximation W is of bounded variation. 

Let us show that for any ic <a 

SUP y.  b(t) 2  < 	 ( 3.4.4) 

where ,i,, is a finite random variable. Indeed, assigning V = 1H1 2  stochastic pro-

cesses y,  a, b, on  satisfy the assumptions of Lemma 3.4.3, and therefore (3.4.4) 

holds. 



Bellow we estimate terms O(t) 

9(t)I < 2supIvn (t)1_ i supy/)n (t) i  < N(ji, nTk, 

t 	t 
	1/2 

	

I0(t)I 	(f If(s)I1ds) 	(f Iy n(s)Ids) 	< 

Assign 	(t) = (g(t),y 	t)). By (3.4.4). and assumptions of the lemma 

5UPt 	(t) 	5UPt 	 < N(i,n' for ic < a. Hence, by Lemma 3.4.2 

for ic<a 

I0(t) 	:~ ]kfl', 

where random variable i is almost surely finite. Next, 

JO(t)! ;; 2sp T'V(t) - W(t) sup g(t)_ j  sip I 	'(t)li 	Nk'r12', 

 1/2 

O(t)I ~ sup W(t) - W(t)J (f I(s)i2ds) 	(ft I 	(s) Ids) 

~ \/(n_2c 

JO(t) I IIAH(T) sup q1(t)_2SUP  y ' , On (t) 	< 

where random variable t9, is an almost surely finite by Assumption 3.3.1. Finally, 

< IkII(T) sup W(t) - W j (t)l sup g(t)_ 1  sup y(t)li 

< 
 

N( 2 ?76  

It is easy to show that this implies IO(t)I 	Cn for some constant C depending 
on 3, ic and ö but independent of n. It suffices to sum up the expressions in the 

right-hand sides of the seven inequalities above, so that we get an almost surely 

finite random variable independent of n times n. 	 LI 

Lemma 3.4.5 (Gronwall). Assume that for non-negative increasing continuous 

processes y, Q such that Ey < oo and Q 	K the following condition holds 

EYrEJ
y3dQ3+E  

0 

for any stopping time -r. Then 

Ey < 

The next lemma is a modification of Gronwall lemma. 
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Lemma 3.4.6. Consider a real bounded non-negative increasing continuous pro-

cesses y. Assume that almost surely 

y(t) 
< f 

y(s)dQ(s) + m(t) + q(t), 

for any t G [0, T], where Qn is a non-negative increasing continuous processes 

such that for any 5>0 - 

Qn = O(ln5 n). 

Suppose that 

Mn = f 
(t) 	v(s)dW(s), 

where W is an r-dimensional Wiener process, and for some a.s. finite random 

variable for every t e [0, T] 

Vin 	(y(t). 

Assume also that for every positive ic < a 

qn  = O(n) 

Then 

yn 	O(n) 

for all positive 'y < a. 

Proof. Let us fix any arbitrary positive numbers 7, , such that < fi < K < a, 
and choose r. > (8 - 'y)' and 5 < 1/r. Denote 

Gn(t) = Q(t) + nkq(t)  + çt, 
In n 

and for a positive number R define stopping time 

= inf{t > 0, G(t) > R}. 

Then for every t <T 

y(t A rR)I' < ci (R inS n)r_l I yn (s)TdQ(s A y) 
- 

 

+cipm(tAr)Ir + c1n', 

where constant c 1  = c 1  (r, R) does not depend on n. Taking supremum first of the 

r.h.s. and then of the i.h.s., and taking the expectation, we get for every t 

• E sup y(s)r 	cl(R1n5n)r1EfnIyfl(s)ITdQfl(sArAT) 
s<i- tAAT  

+ c1 E sup mn (s)lr + c1n'. 
s<tArAT 
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By Burkholder inequality and the definition of r 

• 	 r 	 pt 

E sup 
fo 

 v(u)dW(u) < c2Ej Iyn(s)Id((8ATRAT)(), 
s<tATAT 	 0 

for some constant c2  = c2 (r). Therefore, denoting 

x(t) = sup Iy(s)" I, 
s<tArAT 

Q'(t) = c3 ((t A r AT)(' + ( R1n 5  fl)Q(t A T AT)) 

for some appropriate constant c3  = c3  (r, R), we get 

Ex(T) < Ef x(s)dQ' ) (s) + 

for any stopping time -r. Since Q 1 (t) c3(R+(R in6  rl)r),  by Gronwall Lemma 3.4.5 

E sup yfl ( S )Ir 	cinexp(c 3 (R+(Rin5 n')). 
s<rAT 

This, under condition Jr < 1, implies for every positive 3 < iCc, in particular for 

3 chosen above 

E sup y(8)I' <con— or 

S!57-RAT 

where constant co  = c(r, R) does not depend on n. Then by Lemma 3.4.1 

SUP Yn(.S) 	17y,Rfl, 
s<rAT 

where random variable 7,R  is a.s. finite. 

Define stochastic process G(t) = sup G(t). Then stopping time 

inf{t > 0, G(t) > R} 

does not exceed , and-by the last inequality 

SUP Y n (S) 	11y,RT 17  
3< T AT 

By assumptions of the lemma process C(t) is bounded on the interval [0, T] by 

an a.s. finite random variable. This implies a.s. 

urn TR = oo. 
R—*oo 

Consider sets 11R = {w, TR > T}. Obviously, a.e. w hits some QR,  so that 

P(U l R) = I. Define i = 7h,R for w E R\(Ui1lk),  R = 1,2,..., and 

= oc for those values of w that do not hit any 1R•  Then i is an a.s. finite 

random variable, and 

sup yn (s) < 17ynY 
s<T 

F. 
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3.5 Proof of Theorem 3.3.1 

The central tool of the proof is the Gronwall-type Lemma 3.4.6. We transform 
equations (3.3.1), (3.3.2) to an inequality of a special form so that we can make 

use of the lemma. 

In order to simplify notations let us introduce for every j = 1, 2, . . . , r, I = 
0, 1,. .. , r operators, non-linear in general, 

A(v) = Av + f, 

B3  (v) = B3   + g3 , 

= B3W v  + 

and for every n = 1, 2,... 

An  (v) = Av ± f, 

B1. (v) = BIv + gj  , 

= B 1 v + g. 

Note that by Assumption 3.3.5 for every K <ü and j = 1, 2,. .. , r, 1 = 0,1,. . . , r 

A—A,2 = 

BI - TB 	= O(n') in L(THI2 ,1H11 ), 	 (3.5.1) 
- 	= O(n) inL(]Hl 1 ,lHlo ). 

Equations (3.3.1), (3.3.2) can be rewritten as 

	

du = A(u)dt + TB(u)dW + BiBi(u)dt  + 	1(0(u)dt,  (3.5.2) 

u(0) = 

	

dUn = A(u)dt + W(u)dW, 	 (3.53) 

u(0) = 

Using the Ito formula for J U - u71  I  in the triple El1 -+ El0 -4 ]HL 1  we get for every 
t E [0,T] 

dIu—u2 = 2(u—u,A(u—u))dt 

+ 2(u - u,,, (A - A n ) (u))dt 

+ 2(u - u, B(u - u))dW 

+ 2(u - u, 1(u))d(W - W,) 

+ 2(u—u,(TB —l)(u))dW 

+ (u—u,BTB(u))dt 

+ (u - u,1B1 '(u))dt 

+ W(u) 2 dt. 
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Next, we rewrite the third term in the previous expansion. We take separately 

differentials of B j un  and g. For every v E 1H11  

d(v,Bu) = (v,B ° u)dt 

• (v,B 1 u)dW, 

• Bnj  

• (v, B?)B(u))dW,, 

d(v,g) = (v,g °) )dt 

+ (v, 1 )dW,. 

Summing up the results we get, 

BIn 	= (v,J?,, ° (u))dt 

• (v,} 1 (u))dW 

• (v,BA(u))dt 

• (v, B(u))dW. 

Integration by parts, the Ito formula in the triple H1 -+ H0 -+ THL 1  and the 
previous identity give 

(u - u,T(u))d(W — W) 

= 
- (W - W) (A n  (u - 

— (W - W) ((A — A n ) (u),J(u))dt 

- (W - 	 BIn  

+ (W j - 

- 	- W)(B'B t (u),(u))dt 

- 	- 

— (W — W) (u - 

— (W j — W 7 ) (u - 

— (W — W) (u - 

— (W — W,) (u - u, BB(u))dW 

— (JWi(u),1(u))dt. 
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It is easy to verify that the following three equalities hold for every t E [0, T], 

I B3.(tt) 12 d 
- 	 B3. 

+ 2(W - 

= 2(B(u - un ), B' (u - u)) (W - W,)dW 

+ 2d(JA' + K.()  K? 2  + p), 

(u - u,Bu1B 3 (u))dt 

- 2(Wi - W) (u - u, BJ(u))dW 

= 2(u - u, BB(u 	- W)dW 

+ 2d(J 2)  + 	+ 

(u - u,i 11 (u))dt 

- 2(Wi - W) (u - 

= 2(u - u, B 1 (u - u))(W - W)dW 

+ 2d(J 3)  + 	+ 

where 

t 

n - 
(l) 

- - f ((u),1(u))dS1, 
0 

t 

= - f (u,BI 1 (u))dS 1  , n 
0 

t 
J(3) n 	- - J (u,1(u))dS1, 

- 

0 

K' = fo t (Bj(Un),EY(u))dSnj, 

K2 = 

K3 	fo (U" Bi EY (u)) dS ni' 

K4 = 
fo (Un, Bi (1)  (u)) dSnil  
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p1(t) = f{((()()) - ((u),(u))) 

	

+ (TB(u),(T, 	V) (U)) 

+ (J(u), R - 

+ f t f W.  ( U) I OBn V) 

+ (IB'(u), An - 
t 

p(t) =  fo 
(u - u, (BT 1 - B 1 )(u))dA  , n iwn  

t 

	

P(t) 
= f (u - u, (B 1  - 	1 )(u))dA. 

0 

Here we denoted 

A(t) = f(Wi(s) - W(s))dW(s). 

Note that by Assumption 3.3.1 for each 8> 0 

Ill_m ii ,ijlii - O(ln6 n). u - 

We derive from the identities above 

5 
= 	+ 2>I 	+ 2q, 	 (3.5.4) 

k=1 

where 

= 
 0 I 

t 
(u—u,A(u—u))ds, n 

r(2) 
n = fo , (U_Un B(U_U n ))dw 3 

 

= fo
n  

fo 
 

in 
(4) = 

 (u - u,BB(u -  u 
 

In(5) =  fo  

	

3 	 3 	 4 

	

k=1 	k=1 	k=1 

p. = (u(t) - u(t),] (u)(t))(W(t) - T'T 7 (t)) 

- (u(0) - u(0),]B(u)(0))(W(0) - Wnj 
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= f 
 t 
(U — U" (A — A.) (u)) ds 

± f (U - u, ( - 

= I (W I  — W n' (AnU., B' u n )ds 

± f (Wi - 

in  = - 
ft 

(W - W)(Au,(u))ds 

f t 
(wi —W)((A—)(u),(u))ds 

f W. — Wn) (B'V (u), IEPn (Un)) ds 
- 

- - W)(B(u),(u))ds 

- f (W-" - W) (u - 

- f (wi - W)(u,BA(u))ds 

+ f(WI — Wn' ) (A.Un,  g' )ds 

+ I W —W)(u,Bf)ds, 

m = f(wi - W)(B 1 (u),1B(u))dW 1 . 

Let us introduce process 

y(t) = Iu(t) - u(t)I + A 	 In(s) - u(s)ds, 

and define stopping time 

7rn , e  = inf{t > 0, y(t) > E}. 

By Assumption 3.3.6 process JuJ0  is bounded by an a.s. finite random variable 

uniformly in t on the interval [0, T]. Then processes Iu lo is bounded uniformly 

in n uniformly in t on the interval [0, ir, AT]. By the same argument the bound-

edness by an a.s. finite random variable for 10T 
ulids implies the boundedness 

we 



by an a.s. finite random variable uniformly in n for f,EtT 
IuIids. So that for 

some finite random variable i we have, 

	

u(t)lk 	,LL, 	un(tA7r,)0 <IL, 

I
ir,AT 

	

 u(s)ds < P, 
	

Iun(s)Ids < u. 	(3.5.5) 
Jo  

for every t E [0, T] and any integers k < 5, 1 < 6. 

Next, we rewrite equality (3.5.4). By Assumption 3.3.4 

t 	 t 

< f I ' (t) 	 — u(s)Ids .—  fu() —u(s)ds, 

I 3 (t) + 	+ 1 5 (t) :5 21 ~ 	1 u(s) - Un(S)dHAI(S). 

For every let us introduce 

Yn e (t) = 

	

(k) 	 (k) and similarly define 	J11 , p, r, kne,  Inc , m ne , Pne Taking into account 

inequalities above it follows from (3.5.4) that for every E > 0 and t E [0, T] 

y 6  (t) < f yn e (s)dQn (s) + 	 + 2qn (t), 
0 

where 

Qne (t) = 2((t A lV n ,e  + H4n1 H(t A 7V n,)) 

is a non-negative increasing continuous processes, and Q ,,  = O(ln n) for every 

> 0. Our aim now is to show that for every ic < a and E> 0 

q 	= O(n). 	 (3.5.6) 

Then we are in position to apply Lemma 3.4.6. Let us show that p 1  satisfies this 

property (i.e. (3.5.6) holds if we replace qne  by  Pne).  Indeed, 

(u—un,1(un))I 	 Bnj 	I + I (u—u,lB(u))I, 

and by Assumptions 3.3.3, 3.3.4 

(u — u,1B(u)) = 0(1). 

Then Assumption 3.3.1 implies for every ic <a 

sup p(t) :!~ 
t<T 

for some a.s. finite random variable . 
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We move on to kne . We have 

T 

kne(t)I 	sup W - WI J I(Au, Bu) + (u n , BAu)J o ds, 
t<T 	 0 

and by Assumptions 3.3.1, 3.3.4 for every e> 0, ic < a 

	

k(t)I < 
77flc 	

IuIds, I 
for some a.s. finite random variable i. This proves property (3.5.6) for 

Next, we check (3.5.6) for 1,. By Assumption 3.3.1 for every E > 0, ,c < a 

and some a.s. finite random variable u k  

pirn e AT 

< vnj 	{I(Au, ] (u))j + I  ((A - A)(u),1(u))I 
0 

+ I(B'B(u),J(u)) I + 
+ (u - u ) (u)) + (u,BA(u))J 

	

n, IBn

+ 	+ I (u,B fn) I}ds. 

It is easy to show that the integral in the r.h.s. is uniformly in n bounded by an 

a.s. finite random variable. For example, by Assumption 3.3.3 and (3.5.5) it is 

true for the first term, 

f
lrn AT 

 

I(Anu,T(un))ds 

ir,AT 	 T 	 1/2 

< {IA

T 	 1/2 
2 fo uds} 	B 4O f 	Iuds+ I Ig iJds}n20

Jo  

All other terms are estimated in the same way. 

To show that 	satisfies (3.5.6) we assign ço(t) = (W—W)(] 1 (u), IEPn  

By Assumption 3.3.3 and (3.5.5) 

I(1 1  (u), J(u))I < (B'21Ju12 + g1 Ii)(IB;Uo,_iIuno + IgI—i), 

which can be estimated by an a.s. finite random variable. Hence, by Assump-

tion 3.3.1 çOn = O(n) for ic < a, and then by Lemma 3.4.2 so does Mn,  for 
every E > 0. 

Next, we consider 	We have 

fn,eAT 

( 

0 

irn,eAT 	 1/2 

	

sup (A - An)uI_i 	u - unIds} 
t<T  

+ T sup Iu - ulolf - fo 
t7rn,EAT 



which by Assumption 3.3.5 and the definition of 	can be estimated by an a.s. 

finite random variable. To estimate the second term in m e  we produce 

(u — u, (B — ])(u)) 	lu - uo(I(B - B)uIo + g' - g,10), 

i.e. (u — u, (B — T)(u)) = O(n) for all ic < a and then apply Lemma 3.4.2. 

Using the same arguments it is easy to show that p,  k = 1, 2,3 satisfy 

property (3.5.6). 

To prove that 	k = 1,2,3, satisfy (3.5.6) we use Lemma 3.4.3. Let us 

show this for j. Assign 

y(t) = (TB(u(t)),13 1 (u(t))), 

0-  (\ 
— Qit

) — 

Then taking differential of y(t), by the Ito formula for (T (u), l (u)) = ( Biu, B 1 u)+ 
2(B 3 u, g') + (gi,  g1 ) in the triple 1H11 -+ 1H10  —* IHL 1  we get, 

a(t) = 2(BA(u),l 1 (u)) + (BB'I'(u),lB 1 (u)) 

+ (Bi'') (u), lB (u)) + (}i(h) (u),  j1(h)  (u)) 

+ (BulBh (u), B 1 TB'(u)) + 2(]i(h) (u), BI]3h  (u)), 

b'(t) = 2(1B'(u),IB1 (u)) + 2(BflB'(u),1 1 (u)). 

By Assumptions 3.3.1, 3.3.3 the conditions of Lemma 3.4.3 with V = R are 

satisfied. This lemma completes the. proof for J. The proof for J and J"6,)  is 

performed in the same way. 

J. We move on, to 	k = 1, 2, 3, 4. For Kr)' we rewrite K$1 = 	+ 
where 

=  f
t 
(Un, B3*]l(u))dSl, 

t 
(Kl) 
n 	= f 	 dSni 

To estimate 	we use Lemma 3.4.4. Assign 

y(t) = Bi*B( u(t)) ,  

v(t) = u(t), 

= S 1 (t). 

Taking differentials of y(t) and v(t) we get 

a(t) = 	Bj*B1(2A + Bh1BF  + 	' )(u) + Bi(h)*(TBI(h)  + BIBh)(u), 

bh(t) = B3*(1Bl() + B 11)(u) + Bj*ll(u), 

I!J 



f. (t) = 

g(t) = B. 

P(t) = B71 A(u), 

qhk(t) = (]Bh(k) + BJB)(u). 

It is easy to check that by Assumptions 3.3.4, 3.3.6 all the functions above satisfy 

conditions of Lemma 3.4.4. To estimate 	we assign 

Y 	= (g,T'(u)), 

a(t) = (g,B1 A(u)) + 	(gi,B1BF1Bh(u))  + (gi,BhI!(u)) 

+ (g', El(h)  (u)) + (g3, B1  TB h (u)). 

b(t) = (gi(h)JBI(u)) + (giTBl(h)())  + (gi,BITBh(u)) 

This functions and 	(t) = S(t) satisfy the conditions of Lemma 3.4.3 with 

V = R. Thus, (3.5.6) holds for KS 1  and, consequently, for K2. The proof for 

k = 2,3,4 can be performed similarly. 

Finally, as was mentioned above, we apply Lemma 3.4.6, and derive 

Yne = O(m) 

for any e > 0, 'y < a. To finish the proof of the theorem it suffices to apply 

Lemma 2.4.3. 

I 
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Chapter 4 

Stochastic Partial Differential 
Equations 

4.1 Introduction 

This chapter may, be considered as a continuation of the previous one. Here we 

apply its main result, Theorem 3.3.1, to stochastic partial differential equation of 

the form 

du(t, w, x) = (ru(t, w, x) + f(t, w, x))dt 	 (4.1.1) 

+ (Mu(t, w, x) + g(t, w, x))dW(t, w) 

in the normal triple of spaces W2' -+ L2  = L '-* W, with Cauchy condition 

u(O,w,x) = u0 (w,x), 	 (4.1.2) 

where L is a second order elliptic differential operator, M 3  is a first order differ-

ential operator for every j = 1, 2,. .. , d; f(t, w, x), g3  (t, w, x) are random fields on 

[0, T] x Rd  for some positive T and j = 1, 2,. . . , d, process W is a multidimensional 
Wiener process, and u0 (w, x) is a random field on R. Above and throughout the 

paper we use the summation convention with respect to the repeated indices. 

Under the solution of the problem (4.1.1)-(4.1.2) we understand a continuous 

process u taking values in the Sobolev space W for some non-negative integer m 
and satisfying (4.1.1)-(4.1.2) in the generalized sense (see Definition 4.2.1 below). 

We approximate the Wiener process W with a sequence of processes {W fl } flE N 

of bounded variation. The convergence is considered in the topology 0 with some 
rate of convergence (see page 29). Moreover, we approximate coefficients of the 

differential operators £, M 3  as well as the random fields f, gj, u0 . We use the 

same topology with the same rate of convergence. Therefore, for every n e N we 
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have a second order partial differential equation 

du(t,w,x) = (Iu(t,w,x) +f(t,w,x))dt 	 (4.1.3) 

+ (Mu(t, w, x) + g 3  (t, w, x))dW(t, w) 

with Cauchy condition 

u(O,w,x) = u 0 (w,x). 	 (4.1.4) 

Relying on the results of Theorem 3.3.1 we prove that under some natural 

conditions the solution u of the problem (4.1.3)-(4.1.4) converges in the topology 

o with the same rate of convergence. However, the limit ü is the solution of a 

stochastic partial differential equation related to the equation (4.1.1). It has an 

additional second order differential drift term. This equation can be considered 

as the equation (4.1.1) with the last differential written in the Stratonovich form. 

The equations of the considered type are especially useful because of their 

applications to many important problems, in particular the problem of filtering 

for diffusion processes which can be reduced to the investigation of the equation 

of type (4.1.1). The filtering problem is studied in the next chapter. 

4.2 Generalities 

Before formulating the result, in this section we recall some fundamental concepts. 

4.2.1 Sobolev Spaces 

All considerations are carried out in Sobolev spaces. We recall some general ideas 

from the theory of these spaces. Let R' 1  be a d-dimensional Euclidean space. 

We fix an orthonormal basis in R", and for x E R" we denote its coordinates 

by X1,  and its norm by Ix 1. For p = 1,2,... ,d we denote by D the 

differential operator 919x, and for p = 0 we assume D0  to be the identity. A 

d-dimensional vector with non-negative integer components we call a multi-index. 
For a multi-index 'y ('yr, . . . ,'y) of length 171 'Yi + 7d we define Dly as 

the differential operator 
117 - -'-'Yi fl12 	fl7d 

	

- 	1 -'2 	-' d 

First, we recall the definitions of some classic spaces of functions. Suppose 

further that m is an integer, m > 0, p  e (1, oo). We denote by C00° = C000 (Rd) the 

space of real-valued infinitely differentiable functions on R" with a finite support. 

By Cn =. Cn(Rd) we denote the space of ri times continuously differentiable 

functions on Rd  with the finite norm 

	

If lc = 	sup IDf(x)I, 
IyI<n 
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and by L = L(TR') we denote the space (of classes) of real-valued functions on 
11d with the finite norm 

fIL =  (fRd
f(x)I PdxY'  

The space (of classes) of real-valued functions on Rd  belonging together with 

their derivatives up to the order m to the space L is called the Sobolev space 
Wprn = W(R' 1 ). Sobolev space WPI equipped with the norm defined by 

/ 	 lip 

IfI WPM  
= 
(: L IDf(x)Idx 

I'I ~m 

is a separable Banach space. Moreover, for p = 2 the space W2m is a Hubert space 

with respect to the scalar product 	generated by the norm 

For p = 2 there is another definition of Sobolev spaces. Let A be the Laplace 
operator > , 

I be the identity operator, and let us define operator A = 

(I - )1/2 For H0  = L 2  and operator A we can define Hilbert scale {Ha} aER  
(see page 26): for a > 0 we define H0, as the domain of operator A0, ; for a < 0 
H0, is the completion of space H0  in the norm = A IL2. Then for 
every a G R the space H0, is a Hilbert space with respect to the scalar product 
( 	H - 

_ 
) 
\ 	fAa Aa\ 

Proposition 4.2.1. For every integer m spaces W and Hm  are equivalent, i.e. 

they coincide as sets, and their norms are equivalent: there exist constants N1 , 
N2  such that for every u E Hm  

NjIUIHm < IUIW2m < N2IUIHm 

From now on we identify spaces W2m and Hm , and denote both by W. We 
also preserve notations I - I .w2m for the norm, and (. ,  - )  w2m for the scalar product. 

Below we list some properties of spaces' W2m which follow from the properties of 
spaces Hm . 

Proposition 4.2.2. 

For any integers m, n the system of spaces 	W, W) forms 
a normal triple, and the mapping J : u —* (.,u) generated by the scalar 

product in W (see Proposition 3.2.1) defines an isometric isomorphism 

between the spaces 	and (W)* .  

The space CO' is dense in W27n for every integer m in the topology of the 
latter space. 
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For all positive integer m, n, AIW 21  = W, and (A 2'u,v)wn = 
(u, V)rn+n for all u E W+2n ,  v E W2". 

The next assertion is a fundamental result from the theory of Sobolev spaces. 

Theorem 4.2.3 (Sobolev imbedding theorem). The space W is normally 
imbedded into L 2 . If for some non-negative integer n the inequality 2(m - n) > d 
holds then W2m is normally imbedded into the space C. 

The following result is very useful. 

Proposition 4.2.4. Let 	be a positive integer. 

There exist a constant N such that for all v E W 

0I 
< ,  NIvI w2p. 

For any u,vW2' 

fRd fRd

1'  
u(x) 

a 
—v(x)dx = 

- 

	 - a --u (x) j  v(x)dx. 
 \VX 3  

4.2.2 Cauchy Problem for Linear Equation of Second Or- 
der 

On a given complete probability space (fl, 1, P) equipped with right-continuous 
filtration 	we consider a stochastic partial differential equation of the form 

du(t,x) = (Dp (a1 (t,x)D qu(t,x)) + f(t,x))dt 	(4.2.1) 

+ (b(t,x)Du(t,x) + g(t,x))dW(t) 

on the interval [0, T] (for some T> 0), with Cauchy condition 

	

u(0,x) = U0  (X), 	 (4.2.2) 

where a', b P  are measurable in (t, w, x) bounded real-valued functions on [0, T] x 
Q x ]R'; f(t, .), g,(t,.) are stochastic fields with values in L 2 , W, respectively, 
for all p, q = 0, 1,... , d, j = 1,21  ... , d; W is a d-dimensional Wiener process. 

We recall that repeated indices in monomials are summed over, i.e. in the right 

hand side of the equation (4.2.1) the first term is summed with respect to p, q, 
the second term is summed with respect to p, j. 

We will use the following notations. Fora separable Banach space V we denote 

by CV the class of -adapted continuous processes with values in V. By £,,V we 

54 



denote the class of well-measurable processes with values in V for which almost 

surely 

fT 

Iu(t)Idt <00, 

where v  denotes the norm in V. For two separable Banach spaces U, V such 

that V U we write u E CU fl £V if u E CU and there exist process fl E CPV 
such that u =iifor almost every (t, w) e [0, T] x Q. 

Definition 4.2.1. We say that u is an L 2 -solution of problem (4.2.1)-(42.2) on 

the interval [0, T] if u E CL 2  flC 2 W21 , and for all ço E C00° 

(u(t),co)L 2  = (u0,co)L 2  + I j(-1)(a(s)Dqu(s),Dp ) L2  + (f(s),(o)L2}ds 

± f 	+ gj (s), )L 2 dW(s), 

for every t E [0, T] and almost every w, where p assumes 0 for p = 0, and 1 

otherwise, and the last integral is understood in the Ito sense. 

4.3 The Main Result 

Let W be an r-dimensional Wiener process, and {Wn } nE N a sequence of d-

dimensional processes of bounded variation. Let us fix some positive number 

a. Suppose that the following holds. 

Assumption 4.3.1. For every ic < a and every positive 8 

W—W = 

Sn  = 

I ISn II = O(Inn) 

on [0, T], where S, is an r x r-dimensional process defined as follows, 

S 1 (t) = I (Wi(s) - W))dW(s) - 5 j1t, nj  

where 8j1  is the Kronecker's symbol which assumes 1 if j = 1, and 0 otherwise. 

Recall that given a function F(t) expression IIFIRt) denotes its total variation 
over the interval [0, t]. 

For every n > 0, j = 1,2,...,r, p,q = 1,2, ... ,d let a, b be measurable in 
(t, w, x) real-valued bounded functions on [0, T] x 1 x Rd.  Let f(t,.) belong to 
£2L2(R'), and g 3 (t,.) belong to £2 W21 (R') for j = 1, 2,. .. , d. 
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Assumption 4.3.2. For all j = 1, 2.... , r, p = 0, 1, . . . , d there exist measurable 

in (t, w, x) real-valued functions b'° 	jj(m) 	
bp-(! )  n E N, defined on n3 1 ­ 7 nj 

d 	 (0) 	(m) 	(0) 	(in) [0, T] xlxR , and stochastic process g 3  ,. . . , g2 , g 
,... , 	

, n E N, belonging 
to £2 W21 (W1 ) such that for every 	C000  (Rd) the processes (b(t),ço), (bInj  

(g3  (t), cc'), (g 3  (t), ) have on [0, T] the following stochastic differentials, 

d(b'(t),(o) = (b ° (t), (o)dt + (b'(t), (p)d14/1 (t), 

	

d(b(t), ) = (b9 (t),  ço)dt + (b,9(t), (p)dW(t), 	(4.3.1) 

d(g3 (t),(p) = (93 (0)  (t),ço)dt + (g ) (t),(o)dl'V'(t), 

	

d(g(t),) = (g 3
(0)  (t ) ,(p)dt + (g(t),p)dW(t). 	(4.3.2) 

Moreover, for all j, k = 1, 2,.. . ,r, p = 0, 1,.. . , d there exist measurable in 

(t, w, x) real-valued functions 	j(km) defined on [0, T] x 1 x Rd,  and 
stochastic process9(kO) 	g(ktfl) belonging to 	 W21 	such that for every 
Co— (R") the processes (b1k)(t) ), (g(t),  o)  have on [0, T] the following stochas-

tic differentials, 

	

d(b(t),(P) = (b' ° (t), ço)dt + (b1k(t)  (o)d1471 (t), 	(4.3.3) 

	

d(g(t), ) =. (g ° (t), ço)dt + (g(kl)(t)  ço)dW 1 (t). 	(4.3.4) 

We consider stochastic partial differential equation 

	

u(t, x) 
= f (D(a(s, x)D qu(s, x)) + f(s, x))ds 	(4.3.5) 

± f ((s, x)Du(s, x) + gj (s,x)) o dW(s), 

where uo (x) = u(0, x) is an -adapted random variable with values in W(R' 1 ). 

Here we used the notation for the Stratonovich differential 

(b'(t, x)Du(t, x) + g3 (t, x)) o dW 3 (t) = 

= (b'(t, x)Du(t, x) + g3 (t, x))dW(t) 

+ bjP  x)D(b(t, x)D qu (t, x) + g(t, x))dt 

+ x)Du(t, x) + 	x))dt 

for fixed j. For every n e N we consider partial differential equation 

	

u(t, x) = f (D(a(s, x)Dqun (s, x)) + f(s, x))ds 	(4.3.6) 

+ (bjp  x)Du(s, x) + g3  (S, 	 dWni  

where u o (x) = u(0, x) is an Ft-adapted random variable with values in W(Rd). 

We assume the following. 
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Assumption 4.3.3. 

(i) The derivatives in x of a Oq I  bq up to the order rn + 4, of 	b up to 

the order m + 5, of b' up to the order m + 3, of b 1  up to the order 

m + 4, of 	up to the order m + 1, of b' up to the order m + 2 are 

bounded measurable in (t,w,x) functions of (t,w,x) e [0,T] x 1 x R'1 . The 

derivatives in x of a', b °  up to the order m, of a, 	up to the order 
0(1) 	 s(1) 

M  + 1, of b 3  up to the order max{m - 1, 0 1 , of 	up to the order m 

are measurable in (t, w, x) functions of (t, w, x) e [0, T] x 1 x R' bounded 

uniformly inn. Above p,q = 0 1 1,...,d, s = 1,2,...,d, j,k = 1,2,...,r, 

1= 0, 1, ... ,r. 

(kI) (ii) The random fields f(t), g 3 (t), g(t), g3  (t) are well-measurable 

adapted stochastic processes with values in W 2m+4 '  W2m+5 '  W 2m+4 '  W 2 2   ' 
respectively, such that 

f(t)IWrn+4 < K, Ig(t)+5 < K, l g, 1 (t)Wrn+ 4  < K, 
(k1) 

Igj (t) J W2rn+2 < K 

for every (t,w)E[0,T]x 	and j,k=1,2,...,r,l=0,1,...,r. For every 

n E N the random fields fn  (t), g 3  (t), g(t) are well-measurable .Ft -adapted 

stochastic processes with values in W, W+l,  W2 , respectively, such that 

fn(t)w 	K, 	gnj(t)rn+i 	K, g$( t) w n < K 

for every (t,w) e [0,T] x Q and  = 1,2,... ,r, 1 = 0,1,... ,r. The constant 

K above does not depend on n. 

(iii) The initial value u0  is an ,F0 -measurable random variable with values in 

For every ri e N the initial value uo is an .T0 -measurable random 

variable with values in W+' . 

Assumption 4.3.4. For all positive ic < c 

(i) for all multi-indices -y, 0 such that 'y :! ~ m, 18I 	m i- 1 

D1'(a(t,x) - a'(t,x)) = 

D(b(t,x) - b'(t,x)) = 

D(b(t,x) - bW(t,x)) = O(n) 

for every  xERd  and  p, q =0,1,...,d,j,l=1,2,... ,r;  
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(ii) 

I - In 

9.7 - gnj  

g
(1) 

for all 

- 

O(n) in W, 

O(n) in W 1 , 

O(n) in W 

O(n) in W. 

Note that in the assumption above we do not require I = 0. 

Assumption 4.3.5 (Strong ellipticity). There exists a constant A > 0 such 
that 

a(t,w,x)zz 1  > Al Z12 

p,q=1 

for all (t,w,x)e[0,T]xc2xR i  and z=(zl ,...,zd)eRd. 

The existence of the solutions u, u, under Assumptions 4.3.2, 4.3.3, 4.3.5 is 

well-known. It can be shown, for example, applying the technique used in [7] (see 

Propositions 4.12, 4.13, and the proof of Theorem 3.3). This is not the subject of 

the paper. Therefore, we concentrate on the estimation of the rate of convergence. 

We assume that there exist L 2 -solutions u, u of the equations (4.3.5), (4.3.6), 

respectively, such that u is from the class CW+5  fl  £2W+6, un  is from the class 

cwn+1  n £2 W 2 . 

Theorem 4.3.1. Under the Assumptions 4.3.1-4.3.5 the sequence of solutions 

U, of differential equations (4.3.6) converges almost surely to the solution u of 

"Stratonovich" stochastic differential equation (4.3.5). Moreover, for every ic < a 

u — urn = O(n), 

and 

f
T 

u(s) - U.(S)12 
	= 

4.4 Preliminaries 

In this section we list a set of technical lemmas which are borrowed from [7]. 

We will use them to prove Theorem 4.3.1. The proofs of all lemmas except 

Lemma 4.4.4 are omitted and can be found in [7]. Lemma 4.4.4 is a modification 

of Lemma 4.7 from [7]. Its proof is given. 



We fix some non-negative integer m and consider the normal triple 

Lemma 4.4.1. For any p,q = 0,1,.... ,d let aPq be a measurable function on Rd. 

Suppose that for s = 1, 2,... , d, q = 0, 1,... , d all derivatives of a Oq  up to the 

order max(m - 1, 0) and all derivatives of a q  up to the order m are measurable 

bounded by a constant K. If for some constant A > 0 

a 1 (x)zz i  > 	
I Z 12 

 

j,1=1 

for all x E Rd,  z = (zi ,.. . , Zd) E Rd,  then 

(Dp(aDqv),v) w n + 
A IV 12 
	< 	

I V 12  
2 W2 	W2 

for every v E W+l, where L is a constant depending only on K, m, A and d. 

Lemma 4.4.2. Let aix,  b be measurable bounded functions on Rd  for p, q = 
0,1,... ,d. 

Let us fix a non-negative integer a. If for every s =. 1, 2,... , d, q = 
0, 1,.. . , d all derivdtives of 	b° up to the order max{m + a - 1, 0} and 

all derivatives of a, bS 'up to the order max{m + a, 01 are measurable 

bounded by a constant K functions, then for some constant L 

(Dp(aDqv), (P)w I 	LIVIwrn+i+c IW+ 1 _, 

I(b'Dpv,ço) w nI ::~ LIVIwrn+i+cçIwrn 

for every v E 	 C. 

If all derivatives of b° up to the order max{ m, I  and for every s = 
1,2.... , d the derivatives of b 3  up to the order max{ m, 21 are measurable 

bounded by a constant K functions, then for every a = 0, ±1, ±2 

(b1'Dv,(0) w m :!~ LIVlwrn+aIçIwrn+i_a 

for every v E W, ço E CO'. 

The constant L in the above statements depends only on K, m, d. 

Lemma 4.4.3. Let a1x,  b'3 , c" be bounded measurable functions on R" for p, q = 
0, 1,. .. , d. Let us consider the differential operators Lv = (aPq  MV = 
bPDv, J\Iv = cDv. 
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If all derivatives of c 0  up to the order m and for s = 1, 2,. . . , d all deriva-

tives of C5  up to the order max(m, 1) are measurable bounded by a constant 

K functions, then 

(JVv,v)w 	< LjV 

for all v E W+l, where L is a constant. 

If all derivatives of b°, c 0  up to the order m+1 and fors = 1,2,... ,d all 

derivatives of b5, CS  up to the order max(m + 1, 2) are measurable bounded 

by a constant K functions, then 

(Mv,Afv) w n + (v,MAfv) w n < Lv m+1 
W2 

for all v E W +', where L is a constant. 

If all derivatives of b °  up to the order m + 1, for s = 1, 2,. . . , d all 

derivatives of b 5  up to the order max(m+1, 1) for every p,q = 0,1,... ,d all 

derivatives of a pq  up to the order m are measurable bounded by a constant 

K functions, then for some constant L 

(Lv,Mv) w n + (v,MLv)wn < Lv +1  

for all v E W 2  

The constant L in the above statements depends only on K, m, d. 

Lemma 4.4.4. Let c = c(t,w,x) be aB([0,T]) x T x 13(Rd)measurable  real 

function on [0, T] x Q x R" for every n = 1, 2,..., such that its derivatives in x 

up to the order r are measurable functions of (t, w, x), bounded by a constant K, 

where r is a non-negative integer. Suppose that for some ,ç > 0 

D'c(t,x) = O(n) 

uniformly in x E R' and all multi-indices y,  such that 171 < r. Then 

if r = m, then 

Dp (cn (t)Dqv) = O(n') in W', 

cn (t)Dqv = O(n) in W 

for every v E W+l, 

if  = max(m— 1, 0), then 

cn (t)Dqv = O(n) in W' 

for every v E W; 



(iii) ifr=m+1, then 

cn (t)Dqv = O(n) in 

for every v E W+ 2  

In order to prove this lemma we will need the following. 

Lemma 4.4.5. For any m e Z and every v E W' 

vrn- = 	sup (v,co)wn, 
IwI w n+I 1  

where (•,•)w  denotes the scalar product in W and the duality between the 

spaces W+l, W'. 

Proof of Lemma 	Let us introduce a self-adjoined positive definite operator 

A = (I - )1/2, where A is the Laplace operator, I is the identity operator. Then 

(see Section 4.2.1) 
IV12 

-1 

= (Aml v, Am_l v ) .  

Dividing both sides by VWrn_1  we get 

Ivwn_1 = (Arn_lv,Am_), 	 V = 
I V 

and then, since the operator A is self-adjoint, 

IvIwn_1 = (Amv,Amp) = (v,co)w 2m, 	çü = A 2 3. 	(4.4.1) 

Again using the representation 	Iw+ = IAm+l  JL2  it is easy to show that 

= 1. Now, taking the supremum in the right hand side of (4.4.1) we get 

Ivi < 	sup (v,p)wn. 
° 

2 

On the other side for any e W' 

(V, (p)wn = (AmV,Am(P)L2 	IvI,rniIWIwrn+i, 

which implies 

sup 	(V,co)wn ~ IVIn-i. 

IwIwn+11
2 	 W2 
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Proof of Lemma .4.4. To prove the first assertion we produce the following es-

timations. Using Lemma 4.4.5, Proposition 4.2.4 and Cauchy-Bunyakovskii-

Schwartz inequality, for any v e W' 

	

I13p (cn (t)Dq'v) I Vrn_1 = 	sup 	I(Dp (cn (t)Dqv), So)wm 2  

IWI w n+1 <
1  

	

= 	sup I (cn (t)Dqv,Dpço)wn 2  

II W n+1<' 

< cn (t)Dqvin 

f d 
D" I Cn (t, x)  DqV (X) 

12 dx, 

which immediately gives the result due to the assumptions of the lemma. The 

rest of the lemma can be proved similarly. 

4.5 Proof of Theorem 4.3.1 

We reduce the proof of the theorem to verification of the assumptions of Theo- 

rem 3.3.1. In connection with the notations in Theorem 3.3.1 we denote ]H[ 0  = 

W, HO  = 	for any positive or negative integer i,  and denote 	the norm 

in the space THIfl , and 	, (.,.) the norm and the scalar product in the Hilbert 

space E 0 . 

We consider a normal triple 

H1  

and, moreover, the system of embedded spaces 

We recall that spaces THI0  and THIS, as well as H-,3  and lHI can be naturally identified 

using scalar multiplication (.,.) (see section 3.2.1). We use the notation (u, v) 

for the duality between H a  and H where one of the elements u, v belongs to H 

and the other to 1HI. 

Let us introduce for all v E 	(t,w) E [0, T] x 1 operators 

Lv = Dp (a7 Dqv), 

L n V = Dp(a'Dqv), 

Mv = b'Dv, 

Jyli(kl)v = b1kt)D v,  

Mv = 

M3Wv = b 1 Dv, 

= 
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j, k = 1,2,... I  r, 1 = 0,1,... , r, and consider equation 

t 

MO,  W ) = (UO,) 
+ f (ru(s) +f(s),)ds 

0 

1  
+  f 

t 
 (MMu(s) + Mg(s), ço)ds  

+ 1 J
(Mu(s) + g(s), o)ds 

0 

+  J
t 
(Mu(s) + g(s),)dW(s), 

0 

and for every n = 1,2,... equation 

(4.5.1) 

(u(t),) = (u 0 ,). + f (u(s) +f(s),)ds 	(4.5.2) 

+ f(M3 un (s) +g(s),)dW(s), 

where E C. By a solution u of equation (4.5.1) and a solution Un  of equation 

(4.5.2) we mean functions from CW21  n £2W' for which the equations (4.5.1), 

(4.5.2) hold respectively almost surely for every E C000(Rd)  and t E [0, T]. 

From Assumption 4.3.3 using statement (i) of Lemma 4.4.2 it follows that for 

all j, k = 1,2,... ,r, 1 = 0,1,... ,r, every (t,w) e [0,T] x 

:!~ Lv wrn+i wrn+i, 

(Mv,co)wn 

(M 1 v,co)wn < 	 (4.5.3) 

(M 1 v,co)wjn < Llvwin+icown, 

and for all ri E N 

< LIvwrn+iIcowrn+i, 

	

(Mv,co) w n < Llvwrn+icoJwm, 	 (4.5.4) 

(jct1v,co)wm 	LIvwrn+icoIwci 

for every vE Wm+l 
2 	'E CO°°. Then for every j,k= 1,2, ... ,r, 1=0,1,...,r by 

(A(t)v,ço) = 

(B(t)v,(p) = (Mv,(p)w 2m, 

(B 1 (t)v, ço) = (J4v, c")w 

(Bi ( ' l) (t)v, cc') = (Jt4i( 11)v ,  (p') w n 
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we define bounded linear operators A(t) : 1H11  -+ ]HL 1 , B(t),B (0 (t),Bi (k')(t) 
1H11  -+ E%, and by 

(A(t)v,ço) = (Lv,ço) w n, 

(BI(t)v,ço) = (Mv,co)wn, 

(B(1)(t)v,) = (Ml)v,ço)n 

we define bounded uniformly inn linear operators A(t) : 1H11  — IHL 1 , B(t), B(t) 

Moreover, by Lemma 4.4.2 for all j, 1 = 1, 2,.. . , r and every (t, w) e [0, T] x 
we have, 

(M(M 1 v),cc)wn < Lvwrn+iIcowrn+i 

for all v E W', 	'°. Again, by 

(B 1 (t)v,ço) = (M(M'v),co)w 2m 

we define bounded linear operators B 1  : 1H11  -+ IHL 1 . Statement (ii) of Lemma 4.4.2 
gives for j = 1,2,... ,r and (t, w) E [0,T] x 

< LvIwrnIcowrn+i 

for all v e W, o E C O'. This allows us to extend operator B : THI1  —f H0  to a 

bounded operator from 1R10  to H_ 1 , and for all (t, w) operator B 1  : H1  -+ THL 1  is 

a superposition of B 1 : H1  H0  and B : H0  - THL 1 . 

From the fact that (w, (I — 	= (w, W)Wm  for all v, o E CO, it follows 

from (4.3.1) that substituting (Dv)(I — 	in place of 	we get for j = 

1,2,...,r,p=0,1,...,d 

d(b'(t)Dv, 	= (b ° (t)Dv, (p)wndt + (b(t)Dv, co) w ndW' 

and for every n = 1,2,... 

d(b3(t)Dv;co)w = (b?)(t)Dpv,ço)ndt + (b(t)Dv,co) w ndW, 

which can be written as 

d(B(t)v, ) = (B ° (t)v, ço)dt + (B(t)v, ço)dW t  

and 

d(B(t)v,ço) = (B ° (t)v,ço)dt + (B 1 (t)v,ço)dW 

for every v, E CO°°, and hence by (4.5.3), (4.5.4) for any v, . E H1 . Similarly, 

substituting (I -: j)m, in place of we get 

(0) d(g(t),ço) = (93  (t),ço)dt + (gl)(t),p)dTA11 
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and 

d(g(t),ço) = (g(t),(o)dt + (g(t),ço)dW 

for every W E C'°, and hence for every E H i . Using the same sort of arguments 

we can obtain from (4.3.3), for j,k= 1,2,...,r,p=0,1,...,d 

d(b(t)Dv, (p) w,- 	co)wndt + (lP(kz)(t)Dv  co)w2mdWt 

which can be written in the form 

d(Bi(k)(t)v, ) = (BIvO)(t) v,  ço)dt + (Bi ) (t)v, )dW 1 , 

and from (4.3.4) 

(k) 	 (kO) 	 (ki) d(g3  (t), ) = (g3 	(t), ço)dt + (g 	(t), )dT4T' 

for every v, ço E ]H11 . 

We rewrite equations (4.5.1), (4.5.2) in the form 

I t 	 t
u(t) 	

+ 	
(A(s)u(s) + f(s))ds + fo (B(t)u(t) + g(t))dw(t) 

	

+ 
1

f B(t)(B(t)u(t) + g(t))dt + 	ft(B (t)u(t) + g(t))dt. 

and 

t 
U, M = 	+ 	

(A(s)u(s) + f(s))ds + j (B(s)u(s) + g(s))dW(s) I 0 

which are considered in the triple H 1  —* THI0  THJ —* THI. We can see that these 

equation are of the same type as those in Theorem 3.3.1. Therefore, it suffices to 

verify Assumptions 3.3.3 - 3.3.5 of Theorem 3.3.1. 

By Lemma 4.4.2 for all j = 1, 2,. .. , r, 1 = 0,1,. . . , r for some constant L 

J(A(t)v, ) 	Lvlkco2_k, 	k=O,1,...,6, 

(B(t)v, )I < Lvkco11k, 

I(B 1 (t)v, )I < 
	

k=-2,-1,...,5, 

< 

for every (t, w) e [0,T]x1 and v, e C000 . Similarly, for all n EN, j = 1,2,... ,d, 

I = 0,1 1  . . . , i' for some constant L 

	

< LfllvIklcoI2_k, 	k=0,1,2, 

	

I(B(t)v,,)I < LflvkIcoI1.k, 	k = —1,0,1, 

I(B'(t)v, )I 	LflIvkIco1_k, 	k = —1,0 
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for every (t, w) E [0, T] x Q and v, W e C. Therefore, the requirements of 

Assumption 3.3.3 are satisfied. 

Next, we verify requirements of Assumption 3.3.4. Using Lemma 4.4.1 we get 

for every ri E N 

(v,Av) + A 
	

Lv 

for every (t, w) E [0, T] x IZ and v E W+l. Here A is a constant that comes from 

Assumption 4.3.5. Using Lemma 4.4.3 we get for every ri E N 

(Bv,Bv) + (v,BBv) < LIv 12 

l(v,Bv) < LIv 12 

I(v ) B ° v) I 

I(Aw,Bw) + (w,BAw) 	Llw 

for every j,l = 1,2,... ,r, (t,w) E [0,T] x 	and v E 	w E 	In 

inequalities above constant L does not depend on n. 

Finally, Assumption 3.3.5 holds by Lemma 4.4.4. This completes the proof. 
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Chapter 5 

Filtering Problem 

This chapter is devoted to the application of the result of Chapter 4 to the filtering 

problem. 

5.1 Introduction 

The problem of non-linear filtering can be described as follows. Assume that 

(x,y) = {(x(t),y(t), t > O)} are two diffusion processes with values in R', J11, 

respectively. The process of interest, the unobservable signal process x, represents 

the state of the system at time t. The observable component, the observation 

process y, represents the measured output of the system at time t. The problem 

of the estimation of the unobservable signal x(t) or a function of x(t) on the basis 

of the observed paths of y(s) for s < t is referred to as a filtering problem. 

This model arises in many technical problems. For example, the process y(t) 

describes the coordinates of a moving object computed on the basis of the radar 

measurements, N(t) represents the error of the measurements, and x(t) is the 

true position of the object at time t. 

Here we have a simplified model. Suppose that x is a solution of ordinary 

differential equation dx(t)/dt = H(x(t)), x(0) = x 0 . Then the observation y is a 

solution of equation 

Y(t) = f H(x(s))ds + N(t). 

In various situations the evolution equation of the signal process x includes ran-

dom perturbation. In these cases x can be described by the equation 

ft 	

I
t 

x(t) 
= J 

 h(x(s))ds +a(x(s))dN(s). 
0  

Thus, the goal of the filtering problem is to filter out the noise N from the 

observation process y, and to find the best estimate for the signal process x given 
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the measurements up to time t. More precisely, given a measurable function 

f = f(x) with E(f 2 (x(t))) < oo find the best mean square estimate J(t) of 

f(x(t)) given the trajectories y(s), s < t. If the noise N is a Wiener process then 

it is known that under certain regularity assumptions 

f(t) 
— ff(x)co(t,x)dx 

- 	fço(t,x)dx 

where is a random process, called unnormalized filtering density. The problem 

of estimating f(x(t)) is thus reduced to the problem of computing the density W. 

It was also shown that satisfies a linear stochastic differential equation, 

	

/102 	 0 
d(t,x) = 	-j(a2 (x)(t,x)) — 	(h(x)o(t,x))) dtax 

+ (H(x)(tx) —(o ,  (x)(tx))) dy(t), 
Ox 

called the Zakai equation (see [19]). The normalized filtering density 

	

/fRp(t, x) = 	(t, x) ( 	(t, x)dx
\ 

 

was also studied. It is known that p satisfies a measure valued stochastic differen-

tial equation called the Fujisaki-Kallianpur-Kunita equation with a disadvantage 

of being nonlinear (see [3]). 

In the paper we study a more general situation. The processes x, y are con-

sidered to be multidimensional and functions h, H, a depend on t, x, y. Our 

interest is motivated by the following. In practice the "real observations" have 

bounded variation. This is the result of the error in measurement of process y. 

We thus get a sequence {Yn}nN  of processes of bounded variation which approx-

imates observation y. Using "real observations" y  instead of y, we solve the 

approximation of the Zakai equation. We compute ço, and hence obtain density 

p by the formula 

	

(fR 
p(t,x) = 	(t,x) 	ço(t,x)dx

\ 
 

It is known that under some general conditions the convergence n  —* y implies 

the convergence of unnormalized densities ço,, -* , as well as normalized densities 

p —+ p. In Theorem 5.2.2 we study the rate of this convergences given the rate 

of convergence yn  4 J. 

5.2 The Main Result 

Let (fl, .F, P) be a complete probability space, and let us consider a (d + r)- 

dimensional diffusion process (x, y) = {(x(t),y(t)), t e [O,T]} defined by the 



system of stochastic differential equations 

dx(t) = h(t, x(t), y(t))dt + a(t,x(t),y(t))dV(t) 

	

+ p(t,x(t),y(t))dW(t), 	 (5.2.1) 

dy(t) = H(t,x(t);y(t))dt + dW(t), 

t E (0, T], with the initial conditions 

x(0) = e 	(0) = 77 . 	 (5.2.2) 

Here h(t,x,y), H(t,x,y), o(t,x ) y), p(t,x,y) are matrices of the sized x 1, r x 1, 

d x r0 , d  r, respctively (for all t e [0,T], x  Rd, y  Rr),  (V(t),W(t)) is a 

standard (ro  + r)-dimensional Wiener process independent of the J 0-measurabe 

random variables , 77 with values in Ift'1 , 11T, respectively. In the paper we assume 

that the model is non-degenerate, i.e. there exist E > 0 such that 

pp*(tXy) >—EJ 

for all (t, x, y) E [0, T] x R d  x R. Above I is the identity operator. 

Let us define hPq = h1 (t, x, y) by 

= I (pp*)pq + 

for every p, q = 1, 2,. . . , d, and define operators 

49 	 92 
L(t,x)u = —(h(t x,y(t))u) + 

aXp 

a 
.,&f(t, x)u = H3 (t, x, y(t))u - —(u' 3  (t, x, y(t))u), 

j = 1, 2, . .. , r. Let us consider the so called Zakai equation 

do(t,x) = 4(t,x)dt + .A1tp(t,x)dy(t) 	 (5.2.3) 

with the initial condition 

(0,x) = po (x). 	 (5.2.4) 

The following theorem is a fundamental result. 

Theorem 5.2.1. Let 1 > 0 be an integer. Assume that hPq have uniformly 

bounded derivatives in x up to the order 1 + 2, h and p have uniformly bounded 

derivatives in x up to the order 1 + 1 and H have uniformly bounded derivatives 

in x up to the order 1. Suppose that the conditional distribution of e given 'q has 

a density Po  (with respect to Lebesgue measure), which belongs to W. Then the 



conditional density p(t,x) := P{t,dx}/dx (of x(t) given {y(s), 0 < .s < t}) exists 

and 

At, x) = 	(t, x)/((t), 1)L 2 , 

where = ço(t, x) is the unique solution of Zakai equation (5.2.3) with the initial 

condition (5.2.). Moreover, CW 2' fl £2 W' and ((P(t), 1)L 2  is a positive and 
continuous function on [0, T]. 

Let us approximate observation process y by a sequence {Yfl}flEN  of r-dimensional 

continuous on [0, T] stochastic processes of bounded variation. Similarly as above 

for every n e N we define operators 

a2  = _(hP(t,x,y(t))u) + 
axp  

	

x)u = H(t, x, y(t))u - 	x, y(t))u), axp  
a 	 a 

	

- 	Hi (t, 	-
ay,- 

for j,l = 1,2,... ,r. As an approximation for the problem (5.2.3)-(5.2.4) we 

consider the partial differential equation 

	

dço(t,x) = Lço(t,x)dt + 	gço(t,x)dy(t) 

- 	A1ço(t,x)dt - 	ji (i ) con (tx)dt 	(5.2.5) 

with the initial condition 

(0,x) = po (x). 	 (5.2.6) 

Suppose the following holds. 

Assumption 5.2.1. For every r. < c and every positive 5 

Y — Yn = 

S = 

JjSn jj = O(1nn), 

where Sn  is an r x r-dimensional process defined as follows, 

t 

S 1 (t) = f (y(s) - y(s))dy(s) - nj  

where 5j1  is the Kronecker's symbol which assumes 1 if j = 1, and 0 otherwise. 

Assumption 5.2.2. The derivatives in x of h, Hi up to the order m + 5, of 
(a1ay1 )Hi up to the order m + 4, of (D/Dt)H2 , (192/ay119y)Hi up to the order 
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m+3, of (02 /8tôy 1 )Hi, ((93 1aY19YhUYk)H up to the order m+1, of UJJZ ,  pP3 up 

to the order m + 6, of (915y1)u', (51ôy)p)i  up to the order m + 5, of (5/5t)p i , 

(o2119y1ay)pPi up to the order m + 4, of (0 2 /atDy1 )pi, (a315y1l9y9y)p3 up to 

the order m +2, are bounded measurable in (t, x, y) functions on [0, T] x Rd  x R'. 
Above p=1,2,...,d,j,l,h,k=1,2,...,r,i=1,2,...,r0 . 

Assumption 5.2.3. Random variables 6 , i are almost surely finite. The condi-

tional distribution of 6 given 77 is absolutely continuous with respect to the Lebesgue 

measure on iId1  for almost every w E ft Its density P0 = po(, w) belongs to W+ 5 .  

Note, that under Assumptions 5.2.2, 5.2.3 there exist an L 2-solution , 

of problems (5.2.3)-(5.2.4), (5.2.5)-(5.2.6), respectively, such that W belongs to 

Cw 5  n £2 W 6 , con  belongs to CW 1  fl £ 2 W2 2 . As a corollary of Theo-

rem 4.3.1 we get the following. 

Theorem 5.2.2. Under Assumptions 5.2.1-5.2.3 the sequence of solutions co n  

of the problem (5.2.5)-(5.2.6) converges almost surely to the solution of the 

problem (5.2.3)-(5. 2.4),  

~On 12 
	= 

and 

f
T I  (p (s) - co. (s)Jrn+ids 

for every tc < c. Moreover, the sequence of densities Pn  converges almost surely 
to the density p, 

IPPflV2 = O(n), 

and 

f
T 

p(s) —p n (s)j,rn+ids = 

for every ic < c. 

5.3 Proof of Theorem 5.2.2 

5.3.1 Convergence ç —* 

In order to define operators A4 (1 )(t, x), M 1 (t, x), .Mi ( '')(t, x), Jvt,Y 1 (t, x) we 
rewrite the definition for M' (t, x), M 3  (t, x). For every j = 1, 2,. . . , r, p = 
1, 2, . . . ,d set 

H3 (t,x,y) 	 x, y), 
- 

/3'(t,x,y) = —p"(t,x,y). 
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Define 

	

b(t,x) = /3(t,x,y(t)), 	b,(t,x) = 

p = 0, 1,... , d, and then in connection to the notations introduced in chapter 4 

	

= b(t,x)Dv, 	 = b 3 (t,x)Dv, 

j = 1,2,... , r (we sum with respect to p from 0 to d). 

For all p= 0, 1,... ,d, j, 1= 1, 2,.. . ,r set 

a 	1 a 
/3 ° (t,x,y) = 

i 3 ° (t,x,y) = --/3(t,x,y), 
at  

X, Y) = a 

i3 	x,y) , (t, 	= 	—/3(t,x,y). 

Now define 

b 1 (t,x) = 	OP( I )  (t, x, y(t)) bp-(! )  (t, x) 	= i /3"P(t x, y(t)), fl3 	" 

0, 1,.. . ,r, p= 0, 1,... ,d, and then 

= b 1 (t,x)Dv, 	J1 1 (t,x)v = b(t,x)Dv, 

j = 1,2,...,r,1=0,1,...,r (we sum with respect top from oto d); 

At last, for allp= 0,1,... ,d, j,k,1 = 1,2,. ..,r set 

3P( kO)(t x  y) 	a 	1 a2 	a Ojp (t X,  Y), 	(kz)(txy) 
= aYlaYk = (+)a 

and define 
b1(kl)(t x) = 

j,k=1,2,...,r,l=0,1,...,r,p=0,1,...,d,and then 

= 

j,k= 1,2,...,r, 1=0,1,...,r (we sum with respect top from o to d). 

Assigning 

	

= L - 	- 	Mi = 	 = fj(1) 

A,j(kl) = 	j(k1) 

Ln = 	- 	 - 	 Mi = M, 	 = j(1) 
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we reduce problem (5.2.3)-(5.2.4) to the form 

dço(t,x) = £ço(t,x)dt 	Mço(t,x)dy(t) 

+MMço(t,x)dt + 	 ( 5.3.1) 

( 0 , X) = P0 W, 	 (5.3.2) 

equivalent to the "Stratonovich" equation (4.3.5), and we reduce problem (5.2.5)-

(5.2.6) to the form 

dço(t,x) = £ço(t,x)dt + Mço(t,x)dy(t), 	(5.3.3) 

ço(O,x) = PnO(X), 	 (5.3.4) 

which is equivalent to the partial differential equation (4.3.6). Our aim now is 

to show that in this case Assumptions 4.3.1-4.3.5 are satisfied. Indeed, by the 
j p Ito formula the processes b'(t,x), b(t,x), b(t,x) for all j,k = 1,2,... ,r, 

p = 0, 1, . .. , d have stochastic differentials 

	

dbjp 	= b ° (t,x)dt + 	O(t,x)4w1(t), 

	

dbpnj 	= b?(t,x)dt + b 0 (t,x)dW,(t), 

'(t,x) = b' 0 (tx)dt + dbjp  

respectively, on [0, T] for all x e R' and ri E N. By a Fubini-type theorem 

for stochastic integrals (see p.  116, [13]) for every 0 e C(Rd)  the stochastic 

processes (b(t), (b 3  (t),)) 0' (b'(t) l')o  have stochastic differentials 

d(b(t), b) 	= (b°(t), V4odt  + (b(t), ')o dVV'(t), 

d(b(t), 'çb) o  = (bP(t), 'çf4 odt + (b(t), )0 dT4T(t),nj  

d(b'(t), ') 	= (b'° (t), '/') odt + (bldl(t), 4')0dW1(t), 

respectively, on [0, T] for all n E N. It is easy to show that Assumptions 4.3.3, 

4.3.4 hold. 

Finally, if H is uniformly bounded in (t, x, y) for every j = 1, 2,.. . , r, then 

by Girsanov's Theorem, p.  207, [17], we can introduce on the measurable space 

(l, F) a new probability measure P by 

(dw) = pT(H)(w)P(dw), 

such that (cZ,F,P) is a probability space and W(t) + fH(s,x(s),y(s))ds is an 

r-dimensional Wiener process on the interval [0, T] on ( Q ,.77 , I). Above pT(H), 
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called the exponential martingale, is defined by 

PT (H) = exp{— 	f H(x(s), y(s))dW(s) 

fo 
Notice, that condition EPT(H) = 1 of the Girsanov's theorem holds by Lemma 

1, p.  204, [17]. Therefore, Assumption 5.2.1 implies Assumption 4.3.1. We apply 

Theorem 4.3.1. 

FEW 

5.3.2 Convergence Pn - p 

We have, for every t e [0, T] 

IPM — p(t)wn 
< co(t)wn(co (t),1)L2 - (cpfl(t),1)L 2 1 + Ico(t) _çon (t)wn 

((P(t), 1)L 2  

Therefore, since by Theorem 5.2.1 almost surely 

inf((t), 1 )L2 > ( 	 (5.3.5) 

for some positive random variable (, the problem of estimation of I - pnw2m, 

1T 
 p - pn ,rn+id8 can be reduced to the estimation of I(° 1)L2 - ( con , 1)L 2 j.1 2  

Namely, in order to prove the second part of the theorem it is enough to show 

that 

(, 1)2 - 	1)L 2  = O(n) 	 (5.3.6) 

for all iz <a/2. Then (5.3.5), (5.3.6) imply also 

inf((P(t), 1)L 2  > Ci 
t<T 

almost surely for some positive random variable j and for sufficiently large ri. It 

is clear that this is what we need to get our results from the first inequality in 

the section. 

Therefore, it suffices to show that (5.3.6) holds for any ic < a. Introduce 
function p(x) = (1 + 2 )Y/ 2 . Then 

I(co(t), 1)L2 - (ço(t), 1 )L2 1 :5 I(p(co(t) - cofl(t)),p')L 2 1 < Cp((t) - cofl(t))1L2 

for every t e [0, T], where C = 1P'1L2 is finite for 'y > d, and therefore it is 
enough to verify that 

Ip(c° - c0)IL2 = O(n') 	 (5.3.7) 
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for all it < o/2. 

It follows from problem (5.3.1)-(5.3.2) that for function p(x) defined above 
(t, x) satisfies equation 

d(p(x)(t,x)) = p(x)Lço(t,x)dt + p(x)Mo(t,x)dy(t) 

	

+ p(x)MMço(t,x)dt + 	 ( 5.3.8) 

with the initial condition 

0(0,x) = po (x). 

Introducing 

= p(x)(t,x) 

we can rewrite this in the form 

d((t,x)) = L('çb(t,x))dt + M((t,x))dy 

	

+ MM(b(t,x))dt + 	 ( 5.3.9) 

with the initial condition 

	

(0,x) = P(X)po(x), 	 (5.3.10) 

where 

Lv = Dp (a'(t,x)Dqv), Mv = b'(t,x)Dv M 1 v = b 1 (t,x)Dv, 

and coefficients a, b, b 1  will be written below in terms of apq,  b', 	Simi- 
larly, introducing 

0.(t,x) = p(x)(t,x), 

we get that 	x) satisfies for all n E N equation 

	

d(b(t,x)) = L(b(t,x))dt + M((t,x))dy 	(5.3.11) 

with the initial condition 

	

(0,x) = P(X)pno(X). 	 (5.3.12) 

Operators Ln , Mn , 	are defined by 

Lv = Dp (a(t,x)D qv), , Mv = b,(t,x)Dv, M 1 1 v = b(t,x)Dv, 

p 	p(l) will 	. 	 p 	v(1) coefficients a, b 3 , 	will be written below in terms of a, ok,, 0L3 Below we 
verify that operators L, L, M3 . , Mn3  satisfy Assumptions 4.3.2-4.3.5 and apply 
Theorem 4.3.1. 
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For simplicity of notations we will omit parameters t, x. It is easy to show 

that 

pMv =b'D,(pv) - pv 

where pp  Dp(x)/p(x). Denoting 

b? = bo - 

	

b.= b, 	p  

we get 

	

pM 3 v = M(pv), 	j = 1,2,... ,r. 	 (5.3.13) 

Set u = M t v and apply the previous formula to pMu twice. We get 

pMM 1 v = MM1 (pv), 	j, 1 = 1,2,. .. , r. 	(5.3.14) 

Denoting 

b 1  = b1 - 

= 	p(l) 

we show that 

pMv = MW(p v ), 	j = 1,2,... ,r, 1 = 0,1,... ,r. 	(5.3.15) 

In order to get a similar relation for £ and L we introduce intermediate operators 

I'!", N° defined by 

	

=aDv, 	NP V 
	 7X 

= 	
cDqV, 

so that 

	

Lv = E DAf''v, 	Lv = 	DN'v. 

As above assigning 

c 0  = a'0 - 
	

a'j, 

c' = 	q0 

we get relation 

	

pAPv = N1'(pv), 	p=0,1, ... ,r. 
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Then 

	

pLv = 	pDA1''v 

	

= 	D(pAfv) - 

	

= 	D(N'(pv)) - 

Therefore, defining 

= Oq
-  

a' = 	,p0 

we get 

pLv = L(pv). 	 (5.3.16) 

Hence, using relations (5.3.13)-(5.3.16) we indeed reduce equation (5.3.8) to equa-

tion (5.3.9). 

Similarly to 	b, b 1  we can define coefficients a', 	It is easy ton3) nj 

	

show that if a', b, ..., b 	satisfy Assumptions 4.3.2-4.3.5 then so do a'", b, 

VT. Applying Theorem 4.3.1 to problems (5.3.9)-(5.3.10), (5.3.11)-(5.3.12) 

we get 
/ 	/ 	 / -k 

YYnL2 = 	ifl 

for every ic < a/2, which leads to (5.3.7). 

U 
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Chapter 6 

Examples of Wiener Process 
Approximations 

6.1 Introduction 

The chapters above were devoted to the study of the approximations of stochastic 

differential equations (SDEs) by ordinary differential equations (ODEs). Namely, 

we investigated the rate of the convergence of the solutions for the approximating 

ODEs to the solution for the original SDEs. 

Initially we considered a "Stratonovich" SDE. We replaced the Wiener process 

W in this equation by an approximation system of stochastic processes {W fl } flE N. 

In this chapter we study the two most common types of these approximations for 

the Wiener process W: polygonal approximation and smoothing. We verify that 

in these two cases sequences {Wfl } flEN satisfy Assumption 2.3.1. 

Assumption 6.1.1. There exists a positive number c such that for every .'c < c 

and every positive 8 

W—W = O(n), 

S = O(n), 

1 1S.11 = O(lnn). 

Here we used the notation 

t 
S1(t) 

= fo 
(Wi(s) - W(s))dW(s) - 

 

where öjl  is the Kronecker's symbol which assumes 1 if j = 1, and 0 otherwise. 

6.2 Preliminaries 

In this section we list some statements that we will use later in the chapter. 



Theorem 6.2.1. Let W be a Wiener process and let E E (0, 1/2), T E (0, oo). 
Then there exists a random variable N = N(w), depending also on E , T, such 

that EN< 00 for all pE [0,00), and for any wf 

IWt —W s I < N(w)t—sI 

for all t,sE [0,T] 

This is a well known fact. The proof can be found in [16], p.  36. The following 

lemma is a corollary of Lemma 2.4.2. 

Lemma 6.2.2. Let {n}nEN  be a sequence of real random variables, and let 0 be 

a positive number. Suppose that for every n e N and every positive integer r 

(ElI 2") 1 /2' < 

where c o  may depend on r but not on n. Then for every positive y </3 

= O(n). 

Proof. We fix any value of 7, then set any r> (/3—'y) 1 , and apply Lemma 2.4.2. 

Lemma 6.2.3. Let e(t), t E [0, T] be simultaneously a continuous martingale and 

a Gaussian process with mean 0 and variance at. Then 

7 1a\ 
P{  sup (t) ~ a} 	exp 

(--)• 	

(6.2.1) 
t<T 	 2 UT 

Proof. By properties of positive submartingales (see Theorem 3.8, [17]) and 

normal random variables for arbitrary A 

P{sup(t) a} 	P{supe (t) > e} < 	 = 
t<T 	 t<T 	 - e 	 e' 

Minimizing the last term with respect to A we derive (6.2.1). 	 LIJ 

Lemma 6.2.4. Let stochastic processes M(t) simultaneously be a continuous mar-

tingale and a Gaussian process with mean 0 and variance at = oft, where c is a 

positive constant. Denote 

X=sup 	
M(t) 

 
&<t<e2 Vtilnln 

Then EXP < oo for any integer p > 2. 
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Proof Note, that the interval (0, e - '] is dictated by function /tin1n(1/t). In-

troduce a partition {tk},2 , 3 ,...  of the interval (0, e 2], tk = e_c . Then 

X = sup sup 	
M(t) 

 
k>2 tk+1<t<tk 	in in 

Let us show that fof every z > 0 
00 

P{X > z} 	_CZ2h11+/ 	 (6.2.2) 
k=2 

for some positive constant c. Indeed, we have, 

00 

P{X>z} < 	p 	 >zJ sup 	
M(t) 	

} 

k=2 	1t1<t<tk /t in in It -  

00  P sup M(t) >_ Ztk+i in in 
l<t~ tk tk+1 5 

and by Lemma 6.2.3 

0 	/ 	 '\ / i zt i+i  in in 	 0 	
lz2 ln(1 -+- k) =  

P{X > z} 	 exp exp 	
0tk 	 k=2 	

oe 	j k=2 

which proves (6.2.2). 

Let us separate large values of X, so that XN = XXX>N, and estimate EXJ . 
The random variable X is non-negative. Therefore, 

"00 	

fNEXI 
 = j P{X ~ x}dx 

= 	
P{X >  x'}dx. 

0  

Using estimate (6.2.2) we get, 

00 

EX J  < 	
fN

°°e_cx2/P111+/dx = f00e_c(x+N)2/P1n(1+k)dx

k=2 	 k=2 0 

00 

 f e_c2h12h1') 

k=2  

for some constant c(p) depending only on p. Then 
00 	 00 

	

EX J  < d(p) 	e_c N2/Pmn(1+k) = d(p) 
k=2 

+ k)_cN2, 

00 	2/ —c(p)xP1n3 	i where d(p) = 	e 	dx s finite for any p > 2. Taking N large enough 

Such that the sum is finite we get EX J  < 00. 

Finally, 

EX = EXXX <N + EXXX>N  ~ N' + EX < oo. 



6.3 Polygonal approximation 

For simplicity assume that T is an integer. Let us define for any n = 1,2,... 

partition {t} 0  of interval [0, T], where t = . For short we omit index n and 

use notation tk. The polygonal approximation of the Wiener process W may be 

defined as W(t) = W(tk) + n(t - tk)(W(tk+1) - W(tk)) in the interval [tk,tk+1) 

for k = 0)  1, . . . , nT—i. However, this family is + 1-adapted, and, consequently, 

not -adapted. Introducing a shifted -adapted version W(t) = W(t - we 

define a natural approximation, i.e. an approximation which does not depend on 

the "future". 

Definition 6.3.1. We say that a sequence {W fl } flE N is a polygonal approximation 

of a Wiener processes W if it is defined as 

W(t) = T'V(tk_ l ) + n(t - tk)(W(tk) - W(tk_l)) 

for values oft from the interval [tk, tk+1) for k = 0, 1,. .. , nT - 1. To make the 

definition consistent we assume that W(t) vanishes for negative t. 

The following is the main statement of the section. 

Proposition 6.3.1. In the case of polygonal approximation Assumption 6.1.1 

holds with c = 1/2. 

We will need the following lemma. 

Lemma 6.3.2. For any integer n > 1 let X,-1 ,... , Xnn be independent random 

variables such that for k = 1, 2,..., n EX k  = 0, and for a sufficiently large 

integer p > 1 

EIXflkI2 < 

for all n > 1 and some 0 e (, 1], where c is a constant depending only on p. 

Then S. = 	X flk converges to 0 almost surely. Moreover, for every 'y </3 - 

there exists a finite random variable 	such that almost surely 

ISn I 5 •yflY 

for all n > 1. 

Proof. First, show that for any multi-index ce = (01, 	, c) such that a 1 	+ 

Cen = 2p the following inequality holds: 

EX' Vn < cpn 2' nl 	• •"t nn I  - 



Indeed, by Holder's inequality 

EIX' 	X'' < (EIXiI2") 2p 	(E'x 2p' 
n1" nfl - 	 I nn j 

n 

~ JJ (c,n) 2P = 
k=i 

Hence, 

E(S) 2 ° < (2p)!N(n,p)n 2 , 

where N(n, p) is the number of those multi-indices a = (a 1 ,... , a,) satisfying 

the conditions a. 1 for all  = 1,2,... ,n, and a 1  + +a, = 2p. Our aim is 

to show that N(n, p) < c(p)nP for some constant c(p) depending only on p. 

The number of a r ,.. . , a, different from 0 is less than or equal to p. So 

N(n,p) can be estimated by ()N(p). We take 
() 

choices to place p elements 

to n positions. And for every such a choice we determine number N(p) of all 

possibilities to choose p multi-indices (ail  ,. .. , a) for which c, + + aip  = 2p. 

Obviously N(p) exceeds the number of all multi-indices with the elements different 

from 1. 

Next, N(p) equals to the number of multi-indices (i3,... , /3,,) possessing the 

following properties: /3 > 1 for all j = 1,2,... ,p, and /3i + ±3,, = 3p. And, 

hence, is equal to the number of possibilities of placing p - 1 elements to 3p - 1 

positions. So, 

N(n,p) 
<  (n) (3p— 1)

-

< p)n", 
pp-1  

where constant c(p) - - 1 13p-l\  depends only on p, and 

E(Sn)2" < c(p)n2 

Lemma 6.2.2 ends the proof of the lemma. 	 LI 

Proof of Proposition 6.3.1. Using Theorem 6.2.1 for every s > 0 and every t E 

[tk, tk+1) almost surely 

W(t) - T'V,(t)I 	2 sup 147(t) - W(s)I 
t,s<T 

lt-sl 

where C,  is a finite random variable depending only on E. Assumption 6.1.1(1). 

holds. Next we verify Assumption 6.1.1(2), i.e. IS j,1 1 = O(n) for every j, 1, and 

any 'y < 1/2. We start with the situation where j and I coincide. By the Ito's 

formula 

IW(t) - W(t) 2  = 2f (Wi(s) - W(s))d(W(s) - W(s)) + t, 

M. 



and, hence, 

t 1 	 - 

S(t) 
= 10 1 

(W(s) - W(s))dW(s) - IW(t) - W(t)I2. 	(6.3.1) 
.jj 

By Burkholder-Davis-Gundy and Jensen's inequalities for any p > 1 

Esup ISv' < cE sup W(t) - W(s)I" < cn"/2 , 
KT 	 t<T I t_ S j< n2 

where constant c does not depend on ii. it suffices to apply Lemma 6.2.2. Next, 

we verify Assumption 6.1.1(2) in the case of distinct j and 1. By Definition 6.3.1 

of the polygonal approximation 

nT—i 

S 1  (t) = n 	(W 1 (tk) W1(tk_1)) f 	(Wi(s) - W ' 

. 

(tk))X ,, <tds 
k=O 

nT—i 

+ n E  (W1(tk) - T'V1(tk_1))(T4/(tk) - W(tk_l)) 

f tk+j

x 
	

(n(s - tk) + 1)3<tds. 
k 

Assume that for ri E N time parameter t belongs to the interval [tmn , tm n +i). 

Then 

Mn 	 n
U 

S 1 (t) 	(T47l(t) 
- T'V1(tk_i)) J (V7(t + -) - W 3 (tk))du 

k=O 	 0 
- Mn  

+ 	(W(t) - W 1 (tk_ 1 ))(W(t k ) - W(t k_i)), 
k=0 

where a n = ri(t - tmn) if k = Mn , and a = 1 otherwise. For k < Mn denote the 

terms in the first sum of the last inequality as Xnjk  and the terms in the second 

sum as Y. Define X = = 0 for k > Mn . Then nk 

nT—i 	 nT—i 

S t (t) 	X + 
k=0 	 k=O 

It is easy to show that for every k, EX nk  1  = EYnk1 - 0 and 

an 	 2  

EIXI2 < EIZl2PJ. EIZi 2 du ~ 
((2P_1)!!) 

0 	 p+1 

EI'I 2 	;; (E I Z ,  1 ,P) 2 
 = (( 2p —  1) 11 )n', 

where Z, is a Gaussian random variable with mean 0 and variance v. By Lemma 6.3.2, 

= O(m) for any 'y < 1 . Hence, Assumption 6.1.1(2) is satisfied with 

c=1/2. 
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Now we go on to Assumption 6.1.1(3). We have 

Now we go on to Assumption 6.1.1(3). We have Now we go on to Assump-

tion 6.1.1(3). We have Now we go on to Assumption 6.1.1(3). We have Now we 

go on to Assumption 6.1.1(3). We have Now we go on to Assumption 6.1.1(3). 

We have 

ISKT) 

n 	f
tk+1 

nT-i 

lk 	
(W(t)W(tki)) - n(t - tk)(W(tk) - W(tkl)) 

 k=O 

xlW 1 (tk) — W 1 (tk_i)dt ± 

f
1 (nT_i 

t W(t + ) - W(tk)IIW1(tk) - W1(tki)Idu 
k=O 	 Ti 	

} 
j,1  

nT-i 

+ 	T47(t) - T'V(tk_i)IT471(tk) - T 71 (tk_i) + M T 
- 	j,1 k=O 

nT-i 1 I nT-1
du++c,  j,1 	0 	k=0 	 j,1 k=0 

jSH(T) 

<  n>f
tk+1 nT-i 

(W(t)—W(tk i )) 
j,1 	

k

k=0 

—n(t - tk)(W 3 (tk) - T'V3(tk_i))I 

xlW 1 (tk) — W 1 (tk_i)Idt + 	 - 

1 nT-i 

L { 	
W(t ± ) - W(tk)lW1(tk) - W 1 (tki )du} 

nT-i 

+ 	i 	1'V(t) - T47(tk_i)llT471(tk) - T'V 1 (tk_ i ) I + 
j,1 k=0 

1 (nT-i 	'i 	 nT-i 

= 	f 	Xnjk  
j,1 	0 	k=0 	 j,1 k=0 

where 

Xk = IW(t k  + ) - W(tk)HW1(tk) - W'(tki) - [" AllTi 

Y 3  k3 = 1'V(t) - W(tk_i)I 
2 	1 

nk 
n 

nk - - W(t) - W(tk_i)IW1(tk) - W1(tk_i)J - /i, j 1, 
n 
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nT—i 1 	 nT—i 	nT—i 
C= T+ >>f 	du+ 	 + 

j,1 i=0 	 j k=O 	j1 i=O 

Here j is the expectation of the module of a Gaussian random variable Z,, 

distributed with mean 0 and variation v. Obviously, j 	v for any v, and hence 

C < M T + 2M2 T. 

Furthermore, we check conditions of Lemma 6.3.2 for X and Y,. First of all, 

EX =EY =0. Next, 

= 	(l)2P_i(2P") 1 .EIZ1 2i  

i0 	
\i,fl2Pi 

where constant c depends only on p. The same sort of arguments shows that also 

} for j 1 and X can be estimated by cn 2 . By Lemma 6.3.2 both >k Xnknk nk 
and Ek  Y, converge to 0 as n tends to infinity; SnI(T),  and hence S,,, (t) for 

any t < T, can be estimated by a finite random variable, i.e. 11S,,11 = 0(1). This 

ends the proof of Proposition 6.3.1. 	 D 

6.4 Smoothing the Wiener process 

In this section we study another type of approximation of the driving process. 

Definition 6.4.1. We say that an approximation family { Wfl } fl EN is the smooth-

ing of a Wiener process W if 
1 

U 
t —)du. Wn(t) 

= f W( 
- n 

Here we assume that W(t) vanishes for negative t. 

Proposition 6.4.1. Assumption 6.1.1 holds when W n (t) is a smoothing of a 

Wiener process. 

We will need the following lemma. 

Lemma 6.4.2. Let W be a 1-dimensional Wiener process, {W n } nEN its smooth-

ing, {ffl}flEN  a family of one dimensional stochastic processes independent of W. 

Assume that for some ic > 0 and positive integer p 

/ 	 \l/P 

Esup Ifn(t)I I 	: 	con— '. 	 ( 6.4.1) 
\ t<T 	I 

Then 
/ 	f.t 	 P\1/P 

Esup / fn(s)dW n (s) ) 	< cn 	 (6.4.2) 
\. t<TJo 	 / 

for some constant c independent of n, providing that the integral exists. 
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Proof Changing the variable of integration in .the definition of the smoothing, it 

is easy to show that 

dW (t) 	 t 

= n(W(t) — W(t — 	= n 
ft- 

dW(v) 	(6.4.3) 
dt n 

n 

Define W(t) = W(T), f(t) = f(T) for t > T. Substituting (6.4.3) and changing 

the order of integration in f0f f(s)dW(s) we obtain the following estimate: 

I f
t 	 P

Esup 	f(s)dW(s) 	c(Ji  + .12),
t<T  

where 

	

f
tfv+l 	 P

= cn'Esup  	f(s)dsdW(v)
t<T   

1-1-
t 	fv+; 	 P 

	

J2  = cn"E sup 	I 	f(s)dsdW(v) 

	

t<T 	ft 

constant c depends only on p. Applying Burkholder-Davis-Gundy, and then a 

sequence of Jensen's inequalities, and using conditions of the lemma, we get 

J1  

where constant c does not depend on n. 

Proof of Proposition 6..1. Assumption 6.1.1(1) holds by Theorem 6.2.1 since for 

every E > 0 almost surely 

sup W(t) - W(t)I < sup W(t) - W(u) < 	 (6.4.4) 
t<T 	 t,u<T 

It-uI< 

where ( is a. finite random variable which does not depend on n. 

Next, we verify Assumption 6.1.1(2) in the situation where j and 1 coincide. 

Using (6.3.1) we have 

f,,
t f l 	 P 

Esup S' 	cEsup 	(Wi(s) - W(s - fldudW(s) 
KT 	 t<T  	 fl 

I 1 	 2p 

- cEsup If (Wi(s) - W 1. - du I 
t<TIo 	 n 

Then using Burkholder-Davis-Gundy and Jensen's inequalities 

EsupjSnjjjP < cE sup IW(t) - W(s) 	cn' 2  
t<T 	 t<T 

It-sI< 



for any p > 1, where constant c does not depend on n. It suffices to apply 

Lemma 6.2.2. In the case j I we assign f(t) = W 3 (t) - W(t), W(t) = 

W 1  (t). Inequality (6.4.1) holds by (6.4.4). Assumption 6.1.1(2) is satisfied by 

Lemma 6.4.2 and Lemma 6.12. 

It is remained to verify Assumption 6.1.1(3). By Definition 6.4.1 

U
s - )duIW1(s) -- ds 	

mt HSII(t) 	n>

fY  
 IW(s)—W( 	 + -- 

j,1 

Define two random variables 

W(s) - W 3 (s - u/n)j and 
	= sup = sup 	

n~3 
S,U 	

1lnlnn n~3 

W'(s) -  W1(s 
- 

V1 In In n 

depending on parameters s, u. For fixed s, u they are equivalent to the random 

variables 

C,u = sup 	 and i4 = SUP 
n~!3 	ln in ii 	 n~!3 in inn 

respectively, where W 3 (t) and 1 71 (t) are two Wiener processes depending on s, 

, , 1. By Lemma 6.2.4 

ELt f1 (  )2duds 
= I I' E(,) 2duds < 00 

and 

Ef(r)2ds 
= f 	< oo, 

and, consequently, almost surely 

ff (i)2dUds < 00 and f(i)2ds < oo. 

Finally, 

IjSIRt) 	>f f ,duids ininn 	(lninn, 
j,1 

where 

= 	(ftf1(i)2dUds)h/2 Ut)1/2 

is an almost surely finite random variable. This implies for every positive ö 

HSII(t) :!~ 	s In' n 

for some a.s. finite random variable (. The proof of Proposition 6.4.1 is complete. 

M. 
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