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Abstract

In the work we estimate the rate of convergence of the Wong-Zakai type of approx-
imations for SDEs and SPDEs. Two cases are studied: SDEs in finite dimensional
settings and evolution stochastic systems (SDEs in the infinite dimensional case).
The latter result is applied to the second order SPDEs of parabolic type -and the
" filtering problem. Roughly, the result is the following. Let W,, be a sequence of
continuous stochastic processes of finite variation on an interval [0, 7. Assume
that for some a > 0 the processes W,, converge almost sufely in the supremum
norm in [0,7] to W with the rate n™" for each k < a. Then the solutions u, of
the differential equations with W,, converge almost surely in the supremuin norm
in [0, T] to the solution u of the “Stratonovich” SDE with W with the same rate
of convergence, n™* for each k < a, in the case of SDEs and with the rate of
convergence n~*/2 for each k < ¢, in the case of evolution systems and SPDEs.
In the final chapter we verify that the two most common approximations of the
Wiener process, smoothing and polygonal approximation, satisfy the assumptions

made in the previous chapters.
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Chapter 1

Introduction

This paper is devoted to investigation of the stability of stochastic (partial) differ-
ential equations with respect to simultaneous perturbation of the driving process
and of the equations coefficients. Although the studied equations are of different
types they can all be unified and written in an abstract general form }

dult) = A(t,u()dt + > Bi(t,u(t))dWi(t), te0,T], (1.0.1)

J

with the initial condition .
u(0) = &. (1.0.2)

Above A, B?, j = 1,2,...,r are some abstract functions depending on w, W is an
r-dimensional Wiener process. Let {W,, },en' be a sequence of r-dimensional pro-
cesses of bounded on the interval [0, T variation which approximates the Wiener
process in some appropriate sense. Suppose that we simultaneously approximate
coefficients A, B by sequences {A; }nen, {Bn}nen, respectively. For every n € N

let us consider an equation of the form

dun(t) = An(t,un(t))dt + D Bi(t,ua(t))dWi(t), te[0,T],  (1.0.3)

with the initial condition
un(0) = &. (1.0.4)

Then a natural question arises whether the solutions wu,, for the problems (1.0.3)-
(1.0.4) converge, and if yes what the limit is. It is known that if A,, B, converge
to A, B in some appropriate sense, W,, converges to W in probability uniformly
in t € [0,7T) and the process '

J — i J — Wi l — l )
SHO = [ (W)~ Wie)awi(s) - Joue

In the paper we denote by N the sequence of numbers 1,2, ....
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converges in probability uniformly in ¢ € [0,T] to O for every 5,1 = 1,2,... ,7_" then
the solutions u,, of the problems (1.0.3)-(1.0.4) converge in prdbability uniformly
int € [0,T] to a process u which satisfies (1.0.1)-(1.0.2), where the last term in
(1.0.1) is understood in the “Stratonovich” sense. '

This problem was first considered by E. Wong and M. Zakai ( [23], [24]). Since
that time there was a large number of publications devoted to this problem (see
51, [6], [7], [12], [20], [21], [25]) where the convergence of the solutions u, — u
was studied. However, not many of them give the result on the rate of this
convergence. In the paper we investigate the rate of convergence, the problem
which was not well studied in the literature before.

In the simplest situation where the coefficients A, B are time-independent
non-random functions equal to A,, B,, respectively, the result of the paper is
the following. Assume that processes W,, S, converge almost surely to W, 0,
respectively. Suppose that for a given a > 0 there exists an almost surely finite
random variable 7 such that '

sup 2:|WJ — Wi(t)] + sup Z|SJ )| < nn7e,

t€{0,T] t€(0,T]

sup ZIIS’II

t€(0,T}

where ||S?||(¢) denotes the variation of the process Si(t) over the interval [0, ].
Let us assume the existence of the solutions u,, u of the problems (1.0.3)-(1.0.4),
(1.0.1)-(1.0.2), respectively. Then under some smoothness requirements on the
coefficients A, B we get

sup |un(t) —u(t)] < nen”

t€(0,T)
for all kK < «a in the case of stochastic differential equations and for all Kk <
a/2 in the case of stochéstic evolution systems and stochastic partial differential
equations. The random variable 7, is almost surely finite and depends only on K.

Our interest in the rate of convergence is motivated by the filtering problem

for partially observable diffusion processes. Let z be the unobservable signal
component, and let y be the observation. A fairly general filtering problem is
defined by the system

dz(t) = h(t,z(t),y(t))dt + o(t,z(t),y(t ))dV( )
+ p(t, z(t), y(¢))dW (2), z(0) = &,
dy(t) = H(t,z(t),y(t))dt + dW(t), y(0) = n,
where h, H, o, p are R%, R", Rd"m, R?*" respectively, valued stochastic processes
defined for (¢,z,y) € [0,T] x R* x R", and (V,W) is an (rq + r)-dimensional
4



Wiener process independent of the random variables &, 1. The estimation of the
signal process z given the trajectories of the observation y is main problem of the
filtering. It was shown before that under some general assumptions there can be
constructed a so called Zakai equation, a stochastic partial differential equation _
driven by the observation y, which admits the solution ¢(t,z). The density p of
the distribution

| P{z(t) e T|y(s), 0 < s < t}

can be obtained by the normalization

p(t, z)
Jra (8, T)dT’

' Note, that in practice we deal with observations ¥, of bounded variation which

- p(tz) =

can be considered as approximations for y. Using y, in place of y in the Zakai
equation we obtain solutions ¢,. Therefore, it is important to know how fast
unnormalized densities ¢, converge to ¢ and normalized densities p, converge to
p given the rate of convergence y, — v. '

Structurally the work is presented as follows. Chapter 2 is devoted to stochas-
tic differential equations. The situation where the drift A4 is Lipschitz-éontinuous
is first studied. In this case we obtained the rate of convergence n~*, Kk < a.
However, there have been given some examples of non-Lipschitz drifts (see [18]).
Next we consider the situation where Lipschitz-continuity is replaced by a weaker
monotonicity condition. In this case we proved slightly slower convergence n*,
k< a2

In Chapter 3 we study stochastic evolution systems. The equations are studied
in abstract normal triples V < H < V. The nonlinear operators A, B7, j =
1A, 2,...,r, are assumed to depend on w, ¢t and n. We get the rate of convergence
n" k< a2

Chapter 4 can be considered as a continuation of Chapter 3. Here we apply
the result of Chapter 3 to stochastic partial differential equations, A is a second
order elliptic differential operator, B?, j = 1,2,...,r, are first order differential
operators. The considerations are made in Sobolev spaces WJ™.

The filtering problem is considered in Chapter 5. We show that if observation
processes yn, y satisfy the assumptions made above for W,,, W, then the unnor-
malized densities ¢, converge to ¢ and normalized densities p, converge to p with
the half rate of the convergence y, — v.

Finally, in the last Chapter 6 we show that two types of approximations of
the Wiener process W, smoothing and the polygonal approximation, satisfy the

- assumptions mentioned above.



The results of the present work are going through the process of publication

([10}, [11]).



Chapter 2

Stochastic Differential Equations
in Finite Dimensional Case

2.1 Introduction

In this chapter we consider stochastic differential equation of the form

dX(t) = b(t,X(t))dt + o7(t, X(t))dW(t) (2.1.1)

with initial condition :
X(0) = ¢, (2.1.2)
where W is a Wiener process, and b(¢,-), 07(t,-), j = 1,2,...,r, are vector fields

mapping R? into R? for every ¢t > 0, initial value ¢ is a random variable, and
solution X is a stochastic process with values in R?. Here and throughout the
paper we use the summation convention with respect to the repeated indices. We
replace the Wiener process with a sequence {W,}.en of processes of bounded
variation which, for some a > 0, converges almost surely in supremum norm on
the interval [0,T] to W with the rate n™*, for'each k < a. Hence, we get for
every n € N the corresponding to (2.1.1) differential equation of the form

dX,.(t) = b(t,Xa(t))dt + o7 (t, X,(t))dWI(t) (2.1.3)

with initial condition
Xa(0) = & (2.1.4)
It is well known (see [5]) that the sequence of solutions X, of problems (2.1.3)-
(2.1.4) converges under some natural conditions in the uniform topology in prob-
ability. The limit, however, is not the solution of problem (2.1.1)-(2.1.2), but of a
closely related problem with the equation which contains an extra drift term. This
equation can be considered as equation (2.1.1) with the last differential written

in the Stratonovich form. We investigate the almost sure convergence X, — X

in the supremum norm on the interval [0, 7).

7



Under additional assumptions the problem admits an obvious solution ([1]).
Consider one dimensional situation where drift b vanishes, and diffusion ¢ does

not depend on t. If o is Lipschitz-continuous, equation

d
u(@) = (@), w©) = ¢

has a unique solution. It is easy to show that X (¢) = u(W(t)), Xa(t) = uw(W,(t))
satisfy problems (2.1.1)-(2.1.2), (2.1.3)-(2.1.4), respectively. Then by Lipschitz-
continuity of u the rates of convergence of solutions X,(¢) and approximations
Wh(t) of the Wiener process coincide.

Under the same assumptions on coefficients the above scheme can be extended
to the multi dimensional case. However, this entails additional conditions on the
coeflicients of the equations. As before, set X (t) = u(W(t)), X.(t) = uw(Wa(t)),
where u is a solution of the following system of partial differential equations

o - i ¢ =
5;;” (z) = ol(u(z)), u'(0) = &

This system is solvable only under Frobenius condition,

Tiony(T) = Uf(ai)(w)
foreveryze R and alli=1,...,d, j,l=1,...,r, where
. o .
!
Ug(al)(m) = Uk(x)gx—kaf(m)-

The above solution requires very strong assumptions on the coefficients of the
equations. In Theorem 2.3.1 we show that X, converge to X with the same rate,
n~" for each K < a, as in the above solution under Frobenius condition. However,

only some natural regularity properties are imposed on the coefficients b and 7.

2.2 Generalities

In this section we give some general ideas and notations from the Theory of
Random Processes and Stochastic Differential Equations.

Let R? be a Euclidean space of dimension d with a fixed orthonormal basis, and
let us denote X the j-th coordinate of a point X € R?. For X,Y € R? we denote
the scalar product of X and Y by XY. For a vector X € R® we denote its modulus
by | X| and for a matrix B € R¥*" we denote |B| = (trBB*)'/2 = (Zk’l(B,lc)2>l/2.
For a real valued function Z, its variation over the time interval [0, ] is denoted

by |[Z]1(2)-



For a sequence of real valued stochastic processes {Y,}nen defined on the
interval [0,7] and a numerical sequence a, we will use notation Y, = O(a,) if

for some almost surely finite random variable ¢

[Ya ()] < an¢

for all n € N for every t € [0, T].

2.2.1 It6 Equations in R?

Although this is not the topic of the papef, in this section we give the existence
and uniqueness results for a solution of a SDE in finite dimensional settings.
Let (©, F,P) be a complete probability space equipped with complete right-
continuous filtration {F;}:>0. Let W = W(t) be a Wiener process relative to
{F.}. Suppose that a d-dimensional vector b = b(t,z) and a d x r matrix ¢ are
defined for t € [0,T], z € R, w € Q. Let & be an Ri-valued F,-measurable

random variable. We consider equation
dX(t) = b(t, X(t))dt + o’(t, X(t))dWI(t), X(0) = & (2.2.1)

The vector b is called the drift and the matrix o is called the diffusion of the
equation (2.2.1).

Definition 2.2.1. A continuous F;-adapted process which satisfies (2.2.1) almost

surely for all t € [0,T] we will call a solution of equation (2.2.1) on the interval
[0, T7].

This equation is considered under certain additional conditions.

Assumption 2.2.1. For any R > 0 there ezists a non-negative measurable pro-
cess K(R) such that almost surely

T
' / K(R)dt < oo,
0

and

(a) (monotonicity condition) for all z,y € R? such that |z|, |y| < R, for
almost all t € [0,T]

2z —y)(b(t,2) —b(t,y)) + lo(t,z) —o(t,y)l* < Ki(R)(z —y)*
(b) (growth condition) for all z € R? and almost all t € [0, T)

2zb(t,z) + |o(t,z)]*? < K,(1)(1 + z?).
9



The following theorem is the generalization of Itd’s classical result on existence
of a solution of a stochastic equation of type (2.2.1) with random coefficients. We
avoided the Lipschitz continuity and replaced it with monotonicity condition. An
example of a function which satisfies monotonicity but does not satisfy Lipschitz

condition can be found in [18].

Theorem 2.2.1. Under Assumption 2.2.1 there exists a solution X (t) of equation
(2.2.1). If X(t), Y(t) are two solutions of (2.2.1) then they are indistinguishable,
i.e. '

P{sup |X(t)-Y(t)] >0} = 0.
t€[0,7T)

The proof can be found in [16].

2.3 The Main Results

Let (2, F,P) be a complete probability space equipped with right-continuous
complete o-algebras {F;}:>0. Let W be an r-dimensional Wiener process, and
{W,}nen be its approximation sequence of processes of bounded variation. For
Hl=12,...,r define processes

s = [ () - WD) ~ ot

where §;; is the Kronecker's éymbol which assumes 1 if j = [, and 0 otherwise.

We assume the following.

Assumption 2.3.1. There ezists a positive number « such that for every K < a

and every positive §
(1) W-W, = O(n™"),
(2)  Sn = 0(n7"),

(3)  1ISall = O(n’n).

Let b, 0?, j =1,2,...,r, be Borel measurable random vector fields mapping
[0, 00) x R? to RY. We consider “Stratonovich” stochastic differential equation

dX(t) = b(t,X(t))dt + oi(t, X(t)) o dWI(2), (2.3.1)

with the initial condition
' X(0) = ¢ (2.3.2)

The last term in the right hand side of (2.3.1) represents the Stratonovich stochas-
tic integral which can be reduced to the It integral by

ol (t, X(t)) o dWi(t) = o’(t, X(¢))dWI(t) + %Ufaj)(t,X(t))dt,
' 10



for every fixed j where

. 8 .
UZ(UI)(t’x) = afc(t,a:)-(ﬁa{(t,z).

Above 5,1=1,2,...,r,i=1,2,...,d.

For every integer n € N we consider the differential equation
dX,(t) = b(t, Xa(t))dt + o7(t, Xa(t))dWi(t), (2.3.3)

with the initial condition
X.(0) = & (2.3.4)
Suppose that the following is satisfied.

Assumption 2.3.2.

(i) Random vector field b is Lipschitz-continuous with respect to x € RY, i.e.
for some constant K

|b(¢, 2) — b(t,y)| < Klz—y|
for all z,y € R? uniformly int € [0, T], and satisfies linear growth condition
lo(t,z)] < K(1+|z])
foralz e R and t € [0,T).

(ii) Random vector field o7 is from the class Cy*([0,T) x R?Y) for every
J=12,...,r, t.e. it is continuously differentiable with respect to t and
three times continuously differentiable with respect to z with all derivatives
bounded by constant K.

(#1) Initial value € is an Fo-measurable random variable in R®.

the, that under Assumption 2.3.2 problems (2.3.1)-(2.3.2) and (2.3.3)-(2.3.4)
admit continuous on the interval [0, T] solutions X, X,, respectively.

Theorem 2.3.1. Under Assumptions 2.3.1, 2.3.2 the sequence of solutions X,

of problems (2.3.3)-(2.3.4) converges almost surely to the solution X of problem
(2.3.1)-(2.3.2). Moreover, for any v <

X — X, = O(n™).
Let us consider a weakened version of Assumption 2.3.2.

Assumption 2.3.3.
11



(i) Random wvector field b satisfies monotonicity condition with respect to

z € RY, i.e. for some constant K

(z —y)bt,z) - b(t,y) < Klz—yf
for all z,y € R* uniformly int € [0,T], and satisfies linear growth condition
| bt 2) < K(1+]a])
for all z € R? and t € [0,T].
(ii) Random vector field o7 is from the class Cy*([0,T] x R%) for every j =
1,2,...,7, t.e. it is continuously differentiable one time with respect to t

and three times with respect to x with all derivatives bounded.by constant
K.

(43) Initial value £ is an Fy-measurable random variable in R®.

, Basically, this is Assumption 2.3.2 with the Lipschitz continuity of the drift b
replaced by the monotonicity condition. Clearly, Assumption 2.3.3 ensures that
problems (2.3.1)-(2.3.2) and (2.3.3)-(2.3.4) have continuous on the interval [0, T

solutions X, X,,, respectively.

Theorem 2.3.2. Under Assumptions 2.3.1, 2.8.3 the sequence of solutions X,
of problems (2.3.3)-(2.3.4) converges almost surely to the solution X of problem
(2.8.1)-(2.3.2). Moreover, for any v < «

X = Xal = O™,

2.4 Auxiliary Results

Theorems 2.3.1, 2.3.2 will be proved after proving a number of auxiliary proposi-

tions.

Lemma 2.4.1. Let {n}nen be a family of real valued stochastic processes of
bounded variation starting from 0; {@,}nen a family of continuous real valued

stochastic processes with stochastic differentials

dion(t) = fa(t)dt + ga(t)dW (2). (24.1)

. Suppose that for some positive numbers k, K

) Esup,crlen(®)? <
()  Esuper|fa(®)l™ < K,
) Esuprlgn(t)? < K,
) Esupicr|dn(t)’P < Kn7"?,
12



for each n and some positive integers r, p, q, such that 1/p+ 1/q = 1. Then

/0 () dia(s)

where constant C = C(r,p, T, K) does not depend on n.

T

E'sup < Cn™"

t<T

3

Proof. Integration by parts gives,
t

| ents)da(s
0

r

Esup
t<T

< ¢ Esup I‘Pn(t)wn(t)lr
t<T

/  Fa(s)ba(s)ds

+ ¢, E sup
t<T

+ ¢, Fsup
t<T

)

/0 () 6n(3)AW (s)

where c, is a constant independent of n. Applying Jensen’s, Holder’s and Burkholder-

Davis-Gundy inequalities to each term in the right hand side of the last inequality

we get
. t T
E'sup / en(s)dn(s)| < Cn™™,
t<T |JO
where constant C' does not depend on n, which proves the lemma. O

Lemma 2.4.2. Let { B, }.en be a sequence of real valued processes defined on the
interval [0,T), and let B, v be positive numbers such that v < 8. Suppose that for
every n, and somer > (8 — )7t

1/r
(E sup IBn(t)|') < cgnP,
t<T .
where cg may depend on r but not on n. Then
B™ = O(n™").

Proof. We have

P{sup|B,(t)| > n""} = Pfsup|Ba()" >n~"}

t<T t<T

< n""Esup|B,(t)|" < cgn" P,
t<T
Therefore,

ZP{SUD |Bn(t)] >n7} < cﬂzn"(“f—ﬁ) < 00
- t<T

n

by the assumptions of the lemma. By Borel-Cantelli lemma there exists a finite
random variable {, depending on 7 such that almost surely

sup |Bn(t)| < ¢n7.
i<T

13



Lemma 2.4.3. Suppose that for a sequence of real continuous stochastic processes

{én}nen defined on [0,T] and a positive number -y
En(- AT7) = O(n77),

for every € > 0 where the stopping time ¢ is defined as inf{t > 0 : .|§n(t)| > €}.
Then .
€n = O(n_7)'

Proof. Let us denote &n.(t) = &n(t A 7€), First, notice that SuPyefo,7) 1€ne(t)] — 0O
in probability for all £ > 0 implies sup,¢jo 1y [€n(t)| — 0 in probability as n — oo.
Indeed, this follows from the relation '

{weQ: sup [Li(t)] 26} = {weQ: sup [&.(¢)] > 6}

t€(0,7T) te0,T]
for 0 < é < e. Using this remark, from sup;cjz |€ne(t)] — O almost surely it

follows that supe(o7) [6n(t)] — O in probability as n — 0. Define

Qn = {weQ: sup sup |&(t,w)| <€}
k>n te[0,T)

It is easy to check that P(U32,€,) = 1. Then there exists N = N(w) such that

foralln >N

sup [€n(t,w)| = sup [&ue(t,w)| < ne(w)n™?,
te[0,7] te(0,T)

where 7, is an a.s. finite random variable for every ¢ > 0. The last inequality

holds by the assumptions of the lemma. Define

n(w) = sup sup nY|&,(t,w).
n>1t€(0,T)

This random variable is a.s. finite. This proves the lemma. O

Lemma 2.4.4 (Gronwall). Assume that for non-negative increasing continuous
processes y, Q such that Ey(oo) < oo and Q(o0) < K the following condition
holds,

By(r) < E [ wtordae) +

for any stopping time 7. Then

Ey(oo) < eeX.

14



2.5 Proof of the Results -

2.5.1 Proof of Theorem 2.3.1

We start with rewntmg the ordmary and “Stratonovich” equations. Rewrite
(2.3.1) in the It6 form

aX(t) = bt X(O)dt + ol XOWWI(E) + 2ol 6 XO)  (251)

Writing out the differential for o7 (t, X,(t)) and using (2.3.3) we get,

o6, Xo(t) = ol (6 Xt + bult, Xo(t)) 5o 1, Xa(0))d
+ 0 (8, X (£)) AW (2). (2.5.2)
Rewrite (2.3.3) in the form
dXi(t) = bi(t,Xa(t))dt + ol(t, X,(t))dWI(t)

+ ol (t, Xa(0)d(Wi(t) — W (t)).
Integrating by parts the last term and applying (2.5.2), we derive
dXL(t) = bi(t, Xa(t))dt |
+ ol (t, Xa(t))dW? (1)
+ d(o] (¢, Xa(t)) (W3 (t) — W(1))
— (W3(t) ~ W2 (1)) ool (t, Xa(0)d

\_/\_/

(2.5.3)

| @

— (Wi(t) = W ())be(t, Xa(t)) =07 (¢, Xn(t))dt

o5

Tk

— (W3(E) = W00 (6, Xalt) AW (1)

Let us fix some positive ¥ < a. Define for any integer R > 0 stoppiné times

R = inf {t >0 |X()] + n (|W(t) — Wat)] + |Sa(t)]) + U%”ﬂ > R},

" n’n
=inf{t > 0: |X,(t) — X(t)| > ¢},
ple = rRATEAT.
Parameter § will be chosen later. While using pf¢ for simplicity we will omit

indices R and ¢, and simply write p,,. Using (2.5.1), (2.5.3) for any stopping time

rand anyr=23,...
Esup | X*(t A pa) — XL(EA pa)| (2.5.4)
t<t i
< a <I1 +Z(I§+I§ + I+ 1) + Zng 4 Z(I?"-Flgl)) ,

J Bk 3l
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where constant ¢; depends only on 7, and

T

3

Lo~ Bswl[ " b5, X (5)) = bi(s, Xa(5)))ds

t<t

T

)

Ig = Esup/0 pn(of(s,X(s))—of(s,Xn(s)))de(s)

t<rt

T

. thon :
B o= Bsup| [ (@6 X(5)) = (s, Xals))ds
0

t<r

I} = Esup|lo{(s, Xa(s))(Wi(s) - W ()i,

t<r

)

T

)

B = Bsup| [ 0010) - Wi9) 2ol Xa(s))ds

t<t

r

I = Esup [A””(W,z(s)—Wf(s»bus,Xn(s))a%oﬁs,xn(s))ds

t<r

)

T

)

] tApn . . 0
' = Esup / (0718, X(8)) — 0o (5, Xan(5)))dS2H(s)
0

t<rt

T

. : tApn .
B = Esup / o7 1y (5, X (5))dSi(s)
. 0

t<t

. By Burkholder-Davis-Gundy and Jensen’s inequalities as well as by Lipschitz-
continuity of b;, af and af(a,) we get

T

max{[1,I}, I3} < cE [ sup|X(uA pn) — Xn(uA pn)|"d(s A py),
J 0 u<s ,

max I < ¢(RIn® n)'E / SUp | X (u A pu) — Xa(u A pa)[" dllSH|(s A pa),

Jil u<s
where constant c; = c;(r, T') does not depend on n and R. Next, by Assump-
tion 2.3.2 and the definition of the stopping time p,
max{I],I},I{*} < kE sup |Wi(t)—Wi(t)|" < kin™*",
3k t<TApPn
where constant k; = ky(r, T, R, €) does not depend on n.
To estimate 13" it suffices to show that ¢, (t) = af(a,)(t A Py X(t A pn)),
Yn(t) := SI(t A pn A T) satisfy the conditions of Lemma 2.4.1 for every n and

some p, ¢, say p = ¢ = 2. Indeed, using the It6 formula and applying (2.5.1)
we derive It differential dy}, and conclude that by Assumption 2.3.2 and the
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definition of the stopping time p,, functions

fall) = Zhon(6, X() + Bult, X)) gy (1 X(0)

+ 30 (6 X () 5l 8, X(0)
¥ —;-az(t,X@))az(t,X(t»% ol (6, X (1),
m(t) = Ob(E X)) gt X(0)

are bounded uniformly in ¢ € [0,T A p,], i.e. assumptions (i)-(iii) of Lemma 2.4.1
hold. Assumption (iv) is satisfied by Assumption 2.3.1. By Lemma 2.4.1

. _
me}xlg < kon™*,
2

constant ky = ko(r, T, R) does not depend on n.

Summing up inequalities (2.5.4) by ¢ and using all estimates above we derive

Ey,(t) < cE /(;T Yn(8)dQn(s) + kn™"", (2.5.5)

where constants c, k are independent of n, and

yn(t) = sup|X(uApn) — Xa(u A pa)l",

u<t
Qn(t) = tApn + (RIS, |(¢A p.)
are increasing by ¢ non-negative and continulous processes, and
Qn(t) < T+ (RIn’n)".
Using Gronwall lemma (Lemma 2.4.4) for every n we have

E sup | X (t) — X, (t)|" < kn™" exp{cT + ¢(RIn’n)},

t<pn

which, under condition ér < 1, implies for every 8 < &

Esup |X(t) = Xa()]" < cgn™,

t<pn

where constant c¢g = cg(r, T, R) does not depend on n.
For any v < k choose 3 such that v < 8 < k, then choose r>(8—~)"!and
d < 1/r. By Lemma 2.4.2 almost surely

t<pn

sup | X (t) — Xa(t)] < ¢n7 | (2.5.6)
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where (, is a finite random variable.

Below we are getting rid of stopping times 7% and 7¢. Let us consider processes

[1SA11(2)

An(t) = [X@)| + n*(W(t) — Wa(t)] + [Sa(t)]) + e

and
A(t) = sup A,(t).

Process A,(t) is continuous in ¢ for every n, then process A(t) is left-continuous,
and by Assumption 2.3.1 almost surely finite for any ¢t. Then

8 = inf{t > 0: A(t) > R}
is a stopping time, and inequality A,(t) < A(t) implies

R R
T, 2 T

b

for every w and every n. Moreover, almost surely

lim 7% = oo.
R—o0 _

By (2.5.6) the random variable

Mye = supn’  sup | X(t) — Xa(t)|
n t<TRATEAT
is almost surely finite, and hence for any v < &

sup | X(t) — Xa(t)] < NymN .

t<TRAREAT

Consider sets 0 = {w : 7% > T}. It is obvious that P ( %-182r) = 1. Define
Ny = My for w € 4 and 7, = 0,5 for w € Qr\(UEZ!QR), R > 2. Then 7y is
almost surely finite and
sup |X(t) — Xu(t)| < nyn™”
t<ag AT
for any v < k. Finally, note that because of the arbitrary choice of x the last

inéquality holds for any v < «a. It suffices to apply Lemma 2.4.3. The proof of
the theorem is complete.

18



2.5.2 Proof of Theorem 2.3.2

This theorem can be proved in exactly the same way as Theorem 2.3.1. However,
under Assumption 2.3.3 the term I; in the proof of Theorem 2.3.1 becomes prob-
lematic. Our aim now is to get a better expansion for | X — X,,|. For simplicity of
notations let us denote by F(¢) - G(t) the integral fot F(s)dG(s). For two vectors
u,v € R? the scalar product in R? we will denote by wv. For simplicity we will

also drop parameter t. We get the followiﬁg expansion. By the It6 formula

4
X - X* = > L,
k=0
where

Iy = 2 (X - Xn)(b(t’ X) - b(ta Xn)) -1,
Il = 2(X - Xn)(oj(t’X) - aj(t>Xn)) ) Wj:
L= 2X - Xa)ol(t, Xa) - (WP = W),

Iy = (X = Xa)ol,,(t, X) t,

ai)

Iy = |o(t, X))t

Next, again by the It6 formula

8
I, = Z Iy,
k=0

where
[21 = - 2(W] - W,{)Uj(t, Xn)(b(ta X) - b(t’ X")) ) t’
Ly = —2(W/—Wi)oi(t, X,)(6"(t, X) — o'(t, X)) - W',
Ly = —2(W —Wi)ol(t, Xa)o'(t, Xn) - (W' — W),
Ly = — (W)= Wi)o!(t, Xa)ol,(t, X) - t,
hs = = 20X - X)W~ W) o1, X,) -,
Ly = —2(X — X,)(W7 — W,{)%aj(t, Xn)bi(t, Xn) - t,
k
Iy = —2(X - X,) (W7 — Wg)afo,)(t, Xa) - W,
Ly = — QUj(taXn)Uj(tu‘X) -1 .

4
I3 = Z I3y,
k=0
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where

sy = —(W3 = W2)(W' = Wh)o? (s, Xn)o'(s, Xa)lio,
B = 2 = W' = Wit Xa) o' (6, Xa) 1,
B = W = W)W = W6, X,) (e, Xoou(t, Xe)
Lyy = 2(W7 = Wi)(W! = Wh)o7(t, Xa)okm (2, Xn) - WP,
Ly = |o(t, X, ¢
Let us denote
Jio= In+I = =2(X = X,)of,,(t,X) - 52,

Jo = Izt 1y = 2(W _Wr]z) (t,Xn)aéah)(t,X)-SLh,
J3 = I4+128+1234 = |0(t,X)—0(t,Xn)|2.

We have .
- Z']lka
k=0
where
Jio = —283(X = Xn)al (s, X)liso,
Ju = 28a] (¢, X)(b(t, X) - b(t, Xz)) - t,
J12 = Srjtl (a‘)(t’X)(Uh(t’X) - Uh(t’Xn)) ' Wh:
Jiz = 5%’ (at)(t’X)Uh(t,Xn) ' (Wh - W,’:),
S = Sial (8, X)atn(t, X) ‘,
Jis = QS%I(X_X )86 (al)(t X)
. 0
Jie = 258X — Xn)=— oz, 0l (&, X)b(t, X) - ¢,
Lo 8 .
Jip = ZS%I(X—Xn)a—%ofa,)(\t,X)Uf,(t, X) w9,
. 0
Jig = S}jll(X - Xn)amp )(t X) p(aq)(t’X) -1,
Jig = S,Jjaa (a,)(t X)od(t, X)o(t, X) - t

9
J2 - Z‘]Zka
) k=0
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where

Jao = 28(W7 = Wi)o? (s, Xp)o(m (s, X))o,

Ju = =25707(t, Xa)o(om(t, X) - (W7 — W)),

Jn = —25,‘5‘(Wj—W,{)aéah)(t,X)giaj(t,Xn)-t,

Joy = —zsgﬁ(wi—W,{)aga,,)(t,X)a%oaf(t,Xn)b,,(t,Xn)-t,

Ju = =28 (W7 — Wi)a(,n(t, X)ol,0 (t, Xa) - WY,

Jis = —25:5*(Wf-w,{)o’(t,x)ffta(ah)a X)-t

he = —253?(Wf—w,z)afu,Xn)a%o(ah)u,X)bp(t,X)-t,

Jy = —2Sf;‘(Wj—W,{)aj(t,Xn)-a%créah)(t,)()ag(t,X)-W",
By = =S = W20, X )5l (1, X)) 1
Jyg = —2Sfl"09(t,xn)—?—a§a,,)(t, X)ol(t, X) - t.

Ozp

‘Note that Jig + Ja9 + J13 + J21 = 0. Denote

Jo = Ju+Ju = —2830] 0\ (t, X)oloq(t, X) - SN
Then s
J4 - Z‘]‘Ik’
k=0
where

Jyo = "Sﬂ (a!)(s X)U(aq)(s X)S 8=0"
0
Jy = 280Shg (at)( )ata(aq)(t X)-t
J42 = Sﬂshqo’ t)(t X) 9 U(a.q (t X)bk(t X)

3
Oz, U(aq)(t7 X)Ui(tb X) ’ WP,

0
3 U?a'q)(ta X)GZ(UP) (t, X) ) ta

0 0
(t, X)Bxk

Juz = 251'5’“1 iy (8 X) 73—
Juy = S”S’"’aa,)(t X)—

J45 = S]lsrhq

n Sl o 0,) a?aq)(t,X)oil(t,X)azz(t,X)-t.
2

Then repeating the proof of Theorem 2.3.1 and denoting
2a(t) = SUD|X(uA pr) = Xt A po)["

u<t
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we can get inequality (2.5.5) with y,(¢) replaced by z,(t), which leads to the rate
n~7/2. The first term of the right hand side of this new inequality is formed by
Iy + Js and the second term is formed by

I, + Z I + Z Io3y + Z Jik + Z Jok + th-
k

k=0,1,2,5,6 k=0,1,2 k=0,1,2,5,6,7,8 k=0,2,3,5,6,7,8

a

Note, that under the Lipschitz-continuity of the problematic terms Iy, J;; we

again get the result n™7.
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Chapter 3

Stochastic Evolution Equations

3.1 Introduction

In this chapter we consider an abstract form of a stochastic differential equation in
infinite dimensional settings often referred to as a stochastic evolution equation.

We consider the stochastic differential equation of the form
du(t) = (A@,w)u(t) + f(t,w))dt + (B(t,w)u(t) + ¢ (t,w))dWi(t) (3.1.1)

in a normal triple of spaces V < H — V' (see Definition 3.2.1) with the initial
condition
u(0) = wuy, (3.1.2)

where W is an r-dimensional Wiener process, A, BY, j = 1,2,...,r are linear
operators on V for every (t,w), f, ¢’ are stochastic processes in H and wug is a
random variable in H. We recall that here and throughout the paper we use the
summation convention with respect to the repeated indices, i.e. in (3.1.1) we sum
up the last term with respect to j from 1 to m.

We approximate the Wiener process W with a sequence {W,, },en of continu-
ous processes of finite variation in the supremum norm on the interval [0, T] with
the rate n™" for each k < « for fixed o > 0, with some additional assumptions
on the area process S, (see Assumption 3.3.1). Simultaneously we approximate
operators A, B’ processes f, g7, and the initial value ug in the same type of
topology with the same rate of convergence (see Assumption 3.3.5). We get an

approximation sequence of the differential equations
dun(t) = (An(t,@)un(t)+ Falt,w))dt + (Bi(t, w)un(t) +61(¢, )W (1), (3.1.9)
n € N, considered in the same friple V — H — V' with the initial conditions
un(0) = uno. \ (3.1.4)
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The convergence of the sequence of solutions u, of problems (3.1.3)-(3.1.4) to
the solution u of the problem (3.1.1)-(3.1.2) in the supremum norm on [0, T] was
shown before (see [6]) under the assumption that the last differential in equation
(3.1.1) is interpreted in the Stratonovich sense. We investigate the rate of this
convergence. In Theorem 3.3.1 we show that the rate of the convergence Up = U
is n™*/2 for each k < a.

The next chapter is devoted to a particular situation of stochastic partial
differential equations. There we apply the main result of this chapter to the

situation where A is a second order and B’ are a first order differential operators.

3.2 Generalities

Before formulating the result we recall some definitions and fundamental results
from the theory of stochastic evolution systems, and introduce some notations.
Throughout the chapter for a Banach space, say U, we will denote its norm by

| - |u, i.e. we equip the norm sign with the symbol of the space.

3.2.1 Normal Triple

Let U, V be two Banach spaces. We say that the space U is normally imbedded
into the space V (we denote this by U < V) if the imbedding is dense (in the
topology of the space V generated by the norm |- |y) and continuous, i.e. there
exists a constant N such that |v]y < N|u|y for any v € V.

Let V, V' be two separable Banach spaces, H be a Hilbert space with the
- scalar product denoted by (-, -). '

Definition 3.2.1. The triple (V,H, V') we will call normal and denote by V —
H — V' if the space V is normally imbedded into the space H, which, in return,

is normally imbedded into the space V', and for some constant K
[(v,h)| < Klvlv|h|w (3.2.1)
forallv €V, he H

An important example of a normal triple is the Sobolev space W*(R?) (the
space V), Ly(R?) (the space H), and W;™ (the space V'). Sobolev spaces are
considered in more details in Chapter 4. .

For any v' € V' choose a sequence {h,} from H such that |h, — v'|y — 0 as
n — oco. By (3.2.1) (v, hy,) converges. Thus for all v € V define a bilinear form

[v,'] = lim (v, h,).

n—00
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Clearly [v,w] = (v, w) for v,w € H. Therefore, below for simplicity we will use
the same notations for the bilinear form [-,:] and the-scalar product in H, and
simply denote them by (-, ).

It is easy to check that it has the following properties:

(i) it is continuous with respect to both variables, i.e. forallv € Vand v/ € V'

(v, )] < Njply[v/|v;

(ii) it coincides with the scalar product in H if v' € H;

(iii) if v'(t) is an integrable function on the interval [a, b] taking values in V' then

for every v € V
b b
(v,/ v'(s)ds) = /(-v,v'(s))ds.

The form (-, v’) defines a linear functional on V for v/ € V'. Suppose that the
equality. (v,v') = 0 for any v € V implies v = 0, and assume that any functional
on V has the form (-,v'), for some v' € V'. Then the mapping J : v' — (-,?')
is a one-to-one mapping of V' onto the space V* (here and throughout the paper
V* denotes the conjugate space for V). Moreover, the following holds.

Proposition 3.2.1. The mapping J defines an isometric isomorphism between
the spaces V' and V*.

We will say that the scalar product in H defines the duality between the spaces
V and V. '

3.2.2 Hilbert Scales

Here we recall the definition and basic properties of a Hilbert scale. This topic is
covered in more details in [2] (see §7, Chapter II).

Let V, H be two Hilbert spaces with scalar products (-, -)v, (-, )u, and norms
by | |, respect‘ively. Let V be normally imbedded into H, and |v|y < |v]y for
all v € V. Here we show that this sf)aces can be connected by a Hilbert scale
(see Definition 3.2.2 below), i.e. there exists a Hilbert scale such that one of its
elements is the space V and another is the space H. We also give some properties
of the constructed Hilbert scale.

The following is well-known.

Proposition 3.2.2. There ezists a unique self-adjoint positive definite operator
A defined on the space V and mapping it onto the space H such that |vly = |Av|g
for everyv e V.
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The operator A is called a generating operator for the pair (H, V).
Making use of the spectral decomposition of the identity E\ corresponding to

the operator A we define powers of this operator by the formula
A% = / A*dEyw, a€R
0

(see §3, Chapter II, [2]).

For every a > 0 the domain of operator A* we denote by H,. For a < 0 we
define Hl, as the completion of the space H with respect to the norm |-|, = |A%-|y.
It is known that H, defined in this way is a Hilbert space for each a € R with
respect to the scalar product

(o )m. = (A%, A%).

Definition 3.2.2. A system of Hilbert spaces {H, }acr 15 called a Hilbert scale if
for any three real a, B, 7y such that o < 3 < vy the space H, is normally imbedded
into Hg and in turn Hg is normally imbedded into H,, and for every v € H,

|'U|!Hl5 < |U|1§411_ﬂ)/(7 a| | —a)/(y—a)

It turns out that by the representation for the operators A® the system
{H. }aer is a Hilbert scale possessing the following properties,

(i) it is uniquely defined;
i) H,, = Hpg is dense in the space H, for all @ € R in the norm | - |y, ;
Aper 8 Ha

(iii) the spaces H, and H_, are mutually conjugate with respect to the scalar
product in Hy.

The system {H, },cr is called the Hilbert scale connecting spaces V and H.
Let us choose real «, ﬂsuch that a < 8 and define v = 28 — a. We consider
the triple of spaces (Hy, Hpg, H,). For any v € H,, h € Hp

(v, R)is| = |(APv, APR)| = |(AP~*A°, APh)g,|
]
= [(A*0, A"h)gy| < |vlm |hls,,

and hence we have the following.
Proposition 3.2.3. The system (H,,Hg,H,) is a normal triple.

In view of the last assertion, by the properties of normal triples (see Propb—
sition 3.2.1), the scalar product in Hg defines the duality mapping between H,

and H,.
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3.2.3 Ito6 formula

Let (2, F,P) be a complete probability space equipped with a complete right-
continuous filtration {F;}:>0, i.e. an expanding system of o-algebras imbedded in
F. Let us fix anormal triple V — H — V'. We will use the following fundamental
result.

Theorem 3.2.4 (It6 formula). Let 9; be a V' -valued stochastic process for i =

1,2 such that almost surely

(t) = vy + /Ovﬁ(s)dN(s) + my(t)

for allt € [0, T, where vyy is an H-valued Fy-measurable random variable, N is an
Fi-adapted continuous stochastic process of bounded variation, m; is a continuous
Fi-adapted local martingale for each i = 1,2. Assume there exists a V-valued F,*

adapted process v; such that
5i(t) = wi(t)

for AN x dP-almost every (t,w) € [0,T) x Q. Assume, moreover, that almost

surely
T
/0 (o(S)lv + [5(5) v + [0(5)[v[5(s)}w )dN(s) < oo.
Then there exists a set Q' C Q such that P(QY) = 1, ;(t,w) € H for all t € [0,T),
w e Q, and for allw €
B2, 52(0) = (w1(0),u(0))
. + / (v1(s), vh(s))dN(s) + / (04(5), v2(5))dN (s)

+ /Ot(ﬁl(s),dmg(s)) + /Ot(ﬁ:(s),dml(s))

+ (ml, m2>(t)

This theorem follows directly from Theorem 3.2. (It6 formula for the square
of the norm), [9] by making use of the formula (3, 72) = (|01 + 02| — |8; — Ta?).
Using Theorem 3.2.4 we say that we apply the Ité formula to the scalar product
(v1,v2) in the triple V < H «— V.

3.2.4 Stochastic Evolution Equations

In this chapter we consider the stochastic differential equation of the form

v(t) = vy + /OtA(s,v(s))ds + /OtlBj(s,v(s))de(s) (3.2.2)
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in a normal triple V — H < V' on a given complete probability space (2, F, P)
equipped with a complete right-continuous filtration {F;}:co,7, (T > 0). The
equation is considered on the interval [0, T]. Above W is an r-dimensional Wiener
process, v is an Fo-measurable random variable with values in H, and A, B/,
J=1,...,7, are random fields taking values in V' and H, respectively, such that
for each v € V the functions A(t,w)v, B(¢,w)v are measurable in (¢,w) (relatiVe
to the measure dt x dP) and F;-consistent, i.e. they are F,-measurable in w for
eachv €V, t e€[0,T].

Definition 3.2.3. We will call an H-solution of the equation (8.2.2) in the triple
V= H < V' on the interval [0, T] an H-valued continuous F;-adapted stochastic
process v defined on [0,T)] if

(i) v(t,w) € V for dt x P almost every (t,w);

(i) there exists a set Q' C Q with P(Q') = 1 such that (3.2.2) holds for
every w € ¥ and t € [0, T, where the equality is understood as the equality
of elements of V';

(iii) fOT [vu(t)|3dt < oo almost surely.

Although this is not the topic of the present work, we next give assertions on
the existence and uniqueness of the H-solution for equation (3.2.2). This topic
is described in more details in [18], [22] (Chapter 3). The existence result is

formulated under the following assumptions.
Assumption 3.2.1.

(1) Semicontinuity of A: the function vA(t,v, + Avg) is continuous in A on
R for all (t,w) € [0,T] x Q;

(ii) Monotonicity of (A,B): there exists a constant K such that
201 — 00, Alt,01) — At ) + [B (o) ~B(w)ly < Ko -l
for all vi,v2 €V, (t,w) € [0,T] x Q;
(iii) Coercivity of (A, B): there exist constants K, o > 0 such that
2(v, A(t,)) + [Bt,v)lg + aloly < Kol

cforallv eV, (t,w) € [0,T) x Q;
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(iv) Boundedness of the growth of A: there exists a constant K such that
A, v)lv < Kluly
foralv eV, (t,w) €[0,T) x Q;

(v)

E luoly < oo
The following two theorems are proved in [18].

Theorem 3.2.5. Under Assumption 3.2.1 there exists an H-solution of the equa-
tion (3.2.2) in the triple V— H — V' on the interval [0, T).

The next theorem implies, in particular, the uniqueness assertion for the so-

lution of equation (3.2.2).

Theorem 3.2.6. Let Up, n=0,1,..., be H-solutions of equation (3.2.2) with the
initial condition vng in place of vy, where E|unolf < 00 and E|ugg — Uno|% — 0 as
n — 0o. Then for anye > 0

lim (sug El|vg(t) — v (8)|3 + P{f1<1¥|v0(t) — v (t)|m sz}) = 0.

n—o <

3.2.5 Other Notations

\

We will also need the following concepts. Let U, V be two separable Banach
spaces. We will denote by (U, V) the vector space of bounded linear operators
mapping U into V. Stochastic process X will be called measurable in (U, V) if
X (t,w) belongs to (U, V) for every (¢,w) € [0,00) x 2, and Xu is a measurable
process in V for every u € U. Stochastic process Y will be called continuous in
L(U, V) if Y(¢)u is a continuous process in the space V for all u € U.

Similarly to the notion of O introduced in Chapter 2 we define the following.

(i) For a sequence of stochastic processes {f}nen with values in V and a nu-
merical sequence {an}ren We write f, = O(a(n)) in Vif |fo(t)|v < Ca(n)
for every t € [0, T), for some almost surely finite random variable ¢ which

does not depend on ¢, n.

(ii) For a sequence of stochastic processes {X,}nen with values in L(U, V) and
a numerical sequence {on, }aen we write X, = O(a(n)) in L(U, V) if X,u =
O(a(n)) in V for all u € U.
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Let the space U be normally imbedded into the space V, U — V. A random
process v = {v(t)}c(o,7) is said to belong to the class C([0, T]; V) N L4([0, T]; U)
if v is an JF;-adapted continuous process in V and there exists its U-version u
(i.e. process v with values in U such that almost surely v(t) = u(t) for every
t € [0,TY), for which fOT lu(t)|3dt < oo.

We call a stochastic process v = {v(t)}+>0 taking values in a separable Banach
space U a process of bounded variation if for every ¢ > 0 the total variation of v

over the interval [0, ¢],

[oll(®) = sup Y fv(t) — v(te-1)lu

is almost surely finite. Above the least upper bound is taking over all (finite)
partitions 0 = {p <t < --- < t, =t of the interval [0,].

3.3 The Main Result

Given a complete probability space (€2, F,P) equipped with a complete right-
continuous filtration {F;}scio,r), T > 0, let W be an r-dimensional Wiener pro-
cess and {W,}.en a sequence of r-dimensional continuous processes of bounded
variation both defined on the interval [0,7]. Let us fix some positive number .

Suppose that the following assumption holds.

Assumption 3.3.1. For any positive Kk < a and every § > 0
W -W, = O(n™),

Sn = 0(n™"),
(3)  iSall = O(in’n),

—_ o~
O e~

where Sy, is an r X r-dimensional process defined as follows,

SHO = [ W) - We)aWis) - Joat,

where d;; is the Kronecker’s symbol which assumes 1 if j = [, and 0 otherwise.

Let H; — Hy < H_; be a normal triple. The scalar product in Hy we will
denote as (-, -).

Let A, B, f and g be well-measurable stochastic processes on [0, T] assum-
ing their values in L(H,,H_,), L(H,;,Hg*), H_, and Hg, respectively (here HT
denotes the product space Hy x -« x Hp, m times), and let A,, B,, f, and gn,
n € N, be their approximation sequences. Suppose the following holds.
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Assumption 3.3.2. For every j = 1,2,...,7 there exist measurable stochastic
processes (B30 . .. ,Bj('.n)), (Bi®, ... Bi™) n €N, taking values in L(H,, Hyt!)
and processes (g0, ... gi(™), (g{;(o), ™) n e N, taking values in Hy !,
such that the processes (v, B?(t)w), (v, Bi(t)w), (v,¢’(t)) and (v, g(t)) have for

every v, w € Hy stochastic differentials

d(v, B (t)w) = (v, B"Ow)dt + (v, B'Ow)dW(t),
d(v, Bi(tyw) = (v, BiOw)dt + (v, B{Vw)dW}(t),

d(v,g’(t)) = (v, Mdt + (v, gV)aW'(2),

d(v,gi(#)) = (v,g5")dt + (v, giV)AW, ().
Moreover, for every 3,k = 1,2,...,r there exist measurable stochastic processes
(BI&k0) . Bi*m)) taking values in L(H;, HT'!) and processes (g7*0), ... gitkm)
taking values in H"™', such that the processes (v, BI®) (t)w), (v, ¢?®)(t)) have for

every v, w € Hy stochastic differentials
d(v, B'®) (t)w) = (v, B’ *0)dt + (v BItw)dw'(¢),
d(v,g"" (1)) = (v, 9’('°°))dt + (v, g"*®)dW' (1)
We stress that k # 0 abowve.

Let H,,, Hys, Hy, Hs, Hg be separable Banach spaces such that Hy, is normally
imbedded into H_,, ¥ = —1,0,...,6, and Hy — Ho — H_ form a normal triple
for every k= 1,2,3. We have

Hg — Hy — Hy — Hz — Hy — H; — Hy — H_, — H_, «— H_3.

We use the following notations. The norm in Hg we denote by |-|s: The scalar
product in Hj is denoted by (-,:). For a linear operator X mapping Hjg into H,
its operator norm is denoted by |X|g,. If operator X is defined on a subspace
that is dense in Hpg then | X|g , denotes the norm of X extended by continuity to
the whole space Hi.

We consider “Stratonovich” stochastic differential equation

= ¢+ /(A s)+ f(s))ds + fo(Bf(s)u(s)+g"(s))ode(s) (3.3.1)

in the triple H; «— Hy — H_,, where £ is an Fy-measurable random variable
with values in H,. Here we used the short notation for the infinite-dimensional
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analogue of the finite-dimensional Stratonovich differential,

(B ()u(t) + ' (t)) o dWI(t) = (B(t)u(t) + ¢’ (t))dW?(t)

4 % BI(t)(BI (t)ult) + ¢*(t))dt

+ (B (t)u(t) + ¢#O(t))dt

N =

for every fixed j. For n € N we consider differential equations

t t
wnlt) = &0+ [ (An(s)un(o) + Salods + [ (Bils)un(s) + (s W(s
’ ’ (3.3.2)
in the same triple H; — Hy — H_;, where £, is an Fp-measurable random
variable with values in Hj . '

We assume the following.

Assumption 3.3.3. There ezists a finite random variable ¢ such that

[ABlep—2 < ¢ k=0,1,...,6, If®)ls < ¢,
1B )k < ¢ k=-2,-1,...,6, |g(t)ls <¢,
BO@) gt < ¢ k==2,-1,...,5, [¢@O(®)ls <¢,
|BI"(t)]32 < ¢, P* @) <¢,
and for every n € N
|[An(®)lkr-2 < ¢ k=0,1,2, |fa®)lo < ¢,
1Bi()|ke—1 < ¢, k=-1,0,1, |gi(t): <¢,
1B ()lkp-1 < ¢, k=-1,0, 29 M) < ¢,

for everyj,k=1,2',...,r, l=0,1,...,r and (t,w) € [0,T] x Q.

Assumption 3.3.4. There ezists an almost surely finite random variable ¢ such
that for some positive \ for every j,1 = 1, 2,...,randn €N

(i) for every v € Hy

(v, Av) + Ali < (ol

(Blv, Bpv) + (v, BiByw)| < (ol
(v, Biv)l < (ol

(v, BEO)| < ¢l

32



(i1) for every v € Hy

[(Anv, Blv) + (v, BjAw)| < (ol

The first inequality in the assumption above is the coercifzity of the operator
A, which we need for the existence of the solution for the equation (3.3.1) in the
triple H; — Hy — H__; (compare with Assumption 3.2.1). The other inequalities
look less usual, however, are satisfied in Sobolev spaces by B? defined as the first
order and A,, defined as the second order differential operators. This situation is
the subject of Chapter 4.

Assumption 3.3.5.
(i) For every k < a for all j,1 =1,2,...,r
A-— An = O(TL_K) n L(Hl,H_‘l),

Bj — qu = O(n—n) n L(Hz,Hl) and ]L(Hla]HB))
B —Bih = O(n™") in L(H,, Hp);

~

(i) For every k < « for all j,1 =1,2,...,r
f_fn = O(n_n) n HOa
¢ —g = 0(n™)in Hy,
gD —ggO — O(n*) in Hy;
 (iii) for every K < o
£—& = O(n™") in Hp.
Note that in two assumptions above [ does not assume value 0.

Assumption 3.3.6. On the interval [0, T there exist solutions u, u, of the equa-
tions (8.8.1), (3.8.2), respectively, such that u is from the class C([0,T]; Hs) N
L5([0,T); He), un is from the class C([0, T]; Hy) N Lo([0, T); Hy).

Theorem 3.3.1. Under Assumptions 3.8.1-3.3.6 the sequence of solutions us, of
differential equations (3.8.2) converges almost surely to the solutionu of “Stratonovich”
stochastic differential equation (8.3.1). Moreover, for every k < o

= ung = O(n™),

and

/0 lu(s) — un(s)|2ds = o(n™).
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3.4 Auxiliary Results

In this section we give some auxiliary statements. They are to be used to prove
the main result of the chapter. The following lemma is similar to Lemma 2.4.2.

However, processes are considered in an arbitrary Banach space.

Lemma 3.4.1. Let B, v be two positive numbers, v < B. Assume that for a

sequence o} stochastic processes { Bn(t) }nen, t € [0, T}, with values in a separable

Banach space V, for every n and some r > (8 — 7)~! the following condition

holds, .

(Esup|Ba(&)fy)"/" < cgn™®,
t<T

where cg may depend on r but not on n. Then -
B, = O(n™")in V.
Proof. We simply set B(t) = |B(t)|v and apply Lemma 2.4.2 for B. - O

The following statement is a corollary of the Burkholder-Davis-Gundy esti-

mation.

Lemma 3.4.2: Let {¢n}nen be a sequence of stochastic processes with values in
a Banach space V. Let a be a positive number. Suppose that for every positive

K<« .
on(t) = O(n™") in V. A (3.4.1)

Let W be a Wiener process, and assume the ezistence for every n of the stochastic .
integral of g, with respect to W. Then for every positive v < «

/0 on(s)dW(s) = O(n™) in V. (3.4.2)

Proof. Let us fix any . Denote G,(t) = n*|p,(¢)|v. Let us define for any positive

integer R a sequence of stopping times
Tn = inf{t >0, G,(t) > R}.

By Burkholder inequality for every number r = 2,3, ...

E sup

t<TRAT

< ¢E sup |pu(t)ly < Cn7™,
A% tSTRAT

/0 oa(5)AW (3)

where constant C' = C(r, R) does not depend on n. Then by Lemma 3.4.1,
INTR

assigning B"™(t) = |,

wn(s)dW (s), for every positive v < &

/0 on(s)dW (5)
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) |



where 7, is an a.s. finite random variable. Denote G(t) = sup, G,,(t) and define
stopping time
7r = inf{t >0, G(t) > R} °

Inequality G,(t) < G(t) implies relation

and, therefore, by (3.4.3), for any v < &

sup
t<TtpAT

< nv,Rn_‘y'

[ entsrams

v

By assumption (3.4.1) of the lemma process G(t) is bounded above by an

almost surely finite random variable. This implies almost surely

}%ir){)lo TR = OO.
Introduce sets Qr = {w, Tr > T'}. Obviously, almost every w hits some Qg. So
that, P(U¥.,Qr) = 1. Define n, = 7,z for w € Qp\(UE'), R = 1,2,....
For other values of w define 7, = co. Then 7, is an almost surely finite random
variable, and for any v < « inequality (3.4.2) holds.

Finally, note that because x can be chosen arbitrarily inequality (3.4.2) holds
for any v < a. O

The following two lemmas are technical tools for the estimation of the terms
of a special form. Let y be a stochastic process with values in a Hilbert space V.

Assume that process y has a stochastic differential
dy(t) = a(t)dt + b (t)dWi(t),

where W is an r-dimensional Wiener process. Suppose that processes y, a, V,
Jj=1,2,...,r satisfy the following conditions,

T
y,b¥ = O(1)inV, /0 la(t)|3dt = O(1).

Let o be a positive number, and {1, }nen a sequence of real valued stochastic

processes, such that for every x < «

Pn(t) = O(n™").

/

Lemma 3.4.3. Under the assumptions above for every k < a

| v©)tts) = o)

providing that this integral exists.
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Proof. We rewrite the assumptions of the lemma in the form

sup |y(t)lv < ¢,
t<T .

T
Amww5c,
Sup |b7(t)|V S C)

t<T

for an a.s. finite random variable (,

sup [¢n(t)] < &n™"
t<T

for every positive kK < a and some a.s. finite (for every ) random variables &,.

Integrating by parts we get

‘ 3
Amwwa=2%m
k=1

where

e
I w
~~
o~
~—
Il
I
O\ o
Lo
<.
~_
w
~—
<=
3
—_
~—
QL
3
—~
~—

Below we estimate the terms 6%.

16, ()lv < 2sup [y(H)lvsup [Yn(t)] < (Ean™".

1) ._UmrmyXfmwwfﬂsﬁmm

Assign @, (t) = ¥/ (t)¢,(t). By assumptions of the lemma sup, |en(t)|lv < (&n™".
Then by Lemma 3.4.2

|9§L(t) |V S nnn—n)

where random variable 7k is almost surely finite. It suffices to notice that the
random variable (&, + /(T&,. + 7, is a.s. finite.

Let Hy — H; — Hy — H_; — H_, be a system of densely embedded Hilbert
spaces. The norm in Hj, is denoted by | - |, the scalar product in Hy and the
duality between H, and HL,, as well as H, and H_, is denoted by (-, -). Consider
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stochastic processes y, v, with values in Hy, H_,, respectively. Assume that
processes y, vUn, have stochastic differentials '

dy(t) = a(t)dt + ¥ (t)dWi(t),
dun(t) = fa(t)dt + gl(t)dWi(t),

where W is an r-dimensional Wiener process, and W, its approximation satisfying
Assumption 3.3.1. Assume moreover that g has a differential

dgi(t) = pi(t)dt + ¢ (t)dWL(2).

Suppose that processes y, a, ¥, v, fa, ¢2, P4, ¢!, j,1 = 1,2,...,r satisfy the
following conditions,
y, b = O(1) in Hy, Vn, gl = O(1) in H_,, ¢! = O(1) in H_,,

/0 ja(s)2ds = O(1), /0 Fa(s)2ads = O(1), / P(s)20ds = O(1).

Let o be a positive number, and {¢,}.en a sequence of real valued stochastic
processes, such that for every « < «
'an = O(n_n);
and for every § > 0 . :
1¥nll(T) = O(In’n).

Lemma 3.4.4. Under the assumption above for every 8 < a

/0 (0a(5), ¥(8))dipuls) = O(n™)

providing that this integral ezists.

Proof. Let us write the assumptions of the lemma in the form

sup |y(t)]2 < ¢, sup |vn(t)|-1 < ¢,
t<T t<T

T ‘ T . T :
/ la()3dt < ¢, / )t < ¢, / POt < ¢,
‘ 0 ' 0 . 0

fl(lTplb’(t)Iz < ¢ sup |g(t)|-1 < (,

sup g7 ()2 < ¢,
t<T t<T

for an a.s. finite random variable (,

all(T) < 7s®n,
sup [tn(t)] < Ecn~™

t<T
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for all § > 0, positive « < o and an a.s. for every §, « finite random variables 7;,

€

Let us choose some positive 3, k such that 8 < k < a, and fix any positive
0. We rewrite (vn(t),y(t))dyn(t) as (va(t),d(y - ¥n(t))). Here - 3(t) denotes the
integral fo a(s)dB(s). Integration by parts gives :

(tn9) - 9n(t) = kZZ(ﬂ:(t) - (@ dnlNawics) - s,

where

6O = ()4 ¥ale) = (sa(0)y- V(O]

B20) = = [ (nlo)y- wn(o)ds

0 = - [ (6h(e)y haloDawils),
Next,

~ [ @)y puloDdwits) - W) = geza);

where

0.(t) = — (Wi(t) = W (t)(ga(t),y - ¥n(?))
+ (W(0) = W7(0))(92(0), y - ¥a(0)),

/0 (Wi(s) = W()) (), - Pals))ds
051 = / (¢(5), - u(s))dAT(s),

)
w
—
[
~—
Il

o (1) = / (Wi(s) — Wi(s))(g3(), 4(s))dibu(s),
-and the process t
Al(t) = / (Wi(s) — Wi(s))dW(s)

by the assumptions imposed on approximation W, is of bounded variation.
Let us show that for any k < «

suply - Yn(t)ls < pun™", C (3.4.4)

where p, is a finite random variable. Indeed, assigning V = H, stochastic pro-
cesses y, @, b7, ¢, satisfy the assumptions of Lemma 3.4.3, and therefore (3.4.4)
holds. '
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Bellow we estimate terms 6%(¢).

OnO] < 2suplon(®)l-1suply - Yn(t)h < N

ol < ([ inea) " ([ %(é)l%ds) " < NV Equ.

Y - ¥a(t)). By (3.4.4) and assumptions of the lemma
|—1|ly-¥n(t)s < NCuen=" for k < . Hence, by Lemma 3.4.2

Assign .(t) = (g5(t),
sup, |¢n(t)| < sup, |g5(t)
for kK < o

620 < men”",

where random variable 7, is almost surely finite. Next,

16,(2)] < 281tlplW3;(t)—W"(t)lsgplg,’;(t)l-lsttlply-I/Jn(t)ll < NCuen™,

o0l < sl - wiol [ lpz;(%>|32ds) (W nlo)as)
< VT¢uen?,

105(t)| < ||AZ|(T) sgplqv’;’(t)l-zsgp [y Yn(t)]2 < 9ulmen™™,

where random variable ¥, is an almost surely finite by Assumption 3.3.1. Finally,

L] < [nll(T) sup [W(E) = W2(0) | supl (0] sup Ly (0
< N(¢*n5(Inn)n=*. |

It is easy to show that this implies |6] (t)] < Cn~* for some constant C depending
on 3, k and § but independent of n. It suffices to sum up the exbressions in the
right-hand sides of the seven inequalities above, so that we get an almost surely
finite random variable independent of n times n=7. O

Lemma 3.4.5 (Grohwall). Assume that for non-negative increasing continuous
processes y, Q such that Eys, < 00 and Qo < K the following condition holds

Ey, < E/ yodQ, + ¢
0

for any stopping time 7. Then
Ey., < eeX.

The next lemma is a modification of Gronwall lemma.
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Lemma 3.4.6. Consider a real bounded non-negative increasing continuous pro-
cesses Yn. Assume that almost surely

un(t) < /0 Un(5)dQn(s) + ma(t) + galt),

for any t € [0,T), where Q, is a non-negative increasing continuous processes
such that for any § > 0 -
Q. = O(In°n).

Suppose that z :
mat) = [ vi(s)awi ),
0

where W is an r-dimensional Wiener process, and for some a.s. finite random
variable ¢ for every t € [0, T

n(] < Cynl?).
Assume also that for every positive kK < o
gn = O(n7™").

Then

for all positive v < a.

Proof. Let us fix any arbitrary positive numbers v, 3, k such that v < 8 < &k < a,
and choose r > (8 — v)~! and § < 1/r. Denote

nll
Gat) = L0 L g + ¢,
In°n
-and for a positive number R define stopping time
s = inf{t > 0, G,(t) > R}.

Then for every t < T

t
Wt ATEIT < cu(RIn ) / lyn(5)["d@n(s A 72)

+ a|ma(EATR)|T + en™ ",

where constant ¢; = ¢;(r, R) does not depend on n. Taking supremum first of the

r.h.s. and then of the Lh.s., and taking the expectation, we get for every ¢

. . t
“E sup |y (8)|" < cl(Rln‘s n)r“lE/ lyn($)|"dQn(s ATE A T)
0

SSEATRAT

r KT

+ ciE sup |my(s)]
SSEATRAT
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By Burkholder inequality and the definition of 73

| vitwawiw

T

< &F / lyn(s)"d((s A TR ATYCT),

E  sup

sSEATRAT

for some constant c; = ca(r). Therefore, denoting

Za(t) = sup |ya(s)",

‘ SSEATRAT
QY(E) = ca(((ATEATIC + (R n)'Q.(t ATEAT))

for some appropriate constant c3 = c3(r, R), we get
Ban(r) < E/ za(s)dQ(s) + cin™™
0

for any stopping time 7. Since Qsll)(t) < c3(R+(RIn’ n)"), by Gronwall Lemma 3.4.5
E sup |ya(s)” < ein™™ exp(cs(R + (RIn’n)7)).
s<TpAT
This, under condition ér < 1, implies for every positive 8 < k, in particular for
[ chosen above

E sup Iyn(s)lr < Cﬁn*ﬁr’
© . sSTRAT

where constant cg = cg(r, R) does not depend on n. Then by Lemma 3.4.1

sup yn(s) < 74,mn77,
s<TEAT

where random variable 7, g is a.s. finite.

Define stochastic process G(t) = sup,, G,(t). Then stopping time
TR = inf{t>0, G(t) > R}
does not exceed 7z, and by the last inequality |

S yn(s) < 7MyR0 7.

By assumptions of the lemma process G(t) is bounded on the interval [0, 7] by
an a.s. finite random variable. This implies a.s.

i%i_{lgo TR = OO.
Consider sets g = {w, 7p > T}. Obviously, a.e. w hits some Qp, so that
P(U%_,Qr) = 1. Define n, = n,g for w € Qp\(UF-'%), R = 1,2,..., and
7y = oo for those values of w that do not hit any Qp. Then 7y is an a.s. finite
random variable, and

~ supya(s) < npynY.
s<T .
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3.5 Proof of Theorem 3.3.1

The central tool of the proof is the Gronwall-type Lemma 3.4.6. We transform
equations (3.3.1), (3.3.2) to an inequality of a special form so that we can make
use of the lemma.
In order to simplify notations let us introduce for every j = 1,2,...,r, | =
0,1,...,r operators, non-linear in general,
Alv) = Av +
B (v) = Blv + ¢,
BO®w) = BWy + g0
and for every n =1,2,...
Ay(v) = A + fo,
B, (v) = Blv + g},
BOW) = Bl + o0,
Note that by Assumption 3.3.5 for every k <@ and j=1,2,...,7,1=0,1,...,r
A—A, = Om™) in L(H,, Hy), '
B —B = O(n™*)in L(H,, H), (3.5.1)
BO O = O(n™) in L(H,, Hp).
Equations (3.3.1), (3.3.2) can be rewritten as

du = A)dt + B (w)dW’ + %Bj]B%"(u)dt + %B’(’)(u)dt, (3.5.2)

dun, = Ap(u,)dt + B (u,)dW7, (3.5.3)
un(0) = &n.
Using the It6 formula for |u — u,| in the triple H; < Hy < H_, we get for every
te0,T]
dlu —un)* = 2(u— un, Ap(u — uy,))dt
(u = un, (A = A)(u))dt
+ 2(u — Up, B (u — up))dW?
(6 — B, () (W7 — W)
(U — Un, (B — B,)(u))dW’
+ (u — upn, BB (u))dt
+ (u — up, B (u))dt
| B (u)|2dt.
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Next, we rewrite the third term in the prévious expansion. We take separately

differentials of Biu, and g?. For every v € Hj

d(v, Biu,) = (v,BIOu,)dt
+ (v, BiOy,)dW}
+ (v, Bi A, (un))dt
+ (v, BiB, (u,))dW,,

d(v,g3) = (v,gi®)at
+ (v, ZD)dW!.

)

Summing up the results we get,

d(v, B, (un)) = (v, B (u,))dt
+ (0, B (un))dW}
+ (v, B{An (uy))dt
+ (v, BiB (u,))dW}.

Integration by parts, the It6 formula in the triple H; — H, < H_; and the
previous identity give
(v~ un, B (un))d(W? — W)
= d{(W’ - Wj)(u - Un, B, (un))}

~ (W9 = W) (An(u — un), B (u,))dt
— (W7 = W) (A — A,)(uw), B (u,))dt
— (W7 = W)(B (u), B (un))dW*

+ (W7 — W (B, (un), B, (un))dW:

_ %(Wj — W)(B'B (u), B, (un))dt

- L - W B0 ), B e

= (W7 — W) (s~ e, B ()

— (W7 = W) (u = tp, B (u,))dW?
— (Wi — Wfl)(u - U, B«',;;A'n (un))dt
— (W7 — Wi)(u = up, BIB (uy))dW!
— (

B (u), B (u,))dt.
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It is easy to verify that the following three equalities hold for every ¢ € [0, 7],

B (u)[*dt
— 2(B (u), B, (un))dt
+ 2(W7 = W)(By, (un), B, (ua))dW,
= 2(B}(u — un), By (u — un)) (W7 — W)dW,
+ 2d(J + K + KP + pD),

(u — un, BB (u))dt
— 2(W7 — Wi)(u — up, BIB (u,))dW}
= 2(u — Up, BLB (u — u,)) (W — WHdWw!
+ 2d(J(2) + K(3) + p(‘))

(u— un,lBl(’)(u))d't
= 2W7 = W) (u — un, B (un))dWW,
= 2(u — Up, BIV(u — u,)) (W’ — WI)dW}!
+ 2d(J® + K@ )+ ®)y,

where
W = - [ (@), )ds
JP = - /0 t(u,BfIB’(u))dS,{‘,
5 = - 0, B0 (),

t
KO = / (B (un), B (u))dS,
0
t
KO _ / (B (u), B (un))dS,
0
t
KO = / (tn, BB (u))dS2,
. Jo

t
KO = / (B0 (w))dS31,
0
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p(2) A {(® (u), B (w)) ~ (B (u), By, (v)))
+ (B (un), (B, — B)(u)
+ (B, (un), (B, — B)(u)) }dA

+ (B (u), (B, — B)(un))}dST,

t .
PO = [, (BB~ BB )(w)aA,
0

t
p(t) = / (1 — i, (B0 — BID) () d AT
0

Here we denoted
t
A = [ (W) - Wi)aw(s).
0
Note that by Assumption 3.3.1 for each § > 0
142 = O(n’ n).
We derive from the identities above
: ' 5
lu—un? = € =&l + 2D I + 2, (3.5.4)
k=1 :
where
- t '
I,(ll) = / (u — Up, An(u — uy))ds,
0
t
9 = / (4 — Up, BI (u — uy))dW?,
0
t
19 = [ (B ), Bilu—u)dal,
0

n

t
o - / (u — tn, B3 BL(u — up))dAT,
: .

n

t
19 = [ B - u)as,
0 . .
3 3 4
G =P+ Tn ot ko Al me + Y e+ IR 4 N KE)
k=1 k=1 k=1
pn = (u(t) — ua(t), B, (ua) () (Wi (2) — Wi(t))

— (u(0) — ua(0), B}, (ua) (0)) (W7(0) — Wi(0)),
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Tp = /O(u—un,(A—An)(u))ds

+ / (4 = o, (B — B) (1)),

t
k, = / (W7 — W) (Apun, Biuy,)ds
0

t
+ /(Wj—W,{)(un,Bf;Anun)ds,
0

o= - / (W3 — W3)( Ay, B (un))ds

— [ V- WA~ A)w), B

~ 5 | 7 = WD(BE (), B wn))ds

- ‘3‘/ (W — W1) (BO (u), B (un))ds

_ /"(WJ‘ — W)t~ tn, B (u))ds
0
_ /0 (W9 — W) (u, Bl An(un))ds
4 /0 (W7 — W3)(Auuun, g3)ds

t
4 / (W — W) (un, Bi fo)ds,
1] .

¢
ma = [ (W= W @), B )
0
Let us introduce process
t
nlt) = [u(®) = w0 + A [ uls) = uns)ias,
and define stopping time
Tne = Inf{t >0, y,(t) > €}.

By Assumption 3.3.6 process |u]y is bounded by an a.s. finite random variable
uniformly in ¢ on the interval [0,T"]. Then processes |u,|o is bounded uniformly
in 7 uniformly in ¢ on the interval [0, 7, . AT]. By the same argument the bound-

edness by an a.s. finite random variable for fOT |u|1ds implies the boundedness
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7rn AT

by an a.s. finite random variable uniformly in n for |un|1ds. So that for

some finite random variable 1 we have,

lu(t)x < u, ]un(t/\ﬂnﬁ)lo < Wy

T Tn,e AT
/ u(s)Pds < u, / fun(s)Pds < p. (3.5.5)
0

for every t € [0,T] and any integers k < 5, | < 6.
Next, we rewrite equality (3.5.4). By Assumption 3.3.4

100 < ¢ / () — tn(s) [3ds - — A / [u(s) — un(s)ds,

IP@) + I + IP@)] < 2C/ [u(s) = un(s)l5dl| 45 I(s)-
For every ¢ let us introduce
Yne(t) = yn(t Amne),

and similarly define gue, J1e', o, Tnes Kncy lny Mine, phe. Taking into account
inequalities above it follows from (3.5.4) that for every € > 0 and ¢ € [0, T

Unelt) < / ne(5)dQue(s) + 2D Toc) + 2anlr)

where
Qns(t) = 2C(t N Tne + ||A$f||(t A 7rn,6))

is a non-negative increasing continuous processes, and Q.. = O(ln‘s n) for every

0 > 0. Our aim now is to show that for every k < a and € > 0
gne = O(n7"). (3.5.6)

Then we are in position to apply Lemma 3.4. 6 Let us show that p,. satlsﬁes this
property (i.e. (3.5.6) holds if we replace gn. by pn.). Indeed,

(= i, B (un))| < [(u =, Bi(u~ wn))| + [(u = un, B (w)))],
and by Assumptions 3.3.3, 3.3.4
(4 — un, B, (un)) = O(1).
Then Assumption 3.3.1 implies for every x < «

sup |pne(t)| < &n"
t<T

for some a.s. finite random variable &,.
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We move on to k,.. We have
T .
|kne (t)] < sup|W7 — W,{|/ |(Antin, Biu,) + (un, Bl Anuy)|ods,
t<T . 0
and by Assumptions 3.3.1, 3.3.4 for every € > 0, k < a

TA®n,e
|kn5(t)| < nnn_K/ Iun|%d3>
0

for some a.s. finite random variable 7,. This proves property (3.5.6) for k..
Next, we check (3.5.6) for l,.. By Assumption 3.3.1 for every € > 0, Kk < a
and some a.s. finite random variable v,

Tn,e AT

e < v [ (A B )]+ (A A0)0), B )
+ [(B'B (u), B, (ua))| + | (B (), B, (un))|
+ |(u = un, BY (un)) | + |(u, B A (un))]
+ [(Antin, @) + [(un, Bj fa)[}ds.
It is easy to show that the integral in the r.h.s. is uniformly in n bounded by an

a.s. finite random variable. For example, by Assumption 3.3.3 and (3.5.5) it is

true for the first term,

Tn,e AT '
/ (A, B (un))|ds
0

T 1/2 . T, e AT T 1/2
< {IAn@,o / |u|§ds} {IB%I?,O / funl2ds + / |g;|3ds} .

All other terms are estimated in the same way.
To show that m,, satisfies (3.5.6) we assign @, (t) = (W7 —W7) (B (u), B (u,)).
By Assumption 3.3.3 and (3.5.5)

|(B (w), B, (un))l < (1B'[anfule + |g'h) (I Bglo,-1|unlo + [gi]-1),

which can be estimated by an a.s. finite random variable. Hence, by Assump-
tion 3.3.1 ¢, = O(n™*) for k < «, and then by Lemma 3.4.2 so does m,, for
every € > 0.

Next, we consider r,,.. We have

/0 T 1= iy (A — An)(w))ds

Tn, e AT 14/2
< supl(a = Al { [ fu - wnffas)
t<T 0
+T sup |u— uaol|f — falo
t<7n AT
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which by Assumption 3.3.5 and the definition of 7, can be estimated by an a.s.

finite random variable. To estimate the second term in r,. we produce
(v — un, (B — B]) ()] < |u— unlo(I(B = Bj)ulo + |’ — gilo),

ie. (u—un, (B —B)(u)) = O(n*) for all k < o and then apply Lemma 3.4.2.
Using the same arguments it is easy to show that pf,, k = 1,2,3 satisfy
property (3.5.6).
To prove that ,(,',;), k = 1,2,3, satisfy (3.5.6) we use Lemma 3.4.3. Let us
show this for J. Assign

y(t) = (B (u(®)), B (u(®))),
d’n(t) = Srj;l(t)-
Then taking differential of y(¢), by the It6 formula for (B’ (u), B'(u)) = (Biu, B'u)+
2(B’u,d') + (¢, ¢') in the triple Hy — Hp — H_; we get,
a(t) = 2(B’A(w),B'(u)) + (B'B"B"(u),B (u))
+ (B7B"™ (u), B (v)) + (B (u), B®(u))
+ (B'B"(u), B'B"(u)) + 2(B" (u), B'B"(u)),
(1) = 2(B™(u),B'(u) + 2(BB"(u), B (v)).
By Assumptions 3.3.1, 3.3.3 the conditions of Lemma 3.4.3 with V = R are
satisfied. This lemma completes the proof for J,(é). The proof for J,(é) and J,S‘Z) is

performed in the same way. _
We move on.to K&, k=1, 2,3,4. For K we rewrite KV = KV + gD
where

t
K = / (un, BB (u))dS2,
0 .
t ] . °
JUED = / (¢, B {w)dss.
. 0 X

~ To estimate K" we use Lemma 3.4.4. Assign

y(t) = BB (u(t)),
va(t) = ,un(t)>
Ya(t) = Si(t).
Taking differentials of y(t) and v,(t) we get

a(t) = %Bj*B’(2A+BhB"+IBh(”))(u) + BIW*(B® 4 BB (w),
o'(t) = BT (B + B'B)(u) + BWB (),
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fa(t) = An(un),
gr(t) = Bi(un),

pi(t) = BlrA.(un),
a¥(t) = (BXY + BIBE)(un).

It is easy to check that by Assumptions 3.3.4, 3.3.6 all the functions above satisfy
conditions of Lemma 3.4.4. To estimate T we assign

W = (¢ Bw)

at) = (¢, B'AW@) + 5(¢’, B'B"B W) +
+ (™, B0 W) + (¥, BB (),

) = (@B W) + (¢ BPW) + (¢, BB W)

(¢, B'B*™ (u))

N | =

This functions and ¥,(t) = S7'(t) satisfy the conditions of Lemma 3.4.3 with
V = R. Thus, (3.5.6) holds for K and, consequently, for K. The proof for
K,(JE), k =2,3,4 can be pe;formed similarly.

Finally, as was mentioned above, we apply Lemma 3.4.6, and derive
Yne = O(n77)

for any € > 0, v < a. To finish the proof of the theorem it suffices to apply
Lemma 2.4.3. '
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Chapter 4

Stochastic Partial Differential
Equations

4.1 Introduction

This chapter may be considered as a continuation of the previous one. Here we
apply its main result, Theorem 3.3.1, to stochastic partial differential equation of

the form

du(t,w,z) = (Lu(t,w,z)+ f(t,w,z))dt (4.1.1)
+ (Mju(t,w, z) + g;(t,w, z))dW (¢, w)

in the normal triple of spaces Wy — L, = L} < W3*, with Cauchy condition
u(0,w,z) = yp(w,z), - (4.1.2)

where L is a second order elliptic differential operator, M, is a first order differ-
ential operator for every j =1,2,...,d; f(t,w,z), g;(¢t,w,z) are random fields on
[0, T x R? for some positive T and j = 1,2, ..., d, process W is a multidimensional
Wiener process, and ug(w, z) is a random field on R¢. Above and throughout the
paper we use the summati:on convention with respect to the repeated indices.
Under the solution of the problem (4.1.1)-(4.1.2) we understand a continuous
process u taking values in the Sobolev space WJ" for some non-negative integer m
and satisfying (4.1.1)-(4.1.2) in the generalized sense (see Definition 4.2.1 below).
We approximate the Wiener process W with a sequence of processes {W,} nen
of bounded variation. The convergence is considered in the topology O with some
rate of convergence (see page 29). Moreover, we approximate coefficients of the .
differential operators £, M; as well as the random fields f, gj,» ug. We use the

same topology with the same rate of convergence. Therefore, for every n € N we
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have a second order partial differential equation

duy(t,w,z) = (Lpup(t,w,z)+ folt,w,z))dt (4.1.3)
+ (Mujun(t,w, z) + gnj(t, w, z))dWI (¢, w)

with Cauchy condition
Un(0,w, ) = upo(w,z). . (4.1.4)
Relying on the results of Theorem 3.3.1 we prove that under some natural
conditions the solution u, of the problem (4.1.3)-(4.1.4) converges in the topology
O with the same rate of convergence. However, the limit @ is the solution of a
stochastic partial differential equation related to the equation (4.1.1). It has an
additional second order differential drift term. This equation can be considered
as the equation (4.1.1) with the last differential written in the Stratonovich form.
The equations of the considered type are especially useful because of their
applications to many important problems, in particular the problem of filtering
for diffusion processes which can be reduced to the investigation of the equation
of type (4.1.1). The filtering problem is studied in the next chapter. -

4.2 Generalities

Before formulating the result, in this section we recall some fundamental concepts.

4.2.1 Sobolev Spaces

All considerations are carried out in Sobolev spaces. We recall some general ideas
from the theory of these spaces. Let R? be a d-dimensional Euclidean space.
We fix an orthonormal basis in R?, and for z € R? we denote its coordinates
by z1,...,24, and its norm by |z|. For p = 1,2,...,d we denote by D, the
differential operator 8/0z,, and for p = 0 we assume Dy to be the identity. A
d-dimensional vector with non-negative integer components we call a multi-indez.
For a multi-index v = (m,...,74) of length |y| := 7 4 - -+ + 74 we define D7 as
the differential operator
DY = DY'D}* ... D}

First, we recall the definitions of some classic spaces of functions. Suppose
further that m is an integer, m > 0, p € (1, 00). We denote by C® = C(R?) the
space of real-valued infinitely differentiable functions on R? with a finite support.
By C™ = C™(R?) we denote the space of n times continuously differentiable
functions on R? with the finite norm

[flen = > sup|D"f(a)],

M<n ©
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and by L, = L,(R?) we denote the space (of classes) of real-valued functions on

R? with the finite norm
' 1/p
o, = ( [ @)
Rd

The space (of classes) of real-valued functions on R? belonging together with
their derivatives up to the order m to the space L, is called the Sobolev space
W= W;"(Rd). Sobolev space W™ equipped with the norm defined by

1/p

g = | 3 [ 107 @)z
yl<m /R

is a separable Banach space. Moreover, for p = 2 the space W™ is a Hilbert space
with respect to the scalar product (-,-)wy generated by the norm | - lwy

For p = 2 there is another definition of Sobolev spaces. Let A be the Laplace
operator ), 3%2;, I be the identity operator, and let us define operator A =
(I — A2 For Hy = L, and operator A we can define Hilbert scale {Hg}acr
(see page 26): for a > 0 we define H, as the domain of operator A%; for o < 0
H, is the completion of space Hy in the norm |- |g, = |A® - |z,. Then for

every a € R the space H, is a Hilbert space with respect to the scalar product
(' ) ')Ha = (Aa' ’Aa')Lz'

Proposition 4.2.1. For every integer m spaces Wi and H,, are equivalent, i.e.
they coincide as sets, and their norms are equivalent: there exist constants Ny,
Ny such that for every u € H,,

Mluln,, < |ulwp < Nalulm,,.

From now on we identify spaces Wj* and H,,, and denote both by Wi, We
also preserve notations | - |y for the norm, and (-, -Jwy for the scalar product.
Below we list some properties of spaces W™ which follow from the properties of
spaces H,,.

Proposition 4.2.2.

(i) For any integers m, n the system of spaces (W™ Wi, W) forms
a normal triple, and the mapping J : u — (-,u) generated by the scalar
product in W* (see Proposition 3.2.1) defines an isometric isomorphism
between the spaces W3*™™ and (Wi™+m)*.

(ii) The space C° is dense in W™ for every integer m in the topology of the
latter space.
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(iit) For all positive integer m, n, A"W3* = W*™, and (A%™u,v)wp =

(U,U)sz'n+n for allu € WM™ o € Wntn,
The next assertion is a fundamental result from the theory of Sobolev spaces.

Theorem 4.2.3 (Sobolev imbedding theorem). The space WJ* is normally
imbedded into Ly. If for some non-negative integer n the inequality 2(m — n) >d
holds then WJ* is normally imbedded into the space C™.

The following result is very useful.
Proposition 4.2.4. Letm be a positz"vé integer.

(i) There ezist a constant N such that for all v € WJ»

/Rd 'u(x)-éi—jv(a:)d:c = —/Rd (aimju(:c)) v(z)dz.

4.2.2 Cauchy Problem fdr Linear Equation of Second Or-
der

On a.given complete probability space (2, F, P) equipped with right-continuous
filtration {F;};>¢ we consider a stochastic partial differential equation of the form

du(t,z) = (Dp(a®!(t,z)Dyu(t,z)) + f(t,z))dt (4.2.1)

+ (65(t, 7) Dyu(t, ) + g;(t, 2))dW (¢)

on the interval [0, T] (for some T > 0), with Cauchy condition
w(0,7) = uo(z), (4.2.2)

~ where a?, b are measurable in (t,w, ) bounded real-valued functions on [0, T) x
Q x R%; f(t,-), gj(t,-) are stochastic fields with values in Lo, W1, respectively,
for all p,g = 0,1,...,d, 7 = 1,2,...,d; W is a d-dimensional Wiener process.
We recall that repeated indices in monomials are summed over, i.e. in the right
hand side of the equation (4.2.1) the first term is summed with respect to p, g,
the second term is summed with respect to p, j.

We will use the following notations. For.a separable Banach space V we denote
by CV the class of F;-adapted continuous processes with values in V. By L,V we
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denote the class of well-measurable processes with values in V for which almost
surely

[ woka <o,

where | - |v denotes the norm in V. For two separable Banach spaces U, V such
that V — U we write u € CUN L,V if v € CU and there exist process @ € £,V
such that u = @ for almost every (t,w) € [0,7T] x €.

Definition 4.2.1. We say that u is an Ly-solution of problem (42 1)-(4.2.2) on
the interval [0, T] if u € CLy N LW, , and for all p € C°

(), @) = (w0, @)za + fo{(—1)”(a’q(8)DqU(8),Dpw)Lz+(f(8),90)L2}ds

+ / (b5 (s) Dpu(s) + g;(s), ¢)r,dW(s),
0

for every t € [0,T] and almost every w, where p assumes 0 for p = 0, and 1 -
otherwise, and the last integral is understood in the It6 sense.

4.3 The Main Result |

Let W be an r-dimensional Wiener process, and {W,},en a sequence of d-
dimensional processes of bounded variation. Let us fix some positive number
a. Suppose that the following holds.

Assumption 4.3.1. For every k < a and every positive §

(1) W-W, = O(n™™"),
(2)  Sn = O(n™"),
(3) IISnII. = O(In’ n)

on [0,T), where S, is an r x r-dimensional process defined as follows,

s10) = [ Wite) - wRGNawie) ~ Lot

where §;; is the Kronecker’s symbol which assumes 1 if j =1, and 0 otherwise.

Recall that given a function F(t) expression || F||(t) denotes its total variation
over the interval [0, t].
Forevery n>0,j=1,2,...,7,p,g=1,2,...,d let a?9, bﬁj be measurable in

(t,w, ) real-valued bounded functions on [0,T] x Q x R%. Let f,(t,-) belong to
LoLy(RY), and g,;(t,-) belong to LoWE(R?) for j =1,2,. .., d.
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Assumptvion 4.3.2. Forallj =1, Q, ..,r,p=0,1,...,d there exist measurable
in (t,w, z) real-valued functions b;_;(o)’ . ,b’?(m) bp(o) L™ neN, defined on

1 n]

[0, T]|xQ2xR?, and stochastic process 950), e g](m), g,(g), ey g,(l'J"), n € N, belonging

to LoW3(RY) such that for every o € C3°(R?) the processes (b2(t), ), (b i(t),0),
(9;(t), ), (9n;(t), ) have on [0,T] the following stochastic differentials,
d3(t),9) = @), 0)dt + B (1), 0)aW! (1),
Abs(t).0) = G0, 0)dt + (B(8), 0)dWa(D), (43.1)

n)

d(g;(t),0) = (92(t),0)dt + (6" (), p)aW!(2),
dgni(), ) = (9@, 0)dt + (d)1),@)aWi(t).  (43.2)

Moreover, for all 5,k = 1,2,...,r, p = 0,1,...,d there ezist measurable in

(t,w,z) real-valued functzons bp (« 0) A *m) defined on [0,T] x Q x R?, and

stochastic process g(ko), . ,g belongmg to L2W1H(RY) such that for every ¢ €
J J 2

C&°(R?) the processes (bf(k) (t), ¢), (ggk)( t), ) have on [0, T) the following stochas-
~ tic differentials, '

deEO®),0) = @"@),0)dt + B @), 0)aw' (1),  (4.33)
d(gM(1),0) = (g O), p)dt + (¢ (2), )dW'(t). (4.3.4)

We consider stochastic partial differential equation

u(t,z) = /0(D,,(a”q(s,:c)un(sza:))+f(s,x))ds (4.3.5)

+ / (¥(s,z) Dpu(s, z) + g;(s, z)) o dW(s),
A

where up(z) = u(0, z) is an Fi-adapted random variable with values in W2(RR?).

Here we used the notation for the Stratonovich differential

(b5 (t, ) Dpul(t, z) + g;(t, 7)) 0 dW(t) =
= (b?(tam) pu(t’x) +gj(t,$))de(t)

+ %b;’(t,a:)Dp(bg(t,:c)un(t,a:) + g;(t, z))dt
+ %(b;’“)(t, z)Dyult, z) + g (¢, z))dt
for fixed j. For every n € N we consider partial differential equation
Un(t,z) = / (Dy(a (5, 2) Dyun(s, 2)) + f(s,2))ds (4.3.6)
+0 (b?(s’x)Dpun({s,x) + g;(s,z))dWi(s),

where u,0(z) = u,(0, z) is an F;-adapted random variable with values in W1(R?).

We assume the following.
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Assumption 4.3.3.

(i) The derivatives in z of a®, b9 up to the order m + 4, of a*9, b3 up to
the order m + 5, of bo(l) up to the order m + 3, of b;(l) up to the order
m + 4, of bo(kl) up to the order m + 1, of bs(kl) up to the order m + 2 are
bounded measurable in (t,w,z) functions of (t w,z) € [0,T] x 2 x R, The

derivatives in = of a%, b0 up to the order m, of ald, bn;. up to the order

m+1, of bO(l) up to the order max{m — 1,0}, of bs(l) up to the order m

are measurable in (t,w,z) functions of (t,w,z) € [O,T] x ) x R4 bounded
uniformly in n. Above p,q =0,1,...,d, s =1,2,...,d, j,k =1,2,...,r,
[=01,...,r

it) The random fields f(t g(l) t g(kl) t) are well-measurable F;-
j j
adapted stochastic processes wzth values in WP+, Wints wintt wont?,

respectively, such that
, . _
fOlwpss < K 1g;@lwpes < K, |6 @lwpss < K,

16 W) lypee < K

for every (t,w) € [0,T] x Q and j,k=1,2,...,7,1=0,1,...,7. For every
n € N the random fields fn(t), gn;(t), g,(w) (t) are well-measurable F;-adapted
stochastic processes with values in Wi*, Wt Wi, respectively, such that

l
fa®lwp < K, gni@®lwper < K, o5 B)lwp < K

for every (t,w) € [0,T|xQ and j =1,2,...,7,1=0,1,...,7. The constant
K above does not depend- on n.

- (ii2) The initial value ug is an Fo-measurable random variable with values in
Wm+5. For every n € N the initial value ung is an Fo-measurable random

variable with values in W,
Assumption 4.3.4. For all positive kK < «
(i) for all multi-indices y, B such that |[y| <m, || <m+1

D"(a®(t,z) — aPi(t, z))
DP (B, (t, ) — B(t, z))
D&t z) - ¥O(t,2)) = O(n™)

I |
S 9
S 3
| |
- 2

for every z € R* and p,q=0,1,...,d, 5,1 =1,2,...,r
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(ii)
f_fn = O(n_n) n Wzm,
9 —9nj = O(n7") in W1
o) = g% = O(n™) in Wy

forall 3,1 =1,2,...,r;

(iii) |
=& = O(n™) in W

Note that in the assumption above we do not require | = 0.

Assumption 4.3.5 (Strong ellipticity). There ezists a constant A > 0 such

that
d

Zaﬁq(t,w,x)zjz, > Mz

Pg=1

for all (t,w,z) € [0,T] x @ x R? and 2z = (2, ..., 24) € R

The existence of the solutions u, u, under Assumptions 4.3.2, 4.3.3, 4.3.5 is
well-known. It can be shown, for example, applying the technique used in [7] (see
Propositions 4.12, 4.13, and the proof of Theorem 3.3). This is not the subject of
the paper. Therefore, we concentrate on the estimation of the rate of convergence.
We assume that there exist Lo-solutions u, u, of the equations (4.3.5), (4.3.6),
respectively, such that u is from the class CWHe N LoWmHe . is from the class
CW N LoWwt2,

Theorem 4.3.1. Under the Assumptions 4.3.1-4.8.5 the sequence of solutions
un of differential equations (4.3.6) converges almost surely to the solution u of
“Stratonovich” stochastic differential equation (4.8.5). Moreover, for every xk < a

and

T
/0 Iu(s)_un(s)ﬁvzmﬂds = O(Tl_n).

4.4 Preliminaries

In this section we list a set of technical lemmas which are borrowed from [7].
We will use them to prove Theorem 4.3.1. The proofs of all lemmas except
Lemma 4.4.4 are omitted and can be found in [7]. Lemma 4.4.4 is a modification
of Lemma 4.7 from [7]. Its proof is given.
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We fix some non-negative integer m and consider the normal triple
Wit — Wi = Wi — Wit

Lemma 4.4.1. For any p,q = 0,1,...,d let a?? be a measurable fUnction on RY.
Suppose that for s = 1,2,...,d, ¢ = 0,1,...,d all derivatives of a®® up to the
order max(m — 1,0) and all derivatives of a*? up to the order m are measurable

bounded by a constant K. If for some constant A > 0
d
Z al(z)zjz > Az|?
Ji=1

forallz € RY, 2 = (2,...,2q) € RY, then

A
(Dp(a'quqv))v)Wg" + 5]U|€V2m+1 < LIUI%Vzrn

or every v € W where L is a constant depending only on K, m, X and d.
2

Lemma 4.4.2. Let a”, b? be measurable bounded functions on R for p,q =
0,1,...,d.

(i) Let us fix a non-negative integer o. If for every s =.1,2,...,d, ¢ =
0,1,...,d all derivatives of a%, b° up to the order max{m + a — 1,0} and
all derivatives of a*?, b° up to the order max{m + «,0} are measurable

bounded by a constant K functions, then for some constant L
[(Dp(aP*Dgv), Q)wpr| < L|U|W2'"+1+°‘|S0|W2m+1‘aa
| Dy0, Q)wyrl < Llvlygmervelplyp-e
for every v € Wrtte e CP.

(i) If all derivatives of ° up to the order max{m,1} and for every s =
1,2,...,d the derivatives of b* up to the order max{m,2} are measurable

bounded by a constant K functions, then for every a = 0,+£1,+2

(B Dy gl < Llvlygrellyg-o
for everyv € W)t ¢ € C°.
The constant L in the above statements depends only on K, m, d.

Lemma 4.4.3. Let a™, b?, cP be bounded measurable functions on R¢ forp,q=
0,1,...,d. Let us consider the differential operators Lv = D,(aPDyv), Mv =
b’ D,v, Nv = c?Dpv.
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(i) If all derivatives of c® up to the order m and for s =1,2,...,d all deriva-
twes of ¢* up to the order max(m, 1) are measurable bounded by a constant
K functions, then

[(Nv, v)wpr| < Llvfyp

for all v € W)™ where L is a constant.

(i1) If all derivatives of b°, c® up to the order m+1 and fors =1,2,...,d all
derwatives of b°, ¢® up to the order max(m + 1,2) are measurable bounded

by a constant K functions, then
|((Mv, Nv)wp + (v, MNv)wp| < L|v|3V2m+1
for all v € W)™ where L is a constant.

(i11) If all derivatives of b° up to the order m + 1, for s = 1,2,...,d all
derivatives of b° up to the order max(m+1,1) for everyp,q=0,1,...,d all
deriwatives of aP? up to the order m are measurable bounded by a constant

K functions, then for some constant L
|(£’U,M’U)W2m + (’U,MAC’U)Wén| < L|U|€V2m+1

for all v € W2,

The constant L in the above statements depends only on K, m, d.

Lemma 4.4.4. Let ¢, = c,(t,w,z) be a B([0,T]) x F x B(R¢)-measurable real
function on [0,T] X Q x R? for every n = 1,2, ..., such that its derivatives in

up to the order r are measurable functions of (t,w, z), bounded by a constant K,

where r is a non-negative integer. Suppose that for some k > 0

Dcp(t,z) = O(n™")

uniformly in € R? and all multi-indices v, such that |y| < r. Then

(z) if r = m, then
Dy(ca(t)Dgv) = O(n™*) in W1,
cn(t)Dgv = O(n™") in W
for every v € WrtL,
(ii) if r = max(m — 1,0), then
cn(t)Dgv = O(n™*) in W1

for every v € WJ*;
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(iii) if r = m+ 1, then
ca(t)Dgv = O(n™") in Wit!
for every v € Wit2,
In order to prove this lemma we ‘Will need the following.

Lemma 4.4.5. For any m € Z and every v € W;*!

|’U|w2"'-1 = sup  (v,9)wp,

where (-, )wy denotes the scalar product in W and the duality between the
spaces Wttt Wit

Proof of Lemma 4.4.5. Let us introduce a self-adjoined positive definite operator
A = (I —A)Y/?, where A is the Laplace operator, I is the identity operator. Then
(see Section 4.2.1) ’

ogr = (A7, A7),

Dividing both sides by [v[ym-1 we get

v
|ﬁU|W2"'_1 = (Am*lU,Am_l@)) v = ’
, T ol
and then, since the operator A is self-adjoint,
blup- = (A™0,A70) = @dwp, @ = A5 (44D)
Again using the representation | - [ym+ = |A™ . |L, it is easy to show that

|(P|W2m+1 = 1. Now, taking the supremum in the right hand side of (4.4.1) we get

vlwm-r < sup (v, Q)wy.
|‘P|W£n+1$1

On the other side for any ¢ € W1
('U,SO)WZ’" = (AmvaAm(p)l& < |U|W2'"'1|S0|W2m+1’
which implies

sup (v, Q)wpr < vy
|<P|W£n+1S1
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Proof of Lemma 4.4.4. To prove the first assertion we produce the following es-
" timations. Using Lemma 4.4.5, Proposition 4.2.4 and Cauchy-Bunyakovskii-
Schwartz inequality, for any v € Wjt!

| Dy(en(t) Dgv)lgym-1 = sup  |(Dp(ca(t)Dyv), @)wyp |’

I‘leémH <1

= sup |(ca(t) D, DpSO)Wg"‘|2

I‘P|W5n+1 <t

< lea(t) Dgvliypn

= 3 [ Dkt m) Do),

7i<m

which immediately gives the result due to the assumptions of the lemma. The

rest of the lemma can be proved similarly. O

4.5 Proof of Theorem 4.3.1

We reduce the proof- of the theorem to verification of the assumptions of Theo-
rem 3.3.1. In connection with the notations in Theorem 3.3.1 we denote Hy =
wir, Hg = Wy" *+ for any positive or negative integer 3, and denote |- | p the norm
in the space Hg, and |- |, (-,) the norm and the scalar product in the Hilbert

space Hj.
We consider a normal triple
H, — H, = Hy — Hj,
and, moreover, the system of embedded spaces

HG;)H%‘—)]}M‘—)Hg‘-—)Hg‘—-)Hi“—)HoEH‘Ha‘—)H’{‘-—)H;L-)]I'ﬂ;.

We recall that spaces Hy and H, as well as H_g and Hj can be naturally identified
using scalar multiplication (-,-) (see section 3.2.1). We use the notation (u,v)
for the duality between Hg and Hj where one of the elements u, v belongs to Hpg
and the other to Hj. '

Let us introduce for all v € Wy*t!, (¢,w) € [0,T) x Q operators

Lv = Dy(aPDgv), Mv = VD, MGy = #OD oy,

i
; ki
Mikl)y = bﬁ( )Dpv,
L,v = Dy(aP"Dyv), Miv = ¥ .Dyy, MYy = (-I)Dpv,

nj
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5Lk=1,2,...,7r,1=0,1,...,7, and consider equation

(w(t), ) = (uo,p) + /0 (Culs) + f(s), p)ds
1

¥ 3 /O (M Miu(s) + Mig(s), p)ds

t .
+ L / (Miu(s) + ¢9)(s), ) ds
0

2
4 / (MPu(s) + g;(s), 0)dWi(s),

and for every n = 1,2,... equation

(1n,9) = (o 0) + [ (Latin(s) + £a(5), 0)ds

4 / (Mitin(5) + gu(s), 9)dWi (),
0

(4.5.1)

(4.5.2)

where ¢ € C§°. By a solution u of equation (4.5.1) and a solution u,, of equation
(4.5.2) we mean functions from CWJ™ N L, W™t for which the equations (4.5.1),
(4.5.2) hold respectively almost surely for every ¢ € C°(R?) and ¢ € [0, T}.

From Assumption 4.3.3 using statement (i) of Lemma 4.4.2 it follows that for

all j,k=1,2,...,7,1=0,1,...,r, every (t,w) € [0,T] x Q

(‘CvaSO)W{" < L|U|W2’"+1|(P|W2""+la
(M7, 0)wpr < Llvlyms|plwy,
(MO, o)y < L|v|ymer [olwyp,
(MJ(M)U;‘P)W{‘ < Llvlymerlolwy,
and for alln € N
(Lav, Q)wp < Livlyymer|plyme,

(Mi;v, ‘P)W;ﬂ
(le(l_)va@w;" < Ljvlymerfelwp

IA

Livlwp lelwy,

for every v € W', p € C°. Then for every j,k=1,2,...,7,1=0,1,..

(A@)v, ) = (Lv,Q)wp,

(B (t)v, ) = (Mv, O)wp,
(B O(t)v,0) = (M Wy, 0)pp
(B ™) (t)v, ) = (M Dy, )y
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we define bounded linear operators A(t) : Hy — H_y, Bi(t), BiO(t), Bk (z) .
H; — Hp, and by

(An(t)vv (P) = ([,n'U, (p)Wg’"a
(Bﬁ(t)v, ¢) = (MZ{U’ SO)WQ’")
(B (), 0) = (MiDv, 0)wp

we define bounded uniformly in n linear operators A,(t) : Hy — H_,, Bi(¢t), B (t):
H; — Hp. :

Moreover, by Lemma 4.4.2 for all j,i = 1,2,...,r and every (t,w) € [0,T] x Q
we have,

(M (M), )y < Llv| ||y
for all v € W™, p € Cg°. Again, by ‘

(B (t)v, ) = (M (M), p)wp

we define bounded linear operators B# : H; — HL_,. Statement (ii) of I;emma 4.4.2
gives for j=1,2,...,7r and (t,w) € [0,T] x N '

(Mv,0)wp < Llvlwpl el

for all v € W3, ¢ € C§°. This allows us to extend operator B? : H; — Hy to a
bounded operator from Hy to H_,, and for all (¢,w) operator B#* : H; — H_, is
a superposition of B' : H; — Hy and B : Hy —» H_;. .

From the fact that (w, (I — A)™p)L, = (w, p)wyp for all v,p € C° it follows
from (4.3.1) that substituting (D,v)(I — A)™p in place of ¢ we get for j =
1,2,...,r,p=0,1,...,d-

dBB(t) Dy, Q)wy = (O t)Dpv, @)wpdt + (B2 (8)Dyo, 0)wy dW*

and for every n =1,2,...
(¥, () Dpv, )y = (U () Dy, @)wpdt + (B0 (£) Dy, @) d WY,

- which can be written as )

d(B'(t)v,p) = (BO(t)v,p)dt + (BO(t),p)dW*
and

d(Bi(t)v,p) = (BiO(th,)dt + (BI(t)v,)dW}
for every v, € C§°, and hence by (4.5.3), (4.5.4) for any v, € H;. Similarly,
substituting (I — A)™y in place of ¢ we get

d(g;(8),0) = (9" (),9)dt + (3" (), p)dW"
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and
d(gni (1), 0) = (40@),0)dt + (g)(t), @)W}

for every ¢ € C§°, and hence for every ¢ E. H, . Using the same sort of arguments
we can obtain from (4.3.3), for 5,k =1,2,...,7,p=0,1,...,d
A (D, Qwp = G () Dy, )wpdt + G () Dy, ) wpdW'

J

which can be written in the form
B (E,g) = (Bt o)t + (B (e)o, o)W,
and from (4.3.4)
d(97(t),0) = (g (), 0)dt + (g(1), p)aw"

for every v, ¢ € Hj.
We rewrite equations (4.5.1), (4.5.2) in the form .

wt) = €+ [ (A +F6)ds + [ (Beue) + ) aw(e)
: ° ,
+ % /0 BI(t)(B(t)u(t) + g;(t))dt + % /0 (Bj(j)(t)u(t)+g§.")(t))dt.
and |
un(t) = & + /O(An(s)un(s)+fn(s))ds + /0(Bf;(s)un(s)+gn]-(s))dW,’;(s)

which are considered in the triple H; — Hy = Hy — Hj. We can see that these
equation are of the same type as those in Theorem 3.3.1. Therefore, it suffices to
verify Assumptions 3.3.3 - 3.3.5 of Theorem 3.3.1.

By Lemma 4.4.2 forall j =1,2,...,r,1=0,1,...,r for some constant L

[(A(t)v, @)l - < Llvlklpla—r, k=0,1,...,86,
(B (t)v, )l < Llvlklglik, k=-2,-1,...,8,
(B (t)v,0)] < Livleleli-k, k=-2,-1,...,5,
(B ™ (t)v,0)| < Llvls|g|-2

for every (t,w) € [0,T]xQ and v, € C§°. Similarly, foralln €N, j =1,2,...,d,

l=0,1,...,r for some constant L,

[(An(t)v,0)] < Lalvli|@la—k, k=0,1,2,

(Bi(t)v,0)| < Lalolelphs, *k=-1,0,1,

(Bi(t)v, )l < Lalolklelix, k=-1,0
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for every (t,w) € [0,7] x  and v, € C§°. Therefore, the requirements of
Assumption 3.3.3 are satisfied.
Next, we verify requirements of Assumption 3.3.4. Using Lemma 4.4.1 we get

for everyn € N
A
(v,4w0) + Sl < Lpf

for every (t,w) € [0,T] x Q and v € W;**'. Here ) is a constant that comes from

Assumption 4.3.5. Using Lemma 4.4.3 we get for every n € N
(Bjv, Byv) + (v, B3Byv)| Llvlg,

|(v, Bjv)| < LIvl5,
(v, Bi%)| < Lf§,

IA

(Anw, Bjw) + (w, BjAnw)| < Llwly

for every j,1 = 1,2,...,7, (t,w) € [0,T] x Q and v € W, w € W2 In
inequalities above constant L does not depend on n.
Finally, Assumption 3.3.5 holds by Lemma 4.4.4. This completes the proof.

0

66



Chapter 5

Filtering Problem

This chapter is devoted to the application of the result of Chapter 4 to the filtering

problem.

5.1 Introduction

The problem of non-linear filtering can be described as follows. Assume that
(z,y) = {(z(¢),y(t), t > 0)} are two diffusion processes with values in R?¢, R",
respectively. The process of interest, the unobservable signal process z, represents
the state of the system at time ¢. The observable component, the observation
process y, represents the measured output of the system at time ¢. The problem
- of the estimation of the unobservable signal z(t) or a function of z(¢) on the basis
of the observed paths of y(s) for s <t is referred to as a filtering problem.

This model arises in many technical problems. For example, the process y(t)
describes the coordinates of a moving object computed on the basis of the radar
measurements, [N (t) represents the error of the measurements, and z(t) is the
true position of the object at time ¢.

Here we have a simplified model. Suppose that z is a solution of ordinary
differential equation dz(t)/dt = H(z(t)), z(0) = zo. Then the observation y is a

solution of equation

y(t) = /0 H(m(s)jds + N(t).

In various situations the evolution equation of the signal process z includes ran-

dom perturbation. In these cases z can be described by the equation

z(t) = /Oh(m(s))ds + /Oa(m(s))dN(s).

Thus, the goal of the filtering problem is to filter out the noise N from the

observation process y, and to find the best estimate for the signal process = given
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the measurements up to time t. More precisely, given a measurable functlon
f = f(z) with E(f2(z(t))) < oo find the best mean 'square estimate F(t) of
f(z(t)) given the trajectories y(s), s < t. If the noise N is a Wiener process then
it is known that under certain regularity assumptions

a o(t, z)dz
R‘P ,T)dx

where ¢ is a random process, called unnorrnalized filtering density. The problem

of estimating f(z(t)) is thus reduced to the problem of computing the density ¢.

It was also shown that ¢ satisfies a linear stochastic differential equation,

do(t,z) = (%%(a?(x)w(t,z))—a%(h(xxo(t,x))) d
T (H(w)w(t,:v) - a%(a(x)w(t,x») dy(t),

called the Zakai equation (see [19]). The normalized filtering density

o) = wita) [ w(t,mdx)_l

was also studied. It is known that p satisfies a measure valued stochastic differen-
tial equation called the Fujisaki-Kallianpur-Kunita equation with a disadvantage
of being nonlinear (see {3]). ,

In the paper we study a more general situation. The processes z, y are con-
sidered to be multidimensional and functions h, H, ¢ depend on t, z, y. Our
interest is motivated by the following. In practice the “real observations” have
bounded variation. This is the result of the error in measurement of process y.
We thus get a sequence {y, }nen of processes of bounded variation which approx-
imates observation y. Using “real observations” y, instead of y, we solve the
approximation of the Zakai equation. We compute ¢,,, and hence obtain density

pn by the formula

pa(t,z) = walt,T) (/Rgon(t,x)dx)_l.l

It is known that under some general conditions the convergence y,, — y implies
the convergence of unnormalized densities ¢, — ¢, as well as normalized densities
Pn — p. In Theorem 5.2.2 we study the rate of this convergences given the rate

of convergence y, — y.

5.2 The Main Result

Let (2, F7,P) be a complete probability space, and let us consider a (d + 7)-
dimensional diffusion process (z,y) = {(z(t),y(t)), t € [0,T)} defined by the
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system of stochastic differential equations

dz(t) = h(t,z(t),y(®)dt + o(t,x(t),y(t))dV(t)
+ p(t, z(t), y(t))dW (¢), (5.2.1)

(t)
dy(t) = H(t,z(t),y(t))dt + dW(t),
t € (0, T}, with the initial conditions
z(0) = & y(0) = n. (5.2.2)

Here h(t,z,y), H(t,z,y), o(t,z,y), p(t,z,y) are matrices of the size d x 1, r x 1,
d X 19, d X T, respectively (for all t € [0,T)], z € R¢, y € R"), (V(t),W(t)) is a
standard (r¢ + r)-dimensional Wiener process independent of the Fy-measurabe
randormn variables £,  with values in R, R", respectively. In the paper we assume
that the model is non-degenerate, i.e. there exist € > 0 such that

pp*(t,z,y) > el

for all (¢,z,y) € [0,T] x R? x R". Above I is the identity operator.
Let us define h?? = hP(t, z,y) by

1 1
WY = S(ep)t + 5loo )

for every p,q = 1,2,...,d, and define operators

Ltaju = —5e (2t uON) + 5Pt ),

Kt = H b3,y — 5 (0(t2,5(0)w),

P

7=1,2,...,r. Let us consider the so called Zakai equation
do(t,z) = Lot,z)dt + Mip(t,z)dy’(t) ‘ (5.2.3)

with the initial condition .
©(0,z) = po(z). : (5.24)

The following theorem is a fundamental result.

“~

Theorem 5.2.1. Let | > 0 be an integer. Assume that h* have uniformly
bounded derivatives in z up to the order I + 2, h and p have uniformly bounded
derivatives in x up to the order l + 1 and H have uniformly bounded derivatives
in = up to the order l. Suppose that the conditional distribution of € given n has

a density py (with respect to Lebesgue measure), which belongs to W.. Then the
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conditional density p(t,z) := P{t,d:z:_}/dz (of z(t) given {y(s), 0 < s < t}) exists
and

p(t,z) = ot z)/(e(t),1)L,,
where ¢ = @(t,z) is the unique solution of Zakai equation (5.2.3) with the initial
condition (5.2.4). Moreover, ¢ € CW}N LWt and (o(t), 1), is a positive and

continuous function on [0, T).

Let us approximate observation process y by a sequence {yy, }nen of r-dimensional
continuous on [0, T stochastic processes of bounded variation. Similarly as above
for every n € N we define operators

X F) : 2
Ln(tax)u = _a_xp'(hp(t:m:yn(t))u) + 633,,656 (hm(t,x,yn(t))’U,),
Kt = HIG2, 900 — 2 (e (2, (),
. p
i _ Oy _ 9.9 sty o
MOz = LB ) — 5 (62

for 5, = 1,2,...,7. As an approximation for the problem (5.2.3)-(5.2.4) we

consider the partial differential equation

don(tiz) = Lapa(t,z)dt + Mipa(t,z)dyi(t)
1 ~. . 1 ~ ..
— SMIMpn(t, z)dt — §M;<J><pn(t,x)dt (5.2.5)
with the initial condition
©n(0,2) = po(2). (5.2.6)

Suppose the following holds.

Assumption 5.2.1. For every k < o and every positive §

(1)  y—yn = O(n7™"),
(2)  Sn = O(n™),
(8)  |ISa]l = O(In’n),

where S, is an r X r-dimensional process defined as follows,

SI0 = [ 6/6) - D) — S,

where §;, is the Kronecker’s symbol which assumes 1 if j =, and 0 otherwise.

Assumption 5.2.2. The derivatives in z of h?, H’ up to the order m + 5, of
(0/0y))H’ up to the order m + 4, of (8/0t)H?, (82/0y:8yr)H? up to the order
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m + 3, of (0°/0tdy,)H?, (8°/0y10yrOyx) H? up to the order m + 1, of o, pPi up
to the order m+6, of (0/0y)o™, (8/dy,)p™ up to the order m +5, of (0/0t)p™,
(0%/0y10yn) PP up to the order m + 4, of (8%/0t0y)p’, (8%/0yByndyx)p’ up to
the order m + 2, are bounded measurable in (t,z,y) functions on [0,T] x R? x R".
Above p=1,2,...,d, j,l,hk=1,2,...,7,1=1,2,...,70.

Assumption 5.2.3. Random variables &, n are almost surely finite. The condi-
tional distribution of £ given n is absolutely continuous with respect to the Lebesque

measure on R® for almost every w € Q. Its density py = po(-,w) belongs to Wats,

Note, that under Assumptions 5.2.2, 5.2.3 there exist an Lo-solution ¢, ¢,
of problems (5.2.3)-(5.2.4), (5.2.5)-(5.2.6), respectively, such that ¢ belongs to
CW*S N LW, o, belongs to CWt N L,W,*2. As a corollary of Theo-
rem 4.3.1 we get the following.

Theorem 5.2.2. Under Assumptions 5.2.1-5.2.3 the sequence of solutions ¢,
of the problem (5.2.5)-(5.2.6) converges almost surely to the solution @ of the
problem (5.2.8)-(5.2.4),

lo = @nlivy = O(n™"),
and
T
[ 1666) = ene)ignds = 0w~

for every k < a. Moreover, the sequence of densities p, converges almost surely

to the density p,
P pallyy = O(n™),
and

) |
| 1906 = pulends = 07

for every k < a.

5.3 Proof of Theorem 5.2.2

5.3.1 Convergence g, — %

In order to define operators MiO(t, z), MV (¢, ), MIkD(¢, 1), M (¢, 2) we
rewrite the definition for M7 (¢, z), Mi(t,z). For every j = 1,2,...,r, p =
1,2,...,d set

; 0 ; .
_?(tax7y) = Hj(t,.’I?,y) - _IL'_ ](t,iL',y), ﬁf(t,x,y) = _ppj(t,x,y)'



Define
bi(t,z) = Br(tz,y@t),  b,(tz) = B;(t,z,ya(t)),

p=0,1,...,d, and then in connection to the notations introduced in chapter 4
Mi(t,z)v = B(t,z)Dw,  Mi(t,z)v = B,(t,z)Dp,

j=1,2,...,7 (we sum with respect to p from 0 to d).
Forallp=0,1,...,d, 5,1 =1,2,...,7r set

p(0) _ Q 16_2 P
:3]' (t,z’y) - (3t+20yﬁ)ﬁ’(t’x’y)’

© _ 9
Zj (t,x,y) - aﬂ;’(t:x)y);

B, 2, y)

0
a_ylﬂ;')(t’ z, y)a

p(l) _ i P
nj (t,a:,y) - 6y[‘3j(t’$,y).

Now define

FOtz) = B0 y®),  BP() = Bz, ua0)),
j=1,2,...,r,1=0,1,...,r, p=0,1,...,d, and then
Mj(’)v(t,m)v = bf(l)(t,x)Dpv, MGG ) = bfl(j’)(t,x)Dpv,

j=1,2,...,7,1=0,1,...,r (we sum with respect to p from 0 to d).
At last, for all p=0,1,...,d, j,k, 1 =1,2,...,7 set

p(k0) _ (9 13_2 9 - prtD -
Bt zy) = (6t+23yﬁ)aykﬁj(t,x,y), Btz y) = B0y

BE(t, z,y),
and define
B (t,z) = B (8,2, ya(t)),

LHk=1,2,...,7,1=0,1,...,7,p=0,1,...,d, and then
MIE (¢ 2)y = bf(kl)(t,:c)Dpv,

Hhk=12,...,r,1=0,1,...,7 (we sum with respect to p from 0 to d).
Assigning

L =F — 2000 — Lap) A= A5 pMI0 = g0
2 2 ) b} )

MIK) = pgitkt)
L, = £ — Lo - Lo o K M0 = A
n n 2 n n 2 n ) n n? n n
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we reduce problem (5.2.3)-(5.2.4) to the form

do(t,z) = Lp(t,z)dt + M p(t,z)dy’ (¢) |
+ %Mijcp(t,ac)dt + %Mj(j)cp(t,x)dt, (5.3.1)
¢(0,2) = po(a), (5.3.2)

equivalent to the “Stratonovich” equation (4.3.5), and we reduce problem (5.2.5)-
(5.2.6) to the form

don(t,z) = Lapn(t,z)dt + Mg, (t, z)dyl(t), (5.3.3)
Son(o’x) = pnO(x)'a ) (534)

" which is equivalent ‘to the partial differential equation (4.3.6). Our aim now is
to show that in this case Assumptions 4.3.1-4.3.5 are satisfied. Indeed by the
It6 formula the processes b%(t,z), bf,(t, z), b”(lc (t,z) for all 5,k = 1,2,.
p=0,1,...,d have stochastic differentials

-

dt(t,z) = B0 z)dt + BV, 2)dWi(t),
i
dbhy(t,) = V0t a)dt + Bt 2)dW(2),
drP(t,z) = B z)dt + FF (8, 2)dWi(),

respectively, on [0,7] for all z € R? and n € N. By a Fubini-type theorem
for stochastic integrals (see p. 116, [13]) for every ¢ € C$°(R?) the stochastic
processes (b5(t), ¥)o, (b2;(t), )0, (b;’(k) (t),%)o have stochastic differentials

nj

dE(), ¥)o = (BO(), )odt + (BFO(2), ¥)edW'(2),
A8 (1), %) = (B (), ¥)odt + <n§’(t) ¥)odWi (1),
dEEE (1), ) = (@), p)edt + (B (2), ¥)odW'(2),

respectively, on [0,T] for all n € N.. It is easy to show that Assumptions 4.3.3,
4.3.4 hold.

Finally, if H? is uniformly bounded in (t,z,y) for every j = 1,2,...,r, then
by Girsanov’s Theorem, p. 207, [17], we can introduce on the measurable space
(92, F) a new probability measure P by

P(dw) = pr(H)(w)P(dw),

such that (R, F,P) is a probability space and W (t) + fo ,y(s))ds is an
r-dimensional Wiener process on the interval [0,T] on (€2, .7-' , P). Above pr(H),
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called the exponential martingale, is defined by

. T ‘ .
r(H) = exp{=3 [ Hi(s,2(5), () (s
: J
1 T 2
52 | s 0(0),u(9)as)
- 4
Notice, that condition Epr(H) = 1 of the Girsanov’s theorem holds by Lemma

1, p. 204, [17]. Therefore, Assumption 5.2.1 implies Assumption 4.3.1. We apply
Theorem 4.3.1.

a
5.3.2 Convergence p, — p
We have, for every t €[0, T
, le@)lwp(0(8), e, — (@n(t), Dol l9(t) = 0nlt)lwye
p(t) = Pa(t)lwpr < T 1
|(<P(t), )Lz (‘pn(t)a )Lzl (‘pn(t), )Lz
Therefore, since by Theorem 5.2.1 almost surely '

4<T

for some positive random variable ¢, the problem of estimation of |p — Palwy,
fOT lp — pn|€V£,,+1ds can be reduced to the estimation of |(¢,1)r, — (¥n,1)L,].
Namely, in order to prove the second part of the theorem it is enough to show
that

(e, 1)y = (@ Vi, = O(n™") (5.3.6)

for all &K < a/2. Then (5.3.5), (5.3.6) imply also

tlgg,((pn(t):l)Lz > Cl

almost surely for some positive random variable {; and for sufficiently large n. It
is clear that this is what we need to get our results from the first inequality in
the section.

Therefore, it suffices to show that (5.3.6) holds for any K < «. Introduce
function p(z) = (1 + 2%)"/2. Then

1(0(2), Do — (0n(), Dol < [((0(t) = 0a(t)), 07 sl < Clp(p(t) = on(®))]L,

for every t € [0,T), where C = |p™!|, is finite for v > d, and therefore it is
enough to verify that

(e = en)le, = O(n™) (5.3.7)
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for all kK < /2. :
It follows from problem (5.3.1)-(5.3.2) that for function p(z) defined above

©(t, z) satisfies equation
d(p(z)p(t,z)) = p(z)Le(t,z)dt + p(x)Mip(t,z)dy (t)
+ %p(x)Mijcp(t,:c)dt + %p(m)Mj(j)w(t,x)dt (5.3.8)

with the initial condition
©(0,z) = po(z).
Introducing

Y(t,z) = p(z)p(t,z)

we can rewrite this in the form
d(¥(t,z)) = L(d(t,z))dt + MI(P(t, z))dy’ |
+ %MiMf(w(t,x))dt + %Mj(j)(Q/)(t,x))dt (5.3.9)

with the initial condition

$(0,z) = p(z)po(z), (5.3.10)
where
Lv = Dy(a™(t,z)Dgv), M'v = bi(t,z)Dyv MWy = b;’(l)(t,m)Dpv,

and coefficients a™, b?, b;’(l) will be written below in terms of a?, ¥, bf(l). Simi-

larly, introducing
Un(t,z) = p(z)enlt,z),
we get that ,(t, z) satisfies for all n € N equation
A(a(t,2) = Lot 0))dt + Mi(Yalt,a)dyl . (5.3.11)

with the initial condition
Yn(0,2) = p(z)pno(z). (5.3.12)
Operators L, M7, MY are defined by
Ly = Dp(af!(t,z)Dyv), Miv = bl (t,z)Dpv, MOy = bﬁg)(t,x)Dpv,

coefficients af?, bf ;, bfg) will be written below in terms of a?, &%, bfg) . Below we

verify that operators L, L,, M7, MJ satisfy Assumptions 4.3.2-4.3.5 and apply
Theorem 4.3.1.
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For simplicity of notations we will omit parameters ¢, z. It is easy to show
that

d : : d
pMiv = D BED,(pv) — pv Y Bp,,
p=0 p=1

where p, = Dyp(z)/p(z). Denoting

' d

bg = b? - Zbgl‘m
=1

b?. = W p#0

J 2?

we get
pMiv = M (pv), j=12,...,r (5.3.13)

Set u = M'v and apply the previous formula to pM7u twice. We get
pMIMy = MIMY (pv),  5,1=1,2,...,r (5.3.14)

Denoting

d
ol (! l
XY = B0 — S gy,
p=1
B0 = B9 pro
we show that
pMIGy = MIO(pv),  j=1,2,...,r, 1=0,1,...,7. (5.3.15)

In order to get a similar relation for £ and L we introduce intermediate operators
NP, NP defined by

d d

NPy = Zamev, NPy = Zcp"qu,
q=0 q=0
so that :
d d
Lv = > D,NPu, Lv = Y D,N"v
p=0 p=0
~ As above assigning
d
el = gP0 Zapqﬂq’
g=1

M = g g#0

we get relation



Then

d ]
pLy = Z pD N*Pvu
p=0

d d
= ) Dy(pNPv) — > (pN*v)u,

p=0
d d

= D Dp(NP(pv)) ~ > N?(pv)uy,
p=0 =1

Therefore, defining

d

a% = 0 _— E:Cpqup,
p=1

aft = M, p#0

we get
pLy = L(pv). (5.3.16)

Hence, using relations (5.3.13)-(5.3.16) we indeed reduce equation (5.3.8) to equa-
tion (5.3.9). i

Similarly to aP?, b¥, b;’(l) we can define coefficients a%?, b? bﬁ(jl). It is easy to
show that if a?, &%, ..., 'bﬁgl) satisfy Assumptions 4.3.2-4.3.5 then so-do a™, b%,
..., P9 Applying Theorem 4.3.1 to problems (5.3.9)-(5.3.10), (5.3.11)-(5.3.12)
we get

% = ¥nl, = O(n™%)
for every k < a/2, which leads to (5.3.7).
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Chapter 6

Examples of Wiener Process
Approximations

6.1 Introduction

The chapters above were devoted to the study of the approximations of stochastic
differential equations (SDEs) by ordinary differential equations (ODEs). Namely,
we investigated the rate of the convergence of the solutions for the approximating
ODE:s to the solution for the original SDEs.

Initially we considered a “Stratonovich” SDE. We replaced the Wiener process
W in this equation by an approximation system of stochastic processes {W,, }nen.
In this chapter we study the two most common types of these approximations for
the Wiener process W: polygonal approximation and smoothing. We verify that

in these two cases sequences {W,, } ,en satisfy Assumptiori 2.3.1.

Assumption 6.1.1. There ezists a positive number a such that for every k < «

and every positive §

(1) W—=W, = O(n™"),
(2) S = O(n™),
(3)  [ISall = O’ n).

Here we used the notation

S10) = [ OV - WiNaWL) — 3o,

where §;; is the Kronecker’s symbol which assumes 1 if j = [, and 0 otherwise.
6.2 Preliminaries

In this section we list some statements that we will use later in the chapter.
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Theorem 6.2.1. Let W be a Wiener process and let € € (0,1/2), T € (0,00).
Then there ezists a random variable N = N(w), depending also on e, T, such
that EN? < oo for all p € [0,00), and for any w €

W, — W,| < N(w)|t —s|5
for allt,s € [0,T).

This is a well known fact. The proof can be found in [16], p. 36. The following
lemma is a corollary of Lemma 2.4.2.

Lemma 6.2.2. Let {£,}nen be a sequence of real random variables, and let B be

a positive number. Suppose that for every n € N and every positive integer r
(El&a* )V < cpn™,
where cg m;zy depend on r but not on n. Then for every positive v < 3
& = O(n™7).

Proof. We fix any value of v, then set any r > 7(8—+)~!, and apply Lemma 2.4.2.
|

Lemma 6.2.3. Let £(t), t € [0,T] be simultaneously a continuous martingale and

a Gaussian process with mean 0 and variance o;. Then

1 2

P{sup&(t) > a} < exp (——2—> . (6.2.1)
t<T 207 ‘

Proof. By properties of positive submartingales (see Theorem 3.8, [17]) and -

normal random variables for arbitrary A

1 1
P{sup&(t) > a} < P{supeM® > ¢} < —EeMT) = —eaNor,
t<T t<T era ela

Minimizing the last term with respect to A we derive (6.2.1). O

Lemma 6.2.4. Let stochastic processes M (t) simultaneously be a continuous mar-
tingale and a Gaussian process with mean 0 and variance oy = at, where o is a

positive constant. Denote

X = sup M)

O<t<e? \/tInlni .

Then EXP < oo for any integer p > 2.
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Proof. Note, that the interval (0,e™?] is dictated by function y/¢InIn(1/t). In-

troduce a partition {tr}r=23,.. of the interval (0,e7?], t, = e"*. Then

M(t
X = sup sup —() .
k22 tet+1 <t<tg A ,t ln ln %

Let us show that fot every z > 0

o)
P{X > Z} < z:e—cz2 ln(l+k? R (622)
k=2

for some positive constant c. Indeed, we have,

= M
P{X >z} < Z sup —(—t)zz
k=2 te+1<tSte  [tInln 1
<

d 1

E P< sup M(t) > z4/tgqrInln — 3 |

P 0<t<ty 79
and by Lemma 6.2.3

122tk lnln 21n(1
P{X >z} < Zexp< ! +1Ut ) Zexp< IQ_(JF_’“)),
k

k=2
which proves (6.2.2).

Let us separate large values of X, so that Xy = Xxx>n, and estimate EX%.

The random variable X%, is non-negative. Therefore,
EX% = / P{XX > z}dz = / P{X > z'/?P}dz.
0 N

Using estimate (6.2.2) we get,

oo 00 oo oo
EX} < ) / e~ Pkl gy = / e~z NP In(14k) g
k=2 YN ‘ k=2 Y0

=2 .

for some constant ¢(p) depending only on p. Then

EXII:, < d(p)ze—c(p)Nzlpln(l-{»k) — Z 1+k N2/p,
k=2 © k=2

where d(p) = [;° e~(P)=*/"In3 gy is finite for any p > 2. Taking NV large enough
such that the sum is finite we get EX%, < oo.
Finally,

EX? = EXPxx«<nv + EXPxx>n < NP + EXY < oo.
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6.3 Polygonal approximation

For simplicity assume that T is an integer. Let us define for any n = 1,2,...
partition {¢7}2Z of interval [0, T], where ¢7 = £. For short we omit index n and
use notation {;. The polygonal approximafion of the Wiener process W may be
defined as Wn(t) = W(te) + n(t — te) (W (tk+1) — W(te)) in the interval [ty,tx41)
for k =0,1,...,nT—1. However, this family is F,, 1 -adapted, and, consequently,
not Fi-adapted. Introducing a shifted F,-adapted version Wo(t) = Wn(t - %) we
define a natural approximation, i.e. an approximation which does not depend on
the ”future”.

Definition 6.3.1. We say that a sequence {W, },en is a polygonal approzimation
of a Wiener processes W if it is defined as

Wn(t) = W(tk_l) + ’I’L(t - tk)(W(tk) — W(tk_l))

for values of t from the interval [tg,tgy1) for k = 0,1,...,nT — 1. To make the
definition consistent we assume that W (t) vanishes for negative t.

The following is the main statement of the section.

Proposition 6.3.1. In the case of polygonal approrimation Assumption 6.1.1
holds witha = 1/2.

We will need the following lemma.

Lemma 6.3.2. For any integer n > 1 let X,1,..., Xnn be independent random
variables such that for k = 1,2,...,n EX, = 0, and for a sufficiently large
integer p > 1

E| X < cpn~ P,

for all n > 1 and some B € (3,1], where ¢, is a constant depending only on p.
Then S, =3 y_, Xux converges to 0 almost surely. Moreover, for everyy < 3 —%
there exists a finite random variable £, such that almost surely

1S.] < &7
for alln > 1.

Proof. First, show that for any multi-index a = (ay, ..., a,) such that oy +--- +
o, = 2p the following inequality holds:

E|X% ... X2 < en P,

n
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Indeed, by Hélder’s inequality

E| Xl . Xon

< (BIXul®)% .. (B X)) B
< H(Cpn-2pﬁ)%§ = cpn
k=1
- Hence,
E(S,) < (2p)!N(n,p)n=2",
where N(n,p) is the number of those multi-indices a = (ay,...,a,) satisfying

the conditions a; # 1 for all j =1,2,...,n, and a; + -+ + a, = 2p. Our aim is
to show that N(n,p) < c¢(p)n® for some constant ¢(p) depending only on p.

The number of aj,...,a, different from 0 is less than or equal to p. So
N(n,p) can be estimated by (7)N(p). We take () choices to place p elements
to n positions. And for every such a choice we determine number N(p) of all
possibilities to choose p multi-indices («;,, . .., a;,) for which oy, +- - + oy, = 2p.
Obviously N (p) exceeds the number of all multi-indices with the elements different
from 1.

Next, N(p) equals to the number of multi-indices (5, ...,08,) possessing the
following properties: 8; > 1forall j =1,2,...,p, and 8; + - + 8, = 3p. And,
hence, is equal to the number of possibilities of placing p — 1 elements to 3p — 1

von < (2)(P7)) < com,

where constant c(p) = - (3‘D 1) depends only on p, and

positions. So,

E(S,)% < c(p)ynP=2),

Lemma 6.2.2 ends the proof of the lemma. O

Proof of Proposition 6.3.1. Using Theorem 6.2.1 for every ¢ > 0 and every t €
[tk, tr+1) almost surely
W) = Wi[)] < 2 sup [Wi(t) ~Wi(s)| < (it

t,SST .

lt—s|<2
where (, is a finite random variable depending only on €. Assumption 6.1.1(1).
holds. Next we verify Assumption 6.1.1(2), i.e. |S%| = O(n™") for every j, I, and
any v < 1/2. We start with the situation where j and [ coincide. By the Ité’s

formula

W) - Wi / (Wi(s) — Wi(s))d(Wi(s) — Wi(s)) + ¢,



and, hence,

‘

, .
SP(t) = / (W(s) = Wi(s))dW?(s) — $IW?(t) - Wi()I". (6.3.1)
0
By Burkholder-Davis-Gundy and Jensen’s inequalities for any p > 1

Esup|S7P < cE sup [W(t)—W(s)]P < en™??,
¢t<T ¢<T
lt-s|<2

where constant ¢ does not depend on n. It suffices to apply Lemma 6.2.2. Next,
we verify Assumption 6.1.1(2) in the case of distinct j and {. By Definition 6.3.1
of the polygonal approximation

nT-1

S = 1> (Wite) — W(ter)) / W (5) = W ) xoceds
k=0 tk
nT—l'

+n Z (W(te) — W(tro1)) (W () — W (1))

te+1
X / (n(s — tk) + 1) xs<eds.

173
Assume that for n € N time parameter ¢ belongs to the interval [t,,, ,tm, +1)-
Then

Sf;l(t) < Zn:(W’(tk) — W (te-1)) / ak(W”' (te + =) — W(ty))du
P 0 n .
+ g > (WHte) — WH(teo1)) (W () — W (tk—1)),
k=0

where af = n(t — t,,) if K = m,, and a} = 1 otherwise. For k£ < m,, denote the
terms in the first sum of the last inequality as X,’;L, and the terms in the second
sum as er,i Define Xffk = Y:,i =0 for £k > m,. Then

nT-1 nT-1

SPt) < D Xh + gz Y.
k=0

k=0
It is easy to show that for every k, EXffk = E’Y,f,lc =0, and
. ag —1)M2
E|X21? < E|Zl|21’/ : E|Zu|**du < Mn"‘)"
" ~ Jo " - p+1
, 2
BIi» < (ElZy™) = ((2p—D)Pn>,

)

where Z, is a Gaussian random variable with mean 0 and variance v. By Lemma 6.3.2,
|S#| = O(n™) for any v < %. Hence, Assumption 6.1.1(2) is satisfied with
a=1/2.
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Now we go on to Assumption 6.1.1(3). We have

Now we go on to Assumption 6.1.1(3). We have Now we go on to Assump-
tion 6.1.1(3). We have Now we go on to Assumption 6.1.1(3). We have Now we
go on to Assumption 6.1.1(3). We have Now we go on to Assumption 6.1.1(3).
We have ~

[15=II(T)
< nZ/ k+1 Z |(W](t) — Wj(tk;l)) — n(t _ tk)(W](tk) _ Wj(tk—l))l

X|W(te) = Wteer)|dt + =T

nT—1 . ” 2 -
Z/ { W (b + =) = W (t) W (&) - W’(tk_l)ldu}
nT—1
+ 30 W) = Wt IWH (k) = W(te-)| + 5T
Al k=0 .

nT-1 nT-1
Zf {ZXii}du+ZZY,{,§+c
al =0

15.1(7)
<X [T 1w - W)
} g Ytk k=0

—n(t — tx) (W7 (tx) — W (ta))|
X |WH(te) — Whteor)ldt + =T :

2
Z/ { W7 (b + ) W ()| |W* (t) ~ W’(tk_l)ldu}
+ 2 Z W3 t) = Wit )lIW' () = Wite)] + 2T
z,:/ {Z Xffk}dU+Xl: kz% y?!

where

Ko = W20+ ) = WINIW! () = Witeen)| = iz,

Y = |Wi(te) — WIteo)]? —

)

3 (-

Vi = IW(th) = W ()W (t) — W(teor)| — pi, J#L
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m nT-1 nT-1 4 nT-1
C=5T+ LY [ma+ Y 2+ S
gt =0 70 j k=0 A i=0

Here p, is the expectation of the module of a Gaussian random variable Z,.

distributed with mean 0 and variation v. Obviously, 2 < v for any v, and hence
C < %T + 2m?T.

Furthermore, we check conditions of Lemma 6.3.2 for X7, and Y. First of all,
EX? = EYJ = 0. Next,

2p C
B = 0 (7) mmBIay < on
where constant c, depends only on p. The same sort of arguments shows that also
Y,f,i for j # [ and Xffk can be estimated by ¢,n"%. By Lemma 6.3.2 both 3, X7
and ¥, Y7 converge to 0 as n tends to infinity; ||S,||(T), and hence || Snll(t) for
any t < T, can be estimated by a finite random variable, i.e. ||S,|| = O(1). This
ends the proof of Proposition 6.3.1. O

6.4 Smoothing the Wiener process

In this section we study another type of approximation of the driving process.

Definition 6.4.1. We say that an approximation family {W,},cn is the smooth-
ing of a Wiener process W if '

W,(t) = /OIW(t—%)du.

Here we assume that W (¢) vanishes for negative t.

Proposition 6.4.1. Assumption 6.1.1 holds when W,(t) is a smoothing of a

Wiener process.
We will need the following lemma.

Lemma 6.4.2. Let W be a 1-dimensional Wz’ener.process, {Wa}tnen its smooth-
ing, {fa}nen a family of one dimensional stochastic processes independent of W

Assume that for some k > 0 and positive integer p

1/p
<Esup|fn(t)|”> < con™". (6.4.1)
t<T
Then
¢ p\ l/p
(Esup / fn(8)dW,(s) ) < en™" (6.4.2)
t<T |JO

for some constant c independent of n, providing that the integral exists.

85



Proof. Changing the variable of integration in the definition of the smoothing, it

is easy to show that

d”;;(t) = n(W(t) - W(t— %)) = n/t_l dw (v) (6.4.3) -

Define W (t) = W(T), fu(t) = fo(T) for t > T. Substituting (6.4.3) and changing
the order of integration in fot fa(s)dW,(s) we obtain the following estimate:

_ t p
Esup'/ fa(8)dWo(s)| < e(Jy + J2),
t<T 0
where
P
Ji = cynPEsup // (s)dsdW (v)|
t<T
P
Jo = cpn”Esup/ / (s)dsdW (v)| ,
t<T

constant c, depends only on p. Applying Burkholder-Davis-Gundy, and then a

sequence of Jensen’s inequalities, and using conditions of the lemma, we get
Ji < en™, Jo < Cn_(ﬁ%)p,

where constant ¢ does not depend on n. O

Proof of Proposition 6.4.1. Assumption 6.1.1(1) holds by Theorem 6.2.1 since for -

every € > 0 almost surely

sup |[Wi(t) - Wi(t) < sup [WW(t) - W (u)| < Gn7it,  (6.4.4)
t<T : t,u<lT
Jt—ul<d ~
where (. is a. finite random variable which does not depend on n.
Next, we verify Assumption 6.1.1(2) in the situation where j and [ coincide.
Using (6.3.1) we have

p

Esup|.5'”|p < cEsup
t<T

/Otfol(wf( ~W(s — 2))dudWi (s)

2p

— cEsup
t<T

/0 (Wis) = Wis — 2))du

Then using Burkholder-Davis-Gundy and Jensen’s inequalities

Esup|SHP < cE sup |Wi(t)—Wi(s)]P < cn~?/?
t<T t<T
lt—sl<%
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for any p > 1, where constant ¢ does not depend on n. It suffices to apply
Lemma 6.2.2. In the case j # | we assign fu(t) = Wi(t) — Wi(t), W(t) =
W!(t). Inequality (6.4.1) holds by (6.4.4). Assumption 6.1. 1(2) is satisfied by
Lemma 6.4.2 and Lemma 6.2.2.

It is remained to verify Assumption 6.1.1(3). By Definition 6.4.1

mt

ISl < w32 [ [ 16 = Wos = Dylauwi(s) - wis - Dyjas + 2.

. Define two random variables
. ] _ J(e — l — (o _
i W W] W) = Wis = 1)

Y a3 ,/llnlnn n23 ,/llnlnn

depending on parameters s, u. For fixed s, u they are equivalent to the random

variables

- VulWi(1/n)| nd [W!(1/n)]

]y = SUp ——t=— M, = sSup ————, .
n23 ,/%lnlnn "23,/11—1ln1nn

respectively, where Wj(t) and W'(t) are two Wiener processes depending on s,
u, j, {. By Lemma 6.2.4

// 2duds // 2duds < 0

t
E/(nfq)st = /E(ﬁi)zds < o0,
0 0

and, consequently, almost surely

t
// o) duds < oo and /(nﬁ)zds < 00. .
0

[ISn]|(t) Z/ / ¢ dun‘dsInlnn < (Inlnn,

2(f fras)” ([rs)”

is an almost surely ﬁnlte random variable. This implies for every positive ¢

and

Finally,

where

1Sall(8) < GIn’n

for some a.s. finite random variable (5. The proof of Proposition 6.4.1 is complete.
O
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