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Abstract 

This computer simulation study carried out by classical the molecular dynamics tech-

nique (MD) investigates structural phase transitions of various atomic and molecular 

condensed matter systems. Particularly, our attention is focused on the signals for their 

observation. 

Classical nucleation theory is briefly reviewed in relation to the present study. An 

overall review is made on the methodology of the MD simulation technique such as the 

integration of the equations of motion, the rotational motion of molecules which is dealt 

with the four-component quaternion, and other various techniques involved with the 

simulation of atomic clusters, the simulation of bulk molecular systems using periodic 

boundary conditions, and isobaric molecular dynamics. 

There are also reviews on measurements of thermodynamic quantities which are 

monitored during the simulation including the pressure, the kinetic energy, and the 

potential energy as well as their corrections due to the spherical cutoff. In addition, 

various analysis techniques for the observation of the signals of structural phase tran-

sitions are discussed. All the potential functions used in this study are of the pairwise 

additive atom-atom Lennard-Jones interaction for both the atomic and the molecular 

systems. 

A small cluster of a binary mixture of krypton and argon atoms is studied by trig-

gered breathing motions to investigate anharmonic motion which involves the structural 

phase transitions. A small cluster of krypton atoms is also simulated and discussed in 

detail concerning the very first moment of nucleation in relation to five-fold symmetric 

structures. 

In simulations of sulphurhexafluoride molecule systems, artifacts of finite size and 

periodic boundary conditions are investigated. Freezing the system by MD is investi-

gated since it is known to supercool in computer simulations. Furthermore, accelerating 

the nucleation process by various methods such as shear flow, accelerated layer, inclu-

sion of defect molecules, and pressure fluctuations is investigated. 

Reorientational diffusion motions are studied for a system of suiphurhexafluoride 

solvent molecules into which linear defects are included to understand experimental 

results made by NMR and Raman scattering measurements. Theoretical models for 

reorientational diffusion motion of molecules are reviewed and extended for the spherical 

top molecule allowing comparisons to be made for the model functions with the MD 

simulation results. 
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Chapter 1 

Introduction 

1.1 Nucleation 

Water evaporates when it is heated over its boiling point, vapour condenses back into 

water as it is cooled down to under the boiling point, and becomes ice as cooled further 

under its freezing point. This is a simplest and a commonly referred example in phase 

transitions. Such transition behaviours are seen throughout nature. 

Macroscopic changes between phases, the solid, the liquid, and the gas, may be ob-

served directly without the aids of sophisticated instruments. However, as we approach 

to the point where transitions happen, detailed physical changes are rather ambiguous. 

At the very beginning of a transition, microscopic changes occur and they are the driv -

ing forces behind the macroscopic changes. The detailed physics may only be revealed 

by dynamics of localised groups of atoms. Such transition behaviours therefore have 

been focussed over a long time and are still an important topic in physics. 

In a metastable state a small number of atoms or molecules in a system begins 

to form an ordered phase in which symmetry is broken. Such formations happen 

throughout the system and are easily destroyed by thermal fluctuation until they grow 

to a certain size called the critical nucleus at which they can withstand the thermal 

fluctuations and grow further. Nucleation is the appearance of such a localised new 
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CHAPTER 1. INTRODUCTION 

stable phase in a metastable state. 

The rate of nucleation of a system often affects the property of the system and 

therefore has been a key part of nucleation study. In 1935, Becker [1] proposed an 

equation for the rate of homogeneous nucleation in condensed systems given in a ex-

ponential functional form, in which the exponent is a sum of the maximum free energy 

necessary for nucleus formation and the activation energy for diffusion across the phase 

boundary, with an undefined constant. This was later extended by Turnbull and Fisher 

[2] in 1949 known as classical nucleation theory (CNT). They derived the undefined 

constant on the basis of the theory of absolute reaction rates [3]. Recent development 

in the nucleation theory was made by density functional approaches (DFA) [4, 5] and 

the difference between CNT and DFA raised questions about the validity of using nu-

cleation experiments to measure liquid-solid surface free energies [5], and questioning 

CNT. 

In CNT, a nucleation rate essentially depends on the surface free energy between 

phases such as gas-liquid, liquid-solid. In case of the gas-liquid nucleation study in 

experiment, the surface tension of the liquid is equated to the gas-liquid surface free 

energy. Experimental results are limited [6] since the surface free energy and the surface 

tension are no longer equal in liquid-solid nucleation due to the possible strain in the 

crystals and even devising a measurement method for the interfacial tension is not 

simple. 

Computer simulation techniques such as the Monte Carlo method and the Molec-

ular Dynamics method were also applied due to the fact that the simulation methods 

can produce considerablely detailed information on simulated samples. Although the 

computer time scale in simulation methods is limited compared to the experimental 

time scale, simulation methods have grown extensively in the study of nucleation. 

Mandell, McTague, and Rahman [7] first observed nucleation by means of the struc- 

ture factor in MD simulations of 128-particle Lennard-Jones systems. Subsequently, a 



CHAPTER 1. INTRODUCTION 	 3 

large number of MD simulation studies followed [8, 9, 10, 111 

Although the main themes of nucleation theories are focused on the rate of nucle-

ation rather than on the kinetics of the nucleation process and are not directly related 

to this work due to the fact that no consideration will be made of the rate of nucleation 

in this work, it is worth briefly including nucleation theories with an interest in the 

nucleation process. 

1.2 Classical nucleation theory (CNT) 

In 1949, Turnbull and Fisher [2] extended the work of Becker and Döring [1] on the 

homogeneous nucleation of the gas-liquid transition to the liquid-solid transition. They 

assumed the local free energy change associated with the formation of a region of a new 

phase 3 in a parent phase a as 

z\F/kT = Ai 213  - Bi. 

In this equation i is the number of atoms or molecules in the transformed region. A 

is proportional to the interfacial free energy per unit area of a-0-interface, and B is 

proportional to the bulk free energy difference between 0 and a in the absence of 

surfaces. zXF/kT has its maximum at i = 2A/3B. In this equation the free energy 

increases until the number of atoms or molecules in the transformed region reaches i, 

which is called the critical nucleus. Those of transformed region containing more than 

i grow freely with decreasing free energy. Small nuclei containing fewer atoms than i' 

are likely to disappear due to thermal fluctuations though a long sequence of favourable 

energy fluctuations sometimes produces a nucleus exceeding the critical size. 

Based upon the theory of absolute reaction rates [3], a chemical reaction or other 

rate process is characterised by continuous change of coordinates from an initial con-

figuration into the final configuration through a intermediate configuration, called the 

activated complex of the reaction, which is essential for the process and when it is 
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attained there is a high probability that the reaction will continue to completion. They 

derived the following equation for the steady state rate of nucleation, 

r* (NkT/h) exp[_(Lf* + AF*)/kT] 

nuclei per mole per second to an order of magnitude where f* is the free energy of 

activation for the short-range diffusion of atoms or molecules across an interface to join 

a new lattice and AF*  is the maximum free energy necessary for nucleus formation. 



Chapter 2 

Molecular Dynamics Methods 

2.1 Introduction 

When the first computer was introduced to the world of science, its main purpose was 

to spare the tedium of work which no human could do better. Although it was no more 

than a simple computing device, it soon liberated all areas in science. 

With understanding of the interactions between constituents of a system, it is possi-

ble both to find the trajectories of every particle by calculating all forces acting on each 

particle and to examine the physical properties under the change of thermodynamic 

conditions. Simulation of the evolution of a system due to interaction forces produces 

valuable information about particles under various external conditions and may open a 

simple way to study structural changes of matter. Although Newton's work was mainly 

to understand the motion of planets and their moons to which the same mechanical 

laws and the same universal gravitational attraction apply to all large bodies, his con-

ception of nature can apply down to the atomic scale under the careful consideration 

of interatomic forces. 

Molecular motion is basically described by both translation and rotation while in 

a atomic system, only the description of translational motion is needed. Rotational 

motion of molecules is known to be governed strongly by intermolecular forces and 
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torques, and determines physical characteristics of condensed phases. Rotational mo-

tion is therefore an essential part in the study of dynamics of molecular systems and 

understanding the motion is indispensable for physical model building for molecular 

dense phases. On this quest, considerable research activities have been devoted to the 

study of rotational motions of molecules, in theory [12, 13, 14, 15, 16, 17, 18, 19, 20], 

in experiment [21, 22, 23], and in computer simulation [24, 25, 26]. 

In theory, the usual approach to the rotational dynamics in a condensed phase is 

to postulate a model which describes a plausible physical dynamics of the system, such 

as collisions and free rotations. Few parameters of the model are then subjected to 

adjustment to agree with experimental results. Since reorientation motion of molecules 

varies broadly from an almost free rotation to a complete constraint by neighbouring 

molecules, there is therefore a limitation in applicability of a particular model developed 

for a particular system. 

Advances in computer technology in the late 1950's allowed the development of a 

computationally intensive method: the molecular dynamics(MD) simulation method. 

The MD simulation method computes phase-space trajectories of a collection of molecules 

which individually obey classical laws of motion. Alder and Wainwright [27] first sim-

ulated a hard sphere system using the MD technique to study the relaxations ac-

companying various nonequilibrium phenomena with several systems(32, 96, and 108 

particles)and the first simulation of an atomistic system was performed by Rahman in 

1964 [28] with a system of 864 liquid argon particles and a time step of 0.01ps using 

the Lennard-Jones potential [29]. 

In a MD simulation, the integration of equations of motion at every step involves 

intensive computation. As far as system size is concerned, with a system of N point 

particles in three dimensions, the number of positions and momenta produced in every 

step of integration is 6N. For 100 steps for 100 particles, the amount of data produced is 

thus 6 x 10 4  numbers. In case of molecular simulations, more calculations are required 
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for rotational motion. It is clear that the larger the simulated size, the more computer 

memory and speed would be required. System size and computation time are, in 

general, subject to the availability of appropriate computers. 

Although it has been a tendency that the sizes of simulation systems have been 

growing rapidly in conjunction with the development of modern computers, certain 

areas in MD simulation require no more computing power than can be delivered by 

ordinary workstations. In some of this work, some simulations were performed on a 

Hewlett—Packard workstation in order to study the nucleation phenomena. It is also 

possible, in practice, to increase the system size up to 1 x 105  atoms for the worksta-

tion with a cost of time. Recent development in personal computer industries has also 

achieved great advance in computing power as well as in memory size, made PC possible 

to be used in serious scientific area. There even exists a parallel computing environ-

ment configured with numerous networked PCs. Increasing network communication 

capability also promises its practicality. 

In this chapter, the aim is to give an overview of the fundamental formulation of 

the molecular dynamics techniques relevant to this work. 

2.2 Thermodynamic Quantities 

Temperature is directly derived by the equipartition theorem of kinetic theory. This 

states that in atomic systems the average translational kinetic energy of each atom is 

given by kBT,  where kB is the Boltzmann constant, 

(Et) = 	1mWI2 = ICBTt . 

where we call Tt  the translational temperature. In molecular systems with fixed bond 

lengths and angles, there is an angular velocity term in the definition of temperature due 

to the fact that molecules have rotational degrees of freedom. Therefore, the average 

rotational kinetic energy, (Er ), is defined as, 
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-'2 3 -.1I2 w 
(Er) 

N 

2 	
N 	

2 kBTr 

where 1i is the inertia tensor, wi the angular velocity of molecule i, and Tr the rotational 

temperature. 

The thermodynamic temperature of a system is defined as the average of the trans-

lational temperature, T, and the rotational temperature, Tr, 

T = (Tt +Tr). 

Pressure is likewise derived from the virial theorem. 

fij 
i=1 j>i 

and 

where, for atomic systems, fj  and rj stand for the force acting on an atom i from 

an atom j, and the vector between two atoms respectively. However, for molecular 

systems, fij  is the force acting on an atom of molecule i from an atom of molecule j 

and rij is the vector between these two molecules. We shall consider a molecular system 

with site-site pairwise interactions and pressure shall be presented as follow. 

The interaction between a pair of molecules i and j is a function of their relative 

positions Fi, j  and orientations, C2i, j.  In a simplified 'site-site' approximation model, 

the total interaction is a sum of pairwise contributions from distinct sites a in molecule 

i, at position a,  and b in molecule j, at position Fib 

= 	a&(Iiza - FibI) 
a,b 

where Tab  is a pair potential acting between sites a and b. 

For the Lennard-Jones potential, 
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=(4 B 
. +T) 

	

rab 	rab! 

From the virial theorem 

P=pkBT+W/V 

where N/V = p the molecular number density, T temperature, and Vt) is the internal 

virial, defined as follows 

)/V = 

= - 	Vrj(rij,iMj) 
i,j>i 

where jj  is the vector between centres of two molecules i and j, and fij the force on 

molecule i due to molecule J. 

W can then be rewritten with the 'site-site' pair potential Tab  as follows, 

= - 	

[. a,b 	
al'ij 

and 

01 ab - 9 ab drab 

ôrij - t9rb drij  

where drab/dna = 1 as we are considering a homogeneous volume change. Thus 

D'1'ab(rab) 	"6A12B" 
9rab 	

=(------i---rab. 
ab 	nab ) 

Thus, W is written as follows, 

(GA 12B 

) ab 	nab i,j>i a,b 

and the pressure 
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P = pkBT — 
1  1: 1:  (1A  Ll~ 
3V 	8 	

, ) (F  

i>i a,b 	ab 	T j 	 ab 

However, it is common to use a spherical cutoff with a pair potential to save computa-

tion time. 

2.3 Pressure and Energy correction 

due to spherical cutoff 

In certain computer simulations, a pair potential is used with a spherical cutoff at r 

to reduce computation. As a result, thermodynamic quantities such as the energy and 

pressure must be corrected for the long-range part of the potential. 

For a molecule with n atomic sites, the energy correction can be written as follow, 

EC 	
Nf oo  

= 
- 	

n2w(r)47rr2pdr 
2 	c 

IA 	B\ 
= 2n2 pirN 	+ 

where w(r) is the intermolecular pair virial function given by 

w(r) = T 
d(r)

dr 

and, for a Lennard -Jones potential, 

A B 
r6 + r 12 1  

w(T) is then 

6A 12B 

T 6 	r12  

Therefore, the average energy correction (EC ) is 
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2 /A 	B ). 

Here, we would like to generalise the correction in case of having more than one 

species which interact with a same potential. Then, we shall have n 1  with its number 

density p1, fl2 with P2,...,  and nk with Pk  where k is the number of species. Therefore, 

the above correction term for the energy is written as a generalised form, 

	

(EC) = 2n27rp (---+ 99) 	+ np2  + 	+npk) 3r,3
k  A 	B\ 

= 27r (n k-7(--3 + i=1 

The correction term for the pressure P for a spherical cutoff at a distance of r can 

be written as 

Nroo 

P = — J 
n2w(r)4irr2pdr 

2 
—n 2 7rp2 / r2 w(r)dr 

J rc 

where p = N/V is the molecular number density. 

The pressure correction therefore is written as follow, 

2 2  2 r°°(6A 12B\ 

	

Pc = — n irp 
Jrc 	-;::i-  - 	 dr 

2 2 2 [_ 2A 	B1°° 
3 	r3 = _7p 	

+]rc 

2 2 2 72A 4B\ 
3 	r3 	3r9  = 

In the computation of the pressure correction, only the molecular number density p 

changes. The force calculation is done for atomic distances, which are less than r. 

Here, the generalised form of the pressure correction is also written as 
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k (2A4B) 

i=1

rg  

Therefore, the pressure with the correction term is written as follows, 

k1 6A 12B 	 k 
1 2A 4B\ 

i,j>i a,b 

where Ti is the temperature of each species. 

2.4 Entropy representation 

We shall assume a system under analysis is close to equilibrium. In this way our 

calculation of thermodynamic quantities for the system will have somewhat meaningful 

validity. Here we like to have entropy representation simply as an indicator for the 

system. 

At each velocity rescaling, there is a transfer of energy dQ either to or from the 

system at a given temperature T where this transfer takes place. Therefore entropy 

change can be calculated. 

The mean kinetic energy per molecule increases on velocity rescaling by a factor c, 

(mi + 1H 2) _+ (mai + Ic 2 ki;I 2), 

and we can write 

dQ = 3kBT (2 - i) 

since 

mI7I 2  = 111312 = kBT. 

Therefore, entropy change is written as, 

dQ  
dS = 	= 3kB (2 - i). 
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It should be noted that the entropy change is also a valuable means of observing 

equilibrium. It is possible to identify equilibrium state of a system by continuous 

summing over entropy changes. 

2.5 Integrating the equations of motion 

Solving an ordinary differential equation involves an initial condition and a rate, and 

is the so-called initial-value problem. To solve the differential equation on a computer 

finite difference schemes are employed and performed in a step—wise way. At each step 

approximations for trajectories, such as positions and velocities, are obtained as the 

integration proceeds in time. The third-order Strömer algorithm, first used by Verlet 

[30], has been widely used in molecular dynamics simulations and is known as Verlet's 

method. The same level of approximation can be obtained when Beeman's algorithm 

[31] is used, which produces both positions and velocities whereas traditional Verlet 

algorithm produces positions only. Beeman's algorithm is written as, 

u(t + St) = u(t) + v(t)6t  + [4a(t) - a(t - 

At new positions u(t + ct) finds new accelerations a(t + 8t) and then new velocities are 

v(t + 6t) = v(t) + [2a(t  + 6t) + 5a(t) - a(t - t)]8t 

where u, v, a denote the position, velocity, and acceleration respectively, t, t - 6t, t + 5t 

are used here as the current, the previous, and the next time for which the approxima-

tion is made. The time step used for atomic simulations is order of 0.005ps and 0.01ps 

for molecular simulations. The choice of time steps depend on the characteristics of 

the molecules used, such as masses and potential parameters. 
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2.6 Rotational Motion 

The simulation of molecular systems involves not only translational motion but also the 

rotational motion of molecules. For such rotational motion, quaternions, invented by Sir 

William R. Hamilton in 1843, have first been applied by Evans, due to the advantages 

[32] of a singularity free procedure for orienting a rigid body in space. Computation 

can also be improved by avoiding trigonometric functions as used in Euler angles. 

A rotation of an angle o of a body about the unit vector F is described by the 

quaternion, 

q = (cos(&/2), i?sin ( a /2)), 

where 0 < a/2 < 27r. This can be written as q = ( L 4 ,i) where 1 = ( L i ,L 2 ,L 3). 

Quaternions are subject to the following rules of addition and multiplication. 

If q = (w, i3) and q' = (w', '), then 

q+q'=(w+w',15+IV) 

qq'=(ww'—.,w+w'?+fTxiJ') 

Transformation of a quaternion, q = (0, '3), involving the three-dimensional vector, iJ, 

can be written as, 

q' = (0, ') = pqp' 
	

(2.1) 

Following the rule of multiplication, the right-hand side of equation 2.1, pqp', is 

evaluated explicitly and we then obtain 

= (1 - 2L 2 )?7+ 2(ii. L)i - 2L 4 6 x Z. 	 (2.2) 
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The equation 2.2 can be rewritten as, 

= R(L 2 )tJ 

where the transformation matrix R is 

1 - 2(L 2 2  + L32 ) 2(L 1 L 2  - L 3 L 4 ) 	2(L 1 L 3  + L2L 4 ) 

R = 2(L 1 L 2  + L3 L 4) 1 - 2(L 1 2  + L32 ) 2(L 2 L 3  - L 1 L 4 ) 

2(L 1 L 3  - L 2 L 4 ) 	2(L 2 L 3  + L1 L 4 ) 1 - 2(L 1 2  + L2 2 ) 

If we denote 6 as the position of an atom in a molecule, then the new atomic position 

is defined as R(L 2 )5. If the molecule makes another rotation by the rotational matrix 

12(St) after time St, its new position is written as, 

1(St)R(L)i7= R(L1)Y 

where L', are the components of the quaternions describing the new orientations and 

L'1 = L + 1St. 	 (2.3) 

If the angular velocity of the molecule is 0, a small angular displacement for time St 

is wSt. This displacement as a quaternion is (1, -St) since L 4  1 that the rotation 

angle is very small. Therefore the quaternion which describes the rotated position is 

written as 

St)(L 4 ,L) 

= (L4 - ( 1) , L + ( L 4  + co x E) ). 	 (2.4) 

From equations 2.3 and 2.4 we find (I 4 , L), 

= 	i3L 4 -f- x 
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= 	1). 	 (2.5) 

Finally, differentiation of equation 2.5 with respect to time establishes the equations 

of motion for molecular orientation in terms of quaternions, (L 4 , L), 

L 4 =(w.L+w.L). 

2.7 Molecular Bulk Simulation 

Systems in typical MD simulation contain about a few thousand atoms or less. They, 

therefore, inevitablely incorporate the so-called surface effects that such systems are 

normally simulated as either contained in walls or confined in space, cluster simulation, 

resulting that atoms interact with the container walls or are under different pressure 

due to the interaction between atoms. The surface effect greatly influence physical 

properties of the system under investigation. If the surface effects or the systems under 

the surface effects themselves are not of interest, they can be removed by employing 

periodic boundary conditions (PBC). 

The method (PBC) allows a system, the MD cell, to' be copied infinitely throughout 

space, and therefore, the movements of atoms in the original MD cell are exactly the 

same as in all neighbouring cells. In such a way, the MD cell does not have boundaries 

in all directions. 

The cubic boundary conditions is commonly used due to its simplicity although 

there exist other variants such as the method developed by Parrinello and Rahman [33]. 

It allows changes in the shape of the MD cell so that strain caused due to structural 

changes in solid phase simulations is relaxed. Another variant [34] was to simulate 

shear flow by allowing each layer of the periodic cells to drift against each other. 

Despite the usefulness in simulating bulk systems, it is affected by the size of the 

system basically due to the fact that atoms will feel themselves if the system size is 
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small and the cell length is, therefore, short compared to the interaction distance for 

force calculation. The atoms in the system may well be highly correlated themselves 

under limited system sizes. 

2.8 Constant Pressure MD 

Several methods [35, 33, 36, 37] have been proposed for isobaric MD simulations. The 

simplest method can be devised by systematically changing the volume of a container 

where particles may be kept inside. 

Let us consider a volume, V, which is to be changed to a new volume, V I , in order 

to maintain a certain pressure. The volume ratio 13 

V I  
(2.6) 

where 

/3 < 1.0 : volume decreased, 

= 1.0 : no change, 

/3> 1.0 : volume increased. 

The physical meaning of the ratio, 0, can be found from the definition of the bulk 

modulus, K, which is defined as 

K- - 
	force per unit area 	- - p - - p 

- change in volume per unit volume - LW/V - (16-1) 

where p is the pressure applied. Therefore the ratio 3 can be found if the bulk modulus 

and the pressure applied are known within the Hooke's regime where the response is 

linear. 

More conveniently, constant pressure shall be maintained using the method, pro-

posed by Andersen [35], which allows the volume change according to the internal 

pressure of the system. In this method, a periodic box volume is allowed to change in 
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every time step so that the pressure of the system is maintained at a constant value. 

In order to realise such volume change, let us consider a volume which expands or 

contracts isotropically in 3-dimensions as in the figure 2.1. 

The box may be regarded as a isotropic piston with a mass term M( the unit of 

[mass] [length]—' ) and a volume V except for the fact that a normal piston expands or 

contracts the system along only one direction. The kinetic energy of the piston can be 

written as 

KP  = _MV 2  

If we let p be the instantaneous pressure of a system and Po  be the specified pressure, 

and P the difference between these two pressures, the potential energy V, associated 

with the piston is 

V=(p—p 0 )V=PV. 

Therefore, the Lagrangian L for the piston is 

and an equation of motion can be obtained directly from the Lagrangian, 

(pp.) 
M M 

Here, the imbalance P between the two pressures will cause the piston to accelerate. 

As the motion of the atoms causes the internal pressure to fluctuate, the piston volume 

will fluctuate and the time scale for this fluctuation is determined by the piston mass 

M. The mass should be chosen carefully since the fluctuation of the piston volume 

would be too sensitive to the fluctuation of the internal pressure if we chose too small a 

value, or too insensitive if it is too large. However, the time scale of the fluctuation of 

the piston volume must be somewhat larger than the time step used. In this work the 
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Figure 2.1: Isotropic expansion or contraction 

piston mass M of 0.0008 is used, which allows the piston to fluctuate approximately 

15 times slower than thermal fluctuations. 

After the volume change coordinates of atoms must be changed according to the 

volume change. Since the volume change is isotropic and 0 as defined in the equation 

2.6 is a scalar for the volume, the scalar for the length is then 01/3.  Therefore the 

atomic (or molecular centre) coordinates i '  in the new periodic box can be written, 

= 

where i are the coordinates of atoms before the volume change. 

2.9 Molecular Cluster Simulation 

Clusters have a space boundary called the surface, giving rise to surface tension which 

acts to minimise the surface area. There are some difficulties involved with cluster 

simulations such as having high translational and rotational kinetic energies which 

make analysis difficult. Therefore several procedures must be taken. 

First, the coordinate system of a cluster has to be transformed to its centre of mass. 

With N equal point masses, this is done by, 

(t) = ri (t) - 	j(t). 
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Since clusters may have an overall linear and angular momentum which cause the 

cluster to move and rotate, both momenta should be removed in order to focus our 

attention only on its own internal motion. 

The linear momentum can be removed by changing velocities, 

(t) = 	(t)- 

There are two contributions to the angular momentum, one due to the movement 

of molecules about the cluster centre f t  and the other due to the individual rotation 

of every molecule 1r• 

The angular momentum, I, is calculated as, 

I = E(Fi xj3) = 	x 

where Fi are molecular centres. 

The angular momentum due to the rotation of molecules about their molecular 

centres is defined as, 

Ir = 1W 

where I is the principal moment of inertia and 0 i  is the angular velocity of the i-th 

molecule. 

Total angular momentum due to the motions of molecular positions, Fi, and rota-

tions of every molecule can be written as, 

If we let Co be the angular velocity of the molecular cluster and 1i the inertia tensor for 

a molecule, then 

co = j'L. 
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Here we only wish to zero angular momentum by altering iY.  If we let 63 be transla-

tional velocities causing rotational motion of the cluster, it is then calculated from the 

angular velocity 0 as, 

and therefore the angular momentum can be removed by subtracting 813 from 

where '5 is the corrected velocities. 

2.10 Analysis 

2.10.1 Radial Distribution Function 

The radial distribution function(RDF), g(r), is a well known function in measuring the 

local structure of dense liquids. It is proportional to the probability of finding a pair 

of atoms separated by distance between r and r + Sr. g(r) is defined for a system of N 

atoms as, 

N 
I \ 	

ç-ni(r,r+Sr) 
gr)  - 	

V(r, r + Sr) 

where n (r, r + Sr) is the number of atoms in the radial shell between r and r + Sr from 

atom i and V(r, r + Sr) = ir [(r + Sr)3  - r  3]  is the volume of the radial shell. In this 

simulation, a resolution Sr is chosen as o.iA. 

2.10.2 Equal Area Projection 

For a symmetric molecule, all atomic sites, iij, about the molecular centre can be 

projected from the molecular centre on to a unit sphere as, 

= 

where Z, are projected atomic sites on the unit sphere. 



CHAPTER 2. MOLECULAR DYNAMICS METHODS 	 22 

P (0,0, 1) 

(x',y') 

These points on a three-dimensional sphere can be represented on a two-dimensional 

plane, S, by using the Lambert equal area projection, which we call a dotplot. 

The upper hemisphere of the unit sphere can be used to represent orientational 

order of a molecule. If we let P be the north pole and ft any point on the unit sphere, 

the vector, ri,  between the north pole and ft can be projected on the plane, 8, as a 

vector, (x', y') of the same length. Therefore the projected coordinates, (x', y'i) are, 

r1 2 =x2 +y2 +(1—z) 2  

V2 = x 2  + 112 

(X y') = (x,y) x (IrI/IrI) 

where 17~'2 1 is the distance from the z-axis. 

Since the farthest distance from the north pole on the upperhemisphere of the unit 

sphere is at equator, the area of the hemisphere being projected onto the plane 

is equal to the area of the projected plane. It can be proven that an area on the 

hemisphere is equal to the corresponding area projected on the plane. 
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2.10.3 Great-Circle angles 

Angles between pairs of dense points on dot-plots can be found by measuring along 

common great circles. Figure 2.3 shows the common great circles divided in 100 .  

The common great circles can be drawn on the two dimensional plane by projecting 

all cartesian coordinates of regular angles of a unit hemisphere, Z > 0, having a pole 

on (0,1,0) as in the figure 2.2. Coordinates of mesh points(x, y, z) are written in terms 

of angles, 

x = sin 9 cos 4 

y = cosO 

= sin O sin 4 

where coordinates and angles 0 and 0 are given in the figure. 

All mesh points are then projected on x - y plane by equal area projection method 

as follow, 

~X 2 
(x', V

z
) 

= 
	+ (x, y) 

By using discrete angles A0 and A0 ,  one could draw common great circles. 

2.10.4 Pair Distribution Function 

Translational ordering can be identified by projecting vectors between centres of neigh-

bouring molecules on a unit sphere. These projected points indicate in which directions 

neighbouring molecule centres are placed. By taking advantage of the equal area pro-

jection explained in previous section, these points are then projected on the equatorial 

plane. The directions of neighbouring molecules projected on a unit sphere are given 

as, 
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z 

Y 

Figure 2.2: 

Figure 2.3: 
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iLij = 

where i and Fj are the coordinates of atomic positions, and j is the index of neighbours 

within a certain radial distance, and ü 2j are the directional points of neighbouring atoms 

on the unit sphere centred on atom i. 

The figure 2.4 is an example of the bcc crystalline phase showing the nearest neigh-

bours and the next nearest neighbours. 

Figure 2.4: BCC crystalline phase 



Chapter 3 

Cluster Breathing Motion 

3.1 Introduction 

The essential feature for the phase transitions of condensed matter systems is the 

anharmonicity of thermal vibrational motion. We model a system with the Lennard-

Jones inter-atomic potential. The potential is known as that the negative and the 

positive stresses are different and such properties are classified as anhamonicity. 

As the amplitude of vibration increases, the anharmonicity of atomic vibration 

becomes much larger and may lead to structural transformation. In fact, the vibrational 

motion itself can be used as a means to investigate this phenomenon. 

Vibrational motion has been studied by various methods on clusters such as normal 

mode analysis [38], molecular dynamics simulations [39] with the help of the velocity 

autocorrelation function, and the self-consistent phonon method [40] in theory. The 

phonons of bulk solid material are experimentally well studied by neutron inelastic 

scattering, far-infrared and Raman spectroscopy. For clusters, experimental results 

have been found from vibrational excitation of argon clusters in collisions with helium 

atoms [38]. 

In the present work, it is hoped to find a signal by which structural transition to 

a new phase can be identified by studying an artificially induced breathing motion of 

clusters. It is, however, by no means real but can be realised in the computer. Hence, 

it can be further utilised in various computer simulation study. 

26 
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K12 	K23 	K34 	 -[!Cnn 
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Figure 3.1: 1-dimensional coupled oscillator with one end fixed. 

3.2 Mathematical Analysis 

3.2.1 2-dimensional simplified disk with additions of new rings 

It is essential in the MD simulations that all clusters taken to be studied must be 

equilibrated to a certain temperature in order either to make the clusters stable or 

to initialise them into certain states that we want. It is important to consider how 

the sizes of clusters are related to their vibration and what the equilibration sequences 

might be in MD simulations. In order to find the relation between the frequency of 

decay oscillation and the extra addition of atoms, we can conceive the 2-dimensional 

cluster as a disk. Suppose a disk is divided into several rings which have the same area. 

The circles dividing each ring have radius ri for i-th disk. 

One then makes the following equations. The innermost area in the disk is irri2  for 

r1 , and the area of second ring is irr?  because each ring has the same area. Therefore, 

1rr 2 2  = 27rr 1 2 . Consequently, r2  \/r1 , r3  = NF3r, , and r4  = NF4r,, and so on. 

If V = 1, then r2 = r3 = \/,... = This two-dimensional disk can be 

considered as the one-dimensional coupled oscillator as shown in figure 3.1 in which all 

masses are same because equal area makes equal masses ideally. The spring constants 

are increased by the factor of of K for n-th spring which is made previously by 

supposing the circumference of ring to be the main factor of elasticity. The coupled 

oscillator is then formed to have one fixed point and other chained masses by springs. 

Thus, the configuration of the coupled oscillator is drawn above. 

Spring constants k 12 , k 231  ..., k,+i = K, \/K, \/K, ..., 
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For obtaining the eigenfrequencies of the coupled oscillator, one must solve the 2n-th 

order equations which are known as the eigenvalue problem, n is the number of chained 

masses. 

Let us consider a mass linked by a spring having spring constant K to the fixed 

point. This mass can move by x 1 . Thus, the equation is 

mñ 1  = — Kx 1  

_MW 2 x 1  = — Kx 1  

2 K 
wo  = - 

M 

For two masses, the equations are written as, 

mà 1  = —Kx 1  - \/K(X i  - x 2 ) 

Mã2 = —\/K(x 2 —X I ) 

_MW 2 x 1  = — K(1 + /)x 1  + /Kx 2  

_MW 2 x 2  = +\/ Kxi - \/KX 2  

This can be extended to n-th order equations as follows. 

m 1  = —Kx 1  - ./K(x i  - x 2 ) 

mã52 = -v'2K(x2 - x 1 ) - \/K(x 2  - x 3 ) 

m_i = —/n - 1K(x_1 - X fl_2) - ./K(x_ 1  - x) 

mã 	= —/K(x—x_ 1 ) 

and 

_MW 2 x 1  = —K(1 + \/)x 1  + /Kx2 

_MW 2 x 2  = ./Kxi - (V'+V')Kx2+v"Kx3 
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_MW 2 x_ 1  = 	- lKx_2 - (v"n - 1 + /)Kx_ i  + /Kx 

	

_MW 2x = 	 - 

It is rewritten to matrix form to compute eigenvalues and eigenvectors. 

(i+./)K 
M 

-/K 
m 

A= 

0 

0 

-JK 
M 

(/+./5)K 	
... 	0 	0 

o 	-/TK (/T+/)K -/K 
M 	 m 	 m 

o 	0 
M 	 m 

	

IA—w 2 11 =0, 	 (3.1) 

	

(A—w 21)Ix) =0. 	 (3.2) 

From equations 3.1 and 3.2, we can then obtain the secular equations, and consequently 

eigenvalues and eigenvectors as well by solving that equations 

(1+v')K 
- 

-/K ... 	 0 0 M m 

-\/K (/+v')K 
- ... 	 0 0 M m 

-\/TK 
0 

0 0 -/TK 	(vT+/)K 	
U2 

-,/K 
- M 	 m m 

0 0 0 	-/K 

Because this matrix is a real, symmetric, tridiagonal matrix, both eigenvalues and eigen-

vectors can be easily computed by QL algorithm which calculates the Lower triangular 

of the tridiagonal matrix which must be prepared to that form before the calculation. 

However, it does not need to change its matrix form because the equation already has 

tridiagonal matrix form. For the two-mass problem, the secular equations are 
(1+/)K - 	-/K 

M 	 m 

-\/K 
M 	 in 

I 
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We then have the equation; 

4 	(1+2i../)K 2  =0 
M 	 m 2  

Thus, the eigenfrequencies are, 

= 	
AM, I  

 

W2 = 

If we put these two frequencies into equation 3.2, we then know that w 1  is the mode 

that two masses are moving in opposite direction (anti-parallel) and w2 is the mode that 

two masses are moving in same direction - parallel. These frequencies can be compared 

as followed. 

' 

w1 >wo ='/—>w2  
vm 

where w0 is the frequency of the single mass problem. The eigenvalues which are solved 

by computation can be seen in figure 3.2. 

3.2.2 3-dimensional sphere with additions of new shells 

The 2-dimensional case can be simply transformed to the 3-dimensional case by chang- 

ing the factor of spring constant from square root to cube root because, from the same 

idea as the 2-dimensional case, the volume of the first shell is (4/3)7rr and the equa- 1 

tion, (4/3)irr= 2.0 x (4/3)irr? i s satisfied due to the fact that each shell has same 

volume. Hence, if r1  = 1, r2 = 	, r3 = 	, etc. In this case, the main factor of 

elasticity is interfacial surface between two shells. 

Therefore, the secular equation of the 3-dimensional case is obtained as followes. 

( 1 + / )K 2  -/K ... 	 0 0 M m 

(+)K 	w2 ... 	 0 0  M m 

—/TK 
0 

0 0 - ./TK 	(/T+ nn K 
- w2 - 

M 	 m m 

0 0 0 	 —/It 
M m 

I 
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From the computation of the eigenvalue equation, the eigenfrequencies of the 3-dimensional 

case are rather lower than 2-dimensional case. From figure 3.2, one can see that when 

the more shells are added to the cluster, the lowest frequency goes to zero which means 

that the cluster only can move very slowly. 

3.2.3 3-dimensional sphere divided by a different number of shells 

Two previous analyses are for the different size which is increased by adding either 

new rings or shells. However, in this study, it is insisted first that the analysis for the 

same size of clusters and different numbers of shells should be done for this simulation 

studied. 

The eigen frequencies are obtained by dividing all spring constants by cube root of 

n because this should be done for same cluster. Therefore, the secular equation for the 

same cluster is written as, 

(1+/)K 	2 -K o 0 

(/+/)K 	2 o 0 

-/TK 
0 

o o - /TK (/T+ .f)K 
- 

- 

o o 0 -./K fn 

The eigenvalues given in figure 3.3 show that the lowest frequency gradually approaches 

to zero as the number of shells (rings) increases, which is similar to figure 3.2. However, 

the highest frequency in the figure approaches 2.0 rather than increases continuously 

suggesting a limit for the highest frequency. 

3.2.4 Triggered Breathing Motion 

In a cluster, a breathing vibration motion (s-wave) of the cluster is radial motion from 

its centre of mass. This can be induced by systematically changing the motion of atoms 

in a cluster by adding radial velocities to each atom proportional to its distance from 

mt 
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Figure 3.2: Eigen frequencies for 2-D disk (diamond) and for 3-D sphere (cross) as the 
system size increases by adding new rings or shells. 
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Figure 3.3: Eigen frequencies for 2-D disk (diamond) and for 3-D sphere (cross) as the 
number of rings or shells increases whereas the size of the sphere does not change. 
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the centre of mass. Having added radial velocities, each atom of the cluster will have 

additional radial motion from the centre of mass of the cluster. 

If we let i1i be the velocities before the change and 6 i  be the velocities after the 

change, then iY is written with an added radial term 

where Fi is the position of i-th atom from the centre of mass. Here a has the unit 

of (time) 1  and defines the proportion of the additional radial term. A large a value 

will cause a large radial motion. If we wish to have radial velocities consistent with a 

certain temperature Tr, then 

a 1 
F3kTr

M  

where kB is the Boltzmann constant and m is the mass of an atom. In this study a is 

calculated for a unit vector V1 = iA and Tr  = 5K. 

It is important that the kinetic energy must remain constant after the induction 

of s-wave motion which alters temperature since our interest is to study the breathing 

motion decay at a defined temperature. The kinetic energy can be kept constant by 

conserving v. There will be no change in the potential energy since the positions 

of the atoms are not changed. 

The conservation of the kinetic energy can be made by adjusting 6i by 0, giving 

final velocities v', 

= 

where mi is the mass of i-th atom. 



CHAPTER 3. CLUSTER BREATHING MOTION 
	

34 

Table 3.1: Lattice Darametert  and atomic masst 
element lattice parameter at 4K atomic mass unit (a.m.u) 
Argon 
Krypton 

5.31 A 
5.64 A 

39.948 
83.80 

Table 3.2: Parameters for Lennard-Jones ootential 
interaction A (Kcal/moleA6 ) B (Kcal/moleA l2 ) 

Kr-Kr 2937.00 6393405.0 
Kr-Ar 5  2366.01 4222192.2 
Ar-Ar 1906.03 2788327.8 

t C. Kittel chapter 1 [42]. 
The physics quick reference guide [43]. 

§ The geometric mean of the A and B parameters is taken for the interaction of krypton 
and argon, e.g. AKrAr - VAKrAAr. 

3.3 Simulation Detail 

A cluster of a mixture of 136 Krypton and 136 Argon atoms [41]is initiated with lattice 

parameters at the temperature of 4K as given in the table 3.1 and a random velocity 

distribution. Parameters for Lennard-Jones potential function are given in table 3.2. 

The system is equilibrated at the same temperature and then again at 10K. The heating 

and cooling processes between 10K and lOOK are then followed with temperature steps 

of 5K. In each step, the cluster is allowed to equilibrate for 200ps. A simulation time 

step of 0.005ps is chosen for this work. After the equilibration at each temperature 

step, the cluster will be triggered to induce a breathing motion and then allowed to 

equilibrate for 50ps while investigating the decay of this oscillation. 

3.4 Analysis 

Once a cluster has been triggered to induce s-wave, the wave will eventually disappear 

as equilibrium is reached. In such decay oscillations, decay parameters can be obtained 

and compared as a function of temperature to study structural transformation of a 

cluster through the variation of the anharmonicity. 

Since breathing motion will not be purely homogeneous in every radial direction, 
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an arithmetic average of three principal moments of inertia I, I, and I,-, which 

are direct observables during simulations will give a reasonable approximation to the 

oscillation of s-wave, 

(I) = (I + Ivy  + I)/3. 

If we sample peak points at crests of the oscillation of (I) as a function of time t and 

let the points be (1(t)), the decay oscillation can be fitted to an exponential function 

(1(t)) = e_Tt  

where r is the decay parameter, the larger the decay parameter r the more rapidly 

decaying the oscillation. 

s-wave oscillation will be analysed by the fourier transformation (FT) to study the 

normal mode frequency. 

3.5 Results 

3.5.1 Decay Oscillation 

From the decay oscillation of triggered breathing motion, typical oscillations are given in 

figures 3.4, 3.5, and 3.6. A system of a cluster is prepared at 10K being perfectly ordered 

as a CsCl structure (figure 3.4) which is then heated to lOOK by 5K step and equilibrated 

at lOOK having the liquid phase (figure 3.5). It is then cooled and equilibrated at 10K 

being a solid phase (figure 3.6). Figure 3.4 of a perfectly ordered solid phase cluster 

clearly exhibits a long-lasting normal mode oscillation about < I >=1.2x106 amuA2  

after breathing motion has been induced. Figure 3.6 of a solid phase (imperfect crystal), 

which is cooled from a liquid at lOOK to 10K, shows immediate decay of the normal 

mode oscillation lasted about lOps. It should be noted that two solid phases, 3.4 and 

3.6, are clearly distinguished by the decay oscillation suggesting that they have different 

lifetime. Figure 3.5 is a typical decay oscillation of liquid cluster. Decay oscillation 

of the liquid seems no different compared to the solid, cooled from the liquid. The 
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differences between the solid phase (figure 3.6) after the cooling and the liquid phase 

(figure 3.5) can be found in fluctuation tails and average moments of inertia. The 

liquid phase shows an unstable fluctuating tail with a short lifetime as well as a large 

average moment of inertia whereas the average moment of inertia of the solid phase is 

comparable to that of the perfectly ordered solid (figure 3.4). It should be noted that 

the moment of inertia of the solid after the cooling is lower than that of the perfectly 

ordered solid phase. It seems to suggest that the solid is more sphere-like in shape than 

the perfectly ordered solid. 

Decay parameters r obtained from every 5K of temperature steps are drawn as a 

function of temperature as seen in figure 3.7 for heating of a Krypton-Argon cluster 

from a perfect CsCT crystal phase at the temperature of 10K until lOOK. 

Before the transition, the decay oscillations in phase A of figure 3.7 have the form 

of figure 3.4. Increase of temperature in phase A causes gradual changes of the decay 

parameter, shortening the decay time. When the cluster is heated above 80K, the 

decay parameter r increases significantly compared to the changes in phase A. The 

oscillations for the phase B have the form of figure 3.5, showing that they do not 

last for long. The structural formations of the two phases A and B can be identified 

by dotplots (refer to section 2.10) which are drawn in figures 3.8 and 3.9, such that 

neighbour interatomic vectors within a range of 5 A are taken to make dotplots. 

Figure 3.8 shows a perfectly ordered CsC1 structure before heating whereas figure 

3.9 shows no order in the arrangement of neighbouring atoms after melting. Four groups 

of dense dot regions represent four (111) directions for the nearest neighbour atoms in 

the upper hemisphere and four groups around the circumference and the centre group 

represent the next nearest neighbours. These are dotplots of the CsCl structure. 

After the equilibration at the temperature of lOOK for 250ps, the krypton argon 

mixture is now cooled down to 10K. The T-r figure for the cooling process is given in 

figure 3.10. This shows indication of crystallisation at around 75K. However, it is less 
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Figure 3.4: perfectly ordered solid at T=10K. (I) = (I + I,  + I)13. 
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Figure 3.5: liquid at T=100K. 
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Figure 3.6: solid at T=10K (cooled from the liquid at 100K to 10K, then excited in 
s-wave). 
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Figure 3.7: Decay parameter as a function of temperature in heating. 

Figure 3.8: a perfectly ordered solid at Figure 3.9: liquid at T=100K after melt-
T=10K before heating. 	 ing. 
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Figure 3.10: Decay parameter as a function of temperature in cooling. 

Figure 3.11: liquid at T=100K, phase B. Figure 3.12: ordered solid at T=10K 
(cooled from lOOK), phase C. 
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Figure 3.13: Spectral density changes as a function of temperature in heating from 
perfect single crystal to liquid. Each figure shows spectral densities at given frequencies 
(THz). 
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Figure 3.14: Spectral density changes as a function of temperature in cooling from 
liquid to crystal (imperfect). 

95K 	 90K 	 85K 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

80K 	 75K 	 70K 

lhlllhh~ 
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

J 6K 60K 55  

0 	0.2 0.4 0.6 0.8 	1 0 	0.2 	0.4 	0.6 	0.8 	1 0 	0.2 	0.4 0.6 0.8 	1 

	

45K 	 40K 

dd  ~.,, 	" 
 . 

~.Rtn,,  I J L~J 
0 	0.2 0.4 0.6 0.8 	1 0 	0.2 	04 0.6 0.8 	1 0 	0.2 0.4 0.6 0.8 	1 

35K 	 30K 	 25K 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

20K 	 15K 	 10K 

 L, 	'flofl~  afffilffloff LIMA___ 
0 0.2 0.4 06 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 



CHAPTER 3. CLUSTER BREATHING MOTION 	 42 

clear compared to the transition of the heating process. Dotplots of both B and C are 

shown in figures 3.11 and 3.12, and demonstrate that the cluster actually has formed 

a CsC1 structure although it is not in a perfect order. 

It should be noted from the comparison between figures 3.7 and 3.10 that decay 

parameters for both solid phases having the same CsC1 structure, A and C, are quite 

different suggesting that the solid phase after cooling has not gone back to a perfect 

crystalline phase and has considerable defects. Since the oscillatory motions in phase A 

(figure 3.8) and C (figure 3.12) are different although their structural information seen 

by dotplots show no significant difference, it may suggest that there exist structural 

defects - occupations of argon atoms (or krypton) at the positions of krypton atoms 

(or argon) - in the cluster in phase C. Such defects are assumed to be involved with 

the feature of s-wave. Therefore, r values from such oscillatory motions may be used 

as an indicator for crystal defects. 

Fourier Transformation (FT) analysis is made for s-wave oscillations to examine 

changes in normal mode frequencies. Spectral density changes against temperature are 

drawn in figures 3.13 and 3.14 for heating and cooling respectively. For heating, spectral 

density figures are arranged in two columns in figure 3.13 where temperature increases 

by 5K from 10K to lOOK for which figures are drawn from the left to the right and from 

the top to the bottom. As temperature increases the major frequency has a distinctive 

spectral density change from a high frequency to a low frequency. From above 80K, 

there seems no particular frequency having a distinctive spectral density indicating that 

a transition has occurred. This result is consistent with the previous analysis of decay 

parameters showing a phase transition at around the temperature of 80K in heating. At 

10K, the figure in frequency domain shows a high peak within a very limited frequency 

region. It is suggestive of a lifetime decrease of s-wave showing underdamping. In 

case of the figures over 80K, they show a broad increase over all frequencies under 

0.4THz suggesting that the wave is highly damped. When the temperature reaches 
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lOOK, most frequencies under 0.4THz increase significantly. It is the evidence of an 

almost overdamping by which s-wave quickly dies away. 

Spectral density figures of FT analysis of s-wave oscillations for cooling are shown 

in figure 3.14 where temperature decreases by 5K from 95K to 10K for which figures are 

drawn from the left to the right and from the top to the bottom. The figures of cooling 

show no noticeable change at any point although the figures of the highest and the 

lowest temperatures are different. It suggests that on cooling there are a lot of localised 

modes at low T which are not present in a single crystal. It is, however, noted that 

at low temperatures the majority of normal mode frequencies are in a rather confined 

region around 0.5THz whereas there is a broad range of normal mode frequencies in 

high temperatures. Such confined region of normal mode frequencies at low T in figure 

3.14 is seen more clearly in figure 3.13 showing very sharp spectra. Unlike figure 3.13 

no clear distinction between ordered phase and liquid phase is seen in figure 3.14. 

3.6 Discussion 

This study was initiated to search for a clear signal that can be got from a MD simu-

lation when a cluster changes phase. The signal r clearly identified the transition from 

the crystalline solid to the liquid. However, when the system was cooled, the signal of 

the transition from the liquid to the solid state is significantly influenced by lifetime 

reduction due to defects inside the system although the transition point was identified. 

On the contrary, such a lifetime reduction itself is a manifestation of having defects or 

disorders and, therefore, can be used to identify the presence of defects. It would be 

very valuable to use this method to investigate the two transitions in sulphurhexafiuo-

rides (SF6 ), which are the subject of chapter 5 and 6. Its value is that no analysis of 

detailed structure is necessary. Unfortunately the fact that the lifetime is determined 

so strongly by the structural defects we cannot use this method to give an unequivocal 

indication of anharmonicity. 



Chapter 4 

Monatomic simulation 

4.1 Introduction 

In the early stage of a phase transition, the new phase begins with the formation of 

nuclei which grow into critical nuclei. As a critical nucleus is able to withstand thermal 

fluctuations, it can extend its new phase region further until the transition is completed. 

Growth of such nuclei is called nucleation. In experiment, identifying the formation of 

nuclei is quite subtle and techniques are in general involved with spectroscopies using 

various sources such as X-ray, neutron beam, and electron beam. Diffraction of such 

beams from samples gives structural information. What we see from the experiments 

are merely statistically averaged peaks which may not be a sensitive indicator to the 

formation of nuclei. 

Even in computer simulation with all the given coordinates and momenta as a 

function of time, the subtlety still exists due to the fact that most functions used to 

identify structural changes are macroscopic. The formation of nuclei is precursory of 

phase transitions and takes place in finite positions throughout a system. Until nuclei 

grow to a certain size, it would be impossible to detect their early formation with 

functions only sensitive to the macroscopic changes. 

In the first successful crystal nucleation in molecular dynamics in three dimensions 

by Mandell and co-workers [7] with bulk systems of 108, 256 and 500 Lennard-Jones 

particles, the crystalline phase was identified by investigating the apparent absence of 

44 
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diffusion, the characteristic radial distribution function, and the structure factor. For 

more detailed study on local structures the Voronoi polyhedron method can be used 

[44]. This method identifies various polyhedra although it has problems when dealing 

with dynamical structures. 

There has been research on five-fold symmetric structures of small clusters [45, 46, 

47], such as the icosahedron and decahedron. It has been argued that these structures 

are favourable in small systems although system size criteria vary broadly from N 

500 to 1600. Van de Waal found that the simulated electron diffraction pattern 

of a 3000-atom argon cluster having a multiply twinned decahedral structure was in 

excellent agreement with an earlier experimental result [48]. Although the cluster size 

is intermediate between the icosahedral and fcc crystalline regimes, the model did not 

show structural transition, and the multiply twinned core remained with dominant five-

fold symmetry. It was suggested that gradual changes of diffraction patterns towards 

those of fcc could be explained by further growth of fcc crystalline phase upon the 

twinned core. Therefore, the effect of the core on the diffraction pattern would gradually 

disappear. 

Our main interest in the present simulation study focuses on the formation of a new 

phase through the identification of nuclei. Since all the investigation in this chapter 

will be made by cluster simulations, results would not be compatible with those of bulk 

simulations. However, the nucleation process studied in cluster simulations can be 

understood in broad. In search for a local ordering, since spatial positions of neighbour 

atoms are very specific to its structural formation around an atom, angles between 

directions of neigbour atoms are a precise indicator of a local ordering. Therefore, we 

will be looking at cosine angles formed between neigbour atoms. 
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4.2 Simulation detail 

A cluster of 300 krypton atoms is simulated. The Lennard-Jones pairwise additive 

potential is used since it well represents the interactions of inert gas atoms. The pa-

rameters for the krypton-krypton interaction are given in table 3.2 in chapter 3, where 

the physical characteristics of krypton are also listed in table 3.1. A perfect initial face-

centered cubic lattice structure with random velocities corresponding to a temperature 

of 1K is prepared. The system is then equilibrated at that temperature until a steady 

average potential energy is obtained to confirm that the system is in equilibrium. After 

the equilibration at 1K, the system is slowly heated at a rate of 0.02K/ps to above the 

melting point (120K). In the process of the melting simulation, certain atoms in the 

cluster can evaporate at higher temperatures. To prevent atoms from escaping entirely, 

any atom going beyond a certain threshold distance from the centre of the cluster is 

redirected to the cluster's centre. A virtual sphere which is bounded by the threshold 

is chosen significantly larger than the cluster size expected in liquid phase, in order to 

avoid interference with the physical properties of the cluster during the simulation. In 

such a way, the applied pressure due to the virtual sphere is to be close to zero and 

will be the vapour pressure for the stable equilibrium of the cluster of the size chosen, 

but it is purely to retain the atoms. When the system has reached 120K, it is equili-

brated again and its structural memory of the solid phase will be totally lost. After 

this equilibration, the system is cooled down to 1K at various cooling rates. 

4.3 Analysis 

A very straightforward method for defining the structure of a cluster undergoing a 

change of thermodynamic conditions is measuring the angles between neighbour atoms 

in the cluster and presenting the distribution of measured angles. Distributions of 

these angles can be direct measures of the formation of nuclei. We shall call this 

function the angle distribution function (ADF). It was used by Hsu and Rahman [9] 
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for identifying structures of bcc and fcc. We have extended it for various structures 

including hexagonal close-packed and five-fold symmetric structures. All configuration 

numbers counted to produce ADF is 13 (=1+12 for fcc, hcp and icosahedron, =1+10+2 

for decahedron) atoms except for the bcc structure which is 15 (=1+8+6) atoms. In 

the radial distribution function (RDF - refer to section 2.10.1), there is a common 

broad gap between the peaks of neighbouring atoms and the rest. The minimum in 

the gap is used to identify neighbouring atoms with which ADF is produced. Although 

the gap in the liquid RDF is not as clear as in the solid, it still can be identified as the 

first minimum in the RDF, which is in between the first and the second peak. ADF 

has advantage over RDF in that it has a definite number of peaks whereas for RDF, it 

is indefinite. 

Typical ADFs for various perfect structures are given in figure 4.1. They will be 

used as standard references in later studies. There are two five-fold symmetric struc-

tures (icosahedron, decahedron) included in the figure in addition to the three standard 

lattice structures; bcc, fcc, and hcp. The icosahedron consists of 13 atoms, one at its 

centre surrounded by 12 atoms giving 20 triangular faces, 30 edges, and 12 vertices. The 

decahedron consists of five tetrahedra sharing an edge of each tetrahedron resulting in 

a polyhedron with 7 vertices where atoms are placed, 10 triangular faces, and 15 edges. 

In order for five tetrahedra to fit together to form a decahedron, each of them has to dis-

tort slightly. The x-axis in figure 4.1 stands for cosine angles and the y-axis for counts 

of the cosine angles within +c12 where c is the chosen resolution (a 0.0385 rad.). 

Each structure has its own definitive distribution which can be distinguished one from 

another. In the case of the body-centered cubic (bcc) structure, both the eight nearest 

and the six next-nearest neighbours are included in the angle distribution. Possible an-

gles(cosines) involving the nearest neighbours in bcc are 70.7 0 (0.33) and 109.5°(-0.33), 

involving the next-nearest neighbours 90°(0.0) and 180°(-1.0), and involving the near-

est neighbours and the next-nearest neighbours 54.7°(0.58) and 125.3°(-0.58). In the 
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face-centered cubic (fcc) structure, each atom is surrounded by 12 nearest neighbours 

and possible angles(cosines) involving the neighbours are 600(0.5), 900(0.0) ,  1200(0.5), 

and 1800(1.0).  The coordination number of the hexagonal close-packed (hcp) is 12, the 

same as for fcc. However, it has two more possible angles, 109 ° (-0.33) and 146°(-0.83) 

than fcc. The icosahedron has two possible angles at 63.6°(0.44) and 116.4°(-0.44). In 

the case of the decahedron, which has 12 nearest neighbours, all the possible angles of 

the nearest neighbours about its centre are the same as those found in hcp except for 

113°(-0.39) in the decahedron and 109.5°(-0.33) in hcp. The angles are not all equally 

numerous, but this is taken into account in figure 4.1. 

4.4 Results 

In figures 4.2 and 4.3, continuous ADFs are represented as plots which vary with 

temperature for heating and cooling of a cluster at a rate of 0.0025K/ps. In order 

to examine the cluster in various parts, it is divided into three (core, mid-shell, and 

surface) having the same number of atoms counted from its centre. ADFs of the core, 

the mid-shell, and the surface are represented from the top to the bottom in both 

figures. The continuous ADF in temperature change of the two figures for heating and 

cooling clearly show structural transitions, and does identify the point of transition 

either from or to the crystalline phase. 

In heating, the phase of the cluster started at the lowest temperature with a per-

fect fcc crystalline phase with random thermal velocities being in equilibrium at that 

temperature. As the temperature rises all the three peaks of the fcc angles broaden 

showing increasing thermal motion as seen in figure 4.2. Above 80K where phase tran-

sition to the liquid occurs, all the peaks become diffuse with no particularly favoured 

angles although there seem to exist very broad humps around 53 ° (0.6), 107°(-0.3), and 

180°(-1.0). The peak around 60°(0.5) being the tetrahedral angle moves towards a 

lower angle 53°(0.6) and two peaks of fcc at 90° and 120° become as one at 107°(- 
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Figure 4.1: ADFs in order of bcc, fcc, hcp, icosahedron, and decahedron 
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0.3), which is about twice of 53°. Since ADF is a function which sensitively identifies 

short range order, the broad humps can be regarded as a certain level of local order 

around atoms although the variation of each hump is large. It might be relevant to the 

structural formation of the liquid. The liquid phase is, in general, explained as a state 

where it exhibits absence of long-range order, and has a greater mobility compared 

to the solid. If solid melts, it shows increase in free volume between atoms although 

the change would be far less marked compared to the gas. It may be possible that, in 

the liquid phase, there are chances for two next-nearest atoms to come close to each 

other but move away from the referenced atom, resulting in the angles being slightly 

smaller than those found in the fcc crystalline lattice. In the core and the mid-shell in 

figure 4.2, the lowering of angles happens after the surface where it is rather gradual. 

It suggests that the order of the fcc structure is destroyed much earlier on the surface 

than inside the cluster. 

Figure 4.3, which are the continuous ADFs of the three parts of the cluster for 

cooling, shows a supercooling and a transition from the liquid to the crystalline phase 

at 65K. It is 15K lower than the melting temperature (80K) of the heating simulation as 

seen in figure 4.2. It is clear from the comparison between ADFs of figure 4.2 and figure 

4.3 below 20K that the structure which has formed after the cooling differs from the 

one initially constructed at low temperature prior to the heating simulation, which was 

a perfect fcc crystalline lattice structure. All the peaks of the ADF at low temperature 

in figure 4.3 coincide with those of hcp as shown in figure 4.1, having two faint but 

distinct peaks in between -0.3/-0.4, and -0.8/-0.9. Although such peaks also do exist in 

decahedron, one of the faint peaks is, in fact, closer to that of hcp -0.33 rather than that 

of decahedron -0.39. It is however quite difficult to assert that the structure is truly 

a hcp crystalline lattice without further analysis due to the fact that the difference in 

ADF between hcp and the decahedron appears to be very small. 

In analysis of ADF for each atom, it is found that some ADFs show decahedral 

ii 
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Figure 4.4: Decahedral chains at 1K formed after solidification which is in parallel to 
y-axis. The green coloured line in the figure represents y-axis in the MD coordinate 
system. the red is x-axis. and the blue is z-axis. 

Figure 4.5: Whole view of the cluster at IN after solidification. 
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Figure 4.6: Dotplot of a perfect fcc crystal at 10K. 

Figure 4.7: Dotplot after solidification at 1K. 
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five-fold axis. 
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Figure 4.9: An idealised outline of the figure 4.8. The arrows show the boundary regions 
among the fcc lattice sections. 
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Figure 4.10: Typical ADFs of multi-shell five-fold structures averaged over all atoms 
in system. The top figure is an multi-shell decahedron and the bottom figure is an 
multi-shell icosahedron. 
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peaks. Specifically, they have a peak at -0.39. Every atom and their neighbours which 

show decahedral peaks in ADF are searched one by one and the label of these atoms 

are collected in order to find relative positions among atoms involved. It is found that 

these atoms are close to each other and form a three-dimensional structure, given as 

a pictorial view in figure 4.4. Three lines in the figure are the three axes of the MD 

coordinate system, x, y, and z-axis which are red, green, and blue coloured respectively. 

A series of decahedra chained almost parallel to y-axis is formed in perfect order, slightly 

offset from the centre of the cluster. In MD simulation, it is possible to trace the same 

coordinations of the decahedral atoms from the system at low temperature back to the 

point of the liquid -* crystal phase transition in cooling. With this method, we can 

study when this decahedral chain has formed. It is confirmed from the study that the 

chain has formed at the point of the phase transition, and is very stable during the 

cooling once it is set except for some exchanges of atoms in the chain with neighbours. 

In order to see the overall structure of the cluster with a minimum of thermal 

motion, a pictorial view of the whole cluster at 1K formed after the cooling is shown 

in figure 4.5, and the figure exhibits a clear 3-dimensional formation. What we can 

see from the figure is a multi-shell decahedron. Five triangular faces with hexagonal 

atomic arrangement are seen on the top of the cluster. The figure also shows that all 

atoms are arranged parallel to the five-fold axis. 

The system is again analysed with the dotplot method (refer to section 2.10) for 

interatomic vectors which are restricted to nearest neighbours (and the next nearest 

neighbours for bcc and the decahedron). Figure 4.6 shows a perfect fcc crystalline lattice 

structure which is taken at the lowest temperature from the initial heating simulation. 

There are four sets of dot peaks (B, C, D, and E) inside the circle which represent four 

directions of the nearest neighbours, [011], [011], [101], and [101]. Other four sets of dot 

peaks around the perimeter present four directions of the nearest, [110], [110], [110], 

and [110]. A spherical triangle A ABE represents (111) face of the fcc lattice having 
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600  angles among three dot peaks. 

A dotplot of the multi-shell decahedron is drawn in figure 4.7. It has a five-fold axis 

at point E around which there are five hexagonal faces with certain distortion, sug-

gesting that the five-fold symmetric structure can not be constructed with the perfect 

fcc lattice. The perfect sites for neighbour atoms in the fcc lattice can be compared in 

the dotplot of the multi-shell decahedron with polygon ABCDE drawn in both figures. 

They match perfectly with each other with the same angles. 

Figure 4.8 shows that all atoms in the cluster are projected on to the x-z plane in 

the MD coordinate system. An idealised outline of the figure is also given in figure 4.9 

to show a simplified view of the formation of the cluster. In comparison with figure 

4.5, it is clear that figure 4.8 shows five sections of hexagonal arrangement around 

the five-fold symmetric axis. Five lines in the figure joined at the five-fold axis show 

definite boundaries among the five sections. In fact, each section has the arrangement 

of the fcc lattice with possible distortion and defects. The bottom right section of the 

figure exhibits some defects which are presented inside. Since the fcc lattice stacking 

in a section cannot continue to another section, there are different stackings in the 

boundary region where another fcc lattice stacking is presented. Angles found in the 

boundary region are of hcp. Since the overall strucutural formation of each section is 

the fcc, this gives rise to three strong peaks at -0.5, 0.0, and 0.5 in ADF while the the 

atoms in the boundary regions give rise to the hcp specific cosine angles at -0.33 and 

-0.83 and the cosine angles coincided with the fcc. 

It seems that five sections of the fcc ordering effectively fit in to a five-fold symmetric 

arrangement as seen in figure 4.9 with a certain degree of strain. The decahedral chain 

consists of small number of atoms, about 12 % of the system, whereas the boundary 

regions consist of about two thirds of the total configurational atoms. Contribution of 

decahedral peaks is, therefore, small in ADF and dominant peaks would be those of 

hcp rather than decahedron. 
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In order to test whether this multi-shell decahedron is reproducible, five more cool-

ing simulations were done with different initial configurations. It is found in the further 

simulations that two clusters have multi-shell decahedral structure and the rest show 

multi-shell icosahedral. Typical averaged ADFs of multi-shell decahedral and icosahe-

dral structures are compared in figure 4.10. The top figure shows the ADF of decahedral 

structure and the bottom figure show the ADF of icosahedral. All peaks seem to match 

each other although the peaks of the multi-shell icosahedron are much broader. In com-

parison with the standard ADF of icosahedron as given in figure 4.1, two high peaks 

of the multi-shell icosahedron are at different cosine angles, being -0.5 and 0.5, which 

are -0.44 and 0.44 in the standard ADF of icosahedron. It seems suggestive that the 

multi-shell icosahedron is, in fact, distorted considerably from the perfect icosahedron. 

Both ADFs of multi-shell decahedron and icosahedron are close to the ADF of hcp. 

4.5 Discussion 

All six cooling simulations of 300-atom systems show phase transitions to five-fold 

symmetric structures. This is consistent with experimental results. In fact, the system 

size used in the present study is within a range where five-fold symmetric structures are 

known to be dominant [49, 45, 47]. However, structural study by ADF has shown that 

its overall pattern is of close-packed structure rather than of five-fold symmetric. It is 

because the contribution of decahedral peaks to the overall ADF is, in fact, very small. 

Macroscopic analysis easily overwhelm the existence of a small portion of microscopic 

structures formed inside the system. Therefore, detailed information on the microscopic 

structures is likely to be lost. 

The present cooling simulations have shown that the resulting structures are either 

the multi-shell decahedral structure or the multi-shell icosahedral with equal probabil-

ity. Two structures have a common core in their five-fold axis which is decahedron. In 

the decahedral structure, a number of decahedra are stacked in serial which is a dec- 
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ahedral chain whereas the icosahedral has a core of two decahedra which are rotated 

to each other in half through. Following these results, a logical explanation may be 

possible about the mechanism of nucleation. 

According to the classical nucleation theory, nucleus evolves from a small structure 

to a large one by taking neighbouring atoms until it reaches the critical nucleus whereby 

it is hardly broke away by thermal fluctuation and therefore grows into a full scale 

structure. In the liquid phase, tetrahedral formations are everywhere around the system 

although the formations may not be a perfect tetrahedron but they are considerably 

deformed from a regular tetrahedron and constantly changing their shapes. When 

the system is cooled, it is possible that such tetrahedra get stable and transform to a 

rather perfect form. It must be noticed that the regular tetrahedron is the fundamental 

building block in construction of close-packed structures, fcc and hcp. At this point 

however, how can these stable tetrahedra evolve to close-packed structures in large 

system is unknown. According to the suggestion by van de Waal [47] there is no simple 

icosahedral -* fcc phase transition but fcc phase may grow upon a multiply twinned 

decahedral core. If this is so, possible ways of having close-packed structures is either by 

stacking normal lattice upon a defect core or by growing the lattice from the beginning. 

The next possible step from a regular tetrahedron to a larger structure is to join 

several tetrahedra together. Two tetrahedra form a trigonal bipyramid which has the 

smallest binding energy for the configuration number. For the present systems under 

cooling study, pentagonal structures were formed. In order to construct decahedron, five 

tetrahedra, one trigonal bipyramid and three tetrahedra, or two trigonal bypyramids 

and one tetrahedron are required. There are at least three possible ways of forming 

decahedron. One of those is that a trigonal bipyramid takes one tetrahedron at a 

time until the completion of the decahedral formation. Another story may be possible 

that two trigonal bipyramids merge together and then take a tetrahedron to form 

decahedron. The last would be that one trigonal bipyramid takes a tetrahedron and 
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merges with another trigonal bipyramid. 

Whatever the way it would be, the resulting decahedron cannot be made by perfect 

tetrahedra, each regular tetrahedron must be distorted to fill the gap of 7°20' which is 

the remainder angle after the addition of five tetrahedra. Despite the strain due to the 

distortion, decahedron is the next stable structure. It may be highly probable that the 

two pentagonal structures, the multi-shell decahedron and icosahedron resulted from 

the cooling simulations, are from a same origin which is suspected to be decahedron. 

Even at the following stage of nucleation, a twinned decahedron, which is either an 

chained double decahedron or icosahedron, still have lower binding energies compared 

to hexagonal structures. Consequently, large pentagonal structure can be formed by 

further growth processes upon these nuclei. 

A similar atom by atom growth process was also discussed by Fukano and Wayman 

[49] in a simple hard-sphere-model analysis. However, unveiling the mechanism of the 

appearence of nuclei at the initial stage of nucleation requires rigorous microscopic 

structural study. Tracing trajectories of atoms in computer simulation method might 

particularily be useful in such a study as proved in the present study. In addition, 

whether or not such pentagonal structures would be followed by a transition to a 

hexagonal structure is open to a question. 



Chapter 5 

Freezing of Sulphur Hexafluoride 
(SF6) 

5.1 Introduction 

Experimental research on the kinetics of homogeneous nucleation of molecular systems 

has been problematic due to the fact that crystallisation usually incorporates foreign 

matter which largely affects the process of nucleation. An alternative way of doing 

research into homogeneous nucleation is computer simulation and the technique has 

yielded fruitful results for decades in conjunction with the development of modern 

technology. The study of model molecular systems provides valuable insight into the 

understanding of physical phenomena found in real systems. 

Pawley has developed a model [50] for simulating the condensed phases of sulphur 

hexafluoride (SF 6 ) in order to study the so-called plastic phase between the liquid 

and the crystal in which molecules are arranged on an ordered lattice, but exhibit 

orientational disorder. It was assumed in the model that the molecules were rigid, 

interacting through an atom-atom Lennard-Jones potential between the six F atoms of 

any one molecule and all the F atoms of its neighbours. Interactions with the central 

S atoms were neglected assuming that a modified F-F interaction can incorporate any 

S-S and S-F interaction. Therefore, the model simplifies into two parameters. There is 

a rather more complicated potential model [51, 52] developed by Bartell and coworkers 

62 
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which incorporates 7-site interactions with partial charges. However, it is unlikely that 

this potential would give much difference due to the fact that the charge distribution 

gives a hexadecapole, and the hexadecapole-hexadecapole interaction is expected to 

be weak; in fact if this interaction were strong it is unlikely that there would be a 

plastic crystalline condensed phase of SF 6 . When optimising the two parameters of 

the simplified potential in a fitting to structural results from neutron scattering studies 

[53, 54, 55], the potential has shown very little variation. Therefore, the present two-

parameter model can be reliably compared with other results. 

The real SF6  molecular system is known to have a plastic crystalline phase between 

96K and the melting point temperature 223K, which is translationally ordered with a 

bcc structure but orientationally disordered. As temperature decreases below 96K, the 

orientational order appears and the structure becomes monoclinic with space group 

C2/m. In this phase, there are two unidentical sites, one-third of molecules align 

towards one direction whereas the rest align towards a different direction. 

After the development of the model for SF 6  [50], there has been considerable work 

covering the plastic-to-crystalline phase transition [56], the study of the plastic crys-

talline phase [57, 58], the collective excitations in an orientationally frustrated solid 

[53], the low temperature structure [54, 59], and the plastic phase transition in a clus-

ter [60]. The transition temperatures of the model closely agree with the real system, 

being 110K + 4K for crystallisation and 230K + 7K for melting. 

In one of the molecular dynamics simulations of SF 6 , freezing of SF6  clusters from 

the liquid state was not found to be successful [60]. It was suggested in the work as being 

due to the unrealistic purity of the simulated sample used. Bartell and coworkers [52], 

years later, have shown success in freezing of clusters of chalcogen hexafluorides(SF 6 , 

SeF6 , TeF6), and suggested that the unsuccessful freezing may have been due to the 

faster cooling rates adopted in the earlier work. Recently, we have performed a suc-

cessful freezing MD simulation with an SF 6  bulk system [61] and are now in agreement 
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with Bartell's group. 

In the present work, freezing of bulk SF 6  system will be studied. There are, how-

ever, arguments according to Swope and Anderson [11] that artifacts arising from the 

imposition of periodic boundary conditions (refer to section 2.7) have distorted con-

clusions derived from most simulations of the freezing of bulk systems. Avoiding such 

problems may well be by using enormous systems. They argued that, in simulations 

of small systems with the boundary conditions, a nucleus will feel an image of itself 

when a solid crystalline region which has developed in a liquid extends to distances 

approaching half the simulation cell length. Such consequences affect the nucleation 

process and the rate of crystal growth. 

It was suggested in several reports [8, 9, 10] that a system size above 500 particles 

is enough to be far away from the artifacts of periodic boundary conditions and small 

system size. However, Honeycutt and Andersen [62, 63] reported simulation studies 

of 500 and 1300 Lennard-Jones particle systems where the size of the critical nucleus 

and the time for formation of a critical nucleus exhibited an anomalous dependence on 

the size of the simulated system. They concluded that this was due to the artifacts of 

the small size and periodic boundary conditions applied. This has been reviewed by 

Swope and Andersen [11] with much larger system sizes of 15000 and 106  particles, and 

they suggested that a 15000-particle simulation is large enough not to exhibit system-

size dependence, but not large enough to exhibit the diversity seen in the 106_  particle

simulation. Although much study has been done on the analysis of such artifacts, no 

definitive criterion has been suggested for a simulation size which is not affected by the 

artifacts. 

In computer simulations, equilibration in general requires a very long simulation 

time. As a result, simulated systems are easily supercooled. Therefore, it is highly 

desirable to find ways of accelerating transitions to low temperature phases. Since 

interfering with systems by the so-called non-equilibrium molecular dynamics method 
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(NEMD) is, however, likely to prolong the process of equilibration, it is important that 

such interference must be kept to a minimum otherwise the acceleration of transitions 

would not be achieved. In computer simulations, transition to an ordered phase by 

shear fluctuation has been widely observed for dense atomic systems [64, 65, 66]. Also, 

there has been successful simulation work on molecular systems by Gray et al. [67] 

where a disordered molecular system can be transformed into a positionally ordered 

phase by shearing, and the ordered state remains stable even after the shearing has 

stopped. The simulation, however, was carried out only for diatomic and triatomic 

molecules, which are respectively linear and triangular in shape and are bound to be 

simpler than 3-dimensional molecules such as SF 6 . 

5.2 Simulation Detail 

Systems of SF6  molecules are prepared with a density similar to values which can be ob-

tained from the previous simulation results for the appropriate temperature. Densities 

for systems in plastic phase with bcc structure [57] and in low temperature mono-

clinic crystalline phase [59] are given in table 5.2. The Lennard-Jones pairwise additive 

potential function 4 is given as 

(r)= (_A B\ 

where A and B are the parameters for the potential function and r the F-F interaction 

distance. Two parameters are given in table 5.1, and were originally used in the early 

simulation work [50]. 

In this work, systems are initially prepared with the molecular number density 

of 0.01045A at 150K, then equilibrated at the same temperature before taking the 

system to any other temperature regime. At 150K, the system will have translational 

bcc ordering but will show orientational disorder since it is in the plastic phase regime. 

Since the relative positions of six fluorine atoms from the sulphur atom at the centre 

of the molecule are fixed, molecular motion can be simply described by translation and 
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Table 5.1: Parameters of the Lennard-Jones potential for SF 6  
A 216.81 Kcal/mole A6  
B 83984.2 Kcal/mole Al 2  

Table 5.2: Density of SF6 bulk systems 
Temperature(K) Density(p)t 

18 0.01120 
23 0.01117 
75 0.01085 
85 0.01078 

115.15 ± 0.64 0.01076 
150.46 ± 0.78 0.01045 
200.05 ± 1.10 0.00994 

f In the unit of molecular number density (A-3 ). 

rotation. The rotational motion is dealt with using quaternions (refer to section 2.6). 

In order to maintain constant pressure, Andersen's method [35] (refer to section 2.8) 

is employed. It allows the MD cell either to expand or to contract isotropically according 

to the difference between the pressure of the system and the pressure to be externally 

applied causing intermolecular distances to change proportionally to the change of MD 

cell length. Here, the isotropic change in the MD cell may be thought as due to "the 

movement of a 3-dimensional piston". The piston has a term M with the unit of 

[mass] [length] —' which resembles the physical entity of mass for the particular volume 

of the MD sample and determines the level of response to the pressure fluctuation. For 

simulations of bulk SF 6  systems, the value is chosen to be 0.0008 (amu A 4 ) throughout 

the simulation. This value allows the piston to fluctuate about 15 times slower than 

pressure fluctuations. 

The rigid molecule model neglects internal vibrations which have oscillation periods 

on a far shorter time scale than the rotational and the translational motion. The MD 

time step is chosen to be O.Oips, a value small enough for the motion of the system we 

are interested in. 

In this work, periodic boundary conditions are applied to simulate bulk systems. 
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Influences of the boundary conditions on the nucleation process are investigated by 

simulating various systems of 128, 250, 432, and 1024 molecules with five different 

initial configurations. They are equilibrated at 240K being liquid and cooled down 

to 50K at the rate of -0.2K/ps and -0.1K/ps. Between these two temperatures, two 

first order phase transitions are expected, one from the liquid to the plastic phase 

and the other from the plastic to the crystalline phase. Stress in the low temperature 

crystalline phase will not fully be removed unless stress-free MD developed by Parrinello 

and Rahman (PR method) [33] is used. Since, in the present study, the shape of cyclic 

MD cell is fixed to be cubic, the so-called cubic boundary conditions, it is likely to have 

more unphysical affects on systems in low temperature crystalline phase than those in 

the plastic phase. However, as our main interest is focused on the phase transition 

between the liquid and the plastic the PR method is not required. 

In order to investigate a way of accelerating the nucleation of the phase transition, 

methods such as shearing by the Lees and Edwards boundary conditions, inclusion of 

defect molecules, and applied pressure fluctuation are used. Including a small percent-

age of defect molecules, so that the overall thermodynamical properties are not much 

altered, would be a natural choice since nucleation is rarely homogeneous as it occurs 

in nature. Impurities such as foreign atoms and molecules often have a main role in 

nucleation. Because application of pressure to the system is easily achieved in the con-

stant pressure non-equilibrium molecular dynamics (NEMD) simulation method and 

requires no alteration of the simulation program, a pressure fluctuation method is also 

conveniently facilitated. In the following subsections, details for a number of models 

we use in the present study are given and the results of the models are then given in 

section 5.3 

5.2.1 Shear Flow 

The cubic periodic boundary condition (refer to section 2.7) which was originally in- 

troduced for the simulation of bulk liquids can be used to set up a molecular system 
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Figure 5.1: Shear boundary conditions 

to maintain shear flow. A cubic box containing molecules is replicated throughout 

space to form an infinite lattice and the movement of a molecule in the original box is 

duplicated in exactly the same way in its periodic images. 

A modification to this boundary condition was proposed by Lees and Edwards [34] 

in order to maintain a uniform shear flow. The scheme may be explained in the x - y 

plane by figure 5.1. A simulated cubic box, A, shown as a square in the figure, situated 

at the origin, 0, with the box edge of L on each side ranging —L/2 < < +L/2 

is replicated throughout space. Boxes neighbouring in the y-direction, B and C, are 

maintained to drift with a specified speed +vd(= i.r/At) in the x-direction to obtain 

steady shear flow where Ar x  is the displacement of boxes against neighbouring boxes for 

the time At. Molecules crossing the periodic cell boundaries, y = +L/2, are replaced 

in the opposite side of the cell with the displacement of +Ar to prevent the build-up 

of differences in the x coordinates. 

Simulations of shear flow are unavoidably involved with the creation of viscous heat 

which results in numerical complication in the calculation of thermodynamic quantities. 
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Therefore it is desirable to remove the viscous heat from the system during the shear. 

There are various different methods generally employed to do this. For instance, it can 

be done by the Nose-Hoover thermostat [37, 68], by the Gaussian thermostat [69], or 

by ad hoc rescaling [70] in which two ordinary parallel planes of the MD cell in periodic 

boundary conditions are replaced by fluid walls flowing with a desired velocity. The 

Nose-Hoover thermostat and the Gaussian thermostat incorporate the temperature 

control into the equations of motion whereas, in the last method the temperature of 

the fluid walls is maintained at a constant and, by contact with the walls, the viscous 

heat produced in the system is removed by conduction. However, tests [68, 71] of the 

various thermostating methods suggested that the results are insensitive to the type of 

thermostat used. 

A steady shear can be obtained systematically with simultaneous removal of the 

viscous heat. It is achieved by rescaling velocity components of a molecule to maintain 

its kinetic energy constant after the addition of a shear velocity. First let the shear 

velocity profile to be applied to the system, vs(y), be as follows, 

Vs(Y) 	
Vd 

 = 	
X y, 

where vd is the velocity of neighbouring periodic box, y the y coordinate of a molecule, L 

the periodic box length. This shear velocity is then added to each molecule proportional 

to its y coordinate. The velocity before and after this addition may be written as 

and5' respectively as follow, 

V = Vx + V yJ + vk, 

-I 
V = (v+v3(y))i+vj--vk 

However kinetic energy will not be conserved due to the shear application, therefore 

the final velocity ' should be rescaled in order to conserve kinetic energy. It is done 

systematically as follows, 
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= 161  
lvi 

-1-I 
V =av 

where c is the rescaling factor and ii" the final velocity which is then used instead of 

Y'. The rescaling must be done on all three components of i5' so that the shear velocity 

imposed on the x-component of 6 will diffuse throughout all three components. 

It must be noted that there is in fact a limitation on Vd as it may not exceed the 

velocity limit Vmax which is defined as follows, 

FMM
Vmax— 

 

where kB is the Boltzmann constant, T is the temperature, and m is the mass of the 

molecule; Vmax is approximately 1.6A ps' at T = 150K for a SF 6  molecule. 

When switching off the imposition of the velocity profile it is imperative for the 

system not to undergo any impulse and, therefore, the transition to the unsheared 

state must be smooth. Let us assume that the steady shear vd is imposed. It would be 

closely given by 

Vd = 
	

N 	

(5.1) 

where vi is the x-component of the velocity of the i-th atom (or molecule) in a system 

of N atoms, taking the origin at 0. 

At any time-step, vd can be calculated from equation 5.1, and as Vd will naturally 

decrease, the shearing will die away. Thermostating is necessary, otherwise the final 

system will be hotter than we wish. The x-component of the shear profile is subtracted 

from the vector velocity prior to the calculation of the kinetic energy. This systematic 

x-component will die away, and should be monitored so that its use in the thermostating 

algorithm should not continue when it is comparable to the mean thermal velocity for 

the temperature required. 
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Figure 5.2: An extra small velocity component 8v is given to molecules within a thin 
layer A of the sample. 

5.2.2 Accelerated Layer 

In this method a thin layer of the sample, 10% of the molecules, is given a small 

extra velocity component 8v for short pulses of time. It is drawn in figure 5.2. The 

x-component of the velocities of the molecules within the layer between y = +LY is 

given as 

vx  -+ v + Sv 

In this sequence 6v is kept very small compared to the velocities of the molecules. In 

this manner, the small extra velocity given to the layer will diffuse into the heat bath 

B of its neighbours in every time step. As the simulation proceeds, v around the thin 

layer will develop a gaussian distribution as drawn in the figure. The region around the 

thin layer is studied since the given extra velocity components affect most molecules in 

that regime. 

Since the introduction of a small extra velocity to the layer at MD steps will cause 

overall translational momentum Liv, it must be removed during the simulation by 

subtracting the overall velocity from all molecules as follow, 
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Lv = 

- - A  

where v,, is x-component of the velocity of i-th molecule. 

5.2.3 Inclusion of Defect Molecules 

Linear molecules are used as defects since a SF 6  molecule is easily changed to a linear 

molecule in computer simulation. The defect is assumed simply for convenience to have 

the same mass as the host molecule (SF 6 ) and the same moment of inertia except for the 

zero moment about the defect molecule axis. Four fluorine atoms in the host molecule 

are removed and an atom with the same interaction potential as a fluorine atom is 

added at the defect centre of mass giving three atoms aligned linearly with the same 

intramolecular bond of the host molecule. In preparation, switching the host molecules 

to the linear molecules will cause large scale thermal fluctuations due to the difference 

in potential energy involved between the system before and after the introduction of 

defects. In order to minimise such impact, the number of defects introduced to the 

system must be small. Although switching to defect molecules is possible in our model 

system, in fact it would not be realised in reality and is purely for the preparation of 

defect systems in simulation study. In a system of 1024 molecules, eight defects are 

included in the system and are chosen not to interact closely. A system in equilibrium 

at 240K is cooled down to 50K at the rate of -0.2K/ps to be compared with other 

freezing simulations. 

5.2.4 Pressure Fluctuation 

In any real system there will be pressure fluctuations over distances larger than the 

typical MD cell size. Such fluctuations cannot be generated naturally in the MD work, 
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and therefore in order to investigate the effects of such fluctuations we have to impose 

them on our simulated systems. 

Systems of 1024 SF6 molecules in cooling simulations at -0.2K/ps show supercooling 

down to a very low temperature as given in figure 5.6. Various ways of generating 

pressure fluctuations are applied to such supercooled systems at several temperatures. 

One of the pressure fluctuations introduced to the system at 140K is a single short pulse 

with the duration of lOps with the pressure of O.lGPaor 0.01GPa. Triple pulses are also 

applied with the same procedure of the single pulse. Continuous pressure pulses with 

the duration of lOps interval of lOps with 0.101'a are also applied to systems at from 

120K to 180K with the step of 10K. At 150K, pressure pulses with the combination of 

lOps or 20ps of duration times of 0.1GPa or 0.05GPa are investigated. The results of the 

pressure fluctuation method are then compared with those of equilibration simulations 

of systems at each temperature in order to examine the effect of the pressure fluctuations 

on nucleation. 

5.3 Results 

5.3.1 Finite Size Artifacts 

In order to find a proper system size which is free from the finite system size artifacts, 

cooling simulations were first done with various system sizes before applications of the 

various methods of accelerating the plastic phase transition. 

Results of cooling simulations at -0.2K/ps from five different initial configurations 

are given for each system size, N=128, 250, 432, and 1024 in figures 5.3, 5.4, 5.5, and 5.6 

respectively. They are represented as total energy as a function of temperature which 

decreases from 240K to 50K. In particular, figure 5.6 also includes a simulation result 

done with a cooling rate of -0.1K/ps as it shows two clear first-order phase transitions. 

In general, most cooling simulations show two first-order phase transitions except for 

some of the large systems. One transition is from the liquid to the plastic crystalline 
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phase, and the other is from the plastic phase to the solid phase. The four figures of 

different-sized systems show considerable decreases in the range of transition temper-

atures as the size of the systems increases. It may thus be observed that statistical 

variation of the transition temperature will decrease as the system size increases due to 

the fat that the periodic boundary conditions tend to affect small systems more and 

give a finite-size enhancement of the transition and a poorer defined temperature. 

Figure 5.3 shows that the first transition temperature is between 105K and 165K 

having a range of 60K. The range becomes 35K from 105K to 140K in 250 molecule 

systems as seen in figure 5.4. In figure 5.5 for 432 molecules, only two systems show the 

first-order transition at lOOK and 125K and the rest have no such transition throughout 

the cooling simulations. The 1024 molecule systems do not show clear indications of 

a phase transition in figure 5.6. The above results show the decrease in statistical 

variation of the first phase transition as the system size increases. 

Since strain due to the cubic boundary condition at low temperature may not be 

removed from the systems, the solid phase which is not of a cubic lattice will be severely 

influenced and may exhibit degeneration from the monoclinic phase unless otherwise 

relieved. By either choosing a cubic lattice or forming a structure other than a single 

monoclinic crystal structure, a system could fit into the cubic MD cell. The former 

would have pronounced effects on small systems since nucleus in liquid will be influenced 

by its periodic images at close interaction. For a large system, the interaction with its 

periodic images or other local nuclei will be delayed so that the nucleus can grow into a 

large size where disruption of the grown nucleus by others or its periodic images under 

the strain would be hard. Competition between an ordered phase and the effect of the 

cubic boundary conditions would result in formation of abnormal structures which are 

not of the monoclinic crystalline phase of the SF 6  system. 

Since the bcc plastic crystalline structure is known to become a monoclinic crys-

talline structure when it is cooled further, each high concentration region in the dot- 
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plots of intermolecular directions will split into two and molecular orientations will 

be divided into two distinctive directions. However, due to the above reason, systems 

may not follow the known transition pattern of the bulk system and would not have 

a perfect monoclinic phase at low temperature. The structures, therefore, may vary 

between samples. 

However, it must be noted that, in this study, whether or not having a perfect 

monoclinic crystalline phase is not important because what we are most interested in 

is the phase transition between the liquid and the plastic phase. Examining the low 

temperature structure under the cubic boundary condition may tell us the effect of the 

boundary conditions. It is also noted that systems may have more than one crystalline 

region. In this case, number of dot peaks will be more than that expected from the 

single crystalline phase. If the system is in a single crystalline phase, the only splitting 

can be from the basic sets of dot peaks which are those of bcc. 

Structures at 50K for various system sizes are given in figure 5.7 and 5.8 as dot-

plots. In the figures, column A shows molecule orientations whereas column B shows 

intermolecular nearest neighbour directions showing the structural formations of the 

systems. In each column, there are five dot-plots from different cooling simulations 

which show variation in the low temperature structures. In figure 5.7, three systems of 

128 molecules show a perfect bcc positional ordering in which only the top system shows 

orientational disorder typical of the plastic phase. The centre and the bottom systems 

are seen to have two distinct molecular orientations. Such orientational orderings differ 

from those of the monoclinic crystalline phase of the system and it is suspected that the 

abnormal orientational order may be involved with the cubic boundary conditions. The 

first system, in particular, is ordered in a perfect plastic phase which is not expected at 

the given temperature and is, in fact, parallel to the MD cell. It does not show any signs 

of splitting of dot peaks or local crystallites having different directions of arrangement. 

It seems to be an obvious example of the effects of the cubic boundary conditions in 
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Figure 5.3: Coolings of 128 molecule systems of SF 6  at a rate of 0.2K/ps from different 
initial configurations. 
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Figure 5.4: Coolings of 250 molecule sytems of SF6 at a rate of 0.2K/ps from different 
initial configurations. 
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Figure 5.5: Coolings of 432 molecule systems of SF6 at a rate of 0.2K/ps from different 
initial configurations. 
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Figure 5.6: Coolings of 1024 molecule systems of SF6 at a rate of 0.2K/ps from different 
initial configurations. The one with phase transitions at 110K and 125K in the figure 
is cooled at 0.1K/ps. 
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Figure 5.7: Dotplots of molecule orientations (A) and intermolecular directions to the 
neighbour molecules (B) for N=128 and 250 at 50K for 5 independent configurations 
for each size. 
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Figure 5.8: Dotplots of molecule orientations (A) and intermolecular directions to the 
neighbour molecules (B) for N=432 and 1024 at 50K. 
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Figure 5.9: Dotplots of molecule orientations (Top) and intermolecular directions to the 
neighbour molecules (Bottom) frozen at 120K to the plastic crystalline phase. N=1024 
and the cooling rate used is -0.1K/ps. 
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Figure 5.11: Transitions from liquid to plastic crystalline phase by shearing at 140K 
(top) and 120K (bottom) with the shear rate y=0.05 ps'. Thick solid line shows 
equilibration at the temperature without shearing whereas A, B, C, D, E, F, G, and H 
are equilibrations after shearings for 0.5ps, 1.0ps, 1.5ps, 2.Ops, 2.5ps, 3.Ops, 3.5ps, and 
4.Ops respectively. Each line is averaged over 500 steps. 
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Figure 5.13: Cooling simulations of two systems, which include 8 linear defect molecules, 
from 240K to 50K at -0.1K/ps with different initial configurations. 
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Figure 5.14: Liquid —+ plastic crystalline phase transitions at 140K by continuous 
pressure fluctuations with 0.01GPa (B & C) and 0.1GPa (D & E), with pulses of lOps 
(B & D) and 20ps (C & E), compared with the transition by equilibration at the 
temperature (A). 

which the only allowed crystal structures have cubic lattices. In the figure, the second 

system has split dot peaks in its translational dot-plot B and its molecular orientation 

resembles the results of the third and the fifth systems. Although it is a single crystal, 

its phase is not the one expected at the given temperature. 

Unlike the systems of 128 molecules, the 250 molecule systems develop phases sim-

ilar to each other. All the dot-plots of the intermolecular ordering show the same mon-

oclinic crystalline phase with variation in the direction of lattice arrangement. They 

can be regarded as splitting of peaks of the dot-plot of bcc which is given in section 

2.4. Based upon the dot-plot, one can envisage each dot peak split into two instead of 

being one as for bcc for all dot peaks (except for two dot peaks on left and right of the 

perimeter) along the great circles passing the two dot peaks on the perimeter. There 

are, however, variations in the crystalline phases developed. Some systems, the third 

one for example, have more than one crystallite giving a rather complicated pattern in 

the dot-plot. As we increase the system size to N=432 and N=1024, transitions to the 
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monoclinic crystalline phase are not apparent as for N=128 and N=250 systems. In 

432 molecule systems as in figure 5.8, only two systems develop the crystalline phase 

with more than one local crystallite implying that more than one nucleus has grown 

into a crystal, whereas the rest have local crystallites developed within the system and 

most of molecules are still disordered. This implies that they are not affected greatly by 

the periodic boundary conditions while manifesting a localised ordering. In fact, some 

regions develop a crystalline phase which is not directly affected by its periodic image 

since there are layers of molecules between the phase and the images. In the systems 

of 1024 molecules, all five systems exhibit local crystallites within a glassy phase. One 

of the systems clearly show splittings of dot peaks in the crystallite which is in fact due 

to the result of the monoclinic ordering while it coexists with the disordered solid. It 

is noted that coexistence of various phases in a system can result from the fast cooling 

rates adopted. 

5.3.2 Freezing Simulation 

A system of 1024 molecules is cooled from 240K to 50K at -0.1K/ps which is two times 

slower than for the above simulations. The result is given in figure 5.6. It has two first 

order phase transitions, one from a liquid to a plastic phase at 125K and the other from 

the plastic phase to a solid phase at 110K. The dot-plots for the system just after the 

freezing to the plastic phase at 120K are shown in figure 5.9, where the top dot-plot 

shows molecular orientation and the bottom dot-plot shows intermolecular ordering. 

In the plastic phase, molecules are ordered on a bcc lattice and their orientations 

are disordered. Although the dot-plot of the molecular orientation has dense areas of 

dots as seen in the top figure, according to simulation results, molecules in fact flip 

over to a different orientation within somewhat less than a picosecond. Three vertices 

of each triangle in the top figure actually show directions to which fluorine atoms are 

positioned and connecting great circles of three vertices have 90° arcs. Figure 5.9 shows 

that the system at 120K has two bcc plastic crystallites coexisting within the system. 
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The bottom figure shows a number of dot peaks and some are denser, some are more 

compact than others. In the figure, two squares indicate the four diagonal corners 111 

of bcc plastic crystallites. The group of dot peaks may represent one plastic crystallite 

whereas the rest of dot peaks is of the other plastic crystallite. A particular feature of 

the plastic crystalline structure is that where there are two crystallites they seem to 

be aligned towards one direction as seen from the bottom figure. One of directions of 

bcc cubic corners from one plastic crystallite shares a direction of cubic corners of the 

other plastic crystallite. This explanation becomes apparent when molecular positions 

are projected on a plane as they are given in figure 5.10. These pictorial views are 

produced by a visualisation tool called the advanced visualization system (AVS) by 

which one can view 3-dimensional images of the system from various directions. The 

axes in the figure are referenced to the MD cell. The top figure shows a view from [111] 

direction from which two plastic crystallites are ordered in almost perfect manner and 

the bottom view from [331] direction shows a boundary across the middle of the MD 

cell. 

5.3.3 Shearing 

In order to investigate transition by shearing, samples were prepared at two different 

temperatures, 140K and 120K. At each temperature, a sample was simply equilibrated 

to be a reference so that the result would be compared with those of later shear simu-

lations. At 140K, shearings were done for a system for four different periods of time. 

Equilibration simulations were then followed to study the acceleration behaviour in the 

plastic phase transition. At 120K, shearings for eight different periods of time were 

done. They were again followed by the equilibration process. 

Simulation results of shearing at 140K with a typical shear rate ( -i' = dry  0.05 

ps' are given at the top in figure 5.11. The figure shows first order phase transitions 

to the plastic phase. The energy of the system is presented as a function of time in 

picoseconds. The thick solid line shows the plastic phase transition by the equilibration 
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process. There are four other transition lines A, B, C, and D. The line A shows the 

transition by equilibration after shearing for 0.5ps whereas B was sheared for 1.0ps, 

C for i.Sps, and D for 2.Ops. The figure shows that all four transitions to the plastic 

phase by shearing happened after the one by equilibration with no shear (thick solid 

line). In addition, as the period of the shearing gets longer the time taken for the phase 

transition is consistently delayed further. Particularly, at this temperature, there was 

no phase transition which happened earlier than the one by equilibration. 

At 120K, the results are shown at the bottom in figure 5.11. For the sample, 

shearing was done for O.Sps, l.Ops, 1.5ps, 2.Ops, 2.5ps, 3.Ops, 3.5ps, and 4.Ops which 

are A, B, C, D, E, F, G, and H respectively. Most equilibration simulations after the 

shearings seem to exhibit that the transition times to the plastic phase are shortened. 

However, simulation result such as E for which shearing is done for 2.5ps did not show 

such acceleration. The shearing period is between those of simulations D and F in 

which transition times were shortened by half. There is no consistent dependence on 

the period of shearing. The resulting phases even after the transitions vary broadly. It 

suggests that there still exists a large translational disorder within each sample. 

There is no clear evidence of acceleration that the time taken for the plastic phase 

transition is greatly reduced by the shearing method despite much attempts with the 

different shear rate ranging from 0.01 ps' to above 0.05 ps -i . Simulation results 

showed that large shear rates seriously affect the estimation of the temperature of the 

sample. As seen in the comparison of both figures, the increase in energy at 120K just 

after the shearing at t=0 in the figure is larger than those at 140K. It is believed that 

at a low temperature molecules are rather closer each other than those at a higher 

temperature. Therefore, molecules experience higher potential energy changes during 

the shearing. It would then give rise to the kinetic energy. It is therefore difficult 

to assert if the results made would reliably be compared with those by equilibration 

especially when a sample is simulated at a low temperature with a high shear rate. 
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5.3.4 Accelerated Layer 

In attempts of the shear method to induce an early plastic phase transition, it was 

found that temperature fluctuations due to the energy increase by shearing and its 

systematic removal was a major obstacle. Such a problem was alleviated by devising a 

method in which a thin layer of the sample, 10% of the molecules, was given an extra 

small .velocity component for a short period of time at each MD time step. Therefore, 

there were introduced two shear interfaces through which the given small amount of 

energy to the molecules in the layer eventually diffused throughout the system where 

temperature was being regulated, the system behaving as a heat bath. 

Figure 5.12 shows seven different simulations at 140K which are compared with 

the plastic transition result (thick solid line) by equilibration. An extra velocity com-

ponent given to the thin layer of the sample is chosen to be o.oiA/ps which is small 

enough compared to the velocity distribution of the system so that the system does 

not undergo sudden momentum changes. Although all simulations were begun with 

the same sample they were given different periods of time for the introduction of the 

extra velocity component, which ranged from lOps to 40ps with 5ps step. The figure 

again shows no consistent reduction of the plastic phase transition time. The broad 

variation of transition times around thick solid line seem to be the result of what is 

regarded as transition by chance during thermal fluctuation of the system rather than 

by the introduction of the extra velocity component. Attempts with a rather small ve-

locity component 0.001A/ps were also found to be unsuccessful in encouraging an early 

nucleation. However, for the method to be studied completely, extensive combinations 

of possible parameters must be required. 

5.3.5 Nucleation due to defects 

Two samples of 1024 molecules with 8 linear defect molecules were prepared. In order 

for the defect molecules not to closely interact they were then positioned throughout 
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the system by shuffling all molecules randomly and analysing relative distances among 

defect molecules. The samples were then cooled from 240K to 50K at -0.1K/ps. 

Figure 5.13 shows that each cooling simulation exhibits plastic crystalline phase 

transition at about 110K for the lower line and at about lOOK for the upper line. 

These temperatures are even lower than the transition temperature of the previous 

cooling simulation at -0.1K/ps without defect molecules, which is about 120K as seen 

in figure 5.6 where the line with two transitions is of the cooling simulation at -0.1K/ps 

and the step at the higher temperature shows the plastic crystalline phase transition. 

Therefore, the inclusion of defect molecules in both samples again did not induce rapid 

nucleation. 

5.3.6 Nucleation due to Pressure Fluctuation 

Owing to the virtue of the current MD method in which hydrostatic pressure to the sys-

tem can be given at any state, pressure fluctuation relevant to the nucleation behaviour 

can easily be investigated. In the very first stages of the present study, attempts were 

made to encourage nucleation by applying various hydrostatic pressures. All the sam-

ples under the static pressures showed no ordering behaviour despite many attempts. 

We then turned our attention to pressure fluctuations rather than static pressures. We 

then observed an indication of rapid nucleation with the pressure fluctuation method. 

Unlike the shear method, this method presents no difficulty in the measurement of 

temperature due to the fact that the increased energy of a system under hydrostatic 

pressure is equal to the energy decrease during the release of the pressure. 

A supercooled sample of 1024 SF 6  molecules was chosen at 140K. It was then 

subjected to various short pulses of increased hydrostatic pressures. In figure 5.14, line 

A presents the plastic crystalline phase transition by equilibration whereas lines B, C, 

D, and E show the transitions in the presence of the pressure fluctuations. For the 

sample B, it was under the continual pulses of pressure fluctuation of 0.01GPa with 

lOps intervals and showed definite reduction in the transition time which is about 150ps. 
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Table 5.3: Liquid -+ plastic crystalline phase transitions at 150K. All simulation results 
given in this table are examined for 1000ps except for the equilibration process which 
is monitored over iSOOps. 

pressure number of pulses duration result 
0.OGPa no pulse (equil.) - no transition 
0.1GPa 4 pulses i0ps no transition 
0.1GPa 8 pulses lOps no transition 
0.1GPa continuous lOps after 450ps 
0.05GPa 3 pulses lOps after 750ps 
0.05GPa 3 pulses 20ps after 300ps 

Under the same pressure but with the longer interval of 20ps, the sample shows about 

40ps earlier transition than the one with pulses in lops interval. With high pressure 

fluctuation of 0.1GPa, the transition time is shortened a further 50ps. Although samples 

D and E differ in the duration of pressure pulses no significant difference was found 

in transition time except for that the sample with pulses in lOps interval resulted in a 

lower energy phase. In the figure, all the pressure fluctuation simulations resulted in 

rapid nucleation. 

In order to investigate the dependence on the type of pressure fluctuations, three 

different pressure fluctuations were applied to the sample at 140K. They were single, 

triple and continual pressure pulses. Transition lines in the top figure of figure 5.15 

are the results of 0.01GPa pressure pulses. It shows that a single pulse is enough to 

encourage nucleation. The nucleation time is reduced by loops from 1350ps which is the 

time taken by equilibration only (A in figure 5.14). Triple pressure pulses of 0.01GPa 

indeed reduced the transition time by a further 50ps. However, continual pulses did 

not show any further reduction but slightly increased the time taken to the transition. 

In the bottom figure, the higher pressure pulses (O.1GPa) are applied to the sample. 

The high pressure pulses reduced the transition time by a further 50ps than those with 

0.01GPa. Therefore, at this temperature, it is summarised that up to a certain number 
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Figure 5.15: Liquid -* plastic crystalline phase transitions at 140K by various pressure 
fluctuations (single, triple and continuous pulses which are referred as A, B, and C in 
the figure) with pressures of 0.01GPa (top) and 0.1GPa (bottom). 
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over 50ps to avoid complication. The top figure shows no phase transition at 150K by 
equilibration. 
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of pressure pulses does encourage the nucleation and the higher pressure pulses do 

encourage the nucleation further. It must however be noticed that further simulation 

results showed that high pressure pulses give rise to energy fluctuations and if a system 

under such a high pressure fluctuation is at a high temperature close to the melting 

point, the system is unlikely to show any acceleration in nucleation. 

Until now, all simulations with pressure fluctuations were done at the same tem-

perature. In order to investigate temperature dependence, four supercooled samples 

were chosen at different temperatures which are 120K, 130K, 140K, and 150K. In figure 

5.16, the top figure shows the plastic phase transition lines by equilibration at each tem-

perature whereas the bottom figure show transitions by continuous pressure pulses at 

0.1GPa. At 120K which is A, it shows a definite reduction in time taken for nucleation. 

Surprisingly, the pressure fluctuation also encouraged the sample to go through to a 

more ordered phase as can be seen in comparison of two resulting phases of A in the top 

and bottom figures. By equilibration, the energy of sample A became -4.05Kcal/mol 

whereas it became -4.4Kcal/mol by the pressure fluctuations. Such a phenomenon is 

also true for the sample B although its transition point hardly suggests any rapid nu-

cleation. As temperature increases to 140K and 150K, the phase transitions definitely 

show rapid nucleation behaviour. In case of sample D which is at 150K, no transition 

was found in the simulation of equilibration which lasted over 1500ps as given in table 

5.3. For the sample, the transition to the plastic phase by continuous pressure pulses 

happened after about 450ps. As seen in the table, at this temperature, lower pressure 

pulses have more possibility of inducing phase transition and longer duration of pulses 

tend to shorten the transition time. The results at 150K suggest that high pressure 

fluctuation causes high energy fluctuation and therefore may delay nucleation specially 

in a system at a high temperature. 
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5.4 Discussion 

According to the report by Swope and Andersen [11], their 15000 particle system was 

enough not to be affected by the artifacts of periodic boundary conditions although 

it was not enough to exhibit all the features found from the 106  particle system. The 

system used in the present study is of 1024 SF 6  molecules and its size is roughly 

compared with half the size of 15000 particle system. We have found our system reliable 

not to exhibit any abnormality due to the artifacts of periodic boundary conditions. The 

system has shown general phase behaviour of SF 6  systems even in a solid phase system 

which is expected to be affected considerably by cubic periodic boundary conditions 

due to the lattice strain. 

Our simulation study on small systems (N=128, 250) resulted in various abnormal 

formations which are not known for SF 6  bulk systems, for example, translational order 

aligning perfectly normal to the cubic MD cell with abnormal orientational order or 

formation of plastic phase at low temperature where it is expected to have monoclinic 

crystalline phase under the absence of the lattice strain. We regard such an abnormality 

as due to the artifacts of finite system size and periodic boundary conditions, and expect 

the abnormality to be eased by increasing system size. 

Bartell group's successful report on freezing of SF 6  cluster and other chalcogen hex-

afluoride clusters which contrasts with the result reported by Fuchs et al. that freezing 

of SF6  cluster was found to be unsuccessful gives rise to the question on the model 

systems used by both groups. However, under our speculative MD simulation study as 

given in the present work on freezing of SF 6  bulk system following the suggestion by 

Bartell's group that a slower cooling rate may be required, freezing simulations were 

found to have a successful liquid —+ plastic phase transition in a temperature regime 

where the plastic crystalline phase is expected. This result is in agreement with those 

of Bartell's group and therefore it alleviates concerns over the two model systems and 

also proves the effectiveness of our two parameter potential model in the MD simulation 
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study on SF6  systems. 

In the freezing simulation, the resulting plastic phase has shown that there are 

coexisting multiple crystallites. Each crystallite exhibits the proper phase behaviour 

expected from SF 6  systems while it coexists with another crystallite. Particularly, in 

the system in the plastic phase, lattice directions of two crystallites were found to be 

effectively aligned towards a certain direction. It is understood that each crystallite 

can grow fully until it interacts with another crystallite which has also grown fully. At 

this moment, there appears a grain boundary by which they align themselves to fit to 

the MD cell. However, this is not to be thought as artifacts of small size and periodic 

boundary condition since phases found from both coexisting crystallites coincide with 

phases found from previous simulations of SF 6  systems. 

In a further long investigation in search of ways to have accelerated nucleation, vari-

ous attempts such as by shearing, by accelerating a layer of molecules, and by including 

defect molecules, were found to be unsuccessful and did not show any sign of rapid nu-

cleation. Although there are numerous reports of translational ordering by shear, the 

so-called the string phase in colloidal suspensions of spherical particles, and also, in 

both diatomic and triatomic molecule systems by Gray et al. [67] whose translational 

ordering did not disappear even after the shear was stopped, our shearing simulations 

show no sign of accelerated nucleation in which the string phase would have a ma-

jor role. It was found in the shear method that despite the brief moment of shearing 

it severely affects the estimation of temperature of the system and distorts the com-

parison with the result made by equilibration. In the simulations of accelerated layer 

the problems in the estimation of temperature is somewhat alleviated. However, we 

again found no rapid nucleation although we did not investigate all possible parameter 

combinations. 

The simulations including defect molecules were also an unsuccessful attempt to 

induce rapid nucleation and we have found moreover that such inclusions of defect 
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molecules do not minimise supercooling. Our defect simulation results are however 

confined by the particular molecule type, a linear molecule model. Therefore, there is 

room for the nucleation study by employing other types of defect molecules. After all, 

most nucleation found in nature is known to be heterogeneous in which foreign particles 

act a major role. The defect system used in this chapter will be studied extensively in 

chapter 6 in the interests of rotational diffusion of host and defect molecules. 

In the last attempt by pressure fluctuations, we were not required to do any alter-

ation to our program for the thermostating since the energy increase due to the applied 

hydrostatic pressure is equal to the energy decrease when the pressure is removed. The 

pressure fluctuation method was found to be very successful in inducing rapid nucle-

ation [61] and no simulation result has shown the plastic phase transition happening 

later than the one by equilibration. It is therefore concluded that pressure fluctuation 

is likely to be the one which associates with nucleation rather than shear fluctuation 

and subject to a further in-depth study both in theory and experiment. 



Chapter 6 

Reorientation Motion in Binary 
Mixtures 

6.1 Introduction 

As previously discussed in chapter 2, rotational motion is an important part in dynamics 

of molecular systems and is influenced considerably by detailed intermolecular inter-

actions. For the study of molecular reorientations, the orientational time-correlation 

function has been developed over decades [12, 13, 14] and understanding of this func-

tion based upon experimental spectroscopic measurements has been a major objective 

in the early stage of theoretical study on molecular rotation [14]. It measures in what 

degree one dynamic property is correlated to another as a function of time with respect 

to molecular reorientations, or simply how long some property of a system persists until 

it dies away by molecular motion. The theoretical foundation of the study of molecu-

lar reorientations was firmly established by Gordon [14]. In this work, two generalised 

models were presented, M-diffusion and J-diffusion models. In J-diffusion, the direction 

of the angular momentum of a molecule at every collision is randomised and the mag-

nitude is distributed over a Boltzmann distribution whereas only the orientation of the 

angular momentum vector is randomised in M-diffusion. Further details of Gordon's 

diffusion models will be discussed in section 6.2 of this chapter. Following Gordon's 

diffusion models, these were investigated extensively and applied to various types of 

97 
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molecules, symmetric and spherical top [15, 17]. 

There are numerous techniques in experiment for probing the dynamics of molecu-

lar reorientations, such as infra-red (IR) and Raman spectroscopy [72, 21, 73, 74, 75], 

nuclear magnetic resonance (NMR) [76, 22], electron spin resonance [77], dielectric 

spectroscopy [78], quasi-elastic neutron scattering technique [79, 80, 23, 81], and di-

rect time-resolved measurement [82, 83, 84]. These experimental techniques have been 

used for a wide range of systems, small neutral and charged molecule systems [85], 

liquid crystals [74], supercritical fluids [84], supercooled glass formers [22], plastic solid 

phase [79], polar molecules [78], single fluorophore linked to a short DNA molecule 

[86]. Despite the fruitful results of experimental techniques in the study of rotational 

dynamics of molecules, no one technique can produce a full spectrum of information 

on molecular motions. Most experimental techniques used in probing rotational mo-

tion only yield the orientational relaxation time r (defined as the time integral of the 

correlation function) rather than the full time-dependent correlation function. This ori-

entational relaxation time is often related to hydrodynamic friction parameters through 

the Stokes-Einstein-Debye relation whereby 

(6.1) 

where is a friction constant, kB is the Boltzmann constant and T is the temperature. 

There are certain spectroscopic methods notably line-shape analysis of infrared or 

Raman spectra which yield the full time-dependent correlation function obtained by 

Fourier analysis of spectral band shapes based on the methods developed independently 

by Bartoli and Litovitz [73] and Nafle and Peticolas [87]. The line-shape analysis tech-

nique also requires a delicate experimental method to isolate reorientational information 

from other sources of noise. 

Experiments have been done which use tracer molecules (solute) to study the ro- 

tational dynamics of host (solvent) systems. Notable examples are inhomogeneous 
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rotational dynamics of a rodlike probe in 1-propanol using fluorescence depolarisation 

technique [88] and the use of single molecule tracer technique [86]. The use of a non-

spherical tracer particle in a suspension of spheres was also investigated theoretically 

[19]. In the recent report of polarised Raman scattering study across the liquid-plastic 

phase transition regime by Edington et al. [75], a nonmonotonic temperature depen-

dence was observed in the reorientation of linear CS 2  tracer solutes in cyclohexane 

(C6 11 12 ) solvent upon cooling into the plastic phase. This rotational behaviour of the 

tracer molecules was, in fact, in direct contrast with the. previous nuclear magnetic 

resonance study (NMR) on the pure cyclohexane by O'Reilly et al. [76] in which a 

monotonic temperature dependence of the rotational correlation time of cyclohexane 

was observed. The observed non-monotonic temperature dependent reorientational 

motion of the tracer molecule (CS 2 ) as the host (cyclohexane) freezes into the plastic 

crystalline phase was explained by Edington et al. in their report as the result of an 

increase in the local free volume in the plastic crystal permitting more rapid "rattling" 

of the CS 2  molecules at short times than is possible in the liquid just prior to freezing. 

They argued that faster orientational relaxation over all time scales as expected to 

be observed in a perfectly spherical solute molecule does not apply to the case for a 

structurally anisotropic solute. Consequently, the discrepancy in rotational diffusions 

of two types of molecule requires to be further examined in detail. Stein and Fayer 

have previously reported observations of rotational inhomogeneity [89] and suggested 

that the difference in the time scales for spectral diffusion and solvation probably arises 

from the range of solvent orientational motions that is required for each process. Ime-

shev and Khundkar have regarded the similar observation [88] in their fluorescence 

depolarisation experiment in inhomogeneous rotational dynamics of a rodlike probe in 

1-propanol as due to the local structure in solvents which may play an important role 

in observed solvent dynamics. Since it is not possible to completely rule out by exper-

imental techniques why such behaviour occurs, computer simulations at various levels 
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of molecular detail may provide a considerable insight into the relaxational motions of 

such molecular systems. 

Together with the theoretical and experimental study, research by molecular dy -

namics computer simulation method has been done over a decade in the study of 

reorientational molecular motion with various objectives, such as investigation of theo-

retical memory function model [24], rotational jumps between two different molecular 

orientations [26], plastic crystals [90, 91], and spherical nanocolloidal particles in so-

lution at infinite dilution [25]. The use of computer simulation has been increasing 

dramatically owing to both its ability in extracting detailed molecular motion and the 

rapid development of computer technology. Therefore, molecular dynamics simulation 

is regarded as the one which not only fills the gap between experiment and theory but 

also has potential in furthering the study of molecular motion. In the present study, we 

will investigate molecular rotational motions of both the host and the tracer together 

by taking advantage of molecular dynamics in which orientations and angular momenta 

of all molecules of a system are available as a function of time. 

Despite the wide use of tracer molecules in the study of host systems, a qualitative 

study of the details of relative dynamics between the tracer molecules and the host is 

still to be explored and there are no simulation studies available on both the tracer and 

the host molecules at the same time in the liquid-plastic transition regime. Therefore, 

in the present study, our aim is to provide the understanding of the relation between 

the tracer and the host across the plastic transition regime with particular attention to 

the contrasting results of the solute and solvent [76, 75]. For our purpose, the readiness 

of SF6  molecule systems with linear defects as studied in chapter 5 and our background 

knowledge of the systems conveniently allow us to investigate the relative rotational 

dynamics of two molecular types in a binary mixture simultaneously. 
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6.2 Rotational Diffusion Model 

It was originally a common assumption in solving rotational diffusion equations that 

the molecular reorientation takes place through small angular steps. This was also a 

reasonable basis for the analysis of early experimental techniques. Gordon [14] has 

generalised the rotational diffusion models by removing the restriction to small angles 

and allowing diffusion steps of arbitrary size leading to the M-diffusion and J-diffusion 

models. In this section, these two models are discussed. In the present work, we will 

only utilise the M-diffusion model for the study of the linear tracer molecule and the SF 6  

host molecule since it is simpler than J-diffusion, thus can be conveniently manipulated 

for a variety of functions such as for a fitting process, and we have not found in the cases 

where we have done both that J-diffusion gives a definite improvement. The J-diffusion 

will be however briefly discussed. 

Reorientational motion is usually described in terms of a time-dependent orienta-

tional correlation function C(t) that measures the rate at which molecular orientational 

memory is lost. The correlation function is defined as 

C(t) =< iz(0).iTi(t)> 
	

(6.2) 

where ü(t) represents the orientation of a bond vector of a molecule in the space-fixed 

reference frame, and < ü(0) . ü(t) > is the statistical average of correlations over time 

t. 

In Gordon's M-diffusion model, the correlation function is a Boltzmann average 

over contributions, each of which involves a specific value of w, the angular velocity of 

a molecule between successive collisions. In equation (6.2), without any collisions in 

time t, 'It(0) ii(t) = coswt. If there is one collision in time t, say at t', 

11(t) = cos wt'cos.4.(t - t') - cos & sin wt' sin w(t - t') , 	(6.3) 
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where a is the angle between the two angular momentum vectors. Gordon argues that 

as a is random, < cos a >= 0, and the second term in equation (6.3) averages to zero, 

and can therefore be neglected. This argument is then used for multiple collisions in the 

time interval t, and then using the Poisson distribution for the number n of collisions 

in t, and the Boltzmann averaging, the correlation function can be written 

T0

O 

C(t) =we.'"2 dw x e 	> TmI(t) , 	 ( 6.4) 

where r is the mean time between collisions, and I,, (t) is a multiple integral, 

In (t) 
= f0

f(w[t - t'])I_ 1  (t')dt' 

10 (t) = f(wt) = Cos (wt) 

For a linear molecule which is used in the present study as a defect molecule, (t) is 

regarded as a unit bond vector along the linear molecule. We use a similar argument 

later for the spherical top function. More general extensions are available [18]. 

6.2.1 M-diffusion for spherical top 

Gordon's equation for M-diffusion of a linear molecule makes repeated use of cos(t) 

where the axis for the angular velocity w is always taken at right angles to the length 

of the molecule. The end of the molecule vector therefore sweeps out arcs Q = wt 

which are great circles in spherical geometry. When we have spherical top symmetry, 

the chosen vector for the correlation function is rarely equatorial, that is to say at right 

angles to the angular velocity vector, and the arc it describes is usually a small circle. 

In the figure let AB be the equatorial arc Q for one motion step, and CDE the small 

circle described by a general position of the chosen vector during this step, where ZOC 

is the azimuthal angle 0. PQ is the great circle through C and E, and we need the 

angle CE in this great circle, 0, which is 
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us 

Figure 6.1: 

Cos 0 

cos 
-1 

7r/2 	 ir 	- 	37r/2 	27r 

Figure 6.2: A comparison of cosO and cos2 as a function of Q. 



CHAPTER 6. REORIENTATION MOTION IN BINARY MIXTURES 	104 

0 	 1 	 2 	 3 

Figure 6.3: Comparison of correlation functions of linear and spherical top molecules 
for 7- = 1, in reduced time scale. 

0 = 2sin'[sin(/2)sin(4)] . 	 (6.5) 

The cosine of this can then be averaged over the whole sphere to give a value cos 

ir/2 
cos e = f 	cos 0 sin qfdçb , 	 ( 6.6) 

which replaces cosQ in Gordon's expressions for the linear molecule to give the cor-

relation function for the spherical top. This is easily obtained accurately numerically, 

cose being presented in figure 6.2 as a function of Q, along with cos Q. 

The correlation functions in figure 6.3 are both for r = 1 for reduced time t' up to 

3.5, t' = tVkBT/I where t is the MD time in ps, kB is the Boltzmann constant, and 

T is the temperature. The figure shows the difference between the M-diffusion model 
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result with Gordon's linear molecule function and with our 0-function for spherical top 

symmetry. 

6.2.2 Numerical integration of M-diffusion for linear molecules 

Let us take T as the total time interval for an integral where t is the integration variable. 

This is different from Gordon, chosen here as we have to reduce all computations to 

simple integrals of one variable. 

When n = 0 there are no collisions and we need lo (T) = cos(wT), the first in the 

series I,, (T) that we need. Note that for ii > 0, In  (T) is an integral, but is a simple 

expression for n = 0. For one collision, m = 1, we have 

11  (T) =cos(w[T - t]) cos(wt)dt = cos(wT) 
Sfl wT 

2 	+ 2w 	
(6.7) f 

For two collisions, n = 2, we have, partly using Gordon's notation temporarily, 

fo
t2  

1 	
0 

2(T) 
= 	

dt cos(w[T - t 2]) 	 dt 1  cos(42 - t 1 ]) cos(wt i ) 	(6.8) 

rT 
= 	cos(w[T—t])I1(t)dt . 	 ( 6.9) 

Jo 

Let us use the simple trapezium rule for numerical integration. Although this may not 

be the most accurate method, we will easily be able to test accuracy when the program 

is written. Integrals are all over the range T, which is divided into m steps, and we 

need to add m+ 1 values of the function, the first and last involving a factor 1/2. Thus 

setting T = mA, 

12 (T) = A 
[ 

+ I1 (A) cos(w[m - 1JA) + I1 (2A) cos(w[m - 2]A) + . . + 11(T)] 

where we have used 1, (0) = 0 in the first end term and cos(0) = 1 in the last. We will 

be able to do the same at each stage of integration as In  (0) = 0 for all n, thus 
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fo
T  

12 (T) =cos(w[T - t])Ii (t)dt 	 (6.10) 

13(T) = / cos (w[T - t])12 (t)dt , 	 (6.11) 
Jo 

and therefore we can write generally 

rn-i 

I (T) = 	
2 

II_1(T) + 
	I_ 1 (kA) cos(w{m - k])] 	. 	(6.12) 

L  k=i 

This is probably what Gordon referred to in his comment that the successive convo- 

lution integrations become simply matrix multiplication. The summation involving 

the involvement of exp(—T/r) and integrations over w given in equation 6.4 are 

now straightforward. Note that in the formulation above it is not necessary to use an 

analytic integral for Ii, but it does improve accuracy. We could have used numerical 

integration throughout using 

I, (T) = / cos (w[T - t])Io (t)dt 	 (6.13) 
Jo 

where 10 (T) = cos(wT), the basic function in the M-diffusion model. 

6.2.3 J-diffusion for linear molecule 

For J-diffusion we must use numerical integration throughout, and to get accuracy 

the first integration is best done with a finer time step. The expression for the basic 

function, Fo (T), which replaces Io (T) in the M-diffusion expression, is 

Co 	T2m2mm! 	Co 

Fo (T) = 	(-1)rn
(2m)! = 	

fm  (T) . 	 (6.14) 
rn=O rn=O 

We can express this rather more conveniently for computation by observing that 
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fo(T)=1 and fm(T)= 	
T2 

frn_i(T) . 	 ( 6.15) 
2m - 1 

The expression for the integrals is therefore 

rn-i 

I (T) = 	
2 	 I(T) 	

(k)Fo ([m - k]) 	. 	(6.16) 
k=i  

The summation involving r and the involvement of exp(—T/r) as given in equation 

6.4 are again straightforward. 

6.3 Analysis 

6.3.1 Reorientational correlation function 

The reorientational correlation function C(t) is defined as in equation 6.2. For SF6  host 

molecule, the orientation of the molecule is represented as quaternions (refer to section 

2.6) and therefore reorientational correlation function is then defined as 

C(t) =< q(0) . q(t)> 

where q(t) is the unit quaternion of a molecule at time t. 

We simulate a sample of 1024 SF6  host molecules in which about 1% of defect 

molecules is included. The correlation function of defect molecules will therefore have 

poorer statistics due to the lack of configuration number while the analysis for the host 

does not. Statistics for the defect correlation function can be improved by accumulating 

the correlation function over a sufficient time. 

If we let 'ui(0) be the unit vector which is parallel to the bond vector of the linear 

defect molecule at t = 0 and ü(L) at a time A later, the correlation function for the 

linear defect molecule is defined as 

C(zX) =< ft (0) . 11(A)> 
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where A may be a MD time step or its multiples at which orientations of molecules are 

sampled. If the correlation functions are accumulated over m times for each correlation 

time (LA, 2A, ..., NA), they are then written as expansion forms, 

F(A) = 12 (0) . 12(A) +12(A) . 12(2A)+ 

+ 'Ii((m - 	. fl(MA) 

F(2A) = 12(0) . ü(2A) + 12(A) . 12(3A)+ 

F(3A) = i2(0) . 12(3A) + 12(A) . 12(4A)+ 

...+ii((m-1)A).ü((m+2)A) 

F(mA) = ü(0) . ü(NA) +12(A) .,&((N + 1)A)+ 

	

+ 12((m - 	. 12((m + N - 1)A) 

They can be simplified as, 

M 	 m 

F(kA) = 	C(kA), = 
	

12((j - )) . 12((i + k - 1)A) 

where k = 1, 2,..., N. Since the distribution of individual correlation function values is 

not a normal distribution and the individual terms in these summations will not be sta-

tistically independent, the statistical average and its standard deviation are calculated 

by the central limit theorem, stating that the average over means of a discrete number 

of data sets converges. We let CkK  be the mean for a discrete set R(= 1, 2, . . ., 1) 

assuming that there are 1 discrete sets within m data and j is the number of data for 

each discrete set, and let CkA  be the average over the means. The average is defined 

as 

l a 	 2j 	
1 

	

Ck = 	[> C(kA)+-1 	C(kA)1+,...,+- 	C(kA)] 
i=1  

1 	Kj 

	

= 	[ 	C(kA)J 
K=1 I i=(K-1)j+1 
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= 7> CkK 

where 1 = m/j. Therefore, the variance var(k) is then defined as 

var(k) = 	 - Ck]2 , 	 ( 6.17) 

and the standard deviation aj, is defined as 

aj = var(k) 

Increase in the number of data j in each discrete set will give better statistics for the 

defect correlation function due to the assumptions of the central limit theorem. The 

standard deviation however will be affected by the lack of statistical independence. 

6.3.2 Fitting of correlation function 

The correlation function derived from the simulated data can be fitted to Gordon's 

diffusion models, preferably the M-diffusion model as discussed before. In the fitting 

program, the maximum likelihood estimation of the model parameter r is calculated 

by minimising the quantity x2 , one of the so-called least-squares, within the iteration 

loop, where x2  is defined [92] as 

X 2 	
(C (tk) - f(tk : T))2 

k=1 	Uk  

where C(tk) is the autocorrelation function data at time tk (= kA), f(tk T) is a 

model function with a decay coefficient r at time tk, and Uk is the standard deviation 

of the data which gives weight to each point. Since the model functions use a reduced 

time unit t" = t\/kBT/I where kB (= 0.83147124 amuA2ps2K1)  is the Boltzmann 

constant, T the temperature in Kelvin and I (= 186.11 amuA2)  the moment of inertia 

of the defect linear molecule, the MD time for defect correlation functions must be 

changed to the reduced time unit. 



CHAPTER 6. REORIENTATION MOTION IN BINARY MIXTURES 	110 

During the iteration loop the value of T changes by LT with a bisection method in 

which the sign of LT is changed when x2  increases and its value is halved when the 

sign of L\X2 ( Xew - Xld) changes in order for the model function to converge to the 

data. Calculating the recursive routines of the model function at discrete times and 

interpolating them before the iterations can considerably reduce the time taken for the 

fitting process. 

Goodness-of-fit is tested by the incomplete gamma function -y(a, b) [92] which is 

defined for the least-squares fitting method as 

Q7 (N2X) 

where the value Q represents fitting quality. In order for the goodness-of-fit to be 

believable, Q must be larger than 0.1. However, a simple measurement of the root-

mean-square deviation, r.m.s.= \/, will give a reasonable estimation of the fitting 

quality. 

6.3.3 Space diffusion function 

In order to observe the displacement of a molecule during the simulation, a function 

which analyses the displacement of the molecule from a reference position can be devised 

as a function of time. It is defined simply as a distance at t from an initial position 

F'(0) at t = 0 and we shall call this the space diffusion function. If we let the initial 

position be zero, the function r(t) is defined as 

r(t) = \/IT(t)1 2  

The function enables us to study translational diffusion of a molecule from its reference 

position at t=0. If there was a sudden increase in the function over a short time, it 

would mean that the molecule has displaced by a significant distance during the time. 
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6.4 Simulation Detail 

In order to investigate reorientational motions, a system is prepared with SF 6  host 

molecules of spherical top symmetry within which a small number of defect solute 

linear molecules are included. The system is set up to display the relevant physical 

phenomena of molecular reorientational motions rather than being a representation of 

a particular system in detail. As studied previously, the defect simulation program used 

in chapter 5 requires a little modification for the present study, mainly for recording 

orientational data as a function of time for both the host and the defect. In the 

simulation program of SF 6  molecule system developed for chapter 5, it is simply a time 

recording of quaternions of a specific set of molecules. 

Since the system is found to be easily supercooled in computer simulation, it is 

therefore best to warm up the system from the crystalline phase to the liquid through 

the plastic crystalline phase rather than to freeze from the liquid to the plastic crystal. 

The system of 1024 SF 6  molecules with eight linear defects is prepared at lOOK as a 

perfect bcc lattice with a given molecular number density (A 3) according to table 

5.2. Only a small number of defects are included in the host system so that interaction 

between defect molecules is minimised. The description for the linear defect molecule is 

available in the previous chapter. Defects are chosen at random sites and the distances 

between defects are monitored to ensure they are well distributed and not too close. 

The system is equilibrated at lOOK and warmed up to 230K at the rate of 0.2K/ps. At 

every 10K temperature step, a sample is taken to equilibrate at that temperature for 

400ps and simulated for a further 400ps (which is equal to 40000 MD steps since 1 MD 

step used in the present study is again O.Olps). Molecular orientations are recorded as 

a function of time at every two MD steps. 
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Table 6.1: Comparisons of the classical model C(t) (second moments only), Gordon's 
M-diffusion model, and the simulation results at various correlation times t=0.1ps, 
0.2ps, and 0.4ps for three different temperatures, lOOK for the crystal, 170K for the 
plastic crystal, and 230K for the liquid. C(t) is calculated with 1=186.1411 am  A2  
and kB=0.83147124  amu A2  ps 2  K- '. 

t T C(t) M-diffusion model simulation results 
O.lps lOOK 0.995(5) 0.995(5) 0.996(0) 

170K 0.992(4) 0.992(2) 0.992(9) 
230K 0.989(7) 0.989(6) 0.990(0) 

0.2ps lOOK 0.982(1) 0.982(2) 0.984(5) 
170K 0.969(6) 0.969(9) 0.973(7) 
230K 0.958(9) 0.959(5) 0.963(1) 

0.4ps lOOK 0.928(5) 0.930(2) 0.953(2) 
170K 0.878(5) 0.883(3) 0.917(9) 
230K 0.835(6) 0.844(3) 0.882(6) 

6.5 Results 

6.5.1 Very short time regime 

The dipole correlation function of a classical linear molecule is given [93] in a power 

series as 

C(t) = 0(0) . (t)) =1 - () t2 + [ (k B T)2 
+ 24I20] 

4 + 

where (t) is the unit vector of the molecule, kB is the Boltzmann constant, T is the 

temperature, I is the moment of inertia of the molecule, and ((Q)2)  is the equilibrium 

averages of the mean square torque on a molecule due to its neighbours where is the 

potential. The form of the correlation function for small t is mainly affected by the 

second term on the right (second moment) which only depends on the temperature 

and the molecular moment of inertia. The classical invariance of the second moment 

provides a method to test if the spectral distribution was measured over a sufficiently 

wide range of frequencies. 

The dipole correlation function C(t) of a classical linear molecule with only the first 

and second terms is compared with simulation results of defects together with Gordon's 
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M-diffusion model of the free linear rotor in tables 6.1. Three independent correlation 

functions at each temperature show little variation at short correlation time t=0.1ps. 

As the time increases to 0.2ps and 0.4ps correlation functions of the M-diffusion model 

and the simulation result deviate and both lie above the classical model. This result 

shows Gordon's M-diffusion model function is properly analysed and our simulation 

result is promising. Since intermolecular interactions come into play with the t4  term 

(fourth moments) and have the effect of decreasing the decay of C(t) with time, the 

reorientational correlation function for interacting molecules initially will lie above that 

for free molecules. 

Correlation functions of SF6 host molecules as a function of reduced time scale 

t = t./kT/I where t is the MD time in Ps, kB is the Boltzmann constant, and T is the 

temperature, analysed from the simulation results are presented in figure 6.4 for various 

temperatures from lOOK (top) to 230K (bottom) at 10K increments. The reduced 

time equals MD time at about T=224K. All the correlation functions in the figure 

are drawn with enough statistics. They show monotonic temperature dependence as 

expected; correlation functions of SF6 molecules decrease as the temperature increases. 

This result is consistent with the previous experimental NMR measurements for a pure 

cyclohexane sample by O'Reilly et al. [76] in which monotonic temperature dependence 

of the rotational correlation time of cyclohexane was observed. There are two large gaps 

in between 120K and 130K, and between 210K and 220K where the crystal -* plastic 

crystal and the plastic crystal -* liquid phase transitions occur respectively. Host 

correlation functions therefore clearly identify the two phase transition temperatures. 

It is noted from the figure that the correlation function at 150K is close to that of 160K. 

In order to analyse the correlation functions of the simulation results, they are fitted 

with our modified M-diffusion functions for the spherical top molecule by least-squares 

after the calculation of a set of 0-functions for steps of T. The fitting results for r are 

given in table 6.2 for the 14 temperatures with root-mean-square deviations. The fact 
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that the initial curve of all correlation functions depends only on the kinetic motion 

of molecules rather than intermolecular interactions, the small statistical errors in the 

short time scale will result in an excessive weight on initial data points. In the fitting 

process therefore, each data point was equally weighted to investigate overall features 

of the correlation function. 

At the lowest temperature, where molecules are closest together, r 1  suggests 

around 144+12 collisions in the reduced time of 3.5, and therefore n in equation 6.4 has 

to be about 200 for the theoretical functions to be accurate. As the minimum required 

for n increases with the length of the time span the 8-function accuracy diminishes 

with reduced time t', resulting in a systematic reduction of C(t) with t. To minimise 

this systematic error the fitting is terminated at t*=1.5.  The fitting results show that 

the best fits are obtained for the plastic phase in the higher temperature range. Com-

parisons of our model function of the spherical top molecule with the MD simulation 

results are given in figure 6.5 for three different phases, the crystal at 110K, the plastic 

crystal at 170K, and the liquid at 230K. As shown in the figure, fittings of the MD 

results are very satisfying for the crystal and the plastic crystal. In both cases, the 

fitted model function starts above the simulation result and ends below at t*=1.5.  This 

is consistent with the trend of systematic error in the theoretical function and shows 

that the r values might be estimated slightly too low. However for the liquid phase 

the 8-function starts below the MD result and ends above at t*=1.5,  and is in a range 

of r for which the 8-function is unlikely to be inaccurate. This suggests that the fit 

is sufficiently poor that the M-diffusion model would need some modification for this 

phase. In a further analysis with the J-diffusion model, we have found no advantage 

over M-diffusion. 

6.5.2 Correlation function anomalies at the transitions 

Plots of defect correlation functions at various temperatures from lOOK to 230K as a 

function of reduced time are presented in figure 6.6 from the top to the bottom with 
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Figure 6.4: Correlation functions of SF 6  host molecules as a function of reduced time 
scale t analysed from the simulation results. The uppermost curve is of lOOK and the 
temperature increases by 10K as it goes down. 
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Figure 6.5: Correlation functions of SF 6  host molecules as a function of reduced time 
scale t*  taken from figure 6.4 (small box in the figure) at 110K, 170K, and 230K for 
the crystal, the plastic crystal, and the liquid respectively. In the figure, MD stands for 
the correlation function analysed from the simulation results and FIT stands for the 
fitting results. 
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a temperature step of 10K. The box within the figure is presented in figure 6.7. It 

is expected that as the temperature increases, the reorientational correlation function 

decreases. In the figure however, rotational diffusion appears to be nonmonotonic tem-

perature dependent. Molecular reorientational motion at 140K surprisingly decreases 

below that at T=130K after the system has entered the plastic crystalline phase from 

the crystal. The correlation function at 130K starts above that of 140K as expected, 

and crosses over to below at about t=0.24ps. It then again crosses over to above the 

correlation function at 140K at about t=3.62ps and continues beyond t = 3.62ps in a 

manner closely similar to the other functions in the crystal regime. It suggests that even 

after the transition to the plastic phase has happened, some defect molecules are caught 

again in certain orientations which slow down reorientational motion at 140K causing 

the correlation function at 140K to lie above the correlation function at 130K within 

the time regime t <3.62ps. The crossover between these two correlation functions at 

130K and 140K suggests that they follow different reorientational diffusion motions. It 

is noted that the correlation function at 130K is similar to those at lOOK, 110K, and 

120K which are in the crystalline phase. When just plastic, 140K, there is a range of 

t (0.24-3.62ps) where the correlation function at 140K is higher than that at 130K, 

but it does fall off at t >3.62ps more than the crystal correlation function, and is con-

sistent with those plastic phase correlation functions at 150K and over. We note that 

for very short time regime the intermolecular interactions are not so important, and 

all the correlation curves are in the expected order due to the fact that reorientation 

motion is dominated by only the temperature and the moment of inertia of molecules. 

Therefore, it is believed that the behaviour of the correlation curve at 140K in the time 

regime (0.24ps < t < 3.62ps) is deeply related to the interactions with host molecules, 

and the greater freedom of the host molecules at higher temperatures tends to reduce 

the extra space enjoyed by the smaller defect molecules, which are substitutional, but 

for longer times (t > 3.62ps) the extra host motion does cause greater decorrelation for 
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the defects. 

A rapid reorientational diffusion occurs again as the system melts at about 220K. 

The correlation function at 210K appears to be starting above that of 220K and then 

crosses over the correlation function of 220K at about t=1.95ps. It then again crosses 

over that of 220K at about t=3.Ops. It shows that a lower temperature plastic crystalline 

phase (210K) has more reorientational diffusion motions at a short time regime (t < 

3.Ops) than a higher temperature liquid (220K). The argument made for the anomaly at 

140K is again possible for the anomaly at 210K that the time regime 1.95ps < t < 3.Ops 

shows significance of interactions of defect molecules with host molecules. Long time 

reorientational diffusion motion of defects is limited by host motion resulting in overall 

increase of correlation function. This phenomenon is consistent with the experimental 

observations (reproduced in figures 6.8 and 6.9) reported by Edington et al. [75] from 

the Raman scattering measurement of CS2 tracer solution within cyclohexane molecule 

system. In the experimental results, CS2 tracer molecules show rapid reorientational 

diffusion at short time regime as the system is cooled down to the plastic crystalline 

phase from the liquid, showing a nonmonotonic temperature dependence. It is noted 

from the experimental results that the correlation functions of CS2 molecule show a 

more rapid decrease than those of the MD results due to the fact that CS2 tracer 

molecule is relatively much lighter than our model defect molecule. 

It is observed in the very short time regime t < 0.25ps that defect correlation 

functions at various temperatures show a monotonic temperature dependence. This 

result agrees with the analysis of the second moment of the classical model which is 

characterised only by temperature and moment of inertia as discussed at the beginning 

of this section giving a continuous decrease of correlation functions with increasing 

temperature. In the long time regime t > 3.6ps observed up to t=5.Ops, the correlation 

functions show again a monotonic temperature dependence except for the correlation 

function at 160K (see section 6.5.3). There is similarity of all "crystal curves", all 
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Table 6.2: The MD simulation results are fitted by least-squares with the Gordon's 
M-diffusion model for SF6  host and defect molecules for the 14 temperatures. The 
fitted values T are presented with the r.m.s. deviation. 

phase T(K) r(SF6 ) rms r(tracer) rms 
liquid 230 0.201 0.0133 0.346 0.0043 

220 0.176 0.0107 0.284 0.0043 
plastic 210 0.101 0.0016 0.286 0.0033 

200 0.094 0.0011 0.282 0.0030 
190 0.086 0.0023 0.273 0.0045 
180 0.076 0.0029 0.250 0.0038 
170 0.071 0.0029 0.232 0.0047 
160 0.065 0.0044 0.248 0.0049 
150 0.062 0.0039 0.215 0.0056 
140 0.054 0.0049 0.176 0.0047 
130 0.050 0.0057 0.193 0.0074 

crystal 120 0.034 0.0074 0.152 0.0097 
110 0.028 0.0036 0.128 0.0123 
100 0.023 0.0052 0.104 0.0135 

"plastic" are consistent, all "liquid" are similar, but all three groups are different for 

long t". Eventually, the defect correlation functions are expected to approach zero 

since the correlation values are distributed between +1 and -1 and the average of the 

values over a long period of time would converge to zero. The correlation functions in 

the liquid would approach zero more rapidly than those in the plastic crystal due to 

random reorientational motions of defect molecules. 

Fittings of reorientational correlation functions by Gordon's M-diffusion model for 

the defect are presented as "tracer" in table 6.2. In the table, the best fits are in general 

obtained in higher temperature range of the plastic phase which are consistent with 

the fitting results of the host molecule. Poorer fitting results are however found in the 

crystal regime rather than the liquid. There also appear nonmonotonic increases of r 

as the temperature increases, especially at 130K, 160K, and 210K. They are plotted in 

figure 6.10 to show more clearly. The figure shows clear decreases of the r.m.s. deviation 

as the temperature increases and also three different temperatures within the plastic 
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Figure 6.6: Correlation functions of the linear defect molecules as a function of reduced 
time t". From top to bottom at t*=2.5  the temperatures are lOOK, 110K, 120K, 140K, 
130K, 150K, 170K, 160K, 180K, 190K, 220K, 200K, 210K, and 230K. 
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Figure 6.7: Correlation functions of defect molecules as a function of reduced time scale 
t taken from figure 6.6 at 110K, 170K, and 230K for the crystal, the plastic crystal, 
and the liquid respectively. They are fitted by Gordon's M-diffusion model. In the 
figure, MD stands for the correlation function analysed from the simulation results and 
FIT stands for the fitting results by the model function. 
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Figure 6.8: In the short time (t < 0.5ps) regime, the reorientational correlation func-
tions Crot (t) for a 20% solution of CS2 in cyclohexane. 
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Figure 6.9: In the long time (t 0.5ps) regime, the reorientational correlation functions 
Crot(t) for the same system as figure 6.8. (Figures 6.8 and 6.9 are reproduced from the 
experimental report by Edington et al. [75] with permission). 



CHAPTER 6. REORIENTATION MOTION IN BINARY MIXTURES 	121 

0.5 

0.4 

0.3 

0.2 

0.1 

0 
100 	120 	140 	160 	180 200 220 240 

temperature(K) 

Figure 6.10: Fitted tan values with errorbars as a function of temperature. They are 
fitted by the spline-fit and plotted with rms as errorbars. Two arrows A and B show 
two transition points, crystal —* plastic crystal and plastic crystal —* liquid respectively. 

crystalline phase showing high increases of r. Fitted M-diffusion functions (FIT) are 

plotted with the MD simulation results (MD) in figure 6.7 for three different phases at 

110K for the crystal, 170K for the plastic crystal, and 230K for the liquid. The figure 

shows good approximations for the plastic crystal and the liquid. In the figure, all three 

fitted theoretical model functions start below the MD results in short time scale and 

end above at t*=1.5  showing that the T values might again be estimated slightly too 

high. Although the fitting results are poorer in the crystalline phase, the theoretical 

model function, in general, shows a good agreement with the MD results. 

Comparison of correlation functions are made for the stable plastic crystalline phase 

and the metastable phase (liquid) at the same temperature where the correlation func-

tion of a metastable liquid is produced by supercooling the liquid at 210K. Two cor-

relation functions are presented together in figure 6.11 where the top figure is the 

comparison of the defect and the bottom is for the host. In the comparison of two 

phases of the host molecule, the liquid (meta-stable) shows an overall speeding up of 
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Figure 6.11: Comparison between two correlation functions of the stable (plastic) and 
the meta-stable (liquid) phases at the same temperature 210K as a function of reduced 
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reorientational diffusion motion against the plastic crystalline phase (stable). This is 

an expected result since the disordered liquid phase has more local free volume. Re-

ferring to molecular number densities analysed, p 3 =9.54451x10 3  A-3  for the system 

in the stable plastic phase and pm7.77519X10 3  A-3  for the metastable liquid, this 

extra free volume allows molecules to rotate more freely in the liquid phase than in the 

ordered plastic phase. However, it is not always the case for the linear defect molecules 

as shown in the top of figure 6.11. There is a rapid reorientational diffusion in the 

correlation function of defects in the stable plastic crystalline phase in the time regime 

up to t*=5.2.  Beyond this regime, the correlation function lies above the meta-stable 

liquid curve. Host motion seems to hinder long time reorientational diffusion of defects 

in the stable plastic phase. It suggests that there are short time scale reorientational 

motions for the linear defects possibly by rapid kicking by neighbouring host molecules. 

6.5.3 The 160K anomaly 

There is apparent anomaly in the reorientational diffusion motion within the plastic 

crystalline phase. According to figure 6.6, the defect correlation curve at 170K appears 

to be above the 160K curve. The correlation function at T=160K seems to be staying 

below the curve at T=170K even beyond t = 3.5, unlike those found at the two 

transition temperatures. It is also noticed that overall shapes of both defect correlation 

functions at 160K and 170K are almost the same as each other, as expected since they 

follow a similar reorientational diffusion motion. The anomaly is therefore assumed to 

be different from those in the other two regimes. 

In order to see more clearly, the values of the correlation functions for all tempera-

tures at t' = 3.5 in figure 6.6 are plotted as a function of temperature and fitted by the 

spline-fit as given in figure 6.12. The figure shows a clear non-monotonic temperature 

dependence. Within the plastic crystalline regime (130K 210K), there is a very no-

ticeable depression at about 160K followed by a hump at 170K. It coincides with the 

speeding up of reorientational motion at 160K as seen in figure 6.6 and suggests that 
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Figure 6.12: The values of the correlation functions of the defect taken from figure 6.6 
at t*=3.5  as a function of temperature. They are fitted by the spline-fit. There are 
transition temperatures in between 120K and 130K, 210K and 220K for the crystal —* 
plastic crystal and the plastic crystal —* liquid respectively. 

there exists a definite physical phenomenon around this temperature. 

Average molecular number densities are plotted in figure 6.13 at various tempera-

tures in order to investigate whether or not changes of local free volume can be identi-

fied by density. The figure clearly identifies two first order phase transitions in between 

120K and 130K for the crystal -4 plastic crystal, 210K and 220K for the plastic crys-

tal —* liquid. Within the plastic crystalline temperature regime, the density decreases 

gradually as temperature increases. However, there is no sign of density change around 

160K where an abnormal rapid reorientational diffusion was observed. 

Standard deviations estimated from the root-mean-square average over 100ps of 

molecular number densities are given at various temperatures in figure 6.14. The figure 

represents statistical variations of densities. Points of standard deviations plotted in 

the figure are fitted by the spline-fit. It shows that active volume fluctuations will 

result in high statistical variations. The figure therefore allows us to examine if there 

exist such activities in the system. At T=130K, there is a high increase of such volume 
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Figure 6.13: The root-mean-square average of molecular number density (A 3 ) over 
lOOps. There are two first order phase transitions; one between 120K and 130K for the 
crystal —* plastic crystal phase transition, the other between 210K and 220K for the 
plastic crystal - Jiquid. 
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Figure 6.14: Standard deviation estimated from the root-mean-square average of the 
molecule number density over lOOps. They are fitted by the spline-fit. 
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Figure 6.15: Average space diffusion in units of A of defect (D) and host (H) after 
lOOps together with average angular velocities in units of ps' of defect (Dw) and host 
(Hw). A and B mark two phase transition temperatures; the crystal —* plastic crystal 
(A) and the plastic crystal —* liquid. 

fluctuations. This is the temperature where the system enters the plastic crystalline 

phase in which SF 6  molecules become orientationally disordered whereas they are trans-

lationally ordered. Therefore, the increase in volume fluctuations is assumed to be a 

result from the orientational disorder of host molecules. Such high volume fluctuations 

increase dramatically at about 220K where the system melts. As previously observed 

in figure 6.12, there is again a high increase of volume fluctuation activity at 160K 

within the plastic crystalline phase. Such volume fluctuations are direct evidence of 

high reorientational motion. 

The average space diffusion for periods of lOOps are given in figure 6.15 for the 

defect and the host marked in the figure as D and H respectively. In the figure, two 

phase transition temperatures are marked as A and B for the crystal —+ plastic crystal 

and the plastic crystal —* liquid respectively. Within the plastic phase, the host space 

diffusion increases monotonically with increasing temperature whereas the defect space 

diffusion changes non monotonically. The host space diffusion line (H) in figure 6.15 is 
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inversely proportional to the density line in figure 6.13 showing consistency between 

the volume expansion and the host space diffusion. The root-mean-square deviations in 

the average defect space diffusion, however, are found to be statistically very unreliable 

due to the small configuration number of defect molecules. The humps of the average 

defect space diffusion do not coincide with the abnormality at 160K and 170K, and are 

within statistical errors. It suggests that the abnormality within the plastic crystalline 

phase is not involved either with the space diffusion of host or with of defect. Average 

angular velocities at various temperatures are also given in the same figure showing 

monotonic increase with increasing temperature, consistent with the rotational kinetic 

energy increasing monotonically as temperature increases. It is noted that volume 

increase of the system is closely proportional to the increase of reorientational rate of 

SF6  showing a monotonic increase with increasing temperature (G. S. Pawley private 

communication). Therefore, the anomaly at 160K is irrelevant to the reorientational 

rate of host molecules. In the figure no abnormality is identified within the plastic 

crystal regime. Defect average angular velocities again show poor statistics due to the 

lack of configuration number, and do not help in the understanding of the abnormality 

at 160K. 

In figure 6.16, 6.17, and 6.18, continuous defect orientations are plotted for lOOps 

at every two MD steps at various temperatures by the dotplot representation (refer to 

section 2.10.2) to show time evolution of defect reorientations. Throughout the three 

figures, the eight defects numbered from 1 to 8 are placed in columns with increasing 

temperature from left to right. 

The crystalline phase between lOOK and 120K in figure 6.16 shows multiple sites of 

localised reorientational motion. Typical examples are found from defect #2 and #5. 

In this phase, there are also a few molecules showing a very localised reorientational 

motion about a particular orientation such as defect #1, #7,  and #8. Although a 

number of defects show a certain degree of active reorientational motion, in general 
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Figure 6.16: Dotplots of eight defects for lOOps. There is a crystal - plastic crystal 
phase transition in between 120K and 130K. 
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they exhibit a large "exclusion zone" which is not visited by defects. 

As the system enters the plastic crystalline phase, the multiple sites of localised 

reorientational motion as found in the crystal clearly disappear. There are a few de-

fects which still persist with very localised reorientational motion even after the phase 

transition to the plastic crystal. However, their reorientational motion in general dif-

fers from those found in the crystal by the extent of local sites. Overall areas of the 

exclusion zone are smaller than those found in the crystal but are still in evidence. 

The localised motion in the plastic crystal is assumed to be due to the reorientational 

motion of host molecules which is characterised by jumps to other orientational sites 

in the time scale '-.-1ps. Between these orientational jumps of host molecules, defects 

have a certain degree of probability of being in a particular orientational site although 

it is less defined compared to that in the crystal due to the orientational disorder of 

the host molecules. Those localised motions disappear mostly at about 160K. 

However, a local site for defect #1 reappears at 170K. This corresponds to the 

observation of abnormality at 170K where the defect correlation function at 170K was 

found to be above that at 160K. It differs from the crossovers between correlation func-

tions which happened in the two phase transition regimes within short time regime. It 

is believed according to dotplots of defect #1 at 150K, 160K, and 170K that the abnor-

mality at 160K is statistically insignificant due to the fact that the defect correlation 

functions are statistically averaged over a long period of time rather than a large num-

ber of defect molecules, during which defect #1 would have given a large contribution 

to the correlation function at 170K by remaining in a site significantly more constant 

than the average site. 

In the liquid as shown in figure 6.18 at 220K and 230K, dotplots show random 

reorientational motions as expected for the liquid. There are no orientational excluded 

zones in the dotplots as distinct from those in the plastic crystal where a certain degree 

of orientational exclusion still exists ever close to the liquid phase. 
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6.6 Discussion 

In the fitting analysis, Gordon's diffusion models, particularly M-diffusion, were found 

to be very useful for systematic analysis of correlation functions although the models 

would need some modifications for certain phases, such as the liquid for the spherical 

top analysis and the crystalline for the linear top. 

It was found that the anomaly between 160K and 170K was different from those 

found at the two phase transitions. We ascribe this anomaly to poor statistics, this 

170K result being skewed as one of the defect molecules was in a site which remained 

significantly more constant than the average site. Space diffusion, volume change, and 

reorientational rate of host molecules with increasing temperature were proven to have 

had no connection with this apparent anomaly. 

From the simulation study on binary mixtures of SF 6  host molecules and linear 

defects, it was found that reorientational motion of the host increases as the temper-

ature of the system increases showing monotonic temperature dependent lowering of 

host correlation functions. In the direct comparison of two different phases of the host 

system at the same temperature of 210K, at which metastable liquid phase obtained 

by supercooling was compared with the stable plastic crystalline phase, it was also 

observed that the reorientational correlation function of the stable phase of the host 

lies above the metastable liquid as expected. These results are consistent with previous 

experimental observations based on NMR and optical spectroscopic measurements in 

which orientational relaxation times exhibited a continuous monotonic increase across 

the liquid -+ plastic phase transition regime [76, 94]. 

Comparison of defect correlation functions of the stable plastic phase and the 

metastable liquid showed that there was a rapid reorientational diffusion motion in 

the stable plastic phase below the metastable liquid. We also found that defect corre-

lation functions at various temperatures show nonmonotonic temperature dependence. 

Particularly, the correlation function at 210K in the plastic crystalline phase decays 
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more rapidly below that of 220K in the liquid in the short time regime whereas it stays 

above in the long time regime. These results agree with the observation of a strange re-

orientational diffusion behaviour of solute tracer molecule in the liquid -* plastic crystal 

phase transition regime from Raman scattering measurement by Edington et al. [75] 

in which correlation functions of CS 2  solute molecule were found to be nonmonotonic 

temperature dependent. The same feature was found at 130K immediately after the 

phase transition to the plastic crystal showing rapid reorientational diffusion motion 

in the short time regime. The behaviours in the short time regime observed at the 

two phase transitions are believed to be that interactions with host molecules are im-

portant in the plastic crystalline phase which have resulted in increase of short time 

reorientational motion while long time diffusions are hindered by host motion. 

In the plastic phase the host molecules tend to undergo orientational "jumps" be-

tween orientations that are symmetry related. A defect molecule is assumed to be 

surrounded by host molecules which therefore form a "site". This site does not change 

when a host molecule jumps, except during the brief time of the jump. During this 

brief time the defect molecule might be disturbed by more than the usual thermal 

motion, becoming decorrelated more quickly than would be expected for a liquid for 

that temperature. This is on a time-scale determined by the jump time ('-1ps) and 

the jump probability. The site for the defect does persist for a time much longer than 

the jump time because the host molecules forming the site tend to return to the same 

orientations after jumps. This means that there are orientations for the defect in any 

particular site which are not visited as often as they would be if the host system were 

liquid, and therefore the defect correlation function, although falling more rapidly than 

the liquid in the short time regime, falls less rapidly over a long time, this "long time" 

being determined by the constancy of the site. Site constancy can be seen in the long 

period connected defect dotplots. 
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6.7 Conclusion 

Gordon's theoretical diffusion model for the linear top molecule is found to have best 

fits in the plastic crystalline phase and the liquid whereas the MD result showed some 

degree of discrepancy in the crystalline phase with the model function. The extended 

version of the theoretical model developed for the spherical top molecule is found to 

have shown best fits in the crystalline phase and the plastic crystalline whereas the 

MD result fits rather poorly in the liquid. Therefore, each model function is not fully 

compatible with all the three phases and would need modification. 

It is concluded that jump reorientational motions of host molecules are responsible 

for the rapid defect reorientational diffusion in the short time regime. The site does not 

change as a result of a host molecule jump. This therefore results in hindrance of long 

time reorientational diffusion of defects as shown by the defect correlation function. 

In the present study, we have simulated a system in which a small number of linear 

defect molecules are included in SF 6  host system in order to investigate reorientational 

diffusion motion for both molecules to investigate strange reorientational diffusion mo-

tion of CS 2  solutes with cyclohexane observed from Raman scattering measurements 

by Edington et al. [75] in comparison with the previous NMR experimental measure-

ments on a pure cyclohexane solvent sample by O'Reilly et al. [76]. We found that the 

simulated system accounts for all the major features of the experimental observations, 

such as an increase in the tracer molecule short-time reorientational relaxation rate at 

the liquid to plastic transition, and the presence of a long-time regime where the liquid 

state relaxation rate becomes faster than that in the plastic phase. 

Today, a simple computer simulation can run on a small personal computer though 

it was once a challenge even a decade ago. The computer simulation technique is found 

to be very successful in various scientific areas and the computer itself is now ever 

more powerful and will develop even more in the future. Although the present study 

of molecular reorientational motion was done for a rather simple model, more detailed 
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models of very complex systems can easily be studied in the near future. These studies 

demanding computing power in both simulation and analysis will yield a considerable 

benefit for understanding of experiment. 



Sulphur Hexafluoride (SF6) 

The suiphurhexafluoride molecule has an octahedral arrangement and there are six flu-

orine atoms placed at each vertex and one sulphur atom at its centre. The bond length 

between the sulphur and fluorine atom is given as a=1.565A [50] and the coordinates of 

six atoms are (+a, 0, 0),(0, ±a, 0), and (0, 0, +a). The mass of the molecule is in total 

146 amu since the fluorine atom is 19 amu and the sulphur atom is 32 amu. 

The inertia tensor is derived as follows, 

	

y+z? 	Xjj -XjZ 

I=>Jmj 	j•Xj 

-ZX -Ziy 

where mi is the mass of atom i and x, y j  and zi are the atomic co-ordinates relative to 

the molecule centre. The inertia tensor of sulphur hexafluoride is, therefore, 

186.1411 0.0 	0.0 

I = 	0.0 	186.1411 0.0 

0.0 	0.0 	186.1411 
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Conversion factors used in 
simulations 

ISkI 

Quantity Name Symbol 	Definition (SI) 

Length ângström A 	10 10 m 

Time picosecond ps 	10-12 sec 

Mass atomic mass unit amu 	1.6605 x 10 27 k9 

CONVERSION FACTORS 

kB = 0.83147124 amu A2  ps 2  K' 

1 Kcal Mo1 1  = 418.674 amu A2  ps 2  

1 GPa = 60.22282 amu A 1  ps 2  1 x iO" bar 

137 



Bibliography 

Becker, R. and W. Döring. Ann. d. Phys. 24 719 (1935). 

Turnbull, D. and J. C. Fisher. J. Chem. Phys. 17 71 (1949). 

Glasstone, S., K. J. Laidler, and H. Eyring (eds.). The Theory of Rate Processes. 

McGraw-Hill Book Company, Inc., New York (1941). 

Harrowell, P. and D. W. Oxtoby. J. Chem. Phys. 80 1639 (1984). 

Oxtoby, D. W. J. Phys.,Condens. Matter 4 7627 (1992). 

Oxtoby, D. W. Adv. Chem. Phys. 70 263 (1988). 

Mandell, M. J., J. P. McTague, and A. Rahman. J. Chem. Phys. 64 3699 (1976). 

Mandell, M. J., J. P. McTague, and A. Rahman. J. Chem. Phys. 66 3070 (1977). 

Hsu, C. S. and A. Rahman. J. Chem. Phys. 70 5234 (1979). 

Cape, J. N., J. L. Finney, and L. V. Woodcock. J. Chem. Phys. 75 2366 (1981). 

Swope, W. C. and H. C. Andersen. Phys. Rev. B 41 7042 (1990). 

Steele, W. A. J. Chem. Phys. 38 2404 (1963). 

Steele, W. A. J. Chem. Phys. 38 2411 (1963). 

Gordon, R. G. J. Chem. Phys. 44 1830 (1966). 

Fixman, M. and K. Rider. J. Chem. Phys. 51 2425 (1969). 

138 



BIBLIOGRAPHY 	 139 

Pierre, A. G. S. and W. A. Steele. Phys. Rev. 184 172 (1969). 

McClung, R. E. D. J. Chem. Phys. 57 5478 (1972). 

Pierre, A. C. S. and W. A. Steele. J. Chem. Phys. 57 4638 (1972). 

Hernández-Contreras, M. and M. Medina-Noyola. Phys. Rev. E 54 6586 (1996). 

Coffey, W. T., P. M. Déjardin, and M. E. Walsh. J. Chem. Phys. 110 5300 (1999). 

Rothschild, W. G. J. Chem. Phys. 57 991 (1972). 

Fujara, F., B. Geil, H. Sillescu, and G. Fleischer. Z. Phys. B, Cond. Matter 88 

195 (1992). 

Jones, M. J., F. Guillaume, K. D. M. Harris, A. E. Aliev, P. Girard, and A.-J. 

Dianoux. Mol. Phys. 93 545 (1998). 

Dreyfus, C. and C. Breuillard. Mol. Phys. 62 1275 (1987). 

Heyes, D. M., M. J. Nuevo, J. J. Morales, and A. C. Bránka. J. Phys. Cond. 

Matter 10 10159 (1998). 

Meyer, M., C. Marhic, and G. Ciccotti. Mol. Phys. 58 723 (1986). 

Alder, B. J. and T. E. Wainwright. J. Chem. Phys. 27 1208 (1957). 

Rahman, A. Phys. Rev. 136 405 (1964). 

Lennard-Jones, J. E. Proc. Roy. Soc. (London) A 463 (1924). 

Verlet, L. Phys. Rev. 159 98 (1967). 

Beeman, D. J. Comp. Phys. 20 130 (1976). 

Evans, D. J. Mol. Phys. 34 317 (1977). 

Parrinello, M. and A. Rahman. Phys. Rev. Lett. 45 1196 (1980). 



BIBLIOGRAPHY 
	

140 

Lees, A. W. and S. F. Edwards. J. Phys. C, Solid State Physics 5 1921 (1972). 

Andersen, H. C. J. Chem. Phys. 72 2384 (1980). 

Evans, D. J. and G. P. Morriss. Chem. Phys. 77 63 (1983). 

Hoover, W. G. Phys. Rev. A 31 1695 (1985). 

Schröder, T., R. Schinke, R. Krohne, and U. Buck. J. Chem. Phys. 106 

9067 (1997). 

Beck, T. L. and T. L. M. II. J. Chem. Phys. 93 1347 (1990). 

Shimamura, S., S. N. Khanna, and P. Jena. Phys. Rev. B 40 2459 (1989). 

Greig, D. W. and G. S. Pawley. Mol. Phys. 89 447 (1996). 

Kittel, C. Introduction to solid state physics. John Wiley, New York (1971). 

Cohen, E. R. The physics quick reference guide. American Institute of Physics, 

Woodbury, New York (1996). 

Tanemura, M., Y. Hiwatari, H. Matsuda, T. Ogawa, N. Ogita, and A. Ueda. Prog. 

Theor. Phys. 58 1079 (1977). 

Alipress, J. C. and J. V. Sanders. Aust. J. Phys. 23 23 (1970). 

van de Waal, B. W. J. Chem. Phys. 98 4909 (1993). 

van de Waal, B. W. Phys. Rev. Lett. 76 1083 (1996). 

Farges, J., B. Raoult, and C. Torchet. J. Chem. Phys. 59 3454 (1973). 

Fukano, Y. and C. M. Wayman. J. Appl. Phys. 40 1656 (1969). 

Pawley, G. S. Mol. Phys. 43 1321 (1981). 

Bartell, L. S. J. Phys. Chem. 99 1080 (1995). 



BIBLIOGRAPHY 	 141 

Kinney, K. E., S. Xu, and L. S. Bartell. J. Phys. Chem. 100 6935 (1996). 

Dove, M. T., G. S. Pawley, G. Dolling, and B. M. Powell. Mot. Phys. 57865 (1986). 

Powell, B. M., M. T. Dove, G. S. Pawley, and L. S. Bartell. Mot. Phys. 62 

1127 (1987). 

Dove, M. T., B. M. Powell, G. S. Pawley, and L. S. Bartell. Mot. Phys. 65 

353 (1988). 

Pawley, G. S. and G. W. Thomas. Phys. Rev. Lett. 48 410 (1982). 

Dove, M. T. and G. S. Pawley. J. Phys. C, Solid State Phys. 16 5969 (1983). 

Dove, M. T. and G. S. Pawley. J. Phys. C, Solid State Phys. 17 6581 (1984). 

Hua, L. and G. S. Pawley. Z. Krist 202 177 (1992). 

Fuchs, A. H. and G. S. Pawley. J. Physique 49 41 (1988). 

Moon, C. and G. S. Pawley. J. Mot. Struct. 485-486 479 (1999). 

Honeycutt, J. D. and H. C. Andersen. Chem. Phys. Lett. 108 535 (1984). 

Honeycutt, J. D. and H. C. Andersen. J. Phys. Chem. 90 1585 (1986). 

Erpenbeck, J. J. Phys. Rev. Lett. 52 1333 (1984). 

Woodcock, L. V. Phys. Rev. Lett. 54 1513 (1985). 

Heyes, D. M. Mot. Phys. 57 1265 (1986). 

Gray, R. A., P. B. Warren, S. Chynoweth, Y. Michopoulos, and G. S. Paw!ey. 

Proc. R. Soc. Lond. A 448 113 (1995). 

[68] Evans, D. J. and B. L. Holian. J. Chem. Phys. 83 4069 (1985). 



BIBLIOGRAPHY 
	

142 

Evans, D. 3., W. G. Hoover, B. H. Failor, B. Moran, and A. J. C. Ladd. Phys. 

Rev. A 28 1016 (1983). 

Ashurst, W. T. and W. C. Hoover. Phys. Rev. A 11 658 (1975). 

Liem, S. Y., D. Brown, and J. H. R. Clarke. Phys. Rev. A 45 3706 (1992). 

Holleman, I., C. von Helden, A. van der Avoird, and C. Meijer. J. Chem. Phys. 

110 2129 (1999). 

Bartoli, F. J. and T. A. Litovitz. J. Chem. Phys. 56 413 (1972). 

Bulkin, B. J. and K. Brezinsky. J. Chem. Phys. 69 15 (1978). 

Edington, D. W. N., P. R. L. Markwick, W. C. K. Poon, H. Vass, and J. Cram. 

Phys. Rev. Lett. 82 3827 (1999). 

O'Reilly, D. E., E. M. Peterson, and D. L. Hogenboom. J. Chem. Phys. 57 

3969 (1972). 

Andreozzi, L., N. Giordano, and D. Leporini. J. Noncrystalline Solids 235 

219 (1998). 

De Smet, K. and L. Hellemans. Phys. Rev. E 57 1384 (1998). 

Bee, M., J. L. Sauvajol, and J. P. Amoureux. J. Physique 43 1797 (1982). 

Longueville, W., M. Bee, J. P. Amoureux, and R. Fouret. J. Physique 47 

291 (1986). 

Yildirim, T., P. M. Gehring, D. A. Neumann, P. E. Eaton, and T. Emrick. Phys. 

Rev. B 60 314 (1999). 

Chen, C., Y. Sheng, S. Yu, and X. Ma. J. Chem. Phys. 101 5727 (1994). 

Henseler, A. and E. Vauthey. Chem. Phys. Lett. 228 66 (1994). 



BIBLIOGRAPHY 	 143 

Heitz, M. P. and F. V. Bright. J. Phys. Chem. 100 6889 (1996). 

Williams, A. M., Y. Jiang, and D. Ben-Amotz. Chem. Phys. 180 119 (1994). 

Ha, T., J. Glass, T. Enderle, D. S. Chemla, and S. Weiss. Phys. Rev. Lett. 80 

2093 (1998). 

Nafie, L. A. and W. L. Peticolas. J. Chem. Phys. 57 3145 (1972). 

Imeshev, G. and L. R. Khundkar. J. Chem. Phys. 103 8322 (1995). 

Stein, A. D. and M. D. Fayer. J. Chem. Phys. 97 2948 (1992). 

Depondt, P. and W. Breymann. Mol. Phys. 87 1015 (1996). 

Affouard, F. and P. Depondt. Mol. Phys. 93 703 (1998). 

Press, W. H. et al. Numerical Recipes, The Art of Scientific Computing, chap. 14. 

Cambridge University Press (1986), ( 502). 

Barrow, R. F. et al. A Specialist Periodical Reports, 2 of Molecular Spectroscopy, 

chap. 3. Billing & Sons Limited, London (1974), ( 184). 

Bansal, M. and A. Roy. Mol. Phys. 38 1419 (1979). 


