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Lay Summary

In order to gain insight into how a system behaves at the microscopic level,
atomistic simulation techniques (e.g., molecular dynamics) are often adopted. In
classical molecular dynamics (MD), where energy is conserved, the movement
of atoms is governed by Newton’s law typically associated with a semiempiri-
cal potential energy function, minus gradient of which is the conservative force.
However, in real laboratories, it is not appropriate to measure the energy of the
system, not only will it vary as the system size changes but also the energy is
expected to have an exchange with the environment. Thus one may instead want
to perturb the system by adding to its interactions an associated “thermal bath”
frequently termed “thermostat”in such a way that a constant system temperature
is maintained.

The goal of atomistic simulation techniques, including MD, is to reconstruct
the molecular structure and chemical/physical properties of the system. In MD,
this is achieved by extracting statistics from an approximation of the evolution
of the system with the help of computer simulations. Due to the high frequency
of bond vibrations, the timesteps accessible in numerical simulations are greatly
limited to femtoseconds (a femtosecond is 10−15 seconds) in order to not violate
the stability of the system. As a consequence, the total simulation times accessible
for some real applications, even utilizing the most powerful computing resources
available, are merely of milliseconds. However, in many applications including
biological systems and soft matter physics (e.g., DNA, blood flow), long-time
simulations are often required to better predict the macroscopic behavior of the
system.

In practice, if only macroscopic properties are of interest, it may not be that
necessary to take into account all the details of atoms at the microscopic lev-
el. Instead, it may be more desirable to “coarse grain” groups of atoms to form
larger particles (i.e., neglecting high frequency vibrations), interacting with soft
potentials, such that larger time and length scales are accessible. This thesis is
concerned with one class of these coarse-graining methods, focusing on the opti-
mal design of numerical schemes in order to achieve a substantial enhancement
in numerical efficiency without losing accuracy.

Furthermore, this thesis addresses the computational benefits of novel ap-
proaches in emerging large-scale machine learning applications (i.e., “big data”)
that utilize a random and much smaller subset to approximate quantities of in-
terest based on the entire dataset, thereby achieving substantial improvements
in numerical efficiency. These approaches in data science can be thought of as
analogues of the coarse-graining techniques in MD.

v



Abstract

This thesis addresses the sampling problem in a high-dimensional space, i.e., the
computation of averages with respect to a defined probability density that is a
function of many variables. Such sampling problems arise in many application
areas, including molecular dynamics, multiscale models, and Bayesian sampling
techniques used in emerging machine learning applications. Of particular inter-
est are thermostat techniques, in the setting of a stochastic-dynamical system,
that preserve the canonical Gibbs ensemble defined by an exponentiated energy
function. In this thesis we explore theory, algorithms, and numerous applications
in this setting.

We begin by comparing numerical methods for particle-based models. The
class of methods considered includes dissipative particle dynamics (DPD) as well
as a newly proposed stochastic pairwise Nosé–Hoover–Langevin (PNHL) method.
Splitting methods are developed and studied in terms of their thermodynamic
accuracy, two-point correlation functions, and convergence. When computational
efficiency is measured by the ratio of thermodynamic accuracy to CPU time, we
report significant advantages in simulation for the PNHL method compared to
popular alternative schemes in the low-friction regime, without degradation of
convergence rate.

We propose a pairwise adaptive Langevin (PAdL) thermostat that fully cap-
tures the dynamics of DPD and thus can be directly applied in the setting of
momentum-conserving simulation. These methods are potentially valuable for
nonequilibrium simulation of physical systems. We again report substantial im-
provements in both equilibrium and nonequilibrium simulations compared to pop-
ular schemes in the literature. We also discuss the proper treatment of the Lees–
Edwards boundary conditions, an essential part of modelling shear flow.

We also study numerical methods for sampling probability measures in high
dimension where the underlying model is only approximately identified with a
gradient system. These methods are important in multiscale modelling and in
the design of new machine learning algorithms for inference and parameteriza-
tion for large datasets, challenges which are increasingly important in “big da-
ta” applications. In addition to providing a more comprehensive discussion of
the foundations of these methods, we propose a new numerical method for the
adaptive Langevin/stochastic gradient Nosé–Hoover thermostat that achieves a
dramatic improvement in numerical efficiency over the most popular stochastic
gradient methods reported in the literature. We demonstrate that the newly es-
tablished method inherits a superconvergence property (fourth order convergence
to the invariant measure for configurational quantities) recently demonstrated in
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the setting of Langevin dynamics.
Furthermore, we propose a covariance-controlled adaptive Langevin (CCAdL)

thermostat that can effectively dissipate parameter-dependent noise while main-
taining a desired target distribution. The proposed method achieves a substantial
speedup over popular alternative schemes for large-scale machine learning appli-
cations.
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Chapter 1

Introduction

Classical molecular dynamics (MD) tracks the motion of individual atoms deter-
mined by Newton’s law in the microcanonical (NV E) ensemble, where energy E
(i.e., the Hamiltonian of the system), as well as the total number of particles in
the system, N , and the volume of the system, V , are conserved [7, 58, 66, 105].
However, constant energy is not the appropriate setting of a real-world laboratory
environment. In most cases, one wishes instead to sample the canonical (NV T )
ensemble, where temperature T , as an intensive variable, is conserved, by using
“thermostat” techniques [58,79].

The idea of a thermostat is to modify dynamics so that a prescribed invariant
measure is sampled. There are competing aims in this type of work. For example,
one may wish to perturb the underlying Newtonian dynamics minimally, so that
temporal correlations are preserved, or one may be interested in sampling rare
events in a system with metastable states; thus a variety of methods have been
developed [101].

Figure 1.1: Schematic illustration of the coarse-graining procedure in DPD, where
each DPD particle represents a group of four water molecules [113].
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1.1 Multiscale Modelling

Stochastic momentum-conserving thermostats, which correctly capture long-ranged
hydrodynamic interactions, are increasingly popular tools for simulation of sim-
ple and complex fluids [6]. The first important scheme of this type was dissipa-
tive particle dynamics (DPD), introduced by Hoogerbrugge and Koelman [74] in
1992 for simulating complex hydrodynamic behavior at a mesoscopic level that
is not accessible by conventional molecular dynamics (MD) [7, 58]. In DPD, a
collection of fluid molecules are grouped at the coarse-grained level and treated
as a discrete particle (see Figure 1.1). These particles interact at short range
in a soft potential, thereby allowing larger timesteps than would be possible in
MD, while simultaneously decreasing the number of degrees of freedom required.
DPD thus bridges the gap between microscale (atomistic methods, e.g., MD) and
macroscale (continuum methods, e.g., Navier–Stokes) models and can be used to
recover thermodynamic, dynamical, and rheological properties of complex fluids,
with applications in polymer solutions [162], colloidal suspensions [132], multi-
phase flows [131], and biological systems [108] (see examples in Figure 1.2).

Figure 1.2: Left: Polymer chains (tethered spheres) are suspended in a solvent of
DPD particles (smaller dots) [162]. Right: DPD Simulation of red blood cells under
shear flow [56].

A great deal of effort has been devoted to the design of simple, efficient, and ac-
curate numerical methods to solve the DPD system due to its promising prospects
from the applications perspective. In the example of lipid bilayers, new phenome-
na arise as the time scale of the system that we are investigating is increased [64].
However, not all algorithms are rigorously founded and may not perform satis-
factorily in large scale simulations (see discussions in [16, 31, 126, 171]). All the
methods exhibit pronounced artifacts with increasing integration stepsizes due to
the discretization error, typically manifest in the form of statistical bias in the
calculation of thermodynamic averages. A previous study [81] suggested that,
without performing serious checks for each method, the only reliable approach is
to use vanishingly small stepsizes, since most of the schemes proposed are for-
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mally convergent at some order of accuracy. However, we argue that using very
small stepsize significantly limits the time scales accessible for DPD simulation,
particularly in large scale simulations.

One of the key questions we tackle in this thesis is “What is the largest inte-
gration stepsize that can be used without damaging both static and dynamical
properties?” Answering this question leads to a better understanding of the over-
all efficiency of each method and the validity of the schemes in the computation-
intensive setting (large particle number/long-time interval). Recently, a system-
atic approach to thermodynamic bias in numerical computations has been used to
study the accuracy and efficiency of methods for Langevin dynamics [22,99,100].
The approach suggested is to determine the order of accuracy of a stochastic
scheme in relation to its effective invariant distribution (and, thus, with respect
to steady state averages computed using numerical trajectories). This technique
has led to greatly improved numerical methods for Langevin dynamics, and it
is in principle applicable to momentum-conserving thermostat schemes as well.
However these results are based on asymptotic expansion and thus are only rele-
vant in the limit of small stepsize (whereas we are interested in the large stepsize
threshold). Moreover we find that the analytical computations necessary to per-
form expansions in the DPD and pairwise Nosé–Hoover–Langevin (PNHL) [106]
cases are in typical cases highly complex; we therefore restrict ourselves in this
thesis to outlining some fundamental and illustrative applications of the theory.
In particular for certain symmetric methods, we can demonstrate the even or-
der approximation of long-time averages. The same conclusion may be reached
for additional schemes of a specific structure (related to the geometric Langevin
algorithms of [22]).

A new stochastic momentum-conserving thermostat is introduced that can be
used in place of DPD in the low-friction regime or in nonequilibrium molecular
dynamics (NEMD) based on stochastic extension of a scheme in a recent paper by
Allen and Schmid [6]. This method is particularly inexpensive to implement and
is found to have a very high stepsize stability threshold compared to alternatives.

In typical cases, for understanding the stepsize stability threshold and the
performance of different schemes, we are forced to rely on numerical experiments.
An excellent survey of the performance of a number of methods was undertaken
by Nikunen et al. [126] in 2003. Since then, and despite many additions to the
arsenal of methods, such a comparison has been lacking. To this end, we test a
number of popular methods [16, 37, 155] from the DPD literature together with
additional methods [114, 136, 160] that are used in popular software packages.
For each method, we examine calculations such as kinetic and configurational
temperatures, average potential energy, radial distribution function, velocity au-
tocorrelation function, and transverse momentum autocorrelation function, which
gives information on the rotational relaxation process.
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1.2 Nonequilibrium Modelling

In equilibrium methods, transport coefficients (e.g., diffusion coefficient and shear
viscosity [14]) are measured based on time integrals of correlation functions (i.e.,
the Green–Kubo formulas [63, 92]). The simulated system is first equilibrated
and subsequently remains in equilibrium, thus simple periodic boundary condi-
tions are adequate. For instance, the shear viscosity can be calculated by in-
tegrating the stress-stress autocorrelation function (see examples in the DPD
literature [12, 31, 87]). However, time correlation functions represent the aver-
age response to the naturally occurring (hence very small) fluctuations in the
system properties. Due to significant statistical error, the signal-to-noise ratio
is particularly unfavorable at long times (e.g., the equilibrium stress is subject
to large fluctuations in measuring the shear viscosity [12]), where there may be
a significant contribution to the integral defining a transport coefficient [7, 130].
Therefore, in order to get highly converged values for the Green–Kubo integrand
over the range of times which contribute significantly to the integral, the simula-
tion must be run for long times [130]. Furthermore, the maximum time for which
reliable correlations can be calculated may be limited due to the finite system
size [7, 130].

For the calculation of the shear viscosity, an alternative method, which is
based on the transverse-current autocorrelation function, was proposed in [130].
The method relies on an assumption of the hydrodynamic prediction for its func-
tional form in order to extract the viscosity from the decay of this function.
However, the additional assumption means that it is not obviously preferable
to the Green–Kubo approach, although it is efficient for purely dissipative sys-
tems [70]. These two equilibrium methods mentioned have been compared to
nonequilibrium methods in molecular dynamics simulations, showing that, de-
spite their undoubted advantages, both equilibrium methods suffer from worse
statistics than nonequilibrium methods [71].

In nonequilibrium methods, the steady state of the system is subject to exter-
nal perturbations (either stationary fluxes or spatial gradients of some quantities),
in order to artificially induce larger fluctuations and thus dramatically improve
the signal-to-noise ratio of the measured response [51]. Therefore nonequilibrium
methods typically converge more quickly than equilibrium methods. By measur-
ing the steady state response to such a perturbation, the decay to the equilibrated
state is then related to the corresponding transport coefficient, avoiding problems
with long-time behavior of correlation functions [7]. For example, a periodic per-
turbation was employed to generate an oscillatory velocity profile that enables
the measurement of transport properties of liquids by molecular dynamics simula-
tions [33]. A more recent approach imposed a pulsed Gaussian velocity profile on
the system, and an estimate of the shear viscosity was then obtained by measur-
ing the decay of the Gaussian peak [9]. A linear velocity profile is also obtainable
by cleverly swapping impulses of spatially remote particles [123]. In this case, the
shear viscosity is provided with the interchanged momentum and the measured
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velocities.

A different approach is often adopted in real experiments to measure the
shear viscosity: a linear profile is imposed at a fixed shear rate and then the
resultant shear stress can be measured. However, in computer simulations, simple
periodic boundary conditions are unable to maintain a steady linear velocity
profile, resulting in problems at the boundaries of the simulation domain. There
have been early attempts to generate momentum or energy flows in molecular
dynamics simulations where particles are made to interact with momentum or
energy reservoirs (e.g., a velocity profile can be obtained by fixing the average
velocity in the extremal slabs of a fluid) [11,34,85,169]. However, these methods
are not compatible with periodic boundary conditions, and thus lead to surface
effects. Alternatively and more appealingly, one can apply the Lees–Edwards
boundary conditions [94] to retain periodicity but alter the position and velocity of
the periodic images. In this case, a simple shear flow (with a constant shear rate)
is generated, which allows the investigation of the dependence of the viscosity on
the shear rate [57] (see Figure 1.3). Lees–Edwards boundary conditions and their
modifications (see discussions in [21]) have been extensively studied in DPD and
related systems to study rheological behavior in colloidal suspensions [17, 18],
polymeric systems [55, 133, 158], as well as multiphase systems [131] (see more
discussions on boundary conditions in DPD in [138,139,142]).

Figure 1.3: Predicting human blood viscosity in silico by applying the Lees–Edwards
boundary conditions in DPD [57].

In this thesis, we focus on the practical implementation of the Lees–Edwards
boundary conditions in DPD and related momentum-conserving systems. Fur-
thermore, it should be noted that extra care is needed for any nonequilibrium
models where the use of external fields would cause viscous heating (i.e., the en-
ergy pumped into the system would cause the temperature to rise monotonically
for a steady perturbation) [12]. In those cases, thermostats are required to drain
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the excess energy in order to maintain the correct system temperature. Thus, we
also investigate the temperature control in DPD and related systems under Lees–
Edwards boundary conditions, which is a nontrivial task and has been lacking in
the literature [82, 133,158].

1.3 Data Science

Monte Carlo sampling for Bayesian posterior inference is a common approach
used in machine learning. For instance, hybrid Monte Carlo (HMC) methods [24,
45, 77], that have become increasingly popular recently, define a Hamiltonian
function in terms of the target distribution and a “kinetic energy” based on a
set of auxiliary variables termed “momenta”. One then can draw states from a
Hamiltonian system, utilizing its attractive properties of rapid exploration of the
phase space [24,73,174].

However, in emerging machine learning applications, direct sampling with the
entire large-scale dataset is computationally infeasible. For instance, standard
Markov chain Monte Carlo (MCMC) methods [118], as well as typical HMC
methods, require the calculation of the acceptance probability and the creation
of informed proposals based on the whole dataset.

In order to improve the computational efficiency, a number of stochastic
gradient methods [32,44,173,175] have been proposed in the setting of Bayesian
sampling based on random (and much smaller) subsets to approximate the like-
lihood of the whole dataset, thus substantially reducing the computational cost
in practice. Welling and Teh proposed the so-called stochastic gradient Langevin
dynamics (SGLD) [175], combining the ideas of stochastic optimization [144] and
traditional Brownian dynamics, with a sequence of stepsizes decreasing to zero.
A fixed stepsize is often adopted in practice which is the choice in this thesis as
in Vollmer et al. [173], where a modified SGLD (mSGLD) was also introduced
that was designed to reduce the sampling bias.

SGLD generates samples from first order Brownian dynamics, and thus, with
a fixed timestep, one can show that it is unable to dissipate excess noise in gradi-
ent approximations while maintaining the desired invariant distribution [32]. A
stochastic gradient Hamiltonian Monte Carlo (SGHMC) method was proposed by
Chen et al. [32], which relies on second order Langevin dynamics and incorporates
a parameter-dependent diffusion matrix that is intended to effectively offset the
stochastic perturbation of the gradient. However, it is difficult to accommodate
the additional diffusion term in practice. Moreover, as pointed out in [44], poor
estimation of it may have a significant adverse influence on the sampling of the
target distribution; for example, the effective system temperature may be altered.

The “thermostat” idea, which is widely used in molecular dynamics [58,
101], was recently adopted in the stochastic gradient Nosé–Hoover thermostat
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(SGNHT) by Ding et al. [44] in order to adjust the kinetic energy during simu-
lation in such a way that the canonical ensemble is preserved (i.e., so that a pre-
scribed constant temperature distribution is maintained). In fact, the SGNHT
method is essentially equivalent to the adaptive Langevin (Ad-Langevin) ther-
mostat proposed earlier by Jones and Leimkuhler [84] in the molecular dynamics
setting (see [107] for discussions).

Despite the substantial interest generated by these methods, the mathemat-
ical foundation for stochastic gradient methods has been incomplete. The un-
derlying dynamics of the SGNHT method [44] was taken up in a recent work
with B. Leimkuhler [107], together with the design of discretization schemes with
high effective order of accuracy. SGNHT methods are designed based on the
assumption of constant noise variance. We propose a covariance-controlled adap-
tive Langevin (CCAdL) thermostat, that can handle parameter-dependent noise,
improving both robustness and reliability in practice, and which can effective-
ly speed up the convergence to the desired invariant distribution in large-scale
machine learning applications.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we review the formulations of a wide range of particle-based
systems, ranging from deterministic Hamiltonian dynamics to various stochastic
thermostats. The properties of equations of motion of those systems are discussed,
followed by an introduction of two widely used boundary conditions in equilibrium
and nonequilibrium molecular dynamics (i.e., the periodic and Lees–Edwards
boundary conditions, respectively).

Chapter 3 concerns the numerical treatment of various methods introduced in
the previous chapter, with a focus on DPD and related systems. We investigate
the order of convergence to the invariant measure for those momentum-conserving
thermostats. Extensive numerical experiments are then carried out to system-
atically study not only the order of convergence but also the performance (such
as accuracy, robustness, and numerical efficiency) of those methods in practice.
We also demonstrate that a nonsymmetric splitting method of PNHL has second
order convergence to the invariant measure for certain observables.

A new momentum-conserving thermostat, the pairwise adaptive Langevin
(PAdL) thermostat, is proposed in Chapter 4 that fully captures the dynamics
(i.e., the correct decay of the velocity autocorrelation function, which is related
to the translational diffusion coefficient) of the DPD system. We compare PAdL
with alternative systems in both equilibrium and nonequilibrium simulations.
In particular, the Lees–Edwards boundary conditions are applied to generate a
simple shear flow in the nonequilibrium case. We discuss the practical imple-
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mentation of the Lees–Edwards boundary conditions and then investigate the
temperature control of various methods under shear flow.

In Chapter 5, we study numerical methods for noisy gradient systems, where
additional noise is present that inhibits an efficient sampling of the invariant mea-
sure. Assuming a constant covariance of the noise, we provide a comprehensive
discussion of the adaptive Langevin/stochastic gradient Nosé–Hoover thermo-
stat, that can effectively dissipate excess noise while maintaining a desired in-
variant distribution. We also propose a covariance-controlled adaptive Langevin
(CCAdL) thermostat that can deal with parameter-dependent noise.

Our findings are summarized in Chapter 6, with key contributions of this
thesis highlighted.
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Chapter 2

Formulations and Properties of
Equations of Motion

In this chapter, we review the formulations and properties of equations of mo-
tion of the Hamiltonian dynamics and a variety of isothermal (i.e., temperature-
conserving) systems, followed by an introduction of the periodic and Lees–Edwards
boundary conditions that have been widely used in equilibrium and nonequilib-
rium molecular dynamics, respectively. In particular, the pairwise Nosé–Hoover–
Langevin (PNHL) thermostat was proposed in a recent publication [106] with B.
Leimkuhler.

2.1 Hamiltonian Dynamics

Consider an N -particle system evolving in dimension d with positions qi ∈ Rd,
momenta pi ∈ Rd, and masses mi ∈ R for i = 1, . . . , N . The time evolution of
the Hamiltonian system is governed by Newton’s equations

dq

dt
= M−1p , (2.1)

dp

dt
= −∇U(q) , (2.2)

where q =
[
qT1 , . . . ,q

T
N

]T
,p =

[
pT1 , . . . ,p

T
N

]T ∈ RdN , M = diag(m1Id, . . . ,mNId)
is the diagonal mass matrix, and −∇U(q) ≡ F(q) represents the conservative
force. Overall, the total energy (Hamiltonian) of the system is conserved, i.e.,

H(q,p) =
pTM−1p

2
+ U(q) = const , (2.3)

where U(q) : RdN → R is the potential energy function. This property can be
easily demonstrated by differentiating the Hamiltonian with respect to time and
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using (2.1)–(2.2)

dH(q,p)

dt
= ∇U(q) · dq

dt
+ M−1p · dp

dt
= 0 . (2.4)

Therefore conservation of the total energy is a common choice of testing the
correctness of computer simulations of Hamiltonian dynamics [66,105].

In a simple example of a one-dimensional harmonic oscillator with a single
particle (unit mass), the potential energy function is given by

U(q) =
1

2
ω2q2 , (2.5)

where ω is a positive parameter. It can be physically interpreted as a particle
connected to the origin by a linear spring with spring constant ω2. Thus the
equations of motion of the particle can be written as

dq

dt
= p , (2.6)

dp

dt
= −ω2q . (2.7)

Given initial values of q(0) = q0 and p(0) = p0, we are in fact able to solve the
system “exactly” to obtain the oscillatory solution with frequency ω:[

q(t)
p(t)

]
=

[
cos(ωt) ω−1 sin(ωt)
−ω sin(ωt) cos(ωt)

] [
q0

p0

]
. (2.8)

However, it should be noted that in most of the cases in molecular dynamics
and other applications, the potential energy function could be much more com-
plicated, resulting in a nonlinear system that we are not able to solve exactly.
For instance, the potential energy function in molecular dynamics is usually as-
sumed to be a semiempirical formula constructed from primitive functions via a
prior parameter fitting procedure. Alternatively, one may assume that it is the
probability distribution (ρ > 0) that is specified and that the potential energy is
constructed from it via

U = −β−1 ln ρ , (2.9)

where β is a positive parameter and can be interpreted as being proportional to
the reciprocal temperature in an associated physical system, i.e.,

β−1 = kBT , (2.10)

where kB is the Boltzmann constant and T is the temperature. In those cases,
we are forced to use “discretization methods”, which we will address in later
Chapters, to approximate the propagation of the true solution.
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2.2 Brownian and Langevin Dynamics

Hamiltonian dynamics has been widely used in many applications, such as clas-
sical molecular dynamics (MD) [7, 58] where energy is conserved. However, as
already mentioned, constant energy is not the appropriate setting of a real-world
laboratory environment. Thus, in most cases, one wishes instead to sample the
canonical ensemble, where temperature is conserved, which leads to the develop-
ment of various thermostat techniques [58, 79].

The most obvious proposals, and also the oldest, are Brownian and Langevin
dynamics. In Brownian (sometimes called “overdamped Langevin”) dynamics,
the system is

dq = −λ∇U(q)dt+
√

2β−1λdW , (2.11)

where dW represents a vector of infinitesimal Wiener increments, and λ is a free
parameter which represents a time-rescaling.

One can write down the corresponding Fokker–Planck operator of the Brow-
nian dynamics (BD) (2.11) as

L†BD = λ∇q · (∇U(q)·) + β−1λ∆q . (2.12)

It can be shown [28] that this system (2.11) ergodically samples the Gibbs–
Boltzmann probability distribution

ρ̄β = Z−1 exp (−βU(q)) , (2.13)

where Z is a suitable normalizing constant often interpreted as the partition
function. In other words, the Gibbs–Boltzmann distribution (2.13) is the invariant
(stationary) distribution of the system, satisfying the following relation:

L†BDρ̄β = 0 . (2.14)

For simplicity, we assume that the configurations q are restricted to a compact
and simply connected domain Ωq. In many applications it is found that the use
of a first order dynamics such as (2.11) is inefficient or introduces unphysical
dynamical properties, and one employs, instead, the Langevin dynamics (LD)
method:

dq = M−1pdt , (2.15)

dp = −∇U(q)dt− γpdt+
√

2β−1γM1/2dW , (2.16)

with a modified Fokker–Planck operator

L†LD = −M−1p · ∇q +∇U(q) · ∇p + γ∇p · (p·) + β−1γ∇p · (M∇p·) . (2.17)

Again, γ in these equations is a free parameter, termed the “friction constant”.
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It is related to the timescale on which the variables of the system interact with
particles of a fictitious extended “bath”, but it cannot be associated with a simple
time-rescaling of the equations of motion and is thus different from λ in (2.11).
It is a little more involved to show that (2.15)–(2.16) ergodically [116] samples
the distribution with density

ρβ = Z−1exp(−βH(q,p)) , (2.18)

i.e.,
L†LDρβ = 0 . (2.19)

In molecular dynamics, the matrix M is typically diagonal and contains the
masses of atoms. In more general settings, the masses and friction coefficient may
be treated as free parameters, and by computing long trajectories of (2.15)–(2.16),
one may obtain averages with respect to ρ̄β(q); i.e., if {(q(τ),p(τ)) : τ ≥ 0} is
a path generated by solving the SDE system (2.15)–(2.16), one has, for suitable
test functions φ(q), and under certain conditions on the potential energy function
U [116],

lim
τ→∞

τ−1

∫ τ

0

φ(q(τ)) dτ =

∫
Ωq

φ(q)ρ̄β(q) dωq ,

where dωq = dq1dq2 . . . dqN . In other words, the projected path defines a sam-
pler for the density ρ̄β. Langevin dynamics can thus be seen as an extended sys-
tem which allows sampling to be performed in a reduced cross section of phase
space by marginalization over long trajectories; this is the essential property of a
thermostat.

2.3 Nosé–Hoover Thermostat

A number of thermostats have been developed for molecular dynamics simula-
tions [79], among which one of the most popular ones is the so-called Nosé–Hoover
thermostat [75, 76, 127, 128]. The equations of motion of the Nosé–Hoover ther-
mostat can be written as

dq = M−1pdt ,

dp = −∇U(q)dt− ξpdt ,

dξ = µ−1
[
pTM−1p−NdkBT

]
dt ,

(2.20)

where µ is a coupling parameter which is referred to as the “thermal mass” in the
molecular dynamics setting. The auxiliary variable ξ ∈ R is governed by a Nosé–
Hoover device via a negative feedback mechanism, i.e., when the instantaneous
temperature (average kinetic energy per degree of freedom) calculated as

kBT =
pTM−1p

Nd

(2.21)
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is below the target temperature, the “dynamical friction” ξ would decrease al-
lowing an increase of temperature, while ξ would increase when the temperature
is above the target. It should be noted that the number of degrees of freedom of
the system is typically the product of the dimension and the number of particles,
i.e., Nd = dN . However, when subject to constrains, the number of constrains
should be subtracted from the number of degrees of freedom accordingly (see
more discussions in [79]).

It has been demonstrated that the use of purely deterministic approaches,
such as Nosé–Hoover, results in ergodicity issues [95, 96]. Assuming ergodicity,
one can easily verify that the Nosé–Hoover system (2.20) preserves the canonical
ensemble with a modified invariant distribution

ρ̂β(q,p, ξ) =
1

Z
exp (−βH(q,p)) exp

(
−βµξ

2

2

)
. (2.22)

Due to the fact that the distribution of the auxiliary variable ξ is separable from
those of q and p (i.e., the overall density is in product form), and functions of ξ
is easily normalizable, one can always average out over the auxiliary variable to
compute the averages of functions of q and p as in the Langevin dynamics.

2.4 Nosé–Hoover–Langevin (NHL) Thermostat

In order to improve the ergodicity, the auxiliary variable in the Nosé–Hoover
thermostat is further coupled to stochastic processes of Ornstein–Uhlenbeck type.
This is known as the Nosé–Hoover–Langevin (NHL) thermostat [104,150], which
reads

dq = M−1pdt ,

dp = −∇U(q)dt− ξpdt ,

dξ = µ−1
[
pTM−1p−NdkBT

]
dt− γ̃ξdt+ σ̃dW ,

(2.23)

where coefficient constants γ̃ and σ̃ satisfy the fluctuation-dissipation theorem in
standard Langevin dynamics

σ̃2 =
2γ̃kBT

µ
, (2.24)

and W = W(t) is a standard Wiener process.

The ergodicity of the Nosé–Hoover–Langevin thermostat has been analytically
proved by Leimkuhler et al. [104] in the case of a harmonic system. One can show
that the Nosé–Hoover–Langevin system (2.23) also preserves the canonical ensem-
ble with the same invariant distribution (2.22) as in Nosé–Hoover. Other types
of thermostats that sample the canonical ensemble have also been proposed, e.g.,
the generalized Bulgac–Kusnezov methods [97]. The use of auxiliary variables
can provide a degree of flexibility in the design of the thermostat, for example,
allowing the treatment of systems arising in fluid dynamics [46] or imposing an
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isokinetic constraint [98].

2.5 Dissipative Particle Dynamics (DPD)

The dissipative particle dynamics (DPD) method was first proposed by Hooger-
brugge and Koelman [74] in order to recover the properties of isotropy and
Galilean invariance that were both broken in the so-called lattice-gas automa-
ta (LGA) method [59]. The original system itself was updated in discrete time
steps and was later reformulated by Español and Warren [50] as a system of
stochastic differential equations (SDEs).

The time evolution of each DPD particle i = 1, . . . , N (in dimension d), rep-
resenting a cluster of molecules, is governed by Newton’s equations

dqi
dt

=
pi
mi

,
dpi
dt

= Fi , (2.25)

where qi, pi, and mi denote positions, momenta, and masses, respectively. Fi

represents the total interparticle force acting on particle i due to the presence of
the other particles, which is a summation of three pairwise contributions

Fi =
∑
j 6=i

(FC
ij + FD

ij + FR
ij) , (2.26)

where FC
ij, FD

ij, and FR
ij represent conservative, dissipative, and random forces,

acting on particle i due to the j-th particle, respectively.

The conservative force that controls the thermodynamics of the DPD system
is normally [65] chosen as

FC
ij =

aij
(

1− qij
rc

)
q̂ij , qij < rc ;

0 , qij ≥ rc ,
(2.27)

where parameter aij (aij = aji ≥ 0) represents the maximum repulsion strength
between each interacting pairs, and rc denotes a cutoff radius that is often used
in order to reduce the computational cost. The relative positions between inter-
acting pairs are denoted by qij = qi − qj with length qij = ‖qij‖ and the unit
direction from qj to qi by q̂ij = qij/qij.

The dissipative and random forces, forming a thermostat to preserve the sys-
tem temperature, are given by

FD
ij = −γωD(qij)(q̂ij · vij)q̂ij , (2.28)

FR
ij = σωR(qij)θijq̂ij , (2.29)
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where γ and σ are constant parameters representing the dissipative and random
strengths respectively, ωD and ωR are position-dependent weight functions, and
vij = pi/mi − pj/mj denote the relative velocities. θij is a symmetric (θij = θji)
Gaussian white-noise term with the following stochastic property

〈θij(t)〉 = 0 , 〈θij(t)θkl(t′)〉 = (δikδjl + δilδjk)δ(t− t′) , (2.30)

where the angle brackets denote the averages, δik, δjl, δil, and δjk are the Kro-
necker delta functions, and δ(t − t′) is the Dirac delta function, and is chosen
independently for each interacting pair at each time step.

The canonical ensemble was not preserved in the original formulation of
DPD [74]. This has been corrected by Español and Warren [50], which leads
to the fluctuation-dissipation theorem for the DPD system, namely:

ωD(qij) =
[
ωR(qij)

]2
, σ2 = 2γkBT . (2.31)

Then it can be easily demonstrated that the canonical ensemble is preserved
with an invariant distribution defined by the density ρβ (2.18) as in Langevin
dynamics.

The conservative potential energy is defined as

U(q) =
∑
i

∑
j>i

U(qij) , (2.32)

where U(qij) is the “soft” pair potential associated with the conservative force (2.27):

U(qij) =


aijrc

2

(
1− qij

rc

)2

, qij < rc ;

0 , qij ≥ rc .

(2.33)

Although we write the density (2.18) as an exponential, we note that if the total
momentum is conserved, the density should be replaced by

ρβ(q,p) =Z−1 exp(−βH(q,p))

× δ

[∑
i

pi,x − πx

]
δ

[∑
i

pi,y − πy

]
δ

[∑
i

pi,z − πz

]
,

(2.34)

where π = (πx, πy, πz) is the total momentum vector. A similar modification
would be needed if the angular momentum were also conserved. It is worthy of
mention that the ergodicity of the DPD system has only been demonstrated in
the case of high particle density in one dimension by Shardlow and Yan [156].

Due to the fact that the DPD system depends on relative velocities and the
interactions between particles are pairwise (symmetric), both total and angular
momenta are conserved, thus DPD is an isotropic Galilean-invariant thermostat
which also preserves hydrodynamics [6,120]. However, if periodic boundary con-
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ditions are used, the conservation of the angular momentum will be destroyed.

One of the two weight functions can be chosen arbitrarily without violating
thermal equilibrium. A simple choice has been widely used, which reads

ωR(qij) =

1− qij
rc

, qij < rc ;

0 , qij ≥ rc .
(2.35)

In this case the conservative force (2.27) can be written in a compact way

FC
ij = aijω

R(qij)q̂ij . (2.36)

To make the presentation simpler, a compact form the DPD system (2.25)
(for particle i) may be used [6]

dqi = m−1
i pidt ,

dpi = FC
i (q)dt− γVi(q,p)dt+ σRi(q, t) ,

(2.37)

where FC
i (q) is the total conservative force acting on particle i

FC
i (q) =

∑
j 6=i

FC
ij(qij) = −∇qiU(q) , (2.38)

and Vi(q,p) and Ri(q,p, t) are defined respectively as

Vi(q,p) =
∑
j 6=i

ωD(qij)(q̂ij · vij)q̂ij , (2.39)

Ri(q, t) =
∑
j 6=i

ωR(qij)q̂ijdWij(t) , (2.40)

where dWij(t) = dWji(t) are independent increments of a Wiener process with
mean zero and variance dt [65].

In fact, the DPD system (2.25) can be written in a more compact (vector)
form:

dq = M−1pdt ,

dp = −∇U(q)dt− γΓ(q)M−1pdt+ σΣ(q)dW ,
(2.41)

where M is the diagonal mass matrix, W is a vector of S = dN(N − 1)/2
independent Wiener processes, and, projection matrices Γ(q) ∈ RdN×dN and
Σ(q) ∈ RdN×S satisfy the following relation

Γ(q) = Σ(q)Σ(q)T , (2.42)

which can be thought of as the generalized fluctuation-dissipation theorem. In
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particular, one can write down Γ(q) explicitly as

Γ(q) =



∑
j 6=1

ωD
1jE1j −ωD

12E12 · · · −ωD
1NE1N

−ωD
21E21

∑
j 6=2

ωD
2jE2j · · · −ωD

2NE2N

...
...

. . .
...

−ωD
N1EN1 −ωD

N2EN2 · · ·
∑
j 6=N

ωD
NjENj


, (2.43)

where ωD
ij = ωD(qij) is the weight function defined in the DPD system and Eij is

the d by d projection matrix on particles i and j:

Eij =
(qi − qj)(qi − qj)

T

‖qi − qj‖2
= q̂ijq̂

T
ij . (2.44)

It should be noted that, when Σ(q) is an identity matrix, the DPD system (2.41)
effectively reduces to the Langevin dynamics. Thus the latter can be viewed as
a special case of the former.

2.6 Pairwise Nosé–Hoover–Langevin (PNHL)

Thermostat

We have further generalized the Nosé–Hoover–Langevin (NHL) thermostat to
obtain the pairwise Nosé–Hoover–Langevin (PNHL) thermostat [106], which is a
momentum-conserving thermostat and thus applicable to the simulation of hy-
drodynamic behavior in complex fluids and polymers in mesoscales as in DPD.

The equations of motion of the PNHL system (for particle i) is given by

dqi = m−1
i pidt ,

dpi = FC
i (q)dt− ξVi(q,p)dt ,

dξ = G(q,p)dt− γ̃ξdt+ σ̃dW ,

(2.45)

where G(q,p) is the instantaneous accumulated deviation of the kinetic temper-
ature away from the target temperature [6]:

G(q,p) = µ−1
∑
i

∑
j>i

ωD(qij)
[
(vij · q̂ij)2 − kBT/mij

]
. (2.46)

Coefficient constants γ̃ and σ̃ satisfy the fluctuation-dissipation theorem as in
the Nosé–Hoover–Langevin thermostat (2.23). Thus, canonical ensemble is still
preserved with the same invariant distribution (2.22) as in Nosé–Hoover and
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Figure 2.1: A two-dimensional illustration of the periodic boundary conditions (left)
and the effective wraparound of particle positions (right).

Nosé–Hoover–Langevin:

ρ̂β(q,p, ξ) =
1

Z
exp (−βH(q,p)) exp

(
−βµξ

2

2

)
. (2.47)

The PNHL thermostat (2.45) can also be written in a more compact form

dq = M−1pdt ,

dp = −∇U(q)dt− ξΓ(q)M−1pdt ,

dξ = G(q,p)dt− γ̃ξdt+ σ̃dW ,

(2.48)

where G(q,p) now can be written as

G(q,p) = µ−1
[(

M−1p
)T

Γ(q)
(
M−1p

)
− β−1Tr (Γ(q))

]
. (2.49)

2.7 Boundary Conditions

Computer simulations are often performed on a relatively small scale (i.e., a
small number of particles in a relative sense, ≈ 105 particles), which is limited
by the available computing facilities and total computational cost in terms of
execution time (the time taken for a double loop used to calculate the forces
or potential energy without special techniques could be of order N2). However,
for the simulation of a bulk system (without suitable boundary conditions), a
large fraction of particles would appear to lie on the cube surface, resulting in
unphysical behavior [7]. In this section, we introduce two widely used boundary
conditions that overcome the surface effects in molecular simulations.
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2.7.1 Periodic Boundary Conditions

One of the most popular boundary conditions in equilibrium molecular dynam-
ics is the periodic boundary conditions (PBC) [19]. In PBC, a primary cubic
box, centered at the origin with lengths Lx, Ly, and Lz, in three dimensions, is
replicated throughout space to form an infinite lattice. During the simulation,
as a particle moves in the primary box, its periodic image moves in exactly the
same way in each of the neighboring boxes. Therefore, once a particle leaves the
primary box, one of its images will enter through the opposite face in a symmetric
fashion with the same velocity. In this way, not only is the number of particles
kept constant, the particles do not feel the walls at the boundaries any more,
thus overcoming the surface effects. A two-dimensional schematic illustration of
the PBC is given in Figure 2.1.

Denote the position and velocity of particle i as qi = (qxi , q
y
i , q

z
i ) and vi =

(vxi , v
y
i , v

z
i ), respectively. PBC consists of two steps in practical implementation:

(a) Periodic Boundaries: when a particle leaves its primary box by crossing
one of the boundaries, one of its images will enter through to the opposite face.

qxi ← qxi − Lx · round(qxi /Lx) (2.50)

qyi ← qyi − Ly · round(qyi /Ly) (2.51)

qzi ← qzi − Lz · round(qzi /Lz) (2.52)

where function “round(·)” returns the nearest integer to its argument.

(b) Minimum Image Convention: in order to correctly capture the transport
properties of the system, particles are allowed to move on (rather than going back
to the primary box when crossing the boundary), but interactions are evaluated
with their nearest images.

qxij ← qxij − Lx · round(qxij/Lx) (2.53)

qyij ← qyij − Ly · round(qyij/Ly) (2.54)

qzij ← qzij − Lz · round(qzij/Lz) (2.55)

where qij = qi − qj is the distance between particle i and particle j.

It should be noted that there is no need to modify the velocity in PBC.

2.7.2 Lees–Edwards Boundary Conditions

As discussed in Section 1.2, nonequilibrium methods provide more efficient ways
than equilibrium autocorrelation functions to extract transport coefficients (e.g.,
rheological properties such as shear stress and shear viscosity) from fluid dynam-
ics simulations. Thus, there has been a rapidly growing interest in nonequilibri-
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Figure 2.2: A two-dimensional illustration of the Lees–Edward sliding-brick bound-
ary conditions.

um molecular dynamics (NEMD) simulations [51]. For instance, planar Couette
flow, where a simple and steady shear flow is generated, is commonly employed
as a numerical “viscometer” in particle-based methods to obtain transport coef-
ficients [7, 51]. Furthermore, due to the fact that it is most relevant to real-life
phenomena as well as its simplicity, planar Couette flow has also been widely
adopted in real experiments.

In order to generate a simple shear flow in nonequilibrium molecular simula-
tions, the periodic boundary conditions (PBC) have to be modified. A common
way to achieve that is to apply the well-known Lees–Edwards boundary condi-
tions (LEBC) [94]. In LEBC, the primary box remains centered at the origin,
however, a uniform shear velocity profile is expected [51]

u = γ̇yex , (2.56)

where ex is the unit vector in the x-direction and γ̇ is the shear rate defined as

γ̇ =
dvx

dy
. (2.57)

Because of that, the LEBC is also called the “sliding brick” boundary conditions
as shown in Figure 2.2.

Special attention has to be paid in LEBC when a particle is crossing the
boundary in the y-direction. In this case, one of the images of the crossing
particle will enter through the opposite face, but with both position and velocity
modified in a proper way because of the streaming velocity (2.56).
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The periodic boundary crossing is now handled as follows [7]:

NL = round(qyi /Ly) (2.58)

qxi ← qxi −NL∆qx (2.59)

qxi ← qxi − Lx · round(qxi /Lx) (2.60)

qyi ← qyi − LyNL (2.61)

qzi ← qzi − Lz · round(qzi /Lz) (2.62)

vxi ← vxi −NLγ̇Ly (2.63)

where NL is the “rounded” number of layers (boxes) between the current position
of particle i in the y-direction and the origin, and ∆qx is the displacement of the
upper layer in Figure 2.2 during the elapsed time t from an appropriate origin,
i.e.,

∆qx = γ̇Lyt . (2.64)

The minimum image convention should now proceed as follows [7]:

NL = round(qyij/Ly) (2.65)

qxij ← qxij −NL∆qx (2.66)

qxij ← qxij − Lx · round(qxij/Lx) (2.67)

qyij ← qyij − LyNL (2.68)

qzij ← qzij − Lz · round(qzij/Lz) (2.69)

Note that when the shear rate is zero, i.e., γ̇ = 0, the LEBC reduce to exactly
the same as PBC.
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Chapter 3

Numerical Methods

In this chapter, we investigate the numerical treatment of a wide range of methods
introduced in the previous chapter. We systematically study the order of con-
vergence to the invariant measure and practical performance of DPD and related
momentum-conserving systems. Sections 3.3–3.7 are largely based on a recent
publication [106] with B. Leimkuhler, while Section 3.8, where a nonsymmetric
splitting method of PNHL has been shown to have second order convergence to
the invariant measure for certain observables, has not appeared anywhere else.

3.1 Numerical Methods for Hamiltonian

Dynamics

Consider an initial value problem

ż = f(z) , z(0) = z0 , (3.1)

in a multidimensional space where z ∈ Rm. Under suitable assumptions one may
define a mapping from a point in phase space to the point t units later along the
time-evolution starting from the initial point [101]. This map is referred to as
the flow map and denoted by Ft. In fact, Ft(z0) = z(t) solves the initial value
problem (3.1). However, in many cases, the system is not exactly solvable if f(z)
is of a complicated (nonlinear) form, one may prefer to split up the vector field
of the system into pieces (i.e., f(z) = f1(z) + f2(z) + . . . ), and then solve each
subsystem separately in certain order to approximate the true propagation in the
phase space (see more discussions in [66, 101, 105]). Note that sometimes one
can solve each subsystem exactly. For instance, a common splitting in separable
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Hamiltonian dynamics (2.1)–(2.2), where z = [q; p], is as follows:

d

[
q
p

]
=

[
M−1p

0

]
dt︸ ︷︷ ︸

A

+

[
0

−∇U(q)

]
dt︸ ︷︷ ︸

B

, (3.2)

where one can easily solve each part “exactly” to generate exact flows, FA
t and

FB
t . That is, it can be easily seen that p is fixed in the A part, leading to exact

solution to dq = M−1pdt, and similarly the B part is exactly solvable since q is
constant. Then one can construct various numerical methods to solve the system.

The easiest choice might be an exact solver for one piece with stepsize h
followed by another step for the other piece, which yields

ΦBA
h = FA

h ◦ FB
h , (3.3)

ΦAB
h = FB

h ◦ FA
h . (3.4)

The first method (3.3) is the symplectic Euler method, which reads

pn+1 = pn − h∇U(qn) , (3.5)

qn+1 = qn + hM−1pn+1 , (3.6)

while the second (3.4) is its adjoint method. Both methods are often referred to as
the Lie–Trotter splitting [168]. It can be easily demonstrated that both methods
are first order. However, one can also easily construct second order methods by
integrating the splitting pieces in a symmetric fashion, which is known as the
Strang splitting [161], such as

ΦBAB
h = FB

h/2 ◦ FA
h ◦ FB

h/2 , (3.7)

ΦABA
h = FA

h/2 ◦ FB
h ◦ FA

h/2 . (3.8)

In this case, (3.7) is called “velocity Verlet” method, which reads

pn+1/2 = pn − (h/2)∇U(qn) , (3.9)

qn+1 = qn + hM−1pn+1/2 , (3.10)

pn+1 = pn+1/2 − (h/2)∇U(qn+1) , (3.11)

while (3.8) is the “position Verlet” method. It is to be understood that the
steplengths associated with various operations are uniform and span the interval
h. Thus the B step in the velocity Verlet (BAB) method (3.7) is taken with a
step length of h/2, while A with a steplength of h. It can be shown that both
Verlet methods are symplectic so that energy is well preserved during the simu-
lation (see more details in [101]). Thus, Verlet methods have been widely used in
molecular dynamics applications. Furthermore, arbitrary higher order methods
can be constructed, such as the Yoshida (fourth order) method [177]. However,
unlike the Verlet methods, those methods often require multiple computations
of the force (the most expensive part in molecular simulations) per step, thus
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significantly reducing their usefulness in practice.

3.2 Numerical Methods for Brownian and Langevin

Dynamics

A systematic approach to thermodynamic bias in numerical computations has
recently been proposed in studying the accuracy and efficiency of methods for
Langevin dynamics [22, 99, 100]. The approach suggested is to determine the or-
der of accuracy of a stochastic scheme in relation to its effective invariant measure
(i.e., with respect to steady state averages computed using numerical trajecto-
ries). This technique has led to greatly improved numerical methods for Langevin
dynamics as demonstrated in [99,100]. For instance, one may split the vector field
of the Langevin dynamics (2.15)–(2.16) into three pieces, “A”, “B”, and “O”:

d

[
q
p

]
=

[
M−1p

0

]
dt︸ ︷︷ ︸

A

+

[
0

−∇U(q)

]
dt︸ ︷︷ ︸

B

+

[
0

−γpdt+ σM1/2dW

]
︸ ︷︷ ︸

O

, (3.12)

where, as the fluctuation-dissipation theorem in DPD (2.31), σ is a constant
coefficient satisfying the following relation with the friction constant γ:

σ2 = 2γkBT . (3.13)

As in Hamiltonian dynamics, one can respectively solve the “A” and “B” pieces
exactly. Furthermore, it is possible to derive the exact solution to the Ornstein–
Uhlenbeck (“O”) part,

dp = −γpdt+ σM1/2dW . (3.14)

Multiplying both sides of (3.14) by exp(γt) and utilizing the fact that

d(exp(γt)p) = exp(γt)(dp + γpdt) (3.15)

yields
d(exp(γt)p) = exp(γt)σM1/2dW . (3.16)

Then integrating both sides from 0 to t gives

exp(γt)p(t) = p(0) +

∫ t

0

exp(γs)σM1/2 dW(s) , (3.17)

which leads to the solution

p(t) = exp(−γt)p(0) + exp(−γt)
∫ t

0

exp(γs)σM1/2 dW(s) . (3.18)
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Denoting Y(t) =
∫ t

0
exp(γs) dW(s) with dW(s) being a Wiener process, it is well

known [90] that Y(t) is a Gaussian random variable with mean zero and variance
(by using the Itō isometry: E[

∫ t
0

X(s) dW(s)]2 = E
∫ t

0
[X(s)]2 ds)

VarY(t) =

∫ t

0

exp(2γs) ds =
e2γt − 1

2γ
. (3.19)

Therefore, the solution (3.18) with equivalent distribution is

p(t) = e−γtp(0) + σ

√
1− e−2γt

2γ
M1/2R , (3.20)

where R is a vector of independent and identically distributed (i.i.d.) standard
normal random variables. In fact, the solution could be further generalized,
incorporating the “B” part (which is essentially a constant when updating the
momenta) as in the Stochastic Position Verlet method [117,157]

p(t) =
F(q)

γ
+ e−γt

(
p(0)− F(q)

γ

)
+ σ

√
1− e−2γt

2γ
M1/2R . (3.21)

A number of numerical methods [25, 26, 48, 49, 117,157,170] for Langevin dy-
namics have been systematically studied and compared in various applications
in [99, 100]. It turns out that different splitting methods give rather different
performance in practice. Particularly, the so-called “BAOAB” method appears
to be by far the best in terms of accuracy and efficiency for configurational sam-
pling [99,100]. The BAOAB method relies on exact solver for each piece and can
be written as

ΦBAOAB
h = FB

h/2 ◦ FA
h/2 ◦ FO

h ◦ FA
h/2 ◦ FB

h/2 , (3.22)

which reads

pn+1/3 = pn − (h/2)∇U(qn) ,

qn+1/2 = qn + (h/2)M−1pn+1/3 ,

pn+2/3 = e−γhpn+1/3 + σ
√

(1− e−2γh)/(2γ)M1/2Rn ,

qn+1 = qn+1/2 + (h/2)M−1pn+2/3 ,

pn+1 = pn+1/2 − (h/2)∇U(qn+1) .

It should be noted that only one force calculation is required at each step for
BAOAB (i.e., the force computed at the end of each step will be reused at the
beginning of the next step), the same as for alternative schemes.

It has been demonstrated that the BAOAB method has fourth order con-
vergence to the invariant measure for configurational quantities in the high fric-
tion (γ → ∞) limit [99]. Inspired by this superconvergence property, a second
order discretization method for Brownian dynamics, the Leimkuhler–Matthews
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method, was proposed [99,102,103]

qn+1 = qn − h∇U(qn) +
√

2hβ−1

(
Rn + Rn+1

2

)
, (3.23)

which is indeed very similar to the popular first order Euler–Maruyama method

qn+1 = qn − h∇U(qn) +
√

2hβ−1Rn , (3.24)

except replacing the random realization by the average of two successive realiza-
tions. Both Euler–Maruyama and Leimkuhler–Matthews methods only require
one force computation at each step, but rather surprisingly the latter provides one
more order of convergence than the former essentially for “free”. The stochastic
Heun’s method [90, 119] is second order and generally gives better accuracy in
simulation than the Euler–Maruyama method (3.24), but it requires two force
calculations at each step. It has been demonstrated that the newly proposed
Leimkuhler–Matthews method (3.23) gives even more accurate long-time integra-
tion results in a number of applications than the stochastic Heun’s method [103].
This again highlights the importance of optimal design of numerical methods.

In what follows we will systematically study the numerical treatment of momentum-
conserving thermostats.

3.3 Numerical Methods for Dissipative Particle

Dynamics

Due to the soft repulsive potential (2.33), the major advantage of the DPD
method is that the stepsize used in simulations may be much larger than those
of conventional MD simulations with Lennard-Jones internuclear potentials for
instance. This feature is crucial especially when a very long simulation time is
required. However, large stepsizes may result in errors in computed thermody-
namic quantities. Whereas for molecular dynamics, simulations are performed
at or near the stability threshold defined by stiff components such as harmonic
bonds [100], DPD simulations may be perfectly stable over a wide range of step-
sizes for which errors in averages are very large. There have been many attempts
to develop accurate and efficient numerical methods that allow larger stepsizes.
This is currently an active field of research.

In the early days of DPD, a number of integration schemes were proposed
based on the well-recognized velocity Verlet scheme [172] widely used in classical
MD simulations [7, 58]. Specific examples are the integrator of Groot and War-
ren [65] (GW), the method of Gibson et al. [60] (GCC), and the DPD velocity-
Verlet integrator, which refers to as DPD-VV, of Besold et al. [16] (see more
discussions in [171]). Both the GW and GCC integrators incorporate a parame-
ter λ, which has to be chosen carefully for specific model parameters, to reduce
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unphysical artifacts. Nevertheless, as reported in [16, 171], all the integrators
mentioned above display pronounced artifacts, especially when the stepsize is
large, due to the fact that the velocities and dissipative forces depend on each
other implicitly and thus need to be updated in a self-consistent fashion.

In the spirit of the self-consistent leap-frog integrator introduced by Pago-
nabarraga et al. [129], Besold et al. [16] proposed a self-consistent velocity Verlet
scheme, which we label SC-VV, in which, at the end of each iteration step, the
velocity is “corrected” based on the newly calculated dissipative force until the
deviation between the instantaneous kinetic temperature and the target temper-
ature is less than a certain value of “tolerance”. It should be noted that there
is no such “correction” in the DPD-VV scheme but still the dissipative force is
recalculated once, using the up-to-date velocities (momenta). A variant of the
SC-VV scheme, SC-Th, introduced in [16], couples the original DPD system to
an auxiliary Nosé–Hoover thermostat [75, 76, 127, 128] to provide direct kinetic
temperature control. Overall, the self-consistent schemes do reduce unphysical
artifacts to some extent, however, it is also well documented [31, 126] that they
can be substantially slower than standard methods, depending how small the tol-
erance is. Therefore, computationally expensive self-consistent methods are not
the choices present in typical software packages.

Although it has been demonstrated that relatively small stepsizes must be
used in the DPD-VV scheme to produce correct static and dynamical proper-
ties [126, 171], the DPD-VV scheme remains one of the most popular methods
for the DPD system in software packages due to its efficiency and ease of im-
plementation (particularly in parallel computing). For this reason, the DPD-VV
method has been chosen as the “benchmark” to compare with other schemes in
this thesis.

Several novel integration schemes have been proposed over the years, such as
the approach by den Otter and Clarke [43], the extended DPD method by Cotter
and Reich [35], the multiple time step schemes by Jakobsen et al. [80], the Trotter-
splitting methods by Thalmann and Farago [166], and most recently the algorithm
by Goga et al. [62]. In this thesis, we focus on schemes that have been included
in popular software packages (i.e., DPD-VV [16], the Peters thermostat [136], the
Lowe–Andersen thermostat [114], and the Nosé–Hoover–Lowe–Andersen thermo-
stat [160] in the DL MESO [152] package) with two promising splitting methods
by Shardlow [155] and De Fabritiis et al. [37], respectively. Particularly, Nikunen
et al. [126] in 2003 showed that the performance of the Lowe–Andersen thermo-
stat and Shardlow’s scheme are superior to those of several other schemes for
a number of different observables. Recently, Shardlow-like splitting algorithms
have been further applied in DPD with various fixed conditions [112], and its
parallel implementation has also been developed in [93].

The full details of the integration steps of each method described in this section
are presented in a common language in Appendix A.
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3.3.1 DPD Velocity-Verlet

For integration stepsize h, the simple DPD-VV integrator [16] reads

p
n+1/2
i = pni +

(
hFC

i (qn) + hFD
i (qn,pn) +

√
hFR

i (qn)
)
/2 , (3.25)

qn+1
i = qni + hm−1

i p
n+1/2
i , (3.26)

pn+1
i = p

n+1/2
i +

(
hFC

i (qn+1) + hFD
i (qn+1,pn+1/2) +

√
hFR

i (qn+1)
)
/2 . (3.27)

In fact, the DPD-VV scheme has two differences compared to the standard veloc-
ity Verlet method [172]: (1) the forces are not just the conventional conservative
forces, but include dissipative and random forces, as well; (2) the dissipative
forces have to be updated for a second time at the end of each integration step by
using the up-to-date velocities (momenta), FD

i (qn+1,pn+1), with the first update
taking place right after the positions are updated at each step (see more details
in Appendix A). It has been shown that the performance of the DPD-VV method
would be significantly improved [16, 171] by simply doing the additional update
of the dissipative forces in each step, which is actually not time-consuming if
one makes use of computation-saving devices such as Verlet neighbor lists [172].
Note that both the GW integrator [65] of Groot and Warren and the modified
Verlet method mentioned by Shardlow in [155] do not incorporate the additional
update.

It is important to observe that, unlike the standard velocity Verlet method
(second order), the DPD-VV scheme should only give first order convergence for
the invariant measure (see more details in Section 3.6) due to the fact that the
momentum is not updated in a symmetric manner. However, second order con-
vergence for averages was observed in the numerical experiments in Section 3.7.
Moreover, the term

√
h/2 multiplying the random forces, which would be ex-

pected to be different in this type of splitting of Langevin dynamics, must be
present when random forces are reused in the subsequent step; it ensures that
the diffusion coefficient of the particles is independent of the integration timestep
(see [65] for further discussion).

3.3.2 Shardlow’s Splitting Method

Splitting techniques were studied by Shardlow [155] based on dividing the vector
field of the DPD system into three parts, the first two of which represent the vector
field of the Hamiltonian system associated with kinetic and potential energies, and
the last term is the remaining Langevin equation (actually Ornstein–Uhlenbeck
process with positions fixed) involving the dissipative and random forces. Two
integrators, termed there S1 and S2, have been proposed for treating this system
in [155]. Only the S1 method will be examined here as it is more efficient than S2.
This scheme relies on the method of Brünger, Brooks, and Karplus (BBK) [25]
to solve the Langevin part, followed by the standard velocity Verlet scheme for
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the conservative part.

In describing Shardlow’s method or another splitting scheme, we use the for-
mal notation of the generator of the diffusion as in, for example, [37,153,166].

We first separate the system of stochastic differential equations for DPD (2.37)
into three pieces, which we label as A, B, and O:

d

[
qi
pi

]
=

[
m−1
i pi
0

]
dt︸ ︷︷ ︸

A

+

[
0

FC
i

]
dt︸ ︷︷ ︸

B

+

[
0

−γVidt+ σRi

]
︸ ︷︷ ︸

O

. (3.28)

The generators for each part of the SDE may be written out as follows:

LA =
∑
i

pi
mi

· ∇qi , (3.29)

LB =
∑
i

FC
i · ∇pi = −

∑
i

∇qiU(q) · ∇pi , (3.30)

LO =
∑
i

∑
j 6=i

(
−γωD(qij)(q̂ij · vij) +

σ2

2

[
ωR(qij)

]2
q̂ij ·

(
∇pi −∇pj

))
q̂ij · ∇pi .

(3.31)

Thus, the generator for the DPD system can be written as

LDPD = LA + LB + LO . (3.32)

The flow map (or phase space propagator) of the system may be written in
the shorthand notation

Ft = etLDPD , (3.33)

where the exponential map is here used formally to denote the solution opera-
tor. Approximations of Ft may then be obtained as products (taken in different
arrangements) of exponentials of the various terms of the splitting. For exam-
ple, the phase space propagation of Shardlow’s S1 splitting method [155], termed
DPD-S1, can be written as

exp
(
hL̂DPD−S1

)
= exp (hLO) exp

(
h

2
LB

)
exp (hLA) exp

(
h

2
LB

)
, (3.34)

where h is the stepsize and exp (hLf ) represents the phase space propagator asso-
ciated with the corresponding vector field f . In Shardlow’s approach, the vector
field O is further split into each interacting pair. Therefore, the propagation of
the O part is broken down into many terms:

exp
(
hL̂O

)
= exp

(
hLON−1,N

)
· · · exp

(
hLO1,3

)
exp

(
hLO1,2

)
,
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where the operator associated with each interacting pair is defined as

LOi,j =

(
−γωD(qij)(q̂ij · vij) +

σ2

2

[
ωR(qij)

]2
q̂ij ·

(
∇pi −∇pj

))
q̂ij · ∇pi .

(3.35)
Each interacting pair preserves the invariant distribution ρβ (2.34). As a short-
hand, we may term the DPD-S1 method OBAB (similarly, the S2 method of
Shardlow would be equivalent to OBABO in the same language).

3.3.3 DPD-Trotter Scheme

The Trotter formula [161] that has been widely used in molecular simulations was
investigated and further applied to split the DPD generator (3.32) in an “opti-
mal” way to reduce artifacts and maintain good temperature control [37,153]. A
new scheme, referred to as DPD-Trotter, was introduced but few numerical sim-
ulations have been presented and therefore we incorporate it in the comparisons.

In the stochastic DPD-Trotter scheme, the standard DPD system (2.37) is
split into two parts, which are labeled “A” and “S” as indicated below

d

[
qi
pi

]
=

[
m−1
i pi
0

]
dt︸ ︷︷ ︸

A

+

[
0

FC
i dt− γVidt+ σRi

]
︸ ︷︷ ︸

S

. (3.36)

The corresponding operator of part A is exactly the same as in Shardlow’s
method, while the operator of part S is actually the sum of the operators of
B and O defined above

LS = LB + LO . (3.37)

As in Shardlow’s method, the vector field S is further split into each interacting
pair; these pair interactions are exactly solvable (in the sense of distributional
fidelity). In fact, for j > i, subtracting dvj from dvi and multiplying q̂ij on both
sides gives

mijdvij = FC
ij (qij)dt− γωD(qij)vijdt+ σωR(qij)dWij , (3.38)

where mij = mimj/(mi + mj) is the “reduced mass”, vij = q̂ij · vij and FC
ij (qij)

is the magnitude of the conservative force (2.27). The above equation is an
Ornstein–Uhlenbeck process with the exact (in the sense of distributions) solu-
tion [90]

vij(t) =
FC
ij

τmij

+ e−τt

(
vij(0)−

FC
ij

τmij

)
+

√
kBT (1− e−2τt)

mij

Rij , (3.39)

where τ = γωD/mij, vij(0) are the initial relative velocities and Rij are normally
distributed variables with zero mean and unit variance. Thus the increment
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velocities can be obtained as

∆vij = vij(t)− vij(0) =

(
vij(0)−

FC
ij

τmij

)
(e−τt − 1) +

√
kBT (1− e−2τt)

mij

Rij ,

(3.40)
and the corresponding momenta can be updated by

pn+1
i = pni +mij∆vijq̂

n
ij , (3.41)

pn+1
j = pnj −mij∆vijq̂

n
ij , (3.42)

which defines the propagator ehLSi,j for each interacting pair. Overall, the prop-
agator of the DPD-Trotter scheme can be written as

exp
(
hL̂DPD−Trotter

)
= exp

(
h

2
LS

)
exp (hLA) exp

(
h

2
LS

)
,

where the momentum part is defined by

exp

(
h

2
L̂S

)
= exp

(
h

2
LSN−1,N

)
· · · exp

(
h

2
LS1,3

)
exp

(
h

2
LS1,2

)
.

3.4 Numerical Methods for Alternative Methods

3.4.1 Lowe–Andersen Thermostat

The Schmidt number, Sc, which is the ratio of the kinematic viscosity ν to the
diffusion coefficient D, is an important quantity that characterizes the dynamical
behavior of fluids. In a typical fluid flow, water for example, momentum can be
transported more rapidly than particles, resulting in Schmidt number of order 103.
However, as it was reported in [65], the standard DPD system (2.37) produces a
gas-like Schmidt number of order one. Depending on the application, this could be
a significant disadvantage for simulating more fluid-like system, although recent
work by Fan et al. [53] indicates that the Schmidt number of the standard DPD
system can be varied by modifying the weight function and increasing the cutoff
radius.

To overcome the issue of low Schmidt number in the standard DPD system,
instead of using a Langevin thermostat to reequilibrate the system, Lowe [114]
employed a pairwise stochastic momentum-conserving Andersen thermostat [8],
in which after updating the positions and momenta due to the conservative forces
only by using the standard velocity Verlet method, the momenta are updated,
with probability P = Γh, by reselecting the relative velocities for interacting pairs

31



from the Maxwell–Boltzmann distribution,

pi ← pi + ∆pij , (3.43)

pj ← pj −∆pij , (3.44)

with

∆pij = mij

[
Rij

√
kBT/mij − q̂ij · vij

]
q̂ij , (3.45)

where Rij are Gaussian random variables with zero mean and unit variance. The
parameter Γ can be thought of as the stochastic randomization frequency with
upper limit 1/h. Lowe’s method is frequently referred to as the Lowe–Andersen
(LA) thermostat, which still conserves the momentum and hydrodynamics. The
additional Andersen thermostat does not change the distribution of the system [8],
therefore the same invariant distribution (2.34) as in the standard DPD system
is maintained. Most important, the LA thermostat is capable of varying the
Schmidt number by changing the parameter Γ. When the probability of further
updating the momentum is high (large P ), the viscosity is high and diffusion
coefficient is low, resulting in large Schmidt number in the regime of typical
fluids. The LA thermostat has been applied in molecular dynamics simulations
by Koopman and Lowe [91]. It is worth mentioning that the generator of the LA
thermostat does not converge to that of the standard DPD system as h→ 0.

3.4.2 Peters Thermostat

Based on various numerical studies on the DPD system, all the numerical methods
based on discretization of the equation of motion are dependent on the stepsize.
In order to reduce the dependence, Peters generalized the Lowe–Andersen (LA)
thermostat and presented another approach to reequilibrate the system [136].
Following the update of the conservative part by using the standard velocity
Verlet scheme, the momenta of all interacting pairs will be further updated (not
in random order as in the original paper, which does not have much effect on the
results but reduces computational cost) as follows

pi ← pi + ∆pij , (3.46)

pj ← pj −∆pij , (3.47)

with
∆pij =

[
−γij(q̂ij · vij)h+ σij

√
hRij

]
q̂ij , (3.48)

where Rij are the standard Gaussian random variables as in the Lowe–Andersen
thermostat, and the coefficients γij and σij satisfies the following condition

σij =
√

2kBTγij [1− γijh/(2mij)] ,
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which reduces to the fluctuation-dissipation theorem (2.31) in standard DPD in
the limit of h → 0. Two possible choices of the coefficients was presented in
the original paper [136], but only “Scheme II”, which has less restriction on the
choice of stepsize h, was chosen to compare with other methods in this thesis.
In the h → 0 limit, it can be easily shown that the generator of the Peters
thermostat converges to that of the standard DPD system and therefore conserves
the canonical ensemble. Unfortunately, numerical simulations in the original
paper showed that the thermostat still exhibits significant deviation both in static
(kinetic temperature) and dynamical (diffusion coefficient) quantities in standard
model settings (model B in the language of [126]) when the timestep is above 0.05.

3.4.3 Nosé–Hoover–Lowe–Andersen Thermostat

Recently, Stoyanov and Groot combined the Lowe–Andersen (LA) thermostat
with a Nosé–Hoover-like thermostat to construct a local Galilean invariant stochastic
momentum-conserving thermostat, the Nosé–Hoover–Lowe–Andersen (NHLA)
thermostat [160], to achieve direct kinetic temperature control. Unlike the LA
thermostat, a modified version of the velocity Verlet scheme is used to update
the positions and velocities at the start of each integration step

qi ← qi + hvi + h2FC
i (q)/2 , (3.49)

vi ← vi + hFC
i (q)/2 , (3.50)

which is followed by the calculation of the updated conservative forces. After that,
the fraction (1− P ) of interacting pairs that do not have their relative velocities
stochastically reselected are thermalized by a deterministic method instead. For
each such pair, the dissipative force is calculated

FD
ij = αωR(qij)(q̂ij · vij)q̂ij ,

where α is a coupling parameter chosen as 0.9/(ρh) in this thesis such that,
overall, the dissipative force defined above is the same as that in the original
paper [160], and ρ is the particle density. The dissipative force of each particle is
updated

FD
i ← FD

i + FD
ij , (3.51)

FD
j ← FD

j − FD
ij . (3.52)

Then, after the further update of the velocities

vi ← vi + hFC
i (q)/2 , (3.53)

the momenta are corrected by

pi ← pi + h(1− T̃k/T0)FD
i , (3.54)
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where T0 is the desired temperature and the momentary kinetic temperature T̃k is
calculated from the relative velocities at the time of calculating the conservative
force to enhance the computational efficiency and save memory space (this is
slightly different from the approach in the original paper which uses the updated
Verlet neighbor lists but the stored velocities from the previous integration step)

kBT̃k =

∑
j 6=i ω(qij)mij(vi − vj) · (vi − vj)

d
∑

j 6=i ω(qij)
, (3.55)

where ω(qij) is a smearing function chosen as

ω(qij) =

{
1 , qij < rc ;

0 , qij ≥ rc .
(3.56)

Finally, the momenta are further updated as in the LA thermostat (Equations
(3.43)–(3.44)).

The factor (1 − T̃k/T0) in (3.54) acts like the “friction coefficient” to tune
the kinetic temperature of the system. It is actually not a dynamical variable as
in the standard Nosé–Hoover thermostat, instead is more closely related to the
Berendsen thermostat [13]. As reported in [160], the NHLA thermostat maintains
an order of magnitude improvement in kinetic temperature and can also vary
the Schmidt number by several orders of magnitude as in the LA thermostat.
However, with large stepsizes that maintain good kinetic temperature control
(1% relative error) in the NHLA thermostat, substantial errors in configurational
temperature were reported [5], which indicates that the system temperature was
not sampled correctly. It is worthy of mention that a slightly modified integra-
tion strategy was used in [5], which does not have much effect on the results
as discussed in the original paper [160]. Moreover, the generator of the NHLA
thermostat does not converge to that of the standard DPD system as h → 0,
and, it has not been shown that the NHLA thermostat preserves the canonical
ensemble.

3.5 Numerical Methods for Extended Variable

Momentum-Conserving Thermostats

3.5.1 Pairwise Nosé–Hoover Thermostat

In all standard DPD methods (Section 3.3) and alternative methods (Section 3.4)
in DPD simulations, a random number has to be generated for each interacting
pair, which can be very time-consuming depending on the particle density and
cutoff radius, and, becomes trickier when parallel computing techniques (multiple
processors for domain-decomposed cells) are used: it requires additional, even
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substantial, effort to communicate interacting particles in different cells [3, 137].
Based on the Nosé–Hoover–Lowe–Andersen (NHLA) thermostat by Stoyanov and
Groot [160], Allen and Schmid [6] presented a new thermostat of the Nosé–Hoover
type, in which stochastic terms were totally removed and the constant friction
coefficient was replaced by a dynamical variable that was driven by the difference
between the instantaneous kinetic temperature and the target temperature. The
so-called pairwise Nosé–Hoover (PNH) thermostat conserves the momentum and
is also Galilean-invariant, therefore correct hydrodynamics are still expected to
be generated and it can be used in DPD simulations. Moreover, one may find
it useful in nonequilibrium molecular dynamics (NEMD) to reduce unphysical
behaviors (see more discussions in [6]).

The equations of motion of the PNH thermostat (for particle i) is given by

dqi = m−1
i pidt ,

dpi = FC
i (q)dt− ξVi(q,p)dt ,

dξ = G(q,p)dt ,

(3.57)

where Vi(q,p) is defined in (2.39), ξ is the dynamical variable, and G(q,p) is
the instantaneous accumulated deviation of the kinetic temperature away from
the target temperature [6]

G(q,p) = µ−1
∑
i

∑
j>i

ωD(qij)
[
(vij · q̂ij)2 − kBT/mij

]
. (3.58)

Assuming ergodicity, canonical ensemble is still preserved with the same invariant
distribution as that of PNHL (3.77).

A nonsymmetric integration algorithm (see Appendix A) was applied in the
original paper [6] to solve the system:

p
n+1/2
i = pni + h

(
FC
i (qn)− ξnVi(q

n,pn−1/2)
)
/2 ,

ξn+1/2 = ξn + hG(qn,pn−1/2)/2,

qn+1
i = qni + hm−1

i p
n+1/2
i ,

pn+1
i = p

n+1/2
i + h

(
FC
i (qn+1)− ξn+1/2Vi(q

n+1,pn+1/2)
)
/2 ,

ξn+1 = ξn+1/2 + hG(qn+1,pn+1/2)/2 .

3.5.2 Pairwise Nosé–Hoover–Langevin Thermostat

In order to enhance the ergodicity and have a better temperature control, we
have reformulated the pairwise Nosé–Hoover (PNH) thermostat (3.57) to form a
pairwise Nosé–Hoover–Langevin (PNHL) thermostat (2.45) by adding a Langevin
thermostat to the additional variable ξ in such a way that the invariant distribu-
tion (3.77) is not violated. As in the PNH thermostat, the PNHL thermostat has

35



the potential of being useful in NEMD, but we focus on the application of DPD
in this thesis.

The vector field of the PNHL system can be split into five pieces below such
that each piece can be solved “exactly”,

d

 qi
pi
ξ

 =

 m−1
i pi
0
0

 dt

︸ ︷︷ ︸
A

+

 0
FC
i

0

 dt

︸ ︷︷ ︸
B

+

 0
−ξVi

0

 dt

︸ ︷︷ ︸
C

+

 0
0
G

 dt

︸ ︷︷ ︸
D

+

 0
0

−γ̃ξdt+ σ̃dW


︸ ︷︷ ︸

O

.

Note that the operators of A and B are exactly the same as defined in (3.29)
and (3.30), respectively. We can also write down the operators for the remaining
pieces as

LC = −ξ
∑
i

Vi(q,p) · ∇pi ,

LD = G(q,p)
∂

∂ξ
,

LO = −γ̃ξ ∂
∂ξ

+
σ̃2

2

∂2

∂ξ2
.

The generator O here is slightly different from that in (3.31) which involves pair-
wise terms in DPD. Overall, the generator for the PNHL system can be written
as

LPNHL = LA + LB + LC + LD + LO . (3.59)

There are a variety of approaches to splitting this system. For example, we
could use the same technique as in DPD-Trotter scheme (Section 3.3.3) to solve
part C, but without the conservative and stochastic terms. Also, the O part may
be solved exactly using the analytical weak solution of the Ornstein–Uhlenbeck
process [90]

ξ(t) = e−γ̃tξ(0) +
√
kBT (1− e−2γ̃t)/µR , (3.60)

where ξ(0) is the initial value of the additional variable and R are uncorrelated
independent standard normal random variables.

Interestingly as noted in the setting of Langevin dynamics [99,100], integrat-
ing those different splitting pieces in different orders gives dramatically different
performance in terms of kinetic temperature control and other configurational
quantities. We present here two approaches to integrate the PNHL system: first
in a symmetric manner, termed PNHL-S, and the other nonsymmetric, termed
PNHL-N. The propagators of the two schemes (see more details in Appendix A)
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may be defined as

ehL̂PNHL−S = e
h
2
LAe

h
2
LBe

h
2
LCe

h
2
LDehLOe

h
2
LDe

h
2
LCe

h
2
LBe

h
2
LA , (3.61)

and
ehL̂PNHL−N = e

h
2
LAe

h
2
LBe

h
2
LCe

h
2
LDehLOe

h
2
LDe

h
2
LCe

h
2
LAe

h
2
LB . (3.62)

It is important to mention that the only difference between these two integrators
is the order of integrating the last two pieces. In particular, an additional force
calculation is needed in the PNHL-N scheme just before updating the last B piece
at the end of each integration step. In experiments, the high per-timestep cost
of PNHL-N was found to be offset by a great increase in accuracy and usable
steplength. Detailed numerical comparisons will be presented in Section 3.7.

3.6 Error Analysis

To our knowledge, little attention has been paid to the mathematical analysis
of the DPD system, or more generally stochastic momentum-conserving ther-
mostats. Since the spectral properties of the Fokker–Planck operators in the case
of DPD is not available, a rigorous study of the order of convergence of numerical
methods in this context has been lacking. Because of the inclusion of stochastic
terms, it is not reliable to depend directly on intuition regarding the error behav-
ior of deterministic schemes [66, 105]. Here we perform a few first steps toward
the analysis of stochastic DPD integrators by extending a framework for investi-
gating the perturbation of long-time average computed using numerical methods
in Langevin dynamics proposed recently by Leimkuhler and Matthews [99,100].

3.6.1 Expansion of the Invariant Measure

The analysis of the accuracy of ergodic averages (averages with respect to the
invariant measure) in stochastic numerical methods can be performed using the
framework of long-time Talay–Tubaro expansion, as developed in [1,2,38,99,100,
102,163].

For a splitting method described by L = Lα + Lβ + · · · + Lζ , we define the

effective operator L̂† associated with the perturbed system obtained using the
numerical method with stepsize h by the relation

exp
(
hL̂†

)
= exp

(
hL†α

)
exp

(
hL†β

)
. . . exp

(
hL†ζ

)
. (3.63)

This operator can be computed using the Baker–Campbell–Hausdorff (BCH) ex-
pansion and can thus be viewed as a perturbation of the exact Fokker–Planck
operator L†:

L̂† = L† + hL†1 + h2L†2 +O(h3) (3.64)
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for some perturbation operators L†i .

We also define the invariant distribution ρ̂ associated with the numerical
method as an approximation of the target invariant distribution ρβ:

ρ̂ = ρβ
[
1 + hf1 + h2f2 + h3f3 +O(h4)

]
(3.65)

for some correction functions fi satisfying 〈fi〉 = 0.

Substituting L̂† and ρ̂ into the stationary Fokker–Planck equation

L̂†ρ̂ = 0

yields(
L† + hL†1 + h2L†2 +O(h3)

) (
ρβ
[
1 + hf1 + h2f2 + h3f3 +O(h4)

])
= 0 .

Since the exact Fokker–Planck operator preserves the invariant canonical distri-
bution, i.e., L†ρβ = 0, we obtain

L†(ρβf1) = −L†1ρβ (3.66)

by equating first order terms in h.

For any particular integration scheme it is possible to find the perturbation
operator L†1 by using the BCH expansion: for (noncommutative) linear operators
X and Y , we have

exp(hX) exp(hY ) = exp(hZ1) ,

where

Z1 = X + Y +
h

2
[X, Y ] +

h2

12
([X, [X, Y ]]− [Y, [X, Y ]]) +O(h3) , (3.67)

and subsequently

exp

(
h

2
X

)
exp(hY ) exp

(
h

2
X

)
= exp(hZ2) ,

where

Z2 = X + Y +
h2

12

(
[Y, [Y,X]]− 1

2
[X, [X, Y ]]

)
+O(h4) . (3.68)

The notation [X, Y ] = XY − Y X denotes the commutator of operators X and
Y .

Then we can calculate its action on ρβ. The last step, namely obtaining the
leading correction function f1, requires the solution of the above PDE (3.66) (see
examples in Langevin dynamics [99]). In general, solving for f1 in closed form
is difficult, and it does not get simpler for more complicated formulations than
Langevin dynamics and more complicated splittings.
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These equations demonstrate that for nonsymmetric splitting methods, there
typically exists a nonzero term L†1 ∝ [X, Y ] 6= 0, while the condition L†1 =
0, implying f1 = 0, is automatically satisfied for symmetric splitting methods;
thus, for observables φ, assuming the asymptotic expansion holds, the computed
average would be of order two:

〈φ〉h = 〈φ〉+ h〈φf1〉+ h2〈φf2〉+ · · · = 〈φ〉+O(h2) ,

where 〈·〉 denotes the average with respect to the target invariant distribution.

3.6.2 Weak and Long-Time Errors

In simulations, the error in averages related to the evolving distribution is gen-
erally of interest, i.e., the weak error (finite-time error in the weak sense) for
nonequilibrium and dynamical properties, and, long-time error (error in the in-
variant distribution obtained as t → ∞) for thermodynamics. We next give
definitions of these two errors following [103].

For the weak error, consider a finite time interval [0, τ ] with τ = nh. The
probability measure associated with a certain system is described by a probability
density ρ(z, t) which evolves according to the Fokker–Planck equation

∂ρ

∂t
= L†ρ ,

where L† is the adjoint of the generator of the system (for instance, the Fokker–
Planck operator of the standard DPD system is given in [50]). Assuming ergod-
icity, the solution ρ(z, t) evolves from an initial probability distribution ρ(z, 0) to
the steady state (invariant distribution) ρ(z,∞) = ρβ. For a smooth and bound-
ed test function φ of a suitable class, the average of φ at time τ may be defined
by

φ̄(τ) =

∫ τ

0

φ(z)ρ(z, τ) dz . (3.69)

The discretization scheme can also be viewed as giving rise to an evolving sequence
of probability distributions ρ1, ρ2, · · · . With stepsize h, the average at time τ = nh
is defined as

φ̂(τ, h) =

∫
Ωz

φ(z)ρn(z) dz . (3.70)

Thus, we could define the weak error as the difference between (3.69) and (3.70)

|φ̄(τ)− φ̂(τ, h)| ≤ K(τ)hp , (3.71)

where the coefficient K depends on the time interval and p is the order of the weak
error. To be more precise, K also depends on the initial distribution ρ(z, 0) as
well as the particular observable φ. The asymptotic (τ →∞) behavior [163] of K
can be used to describe the performance of the numerical method for computing
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averages with respect to the invariant distribution. Hence, the long-time error in
averages can be written as

lim
τ→∞
|φ̄(τ)− φ̂(τ, h)| ≤ K(τ)hp . (3.72)

3.6.3 Applications in DPD and Related Systems

According to the BCH formula, a nonsymmetric splitting method generally gives
only first order convergence for the invariant measure (long-time error), whereas
second order is anticipated in symmetric splittings in the asymptotic limit of small
stepsize [102]. In our numerical studies, we have verified second order convergence
for a number of nonsymmetric methods (DPD-S1, LA, and Peters) which are
similar to the family of geometric Langevin algorithms (GLA) following [22].
We compute the long-time error of various observables, including kinetic and
configurational temperatures and average potential energy, and demonstrate the
convergence order for each method in Table 3.1. The results shown in Table 3.1
are based on the numerical experiments in Section 3.7. All the symmetric methods
show second order as well as those three nonsymmetric ones (DPD-S1, LA, and
Peters). Some other nonsymmetric methods, which are not of GLA type, exhibit
second order convergence in calculated quantities; this observation remains to
be demonstrated rigorously. It is entirely possible that the superconvergence
observed in these special cases is related to the form of the observable we have
used in our simulation test.

Method DPD-VV DPD-S1 DPD-Trotter LA Peters NHLA PNH PNHL-S PNHL-N
Order ≥ 1(2) 2 2 2 2 ≥ 1(2) ≥ 1(2) 2 ≥ 1(2)

Table 3.1: Orders of accuracy of the long-time error for kinetic and configurational
temperatures, and, average potential energy in various methods are summarized. The-
oretical values based on properties of the discretization scheme have been verified using
numerical experiments. Where the theoretically expected result differs from the nu-
merical result, we give the numerically observed convergence order in parentheses.

In what follows, we verify that three nonsymmetric splitting methods (DPD-S1,
LA, and Peters) are indeed second order convergence to the invariant measure.
In the example of DPD-S1, which can be termed OBAB and clearly is not sym-
metric, each interacting pair preserves the invariant distribution ρβ (2.34), i.e.,

L†Oi,jρβ = 0 .

Thus one can easily verify that the operator L†O also preserves the invariant
distribution

L†Oρβ = 0 ,

since all the actions of commutators in the BCH expansion of L†O on the invariant
distribution ρβ would be zero and therefore all the actions of perturbation opera-
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tors L†i in (3.64) would be zero. Also, it can be easily shown that the Hamiltonian
operator

L†H = L†A + L†B
preserves the invariant distribution

L†Hρβ = 0 .

Thus, by applying the BCH expansion on the operator of the DPD-S1 scheme (3.34),
we obtain

L̂†DPD−S1 = L†A + L†B + L†O +
h

2

([
L†A,L

†
O

]
+
[
L†B,L

†
O

])
+O(h2) .

Hence,

L†1ρβ =
1

2

([
L†A,L

†
O

]
+
[
L†B,L

†
O

])
ρβ =

1

2

[
L†H,L

†
O

]
ρβ = 0 ,

which gives the only solution of the PDE (3.66) to the DPD-S1 scheme

f1 = 0 .

Given that higher order perturbations in (3.65) are not generally equal to zero,
we have shown that the nonsymmetric DPD-S1 scheme has second order conver-
gence to its invariant distribution. Similarly, we can also demonstrate that both
the Lowe–Andersen and Peters thermostats (in the fashion of BABO) maintain
second order convergence to the invariant distribution. Since all the three meth-
ods involve a second order symplectic Verlet method for the deterministic part
and other actions only on the Ornstein–Uhlenbeck (OU) process, we may refer
to them as generalized geometric Langevin algorithms of order two (GLA-2) [22]
in the context of stochastic momentum-conserving thermostats. It should be em-
phasized that the OU process in stochastic momentum-conserving thermostats
is pairwise and thus different from the standard setting of Langevin dynamics.
Nevertheless, it has been demonstrated that second order is still achieved by the
combination of a symplectic method for the deterministic part and an exact solve
for the OU process. More discussions regarding the long-time accuracy of the
GLA-type methods in Langevin dynamics can be found in [2, 22,102].

3.7 Numerical Experiments

To investigate the performance of all the numerical methods described in Sec-
tions 3.3–3.5, we perform systematic numerical experiments in this section.
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3.7.1 Simulation Details

Tests have been carried out by using the standard parameter set [65] that is
commonly used in algorithms tests [126, 136, 153, 155, 160, 171]. A system of
N = 500 identical particles (mi = m = 1) was simulated in a cubic box (length
L = 5) with periodic boundary conditions (particle density ρd = 4). The cutoff
radius is rc = 1 and kBT = 1. The potential repulsion parameter aij was set to
25, while dissipative strength γ was chosen as 4.5, leading the value of random
strength σ to be 3. It is worthy of mention that we did investigate the influence
of other values of the friction coefficient, such as γ = 0.5 and γ = 40.5, but not all
the results will be presented unless necessary. The initial positions of the particles
were independent and identically distributed (i.i.d.) with a uniform distribution
over the box, while the initial momenta were i.i.d. normal random variables with
mean zero and variance kBT . Verlet neighbor lists [172] were used throughout
each method.

In particular, the thermal mass µ in the PNH and PNHL thermostats has
to be chosen with care. For PNH thermostat, we used µ = 200 to maintain as
good stability as possible for the integration scheme, while µ = 10 and γ̃ = 4.5
were used in the PNHL thermostat. Since the focus is on DPD simulations, the
stochastic randomization frequency Γ in LA and NHLA thermostats was set to
be 0.44 as in [81,126] so that similar translational diffusion properties of the fluid
were obtained.

3.7.2 Measured Physical Quantities

Static

The kinetic temperature Tk appears to be the most popular quantity to be tested
in DPD literature, which is defined as

kBTk =
1

Nd

∑
i

pi · pi
mi

. (3.73)

where Nd denotes the number of degrees of freedom of the system. But in prac-
tice, the kinetic temperature is not that important, instead those configurational
quantities play more crucial roles. Recent studies [27,149] in simulations showed
that the system temperature can be measured from static snapshots of its con-
stituents’ instantaneous configurations rather than their momenta. We test the
configurational temperature Tc [149], which can be defined as

kBTc =

∑
i〈‖∇iU‖2〉∑
i〈∇2

iU〉
, (3.74)
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Figure 3.1: Log-log plot of the relative error in computed kinetic temperature against
stepsize by using various numerical methods. The system was simulated for 1000 re-
duced time units but only the last 80% of the data were collected to calculate the static
quantity to make sure the system was well equilibrated. The stepsizes tested began at
h = 0.05 and were increased incrementally by 15% until all methods either were above
100% relative error or became unstable.

where ∇iU and ∇2
iU are respectively the gradient and Laplacian of the potential

energy U with respect to the position of particle i (see more discussions on the
configurational temperature, which, as the kinetic temperature, should in princi-
ple be equal to the target temperature, in [27,83,167]). To test the correctness of
codes and/or algorithms in simulations, both kinetic and configurational temper-
atures can be used to calculate the system temperature. However, it turned out
that the configurational temperature is more reliable [27,149] since it can rapidly
and accurately track changes in system temperature even when the system is not
in global thermodynamic equilibrium. It becomes more crucial when it comes
to experimental studies of soft condensed matter systems [67, 68] most notably
due to their applicability to overdamped systems whose instantaneous momenta
may not be accessible. It was den Otter and Clarke that first investigated the
deviations of the kinetic and configurational temperatures from the system tem-
perature in the DPD system [43]. Since then, little attention has been paid to
the configurational temperature in DPD simulations until Allen recently argued
that the configurational temperature should be added to the list of diagnostic
tests applied to DPD simulations [5]. In addition, we also calculate the average
potential energy 〈U〉 and the radial distribution function (RDF) g(r) [7,58], both
of which are very important configurational quantities in simulations.

Dynamical

To have a deeper understanding of how the physical system evolves, it is not
enough to just evaluate the static quantities described above. It is essential to
measure and compare the relevant dynamical properties. In general, in simula-
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tion, one relies on various Green–Kubo formulas [51] to calculate various transport
coefficients; in this thesis we restrict ourselves to two special cases.

The velocity autocorrelation function (VAF) is an important measure of dy-
namical fidelity that numerical methods should be able to reproduce, particularly
if they are to be used for nonequilibrium (transient-phase simulation). The VAF,
which characterizes the translational diffusion of the system, is defined as

ψ(t) = 〈vi(t) · vi(0)〉 ,

where vi(0) is the initial velocity picked up after the system is well equilibrat-
ed. By integrating the VAF (Green–Kubo relation [63, 92]), we can compute
the translational diffusion coefficient, which can also be obtained by using Ein-
stein’s relation [47] giving the diffusion coefficient as the slope of the mean square
displacement as a function of time t:

D = lim
t→∞

1

6t
〈[qi(t)− qi(0)]2〉 .

To investigate the rotational relaxation process of the system, we measure the
transverse momentum autocorrelation function (TMAF) [69,164], which is related
to the shear viscosity, η, in the hydrodynamic limit, i.e., small wavenumber k and
large time t, and is defined by

C(k, t) = 〈px(k, t)px(−k, 0)〉 ∝ exp

(
−k

2η

ρm
t

)
,

where ρ is the particle density, m is the particle mass and px(k, t) represents the
transverse component of the momentum,

px(k, t) =
N∑
j=1

pj,x(t) exp(ikqj,z(t)) ,

where pj,x denotes the x-component of the momentum of particle j and similarly
qj,z represents the z-component of its position (see more details in [164]). Note
that, i here is the imaginary unit in complex number.

3.7.3 Results

The kinetic temperature control of various methods was tested and shown in
Figure 3.1. According to the black dashed second order line in the figure, all
the methods seem to have second order convergence to the invariant measure,
which verifies the error analysis results on nonsymmetric DPD-S1, LA, and Peters
methods in Section 3.6, but is a bit surprising for DPD-VV, NHLA, PNH, and
PNHL-N methods that were also based on nonsymmetric splittings.

44



0.05 0.1 0.2

0.1%

1%

10%

100%

Stepsize

R
el

at
iv

e 
E

rr
or

Configurational Temperature

 

 

2nd order line

PNHL−N

PNHL−S

PNH

NHLA

0.05 0.1 0.2

0.01%

0.1%

1%

10%

100%

Stepsize

R
el

at
iv

e 
E

rr
or

Average Potential Energy

 

 

2nd order line

PNHL−S
PNH

NHLA

PNHL−N

Figure 3.2: Comparisons of the relative error in computed configurational tem-
perature (left) and average potential energy (right) against stepsize by using various
numerical methods. The format of the plots is the same as in Figure 3.1. Most of
the methods show similar behaviors except NHLA (magenta asterisks), PNH (green
asterisks), PNHL-S (blue triangles) and PNHL-N (red triangles).

The performance of standard DPD methods (DPD-VV, DPD-S1, and DPD-
Trotter) and the Peters thermostat that converges to the standard DPD system
in the limit of h → 0, are almost indistinguishable with the tendency to quickly
blow up after the stepsize reaches h = 0.1. Both LA and NHLA thermostats
show similar behaviors and maximal stepsizes that can be used are limited around
h = 0.1. The latter displays a better accuracy when stepsize is large due to the
additional Nosé–Hoover-like thermostat (3.54). The PNH thermostat illustrates
the worst kinetic temperature accuracy and we can also see the clear low stability
threshold for the PNH thermostat due to the lack of ergodicity. Most surprisingly
and interestingly, the PNHL-S and PNHL-N methods, based on different splitting
orders on the same pairwise Nosé–Hoover–Langevin (PNHL) thermostat (2.45),
show dramatically different kinetic temperature control: the symmetric PNHL-S
method is worse than most of the methods, whereas the nonsymmetric PNHL-N
method outstandingly maintains almost two orders of magnitude improvement
on the accuracy of kinetic temperature than all the other methods.

Configurational quantities (configurational temperature and average potential
energy) were compared in Figure 3.2. Again, all the methods seem to show second
order convergence to the invariant measure except the PNH thermostat, which
displays a stability threshold of h = 0.05. Most of the methods, including stan-
dard DPD methods, LA and Peters thermostats, are indistinguishable and cross
the 100% barrier in configurational temperature and 10% barrier in average po-
tential energy respectively around h = 0.1. As in the case of kinetic temperature,
the performance of the NHLA thermostat on those configurational quantities is
slightly better than the majority due to the additional thermostat. Unlike the
kinetic temperature case, the PNHL-S method does have very good accuracy in
configurational quantities with almost one order of magnitude improvement than
the majority. Incredibly, the PNHL-N method manages more than one order of
magnitude accuracy enhancement in configurational temperature and almost two
orders of magnitude in average potential energy.
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Figure 3.3: Comparisons of radial distribution function (RDF) g(r) of various nu-
merical methods by using very small stepsize h = 0.01. All the methods exhibit exactly
the same RDF.

Figure 3.3 compares the radial distribution function (RDF) that characterizes
the structure of the fluids. The DPD-S1 and PNHL-N methods were used for the
standard DPD and PNHL systems respectively. Given that very small stepsizes
were used, all the methods display exactly the same RDF, which indicates that
different systems maintain the same structure of the fluids without the impacts
of discretization errors. Expectedly, discretization errors start to destroy the
structure of the fluids with increasing stepsizes as shown in Figure 3.4. Standard
DPD methods and the Peters thermostat exhibit similar behaviors with the RDFs
starting to show artifacts around h = 0.09 and being heavily destroyed around
h = 0.13. The LA and PNH thermostats again show lower stability in maintain-
ing the correct structure, blowing up around h = 0.11 and 0.07, respectively. The
performance of PNHL-S and NHLA methods are slightly better than the major-
ity of the schemes, while the PNHL-N method only starts to show pronounced
artifacts above h = 0.25, which is remarkably more than two times larger than
the stepsize usable in standard DPD methods.

The velocity autocorrelation function (VAF) of various numerical methods
were calculated in Figure 3.5 to compare with standard DPD methods with three
different values of friction coefficient. The DPD-S1 method was used to calculate
the VAF of standard DPD methods since there is no difference with other two
if very small stepsizes were used to reduce the effects of discretization errors.
Similarly, the uncorrupted dynamics of PNHL-S and PNHL-N methods should
be exactly the same, and the latter was used. The VAFs of the PNH and PNHL
systems are indistinguishable and consistent with standard DPD methods in the
regime of small friction coefficient γ = 0.5. This is not surprising since the average
of the dynamical variable ξ, which is controlled by an additional thermostat and
can be thought of as the “dynamical friction”, tends to zero. As we expected,
the Peters thermostat shares the same VAF as standard DPD methods in the
regime of the commonly used friction coefficient γ = 4.5 if the same value of γ
was chosen. The stochastic randomization frequency Γ = 0.44 was used in LA
and NHLA thermostats to maintain similar translational diffusion properties as
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Figure 3.4: Stepsize effects on the radial distribution function (RDF) in various
numerical methods were compared. The black solid lines are the reference solutions
obtained using very small stepsizes h = 0.01, while the colored lines correspond to
different stepsizes.

in the standard DPD system with γ = 4.5. The VAF of the standard DPD system
with large friction coefficient γ = 40.5 is also shown in the figure, which indicates
that the larger the friction is the faster the VAF goes down (the system loses
memory faster).

The effects of the discretization error on each method were also investigated
in Figure 3.6. The results are largely consistent with those observed for the
configurational temperature. The only surprise is that the PNHL-S method allows
a maximum stepsize which is similar to those of the thermostats considered (and
much lower than the useful stepsize for PNHL-N). Moreover, we observe that
the PNH thermostat begins to display unphysical artifacts, at a stepsize of just
h = 0.05. Likewise, the LA thermostat has a lower stability threshold. Among
the various schemes, PNHL-N is again by far the most stable scheme, exhibiting
only a mild deviation from the reference VAF at h = 0.17.

One of the most important features of DPD simulations is the correct handling
of rotational relaxation which will be important for resolving correct vortical
motion and long-ranged interactions. We therefore investigate the computation
of transverse momentum autocorrelation function (TMAF, see Section 3.7.2) for
each scheme. The results here are in many ways similar to those obtained for
the velocity autocorrelation function (Figure 3.5), thus only the results of DPD
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Figure 3.5: Comparisons of velocity autocorrelation function (VAF) of various nu-
merical methods by using very small stepsize h = 0.01. Standard DPD methods with
three different values of friction coefficient were calculated by using the DPD-S1 method
to compare with other methods. 100 different runs were averaged to reduce the sam-
pling errors after the system was well equilibrated.

and PNHL methods are shown in Figure 3.7: the PNHL method is expectedly
consistent with small friction (γ = 0.5) in standard DPD simulation, and only a
minor difference is observed between the PNHL method and standard DPD with
a moderate value of friction (γ = 4.5). One may notice that the TMAF shown in
Figure 3.7 is not as smooth as the VAF in Figure 3.5 even by averaging 1000 times
more different runs. We emphasize here that collective (N -particle) correlations,
such as TMAF and stress autocorrelation function [31], fluctuate rapidly and
thus are always determined with poorer statistics than single-particle ones, such
as VAF.

We emphasize the following facts regarding our numerical tests:

• A detailed statistical analysis of the results presented has not been incor-
porated in this thesis, due to the extensive computational requirements of
doing so. An early study [155] has already suggested that highly reliable
estimation of the kinetic temperature can be typically obtained by various
methods in the stepsize regime of our interests, i.e., h ≥ 0.05. In terms
of convergence rate of thermodynamic properties to distribution, all the
methods perform similarly in practice (see Figures 3.1–3.2).

• The influence of the friction coefficients (three different values, γ = 0.5,
4.5, and 40.5), both on the maximal timestep and the dynamics of the sys-
tem, has been investigated in this section. Different values of the friction
coefficients gave little difference in the control of those static quantities we
calculated, thus only the results of γ = 4.5 have been presented. Howev-
er, the dynamical properties of the system did appear to depend on the
strength of the friction as shown in the velocity and transverse momentum
autocorrelation functions.

• Based on the results for the VAF and TMAF, we have observed very good
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Figure 3.6: Stepsizes effects on the velocity autocorrelation function (VAF) in various
numerical methods were compared. The black solid lines are the reference solutions
obtained using very small stepsizes, while those colored lines correspond to different
stepsizes. The error in the VAFs at time zero reflects the bias, visible at large stepsize,
in the mean kinetic energy (which is the normalization factor). The VAFs could be
rescaled so that they start from one, but it would mask the presence of this large
disturbance from the target temperature.

agreement of the dynamical properties between PNHL and DPD with rel-
atively small friction coefficient, particularly γ = 0.5. Although the PNHL
method may not be able to fully recover the hydrodynamics as DPD, we
have already seen that PNHL offers substantially improved stability in sim-
ulations. Moreover, the PNHL method, as a general momentum-conserving
thermostat, has a valid motivation in a broader context than just compar-
ison with DPD; in particular it will be useful in NEMD and in other cases
where fluid dynamics per se is not at issue.

3.7.4 Computational Efficiency

The computational efficiency of the various methods was tested with simulation
details in Section 3.7.1. All the tests were run on an HP Z600 Workstation with
15.7 GB RAM. As shown in Table 3.2, we calculated the CPU time (milliseconds)
taken with the use of Verlet neighbor lists for the integration of a single time step
of h = 0.05 (averaged over 10,000 consecutive time steps). Note that only the
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Figure 3.7: (Color) Comparisons of the normalized transverse momentum autocor-
relation function (left) and its logarithm (right) between standard DPD and PNHL
methods with stepsize h = 0.05. DPD-S1 and PNHL-N were used to solve the DPD
and PNHL systems respectively. The ratio of the curves on the right panel is propor-
tional to the corresponding shear viscosity. The wavenumber k was chosen as 2π/L and
100,000 different runs were averaged to reduce the sampling errors after the system was
well equilibrated.

time for the main integration step (without calculating any physical quantity)
was counted.

Method
Critical
Stepsize

Maximal
Stepsize

CPU Time
Scaled

Efficiency

DPD-VV 0.05 0.10 17.710 100.0%

DPD-S1 0.05 0.11 17.783 99.6%

DPD-Trotter 0.05 0.11 18.482 95.8%

LA 0.05 0.10 15.364 115.3%

Peters 0.05 0.11 18.286 96.9%

NHLA 0.07 0.13 16.281 152.3%

PNH 0.05 0.08 13.990 126.6%

PNHL-S 0.08 0.17 19.408 146.0%

PNHL-N 0.17 0.23 32.183 187.1%

Table 3.2: Comparisons of the computational efficiency of the various numerical
methods. “Critical stepsize” is the stepsize beyond which the numerical method starts
to show pronounced artifacts, while “maximal stepsize” is the stepsize stability thresh-
old. The “numerical efficiency” of each method was scaled to that of the benchmark
DPD-VV method.

In order to quantitatively compare the overall performance of each method,
we define a quantity, the “numerical efficiency”, that measures the amount of
simulation time accessible per unit of computational work, i.e.,

Numerical Efficiency =
Critical Stepsize

CPU Time Per Step
, (3.75)

where the “critical stepsize” is defined as the stepsize beyond which pronounced
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artifacts become apparent in some observable thus rendering the simulation un-
usable. For practical purposes, we use a threshold of 10% relative error in con-
figurational temperature in determining the critical stepsize. Our reasoning in
choosing the configurational temperature as the quantity for determination of
the critical stepsize is that (a) it is a sensitive observable and difficult to con-
trol in simulation, (b) accuracy of configurational temperature seems to us to be
intuitively to be a core requirement for canonical simulation methods, (c) good
control of the configurational temperature appears to imply good results in other
stationary computations. The choice of 10% as the bar for accuracy is clearly
arbitrary. If a smaller error threshold were used, the results may change slightly,
but the ordering of the methods in terms of efficiency would remain essentially
the same.

We also show the “maximal stepsize” in Table 3.2, which is the stepsize at
which the numerical method is either above 100% relative error in configurational
temperature or unstable. Only the PNHL-N method needs to calculate the force
twice in each integration step, which is the reason why an almost doubled time
was needed than other methods. Finally, the computed “numerical efficiency” of
each method was scaled to that of the DPD-VV method since it is still the most
popular method in DPD simulations and we use that method as the benchmark
in the comparisons.

As can be seen from the table, those standard DPD methods and the Pe-
ters thermostat have comparable “numerical efficiency”. The LA and PNH
thermostats are slightly better than the commonly used DPD-VV method with
around 15% and 27% improvements, respectively. Both NHLA and PNHL-S
methods maintain an about 50% enhancement. The improvement of the “nu-
merical efficiency” of the PNHL-N is remarkably 87% in comparison with the
DPD-VV method. Similarly, we may also compute the enhancements of the
PNHL-N method based on kinetic temperature and average potential energy, us-
ing the same critical stepsize h = 0.05 as in configurational temperature: 43% for
the former and 120% for the latter.

3.8 Second Order Convergence of PNHL-N for

Certain Observables

We have demonstrated in Section 3.6.1 that a symmetric splitting method would
give at least second order convergence to the invariant measure. We have also
showed that nonsymmetric splitting methods of GLA type would have second
order convergence in Section 3.6.3. However, although second order convergence
was also observed for the nonsymmetric splitting method of PNHL (i.e., the
PNHL-N method) for a number of observables in Section 3.7, its theoretical ver-
ification has been lacking. In this section, by adopting the procedures based on
the expansion of the invariant measure outlined in Section 3.6.1, we verify the
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second order convergence of the PNHL-N method for certain observables.

Consider the PNHL-N method (3.62), which can be written as

exp
(
hL̂†PNHL−N

)
= exp

(
h

2
L†X
)

exp
(
hL†Y

)
exp

(
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2
L†X
)
,
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By using the BCH expansion, we obtain

L†X = L†A + L†B −
h

4

[
L†A,L

†
B

]
+O(h2) ,

L†Y = L†C + L†D +O(h2) ,

and subsequently

L̂†PNHL−N = L†A + L†B + L†C + L†D + L†O −
h

4

[
L†A,L

†
B

]
+O(h2) .

Thus the leading perturbation operator of the PNHL-N method is

L†1,PNHL−N = −1

4

[
L†A,L

†
B

]
, (3.76)

whose action on the invariant distribution of the PNHL system, i.e.,

ρ̂β(q,p, ξ) =
1

Z
exp (−βH(q,p)) exp

(
−βµξ

2

2

)
, (3.77)

reads (assuming M = I for simplicity)

L†1,PNHL−Nρ̂β(q,p, ξ) = −β
4

(
pT∆U(q)p− [∇U(q)]T∇U(q)

)
ρ̂β . (3.78)

Although in this case the right-hand side of the PDE (3.66) is relatively simple,
it is still very challenging to solve the PDE in order to obtain the corresponding
leading correction function f1,PNHL−N. However, the additional variable ξ is nor-
mally distributed with mean zero and variance β−1µ−1. Thus, the variance of ξ
will be small if the thermal mass µ is large. Therefore, we consider projecting
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the Fokker–Planck equation, which reads

L†PNHL = −p ·∇q +∇U(q) ·∇p + ξ∇p · (Γ(q)p·)−G(q,p)
∂

∂ξ
+ γ̃

∂

∂ξ
(ξ·)+

σ̃2

2

∂2

∂ξ2
,

and its solution by integrating with respect to the Gaussian distribution of ξ in
the ergodic limit. That is, we apply the projection operator [61]

Pν(q,p, ξ) :=

∫
Ωξ
ρ̂β(q,p, ξ)ν(q,p, ξ) dξ∫

Ωξ
ρ̂β(q,p, ξ) dξ

, (3.79)

where ν is an arbitrary function, to the PDE (3.66). Effectively, this leads to the
reduced equation

Ľ†(ρβ f̂1) = −ρβP
L†1ρ̂β
ρ̂β

, (3.80)

where the operator Ľ†, acting on functions of q and p only, is just the operator
L† reduced by the action of the projection. In fact, L†PNHL is now simply reduced
to

Ľ†PNHL = −p · ∇q +∇U(q) · ∇p ,

while the right-hand side is unchanged due to the fact that ξ is not present.
Finally, we can solve the reduced PDE to obtain the leading correction function:

f̂1,PNHL−N =
β

4
pT∇U(q) , (3.81)

which suggests that the PNHL-N method could have second order convergence
to its invariant measure for certain observables, (i.e., in the form of φ(q,p) =
p2kϑ(q), where k is an integer and ϑ(q) can be constant), including kinetic tem-
perature and observables that only depend on the configurations. In other words,
for those observables, assuming the asymptotic expansion holds, the computed
average (in the large thermal mass limit) reads

〈φ〉h = 〈φ〉+ h〈φf̂1〉+ h2〈φf̂2〉+ · · · = 〈φ〉+O(h2) ,

which is of order two. This is fully consistent with what we have observed nu-
merically for a number of observables in Section 3.7.
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Chapter 4

Pairwise Adaptive Langevin
(PAdL) Thermostat with
Applications in Nonequilibrium
Modelling

We have introduced, in Section 2.6, the pairwise Nosé–Hoover–Langevin (PNHL)
thermostat (2.45), which acts as an alternative approach to DPD. Two different
splitting methods have been proposed in Section 3.5.2 for the PNHL system,
with the first being of a symmetric manner, labeled as PNHL-S (3.61), and the
other nonsymmetric, PNHL-N (3.62). Both PNHL methods have been system-
atically compared to various popular schemes presented for a number of physical
quantities in Section 3.7, and it turns out that both methods achieve significant
improvements in terms of accuracy, robustness, and numerical efficiency over
alternatives. However, it appears that the dynamical properties of the PNHL
formulation corresponds to that of the standard DPD system in the low friction
regime. In this chapter, we propose a new momentum-conserving thermostat in
order to have full control of the dynamics in practice. The results presented in
this chapter have not appeared anywhere else.

4.1 Formulation of PAdL

We propose here a momentum-conserving pairwise adaptive Langevin (PAdL)
thermostat (as a potential replacement for DPD), whose equations of motion (for
particle i) are given by

dqi = m−1
i pidt ,

dpi = FC
i (q)dt− ξVi(q,p)dt+ σRi(q, t) ,

dξ = G(q,p)dt ,

(4.1)
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where σ is a constant coefficient. In fact, the PAdL system can be viewed as a
“perturbed pairwise Nosé–Hoover (PNH)” thermostat, since the only difference
comparing to the PNH thermostat is the additional stochastic term. An addi-
tional Langevin thermostat could also be added on to the auxiliary variable ξ as
in PNHL in order to improve ergodicity, but it is not that necessary here due to
the presence of the additional stochastic term.

It can be easily demonstrated that the PAdL system also preserves the canon-
ical ensemble with a modified invariant distribution

ρ̃β(q,p, ξ) =
1

Z
exp (−βH(q,p)) exp

(
−βµ

2
(ξ − γ̂)2

)
, (4.2)

where γ̂ can be thought of as the “effective friction” and the following fluctuation-
dissipation theorem is satisfied as in DPD

σ2 = 2γ̂kBT . (4.3)

The invariant distribution (4.2) implies that the auxiliary variable ξ is Gaus-
sian distributed with mean γ̂ and variance β−1µ−1. The auxiliary variable will
fluctuating around its mean value during simulation. Therefore, we can think of
the PAdL thermostat as the standard DPD system with an “effective friction”.
In the large thermal mass limit (i.e., µ → ∞), the PAdL thermostat effectively
reduces to the standard DPD formulation (2.37).

Once again, the newly proposed PAdL thermostat (4.1) can be written in a
more compact form

dq = M−1pdt ,

dp = −∇U(q)dt− ξΓ(q)M−1pdt+ σΣ(q)dW ,

dξ = G(q,p)dt .

(4.4)

A symmetric splitting scheme for the PAdL thermostat is given in Appendix A:
as in the DPD-Trotter scheme (Section 3.3.3), the vector field of the “Ornstein–
Uhlenbeck” part of the PAdL system is split into each interacting pair in such a
way that we can solve the interaction of each pair exactly.

4.2 Numerical Experiments

In this section, we conduct various numerical experiments, in both equilibrium
and nonequilibrium regimes, to compare the newly proposed PAdL method with
a number of alternative momentum-conserving schemes described in Chapter 3.

Same simulation details and measured physical quantities were used as in
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Figure 4.1: Log-log plot of the relative error in computed configurational temperature
(left) and average potential energy (right) against stepsize by using various numerical
methods with (effective) friction coefficient γ = 4.5. The system was simulated for
1000 reduced time units but only the last 80% of the data were collected to calculate
the static quantity to make sure the system was well equilibrated. Ten different runs
were averaged to further reduce the sampling errors. The stepsizes tested began at
h = 0.05 and were increased incrementally by 15% until all methods either started to
show significant relative error (100% in configurational temperature or 10% in average
potential energy) or became unstable.

Section 3.7. In particular, the thermal mass in PAdL was chosen to be the
same as that of PNHL, i.e., µ = 10. When comparing different formulations, we
have to make sure that similar translational diffusion properties of the fluid were
obtained. For the PAdL thermostat, we can always tune the value of σ so that
the same (effective) friction coefficient as in DPD was obtained, i.e., γ̂ = γ. For
LA and NHLA thermostats, the stochastic randomization frequency Γ was set to
be 0.44 as in [81,126], which corresponds to the case of γ = 4.5 in DPD. We have
also used Γ = 0.1 and Γ = 4 for γ = 0.5 and γ = 40.5, respectively, in DPD.

We have observed in Section 3.7 that standard DPD methods (DPD-VV,
DPD-S1, and DPD-Trotter) and the Peters thermostat give almost indistinguish-
able performance in all the quantities that we have tested. Therefore, only the
DPD-S1 method was used to represent the standard DPD formulation unless oth-
erwise stated. The PNH method was not included for further comparison due to
its stability issue, which is well documented in Section 3.7. Since the dynamics of
the PNHL thermostat is consistent with that of DPD in the low friction regime,
both PNHL methods were only compared to alternatives in the case of γ = 0.5.

4.2.1 Equilibrium

Configurational quantities, such as configurational temperature and average po-
tential energy, were compared in Figure 4.1 with (effective) friction coefficient
γ = 4.5. According to the dashed order line, we can see that all the meth-
ods tested exhibit second order convergence to the invariant measure for both
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Method
Critical
Stepsize

Maximal
Stepsize

CPU Time
Scaled

Efficiency

DPD-VV 0.05 0.10 19.878 100.0%

DPD-S1 0.05 0.11 20.018 99.3%

DPD-Trotter 0.05 0.11 20.788 95.6%

Peters 0.05 0.11 20.893 95.1%

LA 0.05 0.10 17.808 111.6%

NHLA 0.07 0.13 18.513 150.3%

PAdL 0.13 0.17 22.219 232.6%

Table 4.1: Comparisons of the computational efficiency of various numerical methods
in the moderate (effective) friction regime of γ = 4.5. “Critical stepsize” is the stepsize
beyond which the numerical method starts to show pronounced artifacts, while “max-
imal stepsize” is the stepsize stability threshold. The “numerical efficiency”, defined
in (3.75), of each method was scaled to that of the benchmark DPD-VV method.
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Figure 4.2: Comparisons of the relative error in computed configurational tem-
perature against stepsize by using various numerical methods with (effective) friction
coefficient γ = 0.5 (left) and γ = 40.5 (right). Note that two pairwise Nosé–Hoover–
Langevin (PNHL) methods, which correspond to the low friction regime, were included
in the latter case only. The format of the plots is the same as in Figure 4.1.

quantities. More specifically, DPD and the LA thermostat show rather similar
behavior, while the NHLA thermostat is slightly better than those two. Quite
remarkably, the newly proposed PAdL method achieves one order of magnitude
improvement over DPD in terms of numerical accuracy for a fixed stepsize. For
certain accuracy (i.e., a fixed relative error), the PAdL method can use doubled
stepsize, thus substantially improving the “numerical efficiency” defined in Sec-
tion 3.7.4. Our observations were confirmed in Table 4.1, which shows that the
PAdL method indeed has a more than 130% improvement in numerical efficiency
over the DPD method. The results on the configurational temperature and aver-
age potential energy are rather similar, therefore in what follows we only present
configurational temperature results.

Figure 4.2 (left) compares the configurational temperature control of various
methods in both low and high friction regimes. In the low friction regime, where
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Method
Critical
Stepsize

Maximal
Stepsize

CPU Time
Scaled

Efficiency

DPD-VV 0.05 0.09 19.878 100.0%

DPD-S1 0.05 0.09 20.018 99.3%

DPD-Trotter 0.05 0.09 20.788 95.6%

Peters 0.05 0.09 20.893 95.1%

LA 0.05 0.09 17.808 111.6%

NHLA 0.07 0.11 18.513 150.3%

PNH 0.05 0.08 16.450 120.8%

PNHL-S 0.08 0.17 21.199 150.0%

PNHL-N 0.17 0.23 37.206 181.7%

PAdL 0.08 0.17 22.219 143.1%

Table 4.2: Comparisons of the computational efficiency of various numerical methods
in the low (effective) friction regime of γ = 0.5. The format of the table is the same as
in Table 4.1.

both PNHL methods were included, again all the methods display second order
convergence to the invariant measure. The NHLA, PNHL-S, and PAdL methods
are rather similar to each other, all of which are superior to both DPD and LA
methods. The PNHL-N method achieves more than one order of magnitude im-
provement in numerical accuracy over the DPD method. Although the PNHL-N
method requires two force calculations at each step, it still achieves a more than
80% improvement as shown in Table 4.2. The table also reveals that the PAdL
method has an almost 50% improvement over the DPD method.

Method
Critical
Stepsize

Maximal
Stepsize

CPU Time
Scaled

Efficiency

DPD-VV 0.04 0.07 19.878 100.0%

DPD-S1 0.05 0.11 20.018 124.1%

DPD-Trotter 0.05 0.11 20.788 119.5%

Peters 0.05 0.11 20.893 118.9%

LA 0.05 0.11 17.808 139.5%

NHLA 0.05 0.11 18.513 134.2%

PAdL 0.13 0.17 22.219 290.8%

Table 4.3: Comparisons of the computational efficiency of various numerical methods
in the high (effective) friction regime of γ = 40.5. The format of the table is the same
as in Table 4.1.

In the high friction regime, the behavior of those methods are rather different
from that of other regimes. As shown in Figure 4.2 (right), surprisingly the most
popular DPD-VV method is slightly worse than other standard DPD methods.
Both LA and NHLA are indistinguishable from the DPD method. Superconver-
gence property (i.e., fourth order convergence to the invariant measure as demon-
strated in Section 5.3.2) was not observed for the PAdL method in this regime.
Nevertheless, the PAdL method still obtains a dramatic improvement over all
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other schemes. Table 4.3 shows that the PAdL method has a more than 190%
improvement in overall numerical efficiency over the benchmark DPD method.
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Figure 4.3: Comparisons of velocity autocorrelation function (VAF) between the
standard DPD method and the newly established PAdL scheme with three different
values of (effective) friction coefficient. The DPD-S1 method was used for DPD with a
small stepsize of h = 0.01, while h = 0.05 was used for PAdL. 100 different runs were
averaged to reduce the sampling errors after the system was well equilibrated.

The control of the dynamics of the PAdL method was also tested and plotted
in Figure 4.3. Unlike the PNHL formulation, which corresponds to the low friction
regime, the PAdL system is able to capture the dynamics of DPD in a wide range
of friction coefficients: the relaxations of the velocity autocorrelation function of
both formulations are indeed indistinguishable (only visible with the help of the
symbol signs).

4.2.2 Nonequilibrium

Before we analyse the numerical results obtained by simulating various meth-
ods under Lees–Edwards boundary conditions (i.e., the system is perturbed by
a simple shear flow), we discuss two important issues in nonequilibrium molec-
ular dynamics (NEMD) simulations: (1) the practical implementation of the
Lees–Edwards boundary conditions in DPD and related momentum-conserving
systems, where forces are dependent on relative velocities; (2) the practical mea-
surement of system temperature in NEMD.

A recent paper [30] claimed that, owing to the dependence of inter-particle
forces on the relative velocity of the particles, it is problematic to directly apply
the LEBC to DPD, especially in high friction regime. As shown in Figure 4.4
(left) where exactly the same setting as in the original paper [30] was used, as
the friction increases, the velocity profile starts to (significantly) deviate away
from the target linear profile. A simple remedy, which suggests to switch off
the interactions of dissipative and random forces (i.e., the DPD thermostat) if
one particle is within interacting range of an image of other particle near the
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Figure 4.4: Comparisons of the computed velocity profile in dissipative particle
dynamics (DPD) with different values of the friction coefficient γ under Lees–Edwards
boundary conditions with shear rate γ̇ = 0.14 “without” (left) and “with” (right)
suitable modification in the relative velocity, respectively. The black solid line is the
expected linear profile. The DPD-S1 method was used with small stepsize h = 0.01.

boundaries where adjacent layers have different streaming velocities (i.e., the y-
direction in Figure 2.2), was proposed in the original paper [30], followed by other
suggestions [21,82,122].

However, the finding of [30] directly contradicts the principle of LEBC, which
is translationally invariant and is intended to overcome the surface effects. In
fact, as pointed in [51], in no way can the particles actually sense the boundaries
of any given box since the system is spatially homogeneous. Furthermore, our
numerical experiments, which is in perfect agreement with theoretically expected
behavior as shown in the right panel of Figure 4.4 even in the high friction regime,
suggest that the LEBC might have been incorrectly implemented in [30]. One
possibility is that when calculating the relative velocity between one particle and
an image of another, which is in a layer with different streaming velocity from
its origin, the original velocity, rather than the “modified velocity” because of
the different streaming velocities in different layers, was used as the velocity of
the image particle. By neglecting the necessary modification, we obtained the
left panel of Figure 4.4, while if the velocity of the image particle was modified
properly the expected liner velocity profile was recovered in Figure 4.4 (right)
using otherwise exactly the same setting.

Overall, it should be emphasized that if one particle is interacting with an
image of another under certain conditions, the relative velocity (in the x-direction)
between them should be modified as follows:

NL = 0 (4.5)

if (fabs(qyij) > Ly/2) NL = round(qyij/Ly) (4.6)

v̂xij = vxij −NLγ̇Ly (4.7)

where function “fabs(·)” returns the absolute value of the argument. Note that:
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(1) qyij in (4.6) has to be evaluated either before the minimum image conven-
tion (2.65)–(2.69) or by other proper ways to determine the actual distance be-
tween two interacting particles; (2) vxij in (4.7) is the relative (“absolute”) veloc-
ity between the two particles and one has to take into account the effects of the
streaming velocity as indicated.

We highly suspect that the necessary modification (4.5)–(4.7) was not cor-
rectly implemented in [30], resulting in the unphysical behavior as shown in Fig-
ure 4.4. It is not surprising that by switching off the DPD thermostat on inter-
actions that cross certain boundaries would recover the expected linear velocity
profile as shown in [30], since it directly avoids the situation described in (4.5)–
(4.7) where special attention should be paid. Overall, the “workaround” does not
provide any physical explanation, and could affect the underlying dynamics of
the system, implying that it should be abandoned.

Another interesting question in NEMD is that “What is the most appropriate
way to measure the system temperature?” Since the streaming velocity should be
subtracted from the particle velocity before calculating the kinetic temperature,
the normal definition (3.73) should be modified as follows [51]:

kBT̂k =
1

Nd

∑
i

mi(vi − û) · (vi − û) , (4.8)

where û is the corresponding streaming velocity at the location of particle i.

If we can assume that the velocity profile is linear, as in uniform shear flow, we
can just calculate and subsequently subtract it. However, as pointed in [51, 52],
at higher shear rates and/or Reynolds numbers (i.e., the ratio of the inertial and
viscous forces), the assumption of a linear streaming velocity profile is extremely
dubious, even though LEBC are used. This issue was addressed in [51,52] where
the so-called profile-unbiased thermostat (PUT) was proposed. The PUT allows
the simulation itself define the local streaming velocity (see more details in [51,
52, 176]). However, this is still not completely satisfactory since PUT assumes
that the streaming velocity profile is stationary in time, whereas the profile could
vary in time.

In DPD and related systems, temperature calculations can be based on rel-
ative velocities (e.g., (3.55) of NHLA), which do not rely on the relationship
between the absolute particle velocity and an underlying streaming velocity. As
discussed in Section 3.7.2, it might be even more desirable, especially in NEMD,
to define the temperature solely based on the configurations, which leads to the
“configurational temperature” (3.74) (see applications in [39, 40, 167]). In ad-
dition, thermostats based on the configurational temperature have been widely
used in NEMD with shear flows [23, 41, 42, 115]. Therefore, the configurational
temperature formulation will be preferred in our numerical experiments.

Figure 4.5 compares the configurational temperature control of various sys-
tems described under LEBC with different shear rates. As can be shown from the
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Figure 4.5: Comparisons of the relative error in computed configurational tem-
perature against stepsize by using various numerical methods with (effective) friction
coefficient γ = 4.5 under Lees–Edwards boundary conditions with shear rate γ̇ = 0.2
(left) and γ̇ = 2 (right). The format of the plots is the same as in Figure 4.1.

Method
Critical
Stepsize

Maximal
Stepsize

CPU Time
Scaled

Efficiency

DPD-VV 0.05 0.10 20.212 100.0%

DPD-S1 0.05 0.11 20.618 98.0%

DPD-Trotter 0.05 0.11 21.451 94.2%

Peters 0.05 0.11 21.274 95.0%

LA 0.05 0.10 18.048 112.0%

NHLA 0.07 0.13 18.691 151.4%

PAdL 0.13 0.17 23.103 227.5%

Table 4.4: Comparisons of the computational efficiency of the various numerical
methods in the moderate (effective) friction regime of γ = 4.5 under Lees–Edwards
boundary conditions with shear rate γ̇ = 0.2. The format of the table is the same as
in Table 4.2.

figure, when the shear rate is relatively small (γ̇ = 0.2, which is larger than that
of Figure 4.4), the behavior is largely similar to that of Figure 4.1 (left): all the
methods appear to show second order convergence to the invariant measure, and
the newly proposed PAdL method achieves one order of magnitude improvement
in numerical accuracy over both DPD and LA methods, both of which are slightly
worse than the NHLA method. The overall numerical efficiency was compared
in Table 4.4. Again the PAdL method is by far the most efficient method of all,
which has an about 130% improvement over the benchmark DPD-VV method.

When the shear rate is relatively high (γ̇ = 2), as shown in Figure 4.5 (right),
all the methods appear to lose the clear second order convergence previously ob-
served. The LA thermostat, displaying significantly large relative error even when
the stepsize is relatively small, appears to be most vulnerable to the high shear
rate, with the DPD method being slightly better. While exhibiting some unex-
pected behavior, both NHLA and PAdL have better numerical accuracy control
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than the other two. For instance, as the stepsize increases, the relative error of
the PAdL method starts to decrease before growing up as would be expected.
We believe this unexpected decrease at the beginning is due to sampling errors,
which is more likely to be observed in high accuracy regime, since increasing the
system size (i.e., number of particles) would resolve this issue. Nevertheless, the
PAdL method constantly achieves at least one order of magnitude improvement
in numerical accuracy over the DPD method.
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Chapter 5

Noisy Gradient Systems with
Applications in Data Science

5.1 Introduction

Stochastic thermostats [104, 150, 151] are powerful tools for sampling probabili-
ty measures on high-dimensional spaces. These methods combine an extended
dynamics with degenerate stochastic perturbation to ensure ergodicity. The tra-
ditional use of thermostats in molecular dynamics is to sample a well-specified
equilibrium system involving a known force field which is the gradient of a poten-
tial energy function. Recently, however, these techniques have become increas-
ingly popular for problems of more general form, including the following:

• multiscale models in which the forces are obtained by approximate sampling
in another scale regime [54,72,109,121,140,141];

• nonequilibrium physical models in which the potential energy function ei-
ther is evolving or does not completely specify the system [87,111,133,135,
158,159];

• Bayesian machine learning applications in which a dataset defines an ob-
jective function which leads to an effective force law [4,32,44,134,173,175].

In this chapter, we consider thermostats and numerical methods for sampling an
underlying probability measure in the presence of error, under the assumption
that the errors are random with a simple distributional form and unknown, but
constant or slowly varying, parameters. In the cases considered, these methods
are simple to implement, robust, and efficient. The results presented in this
chapter are mostly from a recent work with B. Leimkuhler [107] and Section 5.5
is based on a recent article in collaboration with Z. Zhu, B. Leimkuhler, and A.
Storkey [154].
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5.1.1 Noisy Gradients

The gradient (or Hamiltonian) structure is essential to the nature of all the meth-
ods described in Chapter 2 since it is only by use of this feature that the underlying
Fokker–Planck equation can be shown to have the desired steady state solution.
However, in many applications, in particular multiscale modelling, the force is
corrupted by significant approximation error and cannot be viewed as the gradi-
ent of a single global potential function. One imagines a large extended system
involving configurational variables q and y, with (q,y) ∈ Ωq × Ωy (compact),
and an overall distribution described by a Gibbs–Boltzmann density

ρ̃(q,y) = Z−1exp
(
−βŨ(q,y)

)
,

where Z is a normalizing constant so that ρ̃ is a probability density. One calculates
the mean force acting on q, f̂(q), by averaging the forces in the extended Gibbsian
system, f̃(q,y), as

f̂(q) =

∫
Ωy

f̃(q,y)ρ̃(q,y) dωy .

If, as would typically be assumed, f̃(q,y) = −∇qŨ(q,y), i.e., the force in the

extended system is conservative, then we may interpret f̂ as a conservative force
as well, specifically the gradient of the potential of mean force, which is given by

Û(q) = −β−1 ln

∫
Ωy

exp
(
−βŨ(q,y)

)
dωy .

The challenge arises when this integral must be approximated. For example,
if this is done by Monte Carlo integration, for fixed q, one generates samples
y1,y2, . . . ,yk from the distribution with density ρ̃(q,y) and thus approximates
the mean force by

f̄k(q) = k−1

k∑
i=1

f̃
(
q,yi

)
.

In practice most systems constructed in this way, for example, those arising in
mixed quantum and classical molecular models [20], will admit very substantial
errors in the forces; that is,

f̄k(q) = f̂(q) + ∆k(q) .

Depending on the method of computation, it may be reasonable to assume that
the errors ∆k are normally distributed with zero mean, which is justified by the
central limit theorem [10], but the variance of the errors is generally not known
and will be dependent on the location q where they are computed; thus we would
expect

∆k(q) ∼ N
(
0,Σk(q)

)
, (5.1)

where Σk(q) is an unknown covariance matrix. It should be noted that the
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assumption of the errors being Gaussian distributed is also often adopted in
Bayesian inverse problems [36] and elsewhere.

The most straightforward approach to the problem is to first treat the esti-
mation problem for Σk separately, by some means, and then to use this within a
standard Brownian or Langevin dynamics algorithm. The difficulty is that this
requires a high level of local accuracy in the calculations, which is likely to be
burdensome and involve redundant computation. What we would prefer to do is
to resolve the correct target distribution by a global calculation.

This problem has recently been encountered in the data science community,
where it has attracted considerable attention [4,32,44,134,173,175]. To illustrate,
we consider the problem of Bayesian sampling [24, 145], where one is interested
in correctly drawing states from a posterior probability density defined as

π(θ|X) ∝ π(X|θ)π(θ) , (5.2)

where θ is the parameter vector of interest, X represents the entire dataset, and,
π(X|θ) and π(θ) represent the likelihood and prior distributions, respectively.
In these applications, the distribution parameters are interpreted as the config-
uration variables (θ ≡ q). We introduce a potential energy U(θ) by defining
π(θ|X) ∝ exp(−βU(θ)); thus taking the logarithm of (5.2) gives

U(θ) = − log π(X|θ)− log π(θ) . (5.3)

Assuming the data are independent and identically distributed (i.i.d.), the loga-
rithm of the likelihood distribution can then be calculated as

log π(X|θ) =
N∑
i=1

log π(xi|θ) , (5.4)

where N is the size of the entire dataset.

However, in machine learning applications, one often finds that directly sam-
pling with the entire large-scale dataset is computationally intractable. For in-
stance, the Markov chain Monte Carlo (MCMC) method [118] requires the calcu-
lation of the acceptance probability and the creation of informed proposals based
on the whole dataset, while the gradient is evaluated through the whole dataset
in the hybrid Monte Carlo (HMC) method [24, 45, 77], again resulting in severe
computational complexity.

In order to improve the efficiency of simulation, the so-called stochastic gra-
dient Langevin dynamics (SGLD) was recently proposed [175] based on using a
random (and much smaller, i.e., ñ� N) subset to approximate the likelihood of
the dataset for given parameters,

log π(X|θ) ≈ N

ñ

ñ∑
i=1

log π(xri |θ) , (5.5)
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where {xri}ñi=1 represents a random subset of X. Overall, the “noisy” potential
energy now can be written as

Ũ(θ) = −N
ñ

ñ∑
i=1

log π(xri|θ)− log π(θ) , (5.6)

with “noisy” force F̃(θ) = −∇Ũ(θ).

5.1.2 Sampling Methods for Noisy Gradients

The challenge is to identify a method to compute samples distributed according
to the Gibbs distribution ρ(q) = Z−1 exp(−βU(q)), where the only available in-
formation is a stochastically perturbed force F̃(q) defined in the previous section.

In the original SGLD method, samples are generated by Brownian dynamics,

qn+1 = qn + hnF̃(qn) +
√

2β−1hnRn , (5.7)

where Rn is a vector of i.i.d. standard normal random variables. It should be
emphasized that hn is a sequence of stepsizes decreasing to zero [175]. Although
a central limit theorem associated with the decreasing stepsize sequence was es-
tablished by Teh et al. [165], a fixed stepsize is often preferred in practice, which
is the choice in this thesis as in Vollmer et al. [173], where a modified SGLD
(mSGLD) is introduced:

qn+1 = qn + hF̃(qn) +
√

2β−1h

(
I− h

4
CovF̃(qn)

)
Rn , (5.8)

where

CovF̃ij = E
[(

F̃i − E(F̃i)
)(

F̃j − E(F̃j)
)T]

(5.9)

is the covariance matrix of the noisy force.

A stochastic gradient Hamiltonian Monte Carlo (SGHMC) method was also
proposed recently by Chen et al. [32], which incorporates a parameter-dependent
diffusion matrix Σ(q) (i.e., the covariance matrix of the noisy force, which can
be calculated as in (5.9)). Σ(q) is intended to effectively offset the stochastic
perturbation of the gradient. However, it is very difficult to accommodate Σ(q)
in practice; moreover, as pointed out in [44], poor estimation of it may have a
significant adverse influence in correctly sampling the target distribution unless
the stepsize is small enough.

These problems challenge the conventional mechanism of thermostats. An ar-
ticle of Jones and Leimkuhler [84] provides an alternative means of tackling this
problem by showing that Nosé–Hoover dynamics is able to adaptively dissipate
excess heat pumped into the system while maintaining the Gibbs (canonical) dis-
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tribution. In the setting of systems involving a driving stochastic perturbation,
the adaptive Nosé–Hoover method is referred to as Ad-NH, with similar gen-
eralizations of Nosé–Hoover–Langevin (Ad-NHL) and Langevin dynamics (Ad-
Langevin) available. An idea equivalent to Ad-Langevin was recently applied in
the setting of Bayesian sampling for use in data science calculations by Ding et
al. [44], which they referred to as the stochastic gradient Nosé–Hoover thermostat
(SGNHT). It showed significant advantages over alternative techniques such as
SGHMC [32]. However, the numerical method used by Ding et al. [44] is not op-
timal, neither in terms of its accuracy (measured per unit work) nor its stability
(measured by the largest usable stepsize).

Although extended systems have been increasingly popular in molecular sim-
ulations, the mathematical analysis of the order of convergence, specifically in
terms of the bias in averaged quantities computed using numerical trajectories,
is not fully understood. Using a splitting approach, we propose in this section an
alternative numerical method for Ad-Langevin simulation that substantially im-
proves on the existing schemes in the literature in terms of accuracy, robustness,
and overall numerical efficiency.

5.2 Adaptive Thermostats for Noisy Gradients

In this section, we discuss the construction of thermostats to approximate samples
with respect to the target measure (i.e., the correct marginalized Gibbs density)
if the covariance matrix of the noisy force is constant, i.e., Σ(q) = σ2I (σ is a
constant positive quantity). The procedure was outlined in the paper of Jones and
Leimkuhler [84] and relies on the fact that a fixed amplitude noise perturbation
engenders a shift of the auxiliary variable in the extended stationary distribution
associated with the Nosé–Hoover thermostat.

If the system is not coming from a Newtonian dynamics model, then it is
unclear that we need to rely on second order dynamics for this purpose. To see
why this is the case, we explain what goes wrong if we try to use first order dy-
namics. In what follows, we assume that the covariance matrix of the noisy force
is constant, although we ultimately intend to apply the method more generally.
Even in the constant σ case it is a nontrivial problem to extract statistics related
to a particular target temperature, since we do not assume that σ is known.

For σ constant, let us first consider the SDE

dq = −ξ∇U(q)dt+ σdW , (5.10)

dξ = χ(q)dt (5.11)

and seek χ(·) so that an extended Gibbs distribution with density of the form
ψ(q, ξ) = ρ̄β(q)ϕ(ξ) is (ergodically) preserved. The variable ξ is an auxiliary
variable. We do not generally care what its distribution is, but it is crucial that

68



(i) the overall density is in product form, and

(ii) ϕ(ξ) ≥ 0 is normalizable and of a simple, easily sampled form.

These conditions ensure that we can easily average out over the auxiliary variable
to compute the averages of functions of q which are of greatest interest.

Proposition 1. Let χ(q) = −β−1∆U(q) + ‖∇U(q)‖2; then (5.10)–(5.11) pre-
serves the modified Gibbs distribution:

ρ̃(q, ξ) = ρ̄β(q)e−β(ξ−γ̂)2/2 ,

where γ̂ = βσ2/2.

Proof. The Fokker–Planck equation corresponding to (5.10)–(5.11) is

ρt = L†ρ := ξ∇ · (∇U(q)ρ(q, ξ)) +
σ2

2
∆ρ− ∂

∂ξ
(χ(q)ρ) .

Just insert ρ̃ into the operator L† to see that it vanishes.

Proposition 1 tells us that if we can solve system (5.10)–(5.11), under an
assumption of ergodicity, we can compute averages with respect to the target
Gibbs distribution without actually knowing the value of σ. σ could be observed
retrospectively by simply averaging ξ during simulation, since 〈ξ〉 = βσ2/2.

The problem is that the dynamics (5.10)–(5.11) is not quite what we want. A
typical numerical method for this system might be constructed based on modifi-
cation of the Euler–Maruyama method:

qn+1 = qn − hξn∇U(qn) + σ
√
hRn , (5.12)

ξn+1 = ξn + hχ(qn) ; (5.13)

however, observe that this method requires separate knowledge of ∇U(q) and σ,
which is generally impossible a priori, as we assume that the force is polluted by
unknown noise. The form of the equations means that we evaluate the product
of ξ and the deterministic force, on the one hand, and the random perturbation,
on the other hand, separately, and these contributions are independently scaled
by h and

√
h, respectively.

5.2.1 Adaptive Langevin (Ad-Langevin) Thermostat

To adaptively control the invariant distribution, we consider the following second
order formulation, which was first introduced in the paper of Jones and Leimkuh-
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ler [84]:
dq = M−1pdt ,

dp = F̃(q)dt− ξpdt+ σAM1/2dWA ,

dξ = µ−1
[
pTM−1p−NdkBT

]
dt .

(5.14)

In these equations, F̃(q) is meant to represent a noisy gradient which may be
thought of as being defined by the relation

F̃(q) = −∇U(q) + σM1/2R , (5.15)

where R = R(t) is a collection of independent Gaussian white noise processes, i.e.,
〈Ri(t)Rj(s)〉 = δijδ(t − s). σAM1/2dWA indicates the artificial noise added into
the system to enhance the ergodicity; i.e., the constant σA is known a priori. All
the components of the Wiener process WA(t) are assumed to be independent.
Nd denotes the number of degrees of freedom of the system. µ is a coupling
parameter which is referred to as the “thermal mass”. kB and T , satisfying the
relation β−1 = kBT , represent the Boltzmann constant and system temperature,
respectively.

A similar system (SGNHT) was used by Ding et al. [44], who also explored
its application to three examples from machine learning. These experiments
demonstrated that Ad-Langevin has superior performance compared to SGHMC
in various applications, confirming the importance of adaptively dissipating ad-
ditional noise in sampling. However, there remain two important issues that we
wish to address in this chapter: (1) the underlying dynamics of the Ad-Langevin
method is not clear due to the presence of the stochastically perturbed gradient;
(2) little attention has been paid to the design of optimal numerical methods for
implementing Ad-Langevin with attention to stability and numerical efficiency.

One may wonder why the artificial noise is needed (i.e., σA 6= 0), since we
are assuming the presence of noise in the gradient itself. The reason is as fol-
lows: in defining a numerical method for the noisy gradient system, the force
(including the random perturbation) will in general be multiplied by h, where
h is the timestep. On the other hand, the Itō rule implies that the scaling of
random perturbations in an SDE should be by a factor proportional to

√
h; thus,

effectively, if we are to relate the thermostatted method to a standard SDE, the
standard deviation of the noise is reduced by multiplication by the factor

√
h.

The noise perturbation introduced at each timestep (and the effective diffusion)
is thus reduced for small stepsizes and it is therefore important to inject addition-
al artificial noise in order to stabilize the invariant distribution. A rewriting of
the Ad-Langevin system as a standard Itō SDE system makes clear the relation
between the different terms

dq = M−1pdt ,

dp = −∇U(q)dt+ σ
√
hM1/2dW − ξpdt+ σAM1/2dWA ,

dξ = µ−1
[
pTM−1p−NdkBT

]
dt ,

(5.16)
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where W = W(t) is an additional vector of standard Wiener processes.

Let us note the main features of the dynamics (5.16):

(i) The equations are a combination of Langevin dynamics and Nosé–Hoover
dynamics. If ξ is constant in the equation for the momentum, then the
system reduces to Langevin dynamics. In the absence of noise, σA = 0 (and
σ = 0); then the system reduces to Nosé–Hoover. The system (5.16) may
be regarded as a sort of Langevin dynamics where the friction coefficient,
rather than being fixed a priori, is automatically and adaptively determined
in order to achieve the desired temperature (which is specified in the control
law defining the evolution of ξ).

(ii) The invariant distribution for the given system may be directly obtained by
study of its Fokker–Planck equation. Following [84], it is straightforward
to show that (5.16) has the following invariant distribution:

ρ̃β(q,p, ξ) =
1

Z
exp (−βH(q,p)) exp

(
−βµ

2
(ξ − γ̂)2

)
, (5.17)

where Z is the normalizing constant and

γ̂ =
β (σ2

F + σ2
A)

2
, (5.18)

where σF = σ
√
h. Observe that this means that if σA = 0, then, as

limh→0σF = 0, we find that ξ tends to a variable which is normally dis-
tributed with mean zero. Alternatively, if σA 6= 0, one would obtain

ξ
L→ N

(
βσ2

A

2
, β−1µ−1

)
, t→∞ , h→ 0 ,

where β−1µ−1 is the variance and the symbol
L→ indicates that ξ converges in

probability law to a normally distributed random variable with the indicated
parameters. The order of the limits here is important: t→∞ first (to reach
the invariant distribution), then h→ 0.

(iii) The ergodicity of (5.16) with respect to the distribution indicated above can
easily be demonstrated by reference to Hörmander’s condition for hypoel-
lipticity following the method in [116], as for Langevin dynamics. The only
additional step is to verify that the noise propagates into the ξ variable,
which follows due to its strong coupling to the momenta.

(iv) This dynamics is a bit unusual in that it must be viewed as stepsize depen-
dent, although we mention that such mixed systems are used in the study
of backward error analysis [105]. One simply thinks of the characteristic-
s of stochastic paths associated with (5.16) as being stepsize dependent.
Although (5.16) takes on the appearance of a standard Itō SDE system,
we must bear in mind that in discretizing these equations the conservative
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force F(q) and the associated noise term σ
√
hM1/2dW must be evaluated

together at every stage, since the formulation (5.16) is a notational device
to make clear the properties of the system.

5.3 Numerical Methods for Adaptive Thermostats

Since stochastic systems in most of the cases cannot be solved “exactly”, splitting
methods are often adopted in practice. For instance here, the vector field of the
Ad-Langevin/SGNHT (5.14) can be split into four pieces which are denoted as
“A”, “B”, “O”, and “D”, in such a way that each piece can be solved “exactly”,

d

 q
p
ξ

 =

 M−1p
0
0

 dt

︸ ︷︷ ︸
A

+

 0
−∇U(q) + σM1/2R

0

 dt

︸ ︷︷ ︸
B

+

 0
−ξpdt+ σAM1/2dWA

0


︸ ︷︷ ︸

O

+

 0
0

G(p)

 dt

︸ ︷︷ ︸
D

,

where G(p) = µ−1
[
pTM−1p−NdkBT

]
.

Clearly parts “A” and “D” can be solved “exactly”. As mentioned previously,
the underlying dynamics for “B” is

dp = −∇U(q)dt+ σFM1/2dW , (5.19)

where q is fixed and σF = σ
√
h. Integrating (5.19) from 0 to h gives the exact

solution in distribution of this part as

p(h) = p(0)− h∇U(q) +
√
hσFM1/2R

= p(0) + h[−∇U(q) + σM1/2R] = p(0) + hF̃(q) ,

where R is a vector of i.i.d. standard normal random variables. It should be noted
that applying the Euler–Maruyama method to (5.19) gives the same result; thus,
for constant force, Euler–Maruyama is “exact”.

The “O” or “Ornstein–Uhlenbeck” part is usually stated with ξ a positive
constant, in which case the solution is found to be [90] (see also (3.20))

p(h) = e−ξhp(0) + σA

√
1− e−2ξh

2ξ
M1/2R , (5.20)

where p(0) is the initial value of the variable and R is a vector of i.i.d. standard
normal random variables. However, the same formula (5.20) is easily seen to be
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valid for ξ < 0, since the quantity (1 − e−2ξh)/(2ξ) is strictly greater than zero
unless ξ = 0. (The proof is obtained by following the standard procedure [90].)
When ξ = 0, one can simply replace (1−e−2ξh)/(2ξ) by its well-defined asymptotic
limit,

p(h) = p(0) +
√
hσAM1/2R . (5.21)

The generators associated with each piece are defined, respectively, as

LA = M−1p · ∇q ,

LB = −∇U(q) · ∇p +
σ2

F

2
Tr
(
M∇2

p

)
,

LO = −ξp · ∇p +
σ2

A

2
Tr
(
M∇2

p

)
,

LD = G(p)
∂

∂ξ
,

where σF = σ
√
h in part “B” is stepsize dependent.

Overall, the generator of the Ad-Langevin/SGNHT (5.14) system can be writ-
ten as

L = LA + LB + LO + LD . (5.22)

Again, the flow map of the system, Ft, can be written in the shorthand
notation and approximations of it can be obtained as products (taken in dif-
ferent arrangements) of exponentials of the splitting terms. For example, the
phase space propagation of the method proposed by Ding et al. [44] for the Ad-
Langevin/SGNHT (5.14) system (denoted as “SGNHT-N”) can be written as

exp
(
hL̂SGNHT−N

)
= exp (hLP) exp (hLA) exp (hLD) , (5.23)

where
LP = LB + LO (5.24)

and exp (hLf ) represents the phase space propagator associated with the corre-
sponding vector field f . Because of its nonsymmetric structure, one anticipates
first order convergence to the invariant measure (for any choice of σ). Due to
the naming of the component parts, the SGNHT-N method may be denoted by
“PAD”.

Overall, the SGNHT-N/PAD integration method is as follows:

pn+1 = pn + h
(
−∇U(qn) + σM1/2R′n

)
− hξnpn +

√
hσAM1/2Rn ,

qn+1 = qn + hM−1pn+1 ,

ξn+1 = ξn + hµ−1
(
pTn+1M

−1pn+1 −NdkBT
)
,

where R′n and Rn are vectors of i.i.d. standard normal random variables.
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We propose symmetric alternative methods, such as the following symmetric
Ad-Langevin/SGNHT (SGNHT-S) splitting method

ehL̂SGNHT−S = e
h
2
LBe

h
2
LAe

h
2
LDehLOe

h
2
LDe

h
2
LAe

h
2
LB , (5.25)

where exact solvers for parts “B” and “O” derived above are applied. The
SGNHT-S method may be referred to as “BADODAB”, where it should be not-
ed that the various operations are symmetrically applied and the steplengths
are uniform and span the interval h. Other symmetric splittings are considered
below.

The SGNHT-S numerical integration method may be written as

pn+1/3 = pn + (h/2)
(
−∇U(qn) + σM1/2R′n

)
,

qn+1/2 = qn + (h/2)M−1pn+1/3 ,

ξn+1/2 = ξn + (h/2)µ−1
(
pTn+1/3M

−1pn+1/3 −NdkBT
)
,

if (ξn+1/2 6= 0) : pn+2/3 = e−ξn+1/2hpn+1/3 + σA

√
(1− e−2ξn+1/2h)/(2ξn+1/2)M1/2Rn ,

else : pn+2/3 = pn+1/3 +
√
hσAM1/2Rn ,

ξn+1 = ξn+1/2 + (h/2)µ−1
(
pTn+2/3M

−1pn+2/3 −NdkBT
)
,

qn+1 = qn+1/2 + (h/2)M−1pn+2/3 ,

pn+1 = pn+2/3 + (h/2)
(
−∇U(qn+1) + σM1/2R′n+1

)
.

The force computed at the end of each timestep can be reused at the start of the
next step; thus only one force calculation is needed in SGNHT-S at each timestep,
the same as for SGNHT-N. In practice, one could replace the exponential and
square root operations in the exact solver of the “O” part by their respective
well-defined asymptotic expansions to reduce the computational cost.

5.3.1 Order of Convergence of Ad-Langevin/SGNHT

Following the procedure in Section 3.6.1, we can work out the leading operator
L†1 associated with the nonsymmetric SGNHT-N/PAD method (5.23) of Ding et
al. [44],

L†1,PAD =
1

2

([
L†D,L

†
A

]
+
[
L†D,L

†
P

]
+
[
L†A,L

†
P

])
. (5.26)

It is clear that the leading term f1,PAD in the perturbed distribution (3.65) is in
general nonzero. Therefore the nonsymmetric SGNHT-N/PAD method would
be expected to exhibit first order convergence to the invariant measure. It
should be noted that if certain conditions are satisfied, higher order conver-
gence to the invariant measure would be possible as demonstrated by Abdulle
et al. [1, 2]. However, it can be easily demonstrated that it is not the case here
for the SGNHT-N/PAD method. In the presence of a noisy gradient, the Ad-
Langevin/SGNHT methods, despite the stepsize dependency (5.16), would sim-
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ilarly (and generally) be expected to be first order with respect to the invariant
distribution.

5.3.2 Superconvergence Property

Recently, it has been demonstrated in the setting of Langevin dynamics that a
particular symmetric splitting method (“BAOAB”), which requires only one force
calculation per step, is fourth order for configurational quantities in the ergodic
limit and in the limit of large friction [99,102].

In what follows we demonstrate that the newly proposed SGNHT-S/BADODAB
method (5.25) effectively inherits the superconvergence property of BAOAB in
the setting of Ad-Langevin/SGNHT system (5.16) with a clean gradient, in case
where the parameters σA and µ are both taken to infinity in a suitable way. For
simplicity, we consider here a one-dimensional model H = p2/2 + U(q), but the
analysis could easily be extended to higher dimensions.

Following the standard procedure described in Section 5.3.1, we obtain the
following PDE associated with the BADODAB method:

L†(ρ̃βf2) = −L†2ρ̃β , (5.27)

where L† is the exact Fokker–Planck operator

L† = −p∂q + U ′(q)∂p + ξ∂p(p·) +
γ̂

β
∂pp −

1

µ
(p2 − β−1)∂ξ (5.28)

with invariant measure

ρ̃β(q, p, ξ) =
1

Z
exp (−βH(q, p)) exp

(
−βµ

2
(ξ − γ̂)2

)
, (5.29)

where γ̂ = 〈ξ〉 = βσ2
A/2 and L†2 can be calculated by using the BCH expansion

L†2 =
1

12

([
L†O,

[
L†O,L

†
D

]]
+
[
L†D + L†O,

[
L†D + L†O,L

†
A

]])
+

1

12

([
L†A + L†D + L†O,

[
L†A + L†D + L†O,L

†
B

]])
− 1

24

([
L†D,

[
L†D,L

†
O

]]
+
[
L†A,

[
L†A,L

†
D + L†O

]]
+
[
L†B,

[
L†B,L

†
A + L†D + L†O

]])
,
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whose action on the extended invariant measure reads as

L†2ρ̃β =
1

12

[
−βp3U ′′′(q) + 4βp2ξ3 + 3βξp2U ′′(q) + 3βpU ′(q)U ′′(q) +

6ξp2

µ

(
1− βp2

)]
ρ̃β

+
γ̂

12

[
3U ′′(q) + 4ξ2 − 16βp2ξ2 − 6βU ′′(q)p2 +

6

µ

(
2βp4 − 5p2 + β−1

)]
ρ̃β

+ γ̂2ξ
(
2βp2 − 1

)
ρ̃β + γ̂3

(
2

3
− βp2

)
ρ̃β .

The equation is very complicated and we have no direct means of solving it.
However, the additional variable ξ has mean γ̂. If we suppose that µ is large, then
the variance of ξ will be small. In this case we can consider the approximation
obtained by replacing functions of ξ in the PDE (5.27) by their corresponding
averages

〈ξ〉 = γ̂ , 〈ξ2〉 =
1

βµ
+ γ̂2 , 〈ξ3〉 =

3γ̂

βµ
+ γ̂3 . (5.30)

We use this as part of an averaging of the stationary Fokker–Planck equation
with respect to the auxiliary variable. That is, we project the Fokker–Planck
equation and its solution by integrating with respect to the Gaussian distribu-
tion of ξ in the ergodic limit. We can think of this is as defining a sort of
“subspace projection”; it is related to the Galerkin method that is widely used
in solving high-dimensional linear systems and PDEs, including Fokker–Planck
equations [29,143]. In this case, we apply the projection operator [61]

Pν(q, p, ξ) :=

∫
Ωξ
ρ̃β(q, p, ξ)ν(q, p, ξ) dξ∫

Ωξ
ρ̃β(q, p, ξ) dξ

, (5.31)

where ν is an arbitrary function, to the PDE (5.27). Effectively, this results in
the reduced equation

Ľ†(ρβ f̂2) = −ρβP
L†2ρ̃β
ρ̃β

, (5.32)

where the operator Ľ† is just the operator L† reduced by the action of the pro-
jection, and which acts on functions of q and p; this is nothing other than the
corresponding adjoint generator of Langevin dynamics. Likewise, f̂2 is now a
function of q and p only. The right-hand side simplifies to

ρβP
L†2ρ̃β
ρ̃β

=

(
β

12

[
3pU ′(q)U ′′(q)− p3U ′′′(q)

])
ρβ

+

(
γ̂

12

[
3U ′′(q)− 3βp2U ′′(q) +

1

µ

(
6βp4 − 28p2 + 10β−1

)])
ρβ ,

where ρβ is the Gibbs (canonical) density (exp(−βH(q, p))).

We consider the high friction limit (γ̂ →∞) and expand f̂2 in a series involving
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the reciprocal friction ε = 1/γ̂,

f̂2(q, p) = f̂2,0(q, p) + εf̂2,1(q, p) + ε2f̂2,2(q, p) + · · · , (5.33)

with each function f̂2,i satisfying 〈f̂2,i〉 = 0. Dividing (5.27) by the friction coef-
ficient γ̂, we obtain(

L̄†O + εL†H
)(

f̂2,0 + εf̂2,1 +O(ε2)
)
ρβ = −ερβP

L†2ρ̃β
ρ̃β

, (5.34)

where
L̄†O = ∂p(p·) + β−1∂pp , L†H = −p∂q + U ′(q)∂p . (5.35)

We take the high thermal mass limit (µ→∞) in such a way that ε = 1/µ = 1/γ̂.
The use of this limit yields the following terms of the expansion of the right-hand
side in powers of ε. Defining

−ερβP
L†2ρ̃β
ρ̃β
≡ g = (g0 + εg1) ρβ ,

we have

g0 = −1

4

[
U ′′(q)− βp2U ′′(q)

]
, (5.36)

g1 = − 1

12

[
3βpU ′(q)U ′′(q)− βp3U ′′′(q) + 6βp4 − 28p2 + 10β−1

]
. (5.37)

Furthermore, by equating powers of the reciprocal friction ε, we can solve a
sequence of equations

L̄†O(ρβ f̂2,0) = g0ρβ ,

L†H(ρβ f̂2,0) + L̄†O(ρβ f̂2,1) = g1ρβ ,

L†H(ρβ f̂2,1) + L̄†O(ρβ f̂2,2) = 0 ,

...

to obtain the leading term f̂2,0, i.e.,

f̂2,0 ≡ f̂BADODAB
2,0 =

1

8

(
U ′′(q)− βp2U ′′(q)

)
. (5.38)

Moreover, it can be easily shown that the marginal average of f̂BADODAB
2,0 with

respect to momentum is zero, i.e.,∫
Ωp

f̂BADODAB
2,0 (q, p)ρβ dωp = 0 , (5.39)

which leads to the average of configurational observables φ(q) with respect to the
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invariant measure as

〈φ(q)〉BADODAB = 〈φ(q)〉+ h2〈φ(q)f̂BADODAB
2,0 〉+O(εh2 + h4) .

Thus, for configurational observables the BADODAB method has fourth order
convergence to the invariant measure in the large friction and thermal mass limits
(i.e., ε→ 0),

lim
ε→0
〈φ(q)〉BADODAB = 〈φ(q)〉+O(h4) .

It should be emphasized here that only the BADODAB and BAODOAB meth-
ods appear to have the superconvergence property among a number of different
splitting methods investigated in the Ad-Langevin/SGNHT system (5.16) with
a clean gradient. The superconvergence property suggests the use of relatively
large σA and µ ∝ σ2

A in the BADODAB (SGNHT-S) method in order to enhance
sampling accuracy. In fact, we expect that larger values of µ than this bound
will not diminish the sampling accuracy, but the effect of large values of µ is to
reduce the responsiveness of the thermostat device.

5.4 Numerical Experiments

In this section, we conduct a variety of numerical experiments to compare the
performance of the different schemes presented in this chapter.

5.4.1 Molecular Systems

Before we compare various methods in machine learning applications (i.e., with a
noisy gradient), we first demonstrate the order of convergence of various splitting
methods with a clean gradient.

A popular model of an N -body system with pair interactions based on a spring
with rest length (i.e., pendulum) (5.41) was used, a standard if simplified model
of molecular dynamics. The total potential energy of the system is defined as

U(q) =
N−1∑
i=1

N∑
j=i+1

ϕ(rij) , (5.40)

where rij = ‖qi − qj‖ denotes the distance between two particles i and j, and
ϕ(rij) represents the pair potential energy

ϕ(rij) =


k

2
(rij − rc)

2 , rij < rc ;

0 , rij ≥ rc ,
(5.41)
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Figure 5.1: Log-log plot of the relative error in computed configurational tem-
perature (left) and average potential energy (right) against stepsize by using two
Ad-Langevin/SGNHT methods (with a clean gradient). The system (σA = 3) was
simulated for 5000 reduced time units, but only the last 80% of the data were collected
to calculate the quantity to make sure the system was well equilibrated. Ten different
runs were averaged to further reduce the sampling errors. The stepsizes tested be-
gan at h = 0.03 and were increased incrementally by 10% until both methods showed
significant relative error (SGNHT-N became unstable at around h = 0.08).

where k and rc represent the spring constant and the cutoff radius, respectively.

A system consisting of N = 500 identical particles (i.e., unit mass) was sim-
ulated in a cubic box with periodic boundary conditions [7]. The positions of
the particles were initialized on a cubic grid with equidistant grid spacing, while
the initial momenta were i.i.d. random variables with mean zero and variance
kBT , which was set to be unity. The thermal mass µ was chosen to be 10 unless
otherwise stated. Particle density ρd = 4 was used with spring constant k = 25
and cutoff radius rc = 1.

We first compare the two SGNHT methods on controlling two configurational
quantities: configurational temperature and average potential energy. As shown
in Figure 5.1, with the help of the dashed order lines, we can see that SGNHT-N
and SGNHT-S show first and second order convergence, respectively, as expected.
It is clear that SGNHT-S has not only at least one order of magnitude improve-
ment in accuracy in both observables, but also much greater robustness over
the SGNHT-N method, which becomes completely unstable at around h = 0.08.
The results on the configurational temperature and average potential energy are
rather similar; therefore in what follows we present only average potential energy
results.

We also investigate the effect of changing the value of σA in the SGNHT-S/
BADODAB scheme proposed in this chapter. As can be seen from Figure 5.2,
the SGNHT-S method displays second order convergence to the invariant measure
when σA is relatively small, while a fourth order convergence is observed in the
high friction limit (σA = 9), as anticipated from the analysis of the previous
section. It should be emphasized here that the superconvergence property was
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Figure 5.2: Log-log plot of the relative error in computed average potential energy
against stepsize by using the SGNHT-S/BADODAB method with (left) different values
of σA (µ = 10) and (right) different values of µ (σA = 9). The format of the plots is the
same as in Figure 5.1 except 50 different runs were used to reduce the sampling errors
in high accuracy regime

.

observed only in the BADODAB and BAODOAB methods, which both reduce
to the BAOAB method [99,102] in Langevin dynamics.

Figure 5.2 also compares the effect of varying the value of the thermal mass
µ when σA is fixed. It can be seen that the BADODAB method displays a clear
fourth order convergence when µ is relatively large, while when µ is small, not only
is the smooth discretization error dependence on stepsize lost, but significantly
larger relative error is also observed. This reinforces the choice of a relatively
large value of µ. It is worth pointing out that µ = 10 works as well as µ = 100;
therefore µ = 10 is used throughout this section since a relatively smaller µ
corresponds to a tighter interaction between the thermostat and the system, and
thus it can fluctuate more rapidly to accommodate changes in the noise and adapt
more easily.

We also explore in Figure 5.3 the performance of various splitting meth-
ods of the Ad-Langevin/SGNHT system (5.16) with fixed values of σA and µ.
All the methods clearly show second order convergence, with ABDODBA and
BADODAB methods achieving one order of magnitude improvement in accuracy
compared to the other methods. This again illustrates the importance of opti-
mal design of numerical methods. The ABDODBA method seems to be slightly
better that the BADODAB method in the regime of σA = 3; however, as demon-
strated in Figure 5.2, the BADODAB method achieves a dramatic improvement
in accuracy when σA is relatively large (e.g., σA = 9), while other schemes remain
the same except for the BAODOAB method.
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Figure 5.3: Log-log plot of the relative error in computed average potential energy
against stepsize by using various splitting methods of the Ad-Langevin/SGNHT system
(σA = 3). The format of the plot is the same as in Figure 5.1.

5.4.2 Bayesian Inference

In this section we compare methods in a classical Bayesian inference model in
one dimension, i.e., to estimate the mean of a normal distribution with known
variance [44]. More precisely, given N i.i.d. samples from a normal distribution,
xi ∼ N (µ̌, σ̂2), where it should be noted that µ̌ is the true mean, when we draw
samples with known σ̂2 and a uniform prior distribution ranging from −N/2 to
N/2, we are able to calculate the posterior distribution of the mean in a closed
form

µ̂ ∼ N
(
x̂,
σ̂2

N

)
, (5.42)

where x̂ =
∑N

i=1 xi/N . In the context of stochastic gradient approximation, we
have

π(µ̂|X) ∝ π(X|µ̂)π(µ̂) ≈

(
ñ∏
i=1

π(xri |µ̂)

)N
ñ

π(µ̂)

=

(
1√
2πσ̂

)N [ ñ∏
i=1

exp

(
−(xi − µ̂)2

2σ̂2

)]Nñ
1

N

=

(
1√
2πσ̂

)N
exp

(
−N
ñ

ñ∑
i=1

(xi − µ̂)2

2σ̂2

)
1

N

∝ exp

(
−N
ñ

ñ∑
i=1

(xi − µ̂)2

2σ̂2

)

= exp

[
− 1

2σ̂2

N

ñ

(
ñ∑
i=1

(xi − x̄)2 + ñ(x̄− µ̂)2

)]

∝ exp

(
− N

2σ̂2
(x̄− µ̂)2

)
,

(5.43)
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solid black line is the exact solution. Note the difference in the legends between rows.

where x̄ =
∑ñ

i=1 xi/ñ. It clearly recovers the true distribution (5.42) when ñ = N .
Taking the logarithm and differentiating the posterior distribution obtained at
the end of (5.43) with respect to µ̂ gives the noisy force

F̃ (µ̂) =
N

σ̂2

(
µ̂− 1

ñ

ñ∑
i=1

xi

)
. (5.44)

In this simple case, the noise of the stochastic gradient is independent of µ̂
and is a constant given ñ. Moreover, we are able to obtain its mean and variance
with respect to the stochastic gradient [78,173]:

EF̃ (µ̂) = F (µ̂) =
N

σ̂2

(
µ̂− 1

N

N∑
i=1

xi

)
,

VarF̃ (µ̂) =
1

σ̂4

N(N − 1)

ñ
VarX ,

(5.45)

where VarX is the variance of the dataset. Thus, it is straightforward to verify
that the noise is normally distributed according to the central limit theorem.
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In our numerical experiments, σA was chosen as 1 due to the fact that large
σA results in stability issues here. We generated N = 100 samples from N (0, 1)
and randomly selected a subset of size ñ = 10 at each timestep to compute the
noisy force (5.44). We plot the distributions of the posterior mean of the dataset
obtained by using four different methods with different stepsizes in Figure 5.4.
Clearly, two SGNHT methods completely outperformed the SGLD and mSGLD
methods. The latter only demonstrate good approximation of the true distribu-
tion with order of magnitude smaller stepsize compared to the former. But it
should be noted that mSGLD here is slightly better than SGLD in maintaining
the true distribution: the distribution of mSGLD with h = 0.001 is visibly much
closer to the target compared to that of SGLD with the same stepsize.

Note that stepsizes for SGNHT (second order dynamics) and SGLD (first
order dynamics) based methods are not directly comparable—as mentioned in [99]
the stepsize of a first order dynamics method like Euler–Maruyama when viewed
as the limiting discretization of a Langevin integrator corresponds to h2/2, where
h is the stepsize of the Langevin method. However, in our experiments we are
uninterested in the time-dynamics of the system and care only about the invariant
measure. Therefore the important relationship is the error in thermodynamic
averages in comparison with the number of timesteps (work), which quantifies
the efficiency of a given method. The stepsize is just an arbitrary parameter
which allows for refinement of the statistical calculation.

Between the two SGNHT methods, SGNHT-S (the new scheme being pro-
posed here) is obviously superior to SGNHT-N: the latter starts to show signif-
icant deviation from the true distribution at h = 0.02, while the distribution of
the former still looks well matched to the true one at h = 0.03. Our observations
are confirmed by Figure 5.5, where the mean absolute error (MAE) of the distri-
bution of the two SGNHT methods is plotted. The MAE, which can be thought
of as a relative error in distribution, is defined as

MAE =
1

N̄

N̄∑
i=1

|ωi − ω̂i| , (5.46)

where N̄ denotes the number of intervals, which was chosen as 100. ωi and
ω̂i represent the observed frequency in bin i and the exact expected frequency,
respectively [99]. As can be seen, the stability threshold of SGNHT-N was around
h = 0.03, beyond which the system became unstable, as highlighted in the figure
(in which case the system blew up, resulting in a 100% MAE). Once again,
SGNHT-S not only shows an order of magnitude better accuracy but also has
a much greater robustness than SGNHT-N. In particular, for defined accuracy,
the SGNHT-S method is able to use double the stepsize compared to SGNHT-N,
which means a remarkable 50% improvement in overall numerical efficiency as
defined in Section 3.7.4.
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Figure 5.5: Log-log plot of the mean absolute error (MAE) in the distribution of
the Bayesian inference model against stepsize. The box indicates that the system was
unstable with corresponding stepsizes for the SGNHT-N method.

5.4.3 Bayesian Logistic Regression

Following [173], we also investigate the performance of different methods for a
more complicated Bayesian logistic regression model. The data yi ∈ {−1, 1} were
modelled by

π(yi|xi,β) = f(yiβ
Txi) ,

where f(z) = 1/(1 + exp(−z)) ∈ [0, 1] is the logistic function and xi ∈ Rd are
rows of a fixed dataset. Our goal is to estimate the posterior mean of parameter
vector β ∈ Rd. For simplicity, a multivariate Gaussian prior N (0, I) was used
on β. Therefore, by using Bayes’ theorem, we obtain the following posterior
distribution:

π(β) ∝ exp

(
−1

2
‖β‖2

) N∏
i=1

f(yiβ
Txi) . (5.47)

Following the same procedure in the Bayesian inference example (Section 5.4.2),
we can calculate the noisy force and then plug it into different thermostats for
sampling.

In our numerical experiments, we considered the d = 3 case with N = 1000
data points. We chose the dataset to be

X =


x1,1 x1,2 1
x2,1 x2,2 1

...
...

...
x1000,1 x1000,2 1

 , (5.48)

where xi,j were sampled from a standard normal distribution N (0, 1) for i =
1, . . . , 1000 and j = 1, 2. A subset of size ñ = 100 was randomly chosen at each
timestep to compute the noisy force.

The performance of estimating the posterior mean value of parameter vector β
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Figure 5.6: Comparisons of the root mean square error (RMSE) of the posterior mean
in the Bayesian logistic regression model by using various methods against stepsize.
The system was simulated for 1000 reduced time units with 100,000 different runs.
The stepsizes tested began at h = 0.001 and were increased incrementally by 30%
until all methods either displayed significant error or became unstable (mSGLD and
SGNHT-N).

by various methods (σA = 6) was tested and plotted in Figure 5.6. Again, SGLD
and mSGLD, displaying considerably larger root mean square error (RMSE) with
a fixed stepsize, were outperformed by the two SGNHT methods. In this case, the
SGLD and mSGLD methods demonstrated similar control in numerical accuracy,
but the latter displayed much worse stability than that of the former and became
unstable just above h = 0.01. As reported in the original paper [173], the perfor-
mance of the mSGLD method depends strongly on the size of the subset—for a
larger subset, which requires higher computational cost, the bias of mSGLD can
be smaller than that of SGLD.

Of the two SGNHT methods, the SGNHT-S method again shows not only
at least an order of magnitude improvement on accuracy but also much better
robustness than the other: SGNHT-N became unstable just above h = 0.02.
Remarkably, the SGNHT-S method at h = 0.1 still achieves better accuracy than
the SGLD method at h = 0.01. In other words, the method we propose here gives
more than a 90% improvement in overall numerical efficiency compared to one of
the most popular methods in the literature. For fixed accuracy, the SGNHT-S
method can use almost four times the stepsize of the SGNHT-N method (i.e., an
improvement of about 75% in overall numerical efficiency).

5.5 Covariance-Controlled Adaptive Langevin

(CCAdL) Thermostat

Ding et al. [44] claimed that it is reasonable to assume the covariance matrix Σ(θ)
is constant when the size of the dataset, N , is large, in which case the variance
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of the posterior of θ is small. The magnitude of the posterior variance does not
actually relate to the constancy of the Σ, however, in general, Σ is not constant.
Simply assuming the nonconstancy of the Σ can have a significant impact on the
performance of the method (most notably the stability measured by the largest
usable stepsize). Therefore, it is essential to have an approach that can handle
parameter-dependent noise. In the following section, we propose a covariance-
controlled thermostat that can effectively dissipate parameter-dependent noise
while maintaining the target stationary distribution.

5.5.1 Formulation of CCAdL

As mentioned in the previous section, the SGNHT method (5.16) can only dis-
sipate noise with a constant covariance matrix. When the covariance matrix
becomes parameter-dependent, in general, a parameter-dependent covariance ma-
trix does not imply the required “thermal equilibrium”, i.e., the system cannot
be expected to converge to the desired invariant distribution (5.17), typically re-
sulting in poor estimation of functions of parameters of interest. In fact, in that
case it is not clear whether or not there exists an invariant distribution at all.

In order to construct a stochastic-dynamical system that preserves the canon-
ical distribution, we suggest adding a suitable damping (viscous) term to effec-
tively dissipate the parameter-dependent gradient noise. To this end, we propose
the following covariance-controlled adaptive Langevin (CCAdL) thermostat:

dθ = M−1pdt ,

dp = −∇U(θ)dt+
√
hΣ(θ)M1/2dW − (h/2)βΣ(θ)pdt− ξpdt+

√
2Aβ−1M1/2dWA ,

dξ = µ−1
[
pTM−1p−NdkBT

]
dt ,

(5.49)
where A, which can be termed the “effective friction”, is a positive parameter
and proportional to the variance of the noise.

Proposition 2. The CCAdL thermostat (5.49) preserves the modified Gibbs
(stationary) distribution:

ρ̂β(θ,p, ξ) =
1

Z
exp (−βH(θ,p)) exp

(
−βµ

2
(ξ − A)2

)
. (5.50)

Proof. The Fokker–Planck equation corresponding to (5.49) is

ρt = L†ρ := −M−1p · ∇θρ+∇U(θ) · ∇pρ+ (h/2)∇p · (Σ(θ)M∇pρ)

+ (h/2)β∇p · (Σ(θ)pρ) + ξ∇p · (pρ) + Aβ−1∇p · (M∇pρ)

− µ−1
[
pTM−1p−NdkBT

]
∇ξρ .
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Just insert ρ̂β (5.50) into the Fokker–Planck operator L† to see that it vanishes.

The incorporation of the parameter-dependent covariance matrix Σ(θ) in (5.49)
is intended to offset the covariance matrix coming from the gradient approxima-
tion. However, in practice, one does not know Σ(θ) a priori. Thus instead one
must estimate Σ(θ) during the simulation, a task which will be addressed below.
This procedure is related to the method used in the SGHMC method proposed
by Chen et al. [32], which uses dynamics of the following form:

dθ = M−1pdt ,

dp = −∇U(θ)dt+
√
hΣ(θ)M1/2dW − Apdt+

√
2β−1 (AI− βhΣ(θ)/2)M1/2dWA .

It can be shown that the SGHMC method preserves the Gibbs canonical distri-
bution:

ρβ(θ,p) = Z−1 exp (−βH(θ,p)) . (5.51)

Although both CCAdL (5.49) and SGHMC (5.5.1) preserve their respective
invariant distributions, let us note several advantages of the former over the latter
in practice:

(i) CCAdL and SGHMC both require estimation of the covariance matrix Σ(θ)
during simulation, which can be costly in high dimension. In numerical
experiments, we have found that simply using the diagonal of the covariance
matrix, at significantly reduced computational cost, works quite well in
CCAdL. By contrast, it is difficult to find a suitable value of the parameter
A in SGHMC since one has to make sure the matrix AI − βhΣ(θ)/2 is
positive semidefinite. One may attempt to use a large value of the “effective
friction” A and/or a small stepsize h. However, too-large a friction would
essentially reduce SGHMC to SGLD, which is not desirable, as pointed
out in [32], while extremely small stepsize would significantly impact the
computational efficiency.

(ii) Estimation of the covariance matrix Σ(θ) unavoidably introduces additional
noise in both CCAdL and SGHMC. Nonetheless, CCAdL can still effectively
control the system temperature (i.e., maintaining the correct distribution
of the momenta) due to the use of the stabilizing Nosé–Hoover control,
while in SGHMC, poor estimation of the covariance matrix may lead to
significant deviations of the system temperature (as well as the distribution
of the momenta), resulting in poor sampling of the parameters of interest.

Covariance Estimation of Noisy Gradients

Under the assumption that the noise of the stochastic gradient follows a normal
distribution, we apply a similar method to that of [4] to estimate the covariance
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matrix associated with the noisy gradient. If we let g(θ; x) = ∇θ log π(x|θ) and
assume that the size of subset ñ is large enough for the central limit theorem to
hold, we have

1

ñ

ñ∑
i=1

g(θt; xri) ∼ N
(
Ex[g(θt; x)],

1

ñ
It

)
, (5.52)

where It = Cov[g(θt; x)] is the covariance of the gradient at θt. Given the noisy
(stochastic) gradient based on the current subset

∇Ũ(θt) = −N
ñ

ñ∑
i=1

g(θt; xri)−∇ log π(θt) (5.53)

and the clean (full) gradient

∇U(θt) = −
N∑
i=1

g(θt; xi)−∇ log π(θt) , (5.54)

we have
Ex[∇Ũ(θt)] = Ex[∇U(θt)] , (5.55)

and thus

∇Ũ(θt) = ∇U(θt) +N
(

0,
N2

ñ
It

)
, (5.56)

i.e., Σ(θt) = N2It/ñ. Assuming θt does not change dramatically over time, we
use the moving average update to estimate It:

Ît = (1− κt)Ît−1 + κtV(θt) , (5.57)

where κt = 1/t and

V(θt) =
1

ñ− 1

ñ∑
i=1

(g(θt; xri)− ḡ(θt)) (g(θt; xri)− ḡ(θt))
T (5.58)

is the empirical covariance of the gradient. ḡ(θt) represents the mean gradient of
the log likelihood computed from a subset. As proved in [4], this estimator has a
convergence order of O(1/N).

As already mentioned, estimating the full covariance matrix is computation-
ally infeasible in high dimension. However, we have found that employing a
diagonal approximation of the covariance matrix (i.e., estimating the variance
only along each dimension of the noisy gradient) works quite well in practice, as
demonstrated in Section 5.5.2.

The procedure of the CCAdL method is summarized in Algorithm 1, where
we simply used M = I, β = 1, and µ = Nd in order to be consistent with the
original implementation of SGNHT [44].
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Algorithm 1 Covariance-Controlled Adaptive Langevin (CCAdL) Thermostat

1: Input: h, A, {κt}T̂t=1.
2: Initialize θ0, p0, I0, and ξ0 = A.
3: for t = 1, 2, . . . , T̂ do
4: θt = θt−1 + pt−1h;
5: Estimate Ît using Equation (5.57);
6: pt = pt−1 −∇Ũ(θt)h− h

2
N2

ñ
Îtpt−1h− ξt−1pt−1h+

√
2AhN (0, I);

7: ξt = ξt−1 +
(
pTt pt/Nd − 1

)
h;

8: end for

Note that this is a simple, first order (in terms of the stepsize) algorithm. We
have introduced in Section 5.3 higher order of accuracy schemes which can im-
prove accuracy, but our interest here is in the direct comparison of the underlying
machinery of SGHMC, SGNHT, and CCAdL, so we avoid further modifications
and enhancements related to timestepping at this stage.

In the following section, we compare the newly established CCAdL method
with SGHMC and SGNHT on various machine learning tasks to demonstrate the
benefits of CCAdL in Bayesian sampling with a noisy gradient.

5.5.2 Numerical Experiments

Bayesian Inference for Gaussian Distribution

We first compare the performance of the newly established CCAdL method with
SGHMC and SGNHT for a simple task using synthetic data, i.e., Bayesian infer-
ence of both the mean and variance of a one-dimensional normal distribution. We
apply the same experimental setting as in [44]. We generated N = 100 samples
from a standard normal distribution N (0, 1). We used the likelihood function
of N (xi|µ, γ−1) and assigned a normal-gamma distribution as their prior distri-
bution, i.e., µ, γ ∼ N (µ|0, γ)Gamma(γ|1, 1). Then the corresponding posterior
distribution is another normal-gamma distribution, i.e.,

(µ, γ)|X ∼ N (µ|µN , (κNγ)−1)Gamma(γ|αN , βN) , (5.59)

with

µN =
N x̄

N + 1
, κN = 1+N , αN = 1+

N

2
, βN = 1+

N∑
i=1

(xi − x̄)2

2
+

N x̄2

2(1 +N)
,

where x̄ =
∑N

i=1 xi/N . A random subset of size ñ = 10 was selected at each
timestep to approximate the full gradient, resulting in the following stochastic
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Figure 5.7: Comparisons of marginal distribution (density) of µ (top row) and γ
(bottom row) with various values of h and A indicated in each column. The peak
region is highlighted in the inset.

gradients [124]:

∇µŨ = (N + 1)µγ− γN
n

n∑
i=1

xri , ∇γŨ = 1− N + 1

2γ
+
µ2

2
+
N

2n

n∑
i=1

(xri−µ)2 .

It can be seen that the variance of the stochastic gradient noise is no longer
constant and actually depends on the size of the subset, ñ, and the values of
µ and γ in each iteration. This directly violates the constant noise variance
assumption of SGNHT [44], while CCAdL adjusts to the varying noise variance.
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The marginal distributions of µ and γ obtained from various methods with
different combinations of h and A were compared and plotted in Figure 5.7, with
Table 5.1 consisting of the corresponding root mean square error (RMSE) of the
distribution and autocorrelation time [125] from 106 samples. In most of the cases,
both SGNHT and CCAdL easily outperform the SGHMC method possibly due to
the presence of the Nosé–Hoover device, with SGHMC only showing superiority
with small value of h and large value of A, neither of which is desirable in practice
as discussed in Section 5.5.1. Between SGNHT and the newly proposed CCAdL
method, the latter achieves better performance in each of the cases investigated,
highlighting the importance of the covariance control with parameter-dependent
noise.

Method h = 0.001, A = 1 h = 0.001, A = 10 h = 0.01, A = 1 h = 0.01, A = 10
SGHMC (0.0148, 236.12) (0.0029,333.04) (0.0531, 29.78) (0.0132, 39.33)
SGNHT (0.0037, 238.32) (0.0035, 406.71) (0.0044, 26.71) (0.0043, 55.00)
CCAdL (0.0034,238.06) (0.0031, 402.45) (0.0021,26.71) (0.0035,54.43)

Table 5.1: Comparisons of (RMSE, Autocorrelation time) of (µ, γ) of various methods
for Bayesian inference of the mean and variance of a Gaussian distribution.

Large-Scale Bayesian Logistic Regression

We then consider a Bayesian logistic regression model trained on the benchmark
MNIST dataset for binary classification of digits 7 and 9 using 12, 214 training
data points, with a test set of size 2037. A 100-dimensional random projection
of the original features was used. We used the likelihood function of

π
(
{xi, yi}Ni=1|w

)
∝

N∏
i=1

1/
(
1 + exp(−yiwTxi)

)
(5.60)

and the prior distribution of

π(w) ∝ exp(−wTw/2) . (5.61)

A subset of size ñ = 500 was used at each timestep. Since the dimensionality of
this problem is not that high, a full covariance estimation was used for CCAdL.

We investigate in Figure 5.8 (top row) the convergence speed of each method
through measuring test log likelihood using the posterior mean against the num-
ber of passes over the entire dataset. CCAdL displays significant improvements
over SGHMC and SGNHT with different values of h and A: (1) CCAdL converges
much faster than the other two, which also indicates its faster mixing speed and
shorter burn-in period; (2) CCAdL shows robustness in different values of the
effective friction A, with SGHMC and SGNHT relying on a relative large value
of A (especially for the SGHMC method), which is intended to dominate the
gradient noise.
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Figure 5.8: Comparisons of Bayesian logistic regression of various methods on the
MNIST dataset of digits 7 and 9 with various values of h and A: (top row) test
log likelihood using the posterior mean against the number of passes over the entire
dataset; (bottom row) two-dimensional marginal posterior distribution in (randomly
selected) dimensions 2 and 5 with A = 10 fixed, based on 106 samples from each
method after the burn-in period (i.e., we start to collect samples when the test log
likelihood stabilizes). Magenta circle is the true (reference) posterior mean obtained
from standard HMC, and crosses represent the sample means computed from various
methods. Ellipses represent isoprobability contours covering 95% probability mass.
Note that the contour of SGHMC is way beyond the scale of the plot especially in the
large stepsize regime, in which case we do not include it here.

To compare the sample quality obtained from each method, Figure 5.8 (bot-
tom row) plots the two-dimensional marginal posterior distribution in randomly
selected dimensions of 2 and 5 based on 106 samples from each method after
the burn-in period (i.e., we start to collect samples when the test log likelihood
stabilizes). The true (reference) distribution was obtained by a sufficiently long
run of standard HMC. We implemented 10 runs of standard HMC and found
there was no variation between these runs, which guarantees its qualification as
the true (reference) distribution. Again, CCAdL shows much better performance
than SGHMC and SGNHT. Note that the contour of SGHMC does not even fit
in the region of the plot, and in fact it shows significant deviation even in the
estimation of the mean.
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Chapter 6

Conclusions

We have reviewed a number of numerical methods that are widely used in DPD
simulations and have also proposed a new stochastic momentum-conserving ther-
mostat, the pairwise Nosé–Hoover–Langevin (PNHL) thermostat. Two favorable
splitting methods of the PNHL thermostat were introduced and compared to ex-
isting methods in the computation of various physical quantities (both static and
dynamical).

We have observed that, for the PNHL thermostat proposed here, the PNHL-N
method based on a nonsymmetric arrangement of the terms of a splitting, gives
an enormous stability benefit. The PNHL-N method needs to calculate the force
twice in each integration step, which is computationally costly in the model set-
ting used in this thesis; nevertheless when the computational overhead is costed
carefully the PNHL-N method outperforms the alternatives. To measure the
practical performance of numerical methods in DPD simulations quantitatively,
we have defined the “numerical efficiency”, based on which we have reported
substantial improvements of both methods of the newly proposed thermostat,
with the symmetric PNHL-S method 46% more efficient than the commonly used
DPD-VV method and the nonsymmetric PNHL-N method incredibly 87% better
than the benchmark method in DPD simulations. It should be noted that, if the
force calculation is not that expensive in other model settings, the gain of using
the PNHL-N method could be further exploited.

Based on the numerical experiments of the velocity and transverse momentum
autocorrelation functions which characterize the translational and rotational dif-
fusions of the system respectively, DPD and PNHL give rather similar dynamical
properties in practice. Although PNHL as formulated is not based on a hydrody-
namic interaction model [72,89], we have seen that it is an effective replacement
for DPD in the low-friction regime. Moreover, we point out that the projection
along interacting particle pairs in PNHL could be replaced by alternatives to
achieve further control of transport properties [86, 109, 110]. The method is also
potentially useful more broadly in molecular simulation applications, whenever
momentum conservation is at issue.
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The only difference between PNH and PNHL is the additional Langevin ther-
mostat acting on the dynamical friction, however they perform very differently.
This is probably because the cutoffs used in PNH and the simple potentials there
provided insufficient internal mechanisms for the system to achieve an ergodic
sampling of the canonical distribution. In molecular dynamics with steep pair
potentials (e.g., Lennard-Jones), the ergodic properties develop more naturally
and the “L” in PNHL can be redundant in some instances. It is also worth men-
tioning that both PNH and PNHL are not able to vary the Schmidt number since
the average of the dynamical friction tends to zero, whereas the Schmidt number
can be tuned in some of the other schemes (see also recent work based on the
Mori–Zwanzig formulation [109,110]).

We have also investigated the order of convergence of the long-time aver-
ages to the invariant measure for a couple of methods described in this thesis.
By extending the framework recently introduced in Langevin dynamics, we can
infer (and verify using numerics) the second order convergence for those non-
symmetric GLA-like methods (DPD-S1, LA, and Peters) as well as the nonsym-
metric PNHL-N method. However, rigorous investigation on other nonsymmetric
methods (DPD-VV, NHLA, and PNH) that surprisingly obtained second order
convergence remains to be established. Overall, we claim here that the PNHL
thermostat indeed can be used (and may be preferred in some typical cases) as
an alternative to low-friction DPD simulations with substantially improved the
computational efficiency and no degradation of convergence rate.

We have proposed a novel momentum-conserving pairwise adaptive Langevin
(PAdL) thermostat, which is applicable in DPD and related systems described in
this thesis. Unlike the PNHL thermostat, the PAdL thermostat is able to fully
capture the dynamics as in DPD. Furthermore, we have observed substantial
improvements in numerical efficiency over alternative schemes, i.e., an at least
130% improvement over a wide range of friction coefficients and shear rates in
equilibrium and nonequilibrium simulations, respectively.

We have reviewed a variety of methods in stochastic gradient systems with ap-
plications in machine learning. We have provided a theoretical discussion on the
foundation (underlying dynamics) of those stochastic gradient systems, which
has been lacking in the literature. We have also proposed a new symmetric
splitting (at least second order) method in SGNHT (SGNHT-S/BADODAB),
which substantially improves the accuracy and robustness compared to a non-
symmetric splitting (first order) method (SGNHT-N) proposed recently in the
literature. Furthermore, we have demonstrated that under certain conditions the
SGNHT-S/BADODAB method can inherit the superconvergence property recent-
ly discovered in integrators for Langevin dynamics, i.e., fourth order convergence
to the invariant measure for configurational averages.

By conducting various numerical experiments, we have demonstrated that
the two SGNHT methods outperform the popular SGLD method and its variant
mSGLD. In particular, the SGNHT-S method can use up to ten times the stepsize
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of SGLD, which implies a remarkable more than 90% improvement in overall
numerical efficiency. Between the two SGNHT methods, the SGNHT-S method
can use almost four times the stepsize of SGNHT-N for defined accuracy (i.e.,
about a 75% improvement in overall numerical efficiency).

It should be noted that in certain cases, it may be desirable to employ a
Metropolis–Hastings procedure in order to remove the discretization bias [148].
However, we emphasize that the correction is not without computational cost,
particularly as the dimension is increased [15,88,146,147], and the results of [99,
100, 102] and of the current article demonstrate that high accuracy with respect
to the invariant distribution is often achievable using traditional numerical in-
tegration techniques, thus in many cases entirely eliminating the necessity of
Metropolis–Hastings corrections (see more discussions in [102]). Moreover, we
mention that the methods of this article can in principle be combined with
Metropolis–Hastings algorithms if it is necessary to completely eliminate the dis-
cretization bias.

We have proposed a novel covariance-controlled adaptive Langevin (CCAdL)
formulation that can effectively dissipate parameter-dependent noise while main-
taining a desired invariant distribution. CCAdL combines ideas of SGHMC and
SGNHT from the literature, but achieves significant improvements over each of
these methods in practice. The additional error introduced by covariance es-
timation is expected to be small in a relative sense, i.e., substantially smaller
than the error arising from the noisy gradient. Our findings have been verified
in large-scale machine learning applications. In particular, we have consistently
observed that SGHMC relies on a small stepsize h and a large friction A, which
significantly reduces its usefulness in practice as discussed. The techniques pre-
sented could be of use in more general settings of large-scale Bayesian sampling
and optimization, which we leave for future work.

A naive nonsymmetric splitting method has been applied for CCAdL for fair
comparison in this thesis. However, we point out that it is desirable to investigate
the optimal design of splitting methods in noisy gradient systems with parameter-
dependent noise. We leave further exploration of this direction with data science
applications for future work.

Finally, we highlight the key contributions of this thesis as follows:

• we have introduced a new formulation that combines a pairwise Nosé–
Hoover thermostat with the Langevin-type stochastic thermostatting in
auxiliary variables, i.e., the pairwise Nosé–Hoover–Langevin (PNHL) ther-
mostat, which is shown to be a functional alternative to dissipative particle
dynamics (DPD) with good control of thermodynamic and dynamic prop-
erties in the low-friction regime;

• we have systematically compared various formulations and numerical algo-
rithms, and have demonstrated a numerical scheme (the PNHL-N method)
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which offers greater than an 80% efficiency enhancement compared to the
most popular algorithm for DPD simulation;

• we have proposed a novel momentum-conserving thermostat, i.e., the pair-
wise adaptive Langevin (PAdL) thermostat, that fully captures the dynam-
ics of DPD;

• we have demonstrated that the newly proposed PAdL thermostat is able to
achieve a more than 130% improvements in numerical efficiency over a wide
range of friction coefficients and shear rates in equilibrium and nonequilib-
rium simulations, respectively;

• we have reviewed and compared various formulations for noisy gradient
simulations where the force is polluted by random perturbations of zero
mean and unknown variance;

• we have provided a theoretical discussion of the foundations of those meth-
ods based on discussions of the corresponding underlying dynamics;

• we have proposed a new numerical method for the adaptive Langevin/stochastic
gradient Nosé–Hoover thermostat, i.e., the BADODAB/SGNHT-S method,
that achieves an impressive improvement in numerical efficiency over the
most popular stochastic gradient methods reported in the literature;

• we have demonstrated that the newly established method inherits a super-
convergence property (fourth order convergence to its invariant measure for
configurational quantities) recently demonstrated in the setting of Langevin
dynamics;

• we have proposed a covariance-controlled adaptive Langevin (CCAdL) ther-
mostat that can effectively dissipate parameter-dependent noise while main-
taining a desired target distribution;

• we have demonstrated in large-scale machine learning applications that the
newly proposed method achieves a substantial speedup over popular alter-
native schemes.

96



Bibliography

[1] A. Abdulle, G. Vilmart, and K. C. Zygalakis. High order numerical ap-
proximation of the invariant measure of ergodic SDEs. SIAM Journal on
Numerical Analysis, 52(4):1600–1622, 2014.

[2] A. Abdulle, G. Vilmart, and K. C. Zygalakis. Long time accuracy of Lie–
Trotter splitting methods for Langevin dynamics. SIAM Journal on Nu-
merical Analysis, 53(1):1–16, 2015.

[3] Y. Afshar, F. Schmid, A. Pishevar, and S. Worley. Exploiting seeding of
random number generators for efficient domain decomposition paralleliza-
tion of dissipative particle dynamics. Computer Physics Communications,
184(4):1119–1128, 2013.

[4] S. Ahn, A. Korattikara, and M. Welling. Bayesian posterior sampling via
stochastic gradient Fisher scoring. In Proceedings of the 29th International
Conference on Machine Learning, pages 1591–1598, 2012.

[5] M. P. Allen. Configurational temperature in membrane simulations using
dissipative particle dynamics. The Journal of Physical Chemistry B, 110
(8):3823–3830, 2006.

[6] M. P. Allen and F. Schmid. A thermostat for molecular dynamics of complex
fluids. Molecular Simulation, 33(1-2):21–26, 2007.

[7] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford
University Press, 1989.

[8] H. C. Andersen. Molecular dynamics simulations at constant pressure
and/or temperature. The Journal of Chemical Physics, 72(4):2384, 1980.

[9] G. Arya, E. J. Maginn, and H.-C. Chang. Efficient viscosity estimation
from molecular dynamics simulation via momentum impulse relaxation.
The Journal of Chemical Physics, 113(6):2079, 2000.

[10] R. B. Ash. Basic Probability Theory. Dover Publications, 2008.

[11] W. T. Ashurst and W. G. Hoover. Dense-fluid shear viscosity via nonequi-
librium molecular dynamics. Physical Review A, 11(2):658–678, 1975.

97



[12] J. A. Backer, C. P. Lowe, H. C. J. Hoefsloot, and P. D. Iedema. Poiseuille
flow to measure the viscosity of particle model fluids. The Journal of Chem-
ical Physics, 122:154503, 2005.

[13] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and
J. R. Haak. Molecular dynamics with coupling to an external bath. The
Journal of Chemical Physics, 81:3684, 1984.

[14] B. J. Berne and G. D. Harp. On the calculation of time correlation functions.
Advances in Chemical Physics, pages 63–227, 1970.

[15] A. Beskos, N. Pillai, G. Roberts, J.-M. Sanz-Serna, and A. Stuart. Optimal
tuning of the hybrid Monte Carlo algorithm. Bernoulli, 19(5A):1501–1534,
2013.

[16] G. Besold, I. Vattulainen, M. Karttunen, and J. M. Polson. Towards better
integrators for dissipative particle dynamics simulations. Physical Review
E, 62(6):R7611, 2000.

[17] E. S. Boek, P. V. Coveney, and H. N. W. Lekkerkerker. Computer sim-
ulation of rheological phenomena in dense colloidal suspensions with dis-
sipative particle dynamics. Journal of Physics: Condensed Matter, 8(47):
9509–9512, 1996.

[18] E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot.
Simulating the rheology of dense colloidal suspensions using dissipative par-
ticle dynamics. Physical Review E, 55(3):3124, 1997.

[19] M. Born and T. von Karman. Über schwingungen von raumgittern.
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thermostat. The Journal of Chemical Physics, 123:134101, 2005.

[24] S. Brooks, A. Gelman, G. Jones, and X.-L. Meng. Handbook of Markov
Chain Monte Carlo. CRC Press, 2011.
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Appendix A

Integration Schemes

We list here detailed integration steps for each momentum-conserving method and
methods for noisy gradient systems. A fixed stepsize h is used unless otherwise
stated. Verlet neighbor lists [172] are used throughout each method .

DPD Velocity-Verlet: DPD-VV

For each particle i,

p
n+1/2
i = pni +

(
hFC

i (qn) + hFD
i (qn,pn) +

√
hFR

i (qn)
)
/2 ,

qn+1
i = qni + hm−1

i p
n+1/2
i ,

pn+1
i = p

n+1/2
i +

(
hFC

i (qn+1) + hFD
i (qn+1,pn+1/2) +

√
hFR

i (qn+1)
)
/2 ,

where FC
i (q), FD

i (q,p) and FR
i (q) are conservative, dissipative and random forces,

respectively, in the standard DPD system. Note that, at the end of each integra-
tion step, the dissipative forces FD

i (qn+1,pn+1) are further updated by using the
up-to-date velocities (momenta).
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Shardlow’s Splitting Method: DPD-S1

For each interacting pair within cutoff radius (qij < rc),

p
n+1/4
i = pni − γωD(qnij)(q̂

n
ij · vnij)q̂nijh/2 + σωR(qnij)q̂

n
ij

√
hRn

ij/2 ,

p
n+1/4
j = pnj + γωD(qnij)(q̂

n
ij · vnij)q̂nijh/2− σωR(qnij)q̂

n
ij

√
hRn

ij/2 ,

p
n+2/4
i = p

n+1/4
i + σωR(qnij)q̂

n
ij

√
hRn

ij/2

−
γωD(qnij)h

2(1 + γωD(qnij)h)

(
(q̂nij · v

n+1/4
ij )q̂nij + σωR(qnij)q̂

n
ij

√
hRn

ij

)
,

p
n+2/4
j = p

n+1/4
j − σωR(qnij)q̂

n
ij

√
hRn

ij/2

+
γωD(qnij)h

2(1 + γωD(qnij)h)

(
(q̂nij · v

n+1/4
ij )q̂nij + σωR(qnij)q̂

n
ij

√
hRn

ij

)
,

where Rn
ij are normally distributed variables with zero mean and unit variance.

For each particle i,

p
n+3/4
i = p

n+2/4
i + hFC

i (qn)/2 ,

qn+1
i = qni + hm−1

i p
n+3/4
i ,

pn+1
i = p

n+3/4
i + hFC

i (qn+1)/2 .

DPD-Trotter Scheme: DPD-Trotter

For each interacting pair within cutoff radius (qij < rc),

p
n+1/2
i = pni +mij∆vij(q

n,pn)q̂nij ,

p
n+1/2
j = pnj −mij∆vij(q

n,pn)q̂nij ,

with

∆vij =
[
q̂ij · vij − q̂ij · FC

ij(q)/(τmij)
]

(e−τh/2 − 1) +
√
kBT (1− e−τh)/mijRij ,

where τ = γωD/mij, mij = mimj/(mi + mj) and Rij are normally distributed
variables with zero mean and unit variance.

For each particle i,

qn+1
i = qni + hm−1

i p
n+1/2
i .
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For each interacting pair within cutoff radius (qij < rc),

pn+1
i = p

n+1/2
i +mij∆vij(q

n+1,pn+1/2)q̂n+1
ij ,

pn+1
j = p

n+1/2
j −mij∆vij(q

n+1,pn+1/2)q̂n+1
ij .

Lowe–Andersen Thermostat: LA

For each particle i,

p
n+1/3
i = pni + hFC

i (qn)/2 ,

qn+1
i = qni + hm−1

i p
n+1/3
i ,

p
n+2/3
i = p

n+1/3
i + hFC

i (qn+1)/2 .

For each interacting pair within cutoff radius (qij < rc), with probability P = Γh,

pn+1
i = p

n+2/3
i + ∆pij ,

pn+1
j = p

n+2/3
j −∆pij ,

where

∆pij = mij

[
Rij

√
kBT/mij − q̂n+1

ij · v
n+2/3
ij

]
q̂n+1
ij .

Peters Scheme II: Peters

For each particle i,

p
n+1/3
i = pni + hFC

i (qn)/2 ,

qn+1
i = qni + hm−1

i p
n+1/3
i ,

p
n+2/3
i = p

n+1/3
i + hFC

i (qn+1)/2 .

For each interacting pair within cutoff radius (qij < rc),

pn+1
i = p

n+2/3
i + ∆pij ,

pn+1
j = p

n+2/3
j −∆pij ,

with
∆pij =

[
−γij(q̂n+1

ij · v
n+2/3
ij )h+ σij

√
hRij

]
q̂n+1
ij ,
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where

γij =
mij

h

(
1− exp

[
−γω

D(qij)h

mij

])
, σij =

kBTmij

h

(
1− exp

[
−2γωD(qij)h

mij

])
,

where γ and σ are the same dissipation and random coefficients respectively as
in the standard DPD system.

Nosé–Hoover–Lowe–Andersen Thermostat: NHLA

For each particle i,

qn+1
i = qni + hvni + h2FC

i (qn)/2 ,

v
n+1/4
i = vni + hFC

i (qn)/2 .

For (1− P ) fraction interacting pairs within cutoff radius (qij < rc),

FD
i (qn+1,pn+1/4) = FD

i (qn,pn) + FD
ij(q

n+1,pn+1/4) ,

FD
j (qn+1,pn+1/4) = FD

j (qn,pn)− FD
ij(q

n+1,pn+1/4) ,

where
FD
ij(q

n+1,pn+1/4) = αωR(qij)(q̂
n+1
ij · v

n+1/4
ij )q̂n+1

ij ,

where α is a coupling parameter chosen as 0.9/(ρh), and ρ is the particle density.

For each particle i,

v
n+2/4
i = v

n+1/4
i + hFC

i (qn+1)/2 ,

p
n+3/4
i = p

n+2/4
i + h

(
1− T̃k/T0

)
FD
i (qn+1,pn+1/4) ,

where T̃k is the momentary kinetic temperature and T0 is the desired temperature.

For the remaining (P ) fraction interacting pairs within cutoff radius (qij < rc),

pn+1
i = p

n+3/4
i + ∆pij ,

pn+1
j = p

n+3/4
j −∆pij ,

where

∆pij = mij

[
Rij

√
kBT/mij − q̂n+1

ij · v
n+3/4
ij

]
q̂n+1
ij .
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Pairwise Nosé–Hoover Thermostat: PNH

For each particle i,

p
n+1/2
i = pni + h

(
FC
i (qn)− ξnVi(q

n,pn−1/2)
)
/2 ,

ξn+1/2 = ξn + hG(qn,pn−1/2)/2,

qn+1
i = qni + hm−1

i p
n+1/2
i ,

pn+1
i = p

n+1/2
i + h

(
FC
i (qn+1)− ξn+1/2Vi(q

n+1,pn+1/2)
)
/2 ,

ξn+1 = ξn+1/2 + hG(qn+1,pn+1/2)/2 ,

where

Vi(q,p) =
∑
j 6=i

ωD(qij)(q̂ij · vij)q̂ij ,

G(q,p) = µ−1
∑
i

∑
j>i

ωD(qij)
[
(vij · q̂ij)2 − kBT/mij

]
.

Symmetric Pairwise Nosé–Hoover–Langevin

Thermostat: PNHL-S

For each particle i,

q
n+1/2
i = qni + hm−1

i pni /2 ,

p
n+1/4
i = pni + hFC

i (qn+1/2)/2 .

For each interacting pair within cutoff radius (qij < rc),

p
n+2/4
i = p

n+1/4
i +mij∆vij(q

n+1/2,pn+1/4, ξn)q̂
n+1/2
ij ,

p
n+2/4
j = p

n+1/4
j −mij∆vij(q

n+1/2,pn+1/4, ξn)q̂
n+1/2
ij ,

where
∆vij = (q̂ij · vij)

(
exp(−ξωD(h/2)/mij)− 1

)
.

For additional variable ξ,

ξn+1/3 = ξn + hG(qn+1/2,pn+2/4)/2 ,

ξn+2/3 = e−γ̃hξn+1/3 +
√
kBT (1− e−2γ̃h)/µRn ,

ξn+1 = ξn+2/3 + hG(qn+1/2,pn+2/4)/2 ,

where Rn are normally distributed variables with zero mean and unit variance.
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For each interacting pair within cutoff radius (qij < rc),

p
n+3/4
i = p

n+2/4
i +mij∆vij(q

n+1/2,pn+2/4, ξn+1)q̂
n+1/2
ij ,

p
n+3/4
j = p

n+2/4
j −mij∆vij(q

n+1/2,pn+2/4, ξn+1)q̂
n+1/2
ij .

For each particle i,

pn+1
i = p

n+3/4
i + hFC

i (qn+1/2)/2 ,

qn+1
i = q

n+1/2
i + hm−1

i pn+1
i /2 .

Nonsymmetric Pairwise Nosé–Hoover–Langevin

Thermostat: PNHL-N

For each particle i,

q
n+1/2
i = qni + hm−1

i pni /2 ,

p
n+1/4
i = pni + hFC

i (qn+1/2)/2 .

For each interacting pair within cutoff radius (qij < rc),

p
n+2/4
i = p

n+1/4
i +mij∆vij(q

n+1/2,pn+1/4, ξn)q̂
n+1/2
ij ,

p
n+2/4
j = p

n+1/4
j −mij∆vij(q

n+1/2,pn+1/4, ξn)q̂
n+1/2
ij ,

where
∆vij = (q̂ij · vij)

(
exp(−ξωD(h/2)/mij)− 1

)
.

For additional variable ξ,

ξn+1/3 = ξn + hG(qn+1/2,pn+2/4)/2 ,

ξn+2/3 = e−γ̃hξn+1/3 +
√
kBT (1− e−2γ̃h)/µRn ,

ξn+1 = ξn+2/3 + hG(qn+1/2,pn+2/4)/2 .

For each interacting pair within cutoff radius (qij < rc),

p
n+3/4
i = p

n+2/4
i +mij∆vij(q

n+1/2,pn+2/4, ξn+1)q̂
n+1/2
ij ,

p
n+3/4
j = p

n+2/4
j −mij∆vij(q

n+1/2,pn+2/4, ξn+1)q̂
n+1/2
ij .
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For each particle i,

qn+1
i = q

n+1/2
i + hm−1

i p
n+3/4
i /2 ,

pn+1
i = p

n+3/4
i + hFC

i (qn+1)/2 .

Pairwise Adaptive Langevin Thermostat: PAdL

For each particle i,

q
n+1/2
i = qni + hm−1

i pni /2 ,

p
n+1/4
i = pni + hFC

i (qn+1/2)/2 .

For each interacting pair within cutoff radius (qij < rc),

p
n+2/4
i = p

n+1/4
i +mij∆vij(q

n+1/2,pn+1/4, ξn)q̂
n+1/2
ij ,

p
n+2/4
j = p

n+1/4
j −mij∆vij(q

n+1/2,pn+1/4, ξn)q̂
n+1/2
ij ,

where,
if (ξn 6= 0):

∆vij = (q̂ij · vij) (exp(−τ̃h/2)− 1) + σ

√
1− exp(−τ̃h)

2ξnmij

Rij ,

where τ̃ = ξωD/mij, mij = mimj/(mi + mj) and Rij are normally distributed
variables with zero mean and unit variance.

else:
∆vij = σ(ωR/mij)

√
h/2Rij .

For additional variable ξ,

ξn+1 = ξn + hG(qn+1/2,pn+2/4)/2 .

For each interacting pair within cutoff radius (qij < rc),

p
n+3/4
i = p

n+2/4
i +mij∆vij(q

n+1/2,pn+2/4, ξn+1)q̂
n+1/2
ij ,

p
n+3/4
j = p

n+2/4
j −mij∆vij(q

n+1/2,pn+2/4, ξn+1)q̂
n+1/2
ij ,

where,
if (ξn+1 6= 0):

∆vij = (q̂ij · vij) (exp(−τ̃h/2)− 1) + σ

√
1− exp(−τ̃h)

2ξn+1mij

Rij .
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else:
∆vij = σ(ωR/mij)

√
h/2Rij .

For each particle i,

pn+1
i = p

n+3/4
i + hFC

i (qn+1/2)/2 ,

qn+1
i = q

n+1/2
i + hm−1

i pn+1
i /2 .

Stochastic Gradient Langevin Dynamics: SGLD

qn+1 = qn + hnF̃(qn) +
√

2β−1hnRn ,

where hn is a sequence of stepsizes decreasing to zero, F̃(qn) is the noisy force (5.15)
and Rn is a vector of i.i.d. standard normal random variables.

Modified Stochastic Gradient Langevin Dynamics:

mSGLD

qn+1 = qn + hF̃(qn) +
√

2β−1h

(
I− h

4
CovF̃(qn)

)
Rn ,

where CovF̃(qn) is the covariance matrix of the noisy force.

Nonsymmetric Stochastic Gradient Nosé–Hoover

Thermostat: SGNHT-N

pn+1 = pn + hF̃(qn)− hξnpn +
√
hσAM1/2Rn ,

qn+1 = qn + hM−1pn+1 ,

ξn+1 = ξn + hµ−1
(
pTn+1M

−1pn+1 −NdkBT
)
.
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Symmetric Stochastic Gradient Nosé–Hoover

Thermostat: SGNHT-S

pn+1/3 = pn + (h/2)F̃(qn) ,

qn+1/2 = qn + (h/2)M−1pn+1/3 ,

ξn+1/2 = ξn + (h/2)µ−1
(
pTn+1/3M

−1pn+1/3 −NdkBT
)
,

if (ξn+1/2 6= 0) : pn+2/3 = e−ξn+1/2hpn+1/3 + σA

√
(1− e−2ξn+1/2h)/(2ξn+1/2)M1/2Rn ,

else : pn+2/3 = pn+1/3 +
√
hσAM1/2Rn ,

ξn+1 = ξn+1/2 + (h/2)µ−1
(
pTn+2/3M

−1pn+2/3 −NdkBT
)
,

qn+1 = qn+1/2 + (h/2)M−1pn+2/3 ,

pn+1 = pn+2/3 + (h/2)F̃(qn+1) .
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