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Abstract
Multi-task learning refers to learning multiple tasks simultaneously, in order to avoid tabula rasa learn-

ing and to share information between similar tasks during learning. We consider a multi-task Gaussian

process regression model that learns related functions by inducing correlations between tasks directly.

Using this model as a reference for three other multi-task models, we provide a broad unifying view of

multi-task learning. This is possible because, unlike the other models, the multi-task Gaussian process

model encodes task relatedness explicitly.

Each multi-task learning model generally assumes that learning multiple tasks together is beneficial. We

analyze how and the extent to which multi-task learning helps improve the generalization of supervised

learning. Our analysis is conducted for the average-case on the multi-task Gaussian process model, and

we concentrate mainly on the case of two tasks, called the primary task and the secondary task. The

main parameters are the degree of relatedness ρ between the two tasks, and πS , the fraction of the total

training observations from the secondary task. Among other results, we show that asymmetric multi-

task learning, where the secondary task is to help the learning of the primary task, can decrease a lower

bound on the average generalization error by a factor of up to ρ2πS . When there are no observations

for the primary task, there is also an intrinsic limit to which observations for the secondary task can

help the primary task. For symmetric multi-task learning, where the two tasks are to help each other to

learn, we find the learning to be characterized by the term πS(1− πS)(1− ρ2). As far as we are aware,

our analysis contributes to an understanding of multi-task learning that is orthogonal to the existing

PAC-based results on multi-task learning. For more than two tasks, we provide an understanding of

the multi-task Gaussian process model through structures in the predictive means and variances given

certain configurations of training observations. These results generalize existing ones in the geostatistics

literature, and may have practical applications in that domain.

We evaluate the multi-task Gaussian process model on the inverse dynamics problem for a robot ma-

nipulator. The inverse dynamics problem is to compute the torques needed at the joints to drive the

manipulator along a given trajectory, and there are advantages to learning this function for adaptive

control. A robot manipulator will often need to be controlled while holding different loads in its end

effector, giving rise to a multi-context or multi-load learning problem, and we treat predicting the in-

verse dynamics for a context/load as a task. We view the learning of the inverse dynamics as a function

approximation problem and place Gaussian process priors over the space of functions. We first show

that this is effective for learning the inverse dynamics for a single context. Then, by placing indepen-

dent Gaussian process priors over the latent functions of the inverse dynamics, we obtain a multi-task

Gaussian process prior for handling multiple loads, where the inter-context similarity depends on the

underlying inertial parameters of the manipulator. Experiments demonstrate that this multi-task formu-

lation is effective in sharing information among the various loads, and generally improves performance

over either learning only on single contexts or pooling the data over all contexts. In addition to the ex-

perimental results, one of the contributions of this study is showing that the multi-task Gaussian process

model follows naturally from the physics of the inverse dynamics.

iii



Acknowledgements
It is my fortunate to have Chris Williams as my principal supervisor, and I thank him for his constant

guidance and support. His knowledge and eye for details have helped me avoided a number of pitfalls,

and his sharp intuition has saved me a number of needless paths.

I thank Edwin Bonilla for the many interesting and inspiring discussions that we have had, and for

sharing his experience with multi-task Gaussian processes. I am grateful to Sethu Vijayakumar for

proposing the multiple context inverse dynamics problem, and to Stefan Klanke for the experiments

and the detailed discussions on this problem. I have also learnt from Amos Storkey during the weekly

brainstorm meetings, which has encouraged me to think out of the box. Thanks to Iain Murray and

Manfred Opper for their reviews and comments on this work.

It has been a pleasure be among the members of the machine learning group, including Felix Agakov,

John Quinn, Lawrence Murray, Nicolas Heess, Andrew Dai and Athina Spiliopoulou. I have benefited

from discussions with and comments by them.

iv



Declaration
I declare that this thesis was composed by myself, that the work contained herein is my own except

where explicitly stated otherwise in the text, and that this work has not been submitted for any other

degree or professional qualification except as specified.

(Kian Ming Adam Chai)

v



In memory of Grandma and Ninn

vi



Contents
List of Figures xi

List of Tables xiii

Notation xv

1 Introduction 1
1.1 Theoretical and Empirical Benefits, 2

1.2 Task Relatedness, 4

1.2.1 Implicit and Explicit Modelling of Task Relatedness, 7

1.3 Overview and Contributions, 7

1.4 List of Relevant Published Papers, 10

2 Models for Multi-task Learning 11
2.1 Introduction, 12

2.2 Hierarchical Bayesian Latent Source Model, 14

2.2.1 General (In)Dependencies between Latent Sources, 15

2.2.2 Manifold of Predictors, 17

2.2.3 Task Clustering, 18

2.2.4 Feature-component Dependent Clustering, 20

2.3 Multi-task Regularization Networks Model, 21

2.3.1 Separable Multi-task Kernels, 23

2.3.2 Manifold of Predictors, 23

2.3.3 Task Clustering, 26

2.3.4 Correlated Tasks, 26

2.4 Bayesian Multi-task Learning with Neural Networks, 27

2.4.1 Task-dependent Prior Mean and Manifold of Predictors, 28

2.4.2 Task Clustering and Gating, 29

2.5 Gaussian Processes for Multi-task Learning, 29

2.5.1 A Multi-task GP Model: the Intrinsic Correlation Model, 30

2.5.2 Linear Model of Coregionalization, 33

2.5.3 Related Literature, 34

2.5.4 Linear Combination of Latent Processes, 35

2.5.5 Latent Source Model from the Gaussian Process Viewpoint, 36

2.5.6 Multi-task Regularization Networks and Multi-task Gaussian Processes, 38

2.5.7 Gaussian Processes from Infinite Neural Networks, 39

2.5.8 Input Domain Transformation, 40

2.6 Interlude, 41

vii



2.7 Meta-learning from Other Perspectives, 42

2.7.1 Data Sets and Algorithms Characterizations, 42

2.7.2 Vector-valued Functions, 44

2.7.3 Multilevel Models, 46

2.7.4 Learning Knowledge Representation, 46

2.8 Related Research Areas, 47

2.8.1 Semi-supervised Learning, 47

2.8.2 Domain Adaptation, 48

2.8.3 Composite Learners, 48

2.8.4 Multi-resolution Features, 49

3 Generalization Errors, Learning Curves and Their Applications 51

3.1 Introduction, 51

3.1.1 Main Results, 52

3.2 Preliminaries and Problem Statement, 54

3.2.1 Multi-task GP Regression Model and The Setup for Analysis, 54

3.2.2 Generalization Errors, Learning Curves and Optimal Errors, 56

3.2.3 Eigen-analysis, 57

3.3 Generalization Error, 58

3.3.1 The Case of No Training Data for the Primary Task, 59

3.3.2 A Lower Bound, 60

3.3.3 An Upper Bound via Equivalent Isotropic Noise at Secondary Locations, 61

3.3.4 Exact Computation of Generalization Error, 63

3.4 Optimal Error when the Primary Task has no Training Data, 63

3.5 Theoretical Bounds on the Learning Curve, 64

3.5.1 OV-type Lower Bounds, 64

3.5.2 FWO-type Upper Bounds, 65

3.5.3 OV-type and FWO-type Bounds with No Training Data for the Primary Task, 71

3.5.4 Reversing Upper and Lower Bounds using Symmetric Multi-task Curves, 71

3.5.5 Comparing Bounds to Simulations of the Learning Curve, 72

3.6 The Effects of ρ2 and πS on Multi-task Learning, 75

3.6.1 Symmetric Multi-task Learning and Error Inflation Factors, 77

3.6.2 Asymmetric Multi-task Learning and Error Deflation Factors, 79

3.7 Effective Number of Additional Data Points for the Primary Task, 82

3.7.1 Contribution to Lower Bound on the Average-case Sample Complexity, 83

3.7.2 Contribution to Average-case Sample Complexity, 85

3.7.3 Example: Multi-task Ornstein-Uhlenbeck Process Learning, 85

3.8 Empirical Evaluation with Sarcos Data, 87

3.8.1 The Sarcos Data and Hyperparameter Estimation, 87

3.8.2 Using the Randomized Predictor to Estimate Multi-task Empirical Errors , 88

3.8.3 The
¯
σ2

T Lower Bound, 89

3.8.4 Error Deflation Factor, 90

viii



3.9 Asymmetric Multi-task Learning with Noise-free Data, 91

3.9.1 Isotopic Observations and Non-transference, 92

3.9.2 Multi-collocated Observations, 93

3.9.3 Collocated Observations, 95

3.10 Conclusions, 96

4 Multi-task Gaussian Process Learning of Robot Inverse Dynamics 99
4.1 Overview, 99

4.1.1 Outline, 101

4.2 Data Collection and Exploration, 101

4.2.1 Data, 101

4.2.2 Data Analysis, 104

4.2.3 Data Sampling for Experiments, 105

4.3 Inverse Dynamics Model for a Single Context, 107

4.3.1 Analytical Models: Lagrangian Formulation, 108

4.3.2 Gaussian Process Prior Models, 108

4.3.3 Estimating Hyperparameters by Optimizing Marginal Likelihood, 111

4.3.4 A Comparison of Four Models, 111

4.3.5 Related Work, 114

4.4 A Gaussian Process Prior for Inverse Dynamics Modelling of Multiple Contexts, 114

4.4.1 Linear Relationship of Inverse Dynamics between Contexts, 114

4.4.2 A Multi-task GP Regression Model, 116

4.4.3 A Multi-task GP Model for Multiple Contexts, 116

4.4.4 Estimating Hyperparameters by Optimizing Marginal Likelihood, 118

4.4.5 Model Selection, 119

4.4.6 Experiments and Results for Torque Prediction, 120

4.4.7 Related Work, 124

4.5 Summary and Further Discussions, 126

5 Conclusions and Future Work 129
5.1 Contributions, 130

5.2 Future Work, 131

5.2.1 Inter-domain Multi-task Learning, 131

5.2.2 Further Analysis on Multi-task Learning, 132

5.2.3 Task Identity Determination and Learning to Learn, 133

List of Appendices

A Appendix to Chapter 2 135
A.1 Derivations for Multi-task Regularization Networks Model, 135

A.1.1 Derivation for Linear Multi-task Kernel, 135

A.1.2 Proof of Proposition 2.1, 136

A.1.3 Derivation of Equation 2.40, 137

A.1.4 Manifold Learning, 138

ix



A.1.5 Task Clustering, 141

A.2 Covariances for Multi-task Gaussian Processes, 142

A.2.1 Derivation of Equation 2.78, 142

A.2.2 Derivation of Equation 2.81, 142

B Appendix to Chapter 3 145
B.1 Proof for Proposition 3.5, 145

B.1.1 Proof for Proposition 3.5a, 145

B.1.2 Proof for Proposition 3.5b, 147

B.1.3 Proof for Proposition 3.5c, 147

B.2 Proof for Proposition 3.1, 148

B.3 Proof for Proposition 3.7b, 149

B.4 Proof for Proposition 3.9, 149

B.5 FWO% Upper Bounds, 151

B.5.1 Proof for Lemma 3.15, 151

B.5.2 Proof for Proposition 3.16, 151

B.5.3 Derivation of Equation 3.30, 153

B.5.4 Derivation of Equation 3.35, 153

B.5.5 Proof for Proposition 3.18, 154

B.5.6 Comparing the FWOρ Bound to the Trivial Single-task FWO0 Bound, 155

B.6 Eigen-analysis, 156

B.6.1 Covariance Function of a Symmetric Two-task GP, 156

B.6.2 Stationary Ornstein-Uhlenbeck Process on the Uniform Unit Interval, 157

B.7 Simulations of the Learning Curve, Details, 162

B.7.1 Continuation of εavg
T in πSn, 162

B.7.2 Analytical Averaging over Test Locations, 162

B.8 Asymptotics of the OV and the FWO Bounds on the Learning Curve, 163

B.8.1 Asymptotic Behaviour of Eigenvalues, 163

B.8.2 OV Bound for Single-task Learning, 165

B.8.3 OV Bound for Symmetric Multi-task Learning, 167

B.8.4 FWO Bound for Single-task Learning, 167

B.8.5 FWO Bound for Asymmetric Multi-task Learning, 168

B.9 Proof for Equation 3.69, 169

B.10 The Posterior Distribution Given Collocated Observations, 169

C Appendix to Chapter 4 173
C.1 Initialization for Optimization, 173

C.2 Marginal Likelihood of Noise-free Multi-task GP in Complete Block Design, 173

C.3 Learning Hyperparameters of the Multi-task GP Model by Staged Optimization, 174

C.3.1 The Initial Choice of Kρ, 175

C.3.2 Computation of Kρ
1 in Step 2, 175

Bibliography 177

x



List of Figures

1.1 PAC and Bayesian learning of multiple independent and identically sampled tasks, 3

1.2 Different notions of task relatedness in multi-task learning, 6

1.3 Explicit modelling of task relatedness in the graphical model, 7

2.1 Hierarchical Bayesian multi-task learning models using latent sources, 16

2.2 Multi-task learning under LSM using task clustering, 19

2.3 Two tasks on a manifold under the multi-task regularization networks model, 25

2.4 Bayesian multi-task neural network model, 27

2.5 Sample functions from the ICM implementing different notions of task-relatedness, 32

3.1 Relations between selected symbols of interest in chapter 3, 53

3.2 Multi-task GP model and the setup for analysis, 55

3.3 The effect of primary and secondary data on posterior variance, 59

3.4 Contour plot of the factor (1− πS + πSρ
2)/(1− ρ2)(1− πS)πS , 70

3.5 Comparison of various bounds for two settings of (ρ, πS), 73

3.6 Comparison to the trivial bounds for two settings of (ρ, πS), 74

3.7 Bounds on learning curves in the symmetric multi-task case, for two settings of (ρ, πS), 75

3.8 Contour plots of the error inflation factors for the symmetric multi-task case, 78

3.9 Curves summarizing the effects of ω on symmetric multi-task learning, 79

3.10 Contour plots of the error deflation factors for the asymmetric multi-task case, 81

3.11 Converting bounds on the learning curve to that on the required number of samples, 83

3.12 Contour plot of contribution to lower bound on the average-case sample complexity, 84

3.13 Comparison for the effective increase in sample size for the target task, 86

3.14 Learning curves for multi-task learning the inverse dynamics using the Sarcos data, 90

3.15 Three layouts of the noise-free observations on the task-input product space, 92

4.1 Feedforward composite controller, 101

4.2 Schematic of the PUMA 560, 102

4.3 Paths p1 to p4 for the data set, 102

4.4 Plots of the three trajectories projected onto the first 3 principal components, 103

4.5 Example plots of torques versus the phase of a path, 104

4.6 Example of the decomposition of a torque into its components, 105

4.7 Example plots of torques versus the first two principal components of the inputs, 106

4.8 Comparing models LRc̄, LRc, GPc̄ and GPc for different joints and test scenarios, 113

4.9 A schematic diagram on how the different functions are related, 115

xi



4.10 Plots of mean of average nMSEs against total number of observations, 121

4.11 Plots of median of average nMSEs against total number of observations, 122

4.12 Paired differences of average nMSEs between mGP-AICc and the best alternative, 123

5.1 Multi-task learning for six functions, each acting on a different input space, 132

5.2 A case of inter-domain transfer between fT and fS , 133

A.1 Manifold of predictors using multi-task kernel, 139

B.1 Plots of tan t and u(t) against t, 161

xii



List of Tables

3.1 nMSEs for predicting the first torque and the correlation after optimization, 88

4.1 Speeds of trajectories, 102

4.2 Paths of trajectories, 102

4.3 Masses of the contexts or loads, 103

4.4 The path-speed combinations at which training samples for each load are acquired, 106

4.5 The average nMSEs of the predictions by models LRc and GPc, 112

xiii





Notation

In general, capital letters denote matrices and lower case bold letters denote vectors. All vectors are

column vectors.

Symbol Meaning

Spaces and Sets

{ai}n
i=1 the set {a1, . . . , an}; the subscript and superscript may be suppressed

N0 the set of natural numbers, starting from 0; {0, 1, 2, . . .}
N1 the set of natural numbers, starting from 1; {1, 2, 3, . . .}
Rn space of n-dimensional real vectors

Rn×m space of n-by-m real matrices

∆n standard n-simplex;

∆n def=
{
(t0, · · · , tn) ∈ Rn+1 |

∑
i ti = 1 and ti ≥ 0 ∀i

}
.

Matrices and Vectors

tr(A) trace of matrix A

rank(A) rank of matrix A

|A| determinant of matrix A

A−1 matrix inverse of A

A+ the Moore-Penrose pseudo-inverse of A

aT transpose of vector a

AT transpose of matrix A

A⊗B the Kronecker product of matrices A and B

A�B the Hadamard product of matrices A and B

0 vector of zeros

In×n, In n-by-n identity matrix ; subscripts may be suppressed

0n×n, 0n n-by-n matrix of zeros; subscripts may be suppressed

1n×n, 1n n-by-n matrix of ones; subscripts may be suppressed

Probability and Statistics

〈· | y〉x ,Ex(· | y) expectation with respect to a distribution on x given y; random variable x is

usually clear from context and suppressed

C(·, ·|y) covariance conditioned on y

N (µ,Σ) multivariate normal distribution with mean µ and covariance Σ.

Laplace(µ, υ) the Laplace distribution with location µ and scale υ

Multinomial(n,π) multinomial distribution with n trials and probability mass given by π

xv



Symbol Meaning

Beta(α, β) the Beta distribution with parameters α and β

Dir(α1, . . . , αP ) the Dirichlet distribution with parameters α1, . . . , αP

a ∼ p(· | · · · ) a is a random variable, vector or matrix with distribution p(· · · )
Functions and Variables

δij the Kronecker delta function, 1 if i = j and 0 otherwise

kx(·, ·) covariance function for the input space

kf(·, ·) covariance function for the task space

Kf covariance matrix for the task space

ρ correlation between two tasks

σ2
n observation noise variance

M number of tasks

P number of components or clusters in a mixture model; in general, the

number of parts into which the system can be decomposed.

m,m′ indices that iterate over tasks

p, p′ indices that iterate over components, clusters or parts

Order Relations

f(n) ∼ g(n) f is equal to g asymptotically; ∀ε > 0 ∃n0 ∀n > n0 |f(n)/g(n)− 1| < ε

f(n) ∈ O(g(n)) f is bounded above by g (up to constant factor) asymptotically;

∃k > 0, n0 ∀n > n0 |f(n)| 6 |g(n) · k|
f(n) ∈ Ω(g(n)) f is bounded below by g (up to constant factor) asymptotically;

∃k > 0, n0 ∀n > n0 |g(n) · k| 6 |f(n)|
f(n) ∈ Θ(g(n)) f is bounded both above and below by g asymptotically;

∃k1, k2 > 0, n0 ∀n > n0 |g(n) · k1| < |f(n)| < |g(n) · k2|
f(n) ∈ o(g(n)) f is dominated by g asymptotically;

∀ε > 0 ∃n0 ∀n > n0 |f(n)| ≤ |g(n) · ε|

xvi



Chapter 1

Introduction

Machine learning has been applied in many areas to learn automatically from data in order to reduce the

need for hand-coded rules. Typically, and this is the case here, a machine learning task is of a supervised

nature, where a mapping f : X 7→ Y is learned from examples {(xi, yi) | xi ∈ X , yi ∈ Y}. A success-

ful application to learn f requires imposing an appropriate bias in the hypothesis space [Mitchell, 1991]

through selecting the learning algorithm, the parameters for that algorithm and the effective features for

the domain under consideration. When embedded within an environment of multiple tasks, it may be

beneficial to avoid tabula rasa learning by having the bias include information present in similar tasks

and experiences from learning them. This is motivated by one fundamental aspect of human and animal

learning: that knowledge and experiences gained from solving previously encountered tasks are used to

guide the approach to a new task.

This is the basis for exploring how learning can occur across tasks in additional to across examples, and

a variety of terms describe its research: meta-learning, multi-task learning, life-long learning, learning

to learn, inductive bias learning etc.; for overviews, see Gordon and desJardins [1995]; Thrun and Pratt

[1998, chapter 1]; Vilalta and Drissi [2002]; Vilalta et al. [2005]; Giraud-Carrier et al. [2004a]; Anderson

and Oates [2007]. As acknowledged by Vilalta and Drissi [2002], different research groups interpret the

various terms differently; in addition, these terms are sometimes used interchangeably [Anderson and

Oates, 2007]. For the purpose of this thesis, it will be useful to clarify what some of these mean to us:

Meta-learning is an overarching term that encompasses the entire field of exploring and understanding

how learning itself can be flexible by taking into account the multitude of tasks in the environment

wherein a learning agent is immersed. In particular, in addition to improving the learning of a

selected predictive model over many tasks, it aims to also address the practical and important

application to automatically select a predictive model for a given task [Gordon and desJardins,

1995]; a brief review is given in section 2.7.1.

Multi-task learning refers to learning multiple tasks simultaneously. The transfer of information be-

tween tasks is usually eased by learning the tasks with similar machine learning models or algo-

rithms under common input and output representations. The aim may be to increase the perfor-

mance on all tasks, or it may be to increase the performance on one task of primary interest given

1



2 Chapter 1. Introduction

other tasks of secondary interests. To differentiate between these two cases of multi-task learning,

we borrow from Xue et al. [2007b] and call them symmetric and asymmetric respectively. In the

machine learning literature, it is more common to find symmetric multi-task learning. In contrast,

asymmetric multi-task learning is more prevalent in the geostatistics community, where the sec-

ondary tasks pertain to information more readily available than the primary task. For example, the

primary task may be to predict the concentration of a precious metal, while the secondary tasks

provide the concentrations of common metals.

Learning to learn refers to the property that the performance of an algorithm on each task improves

with both the number of task-specific training examples and the number tasks [Thrun and Pratt,

1998, chapter 1]. The distinction between this and meta-learning is that it is usually limited to one

machine learning algorithm instead of an array of algorithms. It is more general than multi-task

learning in that it also includes the case where a bias is learnt from multiple tasks with the aim of

using it to obtain good solutions to novel tasks. One form of such bias may be invariances within

the domain [Thrun and Mitchell, 1995]. When the bias is learnt using multi-task learning, this is

also called asymmetric multi-task learning by Xue et al. [2007b].

The focus of this thesis is to understand, implement and evaluate an effective multi-task learning model.

This will be further elaborated in section 1.3. For the moment, let us broadly survey some existing views

on why multi-task learning can be desirable.

1.1 Theoretical and Empirical Benefits

Vilalta and Drissi [2002] note that meta-learning cannot escape the need for some form of bias, since the

various no-free lunch theorems, for example, Schaffer [1994] and Wolpert [2001], are also applicable

at the “meta” level. One aspect of this “meta-bias” is to determine which information will be shared

among or transferred across tasks and which will be specified to each task. It is this aspect that most

differentiates between the different models of meta-learning, and it is associated to task relatedness,

which will be addressed in section 1.2.

It may feel like going in circles because the need for a bias has been replaced by the need for a “meta-

bias” or even a “meta-meta-bias” [Vilalta and Drissi, 2001; Baxter, 1997, 2000]. Nevertheless it has

been shown theoretically and empirically that there are certain advantages in multi-task learning.

Theoretical aspects of multi-task learning have been explored by Baxter [1997, 2000] who considers a

model for learning the appropriate bias through sampling multiple (say M ) independently and identi-

cally distributed (i.i.d.) tasks. For probably approximately correct (PAC) learning [Valiant, 1984], this

means choosing a hypothesis space within a hypothesis space family. Each learning task will then se-

lect its own hypothesis from within the chosen hypothesis space (see Figure 1.1a). In the Bayesian

framework, this is a hierarchical model where each task is sampled independently from the same prior.

Multi-task learning is then placing a distribution and performing probabilistic inference on this prior

(see Figure 1.1b). For PAC learning, Baxter [2000] shows that, to achieve a fixed task-averaged general-

ization error (i.e., the case of symmetric multi-task learning) with high probability, the upper bound on

the number of examples needed per task at best is inversely proportional to M and at worst remains the



1.1. Theoretical and Empirical Benefits 3

H1 H2 H3 · · ·

Hypothesis space family H (meta-bias)

hi1 hi2 · · · him

hi′1 hi′2 · · · hi′m

Hypothesis space Hi (bias)

(a) PAC learning model using hypothesis spaces. Data from task j may be explained by hypothe-

sis hij , which is an element of the hypothesis space Hi, which in turn belongs to the hypothesis

space family H. Multi-task learning involves choosing aHi from H so as to minimize the empirical

error measure.

· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

· · · · · ·

· · · · · · · · ·

y11 y12 y1n1 y21 y22 y2n2

θ1 θ2 θm

ym1 ym2

π

ymnmData

Task

Bias

(b) Graphical representation of the hierarchical Bayes model. Task i is determined by θi, and gen-

erates data according to p(yij |θi). The θi for task i is in turn sampled from the task-prior p(θi|π).

Multi-task learning involves a hyper-prior p(π) and performing probabilistic inference on π. The

meta-bias is implicit through the distribution on π.

Figure 1.1: The (a) PAC and (b) Bayesian learning of multiple independent and identically sampled tasks.

same. For the hierarchical Bayes model, similar conclusions hold for the expected amount of informa-

tion required to achieve good generalization [Baxter, 1997]. An intuitive interpretation for these results

is the following: in the best case when all the tasks are closely related, then for any given task, the

examples for the other tasks are highly relevant, so each task has in effect roughly M times the number

of its examples, and the number of examples needed per task decreases as O(1/M); in the worst case

when the tasks are unrelated, then the effective number of examples for each task is the same as when

learnt in isolation.

In addition to results similar to those of Baxter’s, Ando and Zhang [2004] also argue that learning with

multiple tasks can improve statistical estimates of task parameters over learning each task separately.

Essentially, this is a statement of Stein’s phenomenon [Stein, 1956], which says that the combined

estimator of three or more parameters is more accurate than any method that handles the parameters

separately. More recent theoretical results of similar nature are given by Maurer [2005, 2006]. Ben-

David and Schuller Borbely [2008]1 later strengthen Baxter’s PAC learning result using a specific notion

of multi-task learning (see section 1.2) so that it also holds for the generalization error for each task,

which is the error measure relevant to asymmetric multi-task learning. In chapter 3, we will provide an

analysis of multi-task learning that is different from these mentioned here.

These theoretical results suggest that learning with multiple tasks is especially useful in domains when

1 A preliminary version is Ben-David and Schuller [2003].



4 Chapter 1. Introduction

the number of examples per task is small (or the examples are sparse within the entire input space), but

when the number of tasks can be large.

Empirically in many areas, learning with multiple tasks has been shown to perform better than learning

with single tasks. Examples include credit card fraud detection [Stolfo et al., 1997], newspaper sales

prediction [Bakker and Heskes, 2003], verb-argument classification [Lee et al., 2007], object recognition

[Caruana, 1997; Thrun and Mitchell, 1995], robotic control [Thrun, 1995] and compiler optimization

performance predictions [Bonilla et al., 2007]. In chapter 4, we will apply multi-task learning on the

inverse dynamics mappings for robotic control under multiple contexts.

1.2 Task Relatedness

A crucial ingredient in the application of meta-learning is the notion of relatedness between tasks.

Unfortunately it is not clear how this may be defined. Caruana [1997] notes that just because learning

two tasks together has better performance than learning each individually does not mean that they are

related in the normal sense of the word. Nevertheless, for the lack of a better definition, we shall say

two tasks are related to each other when they benefit mutually under meta-learning. This utilitarian

opinion has also been echoed by Thrun and O’Sullivan [1998]: “The more the performance in task n

improves through knowledge transferred from taskm, the more related they are”. Silver [2000, chapters

2, 3] and Eaton et al. [2008] share a similar view, while Ghosn and Bengio [2003] hold an alternative

view that “task similarity should be decided based on the feedback of experts knowledgeable in the field

being studied”. The view advocated by Ghosn and Bengio is probably a better reflection of the very

semantic and innate nature of task relatedness, since the similarity or dissimilarity between any two

entities is highly dependent on the selected properties, attributes or features [Edelman, 1995]. However,

the need for experts may be rather impractical when one wants to endow an autonomous artificial agent

with learning to learn abilities, or when different experts have differing views on task relatedness, or

when experts have difficulty elucidating task relatedness in terms concrete enough to be programmed or

encoded mathematically.

In general, it will not be known from the onset of (meta-)learning whether two tasks are related or

the extent of their relatedness. As mentioned by Baxter [2000] and supported empirically by Caruana

[1997], assuming relatedness in a set of tasks and simply learning them together can be detrimental.2

It is therefore important to have multi-task learning models that will generally benefit related tasks and

will not hurt performance when these tasks are unrelated.

A common way to ameliorate this is to have task descriptors or task features that are correlated to re-

latedness under a certain distance measure that may be learnt parametrically [Bakker and Heskes, 2003;

Bonilla et al., 2007; Yu et al., 2007]. However, although task descriptors can be used to improve models

of task-relatedness, experiments by Evgeniou et al. [2005] throw doubts on whether task descriptors

should be used in this way. Evgeniou et al. have shown on the ILEA school examination score predic-

tion problem3 that a multi-task learning model that incorporates task-descriptors-based relatedness is

2 Although theoretical results by Baxter [2000] and others hint that there is no disadvantage in using multi-task learning, these

results are based on upper bounds on the generalization errors, which may deviate from the true generalization errors.
3 The data comes from the Inner London Education Authority (ILEA), and it consists of examination records from 139 schools.
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less effective than a single-task learning model that treats the task descriptors as extra input dimensions.

Hence, ironically, it may not be fruitful to consider multi-task learning models for a problem already

endowed with task descriptors. Furthermore, in many real-life scenarios, task descriptors are neither

available nor easy to define correctly and sufficiently to model complex task relatedness. Hence task

relatedness based on task descriptors is not entirely satisfactory.

One may define task relatedness under very general conditions and constraints. Several possible mea-

sures of relatedness are discussed and evaluated by Silver [2000, chapter 3]. He distinguishes between

(i) static measures, which predetermine relatedness based on statistics between tasks data sets and do

not change during learning; (ii) dynamic measures, which change during learning based on the simi-

larity between the current task hypotheses; and (iii) hybrid measures, which combine the first two. For

problems lacking task descriptors, Bonilla et al. [2007] construct task descriptors via task responses to a

common fixed set of canonical inputs. In the context of meta-learning, Bensusan [1999, §4.5] describes

a task using the set of properties extracted from a decision tree trained for that task.

A more general approach is simply for the task descriptor of a task to be the extent of its relatedness to

all the other tasks.4 Although apparently circular, this suggests that we model task relatedness directly

as an inherent property without artificially introducing task descriptors. To carry on our view that two

tasks are related to each other if they benefit mutually when learnt together, task relatedness must have

some bearing on predictive performance, and vice versa. In line with this, Thrun and O’Sullivan [1998]

compute relatedness, which they call the task transfer matrix, within the k-nearest neighbour setting

using the expected generalization accuracy when the distance metric learnt for one task is applied to

another task. A similar approach is adopted by Eaton et al. [2008]. It is also within this spirit that one

may estimate task relatedness by maximizing the marginal likelihood of task-relatedness given the data

for all the tasks. This is because the marginal likelihood is defined as the marginal probability of the

data, which may be viewed as a predictive score of the model [Kass and Raftery, 1995, §3.2]. We will

follow this approach in chapter 4 when we use a multi-task Gaussian process model to learn the inverse

dynamics of a robotic manipulator.

Below, we list some common notions of relatedness and discuss what they mean to multi-task learning.

• If relatedness is a transitive binary predicate, then the natural multi-task learning approach that

arises is task clustering, where each task strictly belongs to one of many clusters. This partitions

the set of tasks into disjoint clusters, so that tasks within a cluster share information among them-

selves, and there is no transfer of information between clusters. Figure 1.2a illustrates this case.

Works of this nature includes Xue et al. [2007b] and Roy and Kaelbling [2007].

• If we know from the onset that all the tasks are related, for example in a learning system spe-

cialized for a family of tasks, then a natural assumption is that their hypotheses, instead of vary-

ing freely, belong to the same family of hypotheses that (almost) reside on a system of low-

dimensional manifolds representing the shared characteristics of the tasks. This stems from the

basic principle that hypotheses for related tasks must be similar, and in this case the system of

manifolds is used as a vehicle for information transfer between the tasks. It is important to con-

Each task is for a specific school, and is to predict the exam score of a student belonging to the school. Here the task descriptors

are four school-dependent features.
4 I thank A. Spiliopoulou for suggesting this view.
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(a) Clusters of tasks (b) Tasks lying on the same manifold

(c) Tasks having varying degrees of

relatedness

(d) Component-dependent related-

ness between tasks

Figure 1.2: Different notions of task relatedness in multi-task learning. The figures show multi-task

learning for 5 tasks represented by the nodes/cylinders. In (c) and (d), the thicker a line, the more

related are the two tasks connected by the line. In (d), a task is a cylinder to represent the additional

component-dimension, and the relatedness between two tasks depends on the component.

strain the volume or capacity of the system of manifolds because if the manifolds otherwise span

the entire space then the hypotheses are effectively free varying. This is directly related to the in-

trinsic dimension of the manifold, which is usually either fixed or determined by model selection.

This is illustrated in Figure 1.2b, and Omohundro [1996], Ghosn and Bengio [2003] and Ando

and Zhang [2005] are examples.

• We may use the degree of relatedness to measure the amount of sharing between tasks that will be

beneficial for learning, which is the view of Silver [2000, chapter 2] and of Thrun and O’Sullivan

[1998]. In this case, we may ask about the correlation between any two tasks: the more the two

tasks are correlated, the more the transfer of information between them. Figure 1.2c illustrates

this case, and work in this area includes Bonilla et al. [2007] and Yu et al. [2007].

• When each task can be naturally divided into components, we may have component-dependent

relatedness between tasks. For example, suppose we have a set of binary classification tasks on

object images, and we analyse each image in terms of shapes and appearances using the proba-

bilistic “constellation” model [Burl et al., 1998]; then it may be the case that two tasks share much

information between their shapes, but share little information between their appearances. Figure

1.2d illustrates this case. This has been investigated by Teh et al. [2005] and Xue et al. [2007a].

Finally, we emphasis that the above four notions are not mutually exclusive. For example, when tasks

have degrees of relatedness, it may just happen that these degrees are either zero or one in a consistent

manner, so we effectively have clusters of tasks. Nevertheless, every notion of task relatedness does

suggest a different meta-bias or hyper-prior for multi-task learning, and this may result in a different
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· · ·
· · ·

· · ·
· · ·

· · ·
· · ·

y11 y12 y1n1 y21 y22 y2n2

θ1 θ2 θm

ym1 ym2 ymnmData

Task · · · · · ·
· · · · · ·

Figure 1.3: Explicit modelling of task relatedness in the graphical model. This is obtained by integrating

out the π in Figure 1.1b. The undirected lines represent how the tasks are related.

learning algorithm.

1.2.1 Implicit and Explicit Modelling of Task Relatedness

How are the various notions of task relatedness manifested in the i.i.d. task-sampling of multi-task learn-

ing considered by, for example, Baxter [1997, 2000], as discussed in section 1.1? In the PAC learning

case, this is manifested implicitly or indirectly through selecting the correct hypothesis space [Ben-

David and Schuller, 2003]; in the Bayesian case, this is through a common distribution on the tasks.

The specifics of the hypothesis spaces and the distributions determine the notion of task-relatedness

involved. For example, a mixture model on the task priors in Bayesian learning will lead to learning

clusters of tasks.

In addition to the implicit modelling approach, one may wish for an explicit or direct means of mod-

elling task relatedness to make multi-task learning easier to understand and employ. In the case of the

Bayesian framework, this is readily obtained when the hyper-prior on the tasks are integrated out to

obtain a probabilistic model directly on the relations between tasks; see Figure 1.3.5 In section 2.5.5,

we will understand how a multi-task Gaussian process model may be obtained through this approach.

The approach by Ben-David and Schuller Borbely [2008] for PAC learning achieves this by modeling

explicitly the mappings between the input sampling distributions of the tasks. These mappings parti-

tion the hypothesis space into equivalent classes of hypotheses, where each equivalent class may be

understood as a cluster of tasks related via mappings on their input spaces.

1.3 Overview and Contributions

We have introduced and motivated the research on multi-task learning (and on meta-learning). We have

also discussed task relatedness, which is one key aspect of successful multi-task learning. The focus

of this thesis is on a multi-task Gaussian process model that explicitly represents task-relatedness in its

(cross-)covariance function in an interpretable manner. The model does not rely on task descriptors.

There are various reasons for the choice of multi-task Gaussian process model:

5 This view is presented by Williams and Chai at the Statistical and Machine Learning Interface Meeting at the University of

Manchester, 23rd-24th July 2009.
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Probabilistic Machine learning with Gaussian processes [Rasmussen and Williams, 2006] is a proba-

bilistic framework that is easily understood and extensible using the tools and literature in statis-

tics and probability theory. Compared to regularization, it gives the variances of predictions in

addition to the means, which may be important in decision making and in integration with other

tools.

Kernel-based A Gaussian process model can use any Mercer kernel as its covariance function. This

means that it can be easily applied to many machine learning domains in which the inputs are

complex objects but for which meaningful kernels can be defined. For example, it can use the

pyramid kernel, which has been shown to be effective for image classification [Grauman and

Darrell, 2006].

Relation to regularization When a concept is more easily expressed mathematically in terms of regu-

larizers than in terms of probability distributions, the close relation that Gaussian processes have

with L2 regularizers enables us to use that concept probabilistically.

Analyzing task relatedness Extracting task-relations from learnt models will allow experts of the field

to carry out task-centred analysis. The extraction is straightforward when task-relatedness is

represented explicitly, as is the case for the multi-task Gaussian process model. For example, this

made possible the analysis of multi-task learning in chapter 3.

Large data sets The use of large data sets can be made tractable for learning Gaussian processes by util-

ising existing approximation methods in the literature; see e.g., Quiñonero-Candela et al. [2007].

Specifically, we will consider the following multi-task Gaussian process regression model that learns

M related functions {fm}M
m=1 by placing a zero mean Gaussian process prior that directly induces

correlations between tasks. Let ym be an observation of the mth function at x. Then the model is given

by (see e.g., Bonilla et al. 2007)

〈fm(x)fm′(x′)〉 def= Kf
mm′kx(x,x′) ym ∼ N (fm(x), σ2

m), (1.1)

where kx is a covariance function over inputs, and Kf is a positive semi-definite matrix of inter-task

similarities or relatedness, and σ2
m is the noise variance for the mth task. This model on the functions

{fm} is known as the intrinsic correlation model [Wackernagel, 1998, chapter 22] or the proportional

covariance model [Chilès and Delfiner, 1999, §5.4.2] in the geostatistics community within the context

of co-kriging. A generalization of this model will be considered in relation to three other multi-task

models in chapter 2: the hierarchical Bayesian latent source model [Zhang, 2006], the multi-task reg-

ularization networks model [Evgeniou et al., 2005] and the multi-task Bayesian neural network model

[Bakker and Heskes, 2003]. These multi-task learning models will be presented mainly from the per-

spective of the different notions of task-relatedness discussed in section 1.2. We will also provide a

broad unifying view of multi-task learning using the Gaussian process model. This is possible because,

unlike the other models, the multi-task Gaussian process model explicitly encodes task-relatedness (up

to second order). In addition, chapter 2 will briefly survey other paradigms for meta-learning, discuss

multi-task learning as known in other research areas and compare multi-task learning to other machine

learning paradigms.



1.3. Overview and Contributions 9

Each multi-task learning model generally assumes that learning multiple tasks together is beneficial. As

discussed in section 1.2, the amount of benefit that can be reaped under multi-task learning is a common

utilitarian understanding of task relatedness. In chapter 3, we will understand how and the extent

to which multi-task learning helps improve the generalization of supervised learning. Our analysis is

conducted on the multi-task Gaussian process model since, in contrast to other models, not only does it

encode model assumptions for regression and task-relatedness in a transparent way, it is also amenable

to the average-case analysis that we are after. The analysis contributes to an understanding of multi-task

learning that is orthogonal to the existing PAC-based results outlined in section 1.1:

• With the exception of Baxter [1997], the existing theoretical results on multi-task learning operate

within the PAC learning model, and they depend on the uniform convergence of frequencies to

their probabilities. As pointed out by Vapnik [2006, Part 2, §1.1.2], “. . . if uniform convergence

does not take place then any algorithm that does not use additional prior information and picks

up one function from the set of admissible functions cannot generalize.” Vapnik explains that

this “leaves an opportunity to use averaging algorithms that possess a priori information about the

set of admissible functions. In other words VC theory does not intersect with Bayesian theory.”

Our analysis precisely fills the void left by existing results, since it uses Gaussian processes, a

Bayesian theory of functions.

• All the existing results do not depend explicitly on the extent of relatedness among the tasks;

instead, their dependence on relatedness is only indirect, through the hypothesis space in the case

of PAC learning and the distribution on the task priors in the case of Baxter [1997]’s Bayesian

analysis. In contrast, the results in chapter 3 will depend directly on the correlation or relatedness

between functions under the multi-task Gaussian process model.

• In existing analysis on multi-task learning, the number of examples is assumed to be the same for

each task. In contrast, our analysis will also include the possibility that the full training set may

not be evenly distributed among the tasks. It is important to allow uneven distributions, since one

of the motivations of using multi-task learning is to allow a secondary task, for which we have

abundant data, to help a primary task, for which we have few data.

Among others, our analysis will uncover an intrinsic limitation of the multi-task Gaussian process model

of equation 1.1. Further, section 3.9 of chapter 3 will provide an understanding of the multi-task Gaus-

sian process model through structures in the predictive means and variances given certain configurations

of training observations. The results there generalize those of Chilès and Delfiner [1999], and may have

practical applications in geostatistics.

In chapter 4, we will evaluate the multi-task Gaussian process model of equation 1.1 on the inverse

dynamics problem for a robot manipulator. The inverse dynamics problem is to compute the torques

needed at the joints to drive the robot manipulator along a given trajectory, and there are advantages

to learning this function for adaptive control. The learning of the inverse dynamics can be treated as a

function approximation problem. A robot manipulator will often need to be controlled while holding

different loads in its end effector, giving rise to a multi-context or multi-load learning problem, and we

treat predicting the inverse dynamics for a context/load as a task. We will follow a Bayesian approach

and place Gaussian process priors over the space of functions, and we will show that this is effective
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for learning the inverse dynamics for a single context. Then, by placing independent Gaussian process

priors over the latent functions of the inverse dynamics, we obtain the multi-task Gaussian process prior

of equation 1.1 for handling multiple loads, where the inter-context similarity depends on the underlying

inertial parameters of the robot manipulator. Experiments will demonstrate that this multi-task formu-

lation is effective in sharing information among the various loads, and generally improves performance

over either learning only on single contexts or pooling the data over all contexts. In addition to the

experimental results, one of the contributions of this chapter is showing that the multi-task Gaussian

process model follows naturally from the physics of the inverse dynamics.

Finally, chapter 5 concludes this thesis by summarizing the results and providing a discussion of possi-

ble future directions.

As far as possible, each of chapters 2, 3 and 4 is written in a self-contained manner, so that it may

be read independently of the others. Since this thesis applies Gaussian processes within the context

of machine learning, the reader may find it helpful to read Rasmussen and Williams [2006], although

a brief introduction is given in section 4.3.2.1 on page 108 in the context of probabilistic function

approximation. For the purpose of chapter 2, Bishop [2006] and Evgeniou et al. [2000] are useful

references for graphical models and regularization networks respectively.

1.4 List of Relevant Published Papers

Below is a list of published peer-reviewed papers. For each paper, we give the authors, the URL and

briefly indicate how the paper related to the thesis. The complete reference of each paper can be found

in the bibliography.

1. Bonilla, Chai, and Williams [2008], available at http://books.nips.cc/papers/�les/nips20/

NIPS2007_0431.pdf. This paper introduces to the machine learning community the multi-task

Gaussian process learning model in the manner of equation 1.1. To the best of our knowledge, al-

though the formulation given by equation 1.1 has been known in the geostatistics community, the

machine learning community has initially known it under different disguises: the tensor Gaussian

process models of Yu et al. [2007] for link prediction and the semiparametric latent factor models

of Teh et al. [2005].

2. Chai, Williams, Klanke, and Vijayakumar [2009], available at http://books.nips.cc/papers/

�les/nips21/NIPS2008_0441.pdf. Chapter 4 is an extension of this paper.

3. Chai [2009], available at http://books.nips.cc/papers/�les/nips22/NIPS2009_0076.pdf.

Chapter 3 is an extension of this paper.



Chapter 2

Models for Multi-task Learning

Generalizing from a set of examples involves more than memorizing them. An abstraction or a model

is needed in order to interpolate between the examples and, perhaps, extrapolate to novel regions of

the observation space. Likewise, multi-task learning requires a channel between the tasks along which

tasks share information. This can be achieved by sharing selected aspects of the learning model for

each task. In section 2.1 we consider a generalized linear model (GLM) for each task and see how tasks

may share either their model parameters or their features/structures mappings. There are various ways

of implementing this manner of sharing between tasks. Three examples will be given: the hierarchical

Bayesian latent source model of Zhang [2006] in section 2.2, the multi-task regularization networks

model of Evgeniou et al. [2005] in section 2.3 and the multi-task Bayesian neural network model of

Bakker and Heskes [2003] in section 2.4.

A different way to think about multi-task learning is in terms of how tasks are related to each other.

Common examples of task relatedness are

task clustering, where tasks in the same cluster are related, and tasks in different clusters are not;

manifold of tasks, where tasks reside near a system of low-dimensional manifolds representing the

shared characteristics of the tasks;

varying degrees of relatedness between the tasks that allows different extents of information sharing

between them;

component-dependent relatedness, where each task has more than one component, and the related-

ness between the tasks varies across the components.

These notions of task relatedness have been elaborated in section 1.2. The multi-task learning models

in sections 2.2, 2.3 and 2.4 will be discussed primarily with reference to these different notions of task

relatedness.

In section 2.5 we will introduce multi-task learning with Gaussian processes (GPs, Rasmussen and

Williams [2006]). We will show how the different notions of task relatedness can be achieved within

the Gaussian process framework by considering just the covariance function between the different tasks.

This will used to understand the other models for multi-task learning. Section 2.5.8 will outline how a

11
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multi-task Gaussian process model can be developed for the case where two tasks have different input

domains X1 and X2.

A summary will be given in section 2.6. We will then proceed to discuss general meta-learning in

section 2.7 and related machine learning paradigms in section 2.8.

2.1 Introduction

One of the more commonly used and analyzed paradigms for machine learning is supervised learning.

Its goal is to produce a mapping X 7→ Y based on n examples D def= {(xi, yi)|xi ∈ X , yi ∈ Y}
n
i=1.

Having learned the mapping, the task is to predict a response y given any input x. Typically the output

space Y is scalar in nature, such as R for regression or {0, 1} for classification.1 A general class of

models for this purpose is generalized linear models (GLMs), which can be expressed as

y ∼ p(· | f(x), σ) y ∈ Y, σ ∈ R noise model (2.1a)

f(x) = uTφ (x) x ∈ X , φ : X 7→ RDφ

, u ∈ RDφ

linear model, (2.1b)

where φ is a mapping from the input space X onto a Dφ-dimensional Euclidean vector space, which

we may also call the feature space, and u is the model parameter vector. The function f is known as

the latent function, since it is not observed directly. The noise model given by equation 2.1a will vary

with the nature of the tasks, e.g., Gaussian for regression tasks and logistic (or probit) for classification

tasks; see e.g., Nelder and Wedderburn [1972]; Hardin and Hilbe [2007]. It is parametrized by σ, which

is usually related to the variance of the noise model.

Given M predictive tasks, each may be learnt with a GLM that is different for every task, i.e.,

ym ∼ pm(· | fm(xm), σm) ym ∈ Ym, σm ∈ R (2.2a)

fm(xm) = uT
mφm (xm) xm ∈ Xm, φm : Xm 7→ RDφ

m , um ∈ RDφ
m , (2.2b)

where m = 1 . . .M indexes over the tasks. A general approach to multi-task learning is to share infor-

mation among the tasks through the constituents of the GLMs. This can be achieved by placing shared

constraints and priors on the models. A common constraint is that the tasks have the same input and

output representations, so that all the tasks are of the same nature, i.e., to produce mappings X 7→ Y .

To facilitate transfer of information between the tasks, it is also useful for them to have the same feature

space. Thus, a reasonable starting point is

ym ∼ p(· | fm(x), σm) ym ∈ Y, σm ∈ R (2.3a)

fm(x) = uT
mφm (x) x ∈ X , φm : X 7→ RDφ

, um ∈ RDφ

. (2.3b)

Next, we can obtain different models of multi-task learning by placing different priors on the model pa-

rameters ums and the feature mappings φms. The result is the following general hierarchical Bayesian

1 The case where Y is a vector space will be discussed in section 2.7.2; it can be seen to be related to multi-task learning.
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model for multi-task learning:

ym ∼ p(· | fm(x), σm) (2.4a)

fm(x) = uT
mφm (x) (2.4b)

u1, . . . ,uM ∼ p(· | Υu) um ∈ RDφ

(2.4c)

φ1, . . . ,φM ∼ p(· | Ωφ) φm : X 7→ RDφ

, (2.4d)

where Υu and Ωφ are hyper-parameters. It is not necessary for the ums to be independent, and similarly

for the φms.

As it is, the above model for sharing among multiple tasks depends heavily on the hyper-priors on {um}
and {φm}. On the one hand, if these hyper-priors factorize into independent and identical distributions

(i.i.d.) for each um and each φm, then the sharing between the tasks is rather weak: the tasks are

related only through their common hyper-priors. On the other hand, in absence of the i.i.d. assumption

it may be unnecessarily involved to specify both hyper-priors in order to achieve a desired notion of task

relatedness. One way around this dilemma is for the different tasks to share a common feature mapping

φ and to allow each task its own model parameter um, i.e.,

fm(x) = uT
mφ(x). (2.5)

The desired notion of task relatedness is now primarily achieved through an appropriate hyper-prior on

{um}. If the feature mapping φ(x) is implemented by the hidden layer of a neural network, then we

have the multi-task Bayesian neural network model of Bakker and Heskes [2003]. This will be discussed

in section 2.4.

When x can be conveniently expressed as a D-dimensional vector, we can restrict the common φ to be

a linear mapping specified by a Dφ-by-D matrix Φ. Equation 2.5 can now be replaced by

fm(x) = uT
mΦx x ∈ RD, um ∈ RDφ

, Φ ∈ RDφ×D. (2.6)

In the sense that Φ will create linear structures of x, we will call Φ the structure matrix. This gives the

hierarchical Bayesian latent source model of Zhang [2006] that we will discuss in section 2.2.

Instead of having a shared structure matrix Φ, the M tasks can share a common model parameter vector

u. Having a shared structure matrix is equivalent to having a shared model parameter vector, in the

sense that will now be explained. The function for the mth task as expressed in (2.6) can be written as

fm(x) = wT
mx, (2.7)

where wm
def= uT

mΦ may be called the effective parameter vector. Since wm can be expressed as many

different products of vectors and matrices, we can traverse between having a shared structure matrix and

having a shared model parameter vector via suitable substitutions. For a given choice of shared model

parameter vector u ∈ RDφ

, since u+u = 1, we may write

common

structure matrix

}
uT

mΦ = (u+u)TuT
mΦ = uT(umu

+)TΦ = uTΦm

{common

model parameter
(2.8)

where (umu
+)TΦ is substituted with Φm in the last equality. Thus, it may seem arbitrary to distinguish

between having a shared structure matrix and having a shared model parameter vector. Nevertheless, a
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conceptual difference still exists between the two, which leads to different multi-task learning models

and algorithms. For example, the multi-task regularization networks model of Evgeniou et al. [2005]

uses a shared model parameter u and learns by regularizing the norm uTu. More details can be found

in section 2.3.

For M tasks, each with nm examples Dm
def= {(xmi, ymi)|xmi ∈ X , ymi ∈ Y}

nm

i=1, let Dx
m be the set of

x’s in Dm andDy
m be the set of y’s. A line of reasoning by MacKay [2003, section 45.1] can be applied

readily to multi-task learning: the representation of the latent functions fm(x) does not matter at least

from the point of prediction, since the quantities of interest p(fm(x) | {Dm}M
m=1,x) (for prediction)

and p({Dy
m}M

m=1 | {Dx
m}M

m=1) (for model selection or comparison) make reference to neither the model

parameter vectors ums nor the feature mappings φms. Therefore, if we can deal directly and efficiently

with the functions f1, . . . , fM , there is no reason why we should not. What remains is to find a suitable

class of probability distributions on these functions. One suitable and popular candidate in machine

learning is the Gaussian process (GP) prior on functions [Rasmussen and Williams, 2006], and we

will introduce multi-task learning models based on Gaussian Processes in section 2.5. In that section,

we will also see how we may understand the latent source model, the neural network model and the

regularization networks model using Gaussian processes. The Gaussian process viewpoint will allow

us to extract salient features or notions of multi-task learning that are expressed explicitly in terms of

task-relatedness between the M functions.

2.2 Hierarchical Bayesian Latent Source Model

In this section, we will look at multi-task learning models in which tasks have different parameters um

but share the same structure Φ:

fm(x) = uT
mΦx um ∈ RDφ

, Φ ∈ RDφ×D, x ∈ RD. (2.9)

One such structure is to retain the original vector space of the inputs together with a linear transformation

of this space, i.e.

Φ =

(
ID×D

AT

)
A ∈ RD×Ds

, (2.10)

where Dφ = Ds +D, and AT is a linear transformation from the original D-dimensional input space

onto a Ds-dimensional feature space. The converse view is that A maps a Ds-dimensional latent space

onto the effective parameter space of dimension D. Unlike conventional factor analysis or independent

component analysis, this latent space is the latent space of task parameters rather than the latent space

of the input x. To see this, let us breakdown the parameter vector for task m as

um =

(
µw + ξm

sm

)
(2.11)

so that the mth effective parameter may be expressed as

wm =
(
ID×D A

)(µw + ξm

sm

)
= µw +Asm + ξm, (2.12)
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which consists of (1) an offset µw, (2) a mixing A of the latent source sm, and (3) a noise term ξm;

if the latent source has zero mean, then µw can be seen as the mean parameter vector of the tasks.

Typically Ds 6 D, though section 2.2.4 gives an example where Ds > D. The above setup leads to the

latent source model (LSM) of Zhang [2006, chapter 3] for multi-task learning:

ym ∼ p(· | fm(x), σ2
m) (2.13a)

fm(x) = wT
mx (2.13b)

wm ∼ N (· | µw +Asm,Σξ) wm ∈ RD, µw ∈ RD (2.13c)

s1, . . . , sM ∼ p(· | Υs) sm ∈ RDs
(2.13d)

A ∼ p(· | ΩA). (2.13e)

where Σξ is the noise (co)variance of ξ, i.e., ξ ∼ N (· | 0,Σξ), and is usually a diagonal matrix for

independent noise; and Υs and ΩA are the hyperparameters of the distributions on {sm} and A. In

general, there may be inter-dependencies among the latent sources. The graphical model is given in

Figure 2.1a on the following page.

Let us call each of the Ds dimensions of sm a latent component. An alternative to understanding the

matrix productAsm as a mixing of the latent components is to see it as a location in the column space of

matrix A, where the location is determined by sm. Within this view, matrix A determines the structure

of the predictor space from where sm selects a predictor for task m. In section 2.2.2, the selection is

rather free, spanning the whole of the column space; this will result in a manifold of predictors. In

section 2.2.3, the selection is confined to a countable set of locations; this leads to tasks clustering at

these locations. However, before delving into the task manifold and task clustering, we first look at two

very general kinds of (in)dependencies on {sm}.

2.2.1 General (In)Dependencies between Latent Sources

The practicability and usefulness of the model described by (2.13) depends very much on the distribu-

tions on the latent sources {sm} and the mixing matrix A. We shall now describe two very general

kinds of dependencies for the latent sources, and postpone specific examples on task relatedness to later

sections.

2.2.1.1 Independent Sources

All the specific models considered in [Zhang, 2006, chapters 3, 4, 5 and 7] assume conditional indepen-

dence between the sources so that

p(s1, s2, . . . , sM | Υs) =
M∏

m=1

p(sm | Υs) independent latent sources. (2.14)

The graphical model is given by Figure 2.1b on the next page. Such models — henceforth called

independent latent source models (ILSM) — will lead to conditional independence between the effective

task parameters w1, . . . ,wM . This means that we have M independent meta-samples (i.e., the wms)

for learning the hyper-parameters. In section 2.2.2 and 2.2.3 we shall see how ILSM may be used for

learning task manifolds and clustering tasks, two notions of task-relatedness discussed in section 1.2.
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i = 1 . . . nm

m = 1 . . .M

xmi fmi ymi

σ2
m

wm

ΣξµwA

sm

s1

s2

sM

Υs

...

...

(a) Inter-dependent tasks

i = 1 . . . nm

m = 1 . . .M

xmi fmi ymi

σ2
m

wmsm

Υs ΣξµwA

(b) Conditionally independent tasks

Figure 2.1: Hierarchical Bayesian multi-task learning models using latent sources [Zhang, 2006]. Figure

(a) is for the model given by equation 2.13, where general inter-dependencies between the latent sources

sms may be present. Figure (b) is for the model given by equation 2.14, where there is conditional

independence between the latent sources given Υs. The graphical notation follows that of Buntine [1994].

Of particular interest is when, in addition to independence between the latent sources and a diagonal

matrix Σξ, there is independence between the latent components of each source:

p(sm | Υs) =
Ds∏
d=1

p(smd | Υs
d). (2.15)

If the distributions are Gaussian, for example, sm
iid∼ N (· | 0, I), then we have the factor analysis model

on the effective parameter vector wm. If, instead, the distribution for each latent component is non-

Gaussian, then we have an independent component analysis (ICA) model on wm.2

2.2.1.2 Separable Dependencies3

Instead of fully independent sources, we may want to retain some relations between theM latent sources

and between the components within a latent source. Given that for learning a general p({sm} | Υs) there

is effectively only one meta-sample, which is the set {wm}, we must be careful not to introduce too

much freedom into the model. This suggests an orthogonal parametrization that separately models the

task relations and the latent-component relations. For this purpose, it is useful to introduce the matrix

S def= (s1 | s2 | · · · | sM ) (2.16)

and consider a matrix-variate distribution on S. One commonly used distribution is the matrix normal

distribution [Dawid, 1981], which may be expressed as a normal distribution on vecS:

vecS ∼ N (· | µS,Σ
f ⊗ Σx), (2.17)

where ⊗ denotes the Kronecker product, and Σf models variations across tasks while Σx models varia-

tions across latent-components.
2 The original name given by Zhang et al. [2006] for ILSM is latent ICA. This may be misleading, since ILSM only specifies

that the sources are independent, but ICA also requires that the components within sm are independent. This is later corrected

in [Zhang, 2006, section 5.2].
3 Such a model has not been explored by Zhang [2006].
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There are other strategies for separating into task relations and latent-component relations. An example

is the matrix stick-breaking process of Xue et al. [2007a], which will be described in section 2.2.4.

2.2.2 Manifold of Predictors

The aim in manifold learning is to project the parameters of the predictors onto a low-dimensional

manifold without drastic loss in predictive performance. Although most of the published literature may

discuss general manifolds, linear manifolds are usually used eventually due to the ease of understanding

and efficiency of computations. For linear manifolds, a natural decomposition is that of equation 2.12

wm = µw +Asm + ξm (2.18)

when the dimension of the latent sources sm is smaller than the dimension of the task parameters wm,

i.e., Ds 6 D. The manifold is the column space of A offset by µw, and the intrinsic dimension of the

manifold is Ds, the rank of A. For task m, its latent source sm determines its location on the manifold;

however, the effective parameter vector wm does not lie exactly on the manifold due to the additive

noise component ξm.

The ILSM model can be used for learning these manifolds (see [Zhang, 2006, sections 3.2.4, 3.2.7]),

since, for manifold learning, the tasks are mutually independent given the linear manifold. For example,

Zhang [2006, equation 5.2, algorithm 3] places zero mean Laplace priors on the mixing matrix A

aij ∼ Laplace(·|0, υ) i = 1 . . . D, j = 1 . . . Ds, (2.19)

where aij is the (i, j)th entry of A, and v is the spread parameter of the Laplace distribution. In this

case, learning involves finding the maximum likelihood estimates for the independent latent sources

sms and the maximum a posterior estimates of A. The Laplace prior is a sparse prior and placing it on

the entries of A will allow, or in fact prefer, certain rows of A to be zero vectors, so that the eventual

intrinsic dimension of the manifold may be less than Ds.

Instead of a sparse prior onA, Ando and Zhang [2005] constrainA to be orthonormal, i.e., ATA = IDs ,

in order to obtain a learning algorithm that is easy to implement. This orthonormal constraint has the

side effect of demanding the dimension of the manifold to be fixed to Ds, since A must be of rank Ds

for the constraint to hold. This is in contrast to Zhang’s Laplace prior which may allow the dimension

to be less than Ds.

Let L be the loss function corresponding to the noise model given by equation 2.13a of LSM (see

Evgeniou et al. 2000). Ando and Zhang [2005] use the objective function

arg min
A,{ξ·},{s·}

M∑
m=1

(
1
nm

nm∑
i=1

L
(
fm(xmi), ymi

)
+ λmξ

T
mξm

)
s.t. ATA = I (2.20a)

fm(x) = wT
mx wm = Asm + ξm, (2.20b)

where λm is the regularization parameter for the mth task, the orthonormal constraint is imposed on

A, and the regulariser on ξm is equivalent to a Gaussian prior with zero mean and variance 1/2λm.

For the special case where the regularization parameters λms are the same, say λ, we can use equation
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2.13c and set Σξ = (1/2λ)I . The solution to (2.20) can be obtained by Ando and Zhang’s singular-

value-decomposition alternating-structure-optimization (SVD-ASO) algorithm, which is an iterative al-

gorithm. Let wm = ξm +Asm. Each iteration consists of two steps:

1. Fix A and {sm}, and optimize with respect to {wm} (or equivalently {ξm}) using any convex

optimization algorithm.

2. Fix {wm}, and optimize with respect to A and {sm} using singular value decomposition.

We give a brief explanation on why singular value decomposition (SVD) can be used for step (2), and

refer the reader to Ando and Zhang [2005] for the exact details. Consider the definition of wm and

the constraints given in (2.20a). The isotropic Gaussian prior on the ξms imposed by the regularizers

indicates that A and {sm} should be fitted to wm in the least squares sense, up to the scaling factors

λms. The orthonormal constraint on A will then lead to the SVD algorithm. This is a form of partial

least squares (see section 2.7.2) in the predictor (or parameter) space.

2.2.3 Task Clustering

Task clustering may be achieved with the ILSM model via a mixture model [Zhang, 2006, sections 3.2.3

and 7.2.1.2], using an appropriate prior on the latent sources sms. For Ds = P clusters, let ∆P−1 be

the space of (P − 1)-simplexes, and use the multinomial distribution (with one trial)4

sm ∼Multinomial(·|1,π) π ∈ ∆P−1. (2.21)

Under this distribution, only one element in sm is one, and the rest are zero. In this way, the P -vector

sm acts as a vector of indicator variables (z1
m, z

2
m, . . . , z

P
m)T that selects one of the P clusters for task

m. If A is decomposed as

A def=
(
a1 | . . . | aP

)
∈ RD×P ,

then we may rewrite the effective parameter the mth task as

wm = µw +Asm + ξm = µw +
P∑

p=1

zp
ma

p + ξm. (2.22)

In probabilistic terms, this is a mixture of Gaussians for each wm if ξm ∼ N (0,Σξ):

p(wm) =
P∑

p=1

πpN (wm | µw + ap,Σξ), (2.23)

where πp is the pth element of π. All the tasks belonging to the pth cluster will have zp
m = 1, so they

have a shared mean parameter of µw + ap, and ξm is the noise term.

A way to extend the multinomial model of the latent sources given by (2.21) is to place a Dirichlet prior

on π

π ∼ Dir(· | α1, . . . , αP ) αp > 0. (2.24)

4 The alternative name is a discrete distribution on sm.
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Figure 2.2: Multi-task learning under LSM using task clustering. Figure (a) is the same as Figure 2.1b, but

with the Υs and theA there replaced by the Dirichlet process here. Figure (b) is the matrix stick-breaking

process which allows separate clustering for different components ofwm. Here, the concatenated vector

(zm1,zm2, . . . ,zmD)T is the latent source sm. Note that the original MSBP by Xue et al. [2007a] does

not involve modelling the noise on wm due to Σξ.

In order not to be constrained to a fixed number of clusters, one can potentially allow the number of

clusters, P , to approach infinity; though, in reality, the number of clusters is upper-bounded by the

number of tasks. If the distribution on π in equation 2.24 is a symmetric Dirichlet distribution with

αi = α0/P (α0 > 0), then this can be achieved by letting P →∞. The result is a Dirichlet Process

(DP) prior on the wms with precision parameter α0 [Ferguson, 1973]. The stick-breaking construction

view of this process is [Sethuraman, 1994]

νp ∼ Beta(· | 1, α0) πp = νp

p−1∏
p′=1

(
1− νp′

)
(2.25a)

ap ∼ p(· | ΩA). (2.25b)

The resulting multi-task model is depicted in Figure 2.2a. The graphical model is that of Figure 2.1b,

but with Υs and A replaced by a subgraph specified by the stick-breaking construction of the DP. This

emphasizes that this Dirichlet process multi-task clustering model is an instance of the ILSM. Also, in

contrast to the models with finite task clusters, the DP model demands a generative model for A, so as

to generate a ap for every cluster possible. This is the DP model given by Xue et al. [2007b], except for

the addition of µw and ξm here.

Such a DP construction is commonly used in the statistics literature to model multilevel data (see section

2.7.3 for a brief overview). In multi-task learning, Roy and Kaelbling [2007] have also used a similar DP

construction, but within the setting of a generative model for the inputs x, i.e., a latent label y generates

x instead of the discriminative model discussed here. A more elaborate DP has been proposed by

Rodríguez et al. [2008], where the atoms of the DP are in turn drawn from a DP. This has been applied

in multiple related hidden Markov models (HMM) by Ni et al. [2007]. A stick-breaking process that
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models feature-component dependent clustering of tasks is also possible, and this is our next topic.

2.2.4 Feature-component Dependent Clustering

Xue et al. [2007a] propose the matrix stick-breaking process (MSBP) that partitions the components of

the task parameters and allows every partition to cluster in a different way. This enables the relatedness

of any two tasks to be component dependent. Their motivation is that different components may be on

different scales, so that assigning a task to a single cluster is unrealistic. We now give a view of the

MSBP that is consistent with the LSM.

First, let us clarify what we mean by a component in this context. From the clustering of the effective

parameter wm given in equation 2.22, the latent function is

fm(x) = wT
mx = (µw)Tx+

P∑
p=1

zp
m(ap)Tx+ ξT

mx = (µw)Tx+
P∑

p=1

zp
m

D∑
d=1

ap
d xd + ξT

mx, (2.26)

where we have expanded the dot product (ap)Tx into a summation. For feature-component dependent

clustering, the indicator variables zp
ms are given an extra dimension to select each of the D feature

components of x separately. That is,

fm(x) = (µw)Tx+
D∑

d=1

P∑
p=1

zp
md a

p
d xd + ξT

mx, (2.27)

where, for a given m and d, only one of zp
md (p = 1 . . . P ) is one, and the rest are zeros.

A straightforward correspondence to the LSM is obtained when we identify the summation
∑

p z
p
mda

p
d

in equation 2.27 as (Asm)d and introduce ad
def= (a1

d, a
2
d, . . . , a

P
d )T and zmd

def= (z1
md, z

2
md, . . . , z

P
md)

T:

Asm =


∑P

p=1 z
p
m1 a

p
1∑P

p=1 z
p
m2 a

p
2

...∑P
p=1 z

p
mD ap

D

 =


aT

1 zm1

aT
2 zm2

...

aT
DzmD

 =


aT

1 0 · · · 0

0 aT
2 · · · 0

...
...

. . .
...

0 0 · · · aT
D




zm1

zm2

...

zmD

 . (2.28)

HenceA is the block diagonal matrix ofD-by-D P -dimensional row vectors, and sm is the block vector

of D indicator variables zmds. The constraint on zmd demands that zmd ∼Multinomial(· | 1,πmd),

where πmd ∈ ∆P−1. The key aspect of MSBP is the following stick breaking prior over πmd that

couples task relatedness with the feature components:

tpm ∼ Beta(· | 1, αt
0) rp

d ∼ Beta(· | 1, αr
0) νp

md
def= tpmr

p
d (2.29a)

πp
md = νp

md

p−1∏
p′=1

(
1− νp′

md

)
. (2.29b)

The effective stick-breaking weight νp
md for the pth cluster couples together the weight tpm for the

mth task and the weight rp
d for dth feature component, so the tendency for the parameter of the dth

component for task m to belong to cluster p depends directly on the tendencies of the parameter and

the task to belong to that cluster. In this way, feature-component dependent clustering is achieved. The

graphical model for MSBP is shown in Figure 2.2b.
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Perhaps the easiest way to understand the MSBP model is through its clustering properties given by Xue

et al. [2007a, Theorem 4]:

P (zmd = zm′d) =
1

(αt
0 + 1)(αr

0 + 2)− 1
(2.30a)

P (zmd = zm′d) < P (zmd = zm′d|zmd′ = zm′d′). (2.30b)

The first equation directly relates the hyper-parameters αt
0 and αr

0 to the (marginal) probability that both

task m and task m′ have the same parameter for the dth feature component, up to noise corrections

due to ξm. The second equation says that this probability increases when we know that the tasks also

share their parameters for the d′th component. Hence the clustering of the dth component borrow

information from the clustering of the d′th component, thereby encouraging task clusterings that are

consistent across the components.

2.3 Multi-task Regularization Networks Model

In the previous section, we have looked at how multi-task learning may be achieved using shared struc-

tures Φ. We now look at how it can be achieved using shared parameters u but with structures that differ

between the tasks. Although this may seem peculiar, we remind ourselves that for linear structures there

is actually no clear distinction between parameters and structures (see equation 2.8). The key idea is

that, under the L2-norm, these structures will induce a reproducing kernel Hilbert space (RKHS), and

that different notions of task relatedness correspond to different reproducing kernels. This view is put

forward by Evgeniou, Micchelli, and Pontil [2005], and we shall call it the multi-task regularization

networks model (MRNM).

Evgeniou et al. start from the regularization framework

arg min
{wm}

1
Mn

M∑
m=1

n∑
i=1

L
(
ymi , w

T
mxmi

)
+ λwTEw, (2.31)

where L is the loss function that depends on the nature of the task (see Evgeniou et al. 2000),

w def= (wT
1 , . . . ,w

T
M )T, (2.32)

and E is an MD-by-MD matrix capturing the relations between the tasks. Hence the tasks are inde-

pendent in the loss function but coupled via the joint regularizer wTEw. To make the connection to

regularization networks (see Evgeniou et al. 2000), they use the linear mapping

wm = ΦT
mu where Φm ∈ RDφ×D, u ∈ RDφ

, (2.33a)

so as to introduce the mth latent function as

fm(x) = wT
mx = uTΦmx. (2.33b)

Instead of havingM functions, each acting on one task, Evgeniou et al. [2005] take the view of extending

the original data space by a task indicator and having a single function on the product space N1×X ,
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where N1
def= {1, 2, . . .} is the set of task indicators:5

f(m,x) = uTΦmx. (2.34)

The Hilbert space H of such functions on N1×X may now be considered. If the squared norm of all

such functions ‖f‖2H is uTu, then we have the following reproducing kernel

k((m,x), (m′,x′)) = xTΦT
mΦm′x′ (2.35)

for the Hilbert space of f ; see appendix A.1.1. Evgeniou et al. call this the linear multi-task kernel. We

may now write the regularization network problem given by (2.31) in its classical form

arg min
f∈H

1
Mn

M∑
m=1

n∑
i=1

L
(
ymi , f(m,xmi)

)
+ λ‖f‖2H. (2.36)

More explicitly, this is

arg min
u

1
Mn

M∑
m=1

n∑
i=1

L
(
ymi , u

TΦmxmi

)
+ λuTu. (2.37)

The optimizations given by (2.31) and (2.37) are equivalent in the sense that we can convert one to the

other by constructing a suitable E (given the Φms) or suitable Φms (given the E). This equivalence is

now stated.

Proposition 2.1. (cf. Evgeniou et al. 2005, Proposition 1)

(a) Define Φ to be the Dφ-by-MD block matrix obtained by concatenating the matrices Φm, i.e.,

Φ def= (Φ1 | Φ2 | · · · | ΦM ) .

Assume Dφ 6MD, and that Φ has full rank Dφ. Then, for E =
(
ΦTΦ

)+
, the objective func-

tions in (2.31) and (2.37) are equivalent.

(b) Conversely, for any MD-by-MD positive semi-definite matrix E of rank Dφ 6MD in (2.31),

there exists at least one Φ such that objective functions in (2.31) and (2.37) are equivalent. For

example, we may have Φ = CTE+, where C is a matrix square root of E, such as the incomplete

Cholesky decomposition of E.

The proof is in appendix A.1.2, and it depends on showing that ΦEΦT is IDφ , the Dφ-by-Dφ identity

matrix. This condition, ΦEΦT = I , is one of the cornerstones in formulating the MRNM, and hence

deserves further discussion. Given a fixed E which is positive semi-definite, there may be multiple Φs

that will satisfy ΦEΦT, and the example given in Proposition 2.1b is but one; appendix A.1.2.2 gives

a construction for the different Φs. Since each setting of Φ corresponds to a Hilbert space H, in reality

the optimization in (2.36) has to search over the possible H, or, equivalently, the optimization in (2.37)

has to search within the set of Φms satisfying ΦEΦT = I .

The discussion in the preceding paragraph is only necessary because E may not have full rank, or

Dφ 6MD, which we shall now address. Since the size of E is fixed to MD-by-MD, that of Φ to

Dφ-by-MD, and matrix multiplication can never increase rank of matrices, ΦEΦT can be of rank at

5 To be mathematically precise, N1 is isomorphic to the set of task indicators.
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most max(MD,Dφ). However, the identity matrix IDφ is of full rank Dφ, which means that we

require Φ and E to be of rank at least Dφ. The consequence is that Dφ 6MD for, if it was to be

otherwise, the rank of Φ would have been limited by MD.

This stands in contrast with the view by Evgeniou et al. [2005, section 3] that Dφ >MD. While

their view makes their definition of E =
(
ΦTΦ

)−1
valid, it will not lead to ΦEΦT = IDφ (unless

Dφ = MD), on which the proof of their Proposition 1 depends.

In sections 2.3.2, 2.3.3 and 2.3.4 we will look at the different notions of task-relatedness that may be

implemented by specifying E, following Evgeniou et al. [2005]. But we will first see how separable

dependencies may be modelled via this approach.

2.3.1 Separable Multi-task Kernels

Learning the full E matrix requires O(MDDφ) parameters which may be too large for the robustness

of statistical estimation. Similar to the separable dependency case that we have discussed in section

2.2.1.2 for the hierarchical Bayesian latent source model, we may simplify E by modelling separately

the task relations and the parameter-component relations. This is used by Evgeniou et al. [2005] to base

examples of their general model. As we will see in later sections, most examples of multi-task kernels

are based on such separability.

The separability is as follows. With an M -by-M matrix Ef modelling pair-wise task relations, and a

D-by-D matrix Ex modelling pair-wise parameter-component relations, we can parametrize matrix E

in equation 2.31 as

E = Ef ⊗ Ex, (2.38)

where ⊗ denotes the Kronecker product. Thus we have

wTEw =
M∑

m=1

M∑
m′=1

Ef
mm′wT

mE
xwm, (2.39)

with Ef
mm′ the (m,m′)th entry of matrix Ef . By using the property that the (pseudo-)inverse of a Kro-

necker product is the Kronecker product of the (pseudo-)inverses, the multi-task kernel that corresponds

to this is

k((x,m), (x′,m′)) = Kf
mm′xT(Ex)+x′, (2.40)

with Kf
mm′ the (m,m′)th entry of matrix (Ef)+; see appendix A.1.3 on page 137 for the derivation.

Equations 2.39 and 2.40 above are analogous to the equations 20 and 19 of Evgeniou et al. [2005],

except that they only consider the case where Ex = ID and where Ef has full rank.

2.3.2 Manifold of Predictors6

We now briefly describe how manifold learning may be implemented using multi-task kernels and refer

the reader to appendix A.1.4 on page 138 for details. Let µ be the offset of the manifold from the

6 To the best of our knowledge, the analysis in this section is novel.
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origin, and let the column vectors of the D-by-Ds matrix A be orthonormal vectors spanning the linear

subspace of the manifold. The pair (µ, A) gives a Ds dimensional linear manifold residing within a D

dimensional space. Let dm
def= (wm − µ) be the displacement of the effective parameterwm for taskm

from u. The distance between wm and its projection onto the manifold is given by ‖dm −AATdm‖2,

and the distance of the manifold from the origin is ‖u−AATu‖2. The regularizer

min
µ

[
M∑

m=1

‖dm −AATdm‖22 + λµ‖µ−AATµ‖22

]
(2.41a)

for learning the manifold of predictors will constrain (a) the parameters of the tasks to lie close to

the manifold, and (b) the manifold to lie close to the origin. The minimization with respect to µ can be

solved analytically, and equation 2.41a can be written in the separable formwT
(
Ef ⊗ Ex

)
w discussed

in section 2.3.1, setting

Ef = IM×M − 1
λµ +M

1M×M Ex =
(
ID×D −AAT

)2
, (2.41b)

where IM×M is the M -by-M identity matrix and 1M×M is the M -by-M matrix of ones. Inverting Ef

and Ex gives the following multi-task kernel for learning a low-dimensional manifold

k((x,m), (x′,m′)) =
(
δmm′ +

1
λµ

)
xTA⊥A

T
⊥x

′, (2.41c)

where A⊥ is a D-by-(D −Ds) matrix whose column space is the orthogonal complement to that of A.

It will be instructive to construct the Φm-matrices that correspond to this manifold of predictors. Given

E = Ef ⊗ Ex and using Proposition 2.1b on page 22, we may construct a Φ, from which we extract for

the mth task

ΦT
m =

(
λ′′µA⊥ | · · · | λ′′µA⊥︸ ︷︷ ︸

repeat m− 1 times

| (1 + λ′′µ)A⊥︸ ︷︷ ︸
mth

| λ′′µA⊥ | · · · | λ′′µA⊥︸ ︷︷ ︸
repeat M −m times

)
∈ RD×M(D−Ds), (2.42)

where λ′′µ > 0 is a constant that depends on M and λµ. One can also verify that, for (D −Ds)-by-D

matrices Bm, m = 1 . . .M , such that BmE
xBT

m′ = I(D−Ds), the following generalization of Φm

ΦT
m =

(
λ′′µB

T
1 | · · · | λ′′µBT

m−1 | (1 + λ′′µ)BT
m | λ′′µBT

m+1 | · · · | λ′′µBT
M

)
. (2.43)

is also valid; that is, ΦEΦT = I . To satisfy BmE
xBT

m′ = I , we define D-by-(D −Ds) matrices Fm,

m = 1 . . .M , such that their column vectors are in the null space of AT
⊥, i.e., AT

⊥Fm = 0, and let

BT
m

def= A⊥ + Fm. (2.44)

If the ums are partitions of u, i.e.,

uT =
(
uT

1 | uT
2 | · · · | uT

m | · · · | uT
M

)
where um ∈ RD−Ds

, u ∈ RM(D−Ds), (2.45)

then the effective parameter wm for the mth latent function is

wm = ΦT
mu = BT

mum + λ′′µ

M∑
m′=1

BT
m′um′ = µw + FT

mum +A⊥um, (2.46a)
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0
µ⊥w

µ
‖
w

FT
mum

FT
m′um′

A⊥um′

A⊥um

wm
wm′

µw

Figure 2.3: The constituents of wm if tasks reside on a manifold under the multi-task regularization

networks model, as given by equation 2.46. The point of reference or mean of the manifold, µw, is

marked by a hollow circle. The diagram shows how the parameters for tasks m and m′ are generated.

where

µw
def= µ‖w + µ⊥w µ‖w

def= λ′′µ

M∑
m′=1

FT
m′um′ µ⊥w

def= λ′′µA⊥

M∑
m′=1

um′ . (2.46b)

Let us interpret the above set of equations. For each Fm, its column vectors are in the null space of AT
⊥,

so they must be in the column space of A. Hence the vector FT
mum must be parallel to the manifold.

In contrast, the vector A⊥um is perpendicular to the manifold. Thus µ⊥w is the displacement of the

manifold from the origin. Adding µ‖w gives µw, the common point of reference on the manifold from

which the parameter for each of the M tasks differs. We may regard µw as the mean of the manifold.

The projection of the parameter for the mth task onto the manifold is at FT
mum from the µw, and

the parameter is displaced from the manifold by A⊥um. As an illustration, this process is shown in

Figure 2.3 for the effective parameters for tasks m and m′.

2.3.2.1 Comparison to the ILSM approach

We now use the manifold of predictors as an example to compare the multi-task regularization networks

model (MRNM) with the latent source model (LSM). Recall that the LSM model for the manifold of

predictors in section 2.2.2 uses a shared effective structure A and an offset µw that together determine

the manifold. The effective parameter vector for task m in the LSM model is

wm = µw +Asm + ξm, (2.47a)

where sm is the latent source that determines the location of wm on the manifold, and ξm is the noise.

For the MRNM model, equation 2.46a says

wm = ΦT
mu = BT

mum + λ′′µ

M∑
m′=1

BT
m′um′ = µw + FT

mum +A⊥um. (2.47b)

Within the LSM model, sm and ξm are specific to each tasks, as indicated by the subscripts in (2.47a).

In contrast for MRNM the parameter vector u, which is partitioned into subvectors um, is shared across

tasks. However, the manner in which the subvectors ums are used varies for different tasks. This is due

to the different structures Φm for different tasks. Specifically, according to (2.43) for the manifold of
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predictors case, Φm for task m has an additional Bm at the mth block, while Φm′ for task m′ has an

additional Bm′ at the m′th block. These additional Bm matrices allow the effective parameter vector

wm to vary between tasks.

Another difference between the two multi-task models is in how the offset µw of the manifold is de-

termined. For the LSM, the offset is generated independently of A, the sms and the ξms, but, for the

MRNM, the offset is determined completely by u and the Φms, since

µw =
1

M + 1/λ′′µ

M∑
m=1

wm =
M∑

m=1

ΦT
mu, (2.48)

where the first equality can be obtained by re-arrangement after summing (2.47b) on both sides.

2.3.3 Task Clustering

Evgeniou et al. [2005, section 3.1.2] have formulated the notion of task-clustering using multi-task

kernels. We briefly describe the approach here and defer the detailed derivation to appendix A.1.5.

For P clusters, let the mean of the parameters for the pth cluster be denoted by µp. Task clustering can

then be easily expressed in terms regularizing each wm to be near its cluster centre, and regularizing

each cluster centre. This is idea is expressed by the following regularizer

min
{µp}

P∑
p=1

(
M∑

m=1

zp
m

(
wm − µp

)T
Ex

p

(
wm − µp

)
+ µT

pE
xµp

)
, (2.49)

where zp
m is an indicator variable that is one if the mth task belongs to the pth cluster and zero oth-

erwise, Ex
p defines the Mahalanobis metric of the pth cluster, and Ex defines the Mahalanobis metric

of the entire parameter space. This regularizer generalizes equation 26 of Evgeniou et al. with the Ma-

halanobis metrics. If we assume a common metric up to uniform expansions and contractions in the

parameter space, i.e., Ex
p = λpEx, then the regularizer simplifies to

M∑
m=1

M∑
m′=1

(
P∑

p=1

zp
mz

p
m′

(
δmm′λp − (λp)2

1 + zpλp

))
wT

mE
xwT

m′ , (2.50)

where zp def=
∑M

l=m zp
m is the number of tasks in cluster p. This is a separable model in the manner

described in section 2.3.1. The corresponding multi-task kernel is

k((x,m), (x′,m′)) =
P∑

p=1

zp
mz

p
m′

(
δmm′

1
λp

+ 1
)
xT(Ex)−1x′. (2.51)

2.3.4 Correlated Tasks

Given an M -by-M symmetric matrix G in which the (m,m′)th element gmm′ ∈ [0, 1] gives a mea-

sure of relatedness between the mth and m′th task under a Mahalanobis metric Ex, we can have the

following regularizer for learning the task hypotheses

1
2

M∑
m=1

M∑
m′=1

gmm′(wm −wm′)TEx(wm −wm′). (2.52)
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· · · · · ·

· · · · · · bias

· · · · · · bias

hidden units

inputs

outputs

θ1, . . . ,θDφ

u1, . . . ,uM

︸ ︷︷ ︸
x

Figure 2.4: Bayesian multi-task neural network model (adapted from Bakker and Heskes [2003, Figure

1]). There are Dφ hidden units and M outputs (tasks); θi is the fan-in weights for the ith hidden unit,

and um is the fan-in weights for the mth output. The common transfer function g for the hidden units in

the neural network is a sigmoid function, for example.

This is a simple generalization of the regularizer given by Evgeniou et al. [2005, section 3.1.3], where

they have Ex = I . This can be expressed as the separable form wT
(
Ef ⊗ Ex

)
w , with Ef = D −G,

where D is an M -by-M diagonal matrix with the mth diagonal element
∑M

m′=1 gmm′ . As noted by

Evgeniou et al., Ef is the graph Laplacian of G.

The multi-task kernel can be directly derived by taking the inverses of Ef and Ex, though for Ef

one actually has to take its pseudo-inverse, since a graph Laplacian is guaranteed to be rank deficient.

However, we note that this causes no problem with our Proposition 2.1 on page 22.

2.4 Bayesian Multi-task Learning with Neural Networks

So far the models we have encountered are those for which the structures {φm(x)} are linear transfor-

mations. For the LSM, these structures are shared among tasks, while for the MRNM they differ. In this

section, we will discuss the work of Bakker and Heskes [2003] in which the shared structure is a neural

network. Their model is given by a single hidden-layer neural network with multiple outputs:

fm(x) = uT
mφ(x) um ∈ RDφ

, φ : RD 7→ RDφ

(2.53a)

φi(x) = g(θT
i x) θ ∈ RD, (2.53b)

where φi(·) is the ith function of the vector functionφ(·), and it depends on a common transfer function

g and its vector of parameters θi. The neural network view of this is shown by Figure 2.4, where θi is

the vector of fan-in weights for the ith hidden unit, and g is the common transfer function in the neural

network. For feedforward neural networks, a common setting for g is the hyperbolic tangent function.

Although the figure includes the bias terms (represented by squares) on the hidden layer and the output

layer, we have omitted them in (2.53) to simplify our notation. It is straightforward to generalize our

following discussion by including the bias as a constant input feature (for the hidden unit) or as a

constant hidden unit (for the output layer).
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Bakker and Heskes [2003] model different notions of task-relatedness by placing different priors on the

ums, which are the fan-in weights for the multiple outputs or tasks, and this is the Bayesian multi-task

neural networks model (BMNNM). This model is similar to the latent source model (LSM) of Zhang

[2006]: both are generative models where priors are placed over the model parameter vector um. For

the LSM, the latent function is given by equation 2.13b on page 15, which we recall below:

fm(x) = wT
mx. (2.54)

Comparing the above equation with equation 2.53a, the correspondence is clear: the um in BMNNM is

to thewm in LSM, as the the φ(x) in BMNNM is to the x in LSM. The difference is that the BMNNM

consists of an additional layer of indirection φ(·) from the input x that has to be determined by learning

from data.

The similarity between BMNNM and LSM means that both model task relatedness in similar ways.

Indeed, our subsequent discussion of task relatedness in BMNNM will often refer to the LSM. However,

before we discuss the specific examples, we first highlight that two specific models proposed by Bakker

and Heskes [2003, §4.1 and §4.3] make use of task descriptors or features, which we shall denote by

tm for the mth task. They have investigated their methods for the ILEA school data set and the Dutch

newspaper sales data set, both of which have task descriptors for each task. Our opinion, as argued in

section 1.2, is that using task descriptors in a multi-task setting may not be fruitful, as demonstrated by

Evgeniou et al. [2005] on the ILEA data. In addition, we maintain that task-descriptor features can be

either unavailable or difficult to define correctly for many real-life scenarios. Keeping this opinion of

task descriptors in mind, we now discuss the three specific models of Bakker and Heskes.

2.4.1 Task-dependent Prior Mean and Manifold of Predictors

Bakker and Heskes [2003, §4.1] have proposed placing priors with different means for each task:

um ∼ N (· | Atm,Σξ), (2.55)

where tm is the task descriptor for themth task, andA is the shared matrix for mapping task descriptors

to prior means. The above may be expressed as

um = Atm + ξm ξm ∼ N (· | 0,Σξ). (2.56)

If the dimension of the task descriptors is less than Dφ, then this is a manifold of predictors model: the

manifold is the column space of A centred at the origin, and the task descriptor tm gives the location of

um on the manifold modulo noise ξm. In the latent source model, the decomposition of wm is similar

(see equation 2.18 on page 17); the role of the latent source sm there is played by the task descriptor tm
here.
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2.4.2 Task Clustering and Gating

Task clustering can be implemented with a Gaussian mixture model (GMM) for the task parameters

[Bakker and Heskes, 2003, §4.2]:

um ∼
P∑

p=1

πpN (·|µp
u, (Σ

ξ)p) π def= (π1, π2, . . . , πP ) ∈ ∆P−1, (2.57)

where P is the number of mixture components, the πps are the mixture proportions, and µp
u and (Σξ)p

are the mean and covariance of the pth component. Again, this is similar to the GMM on wm for the

latent source model, given by equation 2.23 on page 18.

This model does not a priori distinguish among tasks: before observing the data, all tasks have the same

probability of being in each cluster. Therefore, with few examples per task, this is the less preferred

model compared with the following gating model [Bakker and Heskes, 2003, §4.2, §5.4].

In the gating model, the mixture proportions in equation 2.57 vary with the task:

um ∼
P∑

p=1

πp
mN (·|µp

u, (Σ
ξ)p) πm

def= (π1
m, π

2
m, . . . , π

P
m) ∈ ∆P−1. (2.58)

Bakker and Heskes [2003, §4.3] parameterize πm by task-descriptors using soft-max [Bridle, 1990],

i.e.,

πp
m =

expAptm∑P
p′ expAp′tm

, (2.59)

and learning the matrices Aps shared among the tasks. In this way, the a priori probability of a task

being in each cluster is now dependent on its task descriptor. As pointed out by Bakker and Heskes, this

is a mixture of experts model [Jacobs et al., 1991] for each task, but with the task descriptors as inputs

into the gating network given by equation 2.59.

In the absence of task descriptors, we may place a common prior over the πms:

πm ∼ Dir(α1, . . . , αP ) αp > 0. (2.60)

In this way, there are also task specific mixture proportions, and we can ensure that these proportions do

not “run-away” if the Dirichlet distribution is unimodal, i.e., if
∑P

p=1 α
p > 1.

2.5 Gaussian Processes for Multi-task Learning

We will now look at Gaussian Processes (GPs, see e.g., Rasmussen and Williams 2006) for multi-task

learning. In section 2.5.1, we will first introduce a simple model of multi-task learning, which is called

the intrinsic correlation model (ICM), that we have found to be effective for machine learning tasks. A

generalization of the ICM model by summing a number of them will be given in section 2.5.2; this is

known as the linear model of coregionalization (LMC). Both the ICM and LMC are models known in

the geostatistics community. In section 2.5.3, we will review selected literature that also use GPs for

multi-task learning. In section 2.5.4, we will see how the LMC model can be understood in terms of

latent processes. Sections 2.5.5, 2.5.6 and 2.5.7 will review the latent source model, the regularization
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network model and the neural network model from the viewpoint of Gaussian processes. Lastly, multi-

task learning with GPs across two different input domains X1 and X2 will be outlined in section 2.5.8.

2.5.1 A Multi-task GP Model: the Intrinsic Correlation Model

Gaussian Processes is a convenient way to think in terms of functions and their relations in multi-task

learning by directly defining mean functions 〈fm(x)〉 and covariance functions C(fm(x), fm′(x′)). We

use C(a, b) to denote the covariance between two random variables a and b, while we use 〈ab〉 to denote

the second moment between a and b; the two are the same when the either or both a and b have zero

means, since C(a, b) = 〈ab〉 − 〈a〉 〈b〉.

One form of covariance function that can be defined with relative ease separates the covariance due to

tasks and the covariance due to inputs, i.e.,

〈fm(x)〉 = µm(x) C (fm(x), fm′(x′)) = kf(m,m′)kx(x,x′), (2.61a)

where kf and kx are positive definite functions that explain the task relations and input relations respec-

tively. This is also the separability assumption that is widely discussed in the context of time-space

processes.

For subsequent discussion, we shall call this the intrinsic correlation model (ICM). It is also useful to

consider the following case. Given M tasks, we have M functions, and function values

f(X) def= (f1(x1), . . . , f1(xn), . . . , fM (x1), . . . , fM (xn))T ∈ RMn (2.61b)

at a common set of n inputs X def= {x1, . . . ,xn}. Let K be the covariance matrix of f(X), and let Kf

(resp. Kx) be the covariance matrix of the functions (resp. inputs) given by the covariance function kf

(resp. kx). Then

K = Kf ⊗Kx, (2.61c)

where ⊗ is the Kronecker product operator.

Typically, the covariance function for inputs kx(x,x′) is parameterized, and its parameters are learnt

from data by maximizing the marginal likelihood of the model given the data (see Rasmussen and

Williams [2006, chapter 5] and chapter 4 of this thesis). If the mth task has task descriptor tm, the

same may be done for the covariance function for tasks, since we may write kf(m,m′) ≡ kf(tm, tm′).

However, if task descriptors are not available, then the structure of the covariance matrix Kf between

the tasks has to be determined in some other ways. We list some below.

• The most general approach is to only constrain Kf to be positive semi-definite, so that it is a valid

covariance matrix (though it may be singular).

• For the purpose of understanding task-relatedness, it makes sense to fix the relatedness of a task to

itself to, say, one. In line with this, we normalize Kf to be a correlation matrix, so that it has ones

along its diagonal. Then the extent of relatedness between any two tasks, task m and task m′, is

measured by their correlation Kf
mm′ , the (m,m′)th entry in Kf . If there is reason to believe all

pairs of tasks to be similarly related, then we can let Kf be an equi-correlated matrix, where all

the inter-task correlations are the same.
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• IfKf is block diagonal with P blocks, then we have task clustering with P clusters, where tasks in

the same block are from the same cluster. Explained in terms of probabilistic independence, this

says that tasks not in the same block are marginally independent. To relate to the other multi-task

models later, it is useful to consider a construction of Kf that makes use of indicator variables

zp
ms. Let zp

m = 1 if and only if the mth task belongs to the pth cluster, and otherwise it is zero;

thus, for each m, only one of z1
m, . . . , z

P
m is 1, since a task can only belong to one cluster. We

assume for now that tasks in the same block have perfect positive correlation. Then

Kf
mm′ =

P∑
p=1

zp
mz

p
m′ , (2.62a)

or, equivalently,

Kf = ZTZ, (2.62b)

where Z def= (z1 | z2 | . . . | zM ) is a P -by-M matrix, and zm
def= (z1

m, z
2
m, . . . , z

P
m)T is the vec-

tor of indicator variables for task M . A simple way to allow tasks in the same block to have

correlation other than one is to entry-wise product the above with an M -by-M correlation matrix

R, i.e.,

Kf = (ZTZ)�R, (2.62c)

where � is the Hadamard product operator. This construction is useful when it is not visually

obvious that Kf is block diagonal.

• IfKf is of rank r < M , then the functions for the tasks lie on a r dimensional manifold in the task

space. We have used this approach in [Bonilla et al., 2008] for predicting speed-ups of compiled

programs under different code transformations and examination scores of students in different

schools. This is also the model used in chapter 4 where the rank r is selected using the Akaike

information criterion with corrections (AICc, Hurvich and Tsai [1989]). The rank constrained

Kf will be discussed further in section 2.5.4.

• If Kf is a diagonal matrix, then all the functions are independent, though they are identically

distributed because they share the same covariance function kx.

Henceforth, unless otherwise stated, we shall assume that task descriptors are not available, and Kf

is modelled directly using one of the ways listed above. Figure 2.5 on the following page gives three

examples implementing the various notions of task relatedness using the ICM: (a) the varying degree

of relatedness, (b) task clustering, and (c) 2-dimensional manifold of functions. In the example for

the manifold of functions, which is Figure 2.5c, the functions for the black and the blue tasks are

independent, so we may call them the independent components of the manifold. The functions for the

green and the red tasks are convex combinations of the functions for the black and the blue tasks, so

they lie on the manifold defined by the black and the blue tasks. To be precise, we have set

fgreen = 0.8 ∗ fblack + 0.2 ∗ fblue (2.63a)

fred = 0.2 ∗ fblack + 0.8 ∗ fblue (2.63b)
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(a) Tasks have varying degrees of correlation or relatedness. The black and the blue tasks are highly correlated with 0.9, so their

sample functions are similar. The next highly correlated are the black and the green tasks with 0.7 correlation. Hence we see

that the sample function for the green is also similar to that for the black, but not as much as the blue is.
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(b) Task clustering. Both the sample functions and the Kf matrix show that the black and the blue tasks form one cluster while

the green and the red tasks form another cluster. Tasks within each cluster can differ, since their correlations are less than one.
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• • • •

• 1.0 0 0.8 0.2

• 0 1.0 0.2 0.8

• 0.8 0.2 0.68 0.32

• 0.2 0.8 0.32 0.68



(c) Tasks on a linear manifold. The matrix Kf is of rank two, so we expect the tasks to lie on a two-dimensional linear manifold.

The black and the blue tasks are independent, as indicated by the top right 2-by-2 sub-matrix of Kf , while the green and the red

tasks are linear combinations of the black and the blue tasks. In fact, the linear combinations are convex combinations, so the

sample functions for the red and the green tasks are enveloped by the sample functions for the black and the blue tasks.

Figure 2.5: Sample functions from the ICM implementing different notions of task-relatedness for four

tasks, which are color-coded with black (•), blue (•), green (•) and red (•). The sample paths are shown

on the left, while the corresponding Kfs are shown on the right.
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so that

Kf =


1 0

0 1

0.8 0.2

0.2 0.8




1 0

0 1

0.8 0.2

0.2 0.8


T

=


1.0 0 0.8 0.2

0 1.0 0.2 0.8

0.8 0.2 0.68 0.32

0.2 0.8 0.32 0.68

 . (2.63c)

2.5.2 Linear Model of Coregionalization

We can extend the intrinsic correlation model (ICM) in the previous section by using a sum of P sep-

arable covariances. This can be understood as using P groups of M functions that have identical and

independent distributions given by the ICM:

〈fp
m(x)〉 = µp

m(x) C (fp
m(x), fp

m′(x′)) = kfp(m,m′)kxp(x,x′) p = 1 . . . P. (2.64a)

If we let fm(x) def=
∑P

p=1 f
p
m(x), then

〈fm(x)〉 =
P∑

p=1

µp
m(x) C (fm(x), fm′(x′)) =

P∑
p=1

kfp(m,m′)kxp(x,x′). (2.64b)

This the linear model of coregionalization (LMC). For a common set of n inputs X def= {x1, . . . ,xn},

let K be the covariance matrix of the Mn vector of responses given by the M functions, and let Kfp

(resp. Kxp) be the covariance matrix of the functions (resp. inputs) given by the covariance function

kfp (resp. kxp). Then

K =
P∑

p=1

Kfp ⊗Kxp, (2.64c)

which is a sum of Kronecker products. This can be used for modelling different task relatedness for

different input covariance functions, since each kxp can be different, and kfp can model the relation be-

tween tasks under that input covariance function. For instance, relatedness under dot product covariance

functions may be different from under squared-exponential covariance functions. An interesting case

of this is when each kxp only accounts for a particular component or strata of the input space, so that

we model component-dependent task relatedness (see section 2.2.4 for a different model to achieve the

same aim).

Although the LMC is more flexible and more powerful than the ICM, in reality it comes with the addi-

tional burden of having to either specify appropriate priors or have sufficient data in order to effectively

learn the all parameters for the P covariance functions. Hence unless there are sufficient reasons to

believe that there are components or strata within the input space that have properties different enough

to warrant the flexibility of the LMC, it may well be better to use the simpler ICM. This principle of

preferring simpler models to complex models is known as the Ockham’s razor: plurality should not be

posited without necessity. This principle is often used in machine learning; see, for example, MacKay

[1991, chapter 2] and Rasmussen and Ghahramani [2001]. However, it must be admitted that some,

Diggle and Ribeiro Jr. [2006, §3.12] for instance, do find the preference for the ICM rather unnatural.
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2.5.3 Related Literature

We have called a Gaussian process model with covariance of the form Kf
mm′kx(x,x′) the intrinsic

correlation model (ICM). In geostatistics, the term usually refers to a more specific model for cokriging

where kx(x,x) = 1, i.e., a correlation function [Wackernagel, 1998, chapter 22]. Conversely, if Kf

is a correlation matrix, then we have the proportional covariance model [Chilès and Delfiner, 1999,

§5.4.2]. In either case, if we have P of these and sum them in the manner described in section 2.5.2, we

obtain the linear model of coregionalization (LMC) used in geostatistics. Section 2.7.2 contains further

relevant discussion of multivariate geostatistics.

In the context of multi-task learning, models of the form given by the ICM

〈fm(x)〉 = µm(x) C (fm(x), fm′(x′)) = kf(m,m′)kx(x,x′) (2.65)

have also been investigated. One simple model is to restrict kf to a delta function or, equivalently, Kf

to an identity matrix so that K is block diagonal with M n-by-n blocks. This model implies that the

tasks are drawn independently from a common Gaussian process prior with covariance function kx. It

has been explored by the following authors:

1. Minka and Picard [1997] propose that the functions {fm} have independent and identical Gaus-

sian process distributions. Using this i.i.d. model, Lawrence and Platt [2004] estimate the param-

eters of the covariance function kx by maximizing the joint likelihood of the parameters using

data from all tasks simultaneously.

2. Yu et al. [2005, 2006] place an inverse-Wishart prior on the kernel matrix Kx and learn the

maximum a posterior (MAP) estimate of Kx, using the joint likelihood that includes data from

all tasks. Their inverse-Wishart prior has a base covariance matrix induced by a fixed covariance

function kx on all observed input locations.

3. The approach of Schwaighofer et al. [2005] is similar to the above, except that their base covari-

ance matrix for the inverse-Wishart prior is not induced by a covariance function — it is simply a

positive-definite matrix. To generalize to new input locations, they use a kernel smoother on the

scaled eigenvectors of the learnt Kx to give scaled eigenfunctions. These scaled eigenfunctions

are later recombined to generate a covariance function.

A slightly different model is the Bayesian hierarchical Gaussian process model proposed by Menze-

fricke [2000], where K is also block diagonal, but each block may be different, unlike the methods

listed above. In his model, the function for the mth task is drawn from a Gaussian process with co-

variance function kx(·, ·;θm), where θm is the hyper-parameters for the mth task. Hence, each task is

associated with a covariance function with the same parametrization but with different parameters θm.

Each θm is drawn independently from a common prior, and Menzefricke finds the posterior distributions

over the θms given observed data.

If the tasks are a priori related, then Kf will differ from the identity matrix. Such models have also been

explored in the literature:

4. If task descriptors tms are available, then one may use any covariance function for kf on the space

of task descriptors. For example, Bonilla et al. [2007] use the squared-exponential covariance
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function for kf . This can be rather restrictive in the following sense: if the chosen covariance

function is unsuitable, or if the task descriptors are not defined correctly, then one may not be

able to obtain optimal results. Indeed, this has been observed by us in [Bonilla et al., 2008] for

predicting the speed-ups of eleven complied programs using different code transformations: using

a kf that is only constrained to be positive semi-definite outperforms using the squared exponential

covariance function.

5. In the context of relational link prediction, Yu et al. [2007] use the general form K = Kf ⊗Kx,

and place inverse-Wishart priors on Kf and Kx. Similar to [Yu et al., 2005, 2006] discussed

in item 2 above, the base covariance matrix of each inverse-Wishart prior is induced by a fixed

covariance function on all observed data.

6. In the context of emulating multi-output computer codes, Conti and O’Hagan [2010] also use the

model K = Kf ⊗ Kx. However, their matrix Kx is induced directly by a covariance function,

instead of going through an inverse-Wishart prior. OnKf , they place a vague prior that is inversely

proportional to |Kf |(M+1)/2; Geisser [1965] has given a comprehensive discussion of this prior.

7. More recently, Yu et al. [2009] use a non-parametric random effects model with constant mean

and covariance

K = (Kf + τI)⊗Kx, (2.66)

and place an inverse-Wishart prior on Kx based on a covariance function kx. For the purpose of

large-scale implementation, they constrain Kf to have low rank.

8. By linearly mixing functions drawn from P latent Gaussian processes, the semiparametric latent

factor model (SLFM) of Teh et al. [2005] is a LMC with

K = (A⊗ IN×N )

(
P∑

p=1

Epp ⊗Kxp

)
(A⊗ IN×N )T =

P∑
p=1

(
AEppAT

)
⊗Kxp, (2.67)

where Kxp is the covariance matrix for the pth latent process, A is the M -by-P mixing ma-

trix, and Epp is a P -by-P matrix with one at its (p, p)th entry and zero elsewhere. Thus, each

Kfp = AEppAT is a rank one matrix in Teh et al.’s model. We shall touch on this again in the

next section.

2.5.4 Linear Combination of Latent Processes

The ICM and LMC multi-task models may be understood using a shared feature space. If we set

ψ(·) def= φ1(·) = . . .φm(·) in equation 2.4b, then

fm(x) = uT
mψ(x) =

P∑
p=1

up
mψ

p(x), (2.68)

where P = Dφ is the dimension of the feature space, up
m is the pth entry in um, and ψp is the pth

function of the vector function ψ. Thus each task is a different linear combination of the same set of P

latent functions. If the latent functions are independent and the pth latent function has GP prior with
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C(φp(x), φp(x)) = kxp(x,x′), and if the ums are treated as fixed parameters, then

C (fm(x), fm′(x′)) =
P∑

p=1

up
mu

p
m′k

xp(x,x′). (2.69)

This is the SLFM of Teh et al. [2005] discussed in item 8 of the preceding section. Here the pth

coefficients up
mu

p
m′ can be viewed as elements from the rank one matrices up(up)T, where

up def= (up
1, . . . , u

p
M )T. (2.70)

If the latent functions have identical GP priors, i.e., kx(x,x′) = kx1(x,x′) = . . . = kxP (x,x′), then

we have the ICM with C (fm(x), fm′(x′)) = Kf
mm′kx(x,x′), where Kf

mm′ is the (m,m′)th entry of

Kf =
P∑

p=1

up(up)T. (2.71)

Hence the rank of Kf is at most P . This construction will be used in section 4.4 for modelling the

inverse dynamics of a robot manipulator handling multiple objects, where the rank P will be chosen

using the Akaike information criterion with corrections (AICc). If P < M , then all the M functions lie

on a manifold of predictors that is the P -dimensional linear span of the latent functions. An example of

this has been shown in Figure 2.5c on page 32.

2.5.5 Latent Source Model from the Gaussian Process Viewpoint

The latent source model (LSM) discussed in section 2.2 gives a distribution over the functions fm(x)

defined as

fm(x) = (µw +Asm + ξm)Tx. (2.72)

In general, the LSM’s distributions on the functions are not Gaussian processes. Nevertheless, it is

worthwhile to know the two cases when they are.

1. IfA is a fixed parameter, and µw, the sms and the ξms are normally distributed random variables,

then {fm} has a Gaussian process prior.

2. Alternatively, if the sms are fixed parameters, and the entries inA are normally distributed random

variables, then {fm} also has a Gaussian process prior.

Our present purpose is to understand multi-task learning with the LSM from the Gaussian process

viewpoint directly over the latent functions. We will show that it is possible to capture the key notions of

task relatedness in the LSM by just considering its second order statistics. To this end, it is not necessary

for the distributions on the constituents of fm given in equation 2.72 to be normally distributed.

Consider the first case where we fix A, place an i.i.d. prior (not necessarily normal) with zero mean and

covariance Σξ on the noise ξms, and also place a prior (also not necessarily normal) with zero mean

and covariance Σµ on the common mean µw. The distribution on {sm}, parameterized by Υs, will be

specific later. Our interest is in the conditional distribution p({fm(·)}M
m=1 | Θ) on the latent functions

given the parameters Θ def= {A,Σξ,Σµ,Υs}. Obtaining this distribution is intractable in general, thus

we approximate it with a simpler q({fm(·)}M
m=1 | Θ) so that the Kullback-Leibler divergence from
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p to q is minimized. This is the assumed density filtering (ADF) approximation, and if q is from the

exponential family then the minimization can be achieved by matching the expected sufficient statistics

of q to that of p. If we restrict q to be Gaussian modelling only mean and covariance, we simply require

〈fm(x)〉 = 〈sm〉TATx (2.73a)

C (fm(x), fm′(x′)) = xTΣµx′ + δmm′xTΣξx′ + xTA
(〈
sms

T
m′

〉
−
〈
sm

〉 〈
sT

m′

〉)
ATx′ (2.73b)

where the expectations over sm and sms
T
m′ are with respect to the unspecified distribution on the {sm}.

Independence or correlation in the latent sources will induce the corresponding property in the covari-

ance. As an example, we take the separable dependencies given by equation 2.17 on page 16, where

(sT
1 , . . . , s

T
M )T is normally distributed with covariance Σf ⊗ Σx. Denote the (m,m′)th entry of Σf by

Σf
mm′ . Then the distribution on the latent functions has covariance

C (fm(x), fm′(x′)) = xTΣµx′ + δmm′ xTΣξx′ + Σf
mm′ xTAΣxATx′. (2.74)

As another example for comparison, we use the linear manifold modeling described in section 2.2.2,

where the latent sources sms are independent among the tasks. Suppose the sms are identically dis-

tributed with covariance Σs. Then the distribution on the latent functions has covariance

C (fm(x), fm′(x′)) = xTΣµx′ + δmm′xTΣξx′ + δmm′xTAΣsATx′. (2.75)

Both this and equation 2.74 are instances of the LMC introduced in section 2.5.2. Comparing the covari-

ances given by (2.74) and (2.75), we see that they both have the same “mean” and “noise” component.

The “mean” component with covariance xTΣµx′ is shared by all the functions, while the “noise” com-

ponent with covariance xTΣξx′ is independent for the M tasks. The correlated latent sources model

given by equation 2.74 has an additional component that gives covariance Σt
mm′ between task m and

taskm′. In contrast, the additional component for the linear manifold model is independent between the

tasks. We can also see that although the linear manifold is for the effective parameters, its eventual effect

is to map x of dimension D onto a lower Ds-dimensional space, since A is D-by-Ds with Ds 6 D.

The approximation of the LSM by Gaussian processes using equation 2.73 is not effective for the task-

clustering that we have seen in section 2.2.3 because we now have a mixture model. However, we may

condition upon the latent sources sms instead of marginalizing them out. Moreover, we can place a

distribution on A and marginalize out A. This is thus the second case mentioned at the beginning of

this section, where the sms are fixed parameters, and A is random. Although it may seem that we have

arbitrarily chosen which variable to fix as parameters and which to marginalize out as nuisance random

variables, we shall see that the choice serves its purpose of extracting key notions of task relatedness

from the LSM.

Let P = Ds, and let each column ap ∈ RD of A, p = 1 . . . P , be independently and identically drawn

from a prior with covariance Σa. If we express sm as a vector of indicator variables (z1
m, . . . , z

P
m), then

Asm =
∑P

p=1 z
p
ma

p, and the effective prior over the latent functions (given the sms) has covariance

C (fm(x), fm′(x′) | sm, sm′) = xTΣµx′ + δmm′xTΣξx′ +

(
P∑

p=1

zp
mz

p
m′

)
xTΣax′, (2.76)
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Again, here we see the shared mean component with covariance xTΣµx′ and the independent (among

tasks) component with covariance xTΣξx′. The clustering property is given by the last covariance

component, which says that if (and only if) task m and task m′ are in the same cluster, the pth cluster

say, then zp
mz

p
m′ = 1, and the two tasks additionally have the same covariance xTΣax′. In this way, the

mean of cluster p is modelled byxT(Σµ+Σa)x′, while the deviation of each task from its cluster’s mean

is modelled by xTΣξx′. Finally, note that
∑P

p=1 z
p
mz

p
m′ gives a block diagonal Kf ; see equation 2.62a

on page 31.

The above exercise of approximating LSM with Gaussian processes highlights that by just considering

the second moment properties of the latent functions under the LSM, the effect of different priors on

task-relatedness can be directly seen. In the next section, we shall use the ICM multi-task Gaussian

process model to understand the MRNM.

2.5.6 Multi-task Regularization Networks and Multi-task Gaussian Processes

Bayesian learning with priors are closely connected to learning with regularization. In fact, learning

regularization networks can be viewed as learning the maximum a posteriori (MAP) function under

Gaussian process priors and likelihoods; see, for example, Evgeniou et al. [2000, section 7], Opper and

Winther [2000] and Rasmussen and Williams [2006, section 6.2]. Therefore, the regularizer λuTu in

(2.37) can be seen as a zero mean isotopic Gaussian prior on u, so that a probabilistic view give the zero

mean and covariance

C (fm(x), fm′(x′)) = xTΦm

〈
uuT

〉
ΦT

m′x′ =
1
2λ
xTΦmΦT

m′x′. (2.77a)

Up to the scaling factor 1/2λ, this recovers the linear multi-task kernel given by (2.35). For the separable

multi-task kernel in section 2.3.1, we have

C (fm(x), fm′(x′)) =
1
2λ
Kf

m,m′xT(Ex)+x′, (2.77b)

which is the ICM given in section 2.5.1 up to the scaling factor. In fact, it is also possible to see the

above directly from the regularizer λwTEw in (2.3) whenE = Ef ⊗ Ex by considering the regularizer

as defining a multivariate Gaussian distribution with zero mean and (perhaps degenerate) covariance

E+/2λ:

C (fm(x), fm′(x′)) = xT
〈
wmw

T
m′

〉
x′ =

1
2λ
Kf

m,m′xT(Ex)+x′. (2.77c)

where Kf
m,m′ is the (m,m′)th entry of (Ef)+.

Let us consider in greater detail the notion of task-clustering — other notions of task-relatedness may

be treated similarly. Let zp
m equals one if the mth task belongs to the pth cluster and zero otherwise.

Using the multi-task kernel given by equation 2.51, we have a multi-task GP prior with zero mean and

covariance

C (fm(x), fm′(x′)) = δmm′
1

2λλq
xT(Ex)−1x′ +

(
P∑

p=1

zp
mz

p
m′

)
1
2λ
xT(Ex)−1x′, (2.78)

where q is the cluster for the mth function; the derivation is given in appendix A.2.1 on page 142. This,

of course, is an instance of the linear model of coregionalization model introduced in section 2.5.2. The



2.5. Gaussian Processes for Multi-task Learning 39

second term of the covariance function has the factor
(∑P

p=1 z
p
mz

p
m′

)
that is also present in the second

moment of the LSM for task clustering, i.e., the third term in equation 2.76 on page 37. This term

will lead to a block diagonal Kf ; see equation 2.62a on page 31. As discussed after equation 2.76, this

term says that two functions from the same cluster share a Gaussian process component with covariance

function xT(Ex)−1x′/2λ. Moreover, there is an additive “noise” component given by the first term in

equation 2.78 that allows each function to deviate independently from the mean of its cluster, say the

qth cluster, through a Gaussian process with covariance function xT(Ex)−1x′/2λλq.

The above is an example of how multi-task regularization can be understood using Gaussian processes.

2.5.7 Gaussian Processes from Infinite Neural Networks

Gaussian processes were made known to the machine learning community through the evolution of neu-

ral networks to Bayesian neural networks [MacKay, 1991; Neal, 1996] and then to Gaussian processes

in the limit of infinite number of hidden units [Neal, 1994]. Therefore, one natural way to understand

the Bayesian multi-task neural network model (BMNNM) discussed in section 2.4 is to consider it in

relation to the multi-task GP model. To make the discussion more concrete, we shall consider the case

where the common transfer function of the hidden units is the error function, i.e.,

g(z) = erf(z) =
2√
π

∫ z

0

exp(−t2)dt. (2.79)

Under this setting, if the fan-in weights θis of the hidden units are i.i.d. N (0,Σθ) then each hidden

unit, say the ith unit, produce a response φi(x) = g(θT
i x) that is independent of the others and has

zero mean and covariance

kNN(x,x′) def=
〈
φi(x)φi(x′)

〉
θi

=
〈
g(θT

i x)g(θT
i x

′)
〉

θi

=
2
π

arcsin
(

2xTΣθx′√
1 + 2xTΣθx

√
1 + 2x′TΣθx′

)
; (2.80)

a derivation for this covariance function can be found in Williams [1998]. Though we use this as an

example, we keep in mind that we just require g(z) to be a bounded function so that its second moment

(under random θis) is bounded.

As an example, consider the case where the fan-in weights um for themth output of the neural network

have the task dependent prior mean discussed in section 2.4.1, i.e., um ∼ N (· | Atm,Σξ), where tm
is the task descriptor for the mth task. For simplicity, let these weights have an isotropic prior, setting

Σξ = σ2
ξ. Given Dφ hidden units, the functions given by fm(x) = uT

mφ(x) have zero mean and

covariance

C(fm(x), fm′(x′)) = δmm′(σ2
ξD

φ) kNN(x,x′) + tTmA
TAtm′ kNN(x,x′). (2.81)

The derivation is in appendix A.2.2. Suppose we wish to let the number of hidden units Dφ approach

infinity so that the central limit theorem may be applied to argue that each fm(x) is exactly a Gaussian

process in distribution. To keep the covariance function bounded, we must set σ2
ξ = (σ′ξ)2/Dφ for

some fixed positive constant σ′ξ. Similarly, since (ATA)ij =
∑Dφ

k=1 akiakh, the entries in A must scale

inversely with Dφ. Alternatively, since the interest is in the Dt-by-Dt matrix ATA, where Dt is the
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dimension of the task descriptors, we may fix ATA = (A′)TA′ for some matrix A′ that has a finite

number of rows. With these settings, the functions have Gaussian process priors with zero mean and

covariance

C(fm(x), fm′(x′)) = δmm′σ′ξ
2 kNN(x,x′) + tTmA

′TA′tm′ kNN(x,x′). (2.82)

We may write the above as Kf
mm′kNN(x,x′), where Kf

mm′ is the (m,m′)th entry in

Kf =
(
σ′ξ

2I + (A′T )T(A′T )
)

(2.83)

and T def= (t1 | . . . | tM ). This gives the non-parametric effects model of Yu et al. [2009] discussed in

section 2.5.3, and given by equation 2.66, except that here the task descriptors tms are used.

As noted in our introduction to BMNNM in section 2.4, the neural network model is similar to the

LSM except for an additional indirection via the hidden units φ(x). Translated to Gaussian processes,

this indirection is given by, say, the kNN covariance function in (2.82). This covariance function is

parameterized by Σθ and may be optimized to best explain the training data.

2.5.8 Input Domain Transformation

The notion of task relatedness that we have investigated until now relates the outputs or responses

of the functions fms given the input locations xs from the same space X . However, there may be

circumstances where it makes sense to relate the M functions when the input spaces are different. For

Gaussian processes, which are determined up to second order statistics, this is achieved by suitable

cross-covariances between the functions. This can be done by introducing a common latent process

g(x), typically a white noise process, and then letting each function fm be the response of g under

convolution with a filter hm(x,x′) that may differ among the functions. We refer the reader to Ver

Hoef and Barry [1998], Higdon [2002], and Boyle and Frean [2005] for this approach that introduces

the auxiliary latent process g. Here, we present a transformation approach that appeals more directly to

how tasks are related.

The idea comes from the inter-domain Gaussian process introduced by Lázaro-Gredilla and Figueiras-

Vidal [2009] for sparse and efficient learning of Gaussian process models. Here, we wish to use it for

multi-task learning. The approach is to model the transformation in the input space using convolution

directly on the output function. Consider two functions f1 : X1 7→ R and f2 : X2 7→ R on possibly

different domains X1 and X2. Given some deterministic function g : X1 ×X2 7→ R, let f2 be directly

related to the f1 via the transformation

f2(z) =
∫
X1

f1(x)g(x,z)dx, where z ∈ X2. (2.84)

Since the transformation is linear, a Gaussian process prior on f1 will also lead to a Gaussian process

prior on f2. Let the Gaussian process prior on f1 be such that

〈f1(x)〉 = µ(x) C(f1(x), f1(x′)) = kx(x,x′). (2.85)
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Then

〈f2(z)〉 =
∫
X1

µ(x)g(x,z)dx (2.86a)

C(f1(x), f2(z)) =
∫
X1

k(x,x′)g(x′,z)dx′ (2.86b)

C(f2(z), f2(z′)) =
∫
X1

∫
X1

kx(x,x′)g(x,z)g(x′,z′)dxdx′ (2.86c)

=
∫
X1

C(f1(x), f2(z′))g(x,z)dx. (2.86d)

Thus, by directly specifying how z ∈ X2 is related to x ∈ X1 through g, we are able to specify fully

the joint Gaussian process involving both f1 and f2. In addition, this transformation approach allows

X2 6= X1, which may be important in some applications. The disadvantage of this approach is that

the covariance function for f2 cannot be directly specified in general; instead it is fixed entirely by the

covariance function kx for f1 and the transformation g between the two domains.

In certain cases, we will be able to derive analytical cross-covariance functions between f1 and f2. As

a worked example, let us set X1 ≡ X2 ≡ RD,

g(x,z) def=
1

(2π)D/2
√
|Cg|

exp
(
−1

2
(x− z − µ)TC−1

g (x− z − µ)
)
, (2.87a)

and also set the GP prior on f1 to have zero mean and covariance function

kx(x,x′) =
v2
1√
|C|

exp
(
−1

2
(x− x′)TC−1(x− x′)

)
(2.87b)

for symmetric positive definite matrices C and Cg. Then we have

〈f2(z)〉 = 0 (2.88a)

C(f1(x), f2(z)) =
v2
1√

|C + Cg|
exp

(
−1

2
(x− z − µ)T(C + Cg)−1(x− z − µ)

)
(2.88b)

C(f2(z), f2(z′)) =
v2
1√

|C + 2Cg|
exp

(
−1

2
(z − z′)T (C + 2Cg)−1 (z − z′)

)
. (2.88c)

The translation µ is present in the cross-covariance C(f1(x), f2(z)), but it is absent in the covariance

C(f2(z), f2(z′)). This means that translation is only required when the inference is across the functions

f1 and f2, but not within the functions.

The important element in learning across domains (or transformations within the same domain) is the

transformation function g(x,z) that relates a point x ∈ X1 to another point z ∈ X2. Lázaro-Gredilla

and Figueiras-Vidal [2009] discuss particular choices that allow learning from a different scale, and

learning from the frequency domain. An important area for future research is to broaden the space for

g(x,z) and to allow the learning of this transformation function from data.

2.6 Interlude

Until this point, we have looked at four different models for multi-task learning and seen how they

may be used for implementing common notions of task relatedness in multi-task learning, such as task-

clustering and manifold of related predictors. We have also proposed and used Gaussian processes
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as a vehicle for understanding task relatedness directly via correlations between the tasks. There are

certainly other models for multi-task learning in addition to the four we have reviewed in this chapter.

In particular, we have omitted the pioneering works that are mostly based on artificial neural networks.

We remedy this by referring the reader to excellent reviews by Gordon and desJardins [1995], Thrun

and Pratt [1998, chap 1], Silver [2000, chap 2], Vilalta and Drissi [2002], Giraud-Carrier et al. [2004a],

and Anderson and Oates [2007].

Multi-task learning is part of the greater effort in meta-learning to allow machine learning itself to be

flexible. In section 2.7 we will briefly survey the current approaches of meta-learning to automatically

select the best algorithms from an array of available ones. In addition, multi-task learning is called by

other names in the statistics and applied-statistics communities, and we will survey their approaches

also in section 2.7. The important issue of consolidating knowledge from multiple tasks for subsequent

use in learning to learn is also addressed in section 2.7

Lastly, in section 2.8 we discuss some areas of machine learning research that have frequent cross-

fertilization of ideas to research in multi-task learning.

2.7 Meta-learning from Other Perspectives

In section 2.7.1 we will review how algorithms and data sets may be characterized so as to alleviate the

burden of manually selecting the best algorithm or machine learning model for a given problem. We

will survey how multi-task learning is modelled in the statistics and applied-statistics communities in

sections 2.7.2 and 2.7.3. In section 2.7.2 we will also survey some recent work in the very related areas

of multi-class classification and multi-label prediction in machine learning.

In learning to learn, one of the aims is to consolidate experiences in order to use them efficiently and

effectively when encountering novel tasks. One way to consolidate knowledge is to learn the intrinsic

knowledge representations inherent to the tasks. The difference between this and learning predictor-

manifolds is that the former usually encodes semantic meaning while the latter deals with “merely

parameters”. A good knowledge representation will allow human experts to peer into the system to

evaluate it based on human understanding instead of simply relying on predictive performance. In

section 2.7.4 we will give a brief survey of research in this area.

2.7.1 Data Sets and Algorithms Characterizations

When encountered with a predictive task and data set, one may have to choose an algorithm from an

array of possible learning algorithms, such as decision trees, linear classifiers (or their kernelized ver-

sions), nearest neighbour classifiers and multilayer artificial neural networks. Research in alleviating the

system engineering and knowledge engineering burden on humans are the motivation of two European

projects: the StatLog project [Michie et al., 1994] and the MetaL project [e.g. Bensusan and Giraud-

Carrier, 2000; Pfahringer et al., 2000]. A recent empirical comparison by Caruana and Niculescu-Mizil

[2006] also brings out the importance of choosing the suitable algorithm(s) for a given task: “Although
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some methods clearly perform better or worse than other methods on average, there is significant vari-

ability across problems and metrics. Even the best models sometimes perform poorly, and models with

poor average performance occasionally perform exceptionally well.” Hence, the goal of meta-learning

is not to find the best method on average; rather, it is to select the best method for a given problem.

In general, there are two steps in the selection of an algorithm. The first and more crucial step is to

define and compute the morphological characteristics of the data sets and the learning algorithms, and

we will look at examples of these later in the section. This characterization defines the space on which

relatedness between tasks is defined.

The second step is to use these characteristics to predict the suitability of an algorithm for a given task

and data set. These predictions can be used to select a single best algorithm. Alternatively, they can

be used for selecting or ranking a group of algorithms for further exploration. The suitability criteria

of an algorithm may include the performance (e.g. accuracy) of the algorithm, the time required for

training and testing, and the interpretability of the model. Most work focuses on the performance of the

algorithm.

2.7.1.1 Characterising data sets

The StatLog project [Michie et al., 1994] compares about 20 learning algorithms on 20 classification

tasks, and uses C4.5 to relate the performance of the algorithms to data characteristics such as simple

measures (e.g., the number of attributes), statistical measures and information-theoretic measures. An

extensive list of possible data characteristics is given by Lindner and Studer [1999]. Due to the fact that

some measures are non-applicable in certain data sets (e.g., mean for categorical variables), care must

be taken when using these. The data characteristics must not only be correlated with performance of an

algorithm, they must also be computationally cheap to calculate; otherwise, one may simply run all the

algorithms and use performance on a validation set for selecting the “best” algorithm. Castiello et al.

[2005] give some considerations in choosing such data characteristics so that they reflect the actual task

instead of the particular sample of data set, and, to this end, they also propose certain transformations

of data characteristics.

An alternative approach is to use the learning complexity on a data set for characterization [Bensusan,

1999; Peng et al., 2002]. This, for a given data set, can be approximated with the structure and size of a

decision tree — called the baseline learner in this context — trained on that data set. Selected properties

of the decision tree, such as its maximum depth, are then used in predicting the performance of various

other learning algorithms on the data set. Instead of using just selected properties of the tree, Bensusan

et al. [2000] further propose using the entire tree structure as input to the meta-learning module.

Instead of using just one baseline learner, the methodology of landmarking [Bensusan and Giraud-

Carrier, 2000] uses a pool of simple and computationally efficient learners, called landmarkers in this

context. Each landmarker uncovers a specific nature of the data; for example, the linear discriminant is

used measure the linear separability of the data via its error rate on the data.

Though not directly relevant to algorithm selection, it is worth mentioning the approach of Bonilla et al.

[2007] to characterizing tasks. Theirs is a multi-task learning approach to a set of related predictive
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tasks for which obtaining actual responses is expensive but possible. First, they sample a fixed set of

input locations. Next, the set of actual responses for each task on these locations is computed and then

used to characterize or describe the task, i.e., it is the task descriptor for that task. The task descriptors,

together with a learnt metric, then approximate task relatedness.

2.7.1.2 Characterising learning algorithms

Just as data sets can be characterized by one or many baseline learners, learning algorithms can be

characterized by a selection of data sets. Kalousis et al. [2004] have explored this idea by clustering

classification algorithms into groups that have similar error patterns on the data sets.

2.7.2 Vector-valued Functions

Vector-valued functions are those with ranges that are vector fields instead of the usual scalar fields.

Learning a vector-valued function is also known as multiple response/output regression or multivariate

regression. If we treat prediction in each scalar dimension of the vector-valued function as a task, then

we have M tasks for an M -dimensional vector field. Learning these tasks jointly can then be viewed as

an example of multi-task learning.

The technique of partial least squares (PLS, see Rosipal and Krämer [2006] for a recent review), which

is widely used in the field of chemometrics, has been applied to multivariate regression problems. Here,

the covariance structure between the input variables and output responses is jointly extracted, and there

is transfer between the different output dimensions due to this joint extraction. An alternative approach

is the “curds and whey” procedure proposed by Breiman and Friedman [1997], though it has been

pointed out by many that this is inferior to PLS (see separate discussions by Wold, Bur et al., and

Helland in [Breiman and Friedman, 1997]). Other methods in statistics also include joint continuum

regression [Brooks and Stone, 1994] and multivariate ridge regression (MRR) [Brown and Zidek, 1980;

Haitovsky, 1987]. A statistical framework, called the latent variable multivariate regression model,

has been proposed by Burnham et al. [1999] in an attempt to unify these methods and some others.

These models can be viewed as multi-task learning for the specific case where the set of responses are

completely given for all the inputs (or covariates); as pointed out below, the technical term for this in the

geostatistics community is isotopic data. In the general case for multi-task learning, the complete set of

responses may not be given or may not be sensible, because the domain of the tasks may be different.

In econometrics the seemingly unrelated regression (SUR) model introduced by Zellner [1962] has been

used to analyze a system of multiple equations with cross-equation parameter restrictions and correlated

error terms.7 In our context, each equation can be seen as a task, and the simultaneous learning of

the parameters facilitates the transfer of information between the tasks. A key element that influence

the transfer is the covariance between the error terms, and this is usually estimated by first solving

each equation separately, and then taking the covariance between the residuals. In machine learning, the

errors (or noise) are usually taken to be uncorrelated; therefore, the SUR model may not be so applicable

7 MRR is a special case of the SUR model [Haitovsky, 1987].
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in this case. Nevertheless, a correlated error model using Gaussian processes has been proposed by Silva

et al. [2008] for modelling relational data.

Cokriging is used in multivariate geostatistics [Wackernagel, 1998] when there are multiple spatial vari-

ables at any one location, and we would like predictions to use information from other variables in

addition to information at other locations (note that this is also a regression procedure; see Stein and

Corsten [1991]). In this subject area, data may come in one of the following three forms [Wackernagel,

1998]:

entirely heterotopic, where the variables have no sample locations in common;

partially heterotopic, where the variables share some sample locations; and

isotopic, where, for all the sampling locations, data for each variable is available.

A common and general model for cokriging is the linear model of coregionalization (LMC) that we

have seen in section 2.5. The estimation of the parameters in LMC has been somewhat ad-hoc until

the recent work of Zhang [2007] and Zhu et al. [2005]. In our work, we have found maximizing the

marginal likelihood by gradient methods to be effective in estimating the parameters; see section 4.3.3

and appendix C.3. If the prediction of each variable is seen as a task, then the LMC can be used as a

general model for multi-task learning, especially when applied to heterotopic data. In geostatistics, the

LMC is used for factorial kriging analysis, where the interest is in extracting factors of different spatial

scale. The LMC has also been used to approximate a general covariance matrix K by minimizing the

Frobenius norm between K and
∑

pK
fp ⊗Kxp [Genton, 2007].

Closely related is the work of Micchelli and Pontil [2005] defining reproducing kernel Hilbert spaces

of vector-valued functions in the field of learning theory. This is later applied to the learning of multiple

tasks by Evgeniou et al. [2005], which we have described in section 2.3.

A related area that is frequently explored in machine learning is multi-class classification, and simul-

taneous learning of a model for the classes is a kind of transfer between the classes. Although the

relation to multi-task learning is clear when we consider each of the single-class classifications as a

task, there are distinctions between multi-class classification and general multi-task learning — the for-

mer is heavily constrained to exactly one class for any given input, and its input set is shared between

all the classes.

For multi-class classification, transfer across classes can be achieved by extracting within-class struc-

tures that are shared between the classes. Amit et al. [2007] motivate trace-norm regularization of the

weight vector of a linear classifier by considering a shared linear transformation of the input space for

the classes. Torralba et al. [2004] use a joint boosting algorithm on weak-learners, some of which are

shared between the classes; transfer is via the shared weak-learners. Similarly, Fink et al. [2006] in-

troduce a mixing framework that combines perceptrons, each of which predicts membership in a given

subset of the classes; transfer between classes is achieved by perceptrons that predict for non-singleton

subsets.

Related to multi-class classification is multi-label prediction, where now each object may be labelled

with more than one label; see Tsoumakas and Katakis [2007] for an overview. For a given object, we

may expect that it having one label is related to it having another label. For instance, for labelling a scene
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image, the labels beach and sunset may be positively correlated, while the labels beach and mountains

may be negatively correlated. A recent reduction of multi-label prediction with a multitude of labels to

binary regression problems using the notion of compressed sensing [Hsu et al., 2009] makes multi-label

prediction more relevant to multi-task learning: by compressing the high dimensional sparse vector of

labels l ∈ Rd to a vector y ∈ Rc of a much lower dimension using a linear map y = Al, where c� d

and A is a c-by-d matrix, one may expect correlations to exist between the different dimensions of y

due to its construction, and this makes multi-task learning for y attractive.

2.7.3 Multilevel Models

Multilevel models [Goldstein, 2003] are commonly used in statistics for analyzing social data which

are hierarchical or clustered due to the natural groupings of social processes. For example, students

are grouped within schools which may be further grouped into private or public. Multilevel models use

common and group-specific factors to respectively account for the homogeneity and heterogeneity of the

data. Such models are also known by various other terms such as Bayesian hierarchical models, mixed

models, hierarchical linear models, random effects models, random coefficient models, subject specific

models, variance component models, variance heterogeneity8 and seemingly unrelated regression. The

most common methods are linear models, though nonlinear extensions have also been proposed [Gold-

stein, 1991; Müller et al., 2007]. The framework by Zhang [2006], or indeed the general formulation

given in equation 2.4 on page 13, is also a multilevel model.

Commonly in the multilevel models literature, a level 1 unit is an individual sample, a level 2 unit is a

group of samples, and a level 3 unit is the entire set of samples;9 for example, a level 1 unit would be

a student and a level 2, a school. The direct correspondence to machine learning is this: a level 2 unit

is a prediction task, while a level 3 unit is a set of tasks over which multi-task learning is performed.

Hence, multilevel models can be directly applied to multi-task learning for modelling differences and

shared similarities among the tasks. In fact, many of the recent work in multi-task learning, such as that

of Zhang [2006], are along these lines, but extend the approaches to deal with non-linearity.

Finally, multilevel models can also be used as predictors for vector-valued functions (see section 2.7.2)

when we view each dimension as a group.

2.7.4 Learning Knowledge Representation

Knowledge representations, instead of being pre-encoded, may be acquired through learning, and then

used in providing a strong inductive bias for solving new tasks [Kemp et al., 2004]. Stracuzzi [2006]

have argued that having the acquired knowledge organized into discrete concepts will allow more

tractable transfer of knowledge onto new tasks. Recently, Niculescu-Mizil and Caruana [2007] give

a greedy algorithm to search for a common Bayesian network structure between related tasks.

For a given representation, there will be interactions between its layers. If learning each layer can be

naturally defined as a sub-task, then one has the choice to learn and/or apply these sub-tasks jointly,

8 Taken from Centre for Multilevel Modelling website http://www.cmm.bristol.ac.uk/ in Dec 2009.
9 More levels are possible of course, but this is the most common setup in the literature.
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hence transferring information from layer to layer. This has been investigated by Sutton and McCallum

[2005] in the context of linear-chain conditional random fields.

A common kind of knowledge representation is the state-space of a Markov Decision Processes (MDPs).

Walsh et al. [2006] and Wolfe and Barto [2006] have proposed using homomorphisms between MDPs

to facilitate transfer between similar learning environments.

2.8 Related Research Areas

We now describe some areas of active research in machine learning that, although are not models for

multi-task learning or meta-learning, are nevertheless closely intertwined with meta-learning. Although

we highlight differences between each area and multi-task learning, there exists a common theme among

them and multi-task learning — the existence of some form of information transfer beyond those be-

tween individual samples. Hence ideas from these areas may serve as inspirations for new multi-task

learning models. The following areas are neither mutually exclusive nor altogether exhaustive.

2.8.1 Semi-supervised Learning

Semi-supervised learning aims to augment the use of scarce amount of labelled data with the use of

more abundant unlabelled data in order to increase the performance of machine learning algorithms.

Although one may say that there is some notion of transfer of information from the unlabelled data,

there are some differences with learning from multiple tasks. In learning from multiple tasks, the tasks

(and sometimes their data) are different, although they may be from the same general domain. For

semi-supervised learning, there is only one task, and the augmenting data is actually for the same task

but without any labels. See Zhu and Goldberg [2009] for an introduction, Zhu [2005] for a survey, and

Chawla and Karakoulas [2005] for an empirical study.

A particular semi-supervised learning strategy that makes use of more than one classifier is co-training

[Blum and Mitchell, 1998] or versions and generalisations of it [Zhou and Goldman, 2004; Zhou and

Li, 2005]. In co-training, two classifiers are first trained on different views on a common set of labelled

training data. Each classifier is then “taught” by the other classifier through the labels assigned by the

other on unlabelled data. Here, there is some transfer of information from one classifier to the other via

the labelling of unlabelled data. However, unlike learning from multiple tasks, the classifiers here are

for the same task.

The strategy of Ando and Zhang [2004, 2005] on semi-supervised learning makes use of learning to

learn. Multiple auxiliary prediction tasks are created from unlabelled data, and the underlying structure

of the domain is extracted via learning these tasks jointly using the SVD-ASO algorithm described in

section 2.2.2. This structure is then used for learning the original task à la learning-to-learn, treating the

original task as the novel task. However, unlike normal learning to learn where the multiple tasks arise

naturally from the environment, their auxiliary tasks are artificial and may not have any direct practical

use.
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2.8.2 Domain Adaptation

Domain adaptation10 is aimed at supervised machine learning of tasks when the labelled training data of

the relevant domains is scarce (or non-existent) but there are plentiful labelled data in related domains. In

order to increase the performance of the classifiers on the relevant domain, a domain adaptation strategy

tries to make use of data from the related domains. Domain adaptation differs from multi-task learning

in that, for domain adaptation, there is a single task defined on two (or more) domains [Ben-David et al.,

2007] and the aim is to optimize the performance on the target domain. It is instructive to consider

the linear regression case given by Daumé III [2009]: for domain adaptation, one may have a single

vector of regression parameters shared among the different domains, and optimize this vector for the

single task across the different domains; in contrast, for multi-task learning one usually assumes each

task has its own vector of parameters, but the within-vector co-variations are common among the tasks.

However, despite the subtle differences, research on how to transfer information between domains may

serve as an inspiration for that between tasks. In addition, similar to multi-task learning, there can also

be a notion of relatedness between domains [Daumé III and Marcu, 2006].

Research in this area is important for natural language processing where one would like to make use

of annotated (or labelled) texts from an “out-of-domain” genre when learning an “in-domain” genre, as

investigated by Chan and Ng [2005], Blitzer et al. [2006] and Daumé III and Marcu [2006]. Chan and

Ng transfer knowledge between the two domains in the naïve Bayes formulation by assuming that the

domains share common within-class probabilities. Blitzer et al. use the structural learning framework

of Ando and Zhang [2005], described in section 2.2.2, to find a common representation for features in

both domains; this representation is then used to transfer knowledge between the two domains. Daumé

III and Marcu view training data from both domains as sharing a common mixture component in a

hierarchical Bayes model; in this case, the transfer of knowledge occurs through joint learning of the

parameters for the common component.

Raina et al. [2007] formalize a similar but related problem where the data from the related domains are

unlabelled instead of labelled and call this self-taught learning. In general, the case where the training

and test distributions differ is called the sample selection bias in econometrics [Heckman, 1979]. In fact,

domain adaptation, self-taught learning, sample selection bias and multi-task learning may be broadly

called transfer learning, and a recent survey is given by Pan and Yang [to appear].

2.8.3 Composite Learners

To increase predictive performance, simple learners, such as linear classifiers, can be combined in

various ways using, e.g., stacked generalization [Wolpert, 1992], bagging [Breiman, 1996], boosting

[Freund and Schapire, 1996] or arbitration [Ortega et al., 2001]. For example, stacked generalization

consists of layers of learners, each applied to meta-data derived from the learner of the layer directly

below.

Vilalta and Drissi [2001] consider stacked generalization to be a meta-learning algorithm; Anderson

and Oates [2007] consider stacked generalization and boosting; Giraud-Carrier et al. [2004a] consider

10 In this context, a domain is a distribution on the data, which differs when different portions of the population are sampled.
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stacked generalization and arbitration. However, we note that these algorithms are designed for learning

a single task and not multiple tasks.

2.8.4 Multi-resolution Features

Multi-resolution methods, recently popular in image processing, extract features at different resolutions,

scales or quantization levels of the data; see, for example, Adelson et al. [1991], Hadjidemetriou et al.

[2004], Grauman and Darrell [2006] and Kivinen et al. [2007]. Although there may be transfer of

information between the predictors for the different resolutions in the ensemble,11 this is only for single

tasks. However, transfer of information between tasks at the various resolution levels has been proposed

in [Eaton, 2006], [Eaton and desJardins, 2006] and [Eaton et al., 2007].

11 The pyramid match kernels of Grauman and Darrell [2006] can be viewed as inducing a set of classifiers at different levels of

the pyramid.





Chapter 3

Generalization Errors and Learning

Curves for Regression with Multi-task

Gaussian Processes,

and Their applications

3.1 Introduction

In the previous chapter, we have reviewed a number of models for multi-task learning. In the design of

each model, it is generally assumed that learning multiple tasks together is beneficial. As discussed in

section 1.2, the common utilitarian understanding of task relatedness is closely connected to the amount

of benefit that can be reaped under multi-task learning. However, other than probably approximately

correct (PAC) theoretical analysis [Baxter, 2000; Maurer, 2006; Ben-David and Schuller Borbely, 2008],

we are not aware of any work that quantifies such benefits.1 Following the tradition of the theoretical

works on Gaussian processes in machine learning, our goal in this chapter is to quantify the benefits

using average-case analysis.

Our analysis is conducted on the multi-task Gaussian process (GP) model since, in contrast to other

models, not only does it encode model assumptions for regression in a transparent way [Sollich and

Halees, 2002], it is also amenable to the average-case analysis that we are after. We concentrate mainly

on the asymmetric two-tasks case, where the secondary task is to help the learning of the primary task,

although we will also give results for the symmetric two-tasks case, where the two tasks are to help each

other to learn. Within this setting, the main parameters are (1) the degree of “relatedness” ρ between

the two tasks, and (2) πS , the fraction of the total training observations from the secondary task. While

higher |ρ| and lower πS is clearly more beneficial to the primary task in the asymmetric learning case,

1 Although Baxter [1997]’s analysis is on the Bayesian hierarchical model, he deals with the amount of information learnt for the

prior rather than the predictive errors of the learnt model, which relates more directly to “the amount of benefit reaped”.
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the extent and manner that this is so has not been clear. To address this, we measure the benefits using

generalization error, the learning curve and optimal error, and investigate the influence of ρ and πS on

these quantities.

We will give non-trivial lower and upper bounds on the generalization error and the learning curve. Both

types of bounds are important in providing assurance on the quality of predictions: an upper bound

provides an estimate of the amount of training data needed to attain a minimum performance level2,

while a lower bound provides an understanding of the limitations of the model [Williams and Vivarelli,

2000]. For a one-dimensional input-space under optimal sampling with data only for the secondary task,

we show the limit to which error for the primary task can be reduced. This dispels any misconception

that abundant data for the secondary task can remedy having no data for the primary task.

Our main approach relates the posterior variances, generalization errors and learning curves of multi-

task GPs to that of single-task GPs. This is preferable to calculating the learning curves for multi-task

GPs from scratch. First, known bounds and approximations for the case of single-task GPs can be

utilized. Secondly, the relations between multi-task GPs and single-task GPs are made explicit; this

allows for intuitive understandings of multi-task GPs. This second point is exploited by applying the

learning curves to understand (1) the effects of multi-task learning over single-task learning in terms of

increase and decrease in the average error; and (2) the effective number of observations for the primary

task contributed by multi-task learning with a secondary task.

We outline the background concepts and state the problem precisely in the next section. Section 3.3 con-

siders generalization error, and highlights the limitations of multi-task GP learning. In addition, lower

and upper bounds on the generalization error are developed. In section 3.4, we give the optimal general-

ization error for the degenerate case when training data is provided only for the secondary task. Section

3.5 gives theoretical bounds on the learning curves, and provides simulation results for the learning

curve and its bounds. Sections 3.6 and 3.7 use the theoretical bounds on the learning curves to provide

further insights into multi-task learning, in terms of how the learning curve changes from the single-task

setting, and the effective number of additional observations contributed by multi-task learning. Selected

theoretical results are further evaluated in section 3.8 using an empirical data set. In section 3.9, we aim

to understand the structure of multi-task GP prediction for more than one secondary tasks by focusing

on noise-free observations on locations arranged in specific configurations. We conclude this chapter in

section 3.10. Figure 3.1 diagrammatically lays out selected symbols of interest in this chapter.

3.1.1 Main Results

Before we delve into the details, we give the main results of this chapter.

1. If there is no data for the primary task, the generalization error for the primary task cannot be

less than (1 − ρ2)
∑
κi, where

∑
κi may be understood as the generalization error before the

secondary data is given. See Propositions 3.3 and 3.11.

2. A rather tight lower bound to the generalization error for the primary task can be achieved by first

providing additional observations for the primary task and then giving randomized predictions by

2 This is related to the sample complexity in PAC models. See section 3.7.
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discarding this extra information ρ2 of the time. For the Sarcos data, we show that this approach

can provide an approximate lower bound on the empirical error of the multi-task Gaussian process.

See Propositions 3.7 and section 3.8.2.

3. In terms of the lower bound on the learning curve for the primary task, multi-task learning can

decrease the error by a factor of up to ρ2πS . See discussion of Proposition 3.14, and see sections

3.6.2 and 3.8.4.

4. For symmetric multi-task learning, where the interest is in the error averaged across the two tasks,

the governing factor for performance is ω def= πS(1− πS)(1− ρ2). We may say that symmetric

multi-task learning can be characterised by ω. Section 3.6.1 verifies this by providing a compari-

son between theoretical and simulated learning curves.

The above list of results are based on the lower bound on the generalization error and the learning curve

for multi-task learning. Admittedly, the lower bound is easier to understand and perhaps more useful

than the upper bound because of its simplicity. Nevertheless, the upper bound is still useful, not only in

providing additional insights to multi-task Gaussian process learning, but also in the following ways.

1. For small sample sizes, the theoretical upper bound on the learning curve (called the FWO%̂

bound) is much tighter than the theoretical lower bound (called the OVρ bound). In fact, also

for small sample sizes, the FWO%̂ theoretical upper bound can be tighter than an empirical trivial

upper bound that ignores the data from the secondary task. See section 3.5.5.

2. Using the FWO%̂ bound, we obtain the secondary task’s contribution to the average-case sample

complexity of the primary task. See section 3.7.2.

Although theoretical bounds on the learning curve can be rather loose, they are useful if they vary mean-

ingfully with quantities of interest. Indeed, this is the case for the OVρ and FWO%̂ bounds developed in

this chapter, and their use in sections 3.6 and 3.7 reveals the effects of ρ and πS on multi-task learning.

3.2 Preliminaries and Problem Statement

3.2.1 Multi-task GP Regression Model and The Setup for Analysis

We consider the following multi-task Gaussian process regression model that learnsM related functions

{fm}M
m=1 by placing a zero mean GP prior which directly induces correlations between tasks. Let ym

be an observation of the mth function at x. Then the model is given by

〈fm(x)fm′(x′)〉 def= Kf
mm′kx(x,x′) ym ∼ N (fm(x), σ2

m), (3.1)

where kx is a covariance function over inputs, and Kf is a positive semi-definite matrix of inter-task

similarities, and σ2
m is the noise variance for the mth task.

The current focus is on the two tasks case, where the secondary task S is to help improve the perfor-

mance of the primary task T ; this is the asymmetric multi-task learning defined in chapter 1 on page 1.

We fixKf to be a correlation matrix, and let the variance be explained fully by kx; the converse has been

done in Bonilla et al. [2008]. Thus Kf is fully specified by the correlation ρ ∈ [−1, 1] between the two
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~•T

Task-space

S

ρ

}

•

}

•

}

kx(x,x′)

Input
space

|XS | = nS

|XT | = nT

Figure 3.2: Multi-task GP model and the setup for analysis. The two tasks S and T have task correlation

ρ. The data set XT (resp. XS) for task T (resp. S) consists of the •s (resp. }s). The test location x∗

for task T is denoted by ~.

tasks. We further fix the noise variances of the two tasks to be the same, say σ2
n. For the training data,

there are nT (resp. nS) observations yT (resp. yS) at locations XT (resp. XS) for task T (resp. S). We

use n def= nT + nS for the total number of observations, πS
def= nS/n for the proportion of observations

for task S, and also X def= XT ∪XS . The aim is to infer the noise-free response fT∗ for task T at x∗.

See Figure 3.2 for a summary.

The covariance matrix of the noisy training data is K(ρ) + σ2
nI , where

K(ρ) def=

(
Kx

TT ρKx
TS

ρKx
ST Kx

SS

)
; (3.2)

and Kx
TT (resp. Kx

SS) is the matrix of covariances (due to kx) between locations in XT (resp. XS);

Kx
TS is the matrix of cross-covariances from locations in XT to locations in XS ; and Kx

ST is Kx
TS

transposed. The posterior variance at x∗ for task T is

σ2
T (x∗, ρ, σ2

n, XT , XS) = k∗∗ − kT
∗ (K(ρ) + σ2

nI)
−1k∗, where kT

∗
def=
(
(kx

T∗)
T ρ(kx

S∗)
T
)
; (3.3)

and k∗∗ is the prior variance at x∗, and kx
T∗ (resp. kx

S∗) is the vector of covariances (due to kx) between

locations in XT (resp. XS) and x∗. Where appropriate and clear from context, we will suppress some

of the parameters in σ2
T (x∗, ρ, σ2

n, XT , XS), or use X for (XT , XS). Note that σ2
T (ρ) = σ2

T (−ρ), so

that σ2
T (1) is the same as σ2

T (−1); for brevity, we only write the former.

If the GP prior is correctly specified,3 then it is straightforward to show that the posterior variance (3.3)

is also the generalization error at x∗ [Rasmussen and Williams, 2006, §7.3]. The latter is defined as〈
(f?

T (x∗)− f̄T (x∗))2
〉

f?
T

, (3.4)

where the predictor

f̄T (x∗) = kT
∗ (K(ρ) + σ2

nI)
−1
(
yT

T y
T
S

)T
(3.5)

is the posterior mean at x∗ for task T , and the expectation in (3.4) is taken over the distribution from

which the true function f?
T is drawn. In this chapter, in order to distinguish succinctly from the general-

ization error introduced in the next section, we use posterior variance to mean the generalization error at

x∗. Note that the actual y-values observed at X do not affect the posterior variance at any test location.
3 As far as we are aware, other works on generalization errors and learning curves for GPs also rely on this assumption, with the

following exceptions: Vivarelli [1998] relates the incorrectly specified case to the correctly specified case; for low dimensional

problems, Sollich [2005] shows that optimized hyperparameters can lead to optimal learning rates; and Stein [1999b] investi-

gates how mismatch in the spectral densities of the true and assumed covariance functions affects convergence to optimality.
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Problem statement Given the above setting, the aim is to investigate how training observations for

task S can benefit the predictions for task T . We measure the benefits using generalization error, learning

curve and optimal error, and investigate how these quantities vary with ρ and πS .

3.2.2 Generalization Errors, Learning Curves and Optimal Errors

We outline the general approach to obtain the generalization error and the learning curve [Rasmussen

and Williams, 2006, §7.3] under our setting, where we have two tasks and are concerned with the

primary task T . Let p(x) be the probability density, common to both tasks, from which test and training

locations are drawn, and assume that the GP prior is correctly specified. The generalization error for

task T is obtained by averaging the posterior variance (i.e., generalization error at a test location) for

task T over x∗, and the learning curve for task T is obtained by averaging the generalization error over

training sets X of a cardinality n:

generalization error: εT (ρ, σ2
n, XT , XS) def=

∫
σ2

T (x∗, ρ, σ2
n, XT , XS)p(x∗)dx∗ (3.6)

learning curve: εavg
T (ρ, σ2

n, πS , n) def=
∫
εT (ρ, σ2

n, XT , XS)p(X)dX, (3.7)

where the training locations in X are drawn i.i.d, that is, p(X) factorizes completely into a product

of p(x)’s. The learning curve (3.7) relates the model performance to the amount of training data, and

thus indicates how “fast” the model learns. Besides averaging εT to obtain the learning curve, one may

also use the optimal experimental design methodology and minimize εT over X to find the optimal

generalization error [Ritter, 2000, chap. II]:

optimal error: εopt
T (ρ, σ2

n, πS , n) def= min
X

εT (ρ, σ2
n, XT , XS). (3.8)

Since the posterior variance does not depend on the actual y-values observed at X , neither do the

generalization error, the learning curve and the optimal error.

Both εT (0, σ2
n, XT , XS) and εT (1, σ2

n, XT , XS) reduce to single-task GP cases; the former discards

training observations at XS , while the latter includes them. Similar analogues to single-task GP cases

for εavg
T (0, σ2

n, πS , n) and εavg
T (1, σ2

n, πS , n), and εopt
T (0, σ2

n, πS , n) and εopt
T (1, σ2

n, πS , n) can be obtained.

Note that εavg
T and εopt

T are well-defined since πSn = nS ∈ N0 by the definition of πS .

We can relate the asymmetric multi-task case to the symmetric case, where the effect on task S by task

T is included. Let εavg
S be defined analogously to εavg

T , and assume that the distribution over the two tasks

is the same during both training and testing. Then the learning curve averaged across both task S and

task T is εavg given by

εavg(ρ, σ2
n, πS , n) = πSε

avg
S (ρ, σ2

n, πS , n) + (1− πS)εavg
T (ρ, σ2

n, πS , n). (3.9)

By symmetry, εavg
T (ρ, σ2

n, 1− πS , n) = εavg
S (ρ, σ2

n, πS , n), so that

εavg(ρ, σ2
n, πS , n) = πSε

avg
T (ρ, σ2

n, 1− πS , n) + (1− πS)εavg
T (ρ, σ2

n, πS , n). (3.10)

This symmetry is reflected by the lack of subscript T or S for εavg. From the above equation, it is also

clear that εavg(ρ, σ2
n, πS , n) = εavg(ρ, σ2

n, 1− πS , n).
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3.2.3 Eigen-analysis

The following results on eigen-analysis will be used in this chapter. Let κ̄ def= κ1 > κ2 > κ3 > . . . and

φ1(·), φ2(·), φ3(·), . . . be the eigenvalues and eigenfunctions of the covariance function kx under the

measure p(x)dx. That is, they satisfy the integral equation∫
kx(x,x′)φi(x)p(x)dx = κiφi(x′). (3.11a)

These κis and φi(·)s are known as the process eigenvalues and eigenfunctions of the Gaussian process

with covariance function kx. Throughout, the eigenfunctions are assumed to be normalized, i.e.,∫
φi(x)φj(x)p(x)dx = δij . (3.11b)

Mercer [1909] has given a construction of kx(x,x′) using these eigenvalues and eigenfunctions:

k(x,x′) =
∞∑

i=1

κiφi(x)φi(x′). (3.11c)

Using Mercer’s theorem, we can show that mean of the prior variance is the sum of the eigenvalues:∫
k(x,x)p(x)dx =

∞∑
i=1

κi

∫
φi(x)φi(x)dx =

∞∑
i=1

κi. (3.11d)

The eigenvalues and eigenfunctions can have analytical expressions for certain choices of measures

p(x)dx and covariance functions kx. For example, if the measure is uniform on a one-dimensional unit

interval and the covariance function is that of the unit variance stationary Ornstein-Uhlenbeck process

kx
OU(x, x′) def= exp (−|x− x′|/l) , (3.12)

then the eigenvalues and eigenfunctions are

κi =
2

lt2i + l−1
φi(x) =

√
2

l2t2i + 2l + 1

(
lti cos tix+ sin tix

)
, (3.13)

where the tis are given implicitly by tan ti = 2lti/[(lti)2 − 1]. This is derived in appendix B.6.2,

following the outline by Hawkins [1989]. Another example is when the measure is a centred Gaussian

with variance σ2
x on the real-line and the covariance function is squared exponential, i.e.,

kx
SE(x, x′) def= exp

(
−(x− x′)2/2l2

)
, (3.14)

in which case Zhu et al. [1998] and Rasmussen and Williams [2006, §4.3.1] give

κi =

√
2a
A

(b/A)i φi(x) =
4
√
c/a√
2ii!

exp(−(c− a)x2)Hi(
√

2cx), (3.15)

where Hi is the ith order Hermite polynomial, a−1 = 4σ2
x, b−1 = 2l2, c =

√
a2 + 2ab, A = a+ b+ c.

For symmetric multi-task learning, one may also consider a Gaussian process on the product space of

tasks and input locations, that is, where the task indicator or descriptor t and input locations x are used

jointly as inputs (t,x). In the case of our two tasks setting, the integral equation for this product space

will give the eigenvalues(
1
2
±
√

1
4
− ω

)
κi ω def= πS(1− πS)(1− ρ2), (3.16)
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where κi are the eigenvalues solely for kx(x,x′); see appendix B.6.1 for the details. We shall see in

section 3.6 that ω is crucial in understanding symmetric multi-task learning.

The Gaussian process prior is a probability distribution over functions, and the smoothness or continuity

of the functions is closely related to the decay of the tail-end eigenvalues, as we shall now explain. In

one-dimension with uniform p(x) on the unit interval, Sacks and Ylvisaker [1966, 1968, 1970] give

the regularity conditions on kx for characterising the smoothness of the functions. Broadly speaking,

if kx satisfies the Sacks-Ylvisaker conditions of order s, then the Gaussian process is exactly s-times

mean square differentiable, and its sample paths are s-times continuously differentiable almost surely

(see Ritter et al. 1995, §3; Adler 1981, Theorem 3.4.1). Moreover, the Sacks-Ylvisaker conditions is

related to the eigenvalues in this way: for Sacks-Ylvisaker conditions of order s, κi ∝ (πi)−2s−2 in the

limit i→∞; see Ritter [2000, Proposition IV.10, Remark IV.2], and appendix B.8.1 on page 163. For

example, the stationary Ornstein-Uhlenbeck process is of order s = 0, and its eigenvalues (3.13) satisfy

limi→∞ κi = 2(iπ)−2/l (see appendix B.6.2).

It will also be useful to relate the process eigenvalues to the eigenvalues of the covariance matrix Kx
SS

(say) when the locations in XS are sampled from p(x). Let λ̄ def= λ1 > λ2 > . . . > λnS
def= ¯
λ be the

eigenvalues of Kx
SS ; then κi = limnS→∞ λi/nS , i = 1 . . . nS . See e.g., Rasmussen and Williams

[2006, §4.3.2] and Baker [1977, Theorem 3.4]. For finite nS used in practice, the estimate λi/nS

for κi is better for the larger eigenvalues than for the smaller ones.

3.3 Generalization Error

In this section, we derive expressions for the generalization error (and the bounds thereon) for the two-

tasks case in terms of the single-task case. To illustrate and further motivate the problem, Figure 3.3

on the facing page plots the posterior variance σ2
T (x∗, ρ) as a function of x∗ given two observations

for task T and three observations for task S. We roughly follow Sollich and Halees [2002, Figure 2],

and use squared exponential covariance function k(x, x′) = exp(−(x − x′)2/2l2) with length-scale

l = 0.11 and noise variance σ2
n = 0.05. Six solid curves are plotted, corresponding to ρ2 = 0, 1/8, 1/4,

1/2, 3/4 and 1 from top to bottom. The two dashed curves enveloping each solid curve are the lower

and upper bounds derived in this section; the dashed curves are hardly visible because the bounds are

rather tight. The horizontal dotted line at 0.05 is the prior noise variance.

Similar to the case of single-task learning, each training point creates a depression on the σ2
T (x∗, ρ)

surface [Williams and Vivarelli, 2000; Sollich and Halees, 2002]. However, while each training point

for task T creates a “full” depression that reaches the prior noise variance, the depression created by

each training point for task S depends on ρ, “deeper” depressions for larger ρ2. From the figure, it is

clear that the following trivial bounds on σ2
T (x∗, ρ) hold:

Proposition 3.1. For all x∗, σ2
T (x∗, 1) 6 σ2

T (x∗, ρ) 6 σ2
T (x∗, 0).

This result can be derived from the information theoretic intuition used by Williams and Vivarelli [2000]:

conditioning on additional information decreases the entropy, and a normally distributed random vari-

able with variance v2 has entropy log
√

2πv2e, which increases monotonically with v2. Since larger |ρ|
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Figure 3.3: The effect of primary and secondary data on posterior variance. The curves are the posterior

variances of each test location within [0, 1] given data •s at 1/3 and 2/3 for task T , and }s at 1/5, 1/2

and 4/5 for task S. The six solid curves correspond, from top to bottom, to ρ2 = 0, 1/8, 1/4, 1/2, 3/4

and 1. The two dashed curves enveloping each solid curve are the lower and upper bounds given in

Propositions 3.5 and 3.9.

means more information for task T , the above proposition is implied. Appendix B.2 gives a different

proof that makes use of Proposition 3.5, which will be stated in section 3.3.2.

Integrating with respect to x∗ then gives the following corollary:

Corollary 3.2. εT (1, σ2
n, XT , XS) 6 εT (ρ, σ2

n, XT , XS) 6 εT (0, σ2
n, XT , XS).

Sections 3.3.2 and 3.3.3 derive lower and upper bounds that are tighter than the above trivial bounds.

Prior to the bounds, we consider a degenerate case to illustrate the limitations of multi-task learning.

3.3.1 The Case of No Training Data for the Primary Task

It is clear that if there is no training data for the secondary task, that is, if XS = ∅, then σ2
T (x∗1) =

σ2
T (x∗, ρ) = σ2

T (x∗0) for all x∗ and ρ. In the converse case where there is no training data for the

primary task, that is, XT = ∅, we instead have the following proposition:

Proposition 3.3. For all x∗, σ2
T (x∗, ρ, ∅, XS) = ρ2σ2

T (x∗, 1, ∅, XS) + (1− ρ2)k∗∗.

Proof. σ2
T (x∗, ρ, ∅, XS) = k∗∗ − ρ2(kx

S∗)
T(Kx

SS + σ2
nI)

−1kx
S∗

= (1− ρ2)k∗∗ + ρ2
[
k∗∗ − (kx

S∗)
T(Kx

SS + σ2
nI)

−1kx
S∗
]

= (1− ρ2)k∗∗ + ρ2σ2
T (x∗, 1, ∅, XS).

Hence the posterior variance is a weighted average of the prior variance k∗∗ and the posterior variance at

perfect correlation. When the cardinality of XS increases under infill asymptotics [Cressie, 1993, §3.3],

limnS→∞ σ2
T (x∗, 1, ∅, XS) = 0 =⇒ limnS→∞ σ2

T (x∗, ρ, ∅, XS) = (1− ρ2)k∗∗. (3.17)

This is the limit for the posterior variance at any test location for task T , if one has training data only for

the secondary task S. This is because a correlation of ρ between the tasks prevents any training location

for task S from having correlation higher than ρ with a test location for task T . We can also understand

this in terms of perceived distances between the locations. Suppose correlations in the input-space

are given by an isotropic covariance function kx(|x − x′|). If we translate correlations into distances
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between data locations, then any training location from task S is beyond a certain radius from any test

location for task T . In contrast, a training location from task T may lay arbitrarily close to a test location

for task T , subject to the constraints of noise.4

We obtain the generalization error in this degenerate case, by integrating Proposition 3.3 with respect to

p(x∗)dx∗ and using the fact that the mean prior variance is given by the sum of the process eigenvalues,

i.e.,
∫
kx(x,x)p(x)dx =

∑
κi.

Corollary 3.4. εT (ρ, σ2
n, ∅, XS) = ρ2εT (1, σ2

n, ∅, XS) + (1− ρ2)
∑∞

i=1 κi.

A directly corollary of the above result is that one cannot expect to do better than (1− ρ2)
∑
κi on

the average. Since the use of an incorrectly specified Gaussian process prior increases the general-

ization error [Vivarelli, 1998, appendix A.8], a lower bound for the incorrectly specified case is also

(1− ρ2)
∑
κi.

3.3.2 A Lower Bound

When XT 6= ∅, the correlations between locations in XT and locations in XS complicate the situation.

However, since σ2
T (ρ) is a continuous and monotonically decreasing function of ρ, there exists an α ∈

[0, 1], which depends on ρ, x∗ and X , such that σ2
T (ρ) = ασ2

T (1) + (1 − α)σ2
T (0). That α depends

on x∗ obstructs further analysis. The next proposition gives a lower bound
¯
σ2

T (ρ) of the same form

satisfying σ2
T (1) 6

¯
σ2

T (ρ) 6 σ2
T (ρ), where the mixing proportion is independent of x∗.

Proposition 3.5. Let
¯
σ2

T (x∗, ρ) def= ρ2σ2
T (x∗, 1) + (1− ρ2)σ2

T (x∗, 0). Then for all x∗:

(a)
¯
σ2

T (x∗, ρ) 6 σ2
T (x∗, ρ)

(b) σ2
T (x∗, ρ)− ¯

σ2
T (x∗, ρ) 6 ρ2(σ2

T (x∗, 0)− σ2
T (x∗, 1))

(c) arg maxρ2

[
σ2

T (x∗, ρ)− ¯
σ2

T (x∗, ρ)
]
> 1/2.

The proofs are in appendix B.1 on page 145. The lower bound
¯
σ2

T (ρ) depends explicitly on ρ2. It

depends implicitly on πS , which is the proportion of observations for task S, through the gap between

σ2
T (1) and σ2

T (0). If there is no training data for the primary task, i.e., if πS = 1, the bound reduces

to Proposition 3.3, and becomes exact for all values of ρ. If πS = 0, the bound also becomes exact.

For πS 6∈ {0, 1}, the bound becomes exact when ρ ∈ {−1, 0, 1}. As from Figure 3.3 and later from

our simulation results in section 3.5.5, this bound is rather tight. Part (b) of the proposition states the

tightness of the bound: it is no more than factor ρ2 of the gap between the trivial bounds σ2
T (0) and

σ2
T (1). Part (c) of the proposition says that the bound is least tight for a value of ρ2 greater than 1/2.

The lower bound
¯
σ2

T (ρ) is plotted with the lower dashed lines in Figure 3.3.

The next corollary is obtained from Proposition 3.5 by integrating with respect to p(x∗)dx∗. This is

possible because ρ is independent of x∗.

Corollary 3.6. Let
¯
εT (ρ, σ2

n, XT , XS) def= ρ2εT (1, σ2
n, XT , XS) + (1− ρ2)εT (0, σ2

n, XT , XS). Then

(a)
¯
εT (ρ, σ2

n, XT , XS) 6 εT (ρ, σ2
n, XT , XS), and

(b) εT (ρ, σ2
n, XT , XS)−

¯
εT (ρ, σ2

n, XT , XS) 6 ρ2
(
εT (0, σ2

n, XT , XS)− εT (1, σ2
n, XT , XS)

)
.

4 Noise also has the effect of decreasing the correlations between the data locations.
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Of interest is the following question: instead of predicting the posterior mean of task T at x∗ using the

multi-task model given by equation 3.1, is there an alternative so that the generalization error at x∗ is

¯
σ2

T (x∗, ρ)? Since
¯
σ2

T (x∗, ρ) is better than σ2
T (x∗, ρ) in terms of error, the alternative must involve more

information about task T than the multi-task model. A direct way to incorporate this extra information

is through the (noisy) observations yS
T for task T at the locations XS . The following proposition gives

two ways in which yS
T may be used, each giving a different error.

Proposition 3.7. Given data (yT , XT ) and (yS
T , XS), let f̄1 (resp. f̄0) be the posterior mean function

of the single-task GP when ρ = 1 (resp. ρ = 0), i.e.,

f̄1(x∗) def=

(
kx

T∗

kx
S∗

)T((
Kx

TT Kx
TS

Kx
ST Kx

SS

)
+ σ2

nI

)−1(
yT

yS
T

)
(3.18)

f̄0(x∗) def= (kx
T∗)

T(Kx
TT + σ2

nI)
−1yT . (3.19)

Then the generalization error at x∗ of predicting

(a) f̄1(x∗) with probability ρ2 and f̄0(x∗) with probability (1− ρ2) is exactly
¯
σ2

T (x∗, ρ); and

(b) f̄lc(x∗) def= ρ2f̄1(x∗) + (1− ρ2)f̄0(x∗) is not more than
¯
σ2

T (x∗, ρ).

The proof for (a) is straightforward, and the proof for (b) is given in appendix B.3. Always predicting

f̄1(x∗) leads to the trivial lower bound σ2
T (x∗, 1). The predictors (a) and (b) above give lower bounds

tighter than σ2
T (x∗, 1) by “throwing away” information, leading to more errors. In particular, the ran-

domized predictor (a) throws away more information than the linear combination predictor (b), so it

gives a tighter lower bound on σ2
T (x∗, ρ). Related to f̄1(x∗) is the predictor obtained when the obser-

vations yS
T in (3.18) are replaced by the expectation of yS

T given yS . This predictor actually produces

more errors and gives an upper bound on the learning curve, as discussed later in section 3.5.2.2.

3.3.3 An Upper Bound via Equivalent Isotropic Noise at Secondary Locations

The following question motivates our upper bound: if the training locations in XS had been observed

for task T rather than for task S, what is the variance σ̃2
n of the equivalent isotropic noise at XS so that

the posterior variance remains the same? To answer this question, we first refine the definition of σ2
T (·)

to include a different noise variance parameter s2 for the XS observations:

σ2
T (x∗, ρ, σ2

n, s
2, XT , XS) def= k∗∗ − kT

∗

[
K(ρ) +

(
σ2
nI 0

0 s2I

)]
−1
k∗; (3.20)

cf. (3.3). We may suppress the parameters x∗, XT and XS when writing σ2
T (·). The variance σ̃2

n of the

equivalent isotropic noise is a function of x∗ defined by the equation

σ2
T (x∗, 1, σ2

n, σ̃
2
n) = σ2

T (x∗, ρ, σ2
n, σ

2
n). (3.21)

For any x∗ there is always a σ̃2
n that satisfies the equation because the difference

∆(ρ, σ2
n, s

2) def= σ2
T (ρ, σ2

n, σ
2
n)− σ2

T (1, σ2
n, s

2) (3.22)

is a continuous and monotonically decreasing function of s2. To make progress, we seek an upper bound

σ̄2
n for σ̃2

n that is independent of the choice of x∗; that is, ∆(ρ, σ2
n, σ̄

2
n) 6 0 for all test locations. Of

interest is the tight upper bound ¯̄σ2
n, which is the minimum possible σ̄2

n, given in the next proposition.

First, we need the following lemma.
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Lemma 3.8. Let β def= ρ−2 − 1. In the terms of σ2
T (ρ, σ2

n, σ
2
n), having data XS for task S is equivalent

to an additional correlated noise β(Kx
SS + σ2

nI) at these observations for task T .

Proof. Matrix K(ρ) may be factorized as

K(ρ) =

(
I 0

0 ρI

)(
Kx

TT Kx
TS

Kx
ST ρ−2Kx

SS

)(
I 0

0 ρI

)
. (3.23)

By using this factorization in the posterior variance (3.20) and taking out the
(

I 0
0 ρI

)
factors, we obtain

σ2
T (ρ, σ2

n, s
2) = k∗∗ − (kx

∗)
T[Σ(ρ, σ2

n, s
2)]−1kx

∗, (3.24)

where (kx
∗)

T def=
(
(kx

T∗)
T, (kx

S∗)
T
)

and

Σ(ρ, σ2
n, s

2) def=

(
Kx

TT Kx
TS

Kx
ST ρ−2Kx

SS

)
+

(
σ2

nI 0

0 ρ−2s2I

)
= Σ(1, σ2

n, s
2) + β

(
0 0

0 Kx
SS + s2I

)
.

The second expression for Σ makes clear that, in the terms of σ2
T (ρ, σ2

n, σ
2
n), having data XS for task S

is equivalent to an additional correlated noise β(Kx
SS + σ2

nI) at these observations for task T .

The above lemma motivates the question that began this section. Note that ρ−2 > 1, and hence β > 0.

We are now ready to give the upper bound on the posterior variance of the predictions.

Proposition 3.9. Let λ̄ be the maximum eigenvalue of Kx
SS , β def= ρ−2 − 1 and ¯̄σ2

n
def= β(λ̄+ σ2

n) + σ2
n.

Then

∀x∗ σ2
T (x∗, ρ, σ2

n, σ
2
n) 6 σ2

T (x∗, 1, σ2
n, ¯̄σ

2
n).

The bound is tight in this sense: for any σ̄2
n,

∀x∗ σ2
T (x∗, ρ, σ2

n, σ
2
n) 6 σ2

T (x∗, 1, σ2
n, σ̄

2
n) =⇒ ∀x∗ σ2

T (x∗, ρ, σ2
n, ¯̄σ

2
n) 6 σ2

T (x∗, 1, σ2
n, σ̄

2
n).

Proof sketch. The increase in posterior variance due to having XS at task S with noise variance σ2
n

rather than having them at task T with noise variance s2 is given by ∆(ρ, σ2
n, s

2), which we may write

as

∆(ρ, σ2
n, s

2) = (kx
∗)

T
[
(Σ(1, σ2

n, s
2))−1 − (Σ(ρ, σ2

n, σ
2
n))−1

]
kx
∗ (3.25)

using equations 3.22 and 3.24. Recall that we seek an upper bound σ̄2
n for σ̃2

n such that ∆(ρ, σ2
n, σ̄

2
n) 6 0

for all test locations. In general, this requires σ̄2
n > ¯̄σ2

n
def= β(λ̄+ σ2

n) + σ2
n; details can be found in

section B.4. The tightness ¯̄σ2
n is evident from the construction.

The above upper bound is plotted with upper dashed lines in Figure 3.3. Intuitively, σ2
T (x∗, 1, σ2

n, ¯̄σ
2
n)

is the tight upper bound because it inflates the noise covariance at XS to just sufficient isotropic noise,

from (βKx
SS + σ2

nI/ρ
2) to ¯̄σ2

nI . Analogous to Proposition 3.9, the tight lower bound on σ̃2
n is given by

=
σ2

n
def= β(

¯
λ+ σ2

n) + σ2
n, where

¯
λ is the smallest eigenvalue of Kx

SS . In summary,

ρ−2σ2
n 6 =

σ2
n 6 σ̃

2
n 6 ¯̄σ2

n 6 σ̄
2
n,

where the leftmost inequality is obtained by substituting zero for
¯
λ in

=
σ2

n. Hence observing XS at S is

at most as “noisy” as an additional β(λ̄ + σ2
n) noise variance, and at least as “noisy” as an additional

β(
¯
λ + σ2

n) noise variance. Since β decreases with |ρ|, the additional noise variances are smaller when

|ρ| is larger, i.e., when the task S is more correlated with task T .
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Finally, if we refine εT as we have done for σ2
T using equation 3.20, we obtain the following corollary

by integrating with respect to p(x∗)dx∗.

Corollary 3.10. Let ε̄T (ρ, σ2
n, σ

2
n, XT , XS) def= εT (1, σ2

n, ¯̄σ
2
n, XT , XS). Then

ε̄T (ρ, σ2
n, σ

2
n, XT , XS) > εT (ρ, σ2

n, σ
2
n, XT , XS).

Scaling with nS We give a description of how the above bounds scale with nS , using the results

stated in section 3.2.3. For large enough nS , we may write λ̄ ≈ nS κ̄ and
¯
λ ≈ nSκnS

. Furthermore, for

uniformly distributed inputs in the one-dimension unit interval, if the covariance function satisfies Sacks-

Ylvisaker conditions of order s, then κnS
= Θ

(
(πnS)−2s−2

)
, so that

¯
λ = Θ

(
(πnS)−2s−1

)
. Since ¯̄σ2

n

and
=
σ2

n are linear in λ̄ and
¯
λ, we have ¯̄σ2

n = ρ−2σ2
n + βΘ(nS) and

=
σ2

n = ρ−2σ2
n + βΘ

(
n−2s−1

S

)
. For

the upper bound, note that although ¯̄σ2
n scales linearly with nS , the eigenvalues of K(1) scale with n,

so σ2
T (1, σ2

n, ¯̄σ
2
n) depends on πS

def= nS/n. In contrast the lower bound
=
σ2

n is dominated by ρ−2σ2
n, so

σ2
T (1, σ2

n,=σ
2
n) does not depend on πS even for moderate sizes nS . This lack of dependence on πS means

that the lower bound is not as useful as the upper bound for understanding multi-task learning.

3.3.4 Exact Computation of Generalization Error

The factorization of σ2
T expressed by equation 3.24 in Lemma 3.8 allows the generalization error to

be computed exactly in certain cases. We replace the quadratic form in (3.24) by the matrix trace

tr(Σ−1kx
∗(k

x
∗)

T) and then integrate out x∗ under p(x∗) to give

εT (ρ, σ2
n, XT , XS) = 〈k∗∗〉 − tr

(
Σ−1〈kx

∗(k
x
∗)

T〉
)

=
∑∞

i=1 κi − tr
(
Σ−1M

)
,

where Σ denotes Σ(ρ, σ2
n, σ

2
n), the expectations are taken over x∗, and M is an n-by-n matrix with the

(p, q)th entry

Mpq
def=
∫
kx(xp,x∗) kx(xq,x∗) p(x∗)dx∗ =

∞∑
i=1

κ2
iφi(xp)φi(xq), (3.26)

where xp,xq ∈ X are the pth and qth observed locations. When the eigenfunctions φi(·)s are not

bounded, the infinite-summation expression for Mpq is often difficult to use. Nevertheless, analytical

results for Mpq are still possible in some cases using the integral expression. An example is the case

of the squared exponential covariance function with normally distributed x, when the integrand is a

product of three Gaussians. Another example is the case of the covariance function of the stationary

Ornstein-Uhlenbeck process with uniformly distributed x. Expressions for both examples are given in

section B.7.2.

3.4 Optimal Error when the Primary Task has no Training Data

If training examples are provided only for task S, then the optimal performance of task T is governed

by the following proposition.

Proposition 3.11. Under optimal sampling on a 1-d space, if the covariance function satisfies Sacks-

Ylvisaker conditions of order s, then εopt
T (ρ, σ2, 1, n) = Θ(n−(2s+1)/(2s+2)

S ) + (1− ρ2)
∑∞

i=1 κi.
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Proof. We obtain εopt
T (ρ, σ2, 1, n) = ρ2εopt

T (1, σ2
n, 1, n) + (1− ρ2)

∑∞
i=1 κi by minimizing Corollary

3.4 wrt XS . Under the same conditions as the proposition, the optimal generalization error of the

single-task GP decays with training set size n as Θ(n−(2s+1)/(2s+2)) [Ritter 2000, Proposition V.3;

Ritter 1996, Remark 5]. Thus ρ2εopt
T (1, σ2

n, 1, n) = ρ2Θ(n−(2s+1)/(2s+2)
S ) = Θ(n−(2s+1)/(2s+2)

S ).

3.5 Theoretical Bounds on the Learning Curve

Using the results from section 3.3, lower and upper bounds on the learning curve may be computed by

averaging over the choice of X using Monte Carlo approximation.5 For example, using Corollary 3.2

and integrating with respect to p(X)dX gives the following trivial bounds on the learning curve:

Corollary 3.12. εavg
T (1, σ2

n, πS , n) 6 εavg
T (ρ, σ2

n, πS , n) 6 εavg
T (0, σ2

n, πS , n).

The gap between the trivial bounds can be analyzed as follows. Recall that πSn ∈ N0 by definition.

Observe that εavg
T (1, σ2

n, πS , (1− πS)n) = εavg
T (0, σ2

n, πS , n), since both effectively give (1− πS)n ex-

amples for task T . Therefore εavg
T (1, σ2

n, πS , n) is equivalent to εavg
T (0, σ2

n, πS , n) scaled along the n-axis

by the factor (1− πS) ∈ [0, 1], and hence the gap between the trivial bounds becomes wider with πS .

For future reference, we also give the following result, which is obtained by using Corollary 3.4, inte-

grating with respect to p(X)dX and noting that εavg
T (1, σ2

n, 1, n) = εavg
T (1, σ2

n, 0, n).

Corollary 3.13. εavg
T (ρ, σ2

n, 1, n) = ρ2εavg
T (1, σ2

n, 1, n) + (1− ρ2)
∑∞

i=1 κi

= ρ2εavg
T (1, σ2

n, 0, n) + (1− ρ2)
∑∞

i=1 κi.

In the rest of this section, we derive non-trivial theoretical bounds on the learning curve before providing

simulation results. Theoretical bounds are particularly attractive for high-dimensional input-spaces, on

which Monte Carlo approximation is harder.

3.5.1 OV-type Lower Bounds

For the single-task Gaussian process, Opper and Vivarelli [1999] have shown that its learning curve is

bounded from below by σ2
n

∑∞
i=1 κi/(σ2

n + nκi), which becomes exact in the asymptotic limit n→∞.

We shall call this the single-task Opper-Vivarelli (OV) bound. This lower bound can be readily combined

with Corollary 3.6a to give

Proposition 3.14. The following three lower bounds on εavg
T (ρ, σ2

n, πS , n) are equivalent.

(a) εavg
T (ρ, σ2

n, πS , n) > ρ2σ2
n

∞∑
i=1

κi

σ2
n + nκi

+ (1− ρ2)σ2
n

∞∑
i=1

κi

σ2
n + (1− πS)nκi

,

(b) εavg
T (ρ, σ2

n, πS , n) > σ2
n

∞∑
i=1

b1iκi

σ2
n + nκi

, where b1i def=
σ2

n + (1− ρ2πS)nκi

σ2
n + (1− πS)nκi

, and

(c) εavg
T (ρ, σ2

n, πS , n) > σ2
n

∞∑
i=1

b0iκi

σ2
n + (1− πS)nκi

, where b0i def=
σ2

n + (1− ρ2πS)nκi

σ2
n + nκi

.

5 Other than using Monte Carlo approximation, we can also obtain approximate lower bounds by combining Corollary 3.6a and

the approximate learning curves for single-task GPs (see e.g., Sollich and Halees [2002]).
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Proof sketch. To obtain (a), we integrate Corollary 3.6a with respect to p(X)dX , and apply the single-

task OV bound twice. For (b), its ith summand is obtained by combining the corresponding pair of ith

summands in (a). Inequality (c) is obtained from (b) by swapping the denominator of b1i with that of

κi/(σ2
n + nκi) for every i.

For fixed σ2
n, πS and n, denote the above bound by OVρ. Then

OV0 = σ2
n

∞∑
i=1

κi

σ2
n + (1− πS)nκi

OV1 = σ2
n

∞∑
i=1

κi

σ2
n + nκi

are both single-task bounds. In particular, from Corollary 3.12, we have that the OV1 is a lower bound

on εavg
T (ρ, σ2

n, πS , n), since it is a lower bound on εavg
T (1, σ2

n, πS , n). How does the lower bound OV1

compare with the lower bound OVρ? From Proposition 3.14a, it is clear from the “mixture” nature of the

bound that the two-tasks bound OVρ is always better than OV1. As ρ2 decreases, the two-tasks bound

moves towards the OV0; and as πS increases, the gap between OV0 and OV1 increases. In addition, the

gap is also larger for rougher processes, which are harder to learn.6 Therefore, the relative tightness of

OVρ over OV1 is more noticeable for lower ρ2, higher πS and rougher processes.

Proposition 3.14b is useful for comparing the OVρ bound with the OV1 bound. Each summand for the

two-tasks case is a factor b1i of the corresponding summand for the single-task case. By considering the

limits n = 0 and n→∞, we obtain b1i ∈ [1, (1− ρ2πS)/(1− πS)[ . Hence OVρ is larger than OV1 by

at most (1−ρ2πS)/(1−πS) times. Similarly, Proposition 3.14c is useful for comparing with OV0: now

each summand for the the two-tasks case is a factor b0i ∈ ](1− ρ2πS), 1] of the corresponding single-

task one. Hence OVρ is less than OV0 by up to ρ2πS times. In terms of the lower bound on the learning

curve, this is the limit to which asymmetric multi-task learning can outperform the single-task learning

that ignores the secondary task. We shall encounter a factor similar to (1 − ρ2πS) when we examine

error deflation factors in section 3.6.2.

It is also worthwhile to see how multi-task learning is affected by the amount of noise in the observations.

To this end, we fix the κis, ρ2, πS and n, and see b1i and b2i as functions of the observation noise variance

σ2
n. Then clearly

σ2
n < (σ2

n)′ =⇒ b1i (σ
2
n) > b1i ((σ

2
n)′) and b0i (σ

2
n) < b0i ((σ

2
n)′), (3.27)

so b1i and b0i become closer to one as the noise increases. The means that the effect of multi-task learning

on the OVρ lower bound decreases.

3.5.2 FWO-type Upper Bounds

In this section, we give upper bounds on the learning curve for the primary task T . These upper

bounds are based on the variational approach of Ferrari Trecate, Williams, and Opper [1999]. To obtain

the bounds, we require a variant of the Lemma 4 from Ferrari Trecate et al.. First, some additional

notations are necessary. Let y def= (y1 . . . yn)T be the n values observed at the set of data locations

6 The less times a process is mean-square differentiable, the rougher it is. For the modified Bessel covariance function of orders

one to three, Williams and Vivarelli [2000, §6] have verified that a rougher process has a learning curve that decays slower.

Intuitively, a rougher process is more “wriggly” and requires more examples to “pin” down. In our context, this means the

effect of πS is more pronounced in the single-task OV bound for ρ = 0 since it determines the number of examples for task T .
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X def= {x1, . . . ,xn} generated via a model M that will be specified later. Recall that φ1, φ2, . . . are the

eigenfunctions of the covariance function kx; and
∫
φi(x)φj(x)p(x)dx = δij . We introduce an (infi-

nite) matrix Φ with entries Φij
def= φj(xi), an (infinite) vector function φT(x) def= (φ1(x), φ2(x), . . .)T

and an (infinite) diagonal matrix Λκ with κi on the diagonals.7 Given the data, we have the space of

functions

H?
def= {φT(x)Ly | L ∈ R∞×n}.

The aim is to use a function g fromH? to estimate the true function f? drawn from the Gaussian process

with zero mean and covariance function kx(·, ·). The quality of this estimation can be evaluated using

the following lemma.

Lemma 3.15. (cf. Ferrari Trecate et al. [1999, Lemma 4]) The generalization error of a function

g ∈ H? is

ε(g ∈ H?, X,M) def=
〈
(f?(x)− g(x))2

〉
f?,y,x

=
∞∑

i=1

κi + tr
(
L
〈
yyT

〉
y
LT
)
− 2 tr

(
L
〈
〈yf?(x)〉f?,y φ

T(x)
〉

x

)
The proof is given in appendix B.5.1.

In order to proceed, it is necessary to specify how y is obtained. For the single-task GP with isotropic

noise, and under correct prior specification, each entry in y is generated via

Miso : y(x) ∼ N (f?(x), σ2
n). (3.28)

Within this setting, it can be shown that minimizing the generalization error with respect toL leads to the

GP mean predictor [Ferrari Trecate et al., 1999, Theorem 5]; see also Kimeldorf and Wahba [1970], and

Ritter [2000, Proposition V.1]. The single-task Ferrari-Williams-Opper (FWO) bound on the learning

curve of the GP is obtained by minimizing 〈ε(g ∈ H?, X,Miso)〉X with respect to g within only the

sub-space of functions

H1
def= {φT(x)DΦTy | D is a diagonal matrix}.

This results in an upper bound on the learning curve. This is because H1 ⊆ H?, so that minimizing

〈ε(g ∈ H1, X,Miso)〉X naturally gives predictors that cannot outperform the GP mean predictor. The

form of functions in H1 is motivated by Projected Bayes Regression [Ferrari Trecate et al., 1999, Defi-

nition 1], wherein the L in H? is constrained to be MΦT for a square matrix M .

To obtain the upper bound on the learning curve for the primary task T when it is assisted in learning

by a secondary task S, we use the asymmetric two-tasks setup described in section 3.2.1 instead of the

Miso model (3.28). Our interest is in the primary task T , so we identify f? with the function for task

T , i.e., f? and fT are synonymous. As before, let fS be the function for the secondary task S. Under

the multi-task Gaussian process model for two tasks, we have 〈f?(x)fS(x′)〉 = ρkx(x,x′), and y is

generated via

Mmt : y(x) ∼

N
(
f?(x), σ2

n

)
if x ∈ XT

N
(
fS(x), σ2

n

)
if x ∈ XS .

(3.29)

7 In Ferrari Trecate et al. [1999], where the focus is on finite-dimensional approximating Gaussian processes, only the m major

eigenvalues and eigenfunctions are used. Since our focus is to obtain an upper bound on the learning curve, we follow Sollich

and Halees [2002] and let m →∞.
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Let y and X be ordered such that the first nT
def= |XT | elements are the observations for task T . Apply-

ing Lemma 3.15 to the above data generation model gives

ε(g ∈ H?, X,Mmt) =
∞∑

i=1

κi + tr
(
L(K(ρ) + σ2

nI)L
T
)
− 2 tr (LI(ρ)ΦΛκ) , (3.30)

where K(ρ) is defined by equation 3.2 on page 55, and

I(s) def=

(
InT×nT

0

0 sInS×nS

)
. (3.31)

This is shown in appendix B.5.3. In addition, we shall constrain g to be from the space of functions

H%
def= {φT(x)DΦTI(%)y | D is a diagonal matrix}

parameterized by %, which may be fixed or optimized for. Let di be the ith entry of matrixD, and define

G%
def=

(
Kx

TT ρ%Kx
TS

ρ%Kx
ST %2Kx

SS

)
+ σ2

nI(%
2). (3.32a)

Then from equation 3.30 and the factorization in H%, which gives L = DΦTI(%), we have

ε(g ∈ H%, X,Mmt) =
∞∑

i=1

κi + tr
(
DΦTG%ΦD

)
− 2 tr

(
DΦTI(ρ%)ΦΛκ

)
=

∞∑
i=1

κi +
∞∑

i=1

d2
i

(
ΦTG%Φ

)
ii
− 2

∞∑
i=1

di

(
ΦTI(ρ%)ΦΛκ

)
ii
. (3.32b)

SinceH% ⊆ H?, minimizing 〈ε(g ∈ H%, X,Mmt)〉X will give an upper bound on the learning curve for

task T . Following the derivation in appendix B.5.2, we have the next proposition.

Proposition 3.16. Let α(x) def= (1− πS) + πSx and

ci(%) =
{

1
α(%2)

[
(1− πS)2 + %2π2

S + 2ρ%πS(1− πS)
]
n− 1

}
κi

+
∫
kx(x,x)[φi(x)]2p(x)dx+ σ2

n.

Then, for all %,

εavg
T (ρ, σ2

n, πS , n) 6
∞∑

i=1

κi − n
[α(ρ%)]2

α(%2)

∞∑
i=1

κ2
i

ci(%)
. (3.33)

We shall call this the FWO% upper bound. The single-task FWO upper bound is recovered with

ρ = % = ±1 or πS = 0.

The tightness of the FWO% upper bound depends on %. One trivial setting is % = 0, giving the FWO0

bound. It is clear from equation 3.32 that % = 0 will “zero-out” the observations for task S, so that

we are effectively only left with the observations for task T . The FWO0 bound is therefore also the

single-task FWO upper bound on the learning curve εavg
T (0, σ2

n, πS , n), which in turn is an upper bound

on εavg
T (ρ, σ2

n, πS , n) according to Corollary 3.12.

For the rest of this section, we shall look at three other settings of %. The first is % = 1/ρ; this is related

to the equivalent noise construction of section 3.3.3. The second is % = ρ, and this has a natural interpre-

tation of a two-step prediction process. Finally, the third is % = %̂, where %̂ is chosen to approximately

minimize FWO%̂.
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3.5.2.1 Equivalent Noise and the FWO1/ρ Bound

An upper bound on the learning curve for task T may be obtained by using % = 1/ρ in Proposition

3.16. This upper bound, called the FWO1/ρ bound, may be understood in an intuitive way, based

on the equivalent noise construction of section 3.3.3. Instead of proceeding from the upper bound

σ2
T (1, σ2

n, ¯̄σ
2
n), we proceed directly from the exact posterior variance given by equation 3.24. Suppose

that the data is generated via a single-task GP with correlated observation noise

Mco : y(x) ∼ GP(f?(x), γ2(x,x′)), (3.34)

where the observation noise (co)variance is

γ2(xi,xj) def= δ(xi ∈ XT )δ(xj ∈ XT ) δijσ
2
n + δ(xi ∈ XS)δ(xj ∈ XS)

[
βkx(xi,xj) + ρ−2δijσ

2
n

]
.

By Lemma 3.8 on page 62, this data model gives the same posterior variance for task T as the multi-task

data modelMmt. Together with the constraint that g belongs toH1, we have the following generalization

error using Lemma 3.15:

ε(g ∈ H1, X,Mco) =
∞∑

i=1

κi + tr
(
DΦTG1/ρΦD

)
− 2 tr

(
DΦTΦΛκ

)
, (3.35)

where G1/ρ is G% with % = 1/ρ, and G% is defined by (3.32a). The derivation is in appendix B.5.4.

Compared with equation 3.32, it is clear that

ε(g ∈ H1, X,Mco) = ε(g ∈ H1/ρ, X,Mmt).

These are the two ways in which the upper bound FWO1/ρ may be obtained. The equivalent (correlated)

noise construction is useful for comparing to the single-task FWO bound since both constrain g to

be from the same hypothesis space H1. Of independent interest is that this construction provides an

approach to upper bound the learning curve of single-task GP with observations corrupted by correlated

noise, where the correlated noise needs not arise from the multi-task setting considered here. The

following variant of Theorem 6 from Ferrari Trecate et al. [1999] states this upper bound.

Theorem 3.17. (Ferrari Trecate et al. [1999], modified second part of Theorem 6) Consider a zero-

mean GP with covariance function kx(·, ·), and eigenvalues κi and eigenfunctions φi(·) under the

measure p(x)dx; and suppose that the noise (co)variances of the observations are given by γ2(·, ·).
For n observations {xi}n

i=1, let H and Φ be matrices such that Hij
def= kx(xi,xj) + γ2(xi,xj) and

Φij
def= φj(xi). Then the learning curve at n is upper-bounded by∑∞

i=1 κi − n
∑∞

i=1 κ
2
i /ci, where ci def=

〈
(ΦTHΦ)ii

〉
/n,

and the expectation in ci is taken over the set of n input locations drawn independently from p(x).

In the next section, we shall look at the FWOρ bound which is provably better than the FWO1/ρ bound.

3.5.2.2 Transformation of Secondary Observations and the FWOρ Bound

We now turn our attention to the FWOρ bound, which is the FWO% bound with % = ρ. This is con-

structed by restricting g to the sub-space of functions

Hρ = {φT(x)DΦTI(ρ)y | D is a diagonal matrix}.



3.5. Theoretical Bounds on the Learning Curve 69

Let y be partitioned into yT and yS for observations at XT and XS . Under Hρ, the data vector y is

linearly transformed into (yT , ρyS)T before applying a function from H1. As noted previously, the

choice of H1 is motivated by Projected Bayes Regression. We now provide a statistical understanding

to the transformation of y, specifically that of the sub-vector yS . Consider the multi-task data model

Mmt given by (3.29). Let yS
T be the vector of noisy observations for task T at XS . Then random vector

(yS
T ,yS)T has zero mean and covariance

C

((
yS

T

yS

))
=

(
Kx

SS + σ2
nI ρKx

SS

ρKx
SS Kx

SS + σ2
nI

)
.

Since our observations are yS , we condition yS
T on yS to obtain the predictive mean

〈
yS

T | yS

〉
= ρKx

SS(Kx
SS + σ2

nI)
−1yS . (3.36)

In the limit of negligible noise, i.e., σ2
n → 0, we may approximate the right of the equation by ρyS . Thus,

ρ is the approximate common slope of the regression line from each element in yS
T on the corresponding

element in yS [Rodgers and Nicewander, 1988, §3]. Therefore, the transformation I(ρ) in Hρ converts

the data vector y, which is generated by both tasks T and S, to the data vector (yT , ρyS)T, which is

approximately generated by only the primary task T .

Comparison with the FWO1/ρ bound The following proposition is useful for excluding the FWO1/ρ

bound from further analysis.

Proposition 3.18. Then, for all ρ, σ2
n, πS and n, the FWOρ bound is not more than the FWO1/ρ bound,

i.e. the FWOρ bound is as least as tight as the FWO1/ρ bound.

Proof sketch. Using Proposition 3.16, a sufficient condition for the current proposition to hold is

α(1/ρ2)
[α(1)]2

ci(1/ρ) >
α(ρ2)

[α(ρ2)]2
ci(ρ),

where ci(%) and α(·) are as defined in Proposition 3.16. This condition is proved in appendix B.5.5.

Although the FWO1/ρ is not as useful as FWOρ for bounding the learning curve of task T from above,

we emphasize that the FWO1/ρ bound is still useful for intuitive comparison with the single-task FWO

bound, via the equivalent noise construction described in section 3.5.2.1.

Comparison with trivial single-task FWO upper bound, FWO0 We now compare the FWOρ bound

with the FWO0 bound, which is also the FWO bound on the single-task learning curve εavg
T (0, σ2

n, πS , n).

We wish to learn when the FWOρ bound is tighter than the FWO0 bound. For a stationary covariance

function kx, the following condition is sufficient for the FWOρ bound to be tighter:

n <

∑∞
i=2 κi + σ2

n

κ1

1− πS + πSρ
2

(1− ρ2)(1− πS)πS

, (3.37)

where, we recall, κ1 is the largest eigenvalue of kx under p(x). This expression is derived in ap-

pendix B.5.6. Consider the second factor on the right of the inequality. The higher the value of this

factor, the larger the range of n over which the FWOρ bound is guaranteed to be a tighter bound. Figure
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Figure 3.4: Contour plot of the factor (1 − πS + πSρ
2)/(1 − ρ2)(1 − πS)πS in (3.37). The higher the

value of this factor, the larger the range of n over which the FWOρ bound is surely tighter than FWO0.

3.4 provides a contour plot of this factor. From the plot, we can deduce that a higher value of ρ2 and/or

a more extreme value of πS give a tighter FWOρ over a larger range of n.

Now, consider the first factor on the right of (3.37). Dividing the numerator and denominator by∑∞
i=1 κi, which is the variance of the noise-free stationary process, we see that this factor decreases with

the signal-to-noise ratio
∑∞

i=1 κi/σ
2
n. This first factor also clearly depends on the ratio

∑∞
i=2 κi/κ1, so

it is worthwhile to investigate this relation. Without any loss of generality, we limit attention to the case

of unit variance for the noise-free Gaussian process, so that
∑∞

i=1 κi = 1, κ1 < 1 and the ratio can be

expressed as 1/κ1 − 1. For a Gaussian process on a d-dimensional input space, let subscript (i) denotes

the ith dimension, and use κ̄ for the largest process eigenvalue. If kx(x,x′) =
∏

i k
x
(i)(x(i), x

′
(i)), then

κ̄ =
∏

i κ̄(i), where κ̄(i) < 1 for all i. Thus the largest process eigenvalue κ̄ decays with increasing

dimension d, so that
∑∞

i=2 κi/κ1 grows with d.

Summarizing the analysis of the preceding two paragraphs, we can say that the FWOρ bound is surely

tighter than the FWO0 bound over a larger range of n for higher |ρ|, more extreme πS , higher dimension

d, and lower signal-to-noise ratio
∑∞

i=1 κi/σ
2
n.

3.5.2.3 Optimal FWO% Upper Bounds: the FWO%? and FWO%̂ Bounds

The comparison that concludes the preceding section also has this interpretation: FWOρ is the tighter

bound for small n, and FWO0 is the tighter bound for large n. We now give a FWO%-type bound that

transits naturally from the FWOρ bound to the FWO0 bound as n increases. We begin by differentiating

the FWO% bound (equation 3.33 on page 67) with respect to % and setting this derivative to zero. Thus,

the best % is %? such that the gradient

d
d%

{
− [α(ρ%)]2

α(%2)

∞∑
i=1

κ2
i

ci(%)

}
= 2π(1− π)

α(ρ%)
[α(%2)]2

∞∑
i=1

κ2
i

[ci(%)]2
c̃i(%) (3.38)

is zero at % = %?, where

c̃i(%) def= π%(1− ρ2)nκi + (%− ρ)
(∫

kx(x,x)[φi(x)]2p(x)dx+ σ2
n − κi

)
. (3.39)

An analytical solution for %? seems implausible due to the coupling between % and the eigenvalues

κis. Nevertheless we may perform a computation search for %? for every n, using the gradient (3.38).
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However, we prefer to avoid the search for every n, and for this we shall seek a solution that captures

the desired behaviour qualitatively.

First, observe that the derivative is a continuous function of %. Moreover, for ρ > 0, it is clear that

c̃i(0) < 0 and c̃i(ρ) > 0,8 so that the gradient for the FWO% bound is negative at % = 0 and positive at

% = ρ. The converse holds for ρ < 0. Therefore, the optimal value %? is between 0 and ρ where the

gradient is zero; it is also clear that this optimal value depends on n. If we may approximate %? with a

value between 0 and ρ, the value may as well be obtained by setting c̃1(%) = 0, giving

%̂ def=
ρ

1 + πS(1− ρ2)n
{(∫

kx(x,x)[φ1(x)]2p(x)dx+ σ2
n

)
/κ1 − 1

}−1 . (3.40)

The choice of c̃1(%) = 0 is to optimize for the contribution by the largest eigenvalue to the FWO%

bound. Using % = %̂, we have a natural transition from FWOρ to FWO0 as n increases, since %̂ = ρ

when n = 0, and %̂ = 0 when n→∞. For a stationary covariance function kx, the expression within

the curly brackets in (3.40) can be written as (
∑∞

i=2 κi+σ2
n)/κ1, which we have encountered previously

in (3.37), and the higher the value of expression, the higher the value of ρ̂. By arguments similar to

those for (3.37), ρ̂ grows with the dimension of the input space and with lower signal-to-noise ratio∑∞
i=1 κi/σ

2
n.

The gradient argument can be modified straightforwardly into an alternative proof for Proposition 3.18,

by observing, for positive ρ, that ρ 6 1/ρ and that the gradient (3.38) is positive for % > ρ.

3.5.3 OV-type and FWO-type Bounds with No Training Data for the Primary Task

We now return to the case when there is no training data for the primary task, i.e., when XT = ∅ and

πS = 1. According to Corollary 3.13,

εavg
T (ρ, σ2

n, 1, n) = ρ2εavg
T (1, σ2

n, 1, n) + (1− ρ2)
∞∑

i=1

κi. (3.41)

Notice that εavg
T (1, σ2

n, 1, n) is the learning curve for a single-task GP. Hence, when no training data is

available for the primary task, any bound on the single-task GP may be used for εavg
T (1, σ2

n, 1, n) in the

right of (3.41) to obtain a bound for the asymmetric two-tasks case. In particular, when the single-task

OV lower bound is used, we recover the OVρ bound (Proposition 3.14) with πS = 1. Similarly, when

the single-task FWO upper bound is used, we recover the FWO% bound (Proposition 3.16) with πS = 1.

In the sense that no extra slack is involved in the recovery, we say that the OVρ and FWO% bounds obey

Corollary 3.13, and that they are tight at πS = 1.

3.5.4 Reversing Upper and Lower Bounds using Symmetric Multi-task Curves

Any bound for the asymmetric two-tasks case may be reversed by making use of the relation given

by equation 3.10 between the symmetric and asymmetric scenarios. Denote the lower bounds on the

learning curve for the symmetric and asymmetric case by
¯
εavg and

¯
εavg
T , and the respective upper bounds

8 This observation depends on
R

kx(x, x)[φi(x)]2p(x)dx > κi, which is proved in appendix B.5.5.
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by ε̄avg and ε̄avg
T . To obtain the

¯
εavg and ε̄avg, the eigenvalues (3.16) for the symmetric two-tasks case are

used in, say, the single-task OV and FWO bounds. Then, using equation 3.10, we have

¯
εavg(ρ, σ2

n, πS , n) 6 πSε
avg
T (ρ, σ2

n, 1− πS , n) + (1− πS)εavg
T (ρ, σ2

n, πS , n)

6 πS ε̄
avg
T (ρ, σ2

n, 1− πS , n) + (1− πS)εavg
T (ρ, σ2

n, πS , n) (3.42)

=⇒ εavg
T (ρ, σ2

n, πS , n) > (1− πS)−1
[̄
εavg(ρ, σ2

n, πS , n)− πS ε̄
avg
T (ρ, σ2

n, 1− πS , n)
]
; (3.43)

and similarly,

εavg
T (ρ, σ2

n, πS , n) 6 (1− πS)−1
[
ε̄avg(ρ, σ2

n, πS , n)− πS¯
εavg
T (ρ, σ2

n, 1− πS , n)
]
. (3.44)

We will not consider these reversed bounds any further since we find them to be extremely loose in the

simulations.

3.5.5 Comparing Bounds to Simulations of the Learning Curve

We compare our bounds with simulated learning curves. We follow two setups from Sollich and Halees

[2002], namely their third scenario and Figure 6 therefor, and their first scenario and Figure 3(top) there-

for. For the first setup, the input space is one dimensional with Gaussian distributionN (0, 1/12), and the

covariance function is the unit variance squared exponential (SE) kx(x, x′) = exp[−(x− x′)2/(2l2)].

For the second setup, the input space is one dimensional with uniform density on the unit interval [0, 1],

and the covariance function is that of the unit variance stationary Ornstein-Uhlenbeck process (OU)

kx(x, x′) = exp[−|x− x′|/l]. In either case, the length-scale is l = 0.01, the observation noise variance

is σ2
n = 0.05, and the learning curves are computed for up to n = 300 training data points. The length-

scale is chosen by Sollich and Halees so that the learning curves decay reasonably for n = 1 . . . 300.9

When required, the average over x∗ is computed analytically, as per section 3.3.4. The empirical aver-

age over X def= XT ∪XS , denoted by 〈〈·〉〉, is computed over 100 randomly sampled training sets. The

process eigenvalues κis needed to compute the theoretical bounds for both the SE and OU covariance

functions10 are given in section 3.2.3. Appendix B.7 gives additional details on the simulations. These

two setups will be used in later sections again.

Learning curves for pairwise combinations of ρ2 ∈ {1/8, 1/4, 1/2, 3/4} and πS ∈ {1/4, 1/2, 3/4} are

computed. We compare the following curves:

1. the “true” multi-task learning curve 〈〈εT 〉〉 obtained by averaging σ2
T (ρ, πS) over x∗ and X;

2. the theoretical bounds OVρ and FWO%̂ from sections 3.5.1 and 3.5.2.3;

9 The expected number of zero crossings (up or down) per unit interval for a stationary Gaussian process with covariance function

k(x, x′) = k(x− x′) is given by
p
−k′′(0)/k(0)/π [Itô, 1964; Ylvisaker, 1965]. For the SE covariance function with

l = 0.01, this is 1/lπ ≈ 32. With 32 expected zero crossings per interval, the Gaussian process prior favours “wriggly”

functions, so that a rather large number of samples are required to learn the true function. The decay of the learning curve is

therefore not too rapid for n = 1 . . . 300, and we mostly stay in the “interesting” region of the learning curve.
10 In fact, Sollich and Halees [2002] use a periodic modification of the OU covariance function in order to obtain the process

eigenvalues by Fourier transformation. We, however, prefer and choose to use the OU covariance function as it is, since this is

what is typically used in practice. Nevertheless, Sollich and Halees [2002] explain that one can expect similar learning curves

in either case for the choice of input domain and process length-scale. Appendix B.6.2 shows that the asymptotic eigenvalues

of the periodic OU covariance differs from those of the conventional by a constant multiplicative factor of 4.
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(a) kx = SE, ρ2 = 1/2, πS = 1/2
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(c) kx = OU, ρ2 = 1/2, πS = 1/2
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(d) kx = OU, ρ2 = 3/4, πS = 3/4

Figure 3.5: Comparison of various bounds for two settings of (ρ, πS) with the SE and OU covariance

functions. Each graph plots εavg
T against n and consists of the multi-task learning curve (middle ), the

theoretical bounds OVρ and FWO%̂ using Propositions 3.14/3.16 (lower/upper ), the experimental trivial

lower/upper bounds using Corollary 3.12 (lower/upper ), and the experimental lower/upper bounds

using Corollaries 3.6a/3.10 (× / 4 ). The reversed bounds are omitted because they are rather loose for

the given (ρ2, πS) values. The thickness of the multi-task curve reflects 95% confidence interval.

3. the single-task learning curves 〈〈εT (0)〉〉 and 〈〈εT (1)〉〉 — obtained by averaging σ2
T (0) and σ2

T (1)

— that trivially bound the multi-task learning curve from above and below;

4. the empirical or experimental lower bound 〈〈̄εT 〉〉 and upper bound 〈〈ε̄T 〉〉 obtained by averaging

Corollaries 3.6a and 3.10 over X; and

We do not include the theoretical upper bounds FWO1/ρ and FWOρ since they are both looser than

FWO%̂. Figure 3.5 provides some indicative plots of the curves.

We summarize with the following observations that apply to both the SE and OU covariance functions:

(a) The gap between the trivial bounds 〈〈εT (0)〉〉 and 〈〈εT (1)〉〉 increases with πS , as described at the

start of section 3.5. (b) We find the lower bound 〈〈̄εT (ρ)〉〉 a rather close approximation to the “true”

multi-task learning curve 〈〈εT (ρ)〉〉, as evidenced by the overlap between the× lines and the middle

lines in Figure 3.5. (c) The curve for the experimental upper bound 〈〈ε̄T (ρ)〉〉 using the equivalent noise

method has jumps, e.g., the 4 lines in Figure 3.5, because the equivalent noise variance ¯̄σ2
n increases

whenever a datum for XS is sampled. (d) The theoretical FWOρ̂ upper bound is even tighter than the
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(a) kx = SE, ρ2 = 1/8, πS = 3/4

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

1
εavg
T

n

(b) kx = SE, ρ2 = 3/4, πS = 3/4

Figure 3.6: Comparison to the trivial bounds for two settings of (ρ, πS) with the SE covariance function.

Each graph plots εavg
T against n and consists of the “true” multi-task learning curve (middle ), the

theoretical lower/upper bounds using Propositions 3.14/3.16 (lower/upper ), and the OV and FWO

single-task bounds for ρ = 1 and ρ = 0 (lower/upper ). The thickness of the “true” multi-task learning

curve reflects 95% confidence interval. The graphs for the OU covariance function are similar except that

the gaps between the lower/upper and lower/upper lines are larger; see point (e) in text.

experimental trivial upper bound 〈〈εT (0)〉〉 for small n; however, we find the theoretical OVρ lower bound

to be consistently looser than the experimental trivial lower bound 〈〈εT (1)〉〉. (e) For small n, 〈〈εT (ρ)〉〉
is closer to FWOρ̂, but becomes closer to OVρ as n increases, as shown by the unmarked solid lines in

Figure 3.5. This is because the theoretical lower bound OVρ is based on the asymptotically exact single-

task OV bound and the
¯
εT (ρ) bound, which has been observed to approximate the multi-task learning

curve 〈〈εT 〉〉 rather closely; see point (b).

Comparison with trivial theoretical bounds Corollary 3.12 states that the multi-task learning curve

〈〈εT 〉〉 is bounded from below and above by the ρ = 1 and ρ = 0 single-task learning curves. We compare

the single-task OV lower bound for ρ = 1 against OVρ, and the single-task FWO upper bound for ρ = 0

against FWO%̂. Two examples are given in Figure 3.6. In summary, we find that (a) the asymmetric

two-tasks bounds OVρ and FWO%̂ are always tighter than the trivial single-task OV and FWO bounds,

as illustrated in Figure 3.6 where the lines envelope the lines; (b) the lower the value of πS ,

the more similar the single-task bounds are to their respective two-tasks bounds. This is intuitive since

the smaller the training set for task S, the lesser the effect of multi-task learning for any ρ; (c) the

relative tightness of the OVρ bound is more noticeable for smaller ρ2, in agreement with the discussion

in section 3.5.1; (d) the trivial single-task FWO bound and the FWO%̂ bound converges for large n,

since %̂→ 0 as n→∞; and (e) the difference between the single-task bounds and the two-tasks bounds

is more noticeable for the OU covariance function than for the SE covariance function. This agrees

with analyses in sections 3.5.1 and 3.5.2.3, since a process with a SE covariance function is smoother

than one with an OU covariance function, and the largest eigenvalue of the SE covariance function,

κ̄ = 0.034, is larger than that of the OU covariance function, κ̄ = 0.020.
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(a) kx = SE, ρ2 = 1/2, πS = 1/2
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Figure 3.7: Bounds on learning curves in the symmetric multi-task case, for two settings of (ρ, πS) with

the SE covariance function. Each graph plots εavg against n and consists of the “true” multi-task learning

curve (middle ), the theoretical lower/upper bounds from bounds in the asymmetric case using equation

3.45 (lower/upper ), and the lower/upper bounds using the analytical eigenvalues (lower/upper ) with

the single-task OV and FWO bounds. The thickness of the “true” multi-task learning curve reflects 95%

confidence interval. The graphs for the OU covariance function are qualitatively similar.

Symmetric case For completeness, we also compute and compare the bounds on the symmetric two-

tasks case. We compare the theoretical OV lower bound
¯
εavg and FWO upper bound ε̄avg using the

eigenvalues given by equation 3.16 to the lower and upper bounds obtained using equation 3.10

εavg(ρ, σ2
n, πS , n) > πS¯

εavg
T (ρ, σ2

n, 1− πS , n) + (1− πS)
¯
εavg
T (ρ, σ2

n, πS , n) (3.45a)

εavg(ρ, σ2
n, πS , n) 6 πS ε̄

avg
T (ρ, σ2

n, 1− πS , n) + (1− πS)ε̄avg
T (ρ, σ2

n, πS , n) (3.45b)

that involve pairs of asymmetric two-tasks bounds. For
¯
εavg
T and ε̄avg

T we use OVρ and FWO%̂ and denote

the corresponding symmetric two-tasks bounds by
¯
εavg

OV and ε̄avg
FWO . Figure 3.7 gives plots for two chosen

values of (ρ2, πS) and the SE covariance function. We find
¯
εavg (resp. ε̄avg) to be very similar curves to

¯
εavg

OV (resp. ε̄avg
FWO ), with the former slightly tighter. This simulation result suggests that our asymmetric

two-tasks bounds are as tight as can be achieved using OV-type and FWO-type bounds.

3.6 The Effects of ρ2 and πS on Multi-task Learning

For the multi-task model described in section 3.2.1, multi-task learning is characterized by two param-

eters: (1) the degree of “relatedness” ρ between the two tasks, and (2) the ratio πS of total training data

for the secondary task. This section will look at how ρ2 and πS affect multi-task learning; in particular,

we will see how they interact with the smoothness of the function that is to be learnt. We measure the

effects on multi-task learning with the ratio of the learning curve for multi-task GP learning to that for

an appropriate baseline single-task case. By approximating this ratio, we obtain analytic expressions so

as to further our insights into multi-task learning. The approximation replaces the true learning curve

with the asymptotic orders of the OV lower bound for multi-task learning, which are derived directly

from those for the single-task case.
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We shall focus on and give examples using the squared exponential (SE) covariance function and the

covariance function of the stationary Ornstein-Uhlenbeck process (OU), both on a one-dimensional in-

put space. These two are at the extreme ends of smoothness of random functions — the SE covariance

function gives an infinitely mean square differentiable function while the OU process is not mean square

differentiable — and will serve to bring out how smoothness bears on multi-task learning. One conclu-

sion in this section is that multi-task learning, whether symmetric or asymmetric, generally has more

influence over the learning of a smooth process than a rough process.

For a Gaussian process with covariance function kx under a given probability measure, we consider the

following decays of the process eigenvalues κis of kx:

κi ∼

η0(bi)−r for power-law decay

η0b
−i for exponential decay,

(3.46)

for some constants η0 > 0, and b > 0 (for power-law decay) or b > 1 (for exponential decay). For exam-

ple, the OU process with length-scale l has eigenvalues decaying with power-law with r = 2, b = π and

η0 = 2/l; and the SE covariance function in section 3.5.5 has exponentially decaying eigenvalues with

η0 = 0.034, which is obtained by using σ2
x = 1/12 and l = 0.01 in equation 3.15 on page 57. To avoid

distraction from our present purpose, we postpone the discussion on the generality of equation 3.46 to

appendix B.8.1. It suffices to bear in mind that a Gaussian process with faster decaying eigenvalues is

smoother in the mean-square and almost-sure sense; see section 3.2.3.

We now state the asymptotic orders for the OV bound on the learning curve of single-task GP learning.

It is shown in appendix B.8 that the OV lower bound on the learning curve for the single-task case at n

noisy observations is

σ2
n

∞∑
i=1

κi

σ2
n + nκi

∈

Θ
(
(η0ñ)1/r/ñ

)
for power-law decay

Θ(log(1 + η0ñ)/ñ) for exponential decay,
(3.47)

where ñ def= n/σ2
n and σ2

n is the common noise variance of the observations. That n and σ2
n occur in

equation 3.47 only through ñ shows the duality between n and σ2
n: large sample size is the same as

small noise variance within the asymptotics of the OV lower bound. In additional, since the sum of the

eigenvalues is the average prior variance of a Gaussian process, the prior variance of the process enters

the order relations through η0, where higher prior variance gives higher η0. The constants implicit within

the Θ operators are given in appendix B.8; for our current purpose, it suffices to treat the above order

relations as equalities.11

Bibliographic note The two asymptotic orders (3.47) agree with the experimental results of Williams

and Vivarelli [2000, §6.2]. The order for the case of eigenvalues decaying with power-law agrees with

the order for the lower continuous approximation to the true learning curve [Sollich and Halees, 2002,

§2], and with the order for the optimal error (see section 3.4), while the order for the case of exponen-

tially decaying eigenvalues has been stated by Opper and Vivarelli [1999]. The merit of (3.47) over the

above cited literature is that it is more exact: it also includes dependence on σ2
n and η0. This exactness

is required for analyzing multi-task learning with the SE covariance function in the rest of this section.
11 It is possible to state the conditions under which the constants cancel out when considering the ratios of the learning curves.

This is not done at present in order not to obscure the main subject of this section.
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3.6.1 Symmetric Multi-task Learning and Error Inflation Factors

Symmetric multi-task learning may be compared with single-task learning using the ratio, at n training

samples, of the learning curve of multi-task learning to the learning curve of single-task learning:

IF(ρ, σ2
n, πS , n) def=

εavg(ρ, σ2
n, πS , n)

εavg(1, σ2
n, 1, n)

. (3.48)

This ratio is to the single-task learning when ρ = 1, i.e., when task T and task S are indistinguishable.

The ratio is certainly greater than one, so it is an inflation factor that measures the increase in error when

tasks T and S are other than perfectly correlated.

An approximation replaces each true learning curve value in (3.48) with the asymptotics of the OV lower

bound on that value. In the symmetric multi-task case, the asymptotics can be derived using the process

eigenvalues (1/2 ±
√

1/4− ω)κi, where ω def= πS(1 − πS)(1 − ρ2) (see section 3.2.3), which leads

to the following order relations for the Ornstein-Uhlenbeck process (OU) and the squared exponential

(SE) covariance function on one-dimensional input spaces.

Ornstein-Uhlenbeck (OU) : Θ
(

1
ñ

(η0ñ)1/2
√

1 + 2
√
ω

)
(3.49)

Squared Exponential (SE) : Θ
(

1
ñ

log
[
1 + η0ñ+ ω(η0ñ)2

])
. (3.50)

The derivations are in appendix B.8.3. Using these order relations in place of the true learning curves in

(3.48) gives approximate inflation factors for the OU and SE covariance functions:

ÎFOU(ρ, σ2
n, πS , n) =

√
1 + 2

√
ω (3.51a)

ÎFSE(ρ, σ2
n, πS , n) =

log
[
1 + η0ñ+ ω(η0ñ)2

]
log [1 + η0ñ]

≈ 1 +
log [1 + ωη0ñ]
log [1 + η0ñ]

, (3.51b)

where the approximation on ÎFSE is for large η0ñ.

Figure 3.8 on the next page uses the setup in section 3.5.5 and plots the contours of the inflation factors

(and their approximations) for the OU and SE covariance functions. Comparing Figure 3.8a to Figure

3.8c for the SE covariance function, and Figure 3.8b to Figure 3.8d and Figure 3.8f for the OU covari-

ance function, we see that the contours for the approximations to the inflation factors agree rather well

with the empirical ones, in both scale and shape. This suggests that it is worthwhile to use the approxi-

mations (3.51) to understand symmetric multi-task learning. We make the following observations.

1. The quantity ω, which also appears in the process eigenvalues, is intrinsic to symmetric multi-task

learning. For a given kx and p(x), similar learning curves may be obtained for two multi-task

settings if they have the same value for ω. For example, we may expect a multi-task setup with

(πS , %
2) = (0.5, 0.5) to have a learning curve similar to that of a setup with (πS , %

2) = (0.3, 0.4),

since the values for ω in these two setups are 0.125 and 0.126. This observation is supported em-

pirically: referring to Figure 3.8e, which plots the empirical inflation factor contours at n = 300

for the SE covariance function, we see that these two multi-task setups both lie close to the contour

valued 1.7.

2. The contours in Figure 3.8 are steeper for the SE covariance function than for the OU covariance

function. This means that multi-task learning has more influence on the learning curve for the SE
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(a) ÎFSE(ρ, 0.05, πS , 150)

1.4

1.3

1.2

1.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ2

πS
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Figure 3.8: Contour plots of the error inflation factors for the symmetric multi-task case at n = 150 and

n = 300 (with σ2
n = 0.05), and using the setup in section 3.5.5. The left plots are for the SE covariance

function, and the right plots are for the OU covariance function. The top plots are the approximations

to the inflation factors using the asymptotics to the OV lower bound, while the middle and bottom plots

are obtained using the empirical learning curves. The contour plot (b) is independent of n and σ2
n; see

(3.51a).
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Figure 3.9: Curves summarizing the effects of ω def= πS(1− πS)(1− ρ2) on symmetric multi-task learn-

ing. The black line is for the OU covariance function using (3.51a), while the green and red lines are for

the SE case using (3.51b) with η0ñ taking values 10 and 100. The red and green lines range to a larger

value, showing that symmetric multi-task learning affects the GP with SE covariance more than it does

the OU process.

than for the OU. Figure 3.9 plots the approximations (3.51) as functions of ω, which ranges from

0 to 1/4. In the SE case, two functions are plotted, one with η0ñ = 10 (green curve) and another

with η0ñ = 100 (red curve), which is approximately the value of η0ñ for Figure 3.8a. The figure

shows that, even for moderate values of η0ñ, the functions of ω in the SE case range to a higher

value than the function in the OU case. Therefore multi-task learning has more effect in the SE

case than in the OU case.

3. The parameters n, σ2
n and η0 do not appear in (3.51a); this suggests that multi-task learning is

less affected by variations in these three parameters for the OU covariance function than for the

SE. This is illustrated empirically for parameter n when we compare Figure 3.8c to Figure 3.8e

for the SE covariance function, and Figure 3.8d to Figure 3.8f for the OU covariance function.

We observe that the contour plots for the SE case have more differences between n = 150 and

n = 300 than the contour plots for the OU case. This shows that n influences multi-task learning

with the SE covariance function more than it influences learning with the OU.

3.6.2 Asymmetric Multi-task Learning and Error Deflation Factors

We now look at the influence of ρ2 and πS on asymmetric multi-task learning. Instead of the inflation

factor used the symmetric multi-task case, we consider the deflation factor

DF(ρ, σ2
n, πS , n) def=

εavg
T (ρ, σ2

n, πS , n)
εavg
T (0, σ2

n, πS , n)
(3.52)

that measures the reduction in error when the secondary task S is used to assist the primary task T in

learning. As before, an approximation to the factor replaces each value of the true learning curve by

the asymptotic value of its OVρ bound, which is obtained by applying the asymptotics of the single-task

OV bound twice within the mixture formation of the OVρ bound (Proposition 3.14a). In this case, it is
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relatively straightforward to consider the more general class of GPs with eigenvalues decaying with an

order-r power-law instead of restricting to just the Ornstein-Uhlenbeck process (OU) that has quadratic-

decaying eigenvalues. The approximations to the error deflation factors for power-law decaying and

exponentially decaying process eigenvalues are

D̂F(r)(ρ, σ2
n, πS , n) =

ρ2(η0ñ)1/r/ñ+ (1− ρ2) (η0(1− πS)ñ)1/r
/ ((1− πS)ñ)

(η0(1− πS)ñ)1/r
/ ((1− πS)ñ)

= 1− ρ2
(
1− (1− πS)(r−1)/r

)
(3.53a)

D̂FSE(ρ, σ2
n, πS , n) =

ρ2 log(1 + η0ñ)/ñ+ (1− ρ2) log (1 + η0(1− πS)ñ) / ((1− πS)ñ)
log (1 + η0(1− πS)ñ) / ((1− πS)ñ)

= 1− ρ2

(
1− (1− πS)

log (1 + η0ñ)
log (1 + η0(1− πS)ñ)

)
. (3.53b)

The D̂FSE(ρ, σ2
n, πS , n), which is for exponentially decaying eigenvalues, applies to the squared ex-

ponential covariance function (SE). Similar to the approximate error inflation factors for symmetric

multi-task learning, the approximate error deflation factor for power-law decay (3.53a) does not depend

on n, σ2
n and η0, while that for exponential decay does.

Figure 3.10 uses the setup in section 3.5.5 and plots the contours of the error deflation factors (and their

approximations) for the OU (r = 2) and the SE covariance functions. As for the symmetric multi-task

case, we compare Figure 3.8a to Figure 3.8c for the SE covariance function, and Figure 3.8b to Figure

3.8d for the OU covariance function. The contours for the approximations to the deflation factors agree

rather well with the empirical ones, in both scale and shape. Thus the approximations (3.53) may be

further analyzed to give insights to asymmetric multi-task learning. This is the subject henceforth.

Unlike symmetric multi-task learning that seems to be intrinsically governed by πS(1− πS)(1− ρ2),

this governing property does not seem to feature in asymmetric multi-task learning. However, if we may

generalize, the approximate error deflation factors share the common form

D̂F(ρ, σ2
n, πS , n) = 1− ρ2π̂S , (3.54)

where we call π̂S the effective proportion of observations for the secondary task S. This is related

to Proposition 3.14c, the third formulation for the OVρ lower bound, since there the b0i factors equal

1− ρ2πS in the limit of large n. Matching (3.53) to (3.54), the effective proportions for order-r power

law decay and exponential decay of the process eigenvalues are

π̂
(r)
S = 1− (1− πS)(r−1)/r π̂SE

S = 1− (1− πS)
log (1 + η0ñ)

log (1 + η0(1− πS)ñ)
. (3.55)

For a fixed πS and in the limit of large r and large ñ

lim
r→∞

π̂
(r)
S = πS lim

ñ→∞
π̂SE

S = πS , (3.56)

where the limit to πS approaches from below in both cases. Thus

D̂F(ρ, σ2
n, πS , n) > 1− ρ2πS . (3.57)

So, in terms of the asymptotics of the OV lower bound, asymmetric multi-task learning decreases the

average error by a factor of at most ρ2πS . This is also a direct consequence of Proposition 3.14c,
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Figure 3.10: Contour plots of the error deflation factors for the asymmetric multi-task case at n = 150

(with σ2
n = 0.05) using the setup in section 3.5.5. The left plots are for the SE covariance function, and

the right plots are for the OU covariance function (r = 2). The top plots are the approximations (3.53)

to the deflation factors using the asymptotics to the OV lower bound, while the bottom plots are obtained

using the empirical learning curves. The contour plot in (b) is independent of n and σ2
n; see (3.53a).
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since b0i ∈ ](1− ρ2πS), 1] there. Based on the agreement between the contour plots in Figure 3.10, we

may also use this factor to quantify the maximum reduction in the true learning curves. This will be

investigated in section 3.8.4 on an empirical data set.

We investigate how the smoothness of the primary task affects multi-task learning. Observe that

r > r′ ⇐⇒ π̂
(r)
S > π̂

(r′)
S ⇐⇒ D̂F(r) < D̂F(r′). (3.58)

So, in terms of the asymptotics of the OV lower bound, asymmetric multi-task learning benefits a smooth

process more than it does a rough process. This is supported empirically by comparing the contour plot

in Figure 3.10c for the SE covariance function to the contour plot in Figure 3.10d for the OU covariance

function: the contours in Figure 3.10c are steeper than in Figure 3.10d, and, for the same (ρ2, πS), the

contour value in Figure 3.10c is smaller than in Figure 3.10d.

Remark It is worthwhile to highlight that π̂(r)
S is an overestimate, so D̂F(r) is an underestimate, at

least when πS = 1. To see this, note that at πS = 1, π̂(r)
S = 1, which gives D̂F(r) = 1− ρ2. Compare

this with the exact error deflation factor that can be computed using Corollary 3.13:

DF(r)(ρ, σ2
n, 1, n) =

ρ2εavg
T (1, σ2

n, 0, n) + (1− ρ2)
∑∞

i=1 κi∑∞
i=1 κi

= 1− ρ2

(
1−

εavg
T (1, σ2

n, 0, n)∑∞
i=1 κi

)
.

(3.59)

The fraction within the rightmost expression is clearly smaller than one; in fact, for process eigenvalues

decaying with order-r power-law, which is the case here, this fraction decays as Θ((η0ñ)1/r/ñ), if we

may use the asymptotics for the single-task OV bound (3.47). Thus, at least when πS = 1, π̂(r)
S is an

overestimate that becomes worse as ñ increases. One reason for this is that the π̂(r)
S is computed using

the ratios of the asymptotics of the OVρ bounds and discarding the possibly different constant factors

within the asymptotics. In contrast, it can be shown that π̂SE
S obeys (3.59) qualitatively.

3.7 Effective Number of Additional Data Points for the Primary Task

The learning curve may be inverted by fixing the error to a desired value, say εavg
∗ , in order to obtain

the required number of observations n∗ to attain that fixed error. A lower bound on the learning curve

provides a limit on the error beyond which the learning algorithm cannot achieve, so inverting it gives a

lower bound
¯
n∗ on n∗. Similarly, an upper bound n̄∗ on n∗ can be obtained using an upper bound on the

learning curve in the same way. Figure 3.11 illustrates this procedure for obtaining
¯
n∗ and n̄∗. We may

understand
¯
n∗ as a necessary but not sufficient sample size to attain εavg

∗ since at least
¯
n∗ examples are

needed. Similarly, n̄∗ is a sufficient but not necessary sample size because having n̄∗ examples should

more than guarantee an error of not more than εavg
∗ . This application of the upper bound on the learning

curve to obtain n̄∗ has previously been noted by Williams and Vivarelli [2000].

The upper bound n̄∗ is related to the concept of sample complexity in the PAC-based analysis of learning

algorithms, while the lower bound
¯
n∗ is related to the lower bound on the sample complexity [Kearns,

1990, chapter 6]. However, the complexity there is worse case complexity. To keep our exposition

concise, we shall borrow the term sample complexity for n̄∗, but keeping in mind that we mean this in

the average case sense. Similarly,
¯
n∗ is a lower bound on the (average case) sample complexity.
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Figure 3.11: Converting bounds on the learning curve to bounds on the required number of samples n∗

to attain an average performance of εavg
∗ . A lower bound

¯
εavg on the learning curve leads to a lower bound

¯
n∗ on n∗, while an upper bound ε̄avg on the learning curve leads to an upper bound n̄∗ on n∗.

In this section, we investigate how asymmetric multi-task learning affects n∗ through its bounds. For

a multi-task setup with n(1 − πS) observations for the primary task T , we define the factor γ such

that single-task learning with γn(1 − πS) observations will have the same learning curve value as the

learning curve for the multi-task one, i.e.,

εavg
T (ρ, σ2

n, πS , n) = εavg
T (0, σ2

n, πS , γn) (3.60a)

or, equivalently,
εavg
T (ρ, σ2

n, πS , n)
εavg
T (0, σ2

n, πS , γn)
= 1. (3.60b)

We expect γ > 1 so that multi-task learning effectively contributes additional (γ − 1)(1 − πS)n ob-

servations for task T in the single-task learning setting. We seek analytical solutions to gain insights

to multi-task learning; unfortunately, (3.60) cannot be solved analytically, except for the following two

cases.

1. If ρ = 0, then γ = 1 by matching the parameters to εavg
T on the left and right of (3.60a). This

means that the observations for the secondary task S do not contribute at all to the learning of the

primary task T .

2. If ρ = ±1, then γ = 1/(1− πS). This is because, when ρ = ±1, there are effectively n observa-

tions for task T . Having n/(1−πS) total observations when the two tasks were to be uncorrelated

would then mean that task T had (1− πS)n/(1− πS) = n observations; see the discussion of

Corollary 3.12 on page 64.

To make progress for the other values of ρ, we shall follow the approach of section 3.6 and replace the

true learning curves in (3.60) by theoretical bounds on the learning curves.

3.7.1 Contribution to Lower Bound on the Average-case Sample Complexity

In section 3.6, we have seen that ratios of the asymptotics of the OVρ lower bounds are indicative of

the ratios of the true learning curve. Building upon this, we shall replace each true learning curve in
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Figure 3.12: Contour plot of γ(r), according to equation 3.62 with r = 2 for the Ornstein-Uhlenbeck

process. The contour intervals are not uniform.

(3.60b) by the asymptotics of its OVρ lower bounds. As in section 3.6.2, the asymptotics of the OVρ

lower bound is obtained by applying the asymptotic value of the single-task OV bound twice within the

mixture formation of the OVρ bound (Proposition 3.14a). In the case of a GP with process eigenvalues

decaying as an order-r power law, we use equation 3.60b, replacing γ by γ(r), to obtain

1 =
ρ2(η0ñ)1/r/ñ+ (1− ρ2) (η0(1− πS)ñ)1/r

/ ((1− πS)ñ)(
η0(1− πS)γñ

)1/r
/
(
(1− πS)γñ

)
=
(
γ(r)

)(r−1)/r ρ2(η0ñ)1/r/ñ+ (1− ρ2) (η0(1− πS)ñ)1/r
/ ((1− πS)ñ)

(η0(1− πS)ñ)1/r
/ ((1− πS)ñ)

(∗)

=
(
γ(r)

)(r−1)/r {
D̂F(r)(ρ, σ2

n, πS , n)
}

(3.61)

where we have recognized the fraction in (∗) as the approximate error deflation factor D̂F(r) given by

equation 3.53a. The η0 and ñ above follows those defined in section 3.6. Substituting in D̂F(r) given by

equation 3.53a, we get

γ(r) =
[
1− ρ2

(
1− (1− πS)(r−1)/r

)]−r/(r−1)

, (3.62)

which is at least one. Since γ(r) is obtained by using the lower bounds for the true learning curves,

it measures how asymmetric multi-task learning affects the necessary sample size for learning task T .

Factor γ(r) becomes the factor γ for the exact sample sizes when ρ2 = 0 and ρ2 = 1, for which γ(r) = 1

and γ(r) = 1/(1− πS) respectively.

Figure 3.12 gives the contour plot γ(r) for r = 2, which is for the Ornstein-Uhlenbeck process (OU),

on the πS-ρ2 space. The contour plot, together with equation 3.62, confirms the intuition that multi-

task learning with higher ρ2 and higher πS contributes more to the lower bound on sample complexity.

For example, multi-task learning for the OU process with πS = ρ2 = 0.5 effectively contributes 37%

additional examples to the lower bound on sample complexity; with πS = ρ2 = 0.75, the contribution

is 156%. Similar contour plots are obtained for other values of r.
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3.7.2 Contribution to Average-case Sample Complexity

The preceding section approximates the ratios of the true learning curves by the ratios of the asymptotics

of the OVρ bounds. Instead of using the OVρ bound, we may also choose to use the FWO% upper bound

proposed in Proposition 3.16. In this way, we can quantify how asymmetric multi-task learning affects

the sample complexity for learning task T .

For a stationary Gaussian process with eigenvalues decaying as the order-r power-law, i.e., κi ∼
η0(bi)−r for some constant η0 > 0, the FWO% bound may be shown to be asymptotically bounded

from above by

β1

∞∑
i=1

κi + 2(1− β1)η1η
1/r
0 (β2n˜)−(r−1)/r, (3.63a)

where

n˜ def=
n∑∞

i=1 κi + σ2
n

η1 =
b

πr sin(π/r)
(3.63b)

β1 =
π2

S%
2(1− ρ2)

(1− πS)2 + 2πS(1− πS)ρ%+ π2
S%

2
β2 =

(1− πS)2 + 2πS(1− πS)ρ%+ π2
S%

2

1− πS + πS%
2

. (3.63c)

This is derived in appendix B.8.5. It is straightforward to verify that β1 ∈ [0, 1], so one may view (3.63a)

as a weighted average between the average prior variance and a term that depends on sample size. Using

(3.63a) for the learning curves and γ(r) for the γ in (3.60), and then solving for γ(r) gives

γ(r) =
β2

1− πS

[
(1− β1) + β1

∑∞
i=1 κi

2η1η
1/r
0

(
β2n˜)(r−1)/r

]−r/(r−1)

. (3.64)

The above formula for γ(r) depends on the choice of %; presently, we shall use % = %̂ is given by

equation 3.40 on page 71:

%̂ def=
ρ

1 + πS(1− ρ2)n {(
∑∞

i=1 κi + σ2
n) /κ̄− 1}−1 , (3.65)

where κ̄ = κ1 is the largest process eigenvalue, and we have used
∫
kx(x,x)[φ1(x)]2p(x)dx =

∑
κi

for stationary GPs. Under this setting, the factor γ for the true sample sizes is recovered at zero and

perfect correlations: if ρ = 0, then %̂ = 0, β1 = 0 and β2 = 1− πS , so that γ(r) = 1; if ρ = ±1, then

%̂ = ±1, β1 = 0 and β2 = 1, so that γ(r) = 1/(1− πS).

3.7.3 Example: Multi-task Ornstein-Uhlenbeck Process Learning

The preceding two sections have proposed the factor γ(r) for approximating contribution of the sec-

ondary task to the lower bound on sample complexity for the primary task, and the factor γ(r) for

approximating the contribution to the sample complexity. In this section, we examine how well these

factors approximate or bound the contribution to the effective number of observations for the primary

task. This will be done using the simulated data set for the Ornstein-Uhlenbeck process described in

section 3.5.5, where the length-scale is l = 0.01, and we use % = %̂ in γ(r). Within this setting,

r = 2 b = π σ2
n = 0.05

∞∑
i=1

κi = 1 κ̄ = 0.020 η0 = 2/l = 200. (3.66)
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Figure 3.13: Comparison for the effective increase in sample size for the target task, for two settings

of (ρ2, πS) for multi-task learning with the Ornstein-Uhlenbeck process (r = 2). Each graph plots εavg
T

against nT and consists of: the single-task learning curve εavg
T (0, σ2

n, πS , n) ( ), the multi-task learning

curve εavg
T (ρ, σ2

n, πS , n) ( ), the single-task learning curve with (γ(r) − 1)nT additional observations

(×) and the single-task learning curve with (γ(r) − 1)nT additional observations ( 4 ). The thickness

of the learning curves reflect 95% confidence intervals.

In Figure 3.13, we plot the baseline single-task learning curve εavg
T (0, σ2

n, πS , n), the multi-task learning

curve εavg
T (ρ, σ2

n, πS , n), the single-task learning curve with (γ(r)−1)nT additional observations and the

single-task learning curve with (γ(r) − 1)nT additional observations. In contrast to the other graphs of

learning curves in this chapter, which are plotted against n, the graphs in Figure 3.13 are plotted against

nT = (1− πS)n in order to emphasize that we are currently using the single-task learning ρ = 0 as

the baseline. Since γ(r) is for the necessary (but not sufficient) sample size, we expect the single-task

learning curve with this factor to lie above the multi-task learning curve, since it does not give enough

additional samples to equate the performance of multi-task learning. Similarly, we expect the single-

task learning curve for γ(r) to lie below the multi-task learning curve, since the factor γ(r) gives more

than enough samples for single-task learning to equate multi-task learning.

The proximity between the εavg
T (ρ, σ2

n, πS , n) curves ( ) and the εavg
T (0, σ2

n, πS , γ
(r)n) curves (× )

shows that γ(r) reflects rather accurately the increase in the effective observations due to asymmetric

multi-task learning. However for larger nT , εavg
T (0, σ2

n, πS , γ
(r)n) lies below εavg

T (ρ, σ2
n, πS , n), so that

γ(r) is an overestimate. One reason for this has been remarked upon in section 3.6.2, and it is that

π̂
(r)
S

def= 1− (1− πS)(r−1)/r is an overestimate that becomes worse as ñ increases, so

γ(r) =
(
1− ρ2π̂

(r)
S

)−r/(r−1)

(3.67)

is also an overestimate. In contrast, the εavg
T (0, σ2

n, πS , γ
(r)n) curves ( 4 ) lie consistently below the

multi-task εavg
T (ρ, σ2

n, πS , n) curves ( ) in the figures. Thus γ(r) seems to be a reasonable estimate for

the factor of increase contributed by multi-task learning to the sample complexity.
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3.8 Empirical Evaluation with Sarcos Data

The results developed so far in this chapter have been illustrated using the idealized one-dimensional

input distributions described in section 3.5.5. We now revisit some of these results and re-evaluate them

on the Sarcos data, which is a high-dimensional data set based on a real application. In particular, we

shall look at the lower bound to the posterior variance

¯
σ2

T (x∗, ρ, σ2
n, XT , XS) def= ρ2σ2

T (x∗, 1, σ2
n, XT , XS) + (1− ρ2)σ2

T (x∗, 0, σ2
n, XT , XS)

given by Proposition 3.5a. The simulation in section 3.5.5 has shown that this bound is rather tight

when averaged over test locations x∗s and data sets XT s and XSs; see, for example, the× lines in

Figure 3.5. Proposition 3.7a gives a predictor that achieves the generalization error
¯
σ2

T (x∗, ρ) exactly;

in section 3.8.2 we shall use this predictor to approximate the empirical errors of the multi-task GP

predictor. Then, in section 3.8.3, we shall evaluate the tightness of the lower bound
¯
σ2

T by examining

the learning curves for the Sarcos data under the assumption of correct prior specification. Finally,

section 3.8.4 illustrates the utility of the optimal error deflation factor (1 − ρ2πS) in estimating the

potential gain from a multi-task setup. We begin with a description of the setup below.

3.8.1 The Sarcos Data and Hyperparameter Estimation

We use data from a Sarcos Dextrous ArmTM, a manipulator with seven degrees-of-freedom.12 Following

Rasmussen and Williams [2006, §2.5], GP regression is used to learn and predict the inverse dynamics

of this manipulator, i.e., to map the seven 3-tuples of joint positions, joint velocities and joint accel-

erations to the corresponding seven joint torques. Thus, we have a 21-dimensional input space and a

7-dimensional output space. The training data size is 44,484, and the test data size, 4,449.

The primary task T is to predict the first of the seven torques. Each of the other torques is used separately

as a secondary task to task T . If the ith torque is used, we denote the secondary task by Si, i = 2 . . . 7.

The model follows that described in section 3.2.1, where Kf is a two-by-two correlation matrix fully

parameterized by ρ. The covariance function kx on the input space is the squared-exponential covariance

function parameterized for automatic relevance determination (ARD), i.e.,

kx(x,x′) = σ2
f exp

[
−(x− x′)TD−1(x− x′)/2

]
with a diagonal matrix D of squared length-scales and signal variance of σ2

f . Observations for tasks T

and Si have a common isotropic noise variance σ2
n.

To proceed further, we have to determine the model by fixing the hyperparameters ρ, σ2
f ,D and σ2

n. This

is achieved using the subset of data approximation to the full-sample GP [Rasmussen and Williams,

2006, §8.3.3]. For a total of n = 4096 observations, we sample n/2 input locations from the training

set for task T (i.e., the torque for the first joint) and n/2 input locations for task Si. We standardize the

inputs and outputs of the sampled data set to zero mean and unit variance for each dimension.13 Then
12 http://www.sarcos.com. The data and its description available from http://www.gaussianprocess.org/gpml/data/.

The data is provided by Sethu Vijayakumar.
13 It is important to standardize the output to a common variance, since our model have common variance parameters for both

task T and task Si.
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Table 3.1: nMSEs for predicting the first torque (task T ) and the correlation (ρ) after optimization. The

first two rows are single-task GP results, while the rest are multi-task GP results using secondary task

Si. The nMSEs for the multi-task GP predictor and the randomized predictor are given in the last two

columns. Results are given with one standard deviation around the mean.

Setup Empirical Results Derived Results

Secondary n πS ρ nMSET (Multi-task) nMSET (Randomized)

None 2048 0.0289±0.0014

None 4096 0.0198±0.0009

S2 4096 0.5 0.373±0.060 0.0277±0.0015 0.0276±0.0020

S3 4096 0.5 −0.499±0.041 0.0279±0.0017 0.0266±0.0018

S4 4096 0.5 0.596±0.041 0.0269±0.0016 0.0257±0.0020

S5 4096 0.5 −0.076±0.061 0.0284±0.0014 0.0288±0.0014

S6 4096 0.5 −0.363±0.056 0.0275±0.0014 0.0277±0.0019

S7 4096 0.5 0.458±0.045 0.0271±0.0016 0.0270±0.0018

the set of hyperparameters in each multi-task setting is determined using L-BFGS [Liu and Nocedal,

1989] to optimize its marginal likelihood on the sampled data. We evaluate the model on the full test

set, and summarize the quality of the hyperparameter using the normalized mean-square error (nMSE)

on task T .14 This is repeated ten times.

Table 3.1 summarizes the results of learning the hyperparameters. The first two rows of the table are the

single-task results, and they are consistent with those from Rasmussen and Williams [2006, Table 8.1].

The column headed by ρ gives the estimated correlations between task T and tasks Si, while the column

headed by nMSET (Multi-task) gives the nMSEs of predicting with the multi-task GP model (3.1). The

last column in Table 3.1 gives the nMSEs when using the randomized predictor. This is discussed next.

3.8.2 Using the Randomized Predictor to Estimate Multi-task Empirical Errors

Proposition 3.7 provides an understanding of the lower bound
¯
σ2

T (x∗, ρ) in terms of a randomized

predictor. To recap, let f̄1 be the single-task GP mean predictor that uses the observations for the

primary task T at all training locations XT and XS , and let f̄0 be the single-task GP mean predictor

only uses the observations for task T at training locations XT . The randomized predictor is that which

predicts f̄1 with probability ρ2 and f̄0 with probability (1− ρ2).

For a given observation set size n = |X|, if πS is the proportion of training data for the secondary task

Si, then f̄1 predicts using n observations while f̄0 predicts using (1−πS)n observations. Let nMSET (n)

be the nMSE for task T of the single-task GP with n training samples. Then the nMSE for task T of the

randomized predictor is given by

ρ2nMSET (n) + (1− ρ2)nMSET ((1− πS)n). (3.68)

14 This is done by factoring back the standard deviation and adding back the mean to the predictions, computing the mean-square

error with respect to the test targets, and then dividing it by the variance of the test targets.
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We have seen that the generalization error of the randomized predictor is a tight lower bound on the

generalization error of the multi-task GP predictor. However, in terms of the empirical error, how does

the randomized predictor compare with the multi-task GP predictor? We perform a post-hoc analysis

for this comparison and compute (3.68) for each T -Si multi-task setup in Table 3.1. This gives the last

column in the table, where the standard deviations of (3.68) are obtained by propagating those of the

constituents; see Bevington and Robinson 2002, section 3. Comparing the last two columns in the table,

we find the empirical error of the randomized predictor to be an estimate of the empirical nMSET . We

also find that the empirical error of the randomized predictor is not a lower bound on the empirical error

of the multi-task GP in general. This apparent discrepancy can be reconciled by realising that (a) the

true model is not known so that the learning model is probably not correctly specified; and (b) the

empirical error nMSET is with respect to one fixed function in the test data, and not averaged over

possible functions specified by the prior.

3.8.3 The
¯
σ2

T Lower Bound

Presently, we examine the lower bound
¯
σ2

T given by Proposition 3.5a. For each T -Si multi-task setup,

we choose, from among the ten repetitions, the set of hyperparameters that gives the lowest nMSE

on the full test set. Using the chosen hyperparameters — together with the corresponding mean and

variance for standardizing data — for each setup, we generate the learning curve assuming that the true

function is also a Gaussian process with the same covariance function, i.e., the idealized case where we

need only to consider the posterior variance, and where the observed torque values are not involved.

Each learning curve is computed by averaging the posterior variance over test locations x∗ in the test

set of 4,449 samples, and over 50 samples of X drawn at random from the full training set of 44,484

examples. Each sampled training setX is partitioned randomly intoXT andXS based on the proportion

πS . Values 1/4, 1/2 and 3/4 are used for πS . Below, the average over x∗ is denoted by 〈·〉, and the

average over X by 〈〈·〉〉.

Figure 3.14 on the following page shows the learning curves with S4 and S7 as the secondary tasks, and

when πS = 3/4. For each multi-task setting, the set of optimal hyperparameters includes a correlation

ρ̂ between the two tasks that is most likely for the data. The “true” multi-task learning curve 〈〈〈σT (ρ̂)〉〉〉
is computed using ρ̂. This gives the upper black lines in Figure 3.14. The experimental trivial lower

bound on the multi-task curve is the curve when ρ = 1, and this gives the lower dashed lines in the

figure. The experimental trivial upper bound is when ρ = 0, and this gives the upper dashed lines in

the figure; see Proposition 3.1. We obtain the experimental trivial upper bound by rescaling the trivial

lower bound on the n-axis by 1/(1 − πS); see the discussion on Corollary 3.12. For the trivial upper

bound at n = 1 when the rescaling cannot be applied, we instead use the following equation obtained

from Corollary 3.13:

εavg
T (ρ, σ2

n, πS , 1) = πS(1− ρ2)
∞∑

i=1

κi + [1− πS(1− ρ2)]εavg
T (1, σ2

n, 1, 1), (3.69)

where
∑
κi = σ2

f in this case. This is derived in appendix B.9. Using Proposition 3.5a, a tighter

lower bound on the multi-task curve is the weighted average of the trivial lower and upper bounds, with

weights ρ̂2 and (1− ρ̂2). This tighter lower bound 〈〈〈
¯
σT (ρ̂)〉〉〉 is the blue solid lines in Figure 3.14.
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Figure 3.14: Learning curves for multi-task learning the inverse dynamics for the first joint (task T )

with the fourth joint (task S4) and with the seventh joint (S7), using the Sarcos data. Each graph plots

εavg
T against n, and consists of: the “true” multi-task learning curve (upper ), the experimental trivial

lower/upper bounds using Corollary 3.12 (lower/upper ), the experimental lower bound using Proposi-

tion 3.5a (middle ), and an estimate of the multi-task learning curve using the optimal error deflation

factor (lower ). Other than the lower , which is described in section 3.8.4, the rest of the curves

are described in section 3.8.3. The prior and noise variances are plotted with upper and lower horizontal

dash-dotted lines. The horizontal axis is on the log2 scale, and the ticks on this axis represent values

of n for which the learning curves are computed by data averaging. The inset magnifies the curves for

n ∈ [512, 2048]. The thickness of the multi-task learning curve reflects 95% confidence interval; similarly

for the experimental trivial lower bound curve.

The proximity between the black and blue solid lines in Figure 3.14 demonstrates that the multi-task

learning curve 〈〈〈σT (ρ̂)〉〉〉 is well approximated by the tighter lower bound 〈〈〈
¯
σT (ρ̂)〉〉〉. The same con-

clusion can be drawn from the graphs for the other Sis and πSs. Bearing in mind that this data set is

an empirical data set, that the input space is 21-dimensional, and that the set of hyperparameters is op-

timized for its marginal likelihood on the training data, it hints strongly that 〈〈〈
¯
σT (ρ̂)〉〉〉 may generally

be used as a proxy for the multi-task learning curve. It is also pleasing that 〈〈〈
¯
σT (ρ̂)〉〉〉 can be obtained

with a procedure that only requires data averaging for the experimental trivial lower bound, so that the

learning curves for different ρs and πSs can be approximated relatively cheaply.

The experimental results in this section provide confidence that the multi-task OVρ lower bound given

in Proposition 3.14, which is based on Proposition 3.5a, may provide insights into multi-task learning.

It is with this confidence that we have approached sections 3.6 and 3.7 by using the OVρ bound as a

proxy for the multi-task learning curve.

3.8.4 Error Deflation Factor

In section 3.6.2, we have defined error deflation factors in asymmetric multi-task learning as that which

quantifies the reduction in error of the primary task T . One of the conclusions there is that the fac-

tor ρ2πS may be used to quantify the maximum reduction in the learning curve. We investigate this
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suggestion by plotting

(1− ρ2πS) 〈〈〈σT (0)〉〉〉 (3.70)

in Figure 3.14, where, we recall, 〈〈〈σT (0)〉〉〉 is the learning curve for the single-task learning solely with

observations for task T . In the figure, (3.70) gives the lower green solid line, 〈〈〈σT (0)〉〉〉 is the upper

dashed line, and the multi-task learning curve 〈〈〈σT (ρ̂)〉〉〉 is the upper black solid line. Comparing the

curves, we see that (3.70) bounds 〈〈〈σT (ρ̂)〉〉〉 from below, so that error reduction in this case does not

exceed the factor ρ2πS . This result bears well with the analysis in section 3.6.2. Another observation

is that (3.70) actually approximates the multi-task learning curve rather well from moderate to large n,

although not as well as 〈〈〈
¯
σT (ρ̂)〉〉〉 does.

3.9 Asymmetric Multi-task Learning with Noise-free Data

So far, we have looked at multi-task learning where there are two tasks. This has been a convenient

choice for analysis since the relation between the two tasks can be given completely by the single

parameter ρ ∈ [−1, 1], which measures the correlation or relatedness between the two tasks. ForM > 2

tasks, however, we have to involve Θ(M2) parameters in the task correlation matrix Kf for describing

task relations. With these many parameters, we may well need to limit to selected scenarios in order

to have any results meaningful enough to provide additional insights to multi-task learning over the

two-tasks case. Indeed, it will prove helpful to limit ourselves to noise-free observations and specific

placements of training observations. This is the subject of this section. Our analysis here is for the

posterior mean and variance of the multi-task GP for the primary task T at any test location x∗. The

posterior mean is useful for understanding structure in predicting with a multi-task GP, while, as we

recall, the posterior variance is the generalization error for task T at x∗ when the GP prior is correctly

specified.

To be clear, the multi-task learning model under consideration is that given by (3.1) in section 3.2.1, but

with perhaps more than two tasks and with observation noise variance σ2
n = 0. To make the notation

cleaner, we consider M + 1 tasks and denote the primary task by T and the secondary tasks by Si,

i = 1 . . .M . For the symmetric multi-task case, the learning behaviour will depend on the eigenvalues

of Kf , as has been in the two-tasks case; see sections 3.2.3 and 3.6.1. Presently, our focus is the

asymmetric multi-task case, where we wish to predict the response of fT at x∗ given observations at

XT for task T and Xi for task Si. For a given covariance function kx(·, ·) on the input space, we let kx
∗∗

be the prior variance kx(x∗,x∗), let Kx
TT (resp. Kx

ii) be the matrix of covariances (due to kx) between

locations in XT (resp. Xi), and let kx
T∗ (resp. kx

i∗) be the vector of covariances (due to kx) between the

locations inXT (resp. Xi) and the test location x∗. Finally, the task correlation matrixKf is partitioned

as

Kf def=

(
1 ρT

ρ Kf
S

)
, (3.71)

where Kf
S is the task correlation matrix between the secondary tasks Sis and ρ is the vector of task

correlations between the secondary tasks Sis and the primary task T .

Section 3.9.1 reviews a property of the multi-task GP model that is of importance to modelling relations

between tasks: when the noise-free observations are at the same locations for all tasks, there is no
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Figure 3.15: Given a test location ~ for task T , Figures (a)-(c) show three layouts of the noise-free

observations •s on the task-input product space. Figure (d) places the symbols for the observations

pictorially on the task-input space.

transfer of information between the tasks during inference. While this property has been known in

the geostatistics and statistics literature, its implications in machine learning, particularly with respect

to multi-task learning, may not have been known. In sections 3.9.2 and 3.9.3, we give expressions

for the posterior distribution that allow us to understand multi-task learning with multi-collocated and

collocated data. As far as we are aware, these expressions have been known only for the case of only

one secondary task; here, the expressions are given for the case of an arbitrary number of secondary

tasks. Figure 3.15 summarizes the scenarios considered in this section.

3.9.1 Isotopic Observations and Non-transference15

One particularly interesting case to consider is observations at the same locations for all tasks, i.e.,

XT ≡ X1 ≡ · · · ≡ XM , so Kx
\∗

def= Kx
TT ≡ Kx

11 ≡ · · ·Kx
MM . This is known as the isotopic case in the

geostatistics literature [Wackernagel, 1998, chapter 25] and is illustrated in Figure 3.15a. In machine

learning, one may expect such data in the case of learning vector-valued functions (see section 2.7.2).

If the isotopic observations are noise-free, there will be no transfer or sharing of information between

the tasks. To see this, consider making predictions at a new location x∗ common for all tasks. Let

yT\∗ (resp. yi\∗) be the noise-free observations at XT (resp. Xi) for task T (resp Si), and let

yT
\∗

def=
(
yT

T\∗,y
T
1\∗, . . . ,y

T
M\∗

)
be the full sequence of observations. Also, let kx

∗
def= kx

T∗ ≡ kx
1∗ ≡

· · · ≡ kx
M∗. Using the mixed-product property of Kronecker products, the posterior means at x for all

15 This section is included for completeness; the results therein are not novel.
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tasks is

E
(
(fT (x∗), f1(x∗), . . . , fM (x∗))

T | y\∗
)

=
(
Kf ⊗ kx

∗
)T (

Kf ⊗Kx
\∗

)−1

y\∗

=
(
(Kf)T ⊗ (kx

∗)
T
) (

(Kf)−1 ⊗ (Kx
\∗)

−1
)
y\∗

=
[(
Kf(Kf)−1

)
⊗
(
(kx
∗)

T(Kx
\∗)

−1
)]
y\∗

=
[
I ⊗

(
(kx
∗)

T(Kx
\∗)

−1
)]
y\∗

=

(
ŷT∗

ŷS∗

)
, (3.72a)

where

ŷT∗
def= (kx

∗)
T(Kx

\∗x)
−1yT\∗ (3.72b)

(ŷS∗)i = ŷi∗
def= (kx

∗)
T(Kx

\∗)
−1yi\∗. (3.72c)

Similarly for the posterior covariance:

C
(
(fT (x∗), f1(x∗), . . . , fM (x∗))

T | y\∗
)

= Kfkx
∗∗ −

(
Kf ⊗ kx

∗
)T (

Kf ⊗Kx
\∗

)−1 (
Kf ⊗ kx

∗
)

= Kfkx
∗∗ −

(
Kf(Kf)−1Kf

)
⊗
(
(kx
∗)

T(Kx
\∗)

−1kx
∗

)
= Kf

(
kx
∗∗ − (kx

∗)
T(Kx

\∗)
−1kx

∗

)
= Kfσ2

∗, (3.72d)

where

σ2
∗

def= kx
∗∗ − (kx

∗)
T(Kx

\∗)
−1kx

∗. (3.72e)

Thus, given noise-free isotopic observations, the predictions ŷT∗ (resp. ŷi∗) for task T (resp. Si)

depend only on the targets yT (resp. yi), and the variances of the predictions take the same value σ2
∗

(since Kf is defined to have ones on its diagonal). In other words, there is no transfer or sharing of

information between the tasks. This result is known as self- or auto-krigeability in the geostatistics

literature [Wackernagel, 1998, chapter 25]. It is also related to the Markov property of covariance

functions [Xu et al., 1992; Almeida and Journel, 1994; Goovaerts, 1997; O’Hagan, 1998]; the Markovian

nature of the model will be further explained in section 3.9.3. Williams, Chai, and Bonilla [2007] have

generalized the above result to multidimensional tensor product covariance functions and grids.

This non-transference for a given task does still hold even if the isotopic observations are only sparsely

present on the other tasks. The intuition is that, since the observations from the other tasks are not used

in the prediction, their presence or absence is irrelevant to the given task; see Helterbrand and Cressie

[1994], Chilès and Delfiner [1999, §5.6.4] and Williams et al. [2007, Proposition 2]. However, if the

observations are noisy, or if the observations are not isotopic, then this result on the cancellation of

transfer will not hold. For example, this cancellation is not present in the simple violation of isotopicity

considered in the next section.

3.9.2 Multi-collocated Observations

We now consider noise-free multi-collocated data [Chilès and Delfiner, 1999, §5.4.3], which is perhaps

best explained using Figure 3.15b. In this case, in addition to the observations for isotopic data (Figure
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3.15a), we have observations for the secondary tasks at x∗, i.e., X1 ≡ · · · ≡ XM ≡ XT ∪ {x∗}. We

may partition Kx
ii in the manner of

Kx def= Kx
11 = · · · = Kx

MM =

(
kx
∗∗ (kx

∗)
T

kx
∗ Kx

\∗

)
def=

(
kx
∗∗ (kx

T∗)
T

kx
T∗ Kx

TT

)
, (3.73)

in which we have also defined the shorthands Kx, kx
T∗ and Kx

\∗. For the observations, we denote those

at XT for task T with yT\∗, those at the Xi \ {x∗} for task Si with yi\∗ and those at x∗ for task Si

with yi∗. The full sequence of observations at all the secondary tasks Sis is yS defined using

yS∗
def=
(
y1∗ . . . yM∗

)T

(3.74a)

yS\∗
def=
(
yT

1\∗ . . . yT
M\∗

)T

(3.74b)

yS
def=
(
yS1∗ yT

1\∗ . . . yM∗ yT
M\∗

)T

. (3.74c)

This provides an input-major ordering of observations for the secondary tasks. These definitions are

consistent with those from the preceding section. The posterior mean and covariance of the multi-

collocated case may be obtained by (a) conditioning on all observations except for those at x∗ for the

secondary tasks, and then (b) conditioning on those at x∗ for the secondary tasks. Step (a) is equivalent

to using isotopic observations, and, for this, the posterior distribution at x∗ for all tasks is Gaussian with

mean and covariance given by equation 3.72. Step (b) will use this intermediate posterior distribution

and further condition on observations at x∗ for the secondary tasks. Thus, we begin from equation 3.72

for the isotopic observations case, which is(
fT (x∗)

fS(x∗)

)∣∣∣∣yT\∗,yS\∗ ∼ N

((
ŷT∗

ŷS∗

)
,

(
1 ρT

ρ Kf
S

)
σ2
∗

)
, (3.75)

where we have introduced the vector function for secondary tasks fT
S (·) def= (f1(·), . . . , fM (·)), and

substituted (3.71) for Kf . Since the observations are noise-free, we condition the above distribution on

fS(x∗) = yS∗, giving

E(fT (x∗) | yT\∗,yS) = ŷT∗ + ρT(Kf
S)−1 (yS∗ − ŷS∗) (3.76a)

V(fT (x∗) | yT\∗,yS) = v2
Tσ

2
∗, (3.76b)

where

v2
T

def= 1− %T(Kf
S)−1% ∈ [0, 1], (3.77a)

and σ2
∗ is given by (3.72e). The above expressions give an understanding of asymmetric multi-task

learning by way of correction factors. The posterior mean (3.76a) depends on (ŷS∗), of which the ith

entry ŷi∗ is the prediction by task Si at x∗ based on its observations at Xi \ {x∗}. The difference

yS∗ − ŷS∗ is thus the vector of predictive errors at x∗ made independently by the secondary tasks. The

posterior mean at x∗ for task T expressed as (3.76a) is ŷT∗, which is the posterior mean by primary

task T made independently of the secondary tasks (i.e., conditioned only on yT\∗), corrected with the

predictive errors made by the secondary tasks, where the correction ρT(Kf
S)−1 (yS∗ − ŷS∗) can be

understood as the posterior mean of the predictive errors. This idea has been expressed succinctly by

Chilès and Delfiner [1999, §5.4.3] as “cokriging ‘learns’ from kriging errors”.
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The posterior variance (3.76b) is the product of (a) v2
T , which is a Schur complement of Kf and may

be interpreted as the variance of the primary task T conditioned on the secondary tasks Sis; and (b) σ2
∗,

which for any single task, is the variance at x∗ conditioned on observations at XT or Xi \ {x∗}. The

following mnemonic may be useful:

posterior variance = posterior variance due to task correlation

× posterior variance due to input covariance

It is also clear that v2
Tσ

2
∗ 6 σ2

∗, i.e., posterior variance is reduced when observations at other tasks are

available.

The above result generalizes the co-kriging example of Chilès and Delfiner [1999, §5.4.2]. That ex-

ample is for two tasks and two observed locations arranged in a multi-collocated manner. Here, we

have generalized to multiple observed locations and multiple tasks. To the best of our knowledge, this

generalization is novel.

The next section will look at a practical simplification of multi-collocated data.

3.9.3 Collocated Observations

The use of multi-collocated (noise-free) observations typically causes matrix instability in implemen-

tation. To avoid this, Xu et al. [1992] have suggested using only collocated observations, which are

observations at x∗ for the secondary tasks along with any observations for the primary task T . This

is illustrated in Figure 3.15c. We shall use the Markovian nature of the multi-task model to obtain the

posterior Gaussian distribution of fT (x∗) given collocated observations.

To be consistent with the definitions for the case of isotopic and multi-collocated observations in the

previous two sections, we use yT\∗ for the training observations at XT for the primary task T and yS∗

for the training observations at X1 ≡ · · ·XM ≡ {x∗} for all the secondary tasks. If yT\∗ and yS∗ were

the observations, then by the autokrigeability of the model discussed in section 3.9.1, we have

p(yT\∗ | fT (x∗),yS∗) = p(yT\∗ | fT (x∗)). (3.78)

One may say that fT (x∗) screens the influence of yS∗ on yT\∗. The above probability statement is

equivalent to

p(yT\∗,yS∗ | fT (x∗)) = p(yT\∗ | fT (x∗)) p(yS∗ | fT (x∗)). (3.79)

That is, yT\∗ and yS∗ are independent given fT (x∗), i.e., a Markov property. This property is known to

be a characteristic of the separable covariance functionKfkx(·, ·) [Xu et al., 1992; Almeida and Journel,

1994; Goovaerts, 1997; O’Hagan, 1998].

Using Bayes’ theorem to invert (3.79) gives

p(fT (x∗) | yT\∗,yS∗) ∝ p(yT\∗ | fT (x∗)) p(yS∗ | fT (x∗)) p(fT (x∗)) (3.80)

The left of the equation is our goal, while the right is a product of three Gaussian distributions. By
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completing the squares in the exponent, we obtain the following posterior mean and variance for fT (x∗):

E(fT (x∗) | yT\∗,yS∗) = σ2
c

{
1
σ2
∗

E(fT (x∗) | yT\∗) +
1

kx
∗∗v

2
T

E(fT (x∗) | yS∗)
}

(3.81a)

V(fT (x∗) | yT\∗,yS∗) = σ2
c (3.81b)

where

E(fT (x∗) | yT\∗) = (kx
∗)

T(Kx
\∗)

−1yT\∗ (3.81c)

E(fT (x∗) | yS∗) = ρT(Kf
S)−1yS∗ (3.81d)

1
σ2

c

=
1
σ2
∗

+
1

kx
∗∗v

2
T

− 1
kx
∗∗

(3.81e)

where, using definitions consistent with the preceding two sections, Kx
\∗

def= Kx
TT and kx

∗
def= kx

T∗, and

σ2
∗ and v2

T are given by (3.72e) and (3.77a) respectively. The derivation is in appendix B.10. Chilès and

Delfiner [1999, §5.4.3], have given similar expressions for the mean and variance, though only for the

two-task and two-observed-locations case and not in its entire generality as we do here.

One can easily verify that v2
Tσ

2
∗/σ

2
c 6 1, so the multi-collocated case has lower variance than the

collocated one. Hence, the additional observations in the multi-collocated case do provide additional

information to predicting fT (x∗), and one may say that yT\∗ and yS∗ do not screen yS\∗ from fT (x∗),

where yS\∗ defined by (3.74c) forms part of the observations in the multi-collocated case. This clarifies

that the Markov nature of the multi-task GP model differs from that of a Gaussian Markov random field

[Rue and Held, 2005].

As noted by Chilès and Delfiner [1999, §5.4.3], the posterior mean (3.81a) can be seen as the variance-

weighted linear combination of the predictions E(fT (x∗) | yT\∗) and E(fT (x∗) | yS∗), since

V(fT (x∗) | yT\∗) = σ2
∗ V(fT (x∗) | yS∗) = kx

∗∗v
2
T . (3.82)

It is also easy to verify that

1 6 (1 + σ2
c/k

x
∗∗) 6 σ

2
c

(
1/σ2

∗ + 1/kx
∗∗v

2
T

)
6 2. (3.83)

Thus, perhaps surprisingly, the posterior mean is not a convex combination of E(fT (x∗) | yT\∗) and

E(fT (x∗) | yS∗).

3.10 Conclusions

In this chapter, we have measured the influence of the secondary task on the primary task using the

generalization error and the learning curve, parameterizing these with the correlation ρ between the two

tasks, and the proportion πS of observations for the secondary task. We have provided bounds on the

generalization error and learning curves, and these bounds highlight the effects of ρ and πS . In particular,

we have found the lower bound
¯
σ2

T on the posterior variance rather tight and useful for subsequent

analysis. The development of the FWO%̂ upper bound on the learning curve has provided further insights

into multi-task learning. We have also explored the structure in the multi-task GP predictions by using

isotopic, multi-collocated and collocated noiseless observations, generalizing two known results from

the geostatistics literature.
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Our analysis on the degenerate case of no training data for the primary task has uncovered an intrinsic

limitation of multi-task GP: the error cannot be lower than (1 − ρ2)
∑
κi if one learns with only ob-

servations from the secondary task. For symmetric multi-task learning, the term πS(1 − πS)(1 − ρ2)

is demonstrated to have a governing role. For asymmetric multi-task learning, we have shown that the

lower bound on the learning curve cannot be less than (1− ρ2πS) of that from single-task learning; this

is found to be satisfied for the learning curve in the empirical evaluation with the Sarcos data. For both

symmetric and asymmetric multi-task learning, we have shown theoretically and experimentally that the

secondary task has more influence on the primary task for smoother processes rather than for rougher

processes. The effective number of observations that the secondary task contributes to the primary task

has also been investigated.

This chapter is a step towards understanding the role of the matrix Kf of inter-task similarities in multi-

task GPs with more than two tasks. We believe it has contributed to an understanding of multi-task

learning that is orthogonal to the existing PAC-based results in the literature.





Chapter 4

Multi-task Gaussian Process Learning

of Robot Inverse Dynamics

4.1 Overview

In this chapter we are concerned with the problem of controlling a robot manipulator (i.e., a multi-

jointed robot arm) to follow a given trajectory; this is known as the inverse dynamics problem. We

consider a robot manipulator with ` revolute joints. Denote the joint angles by q def= (q1, . . . , q`)T, and,

similarly, the joint velocities and accelerations by q̇ and q̈. Let x def= (q, q̇, q̈)T ∈ R3`. The aim is to

learn (or estimate) the inverse dynamics of the robot from data; that is, to learn the ` torque functions

τ (x), τ : R3` 7→ R`.

It may seem unnecessary to estimate τ (x), given knowledge of the physics of the robot. Indeed, for

a simple and highly structured robot manipulator, it is often possible to find an analytical form for the

input/output mapping that is needed to compute the torques, for example using inverse models based

on rigid body dynamics derived from the Newton-Euler algorithm [Featherstone, 1987]. These models

are parameterized in terms of kinematic and dynamic parameters. The latter, which include the mass,

centre of mass and moments of inertia of each link, are usually unknown even to the manufacturers of

the robots [An et al., 1988]. The calibration of these dynamic parameters is neither trivial nor robust;

for example, Armstrong et al. [1986] estimated them for a PUMA 560 arm by disassembling it and

measuring the properties of the individual links using a set of rather elaborate procedures, and Corke

and Armstrong-Hélouvry [1994] have noted 200% to 400% variations in the parameters of PUMA 560

arm reported in the literature. Some dynamic parameters, such as those for friction, may also vary with

time, rendering previously estimated values less useful.

In addition to difficulties caused by unknown physical parameters, there are difficulties in modelling

interference with cables, joint elasticity, friction and contact forces, so that analytical predictions can be

infeasible. This is particularly the case for robots with designs that make analytical modelling hard, for

example the control of compliant, lightweight humanoid and personal robots, which deviate significantly

from idealized rigid body dynamics.

99
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To overcome the above limitations of analytical models, there is an increasing emphasis on adaptive

controllers that enable the automatic calibration of robots based directly on input-output data, ideally

with minimal human involvement [An et al., 1988]. In general, there are two classes of adaptive con-

trollers: parametric adaptive controllers, which use analytical models but change the dynamic parame-

ters to match observed data; and non-parametric adaptive controllers, which learn the mappings directly

through function approximation [Burdet and Codourey, 1998]. In this chapter, we follow the latter route

and place Gaussian process (GP) priors directly on the torque functions. This approach gives a model

abstract enough to be generally applicable and not limited to a particular robot manipulator.

The adaptation or learning of the inverse dynamics is especially necessary for robot manipulators, which,

unlike traditional machine tools, are required to have high dexterity, handle a variety of loads, and

perform a number of different tasks. In general, each different circumstance or context, such as changing

the load, will correspond to a different inverse dynamics. If the inverse dynamics changes abruptly

and/or frequently when, say, manipulating a set of tools, then it is appropriate to use different inverse

dynamics mappings, one for each of the many contexts. A classic adaptive controller that continuously

changes its inverse dynamics mapping to match observed dynamics is inadequate in this case, since it has

only a single mapping at any one time [Petkos et al., 2006]. For learning under such multiple contexts,

we propose the multi-task Gaussian process model described in section 2.5.1 on page 30, which is

capable of handling multiple inverse dynamics mappings. In addition, being fully probabilistic, it can

leverage the multiple inverse dynamics mappings by “sharing statistical strength” among them.

Although it is desirable, it is not necessary for the estimated inverse dynamics functions to be fully

accurate, since they will typically be used as the feedforward component within a composite controller

[An et al., 1988, §1.3.2], as illustrated in Figure 4.1. In this controller, the vector of actuation torques

τ (x) is a sum of feedforward torques τff(x) and a corrective feedback component τ fb(x). The latter is

required for disturbance suppression and for dealing with unforeseen deviations from the model. Thus

we have τ (x) = τff(x) + τ fb(x) = τff(x) + (Kpe + Kdė), where Kp, Kd are feedback gains for

a proportional-derivative (PD) controller, and e is the deviation from the desired trajectory. If τff is

accurate there will be little feedback correction required, allowing us to use low feedback gains and

yet achieving fast, accurate movements. Low gains imply high compliance, that is if the movement is

suddenly obstructed, the system will not generate unduly large and dangerous corrective commands.

This is desirable for robots meant to operate amongst humans.

In summary, we present in this chapter a probabilistic model based on multi-task Gaussian processes

(see Bonilla et al. [2008] and section 2.5.1 on page 30) for learning the feedforward torques across

multiple contexts. Using a nonparametric approach, we obtain an abstract model that does not (from

the outset) model the specifics of an individual robot, but is generally applicable to families of robots.

The proposed model is capable of exploiting the commonalities between different contexts in order to

give improved performance for a given context, compared to learning only on data from that context.

Through coupling inference and learning across multiple contexts, the model propagates uncertainties

automatically between the different contexts. This is particularly advantageous when the data for each

context explores rather different portions of x-space.
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Figure 4.1: Feedforward composite controller, adapted from An et al. [1988, Figure 1.5]. The triplet

(qd, q̇d, q̈d) gives the desired trajectory, while (qa, q̇a) is the current state of the actual trajectory. The

actual dynamics model of the system is denoted by M, while the estimated inverse dynamics model is

denoted by M̂−1. The vector of torques τff is computed by the feedforward component using M̂−1,

and it is corrected with the PD feedback to give the vector of actuation torques τ .

4.1.1 Outline

The rest of this chapter is structured as follows. In section 4.2 we introduce the inverse dynamics data

used for building and assessing our models, and study some characteristics of the data. In particular,

we highlight the presence of discontinuities in the inverse dynamics function that will influence our

modelling later.

Our model is based on placing Gaussian process priors on the torque functions. Section 4.3 introduces

and motivates our particular GP model for a single context, and compares it with three simpler models.

In section 4.4, the GP model is extended to the multi-task GP model to learn from multiple contexts,

using the property that the inverse dynamics function is linear with respect to dynamic parameters.

Experimental results illustrating the benefits of the extended model are provided. Lastly, section 4.5

summarizes our findings and provides some discussions.

4.2 Data Collection and Exploration

In this section, we first describe the data used, then explore some characteristics of the data, and end

with how the data is sampled for the later experiments.

4.2.1 Data

We use a realistic simulation of the industrial grade revolute robot PUMA 560 (Programmable Universal

Machine for Assembly). This robot is used widely in industry, and has been well studied in the robotics

literature. It has ` = 6 degrees of freedom, nominal payload of 4kg, maximum speed of 1.0m/s and

extended limb length of 0.878m. This robot is a “general purpose robot” because it has six degrees of

freedom, the minimum required for manipulation in three-dimensional space.

The simulation models both viscous and asymmetric-Coulomb frictional forces, and uses realistic iner-
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Figure 4.2: Schematic of the PUMA 560 without the end-

effector (to be connected to joint 6).
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Figure 4.3: Paths p1 to p4 for the data set.

The robot base is located at (0, 0, 0).

Table 4.1: Speeds of trajectories

Speeds Time to complete path/s

s1 20

s2 15

s3 10

s4 5

Table 4.2: Paths of trajectories

Centre Rotation

Paths along x-axis/m along z-axis/m about z-axis/◦

p1 0.35 0.36 −10

p2 0.45 0.40 0

p3 0.55 0.44 10

p4 0.65 0.48 20

tial parameters [Corke, 1996; Corke and Armstrong-Hélouvry, 1994].1 Our aim is to model the inverse

dynamics for a single robot for use in a composite controller, hence we do not introduce any noise or

parameter uncertainty in the simulation.

Robot manipulators are used for different tasks, handling different loads. We explore this circumstance

by simulating the handling of M = 15 different loads at the end-effector through 4 different figure-of-

eight paths at 4 different speeds. Figure 4.3 shows the paths p1, . . . , p4, which are placed at 0.35m

to 0.65m along the x-axis, at 0.36m to 0.48m along the z-axis, and rotated about the z-axis by −10◦

to 20◦. There are four speeds, denoted by s1, . . . , s4, with s1 completing a path in 20s, and s4 in 5s.

Details are given in Tables 4.1 and 4.2.

In general, loads can have very different physical characteristics; in our case, this is done by representing

each load as a cuboid with differing dimensions and masses, and attaching each load rigidly to a random

point at the end-effector. The masses used are given in Table 4.3; the other parameters are omitted.

For each path-speed (trajectory) combination (p·, s·), and for each load cm, 4000 data points are sampled

at regular intervals along the path. Each sample is the pair (x, t), where t ∈ R` are the observed torques

at the joints, and x ∈ R3` are the joint angles, velocities and accelerations.
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Table 4.3: Mass/kg of the contexts or loads

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15
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Figure 4.4: Plots of the three trajectories projected onto the first 3 principal components, and plot of the

proportion of variance explained against the number of principal components.
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(a) Torque versus phase plot for (p1, s4)
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(b) Torque versus phase plot for (p4, s1)

Figure 4.5: Example plots of torques versus the phase of a path. The thin lines are for load c1, and the

thick ones for c15; the blue lines are for the torques at the third joint, and the black ones for the torques

at the sixth joint.

4.2.2 Data Analysis

To help visualize the multidimensional data, principal component analysis (PCA) is performed on all the

sampled inputs {x}. Figure 4.4 plots for selected path-speed combinations the inputs projected onto the

first three principal components, which account for about 50% of the variance. It shows that p1 explores

larger variations in the possible space more than p4. This is because p1 is closer to the robot base than

p4, and therefore the arm requires larger joint movements to cover similar areas in the Cartesian space.

Also, s4 explores larger variations than s1 because of the larger changes in velocities and accelerations

needed to complete a path faster. For example, if (p1, s1) traces (q(φ), q̇(φ), q̈(φ)) in the x-space,

φ ∈ [0, 2π] being the phase of the path, then (p1, s4) traces (q(φ), 4q̇(φ), 16q̈(φ)), since s4 completes

the path 4 times faster than s1.

Figure 4.4 makes clear that the inputs have structure reflecting the trajectories, and that different tra-

jectories will explore different parts of the x-space, although there is a certain degree of overlap. This

suggests that a model of inverse dynamics learnt for one path and one speed may not fit the inverse

dynamics for another path and/or another speed. In this case, it should be advantageous to combine data

for different trajectories using, e.g., the multi-task GP proposed in section 4.4. Note that performing

PCA on simple transformed spaces, such as trigonometric functions of the angles or sigmoid transfor-

mations of the velocities, will give the same qualitative observations, although the plots may be less

contorted.

Figure 4.5 gives examples of how the torques at the joints vary with phase φ as the robot arm traces

a figure-of-eight path. Within the same trajectory, we see that the torques for the different loads are

similar, the most noticeable difference being a vertical offset along the torque axes. This suggests that

it will be beneficial to use a multi-task model for the torques for different loads. In contrast, the torques

for different joints are quite dissimilar, so that modelling these with multi-task models may not be as

1 The simulation package is available from http://www.petercorke.com/Robotics%20Toolbox.html.
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(b) Torque components versus phase plot

Figure 4.6: Example of the decomposition of a torque into its components. (a) Torque versus phase plot

for trajectory (p1, s4), load c1 and τ6; (b) The same torque is decomposed into a square wave and a

smooth function.

beneficial.

The torques in Figure 4.5 display discontinuities, due to Coulomb friction. This is a constant force op-

posing the current direction of movement, so each time a joint velocity crosses zero, the corresponding

torque jumps.2 The visibly large effects of the Coulomb friction on the torques suggest it will be im-

portant to model the friction. Figure 4.6 shows that a torque function τi(x) can be effectively modelled

using the sum of a square wave and a smooth function. We shall show in section 4.3.2 that τi(x) can be

readily modelled by the sum of two GPs.

Figure 4.7 gives example plots of the torque as a function of the first two principal components, making

it clear that the discontinuities occur also in the torque-x space. An artifact of the projection used in the

plots may suggest that a given x can produce two different torques. However, the inverse dynamics is

really a function, not a relation.

4.2.3 Data Sampling for Experiments

It may be too expensive to acquire data combinatorially, sampling data for every possible load-trajectory

pair. However, one may imagine that data for the handling of a load can be obtained along a fixed

reference trajectory for calibration purposes, and also along a trajectory typical for that load. We explore

such a scenario here, selecting the training samples in the manner described below.

For each load, 2000 training samples are acquired at a common reference trajectory Tr, which is (p2, s3).

In addition to this, 2000 training samples are acquired at a trajectory unique to each load, denoted by

Tm for the mth load. Table 4.4 gives the combinations. Hence each load has a training set of 4000

samples, but acquired only on two different trajectories. These training samples are random subsamples

of the data described in section 4.2.1.
2 Since the data is generated by calculating inverse dynamics from a smooth trajectory, the jumps in the torque sequence are more

visible than for e.g. PD control, where the discontinuity would be “shared” among torques and accelerations.
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Figure 4.7: Example plots of torques versus the first two principal components (PCs) of the inputs x. The

thick line is the torque of the sixth joint, and thin line is the projection of this onto the plane of the first two

principal components.

Table 4.4: The path-speed combinations at which training samples for each load are acquired, marked

with � or �. For the multiple-contexts setting, c15, and hence T15, is not used for training.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

T1 : p1, s1 �

T6 : p2, s1 �

T11 : p3, s1 �

T2 : p4, s1 �

T7 : p1, s2 �

T12 : p2, s2 �

T3 : p3, s2 �

T8 : p4, s2 �

T13 : p1, s3 �

Tr : p2, s3 � � � � � � � � � � � � � � �

T4 : p3, s3 �

T9 : p4, s3 �

T14 : p1, s4 �

T5 : p2, s4 �

T10 : p3, s4 �

T15 : p4, s4 �
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Following Burdet and Codourey [1998], we use two kinds of test sets to assess our models for (a) control

along a repeated trajectory (which is of practical interest in industry), and (b) control along arbitrary

trajectories (which is of general interest to roboticists). The test for (a) assesses the accuracy of torque

predictions for staying within the trajectories that were used for training. In this case, the test set for

load cm, denoted by interpm for interpolation, consists of the rest of the samples from Tr and Tm that

were not used for training. The test for (b) assesses the accuracy also for extrapolation to trajectories

not sampled for training. The test set for this, denoted by extrapm, consists of all the samples (collated

from all trajectories) that were not training samples for cm.

In addition, we consider a data-poor scenario, and investigate the quality of the models using randomly

selected subsets of the training data. The size of these subsets ranges from 20 to 1858. For each size, 5

subsets are sampled, and the experiments are replicated over these 5 subsets.

Remark Our data is obtained by sampling at regularly spaced intervals along the paths for all the

speeds. Since each of our paths is a closed loop, this approximates the realistic case where the sampling

is at a fixed rate for a real robot tracing the same path periodically.

Remark Recall that our inputs x for the inverse dynamics model are from the joint space, with

x def= (qT, q̇T, q̈T)T. Rather than specifying inputs in the joint space directly, the xs in our data are

obtained by specifying the path of the end-effector positions in Cartesian coordinates of the operational

space, and applying the inverse kinematics to obtain the joint variables. This end-effector control of ma-

nipulators is the natural approach for adaptive and compliance control in the work place, even though it

precludes the use of techniques for designing trajectories that cover the entire range of dynamics in the

joint space [Armstrong, 1987; Swevers et al., 1997].

4.3 Inverse Dynamics Model for a Single Context

In this section, we describe how inverse dynamics models in the joint space may be obtained under a

single context, when the dynamics does not change. We first review the classic approach in robotics

for obtaining dynamic models of a robot manipulator. This approach produces parametric formulae for

computing the torques, in which the parameters are known as the dynamic parameters. Next, we dis-

cuss how we may use Gaussian process priors for learning the torque functions, incorporating different

amounts of information into the priors. Our choice of prior based on general function approximation

principles is detailed in section 4.3.2.1. In section 4.3.3, we outline how parameterized Gaussian process

priors may be optimized to give better predictions. The merits of our prior are explored experimentally

in section 4.3.4, together with three other simpler models. Finally, we give some related work for learn-

ing the inverse dynamics in a single context in section 4.3.5.
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4.3.1 Analytical Models: Lagrangian Formulation

The classic approach to obtain a model for the dynamics of the robot is based on a Lagrangian formula-

tion [Sciavicco and Siciliano, 2000, §4.1]

L(q, q̇) = T (q, q̇)− U(q) ξi =
d
dt
∂L
∂q̇i

− ∂L
∂qi

, (4.1)

where L is the Lagrangian of the system, T and U are the total kinetic energy and potential energy of

the system respectively, and ξi is the torque for the ith joint due the Lagrangian. The kinetic energy

can be further expressed as T = q̇TB(q)q̇/2, where B(q) is the `-by-` inertial matrix of the system,

and is positive definite. Denote by bi(q) the ith column of B(q), and by bij(q) the (i, j)th entry of

B(q). Using a simplified friction model of only the symmetric-Coulomb and viscous frictions (see, for

example, Makkar et al. [2005] for more detailed friction models), and assuming no contact by the end

effector on the environment, we may write the actuation torque for the ith joint as

τi(x) = bTi (q)q̈ + q̇THi(q)q̇︸ ︷︷ ︸
kinetic

+ gi(q)︸ ︷︷ ︸
potential

+ fvisc
i q̇i + f clmb

i sgn(q̇i)︸ ︷︷ ︸
viscous and Coulomb frictions

, (4.2)

where sgn is the signum function; f clmb
i and fvisc are Coulomb and viscous friction coefficients;

gi(q) def= ∂U(q)/∂qi; and Hi(q) is a `-by-` matrix of Coriolis and centrifugal effects, with the (j, k)th

entry given by hijk(q) def= ∂bij(q)/∂qk − 1
2∂bjk(q)/∂qi. The required torque is therefore a sum of

contributions due to kinetic energy, potential energy and frictional forces.

The analytical model (4.2) is parameterized by inertial parameters and friction parameters, collectively

called dynamic parameters. There are 10 inertial parameters for each link, describing its mass (R),

centre of mass (R3) and moments of inertia (R6). Accurate estimation of these parameters is very

important in analytical models. It is, however, rather involved; see a recent review by Schedlinski and

Link [2001].

4.3.2 Gaussian Process Prior Models

Bayesian approaches to learning the inverse dynamics begin by specifying a prior over the torque func-

tions τ : R3` 7→ R`, either directly or through parameters. After conditioning on observed data, we

obtain the posterior over the functions, which is then used subsequently for inference. For the ith joint,

let Di
def= {(x(j), t

(j)
i )}n

j=1 be the observed set of n input-torque pairs, X be the set of inputs in Di, and

x∗ be the point for which inference is required. We write t ∼ N (µ,Σ) to mean that the random vector

t has multivariate normal distribution with mean µ and covariance Σ. Then for a zero-mean Gaussian

process prior τi ∼ GP (0, ki), where ki is the covariance function, we have according to the prior the

following multivariate-normal distribution(
ti

τ∗i

)
∼ N

(
0,

(
Ki + σ2

i I ki

kT
i ki(x∗,x∗)

))
, (4.3)

where τ∗i is the torque at x∗, ti def= (t(1)i , . . . , t
(n)
i ) are observations with additive normal noise of vari-

ance σ2
i , Ki is the matrix of covariances for all pairs in X , and ki is the vector of covariances between

x∗ and X . Conditioned on the observation data Di, the posterior is

τ∗i |x∗,Di ∼ N
(
kT

i (Ki + σ2
i )−1ti, ki(x∗,x∗)− kT

i (Ki + σ2
i )−1ki

)
. (4.4)
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The above expression for the GP posterior can be found in standard references for GPs, e.g., [O’Hagan,

1978; Rasmussen and Williams, 2006].

The prior on τi(·) encodes beliefs about the function before observing the data. For zero-mean GPs

this is specified by the covariance function ki(·, ·). In the absence of strong evidence for otherwise,

it is common to use vague priors to prevent a-priori ruling out reasonable explanations of the data

[Rasmussen and Williams, 2006, §5.2]. The natural question is thus: how much information in a GP

prior over torque functions is necessary for good predictive performance? One highly informative GP

prior can be derived based on the detailed analysis in (4.2). For a given robot manipulator, explicit

parameterized expressions for B, Hi and gi can be obtained using, for example, computer algebra

[Corke, 1998]. The resultant torque functions will be linear with respect to the dynamic parameters

(see section 4.4.1). Placing Gaussian priors over these parameters will give a GP prior over the torque

functions. This is a Bayesian linear-in-the-parameters model in which the regressors are functions of

x instead of simply x, and it is a model for parametric adaptive control. It is specialized for the given

manipulator, and may be grossly mismatched when used for another. Given the non-generality of this

approach, we shall shy away from such a prior.

A more general GP prior on τi(q) that still retains much of the information present in (4.2) involves

placing GP priors over the functions bi and gi, and Gaussian priors over parameters fvisc
i and f clmb

i .3

There are two main difficulties with such an approach. The first is that it is non-trivial to model the

positive definite matrix function B(q). Similar to the Wishart distribution, one may define a prior over

B(q) by letting B(q) def= A(q)AT(q) and placing a matrix-variate GP prior on A(q). Unfortunately,

such a prior inherits all the restrictions of the Wishart distribution and at the same time complicates the

model through its non-normality. The second difficulty is because Hi(q), being derived from B(q),

has non-trivial correlation with bi(q). This coupling makes the covariance function of τi(q) rather

complicated. We have actually attempted priors over τi(q) similar to what is described here4, and

preliminary results (along the lines of the experiments described in section 4.3.4) show that they give rise

to inferior performance relative to the more general prior described in the next paragraph. In essence, this

approach is similar to the latent force model of Alvarez et al. [2009], which marries purely mechanistic

models of physics with the data driven paradigm of machine learning.

A yet more general GP prior is one that models only the analytic properties of the torque functions. This

is the prior that we favour, and that has produced predictive results better than the other GP models we

have tried. This is described in the following section.

4.3.2.1 Gaussian process priors for function approximation

Our preferred choice of GP prior is based on the tenet that a GP prior is a prior over the space of func-

tions, so that we can directly view learning the inverse dynamics as a function approximation problem.

Within this view, we wish to express in the prior the analytic properties of the function to be estimated.

This is done by first modelling the torque function without the Coulomb friction, and then the torque

3 The prior on His follows directly from the prior on bis, so there is no need to specify its prior.
4 Examples of priors we have attempted are: (a) approximating B(q) with a GP by matching first and second moments; and (b)

assuming independence between Hi(q) and B(q) in addition to the approximation in (a).



110 Chapter 4. Multi-task Gaussian Process Learning of Robot Inverse Dynamics

caused by the Coulomb friction.

Consider the torque function τ\clmb
i given by (4.2) except the last term, which models the Coulomb

friction. By construction, τ\clmb
i is analytic5 with respect to x, so that a GP prior over τ\clmb

i should be

infinitely mean square differentiable [Belyaev, 1959]. An additional property is the nonstationarity of

the GP prior, due (at least) to the kinetic and viscous friction terms in (4.2). Under these considerations,

we let τ\clmb
i ∼ GP (0, k\clmb

i ), with the covariance between τ\clmb
i (x(α)) and τ\clmb

i (x(β)) given by

k
\clmb
i (x(α),x(β)) def= b2i +

3∑̀
j=1

u2
ijx

(α)
j x

(β)
j + v2

i exp

−1
2

3∑̀
j=1

(
x

(α)
j − x

(β)
j

lij

)2
+ σ2

i δα,β , (4.5)

where δ is the Kronecker delta function, and bi, the uijs, vi, the lijs and σi are unknown hyperparame-

ters. The hyperparameters are subscripted with i so that the covariance function is unique to each joint.

This is a GP prior for approximating general smooth functions. It has been used before, and has been

found to work well for a number of problems; see Neal [1997], Williams and Rasmussen [1996] and

Rasmussen [1997].6

The covariance function k\clmb
i consists of a constant offset term for modelling the mean of the pos-

terior, a term for modelling any trends linear in the inputs, a squared-exponential term for modelling

fluctuations around the linear trends, and a jitter term for better matrix conditioning and to account for

model inadequacies. With the exception of the jitter term, k\clmb
i gives a GP that is infinitely mean

square differentiable. Also, nonstationarity is present due to the linear term.

A covariance function parameterized in the manner of (4.5) implements automatic relevance determi-

nation [ARD, Neal, 1996], since the length scales lij and the weights uij determine the influence of the

respective input dimensions in the covariance function k\clmb
i [Rasmussen and Williams, 2006, §5.1].

For example, ui1 = 0 means that x1 will not have any contribution to the linear trend of the process for

predicting the ith torque. Because the posterior process is highly dependent on the covariance function,

it is usually desirable to have such a general parameterization to allow observed data to influence the

choice of the hyperparameters (see section 4.3.3 later). Hence, we take the approach of using ARD to

parameterize covariance functions wherever possible.

Alone, a smooth process based on k\clmb
i is unable to model the discontinuities due to the Coulomb

friction that is present in the torque function τi. Since, under (4.2), the Coulomb friction is added to

a smooth function to generate the torques, τi can be modelled by adding a relevant stochastic process

prior τ clmb
i for the Coulomb friction; see also the discussion in section 4.2.2 on Figure 4.6. The prior

we use is τ clmb
i ∼ GP (0, kclmb

i ), with the covariance between τ clmb
i (x(α)) and τ clmb

i (x(β)) given by

kclmb
i (x(α),x(β)) def=

∑̀
j=1

w2
ij sgn

(
q̇
(α)
j

)
sgn

(
q̇
(β)
j

)
, (4.6)

where the ARD parameterization is used, and the wijs are the unknown hyperparameters. This GP prior

corresponds to modelling
∑

j f
clmb
ij sgn(q̇j) using the prior f clmb

ij ∼ N (0, w2
ij).

5 Any analytic function is infinitely differentiable.
6 Neal [1997] allowed the exponent within the exponential to vary within [0, 2]; Williams and Rasmussen [1996] and Rasmussen

[1997] constrained ui1 = ui2 . . . = ui`.
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Hence, our prior for τi = τ
\clmb
i + τ clmb

i is τi ∼ GP (0, ki), with

ki(x(α),x(β)) def= k
\clmb
i (x(α),x(β)) + kclmb

i (x(α),x(β)). (4.7)

4.3.3 Estimating Hyperparameters by Optimizing Marginal Likelihood

The covariance function ki of the GP prior on τi belongs to the parametric class indexed by

θx
i

def= (bi, vi, σi,ui, li,wi)T ∈ R7 +̀3, (4.8)

where ui (resp. li, resp. wi) are the vectors of uij’s (resp. lij’s, resp. wij’s). These are called the

hyperparameters of the model. Given observed data Di
def= {(x(j), t

(j)
i )}n

j=1 for the ith joint, the log

marginal likelihood of θx
i is7

log p(ti|X,θx
i ) = −1

2
tTi K

−1
i ti −

1
2

log |Ki| −
n

2
log 2π, (4.9)

where X def= {x(j)}n
j=1, ti def= (t(1)i , . . . , t

(n)
i )T, and Ki is the matrix of covariances for all pairs in X

given θx
i . A fully Bayesian approach can be used in principle by introducing hyperpriors p(θx

i ) and

inferring the posterior p(θx
i |Di). For the PUMA 560 robot manipulator with ` = 6 degrees of freedom,

this will involve a 45-dimensional numerical integral, and requires the use of Monte Carlo Markov

Chain methods [Neal, 1997; Rasmussen, 1997], which are computationally intensive.

In this chapter, we shall take the more pragmatic and less computationally expensive approach, and

instead treat the hyperparameters as fixed but unknown. Their values are estimated by maximizing the

marginal likelihood of the model (see, for example, Mardia and Marshall [1984]). This is widely done

in practice, for example Kennedy and O’Hagan [2001], and often suffices [Rasmussen and Williams,

2006, §5.2].

The marginal likelihood will usually have multiple local maxima, and a typical numerical local opti-

mizer will only find the one that is in the basin of attraction of the initial guess of the hyperparameters.

In our case where the ARD parameterization of the covariance function is used, we initialize by giving

each covariate equal weights, and let the data break the symmetry to inform us which input dimensions

are irrelevant. With this consideration, we optimize starting from values of the hyperparameters as calcu-

lated in appendix C.1. To prevent matrix conditioning problems, we furthermore constrain σ2
i > 10−4,

and uij ∈ (0, 100]. Optimization is done using the L-BFGS algorithm [Liu and Nocedal, 1989]8.

4.3.4 A Comparison of Four Models

We compare the GP prior given in the previous section with three other simpler models, to see if any

simpler model is sufficient to provide an acceptable predictive performance. One example of a simpler

model would be to ignore the presence of the discontinuities and omit the term kclmb
i . Another example

of a simpler model is linear regression (LR) on the same space of inputs

x̃ def= (xT, sgn(q̇1), . . . , sgn(q̇`), 1)T,
7 In the statistics community, this is more commonly called the likelihood instead. We follow the tradition in the machine learning

community and call it the marginal likelihood, see [Rasmussen and Williams, 2006, §5.4.1].
8 Software available from http://www.ece.northwestern.edu/~nocedal/lbfgs.html.
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Table 4.5: The average nMSEs of the predictions by models LRc and GPc. Results for joints 1, 3 and 6,

and for both kinds of test sets are shown. Training set sizes given in the second row. The nMSEs are

averaged over loads c1 to c15. The mean (over 5 replications) of the average nMSEs are shown; the 90%

confidence interval for the mean is suppressed to reduce clutter, but it is at least an order of magnitude

smaller than the mean.

Setup average nMSEs for interpm average nMSEs for extrapm

Joint Method n=52 546 1004 n=52 546 1004

1 LRc 1.5×10−3 6.1×10−6 5.9×10−6 3.1×10−3 8.8×10−4 8.9×10−4

GPc 1.5×10−3 1.4×10−7 1.0×10−9 2.6×10−3 4.9×10−4 3.2×10−4

3 LRc 3.0×10−3 6.0×10−4 5.9×10−4 2.7×10−1 2.1×10−1 2.1×10−1

GPc 2.8×10−5 3.5×10−8 1.7×10−8 4.0×10−2 1.5×10−2 5.2×10−3

6 LRc 9.2×10−4 1.5×10−4 1.5×10−4 4.2×10−2 3.0×10−2 2.9×10−2

GPc 2.7×10−4 4.4×10−6 2.6×10−6 1.3×10−2 1.7×10−2 1.5×10−2

which can be motivated using a linearization of (4.2) under certain conditions [Schedlinski and Link,

2001, §2.2]. We use the Bayesian linear model (see, e.g., Rasmussen and Williams [2006, §2.1.1])

τi(x) = x̃Tβi ti ∼ N (τi(x), 10−4) βi ∼ N (0, 104I), (4.10)

where βi ∈ R4`+1 is the vector of regression coefficients, and the variances are chosen to coincide with

the bounds σ2
i > 10−4, uij ∈ (0, 100] placed on the hyperparameters of the GP prior. These settings

correspond to a vague prior over the regression coefficients and a small noise variance over observations.

We refer to the models as follows: if a GP or LR model includes the Coulomb terms, we augment it with

c, and with c̄ otherwise, e.g. GPc. The quality of the torques predicted by LRc̄, LRc, GPc̄ and GPc are

compared in the following way. For each load cm (m = 1 . . . 15), a model is learnt using the training

data sampled from (Tr, Tm), and predictions are then made on the test sets interpm and extrapm. Next,

the normalized mean square errors (nMSEs) of the predictions are computed, by dividing the mean

square errors by the variances of the test data. These nMSEs are then averaged over the 15 loads. The

average nMSEs are computed for different sizes of the training sets, and for each of the six torques.

The mean of the average nMSEs are then taken over 5 independent replications of the training sets. In

general, we will use average to denote the average over the 15 loads, and mean to denote the mean over

the 5 replications.

The average nMSEs take values within a wide range, from 5× 10−10 to 2× 104. For ease of compari-

son, we display the base 10 logarithm of the average nMSEs using the Hinton diagram in Figure 4.8. The

Hinton diagram provides a qualitative display of the scale of the average nMSEs by representing each

value with a square whose size is proportional to the value. To facilitate more quantitative comparisons,

Table 4.5 gives the average nMSEs for LRc and GPc on joints 1, 3 and 6.

Comparing results for interpm and extrapm in Figure 4.8 and Table 4.5,we find that the latter is roughly

at least an order of magnitude harder than the former. This is to be expected from section 4.2.2: different

trajectories explore different parts of the x-space, so that the training sets and the extrap test sets may
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Setup scale of average nMSEs for interpm scale of average nMSEs for extrapm

Joint Model n=20 44 130 302 738 1858 n=20 44 130 302 738 1858

1

LRc̄

LRc

GPc̄

GPc

2

LRc̄

LRc

GPc̄

GPc

3

LRc̄

LRc

GPc̄

GPc

4

LRc̄

LRc

GPc̄

GPc

5

LRc̄

LRc

GPc̄

GPc

6

LRc̄

LRc

GPc̄

GPc

Legend

nMSE 10−9 10−6 10−2 1 10 103

Figure 4.8: Comparing models LRc̄, LRc, GPc̄ and GPc for different joints and test scenarios using log10

of average nMSEs of the predictions. Training set sizes are given in the second row. The nMSEs are

averaged over loads c1 to c15. The size of the filled squares represents the mean of the scale of the

average nMSEs, taken over 5 replications, while the size of the enveloping hollow squares, if visible,

represents the 95% confidence interval of the mean.
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have little overlap in the x-space. For theoretical perspectives of why extrapolation is less robust to

model misspecifications than interpolation, see [Stein, 1999a, §3.6]. In section 4.4 we introduce a

model that reduces the difficulty of extrapolation by sharing data and “borrowing statistical strength”

across the different contexts.

From Figure 4.8 and Table 4.5, we have the following order of the models by decreasing predictive

performance: GPc, LRc GPc̄, LRc̄. Even though full Bayesian inference is not used for the GP models

in this case, we postulate that this conclusion is robust since the results are averaged over 15 contexts,

and meaned over 5 replications. It is evident that modelling the discontinuities will produce much better

predictions, and that GP will generally produce predictions that are better than LR.

4.3.5 Related Work

To get around the limitations of analytical models, learning the inverse dynamics of robot manipulators

using non-parametric methods has previously been investigated. Some examples are locally weighted

projection regression [LWPR, Vijayakumar and Schaal, 2000; Schaal et al., 2000], least squares support

vector machines [de Kruif and de Vries, 2002], and Gaussian processes [Nguyen-Tuong et al., 2008;

Rasmussen and Williams, 2006, §2.5]. The prior works on Gaussian processes are closely related to

ours, since they are based on the same underlying statistical method. It is interesting to highlight that

Nguyen-Tuong et al. [2008] have found linear regression using an analytical model to perform poorly;

one possible reason is that their analytical model does not account for discontinuities due to friction.

4.4 A Gaussian Process Prior for Inverse Dynamics Modelling of

Multiple Contexts

We have seen in section 4.2.2 how the torque functions will change depending on the load held at the

end-effector of the manipulator. We have also seen in section 4.3.4 how an estimated torque func-

tion may produce relatively poor predictive results when used on trajectories previously unseen during

training. In this section, we introduce a model that allows the sharing of information between torque

functions trained on different contexts.

We first describe the relationship of inverse dynamics among contexts in section 4.4.1, and briefly review

a multi-task GP regression model in section 4.4.2. In section 4.4.3 we describe how the multi-task GP

(mGP) model can be used for learning across multiple contexts. Hyperparameter estimation and model

selection are addressed in sections 4.4.4 and 4.4.5. In section 4.4.6 we show that sharing data across

multiple contexts using the mGP model leads to more accurate torque predictions for the data set in

section 4.2. Finally, related work is discussed in section 4.4.7.

4.4.1 Linear Relationship of Inverse Dynamics between Contexts

In this section, we introduce the linear relation between inverse dynamics and dynamic parameters. We

will then exploit this relation to give a linear model for learning across multiple contexts.
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...
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Figure 4.9: A schematic diagram on how the different functions are related. A rectangular frame, called

a plate, repeats its contents over the specified range.

It is known, for example in An et al. [1988] and Sciavicco and Siciliano [2000], that the analytical model

given by (4.2) may be re-written as

τ (x) = Y (x)π, (4.11)

where Y : R3` 7→ R ×̀12` is a matrix of functions parameterized by the kinematic parameters only, and

π ∈ R12` is the vector of dynamic parameters of all the links of the robot manipulator.9 When, as in

our case, the loads are rigidly attached to the end effector, each load may be considered as part of the

last link, and thus modifies the inertial parameters for the last link only [Petkos and Vijayakumar, 2007].

The dynamic parameters for the other links remain unchanged since the parameters are local to the links

and their frames. Let π`,inertia ∈ R10 be the vector of inertial parameters of the last link to which the

end-effector is connected, and let π̃ def= (1,πT
`,inertia)T ∈ R11. Then we may re-write (4.11) as

τ (x) = Ỹ (x)π̃ (4.12)

where Ỹ : R3` 7→ R ×̀11 is now also parameterized by dynamic parameters π \ π`,inertia. Introducing

superscript m for the mth load or context, gives

τm(x) = Ỹ (x)π̃m. (4.13)

Denote the ith row of Ỹ (x) by the vector function ỹi(x). Then the ith torque is τm
i (x) = ỹT

i (x)π̃m.

Note that the ỹis are shared among the contexts while the π̃ms are shared among the ` links, as il-

lustrated in Figure 4.9. This decomposition is not unique, since given a non-singular square 11-by-11

matrix Ai, setting zi(x) def= A−T
i ỹi(x) and ρm

i
def= Aiπ̃

m, we also have

τm
i (x) = ỹT

i (x)A−1
i Aiπ̃

m = zi(x)Tρm
i . (4.14)

Hence the vector of parameters π̃m is identifiable only up to a linear combination. In general the matrix

Ai may vary across the joints.

9 We have used (4.2) as our basis, so that the dynamic parameters for each link consist of 12 parameters, 10 of which are the

inertial parameters, and 2 of which are the friction coefficients. Others may have used different number of dynamic parameters,

depending on whether they have included or excluded more factors, such as motor inertia or other models of friction. This,

however, will not affect our subsequent analysis since only the inertial parameters vary here.
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4.4.2 A Multi-task GP Regression Model

We briefly summarize the multi-task Gaussian process (mGP) regression model described by Bonilla

et al. [2008] and discussed in section 2.5.1. This model learnsM related functions {fm}M
m=1 by placing

a zero mean GP prior that directly induces correlations between tasks. Let tm be the observation of the

mth function at x. Then the model is given by10

C
(
fm(x(α)), fm′

(x(β))
)

def= Kf
mm′ kx(x(α),x(β)) tm ∼ N (fm(x), σ2

m), (4.15)

where kx(·, ·) is a covariance function over inputs, Kf is a positive semi-definite matrix of inter-task

similarities, and σ2
m is the noise variance for the mth task. More detailed discussion of this and related

models is given in section 4.4.7.

4.4.3 A Multi-task GP Model for Multiple Contexts

The multi-task GP model described above can be used for inferring inverse dynamics for multiple con-

texts. We begin from (4.14) and place independent zero mean GP priors on all the component functions

of z1(·), . . . ,z`(·). Let µ and ν index into the vector function zi(·). Our prior is

C
(
ziµ(x(α)), zjν(x(β))

)
= δijδµν k

x
i (x(α),x(β)), (4.16)

where kx
i is the same as the ki defined in section 4.3.2.1 except for the jitter term. In addition to the

independencies specified by the Kronecker delta function δ, this model also imposes the constraint that

all component functions for a given joint i share the same covariance function kx
i (·, ·). With this prior

over the zis, the Gaussian process prior for τm
i (·) has covariance

C
(
τm
i (x(α)), τm′

j (x(β))
)

= δij (Kf
i )mm′ kx

i (x(α),x(β)), (4.17)

where we have set Pi
def= (ρ1

i | · · · |ρM
i ) and Kf

i
def= Pi

TPi, so that (ρm
i )Tρm

i = (Kf
i )mm′ , which is the

the (m,m′)th entry of the positive semi-definite matrix Kf
i . The similarity between different contexts

is defined by Kf
i . The rank of Kf

i is the rank of Pi, and is upper bounded by min(M, 11), reflecting the

fact that there are at most 11 underlying latent functions (see Figure 4.9 and section 4.4.1).

Due to the presence of noise and inadequacies in the model, the observations tmi (x) will deviate from

τm
i (x). This may be modelled with tmi (x) ∼ N (τm

i (x), (σm
i )2), though in practice we share the

variance parameters among the contexts, setting σi
def= σ1

i ≡ σ2
i . . . ≡ σM

i . This completes the corre-

spondence with the multi-task GP model in (4.15). However, in this case there are ` multi-task GP

models, one for each joint.

This model is a simple and convenient one where the prior, likelihood and posterior factorize over joints.

Hence inference and hyperparameter estimation can be done separately for each joint.

10 Here and thereafter, for a GP prior on a function f , we shall give the covariance function directly in terms of the covariance

C
`
f(x(α)), f(x(β))

´
rather than in terms of the covariance function k(x(α), x(β)). This makes clear the covariance between

the different torque functions for joints and contexts, and allows us to express independence between torque functions via

Kronecker delta functions δij concisely.
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4.4.3.1 Predictions

Inference in the multiple context model can be done by using the standard GP formulae for the mean

and variance of the predictive distribution with the covariance function given in equation 4.17 to-

gether with the normal noise model. For the mth context and the ith joint, denote the set of nm

observed data by Dm
i

def= {(xm (j)
, t

m (j)
i )}nm

j=1. We lay out all the data for the ith joint in the order

of the context using Di
def=
(
(x1 (j)

, t
1 (j)
i )n1

j=1, . . . , (x
M (j)

, t
M (j)
i )nM

j=1

)
. Suppose we wish to predict

the torque for the mth context and the ith joint given a novel input x(∗). Let Ki be the matrix of

covariances for all pairs of inputs in Di due to equation 4.17; let km
i be the vector of covariances be-

tween x(∗) under the mth context and inputs in Di; let Di be a diagonal matrix with diagonal entries(
(σ1

i )2 (repeats n1 times), . . . , (σM
i )2 (repeats nM times)

)
; and let

ti def=
(
t
1 (1)
i , . . . , t

1 (n1)
i , . . . , t

M (1)
i , . . . , t

M (nM )
i

)
.

That is, if the pth and p′th element inDi are (xq (j)
, t

q (j)
i ) and (xq′ (j′)

, t
q′ (j′)
i ), then the (p, p′)th entry

of Ki is C
(
τ q
i (xq (j)), τ q′

i (xq′ (j′))
)

, and the pth entry in km
i is C

(
τp
i (xp (j)), τm

i (x(∗))
)
. With these

defined, the posterior mean of the required torque is given by

τ̄m
i (x(∗)) = (km

i )T(Ki +Di)−1ti. (4.18)

A clearer notation using the Kronecker products ⊗ of matrices can be used in the case of a complete

block design or isotopic data, where the nms are the same, say n•, and the same inputs are used in

all contexts, i.e. x•(j) def= x1 (j) ≡ x2 (j) ≡ . . . ≡ xM (j), for all j = 1 . . . n•. In this case, let Kx
i be

the matrix of covariances between the x•(j)s due to kx
i , and similarly for kx

i , the vector of covariances

between x(∗) and the x•(j)s. Also letDf
i be a diagonal matrix with diagonal entries ((σ1

i )2, . . . , (σM
i )2).

Then

τ̄m
i (x(∗)) =

(
(Kf

i )m ⊗ kx
i

)
T
(
Kf

i ⊗Kx
i +Df

i ⊗ In•×n•
)−1

ti, (4.19)

where (Kf
i )m is the mth column of Kf

i .

Prediction τ̄m
i (x(∗)) for context m makes use of data ti from all the contexts, as evident from (4.18)

and (4.19). Thus “sharing of statistical strength” is achieved in general. It is of interest to understand

the particular cases when such sharing does not occur, and this is discussed next.

4.4.3.2 Noiseless observations and cancellation of transfer during prediction

Consider the case of noise-free observations for a complete block design. Then maximizing the marginal

likelihood p(ti | {x•(j)}n•

j=1,θ
x
i ,K

f
i , σi) with respect to the parameters θx

i of kx
i reduces to maximiz-

ing −M log |Kx
i | − n• log |Ti

T(Kx
i )−1Ti|, where Ti is an n•-by-M matrix such that vecTi

def= ti (see

appendix C.2 for details). This objective function is convenient in that it does not depend on Kf
i . After

convergence we can obtain Kf
i as Ti

T(Kx
i )−1Ti/n

•. The intuition behind is this: The responses Ti are

correlated via Kf
i and Kx

i . We can learn Kf
i by de-correlating Ti with (Kx

i )−1 first so that only the

correlations due to Kf
i are left. Then Kf

i is simply the sample covariance of the de-correlated Ti.

Unfortunately, in this case there is effectively no transfer of information across the contexts (given the

covariance function kx
i ). To see this, we continue from (4.19) for torques of all M contexts and setting
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Df
i to be the matrix of zeros:(

τ̄1
i (x(∗)) · · · τ̄M

i (x(∗))
)

T =
(
Kf

i ⊗ k
x
i

)
T
(
Kf

i ⊗Kx
i

)−1
ti

=
{
(Kf

i )
T ⊗ (kx

i )
T
}{

(Kf
i )
−1 ⊗ (Kx

i )−1
}
ti

=
[{

(Kf
i )

T(Kf
i )
−1
}
⊗
{
(kx

i )
T(Kx

i )−1
}]
ti

=
[
IM×M ⊗

{
(kx

i )
T(Kx

i )−1
}]
ti

=
(
(kx

i )
T(Kx

i )−1t1i · · · (kx
i )

T(Kx
i )−1tMi

)
T, (4.20)

where tmi def= (tm (1)
i , . . . , t

m (n)
i ), m = 1 . . .M , which is the sub-vector in ti corresponding to the mth

context. A similar result holds for the covariances. Thus, in the noiseless case with a complete block

design, the predictions for the mth context depend only on the targets tmi . In other words, there is

no transfer of information among the contexts. One can in fact generalize this result to show that the

cancellation of transfer for the mth context does still hold even if the observations are only sparsely

observed at locations {x•(1), . . . ,x•(n)} on the other contexts. This is known as auto-krigeability in

the geostatistics literature [Wackernagel, 1998], and is also related to the symmetric Markov property of

covariance functions formulated by O’Hagan [1998]. This result can also be generalized to multidimen-

sional tensor product covariance functions and grids [Williams et al., 2007]. More details can be found

in section 3.9.1 on page 92.

4.4.3.3 The relationship among task similarity matrices

Let Π̃ def= (π̃1| · · · |π̃M ). Recall that π̃m is an 11 dimensional vector, so Π̃ is an 11-by-M matrix.

However, if the different loads in the end effector do not explore the full R11 space (e.g. if some of the

inertial parameters are constant over all loads), then it can happen that s def= rank(Π̃) 6 min(M, 11).

Indeed, this is what we will find in our experiments in section 4.4.6.

It is worthwhile to investigate the relationship between Kf
i and Kf

j , i 6= j. Recall from (4.14) that

ρm
i

def= Aiπ̃
m, where Ai is a full-rank square matrix. This gives Pi = AiΠ̃ and Kf

i = Π̃TAi
TAiΠ̃, so

that rank(Kf
i ) = rank(Π̃). Therefore the Kf

i s have the same rank for all joints, although their exact

values may differ. This observation will be useful for model selection in section 4.4.5.

4.4.4 Estimating Hyperparameters by Optimizing Marginal Likelihood

Similar to the single context, we estimate the hyperparameters θx
i (of kx

i ), Kf
i and σi of the multi-task

GP model for each joint i by maximizing the marginal likelihood p(ti | X,θx
i ,K

f
i , σi), where X is

the set of inputs in Di. As pointed out us in [Bonilla et al., 2008], one may approach this using either

general gradient-based optimization, or expectation-maximization [Zhang, 2007]. In this chapter we use

the L-BFGS algorithm for gradient-based optimization, as has been done for the single context model.

The positive semi-definiteness of Kf
i is ensured during optimization by using the incomplete Cholesky

decomposition parameterization Kf
i

def= ΛiΛT
i , where Λi is an M×r truncated lower triangular matrix

and r 6M . The issue of multiple local maxima in the objective function is dealt with by localizing the

search to regions of preferred interpretations. This is detailed in appendix C.3.
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Different values of r for rank-r constrainedKf
i are tried, each giving a different model. The next section

gives the model selection procedure we use.

4.4.5 Model Selection

The choice of the rank r of Kf
i in the model is important, since it reflects on the underlying dimension-

ality s of π̃m. It is not a fair comparison to select r by comparing the optimized marginal likelihoods

for different values of r, since a larger r has more free parameters (see equation 4.21 below) and leads

to a better optimized marginal likelihood.11 Thus to infer its value we rely on an information criterion,

which penalizes free parameters, to select the most parsimonious correct model. Here we use the Akaike

information criterion (AIC) with a second order correction for small sample sizes (AICc); see Hurvich

and Tsai [1989] and Burnham and Anderson [2002, §2.4].

As discussed in section 4.4.3.3, the rank r is the same for all joints by the construction of the matrices

Kf
i s. We would like the model selection to reflect this. Let Lir be the likelihood for each joint at

optimized hyperparameters θx
i , Kf

i , and σ2
i , when Kf

i is constrained to have rank r; let nm
i be the

number of observations for ith joint and the mth context, and ngrand
def=
∑

i,m nm
i be the total number

of observations; and let di be the dimensionality of θx
i .12 Since the number of parameters needed to

define an incomplete Cholesky decomposition of rank r for an M -by-M matrix is r(2M + 1− r)/2,

the number of parameters in a rank-r mGP model for each joint is

nparami(r) = di + r(2M + 1− r)/2 + 1, (4.21)

where the noise variance parameter is also included. Thus, there are nparam(r) def=
∑`

i=1 nparami(r)

parameters altogether for a rank-r mGP model for all joints. Since the likelihood of the model factorizes

over joints, the criterion is

AICc(r) = −2
∑̀
i=1

logLir + 2 nparam(r) +
2 nparam(r) [ nparam(r) + 1 ]
ngrand − nparam(r)− 1

(4.22)

To select the appropriate rank of the Kf
i s, we compute and compare AICc(r) for different values of r,

and choose the r that gives the lowest AICc(r).

Remark The use of the Bayesian information criterion (BIC) or the Hannan-Quinn criterion is similar

to the use of AICc. Burnham and Anderson [2002, §2.4] advocate the use of AICc over AIC when

the number of samples is small compared with number of parameters, since AICc gives better results

with little extra effort. Comparing AIC and BIC, the predictive distribution usually converges to the

true distribution at the optimal rate for AIC [Shitbata, 1983], while the BIC only achieves the optimal

rate within a logarithm factor [Rissanen et al., 1992]. An explanation on why BIC sometimes con-

verges slowly is given by van Erven et al. [2008]; see also Yang [2005]. Across the replications of our

experiments, AICc gives more consistent predictive results while BIC selects more consistent ranks.

11 This is not always the case due to our optimization procedure.
12 In fact, for our data and model, we have nm

1 ≡ . . . ≡ nm
` and d1 ≡ . . . ≡ d`.
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4.4.6 Experiments and Results for Torque Prediction

We compare the predictive accuracy of the multi-task GP (mGP) model against three simpler alterna-

tives. Using the AICc, a mGP model is selected from 14 mGP models with ranks r of the Kf
i s taking

values 1 to 14, and we denote the selected model by mGP-AICc. As discussed in section 4.4.5, the

same rank is chosen for all the joints. The alternatives are described below, and are applied separately

for each joint. The first alternative, denoted by sGP, is a single GP for each context, as per the GPc

of section 4.3.4. The second alternative, iGP, is a collection of independent GPs for the contexts, but

sharing hyperparameters (θx
i , σi) among the contexts. The third alternative, pGP, pools together data

from all the contexts, and models the torques from all the contexts with a single GP by assuming the

variations among torques from different contexts are due to noise. The iGP and pGP models can be seen

as restrictions of the multi-task GP model, restricting Kf
i to the identity matrix IM×M and the matrix of

ones 1M×M respectively.13

The models are learnt and their hyperparameters optimized for loads c1 to c14 using the training data

given in Table 4.4. For subsequent reference, we use n to denote the number of observed torques for

each joint totalled across all M = 14 contexts, i.e., n def=
∑M

m=1 n
m
i , which is the same for all joints.

Predictions are then made on the test sets interpm and extrapm, m = 1 . . . 14. Similar to section 4.3.4,

the normalized mean square errors (nMSEs) of the predictions are computed separately for each context

and each joint. Data from c15 is not part of the training data, and hence trajectory T15 is entirely

unobserved during learning. Nonetheless, this trajectory is present in the extrapm test sets, so that

predictive performance on a previously unobserved trajectory is also measured. The experiment is

replicated five times.

As discussed in appendix C.3, the hyperparameters for the mGPs are initialized to either those of pGP

or those of iGP during optimization, choosing the one with the higher marginal likelihood. For our data,

we find that the choice is mostly iGP; pGP is only chosen for the case of joint 1 and n < 30, and, even

so, only 28% of the time. In addition, the chosen ranks of the Kf
i s based on the AICc are r = 4 for

52.5% of the cases, r = 5 for 38.8% of the cases, r = 6 for 7.5% of the cases, and r = 7 for 1.2% of

the cases, aggregated across sixteen different training set sizes and the five replications. Therefore the

inverse dynamics in our setup lie on a low dimensional manifold in a 14 dimensional space.

Figures 4.10 and 4.11 give the nMSEs averaged over the 14 contexts for sGP, iGP, pGP and mGP-AICc.

In Figure 4.10, the means (over the five replications) of the average nMSEs are plotted, together with

an error bar representing the 90% confidence interval for each mean. Figure 4.10 plots the medians

of the average nMSEs. The means and medians are plotted against the number of observations on a

logarithmic scale. For Figure 4.12, we calculate the difference in the average nMSEs between mGP-

AICc and the best alternative for each of the 5 replications, and plot the differences against the number

of observations using a scatter plot. The mean of the differences are also plotted in Figure 4.12.

In each figure, the top plots give the results for the interpolation task, while the bottom plots give the

results for the extrapolation task, and leftmost plots are for joint 1, followed by plots for joint 2, etc.

Specified values taken by n are represented by the ticks on the x-axis. Note that the vertical scales of

the plots vary across the joints, and between the interpolation and extrapolation tasks. If a value lies

13 Some of these experiments are done on the Edinburgh Compute and Data Facility [Richards and Baker, 2008].
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above the upper limit of the vertical range, it is given a nominal value near the upper limit.

Since the training data are subsets selected independently for the different values of n, the plots reflect

the underlying variability in sampling. Nevertheless, we can see that mGP-AICc performs favorably in

almost all the cases, and especially so for the extrapolation task. In the extrapolation task for joint 4, we

find a decrease in the mean predictive performance of mGP-AICc at n = 1820 and n = 2380; see Figure

4.10. However, if we look at the corresponding median plot in Figure 4.11, we find that mGP-AICc

still does better in general. The discrepancy between the mean and median plots can be explained by

examining the paired difference plot in Figure 4.12, where we see that the decrease in mean performance

of the mGP-AICc is due to one particular replication each for n = 1820 and n = 2380, circled red in the

figure. For joint 1, we see a close match between the predictive performances of mGP-AICc and pGP.

This is due to the limited variation among observed torques for this joint across the different contexts for

the range of end-effector movements investigated here, as can be seen intuitively from Figures 4.2 and

4.3. Therefore it is not surprising that pGP produces good predictions for joint 1. For the other joints,

iGP is usually the next best after mGP-AICc. In particular, iGP is better than sGP, showing that (in this

case) it is better to use all the data to estimate the parameters of a single common covariance function

rather than splitting the data to estimate the parameters of 14 covariance functions.

4.4.7 Related Work

We consider related work first with regard to the inverse dynamics problem, then to multi-task learning

with Gaussian processes, and finally to tensor product covariance functions in other problems.

Inverse dynamics for multiple contexts The linearity of torque functions in the dynamic parameters

as expressed by (4.11) has been previously exploited for learning the inverse dynamics of multiple

contexts, in the multiple model switching and tuning (MMST) model of Cılız and Narendra [1996] and

the model of Petkos and Vijayakumar [2007] based on locally weighted projection regression (LWPR).

MMST uses an inverse dynamics model and a controller per context, switching among the models

by selecting the one that predicts the torque most accurately. Here, the structure of the models and the

number of discrete models are assumed to be known. Referring to (4.13), MMST assumes the non-linear

regressor matrix Ỹ (x) is known, and estimates only the inertial parameters π̃m for each context. Hence

MMST is a linear-in-the-parameters model, and involves very little dynamics learning. In contrast, the

multi-task GP model presented in this chapter does not assume a known Ỹ (x).

The LWPR-based method of Petkos and Vijayakumar estimates the torque function τm(·) of each con-

text individually using LWPR. If the parameters π̃ms at the last links are known for at least 11 contexts,

then the estimated torque functions can be used to estimate the underlying Ỹ (x) using linear regression

Ỹ (x) =
(
τ 1 · · · τM

)
Π̃T
(
Π̃Π̃T

)−1

Π̃ def=
(
π̃1 · · · π̃M

)
for M > 11, (4.23)

and prediction in a novel context (with limited training data) will depend on estimating the inertial pa-

rameters for that context. Assuming the original estimated torque functions are imperfect, having more

than 11 models for distinct known inertial parameters will improve load estimation. If the parameters
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are unknown, the novel torque function can still be represented as a linear combination of a set of 11

linearly independent torque functions, and so one can estimate the inverse dynamics in a novel context

by linear regression on those estimated functions. In contrast to the known case, however, no more than

11 models can be used [Petkos and Vijayakumar, 2007, §V]. Another difference between known and

unknown inertial parameters is that in the former case the resulting π̃ms are interpretable, while in the

latter case there is ambiguity due to the matrix Ai in (4.14).

Comparing our approach with that of Petkos and Vijayakumar, we note that: (a) their approach does not

exploit the knowledge that the torque functions for the different contexts are known to share latent func-

tions as in equation 4.13, and thus it may be useful to learn theM inverse dynamics models jointly. This

is expected to be particularly advantageous when the data for each task explores rather different portions

of x-space; (b) rather than relying on least-squares methods (which assume equal error variances ev-

erywhere), our fully probabilistic model will propagate uncertainties (co-variances for jointly Gaussian

models) automatically; and (c) equation 4.17 shows that we do not need to be limited to exactly 11

reference contexts, either fewer or more than 11 can be used — and indeed the experiment in section

4.4.7 uses 14 contexts. On the other hand, using the LWPR methods will generally give rise to better

computational scaling for large data sets (although see approximate GP methods in Quiñonero-Candela

et al. [2007]), and are perhaps less complex than the method in this chapter.

A model that uses the linear-in-dynamic-parameters property of (4.13) only indirectly is the modular

neural network architecture (MNN) of Jacobs and Jordan [1993]. Similar to MMST, they have assumed

a known Ỹ (x). For M loads, each of the M “expert networks” is parameterized by π̃m and computes

a torque using the linear model. The resultant torque used for control is a convex combination of these

M torques, using mixing proportions produced by a “gating network” that is a function of load/context

identities.14 In contrast to multiple context models motivated by the linearity in dynamic parameters,

their model is set up to discover decompositions of inverse dynamics models for the different contexts

using the competitive learning nature of mixture models. Nevertheless, they have noted that the expert

networks can be seen as “basis functions”, and a weighted combination of these can predict torques for

novel contexts.

A model that does not make use of the linearity in dynamic parameters is the biologically plausible

modular selection and identification for control (MOSAIC) model of Haruno et al. [2001] [see also

Wolpert and Kawato, 1998], which uses an inverse dynamics model and a forward dynamics model15 for

each context. MOSAIC uses the gating network idea of MNN, but now the vector of mixing proportions

is a function of prediction errors of the forward dynamics models. The inverse dynamics models of

MOSAIC neither assume a known Ỹ (x) nor make use of the known factorization of (4.13), but instead

are learnt de novo.

Multi-task learning If we view the inverse dynamics for each context as a task to be learnt, then

learning inverse dynamics for multiple context can be naturally viewed as an application of multi-task

learning (MTL). Early references to general multi-task learning are Caruana [1997] and Thrun and Pratt

14 Jacobs and Jordan [1993] have also proposed two variants that include a shared network which is not gated.
15 Forward dynamics models are used for computing joint accelerations q̈ as a function of joint angles q, joint velocities q̇ and

applied torques τ .
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[1998]. There has been a lot of work in recent years on MTL with e.g. neural networks, Dirichlet

processes, Gaussian processes and support vector machines. A more thorough review of MTL models

is given in chapter 2.

For Gaussian processes, one important related work is the semiparametric latent factor model of Teh

et al. [2005]. This model has a number of latent processes that are linearly combined to produce observ-

able functions as in (4.14), and each latent process may have its own covariance function. However, all

the latent functions in our model share a common covariance function, which reduces the number of free

parameters and should thus help to reduce over-fitting. Also we note that the regression experiments by

Teh et al. [2005, §4] used a forward dynamics problem on a four-jointed robot arm for a single context,

with an artificial linear mixing of the four target joint accelerations to produce six response variables.

In contrast, the model in this chapter exploits the linear mixing that arises naturally in a multi-context

inverse dynamics situation. In relation to work by Bonilla et al. [2008] described in section 4.4.2, we

note that the factorization between inter-task similarity Kf and a common covariance function cx is an

assumption there, while we have shown that such decomposition is inherent in our application.

Tensor product covariance functions in other problems In the geostatistics literature, the prior

model for the fms given in (4.15) is known as the intrinsic correlation model [Wackernagel, 1998], a

specific case of co-kriging. A similar model is also used by Conti and O’Hagan [2010] for emulating

multi-output simulators. An extension to multiple factors has been explored by Wang et al. [2007] for

modelling time-series motion capture data. Interpreted in terms of (4.15), each element of Kf in Wang

et al.’s model is a product of covariance functions over the subject identity (represented by a vector s)

and the gait of locomotion (vector g), while kx is the covariance function over motion state. However, in

that model Kf is parameterized by s and g and thus constrained accordingly, in contrast to the general

positive semi-definite matrix in our model, the intrinsic correlation model and the model of Conti and

O’Hagan. In addition, Wang et al. have applied their multi-factor model for learning latent spaces using

the Gaussian process latent variable model [Lawrence, 2005] and not for regression tasks as explored in

this chapter.

4.5 Summary and Further Discussions

This chapter focuses on learning inverse dynamics models for controlling a robot manipulator to follow

a given trajectory, particularly for operating under multiple contexts when different loads are attached

to the end-effector of the robot. Instead of modelling the specifics of individual robots, we have taken a

general probabilistic function approximation approach based on Gaussian Processes, which is abstract

enough to be applicable to broad families of robots. In section 4.2.2 we have looked at some charac-

teristics of the torques, and have subsequently proposed covariance functions for modelling these. The

functional forms of the proposed covariance function are also motivated by analytical robotics models,

as discussed in sections 4.3.1 and 4.4.1. In particular, the linear-in-dynamic-parameters property of in-

verse dynamics in section 4.4.1 justifies the use of the multi-task GP regression model (mGP), which

would otherwise be just an assumption. The results in section 4.3.4 have shown the importance of mod-

elling the Coulomb frictions, while the results in section 4.4.6 have demonstrated the merits of using the
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mGP model to allow flexible sharing of data among the multiple contexts. Even though our experiments

are on simulated data, it is nevertheless a realistic simulation based on estimated parameters of actual

robots. We believe that the flexibility of GP will allow modelling of actual robots, based on the broad

principles discussed in this chapter.

Below, we briefly discuss some possible extensions.

Coupling over joints The multi-context model of section 4.4.3 shares data among the different con-

texts to better predictive performance. The model is convenient to use because the prior, likelihood

and posterior factorize over joints, so that inference and hyperparameter estimation can be done sepa-

rately for each joint. Since inference is not coupled over joints, this allows independent joint control of

the robot manipulator [Sciavicco and Siciliano, 2000, §6.3], which is useful for simplifying controller

implementation.

However, models that also share data among the joints are possible if one wishes to make fuller use of

limited data. The sharing of information among the ` inverse dynamics models, one for each joint, can

be achieved through the common `-by-` inertial matrix B(q), which is a matrix of functions on q (see

section 4.3.1), in a manner similar to the latent force model of Alvarez et al. [2009]. However, because

B(q) is constrained to be positive definite, one cannot simply use a matrix of GP priors. One also needs

to be aware that the Coriolis and centrifugal effects H(q) depend on B(q) in a non-trivial way, so that

the eventual modelling of the torque functions can be rather involved. See the discussion in section 4.3.2

for more details.

A simpler model for sharing data among joints uses (4.14) with all the transformations Ais constrained

to be the same. In this model, the inter-context correlations are common among joints, i.e. Kf
•

def= Kf
1 ≡

. . . ≡ Kf
` . Hyperparameter estimation needs to be done for the joints together, while inference can still

be done separately for each joint.

Context estimation Suppose we have already estimated the hyperparameters of the multi-task GP

model for M contexts using data D. Then, given a new dataD∗ def= {(x(j), t(j))}n∗

j=1, where x(j) ∈ R3`

and t(j) ∈ R`, assumed to be from one of the known contexts, one may wish to infer its identity. This

problem is known as context estimation. We outline how this may be done below.

Let the observed torques in D∗ for joint i be collected into t∗i def= (t(1)i , . . . , t
(n∗)
i )T, and also define

X∗ def= {x(j)}n∗

j=1, the set of inputs in D∗. Then, using the mGP model for joint i learnt from D, we

write p(t∗i | X∗,D, cm) for the predictive probability that the vector of torques for the ith joint at X∗

in the mth context equals to t∗i . Viewed as a function of cm, this is the likelihood that the torques t∗i
at X∗ are for the robot operating in context cm. With these defined, we can follow Petkos et al. [2006,

§3.1] and place a prior over contexts, and obtain the following posterior given D∗:

P (cm | D,D∗) ∝ P (cm)
∏̀
i=1

p (t∗i | X∗,D, cm) m = 1 . . .M. (4.24)

One can use the cm that gives the highest posterior as the estimated context. For on-line control of

robots operating in an environment involving multiple contexts, the prior P (cm) can be time dependent

in a Markovian way; see Petkos et al. [2006, §3.1].
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Incorporating novel contexts It may be that the data D∗ defined above is from a previously unob-

served context c∗. Such cases can be handled in the following way. Having previously estimated the

hyperparameters of the multi-task GP model for the M known contexts using data D, we fix these hy-

perparameters while extending Kf by an extra row and column for the new context c∗. The entries in

this new border are to be estimated using D∗ by optimizing the marginal likelihood. Note that as Kf

is positive semi-definite this means learning only at most M new parameters, fewer if we exploit the

rank-constraint property of Kf .

Priors over hyperparameters In our treatment we have used point estimates for Kf and θx. It would

be possible to model uncertainty with respect to these parameters. For example it would be possible to

place a prior over Kf as has been done in Conti and O’Hagan [2010]; they used the non-informative

Jeffrey’s prior p(Kf) ∝ |Kf |−(M+1)/2, but an inverse-Wishart prior would also be possible. In the case

of noise free observations this prior can be integrated out analytically to give an M -variate Student’s-t

process. However, with noisy observations the justification for this is more problematic, as the noise and

signal get entangled by common scaling factors; see, e.g., the discussion in Rasmussen and Williams

[2006, §9.9].

Of course one could specify priors on Kf and θx and then resort to Markov chain Monte Carlo methods

to sample from the posterior distribution. For example, Williams and Rasmussen (1996) have used the

hybrid Monte Carlo method of Duane et al. [1987]. With s posterior samples of θx, each prediction in

this case is a weighted average of posterior means of s different Gaussian processes. However, for s

large enough to accurately represent the posterior distribution, the computational demand may not be

realistic to provide real-time feedforward torques needed for control.



Chapter 5

Conclusions and Future Work

Multi-task learning is an important paradigm in machine learning that pools knowledge from multiple

tasks together in order to improve predictive performance. The intuition that multi-task learning is

beneficial comes from the observation that we do this all the time: when encountered with multiple

related tasks, we constantly use knowledge gained from one task to help another.

The key aspect of this paradigm is understanding relatedness between the tasks. Common notions of

task relatedness are: (a) task clustering, where tasks within each cluster are related but tasks in different

clusters are not; (b) a low-dimensional manifold on which tasks reside; (c) tasks have varying degrees of

relatedness that influence the amount of information shared between tasks; and (d) different components

of the tasks being related in different ways. These notions are introduced in chapter 1, where we have

also distinguished between implicit and explicit modelling of task relatedness. In chapter 2 we have

reviewed the hierarchical Bayesian latent source model, the multi-task regularization networks model

and the Bayesian multi-task neural networks model. In these models, task relatedness is not directly

specified — the notions of task relatedness are implicit through the sharing of selected aspects of the

learning model for each task. Gaussian process multi-task learning models, which explicitly model task-

relatedness via the cross-covariance between the latent functions for the tasks, are introduced in section

2.5. This explicit modelling of task-relatedness allows an average case analysis of multi-task learning

using the intrinsic correlation model (ICM) for two tasks in chapter 3. There, we have related the

correlation between the two tasks to the average predictive accuracy of the primary task of interest. In

chapter 4, we have shown that learning the inverse dynamics of a robot manipulator for moving multiple

loads along given trajectories falls naturally into the ICM multi-task GP model. Here, moving each

load corresponds naturally to a task or context. Our experiments have demonstrated that this multi-task

formulation is effective.

The next section gives a more detailed summary of our contributions. Some future research directions

will be suggested in section 5.2.

129
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5.1 Contributions

One attraction in using Gaussian processes for multi-task learning is that task-relatedness can be ex-

plicitly and transparently encoded in the cross-covariance function between the tasks. Therefore, we

can use Gaussian processes to understand other models of multi-task learning, by making explicit the

task-relatedness in existing models. This realization seeds the main contribution of chapter 2: using

the linear model of coregionalization, which is a multi-task Gaussian process model, we have given a

unified view over the hierarchical Bayesian latent source model, the multi-task regularization networks

model, and the multi-task Bayesian neural network model. In addition, section 2.3 gives a correction to

the Proposition 1 of Evgeniou et al. [2005].

In chapter 3, we have analyzed the multi-task Gaussian process model to understand how and the extent

to which multi-task learning helps improve the generalization of supervised learning. Our analysis is

for the average-case, in contrast and orthogonal to existing works, which deal with worst-case analysis

using uniform convergence bounds. As far as we are aware, this is the first average-case analysis of

multi-task learning that directly addresses predictive errors. We focus on the learning of two tasks under

a specific Gaussian process multi-task model: the intrinsic correlation model (ICM) with observation

noise. In addition, we concentrate mainly on asymmetric multi-task learning, in which case the two

tasks can be referred to as the primary and the second task, where the secondary task is to help the

learning of the primary task. Within this setting, the main parameters are (1) the degree of “relatedness”

ρ between the two tasks, and (2) πS , the fraction of the total training observations from the secondary

task. Our results are expressed explicitly terms of ρ and πS . Again, this is in contrast to existing results,

which (1) are not expressed explicitly in terms of the relatedness among the tasks; and (2) only deal with

the case where each task has the same number of samples. We believe that it is important to analyze

multi-task learning under uneven distributions, since one of the motivations of using multi-task learning

is to allow a secondary task, for which there is abundant data, to help a primary task, for which there is

few data.

We have provided bounds on the generalization errors and the learning curves in chapter 3, and these

bounds highlight the effects of ρ and πS . For the case of no training data for the primary task, we have

shown that the error cannot be lower than (1 − ρ2)
∑
κi if one learns with only observations from the

secondary task. We have also given the lower bound
¯
σ2

T (Proposition 3.5 on page 60) on the posterior

variance that is tight, simple and useful for subsequent analysis. The term πS(1−πS)(1− ρ2) has been

demonstrated to have a governing role for symmetric multi-task learning, where the predictive accuracy

of the secondary task is also considered. For asymmetric multi-task learning, we have shown that the

lower bound on the learning curve cannot be less than (1− ρ2πS) of that from single-task learning. For

both symmetric and asymmetric multi-task learning, we have shown that the influence of the secondary

task on the primary task is larger for smoother processes than for rougher processes. We have also

investigated the effective number of observations contributed by the secondary task to the primary task.

Another contribution in chapter 3 is the generalization of two known results from the geostatistics lit-

erature concerning multi-collocated and collocated noiseless observations. This contribution extends

Chilès and Delfiner [1999]’s results from two tasks to more than two tasks, and provides an understand-

ing of the ICM multi-task Gaussian process model through the structures in the predictive means and
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variances.

In chapter 4, we have evaluated multi-task Gaussian process on learning inverse dynamics models for

controlling a robot manipulator to follow a given trajectory operating under multiple contexts, when

different loads are attached to the end-effector of the robot. Instead of modelling the specifics of indi-

vidual robots, we have taken a general probabilistic function approximation approach and have placed

Gaussian process priors over the space of functions. We believe this is abstract enough to be appli-

cable to broad families of robots. Our covariance function for the inverse dynamics within a single

context is motivated by analyzing the dynamics and understanding how the torques are generated. We

have shown that the Gaussian process with the chosen covariance function is effective for learning the

inverse dynamics for a single context.

For multiple contexts, we have used the linear-in-dynamic-parameters property of inverse dynamics

to motivate multi-task Gaussian process regression, specifically the ICM with noisy observations. We

have shown that the inter-context similarity depends on the underlying inertial parameters of the robot

manipulator. We have also used the Akaike information criterion (with a second order correction) for

selecting the underlying dimensionality of the multi-task Gaussian process, pooling together informa-

tion from all joints. Our experiments have demonstrated that this multi-task formulation is effective in

sharing information among the various loads, and generally improves performance over either learning

only on single contexts or pooling the data over all contexts.

5.2 Future Work

5.2.1 Inter-domain Multi-task Learning

Much of the research in multi-task learning is for tasks acting on the same input space, and it is not

immediately clear how one may model the case where the input spaces differ. Perhaps the most direct

way is to use transformations from one input space into another. A theory of multi-task learning that

takes this view is provided by Ben-David and Schuller Borbely [2008], and in section 2.5.8 we have

provided a multi-task Gaussian process construction that makes use of such transformations for learning

inter-domain tasks. A naïve implementation of this form of multi-task learning requires M(M − 1)/2

pairwise transformations for M tasks each acting on a different input space. One may also arrange the

transformations to follow a hierarchy so that only (M − 1) transformations are needed. Alternatively,

Evgeniou et al. [2005] suggest considering a kernel defined on the product space of all the input spaces,

and they suggest implementing this by using linear transformations to project the different input spaces

onto a common linear subspace. This will give M transformations to the common space. The above

three topologies are illustrated in Figure 5.1. One possible future research direction is to investigate

these three topologies, and perhaps also other topologies, and to make learning the transformations

feasible and robust.

A related but simpler situation is when the outputs of the tasks are different, for example, if one is a

regression task and the other a classification task. For this, we can still couple the latent functions using

multi-task learning, but use different link functions (as in generalized linear models) for each task; see
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f1 f2

f3

f4f5

f6

(a) M(M−1)/2 pairwise

transformations

f1 f2

f3

f4f5

f6

(b) M−1 transformations

in a hierarchy

f1 f2

f3

f4f5

f6

(c) M transformations to a

common space

Figure 5.1: Multi-task learning for six functions, f1, . . . , f6, each acting on a different input space. Three

possible topologies are illustrated above, where an arrow represents a transformation of the input space.

For (c), the solid circle in the centre represents the common space onto which all other input spaces map.

Dunson [2000]; Gueorguieva and Agresti [2001]; Yang et al. [2009].

5.2.2 Further Analysis on Multi-task Learning

In chapter 3, we have analyzed multi-task learning where there are two tasks. This has been a conve-

nient choice for analysis since the relation between the two tasks can be given completely by the single

parameter ρ ∈ [−1, 1] that measures the correlation or relatedness between the two tasks. A more thor-

ough theory of multi-task learning is one for M > 2 tasks. This will involve the Θ(M2) parameters in

the task correlation matrix Kf for describing task relations. For symmetric multi-task learning, which

can be regarded as single-task learning on an expanded input space that includes the task indicators, the

performance of all the tasks will depend on the M eigenvalues of Kf . However, the analysis is not so

straightforward for asymmetric multi-task learning, where we are interested mainly in the performance

of one of the M tasks, called the primary task. Perhaps here it is worthwhile to limit the analysis to

particular cases, for example, when Kf is rank-constrained, when Kf is an equi-correlated matrix (i.e.,

all the inter-task correlations are the same), or when the correlations in Kf are bounded within a sub-

range of [−1, 1]. The challenge is for the results to make sense in terms of intuitive quantities such

as the Schur complement v2
T

def= 1− %T(Kf
S)−1% given in equation 3.77a on page 94. This will be an

interesting area for future research.

Orthogonal to the above, it is also useful to consider the case where the training set is not partitioned

exclusively among the tasks. For example, for two tasks, called task T and task S, one may wish

to partition the training set locations into fraction πT for task T , fraction πS for task S, and fraction

(1− πT − πS) that is shared between task T and task S.1 A similar setup has been used in chapter 4,

where there are 15 contexts sharing training locations sampled from a reference trajectory.

Another area for future research is to analyze when the input spaces for the tasks are different. Again,

it will prove useful to draw inspiration from particular cases. For two tasks, suppose there is already

a deterministic mapping from each task to a common real vector space RD, for some D, so that we

1 This was suggested by E. Bonilla when I presented the preliminary results of chapter 3 at the Statistical and Machine Learning

Interface Meeting in the University of Manchester, 23rd-24th July 2009.
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fT

fS

h

ρ

ρ

︸ ︷︷ ︸
a

p(x)

q(x)

p(x)

Tasks x-space distribution on x-space

Figure 5.2: A case of inter-domain transfer between fT and fS . Function h is a translation of fS in the

x-space by a, and fT and h are related via the ICM multi-task Gaussian process model, with inter-task

correlation ρ. The distribution on the input x is p(x) for both fT and fS , but h has a different input

distribution q(x).

can restrict our attention to two functions fT and fS on RD. We would like to analyze the multi-task

learning of fT and fS . If there is a function h(x) def= fS(x− a) such that fT and h jointly have the

multi-task Gaussian process prior as per chapter 3, with an isotropic covariance function kx on the input

space, then fT and fS are related by an inter-domain Gaussian process in the manner section 2.5.8 on

page 40. In this case, the transformation g is a translation in the x-space by a. This is illustrated in

Figure 5.2.

A direct analysis of the multi-task learning between fT and fS is to translate fS into h, and apply the

generalization errors results in chapter 3 on fT and h. For the learning curves, we will need to specify

the input distributions for fT and fS . If both of fT and fS have the same input distributions p(x), then

fT and h will not have the same distribution — the distribution q(x) for h is a translation of that for fT ,

i.e., q(x) = p(x− a). Analysis may still be possible but could be rather limited.

5.2.3 Task Identity Determination and Learning to Learn

A future direction is to try the multi-task Gaussian process learning model on task identity determination

and learning to learn. These have already been pointed out in section 4.5 on page 126 for learning

the inverse dynamics of a robotic manipulator for multiple contexts. We reiterate these here in more

generality; further details can be found in section 4.5.

Task identity determination Suppose we have already learnt a multi-task Gaussian process model for

M tasks. Then given a set of new data D∗ def= {(x(j),y(j))}n∗

j=1, the aim is to infer which of the

M tasks most likely generated D∗.

Learning to learn It may be that the data D∗ defined above is from a previously unobserved task. We

would like to know if this is indeed the case. If D∗ is from a novel task, then we would like

to learn this task by incorporating D∗ into the multi-task model that we have already learnt for

the existing M tasks. One way to achieve this in the ICM Gaussian process model is to extend

Kf by an extra row and column for the new task, and estimate the entries in this new border by

optimizing the marginal likelihood.
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Appendix to Chapter 2

In this appendix, we provide material supplementary to chapter 2.

A.1 Derivations for Multi-task Regularization Networks Model

This section contains derivations for the multi-task regularization networks model of Evgeniou, Mic-

chelli, and Pontil [2005] discussed in section 2.3.

A.1.1 Derivation for Linear Multi-task Kernel

Consider two functions f and f ′ which belong to the Hilbert space H:

f(m,x) = uTΦmx f ′(m,x) = (u′)TΦmx.

If we assert that the squared norm of these functions is uTu, that is,

‖f‖2H = uTu,

then we have the inner product

〈f, f ′〉 = uTu′ (∗)

in H so that ‖f‖2H def= 〈f, f〉 will give uTu. Let the reproducing kernel of H be k(·, ·). Then

〈f(·), k(·, (m′,x′))〉 = f(m′,x′) = uTΦm′x′ (†)

by the reproducing property. Since k(·, (m′,x′)) ∈ H, we may choose k(·, (m′,x′)) = f ′(·) without

any lost of generality so that we can identify Φm′x′ with u′ by matching equations ∗ and †. Then by

evaluating f ′ at (m,x),

k((m,x), (m′,x′)) = f ′(m,x) = (Φm′x′)T Φmx = xTΦT
mΦm′x′.

135
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A.1.2 Proof of Proposition 2.1

We wish to show the equivalence of the following two objective functions

1
MN

M∑
m=1

N∑
i=1

L
(
ymi , w

T
mxmi

)
+ λwTEw, (A.1a)

1
MN

M∑
m=1

N∑
i=1

L
(
ymi , u

TΦmxmi

)
+ λuTu, (A.1b)

where wm ∈ RD, u ∈ RDφ

, Φm ∈ RDφ×D, E ∈ RMD×MD and

wm = ΦT
mu w def= (wT

1 , . . . ,w
T
M )T. (A.2)

The equivalence will be shown in two directions in the following two sections.

A.1.2.1 Proof of Proposition 2.1a

In this part of the proof, we show that objective function (A.1b) implies objective function (A.1a). That

is, given any set of {Φm}, we can construct an E such that the two objective functions have the same

value. The equivalence is to be shown under the conditions that Dφ 6MD. Let

Φ def= (Φ1 | Φ2 | · · · | ΦM ) ∈ RDφ×DM E =
(
ΦTΦ

)+
. (A.3)

The construction of E is the left equation above. Note that Φ has rank Dφ. We can stack wm = ΦT
mu

(given by equation A.2) vertically and write

w = ΦTu. (A.4)

The equivalence of the loss function terms in the objective functions follows directly from substituting

in (A.2). For the regularizer, the following lemma is required.

Lemma A.1. [Barnet, 1990; Petersen and Pedersen, 2008]. For an n-by-m matrix A of rank r, let

A = CD, where C is an n-by-r matrix and D is a r-by-m matrix, and both matrices are of rank r.

Then

A+ = DT
(
DDT

)−1 (
CTC

)−1
CT.

Since Φ is of rank Dφ, we may apply the lemma on E to give

E =
(
ΦTΦ

)+
= ΦT

(
Φ ΦT

)−1 (
Φ ΦT

)−1
Φ, (A.5)

so

ΦEΦT = Φ
[
ΦT
(
Φ ΦT

)−1 (
Φ ΦT

)−1
Φ
]
ΦT =

(
ΦΦT

) (
Φ ΦT

)−1 (
Φ ΦT

)−1 (
ΦΦT

)
= I, (A.6)

where the identity matrix is of size Dφ-by-Dφ. Then, using w = ΦTu (equation A.4), we have

wTEw =
(
uTΦ

)
E
(
ΦTu

)
= uT

(
ΦEΦT

)
u = uTIu = uTu, (A.7)

which completes the proof.
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A.1.2.2 Proof of Proposition 2.1b

Given anyMD-by-MD positive semi-definite matrixE of rankDφ 6MD, we show how to construct

Φ for which the objective functions in (A.1) are equivalent. This is done using the following lemma.

Lemma A.2. Let A be an n-by-n positive semi-definite matrix of rank r. Then we can construct a

r-by-n matrix B such that BABT = Ir×r.

Proof. By construction. Matrix A is positive semi-definite, and so it can be expressed as CCT, where

C is a n-by-r matrix of rank r. The matrix C is called a matrix square root of A. For example, C can

be the incomplete Cholesky decomposition of A, or a its columns vectors can be the first r principal

eigenvectors of A, each scaled by the reciprocal of the square-root of its eigenvalues. Then for any

r-by-r unitary matrix U , B = UCTA+ will satisfy BABT = Ir×r. This is evident when we expand

A+ using Lemma A.1 on the facing page.

Using the construction in the proof above, we let C be any matrix square root of E. It is necessary that

C is a full rank MD-by-Dφ matrix. To satisfy ΦEΦT = IDφ , we may set

Φ = CTE+. (A.8)

Having determined a Φ such as the above, we may use it to generate other suitable Φs in the following

way. LetX be anMD-by-Dφ matrix whose column vectors are in the null space ofCT, i.e.,CTX = 0.

Define

Φ′ = Φ +XT. (A.9)

Then,

Φ′E(Φ′)T =
(
Φ +XT

)
CCT

(
Φ +XT

)T
=
(
ΦC +XTC

) (
CTΦT + CTX

)
= ΦCCTΦT = IDφ .

Thus, using Φ′ will also make the objective functions in equation A.1 equivalent.

A.1.3 Derivation of Equation 2.40

To prove equation 2.40, which is

k((x,m), (x′,m′)) = Kf
mm′xT(Ex)+x′,

we first introduce a corollary of lemma A.1 on the preceding page.

Corollary A.3. Kronecker Product of Moore-Penrose Pseudo-inverses. The pseudo-inverse of a Kro-

necker product is the Kronecker product of the pseudo-inverses.

Proof. Let A be an n-by-m matrix of rank r, and B be a p-by-q matrix of rank s. Then there exist an

n-by-r matrixC, a r-by-mmatrixD, a p-by-smatrixE and a s-by-q matrix F , all of full rank, such that

A = CD and B = EF . Using Lemma A.1 on the facing page, the mix-product property of Kronecker
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products, and the distributivity of transposition over Kronecker products, we have

(A⊗B)+ = (CD ⊗ EF )+

= ((C ⊗ E)(D ⊗ F ))+

= (D ⊗ F )T
[
(D ⊗ F )(D ⊗ F )T

]−1 [
(C ⊗ E)T(C ⊗ E)

]−1
(C ⊗ E)

=
(
DT ⊗ FT

) [
DDT ⊗ FFT

]−1 [
CTC ⊗ ETE

]−1
(C ⊗ E)

=
(
DT ⊗ FT

) [
(DDT)−1 ⊗ (FFT)−1

] [
(CTC)−1 ⊗ (ETE)−1

]
(C ⊗ E)

=
(
DT

(
DDT

)−1 (
CTC

)−1
CT
)
⊗
(
FT
(
FFT

)−1 (
ETE

)−1
ET
)

= A+ ⊗B+

By Proposition 2.1b on page 22, we can let Φ = CCTE+, where CCT = E. Then

ΦTΦ = E+TCCTE+

= E+EE+ because CCT = E and E is symmetric

= E+ using Lemma A.1

= (Ef ⊗ Ex)+

= (Ef)+ ⊗ (Ex)+ using Corollary A.3

By the definition of Φ def= (Φ1 | · · · | ΦM ) and equation 2.35 on page 22, which gives

k((m,x), (m′,x′)) = xTΦT
mΦm′x′,

we have

k((m,x), (m′,x′)) = xT(Ef)+mm′(Ex)+x′.

A.1.4 Manifold Learning

We now describe how manifold learning may be achieved using multi-task kernels. We shall start from

equation 2.31 on page 21, where the hypothesis for the mth task is identified by the vectorwm. Let the

linear subspace of the Ds dimensional manifold be given by the column space of a D-by-Ds matrix A

located at µ. Without loss of generality, let the column vectors of A be orthonormal vectors spanning

the subspace. For the mth task, the projection Pwm of wm on the manifold is given by

Pwm = AAT(wm − µ) + µ A ∈ RD×Ds
(A.10a)

This is depicted in Figure A.1a. The L2 distance between wm and its projection is

‖wm − Pwm‖2 =
√

(wm − Pwm)T (wm − Pwm). (A.10b)

This may be simplified using

wm−Pwm = wm− (AAT(wm−µ)+µ) = I(wm−µ)−AAT(wm−µ) = (I−AAT)(wm−µ)
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µ
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0

Pwm

(A,µ)

(a) The projection of wm onto the manifold (A,µ)

µ

0

(A,µ)

AATµ
(A,0)

(b) Distance of the manifold (A,µ) from the origin

Figure A.1: Manifold of predictors using multi-task kernels.

so that

‖wm − Pwm‖2 =
√

(wm − µ)T(I −AAT)2(wm − µ) (A.10c)

The aim of manifold learning is to minimize the L2 distances between all the task vectors and their

projection. In addition, it is important to regularize the offset of the manifold, and we shall see why later.

As depicted in Figure A.1b, the perpendicular vector from the origin to the manifold is µ−AATµ, so

the distance from the manifold to the origin is

‖µ−AATµ‖2 =
√

(µ−AATµ)T (µ−AATµ) =
√
µT (I −AAT)2 µ. (A.10d)

Taking these into consideration, we have the following regularizer

min
µ

[
M∑

m=1

(wm − µ)T(I −AAT)2(wm − µ) + λµµ
T(I −AAT)2µ

]
, (A.10e)

where λµ is parameter controlling the extend of regularizing the offset of the manifold. The minimiza-

tion can be achieved by setting the gradient of the objective with respect to µ to zero:

−2
M∑

m=1

(I −AAT)2(wm − µ) + 2λµ(I −AAT)2µ = 0 =⇒ −
M∑

m=1

(wm − µ) + λµµ = 0

∴ µ =
1

λµ +M
s, (A.11)

where s def=
∑M

m=1wm. Hence the offset of the manifold from the origin is a weighted sum of the task

parameters wms. The weighted sum is less than the average, reflecting the preference for the manifold

to be near the origin. Substituting (A.11) into the objective in (A.10e) and expanding gives:

M∑
m=1

(
wm − 1

λµ +M
s

)T (
I −AAT

)2(
wm − 1

λµ +M
s

)
+

λµ

(λµ +M)2
sT
(
I −AAT

)2
s

=
M∑

m=1

wT
m(I −AAT)2wm − 2

λµ +M

∑M
m=1w

T
m︸ ︷︷ ︸

sT

(
I −AAT

)2
s

+
M

(λµ +M)2
sT
(
I −AAT

)2
s+

λµ

(λµ +M)2
sT
(
I −AAT

)2
s

=
M∑

m=1

wT
m(I −AAT)2wm − 1

λµ +M
sT
(
I −AAT

)2
s.
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Writing the expression in terms of w def= (wT
1 , . . . ,w

T
M )T gives

wT
(
I ⊗ (I −AAT)2

)
w − 1

λµ +M
wT

(
1M×M ⊗ (I −AAT)2

)
w

= wT

[(
I − 1

λµ +M
1M×M

)
⊗ (I −AAT)2

]
w,

where 1M×M is the M -by-M matrix of ones. Therefore the regularizer (A.10e) can be written in the

separable form wT
(
Ef ⊗ Ex

)
w discussed in section 2.3.1, setting

Ef = IM×M − 1
λµ +M

1M×M Ex = (ID×D −AAT)2. (A.12a)

Define the D-by-(D −Ds) matrix A⊥ of which the column vectors are orthonormal vectors spanning

the complement of the subspace of the manifold. Then the concatenation (A | A⊥) is unitary, so

Ex =
[(
A A⊥

)(
A A⊥

)T

−AAT

]2
=
(
A⊥A

T
⊥
)2

= A⊥A
T
⊥, (A.12b)

To obtain the multi-task kernel, we need to invert Ef and Ex. Using the Sherman-Morrison formula to

invert Ef , we have (
Ef
)−1

= IM×M +
1
λµ

1M×M . (A.12c)

We can now see the importance of regularizing the distance of the manifold to the origin: if regulariza-

tion is absent, then λµ = 0, so Ef is singular.

The column vectors of A⊥ are orthonormal, so we have AT
⊥A⊥ = I . Then, using Lemma A.1 on

page 136, we obtain

(Ex)+ = A⊥(AT
⊥A⊥)−1(AT

⊥A⊥)−1AT
⊥ = A⊥A

T
⊥ = Ex. (A.12d)

Thus the multi-task kernel for learning a low-dimensional manifold is given by

k((x,m), (x′,m′)) =
(
δmm′ +

1
λµ

)
xTA⊥A

T
⊥x

′ (A.13)

Given E = Ef ⊗ Ex, we may construct a Φ using Proposition 2.1b on page 22. For this purpose, a

matrix square root of E is

(
IM×M + λ′µ1M×M

)
⊗A⊥ where λ′µ def=

1
M

(
−1±

√
λµ

λµ +M

)
. (A.14)

This gives

Φ =
[(
IM×M + λ′µ1M×M

)
⊗A⊥

]T [(Ef)−1 ⊗ (Ex)+
]

=
[(
IM×M + λ′µ1M×M

)(
IM×M +

1
λµ

1M×M

)]
⊗
[
AT
⊥A⊥A

T
⊥
]

=
(
IM×M + λ′′µ1M×M

)
⊗AT

⊥,

(A.15)

where λ′′µ def= λ′µ + 1/λµ + λ′µM/λµ. It is easy to verify that λ′′µ > 0.
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A.1.5 Task Clustering

In this section, we give a more detailed derivation of the multi-task clustering kernel than can be found

in [Evgeniou et al., 2005, section 3.1.2]. The regularizer is the optimization

min
{µp}

P∑
p=1

(
M∑

m=1

zp
m

(
wm − µp

)T
Ex

p

(
wm − µp

)
+ µT

pE
xµp

)
. (A.16)

This minimization can be solved by differentiating the objective with respect to {µp} and equating to

zero. Let zp def=
∑M

m=1 z
p
m denotes the number of tasks in cluster p. Then

M∑
m=1

zp
m(−2)Ex

p(wm − µp) + 2Exµp = 0 =⇒ −
M∑

m=1

zp
mE

x
pwm + zpEx

pµp + Exµp = 0

∴ µp = (Ex + zpEx
p)−1Ex

psp,

where sp
def=
∑M

m=1 z
p
mwm. Substituting the above formula for µp into the expression within the paren-

thesis in (A.16) and expanding gives

M∑
m=1

zp
m

(
wm − (Ex + zpEx

p)−1Ex
psp

)T
Ex

p

(
wm − (Ex + zpEx

p)−1Ex
psp

)
+ sT

pE
x
p(Ex + zpEx

p)−1Ex(Ex + zpEx
p)−1Ex

psp

=
M∑

m=1

zp
mw

T
mE

x
pwm − 2

∑M
m=1 z

p
mw

T
m︸ ︷︷ ︸

sT
p

Ex
p(Ex + zpEx

p)−1Ex
psp

+
∑M

m=1 z
p
m︸ ︷︷ ︸

zp

sT
pE

x
p(Ex + zpEx

p)−1Ex
p(Ex + zpEx

p)−1Ex
psp

+ sT
pE

x
p(Ex + zpEx

p)−1Ex(Ex + zpEx
p)−1Ex

psp

=
M∑

m=1

zp
mw

T
mE

x
pwm − sT

pE
x
p(Ex + zpEx

p)−1

[
2I −zpEx

p(Ex + zpEx
p)−1 − Ex(Ex + zpEx

p)−1︸ ︷︷ ︸
−I

]
Ex

psp

=
M∑

m=1

zp
mw

T
mE

x
pwm − sT

pE
x
p(Ex + zpEx

p)−1Ex
psp

The regularizer is now obtained from the above expression expanding sp and summing over p:

M∑
m,m′=1

wT
m

[
P∑

p=1

zp
mz

p
m′

(
δmm′Ex

p − Ex
p(Ex + zpEx

p)−1Ex
p

)]
wT

m′ .

Let Ex
p

def= λpEx so that there is a common metric up to uniform expansions and contractions in the

parameter space. Then

M∑
m=1

M∑
m′=1

[
P∑

p=1

zp
mz

p
m′

(
δmm′λp − (λp)2

1 + zpλp

)]
wT

mE
xwT

m′ , (A.17)

which is the separable model in the manner of section 2.3.1.

The reproducing kernel of the Hilbert space that corresponds to this regularizer is obtained in the fol-

lowing way. We need to invert the M -by-M matrix Ef consisting of entries given by the expression

within the square brackets in equation A.17. If we rearrange Ef so that tasks from the same clusters are

placed together, then Ef is a block diagonal matrix with P blocks. The pth block is the zp-by-zp matrix

λpIzp − (λp)2

1 + zpλp
1zp×zp , (A.18)
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which can be readily inverted using the Sherman-Morrison formula to give

1
λp
Izp + 1zp×zp . (A.19)

This is similar to the equation 27 of Evgeniou et al. [2005]. The multi-task kernel is

k((x,m), (x′,m′)) =
P∑

p=1

zp
mz

p
m′

(
δmm′

1
λp

+ 1
)
xT(Ex)−1x′. (A.20)

A.2 Covariances for Multi-task Gaussian Processes

In this section, we give derivations for the covariances of other multi-task models so as to relate them to

Gaussian processes.

A.2.1 Derivation of Equation 2.78

To derive equation 2.78 on page 38, we start from the multi-task kernel given by equation 2.51 on

page 26:

C (fm(x), fm′(x′)) =
1
2λ

P∑
p=1

zp
mz

p
m′

(
δmm′

1
λp

+ 1
)
xT(Ex)−1x′

= δmm′

(
P∑

p=1

zp
mz

p
m′

λp

)
1
2λ
xT(Ex)−1x′ +

(
P∑

p=1

zp
mz

p
m′

)
1
2λ
xT(Ex)−1x′

(A.21)

Let the mth function be in the qth cluster. Then

δmm′

P∑
p=1

zp
mz

p
m′

λp
= δmm′

P∑
p=1

zp
mz

p
m

λp
= δmm′

P∑
p=1

zp
m

λp
= δmm′

1
λq

Substituting the above back into equation (A.21) gives

C (fm(x), fm′(x′)) = δmm′
1

2λλq
xT(Ex)−1x′ +

(
P∑

p=1

zp
mz

p
m′

)
1
2λ
xT(Ex)−1x′

A.2.2 Derivation of Equation 2.81

To derive equation 2.81 on page 39, we express fm(x) in terms of summation, i.e.,

fm(x) = uT
mφ(x) =

Dφ∑
i=1

umiφi(x).

Since umi and φi(x) are uncorrelated, and 〈φi(x)〉 = 0, we have

〈fm(x)〉 =
Dφ∑
i=1

〈umiφi(x)〉 =
Dφ∑
i=1

〈umi〉 〈φi(x)〉 = 0.
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Hence we have a zero mean process. The covariance is

C(fm(x), fm′(x′)) = 〈fm(x)fm′(x′)〉 − 〈fm(x)〉 〈fm′(x′)〉︸ ︷︷ ︸
0

=

〈
Dφ∑
i=1

umiφi(x)
Dφ∑
j=1

um′jφj(x)

〉

=
Dφ∑

i,j=1

〈umium′j〉 〈φi(x)φj(x)〉

=
Dφ∑

i,j=1

〈umium′j〉 δijkNN(x,x′) (∗)

= kNN(x,x′)
Dφ∑
i=1

〈umium′i〉 , (A.22)

where (∗) is because the {φi(x)}s are independent. For the last expectation above, we use

C(umi, um′i) = 〈umium′i〉 − 〈umi〉 〈um′i〉

=⇒ δmm′σ2
ξ = 〈umium′i〉 − (Atm)i(Atm′)i

=⇒ 〈umium′i〉 = δmm′σ2
ξ + (Atm)i(Atm′)i

=⇒
Dφ∑
i=1

〈umium′i〉 = δmm′Dφσ2
ξ +

Dφ∑
i=1

(Atm)i(Atm′)i

=⇒
Dφ∑
i=1

〈umium′i〉 = δmm′Dφσ2
ξ + tTmA

TAtm′

Substituting back into (A.22) gives the required result

C(fm(x), fm′(x′)) = δmm′Dφσ2
ξkNN(x,x′) + tTmA

TAtm′kNN(x,x′).
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Appendix to Chapter 3

In this appendix, we provide material supplementary to chapter 3. Much of this will be detailed proofs

for the propositions and corollaries.

B.1 Proof for Proposition 3.5

In this section, we give the proof for Proposition 3.5 in the main text.

B.1.1 Proof for Proposition 3.5a

Recall from (3.3) that σ2
T (ρ) is given by

σ2
T (ρ) def= k∗∗ −

(
kx

T∗

ρkx
S∗

)T(
Kx

TT + σ2
nI ρKx

TS

ρKx
ST Kx

SS + σ2
nI

)−1(
kx

T∗

ρkx
S∗

)
(B.1)

To perform the matrix inverse in the above equation, we use the following formula for inverting block

matrices:

Theorem B.1. Banachiewicz inversion formula (see e.g., Puntanen and Styan [2005]).(
A11 A12

A21 A22

)−1

=

(
A−1

11 +A−1
11 A12C

−1A21A
−1
11 −A−1

11 A12C
−1

−C−1A21A
−1
11 C−1

)

=

(
A−1

11 0

0 0

)
+

(
−A−1

11 A12

I

)
C−1

(
−A21A

−1
11 I

)
,

where C def= A22 −A21A
−1
11 A12.

The role of C in the above theorem is played by A(ρ) defined as

A(ρ) def= Kx
SS + σ2

nI − ρ2Kx
ST

(
Kx

TT + σ2
nI
)−1

Kx
TS . (B.2)
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In addition, we let

v(ρ) def=
(
−ρKx

ST (Kx
TT + σ2

nI)
−1 I

)( kx
T∗

ρkx
S∗

)
= −ρKx

ST (Kx
TT + σ2

nI)
−1kx

T∗ + ρkx
S∗

= ρ
(
kx

S∗ −Kx
ST (Kx

TT + σ2
nI)

−1kx
T∗
)
. (B.3)

Then

σ2
T (ρ) = k∗∗ −

(
kx

T∗

ρkx
S∗

)T(
(Kx

TT + σ2
nI)

−1 0

0 0

)(
kx

T∗

ρkx
S∗

)
− v(ρ)T[A(ρ)]−1v(ρ) (B.4)

= k∗∗ − (kx
T∗)

T
(
Kx

TT + σ2
nI
)−1

kx
T∗ − v(ρ)T[A(ρ)]−1v(ρ) (B.5)

We can identify v(ρ) = ρv(1). If we also write v1 for v(1), then

σ2
T (ρ) = k∗∗ − (kx

T∗)
T
(
Kx

TT + σ2
nI
)−1

kx
T∗ − ρ2vT

1 [A(ρ)]−1
v1 (B.6)

By substituting 0 for ρ above, the first two terms on the right of the equation can be identified with

σ2
T (0). Thus

σ2
T (ρ) = σ2

T (0)− ρ2vT
1 [A(ρ)]−1

v1. (B.7)

Now, write A1 for A(1), and express A(ρ) as

A(ρ) = A1 + (1− ρ2)Kx
ST (Kx

TT + σ2
nI)

−1Kx
TS . (B.8)

Observe that Kx
ST (Kx

TT + σ2
nI)

−1Kx
TS is positive semi-definite, since we can factorize it into the form

XXT for some matrix X , and that (1− ρ2) > 0. Hence we can write

A(ρ) < A1

⇐⇒ [A(ρ)]−1 4 [A1]−1

⇐⇒ vT
1 [A(ρ)]−1v 6 vT[A1]−1v

⇐⇒ σ2
T (0)− ρ2vT

1 [A(ρ)]−1v > σ2
T (0)− ρ2vT[A1]−1v

i.e., σ2
T (ρ) > σ2

T (0)− ρ2vT[A1]−1v.

To complete the proof, we use the identity vT
1A

−1
1 v1 = σ2

T (0)− σ2
T (1), which is obtained by by sub-

stituting 1 for ρ into (B.7). Further re-grouping of terms leads to the result.

Remark The expression for σ2
T (ρ) given by (B.7) can also be obtained by repeated conditioning.

Consider the following covariance matrix between the query fT
∗ , the noisy observations yS

S at XS for

task S, and the noisy observations yT
T at XT for task T ,

C


fT
∗

yS
S

yT
T

 =


k∗∗ ρ(kx

S∗)
T (kx

T∗)
T

ρkx
S∗ Kx

SS + σ2
nI ρKx

ST

kx
T∗ ρKx

TS Kx
TT + σ2

nI

 . (B.9)
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By conditioning on yT
T , we obtain

C
((

fT
∗

yS
S

) ∣∣∣∣ yT
T

)
=

(
σT (0) (v(ρ))T

v(ρ) A(ρ)

)
. (B.10)

Conditioning subsequently on yS
S gives

σ2
T (ρ) def= C(fT

∗ |yT
T ,y

S
S) = σ2

T (0)− v(ρ)T[A(ρ)]−1v(ρ). (B.11)

To complete, we simply write ρv1 for v(ρ).

B.1.2 Proof for Proposition 3.5b

Recall that the exact posterior variance is

σ2
T (ρ) = σ2

T (0)− ρ2vT
1 [A(ρ)]−1

v1, (B.12)

i.e., equation B.7. Denote the lower bound by
¯
σ2

T (ρ). Then from the proof for Proposition 3.5a, we have

¯
σ2

T (ρ) = σ2
T (0)− ρ2vT

1A
−1
1 v1. (B.13)

Define the gap between the exact posterior variance and its lower bound as

g(ρ2) def= σ2
T (ρ)−

¯
σ2

T (ρ)

= −ρ2vT
1 [A(ρ)]−1v1 + ρ2vT

1A
−1
1 v1. (B.14)

Ignoring the first term, which is negative, gives

g(ρ2) 6 ρ2vT
1A

−1
1 v1

= ρ2
[
σ2

T (0)− σ2
T (1)

]
.

B.1.3 Proof for Proposition 3.5c

We rewrite the gap (B.14) between the exact posterior variance and its lower bound as

g(ρ2) = ρ2vT
1

[
A−1

1 −A(ρ)−1
]
v1. (B.15)

Next, express A(ρ) as

A(ρ) = A1 + (1− ρ2)Kx
ST (Kx

TT + σ2
nI)

−1Kx
TS , (B.16)

so that we can use the Woodbury identity to expand its inverse in B.15, and write

g(ρ2) = vT
1A

−1
1 Kx

ST [B(ρ2)]−1Kx
TSA

−1
1 v1, (B.17)

where B(ρ2) def= D(ρ2) +
1
ρ2
Kx

TSA
−1
1 Kx

ST (B.18)

D(ρ2) def=
1

ρ2(1− ρ2)
(Kx

TT + σ2
nI). (B.19)
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Notice that the dependence of g(ρ2) on ρ2 is only through B(ρ2). We differentiate g(ρ2) with respect

to ρ2:

dg
dρ2

= vT
1A

−1
1 Kx

ST [B(ρ2)]−1C(ρ2)[B(ρ2)]−1Kx
TSA

−1
1 v1, (B.20)

where

C(ρ2) def= −dB(ρ2)
dρ2

=
1− 2ρ2

ρ2(1− ρ2)
D(ρ2) +

1
ρ4
Kx

TSA
−1
1 Kx

ST

=
1
ρ2
B(ρ2)− 1

1− ρ2
D(ρ2). (B.21)

Substituting the last expression for C(ρ2) back into (B.20) gives

dg
dρ2

=
1
ρ2
g − 1

1− ρ2
h, (B.22)

where h(ρ2) def= vT
1A

−1
1 Kx

ST [B(ρ2)]−1D(ρ2) [B(ρ2)]−1Kx
TSA

−1
1 v1. (B.23)

From equation B.18, we have D(ρ2) 4 B(ρ2). Putting this inequality into h(ρ2) gives

h(ρ2) 6 vT
1A

−1
1 Kx

ST [B(ρ2)]−1B(ρ2) [B(ρ2)]−1Kx
TSA

−1
1 v1

= vT
1A

−1
1 Kx

ST [B(ρ2)]−1Kx
TSA

−1
1 v1

= g(ρ2). (B.24)

Putting the above inequality into (B.22) leads to

dg
dρ2
> f(ρ2) g(ρ2), where f(ρ2) def=

1
ρ2
− 1

1− ρ2
. (B.25)

Since
¯
σ2

T (ρ) is a lower bound, g(ρ2) > 0 (also see the quadratic form in (B.17)). In addition, the

multiplicative factor f(ρ2) is positive for ρ2 ∈ [0, 1/2[, zero at ρ2 = 1/2, and negative for ρ2 ∈]1/2, 1].

Thus dg/dρ2 > 0 for ρ2 ∈ [0, 1/2[. Therefore g is monotonically increasing within ρ2 ∈ [0, 1/2[, and

its maximum value must be at ρ̂2 > 1/2.

B.2 Proof for Proposition 3.1

To proof

σ2
T (1) 6 σ2

T (ρ) 6 σ2
T (0), (B.26)

we make use of three relations from Proposition 3.5:

¯
σ2

T (ρ) def= ρ2σ2
T (1) + (1− ρ2)σ2

T (0) (B.27a)

¯
σ2

T (ρ) 6 σ2
T (ρ) (B.27b)

σ2
T (ρ)−

¯
σ2

T (ρ) 6 ρ2(σ2
T (0)− σ2

T (1)). (B.27c)

Before we proceed, first note that (B.26) has not been used in the proof of any of the assertions in (B.27).

Hence using (B.27) to prove (B.26) will not lead to circular arguments.
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Substituting (B.27a) into (B.27c), and then re-arranging readily yields

σ2
T (ρ) 6 σ2

T (0). (B.28)

Also, since ρ2 ∈ [0, 1], we have that
¯
σ2

T (ρ) is a convex combination of σ2
T (0) and σ2

T (1), and so

σ2
T (1) 6

¯
σ2

T (ρ) 6 σ2
T (0). (B.29)

Inserting (B.27b) and (B.28) into the above inequality gives

σ2
T (1) 6

¯
σ2

T (ρ) 6 σ2
T (ρ) 6 σ2

T (0), (B.30)

from which (B.26) can be extracted.

B.3 Proof for Proposition 3.7b

Recall that f̄1 (resp. f̄0) is defined to be the posterior mean of the single-task GP when ρ = 1 (resp.

ρ = 0). We wish to obtain the error with respect to the true function f?
T when using the linear combina-

tion predictor

f̄lc(x∗) def= ρ2f̄1(x∗) + (1− ρ2)f̄0(x∗).

For regression, the squared error is typically used. Suppressing the argument x∗ to the functions in the

derivation below for conciseness, we have

(f?
T − f̄lc)2 = (f?

T )2 − 2ρ2f?
T f̄1 − 2(1− ρ2)f?

T f̄0 + ρ4(f̄1)2 + 2ρ2(1− ρ2)f̄1f̄0 + (1− ρ2)2(f̄0)2

= ρ2(f?
T )2 + (1− ρ2)(f?

T )2 − 2ρ2f?
T f̄1 − 2(1− ρ2)f?

T f̄0 + ρ2(f̄1)2 + (1− ρ2)(f̄0)2

−ρ2(f̄1)2 − (1− ρ2)(f̄0)2 + ρ4(f̄1)2 + 2ρ2(1− ρ2)f̄1f̄0 + (1− ρ2)2(f̄0)2

= ρ2
[
(f?

T )2 − 2f?
T f̄1 + (f̄1)2

]
+ (1− ρ2)

[
f?

T )2 − 2f?
T f̄0 + (f̄0)2

]
− ρ2(1− ρ2)

[
(f̄1)2 − 2f̄1f̄0 + (f̄0)2

]
= ρ2(f?

T − f̄1)2 + (1− ρ2)(f?
T − f̄0)2 − ρ2(1− ρ2)(f̄1 − f̄0)2

6 ρ2(f?
T − f̄1)2 + (1− ρ2)(f?

T − f̄0)2, (B.31)

where the underlined terms that are introduced in the derivation cancel to zero. The equality in (B.31)

holds only when ρ2 ∈ {0, 1} or f̄1(x∗) = f̄0(x∗), which happens when πS = 0. Averaging over the

possible functions f?
T on both sides of inequality, we obtain〈

(f?
T (x∗)− f̄lc(x∗))2

〉
6 ρ2σ2

T (x∗, 1) + (1− ρ2)σ2
T (x∗, 0), (B.32)

where the right of the inequality is
¯
σ2

T (x∗, ρ) as defined in Proposition 3.5.

B.4 Proof for Proposition 3.9

Recall that we seek an upper bound σ̄2
n for σ̃2

n such that ∆(ρ, σ2
n, σ̄

2
n) 6 0 for all test locations, where

∆(ρ, σ2
n, s

2) def= (kx
∗)

T
[
(Σ(1, σ2

n, s
2))−1 − (Σ(ρ, σ2

n, σ
2
n))−1

]
kx
∗. (B.33)
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For the derived bound to be applicable in general, it is necessary that the condition “for all test locations”

be equivalent to the condition “for all kx
∗ ∈ Rn”, which is easier to handle; we shall remark on this later.

Thus, we start from the requirement that ∆(ρ, σ2
n, σ̄

2
n) 6 0 for all kx

∗ ∈ Rn:

∆(ρ, σ2
n, σ̄

2
n) 6 0 ∀kx

∗ ∈ Rn (B.34a)

⇐⇒ (Σ(1, σ2
n, σ̄

2
n))−1 − (Σ(ρ, σ2

n, σ
2
n))−1 4 0 (B.34b)

⇐⇒ (Σ(1, σ2
n, σ̄

2
n))−1 4 (Σ(ρ, σ2

n, σ
2
n))−1 (B.34c)

⇐⇒ Σ(1, σ2
n, σ̄

2
n) < Σ(ρ, σ2

n, σ
2
n) (B.34d)

⇐⇒

(
Kx

TT Kx
TS

Kx
ST Kx

SS

)
+

(
σ2

nI 0

0 σ̄2
nI

)
<

(
Kx

TT Kx
TS

Kx
ST ρ−2Kx

SS

)
+

(
σ2

nI 0

0 ρ−2σ2
nI

)
(B.34e)

⇐⇒

(
0 0

0 βKx
SS

)
4

(
0 0

0 (σ̄2
n − ρ−2σ2

n)I

)
, β def= ρ−2 − 1 (B.34f)

⇐⇒ βKx
SS 4 (σ̄2

n − ρ−2σ2
n)I (B.34g)

⇐⇒ Kx
SS 4

σ̄2
n − ρ−2σ2

n

β
I (B.34h)

⇐⇒ λ̄ 6
σ̄2

n − ρ−2σ2
n

β
(B.34i)

⇐⇒ σ̄2
n > βλ̄+ ρ−2σ2

n (B.34j)

= β(λ̄+ σ2
n) + σ2

n. (B.34k)

Therefore we have the minimum of the upper bound is

¯̄σ2
n

def= β(λ̄+ σ2
n) + σ2

n. (B.35)

The tightness of the bound is evident from the construction of ¯̄σ2
n.

Remark For the bound to hold in general, we have claimed in the above proof that the condition

“for all test locations” must be equivalent to the condition “for all kx
∗ ∈ Rn”. To show this, we give a

particular example that demands this equivalence. Let the input domain be the one-dimensional interval

[−1, 1], and let kx(x, x′) = xx′. We fix x∗. If the observed locations {x1, x2, . . .} are densely located

on [−1, 1] \ {x∗}, then the entries in

kx
∗ =


x1x∗

x2x∗
...


are densely located on [−x∗, x∗] \ {x2

∗}. Since scaling kx
∗ does not affect the inequality

∆(ρ, σ2
n, σ̄

2
n) 6 0,

we have, equivalently, kx
∗ ∈ Rn.
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B.5 FWO% Upper Bounds

B.5.1 Proof for Lemma 3.15

〈
(f?(x)− g(x))2

〉
f?,y,x

=
〈(

f?(x)− φT(x)Ly
)2
〉

f?,y,x

=
〈
f?(x)f?(x)

〉
f?,x

+
〈
φT(x)LyyTLTφ(x)

〉
y,x

− 2
〈
φT(x)L 〈yf?(x)〉f?,y

〉
x

=
〈
kx(x,x)

〉
x

+ tr
(
L
〈
yyT

〉
y
LT
〈
φ(x)φT(x)

〉
x

)
− 2 tr

(
L
〈
〈yf?(x)〉f?,y φ

T(x)
〉

x

)
=

∞∑
i=1

κi + tr
(
L
〈
yyT

〉
y
LT
)
− 2 tr

(
L
〈
〈yf?(x)〉f?,y φ

T(x)
〉

x

)
Note that we have used

〈
φ(x)φT(x)

〉
x

= I for the last expression.

B.5.2 Proof for Proposition 3.16

To prove Proposition 3.16, we start from (3.32), which we recall below:

ε(g ∈ H%, X,Mmt) =
∞∑

i=1

κi +
∞∑

i=1

d2
i

(
ΦTG%Φ

)
ii
− 2

∞∑
i=1

di

(
ΦTI(ρ%)ΦΛκ

)
ii
,

where G%
def=

(
Kx

TT ρ%Kx
TS

ρ%Kx
ST %2Kx

SS

)
+ σ2

nI(%
2).

To obtain a learning curve, the expectation of ε(g ∈ H%, X) over all data sets X is taken. This re-

quires the expectations
〈(

ΦTG%Φ
)
ii

〉
X

and
〈(

ΦTI(ρ%)ΦΛκ

)
ii

〉
X

. In order to present the expres-

sions for these expectations, some notations are required. Recall that the cardinality of these sets are

|X| = n, |XS | = nS and |XT | = nT , and that πS
def= nS/n. We partition the index set I def= {1 . . . n}

into IT
def= {1 . . . nT }, and IS

def= {(nT + 1) . . . n}. We enumerate and order the elements of X so that

X = {xi}n
i=1,XT = {xi | i ∈ IT }, andXS = {xi | i ∈ IS}. We shall represent by 〈· · · 〉X the expec-

tation over the set X , and write p(X)dX def=
∏n

i=1 p(xi)dxi, where the distributions over the xis are

identical; expressions 〈· · · 〉XS
and 〈· · · 〉XT

, and p(XS)dXS and p(XT )dXT have similar meanings.

Recall the definition of eigenvalues and eigenfunctions using the integral equation and the orthogonality

of eigenfunctions:∫
kx(x,x′)φi(x′)p(x′)dx′ = κiφi(x)

∫
φi(x)φi(x)p(x)dx = 1. (B.36)

Using the these two equalities, we can show that∫
kx(x,x′)φi(x)φi(x′)p(x)p(x′)dxdx′ =

∫ (∫
kx(x,x′)φi(x′)p(x′)dx′

)
φi(x)p(x)dx

=
∫

(κiφi(x))φi(x)p(x)dx

= κi

∫
φi(x)φi(x)p(x)dx

= κi (B.37)
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The next two equalities will be used in the main part of the proof:〈∑
p,q∈I

δpqφi(xp)φi(xq)

〉
X

=
∫ n∑

p=1

φi(xp)φi(xp)p(X)dX

=
n∑

p=1

∫
φi(xp)φi(xp)p(xp)dxp

=
n∑

p=1

1

= n (B.38)〈∑
p,q∈I

kx(xp,xq)φi(xp)φi(xq)

〉
X

=
∫ ∑

p,q∈I
kx(xp,xq)φi(xp)φi(xq)p(X)dX

=
∑

p,q∈I
p6=q

∫
kx(xp,xq)φi(xp)φi(xq)p(xp)p(xq)dxpdxq

+
n∑

p=1

∫
kx(xp,xp)φi(xp)φi(xp)p(xp)dxp

=
∑

p,q∈I
p6=q

κi +
n∑

p=1

∫
kx(x,x) [φi(x)]2 p(x)dx (∗)

= n(n− 1)κi + n

∫
kx(x,x) [φi(x)]2 p(x)dx, (B.39)

where equation B.37 is used in getting to (∗). By similar arguments we can show equivalent results

when the summations and expectations are taken only over data points in XS and XT .

We now turn to the main part of the proof, giving expressions for the expectations
〈(

ΦTG%Φ
)
ii

〉
X

and〈(
ΦTI(ρ%)ΦΛκ

)
ii

〉
X

. Define

α(x) def= (1− πS) + πSx. (B.40)

The following expressions involve α(%2) and α(ρ%).

〈(
ΦTI(ρ%)ΦΛκ

)
ii

〉
X

= κi

〈 ∑
p,q∈IT

δpqφi(xp)φi(xq)

〉
XT

+ ρ%κi

〈 ∑
p,q∈IS

δpqφi(xp)φi(xq)

〉
XT

= κi(nT + ρ%nS)

= κinα(ρ%)〈(
ΦTG%Φ

)
ii

〉
X

=

〈 ∑
p,q∈IT

(
kx(xp,xq) + δpqσ

2
n

)
φi(xp)φi(xq)

〉
XT

+ %2

〈 ∑
p,q∈IS

(
kx(xp,xq) + δpqσ

2
n

)
φi(xp)φi(xq)

〉
XS

+2ρ%

〈∑
p∈IT ,q∈IS

kx(xp,xq)φi(xp)φi(xq)

〉
X

= nT (nT − 1)κi + nT

∫
kx(x,x)[φi(x)]2p(x)dx+ nTσ

2
n

+ %2

(
nS(nS − 1)κi + nS

∫
kx(x,x)[φi(x)]2p(x)dx+ nSσ

2
n

)
+ 2ρ%nSnTκi

= nα(%2)ci(%)
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where,

ci(%) def=

{
1

α(%2)
[
(1− πS)2 + %2π2

S + 2ρ%πS(1− πS)
]
n− 1

}
κi

+
∫
kx(x,x)[φi(x)]2p(x)dx+ σ2

n.

Thus we have

〈ε(g ∈ H%, X,Mmt)〉X =
∞∑

i=1

κi + nα(%2)
∞∑

i=1

d2
i ci(%)− 2nα(ρ%)

∞∑
i=1

diκi.

The minimum learning curve is obtained by minimizing the above quantity with respect to di, which on

solving gives

min
{di}

〈ε(g ∈ H3, X,Mmt)〉X =
∞∑

i=1

κi − n
[α(ρ%)]2

α(%2)

∞∑
i=1

κ2
i

ci(%)
.

Remark. Although we do not have the proof by Ferrari Trecate et al. [1999] for their upper bound on

the learning curve for single-task GP with isotropic noise, it is conceivable that some variation of the

above proof has been used by them.

B.5.3 Derivation of Equation 3.30

Define

K(ρ) def=

(
Kx

TT ρKx
TS

ρKx
ST Kx

SS

)
I(s) def=

(
InT×nT

0

0 sInS×nS

)
.

Then, under the generative model Mmt given by equation 3.29 on page 66, we have〈
yyT

〉
y

= K(ρ) + σ2
nI〈

〈yf?(x∗)〉f?,y φ
T(x∗)

〉
x∗

=

〈(
kx

T∗

ρkx
S∗

)
φT(x∗)

〉
x∗

= I(ρ)

〈(
kx

T∗

kx
S∗

)
φT(x∗)

〉
x∗

= I(ρ)ΦΛκ.

Substituting the above into Lemma 3.15 gives the required expression.

B.5.4 Derivation of Equation 3.35

Define

Kx def=

(
Kx

TT Kx
TS

Kx
ST Kx

SS

)
= K(1) I(s) def=

(
InT×nT

0

0 sInS×nS

)
.

Then, under the generative model Mco given by equation 3.34 on page 68, we have

〈
yyT

〉
y

= Kx +

(
σ2

nInT×nT
0

0 βKx
SS + ρ−2σ2

nInS×nS

)
=

(
Kx

TT Kx
TS

Kx
ST ρ−2Kx

SS

)
+ σ2

nI(ρ
−2)

〈
〈yf?(x∗)〉f?,y φ

T(x∗)
〉

x∗
=

〈(
kx

T∗

kx
S∗

)
φT(x∗)

〉
x∗

= ΦΛκ.
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Substituting the above into Lemma 3.15 leads to

ε(g ∈ H?, X,Mco) =
∞∑

i=1

κi + tr

(
L

((
Kx

TT Kx
TS

Kx
ST ρ−2Kx

SS

)
+ σ2

nI(ρ
−2)

)
LT

)
− 2 tr (LΦΛκ) .

To obtain equation 3.35, we restrict g to be from H1 and let L = DΦT.

B.5.5 Proof for Proposition 3.18

Recall from Proposition 3.16 that

α(x) def= (1− πS) + πSx

ci(%) def=

{
1

α(%2)
[
(1− πS)2 + %2π2

S + 2ρ%πS(1− πS)
]
n− 1

}
κi

+
∫
kx(x,x)[φi(x)]2p(x)dx+ σ2

n.

By comparing the terms for the ith eigenvalue, a sufficient condition for Proposition 3.18 is

α(1/ρ2)
[α(1)]2

ci(1/ρ) >
α(ρ2)

[α(ρ2)]2
ci(ρ).

By grouping the factors involving n and the factors not involving n, the following two conditions are

sufficient together:

(1− πS)2 + ρ−2π2
S + 2πS(1− πS) > [α(ρ2)]−2

[
(1− πS)2 + ρ2π2

S + 2ρ2πS(1− πS)
]

(Sufficient condition A)

α(ρ−2)
(∫

kx(x,x)[φi(x)]2p(x)dx− κi + σ2
n

)
>

1
α(ρ2)

(∫
kx(x,x)[φi(x)]2p(x)dx− κi + σ2

n

)
(Sufficient condition B)

Sufficient condition B is fulfilled by the following two sub-conditions

α(ρ−2) > 1/α(ρ2) (Sufficient condition B1)∫
kx(x,x)[φi(x)]2p(x)dx− κi > 0. (Sufficient condition B2)

Therefore, all that is required is to prove for conditions A, B1 and B2. Condition A can be shown to

hold via the sequence

1− π2
S + ρ−2π2

S > [α(ρ2)]−2
(
[α(ρ2)]2 + ρ2π2

S − ρ4π2
S

)
⇐⇒ ρ−2π2

S(1− ρ2) > [α(ρ2)]−2ρ2π2
S

(
1− ρ2

)
⇐⇒ [α(ρ2)]2 − ρ4 > 0

⇐⇒ [α(ρ2) + ρ2][α(ρ2)− ρ2] > 0

⇐⇒ α(ρ2)− ρ2 > 0

⇐⇒ (1− ρ2)(1− πS) > 0,
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which clearly holds. Similarly, the following sequence shows that B1 is always true.

α(ρ−2)α(ρ2) > 1

⇐⇒ (1− πS)2 + π2
S + (1/ρ2 + ρ2)πS(1− πS) > 1

⇐⇒ (1− ρ2)2πS(1− πS)/ρ2 > 0.

To prove that condition B2 holds, first note that

δij = (δij)
2 =

(∫
φi(x)φj(x)p(x)dx

)2

6
∫

12p(x)dx
∫

[φi(x)φj(x)]2 p(x)dx

=
∫

[φi(x)φj(x)]2 p(x)dx,
(B.41)

where the inequality is due to the Cauchy-Bunyakovsky-Schwarz inequality. Now, making use of the

Mercer’s theorem [Mercer, 1909] to expand k(x,x),∫
kx(x,x)[φi(x)]2p(x)dx =

∫ ∞∑
j

κj [φj(x)]2[φi(x)]2p(x)dx

=
∞∑
j

κj

∫
[φi(x)φj(x)]2p(x)dx

>
∞∑
j

κjδij = κi,

where the inequality uses (B.41) for each j. Thus condition B2 holds.

B.5.6 Comparing the FWOρ Bound to the Trivial Single-task FWO0 Bound

We compare the FWOρ upper bound, which is the FWO% bound given by Proposition 3.16 for % = ρ,

with the FWO upper bound on the single-task trivial upper bound εavg
T (0, σ2

n, πS , n). The latter upper

bound, which is also FWO0, is given by

ε̄avg
FWO(σ2

n, n(1− πS)) =
∞∑

i=1

κi − n(1− πS)
∞∑

i=1

κ2
i

(n(1− πS)− 1)κi + ιi + σ2
n

,

where ιi def=
∫
kx(x,x)[φi(x)]2p(x)dx. A sufficient condition for the FWOρ bound to be the tighter of

the two bounds can be obtained by comparing the terms for the ith eigenvalue. This condition is

∀i (1− πS)ci(ρ) < α(ρ2)
[
(n(1− πS)− 1)κi + ιi + σ2

n

]
, (B.42)

where ci(ρ) and α(·) is as defined in Proposition 3.16. The inequality can be simplified to give

∀i n <

(
ιi + σ2

n

κi
− 1
)

1− πS + πSρ
2

(1− ρ2)(1− πS)πS

. (B.43)

For a stationary kx, ιi is independent of i and is given by
∑∞

i=1 κi. In this case, the sufficient condition

can be simplified to

n <

(∑∞
i=1 κi + σ2

n

κ1
− 1
)

1− πS + πSρ
2

(1− ρ2)(1− πS)πS

=
∑∞

i=2 κi + σ2
n

κ1

1− πS + πSρ
2

(1− ρ2)(1− πS)πS

, (B.44)

where κ1 is the maximum process eigenvalue of kx under p(x).
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B.6 Eigen-analysis

In this section, we give the eigenvalues and eigenfunctions for the symmetric two-tasks multi-task learn-

ing, and for the OU process on a one-dimensional unit interval with uniform density. Asymptotics of

the eigenvalues are treated in section B.8.1 on page 163.

B.6.1 Covariance Function of a Symmetric Two-task GP

For the multi-task Gaussian process model, the eigenvalues and eigenfunctions of its covariance function

Kf
mm′kx(x,x′)

can be obtained through the eigen-analysis of the Kronecker product (see e.g., Brewer [1978]). Let the

eigen-equations for Kf and kx be∑
m′

Kf
mm′um′pm′ = µum

∫
kx(x,x′)φ(x′)p(x′)dx′ = κφ(x), (B.45)

where we have introduced the eigenvalue µ and eigenvector (u1, u2) of Kf , and pm is the probability of

being in task m. To obtain the eigenvalues and eigenfunctions of Kf
mm′kx(x,x′), we multiply the two

equations above to give∑
m′

∫
Kf

mm′kx(x,x′)um′φ(x′)pm′p(x′)dx′

=

(∑
m′

Kf
mm′um′pm′

)(∫
kx(x,x′)φ(x′)p(x′)dx′

)
= (µum) (κφ(x))

= (µκ) (umφ(x)) . (B.46)

Therefore µκ is an eigenvalue Kf
mm′kx(x,x′), and the corresponding eigenfunction is umφ(x).

We now proceed to identify the eigenvalues µi of Kf for the setup given in section 3.2.1, where there

are two tasks S and T , and where Kf is constrained to be a correlation matrix. That is,

Kf def=

(
1 ρ

ρ 1

)
, ρ ∈ [−1, 1]. (B.47)

In addition, the probability of the two tasks are given by p
S

= πS and p
T

= 1− πS . For an eigenvalue

µ and an eigenvector u def= (uS , uT )T, the left equation of (B.45) means that µ must simultaneously

satisfy

(1− πS)uT + πSρuS = µuT (1− πS)ρuT + πSuS = µuS . (B.48)

Both uT and uS can be eliminated by the method of substitution, resulting in the quadratic equation

µ2 − µ+ πS(1− πS)(1− ρ2) = 0 in µ. The solutions to this quadratic equation are given by

µ = 1/2±
√

1/4− ω where ω def= πS(1− πS)(1− ρ2). (B.49)

Observe that the eigenvalues are real, since πS(1− πS) 6 1/4 and (1− ρ2) 6 1 so that ω > 0.
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For completeness, we shall also give the eigenvectors. First, we use the constraint that the eigenvectors

has unit length,

u2
SπS + u2

T (1− πS) = 1,

into (B.48), and then simplify to give

u2
S =

2(1− πS)ρ2

1− 4ω ± (1− 2πS)
√

1− 4ω
u2

T =
2πSρ

2

1− 4ω ∓ (1− 2πS)
√

1− 4ω
. (B.50)

Notice the symmetry between u2
S and u2

T via the substitution πS  (1− πS).

We now distinguish the two pairs of eigenvalue and eigenvector, that is, µi and ui
def= (uiS , uiT )T,

i ∈ {1, 2}. Let (·)+ and (·)− denote selecting either the + or the − case for an expression having a ±
or ∓ operator. Then, by using the orthogonality between the eigenvectors, i.e.,

u1S u2S πS + u1T u2T (1− πS) = 0,

we obtain

u1S = s1S

√
(u2

S)+ u1T = s1T

√
(u2

T )− µ1 = (µ)+ (B.51)

u2S = s2S

√
(u2

S)− u2T = s2T

√
(u2

T )+ µ2 = (µ)− (B.52)

with s•• ∈ {−1, 1} satisfying s1S s2S = −s1T s2T . Note that µ1 is the major eigenvalue, and µ2 is the

minor. Substituting back into (B.48) gives s1S s1T = sgn(ρ) and s2S s2T = − sgn(ρ), where sgn is the

signum function.

B.6.2 Stationary Ornstein-Uhlenbeck Process on the Uniform Unit Interval

In this section, we give the eigenvalues and eigenfunctions of covariance function of the stationary

Ornstein-Uhlenbeck (OU) process on a one-dimensional unit interval with uniform density.

Proposition B.2. For covariance function k(x, x′) = exp(−|x− x′|/l) defined on [0, 1]2 with uniform

density, the eigenvalues and eigenfunctions are given by

κ =
2

lt2 + l−1
φ(x) =

√
2

l2t2 + 2l + 1
(lt cos tx+ sin tx) ,

where tan t = 2lt/(l2t2 − 1).

Proof. Our derivation follows the outline given by Hawkins [1989]. The eigen-equation to be solved is∫ 1

0

exp−|x− y|
l

φ(y)dy = κφ(x), x ∈ [0, 1]. (B.53)

Breaking the range of integration into y 6 x and y > x gives

e−x/l

∫ x

0

ey/lφ(y)dy + ex/l

∫ 1

x

e−y/lφ(y)dy = κφ(x). (B.54)

Differentiate the above equation wrt x and then simplify to give

−e−x/l

∫ x

0

ey/lφ(y)dy + ex/l

∫ 1

x

e−y/lφ(y)dy = lκφ′(x). (B.55)
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Adding and subtracting the above two equations give, respectively,

2ex/l

∫ 1

x

e−y/lφ(y)dy = κ (φ(x) + lφ′(x)) (B.56)

2e−x/l

∫ x

0

ey/lφ(y)dy = κ (φ(x)− lφ′(x)) (B.57)

Dividing both sides of (B.56) by ex/l, differentiating with respect to x, and then simplifying leads to the

following second order homogeneous linear ordinary differential equation with constant coefficients

φ′′(x)− sφ(x) = 0 where s def= l−2 − 2(κl)−1. (B.58)

The boundary conditions of this equation are obtained by using x = 0 in (B.57) and x = 1 in (B.56):

lφ′(0) = φ(0) lφ′(1) = −φ(1). (B.59)

The characteristic equation associated with (B.58) is r2− s = 0, with solutions r = ±
√
s. Consider the

following three cases:

Case s = 0 when κ = 2l. In this case, r = 0, and the general solution for φ is φ(x) = c1 + c2x. The

boundary conditions requires c1 = c2 = 0, so that φ is a zero function. Since a zero function is not an

eigenfunction by definition, this case leads to no solution.

Case s > 0 when κ > 2l. In this case, the general solution for φ is φ(x) = c1e
√

sx + c2e
−
√

sx. The

boundary conditions requires

e
√

s = ±
(

1− 2
l
√
s+ 1

)
.

Differentiating the above with respect to
√
s, and then equating with the above to eliminate e

√
s leads to

the following quadratic equation after simplification

(l
√
s+ 1)2 − 2(l

√
s+ 1)− 2l = 0.

The solution to this equation is s = l−2 + 2l−1. Equating this solution to the definition of s in (B.58)

gives κ = −1, which contradicts the initial assumption κ > 2l for this case. Thus there is no solution

for this case.

Case s < 0 when κ < 2l. In this case, r = ±ti, where t2 def= −s > 0 and i2 =
√
−1. Here, the general

solution for φ is

φ(x) = c1 cos tx+ c2 sin tx where t2 = −s = 2(κl)−1 − l−2. (B.60)

The boundary conditions requires c1 = ltc2 and

tan t =
2lt

(lt)2 − 1
. (B.61)
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To normalize the eigenfunctions, we solve for c2 in

1 =
∫ 1

0

[φ(x)]2dx =
∫ 1

0

(ltc2 cos tx+ c2 sin tx)2 dx

= c22

∫ 1

0

l2t2 cos2 tx+ sin2 tx+ 2lt cos tx sin txdx

= c22

∫ 1

0

l2t2 + 1
2

+
l2t2 − 1

2
cos 2tx+ lt sin 2txdx (∗)

= c22

[
l2t2 + 1

2
x+

l2t2 − 1
4t

sin 2tx− l

2
cos 2tx

]1
0

= c22

(
l2t2 + 1

2
+
l2t2 − 1

4t
sin 2t− l

2
cos 2t+

l

2

)
= c22

(
l2t2 + l + 1

2
+

l

2 tan t
· 2 tan t
1 + tan2 t

− l

2
· 1− tan2 t

1 + tan2 t

)
(†)

= c22

(
l2t2 + l + 1

2
+
l

2

)
= c22

(
l2t2 + 2l + 1

2

)
,

where the double angle trigonometric formulae are used in (∗), and the tangent half-angle formulae and

(B.61) are used in (†). Thus the eigenvalues and eigenfunctions are given by

κ =
2

lt2 + l−1
φ(x) =

√
2

l2t2 + 2l + 1
(lt cos tx+ sin tx) ,

where the expression for κ is obtained from the definition of t, and the ts are given implicitly by (B.61).

For the proposition to be of practical use, we need to be able to compute t. Let ul(t) def= 2lt/(l2t2 − 1),

i.e., the function on the right of (B.61). First, observe that if t is solution to (B.61), then −t is also a

solution, since both tan t and ul(t) are odd functions of t. Moreover, the eigenvalues depends on t only

through t2, and the eigenfunctions are odd functions of t. This means that we only need to consider

non-negative values for t for recover all eigenvalues and eigenfunctions. In addition, we know that

t 6= 0, since if that were not the case, then s = 0 which has no associated eigenvalue and eigenfunction,

as shown by the first case in the proof above. Therefore, only positive values for t need to be considered.

Restricting to t > 0, the curve of ul(t) against t has a vertical asymptote at t = 1/l. The position of this

vertical asymptote will determine the set of solutions for tan t = ul(t). Let S def= {2/(2k + 1)π | k ∈
N0}. We have the following three cases.

Case l ∈ ]2/π,∞]. In this case, the vertical asymptote of ul(t) is at t < π/2. Figure B.1a provides an

example. The (positive) solutions of tan t = ul(t) lie in the set {t | t > 0, tan(t) > 0}, or equivalently,

⋃
k∈N0

]
kπ,

(
k +

1
2

)
π

[
.

Moreover, each interval above has exactly one solution.

Case l ∈ S. In this case, the vertical asymptote of ul(t) is at t = (k̃ + 1/2)π, for a fixed k̃ ∈ N0

depending on l. Figure B.1b provides an example. For t < (k + 1/2)π, the solutions are such that
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tan t < 0, and for t > (k + 1/2)π, the solutions are such that tan t > 0. Thus, the (positive) solutions

lie in the set
k̃⋃

k=1

](
k − 1

2

)
π, kπ

[ ∪


∞⋃

k=k̃+1

]
kπ,

(
k +

1
2

)
π

[ , where k̃ =
1
lπ
− 1

2

Moreover, each interval above has exactly one solution.

Case l ∈ ]0, 2/π[ \S. This is similar to the case above, except that now there is a period of tan t that

provides two solutions. Figure B.1c provides an example. The (positive) solutions lie in the set
k̃⋃

k=1

](
k − 1

2

)
π, kπ

[ ∪


∞⋃

k=k̃

]
kπ,

(
k +

1
2

)
π

[ , where k̃ =
⌈

1
lπ
− 1

2

⌉

Moreover, each interval above has exactly one solution. Section 3.5.5, which gives the simulations of

learning curve for multi-task learning with the OU covariance function, uses l = 0.01, and is of this

case.

In every case we can provide a set of intervals containing all the solutions, with each interval bracketing

exactly one solution. For a given interval, the exact location of the bracketed solution can be computed

starting from an initial guess using the Newton-Raphson method, falling back on the golden-section

search or bisection search method if the Newton-Raphson method gives an update outside the interval.

The size of the interval can be reduced at each iteration, since both tan t and ul(t) are monotonic within

the interval.

Let us index the solutions for tan t = ul(t) by i ∈ N1, and similarly for the corresponding eigenvalues

given by Proposition B.2. From the graphs in Figure B.1, it is clear that since limt→∞ ul(t) = 0, the

solutions in the limit i→∞ satisfy tan ti = 0. Thus ti = iπ asymptotically.1 Hence the asymptotic

eigenvalues are given by

lim
i→∞

κi = lim
i→∞

2
l(iπ)2 + l−1

=
2
l
(iπ)−2.

This is in agreement with the result of Ritter [2000, Proposition IV.10, Remark IV.2] on the asymptotic

eigenvalues of covariance functions satisfying the Sacks-Ylvisaker conditions. The asymptotic eigen-

values of the periodic OU covariance function [Sollich and Halees, 2002, equation 37] on one dimension

is (iπ)−2/2l, which is the same as the above modulo the constant multiplicative factor.

Related work

Hawkins [1989] has given the eigenvalues and eigenfunctions for the OU covariance function with l = 1.

We have extended his result to general l. Note that the proof for Proposition B.2 can be simplified if we

restrict l = 1, since this means κ < 1 < 2l, and only the third case in the proof needs to be considered.

In addition to Hawkins, we have also analyzed the solutions to tan t = ul(t), and have provided a

bracketing interval per solution. This allows for using numerical computations to obtain the solutions.

1 To be exact, if l ∈ ]0, 2/π[ \S, then we have ti = (i− 1)π instead, since in this case there is a period of tan t having two

solutions. See Figure B.1c.
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0 t

(a) l = 4/π

0 t

(b) l = 2/3π

0 t

(c) l = 1/2π

Figure B.1: Plots of tan t and u(t) against t. Each graph plots tan t, using dark thin lines ( ), and u(t),

using dark thick lines ( ), against t, for t ∈ [0, 5π/2]. The vertical asymptote for u(t) is given by the

dark dashed line ( ). The ticks on the horizontal axis mark intervals of π/2.
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B.7 Simulations of the Learning Curve, Details

In this section, we give additional details for our simulations of the learning curve in section 3.5.5.

B.7.1 Continuation of εavg
T in πSn

Recall that εavg
T (ρ, σ2

n, πS , n) is only defined for values of πS and n such that πSn = nS ∈ N0. In our

simulations, however, we extend the domain to allow πSn ∈ R, so that smooth curves can be plotted.

For the theoretical OVρ and FWO%̂ bounds, this is done by simply using the respective expressions

verbatim. For the experimental bounds, which require sampling over X def= XT ∪XS , this is achieved

in the manner described next.

For a given πS , we sample the sizes of the training sets XT and XS to satisfy

bπSnc 6 nS 6 dπSne and 〈nS〉 = πSn, (B.62)

where the expectation is taken over simulation runs. The first condition ensures that, within each simu-

lation run, the size nS of XS is πSn whenever the latter is an integer. The second condition ensures that

the ratio nS/n is consistent with πS when averaged over multiple simulation runs. For each simulation

run, the training set is constructed sequentially by randomly drawing additional training locations. For

each new location, we determine its task by using Algorithm 1.

Algorithm 1 Decide the task for a new input
Require: Ratio πS , required cardinality n of X , and and previous cardinality nold

S of XS .

1: if nold
S < bπSnc then

2: new input is for task S

3: else if nold
S = dπSne then

4: new input is for task T

5: else
6: new input is for task S with probability (πSn− bπSnc)

{or, equivalently, for task T with probability 1− (πSn− bπSnc)}
7: end if

B.7.2 Analytical Averaging over Test Locations

The simulation study in section 3.5.5 uses the squared exponential (SE) covariance function with nor-

mally distributed inputs, and the covariance function of the stationary Ornstein-Uhlenbeck (OU) process

with uniformly distributed inputs. As claimed in section 3.3.4, for either of these cases, the expectation

over test locations can be done analytically to obtain the generalization error εT exactly. In order to do

this, we need to be able to compute (see (3.26))

Mpq
def=
∫
kx(xp,x∗) kx(xq,x∗) p(x∗)dx∗ =

∞∑
i=1

κ2
iφi(xp)φi(xq) (B.63)
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for a fixed pair of input locations (xp,xq). In the one-dimensional case with the SE covariance function

and normally distributed inputs, i.e.,

kx(x, x′) def= exp− (x− x′)2

2l2
and p(x) def=

1√
2πσx

exp− x2

2σ2
x

, (B.64)

we can use the integral expression for Mpq to obtain

Mpq =
l√

2σ2
x + l2

exp−
σ2

x(xp − xq)2 + l2(x2
p + x2

q)
2l2(2σ2

x + l2)
. (B.65)

This can be easily generalized to input spaces of higher-dimensions. Note that the infinite sum ex-

pression for Mpq is not useful in this case, even though analytic expressions for the eigenfunctions are

available Zhu et al. [1998]. This is because the eigenfunctions corresponding to the smaller eigenvalues

exhibit larger oscillations around zero in regions where p(x) is low, so that it is hard to determine when

to truncate the infinite sum for certain pairs of (xp, xq).

For the one-dimensional case with the OU covariance function and uniformly distributed inputs on the

unit interval, i.e.,

kx(x, x′) def= exp−|x− x′|
l

and p(x) def= δ(x ∈ [0, 1]) (B.66)

we can again use the integral expression for Mpq to obtain

Mpq = (l + |xp − xq|) exp−|xp − xq|
l

− l

2
exp−xp + xq

l
− l

2
exp

xp + xq − 2
l

. (B.67)

This can be derived by breaking the range of integration into three intervals given by [0,min(xp, xq)],

[min(xp, xq),max(xp, xq)] and [max(xp, xq), 1].

B.8 Asymptotics of the OV and the FWO Bounds on the Learning

Curve

In this section, we derive expressions for the asymptotics of the OV lower bound and the FWO upper

bound on the learning curve for multi-task GP learning. The asymptotics for the OV bound are in the

regime of large number of data points n or small noise variance σ2
n. The expressions given here are more

exact then existing ones in the literature. This exactness is necessary in order to obtain results in sections

3.6 and 3.7. First, it is necessary to understand the asymptotic behaviour of the process eigenvalues.

B.8.1 Asymptotic Behaviour of Eigenvalues

The asymptotics of the OV and FWO bounds on the learning curves rests on the premise that

κi = o (1/i) . (B.68)

Let us understand why this must be so. First, the covariance function kx is in the trace class, i.e., it has

finite trace. Intuitively, this means that the variance must be finite for a Gaussian process. Moreover,
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Lidskii’s Theorem says that tr(kx) =
∑∞

i=1 κi. Thus
∑∞

i=1 κi must be finite.2 Applying the Maclaurin-

Cauchy test for the convergence of infinite series then leads to (B.68). In this section, our focus is on

process eigenvalues of the order of power-law and exponential decays. To be precise, we introduce

idealized process eigenvalues

κ́i =

η0(bi)−r for power-law decay

η0b
−i for exponential decay

(B.69)

for some constants b > 0 (for power-law decay) or b > 1 (for exponential law decay), and η0 > 0. Then,

the actual eigenvalues κis are equal to the idealized eigenvalues asymptotically, i.e.,

κi ∼ κ́i ⇐⇒ ∀ε > 0 ∃j ∀i > j |κi/κ́i − 1| < ε. (B.70)

For example, the OU covariance function on the one-dimensional unit uniform interval has power-law

decay with r = 2, b = π and η0 = 2/l, where l is the length-scale (see section B.6.2). Throughout this

section, we choose a fixed value of ε ∈ [0, 1[, and let j be the minimum index beyond which the above

asymptotics apply for the chosen ε.

Remark on smoothness of functions The case of power-law decay has been treated extensively in

the literature. In approximation theory, for Sacks-Ylvisaker conditions of order s, which applies roughly

to a Gaussian process on one-dimension that is exactly s-times mean-square differentiable, Ritter [2000,

Proposition IV.10, Remark IV.2] has shown that κi ∝ (πi)−2s−2 in the limit i→∞. In operator theory,

Buescu and Paixão [2007] and others have shown a corresponding result. To understand the intuition,

it is useful to restrict our attention to covariance functions on the one-dimensional bounded interval, for

which Buescu and Paixão have given the following result.

Lemma B.3. [Buescu and Paixão, 2007, Lemma 3.4] Letm be a positive integer, and let k : [0, L]2 7→ C
be a positive definite kernel such that for every m1 = 0, 1, . . .m and m2 = 0, 1, . . .m, the partial

derivatives ∂m1+m2

∂xm1∂ym2 k(x, y) exists and are continuous in [0, L]2. Define the symmetric derivatives

km(x, y) def=
∂2m

∂xm∂ym
k(x, y).

Let {λi(k)}i∈N1 (resp. {λi(km)}i∈N1) be the sequence of eigenvalues of the integral operator with

kernel k (resp. km). Then, for every n > 2m+ 1,

λ2i(k) 6 L2m

(
4
π2

)
λi(km)

(2i− 4m− 1)2m
.

In terms of order relations, this is λ2i(k) ∈ O(i−2mλi(km)). By choosing m = 1 and then nesting the

order relation repeatedly, we obtain a result that is consistent with Ritter’s: the eigenvalues decays i−2

faster for every increase in continuity in the sense of that the derivative km′(x, y) exists.

For exponential decay of eigenvalues, Raman and Rao [1994] have shown that the decay o(b−i) in

(B.69) is sufficient for having an infinitely mean square differentiable covariance function on a one-

dimensional open interval, but not necessary. In fact, for a one-dimensional closed interval, all that is

necessary is for the decay to be o(b−i1−δ

), for δ > 0. Nevertheless, we note that the decay o(b−i) holds

for the conventional non-periodic (see remark below) squared exponential covariance function, which

is commonly used in machine learning.
2 Alternatively, on a finite measure p(x)dx, Mercer’s theorem states that the eigenvalues are absolutely summable.
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Remark on dimensionality of the input space The above remark on the continuity of the Gaussian

process holds on the one-dimensional input space. For a d-dimensional input space Gaussian process

with a stationary covariance function, Widom [1963] relates the process eigenvalues to the spectral

density function f :

κi ∼ f((2π)di) as i→∞. (B.71)

For illustration, consider the isotropic exponential correlation function kx(x,x′) = exp(−a‖x− x′‖)
that has spectral density function f(t) ∝ (a2 + t2)−(d+1)/2, and the isotropic squared-exponential cor-

relation function kx(x,x′) = exp(−a‖x− x′‖2) that has spectral density function f(t) ∝ e−t2/4a

[Abrahamsen, 1997; Yaglom, 1987]. We may use (B.71) to obtain, as i→∞, κi ∝ i−(d+1) for the

exponential case and κi ∝ b−i2 for the squared-exponential case. For the squared-exponential, the ap-

parent discrepancy between κi ∝ b−i2 and the κi ∝ b−i stated in the previous remark may be explained

by the periodicity of the correlation function as implied by the use of spectral density; see also Sollich

and Halees [2002, appendix B].

One implication of the above two remarks is that the power-law decay in (B.69) that we shall consider

is rather general, covering the cases of finite differentiability of the Gaussian process. In contrast, the

exponential decay in (B.69) is more restrictive; however, as far as we are aware, this is the only analytical

Gaussian process case for which useful asymptotic rates for the learning curve bounds can obtained.

B.8.2 OV Bound for Single-task Learning

Recall that the OV bound on the learning curve of a single-task Gaussian Process [Opper and Vivarelli,

1999] is
∑∞

i=1(1/κi +n/σ2
n)−1. We define ñ def= n/σ2

n and ñ± def= (1± ε)ñ, where ε is the fixed chosen

value in (B.70). Further, the following condition on ñ is imposed

j − 1
κ−1

1 + ñ
6 (1 + ε)

∫ ∞

0

1
κ́−1

i + ñ+

di; (B.72)

later, we discuss when this condition can be satisfied. The OV bound can be upper bounded in the

following way.

∞∑
i=1

1
κ−1

i + ñ
=

j−1∑
i=1

1
κ−1

i + ñ
+

∞∑
i=j

1
κ−1

i + ñ
<

j−1∑
i=1

1
κ−1

1 + ñ
+

∞∑
i=j

1
(κ́i(1 + ε))−1 + ñ

=
j − 1
κ−1

1 + ñ
+ (1 + ε)

∞∑
i=j

1
κ́−1

i + ñ+

6
j − 1
κ−1

1 + ñ
+ (1 + ε)

∞∑
i=1

1
κ́−1

i + ñ+

(∗)

<
j − 1
κ−1

1 + ñ
+ (1 + ε)

∫ ∞

0

1
κ́−1

i + ñ+

di (†)

6 2(1 + ε)
∫ ∞

0

1
κ́−1

i + ñ+

di, (B.73)

where the inequality between (∗) and (†) is because the integrand in (†) is a decreasing function of i (this

can be easily shown by drawing a sketch), and (B.72) is used in obtaining the final expression.
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The integral in (B.72) has the following solutions

∫ ∞

0

1
κ́−1

i + ñ+

di =

η1(η0ñ+)1/r/ñ+ if power-law decay,

η1 log(1 + η0ñ+) / ñ+ if exponential decay,
(B.74a)

where

η−1
1 =

πr sin(π/r)/b if power-law decay,

log b if exponential decay;
(B.74b)

see Gradshteyn and Ryzhik [2007, §3.222 & §2.313]. For power-law decay, it is necessary that r > 1

for the integral to be finite. This is guarantee since (B.68) must be satisfied, as discussed after (B.68).

Substituting (B.74) into (B.73) gives

∞∑
i=1

1
κ−1

i + ñ
<

2η1(η0ñ+)1/r/ñ if power-law decay,

2η1 log (1 + η0ñ+) /ñ if exponential decay.
(B.75)

We now return to discuss (B.72). Using (B.74a), it can be show that inequality (B.72) is valid when

j 6

η1(η0ñ+)1/r if power-law decay,

η1 log(η0ñ+) if exponential decay.
(B.76)

In terms of sufficient conditions on ñ, this is ñ = Ω(jr) and ñ = Ω
(
ej
)

for the respective eigenvalue

decays. Recall that j is the minimum index beyond which (B.70) applies, so that j is typically rather

large. Thus the condition (B.76) is really a requirement on n being sufficiently large or σ2
n being suffi-

ciently small.3

We are now ready to lower bound the OV bound. First, we choose a i′ such that i′ > j. Then

∞∑
i=1

1
κ−1

i + ñ
>

i′∑
i=1

1
κ−1

i + ñ
>

i′∑
i=1

1
κ−1

i′ + ñ
=

i′

κ−1
i′ + ñ

>
i′

(κ́i′(1− ε))−1 + ñ
=

(1− ε)i′

κ́−1
i′ + ñ−

.

In particular, if we select i′ to have values on the right of the inequality in (B.76) which upper bounds

j, then

i′

κ́−1
i′ + ñ−

=

η2η1(η0ñ+)1/r/ñ if power-law decay,

η2η1 log (1 + η0ñ+) /ñ if exponential decay,
(B.77)

where

η2 =

(1− ε) / [(πη1)r(1 + ε) + (1− ε)] if power-law decay,

(1− ε) / 2 if exponential decay.
(B.78)

Thus,

∞∑
i=1

1
κ−1

i + ñ
>

η2η1(η0ñ+)1/r/ñ if power-law decay,

η2η1 log (1 + η0ñ+) /ñ if exponential decay.
(B.79)

3 The pair of order relations for ñ does not imply that the single-task OV lower bound enters the asymptotic regime earlier for

smaller r rather than bigger r, and for power-law decay rather than exponential decay. Experiments indicate otherwise; cf. the

curves for the OU and SE covariance functions in Figure 3.5, and also see Sollich and Halees [2002]. To reconcile, recall that

j is fixed given ε, so that the js for the different decays of eigenvalues may be very different.
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Putting everything thing together, we have the following: for a chosen ε, we can fix j, and obtain η1
and η2 using (B.74b) and (B.78), so that, for all ñ satisfying (B.76), the single-task OV bound is within

factor ]η2η1, 2η1[ of (η0ñ+)1/r/ñ (for power-law decay), or log(1 + η0ñ+)/ñ (for exponential decay).

We now seek to remove the parameter ε from the asymptotic bounds on the OV bound. It is clear that the

lower bound (B.79) still holds if we replace each occurrence of ñ+ by ñ. For the upper bound (B.75),

we may do the following: in the case of power-law decay, (1 + ε) is factored out of ñ+; in the case

of the exponential decay, we use log(1 + η0ñ+) < log((1 + ε)(1 + η0ñ)) to extract an additive term

2η1 log(1 + ε)/ñ. Thus, we conclude that

∞∑
i=1

1
κ−1

i + ñ
∈

Θ
(
(η0ñ)1/r/ñ

)
if power-law decay,

Θ(log(1 + η0ñ)/ñ) if exponential decay.
(B.80)

B.8.3 OV Bound for Symmetric Multi-task Learning

For symmetric multi-task learning, (1/2±
√

1/4− ω)κi, where ω def= πS(1− πS)(1− ρ2), are the

eigenvalues; see section B.6.1. The OV lower bound to the learning curve in symmetric multi-task

learning is therefore just just the lower bound for the single task, but with these modified eigenvalues.

Thus, we may write the OV bound as

∞∑
i=1

∑
z∈{−1,1}

1
[(1/2 + z

√
1/4− ω)κi]−1 + ñ

(B.81)

=
∑

z∈{−1,1}

∞∑
i=1

(1/2 + z
√

1/4− ω)
κ−1

i + (1/2 + z
√

1/4− ω)ñ
(B.82)

∈ ]η2η1, 2η1[
∑

z∈{−1,1}

(η0(1/2 + z
√

1/4− ω)ñ+)1/r / ñ if power-law decay,

log
(
1 + η0(1/2 + z

√
1/4− ω)ñ+

)
/ ñ if exponential decay.

(B.83)

For power-law decay with r = 2, which is the case for the OU stationary process on the one-dimension,

we have

]η2η1, 2η1[ ·
1
ñ

(η0ñ+)1/2
√

1 + 2
√
ω (B.84)

where the underlined factor can be derived by considering
√

1/2−
√

1/4− ω +
√

1/2 +
√

1/4− ω

squared. The exponential decay case can also be simplified to give

]η2η1, 2η1[ ·
1
ñ

log
[
1 + η0ñ+ + ω(η0ñ+)2

]
(B.85)

The above two equations are the same as the corresponding ones for single-task bound, with the excep-

tions of the underlined terms.

B.8.4 FWO Bound for Single-task Learning

We now examine the asymptotics of the FWO upper bound for the single-task GP with isotropic noise

and stationary covariance function. First, let n˜i
def= n/(

∑
i′ 6=i κi′ + σ2

n), and n˜ def= n/(
∑

i′ κi′ + σ2
n).
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For all i, n˜i > n˜ clearly. Then the FWO upper bound may be written as follows:

∑
i

κi − n
∑

i

κ2
i

(n− 1)κi +
∑

i′ κi′ + σ2
n

=
∑

i

κi

∑
i′ 6=i κi′ + σ2

n

nκi +
∑

i′ 6=i κi′ + σ2
n

=
∑

i

1
n˜i + κ−1

i

<
∑

i

1
n˜ + κ−1

i

. (B.86)

Notice that the last expression has the form of the single-task OV lower bound. Using the same argu-

ments as for the single-task OV bound leading to equation B.75, and letting n˜+
def= (1 + ε)n˜, we can

say

∑
i

κi − n
∑

i

κ2
i

(n− 1)κi +
∑

i′ κi′ + σ2
n

<

2η1(η0n˜+)1/r/n˜ if power-law decay,

2η1 log(1 + η0n˜+)/n˜ if exponential decay,
(B.87)

Thus,

∑
i

κi − n
∑

i

κ2
i

(n− 1)κi +
∑

i′ κi′ + σ2
n

∈

O
(
(η0n˜)1/r/n˜) if power-law decay,

O
(
log(1 + η0n˜)/n˜) if exponential decay.

(B.88)

This is the asymptotic upper bound to the single-task FWO bound. We now turn to the asymmetric

multi-task FWO bound.

B.8.5 FWO Bound for Asymmetric Multi-task Learning

We now derive the asymptotics for the FWO% upper bound for the case of stationary covariance function

kx. of Proposition 3.16 on page 67 Let

β1 =
π2

S%
2(1− ρ2)

(1− πS)2 + 2πS(1− πS)ρ%+ π2
S%

2
β2 =

(1− πS)2 + 2πS(1− πS)ρ%+ π2
S%

2

1− πS + πS%
2

. (B.89)

Then

ci(%) = (β2n− 1)κi +
∑

j

κj + σ2
n = β2nκi +

∑
j 6=i

κj + σ2
n =

(
β2n˜iκi + 1

) (∑
j 6=i κj + σ2

n

)
,

where n˜i
def= n/(

∑
i′ 6=i κi′ + σ2

n) as in the preceding section. Using α(x) def= (1−πS)+πSx, the FWO%

bound given by the left of equation 3.33 on page 67 can now be expressed as

∞∑
i=1

κi − n
[α(ρ%)]2

α(%2)

∞∑
i=1

κ2
i(

β2n˜iκi + 1
) (∑

j 6=i κj + σ2
n

)
=

∞∑
i=1

κi −
[α(ρ%)]2

α(%2)

∞∑
i=1

n˜iκ
2
i

β2n˜iκi + 1

=
∞∑

i=1

κi −
[α(ρ%)]2

α(%2)

∞∑
i=1

n˜iκ
2
i + κi − κi

β2n˜iκi + 1

=
∞∑

i=1

κi −
[α(ρ%)]2

α(%2)

( ∞∑
i=1

κi −
∞∑

i=1

1
β2n˜i + κ−1

i

)

=
(

1− [α(ρ%)]2

α(%2)

) ∞∑
i=1

κi +
[α(ρ%)]2

α(%2)

∞∑
i=1

1
β2n˜i + κ−1

i
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By showing 1− β1 = [α(ρ%)]2/α(%2), we obtain

β1

∞∑
i=1

κi + (1− β1)
∞∑

i=1

1
β2n˜i + κ−1

i

. (B.90)

We now show that β1 ∈ [0, 1]. The lower bound is obtained by setting ρ = 1. The upper bound is

obtained by observing that the numerator and denominator in β1 are positive, and that they are less than

and greater than π2
S%

2 respectively.

Since β1 ∈ [0, 1], so one may view (B.90) as a weighted average between the average prior variance and

a term that depends on sample size. The arguments to obtain the asymptotics for the single-task FWO

bound can now be applied on the second summation in (B.90) to obtain the following upper bounds on

the asymmetric multi-task FWO bound

β1

∞∑
i=1

κi + 2(1− β1)η1(η0β2n˜+)1/r/β2n˜ if power-law decay,

β1

∞∑
i=1

κi + 2(1− β1)η1 log(1 + η0β2n˜+)/β2n˜ if exponential decay.

(B.91)

B.9 Proof for Equation 3.69

We wish to compute εavg
T (ρ, σ2

n, πS , 1), when there is only n = 1 sample. With probability πS , the

sample is for task S, and the learning curve is the same as εavg
T (ρ, σ2

n, 1, 1); with probability 1− πS , the

sample is for task T , and the learning curve is the same as εavg
T (ρ, σ2

n, 0, 1). Thus

εavg
T (ρ, σ2

n, πS , 1) = πSε
avg
T (ρ, σ2

n, 1, 1) + (1− πS)εavg
T (ρ, σ2

n, 0, 1).

If πS = 0, then ρ has no effect on the learning curve, so εavg
T (ρ, σ2

n, 0, 1) = εavg
T (1, σ2

n, 0, 1). This gives

εavg
T (ρ, σ2

n, πS , 1) = πSε
avg
T (ρ, σ2

n, 1, 1) + (1− πS)εavg
T (1, σ2

n, 0, 1).

Using Corollary 3.13 on εavg
T (ρ, σ2

n, 1, 1) gives

εavg
T (ρ, σ2

n, πS , 1) = πS

(
ρ2εavg

T (1, σ2
n, 0, 1) + (1− ρ2)

∞∑
i=1

κi

)
+ (1− πS)εavg

T (1, σ2
n, 0, 1)

= πS(1− ρ2)
∞∑

i=1

κi + [1− πS(1− ρ2)]εavg
T (1, σ2

n, 0, 1).

Finally, when ρ = 1, the value of πS does not matter, so εavg
T (1, σ2

n, 0, 1) = εavg
T (1, σ2

n, 1, 1).

B.10 The Posterior Distribution Given Collocated Observations

We follow the notations in section 3.9.3. The posterior distribution given by (3.80) is proportional to the

product of three Gaussians:

p(fT (x∗) | yT\∗,yS∗) ∝ p(yT\∗ | fT (x∗)) p(yS∗ | fT (x∗)) p(fT (x∗)).
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Thus, the exponent in posterior distribution is given by −1/2 times

[
yT\∗ − k

x
∗fT (x∗)/kx

∗∗

]T [
Kx
\∗ − k

x
∗(k

x
∗)

T/kx
∗∗

]−1 [
yT\∗ − k

x
∗fT (x∗)/kx

∗∗

]
+ [yS∗ − (kx

∗∗ρ)fT (x∗)/kx
∗∗]

T [
kx
∗∗K

f
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∗∗ρ)(kx
∗∗ρ)T/kx

∗∗
]−1

[yS∗ − (kx
∗∗ρ)fT (x∗)/kx

∗∗]

+ [fT (x∗)]
2
/kx
∗∗ (B.92)

The terms involving (kx
∗∗ρ) can be simplified by cancelling the kx

∗∗ within with the 1/kx
∗∗s outside. We

use the Sherman-Morrison formula

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u

to simplify the matrix inversions. Hence,

[
Kx
\∗ − k

x
∗(k

x
∗)

T/kx
∗∗

]−1

= (Kx
\∗)

−1 +
(Kx

\∗)
−1kx

∗(k
x
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T(Kx
\∗)

−1/kx
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−1kx

∗/k
x
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= (Kx
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−1 +
(Kx

\∗)
−1kx

∗(k
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, (B.93a)

where

σ2
∗

def= kx
∗∗ − (kx

∗)
T(Kx

\∗)
−1kx

∗, (B.93b)

and [
kx
∗∗K

f
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∗∗ρρ
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]−1

=
1
kx
∗∗

[
(Kf
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(Kf

S)−1ρρT(Kf
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]
, (B.93c)

where

v2
T

def= 1− %T(Kf
S)−1%. (B.93d)

Using the above expressions for the matrix inversions, we obtain

1
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Similarly
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2
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Using the equations in (B.94), we can simplify the expansion of B.92. In the expansion, the coefficient

for the term quadratic in fT (x∗) is

1
(kx
∗∗)2

(kx
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T
[
Kx
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2
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2
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, (B.95)

where the coefficient for the term linear in fT (x∗) is

− 2(kx
∗/k

x
∗∗)

T
[
Kx
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x
∗(k

x
∗)

T/kx
∗∗

]−1

yT\∗ − 2ρT
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1
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2
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ρT(Kf
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}
. (B.96)

Matching the above coefficients to those for a Gaussian distribution will give the mean and variance of

the prediction for fT (x∗).
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Appendix to Chapter 4

C.1 Initialization for Optimization

As discussed in section 4.3.3, we treat the hyperparameters as fixed but unknown, and find their values

by maximizing the likelihood. We start optimizing from the set of values that gives equal weightings

among the inputs and among the components of the covariance function (except for the jitter/noise term).

Since our Gaussian process prior has zero mean, we distribute the sample second moment of the torques

evenly within the covariance function among the constant term, the term linear in inputs, the squared

exponential term and the term linear in the sgn(q̇j)s.

For clarity, we restrict the notation to the case for the torque function of a single joint, and omit the

unnecessary subscripts. Let t2 be the sample second moment of the observed torques, and xj and x2
j

be the sample first and second moments of the jth covariate respectively. We set the initial values such

that

b2 =
1
4
t2 u2

jx
2
j =

1
3`

1
4
t2 v2

j =
1
4
t2 l2j = x2

j − (xj)2 w2
j =

1
`

1
4
t2 σ2 = 0.01 t2. (C.1)

C.2 Marginal Likelihood of Noise-free Multi-task GP in Complete

Block Design

In this appendix, we give an expression for the marginal likelihood of multi-task GP model in the case

when there is no noise in the observations, and when there is a complete block design. For the sake of

brevity and clarity, we drop the subscripts for the joints.

Let the complete block design or isotopic data consists of n• inputs X• def= {x•(j)}n•

j=1 on which

torques for all M contexts are observed. Denote the observed torques for the mth context by the vector

tm def= (tm (1), . . . , tm (n•))T, and the vector of all observed torques by t def=
(
(t1)T, . . . , (tM )T

)
T. Us-

ing Kx for the matrix of covariances for all pairs in X• due to kx, and θx for the parameters in kx, we
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can write the log marginal likelihood of noise-free multi-task GP as

L(θx,Kρ) def= log p(t | X•,θx,Kρ)

= −1
2

log |Kρ ⊗Kx| − 1
2
tT (Kρ ⊗Kx)−1

t− Mn•

2
log 2π

= −n
•

2
log |Kρ| − M

2
log |Kx| − 1

2
tr
[
TT(Kx)−1T (Kρ)−1

]
− Mn•

2
log 2π,

(C.2)

where T is the n•-by-M matrix satisfying vecT def= t. The partial derivative with respect to Kρ is

∂L
∂Kρ

= −n
•

2
(Kρ)−1 +

1
2
(Kρ)−1TT(Kx)−1T (Kρ)−1, (C.3)

so that we may write the optimal Kρ as a function of θx:

K̂ρ(θx) =
1
n•
TT(Kx)−1T. (C.4)

Substituting this into C.2 gives

L(θx, K̂ρ(θx)) = −n
•

2
log
∣∣∣∣ 1
n•
TT(Kx)−1T

∣∣∣∣− M

2
log |Kx| − Mn•

2
(1 + log 2π). (C.5)

To maximizing the marginal likelihood, we can optimize the above expression with respect to θx.

C.3 Learning Hyperparameters of the Multi-task GP Model by Staged

Optimization

In this appendix, we give details on how one of the maxima on the likelihood surface is located. This

is done in stages, each stage locating a maximum near to an initialized point that corresponds to the

desired interpretation. For the sake of brevity and clarity, we drop the joint index i. The following

applies separately for each joint.

Let tm be the vector of nm observed torques at the joint for contextm, andXm be the corresponding 3`-

by-nm design matrix, i.e. each column of Xm is a vector consisting of ` joint angles, ` joint velocities

and ` joint accelerations. Further, let X be the 3`-by-nuniq design matrix of distinct x-configurations

observed over all M contexts.

Given this data, the marginal likelihood L(θx,Kρ, σ2) def= p({tm}M
m=1 | X,θ

x,Kρ, σ2), where θx col-

lects the parameters of kx, is optimized using a gradient-based method. We propose a staged strategy

during optimization to help localize the search region. This is outlined below, with details given in the

subsections that follow.

Require: Starting positions θx
0, Kρ

0 , σ2
0 , and rank r

{All arg max operations are understood to find only the local maximum.}

1: Starting from θx
0 and σ2

0 , find (θx
1, σ

2
1) = arg maxθx,σ2 L(θx,Kρ

0 , σ
2).

2: Calculate Kρ
1 based on details in section C.3.2

3: Starting from θx
1, Kρ

1 , and σ2
0 , find (θx

ans,K
ρ
ans, σ2

ans) = arg maxθx,Kρ,σ2 L(θx,Kρ, σ2).

The order of optimization reflects the relative importance we place on the different constituents of the

model: kx is the most important, and σ2 the least.
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C.3.1 The Initial Choice of Kρ

The choice of Kρ
0 is important, since it affects the search very early on. Reasonable values that admit

ready interpretations are the matrix of ones 1M×M and the identity matrix IM×M . For Kρ
0 = 1M×M , we

initially assume the contexts to be indistinguishable from each other; while forKρ
0 = IM×M , we initially

assume the contexts to be independent given the kernel parameters, which is a multi-task learning model

that has been previously explored in, for example, Minka and Picard [1997]. These two are at the

opposite extremes in the spectrum of inter-context/task correlation, and we believe the merit of each

will be application dependent. Since these two models have the same number of free parameters, we

select the one with the higher likelihood as the starting point for the search in step 2. However, we note

that in some applications there may be reasons to prefer one over the other.

C.3.2 Computation of Kρ
1 in Step 2

Given estimates θx
1 and σ2

1 , we wish to estimate a Kρ
1 from which the likelihood can be optimized in

step 3. Here we give the sequence of considerations that leads to a formula for computing Kρ
1 .

Let Kx
1 be the covariance matrix for all pairs in X , using θx

1 for cx. Let T be the nuniq-by-M matrix

that corresponds to the true values of the torque function τm(x(j)) for m = 1 . . .M and j = 1 . . . nuniq.

Then as per the Expectation-Maximization (EM) step discussed in [Bonilla et al., 2008, eq. 4], we have

Kρ
EM =

1
nuniq

〈
TT(Kx

1 )−1T
〉
' 1
nuniq 〈T 〉

T(Kx
1 )−1 〈T 〉 , (C.6)

where the expectations are taken with respect to a GP with parameters θx
1, Kρ

0 and σ2
1 , and the (j,m)th

entry of 〈T 〉 is the mean prediction of τm(x(j)) using this GP. If all the torques in T are observed so

that the expectation is a null operation, then the equality the same as (C.4). The approximation neglects

the variance of the GP; this is justifiable since the current aim is only to obtain a starting estimate of Kρ

for a search procedure.

There are two weaknesses with this that we shall address. The first is that the rank of 〈T 〉 is upper

bounded by that of Kρ
0 , so that the rank of Kρ

EM is similarly upper bounded.1 This property is undesir-

able, particularly whenKρ
0 = 1M×M . We ameliorate this by replacing

〈
τm(x(j))

〉
with the correspond-

ing observed value tm(x(j)) wherever it is available, and call the resultant matrix Taug. The second

weakness is this: with the commonly used covariance functions, Kx
1 will typically have rapidly decay-

ing eigenvalues [Rasmussen and Williams, 2006, §4.3.1]. To overcome this, we regularize its inversion

by adding η2I to the diagonal of Kx
1 to give

Kρ
aug =

1
nuniqT

T
aug(K

x
1 + η2I)−1Taug. (C.7)

We set η2 to tr(TT
augTaug)/(Mnuniq), so that tr(Kρ

aug) = M if Kx
1 were to be a zero matrix. Other ways

of setting η2 are also possible.

Finally, the required Kρ
1 is the rank r constrained positive semi-definite matrix of Kρ

aug. This can be

achieved either by computing the eigen-decomposition of Kρ
aug and keeping only the top r eigenvec-

tors/values, or by using an incomplete Cholesky decomposition.
1 This is not due to our approximation; indeed, it can be shown that the rank of Kρ

EM is upper bounded by that of Kρ
0 even if the

exact EM update in (C.6) has been used.
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