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Abstract

Nonlinear, nonlocal optical media has emerged as an ideal setting for experimentally

observing and studying spatial optical solitary waves which otherwise cannot occur in

Kerr media. Of particular interest is the eventual application to all-optical circuits.

However, there is considerable work left to do on the theoretical end before this is a

possibility. In this thesis we consider three problems. The first is how to solve the gov-

erning equations for optical beam propagation in the particular medium of the nematic

liquid crystal (NLC), which is used as a prototypical example, exactly and approxi-

mately. In this respect we provide the first known, explicit solutions to the model as

well as a comprehensive assessment on how to use variational, or modulation theory,

in this context. This leads to the discovery of a novel form of bistability in the system,

which shows there are two stable solitary wave solutions for a fixed power or L2 norm.

We then consider how to approximate solutions for optical solitary waves propagating

in a more general class of nonlocal nonlinear media using asymptotic methods. This

is a long open problem and is resolved in the form of a simple to implement method

with excellent accuracy and general applicability to previously intractable models. We

conclude with the discovery and characterization of an instability mechanism in a cou-

pled, defocussing nonlinear Schrödinger system. We show there is no stable, coupled,

localized solution. This result is compared with the more well-studied bright solitary

wave system and physical and mathematical explanations are offered.
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Lay Summary

One of the more fascinating areas of physics is optics. It underlies research spanning

the areas of basic physics, chemistry, electrical engineering, computer graphics, and

much more. A basic question one asks when studying optics is “what happens when

light hits this material”. An amazing example is light impinging on liquid crystals.

Liquid crystals are a material which microscopically look like oriented rods which do

not have a spatial order. A good analogy is people facing a screen, but are not sitting

in an organized arrangement like in a theater, rather they are free to stand where they

like.

Liquid crystals offer a multitude of exciting technological applications as best demon-

strated by the success of the LCD display. However, the underpinning mathematics

of light in liquid crystals is still not well understood. In fact, liquid crystals are not

alone in this respect. The same underlying equations (known as nonlocal, nonlinear)

equations pose challenges for other areas of physics as well. This thesis makes progress

on the mathematical tools used to study such equations.
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Chapter 1

Introduction

1.1 Solitary Waves and Solitons

This thesis is dedicated to the study of solitary waves arising in nonlinear, nonlocal

optical media. For the purposes of an introduction, there is no universally accepted

definition of a solitary wave, nor is there one for such waves in nonlocal optical media.

However, the rich history of the first subject and the considerable recent interest in

the second allows us to have a reasonably clear picture. In describing solitary waves, a

natural departure point is their discovery. This took place at Edinburgh’s own Union

Canal by John Scott Russell and is described in his “Report on Waves” in 1844 [1].

The central finding from this work is

I was observing the motion of a boat which was rapidly drawn along a narrow

channel by a pair of horses, when the boat suddenly stopped - not so the mass

of water in the channel which it had put in motion; it accumulated round

the prow of the vessel in a state of violent agitation, then suddenly leaving

it behind, rolled forward with great velocity, assuming the form of a large

solitary elevation, a rounded, smooth and well-defined heap of water, which

continued its course along the channel apparently without change of form or

diminution of speed. I followed it on horseback, and overtook it still rolling

on at a rate of some eight or nine miles an hour, preserving its original

figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it

in the windings of the channel. Such, in the month of August 1834, was my

first chance interview with that singular and beautiful phenomenon which I
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have called the Wave of Translation.

Russell’s “Wave of Translation” was remarkable mainly in the respect that it was

not oscillatory. The expectation of the time was that all waves are oscillatory. Further-

more, the wave retained its form over an astonishingly large distance. This suggests it

was robust enough to withstand the perturbations inflicted by the naturally imperfect

canal floor. All these novel features led to considerable scepticism from the scientific

community of the time, including G.G. Stokes. The specific criticism was the lack of an

acceptable theory detailing the possibility of such a phenomenon. Such a theory was

first given by Boussinesq in 1871 [2] and later, in 1895, rediscovered by Korteweg and

de Vries [3,4]. Korteweg and de Vries demonstrated that travelling waves of their now

widely studied model, the KdV equation, of weakly nonlinear long waves, admitting

exactly solvable wavetrain solutions using Jacobi elliptic functions [4]. In the limit of

an infinite period, this Jacobi elliptic function approaches the solitary wave described

by Russell. This was hugely important as there was now a sound connection between

oscillatory waves and the solitary wave of Russell. The phenomenon now had a solid

theoretical basis.

The word “soliton” for the same solitary wave described by Russell came from

the physics community. Kruskal and Zabusky [5] showed using numerical simulations

in the 1960’s that, perhaps more amazingly than their shape retention, solitary wave

solutions of the KdV equation interact cleanly. By interacting cleanly, we mean the

solitary waves retain their shape after interacting with other solitary waves, leaving no

measurable evidence that the interaction even occurred, apart from a phase shift. This

gave birth to the term “soliton” to reflect the particle like interaction of the waves and

the term was adopted almost immediately.

Shortly after this work, the initial value problem for the KdV on the line was

solved by Gardener, Greene, Kruskal and Miura [6] using what is now known as the

“inverse scattering transform” or IST. This was significant as, prior to this discovery,

there were no general methods for solving nonlinear partial differential equations of

any significance. The IST changed this and with it emerged the field of “integrable”

systems with solitons at its focal point. Note that, in this thesis, we will use the term

“integrable” to mean the equation is exactly solvable using the IST. Since then, the

terms “solitons” and “solitary waves” have been used more or less interchangeably in

the physics community to describe solutions to nonlinear wave equations which are
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1. localised, with an enduring and persistent shape, like Russell’s “smooth, well-

defined heap of water”, and

2. interact cleanly, like Kruskal’s solitons.

As the field developed, this became a rather restrictive definition. There are many

examples of solutions of nonlinear wave equations which we title solitons that are not

necessarily steady, such as “breathers” or other periodic “gap solitons” [7, 8] or are

not a well-defined lump, such as vortex solitons [9], or are instable to perturbations,

such as the vector dark solitary waves considered in this work [10,11,12]. Furthermore,

many of them do not interact cleanly as for Zabusky and Kruskal’s solitons, leaving a

wake of radiation behind or spiralling around one another with considerable effect on

their initial profile. Clean interaction appears to be a quality restricted to integrable

equations, which comprise a relatively small subset of those that admit solitary wave

solutions. In this work, we focus exclusively on localized solutions which may not

interact cleanly and thus adopt the formal term solitary wave as distinct from the term

soliton, which is the more common terminology in applied mathematics communities.

In particular, there will be two different flavors, the first being bright solitary waves,

which arise in self-focussing media, and the second will be dark solitary waves, which

arise in defocussing media. The difference between these two will now be described.

1.2 Focussing and Defocussing Nonlinear Optics

Understanding bright and dark solitary waves as they arise in focussing and defocussing

media brings us to optics. The idea is simple and is best illustrated through the

canonical nonlinear wave equation in optics, the nonlinear Schrödinger (NLS) equation,

which is

i∂zψ +
1

2
∂2
xψ + |ψ|2ψ = 0. (1.1)

The first two terms alone comprise the free Schrödinger operator from quantum me-

chanics and the last term is a nonlinearity arising from, typically, a weakly nonlinear

medium response to the beam which depends on the intensity |ψ|2 termed the “Kerr”

nonlinearity [11]. The NLS equation is such a widely studied equation, in so many

different branches of physics, that it has been termed a “universal equation” [11]. In

general, it arises for a weakly nonlinear wave packet which has wave numbers grouped

around a central value with the nonlinear interaction depending on the intensity |ψ|2 [4].
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It is an integrable system, as shown by Zakharov and Shabat [13] and possesses bright

solitary wave solutions similar to those described by Russell for the KdV or Boussinesq

equations. In particular, one can verify the soliton solution

ψ = a sech(ax)ei
a2

2
z, (1.2)

where a is an arbitrary parameter. Notice, in particular, that the intensity |ψ| is

invariant in z. Furthermore, it is not periodic, but localized and monotonically decaying

in x, thus fitting with our picture of a solitary wave solution. Note, there are, of course,

periodic solutions in the form of Jacobi elliptic functions as there were for the KdV

equation. To give it more physical meaning, we will take the z direction to be the

propagation direction of an optical beam, such that the nonlinear medium is contained

in z ∈ (0,∞), x is a spatial variable and ψ is the envelope of our wave packet. One

interpretation of the soliton solution (1.2) is that it is the result of a balance between

dispersive effects (∂2
xψ) and self-steepening, or self-focussing effects (|ψ|2ψ) [4,11]. The

dispersive effects are attributed to the free Schrödinger portion of the equation. Indeed,

a classic result on Schrödinger equations is that solutions of

i∂zu+∇2u = 0, x ∈ Rn, (1.3)

u(x, 0) = f(x), (1.4)

satisfy the estimate

||u||L∞(Rn) ≤
1

(2πz)n/2
||f ||L1(Rn). (1.5)

The fact then that localized solutions exist to the NLS equation can be attributed to

the nonlinearity counteracting this tendency to decay. Thus the term self-focussing, as

the beam focusses itself in the material without the aid of external tools such as a lens.

In effect, it creates its own wave-guide and thus the term “self-guided” waves are also

used in the engineering community.

De-focussing media has a fundamentally different effect on optical beams. The idea

is best illustrated through the mathematics followed by a physical discussion. The

canonical model is the de-focussing nonlinear Schrödinger equation, which is

i∂zψ +
1

2
∂2
xψ − |ψ|2ψ = 0. (1.6)
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The only difference between the two equations (1.1) and (1.6) is the sign of the nonlin-

earity and both are integrable. However, the conditions as x→ ±∞ differ significantly

and reflect the difference in the physics. For focussing media, we required that ψ → 0

as |x| → ∞. In the case of dark solitary waves we are looking for localized solutions

which are “carried” by a continuous wave. That is, we impose

ψ → U±0 e
−iU2

0 z, x→ ±∞, (1.7)

where, the constants U+
0 and U−0 are real and are related by

U+
0 = U0 > 0, U−0 = −U0, (1.8)

so that U2
0 in the boundary condition (1.7) is defined by

U2
0 = (U+

0 )2 = (U−0 )2, (1.9)

In particular, for U0 as defined above, a localized solitary wave solution of the de-

focussing NLS equation (1.6) is given by

ψ = [B tanh (B(x−Az)) + iA] e−iU
2
0 z, (1.10)

A2 +B2 = U2
0 . (1.11)

The second condition leaves a sole free parameter, either A or B. One can now see by

taking the modulus of this soliton solution that we have a localized dark notch that

approaches its bright “carrier wave” as x → ±∞. In essence, an analogous effect as

the self-focussing case has occurred. The dispersive term has forced the bright portion

out of the center, while the defocussing nonlinearity arrests this at a particular point,

creating a stable localized soliton. This is something of a mirror image to what occurs

in focussing media. Thus, we term this to be a de-focussing nonlinear media.

1.3 Nonlocal Media and Nematicons

The motivation for studying nonlocal optical media lies in a subtle, but classical re-

sult on the NLS equation in dimensions higher than one. In particular, there exists a

critical power (L2 norm) of the initial condition such that, above this power, solutions
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blow-up (approach an infinite L∞ norm) in finite time [11], which is sometimes called

“catastrophic collapse”. Below this value, they decay to radiation. This blow-up of

solutions for the NLS equation for more than one dimension means that it is an in-

adequate model for dimensions higher than one. Furthermore, it implies that weakly

nonlinear media with a “Kerr”, or cubic, nonlinearity resulting in the NLS equation,

are not suitable for observing spatial optical solitary waves. Alternative materials with

a fundamentally different nonlinear response are needed, which, in general, may lead

to governing equations which are no longer integrable. In a series of papers devoted

to experimentally producing spatial optical solitary waves, Assanto et al. [14,15,16,17]

studied the possibility of launching an optical beam into a cell filled with a nematic

liquid crystal (NLC). Note that NLC and nematicons will be discussed thoroughly in

Chapter 2. The theoretical motivation was that the governing equations had a fun-

damentally different nonlinearity from the Kerr response of the NLS equation (1.1).

The nonlinear response balanced diffraction for low intensity beams and was given by a

convolution. For example, a central system of this thesis is the “nematicon equations”

i∂zu+
1

2
∇2u+ 2θu = 0, (1.12)

ν∇2θ − 2qθ + 2|u|2 = 0. (1.13)

Solving for θ explicitly using a Green’s function gives a convolution nonlinearity in |u|2

in the NLS type equation (1.12). In general, the nematicon system belongs to a broader

class of solitary wave equations which are of the general form of the nonlocal, nonlinear

Schrödinger equation

i∂zu+
1

2
∇2u+ 2

(
K ∗ |u|2

)
u = 0. (1.14)

Here ∗ denotes a convolution in the spatial variable, so that

K ∗ |u|2 =

∫
Ω
K(x, s)|u(s, z)|2ds, (1.15)

for K some kernel, restrictions on which we discuss in Chapter 2. The nonlocal nonlin-

earity in the nematicon equations, and for a broad array of other NLS-type equations,

has the ability to arrest catastrophic collapse. Solitary wave solutions can then exist

and can be observed experimentally. Furthermore, (1.14) is a significantly more gen-

eral equation, reducing to the NLS equation for a Dirac delta kernel K = δ(x− s) and

includes the nematicon equations for a Helmholtz kernel, as well as a wide variety of
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other physical phenomena described in depth in Chapter 2. A crucial aspect is that

equation (1.14) is no longer integrable, that is, the solution of the initial value problem

can no longer be found using the IST.

The main physical system in this thesis is solitary waves in nematic liquid crystals,

sometimes called nematicons [18,19], which we use as a prototypical example for solitary

waves in focussing and defocussing nonlinear, nonlocal optical media [14]. There are

several well founded reasons for this. The first is how simply observable they are

[15, 18, 19]. As discussed in this thesis, the so-called nematicon equations apply to

a broad spectrum of physical phenomena such as model systems in quantum gravity

[20, 21], plasma physics [22], mathematical biology [23] and fluid mechanics [24, 25].

By exploiting this equivalence, one can now directly observe effects in plasma physics

or astrophysics that are otherwise unobservable in a laboratory setting. Further, the

nematicon set up is relatively inexpensive and fits on a table top [18, 19]. The second

is their flexibility. NLC’s can be tuned to have a weak nonlocality, which means the

nematicon equations (1.12) and (1.13) approach the NLS equation in the limit of ν � 1,

as well as a strong nonlocality (ν � 1), to produce stable solitary waves. Furthermore,

one can study defocussing effects by adding an azo-dye to the nematic so that it becomes

a defocussing medium [26]. One can also study stronger nonlinear effects in more

complex models for both the focussing and defocussing cases, as discussed in Chapter 2.

The third reason is technological relevance. There is strong potential for an engineering

application in using nematicons as “bits” of information and NLC’s as the basis for an

all-optical circuit. This promises, potentially, faster and more flexible computing, as

well as many other possibilities [15, 17, 27, 28, 29, 30, 31] . Finally, and crucially, the

mathematics of nematicons and their related phenomena are in their infancy when

compared with more well understood universal and integrable models such as the NLS

or KdV equations, with much left to explore and study. As such, nematicons are given

a special prominence in this thesis, with us detailing the derivation of the equations in

Chapter 2 and studying them throughout Chapters 3, 4 and 5.

1.4 Outline of the Thesis

In this thesis we study three problems in solitary waves in focussing and defocussing

nonlinear, nonlocal optical media using nematicons as a prototypical example. The

work is organized as follows.
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In Chapter 2 we provide a thorough background to nematicons, including a phys-

ical background and derivation of the governing equations, as well as analytical and

numerical methodologies used in their study. The general principles and approximation

techniques of nonlinear optics, as well as basic physical background on nematic liquid

crystals, is reviewed. The governing equations are introduced in this way and appli-

cations to other areas of physics are discussed. Background is also given on analytical

methods, such as the variational method, and attempts at perturbation methods being

used in the context of nematicons. We finish the Chapter by detailing the numerical

methods that will be used in the succeeding three chapters.

In Chapter 3 we present the first known explicit solutions of the nematicon equa-

tions, derive variational approximations to the nematicon solutions and study effects of

linearization in the modelling. The exact solution is introduced by construction, rather

than by direct substitution as in previous attempts [32] and results for both (1+1)

dimensional and (2+1) dimensional solitary waves are presented. This raises questions

on which ansatz should used in the widely used variational method and an extensive

comparison of four different, commonly used ansatzë is done. The relative accuracy

when compared with numerical solutions for differing asymptotic regimes is discussed

extensively. We then study the effect of linearization in the modelling and compare,

numerically, solutions of the nematicon and pre-tilted nematicon equations. This leads

to the discovery of a novel form of optical bistability in nonlocal, nonlinear media.

In the fourth Chapter, we describe a general and universal method for approximat-

ing solitary waves in nonlinear, nonlocal focussing media. The approach is the first of

its kind in terms of range of applicability, accuracy, ease of implementation and asymp-

totic arguments. We derive approximate solutions for solitary waves for four different

models, three of which were previously analytically intractable, the fourth being the

nematicon equations, which are studied in both (1+1) and (2+1) dimensions. These are

then compared extensively with numerical solutions and the error, as well as limitations

of the method, are discussed.

In Chapter 5 we present the discovery of a novel instability mechanism for coupled

nonlinear dark solitary waves in defocussing media. The model under consideration

is that of two coupled nonlinear Schrödinger equations with differing diffraction coeffi-

cients. A novel, nonlinear type of instability for differing diffraction coefficients is found

and analyzed thoroughly, in particular why it does not arise in the case of focussing

media, which are more widely studied and would explain why the phenomenon has gone
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undetected in the literature. Explicit asymptotic behaviour is found at leading order

and first order for small differences in the diffraction coefficients. Numerical simulations

are given for large differences in the diffraction coefficients.

Chapter 6 contains a summary of the thesis, including a summary of the key con-

tributions to the area, as well as discussing future work.

9



Chapter 2

Background

The area of theoretical nonlinear optics can be broadly summarized as deriving and

analyzing simplified models of the interaction between light and matter. Light is gen-

erally treated as a wave with Maxwell’s equations governing its dynamics. Included in

Maxwell’s equations is a refractive index term which, in nonlinear materials, depends

on the electric or magnetic field itself. Thus a material or medium response equation is

needed to close the system. If one wished to faithfully reproduce the physics of a beam

propagating in an NLC, the medium response would be governed by a high dimensional

molecular system with a distinct equation of motion (as of yet, still under research) for

each molecule in the sample under consideration. Even with the significant advances in

modern computing, this type of problem is far from being computationally tractable.

As an example, consider that the modelling and computation of NLC dynamics alone,

in the absence of an electromagnetic field, is in and of itself, a large and healthy area

of research. However, this issue of computational intractability is not a new one in

nonlinear optics. The field has developed considerably by deriving asymptotic approx-

imations of Maxwell’s equations and the material response to arrive at a simplified

model. Our problem of nematicons is an intriguing one as the modelling must also

navigate the difficulties of liquid crystal motion by isolating the most pertinent optical

effects. Fortunately, the modelling was done by Peccianti et al. [15] and is reviewed,

with thorough explanations of the background physics, in section 2.1. Additionally,

basic mathematical facts of the model, such as the variational formulation, existence,

uniqueness, and stability have been established in [33], and are presented in section 2.2.

Most of the applied mathematics outside of modelling in nonlinear optics is ded-

icated to the analysis of the derived models. The nematicon equations presented in

10



section 2.1 form a so called nonlinear, highly nonlocal system that is in some limits

closely related to the NLS equation, and in others very distinct. In contrast to the

generalized NLS equation, with an algebraic or rational nonlinearity, where one has

a variety of analytic methods for its analysis, there are comparably less methods for

handling the nonlocal NLS equation. One of the more robust methods is the variational

method, used widely in nonlinear optics and with deep connections to multiple scales,

which is reviewed in section 2.3 and analyzed in depth in Chapter 3. Interestingly,

even with the presence of a natural small parameter in the governing equations, few

satisfying asymptotic methods for the analysis of “highly nonlocal” equations are avail-

able. Isolated, model specific methods have been developed and successfully applied,

and these are also reviewed in section 2.3 to provide background for a unified method

developed in Chapter 4. Finally, we conclude this chapter by presenting the numerical

methods used throughout the thesis, which act as a benchmark by which to the measure

the accuracy of approximate methods, in section 2.4.

2.1 Governing Equations

In discussing the origins of the nematicon model it is useful to give some physical

background on liquid crystals. Liquid crystals are a type of soft matter known as a

thermotropic fluid, that is, a fluid whose “phase” depends on the temperature. The

nematic phase is characterized by ellipsoid-shaped molecules, called nematics, which

macroscopically move as a fluid and share properties with a crystalline lattice. In

more detail, NLC’s have no particular spatial order and the molecules are free to flow,

making their motion appear macroscopically as a fluid. Long range directional or

orientational order is maintained, which gives it the optical properties of a crystal. The

orientation of the NLC is locally quantified by the “director”, a vector measuring bulk

average direction of the major axis of the molecules. Physically, the director is governed

by intermolecular forces between the molecules. Fortunately, the changes induced by

lasers occur on substantially larger scales than the intermolecular distance, allowing a

continuum limit to be used.

NLC’s are also a dielectric medium, so applying an electric or magnetic field to them

induces a dipole, a nonuniform charge distribution along the crystal. The chemical rea-

son for this dipole is the presence of benzene rings in the nematics. A dipole applies a

torque to the crystal which can rotate them. This reorientational effect, quantified by
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the director, is the main nonlinear effect considered in this thesis as it mathematically

manifests in the form of a convolution. It is worth noting this intentionally neglects

a host of other possible nonlinear optical effects arising from a laser impinging on an

NLC. These include temperature fluctuations, velocity or flow effects with a non-trivial

viscosity, changes in the elasticity properties and even the presence of pockets of differ-

ent phases of liquid crystals such as the rigid smectic phase. It is considerable advances

in the engineering of experimental apparatuses that allow us to consider reorientation

alone.

The manner in which molecules in an NLC can reorient themselves is also a nonlinear

process. That is, nematics can align themselves in interesting ways when viewed as

local groups. They can splay, a configuration you can see by spreading your fingers and

imagining each to be a nematic; bend, whereby the nematics organize themselves like

cars navigating a turn; and twist, in the same way as threads in a rope. The degree

to which an NLC prefers to splay, bend or twist is a material property encapsulated in

the elasticity constants Ki, i ∈ {1, 2, 3}. In the models considered in this thesis, one

major assumption regarding NLC’s is these elastic constants are equal, an assumption

supported by numerous numerical simulations and experiments.

Understanding the nature and simple dynamics of NLC’s, we turn to electromag-

netic waves propagating through them. The departure point for modelling of beams is

Maxwell’s equations. The then standard assumptions are a time harmonic wave and

proportionality of the magnetic and electric fields, which reduces the system to the

“fully nonlinear Maxwell’s equation for the electric field” [34]. This is a vector, nonlin-

ear, elliptic equation and a standard asymptotic tool for reducing it to a more manage-

able form is the Slowly Varying Envelope Approximation (SVEA for brevity) [14]. The

idea is simple. For an incident plane wave the envelope of the wave varies on a scale

that is much longer than the wavelength. Note in particular, this can be made rigor-

ous. [35]. Nematicons persist and retain they’re shape on the millimeter scale which is

vastly larger than the wavelength of a standard laser is 3 ∼ 5µm, thus are safely in the

realm of the SVEA. A further assumption has to do with the anisotropy (dependence

of the director on wavenumber and polarization), which we take to be weak. While

weak anisotropy does not necessarily hold, this reduces the vector Maxwell equation to

a scalar equation and does not compromise much accuracy when compared to models

with stronger anisotropy [34]. The remaining electric field component is that in the

extraordinary direction, that is, the dispersive beam, and the term “electric field” will
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be used to describe this component.

In summary, the major assumptions of the nematicon models are as follows

• The major nonlinear effect is reorientational as encapsulated by the director.

Flow, thermal effects, and changes in elasticity and viscosity are neglected.

• The elastic constants governing splay, bend and twist in the NLC are considered

equal.

• The refractive index depends weakly on the wavenumber and polarization of the

beam.

• The SVEA holds.

We now formally pose the problem. Consider a linearly polarized beam of finite

width launched into a planar NLC waveguide contained between two glass plates. At-

tached to each plate is an electrode creating a background static voltage across the cell

acting in the same direction as the polarization of the electric field.The presence of this

background voltage will be explained in a moment. The beam is taken to propagate in

the Z direction and the X direction is taken in the direction of its electric field, with the

Y direction completing the coordinate system. The coordinates are taken to be centered

in the middle of the rectangular cell domain Ω, given by Ω = (−Lx, Lx) × (−Ly, Ly).

The director is taken to be (X,Z) plane and remains and rotates in this plane. We in-

tentionally neglect the “walk-off” effect, whereby the beam doesn’t travel in a straight

line, as this amounts to a reorientation of these coordinates. A schematic of the physical

system is given in Fig. 2.1.

The governing equations for the extraordinary beam and the director are as follows

[18]

2ik
∂E

∂Z
+∇2

XYE + k2
0εa
(
sin2 φ− sin2 θ0

)
E = 0, (2.1)

4K∇2
XY φ+ 2∆εRFE

2
S sin(2φ) + ε0εa sin(2φ)|E|2 = 0, (2.2)

where E is the slowly varying envelope of the beam’s electric field and φ is the total

mean director rotation induced by both the applied voltage and optical beam. The total

mean angle is then decomposed as φ = θ + θ0 where θ is the rotation induced by the

beam, or “optical rotation”, and θ0 is the pre-tilt induced by the background electric

field. The boundary conditions are simple homogeneous Dirichlet along the edge of
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Figure 2.1: Schematic of a nematic on propagating in an NLC waveguide. Note the
angle θ is intentionally exaggerated for illustration.

the rectangle, which we denote henceforth by Γ. In general boundary conditions are

not always Dirichlet. The nematics can take an arbitrary angle for cell walls that are

rubbed but for our consideration, we take un-rubbed walls which impose a type of no-

slip condition at the boundary. θ0 represents the director in the absence of any applied

electric field and depends on the boundary conditions as explained shortly. k is the

wavenumber of the beam in the NLC, considered a constant material property, and k0

is the input wavenumber of the beam in free space. The constants εa and ε0 are the

birefringence and permittivity of free space. Birefringence is an optical property of a

material and occurs when the refractive index is dependent on the polarization and

direction of propagation of the electromagnetic wave. Permittivity is a measure of how

much a medium is affected by, and how much it affects, an electric field in its presence

and is related to the refractive index. K is the Frank constant measuring the elasticity

of splay, bend and twist, assumed equal. The remaining parameters ES and ∆εRF

denote the strength of the static/low frequency anisotropy induced by the electrodes.

For convienience we re-scale (2.1) and (2.2) and consider the non-dimensional equa-

tions

i
∂u

∂z
+

1

2
∇2u− cos(2φ)u = 0, (2.3)

ν∇2φ+ sin(2φ)
(
2|u|2 + α

)
= 0, (2.4)

where x = C1X, y = C1Y where C1 = k0
√
εa/2, z = k2

0εaZ/4 and

E = u(x, y, z) exp
(
ik2

0εa
(
1/2− sin2(θR)

)
z
)
. (2.5)
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The remaining parameters, ν and α, are related to the former parameters by

α =
4∆εRFE

2
S

εaε0
, ν =

4Kk0√
εaε0

. (2.6)

Returning to the model for a moment, one may now reasonably ask why a set of

electrodes inducing a pre-tilt to the NLC is necessary. The answer has to do with

a phenomenon of NLC’s known as the Fréedericksz threshold. For NLC’s initially

orthogonal to the electric field of an optical beam, the Fréedericksz threshold states

there exists a minimum optical electric field to overcome elastic forces and induce a

rotation in the molecules [36]. If the molecules are pre-tilted at an angle θ0 in the

(x, z) plane, this threshold is reduced, and in fact is zero if the molecules are rotated

by θ0 = π/4. In principle, this pre-tilt is not needed if the optical beam has sufficient

power. However, if the optical beam has too much power, thermal effects can raise the

temperature of the liquid crystal above the level at which the nematic state can exist.

Thus the pre-tilt is an elegant means of overcoming the Fréedericksz threshold while

maintaining the nematic phase. In general, a uniform pre-tilt of θ0 = π/4 across the

entire NLC cell is not simply achieved. To see this, consider (2.3) and (2.4), in the

absence of an optical beam u = 0 and solely in the presence of the static electric field.

The director obeys the nonlinear PDE

ν∇2θ0 + α sin(2θ0) = 0, θ0 = 0 for x ∈ Γ (2.7)

where, recall, Γ denotes the boundary of the rectangular domain and we have used θ0

to stress this is for the pre-tilt. In one dimension, one may recognize this equation as

that of a nonlinear oscillator from the classical pendulum problem [37]. In general, the

solution to the equation (2.7) is non-constant (θ0 6= π/4 as needed), and non-trivial,

given in terms of elliptic functions [38]. The engineering tactic is then to choose α by

varying the background electric field, such that θ0 is taken to be slowly varying w.r.t.

x and y and close to π/4 within the center of the cell. In general this will depend on

the size of the cell, as well as boundary conditions. For cell size of 75 µm and beam

widths of 3µm, this approximation compares well with experiment [18].

A slowly varying background pre-tilt not only aids in the experimental observation

of nematicons, but allows us to simplify (2.3) and (2.4) by expanding around the pre-

tiled field. Decomposing the director by φ = θ+ θ0, where θ is the rotation induced by
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the beam and θ0 is the pre-tilt, the director equation (2.4) becomes

ν∇2θ0 + ν∇2θ + α sin(2θ0) cos(2θ) + α cos(2θ0) sin(2θ)

+ 2|u|2 sin(2θ0) cos(2θ) + 2|u|2 cos(2θ0) sin(2θ) = 0.

(2.8)

We now use (2.7) so that ν∇2θ0 = −α sin(2θ0) giving, after some rearrangements

ν∇2θ + α cos(2θ0) sin(2θ) + 2|u|2 sin(2θ0) cos(2θ)

− α(1− cos(2θ)) sin(2θ0) + 2|u|2 cos(2θ0) sin(2θ) = 0. (2.9)

Here, a heuristic balance argument is used to reduce this to a more manageable form.

As mentioned, θ0 is assumed to be slowly varying and thus can be taken to be a

constant θ0 > π/4, as θ0 < π/4 leaves the beam subject to the Fréedericksz threshold

and θ = π/4 is generally unobtainable in practice. Furthermore, milliwatt beams are

used and high values of ν lead to small values of the optical rotation θ [18]. We then

assume the following [18]

α cos(2θ0) sin(2θ)� α(1− cos(2θ)) sin(2θ0), (2.10)

2|u|2 sin(2θ0) cos(2θ)� 2|u|2 cos(2θ0) sin(2θ). (2.11)

Which leads to the system

ν∇2θ + α cos(2θ0) sin(2θ) + 2|u|2 sin(2θ0) cos(2θ) = 0. (2.12)

Finally, noting taking θ0 close to π/4 makes sin(2θ0) ∼ 1 and we absorb cos(2θ0) by

defining q = − cos(2θ0)α to arrive at

ν∇2θ − q sin(2θ) + 2 cos(2θ)|u|2 = 0. (2.13)

The same arguments simplify the beam equation (2.3). Omitting the details, we have

i∂zu+
1

2
∇2u+ sin(2θ)u = 0. (2.14)

One can further simplify equations (2.13) and (2.14) by expanding the trigonometric
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terms in small θ to obtain

i∂zu+
1

2
∇2u+ 2θu = 0, (2.15)

ν∇2θ − 2qθ + 2|u|2 = 0. (2.16)

The final two models, (2.14), (2.13) and (2.15), (2.16), are generally posed on a infinite

domain as the beam width is small (3 µm) relative to the cell width (75µm) and the

profiles sought are cylindrically symmetric, as discussed in the next section.

Any one of the introduced models so far could be considered the “nematicon equa-

tions”. The term has been used in [14], for (2.1) and (2.2). The term “Full nematicon”

system has been used in [39] for (2.14) and (2.13). The most simplified system (2.15)

and (2.16) has also been called the “nematicon equations”, while being an approxima-

tion. As we will be considering all models, we offer something of a dictionary so as

to avoid ambiguity and confusion. The title of full nematicon equations will be used

to describe the re-scaled system (2.3) and (2.4). This is the most general description

of nematicon behaviour outside of a full numerical study with coupling to Maxwell’s

equations. The title of pre-tilted nematicon equations will be used to describe the sys-

tem (2.14) and (2.13). While the original system is also, as mentioned, subject to a

static electric field inducing a pre-tilt, we arrive at the pre-tilted nematicon equations

because of this simplification thus the title. Finally, when we refer to the nematicon

equations, we are referring to (2.15) and (2.16). The models and their assumptions are

summarized in the following table.

Title Equations Assumptions

Full nematicon
i
∂u

∂z
+∇2u− cos(2φ)u = 0

ν∇2φ+ sin(2φ)
(
2|u|2 + α

)
= 0

N/A

Pre-tilted nematicon
i∂zu+

1

2
∇2u+ sin(2θ)u = 0

ν∇2θ − q sin(2θ) + 2 cos(2θ)|u|2 = 0

∇2θ0 � 1, θ0 ∼ π/4.

Nematicon
i∂zu+

1

2
∇2u+ 2θu = 0

ν∇2θ − 2qθ + 2|u|2 = 0

θ � 1 and ν � 1.

The nematicon equations are interesting mathematically in their own right owing

to their universality and are a focal point of this thesis. By universality, we mean
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applicability across a broad range of physical applications. There are examples in

other areas of nonlinear optics. One is optical solitary waves in thermal nonlinear me-

dia [40] whose refractive index changes are driven by thermal fluctuations, such as lead

glasses [41, 42, 43]. Similar equations apply to optical beams in photorefractive crys-

tals [44,45]. The exact same system as the nematicon equations arises when two beams

are launched into a χ2 media (that is, a medium whose permittivity is proportional to

the square of the electric field), also called “quadratic solitons” [14,32]. Another inter-

esting connection is with the Schrödinger-Newton equations from the theory of quantum

gravitation [46] proposed as a model to investigate the role of a classical gravitational

field in wave function collapse. The system consists of the standard Schrödinger equa-

tion coupled to a Newtonian graviational potential. While posed in three dimensions

rather than two, this equation is the same as the nematicon equations when there is

no pre-tilt. A system similar to the nematicon equations also arises in α models of

fluid turbulence [24,25], which are attractive owing to their global regularity as proved

by Leray [24]. It will also be shown in this thesis that they are further related to

those for reaction-diffusion fronts governed by Fisher’s equation [23] and those for a

self-gravitating gas in astrophysics [47]. If the NLS is considered a canonical, universal

example of weakly nonlinear, narrow banded waves, then the nematicon system is a

canonical example of nonlinear, highly nonlocal waves.

2.2 Basic Mathematical Properties and Solitary Waves

Given a particular set of models, one interesting direction of study in nonlinear optics

are its basic properties. In addition to existence and uniqueness of the initial value

problem, nonlinear wave equations have proven to be a thoroughly rich area in the

analysis of PDE’s [48]. Of interest in this thesis are properties such as the existence

of a ground state (equivalent to the existence of a solitary wave), stability proper ties

of these ground states when used as initial conditions in the initial value problem, and

the existence of power thresholds. Fortunately, all of these basic questions have been

answered conclusively for the nematicon equations in [33], which we summarize here

without proofs. We comment that the properties for the pre-tilted, as well as the full

nematicon equations, remain open and lie outside the scope of this work.

Consider the nematicon equation’s (2.15) and (2.16) in (2+1) dimensions. In sim-
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plifying the analysis, θ is solved for using a Greens function, giving

θ =
2

ν

∫
R2

K0

(√
2q
ν |x− s|

)
|u|2(s)ds (2.17)

where K0 is the modified Bessel function of zeroth order. For brevity, we write θ as

θ = G
(
|u|2
)
, thus we have the single integro-differential equation for u

i∂zu+
1

2
∇2u+ 2G(|u|2)u = 0. (2.18)

All analysis results now refer to the single equation (2.18) which, of course, is completely

equivalent to the nematicon equations.

We begin by reviewing the results for ground states as this is the realm of solutions

that are of the highest interest in this thesis, solitary waves. Seeking a solitary wave

solution by substituting u = u(x)eiσz for u(x) real-valued into (2.18), we have the

nonlinear eigenvalue problem

1

2
∇2u− σu+ 2G(u2)u = 0 (2.19)

posed for x ∈ R2 with the requirement that u → 0 as |x| → ∞. The main result is

summarized as follows,

For some σ0 > 0 and for all σ > σ0, we have the existence of at least one

solution u ∈ C2(R2) to (2.19) which is strictly positive, can be taken to be

cylindrically symmetric, and is orbitally stable.

The proof relies on direct methods in the calculus of variations, in particular, finding

solutions which minimize the Hamiltonian (energy)

H =

∫
R2

1

4
|∇u|2 −G(|u|2)|u|2dx (2.20)

subject to the constraint that u has a non-zero power, defined by

P =

∫
R2

|u|2dx, (2.21)

both of which, are conserved quantities. There are a couple of important remarks re-

garding this result. First, that the solitary wave solutions are known to be cylindrically

symmetric is a particularly nice property as it allows us to reduce the dimension of the
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system in seeking stationary solutions without loss of generality. Second, the quantity

σ0, in terms of q and ν, is unknown and states that there exists a power threshold for

the formation of nematicons, whereby this is a minimum power needed so that the

solution remains stationary and propagates noiselessly, without decaying. In general,

one can also show, using solitary waves as initial conditions such that they have suffi-

ciently small L2 norm, the solution of the initial value problem decays in the L4 norm.

This is also something observed experimentally but difficult to relate to the solitary

wave threshold analytically. Third, that these solutions are a minimizing sequence of a

constrained optimization problem leads naturally to numerical methods introduced in

section 2.4.

The most crucial attribute of these solitary wave solutions is that they are orbitally

stable. This is a particularly desirable quality of solitary waves as physically it translates

into a statement about their robustness in the presence of noise. Orbital stability is

also known as fully nonlinear stability or Lyapunov stability. Formally this means the

following. Denote a solitary wave solution parametrized by σ as uσ. Now consider an

initial condition for the IVP (2.18) that is the sum of a solitary wave and a pertubation,

denoted by u0 = uσ + δ. Denote the solution of the IVP for initial condition u0 as ue

(which, as a quick aside, exists and is bounded for all time). Then for any δ > 0, there

exists a ε(δ) > 0 such that if

||u0 − uσ|| < δ, (2.22)

then for all z > 0

||ue − uσ|| < ε(δ) (2.23)

for a given norm || · || that is usually determined in the course of the analysis [49].

Essentially, this states that if the initial data is near a solitary wave, then the solution

stays near this solitary wave for all time. It is relatively uncommon to have such a strong

and conclusive result regarding nonlinear stability, a phenomenon which is generally

studied numerically. Furthermore, it is a distinguishing feature from solutions of the

NLS equation in more than one spatial dimension, which experience either decay below

a certain threshold, or blow up in the L∞ norm at some finite value in z for higher

dimensions. Orbital stability implies that the nematicon convolution nonlinearity is

sufficiently strong to support solitary waves in higher dimensions, even in the presence

of noise. The fact that it also describes a physical system in which this happens is

fascinating.
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2.3 Analytic Methods

Having the necessary existence results, we turn our attention to methods used in the

approximation of the solution of the nematicon equations, which we call analytic meth-

ods. In comparison to integrable systems such as the NLS equation, in which the initial

value problem can be solved via the inverse scattering transform, relatively few analytic

methods are available for deriving solutions of the nematicon equations. In lieu of an

exact inversion transform, various approximate, asymptotic and semi-analytic methods

have been put forth in order to study the models, namely the nematicon equations. To

date, there are no methods known capable of analyzing the full nematicon or pre-tilted

nematicon equations. Most of this thesis is concerned with addressing fundamental

questions surrounding existing analytic methods, as well as developing novel asymp-

totic methods for the study of nematicons. In this section, we review these methods

starting with the variational method, certainly the most widely used in the nematicon

context [39, 50, 51, 52, 53, 54, 55], and then discuss the current state of semi-analytical

and asymptotic methods. The variational method is crucial for the study presented in

Chapter 3 and the semi-analytical/asymptotic methods form the basis for the method

presented in Chapter 4.

2.3.1 The Variational Method

The variational method is a widely used, straightforward approximate technique em-

ployed in optics [56] since its first appearance in Anderson [57]. The main steps are

outlined as follows

1. Derive a Lagrangian for the system of interest.

2. Substitute an appropriate ansatz into this Lagrangian and take the average over

the domain of interest [4].

3. Take variations with respect to each of the ansatz’s parameters in the averaged

Lagrangian [4].

The first two steps are those employed in the classical approximate method of the

calculus of variations, the Rayleigh-Ritz method. The third step can trace its origins to

the principle of stationary action and has been widely used in perturbative methods for

nonlinear dispersive waves [4]. Whitham [4] developed a very influential theory for the
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analysis of slowly varying wavetrains based on averaged Lagrangians, called modulation

theory. To illustrate the method in some generality, consider the functional

I[u] =

∫
Ω×[z0,zf ]

L(u, uz,∇u) dxdz,

where L is the Lagrangian density of the system, Ω ⊂ Rn is some open, bounded spatial

region and z0 to zf defines the trajectory of propagation. We search for u to minimize

I, which is equivalent to solving the resulting Euler-Lagrange equations, or the original

PDE. We now substitute an “appropriate” ansatz. The appropriate ansatz is generally

a known elementary, or sufficiently simple function of the spatial variable, depending

on N parameters which we denote pi(z) for i = 1, . . . , N , depending on the propagation

variable z. Having substituted the chosen ansatz, the spatial integral, or the averaged

Lagrangian L =
∫

Ω L(u, uz,∇u)dx [4] can now be computed. This leaves a functional

being integrated over the trajectory now depending on the ansatz parameters pi(z), i.e.

I[u] becomes

I[p1, .., pN ] =

∫ zf

z0

L(p1, .., pN , p
′
1, ..., p

′
N ) dz. (2.24)

The principle of stationary action is now invoked, leading to the system of Euler-

Lagrange equations which determine pi, also known as the modulation equations [4],

given by
∂

∂z

∂L
∂p′i
− ∂L

∂pi
= 0 (2.25)

for i = 1, . . . , N .

The variational method is, effectively, the approximate Rayleigh-Ritz method ap-

plied to partial differential equations. However, there are some further simplifications.

In the Rayleigh-Ritz method, a truncated orthonormal basis of L2 is substituted into

the Lagrangian and the coefficients are determined from solving the resulting minimiza-

tion problem [58]. If one has more experience with such solutions, a sufficiently close

ansatz is used to lead to a simpler, approximate system, the modulation equations.

Indeed, for the correct choice of ansatz, the variational method collapses into classical

multiple scales and is capable of finding exact solutions [4].

This leads us to what constitutes an “appropriate” ansatz and how can one be

found. There is no rigorous mathematical approach to answering this question, just a

guiding principle.

The ansatz should be sufficiently representative of the exact solution without
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depending on too many parameters.

Generally, the “sufficiently close” portion comes from experience with numerical so-

lutions and the physics of the particular problem. The “too many parameters” portion

is one of simple practicality. Too many parameters can overcomplicate the modulation

system, simply to the point where the method fails to offer insight outside of what

can be obtained from numerical solutions. Furthermore, too many parameters can be

construed as over-fitting.

This question of an appropriate ansatz is something explored in depth in Chapter

3. With the introduction of an exact solution of the nematicon equations, questions

are raised as to which of the existing and previously unexplored ansätze should be used

in the variational method. This is studied and treated extensively.

2.3.2 The Snyder-Mitchell Method

Much of the experimental work on nematicons and other nonlocal spatial optical solitary

waves was motivated by a popular paper by Snyder and Mitchell [59]. The work looked

to introduce so-called “accessible solitons”, which are defined as solitary waves that can

be approximated via linear equations, usually those resulting in elementary quantum

mechanics. In this way, analysis of solitary waves becomes simple and avoids the inverse

scattering transform. The idea is best explained by working through it.

We consider the evolution of an extraordinary beam propagating through a nonlin-

ear medium as before under the SVEA. The governing equation, using our notation, is

the following Schrödinger equation

2ik
∂u

∂Z
+∇2

XY u+ k2
0(n2 − n2

0)u = 0, (2.26)

where all values are as before but we recall them briefly. The slowly varying envelope

is u, k is the wavenumber in the medium, k0 the initial wave number, n0 the refractive

index in the absence of a beam, and n is the, possibly nonlinear, total refractive index.

The coordinates in this circumstance are the same as before. This is a general equation

where we note that taking the n2 = n2
0 + χ|ψ|2, and after some scaling, recovers the

NLS equation and similarly n2 = n2
0 + sin2(φ) − sin2(θ0) where φ obeys (2.2) recovers

the unscaled nematicon system given by (2.1) and (2.2). The idea, and hope, of Snyder

Mitchell was to study nonlinear optics without having to resort to the “mathemati-

cally abstruse” inverse scattering transform. This idea is not unique to their paper.
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Anderson [57] originally introduced the variational method to avoid the IST. Kath

and Smyth’s [60] extended variational method was designed to shed more analytical

light onto the role of radiation in pulse propagation, as the fundamental mechanisms

are lost in the IST approach. However, Snyder and Mitchell approached the problem

from a completely different perspective. Rather than the mathematics itself being the

problem, it was the physical models, namely the NLS and other integrable systems,

being considered that were making soliton theory “inaccessible”. The idea is then to

theoretically engineer a medium in which the mathematics of solitary waves is simple.

This theoretical engineering was done through a thought experiment. If a material

is sufficiently nonlocal in the sense that its response expands considerably beyond that

of the beam, then one can think of observing beams in nonlocal materials as “viewing

distant point-sources through badly blurred lenses.” This suggests the solitary wave can

treated as a point source from the perspective of the nonlocal medium. That is, if ρ is

the characteristic radius of the beam and R is the characteristic radius of the response,

then ρ � R. For such a material (assuming one exists) only a local approximation of

the response is needed as this is the portion which “feels” the beam. Mathematically,

this suggests the nonlinear refractive index can be approximated by the Taylor series

n2 = n2
0 − α(P )R2, (2.27)

R is the radial coordinate from the center of the initial beam and α depends on the

power and is considered a material constant. Note the first derivative of the refractive

index is assumed to be zero, in analogy with the curvature of a lens being essentially flat

at the center when viewed closely. Furthermore, perfect lenses should be well rounded

near the center of their axes, thus the portion of the lens that the beam feels should

be axisymmetric or radially symmetric (otherwise there would be some defect). The

coordinate system is then taken to be a cylindrical one with the Z axis oriented through

the axis of the lens and R the distance from the Z axis R =
√
X2 + Y 2. Combining

these ideas and substituting them into the Schrödinger equation above we get

2ik
∂u

∂Z
+∇2

XY u− k2α(P )R2u = 0, (2.28)

which is the classical quantum harmonic oscillator (QHM for brevity), one of the most

basic, exactly solvable models from quantum mechanics [59]. After rescaling by x =
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√
kX (thus r =

√
x2 + y2) and z = 1/(2n0)Z, u = ũ(x, z) (and ignoring the tilde), we

have

i
∂u

∂z
+∇2

⊥u− α(P )r2u = 0, (2.29)

with solitary wave solution given by the Gaussian profile ground state

u = a exp

(
−
√
α

2
r2 − i2

√
αz

)
. (2.30)

The nonlinear dependence of the amplitude on the width comes the definition of α(P ).

For example, in the case of a “Kerr” type nonlocality, α = χP , then using the definition

of power (2.21), we have

α = 2πχa2

∫ ∞
0

r exp
(
−
√
αr2
)
dr, (2.31)

which after integrating gives the amplitude dependence on the material a =
√

α3/2

πχ2 ,

giving the complete solitary wave solution as

u =

√
α3/2

πχ2
exp

(
−
√
α

4
r2 − i2

√
αz

)
. (2.32)

The generality of this method should be fairly clear. Given a nonlocal, NLS type

equation, one can find approximate solutions provided a Taylor series is available.

The approach, however, is not without it’s limitations and in general is unreliable

for physical systems. A glaring demonstration of this is the fact that Snyder and

Mitchells solitary waves interact cleanly, like solitons, which is not observed in physically

derived models of nonlocal optical media. Without going into detail, solitary waves in

nonlocal media do not interact cleanly, producing a large amount of radiation and

exhibiting considerably more complex behaviour than the Snyder-Mitchell approach

would suggest [50, 52]. Furthermore, and most relevantly to this work, the approach

isn’t quantitatively reliable when deriving solitary wave solutions of the physically

realistic systems that it has been applied to. This includes photorefractive materials

mentioned, diffusive or thermal media and nematicons [18, 61]. Part of this has to do

with the fact that the “degree of nonlocality” given by γ = ρ
R , that is the ratio of

the characteristic width of the beam ρ and the characteristic width of the response,

is simply not low enough in physical systems. Engineering materials or systems in

which this is a possibility has proven to be particularly difficult. Shen [62], contested it
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was an undertaking well worthwhile, but with the large applicability of these nonlocal

systems, the author is of the differing opinion that a sufficiently simple approximation

which produces accurate results is more worthwhile. This is discussed in more detail

in Chapter 4.

2.3.3 Further Perturbative Methods

Given the quantitative unreliability of the Snyder-Mitchell approach for physically re-

alistic systems various avenues have been taken to improve upon it. In this section we

review those that rely on asymptotic arguments. In general, many different pertur-

bative and semi-analytic methods have been developed and tailored to the particular

physical system of interest [19, 32, 63, 64]. We review those which have a wider degree

of applicability. Immediately, there are two clear avenues to do so. The first is a higher

order Snyder-Mitchell method, i.e. retaining more terms in the Taylor series by arguing

the quadratic term is sufficiently unrepresentative to capture the “lens” experiment in

the absence of infinite nonlocality. Another interesting alternative is to approximate

the material response by its Green’s function, implicitly assuming the beam to be close

to the Dirac delta function.

The first approach arose from an interesting criticism of the Snyder-Mitchell ap-

proximation which was its lack of applicability. This appears to be a confusion in the

literature which we go through as it has remained persistent and is considered the mo-

tivation for developing alternative methods. The criticism is that the Snyder-Mitchell

approach does not cover integral kernels that are discontinuous near x = 0. To illus-

trate, consider the nematicon equations in (1+1) dimension and seek a solitary wave

solution of the form u = ũeiσz. Solving for θ using a Greens’ function, we have the

integro-differential equation

1

2

d2

dx2
u− σu+

√
2ν

q

∫ ∞
−∞

exp

(
−
√

2q

ν
|x− s|

)
u2(s)ds = 0. (2.33)

The argument is then, at least in the physics literature, since

R(x) =

√
2

qν
exp

(
−
√

2q

ν
|x|

)
(2.34)

is not continuously differentiable at x = 0, thus we cannot expand R(x) by R(x) =

R(0) + R′′(0)x2, the Snyder-Mitchell model no longer applies and alternative pertur-
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bative methods are needed [64]. The situation, by this logic not in reality, is much

worse for higher dimensional kernels where the Green’s function is usually singular at

the origin thus R(0) = ∞, such as the Helmholtz or Laplacian kernels. The confusion

appears to lie in the word response, where the authors in [64, 65] interpret Snyder and

Mitchell’s use of the word to mean the kernel R(x) as the response function, when in

reality they are referring to the material response. The discontinuity or singularity of

the Green’s function is, of course, a non-issue. θ is as regular as u2, as verified by

interchanging the order of the convolution, alternatively a Taylor series can be found

by a direct power series substitution for u2 and θ into the differential equation

ν
d2

dx2
θ − 2qθ = −2u2.

Nonetheless, to avoid these discontinuities, researchers have turned to studying smooth

model kernels such as a Gaussian R(x) = a exp
(
−b|x|2

)
[64] as toy models, with no

obvious connection to any physical models. Furthermore, this “lack of applicabilty”

has been used by Guo in a series of papers [64, 65] to justify developing an alternative

approach by expanding θ in a higher order Taylor series. We illustrate this method for

clarity. Consider the model

1

2

d2

dx2
u− σu+

∫ ∞
−∞

R(x− ξ)u2(ξ)dξu = 0. (2.35)

By defining V (x) =
∫∞
−∞R(x− ξ)u2(ξ)dξ, an expansion of the form

V = V0 + αx2 + βx4, (2.36)

is assumed. The resulting equation

1

2

d2

dx2
u− σu+ V (x)u = 0, (2.37)

can then be solved explicitly and the notation has the form

u = ae−bx
2 (

1 + cx2 + dx4 + ex6 + fx8
)
, (2.38)

where a, b, c, d, e, f have relatively complicated dependence on α and β and are de-

termined by direct substitution. The material parameters, α, β are in turn solved by
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directly substituting u into the definition of V . This is completely equivalent to the dif-

ferential equation formulation and the Snyder-Mitchell approach that was mentioned.

This has the benefit of, perhaps clearly, being an improvement quantitatively over the

Snyder-Mitchell for non-infinite nonlocality. In general, the term “asymptotic method”

appears to be loosely used for this approach, justifying their approach by saying the

consecutive coefficients of the polynomial c, d, e and f get smaller and smaller. In re-

ality, it is more likely due to the fact that this is a truncated Hermite function series,

an orthonormal basis of L2 which converges super-algebraically to smooth elements of

the space [66]. No conclusive regularity result exists for nonlocal solitons past second

order continuity [33]. However, rapid convergence of pseudo-spectral methods applied

to the problem suggests they are smooth [50].

Apart from misunderstandings, Nikolov et al. [63] proposed an alternative method

based on a different view of the nonlocal response. The idea is that, rather than use

a local approximation of the response, use a more global one. We demonstrate this in

detail.

Consider (2.35) again with a modified Helmholtz kernel R = (2α)−1 exp(−|x|/α).

Then the approach, for the nonlocal limit α� 1, is to assume

∫ ∞
−∞

R(x− ξ)u2(ξ)dξ ∼ R(x)

∫ ∞
−∞

u2(ξ)dξ = R(x)P, (2.39)

giving the linear equation for u

1

2

d2

dx2
u− σu+R(x)Pu = 0. (2.40)

No obvious reasoning is available from the work of Nikolov et al. [63] although we

presume the “expansion” is done in the ξ variable near ξ = 0 and the first term is

retained. More importantly, and this argument appears to have been overlooked, this

has the same implicit assumption as Snyder and Mitchell that the material response

sees the beam as a point source. Thus it is a more faithful mathematical representation

of the “blurry lens” thought experiment. However, the elegance of the QHM analogy

is now lost. Interestingly, this equation can be solved exactly with the aid of Bessel

functions. To do so, without loss of generality, divide the domain and consider x ≥ 0,

then impose that u′(0) = 0 and that u(−x) = u(x). Then using the change of variable
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t = exp(−x/(2α)) and shifting σ by σ = σ̃
8α2 and dropping the tilde we have

t2
d2

dt2
u+ t

d

dt
u+

(
4αPt2 − σ

)
u = 0, (2.41)

which can be solved explicitly with Bessel functions of the first kind. Returning to the

original variables, the solution is

u = A1J√σ

(
2
√
αP exp(−x/(2α))

)
, (2.42)

where A1 is an arbitrary constant found from imposing a maximum at the origin. The

central idea of this is an interesting and rather natural interpretation of the Snyder-

Mitchell approach, however, suffers from many of the same drawbacks due to the same

underlying assumptions as pointed out in [67]. In particular, the method suffers quan-

titatively for physically realistic values of α and in the higher order modes that it

predicts. Furthermore, the applicability appears to be restricted to the (1+1) nemati-

con case where the resulting linear Schrödinger equation is exactly solvable. In higher

dimensions or differing contexts, this nice property is lost.

We comment there is one more semi-analytical method, due to Sukhorukov [32],

which is a very accurate semi-analytic method for (1+1) dimensional solitons. In gen-

eral, the accuracy is impressive, however, there is no asymptotic arguments employed

in this method. It relies heavily on the availability of an isolated exact solution, and

the fact that the local limit reproduces the NLS. While accurate for (1+1) dimensions,

it lacks extensibility in the spirit of the above approaches. Thus we mention it for

reference but omit its presentation.

2.4 Numerical Methods

While our goals are predominantly analytical, verification with numerical solutions is

a necessity to determine the accuracy of the approximate and variational solutions.

Fortunately, due to scientific interest, technological demand and industrial interest in

solitary waves in optics, there has been a wealth of numerical methods specifically de-

signed for their computation [68,69]. We employ two widely used methods for differing

purposes.

The first is the Imaginary Time Evolution Method or ITEM, a long known idea that

is perhaps the simplest possible method for computing ground states solitary waves to
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implement [68]. The ITEM method replaces the propagation distance in NLS-type

equations, z, with iz (thus imaginary time) and iterates the equation forward, while

rescaling with respect to the power or amplitude of interest. Recall from section 2.2

solitary waves are the minimum of the Hamiltonian with a fixed non-zero power. Thus

this iteration has long been known to constitute a minimizing sequence [68, 70]. The

second is the family of Newton Methods. Using the Newton-Kantorovich theorem, one

can construct another convergent sequence to a solution provided the initial guess is

close enough. The advantage of the ITEM is that the solutions it computes are linearly

stable, otherwise it does not converge. The advantage of the Newton Method is its

speed and ability to compute unstable solutions as well. Furthermore, we use a variant

of the Newton Method, the modified Newton Method in Chapter 4. Both of these

methods are reviewed in this section and illustrated by an application to one of the

nematicon equations.

2.4.1 Imaginary Time Evolution Method

While still used in practice, the ITEM is known for relatively slow computation times

due to the small z steps required for it to converge [68]. Successful acceleration tech-

niques have been achieved by choosing the steepest descent direction for the sequence

in an appropriately defined Sobolev space, allowing larger z steps to be taken [68, 70].

However, Louis et al. [71] recently showed for the linearized nonlocal system no ad-

vantage was gained as the acceleration did not offset the time needed to compute the

director equation. While Newton methods [69] have been shown to be considerably

faster than both the ITEM and its accelerations for generalized NLS equations [69,71],

the ITEM saves some time in computing linear stability as otherwise the method will

not converge, avoiding a potentially large eigenvalue computation at the end of a New-

ton computation. Furthermore, with the constant advancement of computing power,

the slowness of the ITEM is more than tolerable given its ease of implementation.

To illustrate the ITEM in detail, we describe its application to the pre-tilted nemati-

con equations in (1+1) as the extension to the simpler nematicon system and higher

dimensions should be clear. The preliminaries are as follows. We look to compute

solitary waves of the form E = u(x)eiσz, σ a propagation constant, and θ(x, z) = θ(x)
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for (2.13) and (2.14), with a fixed power

P =

∫ ∞
−∞

u(x)2dx, (2.43)

of the solitary wave. The spatial discretization is taken to be a uniform grid of N + 1

segments of length h ranging from −L to L, where L is appropriately large so that the

solitary wave is O(10−12) towards the ends of the computational domain. Denoting the

nth iterate of u at the point −L + jh for j = 1, . . . , N + 1 as unj and similarly for θnj

and using the shorthand

δ2
hu

n =
1

h2
(unj+1 − 2unj + unj−1) (2.44)

for the standard central difference operator, the ITEM algorithm as applied to (2.13)

and (2.14) is

ũj
n = unj + ∆z

(1

2
δ2
hu

n + sin(2θnj )unj

)
, (2.45)

un+1 =

√
P

< ũn, ũn >
ũn, (2.46)

where < ·, · > denotes the standard inner product on L2 and j = 2, . . . , N . All integrals,

including the inner product just mentioned, are computed using the trapezoidal rule.

The first step, equation (2.45), integrates (2.15) forward in imaginary time using a

standard forward Euler, while the second step, equation (2.46) normalizes the power.

The initial iterate is taken to be an approximate solution (usually one sufficiently close

from the variation method or other approximations) and the boundary conditions are

θ(L) = θ(−L) = u(L) = u(−L) = 0 as L is chosen to be sufficiently large to apply

artificial boundary conditions [66]. The final step in the algorithm is to obtain θn+1 at

each iteration by solving (2.16) for a given un+1. This was done by solving

ν∇2θ − 2qθ = −2qθ + q sin(2θ)− 2 cos(2θ)u2 (2.47)

using a regular Picard iteration. It was found from experience that iterating (2.47) in

the nonlocal limit, rather than (2.16), vastly improved convergence as the linear 2qθ

term on the LHS lessens the difficulty of the q sin(2θ) nonlinear term for large ν. For an

idea as to the speed of this scheme, for most runs at each iteration one to two Picard
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iterations were needed to make the norm of (2.16) below 10−10. This is essentially

due to the fact that un+1 is a small perturbation away from un. If u(x)eiσz and θ(x)

comprise a linearly stable solution of (2.13) and (2.14) with a power P , then u and θ

are the limit of the sequence defined by (2.45), (2.46) and (2.47) [68]. The propagation

constant σ can then be found using

σ =
1

P
< L(u, θ), u >, L(u, θ) =

1

2
∇2u+ sin(2θ)u. (2.48)

In some circumstances, it is more interesting to seek solitary wave solutions with a given

amplitude rather than power. In this case the ITEM is adapted simply by replacing

the normalizing step (2.46) with

un+1 =
A

||vn||∞
vn, (2.49)

where A is the amplitude of interest and the norm || · ||∞ returns the maximum value

of its input.

In most computations the numerical values used were h = 0.1 and ∆z = 0.001,

with a stopping condition of ||un+1−un||2 ≤ 10−10, where || · ||2 is the Euclidean norm.

This choice gives an acceptable amount of spatial accuracy without exacting large

computation times and agrees with previous numerical studies of computing solitary

waves [68,69,71]. This measure of error may change from Chapter to Chapter but any

changes will be made explicitly when necessary.

2.4.2 Newton Methods

One of the most successful methods for computing solutions of nonlinear partial dif-

ferential equations is the so-called Newton-Kantorovich method [72, 73]. Given the

many players and the amount of time that has passed in the development of Newton’s

method, the historical details of exactly who used it for what purpose is murky (note all

historical comments we refer to reference [74]). Certainly, Newton used the method for

transcendental equations, although most records indicate he only applied it to polyno-

mials, and the method we employ here is nearly exactly that used by him. The power

and, although the figure was not known, order of convergence was noted immediately.

Independently, Simpson noted the extension to systems of nonlinear equations, but

the largest leap in the development of the method was Kantorovich, who extended the
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applicability of Newtons method to Banach spaces. The so-called Newton-Kantorovich

theorem then provides precise details on when a nonlinear functional equation admits a

zero, sitting at a rare intersection of a pure mathematics, nonlinear functional analysis

result, with a direct numerical method for partial differential equations. The analysis

is in and of itself interesting as it offers an alternative to Banach’s fixed point theorem

in proving the existence and uniqueness of a solution, and a means of constructing it.

However the bounds involved can be difficult (if not impossible) and thus numerical

trial and error is generally the means of determining whether or not the method applies.

The application of the Newton method to solitary wave computation was popularized

by Yang [69], pointing out the vast gains in computation time over the ITEM and

accelerated ITEM, mostly for scalar equations. While there are potential problems,

all the same ones possible with Newton’s method for a function of real numbers, the

method is particularly powerful. Notably, it is capable of computing unstable solutions

the ITEM is incapable of computing [69,75].

In this work, we are interested in using two types of Newton’s method, namely the

classic Newton’s method and the modified Newton’s method. The modified Newton’s

method has a lower order of convergence, yet performs considerably faster for a strong

initial guess for reasons detailed later [76]. To introduce both, we illustrate how to

apply Newton’s method to the nematicon equations, from which the extensions to

other nonlinear equations and the modified Newton’s method should be clear. We omit

a detailed proof of convergence in a Banach space, but refer the reader to a standard

paper for a self-contained account [72] and to the books [58,76]

Consider computing a solitary wave solution of the nematicon equations by substi-

tuting u = ũ(x)e−iσz into 2.15 and 2.16. Dropping the tilde as before we obtain

1

2
∇2u− σu+ 2θu = 0, (2.50)

∇2θ − 2qεθ + 2εu2 = 0, (2.51)

where we have written ε = 1
ν as most values of ν under consideration will be large as it

is in the experimental arrangement [14,18,77]. We re-cast this is a nonlinear functional

equation by defining the operator

F (u, θ) =

 1
2∇

2u− σu+ 2θu

∇2θ − 2qεθ + 2εu2

 (2.52)
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and searching for u∗, θ∗ such that F (u∗, θ∗) = 0. The idea is now to linearize around a

given, known, guess which we denote un, θn. Substituting u = un + δu and θ = θn + δθ,

where δu and δθ are considered small, into F we have

F (u, θ) =F (un, θn) + L(un,θn)(δu, δθ) +O(||δ||2) (2.53)

=F (un, θn) +

 1
2∇

2 − σ + 2θn 2un

2ε (un)2 ∇2 − 2qε

 δu

δθ

+O(||δ||2), (2.54)

where we have used the notation L(un,θn)(δu, δθ) to read as: the linearized operator

(equivalently, the Fréchet derivative or Jacobian) around a given iterate (un, θn) as

applied to (δu, δθ). The Newton-Kantorovich method is then defined by the sequence

(using un = (un, θn) for brevity)

un+1 = un − L−1
unFun, (2.55)

where L−1
unFun is the solution of the linear equation L(un,θn)δu

n = −F (un, θn), with

δun the unknown. The Kantorovich theorem states, that, under certain constraints

on the initial guess u0 and Lu0 , this sequence converges to a zero of the nonlinear

functional equation F . Remarkably, up until this point, there is no discretization in

this method. The entire setting is a Banach space and thus, provided one can invert the

linearized operator at each step, one can compute an exact solution of the nonlinear

PDE. Unfortunately, there is no such general method for solving systems of linear

PDE’s explicitly, and thus some numerical discretization must be introduced. In this

thesis we use centered finite differences as described in the previous section and details

are given in the chapters as it is needed.

An interesting observation that doesn’t appear to be as widely used in the numerical

analysis community is that the iteration

un+1 = un − L−1
u0 Fun, (2.56)

where L−1
u0 denotes the inverse Fréchet derivative of F around only the first guess, also

converges to a solution of F = 0 and is called the modified Newton’s method [76].

Naturally this iteration is considerably simpler than the Newton iteration from both

an analysis and an implementation stand point. The cost is stricter restrictions on

how close an initial iterate needs to be, as well as only linear order of convergence
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rather than quadratic. This loss of convergence and robustness to initial guesses is

more than made up for in computation time. One no longer has to keep constructing

and decomposing a linear operator. An LU decomposition of the discretization of Lu0

can be stored and inverted rapidly.

2.4.3 Time dependent Method

In Chapter 3, Section 3.5.3, stability to radially symmetric perturbations of steady pro-

files computed using the Newton iteration was checked by solving the full z dependent

problem (3.4) and (3.5) using a fourth order Runge-Kutta (RK4) z-step. The spatial

discretization and boundary conditions are the same as those described in the steady

case for the ITEM and Newton iterations. We use the notation

ukj = u(rj = j∆r, zk = k∆z),

θkj = θ(rj = j∆r, zk = k∆z),

for j = 1, . . . , Nx, k = 1, . . . , Nz and the shorthand for the centred finite difference

discretization to the cylindrically symmetric Laplacian applied to an arbitrary function

g is

δ2
∆r(g) =

gj+1 − 2gj + gj−1

(∆r)2
+

gj+1 − gj−1

2(j − 1)(∆r)2
.

Applying a centred finite difference spatial discretion to (3.4) and (3.5), the resulting

ode’s can be solved using the RK4 scheme as follows. Defining

f(uj,k, θj,k) = iδ2
∆ru

k + 2iθkj u
k
j , (2.57)

the scheme steps to z = (k + 1)∆z as follows

uk+1
j = ukj +

∆z

6

(
akj + 2bkj + 2ckj + dkj

)
, (2.58)

where

akj = f
(
ukj , θ

k
j

)
, bkj = f

(
ukj +

∆zakj
2

, θkj,(1)

)
,

ckj = f
(
ukj +

∆zbkj
2

, θkj,(2)

)
, dkj = f

(
ukj + ∆zbkj , θ

k
j,(3)

)
.
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The additional subscripts on θ in the definitions of bkj , c
k
j and dkj reflect the solution to

the θ equation (3.5) at each stage of the RK4 scheme. For example, in the computation

of bkj , the θ needed at this stage is the solution of

νδ2
∆rθ

k
j − 2qθkj = −2|ukj +

∆zakj
2
|2,

which we denote by θkj,(1). The same principle holds in the computation of ckj and dkj .

In all computations a large domain, [0, 700] was used, with ∆r = 0.1 and ∆z = 0.01.
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Chapter 3

Exact Solutions and Variational

Approximations of Nematicons

3.1 Motivation

Nematicons have been studied intensively in recent years, as outlined in the Chapter 2.

However, one may notice a number of rather subtle holes that are in need of answering.

A core question one could ask is with regards to the guiding principle of the variational

method, that is, asking that the trial function used to approximate a nematicon be

sufficiently close without being too complicated. As it stands, there is a a reasonably

long list of ansätze that fit this criterion. There was the approximation developed by

Snyder and Mitchell [59], the director being approximated by a quadratic, the electric

field by a Gaussian; by Guo [19], the director being a higher order polynomial, the

electric field a Gauss-Hermite function series; and by Nikolov [63], the director being

approximated by a Green’s function, the field a Bessel function depending nonlinearly

on x. More commonly, researchers use the Gaussian for its ease of use and the NLS

soliton due to its relation to the local limit. One would expect in the limit ν → ∞

that the profile approaches a Gaussian in some sense [67], as predicted by Snyder

and Mitchell (although a rigorous proof remains absent) whereas, at the opposite limit

ν → 0, it is known the solution approaches the NLS soliton [78]. A grey area arises for ν

large, but not so large. In this case, the Snyder-Mitchell approximation breaks down, as

shown by previous studies [61], and the NLS soliton is no longer valid as the Laplacian in

(2.16) becomes non-negligible. This is the territory where a variational approximation is

known to perform well. However, any one of the mentioned approximations (Gaussian,
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NLS type) is a candidate as an ansatz. A thorough comparative study as to which of

these approximations should be employed is lacking.

Interestingly, such a study has not been undertaken and in particular, there is little

work on the steady state solutions for nematicons. This is partially due to the fact

that, historically, the variational method was developed for the study of the dynamics of

solitary wave propagation. The method was introduced in optics by Anderson [57] who,

looking to avoid the Inverse Scattering Transform, wanted to study the propagation of

input Gaussian beams into an optical fiber. Initial optical beams with a Gaussian profile

are relevant as these are a first approximation to the profiles produced by a standard

laser. While one can, to an impressive extent, generate a profile of desired shape in

optics, the amount of lenses needed to do so can be cumbersome and thus studying a

simple Gaussian input is desirable. Anderson then studied the evolution of a Gaussian

input by taking it as an ansatz in the variational method and evolving the parameters as

outlined in the previous chapter. One issue was analytically handling radiative losses.

This is not a new problem in optics, being a numerical issue as well [79], and was handled

by Anderson by adding a “chirp” to the Gaussian profile, that is the solitary wave

has a linear plane wave type term associated with it. This certainly helped in terms

of comparison with numerical solutions. However, it was Kath and Smyth [60] who

answered the question of radiative losses in the NLS equation more conclusively. In that

work, perturbations around the NLS soliton were considered and thus the trial function

was the NLS soliton itself with coefficients allowed to vary in z. Radiation in the vicinity

of the pulse was then treated as a shelf, based on numerical simulations, and loss

could be computed by enforcing conservation of mass onto the radiating soliton. Apart

from historical development, steady-state studies have been largely ignored due to the

rich array of dynamical physical phenomena nematicons demonstrate. In particular,

collisons between nematicons [80], as well as attractive or repulsive effects between

beams [50], or refraction when encountering a change in the medium etc. [54] are all

scenarios in defining distinct differences in behaviour when compared to algebraic or

rational nonlinearities [18]. Thus, exhaustive theoretical efforts have been expended to

find novel and rich dynamical physical phenomenon. As such, steady state solutions,

until this thesis, have gone largely unstudied in the community.

While dynamical phenomenon are interesting in their own right, the fundamental

steady state phenomenon of nonlocal nonlinearities, bistability, has lain unapproached.

Bistability is a quality of an optical system that has various definitions, but all require
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that there exists at least two stable steady states (thus bi -stability). In early studies

of the phenomenon, two steady states were accompanied by a third, unstable state

[81]. The presence of this gives rise to a hysteresis loop, whereby one can switch

from one stable “branch” to another by varying the optical properties. In a seminal

paper by Kaplan [82], the notion was extended to solitons governed by a generalized

(algebraic or rational) NLS equation, where two solitons could exist for the same wave

number (σ in (2.19), or as introduced in the next section) with a different power.

The importance of this phenomena is its potential application as a mechanism for all-

optical switching. Choosing one steady state as “on” and the other steady state as

“off”, bistability provides the theoretical underpinnings for an optical transistor [81].

We should comment that, in fairness, realization of this nematicon all optical circuit is a

long way off. Considerable advancements in materials science are needed to reduce the

response time of liquid crystals, something one can see in the form of lag, or “ghosting”,

when viewing an LCD screen. However, any chance of employing light over electronics

in the advancement of computing is a pursuit well worth undertaking. One rather

fiendish aspect of bistability is it is not a problem to crack, but a property for one

to discover. The tools used to study the system, such as which ansatz to use in the

variational method, must then be precise enough to capture such a phenomenon, further

making the case for a comparative study. Furthermore, the jump from the pre-tilted

nematicon equations to the nematicon equations must also be examined carefully so as

not to lose any phenomena that could have technological implications.

In this chapter, we study exact solutions and variational solutions of nematicons.

Isolated, exact nematicon solutions will be found in both (1+1) and (2+1) dimensions.

In (1 + 1) dimensions the exact solution is similar to the soliton solution of the KdV

equation [4]. In (2 + 1) dimensions it is related to the solution of Abel’s equation

[83]. These exact solutions are isolated as they have no free parameters. Variational

approximations are then found to the nematicon solution using sech, sech2 and Gaussian

trial functions. These approximations are then compared with numerically calculated

nematicons obtained using the imaginary time evolution method (ITEM) [68]. It will be

shown that the hyperbolic secant trial functions give the best agreement with numerical

solutions for parameter values which lie within the experimental range. The Gaussian

trial function shows significant disagreement with numerical solutions, even though this

is the predicted nematicon profile for very large nonlocality [59]. The reasons for this

will be discussed. Moreover, solutions of the nematicon equations can exhibit the same
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solitary wave profile in different operating regimes of the NLC sample, introducing a

novel form of bistability. The implications of this type of bistability will be discussed.

Finally, it will be shown that there is a minimum power at which a nematicon can form,

with good agreement between numerical and variational minimum values.

This Chapter is based on the publication in reference [84].

3.2 Governing Equations

We consider, as before, the propagation of a coherent polarised beam of light inside

and along a planar cell filled with nematic liquid crystals (NLC), fluid dielectrics with

optical birefringence and long range orientational order [36]. The setup and equations

are presented here again for completeness. The propagation direction is taken to be z

and the x direction is taken as the direction of linear polarisation of the electric field

of the input light. The y coordinate completes the orthogonal coordinate triad. The

NLC optic axis (or molecular director) is initially orthogonal to the electric field of

the beam. To eliminate the resulting reorientation threshold, the optical Freédericksz

transition [36], a low frequency electric field (voltage) is externally applied in the x

direction in order to pre-tilt the NLC molecules at a finite angle θ0 to the z direction

in the (x, z) plane [15]. The electric field of the optical beam can then rotate the

light-induced molecular dipoles (nematic molecules) by an extra angle θ, so that the

molecular director makes a total angle θ0 + θ to the direction of the beam wavevector

(taken collinear with z). In this manner, milliwatt power (squared L2 norm of the

electric field) light beams can generate an optical solitary wave, a nematicon [15,18,19],

by increasing the extraordinary refractive index ne [4] of the uniaxial according to

ne =

(
cos2(θ0 + θ)

n2
⊥

+
sin2(θ0 + θ)

n2
‖

)−1/2

, (3.1)

where n‖ and n⊥ are the refractive indices for electric fields parallel and normal to

the director, respectively. Assuming θ0 ≈ π/4 in order to enhance the reorientational

response [85], the non-dimensional equations governing the propagation of the beam

through the NLC cell in the SVEA, are [14,18,19,86]

i
∂u

∂z
+

1

2
∇2u+ u sin 2θ = 0, (3.2)

ν∇2θ − q sin 2θ = −2|u|2 cos 2θ. (3.3)
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Here u is the complex valued envelope of the electric field of the light. The Laplacian is

in the transverse (x, y) plane. The constant ν measures the elastic response of the NLC

and is large, O(100), in the usual experimental regimes [17,18,77]. The parameter q is

proportional to the square of the pre-tilting electric field [14,15].

As explored thoroughly in the previous Chapter, while the system of equations (3.2)

and (3.3) has been introduced in the context of light propagation through nematic liquid

crystals, they also govern optical propagation in general media for which nonlinearity

is accompanied by some diffusive phenomenon [87].

For the milliwatt (mW), or even sub-mW, power levels used in experiments [15,18],

the reorientation of the director due to the optical beam is small, so that |θ| � θ0. In

that case, the director orientation terms in the full nematicon equations (3.2) and (3.3)

can be approximated by the first terms in their Taylor series, resulting in the linearised,

or simply, the nematicon equations

i
∂u

∂z
+

1

2
∇2u+ 2θu = 0, (3.4)

ν∇2θ − 2qθ = −2|u|2. (3.5)

To study the nematicon equations (3.4) and (3.5) variationally, we will need the La-

grangian representation

L = i (u∗uz − uu∗z)− |∇u|2 + 4θ|u|2 − ν|∇θ|2 − 2qθ2, (3.6)

where the superscript ∗ denotes the complex conjugate.

3.3 Exact nematicon solutions

The first novel contribution of this thesis is the discovery of an exact nematicon solution.

As mentioned in the basic aspects section of Chapter 2, the nematicon equations are

known to admit at least one solitary wave solution [33]. However, no exact solitary

wave (nematicon) solutions have been found to date, with all studies of these solitary

waves relying on numerical, approximate or variational solutions [14, 18, 19, 39, 52, 88].

We shall now derive two isolated, exact nematicon solutions of the nematicon equations

(3.4) and (3.5) in both one and two transverse dimensions.
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3.3.1 One space dimension

Let us first consider the nematicon equations in one transverse spatial dimension and

seek an exact solitary wave solution. While the evolution of an optical beam in a liquid

crystal cell is two dimensional in the plane transverse to the propagation direction, it

has been found that an adequate approximation is to reduce the transverse dependence

to the one dimensional case [89]. We then seek a solitary wave solution of the linearised

nematicon equations (3.4) and (3.5)

u = f(x)eiσz, θ = θ(x). (3.7)

The solitary wave profile f is therefore the solution of

d2f

dx2
− 2σf + 4θf = 0,

d2θ

dx2
− 2q

ν
θ +

2

ν
f2 = 0. (3.8)

The simple, however non-obvious, insight is that these ordinary differential equations

are identical if θ = f/(
√

2ν) and σ = q/ν. An exact (1 + 1) dimensional solitary wave,

or nematicon, solution is then

u =
3q

2
√

2ν
sech2

(√
q

2ν
x

)
eiqz/ν , θ =

3q

4ν
sech2

(√
q

2ν
x

)
. (3.9)

It should be noted that this is not a general solitary wave solution as it has a fixed

amplitude and width and so lacks the one free parameter as with the NLS-type solitary

wave [4]. This limits its usefulness in terms of being employed by a perturbative or

variational method. For example, had we known the exact solitary wave solution for an

arbitrary σ, one not fixed by q and ν, then the search for the optimal trial function would

be over. However, there are some interesting aspects of this solution offering insights

into the questions asked in the Introduction. The first is that the functional form of this

nematicon is the same as that of the soliton solution of the Korteweg-de Vries equation

and is not the sech profile of the NLS soliton [4]. This is important as it suggests an

additional possibility in terms of an ansatz used for a variational method and was the

grounds for searching for nematicon bistability. The second thing that should be noted

is the widths of the beam and the director are exactly the same regardless of the degree

of nonlocality, a fact bringing into question the very interpretation of the word and

explored in more detail in Section 3.3.3. It should be noted that, after the discovery
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of this solution, an isolated solitary wave solution was found independently for solitary

waves in χ2 media [90, 91]. However, the connection to nematic liquid crystals and its

consequences have so far been unreported. Furthermore, the construction by setting

the two equations equal rather than by trial and error substitution, is novel and allows

us to derive solutions for the (2+1) dimensional case as well.

3.3.2 Two space dimensions

Let us now derive the (2 + 1) dimensional equivalent of the (1 + 1) dimensional exact

nematicon solution (3.9). To do so, we make some further simplifications. Let us

assume that there is no external low-frequency electric field, so that q = 0 in the

director equation (3.5) [92]. In this case, the nematicon equations (3.4) and (3.5) also

govern light beams in nonlinear, self-focusing thermo-optic media [41,43]. We look for

circularly symmetric solutions

u = f(r)eiσz and θ =
1√
2ν
f(r) +

σ

2
, (3.10)

where r2 = x2 + y2. Note in particular for a decaying f(r), θ approaches a constant.

One possible physical manifestation of this is a non-zero angle of the director well

outside of the influence of the electric field. As before, the nematicon equations reduce

to the single equation for f

frr +
fr
r

+
2
√

2√
ν
f2 = 0. (3.11)

Remarkably, this is the Lane-Emden equation of the second kind for a cylindrically

symmetric self-gravitating fluid of index two governed by Newtonian gravitation, arising

in astrophysics [47], another notorious non-integrable system. The general cylindrically

symmetric Lane-Emden equation of the second kind is

d2f

dr2
+

1

r

df

dr
+ αfm = 0, (3.12)

with m termed the index [47]. To date there are no known exact solutions of this

equation for m = 2. Using the change of variable

f(r) =
φ(ln(r))

r2
(3.13)
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and denoting t = ln(r), the differential equation (3.11) for the nematicon profile be-

comes
d2φ

dt2
− 4

dφ

dt
+ 4φ+

2
√

2√
ν
φ2 = 0. (3.14)

This equation also governs travelling reaction-diffusion front solutions of speed 4 of

Fisher’s equation, which arises in mathematical biology [23]. These front solutions

transform to solitary wave solutions on using t = ln r. Therefore, the differential

equation governing the profile of a (2 + 1) dimensional solitary wave in NLC is general

as it arises in areas as diverse as nonlinear optics, astrophysics and reaction-diffusion

processes. The final substitution φ′ = ρ(φ) results in Abel’s equation of the second

kind [83]

ρ
dρ

dφ
− 4ρ+ 4φ+

2
√

2√
ν
φ2 = 0, (3.15)

for which the nematicon profile φ now appears as the dependent variable. Recently, an

exact solution of Abel’s equation of the second kind has been derived [93, 94], so that,

in principle, solutions of Fisher’s equation [23] and the Lane-Emden equation [47] can

also be found. The solution as found by Panaytounakos [94] is given as follows. Let us

set

f(φ) = −φ−
√

2

2
√
ν
φ2. (3.16)

Then the solution of Abel’s equation (3.15) is

ρ = (2φ+ λ)
[
N̄(4φ) +

1

3

]
, (3.17)

where N̄(ξ) are the real roots of the cubic equation

N̄3(ξ) + pN̄2(ξ) + q = 0, (3.18)

with p, q and ξ as

ξ = ln |4φ+ 2λ|, (3.19)

p = −a
2

3
+ b, q = 2

(a
3

)3
− ab

3
+ c, (3.20)

a = −4, b = 3 + 4[G(ξ) + f(ξ)]e−ξ, c = −4[G(ξ) + 2f(ξ)]e−ξ, (3.21)

G(ξ) =
1

16

[
(ξ sin ξ + cos ξ) Ci(ξ) + cos2 ξ

][
4ξCi(ξ) + cos ξ

]
[ξCi(ξ)]3

e−ξ − 2f(ξ). (3.22)
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The constant of integration arises as λ and Ci(ξ) is the cosine integral

Ci(ξ) = γEM + ln ξ +

∫ ξ

0

cos t− 1

t
dt, (3.23)

with γEM the Euler-Mascheroni constant. While the Abel’s equation solution (3.17)

gives, in principle, an exact (2+1) dimensional nematicon solution and exact solutions of

the Lane-Emden equation and Fisher’s equation, as well as this solution being extremely

involved, to determine the actual nematicon solution the integral given by φ′ = ρ(φ)

needs to be evaluated. So, while elegant, the (2 + 1) dimensional nematicon solution is

not of practical use.

3.3.3 Nonlocality

It can be seen that for the (1 + 1) and (2 + 1) dimensional nematicon solutions (3.9)

and (3.10) the solitary wave and director distribution have the same width. This

raises a question regarding the interpretation of nonlocality. In the physics literature,

nonlocality is used in the sense that the medium response extends much further than

the forcing optical field [14, 18, 19, 59]. This in contrast to a local medium for which

the medium response has a similar width to the optical forcing. The interpretation of

nonlocality in the physics literature means that for a nonlocal medium, the parameter

γ given by

γ =
wθ1/2

w
|u|
1/2

(3.24)

is large, where wθ1/2 is the full width at half the maximum amplitude of the medium

response and w
|u|
1/2 is the same quantity for the optical field. The heuristic argument for

this interpretation is as follows. The director equation (3.5) can in principle be solved

using Fourier transforms. Denoting the Fourier transform by F , this yields

θ = F−1

(
2/ν

|k|2 + 2q/ν
F(|u|2(k))

)
. (3.25)

The Green’s function for the director equation (3.5) is then

G(
x√
ν

) = F−1
( 2/ν

|k|2 + 2q/ν

)
. (3.26)
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This Green’s function is slowly varying relative to the electric field for the large values

of ν used in experiments. Thus the relative width ratio γ � 1 interpretation of non-

locality is a consequence of ν � 1, suggesting that the limit ν large be termed “the

nonlocal limit,” as in the literature [14, 18, 19]. This idea can be carried further. The

distinguishing physical feature of nonlocal optical solitary waves is their stability, in

contrast to those governed by the (2+1) dimensional NLS equation [11]. Solitary wave

solutions of (local) NLS equations in more than one spatial dimension are unstable [11].

Above a power threshold, they blow up (catastrophic collapse) in finite z. Below the

threshold, they diffract and spread into radiation. In contrast, nematicons exist [33] and

are stable above a certain power threshold [14,18,19]. As the convolution nonlinearity

of the nematicon system mathematically distinguishes the nematicon equations from

higher dimensional NLS equations, the width ratio γ � 1 property following from the

ν � 1 argument has been used to explain the stability of higher dimensional nonlocal

solitary waves [14,18,19].

However, this identification of large nondimensional elasticity ν � 1 with nonlocal-

ity in the sense that γ � 1 neglects the detailed dependence of u on ν, or u(x) = u(x; ν)

over the entire range of nematicon amplitudes and widths, as demonstrated by both

exact solutions (3.9) and (3.10). For these exact solutions, the medium response varies

on the same scale as the electric field, that is γ = 1 for all values of ν. The argument

that the width ratio γ � 1 follows from large non-dimensional elasticity ν � 1 is

therefore not always valid. The stability of these exact solutions is confirmed by the

ITEM method used in Section 3.5, as this numerical method only converges to linearly

stable solutions. Thus, the stability of (2+1) dimensional nematicons is not due to the

width ratio being large, γ � 1. This suggests that the two limits, ν � 1 and γ � 1,

should be distinguished. The former will be termed the limit of large non-dimensional

elasticity (elasticity for brevity) of the NLC and the latter the physical nonlocal limit or

nonlocal assumption. In contrast to the physical idea of nonlocality, the mathematical

concept of nonlocality is related to the medium response being governed by an elliptic

partial differential equation, so that the solution at a point depends on the solution in

the entire domain [95]. In the present chapter the term nonlocal in nonlocal optical

solitary waves will be used in this mathematical sense.

The exact solutions (3.9) and (3.10) have small amplitude for high elasticity ν

and, thus, it is possible they may not be observable in experiments. In general, the

nonlocal assumption in the sense that the response of the director to the optical beam
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far exceeds the optical forcing has been proven to be a useful analytical assumption

in perturbative and variational studies of nematicons of O(1) amplitude for ν large

[14, 18, 19, 43, 59, 85, 96]. The validity of this assumption will be commented on and

examined in more detail in the following sections.

3.4 Variational approximate solutions

The exact solutions (3.9) and (3.10) are not general nematicon solutions, but isolated

ones since they do not have a free parameter. In the absence of general exact solutions,

variational approximations have proved to be useful to analyse the propagation of

optical solitary waves [56] since their first introduction by Anderson [57]. In the context

of nonlinear optical beam propagation in nematic liquid crystals, such methods have

been found to give solutions in good agreement with numerical solutions [39, 50, 51,

52, 53, 54, 55] and experimental results [77, 97, 98, 99]. Variational solutions for steady

nematicons in one and two transverse dimensions will now be compared with numerical

steady nematicon solutions obtained using the imaginary time method (ITEM) [68].

The variational approximate solutions will be based on a number of different, widely

used trial functions in order to determine their absolute and relative accuracies. The

details of these variational solutions have been given elsewhere [39, 100], so they will

only be summarised here. The three trial functions to be used are a hyperbolic secant

[39], as this is the profile of the soliton solution of the (1 + 1)-D NLS equation, a

Gaussian [56, 59, 100] and a hyperbolic secant squared, the last based on the exact

solution (3.9). The hyperbolic secant squared profile has not been used before.

3.4.1 One spatial dimension

In (1 + 1) dimensions the trial functions to be used are of the form

u = af
( x
w

)
eiσ(z) and θ = αg

(
x

β

)
. (3.27)

To be valid approximations to the nematicon and director (or refractive index) profiles,

f and g must be symmetric about x = 0 and monotonically decreasing to 0 as |x| → ∞.

For convenience, f and g are chosen to have amplitude one. The three trial functions
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used are the hyperbolic secant

f(x) = sechx, g(x) = sech2 x, (3.28)

the hyperbolic secant squared

f(x) = sech2 x, g(x) = sech2 x, (3.29)

and the Gaussian

f(x) = e−x
2
, g(x) = e−x

2
. (3.30)

The general idea, as outlined in Chapter 2 is that the trial functions are now substituted

into the Lagrangian (3.6), which is then “averaged” by integrating in x from −∞ to

∞ [4]. This yields an averaged Lagrangian L which depends on z only. Variations of

this averaged Lagrangian then result in variational, or modulation, equations which

give a variational approximation to the steady nematicon.

The only difficulty in calculating the averaged Lagrangian is that the integral of

the cross term 4θ|u|2 in the Lagrangian (3.6) cannot be evaluated exactly for the two

hyperbolic secant trial functions. To overcome this obstacle, the idea of “equivalent

functions” was developed [86], which involves replacing the trial functions in this cross

integral by the “equivalent” Gaussians f ∼ e−x2/(Cw)2 and g ∼ e−x2/(Aβ)2 . In this case,

the cross integral can be evaluated exactly as

∫ ∞
−∞

gf2 dx =

√
πwβAC√

w2C2 + 2A2β2
. (3.31)

The constants A and C are then found by matching the first two orders of the Taylor

series of ∫ ∞
−∞

f(x/w)g(x/β) dx (3.32)

under the assumption β � w using the original trial functions in the expression (3.31).

Of course, for the Gaussian trial function C = A = 1. The “equivalent Gaussian”

approximation is useful as when calculating an averaged Lagrangian the key quantities

are the values of integrals, not the specific form of the integrands [86].

The fourth and final trial function is taken in direct analogy with the (1 + 1)-D
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exact solution (3.9)

u = a sech2
( x
w

)
eiσ(z), θ = α sech2

( x
w

)
, (3.33)

with the widths of the nematicon light beam and director distribution being the same.

This trial function will then be termed the narrow director in the sense that the beam

and the director have the same widths, in contrast to the other three previously dis-

cussed, which are termed wide director as it was assumed that β � w, γ � 1 (3.24).

As the nematicon and director distribution have the same width for this trial function,

the “equivalent Gaussian” approximation discussed above does not need to be used as

all the integrals can be evaluated explicitly.

Substituting the general wide director trial function (3.27) into the Lagrangian (3.6)

and averaging by integrating in x from −∞ to ∞ gives the averaged Lagrangian

L = −2σ′a2wc1 −
a2

w
c2 +

4
√
παa2ACwβ√

C2w2 + 2A2β2
− να2

β
c3 − 2qα2βc4, (3.34)

where the ci are constants whose values depend on the specific trial function. They are

given by

c1 =

∫ ∞
−∞

f(ρ) dρ, c2 =

∫ ∞
−∞

(
f ′(ρ)

)2
dρ, c3 =

∫ ∞
−∞

(
g′(ρ)

)2
dρ, c4 =

∫ ∞
−∞

g(ρ) dρ.

(3.35)

Taking variations of this averaged Lagrangian with respect to the parameters σ,

a, w, α, β give the variational, or modulation, equations determining the variational

approximation to the steady nematicon as

d

dz

(
a2w

)
= 0,

2σ′wc1 +
c2

w
− 4

√
παACwβ√

C2w2 + 2A2β2
= 0,

2σ′c1 −
c2

w2
− 8

√
παA3Cβ3

(C2w2 + 2A2β2)3/2
= 0,

2
√
πa2ACwβ√

C2w2 + 2A2β2
− α

(
νc3

β
+ 2qβc4

)
= 0,

4
√
πAC3w3

(C2w2 + 2A2β2)3/2
− α

(
2qc4 −

νc3

β2

)
= 0. (3.36)

It can be seen that the nematicon phase σ is linear in z, as expected [11]. The director

amplitude α can be eliminated between the last two of the modulation equations (3.36),
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Figure 3.1: Comparison of power P versus half width w1/2 of (1 + 1) dimensional
steady nematicon as given by full numerical and modulation solutions for q = 2. Full
numerical solution: red crosses; sech trial functions (3.28): green (dot dash) line; sech2

trial functions (3.29): blue (dashed) line; Gaussian trial functions (3.30): pink (dotted)
line; narrow director trial functions (3.33): light blue (dotted with gaps) line. (a)
ν = 10 (b) ν = 200.

resulting in the width β of the director distribution being given by

β2 =
1

qA2c4

[
qw2C2c4 + νc3A

2 +
√

(qw2C2c4 + νc3A2)2 + 12qνA2C2w2c3c4

]
. (3.37)

The equivalent Gaussian constants A and C are given in Appendix A.1, as are the

integrals ci, i = 1, . . . , 4, for the various trial functions. The optical power P of the

nematicon is then

P =

∫ ∞
−∞
|u|2 dx =

c1c2(2qc4 − νc3)(C2w2 + 2A2β2)3

8πA2C6w6β3
. (3.38)

The averaged Lagrangian and modulation equations for the steady nematicon can

similarly be found for the narrow director trial function (3.33). The averaged La-

grangian is
3

8
L = −wa2σ′ − 2a2

5w
+

8αa2w

5
− 2να2

5w
− qα2w (3.39)

and the modulation equations are

d

dz

(
a2w

)
= 0,

σ′ =
8α

5
− 2

5w2
,

a2σ′ − 8αa2

5
+ aα2 − 1

w2

(
2a2

5
+

2να2

5

)
= 0, (3.40)

8a2w

10α
=

2ν

5w
+ qw.
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Figure 3.2: (1+1) dimensional nematicon profiles |u| for q = 2. Full numerical solution:
red (solid) line; sech trial functions (3.28): green (dot dash) line; sech2 trial functions
(3.29): blue (dashed) line; Gaussian trial functions (3.30): pink (dotted) line (a) P = 5,
ν = 10, (b) P = 7.5, ν = 200.

The optical power (3.38) is then

P =
4

3
a2w =

w

15

( 2ν

5w2
+ 5q

)2(
q − 2ν

5w2

)−1
, (3.41)

with the requirement that w >
√

2ν/(5q). There is then a minimum width requirement

for the trial function (3.33) to be a valid approximation to the actual nematicon profile.

This approximate variational solution reduces to the exact solution (3.9) when w =√
2ν/q, as required.

3.4.2 Two spatial dimensions

Similar variational approximations to the steady (2 + 1) dimensional nematicon can be

derived as for the (1 + 1) dimensional case of the previous subsection. However, it will

be found in the Results section 3.5 that the narrow director trial function (3.33) yields

poor comparisons with numerical solutions. Hence, this trial function will not be used

in the present (2 + 1) dimensional case. We then only consider the three wide director

trial functions, sech, sech2 and a Gaussian. As the nematicon in (2 + 1) dimensions is

radially symmetric, the Lagrangian (3.6) is set in polar coordinates as

L = ir(u∗uz − uu∗z)− r|ur|2 + 4rθ|u|2 − νrθ2
r − 2qrθ2. (3.42)

The wide director trial functions are the radially symmetric equivalents of the (1+1)-
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D trial functions (3.27)

u = af
( r
w

)
eiσ(z) and θ = αg

(
r

β

)
, (3.43)

where f and g are given by the forms (3.28), (3.29) and (3.30) of the previous subsection.

Substituting the trial functions (3.43) into the Lagrangian (3.42) and integrating in r

from 0 to ∞ results in the averaged Lagrangian

L = −2a2w2σ′D1 − a2D2 +
2αa2w2C2β2

w2C2 + 2A2β2
− α2νD3 − 2qα2β2D4, (3.44)

where the constants Di, i = 1, . . . , 4, are given by the following integrals of the trial

functions

D1 =

∫ ∞
0

ρf(ρ) dρ, D2 =

∫ ∞
0

ρ
(
f ′(ρ)

)2
dρ, D3 =

∫ ∞
0

ρ
(
g′(ρ)

)2
dρ,

D4 =

∫ ∞
0

ρg(ρ) dρ. (3.45)

The constants A and C are due to using the “equivalent Gaussian” approximation to

evaluate the integral of θu, as described in the previous subsection, with their values

given in Appendix A.2, along with the values of the integrals Di, i = 1, . . . , 4, for

the various trial functions. Taking variations with respect to σ, a, w, α and β of the

averaged Lagrangian (3.44) results in the modulation equations

d

dz

(
a2w2

)
= 0,

2w2σ′D1 +D2 −
2αw2C2β2A2

w2C2 + 2A2β2
= 0,

σ′ =
2αC2β4A4

D1(w2C2 + 2A2β2)2
,

α =
a2w2C2A2β2

(νD3 + 2qβ2D4)(w2C2 + 2A2β2)
,

α =
a2w4C4A2

qD4(w2C2 + 2A2β2)2
. (3.46)

Again, α can be eliminated between the last two of these modulation equations to give

the width β of the director distribution as

β2 =
w2C2 +

√
w4C4 + 8A2C2w2D3ν/(qD4)

4A2
. (3.47)
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Figure 3.3: Comparison of power P versus half width w1/2 of (2 + 1) dimensional
steady nematicon as given by full numerical and modulation solutions for q = 2. Full
numerical solution: red crosses; sech trial functions (3.28): green (dot dash) line; sech2

trial functions (3.29): blue (dashed) line; Gaussian trial functions (3.30): pink (dotted)
line. (a) ν = 10 (b) ν = 200.

The (2 + 1) dimension optical power P is

1

2π
P =

1

2π

∫ ∞
−∞

∫ ∞
−∞
|u|2 dxdy =

qD1D2D4(w2C2 + 2A2β2)4

2C8A4w6β2
. (3.48)

3.5 Results

The modulation theory results of the previous section for the steady nematicon in

(1 + 1) and (2 + 1) dimensions will now be compared with numerical solutions for a

steady nematicon obtained using the imaginary time evolution method [68], described

in detail in B. It should be noted that the ITEM method will only converge to linearly

stable solutions [68], which verifies the linear stability of the steady nematicons in both

(1 + 1) and (2 + 1) dimensions, both when the director deformation is much wider and

when it has the same width as the optical beam.

3.5.1 One space dimension

Solutions of the modulation equations (3.36) and (3.40) for a steady (1 + 1) dimen-

sional nematicon will now be compared with full numerical solutions of the nematicon

equations (3.4) and (3.5) for the steady nematicon. Fig. 3.1 shows a comparison for

the power P of a steady nematicon,

P =

∫ ∞
−∞
|u|2 dx, (3.49)
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as given by the full numerical solution and as given by modulation theory based on

the sech (3.28), sech2 (3.29), Gaussian (3.30) and narrow director (3.33) trial functions

for a moderate value of elasticity, ν = 10, and a high value, ν = 200, which is a

typical experimental value [17, 18, 77]. It can be seen that both the sech and sech2

trial functions give excellent agreement with the numerical power, with the sech2 trial

function being slightly better for the smaller elasticity ν and the sech trial function

being slightly better for the higher elasticity. However, the Gaussian trial function,

while in reasonably good agreement with the numerical solution, performs significantly

worse than the hyperbolic secant trial functions, particularly for narrow nematicons.

This is in contrast to the widespread use of a Gaussian in variational approximations,

particularly in optics [56,57]. In the infinite elasticity limit ν →∞, the approximation

that the director deformation is much wider than the optical beam has been used and it

was then found that the nematicon profile becomes a Gaussian [14,59], which explains

its widespread use for approximating nematicons [19]. The results of the present work

show that, while the nematicon theoretically has a Gaussian profile for infinite elasticity,

for experimentally relevant ranges it is better approximated by the sech profile of an

NLS soliton [19]. Figure 3.1 also shows that the narrow director trial function (3.33),

based on the (1 + 1) dimensional exact solution (3.9), performs poorly, except for wide

nematicons which have low amplitudes. This poor agreement for high amplitudes and

good agreement for low amplitudes is somewhat expected as the exact solution (3.9)

has low amplitude for large ν.

Figure 3.2 compares the nematicon profiles |u| for ν = 10 and ν = 200 as given

by the numerical solution and the sech (3.28), sech2 (3.29) and Gaussian (3.30) trial

functions. These comparisons show similar conclusions to those drawn from the power

comparisons of Fig. 3.1. The sech and sech2 trial function profiles are in excellent

agreement with the numerical profiles, with sech slightly worse for the lower elasticity

ν = 10 and slightly better for the higher ν = 200. The Gaussian trial function shows

significant disagreement around the peak. However, it can be seen that the Gaussian

profile is in excellent agreement with the tails of the numerical nematicon profile for

ν = 200. This is in accord with the theoretical result that the soliton profile is a

Gaussian in the limit ν →∞ [59].
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Figure 3.4: (2+1) dimensional nematicon profiles |u| for q = 2. Full numerical solution:
red (solid) line; sech trial functions (3.28): green (dot dash) line; sech2 trial functions
(3.29): blue (dashed) line; Gaussian trial functions (3.30): pink (dotted) line. (a)
P = 3, ν = 10, (b) P = 10, ν = 200.

3.5.2 Two space dimensions

Let us now consider similar power and profile comparisons for (2 + 1) dimensional

nematicons. The nematicon power in (2 + 1) dimensions is

P = 2π

∫ ∞
0

r|u|2 dr. (3.50)

The only difference in the comparisons to those for (1 + 1) dimensions is that there are

no narrow director trial function comparisons due to the poor agreement of the narrow

director trial function in (1 + 1) dimensions.

The nematicon power comparisons of Fig. 3.3 for ν = 10 and ν = 200 lead to the

same broad conclusions as those of Fig. 3.1 for (1 + 1) dimensions. The sech (3.28)

and sech2 (3.29) trial functions give significantly better agreement than the Gaussian

trial function (3.30). The main difference in (2 + 1) dimensions is that the sech trial

function is better than the sech2 trial function for both values of ν.

Figure 3.4 compares the numerical nematicon profile and those given by the sech

(3.28), sech2 (3.29) and Gaussian (3.30) trial functions, similar to the (1 + 1) dimen-

sional comparisons of Fig. 3.2. These comparisons again reinforce the conclusions of the

power comparisons. The hyperbolic secant trial functions give excellent profile compar-

isons, with the sech2 slightly worse. The Gaussian again shows significant differences

around the peak, but is in excellent agreement with the numerical profile in the tails,

as expected from the limit ν →∞ [59].

It should be again noted that the steady nematicons in both (1 + 1) and (2 + 1)
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Figure 3.5: Inverse width ratio γ−1 = w
|u|
1/2/w

θ
1/2 as a function of power P for q = 2.

Red (solid) line: ν = 200, green (dashed) line: ν = 10. (a) (1 + 1) dimensions, (b)
(2 + 1) dimensions.

dimensions are linearly stable as the ITEM will only converge to linearly stable solutions

[68].

Figure 3.5 further explores the relationship between the value of the nonlocality

parameter ν and the relative width γ of the director response to the nematicon width.

It can be seen that, as discussed above, high values of ν do not guarantee that the

director response is always much wider than the optical beam. As was deduced from

Figures 3.1 and 3.3, low power values result in the director width being similar to

the optical beam width, while high values result in the director response being wider

than the optical beam. Surprisingly, the width ratio shows little dependence on the

nonlocality ν in (2 + 1) dimensions, in contrast to (1 + 1) dimensions.

3.5.3 Minimum nematicon power

An additional feature of the variational solution of Section 3.4 is the prediction of a

minimum power for solitary waves to exist for the cylindrically symmetric, (2 + 1)

dimensional, linearized nematicon equations (3.4) and (3.5). A minimum power for

a (2 + 1) dimensional solitary wave on an infinite domain was proven in the recent

work by Panayotaros and Marchant [33]. However, obtaining accurate numerical ap-

proximations of this power threshold poses a challenge. Computationally, common and

efficient methods for computing solitary waves on an infinite domain suitably truncate

the domain such that the support of the solitary wave is well contained within the

artificial boundaries [101]. In this case, imposing Dirichlet boundary conditions can

then be considered admissible as outlined in Lord et al [102] and serves as a strong

approximation to the original problem. However, in the small power or low amplitude
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regime, Panayotaros and Marchant note a subtle difficulty with this approach. The

continuous Dirichlet problem on a truncated domain contains ground states of arbi-

trarily low power, suggesting a suitable soliton solution can always be found in the

numerical framework and thus the power threshold cannot be found from numerical

solutions. We shall now further investigate the consequences of this numerical domain

truncation and find, in fact, that the low power regime is a region of rich numerical

behaviour.

One illustration of the effects of Dirichlet conditions affecting the power threshold

computation is a steep increase in the computation time of the ITEM as the imposed

power decreases. For example, for the parameter values ν = 10 and q = 2, the ITEM

took ∼ 6 minutes to converge for a power of 3 and ∼ 3.5–4 hours to converge for

a power of 1.2. As the computation time becomes prohibitive in a regime for which

boundary effects become significant, the behaviour of the ITEM in low power situations

was investigated further by monitoring the energy, or Hamiltonian, given by

H(u) =

∫ ∞
0

(1

4
|∇u|2 − θ|u|2

)
rdr, (3.51)

as the ITEM progressed. In addition, to compute solitary wave profiles in regimes

for which the ITEM can be prohibitively slow, a Newton iteration, whose usefulness

for solitary wave computations was detailed by Yang [69], was used (see details in

Appendix B). We note that in all computations, the Newton iteration is orders of

magnitude more efficient than the ITEM and is capable of computing solutions for

which the ITEM would otherwise fail, mirroring previous studies [69,71].

In addition to the slow computation of the ITEM for low power solitary waves,

we observed other interesting numerical behaviour. The first was the evolution of the

Hamiltonian as the ITEM progressed. As found in Ref. [33], solitary wave solutions

of the system (3.4) and (3.5) have negative, non-zero Hamiltonians. Using an initial

guess whose Hamiltonian is strictly positive, the number of iterations for the ITEM

to a return a negative Hamiltonian value is orders of magnitude larger for a smaller

power than it is for a larger one. This is illustrated in Fig. 3.6(a) and is comparable

to the qualitative behaviour observed by Bao in the computation of Bose-Einstein con-

densates. While this is possibly a consequence of the renormalization step arresting

the ITEM from converging to the zero solution, we found in a similar power regime

setting (P = 0.94, q = 2, ν = 10) that the Newton iteration produces a solution which
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Figure 3.6: (a) Hamiltonian dependence as the ITEM progresses. P = 2: solid red line;
P = 0.5: green dashed line. (b) Power thresholds PT as a function of ν. Full numerical
solution: red pluses; best fit curve: light blue (short dash) line; sech trial functions
(3.28): green (dot dash) line; sech2 trial functions (3.29): blue (dashed) line; Gaussian
trial functions (3.30): pink (dotted) line.

does not decay exponentially at the boundaries, as illustrated in Fig. 3.7. This sug-

gests that the influence of the Dirichlet conditions at the boundaries is detrimentally

affecting the computation of solitary waves. This solution was found to be stable to

radially symmetric perturbations in a simulation which solved the cylindrically sym-

metric dynamic problem (3.4) and (3.5), using the z-dependent numerical method from

Chapter 2. Using the Newton iteration further, σ was varied so as to explore solutions

with powers lower than the state illustrated in Fig. 3.7. Qualitatively, we found, in

general, as σ decreases, the power decreases, agreeing with previous studies of similar

systems [33, 71]. However, for particular low values of σ, depending on the domain

size and the point in (q, ν) space, convergence can not only be erratic when using a

low power, based on a sufficiently decaying solitary wave (O(10−8) at r = 180 with

Rmax = 200) as an iterative starting point, but in some cases oscillatory solutions can

found, as in Fig. 3.8, which illustrates f(r), where u = f(r)eiσz. This confirms the

possibility of a bifurcation as predicted by Panayotaros and Marchant [33], whereby

the artificial Dirichlet conditions give rise to a system admitting multiple solutions de-

pending on σ. This also offers a partial explanation for the difficulties experienced by

the ITEM, whose convergence is linked to linearized stability and, thus, is uncertain

when presented with multiple solution branches.

In general, the accuracy of criteria for finite domain numerical approximations of

infinite domain power thresholds appears to depend not only on a suitable domain

truncation, but also on the choice of the algorithm used and appropriately designed
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Figure 3.7: Low power solitary wave computed using Newton iteration for P = 0.94,
q = 2, ν = 200 and σ = 0.0004. Solid red line: computed profile, dashed green line:
initial guess. (a) Full profiles, (b) zoomed profiles near the boundary. Note the initial
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Figure 3.8: Oscillatory solution obtained from Newton iteration with σ = 0.00008.
Note the amplitude and σ value and compare with Fig. 3.7 (a).

boundary conditions, as well as a thorough bifurcation analysis. This is an analysis of

fundamental interest for nonlinear waves that deserves a thorough study. Such a study

would be extensive and so is beyond the scope of the present thesis. It is thus left to

future study.

While the difficulties of power threshold computation are now more clearly under-

stood, we would still like to determine the relative performance of the different ansätze

used in modulation theory. To this end, we use a simple threshold approximation.

Using the ITEM, iterations tending to a negligible Hamiltonian (O(10−5)) were consid-

ered approximately below a power threshold as this is the order of the numerical error

in the ITEM. Iterations tending to a non-negligible, negative value of the Hamiltonian

were considered as converging to a solution approximately above the power threshold.

This criterion determines the approximate region in which numerical methods begin to

fail, providing sufficient insight for our qualitative comparison.
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Figure 3.6(b) shows a comparison of the power threshold PT for a solitary wave

to exist as a function of the nonlocaility ν as given by the ITEM solution of the full

equations (3.4) and (3.5) and the variational approximations based on the sech, sech2

and Gaussian trial functions. In addition, the ITEM power threshold results have been

fitted with f(ν) = a− b e−cν , giving a = 0.807712, b = 0.286894 and c = 6.0672×10−3.

It is clear that the Gaussian trial function gives the best prediction for the numerical

power threshold, which asymptotes to 0.807712 for large elasticity ν. All the trial

functions give a constant minimum power. This can be seen from the variational

solution of Section 3.4. Near the power threshold, the nematicon becomes low and

wide. The solution (3.47) for the director β gives that β ∼ Cw/(
√

2A) as w becomes

large. The expression (3.48) for the nematicon power then shows that it is independent

of ν as w becomes large.

While giving poorer agreement than the Gaussian trial function, the hyperbolic

secant trial functions give better agreement as the nonlocality ν increases as for these

trial functions the averaged Lagrangian (3.44) was obtained in the limit ν large, so that

the thresholds as predicted by these trial functions become better as ν increases. In

addition, “equivalent Gaussians” were used to evaluate the mixed integral (3.31) for

these trial functions, which assumed that γ � 1, β � w. As discussed in the previous

section, this wide director approximation is poor for low power solutions as the beam

and director have increasingly similar widths as the power decreases. The Gaussian

variational solution, on the other hand, is free from these approximations as all the

integrals for it were evaluated explicitly for all ν, explaining its better performance in

approximating the power threshold. It should also be noted that the asymptotic error

for large ν in the power threshold as given by the Gaussian variational solution is of

the order of 20%, which is similar to the error for the amplitude threshold for an NLS

soliton to exist for the initial condition a sechx as given by the same variational approx-

imation used here as compared with the result of the inverse scattering solution of the

NLS equation [60]. In general, variational approximations only give general agreement

for thresholds as these thresholds depend on fine details which are not captured by

variational approximations.
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3.5.4 Limits of Linearisation

The linearised nematicon equations (3.4) and (3.5) were obtained from the full equations

(3.2) and (3.3) on the assumption that the extra rotation θ of the nematic molecules

from their pre-tilt state was small. This assumption was necessary in order to derive

the exact solutions of Section 3.3 and the variational approximations of Section 3.4.

The effect and accuracy of this small deviation assumption will now be examined using

numerical solutions for both sets of nematicon equations.

Figure 3.9 shows the amplitudes of (1 + 1) and (2 + 1) dimensional nematicons

for ν = 200 as a function of the pre-tilt parameter q. The differences between the

nematicon amplitudes as given by both sets of equations show similar trends in both

dimensions. The amplitudes as given by the full and linearised equations are the same

for high values of q, but differ for low values of q. This is because as q decreases, the light

induced reorientation θ increases, so that approximating the trigonometric functions

in the full equations (3.2) and (3.3) by the first terms in their Taylor series becomes

increasingly inaccurate. This will be further explored below. In addition, for low q

(q corresponds to the external electric field applied to pre-tilt the molecular director

in the (x, z) plane), two stable nematicons of equal amplitudes are supported by the

full nematicon equations for two different values of q. The term optical bistability

normally refers to the existence of two distinct stable states for a given excitation of

the local [81] or nonlocal system [103, 104], as has been found to occur for solitary

waves in saturable Kerr-like media [82, 105, 106]. That is, two different solitary waves

exist for the same wave number σ, however, with differing powers, leading to a possible

all-optical switching mechanism. Here, the NLC samples exhibit optical bistability in

the sense that two nematicons of the same amplitude exist for two different pre-tilts of

the molecular director, i.e. samples with dissimilar inhomogeneous distributions of the

optic axis.

Figure 3.10 displays the nematicon profile |u| and the director distribution θ for

cases in (1+1) and (2+1) dimensions for which different biasing fields, different q, lead

to nematicons of the same amplitude. The solutions displayed are solutions of the full

nematicon equations (3.2) and (3.3). It can be seen that, as well as having the same

amplitude, the nematicon profiles are identical to within graphical accuracy, with the

director distributions being markedly different. As discussed above, the smaller q lead

to director distributions θ of higher amplitude. So approximating the trigonometric
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Figure 3.9: Nematicon amplitude as a function of q for ν = 200. Red cross: numer-
ical solution of linearised nematicon equations (3.4) and (3.5); green plus: numerical
solution of full nematicon equations (3.2) and (3.3). (a) (1 + 1) dimensions, (b) (2 + 1)
dimensions.

functions in the full equations (3.2) and (3.3) by the first terms in their Taylor series

becomes less valid as q decreases.

It can also be seen from Fig. 3.10 that the bistable nematicon solutions for high

and low q are supported by widely different director distributions. These solutions

relate to the concept of nonlocality discussed in the Introduction and Exact Solutions

sections. The exact solutions (3.9) and (3.10) in (1 + 1) and (2 + 1) dimensions and the

theoretical work of Panayotaros and Marchant [33] show that for all values of ν there

exist solutions of the linearized nematicon equations (3.4) and (3.5) that have narrow

directors, γ ∼ 1 or γ ≤ 1. These solutions are restricted to low amplitudes for high

values of the elasticity ν and, as mentioned, it is possible that these low amplitude,

narrow director solutions may not be experimentally observable. The solutions of Fig.

3.10, however, show that narrow director nematicons of order one amplitude exist in

the highly elastic regime ν � 1. So both wide director, γ � 1, solutions, which

are termed nonlocal in the physics literature [18, 19], and narrow director solutions,

γ = O(1), which are termed local in the physics literature [18,19], can exist in the high

elasticity limit ν � 1. Since, nonlocality is more generally ascribed to and described

by the elliptic nature of the equation governing the medium response, this reinforces

the earlier conclusion that the stability of (2 + 1) dimensional nematicons cannot be

solely attributed to the “nonlocal” assumption γ � 1 [18].

While optical solitary waves in highly elastic media are not necessarily nonlocal in

the physical sense, the optical bistability of NLC samples suggests that one can find a

region in the (q, ν) parameter space in which the highly elastic limit does imply that the
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Figure 3.10: Numerical steady nematicons for full nematicon equations (3.2) and (3.3)
for ν = 200. |u|: upper two curves; θ: lower two curves. (a) (1 + 1) dimensions,
q1 = 1.0: red (solid) line; q2 = 4.5: blue (dashed) line, (b) (2 + 1) dimensions, q1 = 0.1:
red (solid) line; q2 = 1.0: blue (dashed) line.

medium response is much wider than the optical beam. Defining this region requires

the more precise mathematical criterion for nonlocality, as discussed above.

3.6 Conclusions

Steady solitary wave, nematicon, solutions of the coupled system of equations governing

the propagation of nonlinear optical beams in reorientational nematic liquid crystals

have been studied. This system of equations consists of an NLS-type equation for the

electric field of the light beam and an elliptic Poisson equation for the rotation of the

optic axis or director of the medium. In both (1 + 1) and (2 + 1) dimensions, iso-

lated exact nematicon solutions were found, without a free parameter, at variance with

usual solitary wave solutions [4]. These exact solutions also showed that the standard

explanation for the stability of nematicons in (2+1) dimensions, that the director distri-

bution is much wider than the soliton profile [14], is not complete inasmuch as stability

is associated with the director distribution being governed by an an elliptic equation

whose solution at a point depends on the whole domain [95]. These exact solutions also

illustrate the connections between the models governing optical solitary waves in optical

media with those ruling reaction-diffusion fronts, Fisher’s equation [23], the equation

governing a self-gravitating gas in astrophysics, the Lane-Emden equation [47], and the

Schrödinger-Newton equations of quantum gravity [46]. The present work has derived

a new cylindrically symmetric solution of the Lane-Emden equation in terms of the

recent solution of Abel’s equation [93,94].

Due to the lack of a general, exact solitary wave solution of the nematicon equations,
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variational approximations to this nematicon solution were derived, based on three

forms of trial function for the solitary wave profile, these being a sech, as for the NLS

soliton, a sech2, as for the exact (1 + 1) dimensional exact nematicon, and a Gaussian,

which is a widely used trial function [56]. The hyperbolic secant trial functions gave

excellent agreement with the numerical nematicon solution, with the sech being slightly

better in the experimental (2 + 1) dimensional case. This is in contrast to the usual

employment of a Gaussian profile in variational nematicon studies, as in the limit

ν → ∞ the nematicon profile has been shown to be Gaussian [14]. It was found that

in (2 + 1) dimensions there is a power threshold for a solitary wave solution of the

nematicon equations to exist. To obtain this threshold using the ITEM numerical

method requires a careful examination of exactly what the method is converging to.

Finally, it was also found that the full nematicon equations, prior to linearisation for

small optically induced reorientation of the nematic director, possess a type of optical

bistability in that there exists the same nematicon with different director (or refractive

index) distributions corresponding to distinct values of the external biasing field, that

is q.
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Chapter 4

Heuristic Asymptotic Solutions

of Nonlinear, Highly Nonlocal

Solitary Waves

4.1 Motivation

In addition to the question of the appropriate ansatz for the variational approxima-

tion addressed in the previous Chapter, a more glaring question one may ask is how

would one approximate nematicons solutions asymptotically. The presence of a small

parameter ε = 1
ν in the high elasticity regime suggests that we may be able to do this.

This, however, is an old and non-trivial problem. The first attempt to the author’s

knowledge was in 1977 where Simenog [107] studied the Hartree equation and used the

Taylor series approach later employed by Snyder and Mitchell in the context of optical

solitary waves [59]. In that work, the lens thought experiment described in Chapter 2

was also used to find this approximation. However, no discussion of error or comparison

with numerical solutions was done. This is similar to the Snyder-Mitchell case and it

had been found consistently that there is no physically realistic system in which their

approximation produces quantitatively reliable results [18,19,61]. Since their work, the

nonlinear optics community has looked to preserve the possibility of finding simple ex-

pressions for nonlocal solitons using various asymptotic arguments, such as the further

perturbative approaches discussed in Chapter 2. However, each idea has either been

applied to a non-physical system in order to avoid Green’s function singularities [19],

only applies to the (1+1) dimensional case [63], quickly loses sight of simplicity or does
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not offer extensible arguments to other systems [32]. The variational method, while

impressively robust, can also have difficulties coping with equations in which integrals

can be difficult to evaluate.

There are, perhaps more than ever, excellent reasons to abandon these standard

approaches in favour of a novel perspective. The first is the number of connections

the nematicon system shares with other, relevant physical systems [18, 20, 44]. The

importance of this is in the experimental realm. For instance, those interested in

studying solitary waves in fluid mechanics are looking at building or purchasing a tank

that can be a great cost, both financially and time-wise. Experiments are also delicate

and the amount of clean, reliable data is relatively slim. Optics, however, produces

exceptionally clean experimental results that are relatively cheap to produce and can

be done on a table top [15]. One can see how exploiting this analogy between optics and

other areas is beneficial not only to fluid mechanics, but to astrophysics, mathematical

biology or plasma physics. In particular, as mentioned, the nematicon equations are

formally equivalent to the Schrödinger-Newton system from quantum gravity. This

allows optical experiments to investigate quantum gravitational phenomena that may

otherwise be simply unobservable [21]. Thus simple, accessible solitons are a nice

theoretical idea, but the experimental possibilities of nematicons and their relatives

suggests that we focus our attention on developing robust analytic tools to, if possible,

asymptotically approximate them.

In this Chapter we develop a rather general, heuristic asymptotic method for ap-

proximating general solitary wave solutions of nonlinear, nonlocal Schrödinger type

equations. We consider nematicons as well as those arising in thermal media, and two

other straight forward, but previously intractable extensions. The ideas are simple

to implement, relying only on a Taylor series, and can apply to systems of arbitrary

dimension, extend simply and clearly to other systems and perform exceptionally well

when compared with numerical solutions. As another point of interest, in most cases

the solitary wave solutions are explicit, without the need to resort to quadrature. As a

caveat, these are not rigorously asymptotic, that is, the solutions cannot be proven to

approach the true solution in the limit ε→ 0. Thus we use the term heuristic.

This Chapter has not appeared in any publication aside from this thesis.
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4.2 Governing Equations

The system of equations we consider is the same as those considered in Chapter’s 2

and 3 with a slight renaming of the variables. Hence we consider,

i∂zu+
1

2
∇2u+ 2θu = 0, (4.1)

∇2θ − κεθ + 2ε|u|2 = 0. (4.2)

Here we have taken κ = 2q and ε = 1
ν to simplify future expressions. The above system

arises from coupling Maxwell equations to the continuum model for NLC’s under the

slowly-varying envelope assumption and with considerable, yet reasonable, restrictions

on the NLC’s movement [14]. The slowly varying envelope of the beam is given by

u, the orientation of the NLC, as measured from its initial bias, is given by θ. The

parameter κ is linked to the initial orientational bias and the small parameter, ε is

related to the resistance of the NLC to reorientation. We are concerned with solitary

waves solutions of the form u = ũ(x)eiσz and θ = θ̃(x), under the assumption that ũ

and θ̃ are real. Substituting this ansatz into (4.1) and (4.2) dropping the tildes the

system becomes

1

2
∇2u− σu+ 2θu = 0, (4.3)

∇2θ − κεθ + 2εu2 = 0. (4.4)

Here, it is now convenient to consider two distinct cases. The two cases of interest are

κ > 0 and κ = 0. The case κ = 0 corresponds to an NLC with no initial bias and is also

a model for solitary waves in nonlinear thermal media (one can imagine this arising from

the steady-state heat equation) [41, 42] and thus we will henceforth call these solitary

waves thermal solitary waves. The thermal problem is posed on a finite domain with

zero boundary conditions whereas the nematic problem is posed on an infinite domain

and we require sufficient decay for |x| → ∞. The difference in domains is so that a

Green’s function can be found for θ. It is possible that the Green’s function arising

when considering the thermal problem on the infinite domain (G(r, s) = 1
4π ln(r − s)),

convoluted with a solitary wave converges but this is not pursued in this thesis. In each

case, the derivation from Chapter 2 applies.
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4.3 Analysis

4.3.1 Finite Domain Approximate Solutions

An interesting example to begin with is (4.1) and (4.2) with κ = 0 in the cylindrically

symmetric case as the solitary wave solution has not been satisfactorily approximated

and the analysis is relatively simple. Furthermore, the extension to other models follows

immediately. We look for a non-trivial solution to the nonlinear eigenvalue problem

(4.3) and (4.4) for a fixed σ > 0, such that u and θ have continuous second derivatives

for all r =
√
x2 + y2 ∈ [0, L) (typical values of L being 15 ∼ 20), achieve their maximum

at r = 0, and both decay monotonically to zero as r → L. In general, we assume the

existence of such a family of solutions, parameterized by either the amplitude of u or σ,

as to the author’s knowledge there is no conclusive proof of this assumption. However,

there is substantial numerical evidence, in addition to rigorous proofs for the more

analytically difficult case κ 6= 0 and in other nonlocal settings of the existence of such

solutions, making this assumption a safe one [33,71].

The first consideration in the analysis is that of scaling. Of physical interest are

those envelopes u that remain O(1) in amplitude. Therefore, setting u = U(R), θ =

ε
1
2 Θ(R) and σ = ε

1
2µ, for R = ε

1
4 r, we find

1

2
∇2
RU − µU + 2ΦU = 0, (4.5)

∇2
RΦ + 2U2 = 0, (4.6)

which is perfectly scaled. Thus finding U , Θ and µ amounts to finding the exact solitary

wave solution of the original equations (4.3) and (4.4). This leads to the natural as-

sumption that we can take a small amplitude expansion in θ, provided Θ in the perfectly

scaled regime remains O(1). Furthermore, we have run into a fundamental problem

with scaling arguments as nonlocality, parameterized by ε, is no longer available. This

is discussed shortly.

Continuing with scaling, we need to show that for U remaining O(1), then the same

holds for Θ. This is indeed the case, as can be seen from the following justification.

From the assumption Θ obtains its maximum at the origin, solving explicitly gives

Θ = 2

∫ L

0
G(R,S)U2dS, (4.7)
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where the Green’s function is that for −∇2
R which we will be referencing frequently and

is given by

G(R,S) =


(

ln(L)− ln(R)
)
S 0 ≤ S ≤ R ≤ L,(

ln(L)− ln(S)
)
S 0 ≤ R ≤ S ≤ L.

(4.8)

This implies that Θ ≤
∫ L

0 (ln(L)− ln(S))S U2dS. As U is of O(1), Θ then clearly

remains O(1). Note for more general kernels G(R,S) such that Θ ≤
∫ L

0 G(0, S)U2dS,

this assumption may not hold, as for one-dimensional thermal case. However this is of

less physical relevance. Similarly, from equation (4.3) for U , at the maximum at R = 0,

∇2U < 0, leading to the inequality

(−µ+ 2Θ(0))U(0) > 0, (4.9)

implying µ < 2Θ(0) and therefore µ is O(1), making σ at most O(
√
ε).

Having a more detailed understanding of the relative scales, we formally adopt the

multiple scales expansion

u =
N∑
i=0

ε
i
4ui(r,R), θ = ε

1
2

N∑
i=0

ε
i
4φi(r,R), (4.10)

with R = ε
1
4 r. The eigenvalues are similarly expanded as

σ = ε
1
2

N∑
i=0

ε
i
4σi. (4.11)

We then have from (4.3)

O(1)
1

2
∇2
ru0 = 0, (4.12)

O(ε
1
4 )

1

2
∇2
ru1 +

∂2

∂r∂R
u0 = 0, (4.13)

O(ε
1
2 )

1

2
∇2
ru2 +

∂2

∂r∂R
u1 +

1

2
∇2
Ru0 − σ0u0 + 2φ0u0 = 0,
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and from equation (4.4)

O(ε
1
2 ) ∇2

rφ0 = 0, (4.14)

O(ε
3
4 ) ∇2

rφ1 + 2
∂2

∂r∂R
φ0 = 0, (4.15)

O(ε) ∇2
rφ2 + 2

∂2

∂r∂R
φ1 +∇2

Rφ0 + 2u2
0 = 0. (4.16)

We have used the shorthand ∇2
r = ∂2

∂r2
+ 1
r
∂
∂r , and similarly for ∇2

R, for the cylindrically

symmetric Laplacian. Solving at leading order for u0 gives

u0 = A(R) ln(r) +B(R). (4.17)

To avoid the singularity at the origin, the simplest choice is to take A(R) = 0. We then

look for a B(R) which satisfies, at least approximately, the leading order boundary

conditions. Denoting B(R) = U0(R) we progress to the next order, where we find

similarly u1(r,R) = U1(R). Simple analysis shows that θ behaves similarly at leading

order, and therefore we have φ0(r,R) = Φ0(R) and φ1(r,R) = Φ1(R). Then the

equations for u2 and φ2 become, respectively,

1

2
∇2
ru2 = −

{1

2
∇2
RU0 − σ0U0 + 2Φ0U0

}
, (4.18)

∇2
rφ2 = −

{
∇2
RΦ0 + 2U2

0

}
, (4.19)

We enforce

1

2
∇2
RU0 − σ0U0 + 2Φ0U0 = 0, (4.20)

∇2
RΦ0 + 2U2

0 = 0 (4.21)

to remove secularity in r. This is precisely the re-scaled system discussed before (4.5)

and (4.6). Therefore, finding Φ0, σ0 and U0 is equivalent to solving the system exactly

and the expansion can be truncated immediately. In the absence of an explicit solution

of (4.20) and (4.21) as well as, after rescaling, a small parameter, we must rely on a

heuristic approach to approximate solutions of (4.3) and (4.4).

In particular, it appears we have made the problem more difficult by this pertur-

bation expansion. However, equations (4.20) and (4.21) are informative, particularly

about errors arising from previous methods, which we shall now detail. The lens idea
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of Snyder and Mitchell [59], arguing one only needs the first two terms of a Taylor

series, no longer holds in the case of a perfectly balanced system. It is not clear, af-

ter scaling, that there is any reason for the response Φ0 to be much wider than the

beam. Similarly, this is the same issue that the Green’s function approach developed

by Nikolov [63] as found in Chapter 2. Indeed, by assuming the response to be close to

the Green’s function Φ0 ∼ G(R, 0)Pu, one implicitly assumes the beam is a Dirac delta

function. This leads to unbounded error for the Φ0 solution, implying unbounded error

for the next order correction φ2. It is possible this is reconcilable in a more general

space of functions. However, under our assumptions of a continuous solution (for which

there is considerable evidence), this indicates the idea is unreliable.

Furthermore, and critically, the existence of secular growth at this order implies

that the best one can hope for is a local approximation. In particular, we see any

approximation will induce secular growth for r � ε−1/4 and thus only be valid for

R � 1. This suggests, in the absence of an exact solution, one cannot do better than

using a local approximation for Φ0. The break down of previous ideas is then in how

this local approximation is constructed. Stricter criteria are needed.

In particular, we would like to retain desirable properties of the previous approaches

while faithfully approximating Φ0 for small R. The simplicity of the Taylor series

approach makes this class of equations more “accessible” theoretically, and in general

an approximation for small R can be made this way for any ε, and the Green’s function

approach matches the behaviour of θ for a wider portion of the interval. To retain the

benefits of each and improve upon both approaches, we abstract the ideas in a natural

way. Each of these previous approximations looks to find a potential, which we denote

Φl(R) for reasons that will become apparent, such that Φl(R) ∼ Φ0 for small ε and so

that the resulting Schrödinger equation can be solved explicitly. The general method

for deriving approximate solutions is as follows.

1. Derive a locally accurate, comparable potential Φl(R) such that

(a) The equation
1

2
∇2
RU0 − σ0U0 + 2ΦlU0 = 0, (4.22)

can be solved simply and explicitly.

(b) Φl ∼ Φ0 as R→ 0.

(c) Φl is sufficiently differentiable, monotonically decreasing and approaches a
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constant C > 0 for large R.

2. Solve
1

2
∇2
RU0 − σ0U0 + 2ΦlU0 = 0, (4.23)

explicitly to get an approximation U0 = U ε.

3. Take Φ0 = 2
∫ L

0 G(R,S)(U ε)2dS to remove secularities at O(ε) in θ.

We can now see how well this idea generalizes previous methods. The locally accurate

potential Φl(R), which we formally refer too as a “comparable” potential hereafter, is a

natural, but consistent object retaining the properties of the Taylor series and Greens

function approaches. These three criteria are inspired by boundary layer theory and

the properties of Φl they enforce reflects this. The purpose of the first criterion is to

enable us to find a closed form approximation, as in any other standard perturbative

technique. The second criterion enforces that Φl should be locally asymptotic to Φ0 for

small R, so as to capture the essential features of the problem when deriving U ε. For

practical purposes, this can be done by matching the first few terms of the Taylor series.

The final criterion forces Φl to not only be at least as smooth as Φ0, but monotonically

decreasing, as given both by this assumption and from equation (4.21). Furthermore,

and crucially, criterion three enforces that Φl approaches some positive constant. This

required so as not to neglect, a priori, the possible existence and validity of an outer

solution outside of the support of U0. Note we use the word “support” here to mean

the set on which U0 is non-zero and larger than a very small ε, for example machine

error ε = 10−16. While Φl is not unique, the list of comparable candidates becomes

rapidly small owing to the requirement that the linear Schrödinger equation is “simply

and explicitly” solvable, if not reduced to a single possible potential.

We are now in a position to construct the approximate solutions. Note that, in

what follows, we will denote G(R,S) as the Green’s function for the earlier operator

−∇2
R. Choosing the comparable potential

Φl(R) =
1

2
σ0 +

1

4
pc2 − 1

4
pc2(p+ 1) tanh2(cR) +

1

4R
pc tanh(cR),

the equation for U0 can be solved explicitly to obtain

U ε = UM sechp(cR). (4.24)

72



To force Φl(R) ∼ Φ0 as R → 0, we match the first couple terms of the Taylor series

near R = 0. There are, of course, other means of forcing Φl(R) to be as close as

possible to Φ0, and in general this lies in approximation theory. However, one can show

that matching the Taylor series automatically fufils the requirements of matching Padé

approximants (rational approximations). More accurate techniques, such as expansion

by an orthonormal basis, are more global in nature and make solving for coefficients

a bit more involved. It is possible this makes a better asymptotic solution, however,

this is not explored here as simplicity and accessibility is the goal. Also the results are

sufficiently strong so that it is not warranted. Expanding Φl(R) we find

Φl(R) ∼ 1

2
σ0 +

1

2
pc2 − pc4

4
(p+

4

3
)R2 +

pc6

6
(p+

6

5
)R4 +O(R6). (4.25)

Doing the same for Φ0 by substituting a power series into (4.21) we obtain

Φ0(R) ∼ ΦM −
(
UM
)2

2
R2 +

c2p

8
U2
MR

4 +O(R6). (4.26)

ΦM is given explicitly by

ΦM = 2

∫ L

0
G(0, S) U2(S)dS. (4.27)

Equating each order of R leads to the system

1

2
σ0 +

1

2
pc2 = ΦM ,

pc4

4
(p+

4

3
) =

U2
M

2
,

pc6

6
(p+

6

5
) =

c2p

8
U2
M ,

which can be solved exactly upon substituting the expression for U ε. The resulting

constants are given by

p =
2

3
+

2

15

√
205, c =

(
2(UM )2

p(p+ 4
3)

) 1
4

, (4.28)

1

2
σ0 = ΦM −

1

2
pc2, (4.29)

which now explicitly depend on UM as a parameter. The closed form approximate
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solution is then given as

u = UM sechp(cR), θ = 2ε
1
2

∫ L

0
G(R,S)(u)2dS. (4.30)

4.3.2 Some Simple Extensions

One principal advantage of this technique over previous methods is its clear extensibil-

ity. It appears that, under our strict assumptions of monotonicity and high nonlocality,

one can construct an approximate solution provided the first three terms of the Tay-

lor series are available. Naturally this should be checked extensively with numerical

solutions, and that is something we do in this Chapter. This idea, however, clearly

has broad impact, applying to systems of solitary wave equations and equations more

general nonlinearities. In this thesis, we restrict our focus to generalized nonlinearities.

We consider two toy models, which could plausibly arise in optics, but as of writing

have not been linked to a physical system. These illustrate the method’s flexibility, as

well as situations in which it can fail.

The first is a more general nonlinearity, which could arise for instance, if the re-

orientational nonlinearity were proportional to a power law nonlinearity other rather

intensity. Consider

1

2
∇2u− σu+ 2θu = 0, (4.31)

∇2θ + 2ε|u|γ = 0. (4.32)

Then we can find an approximation using the comparable potential method. Omitting

the details, it is

u = UM sechp(cR), (4.33)

θ = 2ε
1
2

∫ L

0
G(R,S)(u)γdS, (4.34)

p =
−(γ/2− 2) +

√
(γ/2− 2)2 + 18γ/5

3γ/8
, (4.35)

c =

(
2UγM

p(p+ 4/3)

)1/4

,
1

2
σ0 = ΦM −

1

2
pc2. (4.36)

Note, UM , the amplitude of the solitary wave, is a free parameter and ΦM is the

amplitude of the response which can be found as before. Similar to the generalized
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nonlinearity, and an interesting example to consider is that of competing nonlinearities

[108,109,110]. These are commonly found in phenomenological nonlinear optics models

from Taylor series expansions of the permittivity. In the context of nonlocal nonlinear

optics, competing nonlinearities is usually understood in the sense of different nonlocal

kernels G1+G2, which, is phenomenologically derived as well. In this paper, we consider

competing power nonlinearities and leave competing kernels to future work. One aspect

of studying the competing power nonlinearities is the possibility of creating a system

where our approximation breaks down and illustrates the limits of local analysis. We

now consider the system

1

2
∇2u− σu+ 2θu = 0, (4.37)

∇2θ + 2ε(|u|γ1 + α|u|γ2) = 0. (4.38)

Again, omitting the details, an approximate solution is given by

u = UM sechp(cR), (4.39)

θ = 2ε
1
2

∫ L

0
G(R,S) (|u|γ1 + α|u|γ2) . (4.40)

c =

(
2(Uγ1M + αUγ2M )

p(p+ 4/3)

)1/4

(4.41)

1

2
σ0 = ΦM −

1

2
pc2, (4.42)

where p now solves a slightly more involved quadratic than before, given by

r1p
2 + (4r1/3− r2)p− 6r2/5 = 0, (4.43)

r1 = 3γ/8
(
Uγ1M + αγ2/γ1U

γ2
M

)
, (4.44)

r2 = 2
(
Uγ1M + αUγ2M

)
. (4.45)

The positive quadratic solution is taken for p. In this case, the competing nonlinearities

now create a type of potential, at some critical points of which the solution will break

down. In particular, choosing the case α < 0 indicates that at some amplitude either

d2

dr2
θ = 0 or d4

dr4
θ = 0. Numerical solutions indicate that solitary waves exist when

γ1 = 2.0, γ2 = 4.0 and α = −0.5 (see Fig 4.1) for amplitudes larger than the critical

UM = 1.0, whereas the asymptotic approximation gives the constant solution. This

breakdown is essentially due to local nature of our approximation, which is incapable

75



0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

u
,θ

r

Figure 4.1: Profile of numerically computed mixed solitary wave of Amplitude approx-
imately one. Note the asymptotic approximation only returns a constant solution in
this case.

of handling more intricate competing nonlinearities. We point this out as a limitation

and are leave its resolution to future research.

4.3.3 Infinite Domain Approximate Solutions

Returning to the original system (4.3) and (4.4), we now consider the nematicon case,

corresponding to κ > 0.

In the (2+1)D cylindrically symmetric case, we proceed in the same way as for the

thermal analysis. The scaling and comparable potential remain the same, as we choose

to retain the κε1/2 term. Omitting the details, the resulting system for the coefficients

is

ΦM =
U2
M√
κε

1
2

∫ ∞
0

K0

(√
κε

1
2S

)
sech2p(cS)SdS, (4.46)

c4

3

(
p+

6

5

)
+ κε

1
2

{
c2

2

(
p+

4

3

)}
−
U2
M

4
= 0, (4.47)

pc4

(
p+

4

3

)
−
(

2U2
M − κε

1
2 ΦM

)
= 0, (4.48)

1

2
σ0 = ΦM −

1

2
pc2. (4.49)

In general, however, this system is not simple to solve analytically. However, for ε small,

we recover the same electric beam profile u as we did in the thermal, finite domain case.

That is, locally, a nematicon is close to a thermal solitary wave. In this respect, we can

take the electric field of a nematicon to be, at leading order, the same as that of the

thermal solitary wave. For the material response, we still take the solution to be the

Green’s function for a nematicon convolved with the thermal solitary wave. The final
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solution is then

u = UM sechp(cR), (4.50)

θ = 2ε
1
2

∫ ∞
0

Gκ(R,S)u2(S)dS = ε
1
2 Φ0(R), (4.51)

σ = ε
1
2σ0 (4.52)

where c and p are given in (4.39) and Gκ(R,S) is now the Green’s function for −∇2
R +

κε
1
2 , given by

Gκ(R,S) =


1√
κε

1
2

SI0

(√
κε

1
2S
)
K0

(√
κε

1
2R
)

0 ≤ S ≤ R <∞,

1√
κε

1
2

SI0

(√
κε

1
2R
)
K0

(√
κε

1
2S
)

0 ≤ R ≤ S <∞.
(4.53)

4.4 Results and Discussion

In this section we compare the results of the approximate solutions obtained with

numerical solutions. In general, due to the heuristic nature of our solution derivation,

it is too much to ask that the approximation U ε be εγ away from some exact solution u

in the sense of a norm i.e. we cannot expect there exists some exact solution ue (after

solving for θ) such that

||ue(R)− U ε(R)|| ≤ CεC2 (4.54)

for C1 and C2 independent of ε and a norm ||·||, which is generally determined during the

analysis. This is due to the fact that all quantities in the rescaled equations (4.20) and

(4.21) are O(1). While, in general, it looks as if O(1) error bounds can be determined,

more detailed information regarding the error can be gleaned from comparing with

numerical results. Of particular interest are moderately small values of ε, around

O(10−2) as these arise naturally from the Biot number for thermal optical solitary

waves and are typical elasticity constants in the NLC case [71].

For all values we found the asymptotic solution to be sufficiently close to the nu-

merical solution, that using a modified Newton iteration [76] (detailed in the Appendix

C) was a very efficient means of computing numerical solitary waves, in most cases

under 1sec per solution. The error was measured as follows. Taking our approximate

solution to be the vector uε = (uε, θε)T and the numerical (“exact”) solution, written

as ue = (ue, θe)
T , the error was taken to be ||e||∞ = maxr∈[0,L) |ue − uε|. This error
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Figure 4.2: Error analysis and profile comparisons for thermal optical solitary waves. a)
Error as a function of amplitude, b) Profile comparisons for a large amplitude solitary
wave, blue (solid) is the numerical solution, red (dashed) is the analytic approximation,
upper curves are the beam envelope u, lower curves are the reorientational response θ,
c) Smaller amplitude profile comparisons, colors and styles are the same as before.

78



10−3

10−2

10−1

100

0.5 1 1.5 2 2.5 3

||e
|| ∞

UM

γ = 1.25

γ = 3.0

γ = 4.0

a)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

u
,θ

r

b)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

u
,θ

r

c)

Figure 4.3: Error analysis and profile comparisons for generalized thermal optical soli-
tary waves. a) Error as a function of amplitude b) Profile comparisons for a large am-
plitude solitary wave with γ = 4.0, blue (solid) is the numerical solution, red (dashed)
is the analytic approximation, upper curves are the beam envelope u, lower curves are
the reorientational response θ, c) Large amplitude profile for γ = 1.25.
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Figure 4.4: Error analysis and profile comparisons for optical solitary waves with a
competing nonlinearity. a) Error as a function of amplitude b) Profile comparisons for
a large amplitude solitary wave, blue (solid) is the numerical solution, red (dashed) is
the analytic approximation, upper curves are the beam envelope u, lower curves are
the reorientational response θ.
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Figure 4.5: Error analysis and profile comparisons for (2+1) dimensional nematicons.
a) Error as a function of amplitude. Blue (solid) is the solution error from (4.50) and
(4.51). b) Profile comparisons for a large amplitude solitary wave. Blue (solid) is the
numerical solution, red (long dashed) is the analytic full nematicon solution.

estimation gives a representative picture of errors that occur in the tails of the solitary

waves, which is where the majority of our error occurs.

The error for the solutions of classical thermal media, equations (4.1) and (4.1)

with κ = 0, is shown in Figure 4.2 (a) and comparisons with numerical profiles are

given in Figure 4.2 (b) and Figure 4.2 (c) respectively. In general we observe excellent

agreement, the solution only perceptibly detaching from the numerical solution in the

tails, which is expected from our local argument. Furthermore, we find that the solution

tends to break down at a value of roughly r ∼ O
(
ε−1/4

)
, precisely the value predicted

by the multiple scales analysis, albeit further out for smaller solitary waves.

For the generalized nonlinearity we still observe excellent agreement between the

analytically derived solutions and numerical ones. These are shown in Figure 4.3. Of
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particular note, we find that for smaller values of γ the approximate solutions are nearly

indistinguishable from the numerical solutions up to graphical error. An example of

this is seen in Figure 4.3 (c), where a taller solitary wave is shown with a γ value of

1.25. In general, we find higher amplitude solitary waves are indistinguishable from

their numerical counterparts. As the value of γ increases, however, accuracy is lost.

This loss of accuracy manifests itself in a larger, relatively speaking, mismatch in the

tails of the solitary waves. An example of this is shown in Figure 4.3 b) where now

γ = 4.0. While still an excellent result for an amplitude in the range of higher error,

the analytic solution fails to capture the asymptotic behaviour of the solitary wave as it

approaches the boundary. This, once again, could be expected from our analysis based

on local arguments.

For the competing nonlinearities, we once again find excellent agreement for the

strictly positive nonlinearity where α = 0.5, γ1 = 2.0, γ = 4.0. The results are shown

in Figure 4.4. In general, we notice there is poorer matching with the tails for larger

amplitude solutions, as in the generalized nonlinearity case. However, the results are

still generally excellent.

The results for the (2+1) dimensional analytical solution for the nematicon are

shown in Figure 4.5. In general, we find the best agreement of all cases thus far consid-

ered. The majority of the profiles are essentially indistinguishable from the numerical

ones up to graphical accuracy. In addition to studying how well the full analytical solu-

tion performed for the nematicon case, that is, for the analytical approximation given

by (4.50) and (4.51), it is equally interesting to study how well the analytical solu-

tion for the thermal solitary wave, given by (4.30), whose parameters can be expressed

explicitly, performs in this case. Remarkably, the expression for the thermal solitary

wave does exceptionally well. In a zoomed in plot comparing profiles, Figure 4.5 (b),

it is difficult to distinguish between the full nematicon analytic solution, the thermal

approximation and the numerical one. This indicates that, for κ ∼ O(1) and ε � 1,

the κε
1
2 θ term in equation (??) is negligible in a local approximation. Fortunately,

this can simplify nematicon approximations in the future and draws an important, but

previously undiscovered, connection between the two systems.
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4.5 Conclusion

We have analysed approximate solutions for a broad class of nonlinear, highly nonlocal

solitary waves. A heuristic asymptotic method was developed which is capable of

approximately solving, with excellent comparison to numerical solutions, for the solitary

wave solution of a broad class of equations describing beam propagation in nonlocal

nonlinear optical media, resolving an old problem. The idea can now be applied to other

applications of nematicon equations, namely the Schrödinger-Newton equations in three

dimensions [46], as well as other physically relevant optical systems. Of particular note

is how well the explicit, thermal solitary wave solution compares with the nematicon

solution, connecting intimately two previously separately treated systems.
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Chapter 5

Diffraction Induced Instability of

Coupled Dark Solitons

For our final study we turn our attention to the much less studied and understood de-

focussing solitary waves. Remarkably, for a coupled, defocussing nonlinear Schrödinger

equation system, we have found that for a broad and reasonable set of conditions a

steady state solitary wave cannot exist, being unstable in a non-trivial way to pertur-

bations. As a word of background, dark solitary waves are those arising in defocussing

media. There are only two essential differences mathematically from bright solitary

waves. The first is the nonlinearity of the governing NLS equation is now negative.

The second is that the solitary wave solutions approach non-zero constants at infinity.

Physically, dark solitary waves are not as robust as their bright solitary wave counter-

parts and furthermore, technological applications are much less understood. Therefore,

in general, most studies have been on bright solitary waves. However, dark solitary

waves have unique challenges. In particular, as we show in this chapter, it is unlikely

one can observe localized, coupled dark solitary waves. This is due to a novel form of

a nonlinear instability which, to the authors knowledge, is reported and analyzed here

for the first time.

Wave instabilities arising from nonlinear wave models are among the most intriguing

of physical phenomena. In particular, the discovery of modulational instability (MI)

by Benjamin and Fier [4,111,112] was a hallmark result in nonlinear wave theory. The

governing equation in that work was the nonlinear Schrödinger (NLS) equation. This

work demonstrated a remarkable instability mechanism that has no analog in linear

systems. The NLS equation is a standard, ubiquitous equation in nonlinear wave theory
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as it describes weakly nonlinear wave packets with a narrow spectrum arising in many

physical phenomena, as discussed in Chapter 1 [4,10], including instabilities and solitary

waves in nonlinear optics [4, 11], as well as fluid mechanics [4, 112] and biology [113].

In addition to systems governed by the NLS equation, MI and other instabilities have

been discovered for a wide array of generally applicable integrable and non-integrable

equations [4], including systems applicable to nonlocal, saturable, dissipative and higher

order nonlinear optics [11, 19]. Collectively, the broad application of these integrable

and non-integrable wave equations makes the study of their associated instabilities one

of fundamental importance in optics, and in physics in general.

The focusing NLS equation

i∂zu+
1

2
∂2
xu+ |u|2u = 0 (5.1)

models beam self-focusing and has bright soliton solutions, i.e. humps on a zero back-

ground. The defocusing NLS equation

i∂zu+
1

2
∂2
xu− |u|2u = 0 (5.2)

models beam self-defocusing and supports dark soliton solutions, i.e. dips (notches)

in a non-zero background of constant amplitude, with a π phase change of u on axis

[11, 114]. Several demonstrations of individual and coupled dark solitary waves have

been reported in various media [115], including semiconductors [116], soft matter [26,

117, 118, 119] and photovoltaic photorefractive crystals [120, 121]. Here, we deal with

vector solitary wave solutions of two coupled defocusing NLS equations, as, for example,

governing the incoherent interaction of two dark optical beams in a generic nonlinear

dielectric with a Kerr nonlinearity [11]. Previous work has shown that stable vector

dark solitary wave solutions of such equations exist if the diffraction coefficients are

equal [11,12,122]. Similarly, the only rigorous results for stability have been found for

equal diffraction coefficients in the bright case [123]. However, substantive empirical,

numerical evidence suggests for non-equal diffraction coefficients, the bright vector

solitary waves are stable [50].

In the present work, we find a novel instability, driven by a difference in diffraction

coefficients, of defocussing vector solitary waves. If the diffraction of the two compo-

nents (dark beams) is different, for example for beams of different wavelengths [16] or
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polarizations, the coupled vector solitary wave is unstable to radiation. One of the

wavepackets collapses into radiation, leaving a single dark solitary wave in the other

mode. We investigate this novel radiation induced instability using perturbation theory

and numerical solutions.

This Chapter is based on the publication in reference [124]. Material original to this

thesis is the exact asymptotic behaviour for dark and bright solitary waves in Section

5.2.1, as well as the power curve for the bright solitary wave in Section 5.2.1, appear

here for the first time.

5.1 Governing Equations

We are going to consider a familiar setup. The co-propagation of two collimated,

collinear beams in a Kerr medium with a self-defocusing optical response. This is an

example still underneath the umbrella of nematic liquid crystals (and, more generally,

nonlocal solitary waves), whose nonlinear response can be tailored to include local

nonlinearities so that the nemaitcon equations (1.12) and (1.13) are indistinguishable

from the nonlinear Schödinger equations. This is done by adjusting the cell configura-

tion [125]. Each of the two dark modes consists of a notch on a constant background,

with a zero electric field on axis, and the modes are based on beams of distinct wave-

lengths, so each beam has a different group velocity and experiences different diffraction.

The coupled, defocusing NLS equations governing these two dark beams with coupled

envelopes u and v are then

i
∂u

∂z
+
Du

2

∂2u

∂x2
−
(
|u|2 + |v|2

)
u = 0,

i
∂v

∂z
+
Dv

2

∂2v

∂x2
−
(
|u|2 + |v|2

)
v = 0, (5.3)

with Du and Dv the diffraction coefficients for modes u and v, respectively. Such equa-

tions arise in various areas of nonlinear optics in general [11] and nonlinear two colour

beam propagation in, e.g., reorientational soft-matter [12, 16, 26] and photorefractive

crystals [43,120].

Crucially, in the scenario of Du = Dv, herein called the “symmetric case”, the

equations are equal. In fact, the initial value problem is uniquely solvable using the

inverse scattering transform as discovered by Manakov [126]. Thus this system is also

called the “Manakov system”. In this work, we consider initial conditions of the form
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v = C1u. In the symmetric case then, we can consider, without loss of generality, the

single NLS equation for u, as described in the Introduction. What this illustrates is

that for no perturbations in the diffraction coefficients, solitons and instabilities of the

coupled NLS equations can be reduced to the study of the NLS equation and so all the

instability mechanisms for this equation apply. It is when the diffraction coefficients are

not equal, which we call the non-symmetric case, that is Du 6= Dv, that the instability

arises.

5.2 Perturbative Analysis

To understand the evolution of the coupled dark solitary waves governed by the non-

symmetric equations (5.3), we consider the limit of the diffraction coefficients differing

by a small amount, so that Dv = Du + ε, where |ε| � Du. This case usefully demon-

strates that the instability of the two coupled dark solitary waves is due to the rise of

secular terms in a regular perturbation expansion. In general, we would like to show

that the perturbation grows in z. However, from numerical experiments, we also have

growth in x. We are able to combine both these perturbation and numerical approaches

to show the novelty of this instability. We further confine our scope to dark solitons that

have the same constant background level U0 = V0, which is of more physical interest

as it corresponds to beams of equal power.

The steady dark soliton solutions in the modes u and v can then be expanded as

u = u0 + εu1 + ε2u2 + . . . , v = v0 + εv1 + ε2v2 + . . . (5.4)

At first order the dark soliton solution is [11]

u0 = v0 = U0 tanh (γx) e−2iU2
0 z, (5.5)

with γ =
√

2U0/
√
Du. At second order, O(ε), the corrections to this steady dark soliton

are determined by

i
∂u1

∂z
+
Du

2

∂2u1

∂x2
− |u0|2 (3u1 + v1)− u2

0 (u∗1 + v∗1) = 0, (5.6)

i
∂v1

∂z
+
Du

2

∂2v1

∂x2
− |u0|2 (3v1 + u1)− u2

0 (u∗1 + v∗1) = −1

2

∂2u0

∂x2
, (5.7)

where the superscript ∗ denotes the complex conjugate. Subtracting these equations
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gives that the difference θ = u1 − v1 is governed by the forced Schrödinger equation

i
∂θ

∂z
+
Du

2

∂2θ

∂x2
− 2|u0|2θ =

1

2

∂2u0

∂x2
. (5.8)

This is a convenient equation to study as now all secular behaviour can be studied in

the context of the Schrödinger equation with the Pöschl-Teller potential we encountered

in the previous chapter. In particular, we can now see the first indication of secularity.

The ∂2u0/∂x
2 forcing term of the Schrödinger equation (5.8) is secular in x as it is

proportional to sech2 γx tanh γx = tanh γx − tanh3 γx, with tanh γx being a solution

of the homogeneous equation. However, it is not clear how the growth manifests for

large x or even that it should. This has not been found for the bright case and is not

clear why one the dark case exhibits growth and the bright case does not. The same

question applies to secular growth in z. There is no obvious reason it should happen

in the dark case and not the bright.

To answer these questions we proceed in two steps. First, we study the bounded

stationary states, showing conclusively one does not exist for the dark equation (5.8).

In fact, the exact stationary state θs can be found and is given by

θs = tanh(γx) ln(sech2(γx)) ∼ tanh(γx)

{
ln(4)− 2γx− ln

(
1

(1 + exp(−2γx))2

)}
(5.9)

where the asymptotic behaviour is for x → ∞. This unbounded behaviour for large x

does not occur in the bright case, agreeing with previous studies [50,52], but this is non-

trivial to demonstrate. Furthermore, secularity is found in z in the form ||θ||L2(R) ∼ Cz
3
2

which is explained in detail below. Numerical results show this growth in z does not

occur for the bright solitary wave. The analysis is detailed in the following subsections.

5.2.1 Stationary Solutions

Dark Stationary Solutions

We begin by seeking solitary wave solutions as before. The ansatz for those whose

intensity remains constant in z are of the form

θ = Θ(x)e−2iU2
0 z, (5.10)
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with Θ real. The forced Schrödinger equation (5.8) then becomes

Du

2
Θ′′ + 2U2

0 sech2(γx)Θ = −γ2U0 sech2(γx) tanh(γx). (5.11)

We can then find the general solution of this equation as follows. Using the change

of variable Θ(x) = Θ̃(y) for y = tanh(γx), we arrive at the following equation (after

dropping the tildes)

(1− y2)Θ′′(y)− 2yΘ′ + 2Θ = −2U0

Du
y. (5.12)

This is a forced Legendre’s equation. In particular, solvability for the boundary value

problem with Θ(−1) = Θ(1) = 0, i.e. θ → 0 as x → ±∞ clearly fails. To see this

we write the equation as LΘ = f on y ∈ [−1, 1]. Note that the y interval is the

result of taking |x| → ∞. Thus the boundary conditions are imposed as a limit. This

is done in the setting of the Hilbert space H = L2([−1, 1]) with the standard inner

product < f, g >=
∫ 1
−1 fḡdx. As L is self-adjoint, multiplying (5.12) by an arbitrary

homogeneous solution Θh and integrating over the interval we find the requirement

< f,Θh >= 0, (5.13)

which plainly fails for Θh = y. Solving explicitly we have [127]

Θ = c1y + c2

(
−1 +

y

2
ln

(
1 + y

1− y

))
+
U0y

3Du
(ln ((1− y)(1 + y))) . (5.14)

In the original variables, after taking c1 = c2 = 0 and so studying the particular

solution, this reduces to the remarkably compact expression

θ = u1 − v1 =
U0 tanh(γx)

3Du
ln
(
sech2(γx)

)
e−2iU2

0 z. (5.15)

Using the definition of sech(x) we can find the asymptotic behaviour as x→∞ of this

particular solution as

Θ =
U0 tanh(γx)

3Du
ln

(
4e−2γx

(1 + e−γx)2

)
=
U0 tanh(γx)

3Du

[
ln(4)− 2γx− ln

(
1

(1 + e−γx)2

)]
. (5.16)
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Higher order terms can then be computed using the Taylor series for small ξ

1

(1 + ξ)2
=
∞∑
n=0

(−1)n(n+ 1)ξn, (5.17)

and

ln(1 + ξ) =

∞∑
n=0

(−1)n+1 ξ
n

n
, (5.18)

applied to the final logarithmic term for x sufficiently large. The perturbation expansion

then breaks down at O(ε) and there are no localized vector dark solitary waves of the

coupled defocusing NLS equations (5.3).

Bright Solitary Wave Solutions

In contrast to the dark solitary wave case, this spatial resonance does not appear in

the bright solitary wave case, that is, with a positive sign in the nonlinearity of the

system (5.3). In this case, the corresponding equation for Θb for bright solitary waves

u0 = v0 = a sech γ̃x eia
2z (subscript “b” for “bright”), which is defined by its relation

to the next order correction, θ, by

θ = u1 − v1 = Θbe
ia2z/2, (5.19)

is given by

Du

2
Θ′′b + a2

(
2 sech2 γ̃x− 1

)
Θb =

aγ̃2

2

(
sech γ̃x− 2 sech3 γ̃x

)
, (5.20)

with γ̃ =
√

2a/
√
Du. It appears there is still a resonant forcing term sech γ̃x and yet

an instability of this type has not been reported for bright solitary waves. In contrast

to the previous analysis for dark solitary waves we no longer have an explicit solution

available for Θb. In particular, a simple expansion in terms of exp(−γ̃x) for large x

does not appear to show the resonance as this does not recover the previous growing

behaviour of the dark solitary wave case. This is essentially due to the fact that the

leading order behaviour of the RHS in (5.20) in terms of exp(−γ̃x) for large x is no

longer a homogeneous solution, so that the resonance is lost. An alternative approach

is needed.

We begin by re-scaling. Changing variables by taking Θb = Θ̃b(X), where X = γ̃x,
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we obtain after dropping the tildes

Θ′′b + (2 sech2(X)− 1)Θb =
a

Du

(
sech(X)− 2 sech3(X)

)
. (5.21)

We now base our analysis on the previous asymptotic form of the leading order dark

solution. Notice that to leading order in X, the dark behaviour is X tanh(X), or a

homogeneous solution multiplied by X. One possible avenue is using a similar ansatz

X sech(X) for (5.21) and see how close this is to the exact solution Θb. As it turns

out, this is possible using classical theory for integral equations [128]. In particular, we

study the rate that the difference

|Θc
b| = |Θb −Θa

b |, (5.22)

approaches zero. Here we have decomposed the exact solution, denoted Θb, into our

approximation

Θa
b = αX sech(X), (5.23)

where α is to be determined, and the remaining correction, denoted by Θc
b. In particular,

we find |Θc
b| approaches zero rapidly for an ansatz of the form (5.23) and the rate can

be given explicitly. Furthermore, and crucially, this reproduces the previous behaviour

of X multiplied by a homogeneous solution from the dark case.

To show that Θc
b is small for large X, we proceed in the following steps.

1. Determine α by minimizing the residual for large X.

2. Derive an integral equation for Θc
b.

3. Solve the integral equation for Θc+
b , the restriction of Θc

b, to the domain x ∈

(R,∞).

4. Determine leading order asymptotic behaviour of Θc+
b .

Note this is equivalent to determining the leading order behaviour for large X provided

we choose R sufficiently large. In general, the analysis relies on a proof similar to

Banach’s fixed point theorem. We therefore skip preliminaries.

We begin by determining α. Writing equation (5.21) in the more compact notation

LbΘb = fb, (5.24)
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where

Lb =
d2

dx2
+ (2 sech2(X)− 1), fb =

a

Du

(
sech(X)− 2 sech3(X)

)
. (5.25)

We define the residual of the approximation Θa
b as

RΘa
b

= fb − LbΘb. (5.26)

After substituting Θb = Θa
b + Θc

b = αX sech(X) + Θc
b, we see that Θc

b satisfies

LbΘc
b = RΘa

b
. (5.27)

The explicit expression for RΘa
b

is

RΘa
b

= fb − LbΘa
b

=
a

Du

(
sech(X)− 2 sech3(X)

)
+ 2α sech(X) tanh(X). (5.28)

Choosing

α = − a

2Du
(5.29)

minimizes the residual RΘa
b

as X → ∞, and thus we have our particular, asymptotic

solution. What remains is to determine the amplitude of |Θc
b| as X → ∞. To do this

we use the integral form of (5.27) in operator notation

Θc
b +KΘc

b = R̃Θa
b
. (5.30)

Here K is the linear operator defined by

Kφ =

∫ ∞
−∞

exp(−|X −X ′|) sech2(X)φ(X ′)dX ′ (5.31)

and R̃Θa
b

is the modified RHS of (5.27) given by

R̃Θa
b

=
1

2

∫ ∞
−∞

exp(−|X −X ′|)RΘa
b
(X ′)dX ′ (5.32)
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for RΘa
b

as above. Furthermore, we decompose the solution Θc
b into a partition

Θc−
b = Θc

b for x ∈ (−∞,−R), (5.33)

ΘcM
b = Θc

b for x ∈ [−R,R], (5.34)

Θc+
b = Θc

b for x ∈ (R,∞). (5.35)

To avoid confusion, we use the variable y as the restriction of x to (R,∞). Restricting

ourselves to solving for Θ+
b as the analysis for Θ−b is identical by symmetry, we now

study the modified integral equation

Θ+
b +

∫ ∞
y

exp(−|y− y′|) sech2(y′)Θ+
b (y′)dy′ =

1

2

∫ ∞
y

exp(−|y− y′|)RΘa
b
(y′)dy′. (5.36)

Rewritten in operator notation, this is

Θ+
b +K+Θ+

b = R̃+
Θa

b
. (5.37)

Then, provided we choose R large enough such that K+ is a contraction, that is ||K+|| <

1, we can write the explicit Neumann series for the solution Θ+
b [128]. Note this is also

precisely the perturbation method known as the “Born series” in quantum and classical

scattering theory [129]. As the kernel of K+ is continuous, it follows as a standard result

that K is a compact operator on the Banach space of the set of continuous functions

on the line B = C(R) endowed with the standard supremum norm [128] denoted by

||f ||∞ = sup
x∈R
|f(x)|. (5.38)

In this setting the operator norm is given by

||K+|| = sup
||φ||∞=1

||K+φ||∞, (5.39)
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which we can show is a contraction using simple inequalities. Taking |K+φ| we obtain

|K+φ| ≤
∫ ∞
y
| exp(−|y − y′|) sech2(y′)φ(y′)|dy′

≤
∫ ∞
y

sech2(y′)dy′||φ||∞

= (1− tanh(y))||φ||∞

≤ (1− tanh(R))||φ||∞. (5.40)

Choosing R such that (1 − tanh(R)) < 1, which gives just R > 0, and taking the

supremum over φ ∈ B such that ||φ||∞ = 1, we have

||K+|| < 1. (5.41)

Accordingly, the explicit solution of (5.36) is given by [128]

Θc+
b =

∞∑
n=0

(−1)n(K+)n(R̃+
Θa

b
), (5.42)

where the iterated operator (K+)n is given by

(K+)n(φ) =

∫ ∞
y

. . .

∫ ∞
yn

exp

(
−

n∑
m=0

|ym − y′m|

)
sech2(y′) . . . sech2(y′n)φ(y′n)dy′n . . . dy

′.

(5.43)

Note, the same result arises from using Banach’s fixed point theorem. We can now

summarize with asymptotic behaviour of the solution Θ+
b . In particular, we have the

following estimate

|(K+)n(R̃+
Θa

b
)| ≤ (1− tanh(R))n||R̃+

Θa
b
||∞. (5.44)
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This implies that, upon using the definition Θ+
b −Θa+

b = Θc+
b ,

|Θ+
b −Θa+

b | ≤
∞∑
n=0

|(K+)n(R̃+
Θa

b
)|

≤
∞∑
n=0

(1− tanh(R))n||R̃+
Θa

b
||∞

=
||R̃+

Θa
b
||∞

1− (1− tanh(R))

≤
a
Du

(1− tanh(R)) sech(R)

1− (1− tanh(R))
, (5.45)

where we have used the estimate ||R̃+
Θa

b
||∞ ≤ a

Du
(1− tanh(R)) sech(R). This is derived

as follows

|R̃+
Θa

b
| = 1

2
|
∫ ∞
y

exp(−|y − y′|)RΘa
b
(y′)dy′|,

≤ 1

2

∫ ∞
y
|RΘa

b
(y′)|dy′,

=
a

2Du

∫ ∞
y
|(1− tanh(y′)) sech(y′)− 2 sech3(y′)|dy′,

=
a

2Du
(1− tanh(y)) sech(y),

≤ a

2Du
(1− tanh(R)) sech(R). (5.46)

Note that this usefully proves a couple of points. First, as hoped, there is no secular

growth in X for the bright solitary wave case. This is something we would expect as

there is no report, to the author’s knowledge, of an instability of this type in any other

solitary wave system, particularly those governed by focussing nonlinear Schrödinger

equations. Second, and nicely, our choice of ansatz becomes exponentially accurate for

large R, as for the dark case. Having established the asymptotic behaviour for large

X, we now turn our attention to the growth in z.

5.2.2 z-dependent behaviour

The asymptotic results in terms of growth in z are, in general, more challenging than for

the asymptotic behaviour for large x and so general behaviour from numerical solutions

of the next order correction is required. In particular, we observe numerically a growth

in the power of the solution for θ satisfying the first order dark perturbation equation
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Figure 5.1: Power P of the difference θ̃ = u(x̃, τ) − v(x̃, τ) in both the bright and the
dark case. θ̃ = 0 at z = 0 in both cases. Red (solid) line: numerically calculated
power for the bright case (denoted Pb); blue (dashed) line: numerically calculated
power for the bright case (denoted Pd); green (dotted) line: fitted dark power curve

f(τ) = 0.366τ
3
2 . Note, the dark power curve and its fit coincide.

(5.8), governed by

i
∂θ

∂z
+
Du

2

∂2θ

∂x2
+ 2U2

0 sech2(γx)θ = −γ2 sech2(γx) tanh(γx), (5.47)

and not in the case of the bright solitary wave correction, governed by

i
∂θb
∂z

+
Du

2

∂2θb
∂x2

+ a2(2 sech2(γ̃x)− 1)θb =
aγ̃2

Du

(
sech(γ̃x)− 2 sech3(γ̃x)

)
. (5.48)

We recall that θ is the difference between the two corrections θ = u1 − v1 for both the

bright and dark case. In the dark case, this can be argued using dispersive estimates

for linear Schrödinger operators with a decaying potential [130]. Such a result is not

available in the bright case.

Computational Study

We study secular growth using full numerical simulation of equation (5.8). These nu-

merical solutions also show that the asymptotic result for the non-existence of coupled

dark solitary waves carries over to a finite difference in diffraction coefficients. In ad-

dition, they show in detail the dynamic collapse of the coupled state. The forced

Schrödinger equation (5.8) was solved numerically using a 4th-order Runge-Kutta
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scheme (RK4) (see Chapter 2) in the normalized unit τ = U2
0 z and centered finite dif-

ferences in x̃ = γx, with θ(x, z) = θ̃(x̃, τ). The domain was taken to be large (L ∼ 1000)

and artificial homogeneous Neumann conditions were applied at the boundaries. Fig.

5.1 illustrates clear, substantial growth in the power P of θ̃, defined as the integral

of |θ̃|2 (obtained numerically), demonstrating secular growth is not solely confined to

the spatial dimension, but occurs for the evolution variable as well. These numerical

results were fitted with the curve f(τ) = 0.366τ
3
2 . This power growth can be obtained

from an asymptotic analysis of (5.8) for large z. Using Duhamel’s principle [131] we

can write

θ = i

∫ z

0
Φ(x̃, s̃)ds̃ e−2iU2

0 z, (5.49)

provided Φ satisfies the initial value problem

i
∂Φ

∂z̃
+
∂2Φ

∂x̃2
+ 2 sech2 x̃ Φ = 0, Φ(x, 0) = γ2 sech2 x̃ tanh x̃. (5.50)

For the above initial value problem we have the dispersive estimate [130]

||Φ||L∞(R) ≤ Cz−1/2, (5.51)

where the constant C can be sharp and therefore for z large enough,

||Φ||L∞(R) ∼ Cz−1/2 (5.52)

Note, crucially, this estimate applies because the potential for Φ, sech2(X), decays at

infinity and has a constant C such that sech(X)2 ≤ C(1 + X2)−1. Furthermore, the

projection of the initial condition, γ2 sech2 x̃ tanh x̃, onto the discrete spectrum, in this

case just sech(x̃), is zero and thus the estimate holds as the only remaining solution is

the projection onto the continuous spectrum [132]. This does not apply in the bright

case, for which the potential is not bounded and the projection of the initial condition

onto the discrete spectrum is non-zero. Furthermore, it can be shown that (5.8) has

a similarity solution of the form f(x/
√
z)e−2iU2

0 z. Thus the solution is widening at a

rate proportional to
√
z. Heuristically then, taking the power to be approximately the

width of the solution multiplied by the square of the amplitude, we arrive at

∫ ∞
−∞
|θ|2dx ∼ C̃z

3
2 , (5.53)
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Figure 5.2: Numerically computed coupled dark solitary waves. a) and b) show results
for artificial Dirichlet conditions, c) shows the result for artificial Neumann conditions.
u mode: blue (solid) line; v mode: red (dotted) line. The diffraction parameters are
Du = 1.0 and Dv = 1.02. a) Local view, b) expanded view.

giving the secular growth in z as desired.

5.3 Full Numerical Solutions

The lack of a steady, coupled, localized state was confirmed by full numerical solutions.

We first integrated the governing equations (5.3) using the same RK4 z-stepping and

centered differences for the x derivatives as used in numerically integrating (5.8). The

domain was taken very large (L ∼ 2000) to avoid boundary effects such as radiation

reflection. In each simulation, the quantities u exp(−i(U2
0 + V 2

0 )z) and v exp(−i(U2
0 +

V 2
0 )z) were found to be purely real for arbitrary stopping “times” z. We therefore sought

numerical solutions for steady coupled solitary waves u = U(x)e−iσz and v = V (x)e−iσz,

so that

Du

2

∂2U

∂x2
+ σU −

(
U2 + V 2

)
U = 0,

Dv

2

∂2V

∂x2
+ σV −

(
U2 + V 2

)
V = 0 (5.54)
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Figure 5.3: Evolution of the instability for a small difference in the diffraction coef-
ficients. u beam: blue (solid) line; v beam: red (dotted) line. (a) Profiles at z = 3,
(b) profiles at z = 10, (c) solution around x = 0 at z = 700, (d) expanded solution at
z = 700. U0 = V0 = 1 and the diffraction parameters are Du = 1.0 and Dv = 1.02.
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for real U and V . The system (5.54) was solved using a Newton iteration scheme (see

Chapter 2 and [69] for details) with the exact solution for Du = Dv as an initial guess

and continuing, without loss of generality, the Dv parameter so that it became larger

than Du. Both fixed boundary conditions, so that U(L) = U0 and U(−L) = −U0

and similarly for V with σ = U2
0 + V 2

0 , and zero flux boundary conditions, so that

∂xU(±L) = ∂xV (±L) = 0, were applied to determine whether the choice of boundary

condition made any difference to the stability. A representative example for solutions

found with the fixed boundary conditions is shown in Fig. 5.2. Fig. 5.2(a) shows

that locally, around x = 0, the v dark beam is the trivial solution, while the u mode

corresponds to the exact solitary wave with σ =
√

2U0. Fig. 5.2(b) shows that, away

from x = 0, the dark modes approach the original background levels. This is due to

the fixed boundary conditions at x = ±L. This figure clearly shows qualitatively that

the difference U −V matches the linear growth behaviour predicted by the asymptotic

result (5.16) and is a behaviour found in full numerical simulations, discussed later. In

the case of zero flux boundary conditions, the scheme converged to the steady state

corresponding to the exact dark NLS soliton solution with v = 0 and σ =
√

2U0, as

shown in Fig. 5.2 (c), in agreement with the fixed boundary condition result. These

numerical results indicate that a stable localized steady state consists solely of a single

mode, as opposed to the coupled modes found in the focussing NLS case.

Full numerical solutions of equations (5.3) confirm the results found from the study

of the steady states. Figure 5.3 illustrates full numerical solutions of the coupled

defocusing NLS equations (5.3) for a small difference in diffraction coefficients, Du = 1.0

and Dv = 1.02, as for the perturbation solution discussed previously. The initial

conditions used were

u = v = U0 tanh (γx) , (5.55)

with γ =
√

2U0/
√
Du. Clearly the u beam is settling down to a local dark solitary wave,

while the v beam is spreading out and decaying in a way that approaches, locally, the

steady solutions found with the fixed boundary conditions. This instability is driven

by the difference in the diffraction coefficients and occurs via a non-standard process.

The larger diffraction Dv of the v mode makes it initially diffract more than the u dark

beam. Such widening of the v notch relative to the u mode causes the u dark beam to

deform, which reinforces the widening of v. The latter is accompanied by the shedding

of diffractive radiation of growing amplitude, with the v mode progressively decaying
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Figure 5.4: Evolution of the instability for a larger difference in the diffraction coef-
ficients. u beam: blue (solid) line; v beam: red (dotted) line. (a) Profiles at z = 1,
(b) profiles at z = 3, (c) solution around x = 0 at z = 500, (d) expanded solution at
z = 500. U0 = V0 = 1 and the diffraction constants are Du = 1.0 and Dv = 1.25.
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to zero, as shown in Fig. 5.3(c) in the vicinity of x = 0 and in Fig. 5.3(d) over a larger

region around x = 0 in order to emphasise the shed diffractive radiation. The decay

of v to 0 is accompanied by the growth of shed radiation as both the u and v modes

individually conserve power, i.e. “mass” in the sense of invariances of the Lagrangian

of the coupled system (5.3); the power

Pu =

∫ ∞
−∞

(
|U0|2 − |u|2

)
dx (5.56)

of the u mode and the power

Pv =

∫ ∞
−∞

(
|V0|2 − |v|2

)
dx (5.57)

of the v mode are individually conserved. To conserve Pv, however, the v mode can

only decay by shedding radiation rising above v = V0 and so balance the decay to 0 in

a region expanding from x = 0. Therefore, the released diffractive radiation increases

in amplitude. Fig. 5.3(c) shows that, locally, the v-component decay is accompanied

by the u mode evolving to the new background level
√

2U0 predicted by the numerical

steady state results.

This instability mechanism of two coupled dark solitary waves is considerably more

pronounced with an increased difference in the diffraction coefficients of the two modes,

as illustrated in Fig. 5.4, for which Du = 1.0 and Dv = 1.25. The instability now evolves

on a shorter z scale, as expected. Again, Fig. 5.4(c) shows that the v dark beam decays

and that the u mode moves to the new background
√

2U0. This further confirms the

lack of a stable localized coupled steady state, the main conclusion of the present work.

5.4 Conclusions

We studied two coupled defocusing NLS equations describing two incoherent dark

beams propagating collinearly in a Kerr medium. We found that this system does

not possess a stable coupled (vector) solitary wave solution if the two dark components

undergo different diffraction, as one mode sheds radiation and progressively decays,

while the other settles to a dark soliton. This behaviour is due to a resonant instability

induced by the difference in diffraction coefficients. Numerical solutions fully confirm

this unstable evolution for arbitrary differences in the diffraction coefficients.
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Chapter 6

Conclusions

In this thesis we have studied solitary waves in focussing and defocussing nonlinear,

nonlocal optical media. A summary of the research for each chapter, the key contribu-

tions and the open questions these raise are given in the following sections.

6.1 Conclusions: Chapter 3

In Chapter 3 we studied exact solitary wave (nematicon) solutions and variational ap-

proximations of the nematicon equations. Notably, we constructed the first known ex-

plicit solitary wave solution for the model, which arises for a set of parameter values for

which the electric field and director equations are identical. This constructive approach

is novel as an independent discovery of an equivalent solution was made via trial and

error substitution in the case of χ2 optical media. One consequence of this direct con-

struction is the discovery of previously unknown connections between nematicons and

other famous non-integrable equations, which are Fisher’s equation from mathematical

biology, the Lane-Emden equation from astrophysics and the Schrödinger-Newton equa-

tion from quantum gravity. Furthermore, we found solutions in both (1+1) and (2+1)

dimensions although the (2+1) dimensional solution relied heavily on a complicated

solution of Abel’s equation of the first kind. As the exact solutions were restricted to a

particular parameter set, we studied more general variational approximations in (1+1)

and (2+1) dimensions. Generally it was found that the profiles closest to the NLS

type solitary wave and the exact solution profiles were more accurate (compared with

numerical solutions) than a Gaussian ansatz, which is more commonly used in optics

due to its ease of use, connection with the Snyder-Mitchell approximation, and the fact
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lasers give beams with profiles close to a Gaussian. This contributed a much needed,

thorough comparison study to the community, as well as the previously undiscovered

explicit solution which can now be used as a benchmark.

One feature of the variational method is the prediction of the existence of a power

threshold, which was also predicted in the existence proof of Panayotaros [33]. This

lead to a subtle question as to how to verify the accuracy approximate solutions as there

is a subtle difference between finite domain and infinite domain solitary wave solutions.

In particular, it was found in reference [33] that while a power threshold exists for the

nematicon equations posed in the infinite domain, one does not exist for the truncated

problem on a disk with homogeneous Dirichlet boundary conditions. Indeed, there are

non-trivial solutions of arbitrarily small amplitude in the finite, homogeneous Dirichlet

case,and not for the infinite domain. This poses a very rich question for solitary waves

in nonlocal media in general. As power thresholds are observed in experiment, it

suggests the nematicon model is only valid if posed on an infinite domain and yet

experimental domains are necessarily finite. Furthermore, it is an open question on

how to compute this power threshold. In particular, we observed the beginnings of a

bifurcation for lower power solutions with homogeneous Dirichlet boundary conditions.

It is not clear if this is an indication of a threshold or not, but suggests a thorough

computational study should be undertaken, examining the effects of multiple different

boundary conditions (periodic, Robin, Neumann etc.) using numerical continuation

techniques and, potentially, the development of novel numerical methods. A similar

study should be done for the full nematicon equations to validate the existence of this

threshold as a test of the model’s validity.

The final finding of the work was the discovery of a novel form of bistability. This

was determined numerically by studying the effect of linearizing the pre-tilted nemati-

con equations to the nematicon equations. This illustrated the suspicion that there are

physical phenomena that are lost when studying the linearized nematicon equations.

In particular, it seems to broaden our interpretation of bistability as the stable solu-

tions appear restricted to just the director solutions, begging the question of whether

or not there is a technological application for this discovery. It also brought into ques-

tion the notion of “strong nonlocality”, which should be discussed at length within the

community. Furthermore, it leaves open the critical fundamental question of bistabil-

ity, which has a direct engineering application as being the theoretical underpinning

of an all-optical circuit transistor [81]. This leads to a natural question of whether or
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not bistability exists for the full nematicon equations. Work regarding this question is

currently underway with promising results.

6.2 Conclusions: Chapter 4

In the fourth Chapter, we described a general and universal method for approximat-

ing solitary waves in nonlinear, nonlocal focussing media. The inspiration for such a

method was drawn from the Snyder-Mitchell work [59], which stresses the possibility

of theoretically accessible solitary waves in a physically realizable system. Our ap-

proach adheres to this philosophy, but is considerably more successful. It is the first

of its kind in terms of its range of applicability, accuracy, ease of implementation and

asymptotic arguments. We derived approximate solutions for solitary waves for four

different models, three of which were previously analytically intractable, the fourth be-

ing the nematicon equations which was studied in both (1+1) and (2+1) dimensions.

These were then extensively compared with numerical solutions and it was found that,

in all cases, comparison with numerical solutions was excellent. The multiple scales

of the problem, which could not previously be demonstrated analytically, were made

clear and a discussion of where error may arise was given. This method is not without

its limitations. In particular, we noticed clear failure for a mixed nonlinearity type

problem.

This asymptotic method has now opened the possibility of studying analytically a

good number of nonlocal, nonlinear systems that were previously intractable. In par-

ticular, it looks as if the full nematicon equations, which were previously only accessible

numerically, can now be studied analytically in certain circumstances. This would be

a long undertaking, as the oscillatory homogeneous solutions of the director equation

almost certainly take uniqueness from the problem and allow for a considerably larger

and richer set of solitary wave solutions.

One crucial open equation is to determine, if possible, a sharp a priori estimate on

the approximations. In the absence of a small parameter, we do not necessarily expect

these solutions to become better for higher nonlocality. However, such an estimate

would be particularly useful when using the approximation to study systems of nonlocal,

nonlinear solitary wave equations in higher dimensions, which may be computationally

intractable. Then one could then know, a priori, the error of the approximation when

numerical solutions are not available. Such a computationally intractable problem may
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arise when studying, for instance, many non-interacting particles in the presence of a

Newtonian gravitational field as described by the Schrödinger-Newton equations.

6.3 Conclusions: Chapter 5

In Chapter 5 we presented the discovery and analysis of a novel instability mechanism

for coupled nonlinear dark solitary wave equations in defocussing media. The model

under consideration was that of two coupled nonlinear Schrödinger equations with dif-

fering diffraction coefficients. We found that, even for a small difference in diffraction

coefficients, one of the initially launched solitary waves decayed into radiation. The

mechanism underlying this was non-trivial, with the differing diffraction coefficients

driving the process. The mode with a higher diffraction coefficient would attempt to

do diffract, forcing the hand of the other mode due to conservation of power. This

manifested itself analytically in the form of secular terms that arose not only in the

stationary case, but in the z dependent case as well. Explicit behaviour was found

for large values of x in both the focussing and defocussing case for the limit of close

diffraction coefficients. In particular, it turns out for vector dark solitary waves, the

instability can be described by secular terms in a forced Schrödinger equation, con-

necting the phenomena with classical quantum mechanics. In the focussing case, the

asymptotic behaviour was found using a Neumann series, which would apply to a broad

range of decaying potentials. This explained why the phenomenon does not arise in the

case of focussing media, which has gone unreported in the literature. Furthermore, the

instability becomes more pronounced as the diffraction coefficient difference becomes

larger, which was verified numerically. The main implication of the work is that a vec-

tor (meaning both components are non-zero) dark solitary wave is simply unobservable

when the beams undergo different diffraction.

Some natural open questions regarding this work are can one study the limit of large

diffraction coefficients and if nonlocality could play a role in stabilization. Both of these

questions would provide fundamental theory on the underlying dynamics of vector dark

solitary waves currently absent from the literature. It appears as if the large diffraction

coefficients case is immediately amenable to asymptotic analysis and our own numerical

simulations suggest there is rich behaviour to be described as the instability becomes

stronger. The nonlocality question is a larger one and open questions remain as to

what degree of nonlocality could provide a stable vector dark solitary wave. A first
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study would examine the local limit, to see if this is sufficient to dampen secularity at

the next order. A second study would look at the effects of large non-locality.
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Appendix A

Chapter 3 Constants

A.1 One space dimension constants

For the (1 + 1) dimensional trial functions (3.27) the integrals ci, i = 1, . . . , 4, (3.35) in

the averaged Lagrangian (3.34) are as follows.

For the sech trial functions (3.28) the equivalent Gaussian constants are

C =
2
√

2√
π
, A2 =

3C3
√

2π

4π2
(A.1)

and the integrals are

c1 = 2, c2 =
2

3
, c3 =

16

15
, c4 =

4

3
. (A.2)

For the sech2 trial functions (3.29) the equivalent Gaussian constants are

C =
4
√

2

3
√
π
, A2 =

3C3
√

2π

8(π
2

3 − 2)
(A.3)

and the integrals are

c1 = c4 =
4

3
, c2 = c3 =

16

15
. (A.4)

For the Gaussian trial functions (3.30) A = 1 and C = 1 and

c1 = c2 = c3 = c4 =

√
π

2
. (A.5)
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A.2 Two space dimension constants

For the (2 + 1) dimensional trial functions (3.43) the integrals Di, i = 1, . . . , 4, and the

equivalent Gaussian constants A and C are as follows.

For the sech trial functions (3.28) the equivalent Gaussian constants are

C = 2
√

ln(2), A =

√
2 ln(2)√
Ix32

, Ix32 =

∫ ∞
0

x3 sech2 x dx = 1.352301002 . . . (A.6)

and the integrals are

D1 = ln(2), D2 =
ln(2)

3
+

1

6
, D3 =

8 ln(2)

15
+

1

15
, D4 =

2 ln(2)

3
− 1

6
(A.7)

For the sech2 trial functions (3.29) the equivalent Gaussian constants are

C = 2

√
2 ln(2)

3
− 1

6
, A =

C2

√
8Ix34

, Ix42 =

∫ ∞
0

x4 sech2(x)dx = 0.2082954966 . . .

(A.8)

and the integrals are

D1 = D4 =
2 ln(2)

3
− 1

6
, D2 = D3 =

8 ln(2)

15
+

1

15
. (A.9)

For the Gaussian trial function A = 1 and C = 1 and the integrals are

D1 = D4 =
1

4
, D2 = D3 =

1

2
. (A.10)
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Appendix B

Chapter 3 Numerical Methods

For comparison of the results of modulation theory with numerical results we used well-

known numerical methods for computing solitary waves, the Imaginary Time Evolution

Method or ITEM [68] and a Newton iteration [69]. As Newton iterations are capable

of computing unstable solitary waves, the stability of the computed profiles to radially

symmetric perturbations was checked using a z dependent numerical method described

in Chapter 2.

B.1 Imaginary Time Evolution Method

A well known numerical method for computing solitary waves is the Imaginary Time

Evolution Method or ITEM [68]. This method makes the substitution z → iz in the

electric field equation (3.2) or (3.4), converting it to a parabolic, heat-type, equation

and integrates this forward in z, while renormalizing the solution at each step in order

to have a fixed, given power. If this renormalisation is not done, the solution converges

to the trivial one. Otherwise known as a continuous normalized gradient flow, the

method is a continuous steepest descent method used to minimize nonlinear Schrödinger

functionals [68,101]. In one dimension, the numerical method was benchmarked to the

exact solution derived in Section 2. In the following descriptions, all integrals were

evaluated using the trapezoidal rule.

B.1.1 One Dimension

Seeking stationary solutions of the linearised system (3.4) and (3.5) on a finite com-

putational domain x ∈ [−L,L] (L sufficiently large) with artificial Dirichlet boundary
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conditions u(L) = u(−L) = θ(−L) = θ(L) = 0, we integrate in imaginary time z̃ = iz

via the forward Euler method and renormalize at each step. Dropping the tilde on z,

in detail the ITEM is the iterative scheme

ṽn = vn + dz

(
1

2
vnxx + 2ϑnvn

)
, (B.1)

vn+1 =

√
P

||ṽn||L2

, (B.2)

where limn→∞ v
n is the numerical approximation to u and limn→∞ ϑ

n is the numerical

approximation to θ. Here P is the required optical power. The spatial derivatives

were approximated using standard, second order finite differences on a uniform grid

and the elliptic director equation (3.5) was solved at each iteration using Thomas’

algorithm [133].

In the case of the full system (3.2) and (3.3) the ITEM iteration is

ṽn = vn + dz

(
1

2
vnxx + sin(2ϑn)vn

)
, (B.3)

vn+1 =

√
P

||ṽn||L2

. (B.4)

To solve the director equation (3.3) we applied a Picard iteration on the equivalent

equation

νϑnxx − 2qϑn = q sin(2ϑn)− 2qϑn + 2 cos(ϑn)(vn)2, (B.5)

which was found from numerical experiments to converge much more rapidly than

using a straight Picard iteration to solve (3.3) directly. In all computations the values

L = 100, dx = 0.1 and dz = 0.00125 were used. Iterations continued until the stopping

condition ||v̄n+1 − v̄n||l2 < 10−10, v̄n being the spatially discretized approximation of

vn, was satisfied.

B.1.2 Two Dimensions

The only significant numerical differences between the one and two dimensional cases

are the formulation of the boundary value problem and the treatment of the singular

term in the cylindrically symmetric Laplacian. The method is the same as used in

Refs. [33, 68]. We now consider a positive, finite computational domain r ∈ [0, Rmax],

with Rmax sufficiently large, and apply the mixed boundary conditions ur(0) = θr(0) =
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u(Rmax) = θ(Rmax) = 0. Using L’Hôspital’s rule, the Laplacian at the origin was

approximated by ∇2 ≈ 2∂2/∂r2. For the linearized nematicon equations (3.4) and

(3.5), the ITEM sequence is then the same as in the (1 + 1) dimensional case, albeit in

higher dimensions

ṽn = vn + dz

(
1

2
∇2vn + 2ϑnvn

)
, (B.6)

vn+1 =

√
P

||ṽn||L2

. (B.7)

where ∇2 = ∂2
r + 1

r∂r and the L2 norm is given by

||f(r)||L2 =

∫ ∞
0

rf2(r) dr. (B.8)

Again, P is the required optical power. The spatial derivatives were again approximated

using standard second order finite differences and ϑn, given by the director equation

(3.5), was found using Thomas’ algorithm [133] at each iteration.

In the case of the full equations (3.2) and (3.3) the ITEM iteration is

ṽn = vn + dz
(1

2
∇2vn + sin(2ϑnvn)

)
, (B.9)

vn+1 =

√
P

||ṽn||L2

. (B.10)

The elliptic director equation (3.3) with the mixed boundary conditions was solved, as

in one dimension, using the Picard iteration

ν∇2ϑn − 2qϑn = q sin(2ϑn)− 2qϑn + 2 cos(ϑn)(vn)2 (B.11)

In all computations, the values Rmax = 100, dx = 0.1 and dz = 0.00125 were used.

Iterations continued until the stopping condition ||v̄n+1 − v̄n||l2 < 10−10, v̄n being the

spatially discretized approximation of vn, was satisfied.

B.2 Newton Iteration

In addition to the ITEM, a Newton iteration for the two-dimensional problem was

used. In contrast to Yang [69], who used a conjugate-gradient or biconjugate gradient

method to solve the linear system at each Newton iteration, we use a direct, sparse LU
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decomposition. The spatial discretizations, as well as the boundary conditions, are the

same as for the ITEM. However, the iteration is now as follows. We define the operator

L(u, θ) =

 1
2∇

2u− σu+ 2θu

ν∇2θ − 2qθ + 2|u|2

 (B.12)

and its linearization δu and δθ around given iterates un and θn

L1,n(δu, δθ) =

 1
2∇

2(δu)− σ(δu) + 2θn(δu) + 2un(δθ)

ν∇2(δθ)− 2q(δθ) + 4un(δu)

 . (B.13)

The iteration L1,n(δun, δθn) = −L(un, θn), where δun = un+1 − un, and similarly

δθn = θn+1 − θn, was continued until maxr∈[0,Rmax]{|δun|, |δθn|} < 10−10. As the

nematicon equations were solved for a given σ rather than power, solutions for a given

σ were found and the power was computed a posteriori, which was then used as an

input to benchmark with the ITEM.
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Appendix C

Chapter 4 Numerical Method

For comparison of the asymptotic approximation with numerical results, a modified

Newton iteration was used. We define the operator

N (u, θ) =

 1
2∇

2u− σu+ 2θu

∇2θ − κεθ + εF (u)

 (C.1)

and its linearization around an initial guess u0, θ0 applied to (δu, δθ)T

L0(δu, δθ) = (C.2) 1
2∇

2 − σ + 2θ0 2u0

εF ′(u0) ∇2 − κε

 δu

δθ

 .

Then the iteration defined by

un+1 = un − L−1
0 N (un, θn), (C.3)

is the modified Newton method and will converge to a solution. In general, the radius of

convergence is smaller than Newton’s method, as is the order of convergence (from our

own testing). However, speed is gained from being able to store the initial factorization

rather than re-construct and solve a linear system at each step as in the standard

Newton iteration. In two dimensions we used a finite computational domain r ∈ [0, L]

with uniform spacing (h = 0.01), where L = 20 in the thermal cases and L = 120 in the

nematicon case. The boundary conditions were taken to be d
dru(0) = d

drθ(0) = u(L) =

θ(L) = 0. Standard centered finite differences were used, with the one notable change

that ∇2 was approximated as 2 d2

dr2
at the origin, which follows from L’Hôpital’s Rule.
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Iterations of the modified Newton Method were continued until the L2 norm,

||f ||L2 =

∫ ∞
0

rf(r)dr, (C.4)

fell below 10−6. In the (1+1) dimensional nematicon case the only difference is the

domain was taken to be x ∈ [−L,L] with L = 120 and h the same. The boundary

conditions were u(L) = u(−L) = θ(L) = θ(−L) = 0 and the iterations continued until

the L2 norm, now given by

||f ||L2 =

∫ ∞
−∞

f(x)dx, (C.5)

fell below 10−6.
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Appendix D

Published Works

In addition to the presentation of this research at numerous conferences, the author of

this thesis has also co-authored the following articles

• J. Michael L. MacNeil, Noel F. Smyth and Gaetano Assanto “Exact and approx-

imate solutions for optical solitary waves in nematic liquid crystals.” Physica D:

Nonlinear Phenomena 284 (2014): 1-15.

• Gaetano Assanto, J. Michael L. MacNeil, and Noel F. Smyth. “Diffraction-

induced instability of coupled dark solitary waves.” Optics Letters 40.8 (2015):

1771-1774.

• Alessandro Alberucci, Gaetano Assanto, J. Michael L. MacNeil, Noel F. Smyth.

“Nematic liquid crystals: An excellent playground for nonlocal nonlinear light

localization in soft matter.” Journal of Nonlinear Optical Physics and Materials

23.04 (2014): 1450046.

• Gaetano Assanto, J. Michael L. MacNeil, and Noel F. Smyth. “Comments on

Nonlinear refractive index induced collision and propagation of nematicons by

L. Kavitha, M. Venkatesh, S. Dhamayanthi and D. Gopi.” Journal of Molecular

Liquids 199 (2014): 481-482.
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