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ABSTRACT 

In order to delineate the potential sources and to understand the main controls 

on the biogeochemical cycling of dissolved and particulate organic matter (DOM, 

POM) and dissolved inorganic nitrogen (DIN) during estuarine mixing, 

comprehensive seasonal geochemical and isotopic and surveys across the freshwater-

tidal interface were carried out in the Tyne and Tweed Estuaries, NE UK. This study 

provided a contrast between a relatively pristine system (Tweed) with one that is 

heavily influenced by anthropogenic activity (Tyne). 

Geochemical and isotopic (
13

C, 
14

C and 
15

N) analyses demonstrated the 

predominance of terrigenous organic matter in both these estuaries, with elevated 

river discharges leading to enhanced terrestrial loading. High pCO2 values in the 

Tyne (summer) and Tweed (winter) suggested that a significant fraction of this 

terrestrially-derived organic matter (both DOM and POM pools) is relatively labile 

and can potentially undergo significant mineralization during estuarine mixing.  

In both estuaries in situ processing of DIN was relatively minor, with mixing 

between different sources being the main factor in controlling the distribution of 

nitrate and ammonium across the salinity gradient. However, anthropogenic 

ammonium discharges in the Tyne were found to have an enormous direct and 

indirect impact on estuarine nitrogen cycling. 

Large, concave removals of terrigenous high molecular weight (HMW) DOC 

caused by flocculation, biodegradation, and/or photochemical oxidation were 

associated with a non-conservative 
13

C-enrichment in δ
13

C signatures. Radiocarbon 

dates showed an export of young (modern) HMW DOC and old (100-1000s of 

years), terrigenous POC to the North Sea. 
14

C-enriched values in coastal North Sea 

HMW DOC were attributed to anthropogenic discharges originating from within the 

coastal North Sea environment. In the Tweed, seasonal changes in soil characteristics 

resulted in an older age for POM during the summer. In the Tyne, decreases in 

POC% with increasing salinity sometimes coincided with an increase in POC age. 

This was attributed to mixing with older sediment and to the possible preferential 

loss of the younger, more labile POC fraction during mineralization.  

This study has shown that land use patterns, sewage inputs, and freshwater 

flushing time are the main influences in determining the behaviour and origin of 

organic matter and DIN entering the coastal North Sea in these two systems. 
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CHAPTER 1: Evaluating the sources and biogeochemical cycling of dissolved 

inorganic nitrogen in two temperate North Sea estuaries using stable isotopes 

 

ABSTRACT 

Concentrations and nitrogen isotope ratios of nitrate (δ15NO3
-) and 

ammonium (δ15NH4
+) from the Tyne and Tweed Estuaries, NE England, were 

analysed during winter and summer periods. During both winter and summer 

δ15NH4
+ signatures in the Tyne Estuary were dominated by a source originating from 

a sewage works located in the lower part of the estuary. While the magnitude of this 

ammonium plume varied considerably on a temporal basis (32.1-149.2 �M), the 

δ15NH4
+ signature of this sewage-derived discharge was remarkably constant (+10.6 

±0.5 ‰) during all four surveys to the Tyne. This sewage signal could be tracked 

across the estuary and explained much of the variability in δ15NH4
+ signatures. In the 

Tweed, ammonium concentrations were relatively low (<7 �M) and δ15NH4
+ values 

closely followed concentration weighted mixing between riverine and marine 

sources. In both the Tyne and Tweed Estuaries most of the variability in nitrate 

concentrations and δ15NO3
- signatures across the salinity gradient could also be 

explained by mixing between riverine and Coastal North Sea sources. The ability of 

both isotopic and concentration weighted mixing curves to describe the changes seen 

in δ15NO3
- and δ15NH4

+ signatures demonstrated very little estuarine processing of 

dissolved inorganic nitrogen (DIN). Large seasonal differences in the isotopic 

signature of riverine nitrate were attributed to changes in the relative proportions of 

different sources. In the Tweed increased contributions from agricultural soil, 

atmospheric and fertiliser sources during the winter led to a higher nitrate flux and 

more 15N-depleted δ15NO3
- values. In the Tyne, where agricultural inputs are less 

important, isotopically light nitrate entering the estuary during one winter survey 

demonstrated the importance of atmospherically-derived sources during periods of 

high river discharge associated with winter storm events. This study highlights the 

important role that hydrological conditions, seasonal variability and large estuarial 

inputs of sewage-derived ammonium can have in controlling the biogeochemical 

cycling of DIN in temperate estuaries. 
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INTRODUCTION 

Nitrogen (N) is generally considered to be a limiting nutrient in both 

freshwater and marine ecosystems (Downing, 1997; Hecky and Kilham, 1988; 

Schindler, 1977; Vitousek and Howarth, 1991). And since the advent of the industrial 

era, human population increases have lead to significant changes in the amount of 

terrestrially-derived dissolved inorganic nitrogen (DIN; nitrate, nitrite and 

ammonium) that enters rivers and estuaries, and this trend is expected to continue in 

the near future (Galloway et al., 1995). These elevated N inputs enter estuaries either 

through either riverine transport or via atmospheric deposition, which includes both 

direct deposition to the surface of estuaries and indirect watershed runoff (Castro and 

Driscoll, 2002). Anthropogenic N sources carried by overland flow include fertiliser, 

sewage and industrial discharges, whereas fossil fuel combustion and agricultural 

production are main contributors to atmospheric N (Galloway et al., 1995). It has 

been estimated that atmospheric N accounts for at least 26% of the terrestrial input 

into the North Sea (Rendell et al., 1993). And across the UK, DIN concentrations in 

wet deposition are relatively high, with precipitation-weighted mean concentrations 

of nitrate and ammonium approaching levels of up to 40 and 60 �M, respectively 

(Irwin et al., 2002). 

Increased DIN input from anthropogenic sources along the land-sea margin 

has led to coastal eutrophication, whereby overall increases in primary production 

are accompanied by major shifts in the dominant flora (Duarte, 1995) and fauna 

(Heip, 1995) living in estuarine environments. Furthermore, enhanced nitrogen 

loading has led to a substantial increase in harmful algal blooms along the coastal 

regions of the U.S. and other parts of the world (Anderson, 1989; Cosper et al., 1989; 

Hallegraeff, 1993; Smayda, 1990) leading to such phenomena as ‘brown’ or ‘red’ 

tides. Moreover, elevated ammonium inputs may lead to enhanced N2O generation in 

estuarine and coastal zones generated via nitrification (de Wilde and de Bie, 2000; 

Hashimoto et al., 1999). Increases in the atmospheric concentration of N2O, which is 

a very effective greenhouse gas, could have tremendous implications for global 

climate change (Galloway et al., 1995; Lashof and Ahuja, 1990). Since 

biogeochemical processes within estuaries will transform, remove and add to the 

overall DIN pool, understanding the main controls on these processes is therefore 
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essential in determining the extent to which these highly dynamic systems regulate 

DIN inputs to marine systems. 

In order to delineate biogeochemical processes within an estuary, 

concentrations of DIN are traditionally plotted versus salinity. Assuming steady 

state, tidal averaged conditions, a negative deviation from conservative mixing (i.e., 

a straight line relationship between generally higher riverine inputs and lower marine 

background marine concentrations) implies the loss of a particular dissolved 

constituent during estuarine mixing (Officer, 1979). Conversely, positive deviations 

from conservative mixing suggest a supplementary estuarine source. For example, 

denitrification or algal and microbial uptake will result in non-conservative concave 

removal of nitrate across as estuary, whereas nitrification will result in non-

conservative convex addition of nitrate and depletion of ammonium. However, in 

cases where there is an approximate balance between sources and sinks, 

concentration versus salinity plots may result in apparent conservative behaviour 

which can be falsely interpreted as a lack of biological activity (Middelburg and 

Nieuwenhuize, 2001). In such cases the role of estuarine biogeochemical processing 

will be greatly underestimated.  

The simultaneous use of concentration data with stable isotope signatures of 

DIN can provide further insight into DIN attenuation caused by biogeochemical 

processing within an estuarine environment. Utilising stable isotope signatures to 

examine biological modification and cycling of reactive N relies on the extent to 

which δ15N signatures are altered during a particular process. This alteration results 

from isotope fractionation caused by kinetic effects, which occur as the result of 

differences in activation energies caused by mass differences (Galimov, 1985). This 

typically results in the residual substrate becoming more enriched in the heavier 

isotope, 15N (i.e., a less negative δ15N value). For example, during denitrification the 

residual nitrate will become increasingly more enriched in 15N due to the preferential 

use of isotopically lighter nitrate (Cline and Kaplan, 1975; Liu and Kaplan, 1989; 

Mariotti et al., 1981), whereas nitrification results in the production of nitrate which 

is relatively 15N-depleted (Mariotti et al., 1981; Miyake and Wada, 1971; Sutka et al., 

2004). Laboratory and field studies have also shown distinct nitrogen isotope 

fractionation signals during microbial and algal uptake of DIN (Altabet, 2001; 

Mariotti et al., 1984; McCusker et al., 1999; Ostrom et al., 1997; Sigman et al., 1999; 
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Velinsky and Fogel, 1999; Waser et al., 1998). Consequently, even in cases where 

nitrate concentrations across an estuary exhibit conservative behaviour, δ15NO3
- may 

point to significant biogeochemical processing. For instance, in a study carried out 

by Middelburg and Nieuwenhuize (2001) in the Loire Estuary, while nitrate 

concentrations generally exhibited conservative mixing, δ15NO3
- signatures showed 

substantial non-conservative 15N-enrichment. While the authors were not able to 

identify the exact mechanisms involved with this non-conservative 15N-enrichment, 

it was suggested that nitrate being consumed was replenished with an isotopically 

heavier nitrate, perhaps from a partially denitrified sediment derived source. 

Due to isotope fractionations in the precursor nitrogen species, stable nitrogen 

isotope signatures (δ15N) can also provide a valuable means to elucidate the origin of 

DIN. For example, it has been shown that fertiliser-derived nitrate, which is 

relatively more 15N-depleted, can be successfully separated from septic tank / animal 

waste, which typically has heavy δ15N values > 7‰ (Kendall, 1998). In addition, the 

average isotopic signature of both ammonium (~-10 to +2 ‰) and nitrate (~-4 to 

+6‰) in precipitation is normally isotopically lighter than DIN found in soils, which 

typically ranges between 0 to 10‰  (Fogg et al., 1998; Garten Jr., 1992; Moore, 

1977; Paerl and Fogel, 1994). Within an estuarine environment, δ15N signatures have 

demonstrated their usefulness as accurate indicators of anthropogenic pollution. 

Relying on isotopic differences between nitrate in groundwater derived from natural 

soils and that originating from wastewater (which is generally more 15N-enriched), 

McClelland and Valiela (1998) were able to identify the effects of increasing 

wastewater inputs on the δ15N values of estuarine producers in Waquoit Bay, MA, 

US. However, the use of δ15N signatures as a tool to delineate DIN origin can often 

be complicated by significant source signal overlap. For instance, nitrate derived 

from sewage sources will often possess the same δ15NO3
- signature as nitrate 

originating from animal waste (Kendall, 1998). Since stable isotope signatures of 

DIN in estuaries will reflect both the source of the material and the degree of 

biological transformation, only in cases where there is minimal signal overlap and 

relatively minor subsequent isotope fractionation effects can δ15N values be used 

successfully as provenance indicators. 
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Utilising concentrations and δ15N ratios, the main objectives of this study 

were to: 

1) Determine whether δ15N signatures of ammonium and nitrate could help us 

understand the main controls on the biogeochemical cycling of DIN in two 

contrasting northeastern UK estuaries, the Tyne and Tweed (Figure 1). 

2) Determine whether δ15NH4
+ signatures in the Tyne could be used to trace 

ammonium discharges originating from the Howdon sewage works, one of the 

UK’s largest estuarial secondary treatment facilities 

3) Determine whether δ15NO3
- signatures in both estuaries could discriminate 

between different nitrate sources, despite the potential for signal overlap and the 

natural complexity associated with estuarine environments. 

In order to properly assess the potential nitrogen isotope variability within these two 

estuaries, samples were collected during different seasonal and hydrological 

conditions. 

 

MATERIALS AND METHODS 

 

Description of Study Sites 

 

Tyne Estuary 

The River Tyne, which flows through the densely populated city of 

Newcastle, has a total drainage area of approximately 2900 km2 and an average 

freshwater flow of ~48 m3/s. Its two main tributaries are the North Tyne, which 

receives humic-rich waters draining areas of blanket peat afforestation, and the South 

Tyne, which drains relatively pristine moorland (Baker and Spencer, 2004). The 

North and South tributaries converge downstream to form the River Tyne, which 

supplies more than 90% of the total river discharge into the Tyne Estuary (Figure 1). 

Most of the remaining freshwater input is derived from the River Derwent. The 

maximum extent of the tidal estuary is approximately 33 km inland from the North 

Sea, and the residence time is approximately 5-20 days (A. P. Stubbins, private 

communication). The Tyne is a partially mixed mesotidal estuary (Baker and 

Spencer, 2004). Although industrial fluxes to the lower part of the estuary are in 

decline, it continues to receive significant amounts of urban waste, particularly from 
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the Howdon sewage works (HSW). Located approximately 5.9 km upriver from the 

seawall, HSW is one of the UK's largest secondary treatment facilities (Baker and 

Spencer, 2004; Upstill-Goddard et al., 2000). However, the water quality in the Tyne 

upstream of Newcastle has improved significantly over the past few decades. 

 

Tweed

Tyne

R. Derwent

R. Tweed

R. Whiteadder

R. Tyne

Howdon Sewage
Works

N

N

North Sea

North Sea5 km

1 km

A1 Road Br.

Newcastle upon
Tyne

Berwick
upon Tweed

Tweedmouth 
sewer outlet

 

 

Figure 1. Map of the Tyne and Tweed Estuaries 

  

Nitrate and nitrite inputs into the Tyne Estuary, which subsequently generally 

obey conservative mixing behaviour across the salinity gradient, range from 56.5-

118.0 �M (mean 81.3 �M) and 0.3-3.6 �M (mean 1.3) respectively, and no 

correlation between nutrient input and river discharge has been observed (Kitidis, 
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2002). Ammonium concentrations in the Tyne River range from 1.3-26.2 �M (mean 

10.3 µM), although axial profiles of the estuary have shown that ammonium levels in 

the Tyne are generally dominated by point source inputs originating from HSW 

(Figure 1), which can often comprise over 70% of the DIN pool in the lower part of 

the estuary (Kitidis, 2002). Although rates have not been adequately quantified, high 

levels of both ammonium and nitrifying bacteria imply that nitrification is an 

important process in the Tyne Estuary (J. Barnes, private communication). The Tyne 

Estuary is considered to be a net heterotrophic system during both the winter and 

summer, with low chlorophyll a concentrations (< 4.5 µg/L) in both seasons 

signifying that autochthonous material comprises a relatively minor component of 

the organic matter (Chapters 2-5). 

 

Tweed Estuary 

 The Tweed River and its tributaries drain a rural, relatively sparsely 

populated region located in the border region between England and Scotland. Most 

of the Tweed’s discharge originates from the main river, although approximately 

10% of the freshwater input comes from the Whiteadder, which joins the Tweed 

approximately 6.5 km upriver from the North Sea. The combined catchment area of 

the Tweed and Whiteadder is approximately 4900 km2 and the average freshwater 

input into the estuary is ~84 m3/s (Fox and Johnson, 1997). The maximum length of 

the Tweed estuary (Figure 1) is around 13 km and the residence time is 

approximately 1 day (Uncles and Stephens, 1996). The Tweed is a partially mixed to 

stratified microtidal estuary (Uncles and Stephens, 1996). The Tweed catchment is 

dominated by agricultural activity, ranging from upland areas of moorland used for 

sheep grazing to more arable regions in the lowlands (Neal, 2002). The Tweed 

receives significantly less anthropogenic inputs than the Tyne, as reflected in its 

favourable water quality ratings (Robson and Neal, 1997). 

Large seasonal variations in nitrate inputs have been reported in the Tweed 

Estuary, ranging from over 300 �M in winter to less than 30 �M in summer (Uncles 

et al., 2003). These seasonal variations in nitrate concentrations have been attributed 

to reduced biological processing and the additional release of stored terrestrial 

nutrients during the winter (Balls, 1994; Uncles et al., 2003). Although a sewage 

works is located within the tidal estuary (Figure 1), the smaller population base in the 
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Tweed watershed implies that sewage effluent should not significantly contribute to 

the DIN pool within the freshwater-tidal interface. Thus, compared to the Tyne 

ammonium in the Tweed is generally quite low (<10 �M; Balls, 1994).  As in the 

Tyne, nutrients profiles in the Tweed Estuary normally reflect conservative mixing 

between relatively high river inputs and low North Sea concentrations (Balls, 1994; 

Uncles et al., 2003), although non-conservative behaviour for ammonium has also 

been reported (Shaw et al., 1998). While a study by Shaw et al (1998) has found that 

phytoplankton activity within the estuary can cause removal of DIN, uptake rates in 

the Tweed are generally low compared to other estuaries. The low chlorophyll a 

concentrations (<2 �g/L) typically found in the Tweed Estuary (Uncles et al., 2000, 

Chapter 2) have been attributed to rapid flushing which prevents the occurrence of 

repeated algal cell division. Because of the rapid flushing time and associated quasi-

conservative mixing behaviour, little biogeochemical modification of nutrients is 

thought to occur in the Tweed Estuary (Uncles et al., 2002). While the Tweed is 

considered to be net heterotrophic system during the winter, photosynthesis becomes 

the dominant process during the summer (Chapter 2). Due to the relatively low 

chlorophyll a concentrations, photosynthetic activity in the Tweed is thought to be 

dominated by benthic macrophytes (Uncles et al., 2000, Chapter 2).  

 

Sample Collection 

Data reported here (Tables 1& 2) are from near-surface water samples 

collected on single day excursions to the Tyne (Feb-02, Jul-02, Mar-03, Jul-03) and 

Tweed (Jul-03, Dec-03) Estuaries. Site selection within the estuary was based on in 

situ salinity measurements (using a portable probe) in order to ensure adequate, high-

resolution coverage of the full salinity gradient. Once back in the laboratory, salinity 

was analysed on a pre-calibrated Hanna (model 8633) conductivity meter. Samples 

were collected at a depth of 1-2 m from a small boat using a submersed pump. Water 

samples for concentration and isotopic analysis of DIN were collected by large 

volume pumping into pre-cleaned 4 L high density polyethylene (HDPE) containers. 

River discharge data is reported here as the two-day average incorporating the days 

prior to and day of sampling. Discharges for the Tyne (Q = 144.6 m3/s, 27-28 

February 2002; Q = 8.6 m3/s, 10-11 July 2002; Q = 30.7 m3/s, 03-04 March 2003; Q 

= 7.3 m3/s, 22-23 July 2003) and Tweed (Q = 14.5 m3/s, 07-08 July 2003; Q = 151.2 
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m3/s, 02-03 December 2003) were obtained from the UK Environment Agency and 

from the Scottish Environment Protection Agency, respectively. Care was taken to 

sample the entire estuarine salinity range. However, flow conditions and tidal status 

  

Site/Date salinity NH4
+    

[µM] 

NO3
-    

[µM] 

δ15NH4
+   

‰ 
δ15NO3

-   

‰ 

chl-a       

(µg/L) 

Tyne       

28/2/02 31.7 4.9 11.25 8.8 -0.5 NM* 

28/2/02 17.7 6.5 30.89 8.3 -1.3 NM* 

28/2/02 15.0 125.9 41.36 10.4 -0.3 NM* 

28/2/02 9.9 14.4 52.45 10.1 -1.0 NM* 

28/2/02 6.9 11.6 56.32 7.9 -0.3 NM* 

28/2/02 3.0 11.4 65.19 7.3 1.7 NM* 

28/2/02 2.1 11.0 69.73 8.5 -0.3 NM* 

       

11/7/02 33.2 12.4 1.7 8.3 NM* 0.8 

11/7/02 30.9 35.7 8.9 11.3 8.1 1.4 

11/7/02 25.9 10.0 4.7 9.9 6.9 3.0 

11/7/02 19.3 10.1 20.4 9.9 8.9 2.4 

11/7/02 15.0 16.3 29.9 10.1 9.5 2.4 

11/7/02 9.8 7.7 35.3 9.9 7.5 4.3 

11/7/02 4.7 6.8 36.1 9.1 7.8 2.5 

11/7/02 0.2 6.1 41.6 7.9 6.5 1.3 

11/7/02 0.2 6.5 43.1 8.2 6.3 1.4 

       

4/3/03 34.1 22.4 11.9 10.7 -0.9 0.3 

4/3/03 28.7 32.1 17.4 11.1 1.6 0.2 

4/3/03 19.0 23.9 31.6 9.9 5.1 0.2 

4/3/03 14.8 20.8 36.8 9.3 2.6 0.2 

4/3/03 14.1 21.2 36.6 9.6 4.8 0.4 

4/3/03 10.5 19.5 39.8 9.4 5.3 0.6 

4/3/03 5.3 17.2 43.0 8.0 8.1 1.2 

4/3/03 1.3 14.0 47.6 6.4 7.5 0.6 

4/3/03 0.1 13.8 45.4 5.6 7.7 0.6 

4/3/03 0.1 13.4 45.8 5.4 7.6 0.7 

       

23/7/03 32.5 14.7 6.6 8.5 NM* 1.0 

23/7/03 27.1 33.2 16.8 10.4 5.8 2.2 

23/7/03 25.1 19.7 36.0 10.5 10.7 0.9 

23/7/03 24.2 26.1 26.6 10.1 7.1 1.4 

23/7/03 21.6 25.4 30.2 10.1 9.1 2.7 

23/7/03 20.6 25.6 40.6 10.7 9.6 0.7 

23/7/03 20.1 26.7 37.3 10.0 10.3 1.4 

23/7/03 18.3 31.0 39.5 10.3 9.3 2.8 

23/7/03 16.4 32.3 46.8 10.5 10.5 1.4 

23/7/03 13.9 26.2 47.3 10.7 10.1 1.4 
 

*NM, not measured 
 

Table 1. Concentrations and δ15N signatures of ammonium (δ15NH4
+) and nitrate (δ15NO3

-), and 
concentrations of chlorophyll a (chl-a) measured in the Tyne Estuary (Feb & Jul-02, Mar & Jul-03). 
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restricted the accessible salinity range on some occasions. During the July 2003 

transect in the Tyne Estuary, the combined effects of a spring tidal event with 

extremely low flow resulted in a low salinity end-member sampling point of 13.9 psu 

due to inaccessibility of the inner estuary. Conversely, during the December 2003 

sampling trip to the Tweed Estuary high river flow resulted in a survey comprised 

predominantly of low salinity water samples. This strong dependence on surface 

salinity with freshwater runoff has been previously reported in the Tweed Estuary 

(Uncles et al., 2000).  

 

Site/Date salinity NH4
+    

[µM] 

NO3
-    

[µM] 

δ15NH4
+   

‰ 
δ15NO3

-   
‰ 

chl-a       

(µg/L) 

Tweed       

8/7/03 33.2 2.4 7.3 7.8 NM* 0.2 

8/7/03 32.4 3.1 6.3 8.5 7.4 0.3 

8/7/03 29.5 3.1 21.9 9.6 9.2 0.6 

8/7/03 27.4 3.3 26.5 9.9 8.9 1.2 

8/7/03 17.9 4.5 79.4 10.1 10.7 1.4 

8/7/03 8.6 3.9 83.1 9.4 10.6 1.4 

8/7/03 4.2 2.9 92.6 10.0 9.8 1.4 

8/7/03 1.4 2.6 97.9 9.4 10.2 1.5 

8/7/03 0.1 3.2 103.2 9.9 10.2 1.6 

8/7/03 0.1 3.0 103.1 9.4 10.1 1.7 

       

3/12/03 31.30 2.1 17.4 5.3 6.1 1.8 

3/12/03 19.38 4.2 150.8 6.8 5.6 NM* 

3/12/03 4.51 6.1 228.2 7.2 6.1 NM* 

3/12/03 1.90 6.1 226.8 7.1 6.3 3.9 

3/12/03 1.27 5.4 231.6 7.3 6.0 3.1 

3/12/03 0.97 5.9 231.3 7.0 6.2 3.4 

3/12/03 0.90 5.8 227.3 6.9 5.7 2.1 

3/12/03 0.19 5.5 235.5 7.1 6.2 4.6 

3/12/03 0.16 5.5 227.4 7.3 6.5 4.0 

3/12/03 0.12 5.7 230.0 6.3 6.0 3.8 

 
*NM, not measured 

 

Table 2. Concentrations and δ15N signatures of ammonium (δ15NH4
+) and nitrate (δ15NO3

-), and 
concentrations of chlorophyll a (chl-a) measured in the Tweed Estuary (Jul-03, Dec-03). 

 

Isolation of dissolved inorganic nitrogen (DIN) 

After GF/F filtration, the water samples were acidified with 1 ml/L H2SO4 to 

prevent biological activity and to preserve volatile ammonia as ammonium. Isotopic 

analysis of ammonium was determined using a diffusion method adapted from 

Holmes et al. (1998), which involves trapping ammonium onto an acidified (4 N 
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H3PO4) GF/D disk wedged between two Teflon membranes. Depending on the 

ammonium concentration in the sample, between 100-400 ml of filtered water was 

transferred to 250-500 ml Wheaton glass bottles for these incubation experiments. 

All samples were then amended with NaCl to obtain identical salinity values of 35 

(i.e., marine salinity) and subsequently brought back to their initial pH values using 

NaOH. After the GF/D filter packs were placed inside a bottle, MgO (300 mg/L) was 

added to increase the pH of the water to ~9.8 in order to convert ammonium to 

ammonia. The bottles were immediately capped tightly and placed on an orbital 

shaker at room temperature and incubated for three weeks. Afterwards, the filter 

packs were removed from the bottles, rinsed with MilliQ water, placed inside pre-

combusted glass scintillation vials, and then dried and stored inside a dessicator 

containing silica gel and an open container of H3PO4 (to remove trace amounts of 

background NH3) prior to δ15N analysis. 

Isotopic analysis of δNO3
- values were determined using a method adapted 

from Sigman et al. (1997). This method involves reducing nitrate to ammonia using 

Devarda’s alloy followed by its subsequent extraction onto an acidified GF/D disk in 

the same manner as described above for δNH4
+ analysis. The nitrate extraction 

procedure is incapable of separating NO3
- from NO2

-; therefore, all δ15N values 

reported here are combined isotopic signatures of both nitrate and nitrite. δNO3
- 

incubations were carried out using water that had not been used for the δNH4
+ 

incubations but had been purged of ammonia and labile DON prior to the addition of 

Devarda’s alloy (BDH). This was done by adding MgO (300 mg/L) to raise the pH to 

~9.8 followed by heating the samples at 75oC for ~6 days or until they evaporated 

down to dryness. Once dry, the samples were redissolved with MilliQ water until the 

volume was equal to 25% of the initial sample volume. Initial sample volumes 

ranged from 20-400 ml, with 250 ml bottles having been used for samples � 200 ml 

and 500 ml bottles for the 400 ml samples. For samples with very high nitrate 

concentrations (e.g., Tweed, December 2003), the small initial volumes (20 ml) were 

diluted with MilliQ (to 100 ml total volume) in order to obtain a peak intensity 

within the range required for isotopic analysis.  

In order to correct for potential isotopic fractionation caused by the DIN 

extraction procedures, isotopic standards containing nitrate and ammonia 

concentrations similar to those found in the Tyne Estuary were used. Isotopic 
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standards for ammonium and nitrate analyses were prepared as aqueous solutions (in 

MilliQ) containing dissolved NH4Cl (Fisher) or KNO3 (Fisher) of a known isotopic 

signature and for at least two different concentrations. Differences between the 

aqueous standards and the δ15N values of the NH4Cl and KNO3 salts were used to 

correct for isotopic fractionation associated with the incubation experiments. 

Additional standards were necessary for the nitrate incubations in order to determine 

and correct for the δ15N signature of the Devarda’s alloy blank. With the exclusion of 

the initial GF/F filtration step, all nitrate and ammonium standards were prepared and 

analysed using the same procedures as described for the samples. The δ15N 

difference between standards and samples was � 1.3‰.   

 

Concentration and δδδδ
15

N analysis of DIN 

Concentrations of nitrate and ammonium and δ15NO3
- and δ15NH4

+ ratios 

were determined using a Carlo Erba Instruments NA2500 elemental analyser coupled 

with a Micromass PRISM III Isotope Ratio Mass Spectrometer (EA-IRMS) located 

at the University of Edinburgh. Ammonium and nitrate concentrations were 

determined using a Skaler Sanplus nutrient autoanalyser or a Bran and Luebbe 

Autoanalyser III employing standard colourimetric techniques (Strickland and 

Parsons, 1972). However, since ammonium concentrations measured via 

colourimetric methods were not obtained for the Mar-03 Tyne survey and for the two 

Tweed surveys, ammonium levels from these three transects were determined by 

comparing sample to standard peak intensities on the PRISM III Isotope Ratio Mass 

Spectrometer. This technique has been shown to be an acceptable means of obtaining 

reliable concentration data (Ward et al., 2000). As mentioned previously, since the 

diffusion extraction method is not able to separate nitrite from nitrate, δ15NO3
- values 

reported here are the combined nitrite/nitrate peak intensities and they will be 

referred to as simply δ15NO3
- throughout the rest of this paper. 

Ratios of 14N to 15N are expressed in delta notation as per mil (‰) differences 

relative to an internationally recognised atmospheric nitrogen standard, where: 

 

δ15N = [{(15N/14N)sample – (15N/14N)standard} / (15N/14N)standard] × 1000      (1) 
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Most δ15N values (and concentrations) reported here for ammonium and 

nitrate are the result of duplicate sample analyses. The error associated with δ15NO3
- 

and δ15NH4
+ values in this study incorporates both internal reproducibility and 

accuracy associated with EA-IRMS analysis, and was �1.0‰. Accuracy and 

reproducibility for ammonium concentrations determined via EA analysis was 

generally better than ±10%, and was better than ±5% using colourimetric techniques. 

The Devarda’s alloy used in these experiments was determined to have an effective 

N concentration of 1.1 �M and a δ15N signature of -5.7‰ ±0.8‰, which was similar 

to the nitrogen blank reported in the literature (Sigman et al., 1997). 

 

RESULTS AND DISCUSSION 

 

Behaviour of ammonium and nitrate concentrations 

In Figure 2, concentrations of ammonium from the four surveys to the Tyne 

Estuary and from the two surveys to the Tweed Estuary are plotted versus salinity. 

As these figures demonstrate, during all six transects concentrations of ammonium 

were significantly higher in the Tyne than in the Tweed Estuary. In the Tweed, the 

concentrations of ammonium ranged between 2.4 �M at the coastal North Sea end-

member to a maximum of 4.5 �M at a salinity of 17.9 during Jul-03 and between 2.1 

�M (31.3 practical salinity units, psu) to 6.1 (1.90 psu) during Dec-03. During the 

winter ammonium concentrations in the Tweed showed a general decrease with 

increasing salinity defined by the higher riverine concentration relative to the North 

Sea end-member values. In the summer, riverine concentrations of ammonium were 

lower and only slightly higher than the North Sea values. In addition, there was a 

general trend of convexity across the salinity gradient indicating an estuarine source 

of ammonium. In the winter, when the riverine ammonium concentration and 

freshwater discharge was higher, estuarine sources were less distinct (although a 

slight positive deviation from  conservative behaviour was still evident). 

In the Tyne, the concentrations of ammonium ranged between 4.6-149.2 �M, 

6.1-35.7 �M , 13.4-32.1 �M and 14.7-33.2 �M during Feb-02, Jul-02, Mar-03 and 

Jul-03, respectively. In Figure 2 the location of the Howdon sewage works (HSW) in 

the Tyne Estuary during each survey is marked in relation to the salinity gradient 

(located at salinities of 15.0, 30.9, 28.7 and 27.1 during Feb-02, Jul-02, Mar-03 and  
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Figure 2. Concentrations of ammonium in the Tyne Estuary during (a) Feb-02, (b) Jul-02, (c) Mar-03,  

and (d) Jul-03 and in the Tweed Estuary during (e) Jul-03, and (f) Dec-03 plotted versus salinity. 



 41 

Figure 2d
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Figure 2. Concentrations of ammonium in the Tyne Estuary during (a) Feb-02, (b) Jul-02, (c) Mar-03, 
and (d) Jul-03 and in the Tweed Estuary during (e) Jul-03, and (f) Dec-03 plotted versus salinity. 
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Jul-03, respectively). As these graphs illustrate, HSW played an important role in 

contributing to the relatively elevated ammonium levels found throughout the Tyne 

Estuary. With the exception of the Jul-03 survey, this large ammonium plume could 

consistently be traced to its point of origin throughout the entire estuary. The HSW  

ammonium plume is well defined as a sharp peak during high river flow conditions 

when the estuary is being flushed rapidly (e.g., Figure 2a, Feb-02). With declining 

flow rates the residence time of water in the estuary increases and the effect of HSW 

discharge becomes more pervasive, influencing the ammonium levels across the 

salinity gradient. The extreme case is the Jul-03 survey (Figure 2d), which exhibits a 

very broad ammonium plume extending through much of the salinity range sampled. 

This reflects the very low river discharge (Q = 7.3 m3/s) and spring tide conditions 

during this period. In addition, because HSW is located close to the mouth of the 

estuary, even the most saline samples collected (e.g., Figure 2c; salinity 34.1, 22.4 

�M NH4
+) have elevated ammonium values. This demonstrates that HSW discharge 

significantly impacts nutrient levels in the North Sea proximal to the mouth of the 

Tyne estuary. 

In Figure 3, concentrations of nitrate from the four surveys to the Tyne 

Estuary and from the two surveys to the Tweed Estuary are plotted versus salinity. In 

the Tyne, the concentrations of nitrate ranged between 11.3-69.7 �M, 1.7-43.1 �M, 

11.9-45.8 �M and 6.6-47.3 �M during Feb-02, Jul-02, Mar-03 and Jul-03, 

respectively. The highest riverine nitrate inputs observed during this study were 

found during the period of highest river discharge (Feb-02, Q = 144.6 m3/s), and the 

riverine nitrate levels fell with declining discharge in Mar-03 and Jul-02. Thus, with 

the exception of the Jul-03 sampling period when riverine nitrate concentrations were 

not obtained due to extreme low flow conditions ( 7.3 m3/s), higher river flows are 

also matched by higher nitrate levels. This observation contradicts (Kitidis, 2002), 

where the lack of a relationship between nitrate inputs and discharge has been 

reported. 

The straight solid lines on these figures represent the expected concentration 

due to conservative mixing between marine and riverine sources. For the Tyne, the 

marine end-member values for nitrate concentrations cannot be considered as true 

North Sea values given the influence of HSW-derived nutrient inputs. Remarkably, 

the influence of HSW plume is not clearly expressed in the nitrate concentrations as  
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Figure 3. Concentrations of nitrate in the Tyne Estuary during (a) Feb-02, (b) Jul-02 and (c) Mar-03 
plotted versus salinity. The straight solid lines represent the conservative concentration mixing curve 

between riverine and marine sources. 
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Figure 3d
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Figure 3. Concentrations of nitrate in the Tyne Estuary during (d) Jul-03 and in the Tweed Estuary 

during (e) Jul-03, and (f) Dec-03 plotted versus salinity. The straight solid lines represent the 

conservative concentration mixing curve between riverine and marine sources. 
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in the ammonium levels, which implies that direct nitrate inputs from HSW are 

small. Nitrate concentrations in the Tyne generally exhibited conservative mixing 

between relatively high riverine inputs and low nitrate levels in the seaward  samples 

and deviations from the mixing curves were small (Figure 3). These include the  

small positive deviations during the Jul-02 and Mar-03 surveys and a single point 

negative deviation during the Jul-02 survey (25.9 psu). A freshwater end-member 

nitrate concentration was not determined for the Tyne during the July-03 survey, 

which precludes the evaluation of estuarine mixing during this survey.  

Nitrate concentrations in the Tweed Estuary are plotted in Figures 3e and 3f. 

In general, riverine nitrate inputs in the Tweed were much higher than in the Tyne 

(103.1 �M, Jul-03; 231.0 �M, Dec-03). This fundamentally reflects the differences in 

landuse in the two river catchments. The higher nitrate inputs in the Tweed reflect 

the larger proportion of agricultural and grazing activity in its catchment relative to 

the Tyne. In the Tweed, the concentrations of nitrate ranged between 103.2 �M at the 

freshwater end-member to 7.3 �M at the coastal North Sea during Jul-03 and 

between 235.5 �M (freshwater) to 17.4 �M (31.3 psu) during Dec-03. This increase 

in riverine nitrate inputs into the Tweed Estuary during high river discharge in winter 

has been previously documented by others (Balls, 1994; Uncles et al., 2003). Both 

during summer and winter there were slight non-conservative nitrate peaks in the 

Tweed estuary. During the winter survey the large influx of freshwater necessitated 

closely spaced sampling locations near the mouth of the estuary in order to obtain 

higher salinity samples (see Introduction). Therefore, it is likely that this non-

conservative behaviour was a function of the narrow salinity range and high riverine 

concentrations and not the result of an estuarine input. The non-conservative nitrate 

increase found in the summer (as observed for ammonium) may be related to 

discharges emanating from the Tweedmouth sewer outlet, which was located near 

this sampling site (Figure 1). Uncles et al. (2003) have attributed small mid-salinity 

nitrite increases to sewage-related discharge. However, since nitrate concentrations 

during Jul-03 were relatively high, it is unlikely that minor sewage inputs would 

have had a significant impact on the estuarine nitrate concentrations observed during 

this survey. Small nitrate inputs in the Tweed Estuary have been attributed to 

transient effects associated with rapidly changing runoff (Uncles et al., 2003). 

However, since the non-conservative nitrate behaviour reported in this study 
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corresponded with a sampling location situated just downriver of the confluence with 

the River Whiteadder (Figure 1), it is also possible that this tributary was 

contributing a significant amount of nitrate to the Tweed Estuary. Unfortunately this 

cannot be directly verified since nitrate concentrations in the Whiteadder were not 

measured during this study.  

 

δδδδ
15

NH4
+
 signatures: General trends 

In Figure 4, δ15NH4
+ signatures from all six surveys to the Tyne and Tweed 

Estuaries are plotted versus salinity. In the Tweed, δ15NH4
+ values were slightly 

lower in the winter than in the summer, having concentration weighted averages 

(after combining freshwater values; � 0.2 psu) of +9.5±0.7‰ (n = 9) and +6.9 ±0.6‰ 

(n = 8) during Jul-03 and Dec-03, respectively. δ15NH4
+ signatures ranged from 

7.8‰ at the coastal North Sea to 10.1‰ at a salinity of 17.9 during July 2003 and 

from 5.3‰ (31.3 psu) to 7.3‰ (0.16 and 1.27 psu) during Dec-03.  δ15NH4
+ 

signatures in the Tyne were within the same range as those measured in the Tweed, 

ranging from 7.3-10.4‰, 7.9-11.3‰, 5.4-11.1‰ and 8.5-10.7‰ during Feb-02, Jul-

02, Mar-03 and Jul-03, respectively. The seasonal contrast in δ15NH4
+ values was 

slightly smaller in the Tyne, showing concentration weighted averages (after 

combining freshwater values; � 0.2 psu) of 9.6 ±1.7‰ (n = 16) and 10.2 ±0.9‰ (n = 

18) during winter and summer, respectively. 

 

δδδδ
15

NH4
+
 signatures and HSW input in the Tyne Estuary 

As noted for ammonium concentration profiles, the most important factor in 

controlling δ15NH4
+ signatures across the Tyne Estuary was the Howdon sewage 

works (HSW), which was the source of a consistently large ammonium plume that 

could be traced directly back to the sewage effluent. The location of HSW in the 

Tyne Estuary during each survey plotted in relation to the salinity gradient is marked 

in Figure 4. Although the magnitude of the ammonium plume emanating from HSW 

varied between each survey, the concentration weighted average δ15NH4
+ signature 

of the effluent (δ15NH4
+ = +10.6 ±0.5‰, n = 4) was remarkably consistent 

throughout the four seasonal transects reported in this study. This invariance in the 

sewage-derived δ15NH4
+ signature was likely the main reason for the small seasonal  
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Figure 4. δ15NH4
+ values in the Tyne Estuary during (a) Feb-02, (b) Jul-02 and (c) Mar-03, and in the 

Tweed Estuary during (e) Jul-03, and (f) Dec-03 plotted versus salinity. The dashed lines in Figures 4 

a-c represent the sewage-riverine isotope mixing curve as calculated using Eq. 2 for the Tyne Estuary. 

Vertical error bars represent an accuracy and reproducibility of ±1‰ on δ15NH4
+ values. 
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Figure 4d

Salinity

0 5 10 15 20 25 30 35

δδ δδ
1

5
N

H
4

+
 (

‰
)

2

4

6

8

10

12

14

Figure 4e

Salinity

0 5 10 15 20 25 30 35

δδ δδ
1

5
N

H
4

+
 (

‰
)

2

4

6

8

10

12

14

Figure 4f

Salinity

0 5 10 15 20 25 30 35

δδ δδ
1

5
N

H
4

+
 (

‰
)

2

4

6

8

10

12

14

Howdon
sewage works

Tyne, Jul-03

Tweed, Jul-03

Tweed, Dec-03

 

Figure 4. δ15NH4
+ values in the Tyne Estuary during (d) Jul-03 and in the Tweed Estuary during (e) 

Jul-03, and (f) Dec-03 plotted versus salinity. The solid lines in Figures 4 e-f represent the 

conservative isotopic mixing curve as calculated using Eq. 3 for the Tweed Estuary. Vertical error 

bars represent an accuracy and reproducibility of ±1‰ on δ15NH4
+ values. 
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variations in δ15NH4
+ values found throughout the Tyne Estuary. The relatively 

isotopically enriched δ15NH4
+ signature for HSW-derived ammonium reported here 

is consistent with other sewage-derived δ15NH4
+ values reported in the literature 

(Kendall, 1998; Tucker et al., 1999). As demonstrated by Figure 4, the isotopic 

signature of the sewage-derived ammonium discharge could be traced across the 

entire estuary, generally showing the most 15N-enriched δ15NH4
+ value at the location 

closest to the point of origin. 

In order to track the extent of the HSW ammonium plume across the Tyne 

Estuary, a simple a two end-member isotope mass balance equation using δ15NH4
+ 

values was utilised: 

 

δ15NH4
+

mix = fR(δ15NH4
+

R) + fS(δ15NH4
+

S)                  (2) 

 

where fR, fS, δ15NH4
+

R and δ15NH4
+

S refer to the fraction and δ15NH4
+ signatures of 

the riverine and sewage components during each particular survey, respectively. 

δ15NH4
+

mix is the isotopic signature of ammonium expected due to linear mixing 

between sewage and riverine sources, and fR + fS = 1. Since HSW is located in the 

lower part of the estuary, we can assume that marine ammonium inputs are 

insignificant compared to the overwhelming sewage signal. Indeed, the relatively 

high ammonium concentrations found in the marine sampling sites in the Tyne 

Estuary during the Jul-02 (12.4 �M), Mar-03 (22.4 �M) and Jul-03 (14.7 �M) 

surveys are undoubtedly related to the HSW plume. This is supported by the 

relatively minor (< 2.5 �M) ammonium concentrations found in the Coastal North 

Sea sampling sites in the Tweed Estuary, where anthropogenic ammonium inputs are 

considerably smaller. Therefore, the use of a two end-member mixing equation 

incorporating only riverine and sewage contributions is justified in assessing 

ammonium distributions across the Tyne Estuary. 

In Figure 4 these riverine-sewage mixing lines are plotted as dashed lines 

together with the measured δ15NH4
+ values. During Feb-02 (Figure 4a) some of the 

measured δ15NH4
+ values fell slightly below this line, perhaps suggesting that this 

model overestimated the contribution from HSW. As Figure 4a shows, the large 
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HSW peak found during this survey (149.2 �M) seemed to be confined to a relatively 

narrow zone located in close proximately to the plume source. Thus, during this 

period of high river discharge (Q = 144.6 m3/s) it was likely that HSW-derived 

ammonium did not greatly affect other parts of the estuary. During Mar-03 and Jul-

02 (Figures 4b and 4c) much of the variability in measured δ15NH4
+ trends could 

explained by simple mixing between the heavy ammonium source from Howden and 

the lighter riverine source. In the Jul-03 survey, the absence of a riverine end-

member value precluded the evaluation of mixing trends. This period of unusual low 

river discharge may have also exhibited different source signatures from other survey 

periods. The good agreement between measured and predicted distributions for 

δ15NH4
+ values based on the simple mixing model strengthens our conclusion that 

ammonium distributions across the Tyne Estuary were primarily controlled by 

discharges emanating from the Howdon sewage works. 

 

Behaviour of δδδδ
15

NH4
+
 signatures in the Tweed Estuary 

In the Tweed (Figures 4 e-f), where ammonium concentrations were much 

lower, the influence of a point source δ15NH4
+ value was relatively less important. 

Therefore, in the case of the Tweed we have used a concentration weighted mixing 

model that incorporates the riverine and the North Sea end-members (Middelburg 

and Nieuwenhuize, 2001):  

 

δ15Npred = 
pred

M
15

MMF
15

FF

N

)N�N N�N( ff +
        (3) 

 

Here fF, fM, NF and NM refer to the fraction (calculated from salinity data) and 

ammonium concentrations of the freshwater and the marine components, 

respectively, and Npred is the amount of ammonium expected due to conservative 

mixing of the freshwater and marine end-members. δ15NF and δ15NM demote the 

δ15NH4
+ signatures of the freshwater and marine end-members, respectively. Using 

this equation, we are able to predict the δ15NH4
+ signature from conservative two 

end-member mixing (δ15Npred) for a sample at a known salinity. In Figures 4e and 4f, 

concentration dependent δ15NH4
+ mixing is plotted as a solid line. During the Dec-03 
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survey the measured variability in δ15NH4
+ signatures can be explained by mixing 

between North Sea values (2.1 �M) and riverine values (5.6 �M). During Jul-03, 

however, there are positive deviations from the mixing model indicating a slightly 

heavier ammonium source with in the estuary. The highest ammonium concentration 

(4.5 �M) and most 15N-enriched δ15NH4
+ signature (+10.1‰) was measured at the 

same sampling site where the non-conservative input of nitrate was recorded (17.9 

psu). This small increase in ammonium concentration and relatively more 15N-

enriched δ15NH4
+ signature may be associated with sewage effluent originating from 

the Tweedmouth sewer outlet (Figure 1), as has been observed in nitrite and 

phosphate distributions (Uncles et al., 2003). However, considering the insignificant 

size of this ammonium ‘spike’ in comparison to the HSW signal, even if this increase 

in concentration was attributed to the Tweedmouth sewer outlet, it is clear that 

sewage-derived ammonium in the Tweed plays a much more minor role than it does 

in the Tyne Estuary.  

In general, the riverine ammonia entering the two estuaries was more 15N-

enriched in the summer than during the winter, particularly considering the surveys 

where riverine end-member values were well-established by sampling low-salinity 

waters (e.g., Mar-03 and Jul-02 in the Tyne and the two Tweed surveys).  It is 

conceivable that the heavy values in the summer can be explained by fractionation 

due to increased biological utilisation of 14N-depleted ammonia during riverine 

transit. In the Tyne, chlorophyll levels (Table 1) were generally higher in the 

summer, which supports biological utilisation of ammonium in soils and/or during 

riverine transit. In contrast, the Tweed showed higher chlorophyll levels (Table 2) in 

the winter which has been mainly attributed to debris from benthic macrophytes 

(aquatic grass) washed in during high river discharge. Thus, it appears that in the 

Tweed the more 15N-depleted winter values were most likely related to changes in 

the isotopic composition of soil-derived ammonium.  

 

δδδδ
15

NO3
-
 signatures: General trends 

In Figure 5, δ15NO3
- signatures from all six surveys to the Tyne and Tweed 

Estuaries are plotted versus salinity. In order to test whether δ15NO3
- signatures 

obeyed conservative mixing between marine and riverine (i.e., freshwater) sources, a 

two end-member mass balance equation using both isotopic and concentration data  
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Figure 5. δ15NO3
- values in the Tyne Estuary during (a) Feb-02, (b) Jul-02 and (c) Mar-03 plotted 

versus salinity. The solid lines represent the conservative isotopic mixing curve as calculated using 

Eq. 3. Vertical error bars represent an accuracy and reproducibility of ±1‰ on δ15NO3
- values. 
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Figure 5d
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Figure 5e
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Figure 5. δ15NO3
- values in the Tyne Estuary during (d) Jul-03 and in the Tweed Estuary during (e) 

Jul-03 and (f) Dec-03 plotted versus salinity. The solid lines represent the conservative isotopic 

mixing curve (Eq. 3). Error bars represent an accuracy and reproducibility of ±1‰ on δ15NO3
- values. 
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was utilised, as previously described for ammonium in the Tweed (Eq. 3). Here fF, 

fM, NF and NM refer to the fraction (calculated from salinity data) and nitrate 

concentrations of the freshwater and the marine components, respectively, and Npred 

is the amount of nitrate expected due to conservative mixing of the freshwater and 

marine end-members. δ15NF and δ15NM denote the δ15NO3
- signatures of the 

freshwater and marine end-members, respectively. Using this equation, we are able 

to predict the δ15NO3
- signature from conservative two end-member mixing (δ15Npred) 

for a sample at a known salinity. In Figure 5, concentration dependent δ15NO3
- 

mixing is plotted as a solid line. In Figure 5d, no mixing model was attempted 

because during this survey period low salinity samples were not obtained to ascertain 

a riverine end-member value.    

In the Tweed, δ15NO3
- signatures were generally higher in the summer than in 

the winter, having a concentration weighted average (after combining freshwater 

values; � 0.2 psu) of +10.1 ±1.1 (n = 8) and ranging from +7.4‰ (32.4 psu) to 

+10.7‰ (17.9 psu). In the winter, δ15NO3
- signatures were relatively invariant across 

the estuary, having a concentration weighted average of +6.1 ±0.2‰ (n = 8) and 

falling within a relatively narrow array of values ranging from +5.6‰ (19.38 psu) to 

+6.5‰ (0.16 psu). In the Tyne, a large contrast in δ15NO3
- values across the estuary 

was found between the two different surveys carried out in the late winter. During 

Feb-02, δ15NO3
- signatures were relatively 15N-depleted, having a concentration 

weighted average of -0.1 ±0.9‰ (n = 7) and ranging between -1.3 to +1.7‰. During 

the Mar-03 survey, δ15NO3
- signatures showed a gradual decrease with increasing 

salinity, ranging between -0.9‰ (34.1 psu) to +8.1‰ (5.3 psu). In the two summer 

surveys, δ15NO3
- signatures were generally more 15N-enriched across the estuary, 

with values ranging from +6.4‰ (freshwater) to +9.5 ‰ (15.0 psu) and +5.8‰ (27.1 

psu) to +10.7‰ (25.1 psu) during Jul-02 and Jul-03, respectively. 

The δ15NO3
- signatures of riverine inputs were highly variable with survey 

periods, probably indicating changes in source and upstream processing of nitrate. 

This was particularly evident during the Feb-02 survey, where the least saline value 

was highly depleted (-0.3‰) relative to all other sampling periods. Similarly, the 

seaward end-member values in the Tyne were also highly variable, with very 

depleted values found during the Feb-02 (-0.5 ‰, 31.7 psu) and Mar-03 (34.1 psu, -
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0.9‰) sampling periods and more enriched values found during the summer surveys 

(Jul-02, 30.9 psu, 8.1 ‰; Jul-03, 27.1 psu, 5.8 ‰). The nitrate concentration 

distributions in both the Tyne and Tweed Estuaries generally followed conservative 

mixing between relatively high riverine inputs and low North Sea background levels 

(Figure 3), and this is more or less matched by concentrated weighted δ15NO3
- 

signatures with only minor deviations (Figure 5). The changes in nitrate source 

signals from river and sea and estuarine processing of nitrate will be considered 

separately in the following sections. 

 

Source differentiation of nitrate entering the estuary 

 

Riverine sources: 

The isotopic composition of riverine nitrate entering the Tyne during Jul-02 

and Mar-03 and the Tweed during Dec-03 was remarkably similar, with an average 

value of +6.7 ±0.7‰. The large deviations in source signatures was seen in the Feb-

02 Tyne survey where low salinity values were extremely depleted (-0.3‰). In the 

Tweed, there was an approximately 4‰ seasonal contrast between summer (Jul-03; 

+10.2‰) and winter (+6.0 ‰) source nitrate signatures. 

Nitrate derived from soil sources can cover a wide range of δ15N signatures 

(~-2‰ to ~+12‰), with an average value of around +4‰ for natural soils ((Kendall, 

1998), and references therein). However, it is expected that δ15NO3
- derived from 

deeper soils is more 15N-enriched, reflecting the increase in δ15N with depth of soil 

organic matter (Nadelhoffer and Fry, 1988; Novák et al., 1999). The more 15N-

enriched δ15NO3
- signature of the Tweed during summer (approximately 4‰ heavier 

than winter) may thus be related to changes in soil-derived nitrate. The soil-derived 

nitrate entering the Tweed catchment during the approximate baseflow conditions 

experienced during summer would presumably originate from a slightly greater 

depth, thus possessing a more 15N-enriched signal (Ostrom et al., 1998). Tilling in 

summer months can also lead to the exposure of deeper soils and the nitrate-derived 

from this source is expected to be heavier. Such contrasts in the isotopic composition 

of soil-derived nitrate could be further accentuated because the high discharge rates 

in winter can wash out a greater proportion of nitrate derived from fertiliser and/or 

atmospheric sources with isotopically lighter nitrate (Kendall, 1998, and references 
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therein). These additional sources in winter from fertiliser and atmospheric 

deposition are reflected in elevated NO3
- levels during high discharge in Tweed 

during this winter and the corresponding lighter isotopic signatures (Figures 5e and 

5f). Another factor that could lead to heavier δ15NO3
- signatures during summer can 

result from enhanced biological uptake of nitrate in the River Tweed. This is 

supported by net autotrophy in the River Tweed and its estuary during the summer 

months as indicated by supersaturation of O2, low excess partial pressures of CO2, 

and slightly depleted δ18O values of DO (Howland et al., 2000; Neal et al., 1998, 

Chapter 2). Because the standing stock of algae generally remains low in the Tweed 

during both seasons (<2 �g/L, Chapter 2, Uncles et al., 2000), any enhanced nitrate 

uptake in the summer is not reflected in the chlorophyl-a contents.  

Howland et al. (2000) has suggested that benthic macrophytes could 

contribute to significant productivity in the Tweed Estuary. Balls (1994) attributed 

summer declines in nitrate levels in the River Tweed to enhanced primary 

production. High spring and summer cholorophyl a levels have been recorded by 

others in the Tweed reflecting bloom condition (Uncles et al., 2000). Thus, it is 

unclear why higher nutrient uptake by riverine algae is not reflected in the 

chlorophyll a contents during our summer survey. Furthermore, denitrification 

related enrichment of δ15NO3
- during river transit is negated by documented DO 

supersaturation in the River Tweed (Scottish Environmental Protection Agency). 

Thus, the seasonal differences in δNO3
- in the River Tweed river is mainly attributed 

to soil sources and changes in proportions of soil-derived versus fertiliser and 

atmospheric sourced nitrate. 

The unusually depleted δ15NO3
- values (-0.3‰) in Tyne river during the Feb-

02 survey is uniquely associated with very large river discharge rates following a 

winter storm (refer to introduction). The following year, the average discharge during 

Feb-03, normally one of the NE UK’s wettest months, was only 41.2 m3/s. In 

contrast, the discharge during the Feb-02 storm event was much higher than the 

average River Tyne discharge (average = 48 m3/s; Feb-02 survey = 144.6 m3/s). The 

lighter δ15NO3
- signal associated with this high flow event cannot be attributed to soil 

sources given the surface flow conditions during this period. Therefore, this signal is 

most likely to be associated with atmospheric sources, which in many studies has 

been shown to possess δNO3
- values less than 0‰ (Garten Jr., 1992; Moore, 1977;  
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Figure 6. Riverine nitrate fluxes (mol hr-1) and freshwater discharge (m3/s) in the Tyne and Tweed. 

 

Paerl and Fogel, 1994; Yeatman et al., 2001). In a study involving 10 estuaries 

located on the eastern coast of the U.S., Castro & Driscoll (2002) reported that total 

atmospheric inputs (watershed runoff plus direct deposition to the surface of the 

estuary) accounted for 15-42% of the total nitrogen input. In the UK, nitrate accounts 

for approximately one third of the acidifying effect of the combined wet deposition 

of non-sea-salt sulphate and nitrate, with precipitation-weighted mean concentrations 

of nitrate in precipitation over NE England approaching levels of up to 40 �M (Irwin 

et al., 2002). Thus, it is possible that the high levels of precipitation in the Tyne 

Watershed leading up to the Feb-02 sampling period (UK Met Office, 2002) may 

have contained a significant amount of atmospheric nitrate. In addition, flooding and 

surface flow conditions associated with this event would have washed into the river 

atmospheric nitrate that has remained accumulated in the Tyne catchment area. This 

would have lowered the overall estuarine δNO3
- signal and sustained the relatively 

large nitrate concentrations (69.7�M) and fluxes (3.6 ×104 mol hr-1) following the 

storm event (Figure 6). Therefore, prolonged periods of precipitation could lead to a 
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significant accumulation of atmospheric-derived nitrate, resulting in a higher 

proportion of 15N-depleted nitrate in the overall riverine δ15NO3
- signature. 

In contrast to the isotopically light δ15NO3
- values found in the Tyne during 

the Feb-02 transect, during the other winter survey (Mar-03) the riverine δ15NO3
- 

signature was +7.7 ‰. However, in contrast to Feb-02, prior to the Mar-03 survey 

there was an unusually long period of dry, slightly milder weather (UK Met Office, 

2003) which was associated with unseasonably low river discharge (UK 

Environment Agency). These unseasonably low flow conditions preceding the March 

2003 survey therefore point to a limited contribution from relatively 15N-depleted 

atmospheric inputs. The contrast between the two winter surveys highlights the 

important role that river flow conditions played in influencing the sources and hence 

the isotopic signature of nitrate in the Tyne Estuary. 

 

Nitrification and nitrate uptake in the mouth of the Tyne Estuary: 

The global average of marine δ15NO3
- is in the order of around 5-6‰ 

(Deutsch et al., 2004). However, the data presented in Figure 5 indicates a highly 

variable Coastal North Sea δ15NO3
- value for the high salinity samples. The highest 

salinity samples during the Mar-03 and Feb-02 Tyne surveys were -0.5 ‰ and -0.9 

‰, respectively. In contrast to the winter surveys the two summer surveys of the 

Tyne yielded more enriched values (Jul-02: 8.1‰ and Jul-03: 5.8‰). No such 

seasonal contrast in marine end-member values was evident in the Tweed, where the 

δ15NO3
- signatures of the highest salinity samples were 7.4 ‰ during Jul-03 and 6.4 

‰ during Dec-03. The isotopic composition of nitrate in temperate coastal waters 

generally ranges between the composition of freshly upwelled deep-sea nitrate (5-

6‰) to slightly more enriched values due to preferential biological uptake of 14NO3
- 

(Horrigan et al., 1990; Middelburg and Nieuwenhuize, 2001). Thus, the highly 

depleted δ15NO3
- values of coastal sea water entering the Tyne Estuary during the 

winter surveys require an explanation. 

Low δ15N values of nitrate and organic matter in the coastal seas have been 

attributed to the nitrate sourced from atmospheric deposition (Fogel and Paerl, 1993; 

Ostrom et al., 1997; Paerl and Fogel, 1994; Paerl et al., 1993). Indeed, atmospheric 

wet deposition of nitrate in the coastal areas of NE England are expected to be 
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relatively high, in the order of around 2-4 kg N ha-1 yr-1 (Irwin et al., 2002), and 

could provide the lighter δ15NO3
- signatures for costal waters entering the estuaries. 

However, the coastal water entering the Tweed did not exhibit any light δ15NO3
- even 

during the winter months. Thus, it is unlikely that that nitrate sourced from 

atmospheric deposition is the sole explanation for the depleted nitrate signatures of 

marine source waters in the Tyne during winter. 

Instead, the depleted δ15NO3
- signatures for saline samples in the Tyne may 

have resulted from nitrification of ammonium (Mariotti et al., 1981; Sutka et al., 

2004). Reported isotopic enrichment factors (�) for nitrification range between -19‰ 

(Miyake and Wada, 1971) to approximately -35‰ (Mariotti et al., 1981). This should 

result in an initial δ15NO3
- value that is around -19 to -35‰ lighter than the original 

δ15NH4
+ signature. Thus, 15N-depleted nitrate in the mouth of the Tyne Estuary 

(Mariotti et al., 1981; Sutka et al., 2004) may have been produced by this process. 

Several lines of evidence support this contention. Firstly, the large amounts of HSW-

derived ammonium discharged near the mouth of the Tyne Estuary could facilitate 

rapid flushing of ammonium into the coastal waters. Indeed, the highest salinity 

waters of the Tyne sampled during various surveys have large ammonium 

concentrations with enriched isotopic signatures reflecting the prevalence of HSW-

derived ammonium in the coastal waters near the mouth of the Tyne (Figures 2 and 

4). Secondly, relatively high N2O saturations have been measured in the Tyne 

Estuary (up to 250% N2O saturation), and the highest levels were generally found in 

the seaward end of the estuary, which has been attributed to the influence of HSW 

(Barnes, 2003). The generation of N2O by bacterial nitrification in oxygenated waters 

is supported by relatively 15N-depleted N2O signatures (Ostrom et al., 2000). Barnes 

(2003) also found that in UK estuaries N2O supersaturation does not show any 

consistent relationship to water temperature but shows a positive relationship to 

ammonium levels, indicating that nitrification and hence N2O production is fuelled 

by ammonium levels in these estuaries. Thirdly, recent studies have documented the 

production of isotopically-depleted nitrate in cold coastal waters (annual average ca. 

0.2‰ Ostrom et al., 1997). This study conducted in Conception Bay (off the SE 

coast of Newfoundland) attributed light δ15NO3
- values to the production of nitrate 

via nitrification. Therefore, the large ammonium inputs close to the mouth of the 

Tyne are thought to fuel nitrification in the adjoining coastal waters. The nitrate 
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produced by nitrified coastal waters is then advected back into the Tyne Estuary with 

depleted δ15NO3
- signatures.  

Since the advection of nitrate generated by coastal nitrification was inferred 

during the winter surveys (Mar-03 and Feb-02), and nitrification rates are expected to 

be even higher during warmer conditions (Berounsky and Nixon, 1993), one would 

also expect this process to occur in the summer. However, as shown in Figures 5b 

and 5d, nitrate entering the Tyne Estuary from offshore was enriched during the Jul-

02 and Jul-03 surveys. However, it is possible that both nitrification followed by 

subsequent removal was taking place during the summer, resulting in a net 15N-

enrichment in δ15NO3
- values. For instance, in a study carried out in the Delaware 

Estuary, Cifuentes et al. (1989) found that δ15NO3
- signatures measured in October 

were 3‰ heavier than samples collect in January, despite more intensive nitrification 

during the autumn. These heavier values were explained by higher primary 

production rates during October, indicating that algal uptake was resulting in a 

subsequent 15N-enrichment in nitrate generated via nitrification. Ostrom et al. (1997) 

found that in Conception Bay, where the annual average nitrate values were depleted 

due to nitrification, spring-bloom conditions produced the most enriched δ15NO3
- 

signatures (~8 ‰). Indeed, the chlorophyll a concentrations of waters entering the 

Tyne from offshore were relatively higher in the summer surveys (Jul-02 and Jul-03) 

than during Mar-03 (Table 1). Therefore, it is possible that algal uptake in coastal 

waters during the summer could have resulted in an overall 15N-enrichment masking 

the depleted δ15NO3
- values produced by nitrification.  

 

Estuarine processing of DIN: 

The conservative isotopic mixing curves calculated using Eq. 3 are plotted 

together with the measured δ15NO3
- values in Figure 5 as solid lines. The fact that 

δ15NO3
- signatures in both the Tyne and Tweed closely followed conservative 

behaviour indicates that very little processing of nitrate takes place in both estuaries. 

One possible reason for the lack of any significant biological modification of 

nutrients in these two estuaries is their relatively short water residence times (~1 day 

in the Tweed and 5-20 days in the Tyne). For example, in a study carried out by Balls 

(1994) in nine Scottish rivers it was concluded that nutrients generally behaved 

conservatively in short, rapidly flushed estuaries (e.g., Tweed), whereas in large, 
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slowly flushed systems internal processing played a more important role in 

controlling nutrient distributions within the estuarine zone. Therefore, considering 

the slightly longer residence time in the Tyne compared to the Tweed Estuary, and 

the longer residence time expected in the summer during low river flow conditions, it 

is not surprising to find instances in the Tyne where δ15NO3
- signatures deviate from 

conservative mixing (Figures 5b and 5c). In any case, the relatively minor levels of 

biological modification of nutrients observed in the Tyne during this study does not 

compare with other UK estuaries that have longer residence time (e.g., Thames), 

where up to 100% DIN attenuation has been observed during dryer periods (Trimmer 

et al., 2000). 

In the Tyne, small but significant deviations from conservative mixing 

include the lighter δ15NO3
- values during Mar-03 (Figure 5c) and the slightly heavier 

δ15NO3
- values during Jul-02 (Figure 5b). In Mar-03 the Tyne exhibited high 

turbidity with a well pronounced turbidity maximum (Chapters 4 and 5). Well-

oxygenated water containing elevated particle concentrations has been shown to 

support the growth of large numbers of attached nitrifiers (Billen, 1975; Soetaert and 

Herman, 1995). Thus the lighter excursion from conservative mixing in the Mar-03 

survey could have resulted from nitrate produced by nitrification. The small shift 

towards heavy values in Jul-02 could be explained by the preferential uptake of 14N 

nitrate by algae. This sampling period recorded some of the highest chlorophyll a 

concentrations found during all four surveys to the Tyne Estuary (up to 4.3 �g/L; 

Table 1). However, it is worth emphasizing that most of the variability in nitrate 

isotopes in Tyne could be explained by mixing rather than in estuarine processing.  

In the Tweed, the mid-estuarine nitrate peaks seen in the nitrate 

concentrations (Figures 3e and 3f) were not replicated by the isotopic data (Figures 

5e and 5f). This supports a riverine source for the winter profile and indicates that in 

the summer this input must also possess the same δ15NO3
- signature as found in the 

River Tweed. While it may have been the case for ammonium, it is unlikely that the 

non-conservative behaviour of nitrate in the Tweed Estuary during the summer was 

due to inputs from the Tweedmouth sewer outlet (Uncles et al., 2003). Instead, the 

isotopic data indicate nitrate discharge from the River Whiteadder (Figure 1) 

draining similar catchment characteristics to be responsible for the additional nitrate 

inputs. 
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SUMMARY 

In the Tweed, enhanced agricultural activity in the watershed leads to 

elevated nitrate inputs into the estuary relative to the Tyne. Increased contributions 

from agricultural soil, atmospheric and fertiliser sources during the winter led to a 

higher nitrate flux and more 15N-depleted δ15NO3
- values. In the Tyne, where 

agricultural inputs are less important, isotopically light nitrate entering the estuary 

during the Feb-02 survey demonstrated the importance of atmospherically-derived 

sources during periods of high river discharge associated with winter storm events. 

During these types of infrequently sampled periods of high runoff, river-dominated 

estuaries with relatively short residence times therefore can act as conduits for the 

delivery of 15N-depleted atmospherically-derived nitrate to world’s oceans. Under 

such conditions nitrate concentrations will also behave more conservatively, 

indicating a limited amount of estuarine processing. 

In both the Tyne and Tweed estuaries most of the variability in nitrate and 

ammonium across the salinity gradient could be explained by mixing between 

different sources, with sewage-derived inputs originating from HSW the dominant 

source for ammonium in the Tyne. The ability of both isotopic and concentration 

weighted mixing curves to describe the changes seen in δ15NO3
- and δ15NH4

+ 

signatures demonstrates very little estuarine processing of DIN in these two systems. 

In estuaries with relatively quick freshwater flushing times like the Tyne and Tweed 

it is therefore not surprising that the effects of high nutrient loading will be felt in the 

coastal zone rather than in the estuary itself, as has been suggested by others 

(Nedwell et al., 2002). For instance, the large inputs of sewage-derived ammonium 

in the Tyne lead to enhanced nitrification in adjacent North Sea waters, as evidenced 

by isotopically light δ15NO3
- values found near the mouth of the Tyne indicating a 

source of nitrification-generated nitrate. And as indicated by relatively high N2O 

saturations measured in the Tyne Estuary (up to 250% N2O saturation; (Barnes, 

2003)), this sewage-derived ammonium also appears to be an indirect greenhouse gas 

point source.  

 

 

 

 



 63 

REFERENCES 

Altabet M. A. (2001) Nitrogen isotopic evidence for micronutrient control of 

fractional NO3
- utilization in the equatorial Pacific. Limnology and Oceanography 

46, 368-380. 

Anderson D. M. (1989) Toxic algal blooms and red tides: A global perspective. In 

Red Tides: Biology, Environmental Science and Toxicology (ed. T. Okaichi, D. M. 

Anderson, and T. Nemoto), pp. 11-16. Elsevier. 

Baker A. and Spencer R. G. M. (2004) Characterization of dissolved organic matter 

from source to sea using fluorescence and absorbance spectroscopy. Science of the 

Total Environment 33, 217-232. 

Balls P. W. (1994) Nutrient inputs to estuaries from nine Scottish east coast rivers; 

Influence of estuarine processes on inputs to the North Sea. Estuarine, Coastal 

and Shelf Science 39, 329-352. 

Barnes J. (2003) Nitrous oxide in UK estuaries. PhD,University of Newcastle upon 

Tyne. 

Berounsky V. M. and Nixon S. W. (1993) Rates of nitrification along an estuarine 

gradient in Narragansett Bay. Estuaries 16, 718-730. 

Billen G. (1975) Nitrification in the Scheldt Estuary (Belgium and the Netherlands). 

Estuarine and Coastal Marine Science 3, 79-89. 

Castro M. S. and Driscoll C. T. (2002) Atmospheric nitrogen deposition to estuaries 

in the mid-Atlantic and northeastern United States. Environmental Science and 

Technology 36, 3242-3249. 

Cifuentes L. A., Fogel M. L., Pennock J. R., and Sharp J. H. (1989) Biogeochemical 

factors that influence the stable nitrogen isotope ratio of dissolved ammonium in 

the Delaware Estuary. Geochimica et Cosmochimica Acta 53, 2713-2721. 

Cline J. D. and Kaplan I. R. (1975) Isotopic fractionation of dissolved nitrate during 

denitrification in the Eastern Tropical North Pacific. Marine Chemistry 3, 271-

299. 

Cosper E. M., Carpenter J. M., and Cottrell M. (1989) Primary productivity and 

growth dynamics of the "brown tide" in Long Island embayments. In Coastal 

Marine Studies: Novel Phytoplankton Blooms (ed. E. M. Cosper, V. M. Bricelj, 

and E. J. Carpenter), pp. 139-158. Springer. 



 64 

de Wilde H. P. J. and de Bie M. J. M. (2000) Nitrous oxide in the Schelde estuary: 

production by nitrification and emission to the atmosphere. Marine Chemistry 69, 

203-216. 

Deutsch C., Sigman D. M., Thunell R. C., Meckler A. N., and Haug G. H. (2004) 

Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. 

Global Biogeochemical Cycles 18, GB4012. 

Downing J. A. (1997) Marine nitrogen:phosphorus stoichiometry and the global N:P 

cycle. Biogeochemistry 37(237-252). 

Duarte C. (1995) Submerged aquatic vegetation in relation to different nutrient 

regimes. Ophelia 41, 87-112. 

Fogel M. L. and Paerl H. W. (1993) Isotopic tracers of nitrogen from atmospheric 

deposition to coastal waters. Chemical Geology 107, 233-236. 

Fogg G. E., Rolston D. E., Decker D. L., Louie D. T., and Grismer M. E. (1998) 

Spatial variation in nitrogen isotope values beneath nitrate contamination sources. 

Ground Water 36, 418-426. 

Fox I. A. and Johnson R. C. (1997) The hydrology of the River Tweed. The Science 

of the Total Environment 194/195, 163-172. 

Galimov E. M. (1985) The Biological Fractionation of Isotopes. Academic Press. 

Galloway J. N., Schlesinger W. H., Levy H., Michaels A., and Schnoor J. L. (1995) 

Nitrogen-fixation - anthropogenic enhancement-environmental response. Global 

Biogeochemical Cycles 9, 235-252. 

Garten Jr. C. T. (1992) Nitrogen isotope composition of ammonium and nitrate in 

bulk precipitation and forest throughfall. International Journal of Environmental 

Analytical Chemistry 47, 33-45. 

Hallegraeff G. M. (1993) A review of harmful algal blooms and their apparent global 

increase. Phycologia 32, 79-99. 

Hashimoto S., Gojo K., Hikota S., Sendai N., and Otsuki A. (1999) Nitrous oxide 

emissions from coastal waters in 

Tokyo Bay. Marine Environmental Research 47, 213-223. 

Hecky R. E. and Kilham P. (1988) Nutrient limitation of phytoplankton in freshwater 

and marine environments: A review of recent evidence on the effects of 

enrichment. Limnology and Oceanography 33, 796-822. 

Heip C. (1995) Eutrophication and zoobenthos dynamics. Ophelia 41, 113-136. 



 65 

Holmes R. M., McClelland J. W., Sigman D. M., Fry B., and Peterson B. J. (1998) 

Measuring 15N-NH4
+ in marine, estuarine and fresh waters: An adaptation of the 

ammonia diffusion method for samples with low ammonium concentrations. 

Marine Chemistry 60, 235-243. 

Horrigan S. G., Montoya J. P., Nevins J. L., and McCarthy J. J. (1990) Natural 

isotopic composition of dissolved inorganic nitrogen in the Chesapeake Bay. 

Estuarine, Coastal and Shelf Science 30, 393-410. 

Howland R. J. M., Tappin A. D., Uncles R. J., Plummer D. H., and Bloomer N. J. 

(2000) Distributions and seasonal variability of pH and alkalinity in the Tweed 

Estuary, UK. The Science of the Total Environment 251/252, 125-138. 

Irwin J. G., Campbell G., and Vincent K. (2002) Trends in sulphate and nitrate wet 

deposition over the United Kingdom: 1986-1999. Atmospheric Environment 36, 

2867-2879. 

Kendall C. (1998) Tracing nitrogen sources and cycles in catchments. In Isotope 

tracers in catchment hydrology (ed. C. Kendall and J. J. McDonnell), pp. 519-576. 

Elsevier. 

Kitidis V. (2002) CDOM dynamics and photoammonification in the marine 

environment. Ph.D., University of Newcastle upon Tyne. 

Lashof D. A. and Ahuja D. R. (1990) Relative contributions of greenhouse gas 

emissions to global warming. Nature 34, 529-531. 

Liu K.-K. and Kaplan I. R. (1989) The eastern tropical Pacific as a source of 15N-

enriched nitrate in seawater off southern California. Limnology and 

Oceanography 34, 820-830. 

Mariotti A., Germon J. C., Hubert P., Kaiser P., Letolle R., Tardieux A., and 

Tardieux P. (1981) Experimental determination of nitrogen kinetic isotope 

fractionation: Some principles; illustration for the denitrification and nitrification 

processes. Plant and Soil 62, 413-430. 

Mariotti A., Lancelot C., and Billen G. (1984) Natural isotopic composition of 

nitrogen as a tracer of origin for suspended organic matter in the Scheldt Estuary. 

Geochimica et Cosmochimica Acta 48, 549-555. 

McClelland J. W. and Valiela I. (1998) Linking nitrogen in estuarine producers to 

land-derived sources. Limnology and Oceanography 43, 577-585. 



 66 

McCusker E. M., Ostrom P. H., Ostrom N. E., Jeremiason J. D., and Baker J. E. 

(1999) Seasonal variation in the biogeochemical cycling of seston in Grand 

Traverse Bay, Lake Michigan. Organic Geochemistry 30, 1543-1557. 

Middelburg J. J. and Nieuwenhuize J. (2001) Nitrogen isotope tracing of dissolved 

inorganic nitrogen behaviour in tidal estuaries. Estuarine, Coastal and Shelf 

Science 53, 385-391. 

Miyake Y. and Wada E. (1971) The isotope effet on the nitrogen in biochemical 

oxidation-reduction reactions. Records of Oceanographic Works in Japan 11, 1-6. 

Moore H. (1977) The isotopic composition of ammonia, nitrogen dioxide and nitrate 

in the atmosphere. Atmospheric Environment 11, 1239-1243. 

Nadelhoffer K. J. and Fry B. (1988) Controls on natural nitrogen-15 and carbon-13 

abundances in forest soil organic matter. Soil Science Society of America Journal 

52, 1633-1640. 

Neal C. (2002) Calcite saturation in eastern UK rivers. The Science of the Total 

Environment 282-283, 311-326. 

Neal C., House W. A., Jarvie H. P., and Eatherall A. (1998) The significance of 

dissolved carbon dioxide in major lowland rivers entering the North Sea. The 

Science of the Total Environment 210/211, 187-203. 

Nedwell D. B., Dong L. F., Sage A., and Underwood G. J. C. (2002) Variations of 

the nutrients loads to the mainland UK estuaries: Correlation with catchment 

areas, urbanization and coastal Eutrophication. Estuarine, Coastal and Shelf 

Science 54, 951-970. 

Novák M., Buzek F., and Adamová M. (1999) Vertical trends in δ13C, δ15N and δ34S 

ratios in bulk Sphagnum peat. Soil Biology and Biochemistry 31, 1343-1346. 

Officer C. B. (1979) Discussion of the behavior of non-conservative dissolved 

constituents in estuaries. Estuarine and Coastal Marine Science 9, 91-94. 

Ostrom N. E., Knoke K. E., Hedin L. O., Robertson G. P., and Smucker A. J. M. 

(1998) Temporal trends in nitrogen isotope values of nitrate leaching from an 

agricultural soil. Chemical Geology 146, 219-227. 

Ostrom N. E., Macko S. A., Deibel D., and Thompson R. J. (1997) Seasonal 

variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal 

cold ocean environment. Geochimica et Cosmochimica Acta 61, 2929-2942. 



 67 

Ostrom N. E., Russ M. E., Popp B., Rust T. M., and Karl D. M. (2000) Mechanisms 

of nitrous oxide production in the subtropical North Pacific based on 

determinations of the isotopic abundances of nitrous oxide and di-oxygen. 

Chemosphere - Global Change Science 2, 281-290. 

Paerl H. W. and Fogel M. L. (1994) Isotopic characterization of atmospheric 

nitrogen inputs as sources of enhanced primary production in coastal Atlantic 

Ocean waters. Marine Biology 119, 635-645. 

Paerl H. W., Fogel M. L., and Bates P. W. (1993) Atmospheric nitrogen deposition 

in coastal waters: implications for marine primary production and C flux. Trends 

in Microbial Ecology: Proceedings of the 6th International Symposium on 

Microbial Ecology, 459-464. 

Rendell A. R., Ottley C. J., Jickells T. D., and Harrison R. M. (1993) The 

atmospheric input of nitrogen species to the North Sea. Tellus Series B-Chemical 

and Physical Meteorology 45, 53-63. 

Robson A. J. and Neal C. (1997) Regional water quality of the river Tweed. The 

Science of the Total Environment 194-195, 173-192. 

Schindler D. W. (1977) Evolution of phosphorus limitation in lakes. Science 195, 

260-262. 

Shaw P. J., Chapron C., Purdie D. A., and Rees A. P. (1998) Impacts of 

phytoplankton activity on dissolved nitrogen fluxes in the tidal reaches and 

estuary of the Tweed, UK. Marine Pollutution Bulletin 37, 280-294. 

Sigman D. M., Altabet M. A., McCorkle D. C., Francois R., and Fischer G. (1999) 

The delta N-15 of nitrate in the Southern Ocean: Consumption of nitrate in surface 

waters. Global Biogeochemical Cycles 13, 1149-1166. 

Sigman D. M., Altabet M. A., Michener R., McCorkle D. C., Fry B., and Holmes R. 

M. (1997) Natural abundance-level measurement of the nitrogen isotopic 

composition of oceanic nitrate: An adaptation of the ammonia diffusion method. 

Marine Chemistry 57, 227-242. 

Smayda T. J. (1990) Novel and nuisance phytoplankton blooms in the sea: Evidence 

for a global epidemic. In Toxic Marine Phytoplankton (ed. E. Graneli, E. 

Sundstrom, L. Edler, and D. M. Anderson), pp. 29-40. Elsevier. 



 68 

Soetaert K. and Herman P. M. J. (1995) Nitrogen dynamics in the Westerschelde 

Estuary (S.W. Netherlands) estimated by means of the ecosystem model MOSES. 

Hydrobiologia 311, 225-246. 

Strickland J. D. H. and Parsons T. R. (1972) A Practical Handbook of Seawater 

Analysis, pp. 311. Fisheries Research Board of Canada. 

Sutka R. L., Ostrom N. E., Ostrom P. H., and Phanikumar M. S. (2004) Stable 

nitrogen isotope dynamics of dissolved nitrate in a transect from the North Pacific 

Subtropical Gyre to the Eastern Tropical North Pacific. Geochimica et 

Cosmochimica Acta 68, 517-527. 

Trimmer M., Nedwell D. B., Sivyer D. B., and Malcolm S. J. (2000) Seasonal 

benthic organic matter mineralisation measured by oxygen uptake and 

denitrification along a transect of the inner and outer River Thames estuary, UK. 

Marine Ecology Progress Series 197, 103-119. 

Tucker J., Sheats N., Giblin A. E., Hopkinson C. S., and Montoya J. P. (1999) Using 

stable isotopes to trace sewage-derived material through Boston Harbor and 

Massachusetts Bay. Marine Environmental Research 48, 353-375. 

Uncles R. J., Bloomer N. J., Frickers P. E., Griffiths M. L., Harris C., Howland R. J. 

M., Morris A. W., Plummer D. H., and Tappin A. D. (2000) Seasonal variability 

of salinity, temperature, turbidity and suspended chlorophyll in the Tweed 

Estuary. The Science of the Total Environment 251/252, 115-124. 

Uncles R. J., Fraser A. I., Butterfield D., P. J., and Harrod T. R. (2002) The 

prediction of nutrients into estuaries and their subsequent behaviour: application 

to the Tamar and comparison with the Tweed, UK. Hydrobiologia 475, 239-250. 

Uncles R. J., Frickers P. E., and Harris C. (2003) Dissolved nutrients in the the 

Tweed Estuary, UK: inputs, distributions and effects of residence time. The 

Science of the Total Environment 314-316, 727-736. 

Uncles R. J. and Stephens J. A. (1996) Salt intrusion in the Tweed Estuary. 

Estuarine, Coastal and Shelf Science 43, 271-293. 

Upstill-Goddard R. C., Barnes J., Frost T., Punshon S., and Owens N. J. P. (2000) 

Methane in the southern North Sea: Low-salinity inputs, estuarine removal, and 

atmospheric flux. Global Biogeochemical Cycles 14, 1205-1217. 



 69 

Velinsky D. J. and Fogel M. L. (1999) Cycling of dissolved and particulate nitrogen 

and carbon in the Framvaren Fjord, Norway: stable isotopic variations. Marine 

Chemistry 67, 161-180. 

Vitousek P. M. and Howarth R. W. (1991) Nitrogen limitation on land and in the sea: 

How can it occur? Biogeochemistry 13, 87-115. 

Ward J. A. M., Ahad J. M. E., Lacrampe-Couloume G., Slater G. F., Edwards E. A., 

and Sherwood Lollar B. (2000) Hydrogen isotope fractionation during 

methanogenic degradation of toluene: Potential for direct verification of 

bioremediation. Environmental Science and Technology 34, 4577-4581. 

Waser N. A. D., Harrison P. J., Nielsen B., and Calvert S. E. (1998) Nitrogen isotope 

fractionation during the uptake and assimilation of nitrate, nitrite, ammonium, and 

urea by a marine diatom. Limnology and Oceanography 43, 215-224. 

Yeatman S. G., Spokes L. J., Dennis P. F., and Jickells T. D. (2001) Comparisons of 

aerosol nitrogen isotopic composition at two polluted coastal sites. Atmospheric 

Environment 35, 1307-1320. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 70 

 

 

 

 

 

 

 



 71 

CHAPTER 2: Respiration-Photosynthesis dynamics in the Tyne and Tweed 

Estuaries, UK 

 

ABSTRACT 

In order to evaluate the respiration-photosynthesis dynamics in two 

contrasting North Sea estuaries, pH, temperature, alkalinity, chlorophyll a (chl-a), 

and isotopic ratios of dissolved inorganic carbon (δ13CDIC) and dissolved oxygen 

(δ18ODO) were measured in the Tyne (July 2003) and Tweed (Jul-03 and Dec-03) 

Estuaries. Using a concentration dependent isotope mixing line, δ13CDIC values in the 

Tweed demonstrated mostly conservative behaviour across the estuary, reflecting 

mixing between riverine and marine sources, although samples were slightly more 

13C-enriched than predicted δ13CDIC values. In the Tyne, measured δ13CDIC values 

were slightly more 13C-depleted than those predicted by conservative mixing. The 

slightly 13C-enriched δ13CDIC values, combined with low pCO2 (<2 times atm. pres.) 

and 18O signatures of dissolved oxygen (δ18ODO) lower than expected for equilibrium 

with the atmosphere across the salinity gradient pointed to net autotrophy in the 

summer in the Tweed Estuary. Conversely, in the Tyne during the summer and in the 

Tweed during the winter higher pCO2 (up to 6.5 and 14.4 times atm. pres. in the 

Tweed and Tyne, respectively), more 13C-depleted δ13CDIC and 18O-enriched δ18ODO 

indicated heterotrophy as the dominant process.  

 

INTRODUCTION 

Estuaries are generally considered to be net heterotrophic systems and 

sources of CO2 to the earth’s atmosphere (Frankignoulle et al., 1998; Smith and 

Hollibaugh, 1993). In Europe alone, it has been estimated that estuaries emit between 

30-60 million tons of carbon per year to the atmosphere, which corresponds to 

roughly 5-10% of the anthropogenic emissions form Western Europe (Frankignoulle 

et al., 1998). The magnitude of this flux depends mainly on the balance between 

uptake of photosynthetic CO2 and its release via respiration. In turn, the relative 

intensity of these two processes depends on a wide variety of factors, including 

enhanced allochthonous input of labile organic matter, water residence time, sunlight 

availability, rates of community metabolism, temperature and nutrient load (Abril et 

al., 2002; Howland et al., 2000; Ram et al., 2003; Smith and Hollibaugh, 1993; Wang 
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and Veizer, 2000). In addition, several studies have shown that seasonal variations 

can lead to an estuary shifting from being net autotrophic to net heterotrophic 

(Howland et al., 2000; Kemp et al., 1992; Ram et al., 2003; Smith and Hollibaugh, 

1997).    

Understanding the relative importance of respiration versus photosynthesis 

within an estuary can therefore provide valuable insight into organic carbon cycling 

dynamics (i.e., production versus consumption) in these highly complex systems. 

Two useful parameters that can be used to evaluate these processes include the 

isotopic ratios of dissolved inorganic carbon (DIC) and dissolved oxygen (DO). DIC 

concentrations in an estuarine environment are mainly determined by the degree of 

mixing between marine and freshwater DIC, atmospheric efflux, the relative 

intensities of photosynthetic and oxidative processes, carbonate or atmospheric CO2 

dissolution, and sediment resuspension (Abril et al., 2004; Abril et al., 2003; Wang 

and Veizer, 2000). In a system where the soil CO2 is primarily derived from the 

decomposition of C3 plant organic matter (δ13C ~-28‰), the CO2 produced has the 

same δ13C value as the initial substrate, undergoing little or no fractionation. The 

partial diffusion of this CO2 gas results in a 13C-enrichment of approximately +4.4‰ 

(Cerling et al., 1991), and its subsequent dissolution into water (temperature = 10-

20oC, pH = 7.0-9.0) results in a fractionation of approximately +8‰ (Wigley et al., 

1978), generating a δ13CDIC value of around -17 to -21‰. On the other hand, 

dissolution of atmospheric CO2 produces δ13CDIC values of around -1‰, which 

explains the average value of ~0‰ found for DIC derived from the dissolution of 

marine limestone. DIC in river water during baseflow conditions should therefore 

have δ13C signatures ranging from approximately -17 to -21‰ for systems 

dominated by silicate weathering caused by soil CO2 to around -10 to +2‰ in areas 

where carbonate weathering is involved (Wang and Veizer, 2000). Photosynthesis 

and respiration can subsequently alter the DIC concentrations and δ13C signatures, 

whereby the former will cause a positive isotopic shift due to preferential removal of 

the lighter isotope during DIC uptake and the latter will cause a negative isotopic 

shift due to the oxidation of organic matter with a more depleted 13C signature 

(Mook and Tan, 1991). 

Similarly, isotopes of dissolved oxygen (δ18ODO) have also been employed to 

examine respiration-photosynthesis dynamics in aquatic systems (Quay et al., 1995; 



 73 

Wang and Veizer, 2000). The air-water equilibrium value for dissolved O2 is 

+24.5‰, with +23.8‰ derived from atmospheric oxygen (Coplen et al., 2002) and 

+0.7‰ resulting from oxygen fractionation during dissolution in the water (Benson 

and Krause, 1984). If photosynthesis is the dominant process, DO will become 

supersaturated and the resulting δ18O value will be less than +24.5‰, due to the 

production of isotopically lighter O2, which during aquatic photosynthesis is identical 

to the δ18O of the source water (Wang and Veizer, 2000). On the other hand, 

respiration will result in DO undersaturation, and the resulting δ18O will be greater 

than +24.5‰ due to the preferential utilization of the lighter isotope (Kiddon et al., 

1993; Wang and Veizer, 2000). Combing δ13CDIC with δ18ODO isotopes therefore 

provides a powerful tool to delineate between isotopic shifts caused by atmospheric 

equilibration and estuarine mixing process with those produced by photosynthesis 

and respiration.  

In this study we have measured pH, temperature, alkalinity, chlorophyll a 

(chl-a), δ13CDIC and δ18ODO isotopes in order to qualitatively determine the relative 

importance of respiration versus photosynthesis in two contrasting North Sea 

estuaries, the Tyne and Tweed (NE UK). Surveys were carried out in summer low 

flow conditions (July 2003) in the Tyne and Tweed Estuaries and winter high flow 

conditions (December 2003) in the Tweed Estuary in order to further evaluate the 

influence of seasonal/hydrologic variability. 

 

MATERIALS AND METHODS 

 

Description of Study Sites 

The River Tyne, which flows through the densely populated city of 

Newcastle, has a total drainage area of approximately 2900 km2 and an average 

freshwater flow of ~48 m3/s. Its two main tributaries are the North Tyne, which 

receives humic-rich waters draining areas of blanket peat afforestation, and the South 

Tyne, which drains relatively pristine moorland (Baker and Spencer, 2004). The 

North and South tributaries converge downstream to form the River Tyne, which 

supplies more than 90% of the total river discharge into the Tyne Estuary (Figure 1; 

Chapter 1). Most of the remaining freshwater input is derived from the River 

Derwent. The maximum extent of the tidal estuary is approximately 33 km inland 
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from the North Sea, and the residence time is approximately 5-20 days (A. P. 

Stubbins, private communication). The Tyne is a partially mixed mesotidal estuary 

(Baker and Spencer, 2004). Although industrial fluxes to the lower part of the estuary 

are in decline, it continues to receive significant amounts of urban waste, particularly 

from sewage treatment facilities located at Howdon in the lower estuary (Baker and 

Spencer, 2004; Upstill-Goddard et al., 2000). However, the water quality in the Tyne 

upstream of Newcastle has improved significantly over the past few decades. The 

Tyne Estuary is fairly deep and gently sloping, with only a very minor extent of salt 

marshland across the tidal interface. 

The Tweed River and its tributaries drain a rural, relatively sparsely 

populated region located in the border region between England and Scotland. Most 

of the Tweed’s discharge originates from the main river, although approximately 

10% of the freshwater input comes from the Whiteadder, which joins the Tweed 

approximately 6.5 km upriver from the North Sea. The combined catchment area of 

the Tweed and Whiteadder is approximately 4900 km2 and the average freshwater 

input into the estuary is ~84 m3/s (Fox and Johnson, 1997). The maximum length of 

the Tweed estuary (Figure 1; Chapter 1) is around 13 km and the residence time is 

approximately 1 day (Uncles and Stephens, 1996). The Tweed is a partially mixed to 

stratified microtidal estuary (Uncles and Stephens, 1996). The catchment is 

dominated by agricultural activity, ranging from upland areas of moorland used for 

sheep grazing to more arable regions in the lowlands (Neal, 2002). The Tweed 

receives significantly less anthropogenic inputs than the Tyne, as reflected in its 

favourable water quality ratings (Robson and Neal, 1997). The Tweed Estuary is 

relatively shallow, with large areas of exposed mudflats visible during low tide, and 

is fairly steeply rising (Uncles and Stephens, 1996) Salt marshes in the Tweed 

Estuary make up <10% of the tidal surface area (Joint Nature Conservation 

Committee, UK). 

 

Analytical Procedures 

Data reported here (Tables 1& 2) are from near-surface water samples 

collected on single day excursions to the Tyne and Tweed Estuaries in July 2003 and 

from the Tweed Estuary in December 2003. Site selection within the estuary was 

based on in situ salinity measurements (using a portable probe) in order to ensure 
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adequate, high-resolution coverage of the full salinity gradient. Once back in the 

laboratory, salinity was analysed on a pre-calibrated Hanna (model 8633) 

conductivity meter. Samples were collected at a depth of 1-2 m from a small boat 

using a submersed pump. Water temperatures were measured in situ, whereas total 

alkalinity and pH were measured in the laboratory within 8 hours of sampling. 

Unfiltered water for these measurements was collected in 250 ml airtight plastic 

bottles and pre-poisoned with HgCl2.  The pH was determined using a Jenway 3051 

pH meter with a precision of ±0.02 pH units based on the standard deviation of 

replicate samples. Total alkalinity was measured via HCl titration and replicate field 

samples yielded a relative standard deviation (%RSD) of better than ±9 percent. 

Total DIC (Appendix 1), partial pressures of CO2 (ppm) and excess partial pressures 

of CO2 (pCO2 / atmospheric CO2) were calculated from temperature, pH and 

alkalinity (Clark and Fritz, 1997) and are presented in Table 1. Unfiltered water 

samples for isotopic analysis of DIC and dissolved oxygen (DO) were collected in 30 

ml airtight glass vials that were pre-poisoned with HgCl2. 

Suspended material for chlorophyll a (chl-a) analysis was collected on pre-

combusted (440oC for 4 h) GF/F filters (Whatman). It has been observed that the 

retention capability of these filters, which have a nominal pore size of ~0.7 �m, is 

approximately equal to that of 0.2 �m Nuclepore filters (Chavez et al., 1995). 

Therefore, the GF/F filters used in this study should have retained the bulk of 

phytoplankton biomass, including the smaller nanoplankton (2 to 20 �m) and 

picoplankton (0.2 to 2 �m) size classes. The samples were filtered and then stored at 

-20oC prior to chl-a extraction. After soaking the filters for several hours in 90% 

acetone, chl-a in the leachate was determined by measuring fluorescence with a 

Turner Model 450 fluorometer (Parsons et al., 1984). Based on multiple analyses of 

standards and samples, the precision for the chl-a measurements was found to be ±10 

% RSD. 

δ13C values for DIC were run on an Optima mass spectrometer that was 

equipped with a Gilson® autosampler and δ18O values for DO were analysed using a 

Ap2003 mass spectrometer. For a further explanation of the method for isotope 

analysis of DO refer to Barth et al. (2004). 13C /12C and 18O/16O ratios were 

expressed in the delta notation as per mil (‰) differences relative to the international 

VPDB and VSMOW standards, respectively. At several sites across both estuaries 
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triplicate samples were collected for isotopic analysis of DO and DIC. Based on the 

standard deviation of replicate samples and standards the analytical precisions were 

±0.3‰ for all δ13C values and ±0.2‰ for δ18ODO. 

River discharge data are reported here as the two-day averages incorporating 

the days prior to and day of sampling. Discharges for the Tyne (Q = 7.3 m3/s, 22-23 

July 2003) and Tweed (Q = 14.5 m3/s, 07-08 July 2003; Q = 151.2 m3/s, 02-03 

December 2003) were obtained from the UK Environment Agency and from the 

Scottish Environment Protection Agency, respectively. Care was taken to sample the 

entire estuarine salinity range. However, flow conditions and tidal status restricted 

the accessible salinity range on some occasions. During the July 2003 transect in the 

Tyne Estuary, the combined effects of a spring tidal event with extremely low flow 

resulted in a low salinity end-member sampling point of 13.9 psu due to 

inaccessibility of the inner estuary. Conversely, during the December 2003 sampling 

trip to the Tweed Estuary high river flow resulted in a survey comprised 

predominantly of low salinity water samples. This strong dependence on surface 

salinity with freshwater runoff has been previously reported in the Tweed Estuary 

(Uncles et al., 2000).  

 

RESULTS AND DISCUSSION 

Geochemical parameters reported here are listed in Table 1 and all isotope 

data are listed in Table 2. Chl-a concentrations during all surveys in both the 

estuaries were relatively small, ranging from 0.2 to 1.7 �g/L (July 2003) and from 

2.1 to 4.6 �g/L (December 2003) in the Tweed Estuary and from 0.7 to 2.8 �g/L 

(July 2003) in the Tyne Estuary. Although comparisons in the literature are not 

available for the Tyne, chl-a values similar to those reported here have been observed 

previously in the Tweed (<2 �g/L; Uncles et al., 2000), who suggested these low 

values were due to rapid flushing which prevents the occurrence of repeated algal 

cell division within the tidal estuary. The slightly higher chl-a concentrations in the 

Tweed during December were probably related to higher levels of plant debris in the 

river during this period of high discharge. We therefore assume that autochthonous 

production in both the Tweed and Tyne estuaries should have only a minor impact on 

the carbon cycling of dissolved inorganic carbon. 
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Total DIC concentrations varied across the Tyne estuary from a high of 3.11 

mM at a salinity of 20.1 to 2.39 mM in the coastal North Sea (Figure 2a). 

Unfortunately, due to the lack of a proper riverine end-member, it was impossible to 

determine from this sample set whether DIC distributions in the Tyne during the Jul-

03 reflected a non-conservative estuarine input or a relatively high freshwater  

  

Site/Date salinity T (oC) pH total 

alk 

[mM] 

total 

DIC  

[mM] 

pCO2 

(ppm) 

excess 

pCO2 

chl-a       

(mg/L) 

Tweed         

8/7/03 33.22 12.0 8.25 2.31 2.35 718 1.9 0.2 

8/7/03 32.39 12.2 8.26 2.31 2.35 702 1.9 0.3 

8/7/03 29.53 12.7 8.25 2.25 2.29 704 1.9 0.6 

8/7/03 27.35 13.1 8.27 2.25 2.29 676 1.8 1.2 

8/7/03 17.87 14.8 8.33 2.19 2.22 584 1.6 1.4 

8/7/03 8.56 16.5 8.39 2.19 2.22 519 1.4 1.4 

8/7/03 4.20 17.3 8.41 2.13 2.16 486 1.3 1.4 

8/7/03 1.41 17.8 8.46 2.13 2.16 436 1.2 1.5 

8/7/03 0.11 18.0 8.77 2.13 2.16 213 0.6 1.6 

8/7/03 0.11 18.0 8.76 2.13 2.16 218 0.6 1.7 

3/12/03 31.30 8.0 8.10 2.22 2.28 933 2.5 NM* 

3/12/03 19.38 8.2 7.85 2.13 2.22 1597 4.3 NM* 

3/12/03 4.51 8.1 7.68 1.86 1.98 2061 5.5 NM* 

3/12/03 1.90 8.4 7.45 0.97 1.08 1841 4.9 3.9 

3/12/03 1.27 8.5 7.57 1.44 1.56 2065 5.5 3.1 

3/12/03 0.97 8.5 7.46 1.24 1.38 2300 6.1 3.4 

3/12/03 0.90 8.7 7.42 1.02 1.14 2071 5.5 2.1 

3/12/03 0.19 8.9 7.34 0.90 1.02 2201 5.9 4.6 

3/12/03 0.16 9.0 7.32 0.94 1.08 2423 6.5 4.0 

3/12/03 0.12 9.0 7.34 0.94 1.08 2314 6.2 3.8 

Tyne         

23/7/03 32.47 14.7 8.17 2.34 2.39 902 2.4 1.0 

23/7/03 27.11 16.2 7.85 2.79 2.89 2292 6.1 2.2 

23/7/03 25.11 16.6 7.81 2.73 2.84 2471 6.6 0.9 

23/7/03 24.24 17.9 7.68 2.67 2.81 3314 8.8 0.7 

23/7/03 21.57 18.8 7.57 2.76 2.94 4464 11.9 1.4 

23/7/03 20.64 15.5 7.64 2.79 2.96 3687 9.8 2.8 

23/7/03 20.10 19.2 7.55 2.91 3.11 4954 13.2 2.7 

23/7/03 18.32 18.4 7.50 2.85 3.07 5389 14.4 1.4 

23/7/03 16.42 19.3 7.52 2.73 2.93 4986 13.3 1.4 

23/7/03 13.94 19.3 7.51 2.73 2.94 5103 13.6 1.4 
  

*NM, not measured 

 

Table 1. Geochemical parameters of water samples from the Tyne and Tweed Estuaries, including 

salinity, temperature (T), pH, total alkalinity (alk), total dissolved inorganic carbon (DIC), partial 

pressure of CO2 (pCO2), excess pCO2 (relative to atm. pres.), and chlorophyll a (chl-a). 
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concentration. δ13CDIC values in the Tyne changed in a near linear manner from -

5.9‰ at the least saline sampling location (13.9 psu) to +0.1‰ at the marine end-

member (Figure 2b), showing a good linear correlation with salinity (r2 = 0.92, n = 

9). The values reported here for total DIC at the mouths of the Tyne and Tweed 

Estuaries are similar to those reported in the literature for the coastal North Sea 

(Bakker et al., 1996; Hellings et al., 1999; Howland et al., 2000). Measured pH 

  

Site/Date salinity δ18ODO      

‰  
δ13CDIC      

‰ 
δ13CDIC-pred  

‰ 
δ13CDIC - δ13CDIC-pred          

‰ 

Tweed      

8/7/03 33.22 25.2 0.6 0.0 0.6 

8/7/03 32.39 24.9 0.9 -0.2 1.1 

8/7/03 29.53 NM* NM* - - 

8/7/03 27.35 24.3 -1.2 -1.7 0.5 

8/7/03 17.87 23.8 -4.6 -4.6 -0.1 

8/7/03 8.56 23.6 -8.0 -7.5 -0.5 

8/7/03 4.20 23.0 -8.2 -9.0 0.8 

8/7/03 1.41 22.5 -9.9 -9.9 0.0 

8/7/03 0.11 NM* NM* - - 

8/7/03 0.11 NM* NM* - - 

3/12/03 31.30 24.9 NM* - - 

3/12/03 19.38 24.9 NM* - - 

3/12/03 4.51 25.0 NM* - - 

3/12/03 1.90 25.0 NM* - - 

3/12/03 1.27 24.5 NM* - - 

3/12/03 0.97 25.1 NM* - - 

3/12/03 0.90 24.9 NM* - - 

3/12/03 0.19 25.0 NM* - - 

3/12/03 0.16 25.0 NM* - - 

3/12/03 0.12 25.0 NM* - - 

Tyne      

23/7/03 32.47 25.4 0.1 -0.1 0.2 

23/7/03 27.11 25.3 -2.7 -2.0 -0.7 

23/7/03 25.11 25.6 -2.6 -2.7 0.1 

23/7/03 24.24 26.2 -3.8 -3.0 -0.8 

23/7/03 21.57 26.1 -4.5 -3.8 -0.7 

23/7/03 20.64 25.5 -4.1 -4.1 0.0 

23/7/03 20.10 26.6 -5.1 -4.3 -0.9 

23/7/03 18.32 26.1 -5.6 -4.8 -0.8 

23/7/03 16.42 NM* NM* - - 

23/7/03 13.94 26.1 -5.9 -5.9 0.1 
 

*NM, not measured 

 

Table 2. Isotopic parameters of water samples from the Tyne and Tweed Estuaries, including, δ18O of 

dissolved oxygen (δ18ODO), δ13C of dissolved inorganic carbon (δ13CDIC), δ13CDIC predicted by 

conservative mixing (δ13CDIC-Pred), and differences between measured δ13CDIC values and δ13CDIC-pred 

(δ13CDIC - δ13CDIC-pred). 
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values in the Tyne ranged from 7.51 to 8.17, and in general increased toward the 

North Sea (Figure 2c). Partial pressures of CO2 decreased toward the North Sea 

(Figure 2d). Using an atmospheric CO2 concentration of 375 ppm, excess pCO2 

values ranged from 2.4 to 14.4, with the highest value found at a salinity of 18.3.  
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Figure 2. (a) Concentrations of total DIC [mM] and (b) δ13C values (‰) for DIC (δ13CDIC) in the Tyne 
Estuary during Jul-03 plotted versus salinity. The dashed line in Figure 2b represents the linear 

relationship between δ13C and salinity (r2 = 0.92, n = 9). The solid line in Figure 2b represents the 

conservative isotopic mixing curve (Eq. 1). Accuracy and reproducibility was ±0.3‰ for δ13C values.  
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The total DIC in the Tweed during July 2003 ranged from 2.16 (freshwater) 

to 2.35 mM (marine) and behaved more linearly across the salinity gradient than in 

the Tyne (Figure 3a). The very good linear relationship between total DIC and 

salinity (not shown, r2 = 0.95, n = 10) implied conservative mixing between riverine 
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Figure 2. (c) pH and (d) partial pressures of CO2 (pCO2)  in the Tyne Estuary during July 2003 

plotted versus salinity. The vertical dashed line in Figure 2d represents the atmospheric CO2 

concentration (375 ppm). 
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and coastal North Sea end-members. δ13CDIC signatures (Figure 3b) ranged from -

9.9‰ (1.4 psu) to +0.6‰ (33.2 psu) in the coastal North Sea. The strong linear 

relationship between δ13CDIC values and salinity (r2 = 0.99, n = 7) in the Tweed 
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Figure 3. (a) Concentrations of total DIC [mM] and (b) δ13C values (‰) for DIC (δ13CDIC) in the 
Tweed Estuary during Jul-03 (open circles) and December 2003 (open squares) plotted versus salinity. 

The straight dashed lines in Figure 3a represent the concentration of DIC expected due to conservative 

mixing between riverine and marine sources DIC. The dashed line in Figure 3b represents the linear 

relationship between δ13C and salinity (r2 = 0.99, n = 7). The solid line in Figure 3b represents the 

conservative isotopic mixing curve (Eq. 1). Accuracy and reproducibility was ±0.3‰ on δ13C values. 
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during Jul-03 therefore also suggested conservative mixing. Note that δ13CDIC 

signatures from the December 2003 survey were not measured.  

As opposed to the Tyne, pH in the least saline part of the Tweed estuary 

during the July 2003 transect (Figure 3c) was relatively high (8.77), and decreased in 
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Figure 3. (c) pH and (d) partial pressures of CO2 (pCO2)  in the Tweed Estuary during July 2003 

(open circles) and December 2003 (open squares) plotted versus salinity. The vertical dashed line in 

Figure 3d represents the atmospheric CO2 concentration (375 ppm). 
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a near linear manner to a value of 8.25 at the North Sea end-member. The high pHs 

and relatively high total DIC found in the Tweed were also reported by others 

(Howland et al., 2000; Neal, 2002), and are indicative of carbonate-rich groundwater 

input dominating the riverine DIC during periods of low flow. Conversely, during 

periods of high flow, concentrations of DIC and pH values in rivers are expected to 

be lower, mainly because the larger freshwater inputs result to a larger part from 

overland flow that is less affected by calcium carbonate buffering. These seasonal 

trends have been previously reported for the Tweed (Howland et al., 2000) and were 

observed during the December 2003 survey, with total DIC and pH ranging from 

1.02 to 2.28 mM (Figure 3a) and 7.32 to 8.10 (Figure 3c), respectively. However, in 

contrast to the summer, total DIC concentrations in the Tweed during Dec-03 

demonstrated non-conservative inputs across the estuary. In July 2003, excess pCO2 

in the Tweed was generally quite low and increased across the salinity gradient from 

an undersaturated value of 0.6 at the freshwater end-member to a maximum of 1.9 at 

the North Sea sampling location (Figure 3d). Conversely, during December 2003 

excess pCO2 was much higher, ranging from 2.5 to 6.5 (Figure 3d).  

δ18O signatures of dissolved oxygen (δ18ODO; Figure 4) in the Tyne ranged 

from +26.1‰ at 13.9 psu to +25.4‰ at 32.5 psu and were all significantly more 18O-

enriched than the air-water equilibrium value of +24.5‰. δ18ODO signatures in the 

Tweed during July 2003 ranged from +22.5‰ (1.4 psu) to +25.2‰ (33.2 psu), with 

values < 30 psu being slightly more 18O-depleted than the air-water equilibrium 

value. During December 2003 δ18ODO values in the Tweed were relatively invariant 

across the estuary (+24.9 ±0.2‰), although most were slightly more 18O-enriched 

than the air-water equilibration value. 

In order to verify whether δ13CDIC signatures obey conservative mixing 

between marine and riverine sources, a two end-member mass balance equation 

using both isotopic and concentration data was utilised (Mook and Tan, 1991): 

 

δ13CDIC-pred = 
FMMFMFS

F
13

FMM
13

MFM
13

MF
13

FS

DICS DICS )DIC  (DICS

C�DICS C�DICS )C�DIC  C�(DICS

−+−

−+−
  (1) 

    

Where SS, SF and SM and DICS, DICF and DICM refer to the salinities and total DIC 

of the sample, the freshwater and the marine components, respectively, and δ13CDIC-
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pred refers to the predicted or calculated δ13C signature for DIC. Unfortunately, 

precise freshwater end-members were not obtained for either the Tyne or Tweed 

Estuaries during the July 2003 surveys. Thus, total DIC and δ13CDIC values measured 

at the lowest salinities of 1.4 and 13.9 were substituted for the freshwater end-

members (SF) in the Tweed (DICF = 2.19 mM, δ13CF = -9.9‰) and Tyne (DICF = 

3.16 mM, δ13CF = -5.9‰), respectively. While we cannot test for estuarine mixing 

behaviour near the freshwater – saline interface, our data together with Eq. 1 can still 

be used to analyse the mixing behaviour in the remaining salinity range. In any case, 

plotting salinity vs. δ13CDIC for the July 2003 data set (Figures 2b and 3b) yields 

freshwater end-members (at the y-intercept) of approximately -10.3 and -11.3 ‰ for 

the Tweed and Tyne, respectively. These values are within the narrow range of 

δ13CDIC values (-10 to -12‰) reported by (Mook, 1970) for DIC in a variety of rivers 

in northwestern Europe. SM, DICM and δ13CM were measured in the coastal North 

Sea at the mouth of each estuary and are 33.2, 2.34 mM and +0.6‰ for the Tweed 

and 32.5, 2.40 mM and +0.1‰ for the Tyne. 

The conservative isotopic mixing curves are plotted with the measured 

δ13CDIC signatures in Figures 2b and 3b as solid lines. In the Tweed, the measured 

δ13CDIC mostly seemed to indicate conservative mixing (Figure 3b), although several 

data points were slightly higher than the predicted δ13CDIC values (δ13CDIC-pred). In the 

Tyne, however, many of the measured δ13CDIC values were slightly lower than those 

predicted by conservative mixing (Figure 2b). The differences between measured 

δ13CDIC values and δ13CDIC-pred (δ
13CDIC - δ13CDIC-pred) ranged from -0.9 to +0.2‰ 

(mean = -0.4 ‰, n = 9) and -0.5 to +1.1‰ (mean = +0.3‰, n = 7) in the Tyne and 

Tweed Estuaries, respectively (Table 2). Therefore, these systematic differences 

suggested that in addition to estuarine mixing other processes in these two estuaries 

were influencing the δ13CDIC signatures. 

As mentioned previously, a proper riverine end-member was not obtained 

during the Jul-03 survey to the Tyne Estuary. Therefore, it was not possible to 

ascertain whether DIC distributions reflected a significant estuarine input or whether 

the higher levels of DIC across the Tyne were a function of a relatively high 

freshwater concentration, reflecting upriver or watershed soil processes. However, 

considering the high pCO2 (up to 14.4 times atm. pres.) measured during this survey, 
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it is likely that the non-conservative behaviour of δ13CDIC signatures in the Tyne were 

a result of net in situ water column oxidation of 13C-depleted organic matter. Since 

dissolution of carbonates or atmospheric CO2 results in δ13CDIC values of ~ -1 or 0‰, 

these processes would cause a positive shift in δ13C and can therefore be excluded. 

Furthermore, due to the relatively low SPM concentrations reported in the Tyne 

during the Jul-03 transect (Chapters 4 and 5) is not likely that DIC was being 

released via fluid mud resuspension (Abril et al., 2004).  

The relatively high pCO2 values in the Tyne are within range of those 

reported in other estuaries in Western Europe (Abril et al., 2002; Barth et al., 2003; 

Frankignoulle et al., 1998). In these studies, the large CO2 fluxes emitted from these 

estuaries were mostly attributed to the mineralization of labile, pollution-derived 

organic matter. In the Tyne, however, many of the sampling sites that exhibited high 

pCO2 were located upstream of Newcastle, where the pollutant load is generally 

considered low. In the lower part of the estuary just downstream of the main urban 

area (Figure 1; Chapter 1) is the Howdon sewage works, one the UK’s largest 

estuarial secondary treatment facilities. Thus, while mineralization of organic carbon 

originating from contaminated urban sources located in the lower part of the estuary 

may account for some of the generated CO2, it is likely that a significant amount of 

labile terrestrial material originating from within the watershed is also undergoing 

bacterial oxidation within the estuary. The fact that the highest pCO2 levels found in 

the Tyne were not associated with Howdon, which was located nearest the 27.1 psu 

sampling site during the July 2003 survey, supports this claim.  

While δ13CDIC mostly obeyed conservative mixing, the slightly more 13C-

enriched behaviour observed in some δ13CDIC samples in the Tweed may have been 

the result of photosynthesis, dissolution of carbonates or atmospheric CO2, or 

atmospheric efflux. However, considering the short residence time of the Tweed (~ 1 

day), prolonged atmospheric efflux is not considered to play a major role in 

influencing DIC distributions across this estuary. This leaves either photosynthesis or 

dissolution of carbonates or atmospheric CO2 as the two main processes responsible 

for the slightly 13C-enriched δ13CDIC values found in this estuary. Considering the 

lack of a discernible estuarine input of DIC (Figure 3a), it is unlikely that the latter 

two processes had a major influence on the behaviour of δ13CDIC signatures across the 

salinity gradient. However, when DIC is not limiting, fractionation caused during 
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photosynthetic uptake should be more pronounced, which might not be evident in 

DIC versus salinity profiles. Therefore, while δ13CDIC values in the Tweed appeared 

to be mainly controlled by conservative mixing, a secondary influence was the 

preferential removal of the lighter isotope caused by photosynthetic uptake. 

However, the most intensive summertime autotrophic activity is probably confined to 

the non-tidal river, as evidenced by the documented DO supersaturation (Scottish 

Environmental Protection Agency) and low freshwater pCO2 levels reported here and 

in other studies (Howland et al., 2000; Neal et al., 1998). Taking into consideration 

the low chl-a values (<1.7 �g/L) reported in this study, benthic macrophytes are 

likely to be the dominant cause of net autotrophy in the Tweed, as has been 

suggested by others (Howland et al., 2000; Neal et al., 1998). 

Other evidence which points to net autotrophy in the Tweed and net 

heterotrophy in the Tyne in the summer can be found upon examination of δ18O 

values for DO (Figure 4). The dashed line in this figure represents the expected 

δ18ODO values caused by atmospheric equilibration (+24.5‰). During July 2003 

δ18ODO values from the Tweed mostly plot below +24.5‰, suggesting net autotrophy 

within the estuary. However, δ18ODO signatures produced by photosynthesis will also 

reflect the δ18O of the source water from which dissolved oxygen is formed during 

photosynthesis. In an estuarine environment the δ18O of the water (δ18OH2O) should 

change linearly with salinity, reflecting conservative mixing between freshwater and 

seawater. Consequently, while δ18ODO signatures across the Tweed during July 2003 

reflect net autotrophy and mixing with a more air-water equilibrated 18O-enriched 

marine DO end-member, the positive linear increase in δ18ODO values observed 

across the salinity gradient during this period is also a function of the increasing 

δ18OH2O signatures. In any case, the most 18O-enriched δ18ODO signatures were found 

in the freshwater regions of the estuary, confirming the suggestion made in the 

previous section that the most intensive autotrophic activity was confined to the non-

tidal river. 

In contrast to the Tweed summer survey, δ18ODO isotopes from the Tyne fall 

above the atmospheric equilibration value of +24.5‰. As shown in Figure 4, there 

was a consistent DO 18O-enrichment across the entire salinity gradient, with values 

approaching atmospheric equilibration at higher salinities. Therefore, in conjunction 
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with high pCO2 values (excess pCO2 = 2.4-14.4) and slightly 13C-depleted δ13CDIC 

signatures, δ
18ODO isotopes provide further evidence for the dominance of 

heterotrophic activity in the Tyne Estuary during July 2003. 

δ18ODO signatures in the Tweed during December 2003 plot slightly above 

+24.5‰ (Figure 4), suggesting that the large freshwater input into this estuary during 

the winter survey was approaching equilibration with atmospheric oxygen. The 

slightly elevated δ18ODO signatures are associated with higher pCO2 values (excess 

pCO2 = 2.5-6.5), confirming net respiration within the Tweed during the winter. 

Howland et al. (2000) have also reported this reversal in photosynthesis-respiration 

dynamics in the Tweed between seasons. Since pollution-derived anthropogenic 

carbon inputs into the relatively pristine Tweed are thought to be minor, these results 

suggest that a significant amount of terrestrial organic carbon was undergoing 

mineralization in the Tweed Estuary during the December 2003 survey. Further 

evidence for this can be seen in DIC distributions, which showed non-conservative 

inputs across the salinity gradient (Figure 3a).  
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Figure 4. δ18O values (‰) for dissolved oxygen (δ18ODO) in the Tyne Estuary during July 2003 
(closed circles) and in the Tweed Estuary during July 2003 (open triangles) and December 2003 (open 

squares) plotted versus salinity. The dashed line represents the δ18ODO air-water equilibrium value of 

+24.5‰. Vertical error bars represent an accuracy and reproducibility of ±0.2‰ on δ18O values.    
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CONCLUSIONS 

At first examination it appeared that δ13CDIC trends across the Tyne and 

Tweed estuaries in the summer were almost entirely governed by estuarine mixing 

between riverine and marine sources. However, a concentration dependent isotopic 

mixing line demonstrated small, yet significant deviations away from conservative 

behaviour (δ13CDIC - δ13CDIC-pred). The deviations were more pronounced in the Tyne, 

which showed slightly 13C-depleted δ13CDIC values across the salinity gradient. In the 

Tweed, where δ13CDIC signature more closely followed conservative mixing, these 

deviations were more 13C-enriched. These differences between measured and 

predicted δ13CDIC values provided valuable insight into respiration-photosynthesis 

dynamics, showing that during the summer the Tyne and Tweed Estuaries were net 

heterotrophic and autotrophic systems, respectively. The relatively low (<2 times 

atm. pres.) and high (up to 14.4 times atm. pres.) pCO2 levels in the Tweed and Tyne 

Estuaries, respectively, helped to substantiate these conclusions. The combined use 

of δ13CDIC and δ18ODO isotopes enabled further delineation between DIC changes that 

were associated with oxidation of organic matter and those associated with net 

autotrophy. In the Tyne during July 2003, δ18ODO values were generally heavier than 

the atmospheric equilibration value (+24.5‰), suggesting net heterotrophy within 

the estuary. δ18ODO values in the Tweed during the same period were lighter than 

+24.5‰, implying net autotrophy. However, during December 2003 δ18ODO values 

in the Tweed were slightly 18O-enriched, demonstrating a seasonal reversal in 

respiration-photosynthesis dynamics. The switch to net heterotrophy in the winter 

was supported by both non-conservative inputs of DIC and elevated pCO2 (up to 6.5 

times atm. pres.). Since the amount of terrestrial organic matter delivered to the 

world’s oceans can undergo significant modification during estuarine transport, 

understanding such seasonal and site-specific variability in net heterotrophy is 

therefore vital. 
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CHAPTER 3: Behaviour of dissolved organic carbon in the Tyne and Tweed 

Estuaries, UK 

 

ABSTRACT 

In order to examine the behaviour of terrestrially-derived dissolved organic 

carbon (DOC) in estuarine environments, concentrations of chlorophyll a (chl-a), 

total, high molecular weight (HMW) and low molecular weight (LMW) dissolved 

organic carbon (DOC), and stable and radiocarbon isotopes of HMW DOC (δ13C and 

�
14C, respectively) were measured in the Tyne and Tweed Estuaries (NE UK) during 

both winter and summer periods. Modern �14C values (76-121 ‰) indicated an 

export of young terrestrial HMW DOC to the North Sea from both rivers. In both 

estuaries, HMW DOC concentrations showed a large concave removal across the 

salinity gradient indicating a significant loss (31-70%) of terrigenouos HMW DOC 

material during estuarine mixing. δ13C signatures of HMWDOC across the Tyne and 

Tweed Estuaries exhibited progressive 13C-enrichment with increasing salinity, 

demonstrating mixing between marine and terrestrial dissolved organic matter. A 

concentration dependent isotope mixing line was used to evaluate conservative 

mixing between marine and terrestrial components. This evaluation suggested that 

conservative mixing alone could not explain the progressive 13C-enrichment across 

these estuaries. In addition to minor autochthonous inputs, it was hypothesised that 

the non-conservative behaviour of δ13C signatures may have been caused by the 

preferential removal of 13C-depleted HMW DOC during flocculation, 

biodegradation, and or photochemical oxidation processes. The behaviour of δ13C 

signatures across the salinity gradient was closely correlated with �14C values, which 

demonstrated a 14C-enrichment above modern values with increasing salinity. These 

elevated �14C values (up to 811‰) were attributed to anthropogenic discharges 

originating from within the coastal North Sea environment possibly from the nuclear 

industry. 

 

INTRODUCTION 

Rivers carry roughly 1 Gt of carbon to the oceans every year, with around 

half of this load in dissolved inorganic form (DIC) and the other half in both 

dissolved (DOC) and particulate (POC) organic forms (Meybeck, 1993; Probst et al., 
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1994). A significant proportion of organic carbon in rivers is derived from soils and 

peat, which are thought to be sources of aged, highly-degraded and recalcitrant 

organic biomolecules such as humic material (Hedges and Keil, 1995). In 

comparison, contributions by riverine plankton are generally considered negligible 

globally. If all of the riverine organic carbon reaches the ocean this should make a 

large contribution to carbon stored in the ocean, particularly with respect to the DOC 

pool (Raymond and Bauer, 2001b). However, geochemical studies have failed to 

identify significant proportions of terrestrially-derived organic compounds in the 

marine DOC pool (Hedges et al., 1997; Meyer-Schulte and Hedges, 1986). This 

discrepancy may suggest that a large fraction of terrestrial carbon is either 

quantitatively removed or its diagnostic geochemical properties are altered during 

transit through estuarine and coastal zones and therefore become similar to those of 

marine DOC (Bianchi et al., 2004; Moran et al., 2000; Opsahl and Zepp, 2001; 

Repeta et al., 2002). 

Recent studies have demonstrated large net removal of POC by bacterial 

mineralization in European estuaries (Abril et al., 2002; Frankignoulle et al., 1998) 

and in the Amazon delta (Keil et al., 1997); however, it is not clear whether the large 

DOC pool is also subject to estuarine removal and alteration. Previous studies have 

shown that DOC is mostly refractory across the salinity gradient and hence often 

exhibits near-conservative mixing (Álvarez-Salgado and Miller, 1999; Mantoura and 

Woodward, 1983). That is, DOC trends in estuaries generally follow a conservative 

pattern of decreasing concentrations across the salinity gradient from relatively high 

riverine towards lower marine concentrations. However, recent work has 

demonstrated that a linear distribution across an estuary does not necessarily 

represent conservative mixing, since concurrent sources and sinks may balance each 

other out (Cifuentes and Eldridge, 1998; Raymond and Bauer, 2000). While most 

studies documenting non-conservative behaviour of DOC within estuaries have 

reported elevated concentrations attributed to inputs from such sources as 

phytoplankton, marshes, and anthropogenic activity (Abril et al., 2002; Benner and 

Opsahl, 2001; Kattner et al., 1999; Peterson et al., 1994; Raymond and Bauer, 

2001a), others have found negative deviations, thus indicating removal of a 

significant fraction of DOC. At low salinities, this removal of terrestrial DOC has 

often been attributed to flocculation, whereby the humic-rich, high molecular weight 
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(HMW) fraction of DOC undergoes aggregation and precipitation leading to burial in 

sediments (Fox, 1983; Sholkovitz et al., 1978; Uher et al., 2001). Although 

Sholkovitz et al. (1978) and Fox (1983) found that flocculation was in some cases 

responsible for a substantial removal of humic material (up to 100%), total DOC 

distributions still exhibited conservative mixing behaviour across the salinity 

gradient. In addition to flocculation and adsorption onto suspended sediment (Uher et 

al., 2001), terrestrial DOC removal within estuaries can also be caused by bacterial 

respiration (Coffin et al., 1993; Findlay et al., 1992; Moran et al., 1999) 

Photochemical oxidation is another possibility (Moran and Zepp, 1997), during 

which large humic molecules are broken down by UV light into more labile 

components which can subsequently be utilised by aquatic bacteria (Amon and 

Benner, 1998; Kieber et al., 1989; Miller and Moran, 1997). A recent study by 

Bianchi et al (2004) has also suggested that a significant amount of terrestrial carbon 

can be processed via co-metabolism with fresh labile organic carbon (e.g., algal 

sources). The factors that contribute to such contrast in the behaviour and reactivity 

of DOC in different estuaries remain to be fully elucidated. 

Stable carbon isotopes (δ13C) can provide a valuable means to interpret the 

origin and behaviour of terrestrial-derived organic carbon within estuarine systems. 

Traditionally, δ13C signatures of organic carbon have been used as source indicators 

within estuarine systems in order to evaluate the proportions of terrestrial and marine 

material (Canuel et al., 1995; Cifuentes and Eldridge, 1998; Coffin and Cifuentes, 

1999; Peterson et al., 1994). Their usefulness in this approach relies on distinct 

differences in δ13C values that exist between terrestrial material (i.e., soil, plants) and 

marine algae. Terrestrial plants use atmospheric CO2 as their main source of carbon, 

whereas the main source of carbon for aquatic macrophytes and phytoplankton is 

DIC (Hillaire-Marcel, 1986). This results in terrestrial plants and soil organic matter 

having δ13C values which are generally more 13C-depleted than aquatic plants and 

marine-produced organic matter (Fry and Sherr, 1984). However, δ13C signatures 

may also be of value for discerning biogeochemical processes that lead to systematic 

changes in stable carbon isotope ratios. This alteration would result from isotope 

fractionation caused by kinetic effects, which occur as the result of differences in 

activation energies caused by mass differences (Galimov, 1985). This typically 

results in the residual substrate becoming more enriched in the heavier isotope, 13C 
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(i.e., a less negative δ13C value). For instance, Opsahl and Zepp (2001) found small 

but significant positive shifts of up to 1.5 ‰ 13C-enrichment in bulk riverine DOC 

after prolonged exposure to UV light. 

The age of terrestrial DOC exported to the world’s oceans by rivers will also 

influence its reactivity during estuarine mixing. It has been suggested that terrestrial 

DOC exported by rivers is generally younger 14C-enriched material (Hedges et al., 

1986). For instance, in a recent study carried out in peat-dominated Arctic Rivers 

(Benner et al., 2004) the �14C values for DOC ranged between -6 to 307‰, 

indicating the presence of bomb-produced 14C and hence modern radiocarbon ages. 

Other studies have shown similar �14C values for DOC in both temperate (Raymond 

and Bauer, 2001a; Raymond and Bauer, 2001b) and tropical (Hedges et al., 1986) 

rivers, although in the case of the former older DOC corresponding to radiocarbon 

ages of between 1000-1400 yrs BP has also been found (Raymond and Bauer, 2001b; 

van Heemst et al., 2000). Raymond and Bauer (2001a) have demonstrated that during 

estuarine mixing bacteria preferentially utilise younger, more labile DOC. This 

results in the residual DOC becoming more 14C-depleted as degradation progresses. 

From these findings they concluded that rivers can therefore supply organic matter to 

the world’s oceans in a more degraded, pre-aged form (Raymond and Bauer, 2001b). 

Since geochemical studies have failed to identify significant proportions of 

terrestrially-derived organic compounds in the marine DOC pool (Hedges et al., 

1997; Meyer-Schulte and Hedges, 1986), the export of large amounts pre-aged and 

altered terrestrial organic carbon could be used to explain the presence of old marine 

carbon, which is generally a few thousand years old (Williams and Druffel, 1987). 

Factors that will influence the age of riverine DOC include watershed soil and 

vegetation characteristics (i.e., the parent age of soil organic matter), weathering 

patterns, and stream and river residence times (Raymond and Bauer, 2001b). 

 In this study, we have examined the sources, ages and transformations of 

dissolved organic carbon in two northern, temperate estuaries (Tyne and Tweed) 

utilising concentrations of the different size fractions (total, low molecular weight-

LMW and HMW) and stable and radiocarbon isotopic signatures of HMW DOC 

(δ13C and �14C, respectively). C/N ratios (C/NHDOM) of HMW dissolved organic 

matter (DOM), chlorophyll a (chl-a) concentrations and stable carbon isotopes of 

dissolved inorganic carbon (δ13CDIC) were measured in order to assess the 



 97 

contribution from autochthonous production. Surveys were carried out in summer 

low flow conditions (July 2003) in the Tyne and Tweed Estuaries and winter high 

flow conditions (December 2003) in the Tweed Estuary in order to further evaluate 

the influence of seasonal/hydrologic variability. During each of the five surveys 

reported here (3 in the Tyne, 2 in the Tweed) there were large net removals in HMW 

DOC across the salinity gradient. Furthermore, δ13C signatures often exhibited 13C-

enriched, non-conservative behaviour. Therefore, one of the main goals of this study 

was to ascertain whether these changes in δ13C values were associated with removal 

of HMW DOC. 

 

MATERIAL AND METHODS 

 

Description of Study Sites 

 

The Tyne Estuary 

The River Tyne, which flows through the densely populated city of 

Newcastle, has a total drainage area of approximately 2900 km2 and an average 

freshwater flow of ~48 m3/s. Its two main tributaries are the North Tyne, which 

receives humic-rich waters draining areas of blanket peat afforestation, and the South 

Tyne, which drains relatively pristine moorland (Baker and Spencer, 2004). The 

North and South tributaries converge downstream to form the River Tyne, which 

supplies more than 90% of the total river discharge into the Tyne Estuary (Chapter 1, 

Figure 1). Most of the remaining freshwater input is derived from the River Derwent. 

The maximum extent of the tidal estuary is approximately 33 km inland from the 

North Sea, and the residence time is approximately 5-20 days (A. P. Stubbins, private 

communication). The Tyne is a partially mixed mesotidal estuary (Baker and 

Spencer, 2004). Although industrial fluxes to the lower part of the estuary are in 

decline, it continues to receive significant amounts of urban waste, particularly from 

sewage treatment facilities located at Howdon in the lower estuary (Baker and 

Spencer, 2004; Upstill-Goddard et al., 2000). However, the water quality in the Tyne 

upstream of Newcastle has improved significantly over the past few decades. The 

Tyne Estuary is fairly deep and gently sloping, with only a very minor extent of salt 

marshland across the tidal interface. 
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The Tweed Estuary 

The Tweed River and its tributaries drain a rural, relatively sparsely 

populated region located in the border region between England and Scotland. Most 

of the Tweed’s discharge originates from the main river, although approximately 

10% of the freshwater input comes from the Whiteadder, which joins the Tweed 

approximately 6.5 km upriver from the North Sea. The combined catchment area of 

the Tweed and Whiteadder is approximately 4900 km2 and the average freshwater 

input into the estuary is ~84 m3/s (Fox and Johnson, 1997). The maximum length of 

the Tweed estuary (Chapter 1, Figure 1) is around 13 km and the residence time is 

approximately 1 day (Uncles and Stephens, 1996). The Tweed is a partially mixed to 

stratified microtidal estuary (Uncles and Stephens, 1996). The catchment is 

dominated by agricultural activity, ranging from upland areas of moorland used for 

sheep grazing to more arable regions in the lowlands (Neal, 2002). The Tweed 

Estuary receives significantly less anthropogenic inputs than the Tyne Estuary, as  

reflected in its favourable water quality ratings (Robson and Neal, 1997). The Tweed 

Estuary is relatively shallow, with large areas of exposed mudflats visible during low 

tide, and is fairly steeply rising (Uncles and Stephens, 1996). Salt marshes in the 

Tweed Estuary make up <10% of the tidal surface area (Joint Nature Conservation 

Committee, UK). 

 

Sample Collection 

Data reported here (Tables 1-5) are from near-surface water samples 

collected on single day excursions to the Tyne (Jul-02, Mar-03, Jul-03) and Tweed 

(Jul-03, Dec-03) Estuaries. Site selection within the estuary was based on in situ 

salinity measurements (using a portable probe) in order to ensure adequate, high-

resolution coverage of the full salinity gradient. Once back in the laboratory, salinity 

was analysed on a pre-calibrated Hanna (model 8633) conductivity meter. Water 

samples for chlorophyll a and DOC analysis were collected in acid-cleaned 4 L and 

25 L high density polyethylene (HDPE) containers, respectively, at a depth of 1-2 m 

from a small boat using a submersed pump. Samples for isotopic analysis of DIC 

were collected in 30 ml airtight glass vials that were pre-poisoned with HgCl2. River 

discharge data are reported here as the two-day averages incorporating the days prior  
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Site/Date 

salinity total DOC 

[µM] 

HMW 

DOC [µM] 

LMW 

DOC [µM] 

C/NHDOM chl-a       

(µg/L) 

Tyne       

11/7/02 33.2 142.9 9.1 136.4 - 0.8 

11/7/02 30.9 213.3 15.4 202.5 - 1.4 

11/7/02 25.9 283.4 22.2 261.5 - 3.0 

11/7/02 19.3 407.6 36.4 388.7 - 2.4 

11/7/02 15.0 540.5 45.7 490.7 - 2.4 

11/7/02 9.8 576.5 65.1 516.7 - 4.3 

11/7/02 4.7 621.1 83.0 554.1 - 2.5 

11/7/02 0.2 735.3 130.5 598.0 21.0 1.3 

11/7/02 0.2 731.6 131.0 593.5 21.2 1.4 

4/3/03 34.1 204.5 6.9 177.5 12.2 0.3 

4/3/03 28.7 219.2 14.9 206.4 5.9 0.2 

4/3/03 19.0 319.4 17.3 305.4 18.0 0.2 

4/3/03 14.8 417.4 34.3 400.5 22.3 0.2 

4/3/03 14.1 511.5 36.6 494.4 21.4 0.4 

4/3/03 10.5 476.9 45.9 428.6 27.7 0.6 

4/3/03 5.3 570.0 71.0 454.4 28.3 1.2 

4/3/03 1.3 714.0 157.1 546.3 30.0 0.6 

4/3/03 0.1 736.5 261.1 503.5 33.2 0.6 

4/3/03 0.1 738.0 260.8 511.1 33.6 0.7 

23/7/03 32.5 152.5 5.2 141.2 14.9 1.0 

23/7/03 27.1 316.2 13.8 294.2 13.5 2.2 

23/7/03 25.1 324.2 21.7 313.6 17.0 0.9 

23/7/03 24.2 336.1 22.2 322.0 16.8 1.4 

23/7/03 21.6 363.9 29.2 356.9 18.9 2.7 

23/7/03 20.6 382.9 30.4 360.1 17.8 0.7 

23/7/03 20.1 406.6 33.9 367.0 19.5 1.4 

23/7/03 18.3 433.8 37.3 411.0 20.3 2.8 

23/7/03 16.4 444.5 43.6 423.9 22.5 1.4 

23/7/03 13.9 468.5 51.7 440.1 19.7 1.4 

 

Table 1. Geochemical parameters of water samples from the Tyne Estuary, including salinity, total, 

low molecular weight (LMW) and high molecular weight (HMW) dissolved organic carbon (DOC) 

and chlorophyll a (chl-a) concentrations, and C/N ratios of HMW dissolved organic matter. 

 

to and day of sampling. Discharges for the Tyne (Q = 8.6 m3/s, 10-11 July 2002; Q = 

30.7 m3/s, 03-04 March 2003; Q = 7.3 m3/s, 22-23 July 2003) and Tweed (Q = 14.5 

m3/s, 07-08 July 2003; Q = 151.2 m3/s, 02-03 December 2003) were obtained from 

the UK Environment Agency and from the Scottish Environment Protection Agency, 

respectively. Care was taken to sample the entire estuarine salinity range. However, 

flow conditions and tidal status restricted the accessible salinity range on some 

occasions. During the July 2003 transect in the Tyne Estuary, the combined effects of 

a spring tidal event with extremely low flow resulted in a low salinity end-member 

sampling point of 13.9 psu due to inaccessibility of the inner estuary. Conversely, 
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during the December 2003 sampling trip to the Tweed Estuary high river flow 

resulted in a survey comprised predominantly of low salinity water samples. This 

strong dependence on surface salinity with freshwater runoff has been previously 

reported in the Tweed Estuary (Uncles et al., 2000). 

  

Site/Date salinity total DOC 

[µM] 

HMW 

DOC [µM] 

LMW 

DOC [µM] 

C/NHDOM chl-a       

(µg/L) 

Tweed       

8/7/03 33.2 67.2 1.3 64.5 9.7 0.2 

8/7/03 32.4 70.9 2.5 70.6 9.5 0.3 

8/7/03 29.5 88.0 3.8 80.7 10.4 0.6 

8/7/03 27.4 94.3 4.7 84.5 10.5 1.2 

8/7/03 17.9 135.1 8.5 124.8 10.7 1.4 

8/7/03 8.6 176.7 17.4 145.2 11.0 1.4 

8/7/03 4.2 193.8 27.6 151.7 11.0 1.4 

8/7/03 1.4 217.6 39.5 161.1 11.1 1.5 

8/7/03 0.1 223.5 61.9 163.7 11.8 1.6 

8/7/03 0.1 226.1 62.5 165.1 11.9 1.7 

3/12/03 31.30 74.9 4.2 70.9 9.0 1.8 

3/12/03 19.38 298.2 56.3 264.2 20.1 - 

3/12/03 4.51 559.0 181.9 359.2 23.8 - 

3/12/03 1.90 590.2 199.4 362.9 24.9 3.9 

3/12/03 1.27 607.4 198.4 366.1 24.5 3.1 

3/12/03 0.97 644.3 253.7 357.9 27.0 3.4 

3/12/03 0.90 651.0 266.3 345.0 25.5 2.1 

3/12/03 0.19 658.2 354.0 279.2 24.0 4.6 

3/12/03 0.16 664.0 331.8 281.2 22.6 4.0 

3/12/03 0.12 668.2 337.9 284.0 21.8 3.8 

 

Table 2. Geochemical parameters of water samples from the Tweed Estuary, including salinity, total, 

low molecular weight (LMW) and high molecular weight (HMW) dissolved organic carbon (DOC) 

and chlorophyll a (chl-a) concentrations, and C/N ratios of HMW dissolved organic matter. 

 

Analysis of high molecular weight dissolved organic matter (HMW DOM) 

Following sample collection, the 25 L water samples were consecutively 

pressure-filtered (~1.4 bar) through both a 0.7 �m glass fibre filter and a 0.2 �m 

capsule filter to remove particulates, algae and most of the bacteria. In order to 

obtain sufficient material for isotope analysis, dissolved organic matter (DOM) was 

concentrated via tangential-flow ultrafiltration (UF), a technique that separates a 

filtrate of known molecular weight. A 1 kDa UF membrane (Millipore) was 

purchased for this study but after testing was found to have a nominal pore size of 15 

kDa, which was capable of separating the high molecular weight (HMW, >15kDa) 
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from the low molecular weight (LMW, <15 kDa) fraction of DOM. The nominal 

pore size of the UF membrane used in these experiments was slightly higher than 

those commonly employed by others (Benner et al., 1997; Benner and Opsahl, 2001; 

Bianchi et al., 2004; Repeta et al., 2002) and was expected to underestimate HMW 

DOC concentrations relative to these studies. However, the HMW DOC 

determination reported here are comparable to other studies which have subdivided 

the HMW fraction into a larger, 10 kDa to 0.2 �M (colloidal organic carbon – 

COC10) component (Guo and Santschi, 1997; Santschi et al., 1995). In these studies 

COC10 in coastal water samples comprised around 3-7% of total DOC, which is 

similar to percentages of HMW DOC obtained at our more saline sites. Based on our 

concentration factor of 30, the percent recovery of total DOC ranged from 90.2 to 

107.5%, indicating minimal loss or contamination for bulk carbon.  

After initial UF, the HMW DOM samples were diafiltered with 10 L of Milli-

Q water (using a 20:1 dilution ratio) in order to remove salts. After diafiltration, 

HMW DOC samples were freeze-dried, homogenised, re-wetted with Milli-Q water 

and placed for several days inside a glass desiccator containing concentrated HCl to 

remove inorganic carbon. They were then vacuum desiccated to remove HCl prior to 

δ
13C analysis. Total, HMW and LMW DOC values reported here were measured on 

aliquots of sample which were stored in 20 ml glass scintillation vials using a 

Shimadzu TOC-5000 analyzer, and the accuracy and precision for these 

measurements was better than ±5 % RSD. 

 

Analysis of chlorophyll a  

Suspended material for chlorophyll a (chl-a) analysis was collected on pre-

combusted (440oC for 4 h) GF/F filters (Whatman). It has been observed that the 

retention capability of these filters, which have a nominal pore size of ~0.7 �m, is 

approximately equal to that of 0.2 �m Nuclepore filters (Chavez et al., 1995). 

Therefore, the GF/F filters used in this study should have retained the bulk of 

phytoplankton biomass, including the smaller nanoplankton (2 to 20 �m) and 

picoplankton (0.2 to 2 �m) size classes. The samples were filtered and then stored at 

-20oC prior to chl-a extraction. After soaking the filters for several hours in 90% 

acetone, chl-a in the leachate was determined by measuring fluorescence with a 

Turner Model 450 fluorometer (Parsons et al., 1984). Based on multiple analyses of 
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standards and samples, the precision for the chl-a measurements was found to be ±10 

% RSD. 

 

C/N ratios of HMW DOM and δδδδ
13

C analysis of HMW DOC and DIC 

δ
13C signatures of HMW DOC and C/N ratios (reported here as molar ratios) 

of HMW DOM were determined using a Carlo Erba Instrument NA2500 elemental 

analyser coupled with a Micromass PRISM III Isotope Ratio Mass Spectrometer 

(EA-IRMS). δ13C values for DIC (δ13CDIC) were run on an Optima mass 

spectrometer that was equipped with a Gilson® autosampler. Ratios of 13C to 12C are 

expressed in delta notation as per mil (‰) differences relative to the VPDB standard, 

where: 

 

δ
13C = [{(13C/12C)sample – (13C/12C)standard} / (13C/12C)standard] × 1000               

(1) 

 

Repeat isotope measurements of HMW DOC were made when sufficient material 

was available, which included all samples collected at salinities <25. At several sites 

across both estuaries triplicate samples were collected for isotopic analysis of DIC. 

Based on replicate samples and multiple measurements of standards the 1� precision 

for δ13C values presented in this study was ±0.3‰. Based on multiple analyses of 

standards and samples, the acuracy and reproducibility for %C and %N determined 

via EA analysis was generally better than ±5% and ±7% RSD, respectively. During 

the July 2002 survey to the Tyne Estuary HMW DOM samples were not properly 

diafiltered, resulting in unquantifiable EA-IRMS peak sizes for saline samples. 

Hence, only the riverine sample from this survey is reported here.  

 

14
C dating 

 HMW DOC samples were prepared to graphite at the Natural 

Environmental Research Council (NERC) Radiocarbon Laboratory, East Kilbride, 

UK, and analysed at the Scottish Universities Environmental Research Centre 

(SUERC), East Kilbride, UK on the 5MV NEC AMS. Graphite was prepared by 

quantitative recovery of carbon in sealed quartz tubes followed by cryogenic 

separation of CO2 (Boutton et al., 1983). Aliquots of CO2 were converted to an 
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iron/graphite mix by iron/zinc reduction (Slota et al., 1987). A sub-sample of CO2 

was used to measure δ13C using a dual-inlet mass spectrometer with a multiple ion 

beam collection facility (VG OPTIMA) in order to normalise 14C data to -25‰ δ13C-

PDB. The mass spectrometer was calibrated with international reference materials to 

a precision of ±0.1‰. Radiocarbon data have been normalised to -25 ‰ δ13C-PDB 

using values obtained either from on-line measurements made on graphite analysed 

by AMS or using the δ13C measurement made on the sub-sample of CO2 using the 

dual-inlet mass spectrometer described above. In order to assess the viability of 

analysing HMW DOM using UF, blanks were prepared by adding internal standard 

material of known ages to 400 ml of ultrafiltered MilliQ water. The standards were 

then prepared in the same manner as described above for the samples, including 

freeze-drying, acidification, re-wetting and vacuum desiccation steps. These UF 

blanks demonstrated acceptable levels of background contamination. AMS results 

(Table 3) are reported here as conventional radiocarbon years BP (before AD 1950), 

absolute percent modern carbon (pMC) and �14C ratios with an overall analytical 

precision of 1�. The use of pMC takes into account the ongoing radioactive decay of 

the international reference standard (oxalic acid) since AD 1950 (Stuiver and Polach, 

1977). 14C enrichment > 100 pMC indicates the presence of 14C from atomic 

weapons testing (post AD 1955). �14C values are expressed according to the 

convention defined by Stuiver and Polach (1977), where: 

 

�
14C = (pMC/100 – 1) × 1000                    (2) 

 

Using the error associated with pMC values, and based on results from two replicate 

analysis (riverine end-members, Tyne Mar-03 and Tweed Dec-03) the 1� precision 

for �14C values of HMW DOC presented in this study was better than ±7‰.    

 

RESULTS AND DISCUSSION 

 

Chlorophyll a concentrations 

Chl-a concentrations during all surveys in both estuaries were relatively 

small, ranging from 0.8 to 4.3 �g/L (Jul-02), 0.2 to 1.2 �g/L (Mar-03) and 0.7 to 2.8 

�g/L (Jul-03) in the Tyne Estuary and from 0.2 to 1.7 �g/L (Jul-03) and 2.1 to 4.6 
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�g/L (Dec-03) in the Tweed Estuary. Although comparisons in the literature are not 

available for the Tyne, chl-a values similar to those reported here have been observed 

previously in the Tweed (<2 �g/L; Uncles et al., 2000), who suggested these low 

values were due to rapid flushing which prevents the occurrence of repeated algal 

cell division within the tidal estuary. The slightly higher chl-a concentrations in the 

Tweed during December were probably related to higher levels of plant debris in the 

river during this period of high discharge. Although not measured during the Feb-02 

survey to the Tyne Estuary, it is likely that chl-a concentrations during this transect 

were similar to those measured during the following winter. Based on these low chl-a 

concentrations we therefore assume that autochthonous production in both the Tweed 

and Tyne estuaries should have only a minor impact on the carbon cycling of 

dissolved organic carbon. 

 

Site/Date salinity δ
13C          

±0.3‰ 

�
14C            

±7‰ 

14C age               

(yrs BP) ±1� 

14C pMC        

±1� 

Tyne      

4/3/03 34.1 -25.7 -   - 

4/3/03 28.7 -25.7 -   - 

4/3/03 19.0 -27.0 -   - 

4/3/03 14.8 -27.1 -   - 

4/3/03 14.1 -26.9 -   - 

4/3/03 10.5 -27.3 143 modern 114.31 ±0.31 

4/3/03 5.3 -27.7 143 modern 114.27 ±0.31 

4/3/03 1.3 -27.9 96 modern 109.57 ±0.27 

4/3/03 0.1 -28.4 119 modern 111.93 ±0.27 

4/3/03 0.1 -28.3 121 modern 112.14 ±0.36 

23/7/03 32.5 -24.0 -  - 

23/7/03 27.1 -24.8 471 modern 147.05 ±0.47 

23/7/03 25.1 -25.1 469 modern 146.86 ±0.38 

23/7/03 24.2 -25.3 310 modern 131.00 ±0.41 

23/7/03 21.6 -26.1 178 modern 117.79 ±0.36 

23/7/03 20.6 -25.6 299 modern 129.91 ±0.36 

23/7/03 20.1 -26.6 136 modern 113.64 ±0.28 

23/7/03 18.3 -26.2 317 modern 131.66 ±0.41 

23/7/03 16.4 -26.9 117 modern 111.66 ±0.34 

23/7/03 13.9 -26.8 129 modern 112.92 ±0.35 

11/7/02 0.2 -27.6 -  - 

11/7/02 0.2 -27.8 -   - 

 

Table 3. δ13C and �14C signatures, radiocarbon ages, and pMC (% modern absolute carbon) values of 
high molecular weight dissolved organic carbon (HMW DOC) from the Tyne Estuary. 
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Behaviour of total, LMW and HMW DOC concentrations 

Figures 2, 3 and 4 show the HMW, LMW, and total DOC concentrations in 

the Tyne and Tweed Estuaries during the July and December 2003 surveys. The 

straight lines on these figures represent the apparent conservative mixing lines 

determined from the end-member concentrations. As shown in Figures 2c and 2d, 

HMW DOC concentrations in the Tweed Estuary exhibited a concave removal across 

the salinity gradient. HMW DOC in the Tweed decreased from maxima of 62.2 �M 

(n = 2) and 341.2 �M (n = 3) at the freshwater end-members (� 0.2 psu) to values of 

1.3 and 4.2 �M at the coastal North Sea sites during July and December 2003, 

respectively. This concave removal was also observed during the March 2003 survey 

to the Tyne (Figure 2b), when HMW DOC concentrations decreased from 260.9 �M 

(n = 2) at the freshwater end-member to 6.9 �M at the mouth of the estuary. Owing 

to the particularly low flow conditions experienced in the Tyne during the July 2003 

survey, a freshwater end-member (� 0.2 psu) DOC sample could not be obtained. 

However, total, HMW and LMW DOC concentrations from the July 2002 survey, 

  

Site/Date salinity δ
13C          

±0.3‰ 

�
14C            

±7‰ 

14C age               

(yrs BP) ±1� 

14C pMC        

±1� 

Tweed      

8/7/03 33.2 -23.9 -   - 

8/7/03 32.4 -23.2 -  - 

8/7/03 29.5 -24.0 -  - 

8/7/03 27.4 -23.8 -   - 

8/7/03 17.9 -24.7 259 modern 125.93 ±0.39 

8/7/03 8.6 -25.4 149 modern 114.94 ±0.31 

8/7/03 4.2 -25.5 83 modern 108.25 ±0.29 

8/7/03 1.4 -26.2 44 modern 104.40 ±0.32 

8/7/03 0.1 -26.7 76 modern 107.60 ±0.33 

8/7/03 0.1 -26.9 -  - 

3/12/03 31.30 -23.3 -  - 

3/12/03 19.38 -27.2 811 modern 181.06 ±0.64 

3/12/03 4.51 -28.2 123 modern 112.31 ±0.34 

3/12/03 1.90 -28.5 123 modern 112.26 ±0.27 

3/12/03 1.27 -28.6 153 modern 115.28 ±0.31 

3/12/03 0.97 -28.5 129 modern 112.89 ±0.34 

3/12/03 0.90 -28.6 -  - 

3/12/03 0.19 -28.4 104 modern 110.37 ±0.30 

3/12/03 0.16 -28.4 -  - 

3/12/03 0.12 -28.6 111 modern 111.05 ±0.34 

 

Table 4. δ13C and �14C signatures, radiocarbon ages, and pMC (% modern absolute carbon) values of 
high molecular weight dissolved organic carbon (HMW DOC) from the Tweed Estuary. 
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during which time river discharge was only slightly higher (Q = 8.6 versus 7.3 m3/s), 

showed remarkable similarity with those collected during July 2003. These two 

surveys are plotted together in Figure 2a. Therefore it was assumed that the 

 

Figure 2a Tyne Jul-02 & Jul-03
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Figure 2b Tyne Mar-03
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Figure 2. Concentrations (�M) of high molecular weight dissolved organic carbon (HMW DOC) in 

the Tyne Estuary during (a) July 2002 (open circles) and July 2003 (closed circles) and (b) March 

2003 (open diamonds). The straight line represents the expected concentration due to conservative 

mixing between marine and riverine sources.   
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freshwater (0.2 psu) end-member from the July 2002 transect accurately reflects the 

freshwater DOC input during July 2003. When plotting the July 2002 freshwater 

HMW DOC end-member (130.8 �M, n = 2) with the July 2003 data, HMW DOC in 

 

Figure 2c Tweed Jul-03
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Figure 2d Tweed Dec-03
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Figure 2. Concentrations (�M) of high molecular weight dissolved organic carbon (HMW DOC) in 

the Tweed Estuary during (c) July 2003 (open triangles) and (d) December 2003 (open squares) potted 

versus salinity. The straight line represents the expected concentration due to conservative mixing 

between marine and riverine sources.   
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the Tyne during the summer also exhibited a concave removal across the salinity 

gradient (Fig. 5a), decreasing to 9.1 �M (July 2002) and 5.2 �M (July 2003) at the 

coastal North Sea sampling sites. 

When comparing measured HMW DOC concentrations to those expected 

from conservative mixing, we found significant differences indicating net removal. 

The percentage of HMW DOC removal ([1 – (measured HMW DOC / predicted 

HMW DOC)] × 100) during the three surveys within the mid-salinity range (0.5 to 

30 psu) averaged 55 ±13% and 36 ±13% in the Tweed during July and December 

2003, respectively, and 31 ±11%, 70 ±15% and 38 ±4% in the Tyne during July 

2002, March 2003 and July 2003, respectively. These removals were associated with 

corresponding decreases in the percentage contribution of HMW to total DOC, 

which dropped from 28 to 2% and from 54 to 6% in the Tweed during July and 

December 2003, and from 18 to 6%, 35 to 3% and 11% (at 13.9 psu) to 3% (32.5 

psu) in the Tyne during July 2002, March 2003 and July 2003, respectively. The 

higher concentrations and percentage of HMW DOC found in the freshwater end-

members in the winter surveys suggests that more humic-rich material was flushed 

out of these watersheds and into the Tyne and Tweed estuaries during periods of high 

river discharge. Therefore, the absolute amount of labile HMW DOC removed in 

estuaries also increases with flow rate. This suggests that the HWM DOC fraction is 

inherently reactive during estuarine mixing during all seasons. 

In contrast to HMW profiles across the estuaries, the LMW DOC fraction 

(Figure 3) generally became more dominant with increasing salinity, changing from 

73 to 99% (Tweed, July 2003), 42 to 95% (Tweed, July 2003), 81 to 95% (Tyne, July 

2002), 68 to 97% (Tyne, March 2003) and 81 to 98% (Tyne, July 2003). 

Furthermore, in contrast to the significant removal of HMW DOC observed in both 

estuaries during all five surveys, LMW DOC concentrations showed non-

conservative inputs. These LMW DOC additions appeared to be more pronounced 

during the winter months corresponding with large removals in HMW-DOC. This 

was particularly evident in the winter Tweed survey (Figure 3d. One explanation for 

this non-conservative behaviour of LMW DOC is that the HMW DOC in these two 

estuaries was undergoing degradation to DIC and enzymatic hydrolysis to LMW 

DOC compounds (Christian and Karl, 1995; Smith et al., 1992). A study by Amon 

and Benner (1994) suggested that approximately 50% of marine HMW DOC can be 
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removed via microbial degradation, and several studies have shown that DOM 

reactivity increases with increasing size class (Amon and Benner, 1996; Guo and 

Santschi, 1997; Santschi et al., 1995).Therefore, if LMW DOC was produced via  

 

Figure 3a Tyne Jul-02 & Jul-03
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Figure 3b Tyne Mar-03
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Figure 3. Concentrations (�M) of low molecular weight dissolved organic carbon (LMW DOC) in the 

Tyne Estuary during (a) July 2002 (open circles) and July 2003 (closed circles) and (b) March 2003 

(open diamonds) potted versus salinity. The straight line represents the expected concentration due to 

conservative mixing between marine and riverine sources.   
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microbial breakdown of HMW DOC, and there were no significant inputs of 

additional sources of LMW DOC into the estuary, one might expect to see a removal 

in the total DOC concomitant with the HMW fraction. This was observed in both  
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Figure 3d Tweed Dec-03
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Figure 3. Concentrations (�M) of low molecular weight dissolved organic carbon (LMW DOC) in the 

Tweed Estuary during (c) July 2003 (open triangles) and (d) December 2003 (open squares) potted 

versus salinity. The straight line represents the expected concentration due to conservative mixing 

between marine and riverine sources.   
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winter transects (Figures 4b and 4d), when the HMW fraction comprised a greater 

percentage of the total DOC (3-35%, Tyne Mar-03; 5-54%, Tweed Dec-03) 

compared to the other three summer surveys (6-18%, Tyne Jul-02; 3-11%, Tyne Jul- 

 

Figure 4a Tyne Jul-02 and Jul-03
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Figure 4b Tyne Mar-03
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Figure 4. Concentrations (�M) of total dissolved organic carbon (DOC) in the Tyne Estuary during 

(a) July 2002 (open circles) and July 2003 (closed circles) and (b) March 2003 (open diamonds). The 

straight line represents the expected concentration due to conservative mixing between marine and 

riverine sources.   
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03; 2-28%, Tweed Jul-03). In addition, in the Tweed during Dec-03, a mass balance 

of LMW DOC + HMW DOC removed indicated that HMW DOC removal could 

indeed account for the observed non-conservative inputs of LMW DOC within the  

 

Figure 4c Tweed Jul-03
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Figure 4d Tweed Dec-03
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Figure 4. Concentrations (�M) of total dissolved organic carbon (DOC) in the (c) Tweed Estuary 

during July 2003 (open triangles) and (d) December 2003 (open squares) potted versus salinity. The 

straight line represents the expected concentration due to conservative mixing between marine and 

riverine sources.   
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estuary, providing evidence for an oxidative transfer of HMW to LMW DOC. The 

non-conservative behaviour of total DOC in the winter was more pronounced in the 

Tyne (Figure 4b), with the exception of a few samples collected near 14.1 psu. 

However, the samples that deviated from the non-conservative removal trend were 

associated with pronounced spikes in LMW DOC concentrations attributable to point 

sources from Ouseburn, a heavily contaminated urban river which flows through the 

city of Newcastle. 

During the summer, when HMW DOC comprised a smaller percentage of the 

total DOC (2-28%), total DOC concentrations across the Tweed Estuary more 

closely exhibited conservative mixing (Figure 4c). The failure to discern a change in 

total DOC concentrations across an estuary despite substantial removal in the HMW 

fraction has been observed by others (Fox, 1983; Sholkovitz et al., 1978). In the 

Tyne, despite the smaller contribution of HMW DOC to the total DOC pool (6-18%, 

Jul-02; 3-11%, Jul-03), LMW DOC addition was observed across the estuary during 

both summer transects, which resulted in a slight convex non-conservative behaviour 

for the total DOC (Figure 4a). The relatively low percentages of HMW DOC 

observed during this sampling period suggests a supplementary source for LMW 

DOC in the Tyne in addition to that derived from the breakdown of HMW DOC. The 

low chl-a concentrations found in the Tyne (<4.3 �g/L, Jul-02; <2.8 �g/L, Jul-03) 

imply that contributions from algal material in this estuary during the summer were 

relatively minor. It is therefore likely that the non-conservative LMW DOC inputs 

may have originated from mineralization of POC or from anthropogenic 

contributions (e.g., the Howdon sewage works, 27.1 psu). 

The results from this study indicate that a substantial portion of the HMW 

DOC pool is relatively reactive and is removed during estuarine mixing. In addition, 

it appears that the absolute amount of HMW DOC removed is higher when 

concentrations and contributions to total DOC are also higher. This implies that 

HMW DOC removal is a substrate limited process. The results found here indicating 

an enhanced reactivity of HMWDOC during estuarine are consistent with other 

studies. This increasing proportion of LMW relative to HMW DOC downriver across 

a salinity gradient has also been observed by others (Powell et al., 1996). This study 

attributed the substantial non-conservative removal in HMW DOC (>10 kD) in the 

Ochlockonee Estuary (SE US) to flocculation. In contrast, the estuarine inputs of 
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LMW DOC during periods of removal of large concentrations of HMW-DOC (e.g., 

Tweed Dec-03) suggests oxidative processes is at least partially responsible for  

substantial removal HMW DOC in the Tweed. This inference is supported by other 

evidences such as the seasonal reversal of respiration-photosynthesis dynamics 

observed in this estuary (Chapter 2, Howland et al., 2000). The lack of sunlight in 

winter is not the only factor in this seasonal reversal. When the supply of labile 

HMW DOC is high, heterotrophic activity may therefore dominate over autotrophy 

in winter months. Thus HMW DOC can make substantial contributions along with 

POC (Chapter 4) in contributing to net heterotrophy in these estuaries. Furthermore, 

this study suggests that when HMW DOC comprises of large fraction of riverine 

DOC inputs, its estuarine removal is more likely to be reflected in total DOC 

distributions across the estuary. 

 

Behaviour of C/N ratios of HMW DOM (C/NHDOM) 

As Figure 5 shows, C/N ratios of HMW DOM (C/NHDOM) in both estuaries 

during summer and winter showed a general decrease with increasing salinities. 

These changes across the salinity gradient were most pronounced in winter, with a 

much less pronounced variation in C/NHDOM ratios observed during the July 2003 

survey to the Tweed. For instance, C/NHDOM ratios in the Tweed during (Figure 5b) 

Dec-03 decreased from a high of 27.0 (0.97 psu) to a low of 9.0 at the coastal North 

Sea (31.30 psu). 

The average C/NHDOM ratios in the freshwater (� 0.2 psu) end-members in the 

Tweed were 11.9 ±0.1 (n = 2) and 22.8 ±1.1 (n = 3) during the Jul-03 and Dec-03 

surveys, respectively, which were very similar to the total estuarine averages (after 

combining freshwater samples) of 10.6 ±0.7 (Jul-03; n = 9) and 22.2±5.7 (Dec-03; n 

= 8). The C/N ratios of terrestrial OM (15-400) are generally higher than those of 

bacterioplankton and phytoplankton OM, which are typically characterised by C/N 

ratios less than 8 (Baird and Middleton, 2004; Cowie and Hedges, 1994; Goni and 

Hedges, 1995). The normal range for C/N ratios of riverine HMW DOM measured in 

estuaries reported in the literature is around 20-25 (Goni et al., 2003; Guo and 

Santschi, 1997; Wang et al., 2004). Therefore, exceptionally low C/N ratio of 

riverine HMW DOM during the summer survey of the Tweed requires an 

explanation. The low riverine C/NHDOM ratio measured during the Jul-03 survey may 
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suggest the mixing between high C/N terrestrial material and with N-enriched 

phytoplankton and/or bacterioplankton sources (Goni et al., 2003). While with the 

data presented here it was not possible to evaluate the contribution of bacterial-

derived OM, the low chl-a levels found during the Jul-03 survey (Table 1) implied a 
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Figure 5b Tweed Estuary
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Figure 5. C/N ratios (molar) of high molecular weight dissolved organic nitrogen (C/N) in the (a) 

Tyne Estuary during Mar-03 (open circles) and Jul-03 (open triangles) and in the (b) Tweed Estuary 

during Jul-03 (open squares) and Dec-03 (closed squares) plotted versus salinity. 
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limited contribution from algal-derived OM. Thus, we argue that the low C/NHDOM 

ratios found here could be entirely of terrestrial origin. The low riverine C/NHDOM 

ratio found here was similar to the average value of 9.4 ±1.1 reported for DOC/DON 

in groundwater draining degraded peatlands (Kalbitz and Geyer, 2002). This is 

particularly relevant in the Tweed catchment, which is dominated by agriculture 

activity. These low ratios in degraded agricultural soils were most likely the result of 

significant alteration by microorganisms, which can lead to the accumulation of 

nitrogen-rich compounds and hence a higher N content (Goni et al., 2003; Rice and 

Hanson, 1984). Therefore, this might suggest that soil-derived OM comprised the 

bulk of the HMW DOM pool. Furthermore, since terrestrial plant litter generally has 

higher C/N ratios than soil organic matter (Kendall et al., 2001; Weiguo et al., 2003), 

the seasonal differences in C/NHDOM ratios (and δ13CHDOC values; next section) in the 

Tweed can therefore be attributed to changes in the relative concentrations of 

dissolved C3 plant material. During the winter, higher river discharge (151.2 m3/s) 

would have resulted in a higher contribution from plant litter, and hence higher 

C/NHDOM ratios. Conversely, during the less turbid, lower flow conditions (14.5 m3/s) 

encountered during Jul-03 it is likely that that the relative percentage of soil-derived 

OM was substantially higher. The C/NHDOM ratios found in the lower part of the 

estuary during both winter (9.0) and summer (9.7) are typical for marine OM. The 

similarity between soil-derived and marine C/NHDOM ratios in the Tweed during July 

2003 explains the invariance of C/NHDOM ratios across the estuary during this period. 

Conversely, the large almost linear decline in C/NHDOM ratios in the Dec-03 survey of 

the Tweed suggests mixing between riverine HMW DOM of high C/N ratios with 

marine HMW DOM of low ratios. 

The average C/NHDOM ratios in the freshwater (� 0.2 psu) end-members in the 

Tyne were 21.1 ±0.2 (n = 2) and 33.4 ±0.3 (n = 2) during the Jul-02 and Mar-03 

surveys, respectively. As for the Tweed Estuary, the low chl-a levels found in the 

Tyne (Table 2) implies that autochthonous production did not make a significant 

contribution to HMW DOM to explain this seasonal change. C/NHDOM ratios of 

riverine DOM entering the Tyne Estuary during the summer falls within the normal 

range (20-25) but during the winter the value (33.4 ±0.3, n = 2) is much higher than 

those found in other estuaries. It is possible the higher C/NHDOM ratios entering the 

Tyne estuary during the winter suggest a greater contribution from plant-derived OM 
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relative to soil-derived OM. However, during the Mar-03 survey the percentage of 

HMW comprising the total DOC in the freshwater end-member (35%) was almost 

twice as high as that during the Jul-02 survey (18%). Since humic material generally 

has higher C/N ratios than bulk soil (Seeber and Seeber, 2005), the higher C/NHDOM 

values found during Mar-03 may therefore reflect a higher component of humic and 

fulvic acids in Tyne HMW DOM. For instance, in studies carried out in Russian 

rivers draining vast areas of peat and arctic taiga, C/N ratios for DOM ranging 

between 30-60 have been reported (Lara et al., 1998; Lobbes et al., 2000). 

C/NHDOM ratios in the Tyne also showed a general decrease across the salinity 

gradient, although in contrast to the Tweed Estuary the coastal North Sea ratios 

(12.2, Jul-02, 14.9, Mar-03) were slightly higher. Nonetheless, the C/NHDOM ratios 

measured at the mouth of the Tyne Estuary were within the wide range of values 

reported for marine HMW DOM (~9-20) in the literature (Benner et al., 1997; Goni 

et al., 2003; Guo and Santschi, 1997; Wang et al., 2004). During the Mar-03 survey 

an anomalously low C/NHDOM value (5.9) was measured at the sampling location 

nearest the Howdon sewage works (28.7 psu), suggesting an estuarial input of 

sewage-derived OM. In contrast to the winter, the change in C/NHDOM ratio at the site 

nearest the Howdon sewage works during the summer (27.1 psu) was not as 

pronounced as during the winter, implying a limited contribution from sewage-

derived HMW DOM during the July 2003 survey. In any case, it is likely that during 

both seasons the C/NHDOM ratios near the mouth of the Tyne Estuary were influenced 

by HSW-related inputs with low C/N ratios, thus complicating the assignment of a 

marine C/NHDOM end-member for this system. Nevertheless during both seasons the 

large estuarial decline in C/NHDOM ratios implies mixing between high C/N peat-

derived HMW DOM and low C/N marine- and HSW-derived HMW DOM. 

 

Behaviour of δδδδ
13

C signatures of HMW DOC 

In Figure 6, δ13C signatures of HMW DOC (δ13CHDOC) from the Tyne and 

Tweed Estuaries are plotted versus salinity. In general, δ13C values across both 

estuaries became more 13C-enriched with increasing salinity. The riverine (� 0.2 psu) 

δ
13C signature in the Tweed (Figure 6c) was -26.8‰ (n = 2) in July 2003 and -

28.5‰ (n =3) during December 2003 (Figure 6d). In the Tyne, riverine δ13C values 

of -28.3‰ (n = 2) and -27.7‰ (n = 2) were observed during the March 2003 (Figure 
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6b) and July 2002 surveys (Figure 6a), respectively. These values are indicative of C3 

plant material, which is most likely dominated by soil and plant litter originating 

from the upland areas of peat and moorland. In any case, the δ13C signatures reported 

here for the riverine end-members in both the Tweed and in the Tyne are still 

indicative of a terrestrial origin. The δ13C signatures for the marine end-members (-

25.7‰, Tyne Mar-03; -24.0‰, Tyne Jul-03; -23.9‰, Tweed Jul-03; -23.3 ‰, Tweed 

Dec-03) are generally within the lower range of -18 to -24‰ reported for North Sea 

DOC (Le Clercq et al., 1997), indicating that these samples are probably influenced 

by terrestrial material and are more representative of a Coastal North Sea signal. The 

slightly more 13C-depleted value for the marine end-member from the March 2003 

survey to the Tyne suggests an even greater contribution of terrestrially-derived 

HMW DOC to the Coastal North Sea during this period. 

In order to test whether δ13C signatures obeyed conservative mixing between 

marine and riverine (i.e., freshwater) sources, a two end-member mass balance 

equation using both isotopic and concentration data was utilised:  

 

δ
13Cpred = [(fM × δ13CM) + (fF × δ13CF]         (3) 

 

Here fF, fM, and δ13CF and δ13CM refer to the fraction and δ13C signatures of the 

freshwater and the marine components, respectively. The fraction of the marine 

component was calculated by dividing the assumed concentration of marine HMW 

DOC expected at a particular salinity due to conservative mixing by the sum of the 

assumed marine and freshwater (measured HMW DOC – marine HMW DOC) 

HMW DOC concentrations. The fraction of the freshwater component is 1 – fM. For 

the Jul-03 survey to the Tyne Estuary, where a riverine δ13C signature was not 

available, the δ13C signature from the previous summer (-27.7‰, ± 0.2, n = 2) was 

used. Using the above equation, we were able to predict the δ13C signature from 

conservative two end-member mixing (δ13C) for a sample at a known salinity. The 

conservative isotopic mixing curves are plotted with the measured δ13C values in 

Figure 6 as solid lines. In winter the measured δ13CHDOC signatures across the Tweed 

Estuary mostly seemed to indicate conservative mixing (Figure 6d). Note that the 

majority of these samples during this period were collected at salinities < 2 psu and a 
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proper assessment of conservative behaviour across the full salinity range could not 

be established. In contrast, δ13CHDOC values in the summer in both estuaries and in 

the Tyne during the winter exhibited 13C-enriched, non-conservative behaviour 

across the full salinity gradient (Figures 6a-c). 

 

Figure 6a Tyne Jul-02 and Jul-03
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Figure 6b Tyne Mar-03
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Figure 6. δ
13C values (δ13CHDOC) for high molecular weight dissolved organic carbon (HMW DOC) in 

the (a) Tyne Estuary during July 2002 (open circles) and July 2003 (closed circles) and (b) March 

2003 (open diamonds). The solid lines represent the conservative isotopic mixing curve as calculated 

using Eq. 3. Vertical error bars represent an accuracy and reproducibility of ±0.3‰ on δ13C values. 
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This non-conservative behaviour in δ13C-DOC values within an estuary has 

been observed by others (Peterson et al., 1994; Raymond and Bauer, 2001a); 

however, these studies also documented net inputs of DOC within the estuaries. The 

elevated δ13C- and values found in these studies were attributed to inputs derived 

 

Figure 6c Tweed Jul-03
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Figure 6d Tweed Dec-03
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Figure 6. δ
13C values (δ13CHDOC) for high molecular weight dissolved organic carbon (HMW DOC) in 

the Tweed Estuary during (c) July 2003 (open triangles) and (d) December 2003 (open squares) 

plotted versus salinity. The solid lines represent the conservative isotopic mixing curve as calculated 

using Eq. 3. Vertical error bars represent an accuracy and reproducibility of ±0.3‰ on δ13C values. 
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from 13C-enriched sources, such as C4-plant material (e.g., marsh organic matter) and 

high-salinity algal-derived DOC. In our case, however, there was substantial HMW 

DOC removal across both estuaries coinciding with 13C-enrichment in HMW DOC 

and no discernible estuarial inputs. Nonetheless, it was still possible that small 

estuarial additions may have been masked by the large net concave HMW DOC 

removals observed in Figure 2. Potential sources of 13C-enriched material in the Tyne 

and Tweed Estuaries must therefore be addressed. 

Due to the low chl-a concentrations measured throughout the Tyne and 

Tweed Estuaries during the July 2003 transects, it was concluded that phytoplankton-

derived OM did not comprise a significant percentage of the HMW DOC pool. 

Nonetheless, if phytoplankton OM were an isotopically enriched source of OM, then 

small inputs of this 13C-enriched material could potentially influence δ13C 

distributions. To investigate this possibility, a theoretical δ13C signature for 

phytoplankton-derived OM can be estimated using δ13C signatures of DIC (δ13CDIC), 

assuming a carbon isotopic fractionation between DIC and plankton of -20‰ 

(Chanton and Lewis, 1999; Raymond and Bauer, 2001a). Using this constant 

fractionation factor, the estimated δ13C values for phytoplankton-derived organic 

carbon (Table 5) ranged from -19.9‰ (marine) to -25.9‰ (13.9 psu) in the Tyne and 

from -19.1‰ (marine) to -29.9‰ (�2 psu) in the Tweed during the Jul-03 surveys. 

As shown in Table 5, the differences between δ13C values and the δ13C value of algal 

organic matter in the low- to mid-salinity region (<30 psu) ranged between 0.9 to 

2.6‰ in the Tyne and from -3.7 to 2.6‰ (at 27.4 psu) in the Tweed. In the Tweed, 

the 13C-depleted differences at salinities < 20 during the summer therefore preclude 

phytoplankton as a potential source of isotopically heavy δ13C within the upper half 

of the half of this estuary. Conversely, in the Tyne 13C-enriched differences suggest 

that in the summer phytoplankton may have indeed been the source for the heavier 

δ
13C signatures. In winter, however, negligible phytoplankton activity excludes algal 

material as a potential source for 13C-enriched OM.  

Considering the low chl-a values (<1.7 �g/L) reported here and in other 

studies (Howland et al., 2000; Neal et al., 1998), it has been suggested that benthic 

macroalgae and/or seagrasses are the dominant cause of net autotrophy in the Tweed 

during the summer (Chapter 2). In a study carried out in the Apalachicola Bay 
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(Florida, USA), Chanton and Lewis (Chanton and Lewis, 2002) found that the δ13C 

signatures of submerged aquatic vegetation tended to increase with salinity, ranging 

from approximately -27‰ (freshwater) to ~ -15‰ (marine). Therefore, it is possible 

that small amounts of benthic macroalgae or seagrass OM originating from higher 

salinities could indeed have contributed to slightly enriched δ13C signatures in the 

Tweed Estuary. 

 

Site/Date salinity δ
13CDIC     

±0.3‰ 

δ
13CALG          

‰  

δ
13CHDOC - δ13CALG          

‰ 

Tweed     

8/7/03 33.2 0.6 -19.4 4.5 

8/7/03 32.4 0.9 -19.1 4.0 

8/7/03 27.4 -1.2 -21.2 2.6 

8/7/03 17.9 -4.6 -24.6 0.0 

8/7/03 8.6 -8.0 -28.0 -2.6 

8/7/03 4.2 -8.2 -28.2 -2.6 

8/7/03 1.4 -9.9 -29.9 -3.7 

Tyne     

23/7/03 32.5 0.1 -19.9 4.1 

23/7/03 27.1 -2.7 -22.7 2.0 

23/7/03 25.1 -2.6 -22.6 2.6 

23/7/03 24.2 -3.8 -23.8 1.5 

23/7/03 21.6 -4.5 -24.5 1.6 

23/7/03 20.6 -4.1 -24.1 1.5 

23/7/03 20.1 -5.1 -25.1 1.4 

23/7/03 18.3 -5.6 -25.6 0.6 

23/7/03 13.9 -5.9 -25.9 0.9 

 

Table 5. δ
13C signatures of dissolved inorganic carbon (δ13CDIC), estimated δ13C signatures of algal-

derived OM (δ13CALG), and differences between the δ13C signatures of high molecular weight 

dissolved organic carbon (δ13CHDOC) and δ13CALG (δ
13CHDOC – δ13CALG).  

 

As Figure 5 demonstrates, a trend of decreasing C/N ratios with increasing 

salinity was observed across the Tyne Estuary during March 2003. The lowest C/N 

ratio (5.9) was found in close proximity to the Howdon sewage works, and was also 

associated with a relatively 15N-depleted signature (-5.0‰) of HMW DON (Chapter 

5). Therefore, it is likely that sewage-derived HMW DOM may have contributed to 

the 13C-enriched HMW DOC values found in the Tyne. Because of its terrestrial 

origin sewage-derived HMW DOC has been shown to have relatively 13C-depleted 

δ
13CHDOC values (e.g., -30‰; (Wang et al., 2004). However, the subsequent 

microbial utilisation of this highly labile OM may result in the production of HMW 
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DOC with a corresponding bacterial fingerprint that could influence the bulk δ13C 

signature. Based on lipid compositions and compound-specific δ13C ratios, Zou et al 

(2004) (Zou et al., 2004) concluded that a significant amount of HMW DOM is 

derived from bacteria. In samples collected from four different U.S. estuaries, 

including Boston Harbour/Massachusetts Bay, Delaware/Chesapeake Bay, San 

Diego Bay and San Francisco Bay, the average δ13C signature of bacteria-specific 

fatty acids present in the HMW DOC fraction was -24.9 ±1.5‰ (Zou et al., 2004). 

Since the low C/N ratios measured near the Howdon sewage works point to a 

bacterial origin (Goni and Hedges, 1995; Savin et al., 2001), if bacterial modification 

of sewage-derived HMW DOM in the Tyne generated similar δ13C signatures then 

this would help to explain the 13C-enrichment observed in this estuary. 

 

Preferential removal of 
13

C-depleted HMW DOC 

While anecdotal evidence points to the possible input of 13C-enriched HMW 

DOM in both the Tyne and Tweed Estuaries, these additions were likely very minor 

when compared to the relatively large terrestrial HMW DOC concentrations, thereby 

limiting their influence on overall δ13CHDOC distributions. Therefore, another 

explanation for the progressive isotopic enrichment in δ13CHDOC signatures found in 

our study was the preferential removal of isotopically lighter terrigenous HMW DOC 

during estuarine mixing. The bulk δ13C values reported here are combinations of 

multiple sources that may contain both relatively 13C-depleted and 13C-enriched 

fractions. Therefore, it is possible that some of the more 13C-depleted fractions 

within the terrigenous HMW DOC pool were relatively more reactive compared to 

the isotopically heavier components, resulting in the ‘residual’ HMW DOC 

becoming progressively more 13C-enriched with increasing salinity. The potential 

removal mechanisms of isotopically lighter HMW DOC include flocculation, 

sorption, biodegradation and/or photochemical oxidation.  

Generally, flocculation is most pronounced at lower salinities, where 

freshwater first comes into contact with more saline water. In addition, this process 

has been shown to preferentially remove HMW DOC (Fox, 1983; Sholkovitz et al., 

1978), which is rich in aliphatic, aromatic and carboxyl carbon (Hedges et al., 1992). 

Several studies have shown that lignin-derived aromatics are generally depleted in 

13C relative to carbohydrates (Benner et al., 1987; Bianchi et al., 2004; Leavitt and 
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Long, 1986), and recent work has demonstrated that the latter can comprise a 

significant percentage of freshwater HMW DOC (Repeta et al., 2002). Therefore, 

while flocculation of bulk OM may not produce a kinetic isotope fractionation effect, 

it is possible that the preferential removal of isotopically lighter humic material may 

leave a residual HMW DOC signature that is relatively 13C-enriched. 

In the absence of a significant isotope fractionation effect caused by 

flocculation, this leaves biodegradation and/or photochemical oxidation as the other 

two main processes capable of producing isotope fractionation in HMW DOC during 

its removal. Since daylight is substantially reduced in the northeastern UK during 

winter compared to summer, the effects of photochemical oxidation should be more 

important during the summer and less pronounced during the winter. Results in 

Figure 6 support this supposition where the potential 13C-enrichment of HMWDOC 

during removal in the Tweed is more pronounced in July (Figure 6c) than during 

December (Figure 6d). This implies that the 13C-enrichment in HMW DOC found in 

this study during the summer may have been largely influenced by UV-induced 

decomposition. This is further supported by seasonal variations in SPM, which are 

generally higher in the Tweed during the winter due to enhanced river discharge 

(Chapters 4-5, Uncles et al., 2000). Therefore, in conjunction with reduced levels of 

sunlight the more turbid conditions observed during December 2003 may have also 

played a role in suppressing UV-induced degradation. However, given the 

inadequate sampling of the Tweed winter profile this inference remains tentative. In 

contrast to the Tweed, the extent of 13C-enrichment in HMW DOC signatures in the 

Tyne during both winter (Figure 6b) and summer (Figure 6a) seemed quite similar. 

SPM levels across the estuary during March 2003 were much higher than during July 

2003 (Chapter 2). Since higher SPM concentrations can lead to both enhanced 

microbial activity (Abril et al., 2002) and reduced UV penetration, this would 

suggest that microbial rather than photochemical oxidation of HMW DOC was the 

dominant process producing 13C-enriched HMW DOC during the winter. 

Two of the reasons given for the non-conservative behaviour in δ13CHDOC 

values reported here are in agreement with laboratory studies carried out by Opsahl 

and Zepp (2001), who found a discernible 13C-enrichment (up to 1.5‰) in bulk 

riverine DOC after exposure to prolonged periods of UV light. As suggested in this 

study, they concluded that the alteration of δ13C signatures was probably caused by a 
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combination of biodegradation and photochemical oxidation. These laboratory 

experiments were carried out over a time scale of days to weeks, and provide a good 

comparison with the isotope fractionation effects observed in the Tyne, taking into 

account its residence time of 5-20 days. However, our study also suggests that 

significant isotopic fractionation may happen much more quickly, considering the 

shorter flushing time (1-2 days) of the Tweed Estuary. Differences in source material 

and size fraction (total versus HMW DOC) may help to explain the slightly more 

pronounced 13C-enrichment (~3‰) observed in the Tyne and Tweed Estuaries. 

 

Behaviour of �
14

C signatures of HMW DOC 

�
14C signatures of HMW DOC in both the Tyne and Tweed Estuaries were 

all greater than 0‰ (i.e., absolute pMC > 100), indicating a contemporary origin post 

AD 1955 (Table 3). In fact, the �14C values reported here, which ranged from 96-

143‰ (Tyne, Mar-03), 117-471‰ (Tyne, Jul-03), 44-259‰ (Tweed, Jul-03) and 

104-811‰ (Tweed, Dec-03), were much higher than most values for estuarine HMW 

DOC or total DOC reported in the literature (Guo and Santschi, 1997; Raymond and 

Bauer, 2001a; Raymond and Bauer, 2001b; Santschi et al., 1995; van Heemst et al., 

2000). To the best of our knowledge, one �14C signature in particular (811 ‰, 19.38 

psu, Tweed, Dec-03) is the most 14C-enriched estuarine HMW DOC or total DOC 

sample so far recorded. In addition, while most studies have reported a general 

pattern of decreasing HMW DOC / total DOC age with increasing salinity, indicating 

mixing with older marine OM or the preferential utilisation of young, 14C-enriched 

carbon during mineralization (Guo and Santschi, 1997; Raymond and Bauer, 2001a; 

Raymond and Bauer, 2001b; Santschi et al., 1995), the opposite trend was observed 

here, whereby �14C values showed a general downriver enrichment (Figure 7). The 

modern ages for HMW DOC are also in complete contrast to the much older (100s to 

1000s of years) ages found for the POC pool in these two estuaries (Chapter 4). This 

contrast between a modern DOC signal draining a much older underlying soil has 

been previously reported in other studies (O'Brien, 1986; Trumbore et al., 1989), 

including a peat-dominated headwater stream in the northeastern UK (Palmer et al., 

2001). The modern riverine signal found in both estuaries therefore suggests that 

rivers in the northeastern UK are a source of young, labile terrestrial HMW DOC to 

the North Sea, as has been reported in other temperate estuaries (Raymond and 
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Bauer, 2001a; Raymond and Bauer, 2001b) and in peat-dominated Arctic Rivers 

(Benner et al., 2004). 
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Figure 7. �
14C values (‰) for high molecular weight dissolved organic carbon (HMW DOC) in the 

(a) Tyne Estuary during March 2003 (open diamonds) and July 2003 (closed circles) and in the (b) 

Tweed Estuary during July 2003 (open triangles) and December 2003 (open squares). The solid lines 

represent the conservative isotopic mixing curve as calculated using Eq. 3. The symbols are larger 

than the vertical error bars associated with �14C measurements s (±7‰). 
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In order to test whether �14C signatures obeyed conservative mixing between 

marine and riverine sources, �14C values were substituted for δ13C values in Eq. 3. 

Unfortunately, a proper marine �14C end-member was not obtained in any of the 

surveys. However, given the trend of progressively increasing �14C values with 

increasing salinity, we assume that the relatively 14C-enriched signature of 1000‰ is 

a good estimate for coastal North Sea HMW DOC in both estuaries. In addition, 

while a riverine end-member was not obtained for the Jul-03 survey to the Tyne, 

considering the similarity in modern �14C signatures for freshwater HMW DOC in 

both the Rivers Tyne and Tweed, we assume that that a value 120‰ accurately 

reflects the freshwater signature for this transect. The conservative isotopic mixing 

curves are plotted with the measured �14C values in Figure 7 as solid lines. As this 

figure illustrates, measured �14C signatures across the Tyne Estuary mostly seemed 

to indicate conservative mixing (Figure 7a). However, in the Tweed �14C signatures 

were much more 14C-enriched than predicted by Eq. 3. One possibility for the 

inability of this model to explain the Tweed data may be due to an underestimate of 

the �14C value of the marine-end-member. If this were the case then coastal North 

Sea HMW DOC near the mouth of the Tweed would have to be even more 14C-

enriched than 1000‰. Potential sources for this highly 14C-enriched marine HMW 

DOC must be addressed. 

In the North Sea, �14C signatures of ~200‰ have been found for both DOC 

(van Heemst, 2000) and DIC (Le Clercq et al., 1997). These elevated �14C values 

were attributed to nuclear industry related discharges originating from continental 

Europe. In addition, studies carried out on the west coast of the UK in the Irish Sea 

have consistently found elevated 14C levels in DIC, DOC, and in various intertidal 

biota (Cook et al., 1995; Cook et al., 2004; Cook et al., 1998; Gulliver et al., 2001; 

Gulliver et al., 2004). These relatively high �14C values have been attributed to 

discharges originating from the Sellafield nuclear fuel reprocessing plant, located in 

Cumbria, NW England. Consequently, due to the pattern of clockwise water 

circulation around the UK coastline it is possible that the progressive 14C-enrichment 

found in HMW DOC samples from the Tyne and Tweed Estuaries reflects a strong 

Sellafield influence. However, considering the dilution expected due to the large 

maritime distance between Sellafield and NE England, it is more likely that this  
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Figure 8. �
14C values for high molecular weight dissolved organic carbon (HMW DOC) plotted 

versus δ13C values for HMW DOC in the Tyne Estuary during March 2003 (open diamonds) and July 
2003 (closed circles) and in the Tweed Estuary during July 2003 (open triangles) and December 2003 
(open squares). 

 

anthropogenic 14C-enriched carbon originated from a nearby source. In a survey 

carried out in 1999 (Gulliver et al., 2004), significant 14C-enrichments (>400 pMC) 

were found in mussels collected from the vicinity of the Hartlepool advanced gas-

cooled reactor (AGR) nuclear power station, located approximately 40 km down the 

English coastline from the mouth of the Tyne. But based on the fact that samples 

collected near Torness AGR (SE Scotland), a reactor with a similar design, did not 

contain the same level of 14C-enrichment, it was concluded that there was potentially 

another source of non-nuclear-power related 14C. Whatever the anthropogenic cause, 

it is clear that the elevated �14C values reported here originated from highly 14C-

enriched North Sea carbon, either through direct marine contributions from recently 

fixed North Sea OM, or via uptake of 14C-enriched DIC by primary producers 

followed by subsequent HMW DOC releases. As discussed previously, these 

autochthonous releases in the Tyne are potentially derived from phytoplankton, 

whereas in the Tweed benthic macroalgae are considered as a source for 14C-
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enriched HMW DOC. These assumptions are supported by the good linear 

relationships between δ13C and �14C values during the two summer surveys (Figure 

8), which corroborates the suggestion that 14C-enriched North Sea DIC is the main 

source for autochthonous production in these estuaries.  

 

CONCLUSIONS 

Modern �14C values indicated an export of young, labile terrestrial HMW 

DOC to the North Sea, whether from predominantly peat- (Tyne) or agricultural soil-

derived sources (Tweed). Five separate surveys showed significant removal of HMW 

DOC within both the Tyne and Tweed Estuaries indicating that this size fraction of 

the carbon pool is reactive during estuarine mixing. Increases in LMW DOC 

concentrations with increasing salinities in the two estuaries were at least partially 

caused by the microbial breakdown of HMW DOC. During March 2003 (Tyne) and 

July 2003 (Tyne and Tweed) δ13C signatures displayed non-conservative mixing 

between terrestrial and marine sources, whereas in the Tweed during December 2003 

δ
13C values followed conservative mixing more closely.  

There was an overall pattern in both the Tyne and Tweed Estuaries of 

progressive 14C-enrichment in �14C values with increasing salinity. The trends were 

the opposite of those found in other estuaries, where �14C values of HMW DOC or 

total DOC often decrease (i.e., gets older) with increasing salinity (Guo and Santschi, 

1997; Raymond and Bauer, 2001a; Raymond and Bauer, 2001b; Santschi et al., 

1995). The source of the lower-estuarine 14C-enrichment in HMW DOC found here 

has been attributed to anthropogenic discharges likely associated with nuclear 

industry related activity within the UK coastal environment. As a result of the parity 

between δ13C and �14C signatures, the non-conservative behaviour of δ13C signatures 

in both estuaries can therefore be partly attributed to contributions from lower 

estuary autochthonous material. However, given the large net removals found in 

HMW DOC concentrations, it was not possible to determine the exact contributions 

of this autochthonous material relative to the riverine component. Studies have 

shown that terrestrial DOC can become more 14C-depleted during estuarine mixing 

as a result of the preferential degradation of younger, more labile carbon (Raymond 

and Bauer, 2001a). However, the present study has demonstrated that highly 14C-
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enriched OM inputs can mask any potential degradation signal caused by this process 

if these additional inputs cannot be properly quantified.   

If the 13C-enriched behaviour of δ13C values found in this study was caused 

by the preferential removal of 13C-depleted HMW DOC, then rapid estuarine 

removal of HMW DOC as observed here and by other workers (Guo and Santschi, 

1997; Santschi et al., 1995) implies that delineating terrestrial-derived HMW DOC in 

an estuarine environment may often prove quite difficult when using δ13C signatures. 

In addition, an enriched carbon isotope signal of residual terrestrial carbon leaving 

estuaries could lead to the underestimation of terrestrially-derived carbon present in 

the marine DOC pool when terrestrial end member values are assigned in the 

partitioning calculations. In order to help verify whether the 13C-enriched non-

conservative behaviour observed in bulk HMW DOC was indeed due to an isotope 

fractionation effect, further laboratory experimentation is required. For instance, 

quantifying the potential isotope fractionation effects associated with flocculation 

remains essential.  
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CHAPTER 4: Behaviour of suspended particulate matter (SPM) in two 

contrasting North Sea estuaries: Implications for the fate of terrigenous organic 

carbon 

 

ABSTRACT 

Concentrations, C/N ratios and stable and radiocarbon (δ13C and �14C, 

respectively) isotope ratios of suspended particulate organic matter (POM) from the 

Tyne and Tweed Estuaries, NE England, were analysed during winter and summer 

periods. δ13C and �14C values showed a net export of old (100-1000s of years), 

terrigenous POC to the North Sea. Higher C/N ratios in the Tyne indicated a greater 

proportion of terrestrial plant debris and humic material in riverine POM, whereas in 

the Tweed the lower C/N ratios were attributed to a predominantly agricultural soil 

source. Changes in POC% (% of SPM) across the salinity gradient were used to 

estimate the percentage of riverine POC mineralised, which ranged from 38-76% and 

31-39% in the Tyne and Tweed, respectively. These estimations suggested that a 

significant fraction of terrestrial OM is relatively labile and is oxidised in the 

estuarine and coastal zone. In the Tyne during summer lower C/N and POC/chl-a 

ratios indicated a slightly more important POM contribution from estuarine or marine 

phytoplankton. However, relatively depleted δ13C and �14C values for POC pointed 

to a mostly terrestrial and/or anthropogenic origin. Older ages for POC in the Tyne 

were attributed to a predominantly peat-derived POC source with some sedimentary 

fossil carbon and/or petroleum product contamination. In the more pristine Tweed, 

there was a noticeable seasonal trend in the age of POC exported to the North Sea (a 

difference of ~ 650 years), with more 14C-depleted values found in the summer 

compared to winter due to an older age for agricultural soil-derived inputs. In the 

Tyne, decreases in POC% with increasing salinity sometimes coincided with an 

increase in POC age. This was attributed to mixing with older sediment and to the 

possible preferential loss of the younger, more labile POC fraction during 

mineralization. 

 

INTRODUCTION 

It is estimated that UK rivers export approximately 0.68 Mt of dissolved 

organic carbon (DOC) and 0.20 Mt of suspended particulate organic carbon (POC) to 
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the coastal zone each year (Hope et al., 1997). However, the actual value is likely to 

be about 1.4 Mt a-1, because the data on which these values are based underestimate 

losses during high flow events (Cannell et al., 1999). This represents about 0.014% 

of the total UK soil organic C pool of ca. 10,000 Mt (Milne and Brown, 1997). 

Furthermore, recent studies have measured an increase in concentrations and fluxes 

of DOC in surface waters derived from upland areas of the UK, the cause of which 

has been attributed to climate change (Freeman et al., 2001; Freeman et al., 2004; 

Tranvik and Jansson, 2002). These upland areas are underlain by significant peat 

deposits, which in Britain comprise over half of all soil C (Milne and Brown, 1997). 

Since collectively high-latitude blanket peats represent ~20 % of the global soil 

carbon storage (Post et al., 1982), the fate of peat-derived carbon therefore has 

important implications to global change. If this exported terrestrial carbon is buried 

in estuarine and coastal sediments then rivers simply provide a conduit for C 

transport from one store (soil) to another (estuarine/coastal sediments). On the other 

hand, if a significant fraction of the terrestrial carbon is oxidised in estuaries and in 

other coastal environments (Abril et al., 2002; Aller et al., 1996; Frankignoulle et al., 

1998; Keil et al., 1997) then it is transferred to a radiatively-active pool in the 

atmosphere involving positive feedback to global change. 

In addition to terrestrial organic matter, OC in estuaries is comprised of 

autochthonous (i.e., phytoplankton) and marine and coastal material, with 

anthropogenic wastes making significant contributions in more polluted systems 

(Abril et al., 2002; Kempe, 1984). In order to determine the relative contributions of 

these sources and to understand their behaviour during estuarine mixing it is 

necessary to utilise natural tracers as provenance indicators. Stable carbon isotope 

(δ13C) analysis of DOC and POC can be an excellent tool for this type of research 

and has thus been used successfully in many previous studies (Canuel et al., 1995; 

Cifuentes and Eldridge, 1998; Coffin and Cifuentes, 1999; Peterson et al., 1994). The 

primary rationale behind utilising δ13C signatures of organic C as source indicators in 

estuarine systems is that there exists a distinct difference between the initial δ13C 

values between terrestrial material (i.e., soil, plants) and marine algae. Terrestrial 

plants use atmospheric CO2 as their main source of carbon, whereas the main sources 

of carbon for aquatic macrophytes and phytoplankton is DIC (Hillaire-Marcel, 1986), 

for which the δ13C signature is the result of mixing of different sources of CO2. This 
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generally results in most terrestrial plants (C3 plants) and soil organic matter having 

more 13C depleted δ13C signatures than aquatic plants and marine-produced organic 

matter (Fry and Sherr, 1984). However, interpretation of δ13C values in estuarine 

systems is often problematic in that there can be significant overlap in the isotopic 

signature of the sources of organic matter (i.e., terrestrial, marine, estuarine 

phytoplankton, etc.). For example, the average δ13C value of freshwater plankton is 

approximately -30‰ (Lazerte, 1983; Angradi, 1993; Thorp et al., 1998; McCusker et 

al., 1999), which can be similar to δ13C values for many types of terrestrial plants 

and soil organic matter (Kendall et al., 2001). Thus, if terrestrial material entering the 

estuary possesses the same δ13C signature as carbon being produced by estuarine 

productivity, then delineating the relative contribution of autochthonous estuarine 

carbon to the overall DOC and POC pools will be extremely difficult. In addition, the 

carbon isotope composition of old soil carbon can be identical to that of fresh leaf 

litter and sewage (Kendall et al., 2001), further complicating source differentiation. 

The combined use of radiocarbon measurements and stable isotope 

measurements can substantially reduce signal overlap compared with the use of δ13C 

signatures alone. This is primarily due to the wider range in �14C (~ -1000 to 

+200‰) compared to δ13C values (~ -32 to -12‰) (Raymond and Bauer, 2001c). It 

has been suggested that terrestrial DOC exported by rivers is generally younger 14C-

enriched material (Hedges et al., 1986b). For instance, in a recent study carried out in 

peat-dominated Arctic Rivers (Benner et al., 2004) the �14C values for DOC ranged 

between -6 to 307‰, indicating the presence of bomb-produced 14C and hence 

modern radiocarbon ages. Other studies have shown similar �14C values for DOC in 

both temperate (Raymond and Bauer, 2001a; Raymond and Bauer, 2001b) and 

tropical (Hedges et al., 1986b) rivers, although in the case of the former older DOC 

corresponding to radiocarbon ages of between 1000-1400 yrs BP has also been found 

(Raymond and Bauer, 2001b; van Heemst et al., 2000). Conversely, suspended POC 

is generally considered to be much older than its dissolved counterpart, with �14C 

values ranging from 24 to –447‰ in rivers draining into the western North Atlantic 

Ocean (Raymond and Bauer, 2001b), -232 to -544‰ for POC in the Santa Clara 

River, southern California, USA (Komada et al., 2004), to between 75 to -980‰ for 

POC in a subtropical mountainous river in Taiwan (Kao and Liu, 1996). Sources of 

14C-depleted POC have been attributed to a greater proportion of organic C derived 
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from older soil horizons and sedimentary fossil carbon (Kao and Liu, 1996; Komada 

et al., 2004; Raymond and Bauer, 2001c). 

Despite these preliminary studies, factors controlling the age of terrestrial 

organic carbon delivered by rivers and the extent to which this carbon is removed or 

recycled during estuarine mixing remain uncertain. For instance, Raymond and 

Bauer (Raymond and Bauer, 2001a) have demonstrated that during estuarine mixing 

bacteria preferentially utilise younger, more labile DOC. This results in the residual 

DOC becoming more 14C-depleted as degradation progresses. From these findings 

they concluded that rivers can therefore supply organic matter to the world’s oceans 

in a more degraded, pre-aged form (Raymond and Bauer, 2001b). Since geochemical 

studies have failed to identify significant proportions of terrestrially-derived organic 

compounds in the marine DOC pool (Hedges et al., 1997; Meyer-Schulte and 

Hedges, 1986), the export of large amounts pre-aged and altered terrestrial organic 

carbon could be used to explain the presence of old marine carbon, which is 

generally a few thousand years old (Williams and Druffel, 1987). 

It has also been suggested that bacteria preferentially utilize younger POC in 

the same manner as DOC, resulting in a more degraded, older substrate being 

exported to the world’s oceans (Raymond and Bauer, 2001b). Therefore, if a 

significant amount of terrestrial POC is undergoing mineralization during estuarine 

mixing, one might find a relationship between age and percent of riverine POC 

mineralised. Recent studies have demonstrated large net removal of POC by bacterial 

mineralization in European estuaries (Abril et al., 2002; Frankignoulle et al., 1998), 

resulting in large emissions of respired CO2 (Frankignoulle et al., 1998). Much of this 

large CO2 flux from European estuaries has been attributed to the respiration of 

labile, pollution-derived anthropogenic carbon (Abril et al., 2002; Kempe, 1984), 

with a limited mineralization of terrestrial soil-derived POC. Conversely, a 

significant mineralization (up to 70% removal) of terrestrial POC has been observed 

in the Amazon delta (Aller et al., 1996; Keil et al., 1997). One possible explanation 

for the removal of this supposedly “refractory” material has been attributed co-

metabolism with fresh labile organic carbon (e.g., algal sources), as has been 

suggested by Bianchi et al. (2004). Evidently, the physical and biogeochemical 

processes in estuaries that lead to efficient remineralization of potentially older 

terrestrial organic matter (i.e., peat) in temperate estuaries are not fully understood. 
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In this study, we examined the behaviour of suspended particulate matter 

(SPM) in two contrasting North Sea estuaries (Tyne and Tweed, NE UK) in order to 

evaluate the age and reactivity of terrestrially-derived particulate organic carbon 

during estuarine mixing. This involved 1) determining the relative contributions of 

marine, autochthonous and terrestrial-derived material to the suspended POC pool, 2) 

estimating the percentage of riverine POC that was mineralised within the estuaries / 

coastal zones, and 3) comparing the behaviour of SPM with that of sedimentary OM 

(in the Tyne). The geochemical parameters used for these purposes and presented in 

this study include concentrations and C/N ratios of particulate organic matter 

(suspended and sedimentary) and concentrations of SPM, and chlorophyll a. 

Chlorophyll a concentrations and C/N ratios (along with isotopic data) were used to 

assess the proportion of POC which was derived from algal material. Changes in the 

percentage of POC comprising SPM (POC%) across the salinity gradient were used 

to estimate riverine POC mineralization. The isotopic data presented here include 

both stable and radiocarbon isotopes (13C and 14C, respectively) of suspended POC 

and surface sediments. Surveys were carried out in both summer and winter in order 

to evaluate the influence of seasonal/hydrologic variability.  

 

MATERIAL AND METHODS 

 

Description of Study Sites 

 

The Tyne Estuary 

The River Tyne, which flows through the densely populated city of 

Newcastle, has a total drainage area of approximately 2900 km2 and an average 

freshwater flow of ~48 m3/s. Its two main tributaries are the North Tyne, which 

receives humic-rich waters draining areas of blanket peat afforestation, and the South 

Tyne, which drains relatively pristine moorland (Baker and Spencer, 2004). The 

North and South tributaries converge downstream to form the River Tyne, which 

supplies more than 90% of the total river discharge into the Tyne Estuary (Figure 1; 

Chapter 1). Most of the remaining freshwater input is derived from the River 

Derwent. The maximum extent of the tidal estuary is approximately 33 km inland 

from the North Sea, and the residence time is approximately 5-20 days (A. P. 
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Stubbins, private communication). The Tyne is a partially mixed mesotidal estuary 

(Baker and Spencer, 2004). Although industrial fluxes to the lower part of the estuary 

are in decline, it continues to receive significant amounts of urban waste, particularly 

from sewage treatment facilities located at Howdon (one of the UK’s largest estuarial 

secondary treatment facilities) in the lower estuary (Baker and Spencer, 2004; 

Upstill-Goddard et al., 2000). However, the water quality in the Tyne upstream of 

Newcastle has improved significantly over the past few decades. 

SPM levels in the Tyne are generally <130 mg/L and show trends of 

decreasing concentrations with increasing salinities, with a noticeable maximum 

turbidity zone (MTZ) often located in the low to mid salinity range (Kitidis, 2002). 

Soils in the catchment are dominated by large areas of peat in the uplands, which 

provides a substantial store of organic carbon and with stagno-gleys in the majority 

of the remaining areas (Baker and Spencer, 2004). Generally the soils are slow 

draining and underlain by shallow or low permeability aquifers, leading to the 

hydrology of many sub-catchments to be dominated by surface runoff with rapid 

response to rainfall as a result of saturation excess (Baker and Spencer, 2004). The 

geology in the upper Tyne basin is comprised of Carboniferous limestones and the 

Namurian Millstone Grit Series, which is characterised by thick, coarse-grained 

cross-bedded sandstones, together with fine-grained sandstones, siltstones and 

mudstones. The Lower and Middle Coal Measures, in which the dominant rock types 

are shales, mudstones and sandstones, underlie the lower Tyne basin. 

 

The Tweed Estuary 

The Tweed River and its tributaries drain a rural, relatively sparsely 

populated region located in the border region between England and Scotland. Most 

of the Tweed’s discharge originates from the main river, although approximately 

10% of the freshwater input comes from the Whiteadder, which joins the Tweed 

approximately 6.5 km upriver from the North Sea. The combined catchment area of 

the Tweed and Whiteadder is approximately 4900 km2 and the average freshwater 

input into the estuary is ~84 m3/s (Fox and Johnson, 1997). The maximum length of 

the Tweed estuary (Figure 1; Chapter 1) is around 13 km and the residence time is 

approximately 1 day (Uncles and Stephens, 1996). The Tweed is a partially mixed to 

stratified microtidal estuary (Uncles and Stephens, 1996). The catchment is 
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dominated by agricultural activity, ranging from upland areas of moorland used for 

sheep grazing to more arable regions in the lowlands (Neal, 2002). The Tweed 

receives significantly less anthropogenic inputs than the Tyne, as reflected in its 

favourable water quality ratings (Robson and Neal, 1997). 

Due to the rapid flushing time in the Tweed Estuary SPM concentrations are 

generally quite low (<30 mg/L) and tend to exhibit conservative mixing between 

river and coastal waters (due to the lack of a MTZ), although higher coastal turbidity 

resulting from strong wind events and periods of higher discharge can sometimes 

occur (Uncles et al., 2000). While the Tweed is considered to be a net heterotrophic 

system during the winter and a net autotrophic system during the summer (Chapter 3, 

Howland et al., 2000), due to the low chlorophyll a concentrations (<2 �g/L) 

typically found in this estuary (Chapter 2, Uncles et al., 2000), photosynthetic 

activity in the Tweed is thought to be dominated by benthic macrophytes. Changing 

with elevation, soils in the Tweed catchment include well drained brown earths 

founds in the lowlands, gleys on the southern slopes, podzols on higher land and 

peats on hill tops and moors (Robson and Neal, 1997). The underlying geology of the 

Tweed is predominantly comprised of Silurian and Ordovician slates, shales and 

calcareous mudstones and Old Red Sandstone, with Carboniferous limestones and 

basaltic intrusions cropping out in the eastern part of the basin. As opposed to the 

Tyne, the Tweed estuary has not undergone considerable dredging and is fairly 

steeply rising and shallow.   

  

Sample collection and analysis of surface sediments 

SPM, POM and chlorophyll a (chl-a) data reported here (Tables 1-5) are from 

near-surface water samples collected on single day excursions to the Tyne (Feb-02, 

Jul-02, Mar-03, Jul-03) and Tweed (Jul-03, Dec-03) Estuaries. Site selection within 

the estuary (Table 1) was based on in situ salinity measurements (using a portable 

probe) in order to ensure adequate, high-resolution coverage of the full salinity 

gradient. Once back in the laboratory, salinity was analysed on a pre-calibrated 

Hanna (model 8633) conductivity meter. Water samples (Appendix 2) for SPM, 

POM and chlorophyll a (chl-a) were collected in 4 L high density polyethylene 

(HDPE) containers at a depth of 1-2 m from a small boat using a submersed pump. 

River discharge data is reported here as the two-day average incorporating the days  
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Site/Date km 

from 

N Sea 

salinity SPM 

(mg/L) 

POC   

(mg/L) 

POC % 

(of SPM) 

% algal 

POC 

C/N at chl-a       

(µg/L) 

Tyne         

28/2/02 0.0 31.7 31.3 1.42 4.5  18.1  

28/2/02 2.5 17.7 30.1 1.79 5.9  24.8  

28/2/02 5.9 15.0 36.7 1.97 5.4  24.0  

28/2/02 7.4 9.9 35.3 2.41 6.8  21.1  

28/2/02 9.6 6.9 38.6 3.28 8.5  25.2  

28/2/02 15.1 3.0 48.2 4.43 9.2  21.1  

28/2/02 16.9 2.1 52.3 4.58 8.8  21.2  

         

11/7/02 0.0 33.2 15.7 0.33 2.1 9.4 15.2 0.8 

11/7/02 5.9 30.9 17.0 0.83 4.9 6.7 15.5 1.4 

11/7/02 15.1 25.9 19.7 0.89 4.5 13.5 20.8 3.0 

11/7/02 19.3 19.3 35.1 2.62 7.5 3.7 19.3 2.4 

11/7/02 22.8 15.0 34.9 3.04 8.7 3.1 20.4 2.4 

11/7/02 27.6 9.8 30.4 2.67 8.8 6.5 18.9 4.3 

11/7/02 30.2 4.7 29.1 2.53 8.7 4.0 21.4 2.5 

11/7/02 32.0 0.2 15.9 1.99 12.5 2.6 22.5 1.3 

11/7/02 32.0 0.2 17.9 2.05 11.4 2.8 22.5 1.4 

         

4/3/03 0.0 34.1 15.7 0.95 6.1 1.1 19.9 0.3 

4/3/03 5.9 28.7 20.2 1.56 7.7 0.5 18.0 0.2 

4/3/03 9.6 19.0 29.4 1.88 6.4 0.4 20.1 0.2 

4/3/03 15.1 14.8 55.3 2.77 5.0 0.4 20.3 0.2 

4/3/03 15.9 14.1 147.9 5.75 3.9 0.3 20.3 0.4 

4/3/03 17.5 10.5 232.1 6.75 2.9 0.3 21.5 0.6 

4/3/03 22.8 5.3 261.9 6.43 2.5 0.7 20.4 1.2 

4/3/03 27.6 1.3 92.8 4.92 5.3 0.5 19.6 0.6 

4/3/03 32.0 0.1 21.9 2.32 10.6 1.1 20.9 0.6 

4/3/03 32.0 0.1 22.0 2.25 10.2 1.3 20.5 0.7 

         

23/7/03 0.0 32.5 1.8 0.19 10.1 21.2 11.4 1.0 

23/7/03 5.9 27.1 7.2 0.43 6.0 20.7 10.5 2.2 

23/7/03 15.1 25.1 8.3 0.47 5.6 8.1 12.6 0.9 

23/7/03 22.8 24.2 13.5 0.55 4.1 9.9 13.1 1.4 

23/7/03 26.2 21.6 16.4 0.63 3.8 17.4 12.2 2.7 

23/7/03 17.5 20.6 12.8 0.50 3.9 5.4 13.0 0.7 

23/7/03 27.6 20.1 17.4 0.53 3.0 10.7 12.9 1.4 

23/7/03 23.7 18.3 25.4 0.91 3.6 12.3 13.7 2.8 

23/7/03 30.2 16.4 13.8 0.49 3.5 11.3 11.2 1.4 

23/7/03 30.5 13.9 13.5 0.47 3.5 12.1 11.3 1.4 

 

Table 1. Geochemical parameters of water samples from the Tyne Estuary, including salinity, total, 

suspended particulate matter (SPM), particulate organic carbon (POC), POC % of SPM, % of POC 

that is algal-derived (% algal POC), C/N ratio of POM (C/NPOM), suspended particulate Al 

concentrations, and chlorophyll a concentrations (chl-a). 

 

prior to and day of sampling. Discharges for the Tyne (Q = 144.6 m3/s, 27-28 

February 2002; Q = 8.6 m3/s, 10-11 July 2002; Q = 30.7 m3/s, 03-04 March 2003; Q 

= 7.3 m3/s, 22-23 July 2003) and Tweed (Q = 14.5 m3/s, 07-08 July 2003; Q = 151.2 
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m3/s, 02-03 December 2003) were obtained from the UK Environment Agency and 

from the Scottish Environment Protection Agency, respectively. During the Jul-03 

transect in the Tyne Estuary, the combined effects of a spring tidal event with 

extremely low flow resulted in a low salinity end-member sampling point of 13.9 psu 

due to inaccessibility of the inner estuary. Conversely, during the Dec-03 sampling 

trip to the Tweed Estuary high river flow resulted in a survey comprised 

predominantly of low salinity water samples. This strong dependence on surface 

salinity with freshwater runoff has been previously reported in the Tweed Estuary 

(Uncles et al., 2000).  

Surface sediment samples reported here were collected across the full salinity 

gradient from the Tyne Estuary in July 2001 and from four different sampling 

locations during February 2002, July 2002 and March 2003 using a light-weight 

gravity corer lowered from a small inflatable ribbed boat. All cores were inspected 

for the intact collection of the sediment water-interface. In July 2001 only the top 

few centimetres were collected while in Feb-02, Jul-02 and Mar-03 the cores were 

brought back to the laboratory and sectioned in 1-2 cm intervals across their full 

length. The sediment was freeze-dried, homogenised with a mortar and pestle, and 

then acidified with 2N HCl prior to isotopic and chemical analysis to remove 

inorganic carbon. Concentrations of major elements (Si, Al, Fe, Mg, Ca, Na, K, Ti, 

Mn, P) in Tyne sediments were also analyzed by X-ray fluorescence spectrometry 

are presented in Appendix 3. 

 

Analysis of suspended POM, SPM and chlorophyll a  

Concentrations and stable and radioactive carbon isotopes (13C and 14C, 

respectively) of suspended POM and concentrations of SPM and chl-a were 

determined by direct analysis of the material collected on pre-combusted (440oC for 

4 h), pre-weighed glass fibre filters (GF/F, Whatman) by pressure filtration (~1.4 

bar) in the laboratory within 10 hours after water samples were collected. After 

sufficient material had been collected the filters were rinsed with Milli-Q water to 

remove salts. Filters used for POM analysis were placed inside a glass desiccator 

containing concentrated HCl for several days to remove inorganic carbon. The filters 

were then vacuum desiccated to remove HCl, had excess glass fibre removed, were 

weighed, and then were subsequently homogenised with a mortar and pestle and 
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stored in glass vials prior to concentration and isotopic analysis. SPM concentrations 

were determined by weighing dry filters prior to acidification. Based on analyses of 

duplicate GF/F filters from the same sampling locations, the precision for SPM 

concentrations was ±5% RSD. Chl-a samples were filtered and then stored at -20oC 

prior to extraction. After soaking the filters for several hours in 90% acetone, chl-a in 

the leachate was determined by measuring fluorescence with a Turner Model 450 

fluorometer (Parsons et al., 1984). Based on multiple analyses of standards and 

samples, the precision for the chl-a measurements was found to be ±10% RSD. 

 

Site/Date km 

from 

N Sea 

salinity SPM 

(mg/L) 

POC   

(mg/L) 

POC % 

(of SPM) 

% algal 

POC 

C/NPOM chl-a       

(µg/L) 

Tweed         

8/7/03 0.00 33.2 1.0 0.08 8.1 11.5 8.6 0.2 

8/7/03 2.02 32.4 1.2 0.12 9.6 11.3 10.7 0.3 

8/7/03 3.53 29.5 1.7 0.18 11.0 14.0 10.1 0.6 

8/7/03 4.54 27.4 3.4 0.34 10.0 14.5 10.8 1.2 

8/7/03 5.67 17.9 3.8 0.44 11.7 12.3 9.1 1.4 

8/7/03 5.92 8.6 3.7 0.50 13.7 11.4 8.5 1.4 

8/7/03 6.43 4.2 3.3 0.40 12.0 13.9 9.3 1.4 

8/7/03 7.18 1.4 3.6 0.51 14.2 11.9 8.5 1.5 

8/7/03 8.19 0.1 3.2 0.45 13.9 14.7 9.9 1.6 

8/7/03 8.19 0.1 3.3 0.48 14.5 14.2 10.0 1.7 

         

3/12/03 0.00 31.30 17.5 0.67 3.8 11.0 12.6 1.8 

3/12/03 0.13 19.38       

3/12/03 0.25 4.51       

3/12/03 3.02 1.90 19.2 1.34 7.0 11.7 12.3 3.9 

3/12/03 0.50 1.27 18.0 1.23 6.9 10.2 12.7 3.1 

3/12/03 0.76 0.97 16.6 0.95 5.8 14.1 12.4 3.4 

3/12/03 1.76 0.90 18.5 1.02 5.5 8.1 11.6 2.1 

3/12/03 4.79 0.19 24.0 1.55 6.5 11.7 12.5 4.6 

3/12/03 6.80 0.16 23.4 1.45 6.2 11.0 11.5 4.0 

3/12/03 6.87 0.12 23.3 1.40 6.0 10.8 11.3 3.8 

 

Table 2. Geochemical parameters of water samples from the Tweed Estuary, including salinity, total, 

suspended particulate matter (SPM), particulate organic carbon (POC), POC % of SPM, % of POC 
that is algal-derived (% algal POC), C/N ratio of POM (C/NPOM), suspended particulate Al 

concentrations, and chlorophyll a concentrations (chl-a). 

 

Concentrations, C/N and δδδδ
13

C ratios of suspended POM and surface sediments 

Concentrations, C/N (reported here as molar ratios) and δ13C ratios for 

suspended POM and surface sediments were determined using a Carlo Erba 

Instruments NA2500 elemental analyser coupled with a Micromass PRISM III 
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Isotope Ratio Mass Spectrometer (EA-IRMS). Ratios of 13C to 12C and are expressed 

in delta notation as per mil (‰) differences relative to the VPDB standard, where: 

 

δ13C = [{(13C/12C)sample – (13C/12C)standard} / (13C/12C)standard] × 1000              (1) 

 

With the exception of the most saline sample collected from the Tyne (32.5 psu) and 

samples taken from the Tweed at salinities >20 during the Jul-03 surveys, δ13C 

values reported here are the result of replicate analyses. Based on these replicate 

samples and multiple measurements of standards the 1� precision for δ13CPOC 

presented in this study was ±0.3‰. Based on multiple analyses of standards and 

samples, the acuracy and reproducibility for %C and %N determined via EA analysis 

was ±5% and ±8% RSD, respectively. 

 

14
C dating 

Suspended POM samples and surface sediments were prepared to graphite at 

the Natural Environmental Research Council (NERC) Radiocarbon Laboratory, East 

Kilbride, UK, and analysed at the Scottish Universities Environmental Research 

Centre (SUERC), East Kilbride, UK on the 5MV NEC AMS. Graphite was prepared 

by quantitative recovery of carbon in sealed quartz tubes followed by cryogenic 

separation of CO2 (Boutton et al., 1983). Aliquots of CO2 were converted to an 

iron/graphite mix by iron/zinc reduction (Slota et al., 1987).  A sub-sample of CO2 

was used to measure δ13C using a dual-inlet mass spectrometer with a multiple ion 

beam collection facility (VG OPTIMA) in order to normalise 14C data to -25‰ δ13C-

PDB. The mass spectrometer was calibrated with international reference materials to 

a precision of ±0.1‰. Radiocarbon data have been normalised to -25 ‰ δ13C-PDB 

using values obtained either from on-line measurements made on graphite analysed 

by AMS or using the δ13C measurement made on the sub-sample of CO2 using the 

dual-inlet mass spectrometer described above. In order to assess the viability of 

analysing GF/F filters using this methodology, blanks were prepared by adding 

internal standard material of known ages to 4 L of MilliQ water. Using the same 

suspended POM extraction procedures described above, GF/F blanks demonstrated 

acceptable levels of background contamination. AMS results (Table 3) are reported 

here as conventional radiocarbon years BP (before AD 1950), absolute percent 
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modern carbon (pMC) and �14C ratios with an overall analytical precision of 1�. The 

use of pMC takes into account the ongoing radioactive decay of the international 

reference standard (oxalic acid) since AD 1950 (Stuiver and Polach, 1977). 14C 

enrichment >100 pMC indicates the presence of 14C from atomic weapons testing 

(post AD 1955). �14C values are expressed according to the convention defined by 

(Stuiver and Polach, 1977), where: 

 

�
14C = (pMC/100 – 1) × 1000                  (2) 

 

Using the error associated with pMC values, the 1� precision for �14C values 

presented in this study was better than ±3‰ for POC and ±10‰ for sediments.    

 

RESULTS AND DISCUSSION 

 

Behaviour of SPM, POC and chlorophyll a concentrations  

In Figure 2, concentrations of SPM and suspended POC from all six surveys 

to the Tyne and Tweed Estuaries are plotted versus salinity. In general, both SPM 

and POC concentrations showed similar distribution trends. In the Tyne, the highest 

SPM and POC concentrations were often associated with a well-defined low- to mid-

salinity range maximum turbidity zone (MTZ). These MTZs were most pronounced 

during the Jul-02 (Figure 2b) and Mar-03 (Figure 2c) surveys. During Feb-02 (Figure 

2a) very high river discharge following a storm event precluded the build-up of 

sediments in the mid-salinity region, thereby limiting the role of the MTZ. The 

lowest SPM and POC concentrations measured in the Tyne were during Jul-03 

(Figure 2d), when river discharge was the lowest of all the surveys reported here and 

followed an unusually dry summer period. The low SPM and POC concentrations 

measured in the Tyne during Jul-03 are attributed to the combined effects of 

unusually low river flow (Q = 7.3 m3/s) reducing particle inputs from the river and a 

spring tidal event. In the Tweed during both summer (Figure 2e) and winter (Figure 

2f) transects there was no observable MTZ, although most samples during the Dec-

03 survey (with the exception of one) were limited to the marine end-member and 

salinities <2. However, the lack of substantial long-term accumulation of muddy 

sediments and hence the absence of a distinct maximum turbidity zone in the Tweed  
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Figure 2a Tyne Feb-02
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Figure 2b Tyne Jul-02
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Figure 2c Tyne Mar-03
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Figure 2. Concentrations of suspended particulate organic carbon (POC; open triangles), suspended 

particulate matter (SPM; closed squares), particulate organic carbon % (POC %) of suspended 
particulate matter (SPM) (closed circles), estimated % algal POC (open diamonds), and �14C values 

of POC (closed inverted triangles) in the Tyne Estuary during (a) Feb-02, (b) Jul-02, (c) Mar-03 and 

(d) Jul-03, and in the Tweed Estuary during (e) Jul-03 and (f) Dec-03 plotted versus salinity. Note that 

estimated % algal POC values were not measured in the Tyne during Feb-02. 
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Figure 2d Tyne Jul-03

Salinity

10 15 20 25 30 35

P
O

C
 m

g
/L

0.0

0.2

0.4

0.6

0.8

1.0

S
P

M
 m

g
/L

0

5

10

15

20

25

30

Figure 2e Tweed Jul-03
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Figure 2f Tweed Dec-03
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Figure 2. Concentrations of suspended particulate organic carbon (POC; open triangles), suspended 

particulate matter (SPM; closed squares), particulate organic carbon % (POC %) of suspended 
particulate matter (SPM) (closed circles), estimated % algal POC (open diamonds), and �14C values 

of POC (closed inverted triangles) in the Tyne Estuary during (a) Feb-02, (b) Jul-02, (c) Mar-03 and 

(d) Jul-03, and in the Tweed Estuary during (e) Jul-03 and (f) Dec-03 plotted versus salinity. Note that 

estimated % algal POC values were not measured in the Tyne during Feb-02. 
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Estuary has been documented by others (Uncles et al., 2000), and is thought to be 

primarily a function of the estuary’s short residence time. Suspended POC 

concentrations in the Tyne were generally higher than those in the Tweed, ranging 

between 1.42 to 4.58 mg/L (Feb-02), 0.33 to 3.04 mg/L (Jul-02), 0.95 to 6.75 mg/L 

(Mar-03) and 0.169 to 0.91 mg/L (Jul-03) in the former compared with 0.08 mg/L to 

0.50 mg/L (Jul-03) and 0.67 to 1.55 mg/L in the latter. The concentrations of riverine 

POC entering the Tyne and Tweed Estuaries increased with river discharge, and the 

riverine POC fluxes (mol C hr-1) during these surveys were 2.0 × 105 (Tyne, Feb-02), 

5.2× 103 (Tyne, Jul-02) 2.1 × 104 (Tyne, Mar-03), 2.0 × 103 (Tweed, Jul-03), and 6.7 

× 104 (Tweed, Dec-03).   

Chl-a concentrations during all surveys in both estuaries were relatively 

small, ranging from 0.8 to 4.3 �g/L (Jul-02), 0.2 to 1.2 �g/L (Mar-03) and 0.7 to 2.8 

�g/L (Jul-03) in the Tyne Estuary and from 0.2 to 1.7 �g/L (Jul-03) and 2.1 to 4.6 

�g/L (Dec-03) in the Tweed Estuary. Although comparisons in the literature are not 

available for the Tyne, chl-a values similar to those reported here have been observed 

previously in the Tweed (Uncles et al., 2000). These authors attributed the low chl-a 

concentrations (<2 �g/L) to a rapid flushing which prevents the occurrence of 

repeated algal cell division within the tidal estuary. The slightly higher chl-a 

concentrations in the Tweed during December were probably related to higher levels 

of plant debris in the river during this period of high discharge. Although not 

measured during the Feb-02 survey to the Tyne Estuary, it was likely that chl-a 

concentrations during this transect were similarly low as those measured during the 

following winter.  

A semi-quantitative estimate of contributions from algal-derived suspended 

POC were made by assuming that algal material has a POC/ chl-a ratio of 40 ((Abril 

et al., 2002), and references therein). These estimates are presented as percentages of 

algal-derived suspended POC in the total POC pool (% algal POC). In the Tyne, the 

% algal POC ranged 2.6-13.5% (Jul-02; Figure 2b), 0.3-1.3% (Mar-03; Figure 2c) 

and 5.4-21.2% (Jul-03; Figure 2d), with the highest values found in the middle and 

lower parts of the estuary. In the Tweed, the estimated % algal POC were relatively 

constant during both summer and winter surveys, ranging from 11.3-14.7% during 

Jul-03 (Figure 2e) and 8.1-14.1% during Dec-03 (Figure 2f). As noted above, the % 

algal POC calculated in the winter in the Tweed are most likely inflated due to a 
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elevated chl-a concentrations caused by a higher influx of plant debris. Therefore, 

with the exception of the two most saline samples collected from the Tyne Estuary 

during the July 2003 transect (27.1 and 32.5 psu), algal-derived organic carbon 

comprised a minor fraction (<18%) of suspended POM. However, % algal POC 

estimated for the Jul-02 and Jul-03 surveys were in general slightly higher (compared 

to Mar-03). The relative increase in algal contributions during summer months is a 

response to higher autochthonous production and lower inputs of terrestrial POC. 

However, some of the high % algal POC values in the lower part of the Tyne Estuary 

during the summer (e.g., Jul-02 transect, 25.9 psu; Jul-03 transect, 27.1 and 32.5 psu) 

may represent localized increases in autochthonous production within the estuary 

and/or marine algae advected into the estuary. This will be evaluated later using δ13C 

and C/N ratios. 

Since POC concentrations showed the same distributions as SPM, it was 

concluded that more useful information pertaining to organic matter cycling could be 

obtained through the interpretation of POC expressed as a dry weight percentage of 

SPM (POC%). Therefore, following the convention utilised by others (Abril et al., 

2002; Zhang et al., 1998), the behaviour of POC in the Tyne and Tweed Estuaries 

was expressed in terms of relative changes within the total SPM pool (Figure 2). By 

evaluating the changes in POC% across the salinity gradient, it was possible to 

estimate the amount of riverine POC mineralised in the estuarine / coastal zone, 

(Abril et al., 2002): 

 

% of riverine POC mineralised = SPMriver × (POC%river  - POC%MTZ)             (3)  

 

Here SPMriver refers to the average SPM riverine concentration, POC%river is 

the POC% (% of SPM) in the river and POC%MTZ is the POC% (% of SPM) in the 

maximum turbidity zone. Since the Tweed does not possess a well-defined MTZ, and 

contributions from algal material were relatively minor in this estuary, the lowest 

POC% value observed at the mouth of the estuary was substituted for the POC%MTZ 

in Eq. 2 (Abril et al., 2002). This was also done for the Tyne Feb-02 survey, due to 

the lack of a pronounced mid-salinity MTZ during this period caused by higher river 

flow. Furthermore, owing to the particularly low flow conditions experienced in the 

Tyne during the Jul-03 survey, a freshwater end-member (� 0.2 psu) POC sample 
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could not be obtained. Therefore, the POC% from the Jul-02 transect (12.0 ±0.8%) 

was used as a riverine end-member for the following summer. All the parameters 

used in these calculations are listed in Tables 2 and 3. The estimated percentages of 

riverine POC mineralised were 48, 38, 76 and 70% in the Tyne during Feb-02, Jul-2, 

Mar-03 and Jul-03, respectively, and were 31% (Jul-03) and 39% (Dec-03) in the 

Tweed. The higher percentage of riverine POC loss estimated in the Tyne can be 

partially attributed to this estuary’s longer residence time. A positive correlation 

between mineralization intensity and the percentage of terrestrial POC removed has 

been demonstrated in other NW European Estuaries (Abril et al., 2002). In 

conjunction with variations in the estimated % algal POC, a detailed discussion of 

the trends in POC% across the Tyne and Tweed Estuaries is provided in context with 

isotopic data in subsequent sections.  

 

Behaviour of C/N ratios of suspended POM 

In Figure 3, C/N ratios of suspended POM from all six surveys to the Tyne 

(Figure 3a) and Tweed (Figure 3b) Estuaries are plotted versus salinity. C/N ratios 

were generally higher in the winter than in the summer, and also higher in the Tyne 

than in the Tweed Estuary. Changes in C/N ratios POM entering the estuary could be 

attributed to variations in terrestrial sources. For example, in a study carried out by 

Weiguo et al. (2003) in rivers draining the Loess Plateau, NW China, C/N ratios as 

low as 9.1 were measured in suspended matter that contained approximately equal 

proportions of soil- and C3 plant-derived OM. Conversely, when the suspended 

matter was comprised almost entirely of plant-derived OM, the C/N ratio increased 

to 14.3. 

The C/N ratios in the Tyne during both winter surveys were relatively 

invariant across the estuary, scattering around means (after combining freshwater 

end-members, � 0.2 psu, when appropriate) of 22.2 ±2.5 (n = 7) and 20.1 ±1.0 (n = 

9) during the Feb-02 and Mar-03 surveys, respectively. During the Jul-02 survey, 

C/N ratios showed a general decrease with increasing salinity, although the average 

ratio (19.2 ±2.7, n = 8) was still relatively high. In the Tweed during Dec-03 the 

average C/N ratio was 12.2 ±0.5 (n = 6) and during Jul-03 was 9.5 ±0.9 (n = 9). The 

relatively high C/N ratios found in the Tyne during the Feb-02, Mar-03 and Jul-02 

surveys imply that much of the suspended POM was derived from terrestrial plant  
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Figure 3. C/N ratios (molar) of particulate organic matter (C/NPOM) in the (a) Tyne Estuary during 

Feb-02 (closed circles), Jul-02 (closed triangles), Mar-03 (open circles) and Jul-03 (open triangles) 

and in the (b) Tweed Estuary during Jul-03 (open squares) and Dec-03 (closed squares) plotted versus 

salinity. 

 

debris (Boutton, 1996; Kendall et al., 2001). However, the C/N ratios of POM 

encountered in the Tyne were still relatively high when compared with C/N ratios of 

suspended POM reported in other studies (e.g., Middelburg and Nieuwenhuize, 

1998; Rostad et al., 1997; Verity, 2002). These high ratios could be attributed to 
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POM sources from peat, which could exhibit relatively high C/N ratios relative to 

other soil types (e.g., >30; Novák et al., 1999) due to its greater humic content 

(Seeber and Seeber, 2005). The relatively low C/NPOM ratios in the Tweed are 

attributed to inputs of N-enriched agricultural soil. The C/N ratios of soil organic 

matter (SOM) have been shown to be heavily influenced by land-use patterns, with 

cultivated soils generally possessing lower C/N ratios (Seeber and Seeber, 2005). 

This lowering of the C/N ratio in SOM is related to soil decomposition, whereby the 

more easily decomposed components are removed and nitrogen becomes 

immobilised in microbial biomass and decay products, leaving behind a residual 

SOM which contains a higher proportion of recalcitrant material (Post et al., 1985). 

Low C/N ratios for soil-derived suspended sediment in the River Tweed (~ 10-12) 

have been observed by others (Neal et al., 1997). Thus, the broad variations in C/N 

ratios of the two estuaries reflect their catchment characteristics and POM sources.   

The lower C/N ratios found in the Tweed during the Jul-03 survey cannot be 

attributed to peat or agricultural soil-derived sources. This sampling period 

corresponded with unusually low river discharge (Q = 7.3 m3/s). While the isotopic 

signatures of estuarine phytoplankton can occupy a wide range of values, in general 

phytoplankton growth is evidenced by substantially lower (≤ 8) C/N ratios (Baird 

and Middleton, 2004; Cowie and Hedges, 1994; Goni and Hedges, 1995; Hellings et 

al., 1999; Kendall et al., 2001; Middelburg and Nieuwenhuize, 1998). Thus the low 

C/N ratios in the Tyne during July can be attributed to estuarine and marine algal 

contributions, as confirmed by the higher estimated % algal POC values during this 

period relative to all other surveys in the Tyne Estuary (Figure 2). Furthermore, the 

relatively low C/N ratios measured during the Jul-03 Tyne survey might also indicate 

a sewage contribution, as has been observed in C/N ratios for sewage-derived high 

molecular weight dissolved organic matter (HMW DOM) in the Tyne Estuary 

(Chapters 3 and 5). 

The average C/N ratio for suspended POM found in the Tweed was 9.5 ±0.9 

(n = 9) and 12.2 ±0.5 (n = 6) during the summer and winter surveys, respectively. 

One could suppose this seasonal difference with slightly lower values in the summer 

could be attributed to additional algal contributions to soil-derived organic matter. 

However, unlike the Tyne Jul-03, the chl-a concentrations in the Tweed  also reflects 

plant debris derived by benthic macrophytes and/or seagrasses (Chapters 1-3). 
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Indeed, chl-a ratios normalised to POC are matched by higher C/N during Jul-03 

survey of the Tweed (Chapter 5). Therefore, we attribute the slightly higher C/N 

ratios in the Dec-03 survey compared to the Jul-03 survey to increased mixing of low 

C/N soil-derived OM with fresh litter with higher C/N ratios (e.g., Weiguo et al., 

2003). 

 

Behaviour of C/N and δδδδ
13

C ratios of surface sediments 

In Figure 4a are plotted the δ13C signatures of surface sediments collected in 

the Tyne Estuary during Jul-01, Feb-02, Jul-02 and Feb-03 versus the sampling 

distance from the North Sea. These data are listed in Table 3. As this figure  

 

Date km from 

N Sea 

%C wt* C/N at δ13C        
±0.3‰ 

14C age (yrs 

BP) ±1� 

14C pMC    

±1� 

�
14C         

±10‰ 

Jul-01 4.2 6.3 21.7 -22.9    

Jul-01 5.9 5.4 23.4 -23.0    

Jul-01 7.9 7.2 21.2 -23.7    

Jul-01 14.5 15.5 29.1 -23.2    

Jul-01 15.1 4.0 23.2 -24.4    

Jul-01 16.0 9.2 27.7 -24.4    

Jul-01 18.8 10.2 26.4 -24.3    

Jul-01 21.6 8.3 22.1 -25.0    

Jul-01 22.8 8.3 21.5 -25.4    

Jul-01 24.3 7.5 20.2 -24.9    

Jul-01 25.7 9.5 18.6 -25.3    

Jul-01 26.0 8.5 19.4 -25.2    

Jul-01 26.1 7.6 21.0 -24.8    

Jul-01 27.2 4.4 21.0 -25.5    

Jul-01 28.8 8.8 17.5 -25.7    

Jul-01 29.1 8.4 21.0 -24.8    

Feb-02 4.2 6.5 18.6 -22.7 9082 ±63 32.07 ±0.25 -538 

Feb-02 15.9 8.2 19.0 -25.7 4175 ±28 59.08 ±0.21 -679 

Feb-02 24.0 8.7 21.1 -24.9 6145 ±37 46.23 ±0.22 -409 

Jul-02 4.2 6.3 20.5 -22.6 11137 ±76 24.84 ±0.24 -752 

Jul-02 15.9 8.1 21.2 -25.0 6516 ±36 44.14 ±0.20 -559 

Jul-02 24.0 9.1 24.5 -24.5 8006 ±47 36.67 ±0.22 -633 

Jul-02 25.8 8.8 20.2 -26.4 3624 ±25 63.27 ±0.20 -367 

Mar-03 4.2 6.5 27.5 -22.7 12921 ±100 19.89 ±0.25 -801 

Mar-03 15.9 6.4 23.5 -24.5 9721 ±62 29.62 ±0.23 -704 

Mar-03 24.0 8.3 19.4 -25.0 6429 ±36 44.63 ±0.20 -554 

Mar-03 25.8 7.0 22.4 -24.9 7348 ±42 39.80 ±0.21 -602 

 

Table 3. Geochemical and isotopic parameters (%C wt, C/N at ratios, δ13C, radiocarbon ages, pMC-% 
modern absolute carbon, �14C) of surface sediments collected from the Tyne Estuary during Jul-01, 

Feb-02, Jul-02 and Mar-03. 

*%C wt values have not been salt corrected 
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illustrates, sedimentary δ13C values ostensibly indicated a near linear mixing between 

terrestrial (δ13C ~ -26‰) and marine (δ13C ~ -23‰) OM. Most δ13C values in the 

mid- and upper estuary pointed to a predominantly terrigenous origin for organic 

matter deposited in sediments. The relatively 13C-enriched δ13C values for sediment 

collected near mouth of the Estuary are typical for marine OM and are similar to the 

value of -23.2 ‰ reported in the nearby Forth (Graham et al., 2001) and Tay 

(Thornton and McManus, 1994) Estuaries, both located in SE Scotland. However, 

while sedimentary δ13C values apparently reflected mixing between terrestrial and 

marine sources, as observed in the Tay Estuary (Thornton and McManus, 1994), the 

C/N ratios of sedimentary OM did not. As Figure 4b demonstrates, C/N ratios across 

the salinity gradient did not indicate mixing between terrestrial (~ 20, as reported 

here in the Tyne) and marine (typically <10), as has been observed in the Schelde 

Estuary, NW Europe (Middelburg and Nieuwenhuize, 1998). Instead, C/N ratios 

across the entire estuary were relatively high, ranging from 17.5 (28.8 km upriver) to 

29.1 (14.7 km upriver), and even showed a slight increase towards the North Sea. 

Similar elevated C/N ratios in Tyne sediment have been reported by others 

(Matthiessen et al., 1998). The highest C/N ratios for sedimentary POM were found 

where the River Tyne flows through the heart of the City of Newcastle (15-20 km 

from the North Sea). This points to an anthropogenic source being the main source of 

carbon enriched material such as coal or petroleum-derived contaminants. 

Furthermore, in this part of the estuary, the seven bridges that span the river should 

play a significant role in increasing turbidity. This could also concentrate 

contaminants in sediments such as coarser grained coal debris. In addition, increased 

winnowing may subsequently enhance the microbial breakdown of OM in sediments, 

which can lead to an increase in C/N ratio of residual organic matter in sediments 

due to the preferential degradation of N-bearing compounds (Ganeshram et al., 1999; 

Hedges et al., 1986a; Rosenfeld, 1981). The inability of C/N ratios to show mixing 

between marine and terrestrial source has been observed by others (Graham et al., 

2001; Thornton and McManus, 1994). In these studies, the relatively high and 

variable C/N ratios found in sediment across the Forth and Tay Estuaries were also 

attributed to biochemical alteration of the original POM source signature and 

anthropogenic inputs. 
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Figure 4a
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Figure 4. (a) δ13C values and (b) C/N ratios of surface sediments in the Tyne Estuary collected during 
Jul-01 (closed circles), Feb-02 (open circles), Jul-02 (closed inverted triangles) and Mar-03 (open 

inverted triangles) plotted versus distance from the North Sea. 
 

 

Behaviour of δδδδ
13

C signatures of suspended POC 

In Figure 5, variations in δ13C signatures of suspended POC from all six 

surveys to the Tyne (Table 4) and Tweed Estuaries (Table 5) are plotted versus  
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Site/Date salinity δ13CPOC     

±0.3‰ 

14CPOC age       

(yrs BP) ±1� 

14CPOC pMC    

±1� 

�
14CPOC         

±3‰ 

Tyne      

28/2/02 31.7 -24.8 4976 ±31 53.47 ±0.19 -465 

28/2/02 17.7 -28.0    

28/2/02 15.0 -26.9    

28/2/02 9.9 -27.9 2247 ±28 75.11 ±0.26 -249 

28/2/02 6.9 -28.1 2178 ±36 75.75 ±0.33 -243 

28/2/02 3.0 -27.7 2307 ±26 74.55 ±0.24 -255 

28/2/02 2.1 -27.7 2574 ±29 72.11 ±0.26 -279 

      

11/7/02 33.2 -25.2    

11/7/02 30.9 -25.6    

11/7/02 25.9 -23.6 1178 ±52 85.80 ±0.56 -142 

11/7/02 19.3 -25.8 2687 ±27 71.10 ±0.24 -289 

11/7/02 15.0 -26.3 2581 ±27 72.05 ±0.23 -280 

11/7/02 9.8 -27.3 2438 ±27 73.34 ±0.24 -267 

11/7/02 4.7 -27.4 1771 ±25 79.70 ±0.25 -203 

11/7/02 0.2 -28.0 754 ±26 90.45 ±0.29 -95 

11/7/02 0.2 -28.0    

      

4/3/03 34.1 -24.9 3944 ±46 60.81 ±0.34 -392 

4/3/03 28.7 -25.0 3690 ±33 62.76 ±0.25 -372 

4/3/03 19.0 -25.8 3389 ±58 65.15 ±0.47 -349 

4/3/03 14.8 -25.8 3170 ±30 66.95 ±0.25 -331 

4/3/03 14.1 -25.2 4401 ±36 57.44 ±0.25 -426 

4/3/03 10.5 -25.2 3967 ±27 60.63 ±0.19 -394 

4/3/03 5.3 -25.3 4298 ±33 58.19 ±0.22 -418 

4/3/03 1.3 -25.4 4282 ±33 58.30 ±0.23 -417 

4/3/03 0.1 -26.2 3005 ±28 68.34 ±0.23 -317 

4/3/03 0.1 -26.4    

      

23/7/03 32.5 -21.0    

23/7/03 27.1 -23.6    

23/7/03 25.1 -24.8 2403 ±23 73.66 ±0.21 -263 

23/7/03 24.2 -25.5    

23/7/03 21.6 -26.6 2457 ±20 73.17 ±0.18 -268 

23/7/03 20.6 -25.1 1950 ±20 77.94 ±0.20 -221 

23/7/03 20.1 -26.4 2352 ±21 74.14 ±0.19 -259 

23/7/03 18.3 -26.1    

23/7/03 16.4 -26.9 1539 ±21 81.86 ±0.19 -181 

23/7/03 13.9 -27.3 1936 ±19 78.07 ±0.19 -219 

 

Table 4. Isotopic parameters of water samples from the Tyne Estuary, including δ13C signatures, 
radiocarbon ages, pMC (% modern absolute) and �14C signatures of suspended particulate organic 

carbon (POC).  

 

salinity. With the exception of the high salinity samples (> 30 psu) analysed during 

the July 2003 surveys to the Tyne (-21.0‰) and Tweed (-22.6 and -22.9‰), most of 

the δ13C values indicated a predominantly terrestrial origin for suspended POC, 
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although evidence for mixing with heavier δ13C values of marine OM could also be 

seen. In winter, δ13C signatures from both the Tyne and Tweed Estuaries were 

relatively invariant across the freshwater to mid-salinity range (0-30 psu), ranging 

from -26.9 to -28.1‰ during Feb-02 (Tyne), -26.3 to -25.2‰ during Mar-03 (Tyne), 

and from -27.6 to -27.9‰ in the Tweed during the Dec-03 survey. This indicates that 

both these estuaries are dominated by terrestrial POM in winter when the riverine 

fluxes are high. In contrast, δ13C signatures of POC in summer showed much more 

gradual and systematic increases from terrestrial to marine values across the salinity 

gradient, ranging from -28.0 to -23.6‰ during Jul-02 (Tyne), -27.3 to -23.6‰ during 

Jul-03 (Tyne) and from -26.5 to -23.3‰ during Jul-03 in the Tweed. These gradients 

imply that during the summer months marine and algal material are proportionately 

more important within the estuary when terrestrial POM delivery from the river is 

diminished and algal levels are higher at the mouth of the estuary. Associated with  

 

Site/Date salinity δ13CPOC     

±0.3‰ 

14CPOC age       

(yrs BP) ±1� 

14CPOC pMC    

±1� 

�
14CPOC         

±3‰ 

Tweed      

8/7/03 33.2 -22.6    

8/7/03 32.4 -22.9    

8/7/03 29.5 -23.7    

8/7/03 27.4 -23.3    

8/7/03 17.9 -25.1    

8/7/03 8.6 -25.5 1062 ±20 87.05 ±0.21 -130 

8/7/03 4.2 -26.6 1523 ±26 82.19 ±0.26 -178 

8/7/03 1.4 -26.1 1202 ±27 85.54 ±0.29 -145 

8/7/03 0.1 -26.5    

8/7/03 0.1 -26.4 1484 ±22 82.59 ±0.23 -174 

      

3/12/03 31.30 -24.6 809 ±26 89.83 ±0.29 -102 

3/12/03 19.38     

3/12/03 4.51     

3/12/03 1.90 -27.7    

3/12/03 1.27 -27.7 762 ±21 90.35 ±0.24 -97 

3/12/03 0.97 -27.9 611 ±18 92.08 ±0.21 -79 

3/12/03 0.90 -27.7 757 ±24 90.41 ±0.27 -96 

3/12/03 0.19 -27.6    

3/12/03 0.16 -27.7    

3/12/03 0.12 -27.7 542 ±18 92.86 ±0.21 -71 

 

Table 5. Isotopic parameters of water samples from the Tweed Estuary, including δ13C signatures, 
radiocarbon ages, pMC (% modern absolute) and �14C signatures of suspended particulate organic 

carbon (POC).  
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Figure 5a Tyne Feb-02
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Figure 5b Tyne Jul-02

Salinity

0 5 10 15 20 25 30 35

δδ δδ
1

3
C

 o
f 

s
u

s
p

e
n

d
e

d
 P

O
C

-29

-28

-27

-26

-25

-24

-23

-22

-21

-20

∆∆ ∆∆
1

4
C

 o
f 

P
O

C
 (

‰
) 

-500

-400

-300

-200

-100

Figure 5c Tyne Mar-03
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Figure 5. δ13C (open circles) and �14C (closed diamonds) values of suspended particulate organic 
carbon (POC) in the Tyne Estuary during (a) Feb-02, (b) Jul-02, (c) Mar-03 and (d) Jul-03, and in the 

Tweed Estuary during (e) Jul-03 and (f) Dec-03 plotted versus salinity. The dashed lines represent a 

two-component (marine and terrestrial organic matter) δ13C mixing curve, whereas the solid lines 

represent a three component (marine, terrestrial and algal organic matter) δ13C mixing curve (see text). 
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Figure 5d Tyne Jul-03
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Figure 5e Tweed Jul-03
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Figure 5f Tweed Dec-03
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Figure 5. δ13C (open circles) and �14C (closed diamonds) values of suspended particulate organic 
carbon (POC) in the Tyne Estuary during (a) Feb-02, (b) Jul-02, (c) Mar-03 and (d) Jul-03, and in the 

Tweed Estuary during (e) Jul-03 and (f) Dec-03 plotted versus salinity. The dashed lines represent a 

two-component (marine and terrestrial organic matter) δ13C mixing curve, whereas the solid lines 

represent a three component (marine, terrestrial and algal organic matter) δ13C mixing curve (see text). 
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low river discharges, the highest salinity δ13C signatures measured in the Tyne (-

21.0‰, 32.5 psu) and Tweed (-22.6‰, 33.2 psu) Estuaries during the Jul-03 surveys 

were the most representative coastal North Sea marine values. 

The estuarine trends in δ13C signatures were evaluated using an isotope 

mixing model which took into account conservative mixing of marine, terrestrial and 

estuarine algal POM. The rationale for this model is to assess systematic δ13C 

deviations from conservative mixing, which can then be related to estuarine 

behaviour of various POM components. These three-component isotopic mixing 

curves were calculated for each survey using salinity, % algal POC and δ13C values: 

 

δ13CPred = δ13CMfM + δ13CTfT + δ13CAfA                  (4) 

 

Here δ13CM, δ13CT and δ13CA and fM, fT and fA refer to the δ13C values and fraction of 

the marine, terrestrial and autochthonous components, respectively, and δ13CPred 

refers to the predicted or calculated δ13C signature for POC. 

Prior to the inclusion of the autochthonous fraction in Eq. 4, the fraction of 

the marine (fM-prior) and terrestrial (fT-prior) components were determined based on 

salinity and hence the model assumes conservative mixing between marine and 

terrestrial POM, where: 

 

fT-prior + fM-prior = 1                                            (5) 

 

However, because the percentages of algal POC (fA) were previously determined 

from chl-a concentrations (Tables 1 and 2; Figure 2) and based on the total POC 

concentrations, it was necessary to correct the fractions of terrestrial and marine 

components that were calculated based solely on salinity: 

 

fM = fM-prior – (fA × fM-prior)          (6) 

 

fT = fT-prior – (fA × fT-prior)                       (7) 
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Owing to the particularly low flow conditions experienced in the Tyne during 

the July 2003 survey, a freshwater end-member (�0.2 psu) suspended POC sample 

could not be obtained. However, it was assumed that the δ13C freshwater end-

member from the previous summer, during which time river discharge was only 

slightly higher (Q = 8.6 versus 7.3 m3/s), would accurately reflect the riverine δ13C 

value. In addition, while a precise freshwater end-member was not obtained in the 

Tyne during Feb-02, because of the relative invariance in δ13C values across the low 

salinity range it was assumed that a value of -27.7‰ measured at a salinity of 2.1 

would be similar to the riverine signature. 

By assuming a constant isotopic fractionation between DIC and uptake by 

riverine and estuarine plankton, δ13CDIC values (Chapter 2) could be used to estimate 

the δ13C signature for autochthonous material (δ13CA) in both the Tyne and Tweed 

Estuaries. While δ13CDIC values were only measured in the Tyne and Tweed 

Estuaries during July 2003, the δ13CDIC distribution in both estuaries showed similar 

near linear distributions across the salinity gradient (Chapter 2). Using a value of -

20‰ for carbon isotopic fractionation between DIC and plankton (Chanton and 

Lewis, 1999; Raymond and Bauer, 2001a) and assuming similar δ13CA values in both 

estuaries, we could therefore estimate the average δ13CA value expected in three 

different salinity ranges: 0-10 psu (-29‰), 10-25 psu (-25‰) and 25-35 psu (-22‰). 

The mixing curves calculated using Eq. 4 are potted together with δ13C values 

of suspended POC as straight lines. The dashed lines on Figure 5 represent mixing 

between marine and terrestrial OM assuming no algal (δ13CAfA) component. In 

general, the differences between these two predicted curves were not very 

substantial. The similarities between these two lines can be attributed to the fact that 

autochthonous organic matter comprised a relatively minor fraction of the POC pool 

in both estuaries (Figure 2). The general close agreement between these two models 

can also be attributed to some overlap between estimated δ13CA values with δ13CPred 

values calculated by simple two-end member mixing between marine and terrestrial 

components. 

In the Tyne during Feb-02 (Figure 5a), the measured δ13C values for 

suspended POC were generally more 13C-depleted than the mixing curve (assuming 

0% algal POC). This survey was conducted following a storm event under high river 
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flow when the estuary was dominated by freshwater input. The sharp salinity 

gradient near the mouth of the estuary during this period resembled a freshwater 

plume separated from marine waters offshore. Under such conditions there was very 

little opportunity for mixing between marine and terrestrial OM pools. This was 

reflected in δ13C values where terrigenous OM dominated most of the estuary while 

at the seaward side of the freshwater front there was a much heavier marine OM δ13C 

signal. During Jul-02 (Figure 5b) most of the measured δ13C signatures obey both the 

algal and non-algal mixing lines. One notable exception, however, was the sample 

collected at a salinity of 25.9 (δ13C = -23.6 ‰). As illustrated in Figure 2b, this 

sample had a relatively high chl-a concentration, which was reflected  in the elevated 

% algal POC (13.5%) compared to the others. However, the relatively high C/N ratio 

of this sample (20.8) implied a limited contribution from algal material. Therefore, 

since this data point could not be explained by the three component isotopic mixing 

line, we must assume that there was an additional, non-algal anthropogenic input. 

During Mar-03 (Figure 5c), the measured δ13C signatures indicated a slight 13C-

enrichment in the area corresponding to the MTZ (Figure 2c), which during this 

period was situated roughly between a distance of 16-25 km from the North Sea. As 

illustrated in Figure 4a, the δ13C signatures of sedimentary POC within this part of 

the estuary varied between a fairly narrow range of values (-25.4 to -24.3 ‰, average 

= -24.8‰, n = 8). Therefore, it was likely that this non-conservative increase in 

suspended POC δ13C in the MTZ was the result of mixing with isotopically heavier 

sediment. It should be noted that this survey exhibited a well developed MTZ (Figure 

2c) with some of the highest SPM levels recorded in the Tyne estuary over the four 

transects.  

During July 2003 (Figure 5d) the predicted δ13C values are much lighter than 

those measured in the field. The use of an erroneous terrestrial end-member value 

(δ13CT = -28.0‰) would help to explain the generally more 13C-enriched δ13CPred1 

estimated for the Tyne during July 2003. For instance, if a terrestrial end-member of 

~-34‰ is used the measured δ13C signatures show and excellent correlation with 

δ13CPred1values. However, the most 13C-depleted freshwater POC signature observed 

in the Tyne was one used in Eq. 1 (-28.0‰, July 2002). Since we can rule out mixing 

with sedimentary POC, which were > -27‰ (Figure 5a), a more feasible explanation 
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for the relatively 13C-depleted signatures may be attributed to the hydrodynamic 

conditions in the Tyne Estuary during this period caused by the combined effects of 

low flow and spring tide. Since North Sea POC levels during this period were 

relatively minor, then a low river discharge and high spring tide event may have lead 

to the accumulation of terrigenous material at higher than expected salinities, as 

evidenced by the high salinity (13.9 psu) measured in the normally freshwater region 

of the river. However, it also possible that these relatively 13C-depleted signatures 

were caused by an increased contribution from sewage-derived OM across the 

estuary, which generally possess more negative δ13C signatures (Tucker et al., 1999; 

Wang et al., 2004). And as previously mentioned, the relatively low C/N ratios of 

POM measured during this survey (Figure 3a) also point to a potential sewage 

contribution. 

As illustrated in Figures 5e and 5f, Eq. 4 satisfactory describes the relative 

POC contributions in the Tweed Estuary during both July 2003 and December 2003 

surveys. Due to the relatively low and consistent % algal POC values, these mixing 

curves also adequately describe POC behaviour in the Tweed when the algal 

contribution is eliminated from Eq. 4. The lack of a pronounced MTZ and no 

discernible anthropogenic inputs are two other factors which would lead to a better 

predicative capability for Eq. 4 in the Tweed. Owing to similar high river discharge 

conditions, one might have expected to find a similar behaviour for δ13C signatures 

of POC in the Tweed during the winter. However, since POM samples were limited 

to salinities <2 and the marine-end-member the predominance of terrigenous material 

in this estuary during the Dec-03 survey could not be assessed. 

The isotopic mixing models utilized here provided a useful tool in the 

delineation of potential POC sources within the Tyne and Tweed Estuaries. The 

relatively shorter freshwater flushing time in the Tweed resulted in a better predictive 

capability for this estuary, since additional estuarine inputs (i.e., phytoplankton, 

resuspended sediment, sewage-derived OM) were minimal compared to the Tyne. 

Within the context of the information pertaining to the sources and biogeochemical 

of particulate organic carbon obtained thus far, the behaviour of �14C signatures for 

both surface sediments (Tyne) and suspended POC (Tyne and Tweed) will now be 

evaluated. 
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Behaviour of �
14

C signatures of suspended POC and surface sediments 

�
14C signatures of suspended POC across the Tyne (Table 4) and Tweed 

(Table 5) Estuaries are plotted together with variations in POC % and % algal POC 

in Figure 3 and with δ13C values in Figure 5, and in Figure 6 are plotted versus C/N 

  

Figure 6a

C/N ratio (at) of suspended POM

6 8 10 12 14 16 18 20 22 24 26

∆∆ ∆∆
1

4
C

 o
f 

s
u

s
p

e
n

d
e

d
 P

O
C

 (
‰

)

-500

-400

-300

-200

-100

0

Figure 6b

δδδδ13C of suspended POC (‰)

-29-28-27-26-25-24-23

∆∆ ∆∆
1

4
C

 o
f 

s
u

s
p

e
n

d
e

d
 P

O
C

 (
‰

)

-500

-400

-300

-200

-100

0

Tweed

Tyne

Tweed

Tyne

 

Figure 6. �
14C values of suspended POC in the Tyne Estuary during Feb-02 (closed circles), Jul-02 

(open circles), Mar-03 (closed inverted triangles) and Jul-03 (open inverted triangles) and in the 

Tweed Estuary during Jul-03 (closed squares) and Dec-03 (open squares) plotted versus (a) C/N ratio 

and (b) δ13C signature. 
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and δ13C. In general, �14C values were more depleted in the Tyne compared to the 

Tweed, indicating an older age for POC (see Tables 4 and 5 for corresponding ages 

and pMC values). �14C values ranged from -465 to -243‰ (Tyne, Feb-02), -289 to -

95.5‰ (Tyne, Jul-02), -317 to -426‰ (Tyne, Mar-03), -181 to -268‰ (Tyne, Jul-

03), -130 to -178‰ (Tweed, Jul-03) and -71 to -97‰ (Tweed, Dec-03). The 

relatively old, 14C-depleted (~750 to 4000 years BP) ages for estuarine POC 

measured here are not unexpected (Megens et al., 2002; Raymond and Bauer, 

2001b), and are similar to those found for peat and riparian soils in NE Scotland 

(Palmer et al., 2001). As demonstrated by the arrows plotted on Figure 6, in general 

there was an overall trend of progressively heavier �14C values with higher C/N 

ratios and more depleted δ13C signature in both estuaries. 

In the Tweed Estuary (Figures 2e, 2f, 5e, 5f) a limited number of 14C dates 

that were mostly restricted to salinities < 10 psu precluded a thorough assessment of 

changes in age during estuarine mixing. However, the concentration weighted 

average �14C values of POC for July 2003 (-155 ±20.3‰) and December 2003 (-87 

±12‰) demonstrated a pronounced difference between seasons. These seasonal 

changes in �14C values coincided with changes in the C/N (Figure 6a) and δ13C 

(Figures 6b) ratios between the two surveys, which suggested that in the summer 

suspended POC in the Tweed was comprised predominantly of older, more degraded 

soil-derived OM, whereas in the winter a higher contribution of C3 plant debris was 

being discharged into the North Sea during this period of enhanced river discharge. 

Furthermore, since the estimated % algal POC contents were similar during both 

seasons (~10-14%), this confirms that changes in soil characteristics was the main 

controlling factor in influencing the seasonal differences in POM. These findings 

therefore show that seasonal and hydrological conditions play an important role in 

determining the age and lability of riverine POM which is transported to the coastal 

North Sea. 

In the Tyne, �14C values for suspended POC did not show the same seasonal 

trends as observed in the Tweed. The most 14C-enriched (i.e., youngest) riverine end-

member was measured during Jul-02 (�14C = -95‰, 754 years BP, Figure 2b, 5b), 

whereas the oldest riverine end-member was found during the Mar-03 survey (�14C 

= -317‰, 3005 years BP, Figure 2c, 5c). These differences may be partly attributed 

to dissimilarities in the underlying geology of the two watersheds. As opposed to the 
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underlying geology of the Tweed drainage basin, coal-rich sedimentary rocks are 

found throughout the eastern section of the Tyne watershed. And while its 

importance has diminished in recent decades, coal-mining activity in this region of 

northeastern England has been taking place for hundreds of years, likely resulting in 

relatively high levels of buried coal particles in estuarine sediments. In order to 

qualitatively check for the presence of coal particles in SPM measured in the Tyne 

Estuary, backscatter scanning electron microscopy (SEM) was performed on 

nucleopore filters filtered with water collected during these surveys (Appendix 4). 

Using this technique, coal particles could be recognised by their distinct, jagged 

shape and dark colour. The presence of coal particles in Tyne SPM (but not in Tweed 

SPM) therefore confirmed the possibility that the older ages for suspended POC 

found in the Tyne reflect a higher component of 14C-depleted sedimentary fossil 

carbon. Nonetheless, it is not likely that a contribution from sedimentary organic 

carbon was the only factor in controlling the age of POC in the Tyne Estuary. 

During the Feb-02 survey (Figure 2a, 5a), when there was likely no 

significant mixing with resuspended sedimentary material during this period of high 

river discharge, �14C signatures showed less variation across the low- to mid-salinity 

range than during the other surveys. This implies that during high river flow the Tyne 

Estuary acts as a conduit for the delivery of old, terrigenous OM to the North Sea. In 

addition to the presence of 14C-depleted sedimentary fossil carbon, the older ages for 

POC in the Tyne compared to the Tweed during high river flow / winter conditions 

are likely indicative of different terrigenous source material characteristics for each 

river system, with a higher component of older, peat-derived OM found in the Tyne. 

During the Jul-02 (Figure 2b, 5b) and Mar-03 (Figure 2c, 5c) surveys, when 

river discharge was lower and there were more pronounced MTZ regions, there was 

much more variability in �14C values across the estuary. In both these surveys an 

initial decrease in POC % in the low-salinity region coincided with a decrease in 

�
14C (i.e., an increase in age). For instance, during Jul-02 the �14C signature of POC 

decreased (i.e., the age increased) from a freshwater end-member value of -95‰ in a 

near linear manner to a value of -289‰ at a salinity of 19.3, and during Mar-03 the 

�
14C signature showed an initial decrease from -317‰ to -417‰. During both the 

Jul-02 and Mar-03 surveys to the Tyne Estuary �14C values for suspended POC also 

showed subsequent increases at higher salinities, increasing to -142 ‰ at 25.9 psu 



 172 

(Jul-02) and to -331‰ at 14.8 psu (Mar-03). As described earlier, the peak in % algal 

POC and δ13C observed at a salinity of 25.9 during Jul-02 cannot be attributed solely 

to an increase in phytoplankton biomass. It is likely that these elevated �14C values 

found at lower salinities were caused by mixing with a relatively more 14C-enriched 

anthropogenic OM source originating from a number of potential sites within the 

estuary, such as the Howdon sewage works or the Ouseburn, a heavily urbanised and 

polluted tributary of the Tyne which converges with the main river approximately 10 

km inland from the North Sea. In addition to the most pronounced peak in % algal 

POC observed during the Jul-02 survey, another smaller increase was found at a 

salinity of 9.8 psu. In contrast to the sample collected at 25.9 psu, the % algal POC 

peak at 9.8 psu did not correspond with a slightly more elevated �14C signature. 

However, since this sample was collected in a relatively more turbid part of the 

estuary, it is likely that dilution with older, more 14C-depleted sediment was masking 

the �14C value associated with the elevated algal contribution. 

The highest estimated percentages of algal POC (up to 21.2%) estimated in 

the Tyne Estuary were found during Jul-03 (Figure 2d), when river discharge was 

lowest and the entire length of the tidal estuary was dominated by salinities >13 psu. 

Despite the relatively high % algal POC and relatively low C/N ratios (Figure 3a), 

however, �14C values across the mid-salinity region were not much heavier than 

those measured during the Feb-02 transect, when algal contributions were considered 

to be negligible. It is possible that the age of terrigenous POC was even older during 

Jul-03 and that more 14C-enriched algal contributions acted to “balance” the �14C 

signature. However, as indicated by lower than predicted δ13C signatures and lack of 

correlation with the % algal POC mixing curve (Figure 5d), the relatively 14C-

depleted values for POC corroborate the suggestion that suspended POC during this 

survey was comprised predominantly of terrigenous and/or sewage-derived material. 

The small variations in �14C values across the estuary can be attributed partly to 

varying proportions of algal-, terrestrial, and sewage-derived OM. Yet in contrast to 

the Jul-02 survey, a mid-estuarine peak in % algal POC did not correspond with an 

elevated �14C signature. In fact, the lowest % algal POC measured during this 

transect (5.4%, 20.6 psu) was associated with a slight increase in �14C, suggesting a 

relatively 14C-enriched anthropogenic source. These types of discrepancies illustrate 
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the difficulties in interpreting variations in POC radiocarbon ages across an estuarine 

salinity gradient.  

One explanation for the trends indicating decreases in POC % with a 

corresponding increase in age in the upper estuary observed during Jul-02 and Mar-

03 can be attributed to the mixing of resuspended surface sediments with lower POC 

contents and older POC ages, as suggested by a correlation between SPM levels and 

slightly enriched δ13C signatures for POC during the Mar-03 survey (Figures 2c, 5c). 

In Figure 7a the �14C values of surface sediments are plotted versus distance from 

the North Sea. As this graph illustrates, �14C values of surface sediments become 

more 14C-depleted (i.e., get older) towards the lower part of the estuary. In addition, 

the �14C values of surface sediments were in general much more negative than those 

of suspended POC, ranging between -367 to -801‰ (Table 3). The average age of 

the sediment in the sampling location closest to the North Sea was ~11,000 years BP, 

which is older than what one would expect if peat-derived carbon were the sole 

component. As shown in Figure 7b, this downriver increase in age also corresponded 

with an increase in δ13C signature (r2 = 0.89, n = 8). Therefore, while δ13C signatures 

ostensibly showed a general mixing trend between marine and terrigenous OM 

(Figure 4a), it is likely that the age of surface sediments was influenced by mixing 

with 14C-depleted material from the lower part of the estuary, since phytoplankton-

derived marine OM should be derived from a relatively more modern carbon source 

(Bauer et al., 2002; Megens et al., 2001). In addition to a sedimentary fossil carbon 

source, another possibility for 14C-free material in Tyne sediments may be attributed 

to contamination for petroleum products. A study by Matthiessen et al. (1998) has 

shown that sediment throughout the Tyne Estuary is heavily contaminated with 

weathered and degraded oil, with total hydrocarbon concentrations ranging between 

2000 to 6000 �g/g dry weight. This contamination signal is also supported by the 

relatively high surface sediment C/N ratios found in this part of the estuary (Figure 

4b), which showed a trend of increasing C/N ratio corresponding with an increase in 

age (Figure 7c; r2 = 0.40, n = 8). 

Contamination from coal particles and hydrocarbons may not be the only 

explanation for the older ages for both surface sediments and POC observed in the 

Tyne estuary. In a study by Megens et al (2001), bulk POM samples collected from 

the Dutch coastal waters showed a distinct seasonal contrast, demonstrating more 
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Figure 7a
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Figure 7. (a) δ13C (open circles) and �14C (closed inverted triangles) values of surface sediments in 
the Tyne Estuary collected during Jul-02 and Feb-03 plotted versus distance from the North Sea, (b) 

�
14C values of surface sediments plotted versus δ13C signatures, and (c) �14C values of surface 

sediments plotted C/N ratios. 
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14C-depleted signatures in winter and autumn compared with spring and summer. 

These seasonal differences were attributed to lower primary productivity and a 

greater contribution from resuspended surface sediment during the winter. In the 

Megens et al. study (2001), the most 14C-depleted sample (February, �14C = -120‰) 

also possessed the most 13C-depleted signatures (-23.2‰). Therefore, it is likely that 

the older ages for surface sediment and suspended POC found in the lower part of the 

Tyne Estuary reflect contributions from both coal particle and hydrocarbon 

contamination and resuspended coastal North Sea sediments, as evidenced by the 

relatively high C/N ratio (18.1), 13C-enriched δ13C value (-24.8‰) and 14C-depleted 

�
14C signature (-465‰) found at the mouth of the Tyne Estuary during the Feb-02 

survey (Figure 2a, 5a). Further evidence for this can be seen in the overall 

relationship between δ13C and �14C values for suspended POC (Figure 6b), which 

was similar to that observed for surface sediments (Figure 7b). In the Tweed, the 

marine-end-member collected during Dec-03 (31.30 psu) was the most 14C-depleted 

POC sample from this period (-102‰), suggesting a contribution from older 

resuspended North Sea sediments. However, in comparison to Tyne POC and 

sediment samples, its younger age confirms the minor contribution from fossil 

carbon within this estuary. 

  While mixing with 14C-depleted material may explain some of the variation 

in �14C signatures found in Tyne Estuary, another possibility for the trends 

indicating decreases in POC % with a corresponding increase in age in the upper 

estuary observed during Jul-02 and Mar-03 may be due to the preferential removal of 

a younger, more labile fraction of POC. This removal would thus result in a more 

degraded, older substrate being exported to the North Sea. Within the Tyne Estuary 

the %C measured in surface sediments generally ranged between 6 to 9% (Table 6), 

with an average of value of 7.9 ±2.1% (n = 27) for the samples reported here. The 

POC % in SPM during the four surveys reported here were often much lower than 

this value (Figures 2a-d), and in Jul-02 and Mar-03 showed significant decreases 

within the MTZ. For instance, during Mar-03, when SPM concentrations were 

highest (Figure 2c) the POC % within the low salinity region decreased from a 

freshwater value of 10.4 ±0.3 (n = 2) to lows of 2.5 and 2.9 at salinities of 5.3 and 

10.5, respectively. Therefore, these decreases in POC% in the MTZ (and the 

corresponding increases in POC age) cannot be attributed solely to mixing with 
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older, relatively more carbon-poor surface sediment. The same is also true for the 

Jul-03 transect, when the POC % between salinities of 10-25 ranged from 3.5 to 

4.1%. Furthermore, in contrast to the trends observed in surface sediments, C/N 

ratios for suspended POC in the Tyne showed an overall corresponding increase with 

younger, more 14C-enriched �14C signatures (Figure 6a). This trend therefore 

indicates a lower level of fossil carbon contamination for terrigenous POC entering 

the Tyne Estuary during the sampling periods, and also illustrates the relatively small 

contribution of riverine algal material to the terrestrial particulate pool 

 

CONCLUSIONS 

 In both the Tyne and Tweed Estuaries there was a higher influx of terrigenous 

POC in the winter during periods of elevated river discharge. Higher C/N ratios in 

the Tyne indicated a greater proportion of terrestrial plant debris and humic material 

in riverine POM, whereas in the Tweed the lower C/N ratios were attributed to a 

predominantly agricultural soil source. Changes in POC% (% of SPM) across the 

salinity gradient were used to estimate the percentage of riverine POC mineralised, 

which ranged from 38-76% and 31-39% in the Tyne and Tweed, respectively. These 

estimations suggested that a significant fraction of terrestrial OM is relatively labile 

and is oxidised in the estuarine and coastal zone. 

A three-component isotopic (δ13C) mixing model for suspended POC 

incorporating terrigenous, autochthonous and marine sources adequately described 

the behaviour of δ13C values in the Tweed but not in the Tyne. During the Feb-02 

and Jul-03 surveys to the Tyne, relatively 13C-depleted signatures for measured 

versus predicted δ13C values were attributed to hydrodynamic effects caused by high 

river discharge (Feb-02) and a combined spring tide / low flow event (July 2003). In 

Feb-02, the relatively 13C-depleted signatures coincided with high C/N ratios and 

�
14C values that indicated a riverine flushing of old, peat-derived OM. In the Tyne 

during summer lower C/N ratios (Jul-03) and relatively higher % algal POC 

estimates (Jul-02 and Jul-03) indicated a slightly more important POM contribution 

from estuarine or marine phytoplankton. However, relatively 13C- and 14C-depleted 

values for POC pointed to a mostly terrestrial and/or anthropogenic origin. During 

Mar-03, relatively 13C-enriched δ13C values for POC in the MTZ of the Tyne Estuary 

were attributed to mixing with isotopically heavier sediment. 
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This study has demonstrated large variations in the ages of suspended POC 

during estuarine mixing. In the Tweed, there was a noticeable seasonal trend in the 

age of POC exported to the North Sea, with more 14C-depleted values found in the 

summer compared to winter. This large difference in the age of low-salinity POC in 

the Tweed (~650 years) between winter and summer was attributed to seasonal 

differences in soil characteristics. Considering the large differences in POC flux 

between the Jul-03 (2.0 × 103 mol/hr) and Dec-03 (6.7 × 104 mol/hr) surveys, the 

results from this study therefore suggest that high river discharges associated with 

increased winter runoff can lead to the flushing of younger, relatively more labile 

POM into the North Sea. In the Tyne during Jul-02 and Mar-03 decreases in POC % 

in the upper part of the Tyne Estuary corresponded with an increase in POC age. 

This trend of increasing age was associated with an increase in SPM levels, pointing 

to mixing with older, more 14C-depleted surface sediment that contained higher 

levels of sedimentary fossil carbon and/or petroleum product contamination. 

However, it is also possible that the preferential removal of younger, more labile 

components of the terrigenous POC played an important role in controlling the age of 

POC in the Tyne Estuary, as postulated by Raymond and Bauer (2001). 

Unfortunately, this study was not able to clearly elucidate between these two 

processes. This research therefore demonstrates that interpreting variations in the age 

of POC during estuarine mixing becomes rather complicated in heavily populated 

and urbanised systems, and in geologic settings that can potentially act as a 

significant source of sedimentary fossil carbon (e.g., coal). However, as illustrated in 

the Tweed, in estuaries with shorter residence times and a smaller level of 

urbanisation, �14C values of POC can be used much more successfully to evaluate 

seasonal changes in the source and age of terrigenous POM delivered to the world’s 

oceans. 
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CHAPTER 5: Evaluating the sources and biogeochemical cycling of organic 

nitrogen in two temperate North Sea estuaries using stable isotopes 

 

ABSTRACT 

Concentrations, C/N ratios and nitrogen isotope ratios (δ15N) of high 

molecular weight dissolved organic nitrogen (HMW DON) and suspended 

particulate organic nitrogen (PON) from the Tyne and Tweed Estuaries, NE England, 

were analysed during winter and summer periods. In the Tweed, agricultural soil-

derived sources in the summer dominated the estuary as evidenced by relatively 

enriched δ15N and lower C/N ratios for both particulate organic matter (POM) and 

HMW dissolved organic matter (DOM) pools, whereas in the winter the admixture of 

fresher surface derived plant debris produced slightly lower δ15N and higher C/N 

ratios. A decent relationship between δ15N signatures of PON and HMW DON (r2 = 

0.61, n = 18) confirmed that soil-derived material was the chief source for organic 

nitrogen in this estuary. In the Tyne the trends were much more variable. During the 

winter relatively invariant C/N and δ15N ratios for POM found across the estuary 

demonstrated that the bulk of the PON pool was comprised predominantly of peat-

derived OM. However, due to either the direct or indirect influence of sewage inputs 

δ15N values for PON in the summer were generally more 15N-depleted, as were δ15N 

values for HMW DON during both seasons. A very poor relationship between 

δ15NPON and δ15NHDON signatures (r2 = 0.02, n = 22) confirmed that in the Tyne, in 

addition to terrestrial organic matter sources, estuarial inputs and biogeochemical 

processing played a more important role in the cycling of HMW DON. 

  

INTRODUCTION 

Estuarine environments play an important role in regulating terrestrial 

material entering marine systems. While estuaries can act as conduits for the delivery 

of terrestrial organic matter and nutrients to the world's oceans (Hedges and Keil, 

1995; Meybeck, 1982), estuarine mixing removes, alters, transforms and contributes 

to these significant carbon and nitrogen pools. A burgeoning human population has 

likewise led to a corresponding increase in the amount of terrestrial-derived nitrogen 

that enters rivers and estuaries, and this trend is expected to continue in the near 

future (Galloway et al., 1995). Understanding the main controls on the 
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biogeochemical processes active within estuaries is therefore essential in determining 

the extent to which these systems regulate and modify organic nitrogen inputs to 

marine systems. 

Nitrogen isotope signatures (δ15N) can be a useful tool for examining the 

sources and biogeochemical cycling of organic nitrogen during estuarine mixing. 

With regards to the particulate organic nitrogen (PON) pool, which is generally 

defined as the material retained on a GF/F (~0.7 �m nominal pore size) glass fibre 

filter, nitrogen isotope analysis has now become a routine procedure carried out 

during these types of investigations. Traditionally, estuarine PON has been 

characterised by increasing δ15N values seaward, due to mixing between terrestrial 

and marine sources, with the latter generally possessing more enriched δ15N 

signatures. For instance, in a study carried out in the Scheldt Estuary, Mariotti et al 

(1984) reported that in the winter suspended organic matter is a mixture of two 

components: a continental detrital component characterised by a low δ15N signature 

of 1.5‰ and a marine component with a mean δ15N value of 8‰. In the warmer 

months, from May to October, intensive primary production led to an additional 

source of organic material characterised by enriched δ15N values (maximum 24‰) 

that reflected the isotopic composition of the ammonia assimilated by phytoplankton. 

However, in cases where nitrogen is not limiting to primary production, isotopically 

light dissolved inorganic nitrogen (DIN) should be preferentially utilised during 

uptake and assimiliation (Altabet et al., 1991; Altabet and McCarthy, 1985; Saino 

and Hattori, 1980). As a result of this isotope fractionation, δ15NPON signatures 

influenced by phytoplankton should be less than or equal to the DIN source (Mariotti 

et al., 1984; McCusker et al., 1999; Ostrom et al., 1997).  

In relatively polluted estuaries and coastal regions anthropogenic inputs can 

also influence the δ15N signature of PON. δ15NPON signatures for sewage-derived 

organic matter (which is terrestrial in origin) are generally isotopicallly light 

compared to marine signatures (Tucker et al., 1999). However, increased biological 

productivity caused by this nutrient rich waste can mask the initial signal (Thornton 

and McManus, 1994). Depending on the dominant biogeochemical processes and the 

isotopic signatures of the DIN precursors, this can result in either relatively lighter or 

heavier δ15NPON signatures. For example, the comparatively 15N-enriched δ15NPON 
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signatures (12-14‰) found in the polluted Oder River (Baltic Sea) by Voss and 

Struck (1997) were attributed to algal uptake and fractionation of isotopically heavy 

nitrate. Conversely, Tucker et al. (1999) were able to track the relatively light 

δ15NPON value measured in sewage-derived effluent away from its source and 

seaward across Boston Harbour and Massachusetts Bay. Clearly, the effects of 

anthropogenic inputs can greatly complicate the interpretation of δ15NPON signatures 

in estuarine environments. 

In contrast to the PON pool, relatively few studies have thus far have 

examined the isotopic behaviour of dissolved organic nitrogen (DON) within 

estuarine systems. Studies have shown that DON, which is conventionally defined as 

the fraction of dissolved matter containing nitrogen that is not retained by a GF/F 

filter, accounts for most of the organic nitrogen in surface ocean water (Abell et al., 

2000; Libby and Wheeler, 1997). In addition, DON is a major component of riverine 

N, sometimes exceeding DIN by a factor of 2 (Meybeck, 1993). Nitrogen isotope 

analysis of DON in marine and estuarine environments has been typically hindered 

by generally low concentrations and a lack of suitable sampling techniques capable 

of concentrating the DON into an amount necessary to obtain accurate δ15N values. 

However, tangential-flow ultrafiltration (UF) has provided a relatively efficient and 

reliable method for the isolation of high molecular weight dissolved organic nitrogen 

(HMW DON) for biomolecular and isotopic analysis (Benner et al., 1997; Guo et al., 

2003; Wang et al., 2004). Using this technique, Benner et al. (1997) reported a range 

of +6.6 to +10.2‰ for δ15N values of HMW DON (δ15NHDON) from the Atlantic and 

Pacific Oceans and the Gulf of Mexico. Relatively large changes in the isotopic 

composition of HMW DON within the same geographic region were used to infer a 

rapidly cycling component of DON, whereby a substantial portion of DIN taken up 

by phytoplankton is rapidly released as DON (Bronk et al., 1994). This 

phytoplankton-derived DON is subsequently utilised by heterotrophic bacteria, thus 

completing the cycle. In a study by Guo et al. (2003), δ15NHDON signatures from 

Chesapeake Bay, the Middle Atlantic Bight, Galveston Bay and the Gulf of Mexico 

ranged between +3.2 to +9.5‰ and displayed a convex pattern across the salinity 

gradient, first increasing with salinity until approximately 20 psu, then decreasing 

with increasing salinity in the coastal waters. This distribution of δ15NHDON values 

showed that instead of simply being a mixture between terrestrial and marine 
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sources, DON was undergoing significant microbial processing during estuarine 

mixing. Another study (Wang et al., 2004) has reported a range of +2.8 to +8.9‰ for 

δ15NHDON values from four different US estuaries (San Francisco Bay, Boston 

Harbour/Massachusetts Bay, San Diego Bay, Chesapeake/Delaware Bays). Slightly 

lower δ15NHDON values were attributed to a greater contribution from terrestrial 

sources, which at many sampling locations was associated with sewage inputs. 

Relatively higher δ15NHDON values were attributed to a greater contribution of marine 

material. However, it was also suggested that variations in δ15NHDON signatures were 

the consequence of in situ production of HMW DON.  

The three studies mentioned above highlight the inherent complexity 

associated with biogeochemical of nitrogen in estuarine environments. As a 

consequence, the relationships between δ15N signatures of PON and HMW DON 

have not been clearly established. In the Benner et al. study (1997), while δ15N 

signatures for HMW DON showed the same trends as those for ultrafiltered PON 

(UPON; 0.1-60 �m), δ15N values for UPON were consistently heavier than δ15NHDON 

values collected at the same station, having an offset of approximately 2.8 to 6.9‰. 

Since HMW DON showed less isotopic variability than UPON, it was also suggested 

that the smaller PON reservoir is more dynamic than the larger DON reservoir. 

Considering the relatively limited data available in the literature, one of the 

main goals of this study was to evaluate the isotopic behaviour of HMW DON 

during estuarine mixing. In addition, in order to ensure that a significant fraction of 

the total organic nitrogen pool had been examined, the behaviour of PON was also 

studied. Utilising a combination of concentrations, C/N ratios and δ15N values, it was 

hoped that both sources and biogeochemical processes could be delineated. Two 

geographically close yet fundamentally contrasting temperate estuaries were chosen 

as study areas (Tyne and Tweed Estuaries, NE UK). This was done to assess 

potential variability in organic nitrogen sources and cycling dynamics caused by 

differences in aquatic ecology, water chemistry, anthropogenic perturbations, and 

watershed land-use characteristics. Within each particular estuary, samples were also 

collected during different seasonal and hydrological conditions.  
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MATERIALS AND METHODS 

 

Description of Study Sites 

 

Tyne Estuary 

The River Tyne, which flows through the densely populated city of 

Newcastle, has a total drainage area of approximately 2900 km2 and an average 

freshwater flow of ~48 m3/s. Its two main tributaries are the North Tyne, which 

receives humic-rich waters draining areas of blanket peat afforestation, and the South 

Tyne, which drains relatively pristine moorland (Baker and Spencer, 2004). The 

North and South tributaries converge downstream to form the River Tyne, which 

supplies more than 90% of the total river discharge into the Tyne Estuary (Figure 1; 

Chapter 1). Most of the remaining freshwater input is derived from the River 

Derwent. The maximum extent of the tidal estuary is approximately 33 km inland 

from the North Sea, and the residence time is approximately 5-20 days (A. P. 

Stubbins, private communication). The Tyne is a partially mixed mesotidal estuary 

(Baker and Spencer, 2004). Although industrial fluxes to the lower part of the estuary 

are in decline, it continues to receive significant amounts of urban waste, particularly 

from sewage treatment facilities located at Howdon (one of the UK’s largest estuarial 

secondary treatment facilities) in the lower estuary (Baker and Spencer, 2004; 

Upstill-Goddard et al., 2000). However, the water quality in the Tyne upstream of 

Newcastle has improved significantly over the past few decades. 

SPM (suspended particulate matter) levels in the Tyne are generally <130 

mg/L and show trends of decreasing concentrations with increasing salinities, with a 

noticeable maximum turbidity zone (MTZ) often located in the low to mid salinity 

range (Kitidis, 2002). The Tyne Estuary is considered to be a net heterotrophic 

system during late winter (February, early March) and mid-summer (July), with 

relatively low chlorophyll a concentrations (�4.3 �g/L) in both seasons signifying 

that authochtonous material comprises a relatively minor component of the organic 

matter (Chapters 1-4). Soils in the catchment are dominated by large areas of peat in 

the uplands, which provides a substantial store of organic carbon and with stagno-

gleys in the majority of the remaining areas (Baker and Spencer, 2004). Generally 

the soils are slow draining and underlain by shallow or low permeability aquifers, 
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leading to the hydrology of many sub-catchments to be dominated by surface runoff 

with rapid response to rainfall as a result of saturation excess (Baker and Spencer, 

2004). 

 

Tweed Estuary 

The Tweed River and its tributaries drain a rural, relatively sparsely 

populated region located in the border region between England and Scotland. Most 

of the Tweed’s discharge originates from the main river, although approximately 

10% of the freshwater input comes from the Whiteadder, which joins the Tweed 

approximately 6.5 km upriver from the North Sea. The combined catchment area of 

the Tweed and Whiteadder is approximately 4900 km2 and the average freshwater 

input into the estuary is ~84 m3/s (Fox and Johnson, 1997). The maximum length of 

the Tweed estuary (Figure 1; Chapter 1) is around 13 km and the residence time is 

approximately 1 day (Uncles and Stephens, 1996). The Tweed is a partially mixed to 

stratified microtidal estuary (Uncles and Stephens, 1996). The catchment is 

dominated by agricultural activity, ranging from upland areas of moorland used for 

sheep grazing to more arable regions in the lowlands (Neal, 2002). The Tweed 

receives significantly less anthropogenic inputs than the Tyne, as reflected in its 

favourable water quality ratings (Robson and Neal, 1997). 

Due to the rapid flushing time in the Tweed Estuary SPM concentrations are 

generally quite low (<30 mg/L) and tend to exhibit conservative mixing between 

river and coastal waters (due to the lack of a MTZ), although higher coastal turbidity 

resulting from strong wind events and periods of higher discharge can sometimes 

occur (Uncles et al., 2000). While the Tweed is considered to be net heterotrophic 

system during the winter, photosynthesis becomes the dominant process during the 

summer (Chapter 2; Howland et al., 2000). However, considering the low 

chlorophyll a concentrations (<2 �g/L) typically found in the Tweed Estuary 

(Chapters 1-4; Uncles et al., 2000), photosynthetic activity in the Tweed is thought to 

be dominated by benthic macrophytes. Changing with elevation, soils in the Tweed 

catchment include well drained brown earths founds in the lowlands, gleys on the 

southern slopes, podzols on higher land and peats on hill tops and moors (Robson 

and Neal, 1997).  
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Sample collection 

Data reported here (Tables 1-4) are from near-surface water samples 

collected on single day excursions to the Tyne (Feb-02, Jul-02, Mar-03, Jul-03) and 

Tweed (Jul-03, Dec-03) Estuaries. Site selection within the estuary was based on in 

situ salinity measurements (using a portable probe) in order to ensure adequate, high-

resolution coverage of the full salinity gradient. Once back in the laboratory, salinity 

was analysed on a pre-calibrated Hanna (model 8633) conductivity meter. Samples 

were collected at a depth of 1-2 m from a small boat using a submersed pump. Water 

samples for concentration and isotopic analysis of high molecular weight dissolved 

organic matter (HMW DOM) and POM were collected by large volume pumping 

into acid-cleaned 25 L and 4 L high density polyethylene (HDPE) containers, 

respectively (Appendix 1). River discharge data is reported here as the two-day 

average incorporating the days prior to and day of sampling. Discharges for the Tyne 

(Q = 144.6 m3/s, 27-28 February 2002; Q = 8.6 m3/s, 10-11 July 2002; Q = 30.7 

m3/s, 03-04 March 2003; Q = 7.3 m3/s, 22-23 July 2003) and Tweed (Q = 14.5 m3/s, 

07-08 July 2003; Q = 151.2 m3/s, 02-03 December 2003) were obtained from the UK 

Environment Agency and from the Scottish Environment Protection Agency, 

respectively. During the Jul-03 transect in the Tyne Estuary, the combined effects of 

a spring tidal event with extremely low flow resulted in a low salinity end-member 

sampling point of 13.9 psu due to inaccessibility of the inner estuary. Conversely, 

during the Dec-03 sampling trip to the Tweed Estuary high river flow resulted in a 

survey comprised predominantly of low salinity water samples. This strong 

dependence on surface salinity with freshwater runoff has been previously reported 

in the Tweed Estuary (Uncles et al., 2000).  

 

Isolation of dissolved organic matter (DOM) 

Following sample collection, the 25 L water samples collected for HMW 

DOM were consecutively pressure-filtered (~1.4 bar) through both a 0.7 µm glass 

fibre filter and a 0.2 µm capsule filter to remove particulates, algae and most of the 

bacteria. In order to obtain sufficient material for isotope analysis, dissolved organic 

matter (DOM) was concentrated via tangential-flow ultrafiltration (UF), a technique 

that separates a filtrate of known molecular weight. A 1 kDa UF membrane 

(Millipore) was purchased for this study but after testing was found to have a  
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Site/Date salinity SPM 

(mg/L) 

PON% 

(of SPM) 

PON   

[µM] 

C/NPOM HMW DON   

[µM] 

C/NHDOM 

Tyne        

28/2/02 31.7 31.3 0.29 6.5 18.1 NM* NM* 

28/2/02 17.7 30.1 0.28 6.0 24.8 NM* NM* 

28/2/02 15.0 36.7 0.26 6.8 24.0 NM* NM* 

28/2/02 9.9 35.3 0.38 9.5 21.1 NM* NM* 

28/2/02 6.9 38.6 0.39 10.9 25.2 NM* NM* 

28/2/02 3.0 48.2 0.51 17.5 21.1 NM* NM* 

28/2/02 2.1 52.3 0.48 18.0 21.2 NM* NM* 

        

11/7/02 33.2 15.7 0.16 1.8 15.2 NM* NM* 

11/7/02 30.9 17.0 0.37 4.5 15.5 NM* NM* 

11/7/02 25.9 19.7 0.25 3.6 20.8 NM* NM* 

11/7/02 19.3 35.1 0.45 11.4 19.3 NM* NM* 

11/7/02 15.0 34.9 0.50 12.4 20.4 NM* NM* 

11/7/02 9.8 30.4 0.54 11.8 18.9 NM* NM* 

11/7/02 4.7 29.1 0.47 9.9 21.4 NM* NM* 

11/7/02 0.2 15.9 0.65 7.4 22.5 6.2 21.0 

11/7/02 0.2 17.9 0.59 7.6 22.5 6.2 21.2 

        

4/3/03 34.1 15.7 0.36 4.0 19.9 0.6 12.2 

4/3/03 28.7 20.2 0.50 7.2 18.0 2.5 5.9 

4/3/03 19.0 29.4 0.37 7.8 20.1 1.0 18.0 

4/3/03 14.8 55.3 0.29 11.4 20.3 1.5 22.3 

4/3/03 14.1 147.9 0.22 23.6 20.3 1.7 21.4 

4/3/03 10.5 232.1 0.16 26.1 21.5 1.7 27.7 

4/3/03 5.3 261.9 0.14 26.3 20.4 2.5 28.3 

4/3/03 1.3 92.8 0.32 21.0 19.6 5.2 30.0 

4/3/03 0.1 21.9 0.59 9.2 20.9 7.9 33.2 

4/3/03 0.1 22.0 0.58 9.2 20.5 7.8 33.6 

        

23/7/03 32.5 1.8 1.03 1.4 11.4 0.4 14.9 

23/7/03 27.1 7.2 0.67 3.5 10.5 1.0 13.5 

23/7/03 25.1 8.3 0.52 3.1 12.6 1.3 17.0 

23/7/03 24.2 13.5 0.37 3.5 13.1 1.3 16.8 

23/7/03 21.6 16.4 0.36 4.3 12.2 1.5 18.9 

23/7/03 20.6 12.8 0.35 3.2 13.0 1.7 17.8 

23/7/03 20.1 17.4 0.27 3.4 12.9 1.7 19.5 

23/7/03 18.3 25.4 0.30 5.5 13.7 1.8 20.3 

23/7/03 16.4 13.8 0.37 3.6 11.2 1.9 22.5 

23/7/03 13.9 13.5 0.36 3.5 11.3 2.6 19.7 
  

*NM, not measured 

 

Table 1. Geochemical parameters of water samples from the Tyne Estuary, including concentrations 

of suspended particulate matter (SPM), particulate organic nitrogen (PON), high molecular weight 

dissolved organic nitrogen (HMW DON), C/N ratios (molar) of particulate organic matter (C/NPOM) 
and C/N ratios (molar) of high molecular weight dissolved organic matter (C/NHDOM). The PON% is 

the percentage of PON which comprises the SPM. 

 

nominal pore size of 15 kDa, which was capable of separating the high molecular 

weight (HMW, >15kDa) from the low molecular weight (LMW, <15 kDa) fraction 
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of DOM. For more information on the UF procedure used here the reader is asked to 

refer to Chapter 3. After initial UF, the HMW DOM samples were diafiltered with 10 

L of Milli-Q water (using a 20:1 dilution ratio) in order to remove salts. After 

diafiltration, HMW DOM samples were freeze-dried, homogenised, re-wetted with 

Milli-Q water and placed for several days inside a glass dessicator containing 

concentrated HCl to remove inorganic carbon as required for the δ13C analyses 

reported elsewhere (Chapter 3). They were then vacuum desiccated to remove HCl 

prior to isotopic analysis. 

 

Site/Date salinity SPM 

(mg/L) 

PON% 

(of SPM) 

PON   

[µM] 

C/NPOM HMW DON   

[µM] 

C/NHDOM 

Tweed        

8/7/03 33.2 1.0 1.09 0.8 8.6 0.1 9.7 

8/7/03 32.4 1.2 1.05 0.9 10.7 0.3 9.5 

8/7/03 29.5 1.7 1.27 1.5 10.1 0.4 10.4 

8/7/03 27.4 3.4 1.07 2.6 10.8 0.4 10.5 

8/7/03 17.9 3.8 1.51 4.1 9.1 0.8 10.7 

8/7/03 8.6 3.7 1.88 4.9 8.5 1.6 11.0 

8/7/03 4.2 3.3 1.51 3.6 9.3 2.5 11.0 

8/7/03 1.4 3.6 1.95 5.0 8.5 3.6 11.1 

8/7/03 0.1 3.2 1.64 3.8 9.9 5.2 11.8 

8/7/03 0.1 3.3 1.69 4.0 10.0 5.3 11.9 

        

3/12/03 31.30 17.5 0.35 4.4 12.6 0.5 9.0 

3/12/03 19.38 NM* NM* NM* NM* 2.8 20.1 

3/12/03 4.51 NM* NM* NM* NM* 7.6 23.8 

3/12/03 1.90 19.2 0.66 9.1 12.3 8.0 24.9 

3/12/03 1.27 18.0 0.63 8.1 12.7 8.1 24.5 

3/12/03 0.97 16.6 0.54 6.4 12.4 9.4 27.0 

3/12/03 0.90 18.5 0.56 7.3 11.6 10.4 25.5 

3/12/03 0.19 24.0 0.61 10.4 12.5 14.8 24.0 

3/12/03 0.16 23.4 0.63 10.5 11.5 14.7 22.6 

3/12/03 0.12 23.3 0.62 10.3 11.3 15.5 21.8 

   

*NM, not measured 

 

Table 2. Geochemical parameters of water samples from the Tweed Estuary, including concentrations 

of suspended particulate matter (SPM), particulate organic nitrogen (PON), high molecular weight 

dissolved organic nitrogen (HMW DON), C/N ratios (molar) of particulate organic matter (C/NPOM) 
and C/N ratios (molar) of high molecular weight dissolved organic matter (C/NHDOM). The PON% is 

the percentage of PON which comprises the SPM. 

 

Isolation of suspended particulate organic matter (POM) 

Suspended particulate matter (SPM) and suspended particulate organic matter 

(POM) concentrations were determined by direct analysis of the material collected 
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on pre-combusted (440oC for 4 h), pre-weighed glass fibre filters (GF/F, Whatman) 

by pressure filtration (~1.4 bar) in the laboratory within 10 hours after water samples 

were collected. After sufficient material had been collected the filters were rinsed 

with Milli-Q water to remove salts. As done for the HMW DOM, inorganic carbon 

on the GF/F filters was removed via vapour-phase exposure with concentrated HCl 

as required for the δ13C analyses reported elsewhere (Chapter 4). The filters were 

then vacuum desiccated to remove HCl, had excess glass fibre removed, were 

weighed, and then were subsequently homogenised with a mortar and pestle and 

stored in glass vials prior to concentration and isotopic analysis. SPM concentrations 

were determined by weighing dry filters prior to acidification. Based on analyses of 

duplicate GF/F filters from the same sampling locations, the precision for SPM 

concentrations was ± 5% relative standard deviation (RSD). 

 

Concentration and δδδδ
15

N analysis of HMW DON and PON 

Concentrations and C/N ratios (reported here as molar ratios) for POM 

(C/NPOM) and HMW DOM (C/NHDOM), and δ15N ratios for PON (δ15NPON) and 

HMW DON (δ15NHDON) were determined using a Carlo Erba Instruments NA2500 

elemental analyser coupled with a Micromass PRISM III Isotope Ratio Mass 

Spectrometer (EA-IRMS). HMW DON concentrations were calculated using the 

C/NHDOM ratio and previously measured HMW DOC concentrations reported 

elsewhere (Chapter 3). PON concentrations were calculated by dividing the mass of 

N by the volume of water passed though the GF/F filters. 

Ratios of 14N to 15N are expressed in delta notation as per mil (‰) differences 

relative to an internationally recognised atmospheric nitrogen standard, where: 

 

δ15N = [{(15N/14N)sample – (15N/14N)standard} / (15N/14N)standard] × 1000    (1) 

 

δ15N values (and concentrations) reported here for HMW DON are the averages of 

replicate sample analyses. With the exception of the most saline sample collected 

from the Tyne (32.5 psu) and samples taken from the Tweed at salinities >20 during 

the Jul-03 surveys, δ15N signatures (and concentrations) reported here for PON are 

also the averages of replicate analyses. The error associated with δ15N values in this 
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study incorporates both internal reproducibility and accuracy associated with EA-

IRMS analysis, and was � 0.4‰ for δ15N values of PON and HMW DON. Based on 

multiple analyses of standards and samples, the acuracy and reproducibility for %C 

and %N determined via EA analysis was ± 5% and ± 8% RSD, respectively. During 

the July 2002 survey to the Tyne Estuary HMW DOM samples were not properly 

diafiltered, resulting in unquantifiable EA-IRMS peak sizes for saline samples. 

Hence, only the riverine sample from this survey is reported here.  

  

RESULTS AND DISCUSSION 

 

Behaviour of particulate organic nitrogen (PON) concentrations 

In Figure 2, concentrations of PON and SPM from all six surveys to the Tyne 

and Tweed Estuaries are plotted versus salinity.  In general, concentrations of PON 

in both the Tyne (Figures 2a-d) and Tweed (Figures 2e-f) Estuaries decreased with 

increasing salinity, and exhibited similar distributions as reported for POC 

concentrations (Chapter 4). In the Tyne, the highest PON concentrations were often 

associated with a well-defined low- to mid-salinity range maximum turbidity zone 

(MTZ). The highest PON concentrations in the Tyne (26.3 �M) was measured in the 

MTZ (5.3 psu) during the relatively turbid Mar-03 survey, when the turbidity 

maximum was well developed. During the Jul-02 survey a more broadened mid-

salinity MTZ was observed and PON concentrations tracked the SPM levels.  The 

much higher river discharge in Feb-02 inhibited the formation of a MTZ, which is 

reflected in the estuarine PON concentrations during these periods. Similarly, a 

discernible MTZ is also absent during Jul-03 survey under very low river discharge 

and spring tide conditions. Hence, elevated PON levels within the estuary were not 

evident during the Jul-03 survey. Slight increases in PON concentrations at the 

sampling location nearest the Howdon sewage works (HSW) were observed during 

most of the surveys to the Tyne Estuary. The close association between PON 

concentrations MTZ locations indicates that the residence time of particulate N in the 

Tyne Estuary is variable with seasons and river flow conditions.  

Unlike the Tyne, the Tweed lacks a distinct MTZ. The lack of substantial 

long-term accumulation of muddy sediments and hence the absence of a distinct 

maximum turbidity zone in the Tweed Estuary has been documented by others  
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Figure 2a. Tyne Feb-02
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Figure 2b. Tyne Jul-02
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Figure 2c. Tyne Mar-03
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Figure 2. Concentrations of particulate organic nitrogen (PON; open circles) and suspended 

particulate matter (SPM: closed circles) in the Tyne Estuary during (a) Feb-02, (b) Jul-02 and (c) Mar-

03 plotted versus salinity. The location of the Howdon sewage works (HSW) during each of the 

surveys has been indicated. 
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Figure 2d. Tyne Jul-03
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Figure 2e. Tweed Jul-03
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Figure 2f. Tweed Dec-03
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Figure 2. Concentrations of particulate organic nitrogen (PON; open circles) and suspended 

particulate matter (SPM: closed circles) in the Tyne Estuary during (d) Jul-03 and in the Tweed 

Estuary during (e) Jul-03 and (f) Dec-03 plotted versus salinity. The location of the Howdon sewage 
works (HSW) during the Jul-03 survey to the Tyne Estuary has been indicated. 
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(Uncles et al., 2000). Hence the PON concentrations in the Tweed are much lower in 

all cases (<11 �M) relative to the Tyne. Furthermore, the lowest PON values during 

the two surveys to the Tweed were encountered near the coast. 

The riverine fluxes of PON showed a positive correlation with river discharge 

both in the Tyne and the Tweed (Figure 3). In the Tyne, the Feb-02 survey records 

the very high river flow (Q = 144.6 m3/s) following a winter storm event. This period 

also recorded the highest PON discharge into the Tyne estuary. Similarly, during the 

unusually low flow conditions of Jul-03 the lowest PON levels were encountered in 

the estuary. A positive correlation between concentrations of suspended sediment 

and river flow has been observed by others in the Tweed (Neal et al., 1997). This 

also seemed to apply to PON levels in the Tweed, where higher river discharge in the 

winter was associated with a larger riverine PON load entering the estuary. 
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Figure 3. Riverine particulate organic nitrogen (PON) fluxes (mol hr-1) in the Tyne and Tweed. 

 

There appeared to be a general decline in PON concentrations with increasing 

salinity in both estuaries. This was very clearly seen in the Tweed Estuary, where the 

lowest PON values during the two sampling periods were encountered near the coast. 

 In the Tyne estuary, this trend was only collectively evident in the seaward side of 

the turbidity maximum (Figure 2a-d); however in some cases this was obscured by 
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point source from HSW. This is evaluated further by using the percentage of PON 

comprising the SPM pool (PON%).  

In Figure 4, PON% is plotted against salinity for the Tyne and Tweed 

transects. Plotting PON concentrations as a percent of SPM concentrations removes 

the effect of the MTZ and allows assessments to be made on the relative enrichment 

of nitrogen in the SPM pool. In the Tweed, there was a general decline in PON% 

with an increase in salinity that matched the PON concentration changes. In the 

Tyne, a similar declining trend was evident during the Feb-02 and Jul-02 surveys. In 

the Mar-03 survey, there was a large decline in PON% from the river to the low- to 

mid-salinity MTZ zone followed by an increase seaward of the MTZ. In Jul-03, there 

was an increasing trend of PON% seaward. Point source PON inputs associated with 

HSW as seen in the concentration data are evidence for N-enriched sources in the 

Tyne Estuary. Thus, the trends shown in Figure 4a-d are generally indicative of 

estuarine loss of terrestrially-derived PON relative to SPM during estuarine mixing. 

In Mar-03 and Jul-02 additional N-enriched HSW-derived inputs of PON are 

inferred. Sewage-derived particulate organic matter is generally expected to be 

enriched in nitrogen relative to carbon in comparison to terrestrially-derived plant 

remains (Andrews et al., 1998). However, the increasing trend in PON% seaward 

during Jul-03 survey cannot be explained by HSW inputs alone. This very high 

enrichment in PON% is related to marine algal sources in addition to HSW input. 

This large seaward increase in PON% is clearly related to a larger contribution of N-

enriched algal PON to the SPM pool.  

To provide a quantitative estimate of algal-derived suspended PON, the 

relative contribution of non-algal PON to the total PON can be determined using 

PON/chl-a ratios. A ratio of 40 has been used to predict an algal end-member algal 

for POC distributions from various European estuaries (Abril et al., 2002, and 

references therein), therefore based on a value of 5 (assuming a C/N ratio of 8 for 

algal material) estimates of the percentages of algal-derived suspended PON were 

calculated. In the Tyne (Figure 4a), the % algal PON ranged 6.2-30.0% (Jul-02), 0.7-

2.8% (Mar-03) and 7.5-26.0% (Jul-03), with the highest values found in the middle 

and lower parts of the estuary. In the Tweed (Figure 4b), the estimated % algal PON 

were relatively constant during both summer and winter surveys, ranging from 10.4-

16.8% during Jul-03 and 10.1-18.7% during Dec-03. The % algal PON values  
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Figure 4a. Tyne Feb-02
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Figure 4b. Tyne Jul-02
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Figure 4c. Tyne Mar-03
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Figure 4. The percentage of PON comprising the SPM (PON%; closed circles) and the estimated % 

algal PON (open circles) in the Tyne Estuary during (a) Feb-02, (b) Jul-02 and (c) Mar-03 plotted 
versus salinity. The location of the Howdon sewage works (HSW) during each survey has been 

indicated.  
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Figure 4d. Tyne Jul-03
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Figure 4e. Tweed Jul-03
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Figure 4f. Tweed Dec-03
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Figure 4. The percentage of PON comprising the SPM (PON%; closed circles) and the estimated % 

algal PON (open circles) in the Tyne Estuary during (d) Jul-03 and in the Tweed Estuary during (e) 

Jul-03 and (f) Dec-03 plotted versus salinity. The location of the Howdon sewage works (HSW) 
during the Jul-03 survey to the Tyne Estuary has been indicated. 
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calculated in the winter in the Tweed are most likely inflated due to a elevated chl-a 

concentrations caused by a higher influx of plant debris during this period of elevated 

river discharge.  

As demonstrated in Figure 4, it appeared that algal PON was only important 

when riverine inputs of terrestrial PON were low in the summer months. In the Tyne, 

the percentage of nitrogen in SPM entering the estuary from the river appeared to be 

relatively constant, with a PON% value of roughly 0.6%. Thus, changes in riverine 

PON concentration with flow rates were not associated with N-enriched particulate 

sources but with higher amounts of similarly N-enriched particulates. This is in 

contrast to the Tweed where PON% values were highly elevated in summer months 

(>1.6% PON). This contrast reflects the fundamental difference in PON sources in 

the two estuaries and will be discussed in relation to C/N ratios and δ15N values. 

 

Mineralization of PON 

Given that most PON% trends showed a loss of PON in the low- to mid-

salinity range, one could estimate the percentage of PON lost using the method 

described by Abril et al. (2002) for estimating riverine POC removal (Chapter 4): 

 

% of riverine PON mineralised = SPMriver × (PON%river  - PON%MTZ)             (2)  

 

Here SPMriver refers to the average SPM riverine concentration, PON%river is the 

PON% (% of SPM) in the river and PON%MTZ is the PON% (% of SPM) in the 

maximum turbidity zone. Since the Tweed does not possess a well-defined MTZ, and 

contributions from algal material were relatively minor in this estuary, the lowest 

PON% value observed at the mouth of the estuary was substituted for the PON%MTZ 

in Eq. 2. This was also done for the Tyne Feb-02 survey, due to the lack of a 

pronounced MTZ during this period caused by higher river flow. Furthermore, owing 

to the particularly low flow conditions experienced in the Tyne during the Jul-03 

survey, a freshwater end-member (�0.2 psu) PON sample could not be obtained. 

Therefore, the PON% from the Jul-02 transect (0.62 ±0.04%) was used as a riverine 

end-member for the following summer. All the parameters used in these calculations 

are listed in Tables 1 and 2. The estimated percentages of riverine PON mineralised 

were 39, 27, 76 and 51% in the Tyne during Feb-02, Jul-02, Mar-03 and Jul-03, 
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respectively, and were 34% (Jul-03) and 43% (Dec-03) in the Tweed. Based on 

compounded error from SPM and PON measurements, the precision associated with 

these calculations was approximately ±10%. The trends in these estimations are 

approximately the same as those calculated for POC (Chapter 4), which substantiates 

the claim that a significant amount of terrestrially-derived PON is being oxidised in 

the estuarine and/or coastal zones.  

 

Behaviour of C/NPOM ratios 

In Figure 5, C/NPOM ratios from all six surveys to the Tyne (Figure 5a) and 

Tweed (Figure 5b) Estuaries are plotted versus salinity. In general, C/NPOM ratios 

were higher in the Tyne than in the Tweed Estuary. The C/NPOM ratios in the Tyne 

during both winter surveys were relatively invariant across the estuary, scattering 

around means (after combining freshwater end-members, � 0.2 psu, when 

appropriate) of 22.2 ±2.5 (n = 7) and 20.1 ±1.0 (n = 9) during the Feb-02 and Mar-03 

surveys, respectively. During the Jul-02 survey, C/NPOM ratios showed a general 

decrease with increasing salinity, although the average ratio (19.2 ±2.7, n = 8) was 

still relatively high. In the Tweed during Dec-03 the average C/NPOM ratio was 12.2 

±0.5 (n = 6). The relatively high C/NPOM ratios found in the Tyne during the Feb-02, 

Mar-03 and Jul-02 surveys and imply that much of the POM was derived from 

terrestrial C3 plant debris or from soil organic matter dominated by C3 plants 

(Boutton, 1996; Kendall et al., 2001). Since terrestrial plant litter generally has 

higher C/N ratios than soil organic matter (Kendall et al., 2001; Weiguo et al., 2003), 

the lower C/NPOM ratios found in the Tweed during the winter suggest a greater 

relative proportion of the latter. Low C/N ratios for soil-derived suspended sediment 

in the River Tweed (~ 10-12) have been observed by others (Neal et al., 1997). 

C/NPOM ratios across the Tyne and Tweed Estuaries during the Jul-03 surveys 

were lower, scattering around means (after combining freshwater end-members, �0.2 

psu) of 12.2 ±1.0 (n = 10) and 9.5 ±0.9 (n = 9), respectively. During these two 

summer surveys Tyne (Q = 7.3 m3/s) and Tweed (Q = 14.5 m3/s) River discharges 

were unusually low. Since POM enters streams through mechanical weathering, 

which may erode deeper/older soil horizons (Raymond and Bauer, 2001), this may 

suggest that the soil-derived POM found in these estuaries during these low baseflow 

conditions was entering the estuaries in a more pre-degraded from than during the  
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Figure 5. C/N ratios (molar) of particulate organic matter (C/NPOM) in the (a) Tyne Estuary during 

Feb-02 (closed circles), Jul-02 (closed triangles), Mar-03 (open circles) and Jul-03 (open triangles) 
and in the (b) Tweed Estuary during Jul-03 (open squares) and Dec-03 (closed squares) plotted versus 

salinity. The location of the Howdon sewage works (HSW) during each of the four surveys to the 

Tyne Estuary has been indicated. 

 

winter. In native soils C/N ratios tend to decrease with depth (Killham, 1994). This 

trend corroborates the suggestion that soil-derived POM originating from deeper 

horizons comprised a significant part of the PON pool during the summer, with 
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smaller contributions coming from suspended plant debris during the less turbid, 

lower flow conditions. 

Chlorophyll a concentrations in both the Tyne (<3.0 �g/L) and Tweed (<2.0 

�g/L) Estuaries during Jul-03 were quite low (Chapters 1-4), implying a minor POM 

contribution from phytoplankton. However, C/NPOM ratios during the summer could 

still have been influenced by autochthonous production since lower terrestrial inputs 

can increase the relative importance of algal contributions. While the isotopic 

signatures of estuarine phytoplankton can occupy a wide range of values, in general 

phytoplankton growth is evidenced by substantially lower (≤8) C/N ratios (Baird and 

Middleton, 2004; Cowie and Hedges, 1994; Goni and Hedges, 1995; Hellings et al., 

1999; Kendall et al., 2001; Middelburg and Nieuwenhuize, 1998). The average 

C/NPOM found in the Tweed during the summer was 9.5 ±0.9 (n = 9); however, 

values as low as 8.5 were observed in the mid-salinity range (Figure 3b). Therefore, 

in addition to having lower C/N ratios attributed to seasonal variations in suspended 

soil-derived OM characteristics, the C/N ratios for suspended POM in the Tweed 

during the summer might also reflect a relatively increased proportion of 

autochthonous material. Since the short water residence of the Tweed is thought to 

inhibit numerous phytoplankton cell divisions (Uncles et al., 2000), macroalgal 

and/or seagrass debris are considered the main source for suspended algal material 

within this estuary. 

In order to assess whether the suspended algal material in the low to mid-

salinity regions (�30 psu) of the Tweed Estuary during the summer was mainly 

derived from macroalgal and/or seagrass, C/NPOM ratios were plotted against the 

estimated % algal PON values. As demonstrated in Figure 6, there was a very good 

positive linear correlation between these two parameters (r2 = 0.94, n = 8), indicating 

a relatively high C/N ratio for this algal material. Since phytoplankton-derived OM is 

typically characterised by C/N ratios less than 8 (Baird and Middleton, 2004; Cowie 

and Hedges, 1994; Goni and Hedges, 1995), the high C/N ratio for algal material in 

the Tweed Estuary supports our conclusion that chl-a concentrations were largely 

controlled by macroalgae and benthic plants debris, for which the average C/N ratio 

is ~18.3 (Atkinson and Smith, 1983; Baird and Middleton, 2004). Furthermore, since 

the method used to estimate the % algal PON utilized a phytoplankton algal end-
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member PON/chl-a ratio of 5, the % algal PON values in the Tweed are 

overestimates for the contribution from non-phytoplankton sources.  

The relatively low C/NPOM ratios in the Tweed can therefore be attributed to 

inputs of N-enriched agricultural soil. The C/N ratios of soil organic matter (SOM) 

have been shown to be heavily influenced by land-use patterns, with cultivated soils 

generally possessing lower C/N ratios (Seeber and Seeber, 2005). This lowering of 

the C/N ratio in SOM is related to soil decomposition, whereby the more easily 

decomposed components are removed and nitrogen becomes immobilised in 

microbial biomass and decay products, leaving behind a residual SOM which 
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Figure 6. C/N ratios of particulate organic matter (C/NPOM) in the low- to mid-salinity region (� 30 

psu) of the Tweed Estuary plotted against the estimated % algal PON values. 

 

contains a higher proportion of recalcitrant material (Post et al., 1985). In the Tyne 

watershed, where agricultural activity is less dominant, the generally higher C/N 

ratios for suspended POM are indicative of the greater component of peaty soil, 

which has been shown to exhibit relatively high (>30) bulk C/N ratios (Novák et al., 

1999). Lower C/N ratios found in Jul-03 were attributed to a greater component of 
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sewage- and phytoplankton-derived OM during this period of low riverine PON 

input. The contributions from these sources will be further evaluated using δ15N. 
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Figure 7. δ15N values of particulate organic nitrogen (δ15NPON) in the (a) Tyne Estuary during Feb-02 
(closed circles), Jul-02 (closed triangles), Mar-03 (open circles) and Jul-03 (open triangles) and in the 
(b) Tweed Estuary during Jul-03 (open squares) and Dec-03 (closed squares) plotted versus salinity. 

The location of the Tyne Estuary’s Howdon sewage works (HSW) during the four surveys to the Tyne 

Estuary has been indicated. 
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δδδδ
15

NPON signatures: General trends 

In Figure 7, variations in δ15N signatures of PON from all six surveys to the 

Tyne (Figure 7a) and Tweed Estuaries (Figure 7b) are plotted versus salinity. During 

both winter and summer, with the exception of the coastal North Sea end-members 

for the Feb-02 and Jul-03 surveys (δ15N = +5.3‰, +6.0 ‰, respectively), δ15NPON 

values in the Tyne were significantly more 15N-depleted than those found in the 

Tweed. In winter, δ15N signatures in the Tyne Estuary were relatively invariant 

across the salinity gradient, ranging from +3.0 to +3.9‰ during Feb-02 (excluding 

the North Sea end-member), and +2.6 to +3.7‰ during Mar-03. In contrast, δ15N 

signatures of PON in the Tyne during the summer were variable and generally 

depleted, with values ranging from +0.5 to +2.8‰ during Jul-02 and +0.8 to +6.0‰ 

during Jul-03. In contrast to the Tyne, the Tweed Estuary showed very little in 

estuarine variability during each survey in δ15N values of PON, which ranged from 

+6.0 to +7.9‰ and +5.5 to +5.9‰ during Jul-03 and Dec-03, respectively. The δ15N 

signature of the riverine end-member was very similar in the Tyne during all seasons, 

ranging from +2.0 to +3.3 ‰. This is in contrast to the Tweed, where the riverine 

inputs were relatively depleted in winter (+5.7‰) and elevated in the summer 

(+7.0‰). 

 

Contribution from terrestrial δδδδ
15

NPON sources 

In the Tyne winter transect when low salinity freshwater samples (<0.2 psu) 

were obtained (Mar-03), the riverine end-member had a δ15NPON signature of +2.6 

±0.1‰ (n = 2). In the Tweed, the riverine δ15NPON signature during the winter (Dec-

03) was 5.7 ±0.1‰ (n = 3). Since contributions from phytoplankton during the 

winter were considered insignificant, this approximate 3‰ difference in terrestrial 

δ15NPON signatures between the two rivers during similar conditions must be related 

to variations in soil and plant litter properties. The isotopic signatures of riverine 

PON in both the Tyne and Tweed Estuaries fall within the wide range of δ15N values 

reported for soil organic matter (Broadbent et al., 1980; Kendall et al., 2001). 

However, it has been suggested that the main process controlling δ15N differences in 

soil profiles is related to 15N-enrichment during mineralization (Nadelhoffer and Fry, 

1988). In conjunction with decreasing C/N ratios, δ15N signatures in soils typically 
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exhibit a 15N-enrichment with increasing depth (Novák et al., 1999; Novák et al., 

2003), and in general since cultivation greatly accelerates loss of soil N through 

enhanced decomposition, there can be a pronounced increase in the δ15N value of the 

remaining soil N (Amundson, 2003). Furthermore, the chronic application of large 

amounts of nitrate and ammonium can also lead to higher δ15N values in agricultural 

soils, since isotopic fractionations of these compounds can become more pronounced 

when the substrate is not limited (Nadelhoffer and Fry, 1994). Thus, the highly 

enriched δ15N values of PON entering the Tweed relative to the Tyne may reflect the 

predominant source from agricultural soils as opposed to peat, which dominates the 

Tyne catchment. This is supported by the high PON% and the low C/N of POM in 

Tweed relative to the Tyne, with the exception of the Jul-03 Tyne survey. Seasonal 

differences in riverine δ15N values in the Tweed also reflect the relative predominant 

agricultural soil source. The enriched δ15N values in the summer survey (Jul-03) was 

matched by very low C/N and high PON% in the riverine end-member, thus 

indicating the prevalence of agricultural soil inputs. In the Tweed during the winter 

the relatively depleted δ15N values were matched by higher C/N and lower PON%. 

During the Dec-03 survey higher river discharge and overland surface flow 

conditions may have incorporated higher proportions of plant detritus and fresh litter 

to the agricultural soil-derived organics. Hence, the differences in freshwater δ15NPON 

signatures between the seasons in the Tweed are at least partially due to differences 

in river discharge and the dilution of 15N-enriched terrestrial agricultural soil OM by 

15N-depleted fresh plant litter-derived remains in the winter months. Results from 14C 

AMS analyses support this conclusion, since POM samples were found to be 

hundreds of years older in the summer compared to the winter (Chapter 4). 

Since both winter transects reported here for the Tyne had higher river 

discharge than the summer surveys, one would expect to find seasonal differences in 

PON sources in this estuary, whereby δ15NPON values show a 15N-enrichment during 

summer baseflow conditions. However, results from this study indicated a lack of 

seasonal difference in Tyne in riverine source signatures. Firstly, this may reflect the 

dominance of peat-derived material during both seasons. The large organic inputs 

from peat with relatively depleted δ15N values and high C/N ratios may predominate 

during all seasons. This deduction is backed up by 14C radiocarbon ages which 
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showed no clear seasonal trends (Chapter 4). In fact, the oldest POM from the four 

surveys to the Tyne reported here were measured during Mar-03. Secondly, peat-

derived sources may not have a distinct δ15N signature from fresh litter captured by 

winter surface flow, thereby producing δ15N values that are seasonally invariant. 

 

Influence of marine PON in the Tyne and Tweed Estuaries 

The N isotopic composition of freshly produced North Atlantic plankton is 

expected to be around 5 to 6‰ (Waser et al., 2000). Given the short residence time 

of settling particles in the upper ocean we would therefore expect marine plankton-

derived PON to make a significant contribution to estuarine PON during the summer 

months. In addition, % algal PON increases in the summer months at higher salinities 

in the Tyne estuary (Figure 4) suggest the possible influence of marine PON. 

Because of the low river discharges during the Jul-03 surveys, it is assumed that the 

most saline δ15NPON signatures measured in the Tyne (+6.0‰, 32.5 psu), and the 

Tweed (+6.3 ‰, 33.2 psu) during this period were the most representative coastal 

North Sea samples taken during this study. During the Jul-03 Tyne survey, the sharp 

increase in δ15N values seaward is attributed to the influence of marine PON 

advected into the mouth of the estuary during spring tide conditions. This inference 

is supported by increases in the proportions of algal PON matching the increase in 

δ15N seaward (Figure 4d). The most saline sample in the Tyne Feb-02 survey also 

possessed a δ15NPON signature which was more representative of marine material 

(+5.3‰). This sample was collected during an incoming tidal front associated with a 

winter storm event. Therefore, it is likely that this relatively heavy δ15NPON value, in 

connection with its elevated PON and SPM (Figure 2a) concentrations was the result 

of increased re-suspension of coastal sediments with marine δ15NPON signatures near 

the mouth of the estuary. In the Tweed Jul-03 survey, the sharp decline in δ15NPON 

values in salinities >25 psu can be attributed to the mixing of marine PON with 

relatively 15N-enriched terrigenous PON during this season. 

 

Potential isotopic effects caused by PON mineralization 

Mineralization of organic matter has been shown to cause isotopic 

enrichment of PON in estuarine systems. For instance, in the marine environment 
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isotopic enrichment of up to 5‰ in δ15NPOM values has been shown during grazing 

by microzooplankton (Hoch et al., 1996), and many authors have attributed 15N-

enrichments in POM to microbial breakdown (Altabet and McCarthy, 1986; Macko 

et al., 1987; Saino and Hattori, 1980). The large declines in PON% in the low-

salinity region (�10 psu) in the Tyne Estuary may therefore engender fractionation of 

δ15N values of PON. However, such an isotopic shift was not apparent in our data. 

As shown in Figure 8, there was no significant linear relationship between PON% 

and δ15NPOM values (r2 = 0.08, n = 12), suggesting that δ15NPON values in the Tyne 

Estuary were not significantly influenced by estuarial mineralization. Similarly the 

estuarine mineralization of PON appears to have little effect on the C/N ratios 

(Figure 8), which are invariant in the low- to mid-salinity range indicating the lack of 

preferential mineralization of N relative to C. 
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Figure 8. δ15N values of particulate organic nitrogen (δ15NPON: closed circles) and C/N ratios of 
particulate organic nitrogen (C/NPOM: open circles) in the low-salinity region (� 10 psu) of the Tyne 

Estuary plotted versus the percentage of PON comprising the SPM (PON%). 
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The influence of HSW discharge on δδδδ
15

NPON signatures 

In the Tyne, δ15N values are generally lighter across the estuary in summer 

(Jul-02 and Jul-03 surveys) than in the winter. The lower river discharge during these 

periods therefore may have allowed the influence of Howden sewage works (HSW) 

discharge to be evident in their isotopic composition. Indeed, δ15N values as low as -

1.1‰ have been recorded for sewage-derived sludge (van Dover, 1992), and in 

general since sewage-derived OM is terrestrial in origin it usually possesses 

relatively 15N-depleted δ15N signatures (Tucker, 1999). During Jul-02, the sampling 

station closest to HSW showed a relatively 15N-depleted signature (+0.8‰). The 

other δ15NPON values during this period were variable but generally lighter than the 

winter values. Similarly, during Jul-03 the stations landward of HSW had very 

depleted values. We attribute the depleted δ15N values either to direct influence of 

HSW-derived PON and indirectly by the uptake of ammonia from Howden in the 

algal and/or bacterial biomass, since it has been shown that GF/F filters may retain 

50-100% of total bacterial numbers (Altabet, 1990; Kirchman et al., 1994; Lee and 

Fuhrman, 1987). 

 As mentioned before, in cases where nitrogen is not limiting to primary 

production, isotopically light DIN should be preferentially utilised during uptake and 

assimiliation (Altabet et al., 1991; Altabet and McCarthy, 1985; Saino and Hattori, 

1980). As a result of this isotope fractionation, δ15NPON signatures influenced by 

phytoplankton and/or bacteria should be less than or equal to the DIN source 

(Mariotti et al., 1984; McCusker et al., 1999; Ostrom et al., 1997). Due to discharges 

originating from HSW, ammonium is the most abundant species of DIN in the mid- 

to high-salinity regions of the Tyne Estuary (Chapter 1). Since it has been suggested 

that phytoplankton prefer NH4
+ to NO3

- (McCarthy, 1980), the high concentrations of 

ammonium would therefore imply that NH4
+ is the more frequently used DIN source 

in the Tyne. The δ15NH4
+ signature of HSW-derived ammonium in the Tyne was 

remarkably consistent throughout all four surveys (concentration weighted average = 

+10.6 ±0.5‰, Chapter 1). Therefore, it is possible that this potentially infinite supply 

of 15N-enriched ammonium resulted in significant isotopic fractionation during algal 

and/or microbial uptake, thereby contributing relatively depleted δ15N values to the 

POM pool. 
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Behaviour of high molecular weight dissolved organic nitrogen (HMW DON) 

concentrations 

In Figure 9 concentrations of HMW DON across the Tyne (Mar-03 and Jul-

03) and Tweed (Jul-03 and Dec-03) Estuaries during four different surveys are 

plotted versus salinity. In the Tyne Estuary (Figure 9a), HMW DON concentrations 

ranged from values of 7.9 to 0.6 �M and 2.6 to 0.4 �M during the Mar-03 and Jul-03 

surveys, respectively. HMW DON concentrations in the Tweed Estuary (Figures 9b) 

ranged from values of 5.3 to 0.1 �M and 15.5 to 0.5 �M during the Jul-03 and Dec-

03 surveys, respectively. During the four surveys HMW DON concentrations 

generally decreased with increasing salinity, showing net concave removals across 

both the Tyne and Tweed Estuaries. This removal was also observed in the HMW 

DOC fraction indicating the high reactivity of HMW DOM during transit through 

estuaries (Chapter 3). 

Despite the net removal of HMW DON in the Tyne Estuary during the Mar-

03 survey, minor non-conservative inputs could be seen at several sampling sites, 

most noticeably at salinities of 14.1 and 28.7. The small peak at 14.1 psu corresponds 

to the sampling site located nearest the Ouseburn, a heavily polluted minor tributary 

of the Tyne which converges with the main river approximately 10 km inland from 

the North Sea. The more noticeable input at 28.7 psu corresponds to the sampling 

site nearest the Howdon sewage works (Figure 1; Chapter 1). A significant 

contribution of sewage-derived HMW DOM in estuarine and coastal regions has 

been suggested by Wang et al. (2004). However, despite the noticeable inputs of 

HMW DON, increases in the HMW DOC fraction at these sampling were hardly 

perceptible, although large increases in LMW DOC were observed (Chapter 3). This 

suggests that the HMW DOM discharged by HSW in more enriched in N relative to 

other estuarine DOM sources. In addition, during the Jul-03 survey, HMW DOM 

contributions from HSW also appeared to be relatively minor (this study, Chapter 3). 

However, as indicated by the elevated ammonium concentrations across the entire 

salinity gradient, the influence of the HSW plume during this period could be found 

in parts of the estuary located far inland from the point of discharge. 

Owing to the particularly low flow conditions experienced in the Tyne during 

the Jul-03 survey, a true freshwater end-member HMW DON sample could not be  
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Figure 9. Concentrations of high molecular weight dissolved organic nitrogen (HMW DON) in the (a) 

Tyne Estuary during Mar-03 (open circles) and Jul-03 (open triangles) and in the (b) Tweed Estuary 

during Jul-03 (open squares) and Dec-03 (closed squares) plotted versus salinity. The riverine end-

member from Jul-02 is plotted together with the data from the Jul-03 survey. 

 

obtained. Therefore, it was not possible to assess the behaviour of HMW DON in the 

upper part of the Tyne estuary during the summer. However, samples collected 

during Jul-02, during which time river discharge was only slightly higher (Q = 8.6 

versus 7.3 m3/s), showed similar behaviour in total, LMW and HMW DOC 



 215 

concentrations across the salinity gradient (Chapter 3). Therefore, it was assumed 

that the freshwater (0.2 psu) end-member from the Jul-02 transect reflects an 

approximation of the freshwater HMW DON input during Jul-03. When plotting the 

Jul-02 freshwater HMW DON end-member (6.2 �M) with the Jul-03 data, HMW 

DON in the Tyne exhibited a slight removal across the salinity gradient, decreasing 

toward a value of 0.4 �M in the coastal North Sea. 

In both the Tyne and Tweed Estuaries riverine (mean of values � 0.2 psu) 

HMW DON inputs were higher in winter (7.8 �M, Mar-03, Tyne; 15.0 �M, Dec-03, 

Tweed) than during the summer (6.2 �M, Jul-02, Tyne; 5.2 �M, Jul-03, Tweed). 

However, the seasonal difference was less pronounced in the Tyne Estuary. If we 

assume that DOM fluxes are positively correlated with river discharge, as has been 

suggested by others (Clair et al., 1994; Tranvik and Jansson, 2002), then this may 

help to explain the smaller disparity found in riverine HMW DON concentrations 

between the two Tyne surveys (Q = 30.7 versus 8.6 m3/s during Mar-03 and Jul-02, 

respectively) and the larger difference between Tweed surveys (Q = 151.2 m3/s 

versus 14.5 m3/s during Dec-03 and Jul-03, respectively). 

 

Behaviour of C/N ratios of HMW DOM (C/NHDOM) 

As Figure 10 shows, C/N ratios of HMW DOM (C/NHDOM) in both estuaries 

during summer and winter showed a general decrease with increasing salinities. 

These changes across the salinity gradient were most pronounced in winter, with a 

much less pronounced variation in C/NHDOM ratios observed during the July 2003 

survey to the Tweed. For instance, C/NHDOM ratios in the Tweed during (Figure 7b) 

Dec-03 decreased from a high of 27.0 (0.97 psu) to a low of 9.0 at the coastal North 

Sea (31.30 psu). 

The average C/NHDOM ratios in the freshwater (� 0.2 psu) end-members in the 

Tweed were 11.9 ±0.1 (n = 2) and 22.8 ±1.1 (n = 3) during the Jul-03 and Dec-03 

surveys, respectively, which were very similar to the total estuarine averages (after 

combining freshwater samples) of 10.6 ±0.7 (Jul-03; n = 9) and 22.2±5.7 (Dec-03; n 

= 8). The C/N ratios of terrestrial OM (15-400) are generally higher than those of 

bacterioplankton and phytoplankton OM, which are typically characterised by C/N 

ratios less than 8 (Baird and Middleton, 2004; Cowie and Hedges, 1994; Goni and 

Hedges, 1995). The normal range for C/N ratios of riverine HMW DOM measured in 
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estuaries reported in the literature is around 20-25 (Goni et al., 2003; Guo and 

Santschi, 1997; Wang et al., 2004). Therefore, exceptionally low C/N ratio of 

riverine HMW DOM during the summer survey of the Tweed requires an 

explanation. The low riverine C/NHDOM ratio measured during the Jul-03 survey may 

suggest the mixing between high C/N terrestrial material and with N-enriched 

phytoplankton and/or bacterioplankton sources (Goni et al., 2003). While with the 

data presented here it was not possible to evaluate the contribution of bacterial-

derived OM, the low chl-a levels found during the Jul-03 survey (Chapters 1-4) 

implied a limited contribution from algal-derived OM. Thus, we argue that the low 

C/NHDOM ratios found here could be entirely of terrestrial origin. The low riverine 

C/NHDOM ratio found here was similar to the average value of 9.4 ±1.1 reported for 

total DOC/DON in groundwater draining degraded peatlands (Kalbitz and Geyer, 

2002). This is particularly relevant in the Tweed catchment, which is dominated by 

agriculture activity. These low ratios in degraded agricultural soils were most likely 

the result of significant alteration by microorganisms, which can lead to the 

accumulation of nitrogen-rich compounds and hence a higher N content (Goni et al., 

2003; Rice and Hanson, 1984). Therefore, this might suggest that soil-derived OM 

comprised the bulk of the HMW DOM pool, as concluded for POM. Furthermore, 

since terrestrial plant litter generally has higher C/N ratios than soil organic matter 

(Kendall et al., 2001; Weiguo et al., 2003), the seasonal differences in C/NHDOM 

ratios (and δ13CHDOC values; Chapter 3) in the Tweed can therefore be attributed to 

changes in the relative concentrations of dissolved C3 plant material. During the 

winter, higher river discharge (151.2 m3/s) would have resulted in a higher 

contribution from plant litter, and hence higher C/NHDOM ratios. Conversely, during 

the less turbid, lower flow conditions (14.5 m3/s) encountered during July 2003 it is 

likely that that the relative percentage of soil-derived OM was substantially higher. 

The C/NHDOM ratios found in the lower part of the estuary during both winter (9.0) 

and summer (9.7) are typical for marine OM. The similarity between soil-derived 

and marine C/NHDOM ratios in the Tweed during July 2003 explains the invariance of 

C/NHDOM ratios across the estuary during this period. Conversely, the large almost 

linear decline in C/NHDOM ratios in the Dec-03 survey of the Tweed suggests mixing 

between riverine HMW DOM of high C/N ratios with marine HMW DOM of low 

ratios. 
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Figure 10. C/N ratios (molar) of high molecular weight dissolved organic nitrogen (C/NHDOM) in the 

(a) Tyne Estuary during Mar-03 (open circles) and Jul-03 (open triangles) and in the (b) Tweed 
Estuary during Jul-03 (open squares) and Dec-03 (closed squares) plotted versus salinity. The riverine 

end-member from Jul-02 is plotted together with the data from the Jul-03 survey. 

 

The average C/NHDOM ratios in the freshwater (� 0.2 psu) end-members in the 

Tyne were 21.1 ±0.2 (n = 2) and 33.4 ±0.3 (n = 2) during the Jul-02 and Mar-03 

surveys, respectively. As for the Tweed Estuary, the low chl-a levels found in the 

Tyne (Chapters 1-4) implies that autochthonous production did not make a 
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significant contribution to HMW DOM to explain this seasonal change. C/NHDOM 

ratios of riverine DOM entering the Tyne Estuary during the summer falls within the 

normal range (20-25) but during the winter the value (33.4 ±0.3, n = 2) is much 

higher than those found in other estuaries. It is possible the higher C/NHDOM ratios 

entering the Tyne estuary during the winter suggest a greater contribution from plant-

derived OM relative to soil-derived OM. However, during the Mar-03 survey the 

percentage of HMW comprising the total DOC (Chapter 3) in the freshwater end-

member (35%) was almost twice as high as that during the Jul-02 survey (18%). 

Since humic material generally has higher C/N ratios than bulk soil (Seeber and 

Seeber, 2005), the higher C/NHDOM values during the Mar-03 survey may therefore 

reflect a higher component of humic-rich peaty-soil, which as previously mentioned 

has been shown to exhibit relatively high (>30) C/N values (Novák et al., 1999). 

C/NHDOM ratios in the Tyne also showed a general decrease across the salinity 

gradient, although in contrast to the Tweed Estuary the coastal North Sea ratios 

(12.2, Jul-02, 14.9, Mar-03) were slightly higher. Nonetheless, the C/NHDOM ratios 

measured at the mouth of the Tyne Estuary were within the wide range of values 

reported for marine HMW DOM (~9-20) in the literature (Benner et al., 1997; Goni 

et al., 2003; Guo and Santschi, 1997; Wang et al., 2004). During the Mar-03 survey 

an anomalously low C/NHDOM value (5.9) was measured at the sampling location 

nearest the Howdon sewage works (28.7 psu), suggesting an estuarial input of 

sewage-derived OM. In contrast to the winter, the change in C/NHDOM ratio at the site 

nearest the Howdon sewage works during the summer (27.1 psu) was not as 

pronounced as during the winter, implying a limited contribution from sewage-

derived HMW DOM during the July 2003 survey. In any case, it is likely that during 

both seasons the C/NHDOM ratios near the mouth of the Tyne Estuary were influenced 

by HSW-related inputs with low C/N ratios, thus complicating the assignment of a 

marine C/NHDOM end-member for this system. Nevertheless during both seasons the 

large estuarial decline in C/NHDOM ratios implies mixing between high C/N peat-

derived HMW DOM and low C/N marine- and HSW-derived HMW DOM. 

 

δδδδ
15

NHDON signatures: General trends  

Figure 11 shows the δ15N values of HMW DON (δ15NHDON) plotted versus 

salinity in the Tyne (Figure 11a) and Tweed (Figure 11b) Estuaries during four  
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Figure 11. δ15N values of high molecular weight dissolved organic nitrogen (δ15NHDON) in the (a) 

Tyne Estuary during Mar-03 (open circles) and Jul-03 (open triangles) and in the (b) Tweed Estuary 
during Jul-03 (open squares) and Dec-03 (closed squares) plotted versus salinity. The riverine end-

member from Jul-02 is plotted together with the data from the Jul-03 survey. 

 

different surveys. In general, more 15N-depleted δ15NHDON signatures were found in 

the winter and in the Tyne, with the lowest value (-5.0‰) recorded during Mar-03 at 

the sampling site nearest HSW. A slight decrease in δ15NHDON signatures was also 

found at the sampling locations close to the Ouseburn, the heavily polluted minor 
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tributary. In the Tyne during the Mar-03 and in the Tweed during Jul-03, δ15N 

signatures of HMW DON generally decreased across the estuary with increasing 

salinity. Conversely, in the Tyne during Jul-03 and in the Tweed during Dec-03, the 

opposite trend was found, in which δ15N HDON values showed a slight 15N-

enrichment with increasing salinity. In the Tyne during Jul-03, the trend of lighter 

values in the mid-salinity region is attributed to the landward advection of HSW-

derived discharge. Heavier δ15NHDON values at higher salinities are suggestive of the 

greater influence of marine-derived HMW DON (+2.6‰, 32.5 psu) in the lower part 

of the estuary. In the Tweed, a similar marine end-member was found for both 

seasons (>30 psu, +3.6 ± 0.4‰, n = 3), indicating that mixing with marine-derived 

HMW DON was responsible for the seaward trends of decreasing δ15NHDON values 

during summer and increasing δ15NHDON values during winter. 

 

Contribution from terrestrial δδδδ
15

NHDON sources 

Since there was a significant difference in δ15NHDON signatures (~ 2‰) 

between the combined freshwater end-members in the Tyne (+1.6 ±0.5‰, n = 2) and 

Tweed (+3.7 ±0.8‰, n = 2) Estuaries, differences in the soil characteristics between 

the two watersheds presumably play an important role in controlling δ15NHDON 

values, as discussed for C/NHDOM ratios. The lower C/NHDOM ratios found in the 

Tweed were attributed to a greater proportion of agricultural soil-derived OM. In 

addition, Kalbitz and Geyer (2002) have suggested that DON release in degraded 

peatlands is promoted when inorganic nitrogen is added to the soil. The main cause 

of the elevated nitrate concentrations found in the River Tweed (Chapter 1; Balls, 

1994, Uncles et al., 2003) is likely a result of agricultural activity in the watershed. 

Therefore, one would expect that HMW DON levels would be relatively high in the 

Tweed (compared to HMW DOC concentrations), resulting in lower C/NHDOM ratios. 

According to Kalbitz and Geyer (2002), DON from these ‘degraded’ soils should 

also possess relatively more 15N-depleted δ15N signatures, which is not the case for 

the Tweed samples. However, after changing the land use from intensive crop 

production to unimproved grassland, Kalbitz and Geyer (2002) noted a significant 

positive shift (>1‰) in δ15NHDON signatures from these degraded peatlands. The 

more 15N-enriched values for HMW DON were attributed to isotopic fractionation 
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caused by enhanced microbial alteration. Since the Tweed catchment basin is 

predominantly rural, unimproved grasslands should not be uncommon in this region. 

Therefore, the more 15N-enriched δ15NHDON values found in the freshwater regions 

and throughout the rest of the Tweed Estuary may be the result of isotopic 

fractionation caused by microbial alteration at the source, as indicated by low 

C/NHDOM ratios. This may explain why δ15NHDON signatures in the Tweed exhibited 

similar isotopic enrichment patterns as previously described for soil-derived PON. 

If soil-derived organic matter was the chief source for both HMW DON and 

PON, as has been inferred in the Tweed Estuary, then one might expect to find a 

close link between δ15NPON and δ15NHDON signatures. In Figure 12, δ15NPON and 

δ15NHDON signatures from both estuaries and from both seasons are plotted against 

each other. As this figure illustrates, there is a much stronger linear relationship 

between δ15NPON and δ15NHDON signatures in the Tweed Estuary (r2 = 0.61, n = 18) 

than there is in the Tyne Estuary (r2 = 0.02, n = 22). The strong correlation between 

δ15N values of PON and HMW DON in the Tweed strengthens the argument that 

organic nitrogen in this estuary is predominantly terrestrial in origin, with minor 

contributions coming from either algal or anthropogenic sources. Conversely, the 

very poor correlation between δ15N values of PON and HMW DON in the Tyne 

suggests that in addition to terrigenous organic matter, estuarial inputs and/or 

biogeochemical processing have a more important role in the cycling of organic 

nitrogen within this system. 

 

Microbial influences and contribution from sewage-derived HMW DON sources 

The direct input of 15N-depleted HMW DON into the Tyne from HSW or the 

Ouseburn may provide one explanation for the relatively light δ15NHDON values found 

within this estuary. As mentioned previously, sewage-derived organic nitrogen 

should possess relatively 15N-depleted δ15N signatures. Therefore, the light δ15NHDON 

signature (-5.0‰) found near HSW during the Mar-03 survey indicates a local input. 

A relative 15N-depletion in HMW DON signatures influenced by anthropogenic 

contamination has been observed by others in the coastal environment (Wang et al., 

2004). However, in addition to DON originating directly from the effluent, it is also 

possible that HMW DON was produced within the sewage plume, since production  
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Figure 12. Relationship between δ15N values of particulate organic nitrogen (δ15NPON) and δ15N 

values of high molecular weight dissolved organic nitrogen (δ15NHDON) in the Tyne (Mar-03, Jul-03) 
and Tweed (Jul-03, Dec-03) Estuaries. 

 

would result in isotopically lighter material. According to Ward and Bronk (2001), a 

major mechanism for DON release in surface marine waters is through grazing of 

phytoplankton and bacteria by zooplankton and protozoan. Furthermore, studies have 

shown that a significant fraction of HMW DOM can be derived from bacteria (Zou et 

al., 2004). Since we can rule out the influence of phytoplankton during the Mar-03 

survey, and large bacterial numbers would be expected within or near a sewage 

outlet, it is possible that the consumption of heterotrophic bacteria (bactivory) 

resulted in the generation of 15N-depleted HMW DON. In addition, the relatively low 

C/NHDOM ratio associated with the Howdon signal also suggests a large contribution 

from bacterial matter, which generally has a C/N ratio of around 5 (Savin et al., 

2001). Isotopically light DON associated with microbial food web interactions has 

been previously documented in experiments carried out by Hoch et al. (1996), who 

by mass difference calculations found a 15N-depletion in total DON relative to NH4
+ 

and PON in microzooplankton batch cultures. 
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The large ammonium peaks consistently observed near the Howdon sewage 

works (Chapter 1) supports the theory that the spike in HWM DON and its 

associated isotopically light signature found during the Mar-03 survey was related to 

bacterial growth at this site. Using d-amino acids as a biomarker to trace microbial-

derived dissolved and particulate organic matter in the Arctic Ocean, Dittmar et al 

(2001) found evidence for a bacterial contribution to marine DON. Therefore, as 

previously described for trends observed in δ15NPON signatures, if bacteria present 

near HSW were producing HMW DON via assimilation of NH4
+ then the δ15NHDON 

signature should be more 15N-depleted than the δ15NH4
+ substrate due to the 

preferential removal of isotopically light ammonium. In any case, whether through 

direct sewage inputs or via secondary processing, it is clear that HSW played an 

important role in generating light δ15NHDON values in the Tyne Estuary. 

 

CONCLUSIONS 

The unique relationships between C/NPOM and δ15NPON ratios in both the 

Tyne and Tweed Estuaries (Figure 13) led us to conclude that terrigenous material 

and to a lesser extent algal and/or bacterial uptake (in the Tyne) were the main 

factors in controlling the rather dynamic δ15NPON values found in theses systems. As 

these plots illustrate, relatively lower C/NPOM ratios in the Tweed (Figure 13b) 

generally corresponded with heavier δ15NPON values, with this tendency becoming 

more pronounced during the summer. This relationship in the Tweed reflects mainly 

seasonal variations in sources and their dominance in estuarine PON signatures. 

Agricultural soil-derived sources in the summer dominated the estuary with enriched 

δ15N and lower C/N ratios, whereas during the winter the admixture of fresher 

surface derived plant debris produced slightly lower δ15N and higher C/N ratios. In 

the Tyne the trends were much more variable (Figure 13a). The winter transects 

closely clustered around δ15N and C/NPOM ratios of around +3.2 ±0.7‰ and 21 ±2.1, 

respectively, reflecting the predominance of peat-derived inputs of POM into the 

estuary during this period. However, the summer values were highly variable due to 

direct and indirect influence of Howden and marine algal material. During Jul-03 

both depleted δ15N values landward and enriched δ15N values seaward were 

produced by the influence of Howden and marine algae, respectively, and these were  
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Figure 13. Relationship between δ15N values of particulate organic nitrogen (δ15NPON) and C/NPOM 

ratios in the (a) Tyne Estuary during Feb-02 (closed circles), Jul-02 (closed triangles), Mar-03 (open 
circles) and Jul-03 (open triangles) and in the (b) Tweed Estuary during Jul-03 (open squares) and 

Dec-03 (closed squares). 

 

matched by lower C/NPOM ratios. In Jul-02, the C/NPOM ratios were slightly higher 

than those measured during the following summer, indicating a larger algal 

contribution in the POM pool during Jul-03. The higher contribution from algal 

sources during this transect was confirmed by higher estimates of % algal PON 
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(Figure 4). In addition to direct inputs of 15N-depleted HSW-derived POM, the large 

supply of isotopically enriched ammonium originating from HSW (Chapter 1) is 

thought to generate 15N-depleted PON values due to isotopic fractionation caused by 

algal and/or bacterial assimilation. 

In the Tweed, no additional source inputs of HMW DON were observed 

across the estuary during either summer or winter surveys. While distinct seasonal 

differences in C/NHDOM ratios were found, these were attributed mainly to changes in 

soil-derived HMW DOM dynamics. A decent relationship between δ15NPON and 

δ15NHDON signatures (r2 = 0.61, n = 18) indicated that soil-derived organic matter was 

the chief source for both PON and HMW DON in the Tweed Estuary. In the Tyne, 

however, a noticeable peak in HMW DON was observed near the HSW during the 

Mar-03 survey. This non-conservative input was associated with a low C/NHDOM ratio 

and a very light δ15NHDON signature. Therefore, the lighter δ15NHDON values found 

throughout the Tyne Estuary during both winter and summer were largely influenced 

by either direct inputs or secondary processing of sewage-derived discharges. A very 

poor relationship between δ15NPON and δ15NHDON signatures (r2 = 0.02, n = 22) 

confirmed that in the Tyne, in addition to terrestrial organic matter sources, estuarial 

inputs and biogeochemical processing played a more important role in the cycling of 

HMW DON. 
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SUMMARY AND CONCLUSIONS 

This study examined the sources and transformations of organic matter and 

dissolved inorganic nitrogen (DIN) in two contrasting North Sea Estuaries using a 

wide variety of geochemical and isotopic parameters. In order to properly assess the 

potential variability within and between these two estuaries, samples were collected 

from the Tyne (Feb-02, Jul-02, Mar-03, Jul-03) and Tweed (Jul-03, Dec-03) during 

different seasonal and hydrological conditions. In addition to seasonal and 

hydrological controls, this study has shown that land use patterns, sewage inputs and 

freshwater flushing time are the main influences in determining the behaviour and 

origin of organic matter and DIN entering the coastal North Sea in these two 

systems. 

In both the Tyne and Tweed Estuaries in situ processing of dissolved 

inorganic nitrogen (DIN) was relatively minor (although more significant during the 

summer surveys), with mixing between different sources being the main factor in 

controlling the distribution of nitrate and ammonium across the salinity gradient. In 

the Tyne, ammonium concentrations and δ15NH4
+ signatures were primarily 

determined by large discharges emanating from the Howdon sewage works (HSW). 

These elevated inputs of ammonium lead to enhanced nitrification in adjacent North 

Sea waters, as evidenced by isotopically light δ15NO3
- values found near the mouth 

of the Tyne indicating a source of nitrification-generated nitrate. Nitrification caused 

by these high ammonium concentrations leads to high N2O supersaturations in the 

Tyne (Barnes, 2003), demonstrating that sewage-derived nitrogen inputs can 

indirectly result in large emissions of a very effective greenhouse gas which has 

tremendous implications for global climate change (Galloway et al., 1995; Lashof 

and Ahuja, 1990). This study has also demonstrated that during periods of elevated 

river discharge associated with winter storm events atmospherically-derived nitrate 

comprises a significant percentage of the riverine nitrate entering the North Sea. In 

the Tweed, enhanced agricultural activity in the watershed leads to elevated nitrate 

inputs into the estuary relative to the Tyne. These findings have important 

implications on a global scale. For instance, results from this thesis imply that 

anthropogenic inputs of agricultural-, sewage- and atmospheric-derived DIN may 

bypass estuarine processing in some systems and have a greater impact in coastal 

environments. Furthermore, as illustrated by Figure 6, Chapter 1, the bulk of the 
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anthropogenic nitrate was delivered to the North Sea during rarely sampled storm 

events. If these trends are applicable to other estuarine systems then the estimated 

flux of anthropogenic fixed nitrogen delivered to the world’s oceans (~ 59 Tg N yr-1; 

Galloway et al., 1995) is likely too low, leading to a greater perturbation of the 

global nitrogen cycle than previously envisioned. 

Slightly 13C-enriched δ13C values of dissolved inorganic carbon (δ13CDIC), 

combined with low pCO2 (<2 times atm. pres.) and 18O signatures of dissolved 

oxygen (δ18ODO) lower than expected for equilibrium with the atmosphere across the 

salinity gradient pointed to net autotrophy in the summer in the Tweed Estuary. 

Conversely, in the Tyne during the summer and in the Tweed during the winter 

higher pCO2 (up to 6.5 and 14.4 times atm. pres. in the Tweed and Tyne, 

respectively), more 13C-depleted δ13CDIC and 18O-enriched δ18ODO indicated 

heterotrophy as the dominant process. However, in both the Tyne and Tweed 

Estuaries relatively low chlorophyll a (chl-a) levels (<5 �g/L) indicated that 

autochthonous production had only a minor impact on the biogeochemical cycling of 

carbon and nitrogen. This was verified by high suspended particulate organic carbon 

(POC) to chl-a ratios, which demonstrated that algal material generally comprised no 

greater than 15% of the POC pool. Considering the quick flushing time of the 

Tweed, which would preclude significant algal cell division in the water column 

(Uncles et al., 2000), it was concluded that autotrophy during the summer was 

dominated by bed-anchored algae, as has been suggested by others for this estuary 

(Howland et al., 2000). 

As indicated by relatively depleted δ13CPOC and δ13CHDOC values and C/N 

ratios greater than the Redfield ratio (~7), the bulk of the suspended particulate 

organic matter (POM) and high molecular weight dissolved OM in the Tyne and 

Tweed estuaries was dominated by terrigenous material. Higher C/N ratios and lower 

δ
15N values for OM in the Tyne were indicative of the greater contribution form 

peaty soils and C3 vascular plant debris, whereas lower C/N ratios and higher δ15N 

values in the Tweed (e.g., POM during the summer) suggested the greater influence 

of N-enriched agricultural soil inputs. A higher component of marine- (Tyne and 

Tweed) and sewage-derived OM (Tyne) was observed in the lower part of the 

estuaries during the Jul-03 surveys, when dry summer conditions resulted in lower 

river discharges. A HSW-derived point source input was also observed in the Tyne 
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during the Mar-03 survey, as indicated by an elevated HMW DON concentration and 

substantially 15N-depleted δ15N signature. In addition to a direct input of HSW-

derived material, slightly 15N-depleted δ15N values for PON in the summer (Chapter 

5) suggested an enhanced biological modification of DIN caused by the preferential 

removal of 14N during bacterial and/or phytoplankton uptake. This study therefore 

demonstrates that large inputs of anthropogenic ammonium will have both direct and 

indirect impacts on the cycling of organic nitrogen within estuaries.   

Relatively old radiocarbon ages (100s to 1000s of years) confirmed the 

predominantly terrestrial origin for POM in both the Tyne and Tweed Estuaries. 

Indeed, since algal contributions were low, it is not surprising that the POM was 

comprised mainly of old, recalcitrant soil-derived OM. More 14C-depleted (i.e., 

older) �14C values in the Tyne suggested a source of sedimentary fossil carbon (i.e., 

coal) in addition to peat-derived OM. During higher winter discharge, the River 

Tweed exported a larger amount of younger, more labile POC to the coastal zone. In 

the maximum turbidity zone (MTZ) of the Tyne, decreases in POC % with 

increasing salinity in some instances coincided with an increase in POC age. In 

addition to mixing with older sediments, it is possible that this increase in age was 

caused by the preferential loss of the younger, more labile fraction during 

mineralisation. 

Significant removals of both HMW DOC (Chapter 3) and POC (Chapter 4) 

were observed across the salinity gradient. These removals were associated with 

relatively high pCO2 values that are comparable to those reported in other estuaries 

in Western Europe (Abril et al., 2002; Barth et al., 2003; Frankignoulle et al., 1998). 

In these studies, the large CO2 fluxes emitted from these estuaries were mostly 

attributed to the mineralisation of labile, pollution-derived organic matter. While 

HSW-derived OM likely contributed to CO2 production in the Tyne, pollution-

derived anthropogenic carbon inputs into the relatively pristine Tweed are considered 

minor. Therefore, contrary to the popularly held notion that terrigenous OM is 

recalcitrant and refractory during estuarine mixing (Abril et al., 2002; Álvarez-

Salgado and Miller, 1999; Mantoura and Woodward, 1983), this study has 

demonstrated that a significant percentage of terrestrially-derived entering North Sea 

Estuaries is relatively labile and is oxidized to CO2, providing a positive feedback 

mechanism for climate change. 
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Large, concave removals of terrigenous high molecular weight (HMW) DOC 

were associated with a non-conservative 13C-enrichment in δ13C signatures. Due to 

the lack of any identifiable estuarine inputs, it was proposed that this isotopic 

enrichment may have been the result of the selective removal of isotopically lighter 

terrestrial HMW DOC caused by flocculation, bacterial and/or photochemical 

oxidation. If the 13C-enriched behaviour of δ13C values found in this study was 

indeed caused by the preferential removal of 13C-depleted HMW DOC, then rapid 

estuarine removal of HMW DOC as observed here and by other workers (Guo and 

Santschi, 1997; Santschi et al., 1995) implies that delineating terrestrial-derived 

HMW DOC in an estuarine environment may often prove quite difficult when using 

δ
13C signatures. In addition, an enriched carbon isotope signal of residual terrestrial 

carbon leaving estuaries could lead to the underestimation of terrestrially-derived 

carbon present in the marine DOC pool when terrestrial end member values are 

assigned in the partitioning calculations. 

While radiocarbon dates showed an export of old (100-1000s of years) 

terrigenous POC to the North Sea, 14C-enriched �14C values indicated a riverine 

input of young (modern) terrestrially-derived HMW DOC. The large disparity in age 

between HMW DOC and POC found in this study shows that older, more refractory 

peat-derived carbon is exported to the world’s oceans in particulate rather than 

dissolved form. Concurrent with significant removals across the salinity gradients, 

this study has therefore demonstrated that HMW DOC is a very reactive component 

of the total DOC pool, whether from predominantly peat- (Tyne) or agricultural soil-

derived sources (Tweed). Thus, it is highly likely that similar removals in HMW 

DOC during estuarine mixing are occurring in other systems, although in many cases 

these removals may be masked by simultaneous estuarine inputs. 

This study has found a progressive increase in �14C signatures of HMW DOC 

across the salinity gradient, indicating mixing with a highly 14C-enriched North Sea 

source attributed to anthropogenic releases (Cook et al., 1998; Gulliver et al., 2004). . 

While the exact source of the elevated �14C values in North Sea OM remains 

unknown, it is likely that this 14C-enrichment made its way into the marine carbon 

cycle via the DIC reservoir. However, studies have shown that the �14C signature of 

North Sea DIC is only around 200‰ (Le Clercq et al., 1997), much lower than the 

value of ~1000‰ predicted for North Sea HMW DOC in this thesis. Considering the 
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large difference in 14C-enrichment between the organic and inorganic fractions, this 

implies that there must be a significant ‘lag’ effect between the �14C signature of 

DIC and that of recently fixed carbon. Reasons for this include mixing and dilution 

of anthropogenic 14C with the much older North Sea DIC pool and loss of DIC due to 

equilibration with the atmosphere. Therefore, it appears that anthropogenic 14C may 

become rather persistence in the OM fraction, exhibiting 14C-enrichment long after 

its initial entry into the marine food chain. 

As this thesis has demonstrated, it is difficult to asses the origins of DIN and 

organic matter in river-dominated estuaries without fully delineating the source end-

members. Future studies into similar systems should incorporate more detailed end-

member sampling protocols in order to reduce potential ambiguity in signal overlap. 

For instance, while this study found pronounced differences in δ15NO3
- signatures 

within and between the Tyne and Tweed Estuaries, due to isotopic source signal 

overlap we were not able to distinguish between several possible origins. For 

example, during the Feb-02 survey to the Tyne the relatively high inputs of nitrate 

were substantially 15N-depleted compared to the other three surveys to this estuary. 

While these light δ15NO3
- values suggested a greater proportion of atmospheric-

derived nitrate, it was unclear as to what extent 15N-depleted soil-derived nitrate also 

contributed to the overall δ15NO3
- signature. Studies have demonstrated that a more 

precise isotopic fingerprint for nitrate can be obtained when δ15N is used in 

conjunction with δ18O (Chang et al., 2002; Kendall, 1998). Therefore, in order to 

narrow the range of potential sources for terrestrial-derived nitrate inputs into 

estuarine systems, in the future the dual isotope approach should be considered.  

This study has also demonstrated the difficulty involved with fully assessing 

estuarine sources for 14C- and 13C-enriched bulk HMW DOC (Chapter 3). While it 

was suggested that anthropogenic discharges resulted in elevated �14C values for 

North Sea OM, bulk HMW DOC measurements precluded the possibility of 

elucidating the exact molecular fingerprint of this 14C-enriched material. In 

conjunction with a more detailed sampling strategy that includes a wide variety of 

different potential organic matter sources across the entire catchment basins (i.e., soil 

samples, marsh organic matter, macrophytic material, etc.), future studies would 

benefit from the use of compound-specific isotopic analysis (CSIA) of individual 

terrestrial, estuarine and marine biomarkers. For instance, CSIA has previously 
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demonstrated its potential to delineate pathways of carbon cycling in microbial 

communities in peat deposits (Pancost and Sinninghe Damsté, 2003; Pancost et al., 

2000) and in providing evidence for an important bacterial role in the formation of 

HMW DOM is estuarine environments (Zou et al., 2004). CSIA may thus be able to 

provide valuable insight into the extent of microbial utilisation of terrestrial OM 

along its entire journey from source to sea. 

 

REFERENCES 

Abril G., Noguueira M., Etcheber H., Cabeçadas G., Lemaire E., and Brogueira M. J. 

(2002) Behaviour of organic carbon in nine contrasting European estuaries. 

Estuarine, Coastal and Shelf Science 54, 241-262. 

Álvarez-Salgado X. A. and Miller A. E. J. (1999) Dissolved organic carbon in a large 

macrotidal estuary (the Humber, UK): Behaviour during estuarine mixing. Marine 

Pollutution Bulletin 37, 216-224. 

Barnes J. (2003) Nitrous oxide in UK estuaries. PhD, University of Newcastle upon 

Tyne. 

Barth J. A. C., Cronin A. A., Dunlop J., and Kalin R. M. (2003) Influence of 

carbonates on the riverine carbon cycle in an anthropogenically dominated 

catchment basin: evidence from major elements and stable carbon isotopes in the 

Lagan River (N. Ireland). Chemical Geology 200, 203-216. 

Chang C. C. Y., Kendall C., Silva S. R., Battaglin W. A., and Campbell D. H. (2002) 

Nitrate stable isotopes: tools for determining nitrate sources among different land 

uses in the Mississippi River Basin. Canadian Journal of Fisheries and Aquatic 

Sciences 59, 1874-1885. 

Cook G. T., MacKenzie A. B., Naysmith P., and Anderson R. (1998) Natural and 

anthropogenic 14C in the UK coastal marine environment. Journal of 

Environmental Radioactivity 40, 89-111. 

Frankignoulle M., Abril G., Borges A., Bourge I., Canon C., Delille B., Libert E., 

and Theate J. M. (1998) Carbon dioxide emissions from European estuaries. 

Science 282(434-436). 

Galloway J. N., Schlesinger W. H., Levy H., Michaels A., and Schnoor J. L. (1995) 

Nitrogen-fixation - anthropogenic enhancement-environmental response. Global 

Biogeochemical Cycles 9, 235-252. 



 239 

Gulliver P., Cook G. T., MacKenzie A. B., Naysmith P., and Anderson R. (2004) 

Sources of anthropogenic 14C to the North Sea. Radiocarbon 46, 869-875. 

Guo L. and Santschi P. H. (1997) Isotopic and elemental characterization of colloidal 

organic matter from the Chesapeake Bay and Galveston Bay. Marine Chemistry 

59, 1-15. 

Howland R. J. M., Tappin A. D., Uncles R. J., Plummer D. H., and Bloomer N. J. 

(2000) Distributions and seasonal variability of pH and alkalinity in the Tweed 

Estuary, UK. The Science of the Total Environment 251/252, 125-138. 

Kendall C. (1998) Tracing nitrogen sources and cycles in catchments. In Isotope 

tracers in catchment hydrology (ed. C. Kendall and J. J. McDonnell), pp. 519-576. 

Elsevier. 

Lashof D. A. and Ahuja D. R. (1990) Relative contributions of greenhouse gas 

emissions to global warming. Nature 34, 529-531. 

Le Clercq M., Van der Plicht J., Meijer H. A. J., and De Baar H. J. W. (1997) 

Radiocarbon in marine dissolved organic carbon (DOC). Nuclear Instruments and 

Methods in Physics Research Section B: Beam Interactions with Materials and 

Atoms 123, 443-446. 

Mantoura R. F. C. and Woodward E. M. S. (1983) Conservative behaviour of 

riverine dissolved organic carbon in the Severn Estuary: chemical and 

geochemical implications. Geochimica et Cosmochimica Acta 47, 1293-1309. 

Pancost R. D. and Sinninghe Damsté J. S. (2003) Carbon isotopic compositions of 

prokaryotic lipids as tracers of carbon cycling in diverse settings. Chemical 

Geology 195, 29-58. 

Pancost R. D., van Geel B., Baas M., and Sinninghe Damsté J. S. (2000) δ13C values 

and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in 

peat deposits. Geology 28, 663-666. 

Santschi P. H., Guo L., Baskaran M., Trumbore S., Southon J., Bianchi T. S., 

Honeyman B., and Cifuentes L. (1995) Isotopic evidence for the contemporary 

origin of high-molecular weight organic matter in the oceanic environments. 

Geochimica et Cosmochimica Acta 59, 625-631. 

Uncles R. J., Bloomer N. J., Frickers P. E., Griffiths M. L., Harris C., Howland R. J. 

M., Morris A. W., Plummer D. H., and Tappin A. D. (2000) Seasonal variability 



 240 

of salinity, temperature, turbidity and suspended chlorophyll in the Tweed 

Estuary. The Science of the Total Environment 251/252, 115-124. 

Zou L., Wang X.-C., Callahan J., Culp R. A., Chen R. F., Altabet M. A., and Sun M.-

Y. (2004) Bacterial roles in the formation of high-molecular weight dissolved 

organic matter in estuarine and coastal waters: Evidence from lipids and the 

compound-specific isotopic ratios. Limnology and Oceanography 49, 297-302. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 241 

APPENDIX 1: Total DIC Determinations   

       

Tyne       

Date Temp [oC] K CO2 K H2CO3 K HCO3 tot alk (mM) tot alk (M) 

23-Jul-03 14.7 4.68E-02 3.74E-07 3.65E-11 2.34 0.002339 

23-Jul-03 16.2 4.46E-02 3.85E-07 3.79E-11 2.79 0.002789 

23-Jul-03 16.6 4.40E-02 3.88E-07 3.82E-11 2.73 0.002729 

23-Jul-03 17.9 4.23E-02 3.98E-07 3.95E-11 2.67 0.002669 

23-Jul-03 18.8 4.11E-02 4.04E-07 4.03E-11 2.76 0.002759 

23-Jul-03 15.5 4.56E-02 3.80E-07 3.72E-11 2.79 0.002789 

23-Jul-03 19.2 4.06E-02 4.07E-07 4.07E-11 2.91 0.002909 

23-Jul-03 18.4 4.16E-02 4.01E-07 4.00E-11 2.85 0.002849 

23-Jul-03 19.3 4.05E-02 4.08E-07 4.08E-11 2.73 0.002729 

23-Jul-03 19.3 4.05E-02 4.08E-07 4.08E-11 2.73 0.002729 

pH H2CO3 (M) HCO3 (M) CO3 (M) DIC (mM) pCO2 pCO2 [ppm] 

8.17 4.22E-05 2.33E-03 1.25E-05 2.39 9.02E-04 902 

7.85 1.02E-04 2.79E-03 7.44E-06 2.89 2.29E-03 2292 

7.81 1.09E-04 2.73E-03 6.71E-06 2.84 2.47E-03 2471 

7.68 1.40E-04 2.67E-03 5.02E-06 2.81 3.31E-03 3314 

7.57 1.84E-04 2.76E-03 4.12E-06 2.94 4.46E-03 4464 

7.64 1.68E-04 2.79E-03 4.52E-06 2.96 3.69E-03 3687 

7.55 2.01E-04 2.91E-03 4.19E-06 3.11 4.95E-03 4954 

7.50 2.24E-04 2.85E-03 3.59E-06 3.07 5.39E-03 5389 

7.52 2.02E-04 2.73E-03 3.68E-06 2.93 4.99E-03 4986 

7.51 2.07E-04 2.73E-03 3.60E-06 2.94 5.10E-03 5103 

       

Tweed   K1 K2   

Date Temp [oC] K CO2 K H2CO3 K HCO3 tot alk (mM) tot alk (M) 

08-Jul-03 12.0 5.11E-02 3.53E-07 3.40E-11 2.31 0.002309 

08-Jul-03 12.2 5.08E-02 3.54E-07 3.41E-11 2.31 0.002309 

08-Jul-03 12.7 4.99E-02 3.58E-07 3.46E-11 2.25 0.002249 

08-Jul-03 13.1 4.93E-02 3.61E-07 3.50E-11 2.25 0.002249 

08-Jul-03 14.8 4.66E-02 3.74E-07 3.65E-11 2.19 0.002189 

08-Jul-03 16.5 4.42E-02 3.87E-07 3.81E-11 2.19 0.002189 

08-Jul-03 17.3 4.31E-02 3.93E-07 3.89E-11 2.13 0.002129 

08-Jul-03 17.8 4.24E-02 3.97E-07 3.94E-11 2.13 0.002129 

08-Jul-03 18.0 4.21E-02 3.98E-07 3.96E-11 2.13 0.002129 

08-Jul-03 18.0 4.21E-02 3.98E-07 3.96E-11 2.13 0.002129 

pH H2CO3 (M) HCO3 (M) CO3 (M) DIC (mM) pCO2 pCO2 [ppm] 

8.25 3.66E-05 2.30E-03 1.38E-05 2.35 7.18E-04 718 

8.26 3.57E-05 2.30E-03 1.42E-05 2.35 7.02E-04 702 

8.25 3.52E-05 2.24E-03 1.37E-05 2.29 7.04E-04 704 

8.27 3.33E-05 2.24E-03 1.45E-05 2.29 6.76E-04 676 

8.33 2.72E-05 2.18E-03 1.68E-05 2.22 5.84E-04 584 

8.39 2.29E-05 2.18E-03 2.01E-05 2.22 5.19E-04 519 

8.41 2.10E-05 2.12E-03 2.09E-05 2.16 4.86E-04 486 

8.46 1.85E-05 2.12E-03 2.36E-05 2.16 4.36E-04 436 

8.77 8.97E-06 2.10E-03 4.74E-05 2.16 2.13E-04 213 

8.76 9.18E-06 2.11E-03 4.64E-05 2.16 2.18E-04 218 
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APPENDIX 1: Total DIC Determinations (continued)  

       

Tweed       

Date Temp [oC] K CO2 K H2CO3 K HCO3 tot alk (mM) tot alk (M) 

03-Dec-03 9.0 5.65E-02 3.30E-07 3.13E-11 0.94 0.000945 

03-Dec-03 9.0 5.65E-02 3.30E-07 3.13E-11 0.94 0.000945 

03-Dec-03 8.9 5.66E-02 3.30E-07 3.12E-11 0.90 0.000900 

03-Dec-03 8.7 5.70E-02 3.28E-07 3.11E-11 1.02 0.001020 

03-Dec-03 8.5 5.74E-02 3.27E-07 3.09E-11 1.24 0.001245 

03-Dec-03 8.5 5.74E-02 3.27E-07 3.09E-11 1.44 0.001439 

03-Dec-03 8.4 5.76E-02 3.26E-07 3.08E-11 0.97 0.000975 

03-Dec-03 8.1 5.82E-02 3.24E-07 3.06E-11 1.86 0.001859 

03-Dec-03 8.2 5.80E-02 3.24E-07 3.06E-11 2.13 0.002129 

03-Dec-03 8.0 5.84E-02 3.23E-07 3.05E-11 2.22 0.002219 

pH H2CO3 (M) HCO3 (M) CO3 (M) DIC (mM) pCO2 pCO2 [ppm] 

7.34 1.31E-04 9.44E-04 6.47E-07 1.08 2.31E-03 2314 

7.32 1.37E-04 9.44E-04 6.18E-07 1.08 2.42E-03 2423 

7.34 1.25E-04 8.99E-04 6.14E-07 1.02 2.20E-03 2201 

7.42 1.18E-04 1.02E-03 8.32E-07 1.14 2.07E-03 2071 

7.46 1.32E-04 1.24E-03 1.11E-06 1.38 2.30E-03 2300 

7.57 1.19E-04 1.44E-03 1.65E-06 1.56 2.06E-03 2065 

7.45 1.06E-04 9.74E-04 8.45E-07 1.08 1.84E-03 1841 

7.68 1.20E-04 1.86E-03 2.71E-06 1.98 2.06E-03 2061 

7.85 9.26E-05 2.13E-03 4.60E-06 2.22 1.60E-03 1597 

8.10 5.45E-05 2.21E-03 8.45E-06 2.28 9.33E-04 933 
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APPENDIX 2: Volumes of water collected for SPM/POM analysis  

      

      

The volumes of water filtered (ml) for the 1st GF/F filter collected at each site (2 to 4 
filters were collected at most sampling stations): 

      

      

Tyne - Feb 2002  Tyne - July 2002  

salinity 
Vol water filtered 

(ml)   salinity 
Vol water filtered 

(ml)  

31.7 980  33.2 3360  

17.7 480  30.9 1140  

15.0 470  25.9 1100  

9.9 340  19.3 540  

6.9 280  15.0 440  

3.0 260  9.8 440  

2.1 260  4.7 500  

   0.2 540  

   0.2 600  

      

Tyne - March 2003  Tyne - July 2003  

salinity 
Vol water filtered 

(ml)   salinity 
Vol water filtered 

(ml)  

34.1 1020  32.5 3610  

28.7 880  27.1 1560  

19.0 400  25.1 1370  

14.8 320  24.2 940  

14.1 360  21.6 800  

10.5 220  20.6 960  

5.3 220  20.1 870  

1.3 220  18.3 750  

0.1 460  16.4 910  

0.1 440  13.9 960  

      

Tweed - July 2003  Tweed - December 2003  

salinity 
Vol water filtered 

(ml)   salinity 
Vol water filtered 

(ml)  

33.2 3820  1.27 430  

32.4 3910  0.97 430  

29.5 3050  0.90 450  

27.4 1700  31.30 920  

17.9 1620  1.90 420  

8.6 1460  0.19 390  

4.2 1360  0.16 430  

1.4 1430  0.12 430  

0.1 1200  4.51 460  

0.1 1210  19.38 520  

      

      

*Note: 25 L of water was collected at each site for high molecular weight dissolved 
organic matter (HMW DOM) analysis 
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APPENDIX 3:  

 

Concentrations (wt %) of major elements (Si, Al, Fe, Mg, Ca, Na, K, Ti, Mn and 

P) in Tyne surface sediments analyzed by X-ray fluorescence spectrometry 

 

 

 

Date 

collected 

grab sample, 

0-1 or 0-2 cm 

core top 

km from 

N Sea %Si %Al %Fe %Mg %Ca 

Jul-01 gs 4.2 23.17 6.74 3.53 1.44 3.61 

Jul-01 gs 5.9 28.03 5.24 2.89 1.09 2.53 

Jul-01 gs 7.9 20.96 7.72 4.37 1.48 3.05 

Jul-01 gs 14.5 20.42 6.99 3.52 1.06 0.78 

Jul-01 gs 15.1 33.18 4.26 2.73 0.69 1.02 

Jul-01 gs 16.0 23.19 7.73 4.42 0.90 0.68 

Jul-01 gs 18.8 23.12 6.99 3.93 0.92 0.99 

Jul-01 gs 21.6 24.21 6.80 3.98 1.09 1.64 

Jul-01 gs 22.8 21.84 7.54 4.38 1.14 1.63 

Jul-01 gs 24.3 33.03 4.57 3.03 0.71 1.00 

Jul-01 gs 25.7 20.62 7.99 4.98 1.27 1.52 

Jul-01 gs 27.2 35.20 3.83 2.80 0.49 0.59 

Jul-01 gs 28.8 27.01 6.47 4.24 0.84 1.02 

Jul-01 gs 29.1 23.31 7.69 4.38 1.06 1.24 

Jul-01 gs 26.0 24.24 7.63 4.26 0.93 1.52 

Jul-01 gs 26.1 25.58 7.39 4.21 0.88 1.17 

Feb-02 0-2 4.2 21.70 7.28 4.01 1.39 3.93 

Feb-02 0-2 15.9 23.63 7.78 4.71 1.03 1.33 

Feb-02 0-2 24.0 22.84 8.07 4.67 1.03 1.49 

Jul-02 0-2 4.2 24.76 6.55 3.68 1.30 3.90 

Jul-02 0-1 15.9 23.90 6.54 3.95 1.12 1.89 

Jul-02 0-2 24.0 23.59 8.24 3.92 1.07 0.81 

Jul-02 0-1 25.8 25.24 6.38 4.43 0.87 0.86 

Mar-03 0-1 4.2 22.15 6.95 3.89 1.65 4.46 

Mar-03 0-1 15.9 26.15 6.95 3.89 1.03 1.52 

Mar-03 0-1 24.0 22.52 7.65 4.61 1.21 2.16 

Mar-03 0-1 25.8 24.45 6.99 4.32 1.10 1.91 

 

 

Note: These wt % values have not been salt corrected  
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APPENDIX 3 (continued):  

 

Concentrations (wt %) of major elements (Si, Al, Fe, Mg, Ca, Na, K, Ti, Mn and 

P) in Tyne surface sediments analyzed by X-ray fluorescence spectrometry 

 

 

 

Date 

collected 

grab sample, 

0-1 or 0-2 cm 

core top 

km from 

N Sea %Na %K %Ti %Mn %P 

Jul-01 gs 4.2 2.03 1.59 0.39 0.04 0.10 

Jul-01 gs 5.9 1.48 1.30 0.31 0.03 0.07 

Jul-01 gs 7.9 1.91 1.72 0.44 0.04 0.18 

Jul-01 gs 14.5 2.02 1.47 0.38 0.03 0.12 

Jul-01 gs 15.1 0.96 1.06 0.30 0.04 0.10 

Jul-01 gs 16.0 1.36 1.62 0.45 0.03 0.12 

Jul-01 gs 18.8 1.36 1.48 0.43 0.04 0.18 

Jul-01 gs 21.6 1.26 1.53 0.43 0.05 0.17 

Jul-01 gs 22.8 0.93 1.56 0.44 0.05 0.18 

Jul-01 gs 24.3 0.78 1.05 0.27 0.04 0.10 

Jul-01 gs 25.7 1.60 1.71 0.46 0.09 0.24 

Jul-01 gs 27.2 0.42 0.94 0.25 0.07 0.08 

Jul-01 gs 28.8 0.56 1.41 0.38 0.10 0.15 

Jul-01 gs 29.1 1.12 1.64 0.44 0.10 0.21 

Jul-01 gs 26.0 0.40 1.64 0.45 0.06 0.22 

Jul-01 gs 26.1 0.85 1.58 0.43 0.06 0.17 

Feb-02 0-2 4.2 1.47 1.76 0.43 0.07 0.11 

Feb-02 0-2 15.9 0.70 1.73 0.47 0.10 0.16 

Feb-02 0-2 24.0 0.37 1.74 0.47 0.07 0.18 

Jul-02 0-2 4.2 1.37 1.66 0.39 0.04 0.10 

Jul-02 0-1 15.9 1.29 1.50 0.41 0.05 0.16 

Jul-02 0-2 24.0 0.99 1.78 0.48 0.03 0.16 

Jul-02 0-1 25.8 1.15 1.46 0.40 0.08 0.15 

Mar-03 0-1 4.2 1.28 1.68 0.41 0.05 0.11 

Mar-03 0-1 15.9 1.08 1.57 0.42 0.04 0.12 

Mar-03 0-1 24.0 0.79 1.74 0.46 0.06 0.16 

Mar-03 0-1 25.8 0.76 1.65 0.44 0.05 0.14 

 

 

Note: These wt % values have not been salt corrected  
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APPENDIX 3 (continued): XRF Analysis Methodology  

Concentrations of major elements (Si, Al, Fe, Mg, Ca, Na, K, Ti, Mn and P) 

in sediments collected from the Tyne Estuary were analyzed by X-ray fluorescence 

spectrometry of fused glass discs (45 mm diameter) using a method similar to that of 

Norrish and Hutton (1969). Approximately 1 g of powdered sediment was accurately 

weighed into a Pt-Au crucible and diluted with a 4:1 ratio (flux:sample) of lithium 

tetraborate flux (Johnson Matthey SPECTROFLUX 105). The crucible was then 

heated to 1100oC in the muffle furnace for 20 minutes. After cooling any further 

weight loss was made up with additional flux and the crucible reheated over a 

Bunsen burner. When completely fused the material was swirled and then moulded 

into a disc on a graphite mould (kept at 220oC on a hot plate) with a clean aluminium 

plunger (also at 220oC). The resulting glass disc was self supporting and could be 

placed directly in the X-ray beam. Standardization was achieved using USGS and 

other international rock standards which had been prepared in exactly the same 

manner as the samples. Based on multiple analyses of standards and samples, the 

precision for Si, Al, Fe, Mg, Ca, Na, K, Ti, Mn and P measurements was found to be 

better than ±3% relative standard deviation (RSD).  
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APPENDIX 4:  

 

Scanning Electron Microscopy (SEM) Identification of Coal Particles in 

Suspended Particulate Matter (SPM) from the Tyne Estuary 

 

(SEM analysis of a Nucleopore polycarbonate membrane (37 mm diameter) 

 

 

Sample collected during the July 2002 survey (at a salinity of 19.3) 

 

 

  

 

 


