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ABSTRACT 

As a fault grows and displacement is accumulated on a fault surface through time, 

deformation is generated in the volume surrounding the fault. Previous studies have 

tended to only look at parts of this entire fault system in isolation. This thesis is a 

systematic survey of fault zone architecture at millimetre to kilometre scales, which 

is linked to variations in fault displacement. Structural data and displacement 

variations have been measured from two isolated normal faults cutting the Jurassic 

Navajo Sandstone in the Chimney Rock fault array, Utah, USA. Both faults are 

approximately four kilometres long with maximum displacements of thirty metres. 

The faults are surrounded by deformation bands and slip-surfaces typical of 

deformation in high porosity sandstones. Deformation is seen ahead of the fault tip 

and to either side of the well-developed fault surface. On average, the width of this 

zone of deformation is twice the displacement on the main slip surface. This implies 

that while some deformation is generated ahead of the fault tip (a process zone) 

deformation is then continuously accumulated after a through-going fault surface has 

developed, intensifying and widening the zone of off-fault deformation. The latter is 

referred to as a kinematic damage zone. The relationship between off-fault 

deformation width and displacement is potentially useful for predicting fault zone 

architecture below seismic resolution. However the exact form of the scaling 

relationship is not well controlled and is expected to vary in different lithologies. The 

off-fault deformation consists of an orthorhombic pattern of deformation bands, with 

a low angle between strike sets. This can be attributed to a small component of 

along-strike extensional strain (due to variation in displacement along the fault) 

combined with larger extensions perpendicular to the fault. This confirms that the 

off-fault structures are growing in a locally controlled three-dimensional strain field 

and not in that of the regional fault array. Slip vectors at the fault tip are oblique 

whereas those on the well-developed fault surface are dip-slip. I interpret these in 

terms of propagation of a mixed-mode fault tip. Detailed surveys along the faults 

have revealed displacement profiles that are approximately symmetrical and 

triangular. The data in this study are of higher resolution than those in other 

published surveys and confirm that displacement profiles at isolated fault tips are 



linear. Existing models of fault growth, based on the growth of a planar crack in an 

elastic medium, fail to predict linear fault tip gradients and do not incorporate off-

fault deformation. The integrated approach taken in this thesis has led to the 

construction of a more realistic 'slip-patch' model for fault growth. This describes 

how faults grow by repeated slip on small patches, each of which relieves stress 

locally but loads the fault along strike at the slip-patch terminations. Post-rupture 

healing along the slip-patch allows it to support subsequent accumulation of stress. 

The effect of healing and reloading of slip-patches over many rupture events results 

in triangular fault displacement profiles with linear tip gradients. The model 

successfully reproduces the displacement profiles seen in the field. Although the 

model is essentially two-dimensional, predictions can be made about the distribution 

of off-fault deformation. Deformation beyond the fault tip, the process zone, will be 

of limited extent, reflecting the size of the last slip-patch to rupture the fault tip area. 

By superimposing the effect of stress enhancement at the termination of each slip-

patch, the deformation adjacent to the well-developed fault, the kinematic damage 

zone, is predicted to be more intense at the centre of the fault where more slip events 

have taken place. To explain my field observations, the additional ingredient of strain 

hardening is required. In the Navajo Sandstone strain hardening has resulted in the 

formation of deformation bands at increasing distances from the fault. This highlights 

the fact that although this model can potentially be applied to the growth of any fault, 

the specific deformation mechanisms in different host rock lithologies will have an 

important control on the distribution of off-fault deformation. For instance, strain 

hardening in high porosity (>10%) sandstones results in the formation of 

macroscopic deformation bands without producing large population of microfractures 

such as those reported in other studies. This thesis has led to a better understanding 

of fault growth and the evolution of off-fault deformation by integrating observations 

and identifying the mechanisms operating through time. This will have important 

applications in the prediction of sub-seismic deformation, prediction of the 

permeability structure of fault zones and the general understanding of brittle fault 

growth in the Earth's crust. 
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Chapter 1: Introduction 

1. INTRODUCTION 

1.1. Rationale 

Faults are four-dimensional features: deforming a three-dimensional volume of rock 

and evolving through time. As a fault develops, strain is accommodated both on the 

main fault plane and within the rock around the fault. As displacement is 

accumulated on the fault it increases in length, propagating into undeformed rock at 

its margins. Deformation will occur away from the fault surface as a result of 

increased slip on the main fault, and due to propagation of the fault through 

previously unfaulted rock. A fault must therefore be considered as an inter-linked 

system consisting of slip along the main fault surface and deformation within a 

volume around that surface, accumulating strain (increasing in size and complexity) 

through time. 

Previous studies of faults have tended to only look at parts of this entire fault system 

in isolation. Studies of the deformation around fault surfaces, often motivated by the 

search for systematics in the distribution of sub-seismic deformation, take the form 

of maps of fault geometry. These maps are only snapshots of the fault's evolution in 

time and are, in many cases, two-dimensional slices through the three-dimensional 

faulted volume. Rock deformation experiments allow the evolution of structures 

through time to be investigated, but are limited in time and length scales. Analytical 

fault growth models based on the accumulation of displacement through time have 

been limited, for computational simplicity, to two dimensions. In such models 

displacement accumulation is confined to the fault surface and deformation away 

from the main fault is not considered. This thesis presents a systematic study of fault 

zone architecture at several scales linked to displacement variation along fault strike 

and interpreted in terms of fault evolution. This process-oriented approach is critical 

to the understanding of fault growth and the geometry of off-fault deformation. 

Existing data on along-strike displacement profiles are rarely of high enough 

resolution to distinguish the details of the displacement distribution at fault tips. 
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Fault tips are important because this is the region where fault propagation occurs. It 

has been suggested that the shape of the displacement profile depends on the 

properties of the rock through which the fault is propagating (Cowie and Scholz 

1992a, Biirgmann et al. 1994). Thus the form of the fault tip displacement profile 

may contain information on the growth processes of faults. Additionally, fault 

displacement profiles for different numerical and analytical models of fault growth 

differ from one another markedly near the fault tip. A detailed survey of the 

displacement profile at an isolated (non-interacting) fault tip is therefore required to 

discriminate between different growth models. The survey in this thesis represents 

probably the highest resolution displacement data at a fault tip to date. 

Characterising the architecture of structures in the zone of deformed rock around the 

main fault plane will help to constrain different fault growth models. In addition, the 

permeability of the fault zone depends critically on the geometry, intensity and 

connectivity of fracture and fault networks (Manzocchi et al. 1998) and on the 

repeated dilation and sealing of open fractures through time as the fault grows 

(Sibson 1977, Underhill and Woodcock 1987). Thus the architecture of this zone is 

important for studies of fluid flow through, or around, fault networks. Previous 

studies of fault zone architecture have focused on geometrical descriptions of off-

fault damage (McGrath and Davison 1995, Martel and Boger 1998) and on 

quantifying the amount of strain represented by such deformation (Jamison and 

Steams 1982, Little 1996). This study aims instead to quantify how the architecture 

of the zone of deformed rock around individual faults is controlled by the process of 

fault development and how this relates to the evolution of the fault displacement 

profile. 

1.1.1. Aims of the thesis 

The primary aim of this thesis is to evaluate and improve models of fault growth 

through time, using field data collected from an array of faults in the San Rafael 

Desert, central Utah, USA. This is an integrated study of fault displacement profiles 

and off-fault deformation with an emphasis on the evolution of the faults through 
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time. Small faults are often undetected in seismic reflection surveys, but may 

contribute significantly to the hydraulic properties of a hydrocarbon reservoir or 

aquifer. The Chimney Rock fault array is a network of medium sized faults 

(maximum displacement 30 m), which are close to the resolution limits of most 

modem-day 3D seismic datasets. They offset the aeolian Navajo Sandstone and are 

surrounded by zones of cataclasis with low permeability. Investigating the growth of 

these faults, and the off-fault deformation that surrounds them, will improve 

understanding of sub-seismic scale fault populations and therefore improve 

calculations of fluid flow in and around fault surfaces. 

Fault tips are notoriously hard to map: a fault is recognised where it displaces some 

previously continuous geological marker, and the very small displacements that exist 

towards the tips can be hard to identify. One of the two faults studied here has a tip 

that is exceptionally well exposed. The form of the outcrop allows detailed 

displacement measurements as well as the quantification of the style and geometry of 

deformation around the tip. A high precision laser theodolite has been used to survey 

the faults in detail and to include these very small offsets in the fault displacement 

profiles. These data have then been compared with model predictions in order to re-

evaluate the models and to help explain observed fault characteristics in a more 

realistic way. 

This thesis presents the results of integrated mapping and petrographic analysis of 

two kilometre-scale faults in the high porosity Navajo Sandstone, and interprets the 

mechanisms of fault growth and development of faulting in this lithology. Detailed 

outcrop measurements of fault displacement and fracture geometry (from mm to km 

scale) reveal details of the fault zone structure. This has been achieved by 

characterising the style, intensity and relative timing of off-fault deformation at 

different scales and relating these to the displacement on the faults. Microstructural 

studies of this deformation have been used to investigate the mechanism of inelastic 

deformation that occurs during fault growth. 

3 
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1.1.2. Structure of the thesis 

This chapter is intended to provide a background to the thesis, introducing the 

terminology used throughout the thesis and some of the concepts and previous work 

that lie behind the study. Chapter 2 introduces the field area and lithologies that are 

going to be studied and provides some geological background to the project. 

Chapter 3 presents the results of extremely high-resolution surveys of fault 

displacement profiles, concentrating on the fault tip region. The results of these 

surveys indicate that existing fault growth models are inadequate and that an 

alternative model is required. Chapters 4 and 5 present a systematic examination of 

the macroscopic and microscopic deformation around the fault, respectively. The 

geometry and scaling of the zone of deformed rock surrounding faults is linked to the 

displacement profile. 

Chapter 6 presents interpretations of the data in terms of the strain represented by the 

structures. The results of all the chapters are synthesised in Chapter 7 and are 

discussed in the light of a new model for fault growth. This has resulted in the 

formulation of a new conceptual genetic model for the formation of off-fault 

deformation structures. A summary of the results in this thesis is presented in 

Chapter 8, followed by recommendations for future work that arise from this study. 

1.2. Fault terminology 

Fault terminology is not universally adhered to in the literature. This section defines 

the terms that are used in this thesis. 

1.2.1. The ideal single fault 

All faults are three-dimensional surfaces of finite extent. An 'ideal' single fault is a 

fault that does not intersect the surface as it grows and does not interact with any 

other faults (Walsh and Watterson 1987). Displacement, D, on an ideal fault ranges 

from a maximum at the centre, DrMV  to zero at the tip line (Figure 1.1 a). The tip line 

is approximately elliptical with contours of equal displacement forming concentric 
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ellipses about the maximum (Figure 1.1b) (Rippon 1985, Barnett etal. 1987, Walsh 

and Watterson 1987). The maximum horizontal dimension of a fault is the length, L, 

and its maximum vertical dimension is the height, H. From coal mine data (Rippon 

1985) and faults reconstructed from offshore seismics (Barnett et al. 1987), it can be 

seen that fault ellipses have average L:H ratios between 1.25-3.0. 

Displacement on a fault is defined by the offset of markers. The line of intersection 

between a planar marker and the fault surface is called the cut-off. Thus, for a normal 

fault, there is a hangingwall cut-off and footwall cut-off for the downtbrown and 

uplifted blocks respectively (Figure 1.1 a). An offset marker horizon gives the 

magnitude of displacement; the slip direction must also be measured in order to 

characterise the displacement vector fully. Slickenlines on the fault surface indicate 

the direction of the slip vector, and thus the true fault displacement can be quantified. 

The fault trace is the line of intersection of the fault surface and the plane of 

observation (Figure 1.1b). This may not coincide with the centre line of the fault and 

therefore will define a chord on the fault ellipse. The maximum displacement 

measured on a fault trace must therefore be equal to or less than the D. on the 

entire fault. Normalised displacement profiles along chords on the fault surface are 

not significantly different from those on the radius of the fault ellipse if the fault has 

a simple theoretical elliptical displacement profile (Walsh and Watterson 1987, 

Gupta and Scholz 1999 in review). However real faults have more complicated 

displacement distributions (Section 1.3.2) and so the displacement profile of a real 

fault may well vary depending on the location of the fault trace with respect to the 

centre of the fault (e.g. Gupta and Scholz 1999 in review). The length of a fault is 

usually defined as the tip to tip distance along its trace. This definition will tend to 

systematically underestimate the length of faults with complex fault trace geometries. 

Although faults accommodate displacement on a relatively discrete plane, additional 

strain is geometrically necessary in the volume around the fault (Figure 1.1 a). This 

can take the form of ductile flexure (reverse drag) of the beds around the fault 

surface, or brittle deformation on subsidiary faults. The magnitude of the flexure can 

5 
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Figure 1.1. Features of an ideal single fault. a) Cartoon of a fault offsetting a gridded 

bedding plane with hangingwall subsidence and footwall uplift. The elliptical fault 

surface is shown in grey. b) Fault dimensions for an ideal single fault with an 

elliptical tip line. The length, L, is the maximum horizontal dimension of the fault 

surface, and the height, H, is the maximum vertical dimension. The maximum 

displacement, Dmax, occurs at the centre of the fault. The fault trace is the 

intersection of the fault surface with the topographic surface following erosion. 
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be accurately predicted by elastic models (Gupta and Scholz 1998, Gibson et al. 

1989, Barnett etal. 1987) and is often referred to as reverse drag or rollover (Figure 

1.1 a). Observed large-scale normal faults often have asymmetrical uplift and 

subsidence with as much as ten times more hangingwall subsidence than footwall 

uplift (e.g. Stein and Barrientos 1985, Jackson and McKenzie 1983). This can be 

ascribed to the fault dip, free-surface effects, isostatic compensation and the effect of 

loading by sedimentation in the hangingwall. However small faults, which are not 

influenced by isostasy or sedimentation, can have symmetrical uplift and subsidence 

(Gupta and Scholz 1998). Brittle structures around faults are discussed in Section 

1.4.2. 

Single ideal faults grow by radial propagation, increasing in length by propagation of 

the tip line (Figure 1.2a). However isolated single faults are unusual in nature, and 

many faults are instead made up of a number of discrete segments (Figure 1.2b). 

Faults can grow by the interaction and linkage of such segments (Scholz etal. 1993, 

Cartwright et al. 1995 a and b, Dawers and Anders 1995). The region where 

displacement is transferred between segments is called a segment boundary, or relay 

ramp. When a fault has linked in such a way that it behaves as a single system it is 

said to be hard linked and to have geometric coherence (Walsh and Watterson 1991). 

Faults can link both along strike and down dip. Down-dip linkage of faults had been 

investigated by Willemse (1996) and Mansfield and Cartwright (1996). 

1.2.2. Off-fault deformation 

Faults are commonly surrounded by zones of fractures apparently associated with the 

growth and development of that fault (Figure 1.3). Chester and Logan (1986a) and 

Caine et al. (1996) describe the zone where slip is localised is referred to as the fault 

core, and the deformed area around the fault as the damage zone. Fault cores can 

range from single zones of cataclasis or gouge (Chester and Logan 1986a) to 

brecciated and geochemically altered zones (Sibson 1977), but are in all cases the 

zone where the majority of the displacement in the fault system is localised. 

Deformation around the fault can be a result of fault rupture events, propagation of 
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Figure 1.2. Conceptual model for the growth of a) an ideal single fault growing by 

radial propagation and b) a fault growing by linkage of three segments (after Cartwright 

etal. 1995a). See Figure 1.6 for the displacement profiles and Dm  /L plots for these 

examples. 

off-fault deformation 

Figure 1.3. Cartoon of a fault surrounded by an off-fault deformation zone. 
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the fault tip, or flexure of the rock in the volume around a fault to accommodate 

displacement (Section 1.2.1). The processes of off-fault deformation can be 

extremely variable between rock types and at different scales. Deformation at fault 

tips is often referred to as the process zone. This reflects the concept that the fault 

must deform or 'process' the rock in some way before it can propagate through 

undamaged host rock (Section 1.4.1). 

These terms are often used interchangeably in the literature, therefore in this thesis, 

the term off-fault deformation is used to describe all deformation around the fault. 

This term is intended to be purely descriptive and not to imply a particular genesis 

for the deformation. In Chapter 7, definitions for different categories of off-fault 

deformation are revised in the light of the faults studied in this thesis. 

1.2.3. Fault displacement and slip 

Walsh and Watterson (1987) distinguish between fault displacement and slip. The 

displacement on the fault refers to the total cumulative offset resulting from all 

deformation during the active lifetime of the fault, whereas slip refers to the offset 

accumulated during one deformation event, either through earthquakes or aseismic 

creep. Although other definitions of displacement and slip have been used (e.g. 

Burgmann et al. 1994), this is the terminology used in this thesis. 

1.2.4. Modes of fracture 

Three fundamental modes of fracturing are recognised (Scholz 1990) (Figure 1.4). 

Mode I fracture occurs at the edge of extensional cracks and is characterised by slip 

occurring normal to both the crack plane and the edge of the crack. It is analogous to 

a wedge being driven into a solid. Mode II consists of the slip vector being in the 

plane of the crack and normal to the crack edge (in-plane shear). This is equivalent to 

an edge dislocation. Mode III fracturing comprises the slip vector being in the plane 

of the crack and parallel to the edge of the crack (anti-plane shear), and is equivalent 

to a screw dislocation. 
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Figure 1.4. The three modes of fracture. I, opening mode or tensile; II, in-plane 

shear; III, anti-plane shear, from Scholtz (1982). 
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These modes can be superimposed to generalise for all crack tips. A dip-slip normal 

fault grows in Mode ifi at its laterally propagating tips and in Mode H at its upwards 

and downwards propagating tips By definition, joints always propagate in Mode I. 

1.3. Observations of faults 

1.3.1. Displacement-length correlation 

A positive correlation between the maximum displacement on a fault and its length 

exists over a scale range of several orders of magnitude (Figure 1.5). This has been 

interpreted in terms of fault growth: as the displacement on a fault increases, the fault 

grows in length. Data has been collected from a large range of areas, (McMillan 

1975, Elliott 1976, Muraoka andKamata 1983, Walsh and Watterson 1987, Krantz 

1988, Opheim and Gudmundsson 1989, Peacock 1991, Peacock and Sanderson 1991, 

McGrath 1992, Dawers et al. 1993, Villemin et al. 1995, Schlische et al. 1996, 

Cartwright and Mansfield 1998) and although there is an order of magnitude scatter 

in both Drr=  and L, this relationship seems to be consistent regardless of rock type, 

fault style and tectonic environment. This relationship is also seen for Mode I 

fractures (Vermilye and Scholz 1995). 

The relationship between the maximum displacement on a fault and length is 

described by a power law of the form, 

D,, = IlLc , 	 (1.1) 

where Drrm  is maximum displacement, L is length of the fault, n is a constant and c is 

the slope of the line on a log-log plot. Differences of opinion exist about the precise 

form of this relationship: that is, whether the relationship is linear (Cowie and Scholz 

1992c, Schlische et al. 1996) or has an exponent greater than 1.0 (Walsh and 

Watterson 1988, Marret and Allmendinger 1991, Gillespie etal. 1992), and whether 

it is possible to relate faults in different tectonic environments (Cowie and Scholz 

1992c). However a linear relation is generally seen for individual fault populations, 

i.e. those within a particular rock type and tectonic setting (Dawers et al. 1993, Clark 
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and Cox 1996). The power law that can be fitted to the global dataset applies over 

eight orders of magnitude (Schlische et al. 1996) 

This relationship implies that processes of fault growth result in a constant 

displacement/length ratio, of about 102,  as faults grow (Figure 1.6a). This is referred 

to as self-similar fault growth. The distribution of displacement on a fault reflects the 

physical properties of the host rock (Cowie and Scholz 1992a, Bifrgmann et al. 

1994), the history of slip events on the fault (Walsh and Watterson 1987, Peacock 

and Sanderson 1996) and the growth of the fault by linkage of fault segments (Figure 

1.6b). A mathematical model that could accurately predict displacement as a function 

of distance along a fault would be a useful tool, for example, to estimate the length of 

faults that exist below the level of seismic resolution in oil reservoirs (Gauthier and 

Lake 1993, Pickering et al. 1997) or to estimate the total strain due to a population of 

faults in an area (Scholz and Cowie 1990, Marret and Alimendinger 1991). 

1.3.2. Fault displacement profiles 

Along-strike displacement profiles have been measured from a variety of different 

areas using many different techniques. Most published profiles appear to have a 

triangular or flat-topped shape with the maximum displacement in the centre of the 

mapped fault trace and the displacement decreasing to zero at the fault tip (Figure 

1.7) (Muraoka and Kamata 1983, Walsh and Watterson 1987, Dawers etal. 1993, 

Schlische et al. 1996, Gross et al. 1997, Cartwright and Mansfield 1998). Real fault 

displacement profiles are rarely smooth and a variety of factors have been suggested 

which could influence the form of the profile. 

Displacement profiles are influenced by change in lithology (Muraoka and Kamata 

1983, Gross etal. 1997), and the length scale of lithology variation seems to control 

the form of the profile. Dawers et al. (1993) found that faults up to a critical length 

had triangular profiles (Figure 1.7a), and that longer faults had flat topped profiles 

(Figure 1.7b). They interpreted this as a consequence of the finite thickness of the 

welded tuff layer that the faults grew in. When the faults break through an entire 
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Figure 1.6. Displacement profile and D/L plot for the growth of a) an ideal single 

fault and b) three linked segments (after Cartwright et al. 1995a). The faults are 

shown in plan view in figure 1.2. In a) the fault grows by radial propagation with a 

constant DXTL  ratio (self-similar fault growth). In b) three initially isolated fault 

segments grow by radial propagation until they interact. The new linked system has a 

greater length than a single fault with the same displacement. The fault then 

accumulates displacement to re-adjust back to the D/L ratio expected for a fault of 

that length. Note the persistent displacement minima. 

13 



If 

,sr IH 

normalised distance along fault 

—J 
>s 
.0 

a) 
U) 

c 
0.01 

0 
C 

0 
I- 
-C 

'I, 

0.0 	 0.5 	 1.0 
normalised distance along fault 

0.02 

—J 
>, 

a) 
U) 

0.01 
0 
C 

2 

[111111 

0.02 

E 

0 

50 

C) 

100 

75 

25 

a) 
	

b) 

Chapter 1: Introduction 
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Figure 1.7. Examples of typical fault displacement profiles. a) Single-segment faults 

below a critical length with a peaked profile and b) single-segment faults over a critical 

length with a flat toppped profile from Dawers et al. (1993). The critical length is 

thought to be a function of the thickness of the competent layer through which these 

faults propagated. c) Displacement profile for a linked fault from Dawers and Anders 

(1995). Solid lines are D/L profiles for individual segments and the dotted line is the 

summed throw on all the faults. The shaded area is where a 7130 m long single-

segment fault would be expected to plot. Note that although the faults are linked, 

displacement minima are still preserved at segment boundaries. The displacement 

gradients at the tips of all these fault appear to be linear. 
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layer, the change of material properties influences the displacement profile. Faults 

that have grown entirely within a relatively homogeneous layer have more even, 

triangular profiles (Muraoka and Kamata 1983, Dawers et al. 1993). 

Faults that have grown by the linkage of several fault segments commonly have 

displacement minima preserved at the segment boundaries (Figure 1.7c) (Peacock 

and Sanderson 1991, 1994, Trudgill and Cartwright 1994, Cartwright et al. 1995a 

and b, Dawers and Anders 1995). Interaction between neighbouring segments locally 

increases the effective strength of the rock, allowing the rock to support steeper 

displacement gradients. Displacement minima associated with segment boundaries 

seem to be persistent with time, and in large fault systems may be associated with 

persistent barriers to fault rupture (e.g. King 1986). Faults can link in three-

dimensions leading to a complex distribution of slip on a fault surface (Mansfield 

and Cartwright 1996, Nicol et al. 1996). 

1.3.3. Off-fault deformation 

Many workers have observed that fault planes are surrounded by concentrations of 

deformation, both on a microscopic and macroscopic scale (Figure 1.8). Chester and 

Logan (1986a) defined off-fault deformation as "the volume of rock containing a 

greater intensity of brittle deformation than typical of the surrounding rock". Brock 

and Engelder (1977) observed an increase in density of deformation (i.e. the number 

of structures intersected per metre along a transect perpendicular to fault strike) close 

to a large thrust fault. Such increases in deformation density have subsequently been 

reported from many other fault zones (e.g. Jamison and Steams 1982, Chester and 

Logan 1986a and b, Little 1996). Knott etal. (1996) defined the point where the 

fracture density dropped to below one fault per metre as the edge of the off-fault 

deformation zone. Knipe etal. (1998) define the edge of the off-fault deformation as 

the point where the structural frequency drops to twice the background level. 

Analyses of the orientation of the structures within off-fault deformation have found 

that they are consistent with the deformation occurring on the main fault zone 

(Chester etal. 1993, Little 1996). 
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Figure 1.8. a) Examples of mapped fault traces with off-fault deformation at 

different scales (from Cox and Scholz 1988). b) Example of a fault surrounded by 

off-fault deformation, from the field area in this study. 
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Local variations in the density and clustering of deformation are common within off-

fault deformation (Chester and Logan 1986a). Many studies have concentrated on 

characterising the geometry and scaling relationships (i.e. fractal, power law, 

exponential) of this deformation (e.g. Knipe 1998). However characterising the 

geometry in this fashion provides no information on the origin of, or controls on, the 

deformation distribution. Increased deformation density can be related to flexure of 

beds around faults (Jamison and Stearns 1982, Antonellini and Aydin 1994, Fossen 

and Gabrielsen 1996) and zones where different fault segments interact or link 

(Peacock and Sanderson 1991, Trudgill and Cartwright 1994). Clustering can also be 

caused by lithological variations in the host rock (Chester and Logan 1986b). The 

deformation style can be heterogeneous throughout the off-fault deformation. A 

progressive change in kinematic style has been observed by Little (1996) away from 

a large strike-slip fault. Knipe and Lloyd (1994) observed that different mechanisms 

can be active within the off-fault deformation zone at different times during the 

lifetime of the fault. 

Deformation around fault surfaces can also occur as microfractures. Chester et al. 

(1993) and Brock and Engelder (1977) observed a zone of fault-associated 

microfracturing that extended at least an order of magnitude beyond the zone of 

macroscopic fractures. A decay of microfracture density with distance has been 

observed in the field (Brock and Engelder 1977, Anders and Wiltschko 1994, Knipe 

and Lloyd 1994, Vermilye and Scholz 1998). Anders and Wiltschko (1994) and 

Vermilye and Scholz (1998) observed a logarithmic decay of microfracture density 

with distance from the fault, and used the point where the microfracture density had 

decayed to a background level to define the width of the off-fault deformation 

(Figure 1.9). Both Anders and Wiltschko (1994) and Vermilye and Scholz (1998) 

found that displacement on the main fault surface had no effect on the maximum 

microfracture density adjacent to the fault surface. 

Martel and Boger (1998) have quantified the change in orientation and style of 

fractures around a fault tip line in three-dimensions and related this to the mode of 

fracture at the tip line (Section 1.4.4). Segall and Pollard (1983) and Myers and 
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Figure 1.10. Cartoon of the stress change around a steeply dipping normal fault 

(after King etal. 1994, Hodgkinson et al. 1996). Regions of positive stress change 

(i.e. stress enhancement) are indicated by grey shading, areas of negative stress 

change (i.e. stress shadow) are indicated by dashed lines. The stress is concentrated 

at the fault tips and is relieved around the fault itself 
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Aydin (1999 in review) have shown that faults may nucleate from pre-existing 

extension fractures, and suggest that the fault tips do not propagate beyond the end of 

the original joint. In this case, the structures seen at the fault tip relate to the 

accumulation of shear displacement along the joint. However this is an unsatisfactory 

mechanism to explain fault growth in general, as all faults would have to be preceded 

by an earlier event of jointing that was oriented in the appropriate direction. If 

structures mapped at fault tips formed in response to stresses at the fault tip and the 

fault has propagated in several slip events, then inactive structures with similar 

geometries will be preserved behind the fault tip (an inactive "wake" of damage). 

However many structures that have been mapped at fault tips (Btirgmann and Pollard 

1994, McGrath and Davison 1995, Martel and Boger 1998) are not observed as an 

inactive wake behind fault tips. This apparent paradox is a strong motivation for the 

investigation of off-fault structures. 

Although the distribution and geometry of off-fault deformation is the key to 

deciphering fault growth mechanisms, a systematic investigation of these structures 

related to fault displacement has not been undertaken thus far. Such a study is 

important because the distribution of features in off-fault deformation zones will also 

have a critical effect on the movement of fluids through the fault system (Caine et al. 

1996, Evans et al. 1997). For instance, as the amount of clustering increases, the size 

of fault-enclosed compartments becomes more variable (Manzocchi et al. 1998). 

Therefore the controls on fault clustering are critical investigations of fault zone 

permeability. This is especially important for the faults in high porosity sandstones 

that are investigated in this study (Section 2.3.1). 

1.4. Mathematical models of fault growth 

1.4.1. Linear elastic fracture mechanics 

The simplest model of a fault is that of a planar crack in an elastic medium. Strain 

due to an individual earthquake can be approximated as elastic because the time 

scales are relatively short and the strain relatively low. The solutions for the stress 

field around an elastic crack (Pollard and Segall 1987) can be used to predict the 
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distribution of damage around a fault. This predicts a high stress at the tips of the 

crack and a stress shadow on either side of the crack (Figure 1.10). The distribution 

of aftershocks after earthquakes can be controlled by the location of stress highs and. 

lows predicted by the elastic solution' (Scholz 1990 p206, King et al. 1994, 

Hodgkinson et al. 1996). Fault growth is inhibited in the stress shadow region around 

a fault (Ackerman and Schlische 1997, Gupta and Scholz 1999 in review). Gupta and 

Scholz (1998) have shown that the elastic model can predict the deformation field 

accommodating displacement on small faults. 

The decrease of micro fracture density with distance from a fault surface has also 

been predicted from elastic crack models. Scholz et al. (1993) multiplied the near-

field crack tip stress field in the elastic solution (Lawn and Wilshaw 1975) by an 

empirical relation between dilatancy and stress (Scholz 1968), to give crack density. 

This predicts the logarithmic decrease in microfracture density with distance from a 

fault, which has been observed both in studies of microfractures around natural faults 

(Section 1.3.3) and in experimental data. Vermilye and Scholz (1998) also found that 

the orientations of microfractures agreed with models for the orientation of the stress 

field around such crack tips (Pollard and Segall 1987). 

Linear elastic fracture mechanics (LEFM) relates the energy needed for fault 

propagation to the stress at the fault tip. Faults are represented by a single, isolated 

crack in a perfectly elastic material, i.e. inelastic deformation is confined to an 

infinitesimally small zone at the fault tips; the host rock has homogeneous properties 

and remote loading. Assuming the crack is loaded by a remote stress ar, the 

distribution of displacement, D, with distance, x, is described by: 

D(x) = (1— v)c iJL2 - 4x2  
11  

(1.2) 

where L is the crack length, t is the shear modulus and v is Poisson's ratio. The 

resulting displacement versus length profile is elliptical (Figure 1.11). 
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The infinite displacement gradient at the fault tip for an elliptical profile results in an 

infinitely high stress concentration at the tip. This is unrealistic because real 

materials have a finite strength and thus can not support infinitely large stresses. In 

order to eliminate the infinitely high stress it is necessary to include inelastic 

deformation at the fault tip. In LEFM, faults are modelled as planar cracks in an 

elastic medium. The rationale for this is that rocks can support finite elastic strains, 

such as earthquakes or flexurally supported loads on the crust. However, the 

processes involved in creating new fault surface area during fault growth are 

inelastic. In order to understand fault off-fault deformation architecture, it is 

important to consider the area of inelastic deformation at the fault tip. At large strains 

and longer time scales, the deformation around a fault must be inelastic. 

1.4.2. Inelastic deformation at fault tips 

Inelastic deformation at fault tips often appears to be a process of microfracture 

initiation, propagation and linking (Cox and Scholz 1988, Lockner et al. 1991, 1992, 

Reches and Lockner 1994). These microfractures can occur either within grains or 

crystals, or along their boundaries (see Kranz 1983 for a review of fault-related 

microfractures). The complex breakdown process at the tip of propagating shear 

cracks has been investigated experimentally by Cox and Scholz (1988). Their 

experiments produced Mode III failure at the root of a slot. Initially an array of 

tensile cracks is generated near the slot tip oriented with the long-axis parallel to 

applied o, and oblique to the plane of the slot. These orientations are consistent with 

the crack tip stress field as predicted from fracture mechanics (Section 1.4.1). With 

continued deformation, these fractures become linked together by shear cracks 

running parallel to the slot. When internal deformation has caused sufficient loss of 

cohesion, the extended rupture zone becomes the source for a subsequent generation 

of tensile crack formation. This deformation at the tip of a crack is what led to the 

concept of the process zone (Section 1.2.2). 

These results were used as the basis for an elastic-plastic fracture mechanics model 

proposed by Cowie and Scholz (1992a). In this model displacement is related to 
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length by the yield strength, Poisson's ratio and elastic shear modulus of the host 

rock as well as to the remote stress. A crack is loaded by a remote stress cY, and has a 

resistance to propagation at the fault tip a: the yield strength of the rock. The stress 

concentration at the tip can only rise to the value of a y  before inelastic deformation 

occurs. The crack then extends a distance s, inelastically deforming the region ahead 

of the tip. The zone of inelastic deformation at the fault tip, s, is equivalent to the 

process zone described above. Outside this zone the material still behaves elastically. 

The model is two dimensional (plane strain), so no deformation is considered to have 

taken place perpendicular to the crack. This is justified if the rock containing the fault 

behaves in a linear elastic fashion. As a y  becomes large, the material becomes 

perfectly elastic and the inelastic zone, s, becomes vanishingly small, and the 

displacement profile tends towards elliptical. 

A fault loaded by a uniform remote stress grows in a self similar way such that 

D(x)=L C(1— v)(0—o 1 ) 
(1.3) 

where cYf  is the frictional shear stress on the fault, t is the shear modulus, v is 

Poisson's ratio, and C is a geometrical constant. This model predicts a linear scaling 

relationship between D and L, but the constant of proportionality will vary according 

to rock type (p., v and 	and tectonic environment (a,., shown in equation 1.4). 

In this model the displacement gradient decays to zero at the fault tip, that is, the 

displacement profile has a smooth bell-shape (Figure 1.1 1). The inelastic process 

zone is the part of the displacement profile between the tip and the inflection point on 

the curve at displacement d 0. The length of the process zone is given by 

S=LS1fl2n1). 	 (1.4) 
4(a - a1) 
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Figure 1.11. Comparison of theoretical displacement profiles from the fault centre to 

the tip plotted on normalised axes. The dotted line is an elliptical profile predicted by 

a simple elastic crack model. Wide dashed line is the model of Cowie & Scholz 

(1992a) and the narrow dashed line is the model of Burgmann et al. (1994). 
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Figure 1.12. Adaptation of the Dugdale model to a fault from Scholz et al. (1993). 

Three stages in the development of a fault surface are defined: stage 1 - arrays of 

tension fractures break down rock at the fault tip; stage 2 - coalescence to form an 

immature irregular fault surface; stage 3 - continued wear of the fault surface 

produces a well developed fault with a layer of gouge. 	
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The predicted ratio between the length of the process zone, s, and the length of the 

fault, L, is between 0.1 and 0.2 (Cowie and Scholz 1992a). Thus the shape of the 

displacement profile as well as the DfL ratio depends on rock properties and 

tectonic setting. 

1.4.3. Application of the model to real faults 

For real faults, the material yield strength, ay,  is equated to the macroscopic shear 

strength of rock at ambient pressure and temperature conditions. At a microscopic 

scale, this shear strength is due to fracturing across grains and sliding along 

intergrain contacts. The process zone corresponds to a zone where fractures have 

formed but no through-going fault surface has yet developed (Figure 1.12). At the 

fault tip, the rock is broken down by the formation of fractures, which gradually 

coalesce to form an irregular slip surface. Continued shearing results in the 

development of a complex mesh of fractures that eventually breaks down to form a 

through-going fault zone. As the fault accumulates displacement, the process of 

frictional wear smoothes out the fault surface resulting in a smooth, planar slip 

surface (Figure 1.12). 

Lockner et al. (1991, 1992) presented a new experimental technique using acoustic 

emissions (AE) as feedback to control the stability of fracture propagation. Each AE 

was inferred to be a microfracture event, and the location of the AEs was monitored. 

Prior to failure, distributed microfractures occurred throughout the sample, followed 

by localisation after peak stress. As the fracture propagated through the sample, a 

front of microfractures was observed ahead of a zone of relative quiescence. This 

fracture front was interpreted as a process zone of tensional microfractures 

developing at the fracture tip. 

Dawers et al. (1993) have shown that the observed correlation between 	and L in 

their field data does seem to be consistent with the model prediction, but the field 

evidence for a process zone and the significance and magnitude of the parameter, s, 

still remains untested. Although the incorporation of inelastic deformation at the fault 
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tip is more realistic than the simple elastic crack model, the predicted bell-shaped 

profiles are not the usual form of displacement profiles observed in the field (Section 

1.3.2). Most observations of real faults have displacement profiles that are triangular 

in shape, i.e. they have finite displacement gradients at the fault tips. Bell-shaped 

profiles have been seen in very small faults (Schlische et al. 1996), which may be 

inferred to have a very short-lived growth history. The Cowie and Scholz (1992a) 

analytical model assumes plane strain, however, fractures at the fault tip are observed 

to develop out of the plane of the fault. The model also requires that the frictional 

resistance on the fault surface is less than the yield strength of the rock. While this is 

true for many faults, it is possible for a fault to be stronger than the surrounding rock. 

This strain hardening is a process characteristically found during cataclasis of porous 

sandstones, which typify the lithology found in the field area. 

1.4.4. Other models of fault growth 

BUrgmann et al. (1994) modelled a non-uniform stress drop due to changes in rock 

type, or the variation of friction along the fault, and the effect of fault interaction. 

Their model results have steeper tip displacement gradients than a simple elastic 

model, but the displacement gradient still dies to zero at the fault tip (Figure 1.11) in 

contrast to observed displacement profiles. In fact many isolated (i.e. non-interacting) 

fault tips observed in the field have finite tip displacement gradients, do not end at a 

change in lithology, and show no evidence for a change in frictional properties along 

the fault. 

Walsh and Watterson (1987) and Marret and Allmendinger (1991) suggest that fault 

displacement profiles are the sum of a number of discrete slip events, with each event 

having an elastic-type (elliptical) profile. During each slip event, the entire surface of 

the fault fails, and new fault surface is generated around the perimeter of the fault. 

Walsh and Watterson (1987) fixed the amount of incremental slip as proportional to 

the length of the fault. Marret and Allmendinger (1991) modified this geometrical 

model so that the difference between each slip event depends on the total number of 

slip events on the fault. This model predicts that the shape of the fault profile will 
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change with time such that faults have higher displacements for their length as they 

grow. This fails to account for the displacement length correlation seen in individual 

fault populations (Section 1.3.1). These models rely on simple relations between the 

size of each successive slip event. However the mechanism that would generate slip 

events proportional to either the size of the fault or the number of slip events on the 

fault is unclear. These models also do not replicate the observed linear fault 

displacement profiles at the fault tip. 

1.5. Summary 

Existing models of fault growth are inconsistent with observed triangular or flat-

topped fault displacement profiles. Physical models based on linear elastic 

fracture mechanics models predict elliptical displacement profiles, and models 

incorporating an inelastic zone (process zone) at the fault tip predict bell-shaped 

profiles. Even simpler geometrical models incorporating summed slip events do 

not produce the scaling relations seen for natural fault populations. 

The shape of the displacement profile at the tip of the fault is the key to 

distinguishing between the competing models, and should additionally provide 

information on the deformation mechanisms active at the fault tip. However, the 

small displacements that are seen at fault tips mean that they are often hard to 

recognise and quantify in the field. This thesis presents the results of very high 

resolution surveys at a fault tip, made possible by a detailed study of fault offset in 

a particularly well-exposed locality in Utah, USA. 

Observations of structures associated with fault zones have highlighted the fact 

that many faults have a zone of deformation (off-fault deformation) concentrated 

around the main fault zone (fault core). Information on the history and mechanism 

of growth on the fault will be contained within the geometry and distribution of 

the off-fault deformation. However, prior to this study, a focused examination of 

off-fault deformation geometry and scaling has not previously been undertaken. 
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4. This thesis presents a systematic study of off-fault deformation architecture linked 

to the measured fault displacement profiles. The off-fault deformation is 

investigated at several scales and the structures are interpreted in terms of fault 

zone evolution. 
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2. GEOLOGICAL SETTING 

2.1. Introduction 

The first section of this chapter introduces the regional geology of the field area. The 

area was chosen because the well defined, relatively planar bedding provides an 

excellent constraint on the vertical fault displacement. In addition, deeply incised 

river canyons dissect the landscape, exposing the fault zones and their associated 

deformation. The deformation around the faults can therefore be examined in relation 

to the displacement on the faults. The and desert climate of the area produces a 

sparsely vegetated landscape with very good exposure. 

The faults in this study are exposed in a highly porous sandstone (-20%) which 

deforms in a characteristic way. The microstructure, geometry and petrophysical 

characteristics of faults in this rock type have been studied by previous workers. A 

summary of these observations, with appropriate references, is given in the second 

part of this chapter, using examples from the field area. 

Two faults were selected for detailed study and are introduced in the final section of 

this chapter. The exposures along these faults are such that the deformation in the 

hangingwall and footwall of the faults could be related to the variation of 

displacement along the fault. 

2.2. Geological setting 

2.2.1. The San Rafael Swell 

The San Rafael Swell (SRS) is located on the Colorado Plateau in east-central Utah. 

The SRS is a north-east trending asymmetric dome-shaped structure, approximately 

120 km long and 50 km wide (Figure 2.1). Strata on the west flank of the SRS 

commonly dip 2-6° and on the east 45-85°. The centre of this dome has been eroded 

to expose the entire Triassic through to Cretaceous sedimentary sequence. 
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Figure 2.1. Structure contour map of the San Rafael Swell (top Chinle Formation 

1220 m below top Navajo Sandstone). Note that faults (bold lines) are concentrated 

along the axis of the Swell (dotted line). Contour intervals are feet above mean sea 

level. (after Krantz 1988b) 
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The SRS is one of a series of structures that formed within the Colorado Plateau 

during the Laramide Orogeny (80-50 Ma). Basement faults were reactivated in NE-

SW horizontal compression resulting in the formation of forced monoclinal folds in 

the overlying sediments (Kelly 1955, Davies 1978) (Figure 2.2). Uplift of the SRS 

started in the late Campanian (74 Ma) as shown by changes in drainage patterns and 

onlapping stratal geometries (Lawton 1986). This onlapping and therefore the 

structural growth of the SRS had ceased by the late Palaeocene (56 Ma) (Lawton 

1986). The postulated major basement fault beneath the SRS was not imaged by the 

COCORP (Consortium for Continental Reflection Profiling) profile, which runs 

through the field area (Alimendinger et al. 1986). This could be due to a near vertical 

fault geometry or alternatively to a low acoustic impedance contrast across the fault. 

The COCORP profile runs across the northern termination of the SRS where 

displacement is dying out to the north, making it harder in principle to image here. 

2.2.2. The Chimney Rock fault array 

The Chimney Rock fault array is situated on the north-east flank of the SRS. It is an 

array of normal faults ranging from 100 m to 6 km long with a maximum observed 

displacement of 33 m (Figure 2.3). The faults can often be traced for their entire 

length along strike so that one or both tips are exposed. Some of the faults in the 

array are relatively isolated whereas other faults intersect and cross-cut. The northern 

part of the area was mapped by Krantz (1988). 

In the area shown on Figure 2.3, fault-line scarps strike both ENE-WSW and WNW-

ESE and are clearly visible on aerial photographs (Figures 2.1 la and 2.12c). The 

fault planes are highly polished and striated surfaces dipping at 65-85° both to the 

north and south. The striations indicate that movement on the faults was 

predominantly dip-slip. Larger undulations, up to one metre in wavelength, are 

oriented parallel to the direction of slip (Figure 2.4a). The fault zones are highly 

resistant compared to the host rock; therefore they tend to stand proud of the surface 

or form barriers across canyon floors. These fault "walls" can stand several metres 

Me 
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Figure 2.2. Location map of the 

San Rafael Swell within the 

Colorado Plateau. Black lines are 

the axes of the Colorado Plateau 

monoclines. Inferred basement-

fracture zones are shown in grey. 

(after Davies 1978) 
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Figure 2.3. Map of the Chimney Rock fault array. (from the Huntingdon 

Quadrangle 1:100 000 geological map). The faults investigated in this study are 

indicated. The topographic maps of the study area are the Dry Mesa and Chimney 

Rock 1:24 000 maps. 
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high and are usually bounded by polished surfaces (Figure 2.4b). In cross-sectional 

outcrops the fault zone consists of a zone of densely packed anastomosing 

deformation bands and slip-surfaces (see Section 2.3.1). In places the faults bifurcate, 

both along strike and down dip. 

The origin of the Chimney Rock fault array is uncertain. Witkind (199 1) postulated 

that structures in this region that run east-west could result in principle from 

dissolution of the underlying Middle Pennsylvanian age Paradox Salt in the Eocene 

(56-35 Ma). However, the zero isopach of the Paradox basin is to the south of the 

field area (Witkind 1991), so this seems an unlikely origin for these faults. An 

alternative hypothesis is that the faults formed due to extension over the crest of the 

SRS as it developed (see Figure 2.1). In this case the faults would be between 74 Ma 

and 56 Ma. 

Unfortunately, little evidence exists to constrain the date or depth of fault formation. 

A simple (i.e. not including correction for compaction) reconstruction of the 

sedimentary column suggests that the faults would have been at 2.5-4 km depth if 

they had formed in the Eocene, and 1.5-3 km depth if they had formed in the late 

Cretaceous. This would result in the rocks being at a temperature between 50-120 °C, 

and a lithostatic pressure between 20-50 IviPa, at the time of faulting. There is some 

evidence that present-day drainage patterns in the area have been affected by the 

faults. This is more likely to be differential erosion of the weaker Carmel Formation 

in the hangingwall of the faults, than evidence for active contemporary fault growth 

at the surface. These faults are therefore considered to have been blind faults. 

2.2.3. Orthorhombic Faults 

There are four mutually cross-cutting (i.e. synchronous) fault sets in the Chimney 

Rock fault array: two strike sets, each with two dip directions. This type of 

orthorhombic fault geometry (Figure 2.5) has been interpreted as the result of growth 

in a three-dimensional strain field (Reches 1978, Aydin and Reches 1982, Krantz 

1988, 1989). The angles between the four fault sets are dependent on the ratios 
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Figure 2.4. a) Undulating fault surface with dip-slip striations, compass for scale. 

b) Resistant fault "wall" standing proud of the base of the wash, hammer for scale. 

Ci 
	 Ci 

C1>E2E3 C1>E2>E3 

Figure 2.5. Illustration of conjugate and orthorhombic fault geometries. 6, 	and 

are the maximum, intermediate and minimum principle strains respectively. Two 

conjugate fault sets can potentially be developed in a two-dimensional strain field. 

Up to four orthorhombic fault sets can be developed in a three-dimensional strain 
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between the three principle strains (Krantz 1988). In this case, the Chimney Rock 

faults have developed in response to a maximum extensional strain oriented north-

south and a minimum extensional strain oriented east-west, and a vertical 

compressive strain (Krantz 1988). The details of orthorhombic fault geometries are 

discussed further in Section 6.4. 

A similar orthorhombic fault pattern has been documented in the New Red Sandstone 

of Arran (Woodcock and Underhill 1987). These faults have been interpreted as 

forming above an intruding granite batholith. In a similar fashion the growth of the 

dome-shaped SRS could have been responsible for the development of the 

orthorhombic geometry of the Chimney Rock fault array. 

2.2.4. The Navajo Sandstone 

The faults in this field area are exposed in the Lower Jurassic Navajo Sandstone. This 

is a thick unit of aeolian sandstone that outcrops over a large part of southern Utah 

and erodes to a characteristic topography of large domed cliffs (Figure 2.6). The 

Navajo Sandstone, and the correlative Aztec and Nugget Sandstones in Nevada and 

northern Utah respectively, were formed as deposits of a large erg complex that 

covered much of the western United States in the Early Jurassic (Saleeby and Busby-

Spera 1992). 

The Navajo is a fine to medium-grained, well-sorted quartzose sandstone. Large, 

well-developed aeolian cross-beds are interspersed with more massive beds. Towards 

the top of the unit, slumped horizons and other soft sedimentary deformation features 

are common. The Navajo varies in colour and cementation, but in this study area it 

contains a minor amount of syntaxial quartz overgrowths with occasional calcite 

cement and is stained with haematite, giving it a honey-brown colour. 

Syn-sedimentary faults are often associated with the slumped horizons (Figure 2.7). 

They are slightly darker than the host rock, do not form a resistant seam on the 

outcrop, and show no grain size reduction in thin section (see section 2.3.1). They are 
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Figure 2.6. Photograph of the Big Hole Wash. The Carmel Formation forms the 

ledges capping the large cliff of Navajo Sandstone in the foreground. The Big Hole 

fault runs across the back of the photograph in shadow and the rock in the 

foreground has been dropped down in the hangingwall. The deep incision of the Big 

Hole Wash gives access to the fault both in cross section and plan view. 

Figure 2.7 Syn-sedimentary folds and faults (white arrows) in the Navajo Sandstone. 
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not considered to be part of the deformation due to fault growth and are therefore not 

considered further in this study. 

The top of the Navajo Sandstone is a regional sub-aerial erosion surface: the J-2 

unconformity of Peterson & Pipringos (1979). This surface is represented by redder, 

more cemented beds with a rubbly appearance. The topmost tens of centimetres of 

the Navajo Sandstone has an extremely large grain size and relatively high porosity. 

Differential erosion of the top Navajo Sandstone created palaeotopography on this 

unconformity, but within the field area this relief is relatively small (less than 0.5 m) 

and the unconformity can be considered approximately. planar (Figure 2.6). 

2.2.5. The Carmel Formation 

The Middle Jurassic Carmel Formation represents a marine incursion over the region. 

It consists of thin beds of harder, more resistant limestone interspersed with shaley 

marls. The limestone beds are highly fossiliferous and in places have well-formed 

ripple marks and raindrop pits. The limestone horizons cap benches on the eroded 

shale slopes above the tall Navajo cliffs (Figure 2.6). Bedding is laterally continuous 

and thus provides the marker horizons that, along with the top of the Navajo 

Sandstone, are used in this study to tightly constrain the fault displacement. Only the 

lower part of the Carmel Formation outcrops in the field area. 

2.3. Deformation styles 

2.3.1. Deformation in the Navajo Sandstone 

The Navajo Sandstone deforms in a characteristic fashion, in common with other 

porous sandstones. Thin bands of cataclasis, each less than a few millimetres thick, 

form singly or as zones of bands. These structures are referred to as deformation 

bands (Aydin 1978, Aydin and Johnson 1978), granulation seams (Pittman 1981), 

microfaults or gouge zones (Jamison and Stearns 1982), cataclastic slip bands 

(Fowles and Burley 1994) or simply as faults (Underhill and Woodcock 1978). 

Surfaces with evidence of slip are referred to as slip-surfaces (Aydin 1978, Aydin 
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Figure 2.9. Schematic illustration of a model for the growth of faults in porous 

sandstones (after Antonellini and Aydin 1995). A hierarchical evolution is proposed 

from a) a single deformation band to b) a zone of deformation bands, and then into 

c) a slip-surface (thick solid line). Deformation bands have only small amounts of 

offset, whereas slip-surfaces accommodate large displacements (>0.5m). 
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and Johnson 1978) or shear fractures (Dunn et al. 1973). Deformation bands and slip-

surfaces are the preferred terms used in this thesis. 

Single deformation bands are pale linear features extending for tens of metres, often 

standing slightly proud of the rock surface (Figure 2.8a). Each individual band is 

about 1 mm thick and accommodates up to a few millimetres of offset. In a few 

cases, the tips of these deformation bands end in an array of en echelon features. 

Larger displacements are taken up on zones of anastomosing deformation bands 

(Figure 2.8b). These zones are up to 0.5 m wide with displacements of up to tens of 

centimetres. Zones of deformation bands form clusters that trend sub-parallel to the 

main fault zones. Slip-surfaces appear as planes of parting within zones of 

deformation bands (Figure 2.8c). They accommodate larger amounts of displacement 

(over 0.5 m). 

The association between deformation bands, zones of bands and slip-surfaces suggest 

that they develop sequentially (Figure 2.9). A mechanism for the origin of these 

bands is discussed in Aydin and Johnson (1978) and Antonellini et al. (1994), and is 

confirmed in the experiments of Mair (1997). They suggest that compaction and 

grain rotation produces stress concentrations at grain contacts that lead to the 

formation of fractures. Grain crushing and pore collapse create a band of fine 

cataclasite material which is more resistant to shear than the host rock (strain 

hardening). A new band then forms adjacent to the first one with continued 

deformation creating a zone of bands. The total displacement across the zone of 

deformation bands is proportional to the number of bands in the zone (Mair et al. 

1999). Eventually a slip-surface is formed, with a smooth slickensided surface. The 

mechanism of the transition between zones of deformation bands and slip-surfaces 

has not previously been studied in detail. 

Petrographic studies of the structure of individual bands show an inner zone of 

poorly sorted and crushed grains with much lower porosity than the host rock. This is 

surrounded by an outer zone with unfractured or slightly fractured grains and closer 

packing than the undeformed host rock (Aydin 1978). No chemical change is seen 
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between the band and host rock. The lighter colour seen in outcrop is due to the 

increase in light-reflecting surfaces accompanying grain crushing (Jamison and 

Steams 1982). 

Permeability within deformation bands is reduced by about 3 orders of magnitude 

with respect to the host rock (Antonellini and Aydin 1994). These structures 

therefore represent an important barrier to fluid flow, for example, in hydrocarbon 

reservoir rocks (Pittman 1981, Edwards et al. 1993). Edwards et al. (1993) found that 

compartmentalisation by sealing faults had concentrated post-tectonic cement near 

fault zones. Conversely it has been suggested that an increase in permeability will be 

created in the direction parallel to slip because of dilatancy and slip-surface 

generation (Antonellini and Aydin 1994). 

2.3.2. Deformation in the Carmel Formation 

The deformation style within the Cannel Formation is very different from that in the 

Navajo Sandstone. It includes complex veins, breccias and stylolites (Figure 2.10). 

Azurite and malachite mineralisation is often concentrated where the Carmel 

Formation and Navajo Sandstone are juxtaposed by movement on the faults. This 

suggests that fluid flow and the transport and deposition of solutes occur along the 

faults. This study concentrates on deformation within the Navajo Sandstone, so the 

deformation within the Carmel Formation is not discussed further in this thesis. 

2.4. Study areas 

2.4.1. The Big Hole fault 

The Big Hole fault is exceptionally well exposed in a deeply incised canyon which 

exposes serial sections of the fault and its off-fault deformation (Figure 2.11 a).  The 

fault strikes 079° and dips 73° to the north and has a trace length of 4.1 km. The 

photograph in Figure 2.1 lb shows the displacement along the fault increasing from 

zero at the fault tip to its maximum displacement of 29 m at the centre of the mapped 
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Figure 2A0. Deformation styles in the Carmel Formation a) Stylolites and calcite 

veins. b) Veined breccia in fault zone. 
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Figure 2.11. a) Aerial photograph of the Big Hole fault. b) Photograph of the Big 

Hole fault from the northeast. Cliffs of Navajo Sandstone are capped by the Carmel 

Formation and the displacement can be seen on the boundary. 
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fault trace. Striations on the fault surface indicate predominantly dip-slip movement 

(Figure 2.11 c). 

Both fault tips are hidden beneath Quaternary sediments, so neither tip can be 

investigated. This fault has not previously been mapped in detail, but does appear on 

the USGS 1:250 000 geological map (Witkind 1988). Two segments of the Big Hole 

fault with slightly different strikes meet near the western end of the fault (Figure 

2.11 a). 

• fault planes n46 
o slickenlines n=5 

Figure 2.11. c) Stereonet of fault plane and slickenline orientations for the Big Hole 

fault. The great circle is the best fit to the fault planes. 
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2.4.2. The Blueberry fault 

The eastern tip of the Blueberry fault is superbly exposed in a narrow canyon (Figure 

2.12a). The Blueberry fault was named by Krantz (1988), presumably after the small 

botryoidal azurite concretions that are found close to the fault (Figure 2.12b).The 

fault is 3 km long and has a maximum displacement of 30 m. The fault strikes 076° 

and dips 76° to the north. Movement on the fault is predominately dip-slip, but 

towards the tip it has a small oblique component with slickenlines pitching 70° to the 

west of dip-slip (Figure 2.12d). 

The Blueberry Wash has eroded down through the regional topographic surface (the 

top F horizon, see section 3.2. 1) to expose the Navajo Sandstone. The fault scarp can 

be traced to the west, but the Navajo Sandstone (and hence the off-fault deformation) 

is not well exposed. The western tip outcrops in the badland topography of the 

Entrada Formation (Figure 2.12c). The Blueberry fault is obliquely linked near its 

mid-point to the La Sal fault. A small parallel fault to the north of the Blueberry fault 

was named the Bacon fault. 

The Blueberry fault was previously studied by Krantz (1988). He collected some 

estimates of the displacement using basic surveying techniques at a few locations 

along the fault. His displacement values agree well with the more detailed data 

presented and discussed in this thesis (see Figure 3.11). 
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Figure 2.12. a) Photograph of the 

Blueberry fault tip exposed in the 

Blueberry Canyon. The photo-

graph is taken looking directly 

down the fault trace. b) Azurite 

"blueberries" on the fault surface. 
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Figure 2.12. c) Aerial photograph of the Blueberry fault. d) Stereonet of fault plane 

and slickenline orientations for the Blueberry fault. 
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3. DISPLACEMENT PROFILES AND FAULT TIP GRADIENTS 

3.1. Introduction 

3.1.1. Rationale 

The faults at Chimney Rock offer an opportunity to construct highly accurate 

displacement profiles: closely spaced horizons in the host sediments can be used as 

marker horizons to measure displacement. A total station surveying instrument was 

used to survey these horizons to build up geological maps, which were then used to 

construct displacement profiles. The Big Hole and Blueberry faults are of the same 

order of magnitude in size, so the Blueberry fault tip can be considered as a proxy for 

the unexposed tip of the Big Hole fault. 

The region of low displacement near the tip of a fault is expected to correspond to an 

area where the fault surface is beginning to form, but where no through-going surface 

is yet developed. The majority of published displacement profiles do not concentrate 

on the tip area partly because a poorly developed fault surface with low displacement 

is difficult to resolve. Therefore a detailed, high resolution study of the end of a fault 

is needed to determine the geometry of fault displacement profiles at fault tips. 

The principle aim of this chapter is to construct a detailed displacement profile 

concentrating on the tip zone of a real fault. This will be used to test the applicability 

of the mathematical models of fault growth described in Section 1.6, i.e. to 

distinguish linear from bell-shaped tip gradients. In addition the geological maps also 

form a framework for surveys of deformation in the volume surrounding the fault 

(Chapters 4 and 5). 

3.1.2. Structure of this chapter 

Section 3.2 presents the methods used to reconstruct the displacement profiles from 

the geological maps. The results for each of the three survey areas: the Blueberry 

fault, the western end of the Big Hole fault and the eastern end of the Big Hole fault 
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are described in Section 3.3. Section 3.4 compares the measured profiles to models 

discussed in Chapter 1. The results are summarised and discussed in Section 3.5. 

3.2. Methodology 

3.2.1. Marker horizons 

Horizons in the lower Carmel Formation were originally assigned letters from A to F, 

with A being the top Navajo Sandstone unconformity and B to F being the tops or 

bases of resistant limestone layers. To be useful as a marker bed, a horizon has to be 

consistently recognisable in different locations, regardless of the present-day 

erosional state of the slope. The horizons chosen (top Navajo Sandstone, C, 5, top 

and base F), and the criteria used to recognise them, are shown in Figure 3.1. There is 

some variation in the thickness of the sequence between the Blueberry and Big Hole 

faults, but it does not vary on the scale of individual surveys. Note that although the 

top of the Navajo Sandstone has some palaeotopography, it still acts as a good 

marker horizon (see Figures 3.5, 3.7 and 3.9). 

Above horizon F, the Carmel Formation consists of loose friable limestones and 

marls that do not form easily identifiable beds. Hence surveys are constrained to the 

lowest part of the Carmel Formation. The regional land surface in this area is often 

the top of horizon F. 

3.2.2. Surveying procedure 

A total station is a highly accurate surveying instrument consisting of a theodolite, an 

electronic distance meter (EDM) and a telescope (Figure 3.2a). The telescope can 

rotate 360°in the vertical plane and the whole machine is mounted so that it can 

move 3600  through a horizontal circle. Thus, the telescope can be focused on any 

point around the machine. To measure the position of a point, the telescope is 

focused on a corner-cube reflector fixed on a pole of known height located on the 

point of interest. The corner-cube reflector ensures that an incident light beam is 

reflected back along the same path regardless of its angle of incidence. The vertical 

and horizontal angles from the baseline that the theodolite must move through to 
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a) Platform Forming Units 
Sandy looking yellow/grey 
limestone. Parallel laminations 
tend to weather out. Lots of 
bioturbation. Some cross-
bedding. 

Marker Horizons 
top F - Forms pavement over 
most of field area. 

base F - Undercut 

Fossiliferous limestone, with 
oysters, forams, ooids, etc. 
Occasionally stained red with 
haematite. 

Massive oolitic limestone, with 
ripple cross-bedding. Lots of 
layer parallel stylolites. Often 
stained red with haematite 

top S - Top of highly 
fossiliferous bed. Used only 
when erodes to platforms. 

top C - Intense red staining 
(haematite) with well preserved 
ripple marks. 

Coarse grained, cross-bedded 
aeolian sandstone. Forms large 
cliffs. 
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Figure 3.1. a) Schematic stratigraphic log of the lower Carmel Formation. Right-

hand side: description of the more resistant rock units which outcrop in the field 

area. Left-hand side: description of the marker horizons used in the survey. b) Photo 

of the lower Carmel Formation showing the marker horizons used in these surveys. 
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focus on the reflector are recorded. The EDM sends out a laser pulse to the reflector 

and the travel time of the pulse is then converted into distance. The x, y, z co-

ordinates of the point are then calculated using simple trigonometry (Figure 3.2b) 

and these are displayed on an LED screen and recorded in the field notebook. 

Theoretically the positional accuracy of the total station is ± 5 mm over distances up 

to 2 km. Although all the data points in these surveys were well within this distance 

from the theodolite, other errors are introduced through plotting the data. 

To set up a survey, the total station is mounted on a tripod and levelled using three 

thumbscrews and a bubble level. The vertical circle is defined by rotating the 

telescope through 360°. The system of horizontal (x and y) co-ordinates is then 

defined by shooting a baseline in the x-direction (Figure 3.2b). For these surveys the 

baseline (x-axis) was chosen to be as close to compass north as possible to keep the 

co-ordinate systems consistent between surveys. In spite of this, the finite systematic 

error associated with compass measurements (2-3°) meant that a rotation of a few 

degrees had to be applied to connect two individual surveys together. To get true 

vertical (z) co-ordinates, the total station values must be corrected for the height of 

the instrument and the height of the mirror pole (true height = measured height + 

machine height - pole height). The former will remain constant throughout an 

individual survey, the latter is recorded for each individual measurement point. 

For this study, the mirror was positioned above points on marker horizons in the 

footwall and hangingwall. To cover the entire fault along strike, several surveys were 

shot and then amalgamated into a global set of co-ordinates. To achieve this, two or 

more common reference points must be shot in neighbouring surveys. A network of 

cairns was built to act as common points. Surveys were combined by applying a 

matrix transformation to rotate and translate the co-ordinate axes of each survey to a 

common global origin. This was done using a FORTRAN program written for the 

purpose. 

Using the x and y co-ordinates, data from the theodolite surveys were used to create 

geological maps of the tip areas. These were plotted in the field at a scale of 1:1000. 
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This allowed the data to be checked as it was being collected, and provided base 

maps for additional data collection (Chapter 4 and 5). The maps shown in section 3.3 

below were plotted using Microsoft Excel from the transformed global dataset. The 

diamond symbols on these maps represent the position of actual data points, 

demonstrating the extensive coverage of the surveys. 

3.2.3. Constructing displacement profiles 

Stratigraphic separation diagrams show the hangingwall and footwall cut-offs of 

bedding on the fault surface. They are constructed by extrapolating strike lines into a 

vertical plane (Figure 3.3a). For steeply dipping faults, to a first approximation, the 

vertical displacement (throw) is then simply the height difference between the 

hangingwall and footwall cut-offs. The resulting displacement profile (Figure 3.3b) 

shows the change of displacement with distance along the fault. In this study throw is 

used as a proxy for displacement. This can be justified because (a) the fault surfaces 

dip steeply with negligible horizontal displacement, (b) there is no evidence for a 

significant change of dip or slip-direction along the faults, and (c) because it is the 

shape of the displacement profiles that is of interest rather than the amplitude of the 

displacement. 

Stratigraphic separation diagrams can be calculated from the global dataset by 

finding the intersection of the two straight lines representing the strike line, 

(y-y0) = m0  (x-x0), 	 (3.1) 

and the fault plane, 

(y-y1) = rn (x-x1). 	 (3.2) 

To calculate the intersection points subtract equation (3.1) from equation (3.2), 

giving 

X = ((y1 -y0) + m0x0  - m1x1) / (m0-m1), 	 (3.3) 

and then calculate y by substituting the value of x into equation (3.1). The position of 

the intersection points along the fault is then calculated as the distance from a known 
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point on the fault. Bedding cut-offs were linearly interpolated at 20 m intervals using 

mathematical software (Matlab), and displacement profiles calculated by subtracting 

the hangingwall cut-off from the footwall cut-off. 

3.2.4. Bedding strike 

Bedding in the area dips approximately to the east (Figure 3.4). Because the dip of 

the bedding is low (between 3.5° and 5°), the measured bedding strikes have a large 

range of directions. Each displacement profile has been plotted for three values of 

bedding strike; the best estimate, and the maximum and minimum reasonable strikes. 

The resulting plots show the errors that can reasonably be expected from 

measurement of bedding. The resultant propagated error can be up to 50 in in 

distance along the fault and 5 in in displacement, for the most extreme deviation. 

However in places where the bedding is much closer to the fault (e.g. the right-hand 

side of Figure 3.6) the errors are much smaller. 

Figure 3.5 shows the geological map, stratigraphic separation diagram and 

displacement profile for the Blueberry fault tip area. As an example of the errors due 

to bedding, Figure 3.6 shows the stratigraphic separation diagrams and displacement 

profiles individually for each of the horizons in Figure 3.5b and c. This diagram 

illustrates the sensitivity of the displacement profile to uncertainties in the order of ± 

5° in the bedding orientation. For the purposes of this study the errors are assumed to 

be represented by lines on the displacement profile graphs showing the variations in 

the calculated displacement profiles with respect to extreme values of bedding strike. 

A more detailed analysis of errors is not warranted, since all other sources of error 

are small compared to those associated with bedding orientation and a realistic 

variation in bedding direction does not drastically change the form of the measured 

displacement profiles. 

3.2.5. Limitations of the technique 

Displacement profiles were calculated assuming that strata are planar on either side 

of the fault. This is unrealistic because strata must be folded slightly to accommodate 
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displacement at the fault tip. Although the change in strike may only be a few 

degrees, the strike direction should vary systematically around the fault. This effect 

could not be resolved within the bedding data obtained here. Beds must also be 

folded to accommodate areas of local displacement minima, for instance segment 

boundaries. 

These effects will be more important for readings at greater distances from the fault. 

The error in the orientation of the strike line also increases in proportion to the 

distance of the point away from the fault. This is illustrated well in the profiles for 

the top Navajo Sandstone at the Blueberry fault (Figure 3.6c). Where the fault cuts 

through a meander spur, the data points are closer to the fault plane and the deviation 

due to bedding is smaller. Where there is evidence on the stratigraphic separation 

diagrams for rollover of bedding in towards the fault, e.g. in the hangingwall of the 

Blueberry fault, the points closest to the fault have been used and those further away 

have been discarded. 

3.3. Results 

3.3.1. Blueberry fault eastern tip 

Figure 3.5a shows the geological map resulting from five combined surveys made at 

the Blueberry fault tip. The western limit of the map is approximately the site of the 

first displacement measurement made by Krantz in 1988 (see Figure 3.12 for a 

comparison of Krantz's data with this survey). At this point the fault is well 

developed and forms a 2-4 in high fault scarp. The surveys exiend east to well 

beyond the point where no deformation is apparent in the Navajo Sandstone or 

Carmel Formation. 

The stratigraphic separation diagrams and displacement profiles for the Blueberry 

fault are shown in Figure 3.5b and 3.5c. The hangingwall and footwall cut-offs slope 

to the east because of the regional dip of the strata. Figure 3.6 shows the stratigraphic 

separation diagrams and the resulting displacement profiles for the individual 

horizons. 
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The displacement profiles are shown for three values of bedding strike: 1600,  165° 

and 170°. The deviation in displacement profile with bedding strike is largest where 

the points have been projected from a greater distance. The smallest deviation occurs 

where the fault cuts through the meander spur, e.g. at 75-150 in from the tip in the 

Navajo Sandstone. 

All four measured horizons show a linear decrease of displacement with distance 

towards the tip of the fault (Figure 3.5c). The point where the displacement profile 

approaches zero is in the centre of the Blueberry Wash canyon. Although some 

deformation is seen in the rocks to the east, the fault plane no longer has a single 

well-defined slip-surface beyond this point (section 4.3.1). The tip defined by the 

Navajo Sandstone is 10 in further west of that defined by the S horizon (Figure 3.5a). 

However, this is within the error range defined by variations in bedding strike. The 

tip of this fault is defined as the zero displacement point on the S horizon. 

3.3.2. Big Hole fault: eastern tin to centre of fault 

Figure 3.7a shows the geological map constructed from eleven surveys of the Big 

Hole fault. Only the C horizon was measured over the majority of the area. The Big 

Hole Wash meanders across the fault zone, cutting a wide canyon, and as a result 

these surveys contain some of the largest distances measured in this study. Errors in 

this area due to uncertainties in bedding strike are therefore potentially much larger 

than those for the Blueberry fault or the western tip of the Big Hole fault. 

Stratigraphic separation diagrams and displacement profiles for the east end and 

centre of the Big Hole fault are shown in Figure 3.7b and 3.7c. The displacement 

profiles are plotted for three values of bedding strike: 184°, 166° and 160°. Although 

the errors are larger than for the other two faults, the general form of the 

displacement profile is independent of the bedding strike direction (Figure 3.8c). The 

displacement profile shows a maximum at the centre of the fault and displacement 

decreasing towards the eastern tip. 
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For 350 m to the east of the last survey point a step in the ground surface runs 

parallel to the projected position of the fault. Beyond this point the fault is buried 

beneath Quaternary sediment. The position of the eastern tip is constrained by an 

outcrop of the Entrada Sandstone 900 m to the east in which there is no evidence of 

faulting. Three boreholes drilled by Evans et al. (1998) encountered the fault at 60 m 

depth at a site 300 m to the east of the last surveyed point. 

3.3.3. Big Hole fault: western tip 

Seven surveys were taken at the western end of the Big Hole fault near where a jeep 

track crosses the fault (Figure 3.8a). Exposure of the fault plane to the west of this 

track is poor, but offsets of the marker beds can be traced as far as 700 m to the west. 

The surveys extend 300 m beyond the segment boundary mapped by Witkind (1988) 

(Figure 3.4). The fault can be traced to the east as a topographic step in the land 

surface, but the marker horizons outcrop too far away from the fault, making further 

surveying beyond the segment boundary impractical. 

Stratigraphic separation diagrams and displacement profiles for the west end of the 

Big Hole fault are shown in Figure 3.8b and 3.8c. The exact position of the fault tip 

is uncertain; therefore all distances are plotted relative to the point of maximum 

displacement (see Figure 3.13). The displacement profiles are plotted for three values 

of bedding strike: 138°, 142° and 150°. 

There is a reasonable correlation between the displacements on all three horizons 

(Figure 3.8c). Anomalously large displacements are seen on horizon C at the west 

end of the profile. Some negative displacements are seen at the far west end of the 

profile. A close examination of the stratigraphic separation diagram shows that most 

of the negative displacements are a consequence of projecting between data points 

and hence are artefacts introduced by extrapolation. 
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3.4. Interpretation 

3.4.1. Blueberry fault tip 

The displacement profile for the Blueberry fault tip is remarkably linear (Figure 

3.9a). When the data for all four horizons are fitted with a straight line it has a slope 

of 0.015 with a correlation coefficient of 0.966 (Figure 3.9a). The best fit lines for 

individual beds are also very good (Figure 3.9b), especially those for the top Navajo 

Sandstone and S horizon, which are parallel to each other. The best fit lines for the 

base F and top F horizons are slightly shallower, but there are less data points on 

these horizons. The extrapolation of the best fit straight line to the data extends 58 in 

beyond the fault tip (as defined by the point where displacement on the S horizon is 

zero). This corresponds to the edge of the canyon where a few deformation band 

clusters are exposed but no slip surface is developed (Section 4.3.1). 

As discussed in Section 1.4, fault tip gradients provide a means of constraining fault 

models. BUrgmann et al. (1994) invoke a lateral change in frictional properties along 

the fault plane as a way of eliminating the need for the bell-shaped profile predicted 

by Cowie and Scholz (1992a) and discussed in Section 1.4.2. However there is no 

evidence for a change in frictional properties on the Blueberry fault. The fault surface 

is consistently smooth and slickenlined up to the point where the tip is projected to 

be (Section 4.3.1). 

Figure 3.9a shows the best fit line for the tip region compared to three theoretical 

model curves, constructed with the Cowie and Scholz (1992a) model. Reasonable 

values of the model parameters (yield strength, remote stress, shear modulus and 

Poisson's ratio) for the Navajo Sandstone are taken from Cowie and Scholz (1992a). 

The model parameters used are shown on Table 3.1 and have been chosen to give a 

range of s/L ratios from 0.1-0.3 (Section 1.4.2). The data is not convincingly fitted by 

any of these curves (Figure 3.9a). 

Cowie and Scholz (1992a) predicted that the length of the convex-downward zone of 

the bell-shaped profile should be 10-20% of the total fault length (s/L=0. 1-0.2). 
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Vermilye (1996), in a study of the distribution of microfractures around small strike 

slip faults, argued that this zone of microfracturing corresponded to the process zone. 

In Vermilye's case this was 1% of the fault length (s/L=0.01). However, even if the 

convex-downward region of the curve is this short, the remaining part of the fault 

profile should resemble a purely elastic profile (an ellipse) and the resolved 

displacement would be higher than that seen in this study. The straight lines seen in 

Figure 3.9b are not predicted either by an elastic fracture mechanics model (elliptical 

profile) or a model with a large process zone (bell-shaped), but they fit the data 

demonstrably better than either. 

parameter model 1 model 2 model3 
0.2 0.2 0.2 
130 140 166 
100 100 100 

J.L 4000 4000 4000 
cjf 30 40 50 
s 1016 750 401 
s/L 0.28 0.21 0.11 
Dmpx  31 31 31 

Table 3.1 Model parameters used to construct the models in Figures 3.9 and 3.12. 

Displacement on the Navajo Sandstone seems to be consistently higher than on both 

the S horizon and base F horizon. This may be an indication of the position of this 

fault trace as a chord on the main fault ellipse (Section 1.4.1). That is, if the 

displacement is greater on lower horizons, then displacement is increasing 

downwards and this fault trace is above the centre of the fault ellipse. 
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Figure 3.9. a) Comparison of measured displacement profile for the Blueberry fault 

with Cowie and Scholtz (1992a) model curves constructed using the parameters in 

Table 3.1. b) Displacement profiles and best fit lines for individual horizons. 

63 



Chapter 3: Displacement Profiles and Fault Tip Gradients 

3.4.2. Big Hole fault tips 

When fitted with a straight line, the data at the west end of the Big Hole fault have a 

tip gradient of 0.007 (Figure 3.10). The points are reasonably well described by such 

a linear trend, with a correlation coefficient of 0.708. In this case, the data could 

conceivably be fitted with one of the bell-shaped model curves, but this uses rather 

low, and physically unrealistic, values of the input parameters (model 1). This results 

in an extremely high sIL ratio of around 30%. This is well above the ratio predicted 

by Cowie and Söholz (1992a) from considerations of realistic model parameters. 

parameter model 1 model 2 model 3 
U 0.2 0.2 0.2 
CrV  120 130 166 

100 100 100 
11 3500 3500 4000 
Crf  40 55 59 
s 1250 835 356 
s/L 0.31 0.21 0.09 
Dmpx  29 29 29 

Table 3.2 Model parameters used to construct the models in Figure 10, 11 and 13. 

The best-fit lines for individual marker horizons are not as good as for the Blueberry 

fault tip (Figure 3.1Ob). This is because there is more scatter in the data for each bed 

in this location than there is at the Blueberry fault. 

The data at the east end of the Big Hole fault is fitted very well by a linear 

displacement profile, with a gradient of 0.014 and a correlation coefficient of 0.961 

(Figure 3.11). If this value of the displacement gradient is used to project the position 

of the eastern tip of the Big Hole fault, the approximate position of the tip is 2046 in 

from the maximum displacement. This agrees well with the position of the fault tip 

as inferred from field observations described in section 3.3.3. 
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3.4.3. Whole fault displacement profiles 

Figures 3.12 and 3.13 show the composite profiles for the two faults. These illustrate 

many features that have been found in other studies of fault displacement variation 

(Section 1.4.2). The faults have maxima in the centre with displacement decreasing 

to zero at the tips. The profiles are irregular, even with the smoothing that occurs 

when data is projected from points well into the footwall or hangingwall. This is a 

common feature of real fault profiles, and is discussed further in Chapter 7. 

Displacement minima are seen where the faults link with other faults. This is very 

obvious on Krantz's (1988) profile for the Blueberry fault; displacement is low 

where the La Sal fault intersects the Blueberry fault. No obvious displacement 

minimum is associated with the segment boundary at the western end of the Big Hole 

fault, though there is an inflection in the displacement profile at this point (Figure 

3.13). There is one point on the Big Hole fault where the fault has two main strands 

(Section 4.4.3). There is however no corresponding displacement minimum. This is 

discussed further in Section 4.6.2. 

Triangular, peaked displacement profiles are characteristic of faults that have grown 

entirely within a layer (Dawers etal. 1993). The faults in Dawers et al. (1993) have a 

peaked profile up to a critical length controlled by the thickness of the faulted layer. 

Longer faults had flat-topped displacement profiles. Muraoka and Kamata (1983) 

also discuss this, where they refer to peaked displacement profiles as C-type and flat-

topped profiles as M-type. The faults in Dawers et al. (1993) grew at the free surface. 

The faults in this study are more likely to have grown at depth (Section 2.2.2). 
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3.5. Discussion 

3.5.1. Comparison to other tip gradients 

The data in this study is of a much higher resolution than that in other published 

surveys. It is not possible to find a bell-shaped curve with reasonable parameters that 

fits any of the three measured profiles. More importantly, all three fault tips are fitted 

well by linear displacement profiles. This confirms that the linear tip gradients seen 

in many lower resolution surveys are not in fact artefacts of sparse data points. The 

value of the displacement gradient at the Blueberry fault tip and the east end of the 

Big Hole fault are very similar, 0.014-0.015. The displacement gradient at the west 

end of the Big Hole fault is lower at 0.007, but is in the same order of magnitude. 

This would imply that a similar factor controls the fault tip displacement gradient at 

all three measured fault tips. 

The lateral displacement gradient measured from the maximum displacement point is 

a value used widely in the literature to characterise displacement profiles (e.g. 

Dawers et al. 1993), but this does not take into account the irregular shape of the 

displacement profile. The problem of defining tip displacement gradients is explored 

in Cartwright and Mansfield (1998). They outlined four ways of defining the fault tip 

gradient; from the tip to the maximum displacement point of the fault; the first peak 

on the profile, the first inflection point on the profile and the first measured point. 

They concluded that the first point and first maximum methods were the best for 

most cases, and that there was less than 20% difference in the values achieved by 

using these two measurements. 

Table 3.3 shows values for the displacement gradients at isolated fault tips found in 

previous studies. Where values for the tip gradient were not given, they were 

calculated using the first point method as described above. The two orders of 

magnitude scatter in these values appears to have no obvious correlation with rock 

type, size of fault or deformation style. The lowest values of tip displacement 

gradient were recorded along individual deformation bands measured in the high 

porosity Entrada Sandstone in southern Utah (Fossen and Hesthammer 1997). These 
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Source tip gradients lithology fault type mode fault length 

BB fault 0.017 
BR fault 0.007-0.014 sandstone normal ffl 3-4 km 
CRFA 0.0050.05** 

C+M 98 0.016-0.25 limestone, sandstone normal ifi 200-5000 in 
F+H97 0.0010.01** sandstone normal ffl 0.15-100mm 
M+K 83 0.002-0.1 ** silts, sandstone, tuff normal II 30-250 cm 
P+S 96 0.025 limestone strike-slip II >80 in 
D et al. 93 0.015-0.06 ** tuff normal ifi 24-2210 in 
W+W 89 0.0018-0.029 coalfield normal II, ifi 100-1200 in 
S et al.96 0.05-0.2 siltstones normal ifi 10-100 cm 

Table 3.3. Fault tip gradients from this study compared to examples from published 

literature. Values that have been calculated for this study using the first point method 

are indicated with a . (BB fault = Blueberry fault, BR fault = Big Hole fault, 

CRFA = Chimney Rock fault array, C+M 98 = Cartwright and Mansfield 1998, F+H 

97= Fossen and Hesthammer 1997, M+K 83 = Muraoka and Kamata 1983, P+S = 

Peacock and Sanderson 1996, D et al. 93 = Dawers et al. 1993, W+W 89 = Walsh 

and Watterson 1989, S et al. = Schlische et al. 1996) 

o P+S96 

p C+M98 

Set al. 96 

• Det al. 93 
Big Hole fault east end 

Big Hole fault 	 4' 
west end 	 • • - 	Blueberry fault 

o Chimney Rock fault array 

A 	 A M#K83 

W+W 89 

F+H 97 

0.001 	 0.01 	 0.1 
tip gradient 

Figure 3.14. Variation of natural tip gradients from this study and published 

examples (from Table 3.3). The variation in tip gradient between the Big Hole and 

Blueberry Fault is less than that for other areas. Abbreviations as in Table 3.3. 



Chanter 3: Displacement Profiles and Fault Tin Gradients 

ranged in length from 0.15 to 100 mm, and the lowest displacement gradients were 

seen in the longest deformation bands. This may be an effect of the specific 

deformation mechanism in the host sandstone of these faults (Section 5.5.4). Very 

low values (a minimum of 0.002) were also recorded in mixed lithologies (Muraoka 

and Kamata 1983) and in coalfield faults (Walsh and Watterson 1988, 1989). 

Conversely large values (a maximum of 0.25) have been found in the same localities 

as well as in limestone and sandstones (Cartwright and Mansfield 1998) and 

siltstones (Schlische et al. 1996). 

A constant tip gradient has been cited as evidence for a critical taper at a propagating 

crack tip, due to a material control on the displacement distribution on a fault surface 

(Cowie and Scholz 1992a). There is a wide variation of tip gradients within 

individual lithologies (Figure 3.14), which would seem to indicate that the tip 

gradient is not simply dependent on lithology and hence the material properties of the 

host rock. The smallest faults (Schlische et al. 1996, Fossen and Hesthammer 1997), 

which could be presumed to have the simplest growth history, also have a range of 

finite tip gradients. Hence the tip gradient is also not necessarily dependent of the 

size, and therefore growth history, of the fault. 

This study confirms that fault tip gradients are linear. This has important implications 

for predicting the distribution of sub-seismic faulting. Yielding et al. (1996) and 

Pickering et al. (1997) used linear tip gradients to extrapolate fault lengths to account 

for tip regions that are below seismic resolution. The high-resolution displacement 

profiles presented in this study validate this approach. 

3.5.2. Tip lines in three dimensions 

The displacement profiles in this study are approximately two-dimensional transects 

across a three-dimensional structure. As a consequence, these surveys may not be 

samples of the greatest displacement or length of the faults (Section 1.4.1). Thus the 

displacement profile gradients measured here are likely to be underestimates of the 

maximum profile (through the centre of the fault). Although there is relatively good 
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three-dimensional exposure of the fault, it is not of large enough vertical extent to pin 

down where on the fault surface the fault trace is. There is some evidence that 

displacement is increasing downwards (section 3.4.1), but there is no way of telling 

how far above the centre of the fault ellipse the fault trace is, without further data on 

the displacement at depth. 

Displacement profiles have been shown to be influenced by the lithology of the host 

rock. Localised slip maxima are found within softer units (Muraoka and Kamata 

1983), or at the boundary of stiffer units (BUrgmann et al. 1994). The profiles in this 

study are by necessity measured at a lithological boundary so the displacement is 

measured at a constant lithological level. There is little lateral change in lithology in 

this field area (section 2.2.4 and 2.2.5) so the displacement gradient is unlikely to 

have been affected by changes in the host rock lithology. 

3.6. Summary 

The displacement profiles of two normal faults in the Navajo Sandstone and 

Cannel Formation of Utah, have been measured using a total station surveying 

technique. The data in this study is of a much higher resolution than that in other 

published surveys. Because the faults are a similar order of magnitude in size, the 

Blueberry fault tip is assumed to be a proxy for the Big Hole fault tip that is not 

exposed. 

The displacement profiles for the faults are approximately triangular with the 

maximum displacement in the centre of the fault and displacement tapering 

gradually towards the fault tips. Displacement minima correspond to regions 

where linkage can be seen to have taken place, either along strike or between 

faults of different strikes. In these respects these faults are very similar to those 

measured by other workers. 

Neither of these faults could realistically be fitted with a curve that corresponds to 

a simple analytical model (either pure elastic or elastic-plastic). Instead, the fault 
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tip displacement profiles are linear. Existing analytical models for fault 

displacement do not account for the shape of even relatively simple isolated faults. 

4. All three measured fault tips have similar fault tip gradients ranging from 0.007-

0.015. This is within the range of tip gradients measured from previous, lower-

resolution surveys. This implies that the controlling factor on the displacement 

gradient at the fault tip is constant for both faults. 
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4. MACROSCOPIC OFF-FAULT DEFORMATION 

4.1. Introduction 

4.1.1. Rationale 

Off-fault deformation around fault planes results from the accommodation of strain 

due to fault propagation, accumulation of displacement and fault linking processes 

that occur during the time that the fault is active. The history of deformation on the 

fault will be recorded in the distribution, orientation and cross-cutting relationships 

of off-fault deformation structures. Hence an understanding of the formation of these 

structures allows the history of deformation on a fault to be deciphered. 

The Big Hole and Blueberry Washes run both parallel to and across the faults, 

providing an ideal opportunity to investigate the off-fault deformation. This chapter 

presents detailed surveys of the distribution and orientation of deformation around 

the Big Hole and Blueberry faults, at scales from centimetres to kilometres. The 

geological maps created for the displacement profile surveys (Chapter 3) act as a 

base for these more detailed maps. The structures in the off-fault deformation zone 

have then been related to the displacement profiles along the fault, in order to 

quantify the development of the off-fault deformation with increasing displacement 

on the fault. 

The faults in this study have displacements that are just at the resolution of the 

highest quality three-dimensional seismic survey (-42-20 m). Hence all the off-fault 

deformation would be sub-seismic in scale. Understanding the controls on the 

evolution of off-fault deformation would help to predict the distribution of sub-

seismic deformation. Off-fault deformation can have potentially drastic implications 

for the flow of fluids through or across fault zones. 
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4.1.2. Structure of this chapter 

Two-dimensional maps of the deformation around the Blueberry and Big Hole faults 

were created at two different scales: on the scale of the entire fault zone and at the 

scale of individual outcrops. One-dimensional samples of the off-fault deformation 

were also collected, in the form of transects. Section 4.2 discusses the methodologies 

used to create the maps and transects. Data is presented from three study areas: the 

Blueberry fault tip (Section 4.3); the eastern end of the Big Hole fault (Section 4.4); 

and the western end of the Big Hole fault (Section 4.5). Key outcrops are described 

and the maps and transects for each area are presented. 

In Section 4.6 the map and transect data are interpreted. The distribution of 

deformation bands around the fault defines a zone of deformation around the main 

fault surface. The width of this zone is observed to correlate with the displacement on 

the fault. These interpretations are discussed in terms of fault growth and scaling in 

Chapter 7. 

4.2. Methodology 

4.2.1. Fault-scale maps 

Off-fault deformation occurs as clusters of deformation bands and slip-surfaces. The 

distribution of these clusters was mapped using a total-station surveying instrument 

(Section 3.2.2). Clusters were mapped by defining the start and end of each cluster, 

points where clusters changed strike direction or bifurcated, and points where 

clusters emerge from under sand or soil. Where deformation is highly concentrated it 

can be difficult to distinguish separate clusters, though in general, trends can be 

picked out across complex zones. 

Clusters were classified into three size classes: small, medium or large, depending on 

the number and size of deformation bands in the cluster. The number and type of 

bands in a cluster was recorded at several points in each survey. In this way the 

average number of bands for each size class can be defined (Table 4.1). Examples of 
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Chapter 4: Macroscopic Deformation 

Figure 4.1. Examples of the three cluster classes used in creating the damage zone 

maps. a) and b) Class 1 clusters: a few single and multi-strand bands but no slip-

surfaces. c) and d) Class 2 clusters: several single and multi-strand bands with a few 

relatively discreet slip-surfaces. e) and f) Class 3 clusters: many single and multi-

strand bands and complex anasotomsing slip-surfaces. White arrows mark the 

position of slip-surfaces. 
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each cluster type are given in Figure 4.1. Within each individual cluster the majority 

of the deformation bands dip in the same direction. The overall dip direction of each 

cluster is indicated on the maps. 

Class 1 Class 2 Class 3 

Map colour orange turquoise green 

Average width (m) 0.4 0.9 1.1 

Average no. of singles 6.6 12.5 20.6 

Average no. of multis 1.9 3.5 6.1 

Avg. no. of slip-surfaces 0.2 1.2 2.8 

Table 4.1. Average numbers of the different structures in the three cluster classes 

Several surveys were needed to map the deformation around each fault. They were 

tied to the geological maps using the cairns built for the displacement profile surveys 

(Section 3.2.2). Fifteen surveys were required to cover the entire Big Hole fault and 

four surveys cover the area of the Blueberry fault Tip Canyon and the Bacon fault. 

Although cliff sections often provide very good exposures of the structures, direct 

mapping of clusters in the steeper canyon walls is difficult. Structures were traced 

from photomontages of the canyon walls and then the cluster positions transferred 

onto the main map. Some areas in the base of the canyons have a covering of sand or 

soil and vegetation. Occasionally it is possible to trace the larger clusters through 

these areas. Figure 4.2 shows the outcrop style across the two survey areas, the 

location of each survey and the names of localities mentioned in the text. 

4.2.2. Outcrop-scale maps 

Large-scale maps of individual outcrops were also created. A metre-square grid was 

outlined on the outcrop, and the deformation bands were then traced directly onto 

graph paper at a scale of 1:25. On sub-horizontal surfaces, measuring tapes were used 

to mark the grid directly onto the outcrop with chalk. On sub-vertical cliff-faces the 
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Figure 4.2. Locality map of a) the Big Hole fault and b) the Blueberry fault (Figures 

4.4-4.7). The distribution of outcrop style is indicated by white - good quality easily 

accessable outcrop; pale grey - cliff outcrops mapped by photomontage; medium 

grey - poorer quality outcrop, large clusters can be traced, but individual bands 

cannot be seen; dark grey - outcrop covered by drift or inaccessable; stipple - 

outcrop not mapped. Dotted lines represent breaks in slope. 
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Figure 4.3. Method of creating outcrop-scale maps using tapes with markers 

(tassles) at meter intervals on cliff sections. The outcrop shown is the northern end 

of the footwall block at Cement Bridge (left-hand side of Figure 4.11). 
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grid was defined by hanging string from the top of the cliff at metre spacings, with 

markers at metre intervals along the string (Figure 4.3). In this way the pattern of 

deformation bands can be recorded quickly and relatively accurately. 

Although care was taken to include all the structures within complex clusters, the 

maps under-represent the true number in densely deformed regions. Some very 

highly deformed areas are shaded in blue. Close to the fault zone there are regions 

where it is no longer possible to distinguish separate bands from one another. These 

regions have a glassy appearance and stand proud of the eroded surface. These are 

also coloured blue on the maps (see Figure 4.17a for an example). Single strand 

deformation bands often have small pods where the band is locally thicker. Although 

care was taken to include these structures on the maps, smaller ones may have been 

omitted. There are no fractures visible by eye smaller than a single deformation band 

so there is no lower resolution cut-off (censoring) in size of fault on these maps. 

Outcrop-scale maps were created at the Juniper Flat, Chipmunk Flat and Cement 

Bridge outcrops on the Big Hole fault, and at the Blueberry fault Tip Canyon. The 

position of the outcrop maps is indicated on the maps of each location. 

4.2.3. Transects 

One-dimensional transects through the off-fault deformation were made at several 

locations along the fault. A tape was laid out as close to perpendicular to the fault 

zone as possible, and the location of each band that crossed the tape was noted. 

Where possible the width, orientation, and offset of each band was measured. 

The positions of the transects are shown on location maps for each area. Transects 

were taken in seven locations on the Big Hole fault and one location in the Blueberry 

fault Tip Canyon. These were chosen to represent a variety of different displacements 

on the main fault. The transects were as long as possible given the outcrop pattern. 
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4.3. Blueberry fault 

4.3.1. The Blueberry fault Tip Canyon 

Figure 4.4 shows the map of the Blueberry fault tip and the Bacon fault exposed in 

the Blueberry fault Tip Canyon. Near the point where the Blueberry and Bacon 

washes converge, the Blueberry Wash has eroded a steep-sided box canyon. The 

Bacon fault, and its associated deformation, runs along the northern side of this box 

canyon. There is a large amount of deformation concentrated on the east end of this 

exposure of the Bacon fault, but very little is exposed at the western end of the 

outcrop. The wash then trends to the south-east through a narrow slot canyon. No 

deformation bands or clusters of bands are seen in the slot canyon. 

The canyon widens out again where it intersects the Blueberry fault. The southern 

side of the canyon is shallowly-dipping, with patchy outcrop covered with some soil 

and vegetation. The sub-vertical northern wall is well exposed and it is possible to 

get a good view of the structures within it by scrambling up the southern wall. The 

top of this cliff-face is inaccessible due to the eroded nature of the sandstone at this 

point, but the outcrop extends back from the top of the cliff. 

The Blueberry fault can be traced from the southern side of the canyon where it 

offsets the Navajo Sandstone. At this point the fault plane is a well-developed slip-

surface with dip-slip and oblique-slip striations. The fault continues down the 

shallow southern slope and is buried in the sand at the base of the wash. Other 

deformation band clusters can be traced across the southern side of the canyon and 

are mostly synthetic or antithetic to the fault. Three clusters can be seen in the 

northern wall: two that dip to the south and one dipping to the north that is co-planar 

to the main Blueberry fault. At the top of the cliff, a single deformation band can be 

seen trending approximately co-planar to the fault. 

The canyon narrows again to the east and trends west-south-west for 40 m. A series 

of clusters can be seen crossing the canyon at this point. These can be traced through 

the poor-quality outcrop in the slope above the canyon wall, and link to the main 
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fault strand. To the east of these structures, the canyon trends west-south-west for 25 

in before opening out to a wider wash. The Navajo Sandstone is well exposed until 

the wash cuts up section into the Carmel Formation about 500 in downstream of the 

fault. 

4.3.2. Blueberry fault outcrop map 

The map of the sub-vertical northern canyon wall is 12 m by 9 m (Figure 4.5). The 

cluster which is co-planar to the main Blueberry fault consists of sub-parallel bands 

at the base of the canyon wall. Halfway up the canyon wall, it takes on a cross-

hatched pattern consisting of steeply-dipping synthetic segments and shallower 

dipping antithetic segments. A well developed slip-surface runs up through the centre 

of this cluster but is discontinuous towards the top and bottom of the outcrop map. 

This slip-surface and other bands in the cluster die out rapidly at the very top of the 

outcrop. Although there is no outcrop of Navajo Sandstone to the east of this point, 

there is no evidence for any deformation in the Carmel Formation above and to the 

east of this point. These observations confirm that this is the tip of the fault. 

The southern cluster consists of a similar cross-hatched pattern with steeply-dipping 

synthetic segments and shallower dipping antithetic segments. A few short (<10 cm) 

slip-surfaces occur within these clusters. The northern cluster also has a cross-

hatched pattern, but consists of more widely-spaced, longer segments. Only one of 

these segments has a well-developed, 1 metre long slip-surface. In places the 

deformation bands terminate at bedding planes. This is especially obvious in the 

hangingwall of the fault-parallel cluster, where many bands terminate at a very 

pronounced bedding plane. The main slip-surface, however, cuts through this 

bedding surface. 

4.3.3. Blueberry fault transect 

The transect taken at the base of the northern wall of the canyon extends from 7 m 

into the hangingwall to 90 in into the footwall (Figure 4.6). The three structures that 

are shown on the outcrop map can be seen. These define a zone of off-fault 

RM 



cluster coplanar to main fault surface 

S 

I 	I' 
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deformation which extends for 6 in either side of the fault. The other structure at 

about 50 m from the fault zone can be seen. Most of the deformation band in these 

clusters are irregular and not well-developed. Between this cluster and the main fault 

there is a small number of widely distributed single strands. The canyon was walked 

out to the point where the wash cuts up into the Carmel Formation and no 

deformation bands were found beyond the end of the transect. 
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Figure 4.6. Transect across the Blueberry fault. The bars are the number of 

deformation bands per metre, the line is the cumulative number of deformation 

bands per metre. The grey box is the area that is considered to be the zone of off-

fault deformation at this locality. The strand to the south east is poorly developed 

and is not considered to be part of the off-fault deformation for the Blueberry Fault. 

4.3.4 Orientations 

The orientations of structures away from the Blueberry and Bacon Faults are shown 

in Figure 4.7a. The majority of structures strike sub-parallel to the faults (striking 

075-255 15). The structures that trend in the other regional strike direction (striking 

120-300 15) consistently cross-cut the fault-parallel structures, and have a more 

indistinct appearance. Slip-surfaces within the off-fault deformation at this location 

have oblique striations (Figure 4.7b). 
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4.4. Big Hole fault east end 

4.4.1. The Big Hole fault cluster map 

Figure 4.8 shows the result of fifteen surveys of deformation band clusters around the 

Big Hole fault. The vast majority of off-fault structures are sub-parallel to the main 

fault strand, and dip either antithetically or synthetically to the main fault zone. Only 

a few structures strike in a non-fault-parallel direction (parallel to the second strike 

set of the main Chimney Rock fault array, Section 2.2.3). Only a few of the clusters 

in this strike direction are sufficiently well developed to appear as clusters on this 

map. These consistently cross-cut the fault-parallel structures. 

A separate zone of bands is often observed from 150-200 m into the hangingwall. No 

displacement of the top Navajo Sandstone is associated with this cluster, except at 

the Melon fault (section 4.4.5). 
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4.4.2. Cement Bridge 

This is the easternmost outcrop where the deformation around the Big Hole fault can 

be seen in the Navajo Sandstone (Figure 4.9a). The top of the Navajo Sandstone 

forms the base of the wash in the hangingwall, and is nine metres higher in the 

footwall, where it is exposed as a large block-shaped cliff (Figure 4.9b). Some 

clusters can be seen through the sand in the base of the wash. At this location the 

fault zone is a single main strand. The gently undulating fault surface stands proud of 

the more eroded Carmel Formation, and in places contains azurite and malachite 

mineralisation. Where it crosses the wash, the fault forms a raised wall and consists 

of two to three main slip-surfaces bounding a complex structure of bands. Two 

orientations can be picked out within the fault zone (Figure 4.1 Oa). 

The footwall block is well exposed and gently sloping (between 40 and 800  towards 

the west). It is therefore possible to scramble up the cliff to examine the structures in 

detail. The resulting outcrop map extends 15 m by 10 m (Figure 4.11). The outcrop 

close to the fault is obscured by a tree, so the structures immediately adjacent to the 

fault were not mapped. One main cluster is synthetic to the fault. One smaller 

synthetic cluster, and three antithetic clusters can also be seen. The main antithetic 

cluster contains many anastomosing but discontinuous slip-surfaces. The two other 

antithetic clusters to the south contain short segments of slip-surfaces. The short 

segments of slip-surfaces in the southernmost cluster are usually associated with 

local thickening of single deformation bands (Figure 4.1 Ob). This is a relationship 

that is seen throughout the off-fault deformation. The two sets of faults define 

lozenge-shaped blocks of relatively undeformed host sediment. Within the clusters, 

smaller lozenge-shaped blocks are preserved between individual deformation bands. 

A transect was taken along the base of the cliff in the footwall (Figure 4.12). The 

main clusters can be picked out on the transect, and the edge of the off-fault 

deformation is very well defined at 22 m from the fault. The section beyond the 

transect has been walked out and contains no more deformation bands. The total 

width of off-fault deformation including the hangingwall is 27 m. 
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Figure 4.9. a) Map of the Cement Bridge locality. The position and outline of other 

figures is marked. The dot on the inset shows the position of this outcrop with 

respect to the rest of the fault. b) Photograph of the Cement Bridge outcrop. The 

fault runs down the center of the picture separating the Carmel Formation in the 

hangingwall from the Navajo Sandstone in the footwall. The block of Navajo 

Sandstone in the lootwall forms a gently sloping cliff. 
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Figure 4.10. a) Photograph and line drawing interpretation of the fault at Cement 

Bridge. Two deformation band trends can be seen between the two main bounding 

slip-surfaces. b) Photograph of a cluster of deformation bands with pods of local 

thickening marked by arrows. Slip-surfaces are often seen within these pods. The 

square marked on the outcrop is 1 m x I m. 
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Figure 4. II. Detailed sketch of structures in the Cenient Bridge footwall block (face dipping 4080 0  to the west). Black lines are 

deformation bands, and red lines are slip-surfaces. Grey fill is sand at the base of the outcrop. The dotted line on the right-hand 

side of the diagram is a bedding surface along which the deformation bands have been offset. 
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10 	 20 	 30 	40 
distance into the footwall of the fault (m) 

Figure 4.12. Transect across the Big Hole fault at Cement Bridge. The fault is on the 

left hand side of the graph. The bars are the number of deformation bands per I  

wide bin; the line is the cumulative number of deformation bands per metre. 

4.4.3 Chipmunk Flat 

Chipmunk Flat is a large flat outcrop exposed in the base of the wash (Figure 

4.13a). At this locality, the Big Hole fault consists of two main strands. The 

displacement on each strand can be estimated from the cliff to the east. The top of 

the Navajo Sandstone has been eroded from between the two strands, but the 

northern strand must have more than 3 in of displacement and the southern strand 

must have less than 14 in (Figure 4.14). Two outcrop-scale maps were made at 

Chipmunk Flat, one at each strand. 
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The northern outcrop map is 9 in by 7 in (Figure 4.15a). A single slip-surface can be 

traced through the centre of the fault zone. Other slip-surfaces anastomose around 

this main one defining a zone of concentrated deformation (marked as blue on Figure 

4.1 5a). The width of this zone is highly variable, ranging from just a single slip-

surface up to 30 cm wide. In the western half of the map the deformation around the 

fault extends for about 1-1.5 in symmetrically around the fault. In the eastern half of 

the map the deformation around the fault is mostly within the footwall. To the north 

there are no clusters of deformation. The outcrop to the south is rather patchy due to 

sand trapped between the two upstanding fault strands. 

The southern outcrop map is 5 in by 18 in (Figure 4.15b). The southern strand has 

many anastomosing slip-surfaces. Intense arrays of deformation occur close to the 

fault mostly within the footwall. Complex clusters of single and multi-strand 

deformation bands can be traced up to 14 m to the south. Clusters of deformation 

bands can be identified by groups of bands with local thickening (Section 4.2.2), 

though it is hard to pick out individual clusters on the map. In both maps, the 

structures trend sub-parallel to the fault zone and define blocks of undefoimed host 

rock between them. 

The Chipmunk Flat transect (Figure 4.16) extends from 48 m into the footwall to 52 

in into the hangingwall of the northern strand. The density of deformation is higher 

around the southern strand than the northern strand. The southern strand has therefore 

been defined as the main fault at this location. Off-fault deformation extends for 55 

m across both strands. 
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Figure 4.13a. Photograph of the Chipmunk Flat outcrop. The arrows point to the 

two strands of the fault. Photo is taken facing west. 
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Figure 4.13b. Map of the Chipmunk Flat locality. The position of other figures at 

this locality are marked. The dot on the inset shows the position of this locality with 

respect to the rest of the fault. 
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Figure 4.14. Photograph of the Red Cliff looking east from Chipmunk Flat. The two strands of the fault and position of the top Navajo 

Sandstone are marked. The position of the top Navajo Sandstone between the two strands cannot be defined, but the displacement can be 

limited to greater than 3 m on the northern strand and less than 14m on the southern strand. 

-J 

LJ 



2m 
- - - 

- 

0 

Figure 4.15 a) Outcrop map of the northern strand of the Big Hole fault at Chipmunk Flat. Black lines are deformation 

bands; the red lines are slip-surfaces. Blue areas are complex, tightly packed zones of bands in which it is difficult to 

distinguish individual bands. Grey areas are covered with sand. The plane of this map is approximately horizontal. 
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Figure 4.15 b) Southern strand of the 

Big Hole fault at Chipmunk Flat. Key 

in Figure 4.15 a). The arrows mark the 

main fault surface. The plane of this m 

S appro\imatelv horivonti1. 

97 



Chapter 4: Macroscopic Deformation 

width of zone of off-fault 
deformation from cluster map 

width of zone of off-fault 
deformation from transect 

50 

45 

40 

,35 

30 

a 25  

I
15 

20 

10 

5 

0 

450 

400 

350 

300 
E 

250 C 
U) 
> 

200 
75 
E 

150 =  

100 

50 

[i 
40 	30 	20 	10 	0 	 0 	10 	20 	30 

distance from the fault (m) 

Figure 4.16. Transect across the Big Hole fault at Chipmunk Flat. The bars are the 

number of deformation bands per metre, the line is the cumulative number of 

deformation bands per metre distance from the southern strand. The shaded region 

is the area considered to be the zone of off-fault deformation from the cluster map 

(Figure 4.8). Note that this transect defines a narrower zone of off-fault deformation 

than that taken from the map. This illustrates that one-dimensional transects are not 

always the most useful way of defining a two-dimensional (map) off-fault 

deformation zone width. 

98 



Chapter 4: Macroscopic Deformation 

4.4.4. Juniper Fiat 

This is another outcrop exposed in the base of the wash. The fault here has one main 

strand which forms a large step in the outcrop (Figure 4.17a). At this location the 

fault has 24 m of displacement. The outcrop map is 5 m by 28 in (Figure 4.18). 

Almost all the deformation is concentrated on a single strand of the fault zone. Other 

discontinuous slip-surfaces anastomose around the main surface. This defines a zone 

of concentrated deformation about the main fault (coloured blue on Figure 4.18) of 

varying width along strike of between 10-30 cm. Within the main fault is a small pod 

of pale green glassy material about 1 in in length and 3 cm wide (see Section 5.3.5). 

To the south of the main fault there is one large antithetic cluster which also forms a 

step in the outcrop. Good quality outcrop extends southwards as far as Pictograph 

Cliff (180 m) and there are no more large clusters up to this point. To the north of the 

fault, several large clusters are seen up to 26 in from the fault. Only one of these 

clusters has a significant number of slip-surfaces in it. A wide variety of widths and 

numbers of bands can be seen in the clusters. Beyond the map the outcrop is mostly 

covered in sand, but no more deformation bands can be seen in the sand-free patches. 

The Juniper Flat transect extends for 240 in into the hangingwall (Figure 4.19) along 

the base of a large cliff. At 150 in from the fault, a large cluster can be seen, followed 

by several small clusters. Although the exposure is not good, the cliff face to the east 

shows that there are no deformation bands in the gap between the two clusters. The 

large cluster at 150 in from the fault contains some of the highest numbers of 

deformation band per metre seen in these transects, but is not associated with any 

displacement of the top Navajo Sandstone (Figure 4.20). This cluster appears to be 

another fault system (the Melon fault) and is not included in the off-fault deformation 

for the Big Hole fault. 
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Figure 4.17 a) Photograph of the Big Hole fault at Juniper Flat. The fault forms a large 

step in the outcrop so the lower part of the photograph is in shadow. b) Map of the 

Juniper Flat locality. The position and outline of other figures are marked. The dot on 

the inset shows the position of this outcrop with respect to the rest of the fault. 	
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Figure 4.18. Outcrop map of the Big Hole fault at Juniper Flat. Black lines are 

deformation bands, and red lines are slip-surfaces. Blue blocks are zones where 

individual bands are hard to distinguish from one another. Grey fill is areas of sand 

on the outcrop. Green arrows mark the position of the main fault surface. The right-

hand map fits onto the bottom of the left-hand map. 
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Figure 4.19. Transect across the Big Hole fault at Juniper Flat. The bars are the 

number of deformation bands per I  wide bin, the line is the cumulative number of 

deformation bands per metre. The cluster at 1 50 in is a separate fault system. 
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4.4.5 Jan's cliffs 

This good-quality cross-sectional outcrop of the fault is the closest exposure to its 

maximum displacement. The fault is exposed in a long cliff approximately 30 in 

high. The cliff runs to the north for 140 in where it ends at the tip of the meander 

spur (Figure 4.21a). In the footwall, the cliff runs 230 in to the back of the meander 

bend. The fault in Figure 4.2 lb has 23.5 in of displacement. 

The transect runs along the base of the cliff (Figure 4.22). It is not obvious from the 

transect alone where the edge to the off-fault deformation is at this location. Many 

of the deformation bands recorded on this transect are those of the non-fault-parallel 

regional strike direction. The majority of the structures in the footwall strike in this 

direction. 
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Figure 4. 21 a) Map of the Jan's Cliff and Melon fault localities. The position of 

other figures are marked. Inset shows position of this outcrop with respect to the rest 

of the fault. 
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Figure 4.21 b) Photo facing east towards Jans cliff. The Big Hole fault has a 

displacement of 23.5 in at this locality. 
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Figure 4.22. Transect across the Big Hole fault at Jan's Cliff. The fault is in the 

centre and the footwall is to the right. The bars are the number of deformation bands 

per I  wide bin the line is the cumulative number of deformation bands per metre. 
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4.4.6. Melon fault 

The Melon fault is a small antithetic fault in the hangingwall of the Big Hole fault. 

Figure 4.23 shows this fault displacing the top Navajo Sandstone by 3m. The 

deformation that is concentrated around this fault can be traced down into the wash 

below (Figure 4.23), and probably controls the end of the large meander spur running 

across the meander bend. 

The transect extends 30 m into the footwall and hangingwall (Figure 4.24). 

Deformation is tightly clustered around the fault defining a zone 15 m wide with the 

fault in the centre. 

4.4.7. Amy's Hill 

This outcrop is at the opposite side of the meander bend from Jan's Cliff. The fault 

here has 25 m displacement. Figure 4.25 shows the outcrop of the fault at this point. 

The transect (Figure 4.26) shows off-fault deformation 64 m wide with the fault 

towards the hangingwall side of the off-fault deformation. There is a gap in the data 

from 5-40 m. 
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Figure 4.23. a) Photograph looking west towards the Melon fault. Taken from the 

meander spur to the east of Jan's Cliff. b) Line drawing interpretation showing the 

fault offsetting the top Navajo Sandstone. 
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Figure 4.25. Photograph of antithetic structures in the hangingwall of the Big Hole 

fault at Amy's Hill. Photo is taken facing west. 
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Figure 4.26. Transect across the Big Hole fault at Amy's Hill. The fault is near to the 

left of the graph, the footwall is to the right. The bars are the number of deformation 

hands per lm wide bin, the line is the cumulative number of deformation hands per m. 
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4.4.8. Orientation of structures around the Big Hole fault 

Figure 4.27a shows the orientations of the structures in various locations around the 

Big Hole fault. The majority of the structures are strike-parallel to the fault (striking 

080-260 0  ± 100) with equal proportions of synthetic and antithetic faults. At the top 

of Figure 4.27a the orientation of the structures seen at two localities a substantial 

distance from the fault (> 500 m) are shown. Very little deformation is seen away 

from the fault and the majority of it is in the non-fault-parallel regional strike 

direction (striking 125-305 0  ± 100). Structures striking in this direction consistently 

cross-cut the fault-parallel structures, and are less well-developed. Figure 4.27b 

shows all the data for the hangingwall and footwall of this fault. There is no 

difference in the orientation of off-fault structures between the footwall and 

hangingwall. 

The orientation of slickenlines on slip-surfaces around the Big Hole fault is shown in 

Figure 4.27c. The square shows the average slickenlines and the star shows down-dip 

on the average slip-surface great circles. On average, all of the slickenlines on slip-

surfaces around the Big Hole fault are pure dip-slip. 
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Figure 4.27. a) Poles to deformation bands around the Big Hole fault. Each stereonet is for the hangingwall or footwall of an individual 

location. Shaded regions show the average synthetic and antithetic cluster orientation. The inset shows the location of this figure with 
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slickenlines (n=43) around the fault. Symbols are the same as figure 4.7b. 
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4.4.9. Big Hole fault west end 

At this locality, two differently-trending segments link together (see Figure 3.4). The 

structures within the segment boundary have been mapped, though the outcrop 

quality is poor (Figure 4.28a). The clusters on the map have not been assigned to 

classes. The clusters antithetic to the fault are shallower dipping than the synthetic 

structures (Figure 4.28b). 

The transect in Figure 4.29 runs along on the east side of the Big Hole Wash, which 

cuts a shallow canyon at this point. This location is beyond the detailed displacement 

surveys, so the displacement is extrapolated from the nearest survey and is in the 

order of 9 m. The deformation is tightly clustered and approximately symmetrical for 

16 m on either side of the fault. 
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Figure 4.28. a) Map of the segment boundary at the west end of the Big Hole fault. 

The Navajo Sandstone is white, the Carmel Formation is grey. The dot on the inset 

shows the location of the segment boundary. b) Poles to deformation bands within 

this zone. 
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Figure 4.29. Transect across the Big Hole fault at the west end segment boundary. 

The fault is in the centre and the footwall is to the right. The bars are the number of 

deformation bands per im wide bin, the line is the cumulative number of 

deformation bands per metre. 
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4.5. Interpretation 

4.5.1. Defining the width of off-fault deformation 

As discussed in Section 1.3.3, the edge of the zone of off-fault deformation that is 

associated with a particular fault can be defined in a variety of different ways. 

However, it is relatively straightforward to define off-fault deformation width for the 

Big Hole and Blueberry faults; deformation bands are clustered around the fault, and 

beyond a certain distance there is essentially no deformation (envelope on Figure 

4.8). This distance defines the edge of the off-fault deformation zone. Structures 

trending in the non-fault-parallel regional strike direction consistently cross-cut the 

fault-parallel clusters and appear to belong to a later stage of deformation. Hence 

these structures are not considered to be part of the off-fault deformation associated 

with the Big Hole and Blueberry faults. 

A subsidiary zone of clusters is observed between 150 and 200 m into the 

hangingwall of the Big Hole fault. It is conceivable that these structures could be 

linked along strike to form a continuous cluster. None of these structures are 

associated with any displacement of the top Navajo Sandstone, except the Melon 

fault. 

It is interesting to note that of the two strands at Chipmunk Flat, the southern strand 

is surrounded by more deformation than the northern strand. The southern strand also 

has a larger displacement. This implies that the density of deformation correlates 

with fault displacement. This is investigated further in Section 6.3, where the 

distribution of off-fault deformation is discussed in terms of strain around the fault. 

4.5.2. Off-fault deformation scaling 

The tip of the Blueberry fault, as defined by displacement profile mapping, outcrops 

in the centre of the Blueberry Canyon (Figure 3.4a). The off-fault deformation at this 

point has a finite width of 12 m. Deformation band clusters extend for another 45 m 

up to the point where no further deformation is seen beyond the fault tip. The off- 
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fault deformation around the Big Hole fault extends up to a maximum of 80 m from 

the fault. Thus the off-fault deformation appears to be wider where the displacement 

on the fault is larger. Table 4.2 shows the values of displacement and off-fault 

deformation width at each locality. The errors in displacement in Table 4.2 are taken 

from Figures 3.6-8. The errors in off-fault deformation width are due to the accuracy 

of measuring this from the cluster maps. 

distance displacement off-fault 

location from fault from measured errors deformation errors 

centre (m) profiles (m) width (m) 

Blueberry fault 

top of N. canyon wall 1865.5 0 - 0 	+/-0.25m 

base of N. canyon wall 1849.5 0 - 5.25 

tip defined in Chapter 3 1820 0 0.154 12.00 

1/2 way up S. canyon wall 1815 0.214 0.069 11.50 

top of S. wall (S horizon) 1797 0.937 0.221 11.75 

top of S. wall (N horizon) 1797 1.114 0.173 11.75 

Big Hole fault 

Cement Bridge 1450 9.414 1.742 27 	+1- lm 

lstvalley 1150 11.595 1.793 25 

top of Redcliff 950 17.437 1.596 31 

Chipmunk Flat 830 19.059 2.485 49 

Platform 653 18.881 1.544 64 

Juniper Flat 596 24.337 2.333 76 

bottom of 2nd valley 475 22.924 1.233 54 

middle of 2nd valley 373 24.028 1.881 79 

Table 4.2. Measured values of displacement and off-fault deformation width used in 

Figure 4.29. Localities are marked on Figure 4.2. 
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When the off-fault deformation width is plotted against displacement (Figure 4.30), 

the data is reasonably well fit by a straight line, y = 2.4 x + 7.0. The best fitting 

straight line implies that off-fault deformation width is approximately two and a half 

times the displacement. The finite intercept of 7.0 m implies that the width needs to 

have a critical value before a significant offset (slip-surface) can occur. This is 

consistent with the model of Antonellini etal. (1994). 

The region where the off-fault deformation width is anomalously low can tentatively 

be correlated with the area where the displacement is accommodated on two main 

fault strands rather than one. However, no anomaly in the displacement profile is 

seen at this point (see Figure 3.13). This would suggest that more of the displacement 

can be taken up on two strands rather than on a single strand, and that less strain is 

transferred to the off-fault deformation. Because the displacement measurement 

points are outside the entire fault zone, the displacement profiles are actually those of 

all of the off-fault deformation in addition to the main fault surface. 

The zone of off-fault deformation has a distinct edge on most of the transects, but 

they can often be more ambiguous to interpret than the maps of off-fault 

deformation. There is considerable lateral variability in the number and connectivity 

of the deformation band clusters and therefore a transect taken a few metres along the 

same outcrop could have a significantly different form. There seems to be no 

consistent variability in the slope of the cumulative number of deformation bands 

with displacement (Figure 4.31). Although there is a positive relationship between 

the spacing of clusters and the distance from the fault, it is very weak (Figure 4.32). 

There is, however, an increase in the variability of cluster spacing with distance from 

the fault. There is no obvious decay in the of the number of deformation bands with 

distance from the fault. This contrasts with the logarithmic decay in microfracture 

densities observed around fault in other studies (Anders and Wiltschko 1994, 

Verrnilye and Scholz 1998). 

The relationship between width of off-fault deformation and displacement could be 

very useful for the prediction of the distribution of sub-seismic features around faults. 
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However the error bars on Figure 4.30 show that the predicted off-fault deformation 

width could vary by about as much as 10-20% of the displacement at a point. 

Tentative relationships between off-fault deformation width and displacement have 

been found by other workers. Knott et al. (1996) found that the half-width of the off-

fault deformation scaled with displacement according to a power-law, but they found 

that the hangingwall and footwall had different distributions, which is not the case in 

this study. However the data is not abundant enough to form a definite rule applying 

to all faults, that could be used with certainty to predict the distribution of sub-

seismic faults, and many other factors may be important (see Section 7.3.3). 

4.5.3. The fault core 

Slip-surfaces often form the edges of concentrated zones of deformation which are 

usually between 30 and 50 cm wide. The width of these zones appears to be 

independent of the displacement on the fault, and in fact significant variation is seen 

locally along strike (see Figure 4.15a). In the terminology of Caine et al. (1996), 

these zones would be termed the fault core. It has been argued that a scaling between 

the fault core width and displacement exists (Hull 1988, Evans 1990a). However, in 

the light of the observations made here, this seems unlikely for the Big Hole and 

Blueberry faults. 

Slip-surfaces can be identified running through the entire length of individual Big 

Hole fault outcrop maps. These are presumably the surfaces upon which most of the 

displacement has been localised, and therefore represent the main slip-plane of the 

fault itself. The discontinuous nature of slip-surfaces in the Tip Canyon clusters is 

consistent with the observation that these structures represent deformation ahead of 

the fault tip. If no slip-surface can be traced through a cluster, then no significant 

localisation of displacement can have taken place. This provides a criterion for 

defining fault core clusters from clusters within the off-fault deformation. 
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Figure 4.32. Increase of spacing of deformation band clusters with distance from the 
fault. 
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Figure 4.33. Rose diagram of the strike direction of off-fault structures around the 

Big Hole Fault. Two main strike directions can be seen which are symmetrical 

around the main fault. 
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4.5.4. Slip-surfaces 

Slip-surfaces are always associated with deformation band clusters. However, small 

slip-surfaces are often associated with zones of local thickening on single 

deformation bands. This contradicts the model of Aydin and Johnson (1978) and 

Antonellini et al. (1994). This model implies that a certain amount of strain is 

required across a zone of deformation bands before the nucleation of a slip-surface 

occurs. However, the observation above suggests that slip-surfaces can form 

relatively early on in the development of a zone of deformation bands. This is 

discussed further in Section 5.5.2 where the microstructure of slip-surfaces is 

investigated. 

Unfortunately the transect data were collected before the importance of slip-surfaces 

was appreciated and therefore the location of slip-surfaces is not always marked on 

the transects. However, it can be observed qualitatively that slip-surfaces are 

concentrated within the clusters closest to the fault and that the number and 

continuity of slip-surfaces decreases away from the fault. The number of slip-

surfaces were counted from the outcrop sketches. Four slip-surfaces cut the base of 

the Blueberry fault Tip Canyon outcrop, three cut the Cement Bridge outcrop, ten cut 

both the Chipmunk Flats outcrop maps and eleven cut the Juniper Flats outcrop. 

These results point towards a positive correlation of the number of slip-surfaces with 

the displacement on the main fault surface, but more data would need to be collected 

to confirm this. 

4.5.5. Orientations of off-fault deformation features 

An important difference is seen between slip-surfaces at the fault tip and those 

around the well-developed fault plane. Slip-surfaces at the tip have oblique 

slickenlines and near the well-developed fault surface the slickenlines are dip-slip. 

The almost total lack of oblique-slip slickenlines on the Big Hole fault surface 

suggests that repeated slip on the fault obliterates evidence of early oblique slip. 

Oblique-slip slickenlines occur throughout the Blueberry fault Tip Canyon outcrop 

(0-23 in from tip, from 0 to 1.1 in of displacement). However, dip-slip slickenlines 
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are dominant at the Cement Bridge outcrop (500 m from tip, 9 m of displacement). 

The oblique-slip slickenlines must be obliterated at some point between I and 9 m of 

displacement. In cases of limited exposure the presence of oblique-slip slickenlines 

could be a useful indicator of the proximity of a fault tip. 

The majority of deformation bands and clusters of bands are synthetic or antithetic to 

the main fault. In plan view the deformation bands are not strictly parallel to one 

another. The low angle between bands means that they often define thin lozenge-

shaped blocks between faults. This pattern can be seen on a plot of orientations of the 

deformation bands within the off-fault deformation (Figure 4.33). In cross-section the 

clusters surround lozenge-shaped blocks with a lower aspect ratio. This describes an 

orthorhombic pattern of faulting with a low angle between strike sets. The 

orthorhombic geometry within the off-fault deformation is discussed further in 

Section 6.4. 

At the western end of the Big Hole fault is a zone where two non-parallel fault 

strands are obviously linking. A stereonet of the structures within this zone of linking 

shows an interesting pattern of steeply dipping synthetic structures and shallower 

dipping antithetic structures (Figure 4.34a). Intriguingly, the same relationship is 

seen for the structures within the fault core (Figure 4.34b), and also for the structures 

within an individual cross-hatched deformation band cluster (Figure 4.34c, pictured 

in Figure 4.35a). These cross hatched patterns are seen in the Blueberry fault Tip 

Canyon and Cement Bridge outcrop maps (see Figure 4.5 and 4.11) and are 

ubiquitous in cross-sections of deformation band clusters. Cross-hatched patterns are 

also seen on horizontal surfaces (e.g. Figure 4.1 5b). Regions of cross-hatched 

deformation bands are often bounded on one or both sides by slip-surfaces (e.g. 

Figure 4.35a). Slickenlines on these surfaces are mostly dip-slip. A cartoon of the 

three-dimensional structure is shown on Figure 4.35b. 

It is possible that this pattern is characteristic of structures that form where two fault 

segments or deformation band clusters are in the process of linking together. If this is 

the case then the presence of this pattern of structures in the fault core is evidence 
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Hgure 4.34. Stereonets of poles to slip surfaces and deformation bands within a) the 

link area at the west end of the Big Hole fault, b) the fault core of the Big Hole 

fault, and c) deformation bands within one cluster of the Big Hole fault damage 

zone at Juniper Flat (photo in Figure 4.35a). 
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that this evolves at least partly by the linkage of along-strike structures. Likewise the 

structures seen within the off-fault deformation at Blueberry fault and Cement Bridge 

may have this type of origin. These are just preliminary observations and further 

research is warranted. 

4.6. Summary 

The distribution of clusters of deformation bands around two fault zones has been 

mapped using a total station surveying instrument. Outcrop-scale maps of 

individual deformation bands have been created in selected areas of interest, and 

one-dimensional transects of the deformation have been made. 

Clusters of deformation bands and slip-surfaces are concentrated around the main 

fault plane. Beyond a certain distance from the fault the rock is essentially 

undeformed. This distance defines the edge of the off-fault deformation. Within 

the off-fault deformation there is no decay of number of deformation bands with 

distance, rather the deformation is clustered. There is some evidence for an 

increase of cluster spacing with distance from the fault. 

Close to the fault, a zone of concentrated deformation exists which is often 

bounded by slip-surfaces. This represents the fault core. The width of the fault 

core is highly variable and does not scale with the displacement on the fault. An 

uninterrupted slip-surface can usually be traced that runs through the fault core. 

This is the main fault plane upon which the majority of deformation is localised. 

The Blueberry fault can be traced, as a well-developed slip-surface with 

slickenlines, to the Tip Canyon locality. Slip-surfaces in the northern wall of the 

Tip Canyon are discontinuous. This confirms the observation in Chapter 3 that the 

tip of the fault is situated in the centre of this canyon. 
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The off-fault deformation is narrow around the Blueberry fault tip, but has a finite 

width at the point where the point of zero displacement is defined by the surveys 

in Chapter 3. The off-fault deformation around the Big Hole fault is wider than 

that around the Blueberry fault. The width of the off-fault deformation is 

positively correlated with the displacement on the fault with a slope of around 2.5 

and an intercept of 7.0 m. The relationship between off-fault deformation width 

and displacement is a potentially useful predictive tool, but the precise form of the 

relationship must be investigated further. 

A pattern of steeply-dipping synthetic and shallowly-dipping antithetic structures 

is commonly observed. This pattern is seen at the segment boundary at the West 

end of the Big Hole fault and is associated with the fault core and some of the 

larger clusters within the off-fault deformation. It is possible that this pattern of 

structures is evidence for the linkage of segments. 
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5. MICROSCOPIC OFF-FAULT DEFORMATION 

5.1. Introduction 

5.1.1. Rationale 

Although the process of deformation band initiation from undeformed rock has been 

described in detail in the literature, little attention has been paid to the transition from 

the strain-hardening process of deformation band formation to the strain-softening 

movement on a slip-surface (see Section 2.3.1). The formation of deformation bands 

and slip-surfaces is the main deformation mechanism in the Navajo Sandstone. 

Therefore an appreciation of the evolution of deformation bands and slip-surfaces 

with increasing displacement is crucial to the understanding of off-fault deformation 

development around these faults. 

This chapter presents studies of the distribution of microstructures around the Big 

Hole and Blueberry faults. Samples of deformation bands at different stages of 

evolution have been studied with an emphasis on the stage of evolution when slip-

surfaces form from zones of deformation bands. In places, the aeolian cross bedding 

provides markers to constrain the displacement on individual deformation bands. 

This enables the development of deformation bands with increasing displacement to 

be quantified. 

Samples from the apparently undeformed rock between deformation band clusters 

were collected along transects away from the fault to investigate the decay of 

microfracture density with distance. Transects were made at localities with a range of 

displacements on the main fault, to investigate the influence of the variation of fault 

displacement on the microfracture population. The samples were collected along the 

same transects as the deformation bands to look at the relationship between 

microfracturing and deformation band growth. 
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5.1.2. Structure of this chapter 

Oriented samples of the deformation around the Blueberry and Big Hole faults have 

been examined in thin section. Section 5.2 discusses the methodologies used to 

collect and analyse these samples. The samples have been divided into five 

deformation types based on their microstructure: host rock; single-strand deformation 

bands; zones of deformation bands; slip-surfaces and fault planes. The 

microstructural data from the five deformation types is presented in Section 5.3. The 

data are interpreted in Section 5.4, and these interpretations are discussed in terms of 

deformation band growth in Section 5.5. 

5.2. Methodology 

5.2.1. Deformation band microstructure 

Oriented samples were collected from outcrops with a rock drill. Five localities were 

targeted: Blueberry fault Tip Canyon (BB I, BBA), Cement Bridge (BH3, BH7), 

Juniper Flat (BH5, BH8), and Jan's Cliff (BH1, BH1O, BHB) (Table 5.1). Figure 5.2 

shows the location of these samples. The rock was impregnated with epoxy before 

sectioning. Thin sections were cut perpendicular to the deformation bands in order to 

get the best cross-section of the internal structure. Thin sections were examined 

under an optical microscope and with cathodoluminescence (CL) and backscatter 

(BSEM) modes on an electron microscope. 

Single-strand deformation bands are simple linear features about 1 mm thick 

accommodating up to a few millimetres of offset. Zones of deformation bands are 

formed of several anastomosing single-strand bands. Pods of relatively undeformed 

Navajo Sandstone are often preserved between these strands. Slip-surfaces occur as 

very planar features, often with a white powdery appearance in outcrop. They often 

form partings in the rock and it was found to be very difficult to sample a slip-surface 

without the sample falling apart along the slip plane. Therefore many of the slip-

surfaces run along the edge of the sample (e.g. BH3.6) or have been glued back 
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together during the process of impregnating the sample (e.g. BH1 .3/4). Fault planes 

are slip-surfaces that are considered to be the main slip-surface within a fault zone. 

Point counts of deformation bands at different stages of evolution were taken to 

characterise the deformation style. A device was attached to the microscope stage 

that advances the sample a set distance across the field of view. The type of grain (or 

pore), its long axis orientation, and the number of microfractures, were measured for 

each grain seen under the cross hair, each time the sample is advanced across the 

stage. An eyepiece containing a graticule was used to measure the long and short axis 

of each grain. In this way the particle size distribution, preferred orientation of grains 

and porosity can be calculated for each sample. 

The porosity of small regions within the samples was also calculated by image 

analysis of BSEM images using two packages: Erdas Imagine and Optimas. The 

greyscale of BSEM images is proportional to the atomic number of the grains, quartz 

grains can be seen as dark grey, feldspar grains are pale grey, and epoxy-filled pores 

are black. The image analysis software represents the number of pixels that are each 

colour on a histogram. Portions of the histogram can then be highlighted in a 

different colour until the sub-set of pixels that represent the mineral or porosity of 

interest is selected (Figure 5.1). The number of selected pixels is then counted and 

presented as a percentage of the total number of pixels in the image. In this way the 

percentage porosity or quartz, feldspar or any other mineral can be counted. 

This method has an advantage over traditional point counting methods because large 

numbers of measurements can be made relatively quickly. The advantage of using 

BSEM images is that optical images do not have such a strong contrast between the 

grains and the epoxy (Antonellini et al. 1994). In addition, each mineral has the same 

grey level across the image, so that no problem occurs with identifying minerals or 

distinguishing them from the epoxy. 
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Figure 5.1. a) BSEM image of a single strand deformation band. Pores are 

black, quartz is grey and feldspar is pale grey. b) The same image adjusted 

so that pores are black and quartz and feldspar grains are white. The 

percentage of black pixels can be calculated to give percentage porosity. 
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5.2.2. Microfracture density 

Oriented cores were collected with a rock drill from four localities: The Blueberry 

fault tip canyon (BBA, BG2), Jan's Cliff (BH 1, BHA), Penguin Mesa (BHB) and the 

west end of the Big Hole fault (BH2). Figure 5.2 shows the locations of these 

samples. The samples were collected at increasing distances from the fault along the 

line of the deformation band transects described in Chapter 4. The BG2 samples were 

collected to represent the background level of deformation in the area and were not 

associated with any macroscopic deformation. The BHB samples are from pods of 

relatively undeformed host rock within the fault zone. Microfracture densities were 

also calculated for - the rock adjacent to, and within, deformation bands during point 

counting. 

The plane normal to the fault surface and parallel to the slip vector has been shown to 

contain the maximum number of microfractures (Engelder 1974, Vermilye 1996). 

The second set of thin sections (BBA, BHA, BHB, BG2) were cut along this plane. 

The first set of thin sections (BH1, BH2) were cut before the significance of section 

orientation was appreciated, and are therefore in random orientations. 

The method used to determine micro fracture density is similar to that of Anders and 

Wiltschko (1994) and Vermilye (1996). The number of microfractures crossing a 

0.15 nm-i transect line (one half of the cross hair under a magnification of x40) is 

recorded. Grains smaller than half a cross hair are not counted. The number of 

microfractures in twenty grains were counted across each sample. Two perpendicular 

transects were measured across each thin section in order to eliminate the effects of 

any anisotropy in the samples. The number of microfractures per millimetre is then 

averaged for each transect. 

Microfractures are most visible when viewed end-on and become invisible at low 

angles to the plane of the thin section (Anders and Wiltschko 1994). A U-stage (used 

to detect microfractures at lower angles to the thin section plane) was not used in this 

study so the true number of microfractures will be underestimated. However the 
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Figure 5.2. Location of samples for microstructure analysis and microfracture 

counts at a) the Blueberry fault Tip Canyon and b) the Cement Bridge locality. The 

line of the transects are shown. 
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locality sample no. description 	displacement dist. from fault 
Tip Canyon BB 1.3 single 1 mm 50 fw 
d=0 m BB1.5 brown staining 30 mm 41 fw 

BB1.7 single 62 mm 26 fw 
BB1.10a slip surface 0 
BB1.lob slip surface 0 
BBI.11 tip of single 0 m 6 hw 
BBI.l2 slip-surface 0 
BB3.4 nodef - hw 

Cement Bridge BH3.6 fault zone 9 m 0 
d9.4 m BH7.1 fault zone 9 m 0 

BH7.5 tip 0 m 1.7 fw 
BH7.12 single 34 mm 16.7 1w 

Juniper Flat BH5.1 single 15 hw 
d24.3m BHS.la single 15 hw 

BH5.2 nodef 35 fw 
BH5.4 zone of bands 0 fw 
BH8.1 pod in fault zone 24 m? 0 
BH8.3 into fault plane 24 m? 0 
BH8.4 into fault plane 24 m? 0 
BH8.12 zone of bands 20.6 hw 
BH8.14 single 20.3 hw 
B118.17 zone of bands 22.9 hw 
BH8.21 wide part of single 53 mm 147 hw 
BH8.22 single 53 mm 147 hw 
BH8.26 single 3 mm 148 hw 
BH8.27 zone of bands 650 mm 150 hw 
BH8.28 single 15 mm 150 hw 
BH8.30 tip of single 0 mm 169 hw 
BH8.33 zone of bands 1.21 m 177 hw 
BH8.36 slip-surface 1.21 m 177 hw 

Jan's Cliff BH1.13 wide single 89 hw 
d=23.5m BH1.14 thin single 89 hw 

BH1.15 zone of bands 91 hw 
BHI.16 zone of bands 91 hw 
BH 1.21 within fault zone 0 
BH1.22 within fault zone 0 
BH1 .23 within fault zone 0 

Penguin Mesa BH1O.4a fault - 

d=22.9 m BH1O.4b slip-surface - 

BH1O.4c wall rock - 

BHB.2 in fault zone 0 
BHB.4 in fault zone 0 
BHB.6 in fault zone 0 

Table 5.1. Samples used for analysis of deformation band microstructure. Samples 

are arranged into localities and the description, displacement on the deformation 

band and the distance into the hangingwall (hw) or footwall (fw) for each 

deformation band is given. The displacement at each locality is indicated. 
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underestimate will be consistent for all samples and it is the form of the decay of 

micro fracture densities away from the fault that is of interest in this case, rather than 

the absolute densities. In any case, different observers will have different criteria for 

recognising microfractures, so that a direct comparison between studies is difficult. 

However, the microfracture densities in this study compare well with data from the 

same rock type presented in Anders and Wiltschko (1994) using a U-stage (see 

Figure 5.25). 

5.3. Results 

5.3.1. Host rock 

A range of grain size, shape and lithology is seen in the undefonned host rock 

(Figure 5.3a and 53b). From point counting, the average host rock consists of 76% 

quartz, 5% feldspar and 19% porosity. In general, the host rock at the Blueberry fault 

is characterised by larger, rounder grains, more lithic fragments, and more obvious 

stratification than the host rock of the Big Hole fault. The porosity in the host rock 

ranges from 13.5-25%. Much of this variation is due to differences between the 

microfacies of the aeolian sandstone. Calcite cement is common in the Navajo 

Sandstone, and is especially well developed at the Juniper Flat and Cement Bridge 

outcrops. Very little quartz cementation is seen in the Navajo Sandstone in this field 

area. This is possibly due to the clay rims on the grains, which would inhibit the 

development of quartz overgrowth cements. 

Microfractures can be seen under an optical microscope or BSEM as lines of fluid 

inclusions (Figure 5.4b). These have a purple or greenish tinge and often contain 

bubbles or even small crystals. When the microscope is focused in and out, the lines 

of bubbles that are in focus shift sideways, defining a plane. These fluid inclusions, 

or bubble planes, are characteristic of healed microfractures (a review of crack 

healing structures is given in Smith and Evans 1984). Under CL they can be seen as 

lines of dimmer luminescence (Figure 5 .4b). This is because the microfractures have 

been healed by authigenic quartz; the brighter luminescence reflects a change in the 
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Figure 5.3. a) BSEM image of the host rock (sample BH8.12) at the Big 

Hole fault. b) BSEM image of the host rock at the Blueberry fault (sample 

BB3.1). Note the band of compaction with no grain crushing on the left-

hand side of the image (arrows). Note the larger grain size at Blueberry 

fault. 
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Figure 5.4. a) BSEM image of rnicrofractures in a quartz grain (sample 

BH8.12). Healed microfractures (lines of fluid inclusions) are cross-cut by 

newer non-healed fractures. b) CL image of the same grain. Healed 

fractures have a different trace element composition from the original 

quartz grain, therefore a different degree of luminescence. 
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trace element composition of the quartz. Figure 5.4b shows healed bubble planes 

being cross-cut by a later open fracture. 

The majority of microfractures are within the grains and do not cross between grains. 

The majority are straight, and do not appear to be controlled by the position of grain 

boundaries. In the few grains that have quartz overgrowths the microfractures can be 

seen to stop at the original grain boundaries and do not extend into the overgrowths 

(Figure 5.5) implying that diagenesis occurred later than the formation of these 

microfractures. All of these observations suggest that these are inherited 

microfractures. 

Sample BB3 .4 is an example of the type of deformation band that is always 

associated with soft-sediment deformation in this field area. Figure 5.3b shows this 

structure running top left to bottom right. The deformation band has little grain 

crushing and is mostly defined by a collapse of the available pore space. 

5.3.2. Single-strand deformation bands 

Single-strand deformation bands consist of broken, angular, grain fragments 

supporting relatively unbroken host-sized grains, in a narrow band approximately 1 

mm wide. Figure 5.6 is a BSEM image showing a single-strand deformation band 

running from top left to bottom right. Feldspar grains in single-strand deformation 

bands are fractured, but the fragments do not appear to have moved a significant 

distance with respect to each other (Figure 5.7). 

Single-strand deformation bands have reduced grain size and have a wider range of 

grain sizes. The reduced sorting means that the grains are more tightly packed than 

the host rock so that the deformation band has reduced porosity. The porosity in 

single-strand deformation bands varies from 2-12%. The lowest porosity seen in a 

single strand deformation band was in B115. 1. Some single-strand bands have zones 

of brown (hematite) cement restricted to the edge of the band. This cement may have 

been concentrated by fluid flow adjacent to these low porosity structures (Section 

2.3.1). 
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Figure 5.6. BSEM image of a single strand deformation band (sample 

BH5. 1). 
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Figure 5.7. a) BSEM and b) CL images of grains in a single-strand 

deformation band. The CL image shows that few microfractures are seen 

within these bands. Some feldspar grains have been disaggregated, but the 

fragments have not moved a significant distance with respect to each other 

(example arroved). 
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5.3.3. Zones of deformation bands 

Zones of deformation bands consist of several anastomosing bands of angular, 

crushed grains. In Figure 5.8 two strands can be seen with undefonned rock between 

them. Large grains are often supported in a matrix of much smaller grains (Figure 

5.9). Feldspars within these bands have been intensively deformed and appear as 

elongate groups of feldspar fragments (Figure 5.10). Porosity in zones of deformation 

bands varies from 2-10.8%. 

The porosity of relatively undeformed pods of host rock between the strands in zones 

of deformation bands is 7-14%. These pods have little or no grain crushing so the 

majority of the porosity loss must occur by compaction and re-organisation of the 

grains. 

Figure 5.11 is a close up of a grain in Figure 5.9. In BSEM it looks like a single grain 

with very uneven boundaries. In CL however, original grain fragments (pale grey) 

can be distinguished from authigenic quartz cement (dark grey). It appears that this 

grain has been crushed and then healed in situ. This indicates that some fluids must 

have been moving through these structures as they formed. Figure 5.12 shows that 

these healed, crushed grains are often confined to the outer parts of deformation 

bands. 
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Figure 5.8. BSEM image of two strands within a zone of deformation 

bands (sample BH8.36). 
4 

• 	\-Z 

: 	? 

-I. !. 

'- 

• 	 A 

1 
/ - 

& 

/A 

- 
.•' 	 •••'..,--• 

Figure 5.9. BSEM image of the structure of a strand within a zone of 

deformation bands (sample 131-18A2). Larger, unbroken, grains are 

supported by smaller, crushed, grains. The rectangle shows the area of 

Figure 5.11. 
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Figure 5.10. BSEM image of a strand within a zone of deformation bands 

(sample BH5.4). Note the strung out pale grey feldspar grains. 
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Figure 5.11. CL image of the square area in Figure 5.9. The pale quartz 

grain in the centre of the image has been crushed, and healed in-situ by the 

dark authigenic quartz cement. 
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Figure 5.12. BSEM image of a strand within a zone of deformation bands 

(sample BH8.36). Crushed grains that have been healed are confined to the 

edge of the band. 
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5.3.4. Slip surfaces 

Slip-surfaces are always located within highly crushed zones (Figure 5.13). These 

zones are usually between 1 and 2 mm wide. Within these zones large apparently 

undeformed grains are preserved. Porosity adjacent to slip-surfaces varies from 0.5-

3.8%. Crushed feldspar grains deformed into elongate groups of feldspar fragments 

within these zones (Figure 5.14). This implies that these grains have been sheared out 

after they were crushed. 

The smallest offset band that contains a slip-surface is BB 1.1 Oa/b. Figure 5.15 shows 

this slip-surface within the crushed zone. The amount of grain crushing looks to be 

similar in both of these samples even though the sample in Figure 5.13 has 

substantially more slip across it than that in Figure 5.15 (see Section 5.5.1). 
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Figure 5.13. BSEM image of a cemented (white) slip-surface in sample 

BH8.4. Slip-surfaces always occur within zones of intense comminution. 
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Figure 5.14. BSEM image of a slip-surface within a zone of intense 

comminution (sample BB 1 . 10). Note the strung out pale grey feldspar 

grains at the right-hand side of the image. 
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5.3.5. Fault planes 

BH8.3 and BH8.4 are samples through the fault plane that is assumed to have 

accommodated the majority of the 24 m displacement at the Juniper Flat outcrop. 

Both the samples cut through the green glassy material described in Section 4.4.4. 

Despite the proximity to a major slip surface, intact grains are still seen. It can be 

seen that individual grains have been planed off as displacement was accommodated 

along this surface (Figure 5.16). The fault plane occurs within a zone of bands and is 

surrounded by a highly crushed zone about 2 mm thick. Porosity in this zone is 2.6%. 

More microfractured grains are seen adjacent to the faults than in zones of 

deformation bands with less displacement (Figure 5.17) and many of these are 

unhealed microfractures. Unhealed microfractures immediately adjacent to the fault 

in the hangingwall are at an angle of 36° to the downwards pointing slip vector. 

Bands of highly comminuted grains occur at angle of 15° to the main fault within the 

this zone of cataclasis (Figure 5.18). 

At this locality the fault contains some cement. This looks brown in hand specimen 

and appears pale grey on BSEM images (to the left-hand side of Figure 5.16a). The 

composition of this cement is unclear, but a preliminary analysis indicates that it 

contains sulphur, phosphorous and aluminium. The cement does not appear to be 

deformed, though as the sample split along the fault when it was collected this is 

difficult to determine. 
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Figure 5.15. BSEM image of the slip-surface at the tip of the Blueberry 

fault marked by arrows (sample BB 1.10). 

ViV  

Figure 5.16. BSEM image of the fault plane at Juniper Flat (sample BH8.3, 

displacement = 24 m). The sample broke along the fault surface; the black 

stripe is the epoxy where the sample has been glued together. 
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Figure 5.17. CL image of microfractures in the crushed zone adjacent to 

the fault plane at Juniper Flat (sample BH8.3). 

Figure 5.18. BSEM image of subsidiary (Reidel?) shear structures (arrows) 

in the crushed zone adjacent to the fault plane at Juniper Flat (sample 

BH8.3). 
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5.3.6. Microfracture density 

The results of the density counts for all six sample suites are presented in Table 5.2. 

The average microfracture density defined by all the samples is 9.65 mm-1  with a 

standard deviation of 2.10. No significant difference was seen between the numbers 

and densities of microfractures in the samples that were oriented correctly and those 

that were oriented randomly. This indicates that the orientation of the sample has 

little effect on the microfracture count. 

Microfracture densities for samples adjacent to deformation bands (0.5 - 1 cm from 

deformation bands) are shown in Table 5.3. The average microfracture density for all 

the samples is 12.47 mm-1  with a standard deviation of 3.33. 

sample no. description short long average 

BH8.3 host to fault - - 13.60 

BH8.3 host to fault - - 14.05 

BB1.10 zone of bands - - 12.54 

BH8.12 zone of bands 9.22 5.83 7.52 

BH8.22 within single - - 5.11 

BH8.22 next to single 10.72 17.71 14.22 

BB1.3 single 11.72 17.71 14.72 

BH5.1 single 16.52 15.26 15.89 

BH8.30 host (tip) 13.91 16.32 15.11 

Table 5.3 Results of microfracture counts for samples adjacent to deformation bands 

around the Big Hole and Blueberry faults. If only an average is given, only one count 

was taken. 
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sample no. distance (m) short long average 

Samples normal to fault surface and parallel to slip vector 

BHA.4 3 13.33 11.67 12.50 
10 15 9.67 9.67 9.67 
13 77.9 11.33 11.00 11.17 
15 79.05 8.33 9.33 8.83 
16 79.2 9.33 12.33 10.83 
18 79.55 9.67 7.33 8.50 
19 79.8 10.67 8.00 9.33 

26a 85 12.33 10.00 11.17 
26b 85.9 12.67 7.67 10.17 

27 86.35 9.67 9.00 9.33 
28 86.85 10.33 12.00 11.17 
32 123.2 7.67 9.33 8.50 

BG2.1 465 10.67 9.00 9.83 
2 448 9.33 8.00 8.67 
4 269 9.67 9.67 9.67 
5 218 9.00 8.33 8.67 

BIIB.2 0 12.67 7.67 10.17 
4 0 6.33 11.33 8.83 
6 0 12.00 11.67 11.83 

BBA.5 1.93 16.33 11.67 14.00 
6 2.1 9.00 8.67 8.83 

8 2.7 13.33 18.33 15.83 

10 0.23 10.33 12.00 11.17 

11 0.5 11.00 10.33 10.67 

14 3.45 13.33 13.00 13.17 

15 5.75 10.00 9.67 9.83 

26 30 9.33 7.33 8.33 

31 44 10.67 14.67 12.67 
33 44.45 11.00 13.00 12.00 

Randomly oriented samples 
BH1.20 0.02 10.67 7.67 9.17 

19 0.495 7.67 12.00 9.83 
2 0.96 6.33 9.33 7.83 

17 5.52 7.67 7.67 7.67 
3 6.96 6.00 7.00 6.50 
4 9.96 8.00 9.67 8.83 
6 25.02 6.00 10.00 8.00 
8 42.35 7.00 10.00 8.50 

11 106.15 10.67 9.00 9.83 
12 155.6 6.00 7.33 6.67 

BH2.1 42.6 6.00 8.00 7.00 
3 12.17 8.00 4.33 6.17 
8 2.85 7.67 6.00 6.83 
9 0.1 5.33 8.00 6.67 

Table 5.2. Results of microfracture counts for 43 samples of the host rock around the 
Big Hole and Blueberry Faults. Two transects of each slide were made, one parallel 
to the long axis of the slide and one parallel to the short axis. The average 
microfracture density for all samples is 9.65 mm' with a standard deviation of 2.10. 
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5.4. Interpretation 

5.4.1. Porosity and grain size reduction 

A correlation between the porosity and the amount of grain crushing can be observed 

in many studies of deformation band microstructure (Fowles and Burley 1994, Mair 

1997). Grain size reduction will not result in a reduction of porosity unless the shape, 

sorting and packing also change, but it can be seen from the photomicrographs that 

this is the case. From the reduction of porosity in the pods between deformation 

bands it can be seen that some pore collapse has occurred by shear along grain 

boundaries, possibly enhanced by clay coatings on the grains (Figure 5.9). However 

the detailed point counts of deformation band microstructure show that the reduction 

of sorting in deformation bands is linked to a reduction of porosity. Therefore the 

porosity, which is easier to quantify, is taken as a proxy for grain crushing. 

Figure 5.19 shows the porosity of samples arranged according to the deformation 

type. The average porosity for each deformation type is shown as a shaded bar. The 

average host rock porosity is 19.2%. This is typical of the Navajo Sandstone (Dunn 

et al. 1973). The average porosity for single-strand deformation bands (7.9%), zones 

of deformation bands (7.4%) and slip-surfaces (1.5%) successively decreases. Rock 

from between two bands in a zone of deformation bands, which looks apparently 

undeformed in hand specimen (Figure 5.9), has a porosity of 11.9%. This is 

significantly lower than for the host rock. Mair (1997) also observed qualitatively 

that the porosity was lower in pods of host rock between bands, than for the host rock 

away from deformation bands. 

Rock in the wall of slip-surfaces had the lowest porosity; however this does not 

correlate with the displacement on the slip-surface. The lowest porosity (0.5%) was 

seen on the slip-surface at the Blueberry fault tip, which has negligible displacement, 

and the rock adjacent to the slip-surface at Juniper Flat, which has in the order of 24 

m slip, has 2.6% porosity. This can be see qualitatively in Figures 5.15 and 5.16. 

This indicates that increased displacement on a slip-surface does not necessarily 

result in a reduction of grain size adjacent to that surface. 
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Figure 5.19. Porosity as a function of deformation band evolution. The samples are 

arranged according to deformation type. The column for each deformation type is 

shaded up to the value of the average porosity. The dashed lines represent one 

standard deviation either side of the average. Filled symbols are measurements made 

with Erdas Imagine, unfilled symbols are measurements made with Optimas. 
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5.4.2. Microfracture density 

Figure 5.20a shows the average microfracture density for each location plotted 

against distance from the fault. The least squares best fit line is also shown but, given 

the extremely low value of the correlation coefficient, this is a poor representation of 

the data. The data is better represented by a constant microfracture density with 

distance from the fault. Figure 5.20b shows the microfracture density measured 

immediately adjacent to, and within, deformation bands during point counting 

compared to the host rock samples. The average microfracture density for each of the 

sample suites is shown. The average density for the deformation bands is higher than 

those in the host rock, though the two populations can not be distinguished at 95% 

confidence. 

There is no consistent decrease in microfracture density with the value of the 

displacement on the fault at each site. Figure 5.21 shows the maximum, minimum 

and average values at each site plotted against displacement. The best fit line for the 

average microfracture density is essentially flat implying that the displacement on the 

fault has no correlation with the microfracture density. 

The microfracture density does not correlate with the number of macroscopic 

deformation bands. Figure 5.22 shows the microfracture density profiles for the 

Blueberry fault tip canyon and Jan's cliff compared to the deformation band transects 

at those locations. The dotted lines on the graph show the standard deviation of all 

the sample values. The distribution of deformation bands seems to have little effect 

on the host rock microfracture density. 
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Figure 5.20. a) Microfracture densities per mm against distance from the main fault 

plane for the six host rock sample suites. The best fit line shows a very weak 

correlation, with poor statistical significance. b) Comparison of microfracture densities 

in the host rock and those adjacent to deformation bands (within 0.5-1 cm). The average 

microfracture density for the host rock and deformation bands are shown. The arrows 

indicate one standard deviation. 
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Figure 5.21. Maximum, minimum and average microfracture densities per mm 

against the displacement on the fault for the six sample suites. There is no 
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5.5. Discussion 

5.5.1. Growth of deformation band clusters 

The development of deformation bands from single-strands into zones of bands has 

been well documented (Section 2.3.1). The observations in this study confirm that 

the increase of displacement across zones of deformation bands is accommodated by 

the addition of new single bands with small increments of slip. The porosity of single 

bands and strands within zones of bands is essentially the same, showing that a finite 

amount of grain size reduction occurs in each strand of a zone of deformation bands. 

This agrees with well-documented relations between the displacement across a zone 

of bands and the number of strands within the zone (Aydin and Johnson 1978, Mair 

1997). Mair (1997) also found that the mean grain size within deformation band 

strands was similar regardless of the bulk strain across the sample. This supports the 

observations made above and the correlation of porosity reduction with grain size 

reduction. 

The distribution of fragments of fractured feldspar grains indicates that there is very 

little shear movement within single bands. Shear movement in cataclastic zones has 

been documented to produce rotation in the grain fragments (e.g. Engelder 1974, 

Cladouhos 1999). The grain fragments within the deformation bands in this study 

show no evidence of significant rotation. Feldspars in zones of bands and slip-

surfaces appear to be more strung out than those in single bands. This could be 

evidence for a larger amount of shear movement along the bands, or could be an 

indication of the higher degree of grain crushing across these structures. Further work 

is required to investigate these relationships. 

5.5.2. Slip-surface initiation 

The model for the initiation of slip-surfaces put forward in Aydin and Johnson (1983) 

(Figure 2.8), did not distinguish if the increased amount of crushing around slip-

surfaces was a precursor to slip-surface formation or occurred as displacement was 

accumulated. Sample BH8.27 contains a highly crushed zone that is not apparently 
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associated with a slip-surface. This indicates that some localised increase of 

granulation does occur within zones of deformation bands before slip-surface 

initiation. From the outcrop maps, it appears that slip-surfaces localise in small 

sections, usually associated with local thickening of deformation bands (e.g. Figure 

4.11). In Section 4.5.4 it is suggested that slip-surfaces may form at a relatively early 

stage in the growth of a zone of deformation bands. This is backed up by the work of 

Mair (1997) who found slickenlines on the surface of experimentally generated 

deformation bands, at low values of axial strain. From outcrop-scale observations and 

microstructures, it would appear that slip-surfaces can nucleate in small patches and 

then propagate and link up to form an inosculating network of slip-surfaces. This 

interpretation is substantially different from previous models for deformation band 

and slip-surface evolution, which have tended to focus on the two-dimensional 

evolution of structures up to the point of slip-surface nucleation (Aydin and Johnson 

1978, Antonellini etal. 1994). 

There is no significant increase in the degree of granulation with continued 

displacement on a slip-surface. Engender (1974) found a similar result from 

experimental studies of saw-cut samples with simulated gouge. Initially the gouge 

between the faces of the samples deformed by cataclastic reduction in grain size and 

sorting. Beyond a certain point there is no further increase in grain crushing. Mair 

(1997) found a constant mean grain size in experimentally produced deformation 

bands, regardless of the total bulk strain applied to the sample. She invoked a steady 

state grinding limit where a favourable grain size distribution is reached, and further 

displacement is accommodated solely by rolling and movement of the grains. The 

highly crushed bands running at angles to the fault are in the correct orientation to be 

Riedel Shears formed within the progressively deforming crushed zone (Figure 

5.23c) (Logan et al. 1992). 

The open microfractures adjacent to the main fault zone in this study (Figure 5.23a) 

are not in the correct orientation to have been formed by shearing within the crushed 

zone due to repeated slip along the slip-plane (Figure 5.23b). It is possible that these 

have occurred in response to rupture of a small part of the fault surface. A similar 
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Figure 5.23. a) Sketch of microfractures in the highly crushed zone adjacent to the 

fault in sample B118.3. b) Cartoon of the stress around a normal fault zone. The fault 

is initiated by vertical al and horizontal cy3, but within the fault zone, c1 is sub-

horizontal and a3 sub-vertical. This would not produce the microfractures seen in 

the sample above. c) The orientation of Reidel shears in the fault gouge. The 

structures seen in Figure 5.18 would correspond to the P shears. 
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effect has been seen by Vermilye and Scholz (1998). They studied the orientation of 

microfractures in detail and related these to the predicted stress orientation around a 

propagating fault. They found that cross cutting sets of microfractures were seen in 

different orientation, each of which could be related to a rupture propagating in a 

different direction along the fault surface. 

The lack of any relationship between the offset on a slip-surface and the amount of 

grain crushing implies that the displacement on a slip-surface can not be estimated 

from its microstructural properties. The amount of grain crushing adjacent to the 

surfaces in Figures 5.15 and 5.16 is essentially indistinguishable, even though one 

has a very small amount of slip and the other has up to 24 m. Sammis et al. (1987) 

and Draper (1976) predicted from experimental work and theoretical models that the 

strain in a fault zone could be estimated from the particle size distribution. This 

study, and the results of Mair (1997), show that the sequential development of shear 

bands precludes such a possibility and confirms the observations of Draper (1976), 

who pointed out that discrete slip planes may accommodate displacements in excess 

of those indicated by the particle size distribution. This has important implications 

for studies of faults in porous sandstones where the outcrop size is limited, 

specifically in core studies. Specifically, if the offset of marker beds is greater than 

the borehole size, no estimate of offset can be made from the microstructural 

properties. 

5.5.3. Fluid flow through deformation bands 

The presence of authigenic quartz cement within deformation bands indicates that 

fluid was present in the band at some point. Large amounts of fluid are unlikely to 

have flowed through these structures given the large reduction of porosity (and hence 

permeability) that they represent. It is possible that the quartz is locally derived; the 

presence of fresh grain surfaces would make quartz available to solution whereas 

previously the grain boundaries had clay coatings. In addition, nucleation sites on 

freshly broken grains are energetically more favourable than on host rock grains. If 

this was the case then a high permeability is not necessary as the quartz would not 
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have to move far through the deformation band. The concentration of hematite 

cements adjacent to deformation bands would suggest that fluid flow has been 

concentrated at the margins of these structures. This would occur because of the 

reduced permeability of the deformation bands, and possibly because of a zone of 

increased permeability parallel to the bands due to early dilatancy (Antonellini et 

al. 1994). 

The evolution of slip-surfaces as described above results in anastomosing networks 

of slip-surfaces within the off-fault deformation which will potentially have an 

important influence on fluid flow. Slip-surfaces are often found as open fractures at 

the surface. Deformation bands have previously been modelled as having a reduced 

permeability perpendicular to slip-surfaces due to grain crushing, but an increased 

permeability in the plane of the slip-surface (Edwards et al. 1993, Antonellini et al. 

1994, Antonellini and Aydin 1995). This effect would be enhanced where slip-

surfaces are interconnected along-strike and down-dip. Samples from cores through 

the faults in this field area (Evans et al. 1999) have indicated that these structures are 

cemented at depth, consistent with the cement fills shown in Figure 5.13. However, it 

remains unclear to what extent these structures were once open fractures, and at 

which stage in the evolution of the fault zone the cement may have been deposited. 

There is no evidence for deformation of the fracture filling cements seen here, which 

would imply that they were introduced either during or after the deformation, but that 

no significant deformation has subsequently taken place. 

Pods of relatively undeformed rock between strands of a zone of deformation bands 

have a reduced porosity. This will have an important effect on fluid flow. It has been 

suggested that the presence of these pods could result in a high permeability parallel 

to deformation band clusters (Antonellini and Aydin 1994). However these results 

indicate that, even ignoring the effects of along-strike linkage of deformation bands 

within an inosculating network, the reduced porosity within these pods would result 

in a retarded permeability parallel to deformation band clusters. The anastomosing 

nature of deformation band clusters results in the formation of compartments of 

relatively undeformed rock. This is illustrated by the difference in degree and colour 
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of staining in the small compartments within even a small zone of bands (Figure 

5.24). That this fault type can form compartments at a larger scale is illustrated by 

Edwards et al. (1993) in the Hopeman Sandstone in Scotland. Here the faults control 

the distribution of quartz, calcite and fluorite cements, and secondary porosity is 

much decreased towards the fault due to the concentration of these cements. 

5.5.4. Microfracture density 

The poor correlation between microfracture density and distance from the fault 

suggests that these microfractures are not formed due to slip on the fault surface. 

Microfractures due to deformation of porous sandstones are often curvilinear in 

shape and radiate from grain boundaries, and are called Herztian microfractures 

(Wong 1990). The majority of the healed microfractures in this study are straight, 

and where quartz overgrowths are present they are often not fractured. This suggests 

that these microfractures are inherited features from the original protolith of the 

detrital grains (i.e. a granite, mylonite or vein quartz), and are not associated with 

deformation of the Navajo Sandstone. This would explain why no logarithmic decay 

of microfractures is seen with distance from the fault. It would also explain why the 

orientation of the sample had no effect on the number of microfractures counted. 

Inherited microfractures would be expected to have a random orientation. 

Experimental studies report large numbers of acoustic emissions (AE) occurring 

throughout high-porosity sandstones before failure (Lockner et al. 1992). Thin 

section analysis of these experimentally deformed sandstones has shown that grain 

crushing caused by enhanced stress at grain contacts causes this lithology to fail and 

form deformation bands without the production of a dense population of intra-grain 

microfractures (Lockner et al. 1992). The AEs have therefore been interpreted as the 

rupture of grain boundary microfractures. The AE activity was also used to locate 

events interpreted as distributed microfracturing, grain crushing and grain boundary 

sliding. Fracture localisation occurred earlier in Berea Sandstone (18% porosity) 

samples, and 10-30 times more AE events occurred pre-failure in than granites 

(Lockner et al. 1992). The locus of fault nucleation in the granites was apparently 
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controlled by the large modulus change at the sample edge. Conversely, the faults 

nucleated within the sample for the sandstones. The transition from grain crushing to 

localisation of new bands and shear along a slip-surface will correspond to a 

transition from dilatant hardening to strain softening (Mair 1997). 

The identification, and hence quantification, of grain boundary microfractures is 

extremely difficult, if not impossible, in mature sandstones such as the Navajo 

Sandstone. In the absence of any pre-faulting cements which could act as a marker 

for failure, it is very hard to identify grain boundaries that have fractured. It would be 

interesting to see if grain angularity and preferred orientation changed across the 

fault. Spalling of overgrowths and re-orientation of grains may occur during grain 

boundary movement which could potentially produce a preferred orientation 

(Cladouhos 1999). The strength of the grain boundary cement may also be a factor, 

though this has not been investigated. 

The low microfracture densities seen in this study contrast with the large numbers of 

fault-related microfractures described by Vermilye and Scholz (1998) in very well 

indurated quartz sandstone and by Anders and Wiltschko (1994) in calcite and silica 

cemented sandstones (Figure 5.25). These data, for low porosity sandstones (porosity 

<10%), describe a logarithmic decrease in microfracture density with distance from 

the fault. Anders and Wiltschko's (1994) data for the Navajo Sandstone and Entrada 

sandstones, however, shows a poor correlation with distance from the fault with no 

data above nine micro fractures per millimetre. These studies and that of Lockner et 

al. (1992) highlight the difference between the behaviour of high-porosity 

sandstones, and low-porosity sandstones and granites. The porosity of the host rock 

has a strong effect on the microfracture population, presumably because dilatancy 

and hence grain fracturing can occur more easily where porosity is lower. This effect 

has been noted in previous studies (e.g. Dunn et al. 1973), however this study 

indicates that host rock lithology may be an important factor in the style of 

microfracture populations away from faults, which has not been previously been 

discussed. 
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Figure 5.24. Photograph of deformation 

band cluster with mineral staining 

(slightly darker colour, highlighted by 

arrows). Note that staining is restricted 

to only a few of the compatments that 

are defined by the deformation bands. 

This indicates that deformation bands 

are a good barrier to fluid flow. 

E 
E 

CO 

a) 
-D 

a) 
I- 
C-) 
CD 

0 
I- 

C) 

1o0 

80 	 'No 0 

60L 

oNN  
40 	

0 

0 > 
0 

20 - 00 	 C 
El 

o Vermilye - Shawngunk faults 
(low porosity) 0 A+W - Fountain Formation 
(low porosity) 

o A+W - Entrada Sandstone 
(high porosity) 

• This survey 
(high porosity) 

0 
° 

0.001 	0.01 	0.1 	 I 	 10 	 100 	1000 

distance from fault (m) 

Figure 5.25. Comparison of data from this study (filled circles) with that of Anders 

and Wiltschko (1994) and Vermilye (1996) (empty symbols). The best fit line for 

each dataset is shown. Note that low porosity sandstones (<10%) behave differently 

from high porosity sandstones. 
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5.5.5. Scaling of off-fault deformation 

Most discussions of process zones ahead of propagating fault tips (Section 1.2.2) 

have concentrated on microscopic deformation (Scholz et al. 1993, Vermilye and 

Scholz 1998). However, there is no signal of the fault in the microfracture population 

and in any case the amount of grain boundary deformation is unquantifiable in this 

rock type. The finite width of the macroscopic off-fault deformation at the fault tip 

(Section 4.3.1), indicates that the process zone is not simply a microscopic feature in 

this case. It is suggested, that in the light of the discussion in Section 5.5.4, that a 

macroscopic process zone should be expected in a high porosity sandstone. 

If the deformation at the fault tip consists of 12 m width of macroscopic deformation 

bands and an unquantifiable amount of grain boundary fractures, then the scaling 

relation for process zone width and fault length proposed by Cowie and Scholz 

(1992a) does not hold. They predicted that the process zone length would be 10-20% 

of the length of the fault. Although their model only applies strictly to in-plane 

fractures, Scholz et al. (1993) have argued that the same scaling will apply to the 

width of the process zone at the fault tip. If this relation applied then this width 

would be in the order of 30-60 m, for the Blueberry fault (with a length of 3 kin). 

This discrepancy is discussed further in Section 7.3.4. 

5.6. Summary 

The microstructure of deformation bands and the host rock in the off-fault 

deformation around the Blueberry and Big Hole faults has been systematically 

sampled and characterised in order to investigate processes active along the fault 

and within the off-fault deformation during fault evolution. 

Single-strand deformation bands have a reduced grain size and porosity within 

them. Displacement across single deformation bands is limited to a few 

millimetres. Displacement accumulation across zones of deformation bands is 

accommodated almost solely by the addition of new strands. Essentially no 

increase in grain crushing (decrease in porosity) is seen between single-strand 
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deformation bands and zones of bands. Pods of relatively undeformed rock 

between strands in deformation band clusters have a reduced porosity with respect 

to the host rock. 

At some point a zone of increased grain crushing nucleates, and a slip-surface 

forms within this zone. The precise mechanism of slip-surface nucleation is still 

unclear, but there is evidence that slip-surfaces can nucleate in small patches and 

propagate together to form an anastomosing network. Displacement accumulation 

on the slip surface has little effect on the grain size (porosity) of the adjacent rock. 

This means that the grain size distribution cannot be used to distinguish slip-

surfaces formed in small off-fault deformation clusters from major fault planes. 

Late stage microfractures are seen only immediately adjacent to the fault (within a 

few millimetres). These are not in an orientation consistent with shear across a 

zone of gouge and may have occurred due to rupture of a small part of the fault 

surface. Riedel shear structures consistent with shear across a zone of gouge are 

found adjacent to the fault surface. These structures indicate that some 

reactivation of the fault gouge adjacent to the main fault slip-plane occurs, even 

though no grain size reduction is seen. 

Microfractures are distributed around the fault, but the density of microfractures 

does not seem to be related either to the distance away from the fault or to the 

displacement on the fault at the point measured. Therefore they are unrelated to 

movement on the fault surface and are probably inherited microfractures. 

Deformation at the Blueberry fault tip (the process zone) is composed of an 

unquantifiable amount of grain boundary microfracturing, and macroscopic 

deformation in the form of deformation bands. The deformation bands extend for 

12 m either side of the fault. This is substantially smaller than the process zone 

width expected from theoretical scaling relations, which for this fault would be in 

the order of 30-60 m. Microstructural measurements from this study confirm 
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experimental observations that deformation is significantly different in high 

porosity sandstones than in other rock types. 
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6. OFF-FAULT STRAIN 

6.1. Introduction 

6.1.1. Rationale 

In Chapters 4 and 5, the distribution and orientation of off-fault deformation around 

the Blueberry and Big Hole Faults have been quantified. The positive correlation of 

off-fault deformation width with displacement suggests that this deformation formed 

in response to increasing displacement on the main fault zone (Section 4.6.2). The 

orientation of structures around the faults suggest that they formed in a stress field 

locally controlled by the orientation of the main fault rather than that of the regional 

strain field (Section 4.6.5). Given the scaling of off-fault deformation width and 

displacement, the deformation density might be expected to increase where the 

displacement is greater. The orientations of structures may also be expected to vary 

between the deformation alongside the well-developed fault and deformation ahead 

of the tip fault. 

In order to investigate these possibilities, strain and deformation density have been 

calculated for the off-fault deformation, both across and along the strike of the main 

fault planes. The orientations of the off-fault structures have been analysed using a 

model for three-dimensional strain. These results are then interpreted in terms of the 

growth of the Big Hole and Blueberry faults. 

6.1.2. Structure of this chapter 

Section 6.2 discusses the total strain across the off-fault deformation represented by 

each of the transects perpendicular to the main fault surface. Section 6.3 investigates 

the variation of deformation density within the off-fault deformation using an image 

analysis package. In Section 6.4 the possibility of three-dimensional strain within the 

off-fault deformation is tested using the theory of orthorhombic faulting introduced 

in Section 2.2.3. These findings are interpreted in terms of the evolution of the off-

fault deformation around the Blueberry and Big Hole Faults in Section 6.5. 
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6.2. Variation of strain along fault strike 

6.2.1. Methodology 

Strictly speaking, the quantitative measurement of strain in a faulted rock volume 

would require measurement of the sense and magnitude of displacement on all the 

faults in that volume. However, it is possible to approximate this strain if some 

assumptions are made about the population of structures. Transects through the off-

fault deformation in this study logged the position and width of every deformation 

band encountered. The aeolian cross-bedding provided markers to measure offset on 

individual bands. Therefore in the more massive beds it was not always possible to 

measure the sense and magnitude of displacement on all the deformation bands. An 

estimate of the strain across the deformation band can be made, however, if the 

relationship between the structure width and offset is assumed. 

Aydin and Johnson (1978) observed that the total displacement across a zone of 

deformation bands was proportional to the number of bands in the zone. This was a 

key observation in the development of their model of deformation band growth 

(Section 2.3.1). They noted that each individual band had in the order of 1 mm offset 

and that zones of bands had up to 30 cm offset. However they did not present any 

quantitative data to evaluate this correlation. Mair (1997) found a very good positive 

relationship between the number of gouge strands and the applied axial strain in 

experimentally formed deformation bands. This corresponds to a correlation between 

the horizontal (extensional) offset in millimetres, d, and individual deformation band 

thickness in millimetres, w, of 

d=0.91 w+ 1.22 
	

(6.1) 

with a correlation coefficient, R 2 , of 0.96 (Figure 6.1). In this study, the porosity 

(amount of grain size reduction) is essentially the same in single bands and strands 

within zones of bands (Section 5.5.1). This indicates that a correlation between 

deformation band width and offset should be expected in this field area. However, 

only a crude positive correlation is seen for the deformation bands where both offset 

and deformation band width were measured (Figure 6.1). The poor correlation 
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Figure 6.1. Plot of deformation band width and offset for deformation bands from 

this study and from experimentally generated bands (Mair 1997). 

0.5 

0.4 

E 
0.3 

Co 
C 
a) 

a) 
0.2 

0.1 

0 

• 	 0 

• 	y = 0.005x +0.1081 
• 	 R2=0.2317 

•0 	 • Footwall 

U 	
0 	

a Hangingwal 

U 
I 	 I 	 I 

0 	 10 	20 	30 	40 	50 

off-fault deformabn zone width (m) 

Figure 6.2. Plot of the extension across the off-fault deformation zone vs. the off-

fault deformation zone width. The hangingwall and footwall are shown in different 

symbols, showing that there is no asymmetry between the hangingwall and footwall. 

The amount of extension is approximately proportional to the damage zone width 

supporting the observation that the total strain across the off-fault deformation zone 

is constant. 
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(R2  = 0.47) could be due to an undersampling of very small offset bands, which are 

hard to measure accurately. Measurement of a greater number of wider zones of 

deformation bands would also improve the correlation. 

Strain, e, is defined as 

E = Al / 10  = Al / (If  - Al), 	 RE 

where 10  is the original length, Al is the increase in length, or extension, and If is the 

final length of a marker. In this case I f  is the final width of the off-fault deformation. 

The extension, Al, along each of the transects is the sum of the component of slip 

parallel to the transect direction for all the structures on a transect. The horizontal 

component of slip was either measured in situ or, for structures where no offset was 

measured, estimated from the empirical relationship of Mair (1997) as discussed 

above. 

When the transect data were collected, the significance of the slip-surfaces was not 

fully appreciated. As a result, the position of slip-surfaces was not always recorded 

on the transects. An individual slip-surface can theoretically have any amount of 

displacement, but usually forms when the vertical offset on a zone of deformation 

bands exceeds 10-50 cm (Aydin and Johnson 1978). Very few of the off-fault slip-

surfaces offset the top Navajo Sandstone; most have only a few centimetres of slip 

and none have more than 1-2 m slip. Although these offsets are small relative to the 

main fault they may contribute significant extension within the off-fault deformation. 

There is no simple relationship between slip-surface structure and displacement (see 

Section 5.5.2), SO if there is no offset marker it is not possible to assign a value of 

displacement to a given slip-surface. In order to estimate the contribution of the slip-

surfaces to the total strain, an arbitrary vertical offset of 10 cm per slip-surface has 

been assigned to each slip-surface on the transects where the number of slip-surfaces 

could be counted from the outcrop maps (Section 4.6.4). The strain has been 

calculated for the entire width of the off-fault deformation at Blueberry tip, 

Chipmunk Flats and Juniper Flats and for the footwall only at Cement Bridge. Two 
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values are calculated, the strain for the deformation bands only and the strain 

including the contribution from slip-surfaces. 

6.2.2. Results 

Table 6.1 shows the strain calculated for each of the transects presented in Sections 

4.3 and 4.4. The empirical relationship of (Mair 1997) is used to estimate Al 

(Equation 6.1). The localities in Table 6.1 are in ascending order of displacement 

showing that the strain does not vary in a systematic way with the displacement on 

the fault. The average strain is 8.7 x 10 3  with a standard deviation of 5.2 x 10. If the 

off-fault strain is constant then the extension, Al, must be linearly related to the width 

of the off-fault deformation. This is plotted in Figure 6.2, and a weak positive 

correlation is seen. No systematic asymmetry in the amount of strain is seen between 

the hangingwall and footwall. 

The calculation of strain for the outcrops where the number of slip-surfaces was 

recorded is shown in table 6.2. The average strain including slip-surfaces is 16.1 x 

This contrasts with an average strain of 10.1 x 10 for the deformation bands 

only. The value of strain is consistently higher when the slip-surfaces are included. 

Although this is a very simplified calculation, it indicates that the strain remains 

constant along the strike of the main fault. 
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off-fault cumulative width extension, calculated 

deformation of deformation Al = 0.91W + strain, 

width, I f  (m) bands, w (m) 0.00122 (m) E= A1J(lf- Al) 
hangingwall 

Blueberry 6 0.088 0.0815 0.0138 

Westend 15 0.048 0.0450 0.0030 

Chipmunk 30 0.429 0.3924 0.0133 

Juniper 26 0.224 0.2055 0.0080 

Amy's Hill 10 0.166 0.1526 0.0155 

Jan's Cliff 50 0.056 0.1043 0.0020 

footwall 

Blueberry 7 0.019 0.0186 0.0027 

Westend 10 0.062 0.0578 0.0058 

Cement 22 0.345 0.3240 0.0149 

Chipmunk 30 0.369 0.3377 0.0114 

Juniper 42 0.176 0.1617 0.0039 

Amy's Hill 54 0.195 0.1790 0.0033 

Jan's Cliff 50 0.08 1 0.0924 0.0014 

Table 6.1. Calculation of the strain due to off-fault deformation. 

deformation slip-surface strain due to strain 
total 

band extension extension deformation including 
If (m) 

Al (m) Al (m) bands slip-surfaces 
Blueberry 13 0.1001 0.120 0.0078 0.0172 

Cement fw 22 0.3240 0.090 0.0149 0.0192 

Chipmunk 60 0.7301 0.300 0.0123 0.0175 

Juniper 68 0.3672 0.330 0.0054 0.0104 

Table 6.2. Calculation of the strain due to off-fault deformation including an estimate 

of slip-surface strain (assuming 10 cm vertical offset on each slip-surface). 
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An analysis of the dip direction of deformation bands within the off-fault 

deformation shows that there are approximately equal numbers of synthetic and 

antithetic structures (Table 6.2). There tend to be more synthetic single deformation 

bands, but these contribute only a small proportion to the total strain. Slip-surfaces, 

which contribute a larger proportion to the strain, are almost equally synthetic and 

antithetic. If numbers of synthetic and antithetic structures are equal, the strain within 

the off-fault deformation is coaxial. Therefore, in cross-section, the strain due to the 

off-fault deformation can be approximated by pure horizontal stretching with very 

little overall vertical shear of bedding either in the hangingwall or footw all (Figure 

6.3). This indicates that the off-fault deformation is not accommodating flexure of 

the bedding perpendicular to the fault surface (i.e. non-coaxial strain) as is sometimes 

the case (e.g. Jamison and Stearns 1982). 

Synthetic Antithetic % Synthetic % Antithetic 

Location 

Hangingwall 185 184 50 50 

Footwall 140 93 60 40 

Big Hole fault 281 202 42 58 

Blueberry fault 98 109 47 53 

Structure type 

single deformation bands 114 55 67 33 

zones of def. bands 147 145 50 50 

slip-surfaces 118 111 49 51 

Table 6.3. Relative numbers of synthetic and antithetic structures for different 

locations around the faults and for different structure types. 
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Coaxial strain within the off-fault deformation zone 

Non-coaxial strain within the off-fault deformation zone 

----- ------ 

Figure 6.3. Cartoon showing the effect of the relative proportions of synthetic and 

antithetic faults in the off-fault deformation zone. a) Equal proportions of synthetic 

and antithetic faults results in overall extension across the off-fault deformation 

zone. b) Mostly synthetic or mostly antithetic results in shear across the off-fault 

deformation zone, but in opposite directions. 
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6.3. Variation of strain within the off-fault deformation zone 

6.3.1. Methodology 

The variation of the density of deformation throughout the off-fault deformation zone 

is a convenient way of looking at local variations in strain (Jamison and Stearns 

1982). Deformation density is defined as the number of features per square meter. 

Using an image analysis package (Erdas Imagine), the off-fault deformation maps 

presented in Sections 4.3 and 4.4 have been contoured for deformation density. Line 

drawings of the individual outcrops were scanned and digitised. The widths of the 

lines are the correct width for deformation bands at the scale of the image. Each pixel 

in the image is given a colour value corresponding to the percentage deformation that 

the pixel is considered to contain: a black or red pixel contains a deformation band or 

slip-surface and is assigned the value 100; a white pixel contains no deformation 

bands and is assigned the value 0; a grey pixel contains a data gap due to cover and is 

assigned the value 101; a blue pixel is an area of concentrated deformation (see 

Section 4.4.2) which is assigned the value 100. The area over which density is to be 

calculated is called the focal window. This is a matrix defined as x by y pixels wide, 

which can be varied in size as the user decides. The size of the focal window is 

calibrated to meters by checking the number of pixels in the image. All the outcrop 

scale maps have the focal window scaled to 0.5 x 0.5 in wide. 

The program then calculates the focal mean for every pixel in the image. This is the 

mean of the values assigned to each pixel in the focal window excluding pixels with 

'no data' values. For example, for a focal window of 5 x 5 pixels containing 6 grey 

pixels (no data=101), 5 black pixels (deformation bands=100) and 15 white pixels 

(no deformation bands=0), the focal mean is 26.3% (Figure 6.4). This is equivalent to 

the deformation density: the area of uncovered outcrop within the focal window that 

contains deformation bands, or deformation band clusters, divided by the area of the 
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Figure 6.4. Calculating fault density from line maps using the Erdas Imagine image 

analysis software. 
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focal window. The output image is a map of the focal mean for a focal window 

centred over each pixel in the image. 

The same procedure is followed for the cluster maps. To calculate the deformation 

density, each cluster class was assigned the value 100. The extension across the 

average cluster in each class (see Section 6.2. 1) was calculated in the same fashion as 

for the off-fault deformation transects according to the number and type of 

deformation bands in each class. The width of each cluster was then scaled 

accordingly: Class 1 (orange) clusters were assigned a width of 0.4 m; Class 2 (blue) 

clusters were assigned a width of 0.9 m; Class 3 (green) clusters were assigned a 

width of 1.1 m. The focal window is set to 5 m x 5 m for the Blueberry fault tip 

canyon map and 50 m x 50 m for the Big Hole fault map. The different focal window 

size reflects the different scales that the maps were created on. 

The maps of deformation density are presented in Figures 6.5-11. The same colour 

scale is used for all the maps: white is 0% deformation; pink through red is 1 - 100% 

deformation. Some local maxima are edge effects (e.g. high values at bottom right-

hand side of Figure 6.9). This occurs where the focal window contains a large 

proportion of "no data" points. The faults in the remaining area take up a larger 

proportion of the focal window, and hence the focal mean returns artificially higher 

values of density. 

6.3.2. Results: Outcrop-scale maps 

Figure 6.5 shows the density map for the Blueberry fault tip canyon outcrop 

(displacement = 0 m). The highest density of deformation bands at the fault tip is 

27% per 0.5 m2  on the northern antithetic structure. This structure has the cross-

hatched pattern that has been previously described (Section 4.3.2). The deformation 

map of the same outcrop (Figure 6.5a) shows that more slip-surfaces are seen along 

the fault parallel structure. Thus the greatest deformation density is not coincident 

with the greatest number of slip-surfaces. This backs up the observation that slip-

surfaces are often seen within relatively narrow clusters of deformation (Figure 

4.10b). This map seems to shows that the greatest deformation density is towards the 
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Figure 6.5. a) I)etbrmation map (oil a sub-vertical surface) with slip-surfaces in red. 

and h) deformation density map of the Blueberry fault tip outcrop. 
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base of the outcrop. This may be a consequence of the displacement on the fault 

increasing downwards (Section 3.3.1). 

Figure 6.6 shows the density map for the Big Hole fault Cement Bridge outcrop 

(displacement = 9.4 m). The large cluster that runs antithetic to the fault has the 

highest deformation density of 33% per 0.5 m2. This cluster is also associated with 

the cross-hatched pattern which is notably very concentrated at the bottom left-hand-

side of the image. The maximum density on this map correlates well with the 

position of the slip surfaces. Both the deformation density and the number of slip-

surfaces are higher here than at the Blueberry fault tip. 

Figures 6.7 and 6.8 shows the density maps for the Big Hole fault Chipmunk Flats 

northern and southern strands (displacement = 19.1 m). As noted in Section 4.6.3, the 

southern strand is surrounded by higher deformation densities (76% per 0.5 m2) than 

the northern fault strand (62%), possibly reflecting larger displacement on this strand 

of the fault. The northern strand could have up to 14 m of displacement whereas the 

southern strand has more than 3 m (Section 4.4.3). Away from the fault strands the 

maximum deformation density is fairly uniform (in the order of 30% per 0.5 m2). For 

both of these maps there are noslip- surfaces at distances greater than 2 m from the 

main fault surface. Close to the fault (<1 m) the maximum density seems to be 

associated with the high number of slip-surfaces immediately adjacent to the fault. 

Figure 6.9 shows the density map for the Big Hole fault Juniper Flats outcrop 

(displacement = 24.3 m). This map has the some of highest deformation densities of 

all the outcrop-scale maps (95% per 0.5 m2), but most of these are edge effects (e.g. 

at the eastern end of the main fault strand). If these local maxima are ignored, the 

maximum deformation band density is 77% per 0.5 m2. The high deformation 

densities away from the fault zone (i.e. at 15 m from the fault) are always associated 

with deformation band clusters containing slip-surfaces. 
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Figure 6.6. a) Deformation map (on 4()80 0  dipping surface) of the Big Hole fault 

Cement Bridge outcrop with slip-surfaces in red. The main fault surface is off the 

diagram to the left. h) Deformation density map. 
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Figure 6.7. a) Deformation density map with slip-surfaces in red and b) deformation 

density map of the Big Hole fault Chipmunk Flats northern strand outcrop. 
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Figure 6.8. a) Deformation map with slip-surfaces in red, and b) deformation density 

map of the Big Hole fault Chipmunk Flats southern strand outcrop (planar surface). 
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6.3.3. Results: Blueberry and Big Hole fault cluster maps 

Figures 6.10a and 6.11a show the off-fault deformation maps for the Big Hole and 

Blueberry faults. The cluster widths are scaled to fit the scale of the image. Structures 

in the non fault-parallel regional strike direction are not considered to be part of the 

deformation due to the evolution of these faults (Section 4.6. 1) and have therefore 

not been included on the maps (compare to Figures 4.4 and 4.8). The size of the focal 

window is different for each map (Section 6.3.1), so the deformation densities cannot 

be directly compared between the two maps. However the maps help to quantify the 

variation in the distribution of deformation around the two faults. 

Figure 6. 1 O shows the deformation density map for the Big Hole fault. The 

maximum deformation density is 29% per 50 m 2. The fault density is fairly uniform 

around the Big Hole fault. Local areas of higher density outside this region are 

associated with the subsidiary deformation band clusters (Section 4.6.1). Many small 

local highs are due to edge effects and should be ignored. 

Figure 6.1 lb shows the deformation density map for the Blueberry fault. The density 

decreases towards the fault tip and the off-fault deformation becomes noticeably 

narrower. The lower densities towards the left-hand side of the map are due to the 

poorer quality outcrop at that point. The maximum deformation density is 75% per 5 

m2  and is seen 50 m west of the fault tip. This value is higher than the maximum 

density for the Big Hole fault cluster map because the cluster widths are scaled to the 

size of the image and are therefore proportionally larger. 
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Figure 6.10. a) Deformation map and b) deformation density map of the Big Hole 

fault clusters. The deformation band clusters in a) are coloured according to their 

cluster class (Section 4.2.1), and their widths are scaled according to their 

deformation intensity. The main fault strand is in red. 
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Figure 6.11. a) Deformation map and b) deformation density map of the Blueberry 

fault clusters. The deformation band clusters in a) are coloured according to their 

cluster class (Section 4.2.1), and their widths are scaled according to their 

deformation intensity. The main fault strand is marked with a blue arrow. 
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6.4. Orthorhombic symmetry and three-dimensional strain 

6.4.1. Introduction 

The Chimney Rock fault array consists of four mutually cross-cutting fault sets in 

orthorhombic symmetry (Section 2.2.3). The off-fault deformation around the 

Blueberry and Big Hole Faults also describes an orthorhombic system of deformation 

bands. Two strike sets of deformation bands and slip-surfaces, which are sub-parallel 

to the main faults, define narrow lozenges of undeformed rock with long axes 

parallel to the fault (Figure 6.12a). In cross-section, two dip sets (synthetic and 

antithetic) of deformation bands and slip-surfaces also define lozenges of 

undeformed rock with vertical long axes (Figure 6.12b). The two dip sets have a 

larger angle between them than the two strike sets: compare the cross-sections 

(Figures 6.5 and 6.6) to the map views (Figures 6.7-6.9). The off-fault deformation 

around the Big Hole and Blueberry faults has a much lower angle between strike sets 

than the main Chimney Rock fault array (compare to Figure 2.2). This implies that 

the off-fault deformation is growing in a local strain field associated with the growth 

of the main fault rather than that of the regional Chimney Rock fault array. If the 

strain can be deciphered, then it will be possible to gain an insight into what 

processes generate off-fault deformation structures in this geometry. 

As described in Section 2.2.3, this geometry of four mutually cross-cutting 

(synchronous) fault sets is a result of three-dimensional strain (Reches 1978, 1983, 

Krantz 1988). This section of the chapter uses the slip model of Reches (1978, 1983) 

and the odd axis model of Krantz (1988), to investigate the three-dimensional strain 

within the off-fault deformation. 

6.4.2. Methodology 

The slip model for three-dimensional strain was developed by Reches (1978, 1983). 

In this model, the orientations of the four fault sets and their slip vectors are related 

to the ratio of the three principle strains, >c>€ 2 . The model assumes that all the 

strain is accommodated along faults, and that slip along each surface follows 
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Coulomb frictional behaviour. Reches (1983) used tensor analysis to minimise the 

differential stress and energy dissipation required to initiate slip on the surfaces that 

are most favourably oriented with respect to the principle strain axes. The preferred 

orientations of slip are presented as sets of equations for the direction cosines of 

poles to faults (Reches 1983). 

The slip model was elaborated by Krantz (1988) into the odd axis model. This model 

determines the principal strain magnitudes as well as their orientations. It is based on 

the concept that for a three-dimensional, constant volume strain field, there will be 

one principle strain axis with a sign opposite to that of the other two. This is called 

the odd axis. If one principal extension is negative (shortening) and the other two are 

positive, as for normal faults, then E is the odd axis and is vertical. The intermediate 

axis and similar axis share the same sign, and the fault sets strike in the intermediate-

similar plane. The ratio of the intermediate to minimum strains is defined as k, where 

k = 	 (6.3) 

The value of k can range from —0.5 (oblate strain) to 1 (prolate strain), with plane 

strain occurring when k = 0. 

The slip vector for each fault is defined by the intersection of the fault plane and a 

second plane containing the pole to the fault and the odd axis, called here the mutual 

plane. The slip vector, fault pole and odd axis are thus coplanar. Hence the odd axis 

can be found by determining the intersection of the planes that cut the slip vector and 

fault pole for each fault. With large datasets this can be done by finding the average 

poles and slip vectors for each fault set, and constructing the four average mutual 

planes. For smaller datasets the mutual planes can be calculated for each fault-slip 

vector pair and the average intersection of the mutual great circles can be calculated 

by statistical analysis. The similar and intermediate axes lie in the plane 

perpendicular to the odd axis, with the similar axis bisecting the acute angle between 

fault sets, and the intermediate axis bisecting the obtuse angle. 
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Figure 6.12. Orthorhombic symmetry (four fault sets) in the damage zone of the Big 

Hole fault: a) Two strike sets and b) two dip sets. 
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Figure 6.13. Example of the odd-axis construction for the Chimney Rock fault 

array, from Krantz (1988). Data points for individual faults are shown in grey, the 

odd-axis construction is for the average fault and slickenline, shown in black. 
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An example of this is shown in Figure 6.13 for the Chimney Rock fault array (from 

Krantz 1988). In this figure the data for each of the faults and slickenlines is shown 

in grey and the average fault poles and slip vectors are shown in black. The average 

poles and slip vectors are joined by best fit great circles (called mutual planes) and 

the intersection of these circles defines the odd axis. For Chimney Rock, the negative 

odd axis is vertical with the maximum extension oriented north-south and 

intermediate extension oriented east-west. 

For conjugate faults the angle between fault sets is 20, where 

o =90-0 
2 

(6.4) 

and 4 is the angle of internal friction. Within each strike set the dip of the faults, 

measured between the fault surface and the intermediate-similar plane, is the same as 

that for a conjugate pair. However the angular relationship between the strikes of 

each set, a, within the intermediate-similar plane is a function of the strain ratio, k. 

For normal faults with a sub-vertical odd axis (such as the Chimney Rock fault 

array), the acute angle between fault sets is given by 

EyICz  = —sin2  a = k. 	 (6.5) 

This simplified relationship is shown by Krantz (1988) to be true for fault sets where 

the ratio of fault displacement to fault spacing is small. 

To apply the slip model the field data is rotated so that the principle strains lie north-

south, east-west and vertical on the stereonet. The data is then reflected into the 

north-east quadrant using the rules of orthorhombic symmetry (Reches 1983). The 

data can then be compared to a slip model net for normal faults. The value of k and 

can be read directly off the slip model net, and for the Chimney Rock fault array k = 

—0.16 and 0 = 540 (see Figure 6.15d). Since 0 is a property of the rock, a change in 

the ratio of principle strains would result in a different value for k, but not 0 for the 

same lithology. 
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6.4.3. Results 

Rose diagrams of the strike of slip-surfaces in the off-fault deformation around the 

Big Hole fault and Blueberry fault (Figure 6.14a and b) show that the scatter in strike 

is approximately symmetrically around the main fault surface. The off-fault 

structures have a much lower acute angle between the strike sets than the main 

Chimney Rock fault array: 15300  as opposed to 48°. It is difficult to distinguish 

individual strike sets on a simple stereonet of deformation band poles (Figure 6.14c 

and d). As displacement is accumulated on slip-surfaces, these may produce off-fault 

deformation of their own. This would explain why well-developed slip surfaces away 

from the main fault plane are always associated with relatively dense clusters of 

deformation (e.g. Figure 6.9). This would contribute to the scatter in deformation 

band strikes that is seen on the plots of deformation band orientation (Figure 6.14a 

and b). Because the datasets for the Big Hole and Blueberry Faults are relatively 

small, mutual planes have been constructed for all of the fault pole and slip vector 

pairs for each fault. 

Figure 6.15a shows the odd axis construction for the off-fault structures around the 

Big Hole fault. Poles to fault surfaces are shown as circles and slip vectors as 

diamonds. Figure 6.15b is a contour plot of the intersections of all the mutual great 

circles. For the off-fault deformation around the Big Hole fault the odd axis is clearly 

vertical, and thus the similar and intermediate axes are horizontal. An upper limit on 

the value of a is the acute angle between the extremes of the scatter. Because the 

scatter is approximately symmetrical around the main fault surface, the similar axis 

has been defined as bisecting the scatter and the angle a must be less than 11°. The 

maximum value of k indicated by (x:5  11° is 

—sin2  a = k = -0.036. 	 (6.6) 

In Figure 6.15c all the data for the Big Hole fault (including slip-surfaces with no 

slickenline measurement) are rotated about the orthorhombic axes of symmetry for 

this system. This shows that the slip vectors are on average dip-slip, as would be 

expected for normal faults. The mean reflected pole can be compared to the slip 
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Figure 6.14. Rose diagrams of the orientations of slip-surfaces in the damage zone 

of a) the Big Hole fault and b) the Blueberry fault. The arrow represents the average 

strike of the main fault zone. The scatter in deformation band cluster orientations is 

symmetrical about the main faults. Poles to slip-surfaces and slickenlines for c) the 

Big Hole fault and d) the Blueberry fault. The square and the great circle is the 

average fault surface for the main fault. Note that the slickenlines are dip-slip for the 

Big Hole fault and oblique-slip (-20 °  W) for the Blueberry fault. 
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Figure 6.15. a) The odd-axis construction for the Big Hole fault. Great circles 

connect poles to slip-surfaces and their slickenlines. b) Contoured plot of mutual 

great circle intersections, the average intersection is the position of the odd axis. 

c) Contoured plot of fault pole and slip vector data rotated according to the rules of 

orthorhombic symmetry. d) The mean reflected pole plotted on the slip model net 

for normal faults (Reches 1983). The mean pole predicts k = -0.02 and 0 = 530 The 

mean reflected pole for the Chimney Rock fault array is shown for comparison 
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model net for normal faults (Figure 6.15d), showing that for this system of 

deformation bands k = —0.02 and 4) = 53°. This value of k corresponds to an angle 

between strike sets of 8° which is comparable to the data shown in Figure 6.14a. The 

value of 4) is consistent with the data for the Chimney Rock fault array as a whole (4) 
= 54°). The larger value of k (closer to zero) indicates that the strain is less oblate 

than that for the main Chimney Rock fault array. However, the data indicate that off-

fault deformation around the Big Hole fault is still consistent with three-dimensional 

strain rather than plane strain. 

The odd axis construction for the off-fault deformation around the Blueberry fault tip 

is shown in Figure 6.16a. The scatter in the strike of off-fault deformation bands and 

slip-surfaces is lower for the Blueberry fault tip than for the Big Hole fault (Figure 

6.14b), which would indicate that a lower value of k might be expected. When the 

intersections of the mutual great circles are contoured (Figure 6.16b), two maxima 

are apparent indicating that there are two possible odd axes. The strongest is 

horizontal and oriented 348°-168°. A second maximum dips 57° towards 309°. The 

slip vectors on the fault surface at the tip of the Blueberry fault are not pure dip-slip 

(Figures 2. 10c and 2.1ld). This is also the case for slip-surfaces within the off-fault 

deformation around the fault tip. The slickenlines at the tip of the Blueberry fault 

consistently pitch about 70° to the west of pure dip-slip (Figure 4.7b). In this case, 

the deformation band clusters are symmetrical about an oblique fault slip vector, and 

the odd axis must be sub-vertical and compressional so the second of the two 

intersection maxima is more likely to be the odd-axis. The principle strain axes are 

thus oriented with a sub-horizontal maximum extension, c, sub-perpendicular to the 

fault, a sub-horizontal minimum extension C) , sub-parallel to the fault and sub-

vertical compression E (Figure 6.16b). 
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Figure 6.16. a) The odd-axis construction for the Blueberry fault. b) Contoured plot 

of mutual great circle intersections, the average intersection is the position of the 

odd axis. c) Contoured plot of data rotated according to the rules of orthorhombic 

symmetry. d) The mean reflected pole plotted on the slip model net for normal faults 

(Reches 1983). The mean pole predicts k = -0.02 and 0 = 400. The mean reflected 

pole for the Chimney Rock fault array is shown for comparison. 

193 



Chanter 6: Off-fault Strain 

The scatter in the strike directions places an upper limit on a of 14 0  (k < —0.059). 

When the data is rotated according to the rules of orthorhombic symmetry, the 

average slickenlines are down-dip of the average fault pole, meaning that the slip 

model net for normal faults is applicable (Figure 6.16c). On the slip model net, the 

average fault pole defines a k value of —0.02 and a 0 of 400  (Figure 6.16d). The value 

of 4 is rather lower than that for the overall Chimney Rock fault array data. This may 

be a function of the scatter in the data. The minimum value of k is larger than that for 

the off-fault deformation around the Big Hole fault but the value indicated by the slip 

model net is the same. 

6.5. Discussion 

6.5.1. Deformation density 

From the deformation density maps it can be seen that the value of deformation 

density within a metre of the fault surface increases systematically with the 

displacement on the fault. The deformation density is 27% per 0.5 m2  at the fault tip 

(D =0) rising to 77% per 0.5 m2  at the Juniper flat outcrop (D = 24 m). When this 

deformation density is plotted against the displacement on the main fault strand at 

that point, a good positive correlation (R 2  = 0.88) is seen (Figure 6.17a). The 

maximum deformation density at greater distances from the fault, however, seems to 

be fairly constant on all of the outcrop maps (around 30% per 0.5m 2). The strain 

represented by transects of the off-fault deformation shows no systematic along strike 

variation in strain with the value of displacement on the main fault. 

These results imply that close to the fault (i.e. at distances less than a metre), the 

deformation density is related to the displacement on the fault at that point. 

Conversely, away from the fault the off-fault deformation width increases as 

displacement is accumulated but the maximum deformation density stays relatively 

constant. This is illustrated in cartoon form in Figure 6.17b. A mechanism that could 

generate this distribution of deformation density is suggested in Chapter 7. 
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Figure 6.17. a) Maximum deformation density within the first few metres of the 

fault vs. displacement on the fault, from the outcrop scale deformation density maps. 

b) Cartoon map of the pattern of deformation density around the Big Hole and 

Blueberry faults. Darker shading indicates a higher deformation density. Within the 

first few metres of the fault the deformation density is proportional to the 

displacement on the fault. Further away from the fault the deformation density is 

constant. 

	

y = 2.303x + 21.882 	 . 

R 0.8861 8_— 

• 	average density away from fault 

I 	 I 	 I 



Chapter 6: Off-fault Strain 

6.5.2. Three-dimensional strain 

The geometry of the off-fault deformation around the Big Hole fault is consistent 

with a three-dimensional strain field with a horizontal maximum extension, c, 

perpendicular to the main fault surface, a horizontal minimum extension, c y, parallel 

to the fault and a vertical compression, Ez  (Figure 6.15). It has been suggested that 

along-strike extension is due to flexure of the hangingwali and footwali, which 

occurs to accommodate increasing displacement on the fault (Wu and Bruhn 1994, 

Roberts 1996a). This strain can be estimated for the Big Hole fault by assuming that 

the beds were originally horizontal so that the original along-strike length, 10, of the 

beds is half the trace length of the fault (Figure 6.18). This is a reasonable 

approximation because the beds dip at only 5° in this area (see Figure 3.4). The final 

length, i, is the length of the beds after they have been displaced by the fault. 

Assuming a triangular displacement profile and symmetrical footwall uplift and 

hangingwall subsidence, If is then the hypotenuse of a triangle whose height is equal 

to the maximum displacement divided by two (Figure 6.18). According to this 

calculation the fault parallel strain is in the order of 3x10 5 . 

The value of k resulting from the odd axis and slip models for both the Big Hole fault 

and the Blueberry fault, would indicate that the fault perpendicular strain is between 

30 and 50 times the fault parallel strain. If the value of the fault parallel strain is 

taken from the calculations above, the fault perpendicular strain should be in the 

order of 0.9 x 10 to 1.5 x iO 3 . These values are lower than, but within the same 

order of magnitude as, the strain estimates from the transects of off-fault deformation 

(8.7 x 1O). Therefore the three-dimensional strain that gives rise to the 

orthorhombic off-fault deformation geometry is due to a component of along-strike 

strain, resulting from along-strike flexure of the hangingwall and footwall, in 

addition to fault perpendicular extension. 

The off-fault deformation is not growing in the regional strain field that produced the 

orthorhombic symmetry of the overall fault array. Instead, the geometry of off-fault 

deformation is consistent with local three-dimensional strain around the Big Hole 
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Figure 6.18. a) Cartoon of a faulted bed. The original length is that when the bed was flat 

and the final length is that when the bed has been stretched to accommodate hangingwall 

subsidence or footwall uplift. b) Diagram showing the calculation of the strain developed 

perpendicular to the fault due to stretching of the hangingwall and footwall. This 

calculation assumes that the displacement profile is linear. 
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and Blueberry faults i.e. fracture induced by slip on a pre-existing fault plane. It is 

important to note that analysis of the structures around one fault will give the 

contribution of that fault to the entire fault array. The sum of the strain represented by 

all the structures in the regional (Chimney Rock) fault array including the off-fault 

deformation around all the individual main faults would give the same strain as that 

for just the main faults in the array. Thus care must be taken when extrapolating from 

local to regional scales. 

6.5.3. Fault slip vectors 

Around the Blueberry fault the strain axes are rotated with respect to those around the 

Big Hole fault, reflecting the oblique slickenlines at the fault tip. Oblique slickenlines 

have previously been observed at the tips of individual fault segments along 

otherwise dip-slip faults in the Gulf of Corinth, Greece (Roberts 1996a and b). 

Roberts interpreted these oblique slickenlines as being due to differential fault 

parallel strain. The uplift in the footwall of the Gulf of Corinth faults is less than the 

subsidence in the hangingwall, resulting in larger fault parallel strains in the 

hangingwall. Wu and Bruhn (1994) also noted this effect in larger scale mountain 

range-bounding faults. However there is no evidence for differential uplift and 

subsidence at the Big Hole and Blueberry faults. Differential uplift and subsidence is 

not a requirement for faults that do not interact with the earth's surface (Gibson 1989, 

Gupta and Scholz 1998). Smaller faults are more symmetrical; they do not feel the 

effects of isostasy or loading of the hangingwall by sediment. Therefore the oblique 

slickenlines at the Blueberry fault tip, which is not considered to have been active at 

the earth's surface, are unlikely to de due to differential uplift and subsidence. 

Martel and Boger (1998) documented the progressive change of style and orientation 

of fractures around the rim of re-activated joints. The fractures rotated from an angle 

of 45° with the fault for the Mode UT tip to 70° at the Mode II tip. This is in 

agreement with the theoretical stress field which must rotate from Mode II at the 

upwards and downwards propagating tips of a normal fault to Mode ifi at the 

laterally propagating tips. It is possible that the rotation of the strain field that is 
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implied by the oblique slickenlines is a function of the stress field at a mixed-mode 

tip. This is an interesting possibility because it may allow us to estimate the position 

of the fault trace on the fault surface. Further studies of the geometry of structures at 

fault tips are required before this could become a useful tool. 

6.5.4. Variation between the fault tip and fault centre 

The along-strike variation of slip vectors described above suggests that the geometry 

of deformation at the fault tip is significantly different than that forming alongside a 

well-developed fault (Section 6.5.3). The value of k indicated by the scatter in 

deformation band strike is larger for the Blueberry fault tip (Figure 6.14a) than for 

the Big Hole fault (Figure 6.14b). Morewood and Roberts (1997) found that strain 

was more oblate (lower values of k) at the tips of individual fault segments and closer 

to plane strain in the centre of faults. This has not been convincingly demonstrated 

for the Blueberry fault due to the scatter in the data, but it suggests another way that 

the deformation at the fault tip could be distinguished from deformation alongside 

well-developed fault surfaces. 

The angular relationship between the four fault sets in an orthorhombic array will 

have a critical effect on the connectivity and hence permeability of the resulting fault 

zone. The size and axial ratios of the pods of relatively undeformed host rock will 

control the amount of anisotropy of the system. If there is a change in the geometry of 

the fault system between the tip region and the main part of the fault, then this would 

be reflected in the permeability structure of the fault zone. This is an important result, 

which remains to be tested. 
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6.6. Summary 

A zone of high deformation density is observed immediately adjacent to the main 

fault surface (within 1 m). The value of deformation density within this zone 

scales with the displacement on the main fault surface. This scaling implies that 

the density of deformation within a few metres of the fault is controlled by the 

accumulated amount of repeated slip on the fault surface. 

Away from the main fault surface there is no difference between the maximum 

density (the number of deformation bands per unit area) at the fault tip and the 

well-developed fault. There is no correlation in the strain represented by transects 

across the off-fault deformation with the displacement on the main fault surface. 

Thus, away from the fault, the main effect of increased displacement is an increase 

in the width of the off-fault deformation, with no corresponding increase in 

deformation density. 

Deformation band clusters within the off-fault deformation have an orthorhombic 

geometry, indicating that the strain is three-dimensional. An analysis of the 

geometry shows that the deformation band clusters near the centre of the fault 

grew in response to the local strain field around the fault, rather than in the 

regional (Chimney Rock fault array) strain field. This three-dimensional strain is 

due to fault parallel extension and along-strike flexure of the beds around the fault 

Slip vector data is different for the fault tip and the well-developed fault surface. 

A component of oblique-slip is seen on slip-surfaces at the Blueberry fault tip, 

while slip-surfaces around the well-developed main Big Hole fault surface are dip-

slip. This is reflected in the orientation of the principle axes of strain at the fault 

tip. The origin of oblique-slip at fault tips is unclear, but may be related to the 

stress field at a mixed-mode tip. 

A method of determining the position of a fault trace on the fault ellipse is 

suggested by these findings. The structures at the fault tip are likely to be 
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influenced by the stresses ahead of the fault tip and will therefore be in different 

orientations at the Mode ifi sideways propagating lateral tips and the mode II 

upwards and downwards propagating tips. Further studies of structures around 

fault traces which cut fault ellipses at different levels are necessary to illustrate 

this conclusively. 
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7. DISCUSSION 

7.1. Introduction 

The purpose of this chapter is to synthesise and interpret the results of the 

displacement and off-fault deformation measurements presented in previous chapters. 

Firstly a brief review of the results is presented in Section 7.2. In the light of these 

results, three categories of off-fault deformation have been identified and are 

discussed in Section 7.3. A new model proposed by Cowie and Shipton (1998), 

which conceives of fault growth as occurring by repeated slip on small patches is 

discussed in Section 7.4. This model combines numerical modelling by P. Cowie 

with the field observations presented in this thesis. In the Cowie and Shipton (1998) 

model the summation of many small slip events on a fault results in the formation of 

triangular displacement profiles without creating unrealistic stress concentrations at 

the fault tips. The slip-patch model is used to interpret the observations of the Big 

Hole and Blueberry faults in Section 7.5. This model provides a good explanation for 

the displacement profile data, as well as providing a framework for a new conceptual 

model of fault zone evolution (Section 7.6). 

7.2. Summary of displacement and off-fault deformation data 

7.2.1. Displacement profiles 

The data presented in this study are extremely high resolution measurements of 

vertical fault displacement (throw) across two fault zones. The data at the Blueberry 

fault tip is especially well constrained, and is the most detailed study of a fault tip 

displacement profile to date (Section 3.3). The fault tip, as defined by the 

displacement profiles, correlates well with the point where the fault is no longer 

represented by a single, well-formed slip-surface (Section 4.3.1). Contrary to existing 

models of fault displacement profiles which are either elliptical (for an elastic model, 

e.g. Pollard and Segall 1987) or bell-shaped (for an elastic-plastic model, Cowie and 

Scholz 1992a), the displacement at the Blueberry fault tip decreases in a linear 
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fashion towards zero at the fault tip (Section 3.4). One of the aims of this thesis is to 

re-evaluate and revise these models. 

7.2.2. Off-fault deformation 

The faults in this study consist of a fault core of tightly packed deformation bands, 

surrounded by off-fault deformation in the form of clusters of deformation bands 

(Section 4.4). One or more primary slip-surfaces can be identified within the fault 

core which are the surfaces upon which the majority of the fault displacement is 

accommodated (Section 4.6.3). Other slip-surfaces are found within the off-fault 

deformation zone, occurring within deformation band clusters, but these are 

discontinuous in lateral extent and have displacements typically between 30-200 cm. 

Beyond a certain distance, the rock is essentially undeformed (Section 4.6.1). When 

the width of the off-fault deformation is plotted against displacement it can be seen 

that the width is approximately twice the displacement (Section 4.6.2). This 

relationship suggests that the off-fault deformation formed as the fault was 

developing and accommodating further displacement. The off-fault deformation has 

a finite width at the fault tip (Section 4.3.1). Deformation ahead of the tip cannot be a 

direct result of the accumulation of displacement on the fault and is therefore 

interpreted as deformation associated with tip propagation. 

Close to the fault (within —2 m), the deformation density is greater where the 

displacement is larger. Although deformation is clustered, the maximum deformation 

density away from the main fault seems to be fairly constant, (Section 6.5.1). This 

would imply that, away from the main fault zone, increased slip on the fault results in 

an increase in the extent of off-fault deformation rather than increased deformation 

density. The structures surrounding the main fault surface have orthorhombic 

symmetry, implying that they formed within a locally controlled three-dimensional 

strain field (Section 6.4.3). This can be explained in terms of fault-perpendicular 

extensional strain that is much larger than the fault-parallel extension (Section 6.5.2). 

This is again consistent with these structures having formed due to displacement 

accumulation on the main fault surface. 
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7.2.3. Microstructures 

Consistent with the results of previous workers (Aydin and Johnson 1978, 

Antonellini et al. 1994) I have shown that deformation bands in the Navajo 

Sandstone accumulate displacement by the addition of new bands to a cluster until, at 

some point, a slip-surface nucleates within the cluster (Section 5.5.1). The exact 

mechanism of slip-surface nucleation remains unclear, but there is evidence that slip-

surfaces nucleate in small patches and then propagate together into an anastomosing 

network as described in Section 5.5.2. Repeated slip on slip-surfaces is suggested by 

a lower porosity and grain size immediately adjacent to the slip-surface as well as the 

presence of open (unhealed) microfractures and Riedel shears within this low 

porosity region. 

There is no correlation of grain scale microfracture density in the Navajo Sandstone 

with distance from the fault (Section 5.5.3). I have shown that these fractures are 

likely to be inherited fractures rather than fractures generated by deformation on the 

main faults (Section 5.5.4). Microscopic deformation associated with the 

development of deformation bands in porous rocks generally takes place as grain 

boundary microfractures, which are very difficult to quantify in this rock type. In any 

case, experimental studies of the deformation of high porosity sandstones emphasise 

that only a small amount of microfractures occur before the production of 

deformation bands (Lockner et al. 1992, Mair 1997). From these experiments it is 

expected that this will be the case in sandstones with a porosity greater than 10% 

(e.g. Dunn et al. 1973, Lockner et al. 1992). The deformation within the Navajo 

Sandstone ahead of the Blueberry fault tip consists of macroscopic deformation in 

the form of deformation bands with an unquantifiable amount of grain boundary 

microfracturing (Section 5.5.5). These observations are entirely consistent with the 

experimental results. These results emphasise the importance of host rock lithology 

on the structural style of off-fault deformation. 
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7.3. Categories of off-fault deformation 

Throughout this thesis the term off-fault deformation has been used to describe all of 

the deformation associated with and surrounding the faults in my field area. The 

results presented in this thesis have allowed the deformation around the Blueberry 

and Big Hole faults to be divided into two genetic types: deformation ahead of the 

fault tip due to tip propagation processes and deformation surrounding the well-

developed fault surface due to the accumulation of displacement on the fault. In order 

to eliminate the confusion of names given to these type of structures, it has been 

suggested that off-fault deformation be used as a purely descriptive term with no 

implications for the genesis of the deformation. Off-fault structures at different 

localities around the main fault surface can then be given the specific names 

suggested below, which indicate the mechanism by which they form as shown in 

Figure 7.1. I have identified and characterised all three types of off-fault deformation. 

7.3.1. The process zone 

Deformation at fault tips is commonly referred to in the literature as the process zone 

(e.g. Reches and Lockner 1994, Vemiilye and Scholz 1998). This reflects the concept 

that the faults are growing by propagation through relatively undeformed rock and 

that processes at the fault tip deform the rock in some way in order to break through 

and form new fault surface. An inactive wake of deformed rock would thus be 

expected to be preserved behind the propagating fault tip. The model of Cowie and 

Scholz (1992a) suggests that the width of the process zone scales with the length of 

the fault (Figure 7.1a). Previously the process zone has been visualised as a 

population of microfractures which decay in density with distance from the fault 

(Brock and Engelder 1977, Knipe and Lloyd 1994, Anders and Wiltschko 1994, 

Vermilye and Scholz 1998). The orientation of such microfractures has been 

suggested to be controlled by the stress field at the tip of the fault (Scholz et al. 1993, 

Vermilye and Scholz 1998). 
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/ 	 active process zone 
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S.. 	 inactive process 
zone wake 

position of  
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Figure 7.1. Conceptual models of damage zones. A process zone forms ahead of a 

propagating fault tip, leaving an inactive"wake" of damage as the fault propagates 

past its old tips. a) If the fault slips along its entire length in each growth event, the 

width of the wake will increase towards the tips of the fault (the stress concentration 

scales with fault length, Cowie and Scholz 1992a). b) A kinematic damage zone 

forms around a fault due to continuing displacement accumulation on that fault. The 

width and/or density of deformation will increase towards the center of the fault 

which has seen more slip events than the tips. c) A linkage damage zone forms 

where two faults link (segment boundaries or relay ramps). 
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The observations presented in this thesis show that both of these predictions do not 

apply to the faults in this field area. The process zone deformation at the Blueberry 

fault tip consists of macroscopic deformation bands rather than a population of 

microfractures, because the style of deformation in the process zone is a function of 

the rock type (Section 5.5.4). The width of the off-fault deformation at the Blueberry 

fault tip is much smaller than that predicted by the Cowie and Scholz (1992a) model. 

This model would predict that the process zone would be 10% of the length of the 

fault, i.e. between 360-400 m. In fact the macroscopic deformation at the fault tip 

extends for 12 m, i.e. only 0.3% of the length of the fault. The slip-patch model 

presented below (Section 7.4) provides an explanation for this observation. 

7.3.2. The kinematic damage zone 

Deformation will occur around a fault as it accumulates displacement. In this thesis 

off-fault deformation around a well-developed fault surface is called the kinematic 

damage zone (Figure 7. lb). The kinematic damage zone includes deformation due to 

repeated slip on the fault and the flexure of bedding surfaces around the fault (e.g. 

Jamison and Stearns 1982). Because the deformation is due to processes that 

accommodate displacement, the width and/or deformation density of the damage 

zone will be expected to increase where more displacement has accumulated and the 

fault has been active for longer (Figure 7. lb). At the Blueberry and Big Hole faults 

the width of deformation increases with the displacement; a mechanism that could 

produce scaling of this nature is presented below (Section 7.5.3). 

The kinematic damage zone would overprint and may re-utilise the process zone 

structures. However, the stress field at the fault tip will be different than that 

alongside a fault that is accumulating displacement. I have shown that the geometry 

of deformation around the Big Hole and Blueberry faults is different at the tip than 

adjacent to the well-developed fault (Section 6.5.4). Structures at the fault tip have 

oblique-slip slickenlines whereas those around the well-developed fault have dip-slip 

slickenlines. Additionally there is evidence that the strain represented by off-fault 

deformation around the well-developed fault is closer to plane strain than at the fault 
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tip. Thus the process zone and kinematic damage zone have differing geometries and 

can therefore be distinguished. 

7.3.3. The linkage damage zone 

Deformation may be particularly intense where the terminations of many rupture 

events on the fault have been focused. These may be regions where the fault has a 

strong patch or a geometrical irregularity which makes it hard for ruptures to 

propagate through. This would agree with the observation that deformation is often 

concentrated at areas where two fault strands link (Peacock and Sanderson 1991, 

Trudgill and Cartwright 1994), or at areas where locally the fault surface has a strong 

patch (Vermilye 1996). The terminations of earthquake ruptures often (though not 

always) correspond to fault segment boundaries that are visible on the ground and in 

displacement profiles (King 1986). In this thesis the term linkage damage zone is 

used for this type of off-fault deformation. Linkage zones may persist as regions of 

low displacement on the main fault surface, even when the fault segments are 

geometrically hard-linked (Walsh and Watterson 1991, Section 1.5.2). We would 

expect to see wide and/or intense zones of deformation surround areas of low 

displacement on the fault surface (Figure 7.1c). Note that this is the opposite scaling 

relationship that is seen with a kinematic damage zone. 
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7.4. The slip-patch model of fault growth 

7.4.1. Conceptual framework 

The high resolution displacement profiles presented here show that linear fault tip 

displacement gradients are a real feature of fault displacement profiles. Previously 

published models for fault growth do not predict linear fault tip displacement profiles 

(Section 1.6). These models are two-dimensional and require that the fault slips along 

its entire length in each faulting event. These assumptions are necessary for 

computational simplicity, but real faults are more complex. Experimentally generated 

faults can be seen to propagate by the coalescence of out-of-plane fractures (Cox and 

Scholz 1988). In addition, deformation occurs in a zone around fault tips associated 

with fault propagation (McGrath and Davison 1995, Martel and Boger 1998, 

Vermilye and Scholz 1998, Section 4.3.1 this study). Moreover most seismically 

active faults slip in ruptures which are much smaller than the length of the fault, so it 

is not appropriate for fault models to be constrained to growth by failure of the entire 

fault surface. 

Earthquake data show that faults rarely slip along their entire length; instead, 

portions of the fault surface rupture in one earthquake event. Rupture on a small 

patch of a fault relieves the stress on that portion of the fault but results in loading of 

adjacent areas (Figure 7.2a). This loading effect can be seen in the distribution of 

aftershocks around a fault rupture (Scholz 1990 p206, King et al. 1994, Hodgkinson 

et al. 1996). Fault ruptures are often terminated at segment boundaries. However, 

Roberts (1996a) reported surface ruptures of earthquakes on faults in the Gulf of 

Corinth which were shorter than the host fault segments. Thus it is not simply the 

geometry of the fault which controls the rupture size. Small or aseismic faults can 

also grow by repeated rupture of small portions of the fault surface. Vermilye and 

Scholz (1998) examined the microfracture population around several small faults 

with lengths ranging from 80 cm to 40 m. Cross cutting sets of differently oriented 

microfractures led them to conclude that these faults had grown by repeated 

propagation of ruptures which were smaller than the surface of the entire fault. Thus 

fault growth by multiple slip events, each of which is smaller than or equal to the size 
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fault plane 

Figure 7.2. a) Idealised plan view of an elastic fault with stress enhancement along 

strike and regions of reduced stress adjacent to the fault. The dotted lines are 

countours of equal stress. The grey area is the region of enhanced stress. 

Deformation is likely to be triggered in the stress enhanced region and retarded in 

the stress shadow. b) Cartoon of a slip patch on a fault surface. 
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common growth mechanism in real faults. A schematic representation of such a slip-

patch on a fault is shown in Figure 7.2b. 

If, once a fault has ruptured, it can regain its strength through some form of healing, 

the slip-patch can start to accumulate stress again. Chemical healing occurs by the 

deposition of material on the fault surface, which is often enhanced by high fluid 

flow in and around fault systems. Mechanical healing occurs due to the difference 

between static and dynamic friction (Scholz 1998). An increased angle of friction due 

to tighter packing and increased interlocking within cataclastic fault gouge will also 

inhibit further movement. The interlocking of asperities can also cause the strength of 

a fault to increase with time (Heimpel 1997). One of the key assumptions of the 

model presented below is that the healing is fast with respect to the recurrence time 

of slip events. Annealing of microfractures by quartz cementation has been shown to 

occur very rapidly in laboratory experiments, and could occur in as short a time as a 

few months (Smith and Evans 1984, Brantley et al. 1990). Experimental data 

indicates that mechanical healing could occur at rates of 3-6 MPa per decade after a 

rupture has ceased (Marone 1998). 

The effects of healing and reloading of small slip-patches have not been considered 

in previous models of fault growth. Two important effects become apparent if these 

effects are taken into account. Firstly, the rock around the tip of the fault is less 

stressed than if the entire fault surface had slipped. Secondly, the fault surface is 

reloaded by the stress changes around a slip-patch. This will bring the fault closer to 

failure than would be the case if only the regional tectonic stress was applied. These 

effects are incorporated into a new numerical model presented in Cowie and Shipton 

(1998), which provides an explanation for the displacement profile and off-fault 

deformation data observed in this study. The model is summarised below. 
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7.4.2. The slip-patch model 

This model idealises the fault plane as consisting of a linear array of elements of 

different strength. These strengths are randomly picked from a pre-determined 

distribution which varies between the maximum strength, cr., and the minimum 

strength, 	The fault therefore has uniformly random strength heterogeneity 

varying about a constant average strength. As the fault is loaded, the weakest element 

will fail. In this model, the weakest element is considered to be the most critically 

stressed, that is, the one that has the greatest difference between its strength and the 

applied stress. This failure results in a reduction of stress locally, but stress is 

transferred to neighbouring elements. Figure 7.3 shows the displacement profile and 

stress variation for two elements in the model. For simplicity the displacement on an 

individual slip-patch has a triangular distribution. However, the peak stress on 

adjacent elements is limited by the strength of the weakest of the two neighbouring 

elements, a 1  . The stress at either side of the slip-patch decays with distance such that 

a(r) = (o - aXRI(2r + R)) 2 
	

(7.1) 

where R is the size of the element and r is the distance away from each end of the 

slip-patch (Cowie and Shipton 1998). 

The broken element is healed instantaneously by assigning it a new strength drawn 

randomly from the initial strength distribution. The stress perturbations around the 

slip-patch can bring other elements in the array up to their yield strength, causing 

them to fail (Figure 7.3b). Only the most critically stressed element ruptures in any 

one failure event. The redistribution of stress for the entire array is calculated before 

allowing the next most critically stressed element to fail. As a consequence of the 

healing of slip-patches, the ruptured area can support subsequent loading. A positive 

feedback develops between the slipping and healed portions of the fault. As these 

events are summed over time, the symmetry of the reloading results in an 

approximately symmetrical triangular shaped profile. 
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Figure 7.3. Displacement distributions and stress variations for the slip patch model 

after a) the first, R 1 , and b) the second, R2 , rupture events. Arrows indicate where stress 

drop occurs and in b) reloading of a previously ruptured element. S is the length of the 

process zone for each element. From Cowie and Shipton (1998). 
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Examples of the stress distribution and displacement profile for a model run are 

shown in Figure 7.4. Each element is assumed to be 1 m long and each slip event 

accumulates a maximum of 1 cm displacement. The displacement profile in the 

vicinity of the tip of a 870 m long fault with 11 m maximum displacement is shown 

in Figure 7.4a. The displacement profile has an approximately constant gradient as 

far as the tip. Figure 7.4b shows the distribution of stress (solid line) compared to the 

strength of the material that the fault is propagating through (dotted line). The 

material strength varies randomly about an average value of 1.0 with CF. = 1.4 and 

Uniin = 0.6. The strength of the healed slip-patches also varies randomly; no strain 

softening or hardening is assumed. The stress on the fault fluctuates strongly, 

reflecting the continual process of rupturing, healing and reloading with each rupture 

event. At the tip, the stress is approximately equal to the local strength. Away from 

the tip, the stress decays away rapidly to a background level which is approximately 

the same as the average level on the fault. Many elements, including some beyond 

the tip, have a stress which is greater than their strength. However these elements do 

not fail because rupture only occurs on the most critically stressed element. 

In the examples presented above, the size of the slip-patch was constant throughout 

the lifetime of the fault. However slip-patches could potentially be any size up to the 

length of the fault. The model of Cowie and Scholz (1992a), where the entire fault 

surface fails in each slip-event, is an end member of the slip-patch model. 
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Figure 7.4. Displacement profile and stress distribution near the left-hand tip of a 

fault generated using the slip patch model. The fault has a total length, L, of 870 m 

and the size of one element is 1 m. a) Displacement profile on the fault showing an 

approximately linear decrease towards the tip. The dots indicate an elliptical (elastic) 

profile for a fault with the same Dm  and L. b) Stress (solid line) compared to the 

strength of the material (dashed line). The strength properties vary randomly and no 

mechanical weakening of the fault is included. The stress decays rapidly beyond the 

fault tip to 10% above the regional stress at —112 m from the fault tip. From Cowie 

and Shipton (1998). 
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7.4.3. Implications of the slip-patch model for displacement profiles 

Normalised displacement profiles at three stages in the model evolution are shown in 

Figure 7.5a. The profiles are approximately triangular with the maximum 

displacement near the centre of the fault. The profiles show some asymmetry and 

change shape as they develop through time. The maximum displacement as a 

function of length throughout lifetime of the model is shown in Figure 7.5b. This 

illustrates that the model exhibits a step-like growth pattern with periods when the tip 

propagation is dominant and periods when displacement accumulation is dominant. 

Overall, however, the model produces self-similar fault growth in the manner of the 

dataset for real faults (Section 1.5.1). The tip displacement profiles for six model 

time steps are shown in Figure 7.6. The tip gradient is roughly constant throughout 

the evolution of the fault. The gradient is controlled at any one time by two main 

processes: the formation of isolated ruptures ahead of the tip which then link to the 

main fault surface (decreasing the displacement gradient) and the build up of 

displacement behind the fault (increasing the displacement gradient). This is 

dependent on the strength of the elements at the tip. If the fault comes up against a 

strong element then displacement accumulation will be favoured: if the elements at 

the tip are weak then fault lengthening will occur. 

The variation of the host rock strength produces variation in the shape of the fault 

profiles with time, but overall the fault maintains an approximately linear tip profile. 

The variation of stress on the fault surface reflects the irregular fault displacement 

profile. These are common features of real faults (Section 3.5.1). Dawers et al. 

(1993) and Cartwright and Mansfield (1998) have observed a variation in tip 

gradients and displacement profile symmetry for isolated (i.e. non-interacting) faults 

in a simple tectonic setting. Lockner et al. (1991) observed episodic fault growth in 

experimental deformation of high porosity (>10%) sandstones. They postulated that, 

although they had selected apparently uniform rock samples, the episodic fault 

growth was controlled by strong patches within the sample. This model provides an 

explanation for the variation in tip gradients, asymmetrical fault displacement 

profiles and episodic fault growth, and may explain some of the order of magnitude 
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Figure 7.5. Self-similar growth in the slip patch model. a) Normalised displacement 

profiles calculated at three sucessive points in the fault growth history, ti, t2, 0. 

Displacement as a function of length during the progressive growth of an 

idividual fault. Overall the growth is self-similar with an average D/L = 0.012. The 

three growth stages in a) are indicated. From Cowie and Shipton (1998). 
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Figure 7.6. Time evolution of the displacement profile behind the right tip for the 

fault shown in Figure 7.4. for six successive profiles in the growth history. Grey 

circles indicate the tip position at each stage, defined as the point where the 

displacement first falls to zero away from the centre of the fault. From Cowie and 

Shipton (1998). 
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scatter in DJL plots of fault dimensions (Section 1.5.1). One important result of the 

slip-patch model is that the D can no longer be linked in a simple way to the 

properties of the host rock around the tip. However the tip gradient is sensitive to the 

local strength, or strength distribution of the host rock. Further studies of the 

variation of fault tip displacement gradients in different lithologies with varying 

strength anisotropy (such as joints) are necessary to investigate this control. 

The individual ruptures in the model have a triangular displacement profile (Figure 

7.3). This is merely for computational simplicity. Real seismic ruptures on faults can 

have extremely complicated shapes (e.g. McGill and Rubin 1999). Because the 

number of slip-patches needed to generate the displacement profiles is so large, the 

shape of individual slip-patches is essentially unimportant. The fundamental control 

which produces triangular displacement profiles is the symmetry of the reloading. If 

stress is always enhanced at the terminations of a slip-patch, and that patch is 

subsequently allowed to support stress (i.e. healed), then for a large number of 

ruptures the displacement profile will always tend to be triangular. 
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7.4.4. Implications of the slip-patch model for off-fault deformation 

The numerical model described above applies to a planar fault, and deformation 

around the fault surface is not explicitly considered. However, this model has 

important implications for the form of the off-fault deformation. The fault growth 

model proposed by Cowie and Scholz (1992a) predicted that the width of the process 

zone due to fault tip propagation would scale with the length of the fault (Figure 

7.1a). The new slip-patch model predicts different relationships between 

displacement and off-fault deformation structure which are more consistent with 

those observed at the Big Hole and Blueberry faults. 

For a fault growing by the accumulation of many small slip-patches, each individual 

slip event would relieve stress adjacent to the slip-patch and concentrate stress at its 

terminations (Figure 7.2a). Deformation will be produced where the stress 

concentration exceeds the yield strength of the rock; in this case around the perimeter 

of each slip-patch. The size of the region of enhanced stress, and hence the width of 

the off-fault deformation, would be expected to scale with the size of the slip-

patches. Therefore the deformation beyond the fault tip is the result of stress 

enhancement at the termination of the last slip-patch to rupture the fault at the tip 

(Figure 7.7). Structures at the fault tip are strictly speaking a process zone as defined 

in Section 7.3.1. (Figure 7.7). As this slip-patch is likely to be smaller than the 

dimension of the entire fault surface, the width of the process zone at the fault tip will 

not scale with the length of the fault. Instead, the process zone width is an indication 

of the dimensions of the last slip-patch (or slip-patches) to have ruptured the fault tip. 

Every slip-patch along the fault surface will produce deformation at its terminations. 

This deformation is part of the kinematic damage zone, distinct from a process zone 

wake, because it is due to repeated slip on the fault (Section 7.3.2, Figure 7.7). The 

shape of the kinematic damage zone depends on the relative size of the slip-patches 

as the fault grows. The model of Cowie and Shipton (1998) assumes for simplicity 

that all the slip-patches are of the same size. This would result in a kinematic damage 

zone of constant width. If the slip-patches are much smaller than the fault then a 
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narrow zone of deformation would be expected to occur adjacent to the main fault 

zone (Figure 7.7a). The density of deformation in the kinematic damage zone should 

scale positively with the displacement on the fault according to this model, because 

there have been more rupture events at the centre of the fault than at the tip. 

A more realistic scenario is that a fault fails by slip-patches, that can initiate at any 

position along the fault, of all possible sizes up to and including the size of the fault. 

Because stress enhancement takes place preferentially at the ends of the slip-patch, 

the largest slip-patches do not cause kinematic damage at the centre of the fault. 

Superimposing these slip-patches therefore results in a zone off-fault deformation 

that is wider at the fault tips (Figure 7.7.b). Additionally, because more slip events 

take place at the centre of the fault there would be a greater density of deformation at 

the centre of the kinematic damage zone and the deformation density will decay 

away from the fault. 

A third scenario is that the structure of the fault surface itself evolves during the 

accumulation of displacement, for instance, due to the smoothing of asperities or jogs 

in the fault surface. In this case larger slip-patches may only occur along the central 

portion of the fault. The slip-patch size would then be proportional to the 

displacement on the fault and the kinematic damage zone would be wider overall 

towards the fault centre. However once again, because stress enhancement is located 

at the ends of the slip-patch, the largest slip-patches do not enhance the stress, and 

hence cause kinematic damage along the centre part of the fault. When the effects of 

stress enhancement for all of the possible slip-patches is superimposed, the result is a 

narrower kinematic damage zone in the very centre of the fault (Figure 7.7.c). Again, 

the deformation density will be higher at the centre of the fault where more slip 

events have taken place. 

None of these scenarios produce the positive scaling of off-fault deformation width 

with displacement seen around the Big Hole and Blueberry faults that was 

demonstrated in Section 4.5.2 (Figure 4.29). In Figure 7.7 the regions of enhanced 

stress at the termination of each slip-patch have been superimposed. This means that 
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Figure 7.7. Schematic representation of the distribution of off-fault deformation 

produced due to enhanced stress at the termination of ruptures on the fault for a) 

many small slip patches of a constant size, b) slip patches of all possible sizes up to 

and including the size of the fault and c) slip-patches whose length is proportional to 

the displacemant at the point of rupture initiation. The grey area is the envelope of 

the off-fault deformation. None of these scenarios produces the positive scaling of 

damage zone width with displacement as seen at the Big Hole and Blueberry faults. 
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in all three scenarios, the deformation density should be greater at the centre of the 

fault because more slip events have occurred there. The maximum deformation 

density around the Big Hole and Blueberry faults is constant (Section 6.5.1), so an 

alternative explanation must be sought for the observation of scaling off-fault 

deformation width with displacement, but constant maximum deformation density. 

7.5. The slip-patch model applied to the Big Hole and Blueberry 

faults 

7.5.1. The Big Hole and Blueberry fault displacement profiles 

The structures in and around the Big Hole and Blueberry faults are consistent with 

the two main assumptions of the Cowie and Shipton (1998) model, i.e. that the fault 

slips along small patches and that healing occurs which allows stress to be supported 

on the fault surface. Microstructures in the fault zone illustrate that it has had a 

complex history of overprinting slip events. Very low porosity (a high degree of 

grain crushing) is seen in the cataclasite adjacent to the main fault slip-surface. This 

is overprinted with open microfractures and Riedel shears in orientations which 

suggest that they formed due to dip-slip shear parallel to the fault. Multiple cross-

cutting relationships between the deformation bands around the main fault surface 

also confirm that the fault has grown by multiple episodes of slip. The cross-hatched 

textures within the fault core (Section 4.5.5) suggests that the fault core has also 

developed through multiple episodes of slip. The evidence for healing on the fault 

surface is less clear, and is complicated by the lack of understanding of the 

mechanism of displacement accumulation on slip-surfaces in this rock type (Section 

5.5.2). Although slip-surfaces are usually seen as open fractures at the surface, Evans 

et al. (1999) observed in borehole data from this locality, that they are often 

cemented at depth, indicating that some form of chemical healing has occurred. In 

addition, physical healing (interlocking of asperities, grain crushing etc.) will have 

been important in this lithology as evidenced by the strain-hardening deformation 

bands (Section 7.3.1). 
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Figure 7.8. Comparison of the displacement profile for the Big Hole fault (thick 

line) with the modelled profile for t2 in Figure 7.4 (thin line). 

224 



Chapter 7: Discussion 

The model displacement profiles compare well to the displacement profile for the 

Big Hole fault (Figure 7.8). This displacement profile is slightly asymmetric; the 

displacement gradient at the west end of the fault is shallower than at the east end. 

Much of this asymmetry can be ascribed to the linkage of the main Big Hole fault 

strand with the segment at the western end of the fault (Figure 2.11). Wu and Bruhn 

(1994) describe how the enhanced stress along strike of a growing fault would 

encourage the growth of segments beyond the tip that then link to the main fault. It 

seems feasible that the western segment of the Big Hole fault has grown in this 

fashion. 

The model suggests that a range of tip gradients are possible throughout the lifetime 

of an isolated fault, but that the average gradient should be constant for a given rock 

type. As discussed in Section 3.5.1, the three tip gradients measured in this study are 

similar (0.007-0.017) and well within the range for isolated fault tip gradients from 

other studies (Figure 3.14). Because the tip gradient is dependent on the local 

strength of the rock, the relatively narrow range of tip gradients for the entire 

Chimney Rock fault array as seen in Figure 3.14 reflects the uniform nature of the 

Navajo Sandstone. 

7.5.2. The Blueberry fault process zone 

The process zone at the Blueberry fault tip is smaller than would be expected from 

the scaling implied by the Cowie and Scholz (1992a) model (Section 5.5.4). If the 

Cowie and Scholz (1992a) model was applied to this fault then the size of the process 

zone is predicted to be approximately 360-400 m, i.e. in the order of 10% of the 

length of the fault. Instead, we see a zone of deformation 12 m wide at the tip of the 

Blueberry fault. If we interpret this in terms of the slip-patch model, this process 

zone is formed within the enhanced stress region at the terminations of a small slip-

patch which has just reached the end of the fault. Using the same scaling arguments 

(the width of the zone of enhanced stress is 10% the length of the slip-patch) the slip-

patch that we infer would be in the order of 120 m long. 
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Using the relation between mean slip, Au, during an earthquake and the length of the 

rupture, I, (Scholz 1982) 

u=al 
	

(7.2) 

where a = 1 x 10-4  (Scholz et al. 1986), the maximum slip on a 120 m long slip-patch 

would be 1.2 cm. Of the order of 80 000 ruptures of this size would be required to 

generate a 4 km long fault with a maximum displacement of 29 m. In comparison, 

the modelled fault in Figure 7.4 is the product of 95 000 rupture events. This 

emphasises that a very large number of slip events is required to build even a small 

fault with only tens of metres of displacement. The precise ratio of the size of the 

zone of enhanced stress and the length of the slip patch depends on rock properties, 

which can vary. However if the number of slip events on the fault is large, the extent 

of the zone of increased stress around individual slip-patches is less important than 

the symmetry of the reloading along the fault (Section 7.3.3). 

No evidence has yet been gathered to demonstrate the size of slip-patches on the Big 

Hole and Blueberry faults. The resolution of the displacement profiles is not high 

enough to pick out anomalies in the order if 1.2 cm, the expected slip in one event. It 

may be possible to look at cross cutting relationships within the off-fault deformation 

to identify the most recent rupture and its dimensions. However given that slip-patch 

dimensions in the order of 120 m are expected, individual outcrops around the Big 

Hole fault may be too small to identify patterns of this scale. 

7.5.3. The kinematic damage zone of the Big Hole and Blueberry faults 

A discussed in Section 7.4.4, the shape of the off-fault deformation around the Big 

Hole and Blueberry faults cannot be predicted by simply superimposing the effect of 

all the slip-patches on a developing fault surface as described in Figure 7.7 and in 

Cowie and Shipton (1998). This would result in off-fault deformation which is more 

intense at the centre of the fault where more slip events have taken place. 

Furthermore, an alternative mechanism is required to explain the correlation between 

the displacement on the fault and the width of the off-fault deformation, i.e. that the 
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Figure 7.9. Cartoon showing the generation off-fault deformation at increasing 

distances from the fault. a) A slip-patch is induced on a pre-existing fault surface at 

point A. The grey area is the zone of enhanced stress at the fault tip. b) Stress 

enhancement at the tips of slip-patch A induces failure away from the fault at B. c) 

Stress enhancement at the tips of slip-patch B induces failure away from the fault at 

C and D. The rock at D is more likely to have previously been strained. Thus the 

rock is more likely to fail at C. If this process occurs many times the resulting 

kinematic damage zone will be wider at the fault centre i.e. will scale with 

displacement on the fault. 
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maximum width is at the fault centre. The observation of a constant maximum 

density of off-fault deformation around the Big Hole fault also implies that some 

form of strain hardening process is transferring deformation away from the main 

fault with each repeated slip event. 

When a slip-patch ruptures, stress is enhanced in a volume around the slip-patch tip 

as well as directly along strike. This may cause failure of the rock out of the plane of 

the fault in addition to re-loading the fault plane along strike. Figure 7.9 illustrates 

this in cartoon form. The rupture at point A on the pre-existing fault surface, has 

induced slip out of the plane of the fault at point B, which in turn induced rupture at 

points C and D and so on. Strain hardening is a mechanism that is known to occur in 

high porosity sandstones, and if this occurs, subsequent failure would be 

preferentially located in undeformed host rock. It is more likely that the rock on the 

side of the slip-patch which is further away from the fault will be undeformed, i.e. at 

point C in Figure 7.9c. In this way deformation will be transferred away from the 

fault surface. When the effect of tens of thousands of slip events on the main fault 

surface is summed, the resulting kinematic damage zone will be wider at the centre 

of the fault. The additional ingredient of strain-hardening allows the slip-patch model 

to be reconciled with the field observations from the Big Hole and Blueberry faults. 

Within the zone of deformation around the Big Hole fault there are places where the 

strain across deformation band clusters has become large enough to develop a slip-

surface. Slip-surfaces allow the accumulation of much larger displacements than 

zones of deformation bands. If these slip-surfaces also grow by the slip-patch process 

then they will in turn generate their own kinematic damage zone. This will result in 

local increases of deformation density (i.e. Section 6.3.2). However, the maximum 

deformation density will be controlled by the strain hardening process. An apparent 

scaling of deformation density is seen within a few metres of the main fault surface 

(Section 6.5.1). This indicates that the deformation mechanisms at high strains close 

to the fault are no-longer strain hardening. 
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7.6. Integrated model for off-fault deformation and displacement 

accumulation through time 

7.6.1. Evolution of a single isolated fault 

The observations presented in this thesis, coupled with the slip-patch model of Cowie 

and Shipton (1998), suggest a new integrated model for the formation of off-fault 

deformation and displacement accumulation through time. The model can be 

illustrated by looking at the evolution of a single, isolated fault developing through 

time (Figure 7.10). Figure 7. 1 O shows the displacement profile and deformation 

map for a single rupture of an idealised planar fault. The rupture induces deformation 

in the zone of stress enhancement at its tips. Displacement accumulation on the fault 

is accommodated by slip on small patches, each one less than or equal to the size of 

the entire fault surface. For simplicity, all the ruptures are drawn the same size but 

could theoretically be any size up to the size of the fault. The displacement profiles 

drawn in Figure 7.10 are the cumulative profiles for all the ruptures on the fault. The 

fault propagates if a slip-patch is triggered near the fault tip and the resulting rupture 

propagates into the undeformed host rock around the fault. The process zone at the 

fault tip is small and reflects the size of the slip-patches which occur at the tip. 

Depending on the local strength properties of the host rock ahead of the propagating 

fault tip the enhanced stress from a slip-patch at the tip could cause it to fail (Figure 

7.10b). If this occurs then the tip will propagate, temporarily resulting in a shallower 

than average fault tip gradient. The displacement will then build up gradually behind 

this region. Conversely if a strong patch exists at the tip then it can support higher 

than average displacement gradients. In this way it is possible to get asymmetric or 

skewed displacement profiles simply through the local variations in host rock 

strength. As a result, the point of maximum displacement on the fault shifts through 

time and is not related to the point of nucleation of the fault which has previously 

been assumed (Ellis and Dunlap 1988). This asymmetry will be reflected in the shape 

of the kinematic damage zone. Because the width or density of off-fault deformation 
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is simply proportional to the number of slip events, the shape or density of the 

kinematic damage zone broadly mirrors the displacement profile. 

If the average rock properties do not change, the displacement profile will tend to be 

self-similar over time (Figure 7.10d). The average displacement gradient at the fault 

tip reflects the average strength of the rock. If the rock has a more heterogeneous 

strength distribution there will be more variation in tip gradients through time. 

This conceptual model is based on the observations made at the Big Hole and 

Blueberry faults, but could theoretically be applied to the growth of any fault. The 

kinematic damage zone has a width and/or deformation density that depends on the 

number of rupture tips that have occurred on the fault at that point. The kinematic 

damage zone width/deformation density therefore scales with the fault displacement. 

Because of the observations at the Blueberry and Big Hole faults, the kinematic 

damage zone in Figure 7.10 is drawn so that its width scales with displacement. 

However, for non-strain hardening lithologies the effects of the stress enhancement at 

slip-patch terminations could simply be superimposed as in Figure 7.7. In this case, 

the kinematic damage zone width would be approximately constant and the 

deformation would be more intense at the centre of the kinematic damage zone. The 

scaling of off-fault deformation width/density with displacement will thus depend on 

the mechanism of deformation in the host rock. Other studies have shown scaling, 

but with different scaling relationships (e.g. Knott et al. 1996). A more extensive 

study of fault zones of different sizes, at different stages of evolution and in different 

host rock types, in particular strain hardening vs. non-strain hardening lithologies, is 

required to fully understand these effects. 

7.6.2. Damage associated with fault linkage 

The process of fault growth by linkage has not explicitly been discussed in this 

thesis. There is evidence for a segment boundary at the west end of the Big Hole fault 

but the outcrop quality is not good so a detailed investigation of the geometry of a 

linkage damage zone is not possible here. An integrated model of fault growth must 

include a consideration of this process, so this section discusses the logical 
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In Figure 7.11a two single faults are growing independently. Each fault has a small 

process zone, and a kinematic damage zone which scales with the displacement on 

the fault as in Figure 7.10. In Figure 7.1 lb the two faults have started to interact but 

are soft-linked, that is they are not behaving as a single structure (Walsh and 

Watterson 1991). This means that displacement is not being accumulated within the 

segment boundary. Deformation will be caused by the increased stress in the segment 

boundary producing the linkage damage zone. In Figure 7.1 lc the segment boundary 

has become hard-linked. This means that the segment boundary has been breached 

and the two faults are behaving essentially as one structure. In this case the fault can 

accumulate displacement within the segment boundary on the new through-going 

fault surface. The linkage damage zone will be overprinted by deformation caused by 

continued slip at the segment boundary and a kinematic damage zone will start to 

develop. However, segment boundaries are often persistent areas of low displacement 

on the main fault surface, implying that some deformation is permanently partitioned 

into the linkage damage zone. 

The end result is a fault with an irregular width and intensity of damage around the 

main fault surface (Figure 7.1 id). However the rough scaling relationships still hold: 

the area where the fault has maximum displacement still has the largest amount of 

kinematic damage, deformation occurs ahead of the propagating fault tips but in a 

narrow zone, and deformation is concentrated at segment boundaries. The different 

scaling relations expected for each of the damage zone types helps to explain why 

many observed fault zones do not have simple distributions of off-fault deformation. 

Because the generation of off-fault deformation generation is linked to several 

processes, the resulting shape of off-fault deformation produced by different 

processes acting on one fault throughout its growth will be complex. In addition, the 

evolution of a fault into a larger structure may involve changes in the deformation 

mechanisms through time (e.g. Knipe and Lloyd 1994). However the simple models 

(kinematic damage zone, process zone, linkage damage zone) shown here will help to 

distinguish different generations of off-fault structures and to decipher the fault 

growth history. 
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8. CONCLUSIONS AND FUTURE WORK 

8.1. Conclusions 

This thesis presents surveys of two isolated normal faults in the high porosity Navajo 

Sandstone. The fault displacement profiles and off-fault deformation structures have 

been examined as part of a linked and evolving system. This process-oriented 

approach has led to the construction of a more realistic model for fault growth, and to 

a better understanding of fault growth and the evolution of off-fault deformation 

through time. The main conclusions of the thesis are as follows: 

Fault tip displacement profiles are linear. The displacement profiles of the simple 

(non-interacting) faults from this study are triangular with a maximum towards the 

centre of the mapped fault trace and displacement decreasing linearly towards the 

fault tips. This study contains the highest resolution data from a fault tip 

displacement profile to date, and confirms that the linear displacement profiles at 

isolated fault tips seen in other published studies are not an artefact of sparse data. 

Existing analytical models of fault growth are not compatible with linear fault tip 

gradients, and must therefore be revised. 

A zone of deformation exists around the faults which is due to the nucleation, 

propagation and accommodation of displacement on the main fault surface. The 

off-fault deformation consists of deformation bands and slip-surfaces running sub-

parallel to the fault. Beyond a certain distance few or no deformation bands are seen. 

Although the off-fault deformation is clustered, there appears to be a constant 

maximum density of deformation. Deformation in high porosity (>10%) sandstones 

is significantly different from that in other rock types; macroscopic structures are 

produced without forming a large population of microfractures. Microfractures 

within the host rock show no signal of the fault zone and are therefore interpreted to 

be inherited. 
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Deformation is observed ahead of the fault tip. Deformation associated with the 

Blueberry fault can be traced beyond the point where the displacement on the fault 

drops to zero. Beyond this point there are no through-going slip-surfaces. This 

deformation must be associated with the stress concentration at the tip of the 

propagating fault. Previous studies of fault tip deformation have concentrated on 

microscopic deformation. However, the deformation ahead of the Blueberry fault 

consists of a finite width of macroscopic deformation band clusters and an 

unquantifiable, but probably insignificant, amount of grain boundary deformation. 

The off-fault deformation around the well-developed fault surface has formed to 

accommodate increased displacement on the main fault. The geometry of the off-

fault deformation structures around the Big Hole fault surface are consistent with 

three-dimensional strain resulting from a large component of fault perpendicular 

strain and a smaller component of fault parallel strain. These are the first 

observations of orthorhombic geometries within off-fault deformation, and have been 

deciphered in terms of the strain field due to fault development. Strain parallel to the 

fault is a result of along-strike extension of the beds as they accommodate 

displacement on the main fault. The strain perpendicular to the fault is approximately 

constant along the length of the fault and is consistent with fault perpendicular 

extension. These observations are consistent with the interpretation that the off-fault 

deformation is locally accommodating increased slip on the fault surface rather than 

in the strain field of the regional fault array. 

The width of off-fault deformation scales with the displacement on the fault. The 

width of off-fault deformation is approximately twice the displacement on the main 

fault. This implies that a link exists between the extent of the off-fault deformation 

and the number of slip events on the fault. This relationship is potentially useful in 

predicting sub-seismic fault architecture, however, the predicted width of off-fault 

deformation could vary by about as much as 10-20% of the average value at a point. 

The scaling of off-fault deformation width and displacement is dependent on host 

235 



Chapter 8 - Conclusions 

rock lithology, in particular strain hardening vs. strain softening lithologies. This 

study demonstrates the influence of strain hardening explicitly. 

The orientation of structures at the fault tip are different to those along the 

well-developed fault surface. Slickenlines on slip-surfaces around the Big Hole 

fault are dip-slip, whereas those at the Blueberry fault tip are oblique; pitching 700  to 

the west of dip-slip. Oblique slickenlines formed at the fault tip are overprinted by 

subsequent displacement accumulation, and are not seen where the displacement is 

greater than a few metres. There is a greater scatter in the strikes of deformation 

bands and deformation band clusters at the tip suggesting that the deformation in the 

centre of the fault is closer to plane strain compared to the tip. Based on these field 

observations, the oblique slickenlines may be a function of propagation of a mixed-

mode tip line, i.e. between the upwards or downwards propagating, top or bottom of 

the fault ellipse and the sideways propagating lateral tip (Mode H and Mode ifi for 

nomral faults). These observations may help to constrain where the plane of 

observation intersects the fault surface in a three-dimesional volume. 

A new fault growth model gives much more realistic (triangular) displacement 

profiles than existing analytical models. This model describes how displacement is 

accumulated by repeated failure and healing of small patches of the fault surface. 

Each slip event relieves stress adjacent to the fault and increases stress along strike. 

Healing of the slip-patch, either physical or chemical, allows the patch to support 

support subsequent loading. When many slip events are summed, the resulting 

displacement profile is triangular in shape. The model predicts the triangular 

displacement profiles and linear tip gradients similar to those seen in the field. The 

tip gradient at any one time is a function of the local strength of the rock and can 

therefore vary through the lifetime of the fault. 

The slip-patch model has led to a new conceptual model for the origin and 

distribution of off-fault deformation structures through time. Although the slip-

patch model is two-dimensional and does not strictly include off-fault deformation, it 
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can be used to predict the distribution of off-fault deformation. Deformation will 

occur where the stress is enhanced at the termination of each slip-patch. If the effect 

of all the slip patches on a fault is superimposed, then the deformation density would 

be expected to be greater at the centre of the fault. This is not the case at the Big Hole 

and Blueberry faults because strain hardening has caused the formation of 

deformation bands at increasing distances from the fault through time. This model 

can theoretically be applied to the growth of any fault, but the effect of host rock 

deformation mechanisms must be taken into account. 

This study highlights the need for rigorous application of the terms used to 

describe off-fault deformation. In order to describe deformation around faults 

without implying any specific genesis it is referred to as off-fault deformation. Off-

fault deformation around faults occurs in three key locations. Deformation ahead of 

the fault tip is referred to as the process zone. The extent of this deformation is 

dependent on the scale of the slip-patches that rupture the fault at the tip. 

Deformation associated with the accumulation of displacement on the fault is called 

the kinematic damage zone. Depending on the deformation mechanisms in the host 

rock, either the deformation density (strain softening lithologies) or the off-fault 

deformation width (strain hardening lithologies) will scale with the displacement on 

the fault. Deformation will also be concentrated at zones where fault segments have 

linked: the linkage damage zone. Off-fault deformation around real faults will consist 

of overlapping and overprinting structures from each of these three damage zone 

types. The process zone, kinematic damage zone and linkage damage zone can be 

macroscopic or microscopic features depending on the deformation mechanisms in 

the host rock. In the high porosity Navajo Sandstone the process zone is a 

macroscopic feature, this is in contrast to previous studies in low porosity sandstones 

and granite which found a microscopic process zone. 

The existing model of deformation band evolution is too simplistic, and does not 

fully describe the evolution of slip-surfaces from zones of deformation bands. 

The model of Aydin and Johnson (1978) implies that as a slip surface nucleates 
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within a zone of deformation bands at either a critical strain across the band or at a 

critical deformation density. However, the greatest density of deformation is not 

always coincident with the presence of slip-surfaces. Some slip-surfaces are 

associated with local thickening on otherwise simple deformation band clusters or 

single bands. I have demonstrated that displacement accumulation on a slip surface 

has little effect on the grain size (porosity) of the adjacent rock. The grain size 

distribution cannot therefore be used to distinguish slip-surfaces formed in off-fault 

deformation clusters from major fault planes. Grain crushing means that slip-surfaces 

will have a much reduced permeability perpendicular to the structure but it is unclear 

to what extent the permeability is enhanced or reduced within the plane of the slip-

surface. 

8.2. Suggestions for future work 

What does off-fault deformation look like in three-dimensions? 

Most of the discussion of off-fault deformation so far has concentrated on a two-

dimensional plan view. The outcrop at the Blueberry and Big Hole faults is good 

compared to many field areas because it allows cross-sections of the off-fault 

deformation to be analysed as well as plan views. However, only a fraction of the 

down-clip dimension of the fault can be mapped in the dry river canyons. An 

interesting feature is the cross-hatched pattern seen in the outcrop-scale maps and on 

stereonets of structures at different scales. This pattern seems to be associated with 

the linkage of different fault segments at all scales. An ongoing project, which 

involves coring through the Big Hole fault, will shed more light on the down-dip 

extent of the off-fault deformation (Evans et al. 1999). The variation of slip-vectors 

and orthorhombic geometry between the fault tip and the well-developed fault 

surface gives rise to the possibility that there could be a significant difference 

between process zone and kinematic damage zone geometries. In this thesis it has 

been suggested that the oblique slickenlines at the fault tip are a function of the 
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propagation of a mixed-mode tip. A study of fault traces that cut different levels of 

fault ellipses would be necessary to confirm this suggestion. 

What effects the scaling between off-fault deformation zone width and displacement? 

Other rock types exhibit very different deformation mechanisms, but do they also 

have different scaling relations between off-fault deformation zone width and 

displacement? If the scaling seen in this study is a common phenomenon, it would be 

an extremely useful tool in predicting the distribution of sub-seismic deformation. 

More detail on the controls on this scaling, such as the contribution of strain 

hardening and softening lithologies, and the parameters of the scaling relationships 

would be needed before this can be demonstrated. The models suggest that the 

displacement gradient at the fault tip is dependent on the strength distribution of the 

host rock. Further study is required on faults in host rocks with differing degrees and 

scales of heterogeneity in order to understand this effect fully. 

How does off-fault deformation accumulate around more developed fault systems? 

This thesis has examined and discussed the deformation around two single, relatively 

isolated normal faults only a few kilometres in length. However it is becoming 

increasingly recognised that deformation in the crust is more commonly taken up on 

systems of interlinking faults. It is more realistic to model a population of faults that 

interact as they grow and develop into a complex network. The increased amount of 

deformation seen around zones where two faults have linked (the linkage damage 

zone) has been discussed briefly but it would be interesting to see if any scaling 

exists between, for instance, the overlap/separation ratio and deformation density at 

segment boundaries. Future studies of off-fault deformation should be linked to 

displacement on the main fault surface in order to investigate the controls on scaling 

of off-fault deformation zone width and displacement. 
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Chapter 8 - Conclusions 

How do slip-surfaces evolve? 

This study has indicated that the existing model of deformation band evolution is too 

simplistic. Slip-surface nucleation and growth is a key to understanding deformation 

mechanisms in this rock type. The possibility that slip-surfaces may be preserved as 

open fractures at depth and can form linked arrays within low porosity deformation 

band clusters means that they have important implications for the permeability 

structure of fault zones in high porosity sandstones. More microstructural studies of 

slip-surfaces at all stages of development are required, especially to investigate their 

relationship to pods of local thickening along deformation bands. Additionally, more 

data on the distribution of slip-surfaces is needed to assess their contribution to strain 

within the off-fault deformation. Deformation bands and slip-surfaces have a 

significant effect on the permeability of high porosity sandstones. The effect of slip-

surfaces on permeability will be enhanced if they are interconnected along-strike and 

down-dip, so an understanding of three-dimensional slip-surface geometry will be 

critical in studies of fault zone permeability. 
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