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Abstract 

 

Aromatase, a member of the cytochrome P450 superfamily, catalyses the conversion 

of androgens to estrogens; specifically, testosterone to estradiol and androstenedione 

to estrone.  Aromatase is widely expressed across a range of tissues and deleterious 

metabolic effects are observed in both murine aromatase knock-out models and in 

rare human cases of aromatase deficiency.  The effects of pharmacological inhibition 

of aromatase, as employed in the treatment of breast cancer, are not well 

characterised.  This thesis addresses the hypothesis that aromatase inhibition, and 

consequent changes in sex steroid hormone action (higher androgen:estrogen ratio), 

results in disadvantageous changes in body composition and reduced insulin 

sensitivity.   

 

In a cohort study of 197 community-dwelling men, lower testosterone and SHBG 

concentrations were observed in those fulfilling criteria for metabolic syndrome, 

although no relationship with estrogens was observed.  The strongest determinant of 

circulating estrogens was substrate androgen concentration.   

 

A case-control study of aromatase inhibitor treated breast cancer patients and age-

matched controls (n=40) demonstrated decreased insulin sensitivity and increased 

body fat in those treated with aromatase inhibitors; serum leptin concentration and 

leptin mRNA transcript levels (in subcutaneous adipose tissue) were elevated in this 

group.   
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In healthy male volunteers (n=17), 6 weeks of aromatase inhibition (1 mg anastrozole 

daily) resulted in reduced glucose disposal during a hyperinsulinaemic euglycaemic 

clamp study, with d2-glucose and d5-glycerol tracers.  No effects upon hepatic insulin 

sensitivity, lipolysis or body composition were noted, although serum leptin 

concentration was reduced following aromatase inhibitor administration. 

 

In conclusion, aromatase inhibition is associated with increased insulin resistance and, 

in women, increased body fat.  This may be relevant for patients receiving aromatase 

inhibitor therapy, where more careful monitoring of glucose tolerance may be 

warranted. 
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Chapter 1 

 

Introduction  
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Sex steroid hormones are thus named because of their well-established role in sexual 

development and fertility.  Beyond their role in reproduction, considerable evidence 

supports effects upon body composition and, more recently, upon fuel metabolism 

and cardiometabolic risk (Mauvais-Jarvis et al. 2013). Phylogenetic analysis suggests 

the single ancestral receptor (ANcSR1), from which other steroid receptors evolved, 

was estrogen responsive and, in predating sexual reproduction, was likely to have had 

a role in regulating cellular metabolism (Eick & Thornton 2011).   Compared to age-

matched men, premenopausal women have greater insulin sensitivity when adjusted 

for lean mass (Park et al. 2003).  Furthermore, evidence from multiple animal models 

supports a critical metabolic role for sex steroid hormones, including the protection 

from insulin resistance afforded to estradiol replete rodents (Stubbins et al. 2012).  

Conversely, menopause and ovariectomy result in adverse effects upon metabolic 

health.  In men, subnormal testosterone levels are associated with increased visceral 

adiposity (Nielsen et al. 2007) as well as an increased risk of developing type 2 

diabetes mellitus (T2DM) (Ding et al. 2006).  

 

Whilst the testes and ovaries are the major source of androgens and estrogens, 

respectively, the adrenal glands are also responsible for androgen generation and 

adipose tissue is increasingly recognised as a significant source of sex steroid 

hormone production.  Indeed, in men and postmenopausal women, estrogens are 

primarily generated in adipose tissue from the conversion of androgens, by the 

enzyme aromatase (Simpson et al. 1999) (figure 1.1). In this context, plasma 

estrogens, whilst perhaps reflecting adipose tissue generation (Belanger et al. 2006), 

do not primarily operate as hormones in the classical sense (i.e. by exerting their 
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effect at a site distant from their generation) (Simpson et al. 2005).  The importance 

of this local adipose hormone generation, which also involves glucocorticoid and 

androgen metabolism, places limits upon the usefulness of studying plasma hormone 

levels and, equally, in relying upon systemic administration of sex hormones to assess 

their adipose effects.  Indeed, the steroid content of adipose tissue has been estimated 

to be between 40 to 400 fold greater than that of plasma (Belanger et al. 2002). The 

term ‘intracrinology’ has been coined to encompass this important process of local 

hormone generation and action.  Pharmacological inhibition of aromatase is known to 

markedly suppress circulating estrogens and, in men and post-menopausal women, 

this is presumably a consequence of action in the adipose compartment. 

 

A significant body of observational and mechanistic evidence supports a role for sex 

steroid hormones in relation to body composition, insulin sensitivity, diabetes risk and 

mortality.  This thesis will examine the influence of sex hormones upon insulin 

sensitivity, adipose tissue and body composition, principally through assessment of 

the effects of pharmacological aromatase inhibition in both men and women.    
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Figure 1.1 Steroid hormone biosynthetic pathway (adapted from Payne & 

Hales et al. 2004)
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1.1 Sex steroids and body composition 

 

1.1.1 Visceral and subcutaneous adipose tissue 

!
The increasing incidence of type-two diabetes, and its attendant cardiovascular 

complications, is largely a result of rising levels of obesity. Risk of cardio-metabolic 

disease varies widely within the obese population, particularly as a function of body 

fat distribution.  Adipose tissue distribution is conventionally described as either 

android (central, abdominal, male pattern) or gynoid (peripheral, gluteo-femoral, 

female pattern).  Android obesity is a much stronger risk factor for the development 

of diabetes and cardiovascular disease than is gynoid obesity.  Following menopause 

women typically shift from a gynoid to android body habitus (Kuk et al. 2005), with a 

coincident convergence in cardiovascular and diabetes risk with reference to their 

male peers (Lemieux et al. 1994). It is this interesting observation from nature which 

initially stimulated interest in the contribution of sex steroid hormones (particularly 

estrogens, which decline precipitously after menopause) to control of body fat 

distribution.  Subsequently, humans with vanishingly rare genetic mutations 

controlling sex steroid hormone generation or action and elegant transgenic animal 

models have lent further support to the centrality of estrogens and androgens in the 

control of adipose distribution. 

 

A substantial body of evidence has accumulated in support of the proposition that 

central fat distribution, and in particular visceral fat, plays a role in the development 

of cardio-metabolic disease (Wajchenberg 2000).  The INTERHEART study 

demonstrated, in a cohort of 27,098 men and women, that Waist-hip ratio (WHR) (a 

proxy for central adiposity) was a more accurate predictor of incident myocardial 
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infarction than body mass index (BMI) (a proxy for generalised obesity) (Yusuf et al. 

2005).  A number of studies have sought to determine the differential effects of 

visceral and subcutaneous adipose tissue upon insulin sensitivity, all reaching broadly 

similar conclusions.  Utilising computed tomography to quantify subcutaneous and 

visceral fat depots permitted the observation that 54% of the variance in insulin 

sensitivity, in men and women, can be accounted for by intra-abdominal fat volume 

(Cnop et al. 2002), congruent with earlier observations limited to post-menopausal 

women (Brochu et al. 2000).  Further support for this hypothesis is offered by the 

observation that insulin sensitive obese post-menopausal women have 49% less 

visceral adipose mass than their insulin resistant peers (Brochu et al. 2001).  In 

addition to the deleterious effects of visceral fat, some evidence exists to support a 

metabolically protective role for lower limb fat depots (Van Pelt et al. 2005). 

 

Visceral adipose tissue typically accounts for between 5 and 20% of total adipose 

mass, yet appears to contribute disproportionately to the adverse outcomes associated 

with obesity.  The visceral depot differs from subcutaneous fat not only in its unique 

anatomical relationship with the liver but also with respect to its transcriptomic and 

biochemical activity.  The ‘portal paradigm’ seeks to explain the association of 

visceral fat with adverse metabolic outcomes by suggesting increased non-esterified 

fatty acid (NEFA) flux and inflammatory cytokines from visceral adipose tissue result 

in hepatic insulin resistance.  Visceral adipose tissue contains a larger proportion of 

macrophages than subcutaneous fat, which may be associated with the production of 

atherogenic cytokines (Weisberg et al. 2003).  Visceral adiposity is also associated 

with higher levels of plasminogen activator inhibitor-1 (PAI-1) and low-grade 

inflammation (Van Gaal et al. 2006). It remains a possibility that visceral fat is simply 
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a marker for generalised ectopic fat deposition; however surgical removal of intra-

abdominal fat appears to mitigate insulin resistance in rodents (Gabriely et al. 2002) 

and humans (Thörne et al. 2002), thus lending support to a pathogenic role.  

Conversely, in mice, transplantation of subcutaneous fat into the visceral 

compartment of a recipient animal, results in improved insulin sensitivity and reduced 

fat mass (Tran et al. 2008). 

 

Visceral adipose tissue is less sensitive to the anti-lipolytic effects of insulin (figure 

1.2). It exhibits higher responsiveness to pro-lipolytic catecholamine β1 and β2-

adrenoreceptor signalling and lower responsiveness to anti-lipolytic α2-adrenoreceptor 

signalling, compared with subcutaneous fat (Lafontan et al. 2003).  Adipocytokine 

production also demonstrates site specificities, with leptin secretion higher in 

subcutaneous adipocytes (van Harmelen et al. 1998) and adiponectin higher in 

visceral adipocytes. 

 

Obesity results in increased basal lipolysis with larger fat cells and increased TNFα 

production (Arner et al. 2005). Whilst catecholamine-induced lipolysis is reduced in 

the subcutaneous depot, the opposite is true in the visceral compartment and this is 

more pronounced in men (Nielsen et al. 2004). 

 

Assessment of transcript expression between visceral and subcutaneous adipocytes 

has shown that, as expected, leptin transcript levels are greater in subcutaneous 

adipocytes (Montague et al. 1998). No significant difference in the transcript levels 

for lipoprotein lipase, hormone sensitive lipase, peroxisome proliferator-activated 

receptor gamma (PPARγ) and tumour necrosis factor alpha (TNFα) were noted 
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between compartments.  Microarray analysis in obese individuals has identified 

additional differentially expressed transcripts, though further work is required to 

elucidate their role (Linder et al. 2004).  
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Figure 1.2  Regulation of lipolysis in human fat cells (from Arner et al. 2005) 

β1,2,3, beta1,2,3-adrenergic receptors; α2A, α2A-adrenergicreceptor, Gi,s, inhibitory (i) or stimulatory (s) G-proteins; 

AC, adenylate cyclase; cAMP, cyclic AMP; cGMP, cyclic GMP, NPRA, natriuretic peptide receptor A; GC, guanylyl 

cyclase; PKG, cGMP-dependent protein kinase; PKA, protein kinase A; TNFα, tumour necrosis factor alpha; P44/42 

and JNK, MAP kinase pathways; TNFR1, TNFα receptor 1;ATGL, adipose-tissue-specific triglyceride lipase; HSL, 

hormone-sensitive lipase; MGL,monoglyceride lipase; TG, triglycerides; DG, diglyceride; MG, monoglyceride; FA, 

fatty acid; IR, insulin receptor; IRS-1,2, insulin receptor substrates 1 and 2; Pl3K, phosphadilyl inositol 3 kinase; 

PDE3, phosphodiesterase 3. 

 

  



! 10 

1.1.2  Direct effects of sex steroids on adipocyte function 

 

1.1.2.1 Estrogens  

 

Estrogens primarily mediate their effects through two nuclear receptors: estrogen 

receptor alpha (ERα) and estrogen receptor beta (ERβ); both of which exist in 

multiple isoforms (Mauvais-Jarvis et al. 2013).  When bound, these receptors 

dissociate from their chaperone heat-shock protein, dimerize and bind to estrogen 

response elements (ERE) to influence transcription.  Interestingly ERα appears to 

promote transcription, whilst ERβ may impede this process by forming heterodimers 

with ERα (Hall et al. 1999).  In addition to their action as classical nuclear receptors, 

estrogen receptors also localise in caveolae where they can facilitate rapid signalling 

through activation of growth-factor receptors and G proteins, which may be of 

particular relevance in relation to the metabolic effects to estrogens (Hammes et al. 

2007). No consensus exists with respect to the distribution of estrogen receptors in 

adipose tissue; both ERα and ERβ have been detected in mature adipocytes and whilst 

some investigators confirm a similar situation in preadipocytes (Pedersen et al. 2001), 

others have isolated only ERα (Dieudonné et al. 2004).  Similarly conflicting reports 

have identified either ERα (Dieudonné et al. 2004) or, alternatively, ERβ1 (Pedersen 

et al. 2001) as the predominant receptor in adipose tissue. The expression of ERα is 

equal across depots and gender, however it is suggested that ERβ levels may be 

higher in women and in subcutaneous fat (Dieudonné et al. 2004).  In vitro, 

administration of estradiol upregulates subcutaneous ERα and β expression in women, 

but only ERα expression in subcutaneous and visceral adipocytes in men (Pequery et 
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al. 2004).  Menopausal status does not appear to influence the distribution of estrogen 

receptors (Shin et al. 2007).   

 

Recent work has sought to define the effects of estrogens upon adipose transcription 

patterns (summarised in table 1.1).  In ovariectomized mice, estradiol replacement 

down-regulated genes favouring lipid storage, including lipoprotein lipase (LPL), 

acetyl-CoA carboxylase-1 (ACC-1) and fatty acid synthase (FAS).  Reductions in 

ACC-1 and FAS were attributed to down-regulation of liver X receptor α (LXRα) and 

SREBP-1c (D’Eon et al. 2005).  In male mice, estradiol administration resulted in 

down-regulation of genes for monocyte-chemoattractant protein (MCP) and androgen 

receptor, in visceral and subcutaneous fat respectively (Shinozaki et al. 2007).
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Administration of estradiol to rats resulted in a marked reduction in LPL activity 

(Hamosh et al. 1975), which is consistent with the finding in cell culture studies of 

reduced LPL mRNA when incubated with estradiol (Homma et al. 2000); a unique 

estrogen response element on the LPL promoter has been identified which helps 

account for these findings (Homma et al. 2000).  In ovariectomized rats, basal and 

isoproterenol stimulated lipolysis were reduced to 50% and 25%, respectively, in 

parametrial fat pads; these changes were reversed with exogenous estradiol therapy 

(Darimont et al. 1997).  In human female subcutaneous adipocytes, estradiol reduced 

LPL activity whilst increasing hormone sensitive lipase (HSL) activity and glycerol 

release (as a proxy of lipolysis) (Palin et al. 2003). 

 

The demonstration that estradiol directly increases α2A-adrenoreceptors in 

subcutaneous adipocytes (but not in visceral adipocytes) provides an appealing 

mechanistic link between higher estrogen levels and gynoid fat distribution.  

Increased α2A-adrenoreceptor expression results in attenuated epinephrine induced 

lipolysis and favours subcutaneous fat deposition (Pedersen et al. 2004). 

 

Estrogens also play a role in adipose development, having been shown as early as the 

1970s to stimulate preadipocyte proliferation (Roncari et al. 1978).  More recently 

human subcutaneous and visceral preadipocyte proliferation was demonstrated to a 

greater extent in women than men, following in vitro incubation with estradiol 

(Anderson et al. 2001). Whether estrogens are capable of inducing adipocyte 

differentiation remains more controversial (Cooke et al. 2004).  However the increase 

in fat cell number observed in models of estrogen deficiency, particularly in the 

visceral compartment, does suggest a fundamental role for estrogens in this regard. 
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Animal models of estrogen deficiency provide further evidence of the centrality of 

estrogens in adipocyte function.  Ovariectomized mice increase adipose mass and 

adipocyte size in excess of their pair-fed littermates.  Estradiol replacement 

ameliorates this phenotype by reducing lipogenic gene expression, increasing 

lipolysis and up-regulating skeletal muscle genes involved in fatty acid oxidation 

(D’Eon et al., 2005). Male estrogen receptor α knockout (ERαKO) mice display a 

distinct phenotype of insulin resistance with adipocyte hypertrophy and hyperplasia 

(Heine et al. 2000).  In female ERαKO mice, obesity is observed in the context of a 

ten-fold elevation in estradiol levels; which may be relevant as ERβ is unaffected in 

this model. When ovariectomy was performed, a reduction in body weight (6%) was 

accompanied by a 45% reduction in fat pad mass and a 16% reduction in adipocyte 

size; thus suggesting ERβ mediates deleterious effects upon adipose tissue (Naaz et 

al. 2002).   

 

1.1.2.2  Androgens 

 

Androgens exert their biological effects when bound to the androgen receptor (AR) 

which, like the estrogen receptor, is a member of the nuclear hormone receptor 

family. Bound receptors form homodimers which interact with androgen response 

elements to effect transcription.  As is the case with estrogens, alternative non-

genomic signalling pathways are likely to exist and this is an area of active research. 

 

In humans, 60% of circulating testosterone is avidly bound to sex hormone binding-

globulin, approximately 38% is weakly bound to albumin and the remainder 
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circulates in a ‘free’ state.  DHT is the most potent activator of AR and is generated 

from testosterone by 5α-reductase. 

 

Androgen receptors have been identified in adipocytes and preadipocytes from both 

men and women. Androgen receptors are more plentiful in visceral than subcutaneous 

preadipocytes in both sexes.  AR expression decreases during the differentiation 

process and has been shown to increase following dihydrotestosterone (DHT) 

exposure (Dieudonne et al. 1998), although others have demonstrated down-

regulation in similar circumstances (Anderson et al. 2002).  The effects of androgens 

upon adipose tissue mRNA transcript levels are summarised in table 1.1.   

 

Employing a serial analysis of gene expression (SAGE) approach, short term ante-

mortem exposure of male mice retroperitonal adipose tissue to DHT was shown to 

stimulate genes involved in glycolysis, fatty acid synthesis, triacylglycerol 

production, cell proliferation and differentiation (Bolduc et al. 2004).  However, the 

same authors demonstrated quite distinct effects upon longer term exposure to DHT, 

including promotion of lipid utilization, inhibition of lipogenesis, increased adipocyte 

apoptosis, increased adiponectin C1Q, increased estrogen clearance and elevated LPL 

expression (Bolduc et al. 2007).  Recently, ovariectomized cynomolgus monkeys 

were treated with DHT and gene expression assessed, in visceral and subcutaneous 

adipose, by microarray analysis and real-time polymerase chain reaction (PCR).  

Transcription in visceral and subcutaneous depots was strongly correlated (r=0.78, 

p<0.001).  Significant effects were noted in genes responsible for extra-cellular 

matrix, cell adhesion and cytoskeletal structure.  Consistent down-regulation of genes 
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involved in fatty acid, phospholipid and triglyceride metabolism was noted, including 

HSL (Nantermet et al. 2008). 

 

In human female subcutaneous adipocytes, incubation with DHT increased LPL 

expression whilst inhibiting that of HSL (the latter effect apparently independent of 

AR activation) (Anderson et al. 2002).  Testosterone was shown to increase LPL 

activity in young men, but only when co-administered with an aromatase inhibitor 

(suggesting that estradiol, arising from androgen aromatization, negates this process) 

(Zmuda et al. 1993). 

 

In men and women, DHT effects a 50% reduction in epinephrine stimulated lipolysis 

in preadipocytes from the subcutaneous, but not visceral, compartment when studied 

in vitro (Dicker et al. 2004); this is associated with a 50% reduction in HSL 

expression and attenuated expression of β2-adrenoreceptors.  Postmenopausal 

women, treated with a 3-month course of testosterone, down-regulated abdominal 

subcutaneous fat expression of HSL and phosphodiesterase-3B (PDE-3B) in concert 

with demonstrable reductions in lipolysis (Zang et al. 2007).  In vitro testosterone also 

appears to mediate increased insulin resistance in female subcutaneous abdominal 

adipocytes (Corbould 2007). 

 

Insights from genetically modified models highlight the importance of androgen 

signalling with respect to metabolism.  AR null mice develop late onset obesity and 

are less physically dynamic with reduced oxygen consumption.  However, food intake 

is unchanged and insulin resistance is not typical.  AR null mice display down-

regulation of HSL and thermogenic uncoupling protein 1 and up-regulation of PPARγ 
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and adiponectin in adipose tissue (Fan et al. 2005; Sato et al. 2003).  In 

orchidectomized mice, DHT replacement but not estradiol, resulted in obesity, 

reduced energy expenditure, reduced fat oxidation but without effects on food 

consumption or locomotor activity.  DHT replacement was associated with increased 

plasma HDL cholesterol and triglyceride levels (Movérare-Skrtic et al. 2006).  In 

ovariectomized mice, DHT replacement resulted in increased body weight and 

visceral fat mass.  In addition, DHT effected up-regulation of FAS, SREBP-2 and 

LPL and a reduction in AMPK phosphorylation in visceral fat (McInnes et al. 2006).  

This study in particular confers greater import upon altered ratios of AR:ER 

activation as a putative mediator of adverse metabolic sequelae.  

 

Androgens appear to play a negative role in the regulation of adipocyte development.  

DHT has been shown to reduce adipogenesis in pluripotent stem cells and promote 

development along a myogenic line (Singh et al. 2003; Singh et al. 2006).  Site 

specific anti-adipogenic effects were noted in rat preadipocytes exposed to DHT 

(Dieudonne et al. 2000), whilst some in vitro studies in human preadipocytes have 

failed to demonstrate any effect (Dicker et al. 2004; Corbould et al. 2007). 

 

1.1.3 Energy intake and expenditure: sex steroid effects 

 

In addition to direct effects upon adipocyte function, sex steroids are known to 

influence energy intake and expenditure.  Ovariectomy leads to weight gain in 

rodents, which is prevented by estrogen replacement.  Increased food intake is 

ameliorated by estrogen replacement, which increases excitatory POMC inputs to the 

arcuate nucleus in mice, independent of leptin (Gao et al. 2006).  Energy expenditure 
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is reduced by 11% in ERα knockout mice with no significant difference in food intake 

(Heine et al. 2000), with little effect observed in ERβ knockout mice.  Exogenous 

estradiol administration is also associated with increased sensitivity to leptin in male 

and female rats (Clegg et al. 2006).  Estradiol administration may also reduce 

hypothalamic expression of the anabolic peptide NPY, as suggested by variability 

across the estrus cycle in mice (Olofsson et al. 2009).  The role of androgens in 

modulating appetite and energy expenditure is much less well defined and, as is often 

the case, complicated by the confounding effect of changes in estrogen concentration 

when aromatizable androgens are administered.  Gender differences in food intake 

may originate from androgen programming effects on POMC neurons in the arcuate 

nucleus during early development, as suggested in a murine model (Nohara et al. 

2011). 

 

 

1.1.4  Sex steroid effects upon body composition: observational 

evidence 

 

1.1.4.1  Estrogens (women) 

 

The direct effect of menopause upon body composition is controversial and it has 

been suggested that many of the observed changes are primarily a consequence of 

ageing, however the balance of evidence supports a significant effect of menopausal 

status upon WHR and fat mass (Poehlman et al. 2002).  In women, a number of 

observational studies have investigated the relationship between menopausal status 

and adipose metabolism with varying results.  In pre- and postmenopausal women, 
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matched for visceral adipose area, no difference in subcutaneous abdominal and 

femoral adipose LPL activity or epinephrine-induced lipolysis was noted (Mauriege et 

al. 2000).  Similar investigations have elicited significantly lower basal lipolysis in 

gluteal subcutaneous adipose tissue, with elevated LPL activity in abdominal and 

gluteal subcutaneous fat, in postmenopausal women (Ferrera et al. 2002).  Another 

study, comparing pre- and postmenopausal women, suggested larger omental fat cell 

size, higher omental basal lipolysis and higher omental/subcutaneous (om/sc) LPL 

activity in the latter group.  However, with the exception of om/sc LPL activity, 

menopausal status was not independently associated with these variables when 

corrected for visceral adipose tissue area (Tchernof et al. 2004).  Previously in obese 

women, plasma estradiol levels were negatively correlated, and total testosterone 

positively correlated, with total post-heparin LPL activity (Iverius et al. 1988).   

 

1.1.4.2  Androgens (women) 

 

Fewer studies have investigated the association of circulating androgens and obesity 

in women.  In women with oligomenorrhoea or hirsutism, free androgen index (FAI) 

and testosterone levels were noted to be significantly greater in the obese (Taponen et 

al. 2003).  A negative association has been observed between plasma testosterone 

levels and visceral fat in premenopausal obese women (Armellini et al. 1994).   

 

1.1.4.3  Estrogens (men) 

 

In men the influence of estrogens on obesity has not been extensively investigated.  

Plasma estradiol has been positively correlated with subcutaneous fat mass in healthy 
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young men (Nielsen et al. 2007), whilst other studies have failed to confirm this 

(Abate et al. 2002).  Plasma estrone (which was closely correlated with subcutaneous 

adipose tissue levels) has been positively correlated with waist circumference and 

body mass index (BMI) in young men (Belanger et al. 2006).   

 

1.1.4.4  Androgens (men) 

 

A number of observational studies have been designed to investigate the relationship 

between androgens and obesity in men.  Free plasma testosterone was inversely 

related to visceral adipose mass in young men as determined by magnetic resonance 

imaging (MRI) (Nielsen et al. 2007).  This finding has been replicated by other 

investigators (Seidell et al. 1990) but not in a similar study, performed in a slightly 

older cohort, where the only inverse association was with subcutaneous fat (Abate et 

al. 2002).  Tissue levels of DHT and testosterone also correlated negatively with waist 

circumference and BMI in young men (Bélanger et al. 2006).  Waist circumference 

appears to be a stronger predictor of testosterone levels than BMI based on an 

analysis of 1548 men in the Tromsø study (Svartberg et al. 2004). 

 

1.1.5 Effect of sex hormone replacement upon body composition 

 

1.1.5.1  Women 

 

Studies in which exogenous estrogens are administered to females are plentiful as a 

result of ‘hormone replacement therapy’ (HRT).  However HRT studies rarely, if 

ever, provide pure insights into the effect of estrogens on adipose tissue for the 
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following reasons: progestins, with varying degrees of androgenicity, are often 

prescribed concurrently; a variety of different estrogen preparations are available; and 

pharmacological doses are required to overcome first pass hepatic metabolism, with 

largely deleterious effects.  Specifically, exogenous oral estrogens act on the liver to 

modulate lipid metabolism and haemostatic factors. This has prompted the 

development of alternative delivery routes (e.g. percutaneous), which seek to obviate 

these unwanted effects (Turgeon et al. 2006). All these factors contribute towards the 

heterogeneity of ‘HRT’, which precludes any simplistic interpretation of this body of 

evidence.  In addition to the heterogeneity of treatment options, good evidence exists 

to suggest age at treatment (and time from menopause) may be critical in determining 

the anti-atherogenic response (Mikkola et al. 2002); it is feasible that a similar 

temporal relationship may apply to adipose responsiveness.  

 

HRT consisting of estradiol valerate and, perhaps significantly, the antiandrogenic 

progestin cyproterone acetate, resulted in sparing of the shift to androgenic fat 

distribution which was noted in early menopause age matched controls (Gambacciani 

et al. 1997).  Similarly a cross-sectional study involving 2175 women confirmed the 

preservation of premenopausal fat distribution in women treated with a variety of 

HRT preparations, in recent onset menopause (Genazzini et al. 2006).  A prospective 

study of estradiol and norethisterone in 38 postmenopausal women (mean age 53) 

also demonstrated significant reductions in android obesity (Arabi et al. 2003).  

Combined estrogen-progesterone HRT, in early postmenopausal women, prevented 

abdominal fat gain, as assessed by DEXA, in a randomised trial (Haarbo et al. 1991).  

However, after adjusting for confounding variables, no significant difference in either 

BMI or WHR was observed in a cross-sectional study investigating HRT effect in 671 
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women (Kritz-Silverstein et al. 1996).  More detailed analysis of body fat distribution, 

with computed tomography, failed to show any difference in visceral or subcutaneous 

fat area between women on HRT (estrogen alone or estrogen-progesterone) and age 

and BMI matched controls (Ryan et al. 2002).  

To assess the short term effects of estrogens upon fat metabolism, the response of 

whole body and subcutaneous adipose lipolysis to intravenous conjugated estrogens 

was assessed.  Estrogen was noted to decrease subcutaneous fat basal lipolysis but did 

not affect whole body lipolysis or insulin mediated suppression (Van Pelt et al. 2006). 

 

The only study investigating the metabolic effects of estrogen antagonism (partial 

agonism) was performed in breast cancer patients receiving tamoxifen, which was 

shown to promote the accumulation of visceral and hepatic fat (Nguyen et al., 2001).  

 

Investigating the potential metabolic benefits of androgen replacement in 

postmenopausal women is a relatively recent concept, originating from prior 

observations of improved energy levels, sexual function and quality of life. Three 

months of testosterone replacement (or testosterone and estradiol in combination) to 

women with a mean age of 55 years resulted in increased body weight and lean mass 

but not fat mass (Zang et al. 2006).  Postmenopausal women receiving a 9 month 

course of nandrolone (a weakly androgenic anabolic steroid) lost subcutaneous fat 

whilst gaining fat in the visceral compartment (Lovejoy et al. 1996).  DHEA 

supplementation in elderly women over a 2-year period did not alter body 

composition (Nair et al. 2006).   
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Assessing the effects of hormonal treatment in female to male transsexuals affords a 

rare insight into the consequences of androgen therapy in genetic females.  

Testosterone, administered on a fortnightly basis, resulted in reductions in 

subcutaneous fat and a concurrent increase in visceral depots (Elbers et al. 2003).  

This corroborated earlier findings of reduced subcutaneous and increased visceral fat 

occurring alongside increased thigh muscle area, as assessed by MRI (Elbers et al. 

1999a).  In female to male transsexuals, gluteal and abdominal subcutaneous 

adipocytes are rendered smaller by testosterone administration and basal lipolysis is 

increased in the latter depot (although no differences in response to isoproterenol or 

insulin were noted) (Elbers et al. 1999b). 

 

Androgen excess is implicated in the pathogenesis of polycystic ovary syndrome 

(PCOS), which is associated with obesity, insulin resistance and elevated 

cardiovascular risk.  In this context, the androgen receptor antagonist flutamide 

effects reductions in visceral fat (Gambineri et al. 2004; Gambineri et al. 2006).  The 

success of this strategy in PCOS raises the possibility of utility in the postmenopausal 

context, which is also characterized by an elevated androgen to estrogen ratio.  

However 9 months of spironolactone (a mineralocorticoid and androgen receptor 

antagonist) therapy failed to alter body fat distribution (Lovejoy et al. 1996). 

 

1.1.5.2  Men 

 

Where female to male transsexuals offer insights into the effects of testosterone in 

women, male to female transsexuals provide a unique opportunity to investigate the 

effects of estrogen therapy (in combination with androgen antagonism) in men.  In 
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this setting, 20 non-obese men received daily ethinyl estradiol and cyproterone 

acetate, which effected increases in visceral and subcutaneous fat of 18% and 38%, 

respectively.  Beneficial changes in HDL cholesterol, LDL cholesterol and hepatic 

lipase activity were counterbalanced by elevations in blood pressure, triglyceride and 

reductions in LDL particle size (Elbers et al. 2003).  These changes in body 

composition are in accord with earlier observations by the same authors (Elbers et al. 

1999a).  Following a year of oestrogen and anti-androgen therapy, subcutaneous fat 

cell size increased as did basal lipolytic rate (though response to insulin and 

isoproterenol was unchanged) (Elbers et al. 1999b). 

 

Akin to estrogen replacement trials in women, androgen replacement is the most 

investigated hormonal manipulation in men.  Suppressing endogenous hormone 

release with GnRH, in healthy young men, afforded the opportunity to assess the dose 

response effect of testosterone replacement on fat distribution (determined by MRI).  

Subphysiological replacement caused gains in inter-muscular, intra-abdominal and, in 

particular, subcutaneous adipose tissue.  Higher testosterone doses did not influence 

intra-abdominal fat but did reduce subcutaneous and, most markedly, inter-muscular 

fat (Woodhouse et al. 2004). In young men, six weeks of exogenous testosterone 

resulted in reduced LPL activity and an increased lipolytic response to norepinephrine 

in abdominal, but not femoral or gluteal subcutaneous adipose tissue, with an 

accompanying reduction noted in WHR (Rebuffe-Scrive et al. 1991). The effect of 

one year of transdermal testosterone patches upon fat distribution was investigated in 

an older cohort of men (age >55 years) with symptomatic androgen deficiency and 

low-normal testosterone levels.  An average increase in plasma testosterone of 30% 

was achieved, which effected a significant reduction in visceral fat, without changes 
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in subcutaneous or total body fat.  Fat free mass and skeletal muscle mass increased 

with testosterone, whilst lipids, insulin and glucose levels were unaltered (Allan et al. 

2007).  

 

A short-term placebo-controlled trial of Testogel (n=183 active and n=179 placebo) in 

men with late onset hypogonadism (LOH), demonstrated approximately 1kg loss of 

fat mass with accompanying increases in lean mass at 6 months (Behre et al. 2012).  

Intra-muscular testosterone enanthate was associated with improvements in lean body 

mass and reductions in fat mass in older men (mean age 71) after a three year 

treatment period, in a placebo controlled study (Page et al. 2005). 

 

Some of the effects of testosterone administration may be attributed to estradiol, 

produced from testosterone, by the action of aromatase in adipose tissue.  This 

significant confounder can be addressed by the use of non-aromatizable androgens, 

such as DHT and oxandrolone.  Oxandrolone was investigated in healthy elderly men, 

where a 12 week course was shown to reduce visceral and subcutaneous adipose 

tissue and reduce the VAT:SAT ratio; an effect observed up to 12 weeks after 

cessation of treatment (Schroeder et al. 2004). 

 

Not all studies confirm the metabolic advantages of testosterone replacement.  In 27 

elderly men, with low bioavailable testosterone, testosterone replacement had no 

effect upon body composition, albeit increasing the average level of bioavailable 

testosterone by a modest 1.1 nmol/l (Nair et al. 2006).  In hypogonadal men with 

T2DM, 40 weeks of intramuscular testosterone undecaonate resulted in increased lean 
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mass and reductions in fat mass, although this was limited to subcutaneous (but not 

visceral) abdominal adipose tissue volume (Gianatti et al. 2014).  

 

Androgen deprivation therapy (ADT) in prostate cancer provides an opportunistic 

means to assess the effects of testosterone in determining body composition and 

appears to increase fat mass at the expense of lean mass (Smith et al. 2004). A 

prospective observational study in 26 men commenced on ADT demonstrated an 

average 13% increase in subcutaneous adipose area with a 23% increase in visceral 

adipose area (Hamilton et al. 2011).   

 

When considering the consequences of androgen deficiency, it is important to 

recognise that levels of estrogens and androgens are inextricably linked by virtue of 

their common biosynthetic pathways.  Across most relevant target tissues, both 

estrogens and androgens are capable of exerting effects, sometimes complementary, 

sometimes divergent.  An elegant study in healthy volunteers, sought to untangle the 

differential contribution of estrogens and androgens with respect to symptoms and 

end-organ effects by suppressing endogenous sex steroids (with the GnRH analogue 

goserelin) and manipulating testosterone and estradiol levels with variable doses of 

testosterone gel and aromatase inhibition.  Testosterone deficiency resulted in reduced 

lean mass and muscle strength, whereas estradiol deficiency was associated with 

increasing fat mass; both estradiol and testosterone deficiency independently 

contributed towards sexual dysfunction (Finkelstein et al. 2012). Whilst the clinical 

focus is often on recognising and treating androgen deficiency, many of the beneficial 

effects of normalising testosterone may be mediated, at least in part, by consequent 

normalisation of estradiol.  Testosterone is converted to the more potent DHT by 5α-
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reductase (5α-R), which amplifies androgen receptor activation.  Treatment with the 

5α-R inhibitor dutasteride (with concomitant testosterone replacement), did not 

significantly alter fat free mass, muscle strength, sexual function or prostate volume 

in healthy men, suggesting testosterone action is sufficient (Bhasin et al. 2012). 

 

1.1.6  Methods for measuring body composition 

 

A range of modalities are available for the assessment of human body composition, 

ranging from relatively straightforward anthropometric measurements, such as BMI 

and WHR, to complex techniques, such as underwater weighing (often considered the 

gold standard), dual-energy X-ray absorptiometry (DEXA) and isotope tracer 

methods.  Body composition can be reduced to a 2-compartment model (fat mass and 

fat free mass) or a 4-compartment model, where FFM is subdivided into muscle, bone 

and water.  All methods rely on assumptions with respect to the composition of 

compartments, which do not necessarily hold, particularly in certain disease states 

(Duren 2008).   

 

1.1.6.1  Indirect methods 

 

BMI is an easy to obtain clinical parameter with strong associations in relation to both 

morbidity and mortality.  Interpretation must take into account racial differences and 

also recognise the limits in subjects where fat free mass contributes disproportionately 

to weight.  As noted earlier, WHR appears to be a more discriminatory predictor of 

cardiovascular disease than BMI (Yusuf et al. 2005).   
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Measurement of skinfold thickness, by use of callipers across a range of anatomical 

locations, provides a more detailed assessment of subcutaneous fat content.  

Regression equations can be employed to estimate body fat percentage, based on 

skinfold thickness, with reasonable agreement reported with under-water weighing 

(Durnin and Wormersley 1974).  However, this method is highly operator dependent 

and technically difficult in obese individuals, where it is much less well validated 

(Duren 2008). 

 

Bioelectric impedance analysis (BIA) estimates body composition by measuring the 

resistance of the body to a small alternating electrical current.  The impedance index 

(height2/ resistance) is directly proportional to body water and regression equations 

are employed to provide an estimate of body fat percentage.  The applicability of BIA 

results is strongly related to how closely subjects match the reference populations 

used to create the regression equations; consequently, the assumptions underlying this 

technique are not necessarily valid in obese individuals (Gray 1989). 

 

1.1.6.2  Direct methods 

 

Total body water can be measured by isotope dilution, where labelled water (most 

commonly deuterated) is administered and, following equilibration, the proportion of 

labelled to unlabelled water permits calculation of total body water.  This technique is 

rendered expensive by the necessity for mass spectrometric analysis and, like other 

methods, depends on assumptions regarding the water content of fat free mass.  

Isotope dilution is prone to overestimate body fat, perhaps due to an inadequate time 

allowance for equilibration (Fogelholm 1997).  Total body potassium is a less 
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commonly employed method where gamma radiation from the naturally occurring 

potassium isotope 40K is measured.  40K is present at a constant concentration which 

permits estimation of total body potassium and, by extrapolation, fat free mass.  This 

technique relies on assumptions regarding the compartmental distribution of 

potassium and also the potassium content of fat free mass; it has largely been 

supplanted by other methods. 

 

Underwater weighing (hydrodensitometry) is regarded as the gold standard for 

assessment of body composition.  Measures of body weight, body volume and 

residual lung volume are incorporated in to either a two-compartment, or more 

recently multi-compartment models (including measures of bone density and total 

body water), to yield an estimate of body fatness.  Air displacement plethysmography 

(ADP) obtains similar measurements (and results) to underwater weighing, and avoids 

the inconvenience associated with submersion (Fields et al. 2002).  

  

Dual-energy x-ray absorptiometry relies on the differential attenuation of two low-

energy levels passing through the body, to discriminate between tissue types.  It has 

the advantage of providing information across different body sections (limbs and 

trunk) as well as quantification of bone mineral content.  The process take no more 

than 20 minutes and is minimally invasive for subjects.  Modern DEXA algorithms 

accord closely with underwater weighing, leading some to consider DEXA as a 

potential reference standard for measurement of body composition (Pritchard et al. 

1993).   
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Whole body CT scanning can provide information on body fat content, based on the 

characteristic attenuation of adipose tissue.  Image analysis software can produce 

estimates of body fat content.  MRI imaging can provide similar information and 

avoids exposure to ionising radiation.  Single slice CT imaging at the L4/5 level can 

provide specific information regarding the balance of visceral to subcutaneous 

adipose tissue.   

 

1.2 Sex hormones and insulin sensitivity 

 

Rodent models attest to the central role sex steroids play in regulating glucose 

metabolism.  Ovariectomy induces obesity and insulin resistance in high fat diet fed 

mice; an effect which is prevented by physiological estradiol replacement (Stubbins et 

al. 2012).  In male rats, gonadectomy induces an insulin resistant state, with marked 

reduction of skeletal muscle glucose uptake; testosterone replacement prevents 

development of this abnormal metabolic state (Holmäng et al. 1992). 

 

1.2.1 Specific effects on muscle, liver and beta cells 

 

In addition to adipose tissue effects, evidence has accumulated in support of a direct 

influence of sex steroid hormones across a range of insulin sensitive tissues, 

particularly liver and muscle.  Sex steroids may also influence insulin secretion 

through effects upon beta cell function. 
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1.2.1.1  Muscle 

 

In men, plasma testosterone concentration correlates positively with skeletal muscle 

expression of genes involved in oxidative phosphorylation (Pitteloud et al. 2005). 

GLUT4 expression is reduced in the skeletal muscle of testosterone deficient rats 

(Muthusamy et al. 2009). 

 

Ovariectomy is associated with reduced skeletal muscle glucose uptake in female rats 

and is normalised by high does estradiol replacement. No effect on skeletal GLUT4 

protein level was observed suggesting the mechanism may relate to downstream 

signalling or altered GLUT4 trafficking (Campbell et al. 2002).  Other models 

assessing the effect of estrogen suggest a stimulatory effect of ERα upon GLUT4 

expression in skeletal muscle (Barros et al. 2006), with ERβ stimulation perhaps 

responsible for the opposite effect (Barros et al. 2009).  Not all animal models 

confirm a stimulatory effect on glucose uptake (Rogers et al. 2009).   Whilst 

physiological levels of estradiol appear to promote insulin sensitivity, in rats 

supraphysiological levels exert the opposite effect, through repression of muscle 

GLUT4 (Barros et al. 2008).  Estradiol increases skeletal muscle expression of genes 

involved in fatty acid oxidation in female mice (D’Eon et al. 2005) and also induces 

rapid phosphorylation of AMPK, a critical regulator of mitochondrial biogenesis and 

oxidative metabolism (Rogers  et al. 2009). 
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1.2.1.2 Liver 

 

ERα knockout mice display reduced suppression of hepatic glucose output during 

hyperinsulinaemic euglycaemic clamp studies, consistent with marked hepatic insulin 

resistance (Bryzgalova et al. 2006).  High fat diet fed mice were protected from 

insulin resistance, at least in part through reduced hepatic triglyceride accumulation, 

with accompanying reductions in lipogenic transcript levels (Bryzgalova et al. 2008).   

Orchidectomy is associated with reduced insulin receptor protein levels and increased 

IRS-1 Serine636/639 phosphorylation in rats, an effect which is reversed by both 

testosterone and estradiol (Muthusamy et al. 2011); abnormalities in hepatic glucose 

oxidation were reversed by testosterone (but not estradiol) replacement. 

 

1.2.1.3  Beta cells 

 

Testosterone has been shown to reduce beta cell apoptosis in a streptozotocin-induced 

diabetes in male rats through induction of anti-oxidant enzymes (Palomar-Morales et 

al. 2010).  Pancreatic beta cells in high glucose culture medium are protected from 

apoptosis by testosterone, potentially through increased levels of survival proteins, 

sarco/endoplasmic reticulum Ca2+ ATPase (SERCA-2) and Bcl2 (Hanchang et al. 

2013). In humans, T2DM is associated with increased beta cell endoplasmic reticulum 

stress, although whether testosterone sufficiency protects against this requires further 

investigation.  Testosterone is also associated with increased insulin mRNA 

expression and insulin secretion, both in rats and primary culture of islet cells 

(Morimoto et al. 2001). 
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Estradiol is also associated with protective effects upon pancreatic beta cells, through 

interaction with extra-nuclear estrogen receptors, which exert their effect through 

modulation of cytosolic kinases.  In rats, estradiol reduced beta cell dysfunction and 

lipid accumulation (Tiano et al. 2011) and, in mice, protects against apoptosis (Liu et 

al. 2009). 

 

1.2.2  Adipokines 

 

The relationship between adipokines and sex steroid hormones is complicated, and 

largely confounded by associated changes in adiposity, in models of androgen and 

estrogen deficiency.  Short-term testosterone replacement in hypogonadal men was 

associated with reductions in circulating leptin and adiponectin (Kapoor et al. 2007).  

Transdermal estrogen replacement therapy reduced leptin and resistin, and increased 

adiponectin, in post-menopausal women (Chu et al. 2006).  Pro-inflammatory 

cytokine levels rise in women following menopause (Pfeilschifter et al. 2002) and, in 

men, levels are inversely correlated with testosterone concentration (Kelly et al. 

2013). 

 

In adipose specific androgen receptor knock-out mice, elevated levels of retinol 

binding protein 4 (RBP4) have been observed (McInnes et al. 2012).  RBP4 is 

associated with insulin resistance and metabolic syndrome in humans although levels 

are typically greater in men than in women.  
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1.2.3  Sex steroid effects upon insulin sensitivity: observational 

evidence in humans 

 

1.2.3.1  Women 

 

In a meta-analysis of sex hormones and type 2 diabetes risk, women with T2DM were 

shown to have significantly higher circulating estradiol levels, even after adjustment 

for BMI (Ding et al. 2006).  However, no prospective evidence exists to support a 

causative role for estradiol in the development of diabetes.  The same meta-analysis 

showed testosterone levels were significantly higher in women with T2DM, with a 

trend towards increased T2DM risk in prospective studies, in those with higher 

testosterone levels. 

 

1.2.3.2  Men 

 

T2DM and obesity are associated with an increased risk of testosterone deficiency but 

it is also true that testosterone deficiency likely carries an increased risk of developing 

T2DM and expanding body fat; these two related conditions are likely to have a bi-

directional, mutually reinforcing relationship. Androgen levels consistently show 

negative correlations with insulin resistance, although it is often argued that this 

association is not independent of variability in body fat as is borne out by the majority 

of studies (Tchernof et al. 1995; Tsai et al. 2004; Pittleoud et al. 2005).  Other studies 

failed to demonstrate any link between testosterone and insulin resistance (Nielsen et 

al., 2007).   A population based cohort study of middle-aged Finnish men (n = 651) 

identified baseline metabolic syndrome as a risk factor for incident testosterone 
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deficiency (2.6 fold increased risk which remained significant after correction for 

BMI or baseline testosterone) (Laaksonen et al. 2005). 

 

Longitudinal observations from the Framingham Heart Study failed to detect an 

association between total testosterone and development of metabolic syndrome 

(Bhasin et al. 2011), however, elevated estrone (more so than estradiol) was 

associated with incident type 2 diabetes, even after correction for testosterone and 

other relevant confounders (Jasuja et al. 2013). Men with the lowest quartile of total 

testosterone had a significantly increased risk of incident metabolic syndrome 

(adjusted RR 1.38) in the Study of Health in Pomerania (Haring et al. 2009).  Low 

testosterone may be particularly predictive of metabolic syndrome in non-obese men 

(Kupelian et al. 2006).  Men with free testosterone in the lowest tertile are reported as 

being four times more likely to develop T2DM, independent of adiposity (Selvin et al. 

2007); similar findings were noted in a meta-analysis of sex hormones and diabetes 

risk (Ding et al. 2006). Higher levels of estradiol have been associated with reduced 

cardiovascular risk in men aged over 56 years (Arnlöv et al. 2006) but also with an 

elevated risk of diabetes (Ding et al. 2006). Despite the consistency of association, 

these studies do not confirm causality.  It is conceivable that lower testosterone in 

obese men may simply reflect greater androgen inactivation from an expanded 

adipose pool. 

 

Androgen sensitivity may play a role in glucose homeostasis, as evidenced by the 

influence of CAG repeat length in the androgen receptor (associated with reduced AR 

sensitivity) upon insulin sensitivity (Mohlig et al. 2011). 
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1.2.4  Sex steroids and insulin sensitivity: interventional evidence in 

humans 

 

1.2.4.1  Estrogens (women) 

 

In addition to displaying no difference in basal carbohydrate and fat utilization, HRT 

treated women were significantly more insulin resistant, as determined by 

hyperinsulinemic euglycemic clamp studies (Ryan et al. 2002).  This data conflicts 

with studies reporting reduced incidence of T2DM in HRT treated women (Margolis 

et al. 2004) and a crossover study involving 3 months estradiol treatment in diabetic 

postmenopausal women, which demonstrated improvements in HbA1c, C-peptide, 

fasting glucose and a non-significant trend towards higher glucose disposal rate 

(Andersson et al. 1997).  

 

1.2.4.2  Androgens (women) 

 

3 months of testosterone replacement (or testosterone and estradiol in combination; 

mean age 55) resulted in a 20% reduction in glucose disposal, along with increases in 

body weight and lean mass but not fat mass.  Testosterone was also implicated in a 

reduction in HDL levels (Zang et al. 2006). 

 

DHEA supplementation in elderly women over a 2-year period did not alter insulin 

sensitivity or body composition (Nair et al 2006). 
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In hypopituitary women of reproductive age, with proven androgen deficiency, 

testosterone replacement was shown to have, at worst, a neutral effect upon insulin 

resistance (Miller et al. 2007). 

 

Assessing the effects of hormonal treatment in female to male transsexuals affords a 

rare insight into the consequences of androgen therapy in genetic females.  

Testosterone, administered on a fortnightly basis, resulted in deleterious alterations in 

lipids, including: reduced HDL cholesterol, reduced LDL size, increased triglycerides 

and increased hepatic lipase activity (Elbers et al. 2003). 

 

The androgen receptor antagonist flutamide effects reductions in visceral fat, 

improves insulin sensitivity, reduces LDL cholesterol and elevates HDL (Gambineri 

et al. 2004; Gambineri et al. 2006) in women with PCOS.  However, neither the anti-

androgen spironolactone nor the weakly androgenic anabolic steroid nandrolone, 

altered glucose or insulin concentrations in post-menopausal women following 9 

months of therapy (Lovejoy et al. 1996). 

 

1.2.4.3  Androgens (men) 

 

In young men with idiopathic hypogonadotrophic hypogonadism (mean age 40.8, n = 

12), withdrawal of testosterone replacement resulted in increased insulin resistance 

(as determined by homeostatic model assessment – insulin resistance [HOMA-IR]) 

within two weeks, in the absence of any significant change in body composition, 

suggesting a direct role for sex steroid hormones in regulating insulin sensitivity in 

men (Yialamas et al. 2007). In older men, the non-aromatizable androgen, 
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oxandrolone, resulted in improved insulin sensitivity following 12 weeks of therapy 

(Schroeder et al. 2004).   

 

TIMES2 was a randomised controlled trial involving 220 hypogonadal men with 

T2DM or metabolic syndrome; over a 12-month period, transdermal testosterone gel 

improved insulin sensitivity (16.4% as determined by HOMA-IR) as well as exerting 

beneficial effects upon LDL cholesterol and lipoprotein a (Jones et al. 2011).  The 

protocol was subject to a high drop out rate and confounded by changes in other 

medications, so whilst a trend towards improved HbA1c was observed, this did not 

reach statistical significance.  Similar effects have been observed in other small, 

short-term RCTs.  A single-blinded study of 50mg transdermal testosterone in men 

with newly diagnosed T2DM (n=32) showed a significant improvement in HbA1c 

(mean -0.8%) and insulin sensitivity by HOMA-IR at one year, when compared with 

men receiving supervised diet and exercise advice only (Heufelder et al. 2009). 

Similar improvements were noted in a double-blind crossover study in 24 

hypogonadal men with T2DM. After 3 months of intramuscular testosterone therapy, 

significant improvements in HOMA-IR, HbA1c (-0.37%) and fasting glucose were 

observed (Kapoor et al. 2006).  Clearly larger studies, with longer follow-up, are 

required to confirm whether testosterone replacement should be considered as an 

adjunct to established diabetes therapies.  

 

In contrast to these positive studies, in 27 elderly men, with low bioavailable 

testosterone, testosterone replacement had no effect upon insulin sensitivity (Nair et 

al. 2006).  A study of elderly men with testosterone deficiency, who received 

testosterone patches for two years, failed to show any difference in a comprehensive 
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panel of insulin sensitivity measures, with respect to controls (Basu et al. 2007).  

Similarly, a randomised controlled trial of intramuscular testosterone undecanoate (1g 

12 weekly over 40 weeks, n = 88) failed to demonstrate any improvement in either 

HbA1c or insulin sensitivity, as determined by HOMA-IR, in hypogonadal middle-

aged men with T2DM (Gianatti et al. 2014). 

 

Androgen deprivation therapy increased insulin resistance by 12%, as determined by 

HOMA-IR (Hamilton et al. 2011).  Observational evidence, in older men with 

prostate cancer, shows GnRH agonist therapy to be associated with an increased risk 

of incident diabetes (adjusted HR 1.44) (Keating et al. 2006). 

 

1.2.5  Methods for measuring insulin sensitivity 

 

Insulin effects upon whole body glucose disposal are concentration-dependent and 

saturable, with the concentration required to achieve half-maximal response defining 

‘insulin sensitivity’.  Insulin resistance typically reflects impairment of both glucose 

disposal and suppressibility of hepatic glucose production.  A number of 

methodologies are available to quantify insulin sensitivity, either directly or indirectly 

(Muniyappa et al. 2007). 

 

Hyperinsulinaemic euglycaemic clamp techniques, originally developed by DeFronzo 

and colleagues (DeFronzo et al. 1979), are generally considered the ‘gold standard’ 

method for measuring insulin sensitivity.  Following an overnight fast, subjects 

receive a constant intravenous infusion of insulin, ultimately resulting in an elevated 

steady state insulin concentration.  20% dextrose solution is concurrently infused at a 
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variable rate (informed by measurement of arterialized blood glucose levels) to 

maintain euglycaemia.  When steady state conditions are achieved, and assuming 

hyperinsulinaemia is sufficient to ablate hepatic glucose production, the glucose 

infusion rate (GIR) can be regarded as equal to the glucose disposal rate (M).  M is 

often normalised to fat free mass, as skeletal muscle is the major source of insulin-

mediated glucose uptake. Concomitant infusion of isotopically labelled glucose 

permits calculation of both hepatic glucose production and glucose disposal and 

addresses the potential problem of sub-maximal suppression of hepatic glucose 

production when attempting to assess glucose disposal.  Glucose clamp studies are an 

accurate and direct means of assessing insulin sensitivity, however they are both time 

and labour intensive. 

 

Another direct measure is the insulin suppression test, which utilises somatostatin 

analogues to suppress endogenous insulin secretion with concomitant constant 

infusions of glucose and insulin, to achieve steady state levels.  Insulin suppression 

tests correlate well with clamp studies (r = 0.93) but, although easier to conduct, do 

not provide additional information on hepatic glucose production (Greenfield et al. 

1981). 

 

Indirect methods of assessing insulin sensitivity tend to have the advantage of being 

less resource intensive but are typically less accurate and reproducible than glucose 

clamp studies.  In the fasting condition, glucose and insulin concentrations are in a 

basal steady state where insulin levels are relatively steady and hepatic glucose 

production is constant.  Mathematical transformations, which assume equivalence of 

peripheral and hepatic insulin resistance, have been developed to produce estimates of 
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insulin sensitivity.  One such example is HOMA-IR (Matthews, 1985), which is 

calculated as follows: 

 

(Fasting glucose (mmol/L) x Fasting insulin (µU/mL)) /22.5  

 

The normalising factor of 22.5 is the product of a fasting insulin of 5 µU/mL and 

fasting glucose of 4.5 mmol/L; thus a ‘normal’ individual would have a HOMA-IR of 

1.    HOMA-IR correlates well with glucose clamp assessment of insulin resistance (r 

= 0.88) but is limited in individuals with advanced beta cell failure.  ‘Quantitive 

insulin sensitivity check index’ (QUICKI) is a variant of HOMA-IR which involves 

logarithmic transformation of fasting glucose and insulin values (Katz et al. 2000). 

 

To overcome the limitations of assessments in the fasting state, Matsuda and 

DeFronzo developed a method which assesses both hepatic insulin sensitivity (fasting 

state) and peripheral insulin sensitivity (following oral glucose tolerance test).  

Subjects fast overnight and, following basal blood samples, are given a 75g oral 

glucose load.  Further sampling takes place at 30 minute intervals for 2 hours.  

‘Insulin Sensitivity Index  - Matsuda’ is calculated thus: 

 

10,000/ �([fasting glucose (mg/dL) x fasting insulin (uU/mL)] x [mean glucose 

during OGTT (mg/dL) x mean insulin during OGTT (uU/mL)]) 

 

ISI-Matsuda correlates well with both glucose clamp studies (r = 0.74) and HOMA-

IR (r = 0.92) (Matsuda, 1999).   
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Frequently Sampled Intravenous Glucose Tolerance Tests, using minimal modelling 

techniques, is another dynamic method for indirectly assessing insulin sensitivity.  It 

has the advantage of being less laborious than glucose clamp studies, can provide a 

range of information on beta cell function and insulin sensitivity and correlates 

reasonably well with clamp studies, although insulin sensitivity tends to be 

systematically underestimated (Muniyappa et al. 2007).   

 

1.3 Aromatase 

 

Aromatase is the enzyme responsible for conversion of androgens to estrogens (figure 

1.1).  As noted previously, in both men and post-menopausal women, estrogen 

receptor activation is largely mediated by local generation of estradiol (in bone, 

breast, adipose tissue etc.).  In this context, it has been suggested that circulating 

estrogen levels are simply a passive indicator of adipose hormone generation and may 

not operate as hormones in a classical sense (i.e. by exerting an effect at a site distant 

from their generation) (Simpson et al. 2005). Estrogen generation by aromatase is just 

one of many steroid metabolic pathways active in adipose tissue.  In vivo assessment 

of adipose steroid metabolism by measuring arterio-venous difference across 

subcutaneous abdominal fat, demonstrated the release of estradiol and estrone in both 

men and women.  Testosterone was removed, across the gradient, in men but released 

in women (Boulton et al. 1992). 
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1.3.1  Aromatase and adipose generation of sex steroids 

 

1.3.1.1  Regulation of aromatase 

 

Aromatase is a microsomal member of the cytochrome P450 superfamily of enzymes, 

encoded by the CYP19 gene on chromosome 15q21.2.  In humans, aromatase is 

expressed in ovaries, testes, vascular smooth muscle and adipose tissue (Jones et al. 

2006).  Aromatase is regulated by promoters in a tissue dependent manner (Agarwal 

et al. 1997), with promoter I.4 predominant in adipose tissue where it is activated by 

class I cytokines (including IL-6, IL-11 and oncostatin M) and TNFα and has an 

obligatory requirement for glucocorticoids (Zhao et al. 1995).  Promoter II is 

regulated by cAMP and gonadotrophins and is predominant in the ovaries; although it 

is also active, to a lesser extent, in adipose tissue, where PGE2 is believed to drive 

expression (Simpson et al. 2002). In breast cancer, increased aromatase expression in 

peri-tumoral adipose tissue is marked by a switch from promoter I.4 to promoter II 

(Zhao et al. 1996), raising the intriguing possibility that dysregulated aromatase 

expression may arise in the pro-inflammatory milieu of obese adipose tissue.  

 

Activation of promoter I.4 requires glucocorticoid, which is borne out by in vitro 

evidence of increased aromatase expression in adipose stromal cells exposed to 

cortisol (Simpson et al. 1981).  Inhibition of the cortisol-regenerating 11β-

hydroxysteroid dehydrogenase type 1 (11βHSD1) activity, by carbenoxolone, was 

shown to influence the aromatase activity of breast adipose stromal cells in vitro 

(Yang et al. 1997).  More recent evidence has highlighted depot and gender 

specificities of cortisol response.  In vitro, cortisol markedly increases aromatase 
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expression in subcutaneous preadipocytes in women but not men, whilst in omental 

preadipocytes, cortisol effects a more modest increase in expression in both men and 

women (Mcternan et al. 2002).  Leptin down-regulated 11βHSD1 and aromatase 

expression in female intra-abdominal preadipocytes but had the opposite effect in 

men.  Estradiol stimulated 11βHSD1 in women but decreased aromatase expression; 

in men aromatase was up-regulated with no effect upon 11βHSD1.  Androgens 

increased expression of both aromatase and 11βHSD1 in male intra-abdominal 

preadipocytes (Dieudonne et al. 2006). 

 

Obesity has been associated with greater aromatase activity (Kley et al. 1980), which 

may reflect greater adipose mass rather than any up-regulation at a cellular level 

(Cleland et al. 1985).  However generalised obesity (as determined by BMI), although 

not central obesity (as determined by WHR), was correlated with increased 

subcutaneous adipose expression of aromatase mRNA (Wake et al. 2007).   

 

1.3.1.2  Distribution of aromatase in adipose tissue 

 

 In adipose tissue, aromatase is principally expressed in preadipocytes and factors 

which promote adipocyte differentiation, such as PPARγ agonists, reduce its 

expression (Rubin et al. 2000).  Aromatase is preferentially expressed in buttock and 

thigh subcutaneous adipose tissue rather than in the abdominal region (2 – 3 fold 

difference), with no sexual dimorphism but increasing expression with advancing age 

(Bulun et al. 1994).  To assess the prevalent pattern of steroid metabolism, stromal 

cells isolated from various adipose depots were cultured with tritiated 

androstenedione to assess the percentage conversion to estrone and 5-alpha-reduced 
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androgens.  Aromatase activity was tenfold greater in the upper thigh and buttock 

compared to subcutaneous abdominal and omental fat.  5α-reductase activity, similar 

across all locations, was tenfold greater than aromatase activity in subcutaneous 

abdominal and omental fat (Killinger et al. 1990). 

 

 1.3.1.3  Other sex hormone metabolism in adipose tissue 

 

In addition to aromatase mediated conversion of androgens to estrogens, a number of 

other enzymes, which metabolise sex steroid hormones, are active in adipose tissue. 

17-beta hydroxysteroid dehydrogenase type 5 (17β-HSD5, also known as AKR1C3) 

catalyses the conversion of androstenedione to testosterone; In vitro assessment of 

female preadipocytes has shown greater  activity in the subcutaneous compartment, as 

opposed to the omental depot, in keeping with androgen generation in the 

subcutaneous fat.  The activity of subcutaneous 17β-HSD5 is strongly correlated with 

BMI and reduced with weight loss (Quinkler et al. 2004).  This study does not accord 

with earlier findings which suggested 3-alpha hydroxysteroid dehydrogenase type 3 

(3α-HSD3, also known as AKR1C2, which catalyses the inactivation of DHT) is more 

plentiful than 17β-HSD5 in both the visceral and subcutaneous compartment in 

women (Blouin et al. 2003).  Both 3α-HSD3 and 17β-HSD5 were more highly 

expressed in the subcutaneous adipose.  In women with elevated levels of visceral 

adipose tissue, higher 3α-HSD3 activity was observed in omental preadipocytes 

(Blouin et al. 2003).   

 

17β-HSD3, which also converts androstenedione to testosterone, was found to be 

expressed in female subcutaneous and abdominal adipocytes at significantly higher 
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levels than aromatase.  This is in keeping with in vitro conversion of androstenedione 

to testosterone occurring at a far greater level than androstenedione to estrone.  Intra-

abdominal adipose 17β-HSD3 to aromatase mRNA ratio was positively correlated 

with BMI and WHR, with the converse being true of the corresponding subcutaneous 

ratio (Corbould et al. 2002).  In men, primary culture studies have demonstrated 

greater DHT inactivation (mediated by 3α/β HSD) in mature adipocytes and 

preferentially in the subcutaneous rather than visceral compartment.  Omental 3α/β 

HSD activity was greater in obese men and positive correlations existed between this 

activity and androgen metabolite levels (androstene-glucuronide and 3α-diol-

glucuronide) in all subjects (Blouin et al. 2006).  In keeping with this, plasma 3α-diol-

glucuronide levels have been positively correlated with visceral adiposity (Tchernof 

et al. 1997) and increase with weight gain (Pritchard et al. 1996). Central obesity, but 

not generalised obesity, is associated with increased expression of 3α-HSD3 and 17β-

HSD5, in men and women (Wake et al. 2007).   

 

More recently, expression of the estrogen inactivating enzyme estrogen 

sulfotransferase (EST) has been identified in human subcutaneous adipose tissue, in 

both men and women (Ahima et al. 2011), where it was correlated with TNF-α 

expression.   A murine model of adipose EST over-expression resulted in reduced 

adipose mass and reduced adipose tissue glucose uptake (Khor et al. 2010).  The 

relative importance of adipose EST, in relation to aromatase and other enzymes, 

remains to be established. 
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 Sex hormone metabolism in adipose tissue is clearly a complex process with several 

intimately related pathways acting simultaneously to determine the local balance of 

androgen and estrogen receptor activation. 

 

1.3.2  Aromatase deficiency 

 

Insights into the systemic effects of aromatase action were initially derived from rare 

examples of human aromatase deficiency and also aromatase knockout mice.   

 

Human aromatase deficiency is extremely rare, with only 7 men and 6 women 

identified as of 2006 (Jones et al.  2006).  Men with aromatase deficiency tend to 

present with central adiposity and body mass index in the overweight range.  The 

characteristic lipid profile is of elevated triglyceride and low HDL, which is generally 

ameliorated by estrogen replacement.  Insulin resistance has been reported in most 

cases, with evidence of improvement with estrogen replacement (Herrmann et al. 

2002; Morishima et al. 1995), although not all affected men demonstrate insulin 

resistance  (Carani et al. 1997).  

 

Aromatase-knockout mice (ArKO) develop exaggerated intra-abdominal adiposity, 

with increased adipocyte volume and decreased lean body mass.  At 1 year, insulin 

and leptin levels were increased, with evidence of reduced glucose oxidation; these 

changes were associated with reduced spontaneous physical activity but not with any 

significant change in dietary intake or resting energy expenditure (Jones et al. 2000).  

More detailed assessment of glucose tolerance, using intraperitoneal glucose tolerance 

testing, confirmed marked insulin resistance in male ArKO mice (Takeda et al. 2003).  
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Estradiol replacement reversed changes in adiposity and adipocyte size with 

concomitant reduction in leptin and LPL gonadal adipose mRNA transcript levels.  As 

no effects upon lipolysis or fatty acid oxidation were observed, it seems likely that 

changes in adipocytes are a consequence of increased uptake of circulating lipid 

(Misso et al. 2003).  Male ArKO mice display marked hepatic steatosis accompanied 

by elevated perilipin 2 and FAS mRNA transcript levels in liver; estradiol 

replacement reverses both the steatosis and reduces perilipin 2 and FAS transcript 

levels (Hewitt et al. 2004).  Taken together, the features of human and murine 

aromatase deficiency support a central role for estrogens in maintaining metabolic 

health, although a contribution from changes in circulating androgens cannot be 

completely excluded. 

 

A number of polymorphisms have been identified in CYP19, which are known to 

influence circulating estradiol levels and, in some cases, bone mineral density.  The 

GG genotype of CYP19 rs2470152 is associated with 13% higher circulating estradiol 

levels, and higher lumbar BMD, than the AA genotype in young men (Eriksson et al. 

2009).  Men with high levels of a TTTA repeat polymorphism in intron 4 of CYP19 

(associated with higher aromatase activity in cultured skin fibroblasts), have higher 

concentrations of estradiol and higher lumbar BMD (Gennari et al. 2004), whilst low 

TTTA repeat quantity is associated with obesity and hyperandrogenaemia in 

premenopausal women (Baghaei et al. 2003). CYP19 rs2446405 AA genotype is 

associated with higher insulin sensitivity when compared with the AT genotype in 

peri-menopausal women.  Similarly, the CYP19 rs2414095 AA genotype confers a 

2.4-fold increased risk of diabetes compared to those with the AG genotype (Lo et al. 

2006). 
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1.3.3  Effect of aromatase inhibitors on steroid hormone concentration 

 

Three ‘third generation’ aromatase inhibitors are currently in clinical use for the 

treatment of hormone receptor-positive breast cancer in post-menopausal women:  

two non-steroidal derivatives, anastrozole and letrozole, and one steroidal derivative, 

exemestane (figure 1.3).    Aromatase inhibitors are associated with lower cancer 

recurrence rates than the selective estrogen receptor modulator tamoxifen (Dowsett et 

al. 2010) and are therefore considered first-line therapy, where typically a five-year 

course is recommended.  In 2012, 1.14 million community prescriptions were issued 

for third generation aromatase inhibitors in England (Prescribing and Primary Care 

Services, Health and Social Care Information Centre, 2013).  

 

Anastrozole appears to be a selective inhibitor of aromatase, with no effect observed 

upon cortisol (including ACTH-stimulated) and aldosterone concentrations (Buzdar et 

al.  2001).  Letrozole, in contrast, was associated with a 26.7% reduction in 8am 

plasma cortisol (with a similar decline in aldosterone) following 4 months of therapy, 

in women with metastatic breast cancer (Bisagni et al. 1996) and also with significant 

reductions in ACTH-stimulated cortisol, at 3 months, in women with advanced breast 

cancer (Bajetta et al.1999).  
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Figure 1.3  Structure and pharmacokinetics of third generation aromatase 

inhibitors.  Adapted from Buzdar et al. 2002. 
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Assessment of the degree and durability of estradiol suppression with aromatase 

inhibitors is surprisingly limited given their widespread use but is perhaps explained 

by the methodological difficulties in accurately measuring estrogens towards the 

lower end of the physiological range.  Within the first few months of therapy in breast 

cancer, greater than 90% suppression of circulating estradiol is achieved with 

letrozole and anastrozole.  Suppression appears to be less complete in healthy male 

volunteers and also where employed as a potential therapy for male hypogonadism 

(table 1.2), presumably as a consequence of secondary elevation of LH and increased 

substrate androgen levels; negative feedback at the pituitary level is primarily 

mediated by circulating estradiol (Raven et al. 2006).  Where a compensatory LH rise 

was prevented by concurrent goserelin acetate (GnRH agonist) administration, greater 

estradiol suppression (up to 91.6%) was observed in healthy male volunteers 

(Finkelstein et al. 2013).  The method used to measure estradiol may be important, as 

the degree of suppression was 58% with RIA compared to >89% with GC-MS, in one 

study, suggesting RIA may also measure cross-reacting estrogen metabolites (Santen 

et al. 2007).   
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1.3.4  Metabolic effects of aromatase inhibitors 

 

Despite the biological plausibility of aromatase inhibition leading to increased insulin 

resistance, no formal assessment of the effects of this medication class in post-

menopausal women (the main group exposed to this treatment) has been published to 

date.  A single small study (n=11) longitudinally assessed body composition in post-

menopausal breast cancer patients, treated with 3rd generation aromatase inhibitors, 

showing a small increase in lean mass, with no significant change in body fat over 

two years (Van Londen et al. 2011). 

 

Female rats treated with letrozole develop a phenotype consistent with PCOS, with 

inguinal fat accumulation, enlarged adipocytes and insulin resistance, as determined 

by euglycaemic hyperinsulinaemic clamp (Maliqueo et al. 2013), thus lending support 

to the potential for adverse metabolic consequences.    

 

A number of small studies have sought to assess the metabolic effects of aromatase 

inhibition in men.  In young men, 10 weeks of anastrozole did not influence BMI or 

fat mass (determined by DEXA) nor did it influence carbohydrate or lipid oxidation 

(Mauras et al. 2000).  12 weeks of anastrozole (1mg daily [n=12] or 1mg twice 

weekly [n=11]) in elderly men with ‘mild hypogonadism’ (mean age 67) did not 

result in any significant difference in HOMA-IR or fasting insulin concentration 

(Dougherty et al. 2005).  28 days of letrozole (2.5mg daily) did not result in any 

change in fasting glucose or insulin in older men (mean age 76.1 [n=10]) but was 

associated with reductions of 7% and 37% in fasting glucose and insulin, respectively, 

in younger men (mean age 25.9 [n=10]) (Lapauw et al. 2009); serum leptin was also 
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reduced following aromatase inhibitor therapy in this cohort.  Similarly, 7 days of 

letrozole (2.5mg daily) in younger men (mean age 34) resulted in significantly 

improved insulin sensitivity as determined by hyperinsulinaemic euglycaemic clamp, 

an effect which was negated by concomitant estradiol replacement, although this 

intervention also resulted in testosterone levels lower than baseline (Lapauw et al. 

2010); a mixed-meal test, following clamp studies, also demonstrated increased post-

prandial plasma GIP concentrations and lower triglyceride concentrations.  

 

The current evidence base is limited by the short duration of interventions, small 

study populations, employment of suboptimal methodologies for assessing insulin 

sensitivity and in failing to assess the population most commonly exposed to 

aromatase inhibition (i.e. post-menopausal women).   

 

1.3.5  Aromatase inhibitors as therapy for androgen deficiency 

 

Obesity and type 2 diabetes mellitus are associated with a high prevalence of male 

hypogonadism.  A large community-based cross-sectional study in the United States 

(n = 1849) reported rates of subnormal free testosterone in non-diabetic men of 26% 

(lean), 29% (overweight) and 40% (obese); for men with diabetes the proportions 

were significantly higher across the three weight categories at 44%, 44% and 50%, 

respectively (Dhindsa et al. 2010).  Increased aromatase activity, in an inflamed, 

expanded adipose pool, has been implicated as the potential mechanism for 

hypogonadism in this context (figure 1.3).  Metformin reduces aromatase expression 

in cultured breast adipose cells through an effect on cAMP mediated expression 

(Samarajeewa et al. 2011), raising the possibility that a similar effect may exist in the 
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pro-inflammatory milieu of obese adipose tissue.  Total body aromatase activity is 

known to increase in the context of acute illness, lending support to the concept that a 

pro-inflammatory state is conducive to increased aromatisation of androgens (Spratt 

et al. 2006).  Aromatase inhibition has been investigated as a potential therapy for 

obesity related hypogonadism, with once weekly letrozole (2.5mg) resulting in either 

normal or supra-physiological free testosterone concentrations in 12 severely obese 

men over a 6-month period, without a precipitous decline in estradiol (Loves et al. 

2008).    Aromatase inhibitors effectively increase testosterone levels, even in 

eugonadal men, but the resultant decline in estradiol has the potential to adversely 

affect bone mineral density, as was the case in a study of 34 hypogonadal older men, 

treated for 1 year with anastrozole (1mg daily) (Burnett-Bowie et al. 2009).    
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Figure 1.3  Central role for aromatase in the pathogenesis of obesity/diabetes 

related hypogonadism 
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1.4  Summary 

 

A substantial body of evidence exists to support a central role for sex steroid 

hormones in the maintenance of metabolic health and body composition.  

Perturbations in either circulating levels of sex steroid hormones, or sex hormone 

action, are associated with adverse changes in body composition, insulin resistance 

and diabetes mellitus, with some effects likely to be gender specific.  Aromatase is a 

central regulator of circulating androgen and estrogen concentration in men and post-

menopausal women and, perhaps more importantly, of tissue concentrations of these 

hormones.  Disruption of aromatase action, be it through genetic mutation or 

pharmacological inhibition, has metabolic consequences, although as with all 

manipulations of sex steroid hormones, the relative importance of estrogen and 

androgen effects can be difficult to discern.  This is additionally complicated by the 

relative balance of androgen receptor, estrogen receptor alpha and estrogen receptor 

beta activation in any given tissue.   

 

Aromatase inhibitors are a commonly prescribed drug class, making a thorough 

assessment of their metabolic sequelae desirable.  This thesis addresses the influence 

of sex steroid hormones upon metabolic health, in both men and women, primarily by 

investigating the effects of pharmacological aromatase inhibition. 
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1.5  Global hypothesis and aims 

 

This thesis sought to examine the effect of sex steroid hormones upon metabolic 

health and, in particular, the effects of pharmacological aromatase inhibition. 

 

I hypothesised that: 

1. Lower levels of circulating estrogens are associated with poorer metabolic 

health in both men and women. 

2. Aromatase inhibition is associated with deleterious effects upon body 

composition. 

3. Aromatase inhibition is associated with increased insulin resistance. 

4. Aromatase inhibition results in alterations in circulating adipokines and 

cytokines, through an effect on transcription in adipose tissue. 
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Chapter 2 

 

Materials and methods  
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2.1 Patient Recruitment 

 

2.1.1 Ethical approvals 

 

Ethical approval for human studies was obtained from the Lothian Research Ethics 

Committee.  The following approvals relate to this thesis: 

 

1. Metabolic effects of aromatase inhibition (07/S1101/32), Chief Investigator:  

Dr Fraser Gibb 

2. Assessing the effects of aromatase inhibition on body fat distribution and 

insulin sensitivity in post-menopausal breast cancer patients (08/S1101/54), 

Chief Investigator: Dr Fraser Gibb 

 

 

2.1.2 Recruitment process 

 

Metabolic effects of aromatase inhibition in men 

 

Healthy male volunteers were recruited through advertisements, placed in local 

newspapers, and through posters displayed across NHS Lothian and University of 

Edinburgh sites.   

 

Assessing the effects of aromatase inhibition on body fat distribution and insulin 

sensitivity in post-menopausal breast cancer patients 
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Breast cancer patients on aromatase inhibitor therapy were identified by weekly 

review of case notes at the Breast Cancer Clinic, Western General Hospital, 

Edinburgh.  Age-matched volunteers were recruited from the South East Scotland 

Breast Cancer Screening Programme through posters displayed in the Breast 

Screening Centre, Ardmillan House, Edinburgh.   

 

2.2 Tissue Collection 

 

2.2.1. Blood sampling 

 

Whole blood was collected following cannulation of a peripheral vein and stored on 

ice prior to processing, which occurred within 30 minutes of sample collection.  

Sarstedt Monovette® blood collection tubes were used.  Plasma or serum samples 

were prepared by centrifugation (12,000 rpm, 10 minutes, 4°C) and stored at -80°C 

until analysis. 

 

Blood collected for serum was collected in containers containing a separation 

polyacrylic ester gel.  Glucose samples were collected into tubes containing fluoride 

(1mg/mL blood) and EDTA. 

 

 

2.2.2 Subcutaneous adipose tissue biopsy 

 

Subcutaneous adipose tissue biopsies were performed in the ‘Assessing the effects of 

aromatase inhibition on body fat distribution and insulin sensitivity in post-
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menopausal breast cancer patients’ (Chapter 4) and ‘Metabolic effects of aromatase 

inhibition in men’ (Chapter 5) studies.  Subjects were placed in a recumbent position; 

the abdomen was exposed and, an area approximately 10 cm lateral to the umbilicus 

was cleaned with sterile solution (chlorhexidine). Lidocaine 2%  (Hameln 

Pharmaceuticals, Gloucester, UK) was infiltrated intradermally with a 25G needle and 

into the subcutaneous compartment with a 21G needle (total volume approximately 

5mL).  Following an interval of 2 minutes (to allow the anaesthetic to take effect), a 

12G needle was inserted laterally into the subcutaneous adipose compartment and 

adipose tissue aspirated into a sterile 50mL syringe, under suction.  DEPC water was 

then drawn into the syringe and the contents expelled over a sterile stainless steel 

mesh.  Visible blood clots were removed with sterile tweezers and the remaining 

tissue was promptly transferred into a sterile 2 mL eppendorf which was immediately 

placed on dry ice.  Up to three aspirations were performed in order to obtain sufficient 

tissue.  All samples were then stored at -80°C until analysis. 
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2.3 Materials 

 

2.3.1 Blood collection 

 

" S-Monovette® 

blood collection 

system  

Sarstedt Ltd., Leicester, UK  

 

2.3.2 RNA extraction & cDNA synthesis 

 

" RNeasy Lipid 

minikit 

Qiagen, Crawley, UK Cat. No. 74804 

" QIAzol Lysis 

Reagent 

Qiagen, Crawley, UK Cat. No. 79306 

" Chloroform 

(>99%, PCR 

reagent) 

Sigma, Dorset, UK C7559-5VL 

" Ethanol  Sigma, Dorset, UK E7023-4X4L 

 

2.3.3 Real time quantitative RT-PCR mRNA transcript assays and 

solutions 

 

Primers and probes listed in section 2.4 (table 2.2) 
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" PCR grade water Roche Diagnostics, Mannheim, 

Germany 

Cat. No. 04 707 494 

001 

" LightCycler® 480 

Probe Master 

Roche Diagnostics, Mannheim, 

Germany 

Cat. No. 04 707 494 

001 

" Universal Probe 

Library Probes 

Roche Diagnostics, Mannheim, 

Germany 

 

" Custom primers Invitrogen Ltd., Paisley, UK  

 

2.3.4 ELISA 

 

" Estrone ELISA DRG Diagnostics, Germany EIA-4147 

" Estradiol sensitive 

ELISA 

DRG Diagnostics, Germany EIA-4399 

" Testosterone ELISA DRG Diagnostics, Germany EIA-1559 

" Androstenedione 

ELISA 

DRG Diagnostics, Germany EIA-3265 

" SHBG Immulite 

2000 ELISA 

Siemens Healthcare, Llanberis, 

UK 

 

" Insulin ELISA DRG Diagnostics, Germany EIA-2337 

" Insulin ELISA Abbott Laboratories, 

Wiesbaden, Germany 

08K41-26 
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2.3.5 Tracer and hyperinsulinaemic euglycaemic clamp  

 

" Accu-Chek Blood 

Glucose Monitor 

Roche Diagnostics Ltd., 

Burgess Hill, UK 

 

" 6,6-d2-glucose Cambridge Isotopes, CK Gas 

Products, Hampshire, UK 

DLM-349-SP-40 

" 1,1,2,3,3-d5-

glycerol 

Cambridge Isotopes, CK Gas 

Products, Hampshire, UK 

DLM-1229-SP-10 

" Actrapid® Insulin Novo Nordisk, Crawley, UK  

" Glucose 20% Baxter, Berkshire, UK  

 

2.3.6 Gas Chromatography – Mass Spectrometry  

 

" HPLC grade water Fisher Scientific, 

Loughborough, UK 

 

" HPLC grade 

acetonitrile 

VWR, Lutterworth, UK  

" Heptane Rathburn, Walkerburn, UK  

" Pyridine Sigma-Aldrich, Dorset, UK  

" Acetic anhydride Sigma-Aldrich, Dorset, UK  

" Glucose Sigma-Aldrich, Dorset, UK  

" Glycerol Sigma-Aldrich, Dorset, UK  

" Methane, research 

grade 

BOC, Edinburgh, UK  
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2.3.7 Liquid Chromatography Tandem Mass Spectrometry  

 

HPLC grade water Fisher Scientific, 

Loughborough, UK 

 

HPLC grade methanol Fisher Scientific, 

Loughborough, UK 

 

HPLC grade acetone Fisher Scientific, 

Loughborough, UK 

 

HPLC grade acetonitrile Fisher Scientific, 

Loughborough, UK 

 

HPLC grade hexane Fisher Scientific, 

Loughborough, UK 

 

Estrone Sigma-Aldrich, Dorset, UK  

Estradiol Sigma-Aldrich, Dorset, UK  

Testosterone Sigma-Aldrich, St Louis, USA  

Androstenedione Sigma-Aldrich, Dorset, UK  

Formic acid ≥98% Sigma-Aldrich, Dorset, UK  

Triethylamine ≥99.5% Sigma-Aldrich, Dorset, UK  

FMP-TS Sigma-Aldrich, Dorset, UK  

3,4-[13C]2-estrone Cambridge Isotope Laboratories, 

Andover, USA 

 

3,4-[13C]2-estradiol Cambridge Isotope Laboratories, 

Andover, USA 

 

2,3,4-[13C3]- Sigma-Aldrich, Dorset, UK  
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androstenedione 

2,3,4-[13C3]-testosterone Sigma-Aldrich, Dorset, UK  

 

2.4 mRNA quantitation 

 

2.4.1 Equipment 

 

All kits for RNA extraction and reverse transcription were from Qiagen, West Sussex, 

UK. 

 

2.4.2 Buffers and Solutions 

 

2.4.2.1 DEPC water 

10 drops of diethylpyrocarbonate (DEPC) were added to 1 litre of distilled water.  

This was mixed and allowed to stand at room temperature for 24 hours prior to 

autoclaving.  Subsequent storage was at room temperature. 

 

2.4.2.2 10x TBE 

Tris base (0.89M), boric acid (0.89M) and EDTA (0.5M, 40 mL) were dissolved in 

distilled water (800 mL).  pH was adjusted to 8.0 by the addition of NaOH (1M) and 

final volume adjusted to 1 L with distilled water.  Storage was at room temperature. 
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2.4.2.3 0.5x TBE 

 

50mL 10x TBE was diluted with distilled water (950 mL) and stored at room 

temperature. 

 

 

2.4.3 RNA Extraction from subcutaneous adipose tissue 

 

Approximately 100 mg of adipose tissue was homogenized in Qiazol Lysis Reagent 

(1 mL, Qiagen), using a tissue lyser (Tissue Lyser, Qiagen, UK) and incubated for 5 

minutes at room temperature.  Chloroform (200 µL) was added, mixed and incubated 

at room temperature for 3 minutes, before centrifugation (12,000 g; 15 minutes; 4°C).  

The supernatant (600 µL) was removed and replaced by an equal volume of ethanol 

(70%, v/v), which was mixed by pipetting.  The solution was transferred to a RNeasy 

spin column and the eluate discarded after centrifugation (10,000 g; 30 seconds; RT).  

The column was washed with 700 µL Buffer RW1 and centrifuged (10,000 g; 30 

seconds; RT) with the eluate discarded.  This was followed by a further washing step 

with 500 µL Buffer RPE with centrifugation (10,000 g; 30 seconds; RT) and disposal 

of the eluate.  500 µL RPE buffer was added and the column centrifuged (10,000 g; 2 

minutes; RT).  Subsequently the RNeasy spin column was placed in a fresh 2 mL 

collecting tube and any residual RPE buffer removed by centrifugation (16,000 g; 1 

minute; RT).  The RNeasy spin column was then placed in a fresh Eppendorf (1.5 

mL), 40 µL RNase-free water added and incubated at room temperature for 10 

minutes.  RNA was eluted by centrifugation (10,000 g; 1 minute; RT) and the eluate 

added back to the column for a further 10 minute incubation at room temperature, to 
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increase the potential yield of RNA.  Finally, RNA was re-eluted by centrifugation 

(10,000 g; 1 minute; RT) and stored at -80°C.   

 

2.4.4 RNA Quantification 

 

RNA was quantified using a Nanodrop spectrophotometer (Thermo Fisher, West 

Sussex, UK).  Absorbance at 260 nm wavelength (A260) was used to determine 

concentration.  Purity was assessed by the ratio of RNA to DNA (A260/A280); this 

was regarded as acceptable if between 1.9 and 2.1, effectively excluding significant 

contamination with protein or solvent.   

 

2.4.5 cDNA synthesis 

 

Total RNA (0.2 - 0.5 µg) was reverse transcribed using the QuantiTect Reverse 

Transcription kit (Qiagen).  RNA (12 µL) was added to gDNA wipeout buffer (2 µL) 

and incubated (42°C, 2 minutes) to remove any genomic DNA contaminants.   

Quantiscript RT buffer, RT primer mix and Quantiscript Reverse Transcriptase were 

added to each sample (Table 2.1).  A negative control without reverse transcriptase 

was prepared to detect any contamination with genomic DNA (‘RT negative’ in table 

2.1).   A further negative control with water and no RNA was used to detect any RNA 

contamination in the reagents (‘Water control’ in table 2.1).  Samples were incubated 

(42 °C, 15 minutes; then 95 °C, 3 minutes) in a PCR thermal cycler, before cooling to 

4 °C and storage at -20 °C. 
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 1x reaction volume RT negative Water control 

500ng RNA Make up to 12 µL 

with RNase-free 

water 

Make up to 12 µL 

with RNase-free 

water 

- 

gDNA wipeout 

buffer 

2 µL 2 µL 2 µL 

Quantiscript RT 

buffer 

4 µL 4 µL 4 µL 

RT primer mix 1µL 1µL 1 µL 

Quantiscript 

reverse 

transcriptase 

1µL - 1 µL 

RNase-free water - 1 µL 12 µL 

Total volume 20 µL 20 µL 20 µL 

 

Table 2.1 cDNA synthesis mixes and controls 
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2.4.6 Real-time Polymerase Chain Reaction (RT-PCR) 

 

mRNA quantification was performed using real-time PCR on a LightCycler® 480 

(Roche Diagnostics Ltd., Burgess Hill, UK) using LightCycler® 480 software version 

1.5.   Intron-spanning primers (Invitrogen Ltd., Paisley, UK) were designed using the 

Roche Universal Probe Library Assay Design Center.  Primers and probes for genes 

of interest (and the selected housekeeping gene, cyclophylin A) are summarised in 

table 2.2.  Aliquots from all samples being analysed were pooled and a standard curve 

created by serial dilution with PCR grade water at the following concentrations: 1:4, 

1:8, 1:16, 1:32, 1:64, 1:128, 1:256, 1:512.  An 8 µL Mastermix was prepared which 

constituted: Probe master (5 µL), PCR grade water (2.7 µL), forward primer (0.1 µL), 

reverse primer (0.1 µL) and probe (0.1 µL); this was added to each well. Water and -

RT negative controls (as described in section 2.4.5) were analysed on each plate.  

Diluted cDNA (2 µL) samples were added to each well, plates were sealed with an 

optical adhesive cover and then centrifuged (4214 g, 2 minutes, RT) before being run 

on the PCR system.  A single gene was quantified for all samples on one plate.  All 

samples and standards were analysed in triplicate. 

 

Samples were denatured by heating (95 °C, 5 minutes), followed by 50 cycles of PCR 

amplification:  denaturation (95 °C, 10 seconds), annealing (60 °C, 30 seconds) and 

elongation (72 °C, 1 second).  Finally, samples were cooled to 40 °C for 30 seconds.  

Amplification curves were plotted with cycle number on the x-axis and fluorescence 

intensity on the y-axis.  Excitation was at 483 nm and detection at 533 nm.  

Triplicates were considered acceptable if standard deviation of the crossing point was 

<0.4 cycles.  The standard curve generated from pooled, diluted samples was fitted 
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with a straight line and considered acceptable if reaction efficiency was between 1.7 

and 2.2.   

 

mRNA was quantified and normalised against the expression of the housekeeping 

gene, cyclophilin A.  This housekeeping gene has been successfully employed by 

other investigators under similar experimental conditions (Wake et al. 2007) and was 

present in similar abundance to the genes of interest. There have been reports of 

cyclophilin A upregulation in murine vascular smooth muscle exposed to 

inflammatory stimuli (Nigro et al. 2011) and also of a stimulatory effect of 

hyperglycaemia in in vitro experiments, albeit in monocytes (Ramachandran et al. 

2012).  There is no direct evidence to suggest any effect of sex steroid hormones upon 

cyclophilin A, in adipose tissue or elsewhere. 
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2.5 Enzyme-linked Immunosorbent Assay (ELISA) 

 

2.5.1 Principles of ELISA 

 

Commercially available ELISA kits were used in accordance with manufacturers’ 

instructions.  Microtitre wells are coated with antibody directed to an antigenic site on 

the analyte of interest.  Endogenous analyte competes with analyte-horseradish 

peroxidase conjugate for binding to the antibodies during an incubation phase.  

Subsequently, sample is removed and the plate washed with a supplied wash buffer 

(commonly phosphate buffered saline with Tween detergent).  A detection solution is 

added which releases a coloured dye in the presence of peroxidase activity (e.g. 

3,3’,5,5’-tetramethylbenzidine which is converted to blue-coloured 3,3’,5,5’-

tetramethylbenzidine diimine).  Colour change is inversely proportional to the 

concentration of analyte in the sample.  The reaction is terminated by the addition of 

sulphuric acid, which leads to a yellow colour change.  Light absorption at 450 nm is 

measured by spectrophotometry.   

 

2.5.2 Individual Assays 

 

All assay ranges, limits of detection and coefficents of variation (CV) are reported as 

provided by the assay manufacturers. 
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2.5.2.1 Androstenedione ELISA 

 

Androstenedione was measured using solid phase ELISAs (DRG, Marburg, 

Germany).  The assay range was 0 – 10 ng/mL; limit of detection was 0.019 ng/mL; 

mean intra-assay CV was 9.1%, mean inter-assay CV was 9.6%.   

 

2.5.2.2 Testosterone ELISA 

 

Testosterone was measured using solid phase ELISAs (DRG, Marburg, Germany).  

The assay range was 0 – 16 ng/mL; limit of detection was 0.083 ng/mL; mean intra-

assay CV was 4.16%, mean inter-assay CV was 9.94%.   

 

2.5.2.3 Estradiol  ELISA 

 

Estradiol was measured using high-sensitivity solid phase ELISAs (DRG, Marburg, 

Germany).  The assay range was 0 – 200 pg/mL; limit of detection was < 1.399 

pg/mL; mean intra-assay CV was 7.87%, mean inter-assay CV was 8.78%.   

 

2.5.2.4 Estrone ELISA 

 

Estrone was measured using solid phase ELISAs (DRG, Marburg, Germany).  The 

assay range was 2.21 – 1000 pg/mL; limit of detection was 2.21 pg/mL; mean intra-

assay CV was 6.5%, mean inter-assay CV was 12.8%.   
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2.5.2.5 Sex hormone-binding globulin (SHBG) 

 

SHBG was measured using a solid phase, two site chemiluminescent immunometric 

assay (Immulite 2000, Siemens Healthcare, Llanberis, UK).  The assay range was 

0.02 – 180 nmol/L; limit of detection was 0.02 nmol/L; mean intra-assay CV was 

2.5%; mean inter-assay CV was 4.2%.  

 

2.5.2.6 Insulin 

 

Insulin was measured using a chemiluminescent microparticle immunoassay 

(Architect, Abbott Laboratories, Wiesbaden, Germany) in the study described in 

chapter 4.  The assay range was 1.0 µU/mL to 300 µU/mL; limit of detection was 1.0 

µU/mL; mean intra-assay CV was 3.6%; mean inter-assay CV was 4.7%. 

 

In the study described in chapter 5, insulin was measured by an ultrasensitive insulin 

ELISA kit (DRG, Marburg, Edinburgh).  The limit of detection was 0.07 mU/L; mean 

intra-assay CV was 5.3%; mean inter-assay CV was 2.7%.    

 

2.6 Measurement of adipokines by multiplex immunoassay 

 

2.6.1 Principles of multiplex immunoassay 

 

Adipokines were measured by Milliplex™ (Merck Millipore, Watford, UK), an 

immunoassay which utilises fluorescent-coded magnetic beads to simultaneously 

measure multiple analytes.  Capture antibody coated beads are incubated with sample, 
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washed and a biotinylated detection antibody added.  After a further washing step, 

beads are incubated with a reporter streptavidin-phycoerythrin (SA-PE) conjugate.  

Finally the beads are passed through an array reader which measures the fluorescence 

of bound SA-PE.  Two ‘panels’ were used: one to measure leptin, MCP-1 and IL-8 

and the other measuring adiponectin and resistin.   

 

2.6.2  Instrumentation 

 

Multiplex assays were performed on a MagPix® system with xPONENT® software, 

version 4.1 (Luminex, Austin, USA).  The instrument comprises two lasers; one to 

excite internal fluorescent dyes, to identify the analyte of interest, and the other to 

excite the fluorescent reporter molecule.  The latter signal was used for quantification 

of the analyte of interest.  Calibration of the instrument was performed prior to each 

use. 

 

2.6.3 Leptin, MCP-1 and IL-8 

 

Samples were analysed in accordance with the manufacturer’s protocol.  Supplied 

standards covered a concentration range of 38 – 600000 pg/mL for leptin, 1.3 – 20000 

pg/L for MCP-1 and 0.64 – 1000 pg/mL for IL-8.  Limits of detection, intra-assay CV 

and inter-assay CV (as provided in the manufacturer’s literature) were: leptin 19 

pg/mL, 5%, 13%; MCP-1 1.2 pg/mL, 2%, 11%; IL-8 0.3 pg/mL, 3%, 14%.  

 

Assay buffer (200 µL) was added to each well.  The plate was sealed and incubated 

for ten minutes (RT) on a plate shaker, after which assay buffer was removed.  25 µL 
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of standards or controls were added to the appropriate wells in duplicate. Assay buffer 

(25 µL) was added to background and sample wells.  Serum matrix (lyophilised 

serum matrix reconstituted in 1 mL deionsed water, 25 µL) was added to background, 

standard and control wells.  Samples (25 µL) were added to sample wells in duplicate.  

Antibody immobilised beads suspension was sonicated (30 seconds) and vortexed (1 

minute).  150 µL of each antibody bead vial (one per analyte) was added to a mixing 

bottle and made up to 3 mL with bed diluent.  Prepared magnetic beads (25 µL) were 

added to each well, the plate was sealed, wrapped in foil and incubated on a plate 

shaker for 18 hours at 4°C.  Decanting of well contents in subsequent steps was 

performed with the assay plate on a magnetic plate.  The plate was washed three times 

with wash buffer (diluted 1:10 in deionised water, 200 µL per well).  Detection 

antibodies (50 µL) were added to each well, the plate sealed and then covered in foil 

for incubation on a plate shaker (1 hour, RT).  Streptavidin-Phycoerythrin (50 µL) 

was added to each well, the plate sealed, covered in foil and incubated on a plate 

shaker (30 minutes, RT).  Well contents were removed and the plate washed (200 µL, 

three times).  Assays were reconstituted in Drive Fluid (100 µL) prior to analysis.  A 

standard curve (logistic 5 point weighted) was constructed and sample concentration 

calculated by interpolation.  Acceptable r2 for standard curves was >0.99.   

 

2.6.4 Adiponectin (total) and resistin 

 

The method described in section 2.6.3 was employed for measurement of adiponectin 

and resistin with two exceptions: samples were added at 1:4000 or 1:8000 dilution 

and no serum matrix was added to background, standard or control wells.  Supplied 

standards covered a concentration range of 0.01 – 160 µg/mL for adiponectin and 
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2.56 – 40000 ng/mL for resistin.  Limits of detection, intra-assay CV and inter-assay 

CV (as reported by the manufacturer) were: adiponectin 145.4 pg/mL, 5.6%, 15%; 

resistin 6.7 pg/mL, 6%, 13%.   

 

2.7 Gas Chromatography Mass Spectrometry (GCMS): 

Quantification of glucose, glycerol, d2-glucose and d5-

glycerol 

 

Gas chromatography Mass Spectrometry (GCMS) is employed to separate and 

quantify chemical species.  Gas chromatographic columns comprise a stationary 

phase (immobile liquid adhering to the column wall) and a mobile phase (the gas 

passing through the column).  When a mixture of chemicals is introduced on to the 

column, the differing affinity for the mobile and stationary phases determines the 

rapidity with which individual species reach a detector at the column’s end; this is 

designated as the retention time.  Gas Chromatography is allied with Mass 

Spectrometry, for detection and for specificity, because retention time alone is not 

sufficiently discriminatory to confidently identify individual chemical species.  Upon 

leaving the GC column, molecules are ionized (either by chemical ionization or 

electron impact) and these molecular ions (and fragment ions) produce a mass 

spectrum; essentially a representation of abundance by the mass:charge ratio (m/z) for 

each ion.  Prior to analysis, samples are often derivatised to encourage ionization or to 

stabilise the analyte of interest.  In this case, for the quantification of glucose and 

glycerol, acetate derivatives were formed.  Stable isotope tracer studies rely upon 

slight differences in mass between isotope species, with mass spectrometry the only 

suitable method of differentiation. 
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2.7.1 Reagents and standards 

 

" HPLC grade water - Fisher Scientific (Loughborough, UK).   

" HPLC grade acetonitrile – VWR (Lutterworth, Leicestershire, UK) 

" Heptane – Rathburn (Walkerburn, UK) 

" Pyridine, acetic anhydride, glucose, glycerol, 13C6-glucose and butanetriol – 

Sigma Aldrich (Dorset, UK) 

" d2-Glucose and d5-glycerol – Cambridge Isotope Laboratories, Inc. (Andover, 

USA) 

 

Solutions for standard curves and enrichment curves were prepared in HPLC grade 

water and stored at 4°C, for not more than 2 weeks prior to use. 

 

Standard solutions were: 

 

a. Glucose (5 mg/mL), glycerol (0.025 mg/mL), d2-glucose (0.1 mg/mL) and d5-

glycerol (0.025 gm/mL).   

b. Internal standard mix – 13C6-glucose (5 mg/mL) and butanetriol (0.25 

mg/mL). 

 

Reagents (prepared on the day of assay): 

 

a. Acetic anhydride (5%) in heptane. 

b. Pyridine:acetic anhydride (1:1, v/v). 
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Standard curves were prepared across the expected plasma concentration ranges for 

glucose (0 – 9.25 mmol/L), glycerol (0 – 90.5 µmol/L), d2-glucose (0 – 0.018 

mmol/L) and d5-glycerol (0.90.5 mol/L).  An enrichment curve was prepared 

representing 0 – 12% enrichment for both glucose and glycerol, with d2-glucose and 

d5-glycerol, respectively. 

 

Acetonitrile (1 mL) was added to extraction wells (96-well Strata Impact™ protein 

precipitation plate, Phenomenex, Macclesfield, UK), followed by standards, 

enrichment standards and samples (200 µL).  Internal standard solution (25 µL) was 

added to the standards and samples but not to enrichment samples.  Following a 20-

minute incubation period (RT), vacuum was applied (0.3 bar) and extracts collected.  

Eluates were reduced to dryness under oxygen-free nitrogen (OFN; 37°C).  

Pyridine:acetic anhydride (200 µL, 1:1 v/v) was added to the dry residue and left to 

stand (RT, 15 mins), forming acetate derivatives (Figures 2.1 and 2.2).  The 

derivatised samples were dried under OFN (37 °C), reconstituted in 5% acetic 

anhydride in heptane (100 µL) and transferred to GCMS vials (200 µL conical glass 

inserts, National Scientific, USA).  1 µL of sample was injected onto the GC-MS 

system.  
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Pyridine:acetic!
anhydride!(1:1,!v/v)!

Room!temperature!

Figure 2.1 Derivatisation of glycerol (left; MW 92.09) with pyridine:acetic 

anhydride to form glycerol triacetate (right; MW 218.2) 

!

!!

Pyridine:acetic!
anhydride!(1:1,!v/v)!

Room!temperature!

Figure 2.2 Derivatisation of glucose (left; MW 180.16) with pyridine:acetic 

anhydride to form glucose pentacetate (right; MW 390.34) 
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2.7.2 Instrumentation 

 

The GC-MS system consisted of a Finnigan GC800TOP GC, an AS800 autosampler 

and a single quadrupole Voyager mass spectrometer operating with Xcalibur software 

version 1.2 (Finnigan, now Thermo Scientific, Manchester, UK).  The analytical 

column was an HP-Innowax column (30 m x 0.32 mm x 0.025 µm; Agilent, 

Berkshire, UK).  The sample was injected using splitless injection in a 1 µL volume.  

Injection temperature was 260 °C.  The column oven temperature was 60°C at the 

point of injection and programmed to reach 150°C at a rate of 30°C per minute; 

followed by a subsequent rise of 10°C per minute to a target of 260 °C, which was 

then held for 3 minutes.  Interface and source temperatures were 240 °C and 175 °C, 

respectively.  Helium gas was used as the mobile phase at a rate of 2.5 mL per 

minute.   

 

Mass spectra were acquired using negative chemical ionisation with methane 

(research grade, BOC, Edinburgh, UK) as the reagent gas at an electron energy of 70 

eV.  Selective ion monitoring was employed with a total run time of 18 minutes.  

Glycerol, D5-glycerol and butanetriol derivatives were monitored from 0 – 10 

minutes, with glucose, d2-glucose and 13C6-glucose derivatives monitored from 10 – 

18 minutes.  Details of the monitored ions are summarised in table 2.3, glucose 

derivatives were detected as isomers.    
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 m/z Retention time (minutes) 

Glycerol triacetate 217 7.15 

d5-Glycerol triacetate 222 7.12 

Butanetriol triacetate 231 8.16 

Glucose pentacetate 287 15.06 & 15.38 

d2-glucose pentacetate 289 15.05 & 15.37 

13C6-glucose pentacetate 293 15.05 & 15.37 

 

Table 2.3 Monitored ions and retention times 
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2.8  Liquid Chromatography Tandem Mass Spectrometry (LC-

MS/MS) measurement of estrogens 

 

2.8.1 Background 

 

Accurate measurement of estrogens is technically difficult, particularly in men and 

post-menopausal women in whom circulating levels are often below the limit of 

quantification of many established assays.  LC-MS/MS offers the potential for both 

sensitive and specific quantification of sex steroid hormones although, as a 

consequence of inefficient ionisation, derivatisation is often required to introduce a 

charged moiety.  Within our laboratory, a new method was developed using 2-fluoro-

1-methylpyridinium-p-toluenesulfonate (FMP-TS), creating estrogen-FMP derivatives 

which were quantified using triple quadrupole MS in positive electrospray ionisation 

mode following LC separation (Faqehi et al. submitted).   

 

2.8.2 Reagents and standards 

 

" HPLC grade water, methanol, acetone, hexane and water – Fisher Scientific 

(Loughborough, UK) 

" Estrone, Estradiol, 17α-estradiol, formic acid, triethylamine (TEA), FMP-TS – 

Sigma Aldrich (Dorset, UK) 

" 3,4-[13C]2-estrone (13C2E1) and 3,4-[13C]2-estradiol (13C2E2) – Cambridge 

Isotope Laboratories (Andover, USA).   
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2.8.3 Extraction 

 

1mL plasma was centrifuged for 20 minutes (8000g, 4°C) and sediment removed.  

Volume was adjusted to 2mL with water and 200 pg internal standard (13C2 labelled 

estrogen FMP derivatives).  Solid-phase extraction was performed under gravity using 

Oasis MCX cartridges (3 cc/60 mg, Waters, Milford, USA).  Cartridges were 

conditioned with methanol (2 mL) then water (2 mL) before samples were loaded (2 

mL).  Cartridges were washed with FA (2% v/v, 2 mL) and eluted in methanol (2 mL) 

before being reduced to dryness under OFN (40 °C) in preparation for derivatisation. 

 

2.8.4 Derivatisation  

 

FMP (50 µL; 5mg/mL in acetonitrile containing TEA [1%]) was prepared 

immediately prior to reaction and added to the extract.  The mixture was vortexed (10 

s) and incubated (40°C, 15 minutes) before mobile phase (water: methanol 65:35 

containing FA 0.1%, 50 µL) was added to quench the reaction.  Figure 2.3 shows the 

example of an estrone-FMP derivative.  

 

Standard curves were prepared with aliquots containing estrogens at 0, 10, 50, 250, 

500, 750 and 1000 pg with internal standard (1000 pg).    
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Figure 2.3  Formation of the estrone-FMP derivative following reaction with 

FMP-TS in the presence of TEA (From Faqehi et al.)  

 

  

Figure 1 Faqehi et al. 
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2.8.5 Instrumentation 

 

20 µL sample was injected into an Acquity UPLC® BEH C18 column (50 x 2.1 mm, 

1.7 µm, Waters, Milford, USA) with an isocratic solvent system of water: methanol 

(65:35), containing FA (0.1%, 0.4 mL/min).  The column and autosampler 

temperatures were 25°C and 10°C, respectively.  Estrogen FMP derivatives were 

quantified using triple quadrupole MS (QTrap 5500, AB Sciex, Warrington, UK) in 

positive electrospray ionisation mode, using Analyst software version 1.5.1 (AB 

Sciex, Warrington, UK).   

 

2.8.6 Assay performance 

 

The limit of detection for FMP derivatives of estrone and estradiol was 2 pg/mL; the 

corresponding limit of quantification was 5 pg/mL At the limit of quantification, 

intra-assay CV was 12% and 11% for estrone and estradiol, respectively; inter-assay 

CV was 15% ad 13%, respectively (Faqehi et al., submitted).   

 

2.9  Liquid Chromatography Tandem Mass Spectrometry (LC-

MS/MS) measurement of androgens 

 

2.9.1 Reagents and standards 

 

" HPLC grade water, methanol and formic acid– Fisher Scientific 

(Loughborough, UK) 
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" Testosterone, androstenedione, 2,3,4-[13C3]-testosterone and 2,3,4-[13C3]-

androstenedione – Sigma-Aldrich, Dorset, UK 

 

2.9.2 Extraction 

 

Solid phase extraction was employed using Oasis HLB 30mg cartridges (Waters, 

Manchester, UK).  Cartridges were primed with methanol (1 mL) followed by water 

(1 mL).  500 µL of sample was enriched with internal standard (1ng) and water added 

(500 µL).  Samples were mixed, loaded onto extraction cartridges and a wash step 

performed (50% methanol in water, 1 mL); analytes were then eluted with methanol 

(1 mL).  Eluate was dried under OFN (37°C) and then reconstituted in mobile phase 

(100 µL) 

 

2.9.3 Standard curves  

 

Standard curves were generated for testosterone and androstenedione with the 

addition of 1ng internal standard across the following concentration ranges: 

" Testosterone : 1, 2, 3, 5, 7.5, 10, 12.5, 15 ng/mL 

" Androstenedione: 0.1, 0.2, 0.5, 1, 2, 3, 4, 5 ng/mL 

 

 

2.9.4 Instrumentation 

 

10 µL sample was injected into an Acquity UPLC® (Waters, Manchester, UK) using 

a Kinetex C18 column (150 x 3 mm, 2.6 µm, Phenomenex®, Macclesfield, UK) at 
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35°C. Elution was achieved with a 9 minute linear gradient from 30:70 to 80:20 

(methanol: water with 0.1% FA), with a flow rate of 250 µL/min applied.  Initial hold 

was 1 minute, then the gradient applied for 9 minutes, with a further hold until 16 

minutes.  Androgens were quantified using triple quadrupole MS (QTrap 5500, AB 

Sciex, Warrington, UK) in positive APCI mode, using Analyst software version 1.5.1 

(AB Sciex, Warrington, UK).     

 

2.9.5 Assay performance 

The limits of detection for testosterone and androstenedione were 0.003 ng/mL and 

0.08 ng/mL, respectively; the corresponding limits of quantification were 0.005 

ng/mL and 0.125 ng/mL, respectively.   At 1.8 ng/mL, the intra-assay CV was 2.8% 

and inter-assay CV 10.0% for testosterone.  At 0.18 ng/mL, the intra-assay CV was 

5.4% and inter-assay CV 19.3% for androstenedione.   
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Chapter 3 

 

Associations between circulating sex 

steroid hormones and cardiometabolic risk 

in older men: cross-sectional study 
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3.1 Background 

Several studies have sought to investigate relationships between sex steroid hormones and 

cardio-metabolic risk factors, as well as incident diabetes (Ding et al 2006).  Frequently the 

focus has been on androgens in men and estrogens in women, although increasingly the role 

of both hormone classes has been investigated across genders (Jasuja et al. 2013; Oh et al. 

2002).  In addition, lower concentration of sex hormone-binding globulin (SHBG) has been 

consistently associated with diabetes risk in both men and women (Wallace et al. 2013). 

 

SHBG is a 90-KDa glycoprotein which avidly binds testosterone and, with approximately 

half the affinity, estradiol.  Only 2 - 3% of plasma testosterone circulates freely, the 

remainder is bound with low-affinity to albumin or with high-affinity to SHBG (de Ronde et 

al. 2006).  Conventionally regarded as simply a transport protein, increasing evidence 

suggests SHBG may have an active role in cellular uptake of sex steroids and may be capable 

of signalling via a G-protein coupled receptor (Rosner et al 2010).  Whether SHBG simply 

reflects insulin resistance or has a causative role in diabetes development is unresolved, 

although recent Mendelian randomisation studies appear to support a protective effect with 

respect to diabetes development (Ding et al.  2009; Perry et al. 2010).   

 

Lower total testosterone concentration, a measure of both bound and unbound hormone, has 

frequently been associated with greater adiposity, reduced lean mass, greater insulin 

resistance and higher diabetes risk in men (Kelly & Jones 2013). Measuring free testosterone 

is technically challenging and so it is often calculated indirectly by use of a mathematical 
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manipulation, which takes account of SHBG and albumin concentrations (Vermeulen et al. 

1999).   

 

Estradiol levels are typically higher in men with T2DM (Ding et al. 2006) and, similarly, 

higher estrone was associated with an increased risk of developing diabetes in the 

Framingham cohort, even after adjustment for potential confounders (Jasuja et al. 2013).   

 

As detailed in Chapter 1, examining the metabolic effects of androgens and estrogens is 

complicated by their substrate-product relationship, with estradiol and estrone produced by 

aromatisation of testosterone and androstendione, respectively.  It is often difficult to 

determine the extent to which effects are a consequence of androgen or estrogen changes.   

This study sought to examine the relationship between estrogens, androgens and SHBG, as 

well as their associations with metabolic parameters, in a cohort of 197 elderly men. 
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3.2 Hypothesis and aims 

3.2.1 Hypothesis 

The principal hypothesis investigated in the study was: 

Lower circulating estrogens, androgens and SHBG are associated with an adverse cardio-

metabolic phenotype in older men. 

3.2.2 Aims 

The aims of the study were to:  

1. Determine associations between circulating sex steroid hormones. 

2. Assess determinants of estrogen levels in men. 

3. Determine associations between sex steroid hormones, SHBG and cardio-metabolic 

risk factors. 
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3.3 Methods 

3.3.1 Study title and ethical approvals 

Study Title: Associations between circulating sex steroid hormones and cardiometabolic risk 

in older men: cross-sectional study 

This cohort was initially established in the early 1990s and included men born between 1920 

and 1930 in East Hertfordshire (Hales et al. 1991).  In 1997, surviving members of this 

cohort were approached to take part in a further study, which involved administration of 

0.25mg dexamethasone at 2300h followed by blood sampling on the following morning 

(Reynolds et al. 2001).  This study used stored plasma samples and previously collected data, 

with ethical approval from the east Hertfordshire ethics committee as granted at the time of 

the earlier studies. 

 

3.3.2 Study design 

3.3.2.1 Subjects: recruitment, inclusion and exclusion criteria 

197 subjects were recruited from a cohort established in 1991, whose inclusion criteria were: 

- Born in East Hertfordshire between 1920 and 1930  

- Birth weight and weight at 1 year recorded 

Subjects from this cohort were recruited again in 1997, with the following exclusions: 

- Clinical evidence of pituitary or adrenal disease 

- Oral glucocorticoid therapy within the past 3 months 
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3.3.2.2 Study protocol 

The following parameters were recorded in 1991: 

- Height, weight, waist and hip circumference. 

- Seated blood pressure (average of 2 measurements, Dinamap). 

- 75g oral glucose tolerance test (men with known diabetes excluded). 

- Measurement of glucose (hexokinase method) and insulin (two site immunometric 

assay) at time points 0, 30 and 120 minutes. 

- Fasting plasma triglyceride and cholesterol profile. 

The following parameters were recorded in 1997:  

- Height, weight, waist and hip circumference. 

- Fasting blood samples taken at 0900 following 0.25mg dexamethasone administration 

the previous evening.   

Plasma samples were stored at -80°C until analysis. 

3.3.2.3 Assays 

Estrone, estradiol, androstendione and testosterone were measured using solid phase ELISAs 

(DRG, Marburg, Germany) as described in detail in Chapter 2.  SHBG was measured using a 

solid phase, two site chemiluminescent immunometric assay (Immulite 2000, Siemens 

Healthcare, Llanberis, UK); also described in detail in chapter 2.  
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3.3.3 Data analysis 

3.3.3.1 Calculations 

Insulin sensitivity was determined by use of the QUICKI calculation (Katz et al. 2000), 

which is known to correlate closely with hyperinsulinaemic euglycaemic clamp results 

(Mather et al. 2001): 

QUICKI  = 1 / [log (fasting insulin) + log (fasting glucose)] 

Free testosterone was calculated from total testosterone, SHBG and albumin concentrations 

using the Vermeulen equation (Vermeulen  et al. 1999). 

 

3.3.3.2 Statistical methods 

Normal distribution of data was assessed by the Kolmogorov-Smirnov test and log 

transformations was performed to achieve normal distributions if required.  Associations 

between continuously distributed variables were assessed by the Pearson correlation 

coefficient (and partial correlation) using IBM SPSS Statistics for Windows (Version 19.0, 

Armonk, NY: IBM Corp.) software.   Statistical significance was accepted at p <0.05.   
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3.4 Results 

3.4.1 Subject characteristics 

Subject characteristics (n=197) and biochemistry are summarised in table 3.1. 

 

 

 Reference range Mean  ± SEM Range 
Age (years)  70.9 ± 0.22 66.0 – 77.0  
Total testosterone (nmol/L) 6.9 – 23.9  18.3 ± 0.6 1.1 – 70.6 
Free testosterone (pmol/L) 245 - 785 364 ± 1 104 - 1319 
SHBG (nmol/l) 6 – 45  40.29 ± 1.70 8 – 306 
Androstenedione (ng/ml) 0.3 – 3.9  6.8 ± 0.5 0.5 – 30.5 
Estrone (pmol/L) 156 – 573 566 ± 90 2 - 12102 
Estradiol (pmol/L) 36.7 – 132.1 10.3 ± 0.8 1.4 – 62.4 
BMI (kg/m2)  26.91 ± 0.26 17 – 42 
Waist circumference (cm)  99.35 ± 0.74 65 – 142 
Waist-hip ratio  0.931 ± 0.004 0.77 – 1.06 
Fasting plasma glucose 
(mmol/L) 

 6.1 ± 0.097 3.4 – 17.3 

Systolic blood pressure 
(mmHg) 

 161.5 ± 1.5 110 – 232 

Diastolic blood pressure 
(mmHg) 

 89.3 ± 0.8 59 – 121 

QUICKI  0.363 ± 0.003 0.25 – 0.48 
Triglycerides (mmol/l)  1.57 ± 0.06 0.5 – 5.3 

 

Table 3.1  Subject characteristics presented as mean ± SEM. 
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3.4.2 Relationship between sex steroid hormones 

Reflecting their substrate: product relationships with respect to aromatase, strong positive 

correlations existed between testosterone and estradiol and between androstenedione and 

estrone, even after adjustment for waist circumference (table 3.2).  The only positive 

correlation with SHBG was with estrone, which also persisted following correction for waist 

circumference (table 3.2). 

 

 

 

 

 

 

 

 

 

 

 

Table 3.2  Pearson correlations exploring relationship between sex hormone levels 
(expressed as r values).  Results above the line are uncorrected; those below the 
line are controlled for waist circumference. * p<0.05, **p<0.01, NS not significant. 

 

 

  

Free Testosterone 

Androstenedione 

Estrone 

Estradiol 

SHBG 

Free 
testosterone 
  

Androstenedione Estrone Estradiol SHBG 

.235* .293** .460* .053NS 

.301** .231* -.094NS 

.460* .169* 

.149NS 

.282** .286** 

.473** .239* .497** 

.203* 

.013NS .151* .158NS -.141NS 
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3.4.3 Relationship between sex steroid hormones and metabolic syndrome 

71 subjects (35%, cases) fulfilled the NCEP ATPIII diagnostic criteria for metabolic 

syndrome; the remaining 65% were controls.  With reference to controls, the metabolic 

syndrome cases had significantly lower levels of SHBG (mean difference 12.5nmol/L, 

p<0.01), total testosterone (mean difference 4.5 nmol/L, P<0.01) and androstenedione (mean 

difference 2.2 nmol/L, p<0.05).  A similar trend was noted with free testosterone, although 

this did not reach statistical significance, and no differences were observed with estrogen 

levels. 

 

3.4.4 Relationship between androgens and cardiometabolic risk factors 

Results are summarised in table 3.3.  Androstenedione, free testosterone and total 

testosterone were all negatively correlated with indices of adiposity.  In addition these 

hormones were all associated with beneficial effects upon glucose metabolism (either fasting 

glucose or insulin sensitivity), although these relationships did not persist after correction for 

waist circumference.  The only association which persisted following correction for adiposity 

was between total testosterone and plasma triglycerides.   

 

3.4.5 Relationship between estrogens and cardiometabolic risk factors 

Estrone showed a weak inverse association with insulin resistance and plasma triglycerides; 

only the latter was independent of waist circumference.  Estradiol was inversely related to 

insulin resistance and glucose, independently of waist circumference (table 3.3), SHBG and 

testosterone. 
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3.4.6. SHBG and cardiometabolic risk factors 

SHBG was inversely correlated with plasma insulin levels (r = -.256, p<0.001), waist 

circumference (r = -.242, p<0.001) and BMI (r = -.225, p<0.05).  Estradiol was not 

significantly correlated with SHBG although a weak association existed with estrone (r = 

.169, p<0.05).  SHBG was more closely correlated with features of metabolic syndrome than 

any of the sex steroid hormones and the inverse associations with insulin resistance, glucose 

and plasma triglycerides were independent of waist circumference (table 3.3). The inverse 

relationship between SHBG and plasma triglycerides (but not glucose or insulin resistance) 

persisted following correction for plasma insulin levels. 
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Table 3.3  Pearson correlations exploring relationship between sex hormones and 
components of metabolic syndrome (expressed as r values. * p<0.05, § p<0.01,  

BMI, body mass index; WC, waist circumference; QUICKI, quantitative insulin sensitivity check index; 
TG, triglyceride; HDL, high density lipoprotein cholesterol; LDL, low density lipoprotein cholesterol; 
TC, total cholesterol SBP, systolic blood pressure 

 

BMI$ WC$ glucose$ QUICKI$ TG$ HDL$ TC$ LDL$ SBP$

Free$testosterone$ 8.182*$ 8.177*$ 8.112$ .164*$ 8.155$ .043$ .002$ .035$ 8.050$

Controlled$for$WC$ 8.087$ .106$ 8.101$ .031$ .021$ .051$ 8.049$

Controlled$for$BMI$and$
SHBG$

8.063$ .015$ 8.110$ .055$ .030$ .051$ .8.049$

Total$testosterone$ 8.229§$ 8.230§$ 8.032$ .147*$ 8.260§$ .006$ 8.042$ .003$ 8.063$

Controlled$for$WC$ 8.006$ .068$ 8.198§$ 8.014$ 8.031$ .012$ 8.094$

Controlled$for$BMI$and$
SHBG$

8.049$ .099$ 8.204*$ .089$ 8.020$ .020$ 8.095$

Bioavailable$testosterone$ 8.144$ 8.133$ 8.053$ .082$ 8.126$ .078$ .041$ .062$ 8.045$

Controlled$for$WC$ 8.046$ .024$ 8.106$ .074$ .050$ .066$ 8.032$

Controlled$for$BMI$and$
SHBG$

8.046$ .021$ 8.115$ .090$ .050$ .063$ 8.032$

Androstenedione$ 8.176*$ 8.209*$ 8.181*$ .080$ 8.197*$ .098$ .090$ .128$ .076$

Controlled$for$WC$ 8.157$ .006$ 8.132$ .063$ .085$ .103$ .093$

Controlled$for$BMI$and$
SHBG$

8.170$ .047$ 8.171$ .149$ .080$ .098$ .007$

Estrone$ 8.122$ 8.098$ 8.124$ .154*$ 8.167*$ .071$ .091$ .093$ 8.018$

Controlled$for$WC$ 8.114$ .128$ 8.143*$ .063$ .098$ .116$ .022$

Controlled$for$BMI$and$
SHBG$

8.020$ 8.008$ .020$ 8.046$ .113$ .129$ .030$

Estradiol$ 8.019$ .041$ 8.220*$ .143$ 8.065$ 8.015$ .020$ .041$ 8.046$

Controlled$for$WC$ 8.226§$ .177*$ 8.087$ 8.012$ .034$ .075$ 8.048$

Controlled$for$BMI$and$
SHBG$

8.116$ .045$ 8.029$ 8.045$ .025$ .051$ 8.021$

SHBG$ 8.225*$ 8.242*$ 8.190*$ .283*$ 8.297§$ 8.095$ 8.134$ 8.171*$ 8.116$

Controlled$for$WC$ 8.172*$ .209*$ 8.235§$ .077$ 8.119$ 8.162*$ 8.092$

Controlled$for$BMI$and$
SHBG$
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3.5 Discussion 

In this cross-sectional study of elderly men, SHBG consistently demonstrated the strongest 

relationships with features of the metabolic syndrome.  Lower circulating androgens, but not 

estrogens, were associated with indices of obesity.  Lower testosterone levels (free and total) 

were also correlated with lower insulin sensitivity, which is likely mediated by adiposity.  

The relationship between lower estradiol and lower insulin sensitivity, in contrast, appeared 

to be independent of adiposity.  Obesity has the potential to affect sex steroid hormone levels, 

through greater aromatase activity, but adiposity is also likely to be influenced by changes in 

estrogen and androgen action. Substrate availability (androgen) appeared to be of greater 

importance than adiposity in determining estrogen concentration.   

 

Although associations of sex hormone levels with cardiometabolic risk factors were mostly 

negated by controlling for waist circumference, the same did not pertain to SHBG.  SHBG is 

principally, though not exclusively, secreted by the liver under the regulation of a variety of 

hormones, including insulin and estradiol (Plymate et al. 1990). In vitro, insulin inhibits 

SHBG secretion in hepatoblastoma cell lines (Plymate et al. 1988) and in vivo SHBG is 

reduced during hyperinsulinaemic euglycaemic clamp studies (Katsuki et al. 1996).  The 

converse also holds; SHBG levels rose in men when diazoxide was administered to suppress 

insulin secretion (Pasquali et al. 1995).  Similarly, IGF-1 suppresses SHBG production in 

hepatoblastoma cell lines (Crave et al. 1995). In premenopausal but not postmenopausal 

women, estradiol appears to be a positive determinant of SHBG levels, whilst a negative 

association with testosterone is ubiquitous (Pasquali et al. 1997). In hypogonadal and 

eugonadal men, testosterone supplementation was shown to effect reductions in SHBG 

(Plymate et al. 1983).  Here, no significant correlations between SHBG and either 
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testosterone or estradiol were found, permitting the inference that these hormones do not 

occupy a central role in the regulation of SHBG in elderly men. A positive association was 

observed with estrone, perhaps indicating an association of SHBG with aromatase activity in 

elderly men. 

 

SHBG binds between 40 – 65% of circulating testosterone and 20 – 40% of circulating 

estradiol (de Ronde et al. 2005); when bound these hormones are protected from conversion 

to inactive metabolites.  The prevailing orthodoxy suggests that bound steroid hormones are 

prevented from leaving the blood stream and interacting with their cognate intra-cellular 

receptors.  The calculation or measurement of ‘free’ or ‘bioavailable’ hormone seeks to 

address this potential confounder by excluding ‘inert’ bound steroids. (Mendel 1989).  

However, this concept has been challenged by the discovery that SHBG interacts with 

megalin, an endocytic receptor, to induce the active cellular uptake of SHBG bound 

androgens and estrogens in mice (Hammes et al. 2005).  A widening role for SHBG is also 

suggested by the identification of a cell surface SHBG receptor, which generates cAMP when 

occupied by an SHBG-steroid complex (Kahn et al. 2002).  Mindful of these potential 

caveats, determining free hormone levels remains a useful clinical tool.   

 

Evidence from in vitro studies had suggested increasing levels of SHBG, by virtue of its 

greater binding affinity for testosterone, might amplify the bioavailable fraction of estradiol 

(Burke et al. 1972).  However this does not appear to apply in young eugonadal men, in 

whom the hypothalamic-pituitary-gonadal axis adjusts to maintain free testosterone levels (de 

Ronde et al. 2005; Vanbillemont et al. 2010).  Whether SHBG acts as an ‘estrogen amplifier’ 

in older men, with potentially less compensatory reserve, remains an important but 
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unresolved question.   SHBG may simply reflect, rather than contribute to, an adverse 

cardiometabolic profile.  However, recent Mendelian randomisation studies have shown that 

common polymorphisms, resulting in higher and lower SHBG concentrations, are associated 

with lower and higher risk of developing T2DM, respectively (Ding et al. 2009; Perry et al. 

2010). 

 

The results of this study are congruent with the strong body of evidence supporting an 

association between SHBG and glucose intolerance.  In two separate cross-sectional studies 

in middle-aged men (mean ages 57 and 60 years, respectively), SHBG associated with insulin 

resistance, independent of body fat (Tsai et al. 2004), and with hyperinsulinaemia (Muller et 

al. 2005).  Similarly in elderly men (age 70 – 89), lower SHBG levels were noted in subjects 

with metabolic syndrome, pre-diabetic states and T2DM, independent of BMI (Kalme et 

al.2005).  Prospective follow up of the Massachusetts aging study demonstrated an increased 

risk of developing T2DM (Stellato et al. 2000) and metabolic syndrome (Kupelian et al. 

2006) in middle aged men with lower baseline SHBG levels, again independent of body 

mass.  A similar study of middle-aged men in Finland attributed an increased risk of diabetes 

(OR 4.3) and metabolic syndrome (OR 2.8) to those in the lowest SHBG quartile; these 

relationships were attenuated but remained significant after adjusting for baseline insulin 

levels and BMI (Laaksonen et al. 2004).  Results from the Baltimore study of aging 

(Rodriguez et al. 2007) and MRFIT study (Haffner et al. 1996) also attest to the strong 

relationship between SHBG, metabolic syndrome and diabetes, respectively. Nielsen et al. 

(2007) demonstrated an inverse correlation between subcutaneous adipose mass (as 

determined by MRI) and SHBG though no independent relationship with visceral adipose 

mass was noted. 
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Low SHBG is unequivocally associated with a deleterious plasma lipid profile, namely low 

HDL cholesterol and high triglyceride levels.  In both the PRIME study (Bataille et al.2005) 

and the San Antonio Heart Study (Haffner et al. 1993) these associations were independent of 

BMI and insulin concentrations.  Whilst our findings confirm the robust association between 

SHBG and triglyceride, we did not find a significant relationship between SHBG and HDL 

cholesterol.  This discrepancy may be a consequence of the significantly older age in this 

cohort. 

 

Significant correlations involving total testosterone may substantially reflect SHBG levels 

thus complicating their interpretation.  Free testosterone was associated with reduced waist 

circumference and body mass index, as well as having a modest positive correlation with 

insulin sensitivity in this study. The relationship between free testosterone and insulin 

sensitivity was not independent of waist circumference, which is consistent with previous 

studies suggesting that free testosterone is independently associated with reduced visceral 

adiposity (Nielsen et al.  2007). In older men a similar relationship has been noted between 

free testosterone and subcutaneous adiposity (Abate  et al.  2005). Inhibition of lipoprotein 

lipase and triglyceride uptake, evident in obese male recipients of testosterone replacement, 

may provide a mechanistic underpinning of these observations (Marin et al. 1995). Previous 

cross sectional studies have produced evidence of a positive relationship between free 

testosterone and glucose tolerance.  The San Antonio Heart Study demonstrated an inverse 

correlation between directly measured free testosterone and glucose and insulin levels in 

middle-aged men (Haffner et al. 1994).  This association with free testosterone was 

independent of BMI although a similar study, employing DEXA and CT assessment, 
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suggested the positive influence of both free and total testosterone was mediated by changes 

in total body and abdominal fat (Tsai et al. 2004).  Abate et al. (2002) found no relationship 

between directly measured bioavailable testosterone and insulin resistance.  In prospective 

studies free testosterone has been independently associated with the development of T2DM in 

middle aged men (Stellato et al. 2000).  However, the Massachusetts aging study did not 

detect a relationship between free testosterone and the development of metabolic syndrome 

(Kupelian et al. 2006), whilst the relationship with free testosterone noted by Laaksonen et 

al. (2004) did not withstand correction for BMI.  The findings of a recent meta-analysis 

(Ding et al. 2006) support the link between low testosterone and the development of T2DM.   

 

Our failure to detect a relationship between testosterone and either HDL cholesterol or 

triglyceride contrasts with the findings of Haffner et al. (1993) who report increased HDL 

cholesterol and lower triglyceride being associated with free testosterone levels independent 

of WHR and insulin resistance.  Gyllenborg et al. (2001) surprisingly found the opposite with 

free androgen levels associated with a deleterious pattern of low HDL cholesterol and high 

triglyceride. 

 

Relationships between estrogens and metabolic parameters are less extensively studied but a 

meta-analysis, pooling 12 retrospective studies, suggested higher estradiol levels are 

associated with the development of T2DM (Ding et al. 2006). Nielsen et al. (2007) found an 

independent relationship between estradiol and subcutaneous adipose mass in young men 

which could be explained by an increase in total aromatase activity.  In this study an inverse 

relationship with estradiol and glucose, independent of waist circumference was observed.  

This relationship was independent of testosterone (free and total) and so does not appear to 
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simply reflect elevated androgen substrate.  Plausible biological mechanisms exist to explain 

beneficial effect of estradiol upon glucose metabolism independent of altering body fat 

distribution:  estrogens have been shown to augment the insulin response to glucose 

(Godsland, 2005), whilst upregulation of muscle GLUT4 expression has been attributed to 

ERα activation in mice (Barros et al.  2006).   

 

The positive association between plasma estradiol and HDL cholesterol reported elsewhere 

(Gyllenborg et al.  2001), was not replicated in this study, although plasma estrone was 

negatively correlated with triglyceride levels. 

 

Interestingly, the relationship between the substrates for aromatase, testosterone and 

androstenedione, which are converted to estradiol and estrone respectively, were minimally 

affected by correction for waist circumference or BMI.  In postmenopausal women, 

peripheral aromatisation (as determined by urinary metabolite analysis) has previously been 

strongly correlated with adiposity (Longcope et al.  1986).  Our results raise the possibility 

that, in elderly men, absolute androgen levels are of greater importance and that any predicted 

gain in aromatase activity accrued with increasing adiposity, may be negated by reduced 

substrate availability.  

 

The inability to determine the direction of association is a weakness inherent in cross-

sectional studies, although it is tempting to speculate, and is certainly plausible, that many of 

the relationships reported herein may be bi-directional (e.g. sex steroids influence adipose 

deposition which, in turn, influences sex steroid concentration).  Reports of the stability of 
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SHBG (Lapidus et al. 1986) and androgens after prolonged storage at -80°C (Kley et al. 

1985) assuaged concerns around the interval between sampling and analysis in this study.  

Ideally, all clinical measurements and assays would have been obtained at a single visit. 

However, as a consequence of the study design, an interval of approximately six years existed 

between some measurements (as detailed in section 3.3.2.2).   The single low dose of 

dexamethasone (0.25mg) administered to our subjects could conceivably have resulted in 

minor suppression of adrenal androgens.  In young men, 0.5mg dexamethasone administered 

twice daily for 4.5 days resulted in an approximate 50% decline in androstenedione but no 

change in testosterone (Lac et al. 1999).   A potential strength of this study is the relative 

homogeneity of the cohort, particularly with respect to age, which is likely to have limited 

confounding effects present in studies surveying wider ranges, although this does limit the 

generalizability of the findings.  Immunometric sex steroid assays are no longer regarded as 

the gold standard, having been supplanted by sensitive and specific mass spectrometric 

assays.  All results fell within the expected reference range for this population, with the 

exception of estrone, for which results were significantly higher than would be plausible in 

men.  Whilst absolute values for estrone are therefore unreliable, subsequent correlation 

findings (i.e. with estradiol and androstenedione) indicate overall trends are sound.  Problems 

with estrone results well outside the physiological range attest to the difficulty in measuring 

estrogens at low concentration with immunometric assays (Huhtaniemi et al. 2012).   Any 

analysis of circulating androgens and, particularly, estrogens is ultimately limited by the 

potential that local steroid concentrations in target tissue may be of greater physiological 

significance (Simpson et al. 2005).   
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Summary 

This cross-sectional survey of sex hormones and features of metabolic syndrome supports 

many of the key findings of previous investigators; in particular the clear relationship 

between SHBG and features of the metabolic syndrome.  Our results suggest higher levels of 

both androgens and estrogens may be associated with metabolic health in elderly men; the 

former potentially through its effects upon fat distribution and the latter independent of this.    

The lack of association between SHBG and sex hormone levels suggests their role in 

regulating SHBG is marginal in elderly men.  Finally, we raise the prospect that substrate 

androgen levels rather than adiposity (and attendant higher whole body activity of aromatase) 

determine estrogen levels; an unexpected finding which requires confirmation with more 

rigorous methodology.    
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Chapter 4 

 

The metabolic effects of aromatase 

inhibition in post-menopausal women: 

a case-control study  
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4.1 Background 
 

Pre-menopausal women have a lower risk of T2DM and cardiovascular disease than 

age-matched men, a protection associated with a gynoid distribution of body fat. 

Estrogens appear to play a central role in maintenance of gynoid fat distribution, 

whilst menopause is associated with a switch to android adiposity (Kuk et al. 2005) 

and with convergence to male levels of diabetes risk (Lemieux et al. 1994).  However, 

no prospective studies have confirmed the role of menopausal status, as opposed to 

ageing, in the development of diabetes (Kim et al. 2011).  Hormone replacement 

therapy is associated with a significantly reduced risk of diabetes, with a number 

needed to treat (NNT) of 30 to prevent one case (Kanaya et al. 2003).  In contrast, 

endogenous estradiol levels are positively associated with incident T2DM in post-

menopausal women, even after adjustment for adiposity and insulin resistance 

(Kalyani et al. 2009). 

 

Manipulation of estrogen receptor signalling has been a central component in the 

management of ‘hormone-receptor positive’ breast carcinoma, in post-menopausal 

women, for over two decades.  Over 1.5 million prescriptions are issued annually for 

hormonal breast cancer therapies in England (Health and Social Care Information 

Centre, Government Statistical Service, 2012). Both tamoxifen (an ER partial agonist) 

and third-generation aromatase inhibitors (e.g. anastrozole, letrozole and exemestane) 

are associated with increased disease-free survival.  However, aromatase inhibitor 

therapy has not been proven to improve overall survival and is associated with an 

increased risk of cardiovascular disease (Amir et al. 2011), when compared to 

tamoxifen therapy.  The effects of aromatase inhibition upon lipid profile have been 
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widely investigated (Bundred 2005), with mixed results, and do not necessarily 

represent a class effect.  

 

Post-menopausal plasma estradiol levels are at least 50% lower than those observed in 

men.  It follows that aromatase inhibition, by lowering circulating estradiol, may 

result in an exaggerated post-menopausal phenotype. This may be particularly 

pronounced in adipose tissue as aromatase inhibitors have an even greater suppressive 

effect upon estradiol in breast adipose tissue, than upon circulating estradiol 

concentration, in breast cancer patients (Geisler et al. 2008).  The effects of aromatase 

inhibition upon insulin sensitivity have not been assessed in post-menopausal women.  

I sought to address this by assessing body fat distribution and cardio-metabolic 

parameters in breast cancer patients treated with aromatase inhibition, in comparison 

to age-matched controls, in a case-control study. 
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4.2 Hypothesis and Aims 

 

4.2.1 Hypothesis 

 

The principal hypothesis investigated in this study was: 

 

Inhibition of aromatase results in reduced insulin sensitivity and deleterious 

changes in body composition. 

 

4.2.2 Aims 

 

The aims of the study were to establish whether women taking aromatase inhibitor in 

comparison with age-matched controls have: 

 

1. different body composition. 

2. reduced insulin sensitivity. 

3. changes in adipose tissue mRNA transcript levels. 

4. differences in circulating adipokine and pro-inflammatory cytokine levels. 

5. altered uric acid excretion. 
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4.3 Methods 

 

4.3.1 Study Title and Ethical Approvals 

 

Study title: Assessing the effects of aromatase inhibition on body fat distribution and 

insulin sensitivity in postmenopausal breast cancer patients 

 

Principal Investigator: Dr Fraser W Gibb 

 

Ethical approval was gained from the Lothian Research Ethics Committee in October 

2008 (LREC number 08/S1101/54). NHS Lothian granted Research and Development 

approval in October 2008 (R&D number 2007/W/ON/30).  The study was carried out 

at the Wellcome Trust Clinical Research Facility at the Western General Hospital, 

Edinburgh.   

 

4.3.2 Study design 

 

Study design was that of a case-control study, comparing breast cancer patients 

currently receiving aromatase inhibitor therapy with age-matched controls.  

 

4.3.2.1 Subjects: recruitment, inclusion and exclusion criteria 

 

20 post-menopausal women were recruited from the Edinburgh Breast Cancer Clinic.  

The investigator identified eligible patients by screening of case notes; such patients 
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were provided with written study information and contact details for the investigator, 

during their annual clinic appointment.  The main inclusion criteria were a diagnosis 

of ER positive breast carcinoma and current aromatase inhibitor therapy (either 

anastrozole, letrozole or exemestane) for at least one year.  20 age-matched controls 

were recruited from the South East Scotland Breast Cancer Screening service, by 

responding to posters or written study information, available in the waiting area of the 

screening centre.   

 

Exclusion criteria included: metastatic breast carcinoma, significant medical co-

morbidities, hormone replacement therapy, previous diagnosis of diabetes mellitus 

and recent (within 3 months) therapy with glucocorticoids.   

 

4.3.2.2 Study protocol 

 

Subjects attended the clinical research facility at the Western General Hospital (08:30 

am) following an overnight fast.  Patients were asked to abstain from alcohol, tobacco 

and caffeine from the evening prior to attendance. During this attendance, subjects 

received an oral glucose tolerance test, basic anthropometric measurements, 

subcutaneous adipose needle biopsy and also submitted a 24-hour urine collection. On 

a separate day, within 2 months of this visit, patients attended the Western General 

Hospital for a DEXA scan. 
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4.3.3 Clinical methods 

 

4.3.3.1 Demographic data 

 

Scottish Index of Multiple Deprivation (SIMD) was ascertained for participants based 

on their current post code. 

 

4.3.3.2 Basic clinical measurements 

 

Systolic and diastolic blood pressure and pulse rate were measured after sitting for at 

least 10 minutes using a 705IT automatic blood pressure monitor (OMRON 

Healthcare, Netherlands).   

 

Weight, height, waist circumference and hip circumference were obtained in all 

subjects. 

 

4.3.3.3 Oral glucose tolerance test 

 

An antecubital vein was cannulated with a 20G cannula and baseline blood samples 

collected in serum gel and fluoride tubes (Sarstedt Monovette®, UK).  A slow 

infusion of 0.9% saline was commenced to maintain the patency of the cannula.  

Blood samples were taken at -30, -15, 0, +30, +60, +90 and +120 minutes; in 

reference to oral administration of 75g of anhydrous glucose.  Blood samples 

collected in fluoride tubes were sent to the hospital biochemistry laboratory for 
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measurement of glucose.  Serum gel tubes were processed immediately by 

centrifugation (1912g, 10 minutes, 4°C) and serum stored at -80°C for later analysis. 

 

4.3.3.4 Subcutaneous adipose biopsy 

 

At completion of the oral glucose tolerance test, a subcutaneous adipose tissue needle 

biopsy was performed (as described in chapter 2.2.2), with the exception of two 

subjects in the control group who opted out.  To summarise, following subcutaneous 

administration of 5mL local anaesthetic (5ml 2% lidocaine, Hameln Pharmaceuticals, 

Gloucester, UK), a 19G needle was inserted approximately 10cm lateral to the 

umbilicus and subcutaneous adipose tissue aspirated by vacuum.  The samples were 

collected in sterile eppendorf tubes, stored immediately in dry ice before transfer to -

80°C refrigeration.  Adipose tissue was later processed and RNA extracted, as 

described in detail in chapter 2.4.3.  Following reverse transcription (described in 

chapter 2.4.5), PCR was performed to analyse the mRNA transcript levels of a battery 

of genes related to adipogenesis, steroid metabolism and adipocytokines (described in 

chapter 2.4.6).   

 

4.3.3.5 24-hour urine collection 

 

Participants were asked to perform a 24-hour urine collection in the day prior to 

attending the clinical research facility.  The volume of urine was measured and 20mL 

aliquots of urine stored at -20°C for later analysis of uric acid and creatinine (as 

described in section 4.3.3.7).  2 subjects in the control group were unable to provide 

24-hour urine samples. 
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4.3.3.6 Dual-energy x-ray absorptiometry  

 

On a separate occasion, within two months of the initial study, subjects attended for a 

dual-energy x-ray absorptiometry scan (Discovery A, Hologic, Bedford MA, USA) 

for assessment of body composition. The whole body scanning protocol involves a 

scan time of 165 seconds and exposure to 0.008 mGy ionising radiation. Estimated 

bone mineral content, fat mass, lean mass and percentage fat are reported for 5 

separate compartments:  head, trunk, left arm, right arm, left leg and right leg.  The 

proportion of android fat is defined as: (trunk fat+ arm fat) / total body fat.  The 

proportion of gynoid fat is defined as: leg fat / total body fat (Cao et al. 2013).    Fat 

distribution index is the ratio of trunk:leg fat (Kirchengast et al. 2004). 

 

 

4.3.3.7 Laboratory assays 

 

Fasting lipid profile (including total cholesterol, triglyceride, LDL cholesterol and 

HDL cholesterol), uric acid (serum and urine), creatinine (serum and urine) and 

glucose were all analysed on the Vitros platform (Ortho-Clinical Diagnostics, High 

Wycombe, UK), by the biochemistry lab of the Western General Hospital. 

 

Insulin was analysed using a chemiluminescent microparticle immunoassay 

(Architect 8K41, Abbott Laboratories, Wiesbaden, Germany) as detailed in chapter 

2.5.2.6.   
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Adiponectin, resistin, leptin, MCP-1 and IL-8 were measured by multiplex 

immunoassay (Merck Millipore, Watford, UK) as detailed in chapter 2.6.1. 

 

4.3.4 Data analysis 

 

4.3.4.1 Fractional excretion of uric acid (FEUA) 

 

Fractional excretion of uric acid was calculated as: 

 

FEUA (%) =  Urine [uric acid] x Plasma [creatinine]       x 100 

            Urine [creatinine] x Plasma [uric acid] 

 

 

4.3.4.2 Insulin sensitivity index – Matsuda 

 

‘Insulin sensitivity index – Matsuda’ was calculated as: 

10,000/ √([fasting glucose (mg/dL) x fasting insulin (uU/mL)] x [mean glucose during 

OGTT (mg/dL) x mean insulin during OGTT (uU/mL)]) 

 

 

4.3.4.3 Statistical methods 

 

All statistical analyses were carried out using IBM SPSS Statistics for Windows 

(Version 19.0, Armonk, NY: IBM Corp.) software.  Data are presented as mean ± 

SEM unless otherwise stated.  Comparisons between cases and controls were 
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performed using independent-samples Student’s t-tests when data were normally 

distributed.  When data were not normally distributed, as determined by the 

Kolmogorov-Smirnov test, logarithmic transformation was performed and 

subsequently compared with Student’s t-tests if a normal distribution was obtained or 

by independent-samples Mann-Whitney U tests if data remained not normally 

distributed.  Assessment of the influence of co-variates was performed using Analysis 

of Co-variance (ANCOVA).  Correlation between normally distributed variables was 

performed using the Pearson’s correlation coefficient and the influence of potential 

confounders was assessed by partial correlation. Statistical significance was accepted 

at p < 0.05.   

 

At the study design stage, power calculations were performed suggesting a sample 

size of 40 would provide 80% power in detecting a 50% difference in insulin 

sensitivity and a 10% difference in waist circumference at a significance level of < 

0.05.  
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4.4 Results 

 

4.4.1 Subject characteristics 

 

Anastrozole was the most prevalent aromatase inhibitor (n=12), with the remaining 

patients receiving letrozole (n=6) and exemestane (n=2). The mean duration of 

aromatase inhibitor therapy was 27.4 ± 2.8 months.   Cases and controls were well 

matched with respect to age (61.4 ± 1.4 [range 51 – 72] vs. 59.4 ± 1.0 [range 52 – 67] 

years, p = 0.259) and BMI (27.1 ± 0.8 vs. 26.6 ± 1.0 kg/m2, p=0.68).  No significant 

difference was observed in SIMD between cases and controls (4806 ± 355 vs. 5013 ± 

419, p=0.71). 5 of the 20 cases had previously received systemic chemotherapy, 

although this was not associated with any significant differences in any of the 

parameters measured in this study.  Regular medication use was largely limited to 

levothyroxine replacement and anti-hypertensive agents (Table 4.1). 

 

 

 Case (n = 20) Control (n = 20) 
Levothyroxine 7 1 
Anti-hypertensives 4 1 
Bisphosphonate 2 0 
Anti-depressants 1 3 
HMG-CoA reductase inhibitors 0 1 
 

Table 4.1 Medication use in cases and controls during participation in the 

study 
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4.4.2 Blood pressure 

 

No significant differences were noted in systolic blood pressure between cases and 

controls (139 ± 4 vs. 131 ± 3 mmHg, p=0.140).  Diastolic blood pressure was 

significantly higher in aromatase treated patients (82 ± 2 vs. 75 ± 2 mmHg, p <0.05).  

4 aromatase inhibitor treated patients were receiving anti-hypertensive medication 

versus a single patient in the control group. 

 

4.4.3 Fasting lipid profile 

 

No significant differences were observed in fasting lipid profile between cases and 

controls (Table 4.2). 

 

 Case (n = 20) Control (n = 20) p 

Total cholesterol (mmol/L) 6.0 (0.1) 5.7 (0.2) 0.18 

HDL Cholesterol (mmol/L) 1.6 (0.1) 1.7 (0.1) 0.37 

LDL Cholesterol (mmol/L) 3.8 (0.1) 3.5 (0.2) 0.13 

Triglycerides (mmol/L) 1.1 (0.1) 1.0 (0.1) 0.53 

Cholesterol:HDLC ratio 3.8 (0.2) 3.5 (0.2) 0.19 

 

Table 4.2 Fasting plasma lipid profile data presented as mean (SEM) and 

analysed by unpaired Student’s t-test. 
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4.4.4 Body composition 

 

No significant differences were noted in basic measures of body composition, as 

summarised in table 4.3. 

 

More detailed assessment of body composition was obtained by dual-energy x-ray 

absorptiometry (DEXA).  Lean mass was significantly lower in cases than controls 

across almost all compartments.  Peripheral percentage body fat was significantly 

greater in aromatase inhibitor treated patients than in controls, although no difference 

was noted in trunk body fat.  Whilst differences in percentage fat were observed, no 

differences in total fat mass were noted.  Fat distribution index (the ratio of trunk to 

leg fat) did not differ between groups. The full DEXA characteristics of cases and 

controls are summarised in table 4.4.  
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 Cases (n=20) Controls (n=20) p 

Height (cm) 159.8 ± 0.9 165.1 ± 1.7 0.001 

Weight (kg) 69.2 ± 2.3 72.5 ± 2.9 0.38 

BMI (kg/m2) 27.1 ± 0.9 26.6 ± 1.0 0.68 

Waist circumference (cm) 90.1 ± 2.0 88.4 ± 2.6 0.61 

Hip circumference (cm) 102.3 ± 1.6 103.4 ± 1.8 0.68 

Waist:Hip ratio 0.88 ± 0.01 0.85 ± 0.01 0.23 

 

Table 4.3  Basic anthropometric measurements presented as mean ± SEM 

and compared by Student’s t-test.  

 

 Case (n=20) Control (n=18) p 

BMC total (g) 1917.3 ± 56.5 2047.8 ± 81.3 0.189 

Total body fat (g) 26722.1 ± 1493.7 25613.9 ± 2010.5 0.657 

Total body lean (g) 40284.4 ± 929.9 44726.2 ± 1494.3 0.014 

Total body % fat 38.4 ± 1.0 34.6 ± 1.3 0.026 

Fat distribution index 1.3 ± 0.1 1.3 ± 0.1 0.584 

Proportion android fat 0.6 ± 0.01 0.6 ± 0.02 0.909 

Proportion gynoid fat 0.4 ± 0.01 0.4 ± 0.01 0.729 

 

Table 4.4  Detailed DEXA body composition analysis in cases and controls.  

Data are expressed as mean ± SEM and compared by Student’s t-test 

(normally distributed as determined by Kolmogorov-Smirnov test).   
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4.4.5 Insulin sensitivity 

 

All 40 participants had normal fasting blood glucose levels (i.e. < 6mmol/L), with 6 

patients in the aromatase inhibitor group displaying impaired glucose tolerance 

(glucose 7.8 – 11.0 mmol/L at 2 hours following 75g oral glucose) compared to 3 

patients in the control group.  In addition, 2 patients in the control group had 2-hour 

glucose levels in the diagnostic range for diabetes (i.e. >11 mmol/L).   

 

The pre-specified primary method for determining insulin sensitivity was the 

‘Matsuda Index’ (Matsuda et al. 1999).  The Matsuda calculation, as originally 

described, requires paired glucose and insulin measurements at baseline, 30, 60, 90 

and 120 minutes following a 75g oral glucose load. Severe haemolysis of plasma 

samples is recognised to cause significant underestimation of insulin concentration as 

a consequence of accelerated insulin degradation (Bellomo et al. 2012).  Baseline 

insulin concentration was determined from the mean of 3 measures at -30, -15 and 0 

minutes, although as a consequence of severe haemolysis, 4 samples in the AI treated 

group and 1 sample in the control group were not included.  During the 2 hours 

following glucose administration, 7 samples in the AI group and 2 in the control 

group were excluded due to severe haemolysis. Mean substitution (for the relevant 

time point) of unusable samples was employed to permit calculation of the Matsuda 

Index, which did not substantively affect the statistical analysis.   Aromatase inhibitor 

treated individuals were significantly more insulin resistant than controls, based on a 

24.3% increase in Matsuda index (Table 4.5), an effect which was independent of age 

but not body fat percentage.  Peak insulin concentration was also significantly greater 
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in AI treated patients than in controls, with a similar non-significant trend towards 

greater insulin AUC (Figure 4.1).    
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 Case (n=20) Control (n=20) P 
Matsuda index 5.15 ± 0.45 6.80 ± 0.64 0.041 
AUC glucose 
(mmol/L.120 mins) 

913.75 ± 43.07 898.63 ± 37.24 0.792 

AUC insulin* 
(pmol/L.120 mins) 

51680 ± 5510 42295 ± 6729 0.079 

Fasting glucose 
(mmol/L) 

4.56 ± 0.10 4.66 ± 0.08 0.588 

Fasting insulin* 
(pmol/L) 

50.10 ± 4.89 42.55 ± 5.06 0.217 

2-hour glucose* 
(mmol/L) 

7.21 ± 0.35 7.04 ± 0.50 0.556 

Peak glucose 
(mmol/L) 

9.40 ± 0.39 9.2 ± 0.38 0.744 

Peak insulin* 
(mmol/L) 

693.40 ± 78.58 527.60 ± 85.54 0.035 

 

Table 4.5  Indices of glucose tolerance in aromatase inhibitor treated patients 

and controls presented as mean ± SEM.  Compared with independent-

samples Student’s t-test (data log transformed where not normally distributed 

as determined by Kolmogorov-Smirnov test*).  

 

 



! 135 

 

A 

 

B 

Figure 4.1 Mean plasma insulin (A) and mean plasma glucose (B) across 2-

hour 75g OGTT ± SEM.  Areas under curves are presented in Table 4.5. 
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4.4.6 Uric acid  

 

No significant differences were noted in plasma or urine uric acid concentration 

between cases and control; similarly, no significant difference was observed in 

fractional excretion of uric acid (Table 4.6).  FEUA was negatively correlated with 

age (Pearson R -0.398, p <0.05) but not with BMI, percentage body fat or insulin 

sensitivity index.  Even after adjustment for age, no significant effect of aromatase 

inhibition was observed upon FEUA. 

 

 Case (n=20) Control (n=18) p 

Plasma uric acid (mmol/L) 0.27 ± 0.01 0.26 ± 0.01 0.693 

Urine uric acid (mmol/L)* 0.95 ± 0.11 1.1 ± 0.11 0.146 

Plasma creatinine (µmol/L) 60.8 ± 1.4 58.9 ± 1.4 0.344 

Urine creatinine (mmol/L) 5.2 ± 0.6 4.8 ± 0.6 0.894 

FEUA (%) 5.0 ±0.6 4.9 ± 0.5 0.908 

 

Table 4.6  Plasma and urine uric acid levels and calculated fractional 

excretion of uric acid presented as mean ± SEM.  Compared by Independent-

samples Student’s t-test except where not normally distributed, where 

Independent-samples Mann-Whitney U Test used*. 
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4.4.7 Adipokines and pro-inflammatory cytokines 

 

Serum leptin was significantly higher in aromatase inhibitor treated patients (table 

4.8), although this relationship did not persist when adjusted for percentage body fat.  

IL-8, MCP-1, adiponectin and resistin did not differ significantly between cases and 

controls (Table 4.7).  Serum leptin, as expected, was strongly correlated with 

percentage body fat (Figure 4.2).   

 

 

 Cases Controls p 

Leptin (pg/mL) 23485 ± 2826 15527 ± 2286 0.035* 

Adiponectin (µg/mL) 43.0 ± 5.9 35.4 ± 3.7 0.516 

IL-8 (pg/mL) 7.6 ± 1.1 6.7 ± 0.6 0.871 

MCP-1 (pg/mL) 292.5 ± 33.8 268.3 ± 20.2 0.957 

Resistin (pg/mL) 22.2 ± 1.1 22.9 ± 1.9 0.828 

 

Table 4.7 Comparison of serum adipokines between aromatase inhibitor 

treated patients and controls.  Data are mean ± SEM.  Comparison by 

independent-samples Student’s t-test * or independent-samples Mann-

Whitney U Test (where data were not normally distributed even after log 

transformation). 
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Figure 4.2  The association between percentage body fat and serum leptin 

levels. Pearson correlation coefficient R 0.826, p <0.001. 

 

  



! 139 

4.4.8 Adipose tissue mRNA 

 

mRNA expression was assessed for genes where current evidence suggested a 

potential regulatory role for sex steroid hormones. Increased subcutaneous adipose 

tissue expression of LKB1 (32%), β-catenin (27%) and leptin (40%) was observed in 

aromatase inhibitor treated patients.  There were non-significant trends towards 

greater expression of perilipin 2 (21%), PPARγ (25%) and lipoprotein lipase (14%).  

The full results for all genes assessed are summarised in table 4.8.  A significance 

level of <0.05 was chosen as all transcripts were selected on the basis of prior 

evidence of estrogen or androgen responsiveness.  Serum leptin was strongly 

correlated with leptin mRNA expression (Pearson R 0.574, p <0.001) (Figure 4.3).  

Percentage body fat (Pearson R 0.658, p <0.001) (Figure 4.4) and BMI (Pearson R 

0.456, p <0.01) but not WHR (Pearson R 0.320, p >0.05) were significantly correlated 

with leptin mRNA expression.   
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 Case (n=20) Control (n=18) p 
Steroid hormone synthesis and metabolism 
HSD11B1* 
11βHSD1 

0.91 ± 0.15 0.78 ± 0.10 0.689 

AKR1C2* 
Aldo-keto reductase 1C2 

1.01 ± 0.20 0.80 ± 0.11 0.845 

CYP19A1* 
Aromatase 

0.66 ± 0.14 0.42 ± 0.09 0.192 

Steroid hormone receptors 
AR* 
Androgen receptor 

0.77 ± 0.06 0.71 ± 0.05 0.622 

ESR1* 
Estrogen Receptor α 

0.74 ± 0.10 0.59 ± 0.07 0.176 

ESR2 
Estrogen Receptor β 

0.41 ± 0.03 0.42 ± 0.03 0.919 
 

Adipogenesis, lipogenesis and lipolysis  
ACACA 
Acetyl CoA carboxylase 

0.76 ± 0.09 0.65 ± 0.11 0.443 
 

UCP2* 
Uncoupling protein 2 

0.44 ± 0.04 0.46 ± 0.03 0.468 

FASN 
Fatty acid synthase 

0.65 ± 0.07 0.62 ± 0.07 0.735 
 

LIPE 
Hormone sensitive lipase 

1.28 ± 0.17 0.99 ± 0.14 0.194 
 

PLIN2 
Perilipin 2 

0.70 ± 0.07 0.55 ± 0.05 0.077 
 

LKB1* 
Liver kinase B1 

1.44 ± 0.19 0.98 ± 0.15 0.030 

CTNNB1 
β-catenin 

0.62 ± 0.04 0.45 ± 0.02 0.023 
 

PNPLA2* 
Adipose triglyceride lipase 

0.58 ± 0.07 0.62 ± 0.08 0.724 

PPARG* 
Peroxisome proliferator-
activated receptor γ 

0.91 ± 0.11 0.68 ± 0.10 0.087 
 

PPARGC1A 
PGC-1α 

0.67 ± 0.08 0.58 ± 0.08 0.420 
 

Lipid and sterol metabolism  
CETP* 
Cholesterol ester transfer 
protein 

0.62 ± 0.14 0.90 ± 0.24 0.343 

LPL* 
Lipoprotein lipase 

1.25 ± 0.07 1.08 ± 0.14 0.086 
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 Case (n=20) Control (n=18) p 
SREBF1 
Sterol regulatory element 
binding transcription factor 1 

0.86 ± 0.10 0.70 ± 0.12 0.314 
 

SREBF2* 
Sterol regulatory element 
binding transcription factor 2 

0.76 ± 0.64 ± 0.303 

Adipokines   
IL6* 
Interleukin-6 

0.87 ± 0.15 1.00 ± 0.20 0.953 

LEP* 
Leptin 

0.92 ± 0.10 0.55 ± 0.06 0.003 

ADIPOQ 
Adiponectin 

1.28 ± 0.10 1.17 ± 0.06 0.704§ 

Miscellaneous  
IGF1R 
IGF-1 receptor 

0.73 ± 0.06 0.62 ± 0.04 0.179 
 

IGF1 
Insulin-like growth factor-1 

0.67 ± 0.05 0.64 ± 0.05 0.725 
 

AGT 
Angiotensinogen 

0.86 ± 0.08 0.95 ± 0.14 0.591 
 

ADRA2A* 
α-2-adrenergic receptor 

0.95 ± 0.09 0.83 ± 0.11 0.301 
 

ARDB1* 
β-1-adrenergic receptor 

0.74 ± 0.07 0.65 ± 0.05 0.380 

 

Table 4.8  Subcutaneous adipose tissue mRNA transcript levels in aromatase 

inhibitor treated women and controls.  Data are presented as means  ± SEM 

(relative to cyclophyllin) and compared with independent-samples Student’s t-

test (data log transformed where not normally distributed as determined by 

Kolmogorov-Smirnov test*) or Independent-samples Mann-Whitney U Test 

where transformation did not result in normally distributed data§. 
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Figure 4.3 The relationship between leptin mRNA expression and serum 

leptin (R 0.658, p <0.001). 
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Figure 4.4 The relationship between leptin mRNA expression and body fat 

percentage (R 0.574, p <0.001). 
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4.5 Discussion 
 
 
A substantial body of evidence attests to the importance of androgens and estrogens in 

modulating body composition and insulin sensitivity.  Consequently, it is plausible 

that aromatase inhibitors, by suppressing estrogens and increasing androgen levels, 

may exert a deleterious effect upon metabolic health in women.  Despite the 

widespread use of aromatase inhibitors, principally in the treatment of post-

menopausal breast cancer, no systematic assessment of their potential metabolic 

effects has been undertaken.  Although aromatase inhibitors are effective in 

preventing cancer recurrence, this has not been accompanied by improved overall 

survival, perhaps a consequence of increased cardiovascular events.  A meta-analysis 

comparing outcomes with tamoxifen and aromatase inhibitors identified a 26% 

increased risk of cardiovascular events in women receiving aromatase inhibitors 

(Amir et al. 2011). Aromatase inhibitors may exert subtle changes in plasma lipid 

profile, however the evidence for this is inconsistent and does not appear sufficient to 

account for an excess of cardiovascular disease.  This study was designed to assess 

whether postmenopausal women receiving aromatase inhibitors display significant 

differences in body composition and insulin sensitivity in comparison to age-matched 

peers.   

 

Case-control methodology, whilst subject to a number of limitations, was selected on 

pragmatic grounds.  It would have been preferable to perform prospective evaluation 

of the metabolic effects of aromatase inhibitors by assessing women prior to 

commencement of therapy and again at an interval following commencement, and to 

have studied a control group comprising hormone-negative cancer patients.  However, 

this option was considered ethically problematic, as it would have involved inviting 
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women to take part in a clinic study very shortly after receiving a diagnosis of breast 

cancer.  Furthermore, hormone-negative cancer patients are often offered cytotoxic 

chemotherapy, which has the potential to influence body composition, thus 

confounding any comparison with aromatase inhibition.  Another potential study 

design would have been a within-subject comparison performed during therapy and 

repeated at a pre-specified interval following cessation.  This would not have 

benefitted from a control group comparison and would have failed to detect any 

residual aromatase inhibitor effects, such as those mediated by changes in body 

composition, which may persist following treatment cessation.  

 

Patient recruitment achieved satisfactory age matching.  Breast cancer patients were 

recruited from clinics, whilst controls were recruited from the national breast cancer-

screening programme.  This could potentially have introduced a bias, as attendance at 

breast cancer screening is positively associated with affluence (Moser et al. 2009), 

with the opposite true of obesity and T2DM (Scottish Diabetes Survey, Monitoring 

Group, 2008).  The Scottish Index of Multiple Deprivation (SIMD) assesses the 

extent of deprivation, based on 38 measures across 7 categories, in 6505 geographical 

‘datazones’. No significant difference was noted in SIMD scores between cases and 

controls, suggesting no major disparity in affluence.   

 

Whilst no specific effort was made to match groups with respect to anthropometric 

parameters, no significant difference in weight, BMI or waist circumference were 

observed.  Fortunately, this addresses a potentially important criticism of the case-

control design, as increasing BMI is associated with a higher risk of breast cancer in 

post-menopausal women.  BMI < 21 kg/m2 is associated with the lowest risk of 
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breast-cancer in post-menopausal women, with a non-linear increased risk observed in 

higher BMI categories (van den Brandt et al. 2000).  Substantial weight gain 

following menopause (>10 kg) is also associated with an increased breast cancer risk.   

Although there is a recognised association between increased height and post-

menopausal breast cancer risk (van den Brandt et al. 2000), surprisingly the mean 

height in the control group was significantly higher than breast cancer patients in this 

study.  Whilst height has previously been associated with differences in blood 

pressure, no association between height and blood pressure was evident in this study. 

 

With the exception of breast cancer, both cases and controls were generally in good 

health, as mandated by the study exclusion criteria.  There was, however, a striking 

disparity in levothyroxine treated patients between groups (7 cases and 1 control).  If 

levothyroxine therapy is associated with alterations in body composition or insulin 

sensitivity, this could represent a significant confounder.  However, post-menopausal 

women, treated with thyroidectomy and subsequent levothyroxine, did not develop 

any significant changes in weight or body composition (as determined by DEXA), 

over a 12-month period (Kormas et al. 1998).  A potential association between 

autoimmune thyroid disease and breast cancer is well recognised, although the 

direction of the relationship remains unclear.  Higher levels of thyroid peroxidase 

antibody have been observed in patients with malignant breast disease (Giustarini et 

al. 2006) but in a large series of breast cancer patients, primary hypothyroidism was 

less common than in age-matched controls (Cristofanilli et al. 2005).   

 

The decision to include women treated with any of the third generation aromatase 

inhibitors, rather than electing to assess the effects of a single agent, was expedient in 
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order to complete the study within a reasonable time; although the majority of cases 

received anastrozole (n=12).  The degree of estradiol suppression appears equivalent 

between letrozole and anastrozole (Geisler et al. 2008), however there is evidence to 

suggest that letrozole is less specific in its inhibition of steroid production and may 

exert a suppressive effect upon glucocorticoids and mineralocorticoids (Bisagni et al. 

1996; Bajetta et al. 1996).  The sample size was too small to detect any differences 

between agents, although a more comprehensive assessment of potential differences 

would certainly be welcome. 

 

 

Blood pressure displays sexual dimorphism, increases following menopause, varies 

across the menstrual cycle and falls, in parallel with increased estradiol, in pregnancy; 

all these factors support a role for estrogens in regulating blood pressure (Dubey 

2002).  In this study, diastolic (but not systolic) blood pressure was higher in 

aromatase inhibitor treated women than controls, despite a higher proportion of anti-

hypertensive therapy in the former.    Interestingly, polymorphisms in CYP19 have 

been associated with differences in diastolic blood pressure in women (Peter et al. 

2005) and identified as potential markers for essential hypertension in both genders 

(Shimodaira et al. 2008).  Remarkably, despite concerns regarding increased 

cardiovascular events, no formal assessment of the effect of aromatase inhibition 

upon blood pressure has been reported in the literature.   

 

No significant difference in fasting lipid profile was noted between cases and 

controls, which is broadly in accord with existing evidence.  The suggestion that 

aromatase inhibitors may increase LDL cholesterol is largely based on head-to-head 
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studies with tamoxifen (ATAC Trialists’ Group  2006), however the disparity is most 

likely a consequence of the lipid-lowering properties of tamoxifen.  Prospective 

evaluation of cholesterol, following anastrozole therapy, failed to detect any 

significant difference in fasting lipid profile (Van Poznak et al. 2012).   

 

Whilst basic anthropometric parameters were no different between cases and controls, 

more detailed body composition, by DEXA, revealed greater body fat percentage and 

lower lean mass in aromatase inhibitor treated women.  DEXA was selected as the 

modality for assessment of body composition on the basis of evidence suggesting it 

accords closely with the reference standard, underwater weighing (Fogelholm et al. 

1997), as well as providing estimates of body composition across a number of 

compartments. Only two previous studies have assessed the effect of aromatase 

inhibition upon body composition and are potentially confounded by patients in the 

comparator groups receiving tamoxifen.  In one study, 11 recently menopausal breast 

cancer patients receiving aromatase inhibitors were compared with 71 women on 

alternative therapies (mostly tamoxifen).  Over a 24-month period, aromatase 

inhibitor treated women gained lean mass, whilst non-aromatase inhibitor treated 

women developed increased fat percentage (van Londen et al.  2011).  Conversion 

from tamoxifen to exemestane was associated with a significant reduction in fat mass 

(and increase in FM/FFM ratio) in 28 post-menopausal breast cancer patients, over a 

period of 1 year (Francini et al. 2006). Prospective evaluation of tamoxifen treated 

women, over 2 years, failed to show any significant changes in body composition, as 

assessed by DEXA, albeit with a limited set of parameters reported (Grey et al. 1995); 

however, tamoxifen may be associated with increased visceral adiposity (Nguyen et 

al. 2001).  The findings in this study conflict with these earlier investigations, 
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however elevated serum leptin in aromatase inhibitor treated women corroborates the 

apparent increase in body fat as determined by DEXA.  Furthermore, a trend towards 

increased LPL mRNA expression in subcutaneous adipose tissue is consistent with 

the established literature on estrogen effects on adipose tissue (Mauvais-Jarvis et al. 

2013). ER-α is thought to protect against sarcopenia through activation of Akt and 

MAPK pathways.  HRT has consistently been associated with improvements in lean 

body mass (Chen et al. 2005; Sørensen et al. 2001), therefore estrogen suppression, 

through aromatase inhibition, may result in reduced muscle mass, as suggested from 

this study.  It would be of interest to determine the differential effects of aromatase 

inhibition upon visceral and subcutaneous adipose volume, by CT or MRI analysis. 

 

 

Aromatase inhibitor treated women were more insulin resistant than controls, as 

determined by ‘Insulin Sensitivity Index – Matsuda’. This is consistent with the 

predicted effects of reduced estrogen and increased androgen activity upon skeletal 

muscle, liver, beta cells and adipose tissue, in women, as described in chapter 1.  The 

largest change appears to have been greater hyperinsulinaemia following a glucose 

load, suggesting peripheral insulin resistance mediates a large component of the 

aromatase inhibitor effect.  ‘ISI – Matsuda’ was selected as the primary outcome 

measure for this study as it integrates information from both the fasting and fed state, 

to provide an estimate of insulin sensitivity which accords well with gold-standard 

glucose clamp studies.  Clamp studies would have provided more information 

regarding the relative contribution of hepatic and peripheral insulin sensitivity, as well 

as effects on lipolysis, however time and cost constraints precluded pursuing this 

methodology.   
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Recent observations that uric acid may have a contributory role towards the 

development of insulin resistance (Johnson et al. 2009), paired with a potential role 

for estrogens in modulating the excretion of uric acid (Yahyaoui et al. 2008), raised 

the possibility that aromatase inhibition may effect suppression of uric acid excretion.  

In a rat model of hyperuricaemia (induced by high-fructose feeding), lowering of 

urate with allopurinol was shown to mitigate hypertension, weight-gain, 

hypertriglyceridaemia and hyperinsulinaemia (Nakagawa et al. 2006).  Elevated uric 

acid levels have long been considered a consequence of insulin resistance rather than 

a cause, however prospective studies have identified uric acid as an independent risk 

factor for the development of metabolic syndrome in men and women (Sui et al. 

2008).   A study in male to female transsexuals, demonstrated a dose-dependent 

suppressive effect of estrogen replacement upon serum uric acid, with an 

accompanying increase in fractional excretion of uric acid (Yahyaoui et al. 2008).  

However, in the current study, no significant difference was noted in either serum 

levels, or urinary excretion, of uric acid between cases and controls.  This suggests 

that below a threshold estradiol concentration, further suppression does not exert any 

additional influence upon uric acid.   

 

Serum leptin was significantly higher in aromatase inhibitor treated patients compared 

to controls, an observation consistent with the increased body fat percentage detected 

by DEXA.  Furthermore, leptin mRNA transcript levels in subcutaneous adipose 

tissue were also increased in aromatase inhibitor treated women, suggesting an effect 

in addition to simple expansion of adipose volume.  Consistent with this study, 

aromatase knockout mice, of both sexes, display substantially elevated serum leptin 
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levels and, in this murine model, central leptin sensitivity appears preserved, on the 

basis of reduced food intake (Jones et al. 2001). Similar findings are observed in 

aromatase knockout mice with respect to leptin adipose mRNA transcript levels, 

which are lowered by estradiol administration (Misso et al. 2003).   

 

In contrast, the hormonal manipulations undertaken in male-to-female and female-to-

male transsexuals, result in increased and decreased serum leptin, respectively (Elbers 

et al. 1997). Omental adipocytes from women, but not men, are stimulated to produce 

leptin when incubated with estradiol (Casabiell et al. 1998).  In cultured adipocytes 

from male rats, DHT exposure reduces leptin mRNA expression, whilst the opposite 

effect is observed in female adipocytes exposed to estradiol (Machinal et al. 1999).  A 

paradox exists between what may be expected from our understanding of the 

regulation of leptin expression, based on cell culture studies and exogenous 

administration of sex steroids, and what is observed in aromatase knockout mice and 

here in aromatase inhibitor treated women.  

 

Aromatase inhibitor therapy, in post-menopausal women, does not appear to exert any 

influence on adiponectin, as determined by serum concentration and adipose mRNA 

expression in this study.  Serum adiponectin levels are typically higher in women and, 

in post-menopausal women, transdermal estrogen replacement is associated with an 

increase in circulating adiponectin (Chu et al. 2006).  Conversely, in hypogonadal 

men, testosterone replacement appears to effect a reduction in circulating adiponectin 

(Lanfranco et al. 2004).  Given the anticipated changes in adipose and circulating sex 

hormones, it is perhaps surprising that no influence upon adiponectin was observed.  

No differences were observed, between groups, in serum IL-8, MCP-1 or resistin 
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concentrations.  We did not assess TNF-α in this study, however TNF-α mRNA 

expression has been positively correlated with estrogen sulfotransferase (EST) 

expression in human subcutaneous adipose tissue (Ahima et al. 2011).  Whether 

adipose inflammation promotes EST expression or, alternatively, reduced adipose 

estradiol (through increased EST expression) promotes inflammation, is not clear; it 

would be of interest to see whether aromatase inhibition influences adipose EST and 

TNF-α expression. 

 

A range of mRNA transcript levels were assessed in subcutaneous adipose tissue, 

based on previous evidence of regulation of expression by sex hormones. β-Catenin 

transcript levels, a central component of Wnt signalling, were higher in AI treated 

women.  β-Catenin has been shown to interact with both ER and AR and appears to 

exert an effect on transcription factors, which is broadly anti-adipogenic (Singh et al. 

2006; Kouzmenko et al. 2004).  LKB1is an upstream activator of AMPK, which 

promotes fatty acid oxidation and suppresses fatty acid synthesis in adipocytes.  Cell 

culture studies have shown estradiol up-regulates transcription of LKB1 whilst DHT 

exerts the opposite effect (McInnes et al. 2012).  Surprisingly, in the context of 

reduced estrogen and increased androgen levels, AI treated women had significantly 

higher LKB1 transcript levels compared to controls. To summarise, the statistically 

significant differences in transcript levels are consistent with an anti-adipogenic effect 

(increased LKB1 and β -catenin) although leptin mRNA levels were higher.  This 

study has not taken into account the potential effects of EST activity and no direct 

measurements of adipose tissue sex steroid levels were performed; both of which 

would contribute useful additional information.  Subcutaneous adipose tissue was 

studied because of the relative ease of acquiring tissue from this compartment, in 
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contrast to visceral adipose.  However, the visceral and subcutaneous adipose 

compartments have distinct characteristics and ideally assessment of the effects of 

aromatase inhibition would have been undertaken. 

  

Summary 

 

The findings in relation to decreased lean mass and insulin sensitivity highlight the 

potential role of sex hormone manipulation upon skeletal muscle, the main source of 

peripheral glucose uptake.  Indeed, in men at least, it has been suggested that skeletal 

muscle is the largest pool of non-gonadal aromatization (Longcope et al. 1978).  

Further characterisation of the effects of aromatase inhibition upon skeletal muscle in 

women, through analysis of gene expression and quantification of intramyocellular 

lipid would be of particular interest.  As hypothesised, aromatase inhibition was 

associated with increased insulin resistance and adverse changes in body composition, 

although this manifested as reduced lean mass rather than, as predicted, a shift from 

gynoid to android adiposity.  These results should prompt a more comprehensive 

assessment of the metabolic effects of aromatase inhibitors in their main target 

population. 
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Chapter 5 

 

The metabolic effects of short-term 

aromatase inhibition in healthy male 

volunteers: a double-blind, placebo-

controlled, crossover study  
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5.1 Background 

 

A substantial body of evidence, at both a cellular and whole organism level, has 

accumulated in support of the influence of sex steroid hormones upon energy 

metabolism (Mauvais-Jarvis et al. 2013; Kelly & Jones 2013).  However the emphasis 

of investigation is frequently focussed on estrogens in females and androgens in 

males, with much less information available regarding the role of androgens in 

women and, even less regarding estrogens in men.  In view of the interdependence of 

substrates and products, particularly of aromatase, most experimental manipulation is 

complicated, by exerting significant effects upon both androgens and estrogens. 

Greater insulin resistance, visceral adiposity, diabetes risk and cardiovascular 

morbidity are observed in men, when compared to age-matched premenopausal 

women; with lower estrogen levels implicated as a potential explanation for this 

disparity (Moran et al. 2008).  

 

In clinical and experimental medicine, relatively little attention has been paid to the 

potentially deleterious effects of estrogen deficiency in men.  Male aromatase 

knockout mice display a characteristic phenotype of increased adiposity, hepatic 

steatosis, reduced lean mass and insulin resistance, which is largely reversible 

following estradiol replacement; a similar phenotype is observed in rare human cases 

of aromatase deficiency (Simpson et al. 2005).  A handful of small studies have 

investigated the effects of pharmacological aromatase inhibition in men, resulting in 

either improved insulin sensitivity (Lapauw et al. 2009; Lapauw et al. 2010) or no 

significant change in insulin sensitivity (Dougherty et al. 2005).  An elegant study 

sought to determine the relative contribution of androgens and estrogen to changes in 
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body composition, by suppressing LH (with goserelin) and administering varying 

doses of testosterone, with or without aromatase inhibitor; increasing body fat 

(particularly intra-abdominal) was associated with estrogen suppression (Finkelstein 

et al. 2013).  It is unsurprising that changes in the balance of estrogen and androgen 

signalling should effect changes in adipose volume, as several genes involved in 

adipogenesis are known to be regulated by sex steroid hormones (section 1.1).   

 

Little is currently known about the specific effects of aromatase inhibition upon 

transcriptional regulation in adipose tissue and no detailed assessment of their 

influence upon glucose and fat metabolism has been undertaken.  In the previous 

chapter, aromatase inhibition was associated with reduced insulin sensitivity in post-

menopausal women.  The current chapter describes a study which sought to further 

characterise the metabolic effects of aromatase inhibition, employing superior study 

design (double-blind, placebo-controlled) and gold standard methodology for 

assessing insulin sensitivity (hyperinsulinaemic euglycaemic clamp with stable 

tracers).   
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5.2 Hypothesis and aims 

 

5.2.1 Hypothesis 

 

The principal hypothesis investigated was: 

 

Aromatase inhibition in healthy men results in increased insulin resistance, associated 

with  reduced estrogen action in subcutaneous adipose tissue.   

 

5.2.2 Aims 

 

The aims of the study in men were to: 

 

1. Determine whether short-term aromatase inhibition adversely effects insulin 

sensitivity, resulting in altered lipid and glucose homeostasis. 

2. Assess the effects of aromatase inhibition upon circulating adipokines and 

pro-inflammatory cytokines. 

3. Characterise the effect of aromatase inhibition upon relevant mRNA transcript 

levels in the subcutaneous adipose compartment. 

 

To address these aims, I undertook a double-blind randomised balanced crossover 

study of pharmacological aromatase inhibition in healthy male volunteers utilising 

hyperinsulinaemic eugycaemic clamp studies (with stable isotope tracers), 

measurement of adipokines and pro-inflammatory cytokines in plasma, and 

assessment of mRNA transcript levels in subcutaneous adipose tissue biopsies. 
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5.3 Methods 

 

5.3.1 Study Title and Ethical Approvals 

 

Study title: The metabolic effects of aromatase inhibition 

 

Principal Investigator: Dr Fraser W Gibb 

 

Ethical approval was gained from the Lothian Research Ethics Committee in 

September 2007 (LREC number 07/S1101/03). NHS Lothian granted research and 

Development approval in August 2007 (R&D number 2007/R/END/03).  The study 

was carried out at the Wellcome Trust Clinical Research Facility at the Western 

General Hospital, Edinburgh.   

 

5.3.2 Materials 

 

Full details of materials are provided in chapter 2. 

 

Fasting lipid profile, plasma glucose, liver function tests and urea and electrolytes 

were measured at the biochemistry laboratory of the Royal Infirmary of Edinburgh.   

 

The candidate undertook all of the clinical measurements and sample collection, and 

gained experience with all of the laboratory assay techniques, but as a result of 

samples being analysed after the end of his PhD fellowship, he is grateful for the 
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assistance in completion of qPCR by Karen French and Kerry McInnes, of GCMS by 

Sanjay Kothiya, and of plasma biochemistry analyses by Rita Upreti 

 

5.3.3 Study design 

 

The design was a double-blind randomised balanced crossover study in healthy male 

volunteers.   

 

5.3.3.1 Subjects: recruitment, inclusion and exclusion criteria 

 

Recruitment took place between March 2008 and October 2009.  Advertisements 

were placed in local newspapers and posters displayed across the University of 

Edinburgh, NHS Lothian and other public areas.  20 individuals proceeded through 

the baseline screening visit but 3 subjects dropped out prior to randomisation.  The 

initial screening visit involved a brief clinical assessment, principally to ensure 

inclusion and exclusion criteria were satisfied. 

 

Inclusion criteria:  

 

! Men aged between 18 – 65 years 

! Normal screening blood tests (urea & electrolytes, liver function tests, lipid 

profile, thyroid function tests and full blood count) 
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Exclusion criteria: 

 

! Any significant illness 

! Regular medication 

! Abnormal screening blood tests (as described above) 

! Alcohol excess (defined as greater than 28 units per week) 

! Inability to give informed consent  

 

All screened volunteers (n=20) fulfilled the inclusion and exclusion criteria, although 

three individuals elected not to participate further following the screening visit.  

 

5.3.3.2 Study protocol 

 

Subjects were randomised to initially receive either 1mg anastrozole once daily or 

identical placebo capsules once daily for 6 weeks (Tayside Pharmaceuticals, Dundee, 

UK), at the end of which they attended the clinical research facility for a 

hyperinsulinaemic euglycaemic clamp study (described in detail in section 5.3.5). 

After a 2 week ‘washout’ period, subjects ‘crossed-over’ to the opposite treatment 

allocation for six weeks, followed by a further clamp study (summarised in figure 

5.1).  Randomisation codes were generated by one of the project supervisors (RA) and 

the study was only un-blinded to the principal investigator following completion of 

analyses.   

 

Subjects who were willing to have a subcutaneous adipose tissue biopsy performed 

(n=6), attended on a morning separate to the clamp study, within a five-day period 
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prior to completion of their course of study medication.  Paired adipose biopsies (i.e. 

for both the placebo and anastrozole phases) were collected in all six of these 

individuals.   

 

5.3.3.3 Clinical measurements 

 

Systolic and diastolic blood pressure and pulse rate were measured, after sitting for at 

least 10 minutes, using a 705IT automatic blood pressure monitor (OMRON 

Healthcare, Netherlands).  Weight and height were obtained in all subjects.  Body fat 

percentage was measured by electrical bioimpedance using a handheld OMRON 

BF306 Body Fat Monitor (OMRON Healthcare, Henfield, UK). 
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Figure 5.1   Summary of study protocol 
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5.3.4 Adipose tissue biopsy 

 

Paired subcutaneous adipose biopsies were performed (as described in section 2.2.2) 

within the final 5 days of both the anastrozole and placebo phases.  To summarise, 

following subcutaneous administration of 5mL local anaesthetic (5ml 2% lidocaine, 

Hameln Pharmaceuticals, Gloucester, UK), a 19G needle was inserted approximately 

10cm lateral to the umbilicus and subcutaneous adipose tissue aspirated by vacuum.  

The samples were collected in sterile eppendorf tubes, stored immediately in dry ice 

before transfer to -80°C refrigeration.  Adipose tissue was later processed and RNA 

extracted, as described in detail in section 2.4.3.  Following reverse transcription 

(described in section 2.4.5), real time PCR was performed to analyse the mRNA 

transcript levels of a battery of genes related to adipogenesis, steroid metabolism and 

adipocytokines (described in section 2.4.6).   

 

 

5.3.5 Hyperinsulinaemic euglycaemic clamp with deuterated 

glucose and glycerol tracers 

 

5.3.5.1 Drug preparation and dosage calculations 

 

Actrapid® insulin was prepared in 0.9% saline at a concentration of 0.3 U/mL.  

Infusion rates for insulin were based on body surface area.  The rate of infusion was 

calculated as follows:  
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Rate (mL/min)  =  (10 [low dose] or 40 [high dose]) x BSA x 60  

                    1000 x 0.3 

 

Stable isotope tracers were prepared by Dr Alistair Millar (Radiopharmacist, Royal 

Infirmary of Edinburgh), using water as diluent.  1,1,2,3,3-2H5-glycerol (d5-glycerol) 

was provided in 8.5 mL vials (40 mg/mL) and 6,6,-2H2-glucose (d2-glucose) in 5 mL 

vials (350 mg/mL).   

 

Final preparation was performed on the morning of administration, when both glucose 

and glycerol tracers were diluted in 0.9% saline. Priming boluses of tracer were 

prepared by addition of 0.5 mL (20 mg) d5-glycerol to 19.5 mL 0.9% sodium chloride  

and 1 mL (350 mg) d2-glucose to 19 mL 0.9% sodium chloride, giving concentrations 

of 1 mg/mL and 17.5 mg/mL, respectively.  For continuous infusion, d5-glycerol (7.5 

mL, 300mg) and d2-glucose (3.2 mL, 1.12g) were added to make up a total volume of 

500 mL. Administration of tracers is described in detail in section 5.3.5.2.  

 

 

5.3.5.2 Clamp protocol 

 

Clamp studies were performed, at completion of both the placebo and anastrozole 

phases of the study, for assessment of insulin sensitivity (protocol summarised in 

figure 5.1).  Subjects attended the clinical research facility at 07:30 in a fasted state 

(from 22:00 the preceding evening).  Subjects were also asked to abstain from alcohol 

and tobacco on the day prior to the clamp study.  Upon arrival, two venous cannulae 

were inserted for infusions and a third cannulae was retrogradely inserted in a 
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contralateral hand vein for sampling of arterialised blood for glucose measurements.  

Hand veins were ‘arterialised’ by external heating with an electric blanket throughout 

the clamp study.  The study can be separated into three 90-minute periods: 

 

1. 0 – 90 minutes:  Administration of priming boluses of stable isotope tracers 

and subsequent infusion (as described in section 5.3.5.1).  Priming boluses of 

d2-glucose (17 µmol/kg) and d5-glycerol (1.6 µmol/kg) were administered 

over 1 minute to attain earlier steady state conditions.  Thereafter, continuous 

infusion of d2-glucose (0.22 µmol/kg/min) and d5-glycerol (0.11 

µmol/kg/min) was commenced and maintained at this rate through the full 

clamp protocol. 

2. 90 – 180 minutes: Low dose insulin. An infusion of Actrapid® insulin (Novo 

Nordisk, Denmark) was commenced at a rate of 10 mU/m2/min with a parallel 

infusion of 20% dextrose, adjusted every 5 minutes, to maintain euglycaemia.  

The low dose period was designed to assess inhibition of lipolysis and 

suppression of hepatic glucose output. 

3. 180 – 270 minutes: High dose insulin. For the final period, the insulin infusion 

rate was increased to 40 mU/m2/min, with continuing adjustment of the 20% 

dextrose infusion rate.  The high dose period was designed to assess peripheral 

glucose uptake.   

 

During the final 15 minutes of each period, 4 blood samples were collected (at 5 

minute intervals) in serum gel tubes.  These steady state samples were used to 

measure plasma tracer and tracee concentrations (as described in chapter 2.7).  

Throughout the insulin infusion (periods 2 and 3), blood glucose levels were clamped 
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between 4.5 to 5.5 mmol/L, with glucose measurement taking place at 5 minute 

intervals, from arterialised whole blood, using a glucometer (Accu-Check® 

Advantage, Roche, Germany).    
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Figure 5.2   Schematic of hyperinsulinaemic euglycaemic clamp, showing 

period 1 (0 to 90 minutes; no insulin), period 2 (90 to 180 minutes; low dose 

insulin) and period 3 (180 to 270 minutes; high dose insulin).  Blood sampling 

was performed in the final 15 minutes of each period, as represented by 

arrows.  20% dextrose infusion was adjusted to maintain euglycaemia in 

periods 2 and 3. 
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5.3.5.3 Sample collection 

 

Following insertion of an intravenous cannula, baseline blood samples were taken at 

approximately 07:30.  All blood tubes were S-Monovette® (Sarstedt, Germany) with 

serum gel 7.5 mL tubes to collect serum, 5.5 mL lithium heparin tubes to collect 

plasma and 2.5 mL fluoride gel tubes for glucose samples.  Glucose samples (fluoride 

tubes) were sent directly to the Western General Hospital biochemistry laboratory; all 

other samples were processed in the Clinical Research Facility and stored for future 

analysis.   

 

All blood samples were centrifuged on a Sigma 4K14 instrument (Munich, Germany) 

under the following conditions: 1912 g, 10 minutes, 4°C.  The resultant plasma / 

serum was stored at -80°C.   

 

5.3.5.4 Gas-Chromatography Mass Spectrometry 

 

Plasma glucose, glycerol and their respective tracers were quantified by GCMS as 

described in detail in chapter 2. 
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5.3.6 Data analysis 

 

5.3.6.1 Calculations 

 

Body mass index was calculated as:  

 

BMI (kg/m2) = weight    (kg) 

   (height (m))2 

 

Body surface area (BSA) was calculated using the Mosteller method (Mosteller, 

1987): 

 

 

 

 

   

 

Glucose disposal (M) under steady state conditions was calculated as the mean 

volume of glucose infused in the final 15 minutes for phases 2 and 3 of the tracer 

study (low dose insulin and high dose insulin, respectively) and reported in 

mg/kg/min.   

 

Rate of appearance (Ra) [glucose and glycerol] and rate of disappearance (Rd) 

[glucose] were calculated as follows,using the tracer:tracee ratio (TTR), where tracer 

refers to the isotopically labelled glucose and glycerol, whilst tracee refers to 
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unlabelled (endogenous) glucose and glycerol. The ratio is derived from the peak 

areas on the mass spectrum for the respective isotopomers.   

 

For Ra glucose: 

 

 

Tracer  =  T/Tr = Ra d2glucose 

Tracee    Ra glucose 

 

Therefore: 

Ra Glucose = Ra d2Glucose 

   T/Tr 

 

Ra = Rd at steady state  

The rate of tracer infusion corresponds to the rate of appearance of labelled glucose 

and glycerol:   

 

Ra d2-Glucose   =  4mg/kg/hour   =  0.067mg/kg/min 

Ra d5-Glycerol = 0.64mg/kg/hour = 0.01mg/kg/min 

 

The same calculation is used to determine the Ra for glycerol, which equates to the 

rate of lipolysis, assuming that triglyceride breakdown is the source of unlabelled 

glycerol. 
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As a consequence of naturally occurring glucose isotopomers in both the variable rate 

glucose and d2-glucose infusions, adjustments are required to account for this in the 

Ra d2-glucose and glucose infusion rate (GIR).  The true abundance of pure d2-

glucose in the tracer infusion was 92.5%, with the remaining 7.5% containing other 

naturally occurring isotopic species, such as 13C.  Similarly 1.1% of the variable rate 

glucose infusion was composed of naturally occurring d2-glucose.  The following 

calculation takes this variation into account: 

 

True Ra d2-glucose  = 92.5% rate of d2-glucose infusion + 1.1% variable GIR 

   = (0.0925 X 0.067) + (0.011 x GIR) 

   = 0.062 + (0.011 x GIR) 

 

Rate of endogenous glucose production (EGP) was calculated using steady state 

values for Ra glucose.  Ra glucose comprises both EGP and the infusion of variable 

rate unlabelled glucose.  An identical 92.5% correction for unlabelled glucose is also 

required, taking into account the fact that 7.5% of this infusion is composed of other 

mass isomers, including d2-glucose and 13C species.  EGP is calculated thus: 

 

EGP  = Ra glucose - (0.925 x GIR)  

 

No correction was required for glycerol, as no exogenous infusion was administered 

and the abundance of isotopic species was negligible.   
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5.3.6.2 Statistical analysis 

 

All statistical analyses were undertaken using IBM SPSS for Windows  (Version 

19.0, Armonk, NY: IBM Corp).  Data are presented as mean ± SEM unless otherwise 

stated.  Comparisons between the anastrozole and placebo phases were made using 

paired Student’s t-tests.  When data were not normally distributed, logarithmic 

transformation was undertaken.  Where transformation did not result in normally 

distributed data, non-parametric analyses were undertaken, as detailed in the results 

section. 

 

Statistical significance was accepted at p <0.05.  

 

The intention was to recruit 20 participants, which was calculated to have 80% power 

to detect a 15% difference in rates of glucose disposal and appearance, based upon 

similar studies undertaken in the supervisors’ laboratory (Sandeep et al. 2005).  

Unfortunately, due to difficulties in recruitment, only 17 subjects completed the 

study.   
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5.4 Results 

 

5.4.1 Subject characteristics 

 

17 individuals completed the study protocol, including 6 who consented to paired 

subcutaneous adipose biopsies. The first treatment phase was anastrozole in nine 

subjects and placebo in the remaining eight.  The mean age of volunteers was 27.7 ± 

2.5 years (range 18 – 50 years).  No participants were on any regular medication or 

suffered from any significant co-morbidity. 

 

5.4.2 Blood pressure 

 

Anastrozole was associated with a 4.7 mmHg increase in systolic blood pressure (138 

± 3 vs. 134. ± 3 mmHg, p <0.05) although no significant difference was observed in 

diastolic blood pressure (79 ± 2 vs. 78 ± 2 mmHg, p=0.847).  Heart rate was 

significantly lower during anastrozole treatment (66 ± 3 vs. 71 ± 3 bpm, p <0.05). 

 

5.4.3 Weight and body composition 

 

No significant differences were noted in weight between the aromatase inhibitor and 

placebo phases of the study (82.2 ± 3.4 vs. 81.8 ± 3.4 kg, p=0.404).  Similarly, no 

differences were observed with respect to percentage body fat (16.4 ± 1.9  vs. 16.4 ± 

1.9 %, p=0.957) and BMI (25.9 ± 1.1 vs. 25.7 ± 1.1 kg/m2, p=0.445).   
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5.4.4 Effect of aromatase inhibition upon circulating sex steroid 

concentrations 

 

Sex steroids were measured in 14 of the 17 subjects, subject to the availability of 

sufficient serum sample (Table 5.1).  Serum estradiol fell in all 14 subjects during 

aromatase inhibitor therapy, although in one case this difference was negligible.  

Serum estrone did not fall in 2 of 14 subjects during aromatase inhibitor therapy.   It 

would be reasonable to infer that the single subject with no appreciable change in 

either estrone or estradiol was not compliant with the study medication.  No 

significant differences were observed in either testosterone or androstenedione 

concentration between study phases. 

 

 

 Anastrozole  Placebo p 

Estradiol (pmol/L) 53.7 ± 2.2 64.5 ± 1.7 < 0.001 

Estrone (pmol/L) 28.3 ± 1.5 35.3 ± 1.9 < 0.001 

Testosterone (nmol/L) 19.4 ± 0.5 19.7 ± 0.6 0.777 

Androstenedione (nmol/L) 4.5 ± 0.3 4.5 ± 0.2 0.845 

 

Table 5.1   Serum sex steroid hormone concentrations during anastrozole 

and placebo phases of the study.  Data are presented as mean ± SEM and 

compared with paired Student’s t-test.   
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5.4.5 Clamped glucose levels, insulin concentration and glucose tracer: 

tracee ratios (TTR) 

 

Plasma glucose was clamped with a target of 4.5 – 5.5 mmol/L being achieved (mean 

glucose 5.2 ± 0.03 mmol/L) (Figure 5.3).  Achieved plasma insulin concentrations 

were 3.3 ± 0.7 mU/L, 11.6 ± 1.1 mU/L and 43.6 ± 2.2 mU/L in steady state samples at 

baseline, low dose and high dose clamps, respectively.  No significant differences 

were observed in insulin concentration between the placebo and anastrozole phase at 

baseline and during high dose insulin infusion; there was a non-significant trend 

towards lower insulin concentration during the low dose insulin infusion in the 

anastrozole phase (Table 5.2). TTRs at each stage of the clamp are shown in figure 

5.4.   d2-Glucose: glucose ratios achieved steady state during each sampling period.  

TTR decreased, as expected, during the high dose insulin phase, in concert with 

higher glucose infusion rates. 
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Time (minutes) Anastrozole Placebo p 

80 3.0 ± 0.9 3.5 ± 1.0 0.551 

170 9.8 ± 1.4 13.4 ± 1.6 0.066 

260 43.6 ± 3.0 43.8 ± 3.3 0.916 

 

 

Table 5.2  Achieved plasma insulin concentration (mU/L) across the course of 

clamp studies.  Data are expressed as mean ± SEM and compared by paired 

Student’s t-tests. 
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5.4.6 Whole body glucose disposal 

 

Whole body glucose disposal is inferred from the glucose infusion rate (M) during the 

high dose insulin phase of the clamp. Glucose infusion rates throughout the clamp 

studies are represented in figure 5.5.  No difference in M value was noted between 

anastrozole and placebo phases during the high dose clamp. However a significantly 

higher M value was observed in the placebo phase during the low dose clamp (Table 

5.3).  M values were also corrected for fat free mass (FFM), which largely represents 

skeletal muscle, the main site of glucose uptake; this did not materially affect the 

results. 
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 Anastrozole Placebo p 

Glucose infusion rate – 
Low dose clamp 
(mg/kg/min) 

2.19 ± 0.24 2.55 ± 0.28 0.024 

Glucose infusion rate – 
Low dose clamp 
(mg/kgFFM/min) 

2.57 ± 0.25 2.99 ± 0.27 0.025 

Glucose infusion rate – 
High dose clamp 
(mg/kg/min) 

7.53 ± 0.66 7.77 ± 0.75 0.599 

Glucose infusion rate – 
High dose clamp 
(mg/kgFFM/min) 

8.87 ± 0.71 9.14 ± 0.80 0.626 

 

Table 5.3  Glucose infusion rates (M) during low and high dose insulin phases 

of clamp studies.  Presented as mean ± SEM and compared by paired 

Student’s t-tests.  
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5.4.7 Rate of glucose disposal (Rd glucose)  

 

Rd glucose is derived from the M value and TTR; it permits adjustment for residual 

hepatic glucose production, as well as glucose infusion.  The results of Rd glucose 

during low dose insulin were congruent with previously reported M values, namely a 

trend towards decreased glucose disposal associated with anastrozole.  Of greater 

significance was the recognition of a 23.7% decrease in glucose disposal rate during 

the high dose insulin phase, in those receiving anastrozole (Table 5.4).  
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 Anastrozole Placebo p 

Tracer only 

(µmol/kg/min) 

7.77 ± 0.56 7.50 ± 0.46 0.271 

Tracer only 

(µmol/kgFFM/min 

9.35 ± 0.58 9.04 ± 0.60 0.313 

Low-dose insulin 

(µmol/kg/min) 

15.04 ± 1.13 16.46 ± 1.50 0.053 

Low-dose insulin 

(µmol/kgFFM/min) 

16.79 ± 1.26 18.28 ± 1.47 0.068 

High-dose insulin 

(µmol/kg/min) 

38.52 ± 7.73 47.61 ± 5.25 0.039§ 

High-dose insulin 

(µmol/kgFFM/min) 

38.56 ± 7.73 50.50 ± 5.40 0.039§ 

 

Table 5.4  Total Rd glucose across hyperinsulinaemic euglycaemic clamp 

presented as mean ± SEM with and without adjustment for fat free mass 

(FFM) and compared by paired Student’s t-tests.  * Log transformed to 

normalise distribution. § Compared by Related-Samples Wilcoxon Signed 

Rank Test, as non-parametric tests deemed more appropriate due to lower 

accuracy of TTR values during high-dose insulin phase. 
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5.4.8 Endogenous glucose production 

 

Endogenous glucose production (EGP) in the fasting state prior to insulin infusion is 

equivalent to Rd glucose.  EGP was calculated during low dose insulin, and was not 

affected by anastrozole.  No significant difference in EGP was noted between the 

placebo and anastrozole phases of this study (Table 5.5).  EGP is not reported for the 

final clamp period, as complete suppression of EGP is achieved during high dose 

insulin infusion. 
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 Anastrozole Placebo p 
EGP: Tracer only 
(µmol/kg/min) 

7.77 ± 0.46 7.50 ± 0.46 0.271 

EGP: Tracer only 
(µmol/kgFFM/min) 

9.35 ± 0.58 9.04 ± 0.60 0.313 

EGP: Low-dose 
insulin (µmol/kg/min) 

3.79 ± 1.01 3.37 ± 1.10 0.562 

EGP: Low-dose 
insulin 
(µmol/kgFFM/min) 

5.55 ± 1.12 5.19 ± 1.25 0.652 

Suppression glucose 
production: Low-dose 
insulin (%)  

61.21 ± 13.02 64.96 ± 12.47 0.723§ 

Suppression glucose 
production: Low-dose 
insulin (%) [corrected 
for FFM] 

49.75 ± 11.50 51.97 ± 11.32 0.981§ 

 

Table 5.5 Endogenous glucose production (EGP) during first two phases of 

hyperinsulinaemic euglycaemic clamp. Presented as mean ± SEM compared 

by paired Student’s t-tests.  § Data not normally distributed despite 

transformation and therefore compared by Related-Samples Wilcoxon Signed 

Rank Test.   
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5.4.9  Glycerol concentrations during clamp 

 

As expected, glycerol concentration fell progressively across the low and high dose 

phases of the clamp studies, as a consequence of reduced lipolysis.  No significant 

differences were detected between the anastrozole and placebo phases of the study 

(Table 5.6).  

 

 

 

 

 

 Anastrozole Placebo p 
Tracer only 62.3 ± 5.1 66.4 ± 4.7 0.223 
Low-dose insulin 35.5 ± 5.2 38.1 ± 4.0 0.388 

High-dose insulin 27.9 ± 5.0 32.1 ± 3.9 0.086 

% suppression from 
baseline to low dose 
clamp 

52.8 ± 4.3 57.3 ± 3.4 0.426 

% suppression from 
baseline to high 
dose clamp 

40.8 ± 4.2 46.8 ± 3.7 0.071 

 

Table 5.6 Plasma glycerol concentrations (µmol/L) across the hyperglycaemic 

euglycaemic clamp (mean of four steady state values).  Presented as mean ± 

SEM and compared by Paired-samples Student’s t-tests. 
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5.4.10 Tracer: Tracee Ratios for d5-glycerol: glycerol 

 

Steady state values were obtained for d5-glycerol: glycerol Tracer: tracee ratios 

(TTR) across the clamp studies, as demonstrated in figure 5.6.  TTRs increased across 

the course of clamp studies, reflecting the expected fall in endogenous glycerol. 
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5.4.11 Glycerol kinetics 

 

Rate of appearance for glycerol (Ra glycerol) was not altered by anastrozole, as 

summarised in table 5.7.  Correction for fat free mass did not significantly influence 

these results.
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 Anastrozole Placebo p 
Ra glycerol: Tracer 
only (µmol/kg/min) 

2.85 ± 0.36 2.79 ± 0.34 0.777 

Ra glycerol: Tracer 
only 
(µmol/kgFFM/min) 

3.39 ± 0.43 3.31 ± 0.38 0.704 

Ra glycerol: Low-dose 
insulin (µmol/kg/min) 

1.87 ± 0.19 1.73 ± 0.17 0.287 

Ra glycerol: Low-dose 
insulin 
(µmol/kgFFM/min) 

2.23± 0.23 2.05 ± 0.19 0.260 

Ra glycerol: High-
dose insulin 
(µmol/kg/min) 

1.69 ± 0.18 1.77 ± 0.20 0.525 

Ra glycerol: High-
dose insulin 
(µmol/kgFFM/min) 

2.03 ± 0.22 2.11 ± 0.24 0.594 

% suppression of 
glycerol Ra from base 
to low dose 

28.0 ± 4.6 32.0 ± 4.5 0.302 

% suppression of 
glycerol Ra from base 
to high dose 

34.3 ± 5.2 31.9 ± 5.6 0.609 

 

Table 5.7  Ra glycerol and % suppression of glycerol Ra across 

hyperinsulinaemic euglycaemic clamp. Data presented as mean ± SEM and 

compared by paired Student’s t-tests. 
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5.4.12  Lipid profile 

 

Anastrozole treatment resulted in a 6.4% reduction in total serum cholesterol (p 

<0.05). This was a consequence of non-significant trends towards lower HDL 

cholesterol (7.4%) and LDL cholesterol (6.6%).  No significant differences in either 

triglyceride or Cholesterol:HDL ratio were observed.  Full results are summarised in 

table 5.8. 

 

 

 Anastrozole Placebo p 
Total cholesterol 
(mmol/L) 

3.86 ± 0.13 4.12 ± 0.14 0.041 

HDL cholesterol 
(mmol/L) 

1.01 ± 0.05 1.09 ± 0.05 0.080 

LDL cholesterol 
(mmol/L) 

2.39 ± 0.14 2.56 ± 0.14 0.118 

Triglyceride (mmol/L) 1.02 ± 0.09 1.05 ± 0.16 0.770 

Total cholesterol:HDL 
ratio 

3.99 ± 0.23 3.96 ± 0.25 0.816 

 

Table 5.8  Effect of anastrozole therapy on circulating lipid profile presented 

as mean ± SEM.  Compared by paired-samples Student’s t-tests.   
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5.4.13 Adipokines and pro-inflammatory cytokines 

 

Serum leptin was reduced by 28% following 6 weeks of anastrozole administration.  

No significant differences were noted in any of the other adipokines and cytokines 

measured (Table 5.9)  

 

 

 

 Anastrozole Placebo p 
Leptin  
(pg/mL) 

4249 ± 999 5890 ± 1349 0.039§ 

Adiponectin 
(µg/mL) 

11.7 ± 4.7 14.6 ±2.6 0.188* 

Resistin (pg/mL) 32.6 ± 2.9 32.2 ± 2.8 0.830 

IL-8  
(pg/mL) 

5.6 ± 0.8 6.2 ± 1.4 0.868§ 

MCP-1  
(pg/mL) 

226.2 ± 13.4 216.1 ± 10.0 0.362 

 

Table 5.9  Effect of anastrozole therapy on circulating adipokines and pro-

inflammatory cytokines presented as mean ± SEM.  Compared by paired 

Student’s t-tests (log transformed data*) except where data not normally 

distributed following log transformation, where Related-Samples Wilcoxon 

Signed Rank Tests were employed§. 
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5.4.14 Adipose tissue mRNA 

mRNA expression was assessed for genes where current evidence suggested a 

potential regulatory role for sex steroid hormones.  Of 27 genes assessed, only 2 

demonstrated changes in expression related to anastrozole (Table 5.10): Estrogen 

receptor β and perilipin 2, both of which were down-regulated by anastrozole (45.1% 

and 8.8%, respectively). 
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 Anastrozole Placebo p 
Steroid hormone synthesis and metabolism 
HSD11B1 
11βHSD1 

1.215 ± 0.388 1.202 ± 0.356 0.959 

CYP19A1 
Aromatase 

1.042 ± 0.269 0.961 ± 0.320 0.848 

Steroid hormone receptors 
AR 
Androgen receptor 

1.264 ± 0.113 1.332 ± 0.108 0.650 

ESR1 
Estrogen receptor α 

1.064 ± 0.172 0.885 ± 0.061 0.398 

ESR2 
Estrogen receptor β 

0.538 ± 0.276 0.979 ± 0.344 0.040 

Adipogenesis, lipogenesis and lipolysis 
ACACA 
Acetyl CoA carboxylase 

1.097 ± 0.207 1.169 ± 0.297 0.775 

UCP2 
Uncoupling protein 2 

1.108 ± 0.029 1.198 ± 0.140 0.474 

FASN 
Fatty acid synthase 

0.911 ± 0.281 0.938 ± 0.339 0.807 

LIPE 
Hormone sensitive lipase 

1.080 ± 0.296 0.906 ± 0.262 0.223 

LPL 
Lipoprotein lipase 

1.093 ± 0.109 1.053 ± 0.114 0.750 

PLIN2 
Perilipin 2 

1.069 ± 0.094 1.172 ± 0.101 0.045 

CTNNB1 
β-catenin 

1.121 ± 0.072 1.055 ± 0.089 0.653 

PNPLA2 
Adipose triglyceride 
lipase 

0.763 ± 0.106 0.763 ± 0.115 0.999 

PPARG 
Peroxisome proliferator-
activated receptor γ 

1.098 ± 0.171 1.077 ± 0.119 0.855 

PPARGC1A 
PGC-1α 

1.267 ± 0.172 1.043 ± 0.289 0.270 

Lipid and sterol metabolism 
CETP 
Cholesterol ester transfer 
protein 

0.909 ± 0.347 0.890 ± 0.420 0.953 

SREBF1 
Sterol regulatory element 
binding transcription 
factor 1 

0.979 ± 0.256 0.914 ± 0.261 0.660 
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 Anastrozole Placebo p 
SREBF2 
Sterol regulatory element 
binding transcription 
factor  

1.108 ± 0.029 1.198 ± 0.140 0.150 

HMGCR 
HMG CoA Reductase 

0.788 ± 0.089 0.915 ± 0.130 0.529 

HMGCS1 
HMG CoA Synthase 
(soluble) 

1.012 ± 0.044 0.881 ± 0.058 0.083 

LDLR 
LDL receptor 

0.886 ± 0.153 0.995 ± 0.232 0.661 

DGAT2 
Diacylglycerol O-
acyltransferase 2 

1.041 ± 0.289 0.883 ± 0.234 0.448 

Adipokines 
LEP 
Leptin 

0.959 ± 0.150 1.041 ± 0.175 0.613 

ADIPOQ 
Adiponectin 

1.098 ± 0.171 1.077 ± 0.119 0.855 

Miscellaneous 
AGT 
Angiotensinogen 

0.829 ± 0.191 0.954 ± 0.263 0.617 

ADRA2A 
α-2-adrenergic receptor 

0.871 ± 0.088 1.028 ± 0.211 0.513 

ADRB1 
β-1-adrenergic receptor 

0.861 ± 0.101 1.057 ± 0.241 0.298 

 

Table 5.10  Subcutaneous adipose tissue mRNA transcript levels (relative to 

cyclophylin) during anastrozole and placebo treatment phases in 6 subjects.  

Data are presented as mean ± SEM.  Analysed by paired Student’s t-tests. 
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5.5 Discussion 

 

Predicting the metabolic effects of aromatase inhibition in men is potentially more 

difficult than in women; where both estrogen deficiency and relative androgen excess 

would be expected to exert deleterious effects.  In men, the effects of suppressing 

estrogen are much less clear and, in most prior investigations, have been accompanied 

by subnormal testosterone concentrations.  As noted previously, congenital absence of 

aromatase activity results in adverse metabolic phenotypes in both mice and men 

(Simpson et al. 1995), however it does not necessarily follow that acquired 

suppression of aromatase would have similar consequences.  In this chapter I have 

presented a double-blind randomised controlled study designed specifically to address 

this issue.  Consistent with the original hypothesis, I have shown that short-term 

aromatase inhibition is associated with decreased insulin-stimulated glucose disposal, 

with no significant effect on hepatic glucose production or lipolysis. No effect on 

body fat was observed, although serum leptin concentration was lower during 

aromatase inhibitor therapy. No substantial effect upon mRNA transcript levels was 

noted in the subcutaneous adipose compartment.  Aromatase inhibition was also 

associated with a significant increase in systolic blood pressure and decreased plasma 

total cholesterol.   

 

A number of potential populations could have been selected for assessment in this 

study, including men with late onset hypogonadism (LOH), obesity related 

hypogonadism or T2DM.  Ultimately a decision was made to determine the metabolic 

effect of aromatase inhibition on healthy volunteers.  Whilst there is potentially 

significant merit in determining whether aromatase inhibition is capable of 



! 197 

ameliorating testosterone deficiency (and its consequences), it is also important to 

determine whether a shift in the balance of androgen and estrogen action can itself 

generate a pathological metabolic state in previously healthy men.  Recruitment of 

healthy volunteers for a study which mandated daily adherence to medication for a 

total of 12 weeks (6 weeks placebo and 6 weeks anastrozole) proved challenging and 

fell 3 short of the target of 20 subjects.  Had recruitment been more straightforward, it 

would have been preferable to limit the degree of heterogeneity within the study 

population, with respect to age (which ranged from 18 to 50 years) and also body 

composition (percentage body fat ranged from 4 to 28%).  Age has been identified as 

a factor which influences the metabolic effects of aromatase inhibitors, albeit in much 

older men (mean age 76) than the current study (Lapauw et al. 2009).  

 

Anastrozole was selected in preference to the other 3rd generation aromatase inhibitors 

on the basis of its pharmacokinetic profile and superior specificity.  Anastrozole has a 

shorter half-life than letrozole (41 hours vs. 2 – 4 days) and consequently a shorter 

time to steady state plasma levels (7 days vs. 60 days) (Buzdar et al. 2002).  These 

properties were attractive given the relatively short treatment period (6 weeks) and 

also ensured that sufficient ‘wash out’ was achieved during the two weeks between 

placebo and anastrozole phases.  Letrozole has been associated with significant 

reductions in both morning plasma cortisol (Bisagni et al. 1996) and ACTH-

stimulated cortisol (Bajetta et al. 1999), across similar time-scales to that employed in 

this study (and other studies assessing the metabolic effect of aromatase inhibitors).  

Cortisol suppression is potentially an important confounder in any study of insulin 

sensitivity.  The relationship between glucocorticoid excess and insulin resistance is 

well established, however even pharmacological antagonism of the glucocorticoid 
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receptor in eucortisolaemic individuals is associated with significant changes in   

glucose metabolism (Garrel et al. 1995).  Anastrozole is not associated with any 

changes in plasma cortisol (Buzdar et al. 2001) and is therefore ideally suited to 

purely assess effects related to changes in sex steroid concentration.   

 

The duration of aromatase inhibitor administration in this study (6 weeks) compares 

favourably to other similar studies, which have been limited to between 1 and 4 weeks 

(Lapauw et al. 2009; Lapauw et al. 2010).  6 weeks was selected as a reasonable 

period to achieve stable plasma levels of anastrozole and observe changes mediated 

by sex hormone mediated transcriptional regulation; it was likely to have been too 

short to detect significant changes in body composition and consequent effects on 

insulin sensitivity.   

 

Aromatase inhibition in post-menopausal women is associated with durable, profound 

(> 90%) suppression of circulating estradiol (Bajetta et al. 2002) but this is not the 

case in men, where a compensatory increase in luteinizing hormone (LH) mitigates 

the degree of estradiol suppression. This occurs because feedback at the 

hypothalamic-pituitary level is principally mediated via estrogen receptor rather than 

androgen receptor (Raven et al. 2006), with consequent increase in LH and 

testosterone overcoming the aromatase inhibitor ‘block’. It is likely that duration of 

therapy is also relevant, as estradiol suppression was 20% in men treated with 

anastrozole for 12 months (Burnett-Bowie et al. 2009) compared to 62% following 4 

weeks of letrozole in a similar study population (Lapauw et al. 2009).  In this study, 

estradiol fell by a modest 16.7%, which is significantly less than most other reports in 

the literature.  Only a single subject appeared to achieve no estrogen suppression, 
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presumably a consequence of non-compliance but this did not significantly skew the 

mean suppression.  Planned measurement of plasma anastrozole concentrations will 

provide further information with respect to compliance. More surprising than the 

modest reduction in circulating estrogens, was the absence of any effect upon 

androgen concentration (testosterone and androstenedione) following six weeks of 

anastrozole administration.  This is difficult to reconcile, as the obvious explanation 

for limited suppression of estradiol would be a compensatory elevation of LH, and 

consequently testosterone, following a prolonged period of treatment.  Planned 

measurement of LH will offer clarification, although it would be surprising to observe 

any significant change, in the context of unaltered testosterone concentration.   In 

mice, anastrozole is significantly less abundant in brain tissue than letrozole 

(Miyajima  et al. 2013), which may account for less pronounced excursions in LH 

observed with anastrozole in human studies; assuming local hypothalamo-pituitary 

generation of estradiol is more important than availability of circulating estrogen 

(Burnett-Bowie  et al. 2009; Raven et al. 2006; T’Sjoen et al. 2005).  However, one 

week of anastrozole in healthy men did result in substantial elevations in LH (100%) 

and testosterone (53%) with concomitant suppression of estradiol (50%), albeit using 

a daily dose ten times greater than the standard dose (1 mg) employed in this study 

(Hayes et al. 2000).    

 

Reported androgen and estrogen results were based on LC MS/MS analysis, regarded 

as the gold standard for measurement of sex steroid hormones.  The superiority of 

mass spectrometric analysis has been demonstrated in the context of aromatase 

inhibition, where immunometric methods are prone to significantly underestimate 

estradiol suppression in post-menopausal women (Stanten et al. 2007).  The vast 
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majority of previously reported aromatase inhibitor studies, including all those in 

men, have relied upon immunoassays, which are known to perform poorly at low 

estradiol concentrations, where a positive bias is often observed (Huhtaniemi et al. 

2012).  A significant limit in interpreting plasma sex steroid levels is the fact that they 

do not necessarily reflect tissue concentrations.  This has been observed in breast 

tissue from pre- and post-menopausal women where, despite markedly divergent 

plasma concentrations, tissue estradiol concentration is equivalent (Pasqualini  et al. 

1996)   In men and post-menopausal women, local generation and action of estradiol, 

in adipose tissue and skeletal muscle, is likely to be more physiologically relevant 

than distant action.  In view of the lower than anticipated suppression of serum 

estradiol in this study, it would be interesting to determine the extent to which 

anastrozole altered the tissue concentration of sex steroids. 

 

This study is the first in men to achieve suppression of circulating estradiol, whilst 

maintaining a stable testosterone level, with aromatase inhibitor alone.  Another 

approach designed to deal with LH compensation, is to suppress gonadotrophins with 

a GnRH agonist and maintain plasma testosterone concentration with transdermal 

testosterone replacement (Finkelstein et al. 2013), permitting a clearer assessment of 

the relative contributions of estrogens and androgens, although this approach does not 

mimic physiological daily variation in sex steroid levels.  This elegant model suggests 

that estrogen deficiency, but not androgen deficiency, is associated with insulin 

resistance, although it is not clear whether this is independent of changes in intra-

abdominal fat, which is increased with estrogen deficiency (Joel Finkelstein, personal 

communication, May 2014). In failing to ‘clamp’ testosterone levels during aromatase 

inhibition, as observed in most aromatase inhibitor studies, it can be argued that 
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metabolic changes may be related to concurrent elevation of testosterone, as much as 

suppression of estradiol. No evidence exists to suggest supra-physiological 

testosterone levels are associated with insulin resistance and, indeed, recent work by 

Finkelstein et al. appears to refute a role for testosterone in mediating insulin 

sensitivity. However, supra-physiological estradiol is associated with reduced muscle 

GLUT4 expression (Barros et al. 2008) and an increased risk of T2DM in women 

(Ding et al. 2006), thereby establishing a possible precedent of deleterious effects 

associated with excessive sex steroid action. 

 

In this study, body fat percentage was estimated using a hand-held bioelectric 

impedance meter, an inexpensive but relatively imprecise modality, which provides 

no additional information regarding compartment specific changes (Fogelholm et al. 

1997).  No difference was detected in weight, BMI, WHR or body fat percentage 

between anastrozole and placebo phases, which was not unexpected as it may take 

longer than six weeks to observe sex hormone mediated changes in body composition, 

particularly with such low sensitivity methodologies.  In support of this, 10 weeks of 

anastrozole therapy (1mg daily) did not result in any change in body composition, as 

determined by DEXA and calliper measurement, in healthy young men  (age 15 – 22 

years) (Mauras et al. 2000). Despite no obvious change in body composition, in this 

study, serum leptin concentration was reduced by 28% during the anastrozole phase; 

consistent with the effect reported previously, following 4 weeks of letrozole 

administration (Lapauw et al. 2009). In the current study, no effect on leptin mRNA 

expression was observed in subcutaneous adipose tissue, suggesting reduced leptin 

concentration is not mediated by a direct effect on transcription in the subcutaneous 

depot. Longer duration of aromatase inhibitor therapy in men (16 weeks) has been 
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shown to increase body fat percentage, with a disproportionate increase in intra-

abdominal fat (Finkelstein et al. 2013).  Leptin is preferentially secreted by 

subcutaneous, rather than omental adipocytes (Gottschling-Zeller et al. 1999), raising 

the possibility that the change in leptin concentration, observed in this study, is a 

consequence of shift from subcutaneous to visceral adipose deposition.  This is 

certainly consistent with the observed increase in insulin resistance but would require 

verification by more detailed assessment of body fat compartments (e.g. single-slice 

CT).   Alternatively, the aromatase inhibitor related reduction in insulin sensitivity 

observed in this study may be mediated by factors independent of adiposity. 

 

A significant strength of this study was the use of the gold-standard 

hyperinsulinaemic euglycaemic clamp technique to determine insulin sensitivity (De 

Fronzo et al. 1979).  The use of deuterated glucose tracer provides supplemental 

information regarding the contribution of peripheral and hepatic insulin sensitivity 

and deuterated glycerol permits assessment of lipolysis.  Deuterated glucose was 

selected, as unlike 13C labelled tracers, the label cannot be recycled via gluconeogenic 

pathways and therefore provides the most accurate measure of endogenous glucose 

production (Choukem & Gautier 2008).  Deuterated glycerol provides a measure of 

adipose tissue insulin sensitivity; as there is no re-uptake of glycerol into adipocytes, 

the rate of appearance of glycerol corresponds to rate of lipolysis.  Adjustments for fat 

free mass were reported, as this is the primary site of glucose uptake, however these 

adjustments did not materially affect the results. In particularly insulin sensitive 

individuals, maximal effects of insulin may occur at a lower concentration than is 

conventionally employed during standard clamp protocols, thus introducing the 

possibility of missing real differences between groups; this may have been an issue 
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given the young age and lean body composition of several subjects.  Glucose TTR 

data during the high dose insulin phase were less consistent than during earlier 

phases, due to the requirement for higher glucose infusion rates, with high dose 

insulin, and subsequent fall in TTR.  This is a relatively common issue and has led to 

a change in practice, namely the addition of glucose tracer to the variable 20% 

dextrose infusion fluid.  Notwithstanding these technical challenges, this study has 

provided clear evidence of increased peripheral insulin resistance, manifesting as a 

23.7% decrease in glucose disposal, during aromatase inhibitor therapy.  No effect on 

hepatic or adipose insulin sensitivity was detected.  

 

Previous investigators have either failed to demonstrate any aromatase inhibitor effect 

on insulin sensitivity or have reported improved insulin sensitivity following short-

term aromatase inhibition.  The first study to suggest improved insulin sensitivity 

assessed letrozole in 18 healthy men (divided into older and younger age groups) over 

a 4-week period (Lapauw et al. 2009).  Due to insufficient washout in the 2-week 

interval between treatment phases, placebo results were discarded in all subjects who 

initially received letrozole (n = 10).  Improved insulin sensitivity was inferred from 

changes in fasting glucose and insulin, in the younger subjects only, although no 

specific indices of insulin sensitivity were reported (e.g. HOMA-IR or QUICKI).  As 

alluded to previously, letrozole is known to significantly suppress plasma cortisol 

levels, however morning cortisol concentrations were not reported in this study, 

leaving open the possibility that improvements in insulin sensitivity may have been a 

consequence of cortisol suppression.  A subsequent study by the same investigators 

assessed letrozole effects over a 1-week period either alone (n = 10) or in combination 

with transdermal estradiol (n = 10) to maintain physiological levels (Lapauw et al. 
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2010). Hyperinsulinaemic euglycaemic clamp studies suggested improved insulin 

sensitivity in the AI group, but not the AI plus estradiol group, although only after 

correction for FFM.  The same potential criticisms apply regarding the choice of 

aromatase inhibitor and absence of cortisol measurement.  Furthermore, the estradiol 

replacement group developed subnormal testosterone levels, suggesting 

supraphysiological estradiol replacement and consequent LH suppression.  It is 

difficult to conclude from these data that estrogen suppression is metabolically 

beneficial in men; even if this were the case, the net effect of deleterious longer term 

changes in body composition may be of greater import with respect to insulin 

sensitivity.  10 weeks of anastrozole in young men and 12 weeks of anastrozole in 

elderly hypogonadal men did not alter fasting insulin or glucose concentrations 

(Mauras et al. 2000; Dougherty et al. 2005).  Despite discordance in relation to these 

earlier studies, insulin sensitivity findings in this thesis are consistent with the 

outcome of the largest and longest study of anastrozole in men where estrogen 

deficiency, but not androgen deficiency, was associated with increased insulin 

resistance (Joel Finkelstein, personal communication, May 2014).  

 

The absence of a demonstrable effect upon subcutaneous adipose tissue mRNA 

transcription or rudimentary measures of body composition does not, as noted 

previously, preclude the possibility that changes in insulin sensitivity are mediated, at 

least in part, by a shift in fat distribution.  Nonetheless, given the principal metabolic 

consequence of aromatase inhibition is peripheral insulin resistance, direct effects 

upon skeletal muscle are likely to be involved.  Aromatase is expressed in skeletal 

muscle and may generate equivalent quantities of estrogen to adipose tissue, in men 

and post-menopausal women (Larionov et al. 2003; Longcope et al. 1978). Pre-
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menopausal women are protected from nonesterified fatty acid (NEFA) induced 

peripheral insulin resistance, compared to age and BMI-matched men (Frias et al. 

2001); insights from animal models raise the possibility that this difference is 

estrogen related.  Estrogen receptor α-knockout mice (ERαKO) are peripherally 

insulin resistant, with impaired insulin signalling in skeletal muscle (despite normal 

GLUT4 levels), impaired fatty acid oxidation and accumulation of inflammatory lipid 

intermediates (Ribas et al. 2009).  Estrogen replacement in ovariectomized mice shifts 

transcription patterns in skeletal muscle towards favouring fatty acid oxidation and 

rapidly activates AMPK (D’Eon et al. 2005).  Whilst some reports suggests a negative 

effect on insulin sensitivity in the face of supraphysiological estradiol levels (Barros 

et al. 2008), the balance of evidence supports a salutary role for estrogens with 

respect to peripheral insulin sensitivity and offers a plausible explanation for the 

effects observed following aromatase inhibition.  With hindsight, it would have been 

desirable to obtain skeletal muscle biopsies to determine anastrozole-induced changes 

in transcription and also to have considered assessment of intramyocellular lipid 

content. 

 

Contrary to what was hypothesised, subcutaneous adipose tissue does not appear to 

significantly mediate the metabolic effects of aromatase inhibition in men.  No effect 

upon lipolysis was detected through assessment of rate of appearance of glycerol.  

Furthermore, of 27 subcutaneous adipose mRNA transcript levels investigated, only 2 

were found to be significantly different between treatment phases.  The biological 

significance of slight reductions in perilipin 2 (more associated with lipid droplet 

formation in non-adipose cells) and estrogen receptor β is questionable.  The 

proportion of subjects suitable (or willing) to have paired adipose biopsies was low (n 
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= 6) which reduced the power to detect differences, although there were no 

discernable trends in the remaining 25 genes. With the exception of leptin, no 

significant differences were observed in adipokines or pro-inflammatory cytokines, 

lending further support to a lack of meaningful effect upon the adipose compartment.   

 

Ideally it would have been interesting to obtain visceral as well as subcutaneous 

adipose tissue, although this is not possible outwith the context of surgery.  Needle 

biopsy of adipose tissue is associated with relative under sampling of the stroma-

vascular fraction (Mutch et al. 2009), which is potentially relevant, as the pre-

adipocyte fraction is particularly active with respect to sex steroid hormone 

metabolism.  Assessment of estrogen sulfotransferase mRNA expression would be of 

value as another factor capable of significantly influencing tissue estrogen levels.   

 

Anastrozole resulted in a significant reduction in total cholesterol, which comprised 

non-significant downward trends in both LDL and HDL cholesterol. This contrasts 

with a significant increase in LDL cholesterol, observed following 4 weeks of 

letrozole in younger men, although within this study no LDL cholesterol effect was 

observed in older men  (Lapauw et al.  2009).  A study of older men with ‘mild 

hypogonadism’ failed to demonstrate any significant difference in lipid profile 

following 12 weeks of anastrozole therapy (Dougherty et al.  2005). The most 

systematic assessment of changes in cholesterol associated with aromatase inhibition, 

involved 6-week administration of GnRH agonist, testosterone and testolactone (to 

determine the effects of estrogen deficiency); in young men this revealed aromatase 

inhibition was association with significant reductions in HDL cholesterol (primarily 

the HDL2 fraction) (Bagatell et al. 1994).  The less marked decline in HDL 
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cholesterol in the current study is likely to reflect less pronounced suppression of 

estradiol (in the absence of GnRH agonist).   

 

Systolic blood pressure was significantly higher and heart rate significantly lower 

during the anastrozole phase of this study.  The opposite phenotype is observed in 

aromatase knockout mice, namely increased heart rate and lower diastolic blood 

pressure (Head et al. 2004).  Polymorphisms in CYP19A1 have been associated with 

essential hypertension in a sex-specific manner (Shimodaira et al. 2008).  The role of 

estrogen in influencing blood pressure is complex and evidence often conflicting. 

Most studies of HRT suggest a modest effect in reducing BP.  Estrogens exert an 

influence upon endothelial function through a number of mechanisms (Yanes & 

Reckelhoff  2011), however a detailed exploration of the vascular effects of aromatase 

inhibition is beyond the scope of this thesis.   

 

 

Summary 

As hypothesised, in healthy men, aromatase inhibition resulted in decreased insulin 

sensitivity, primarily manifesting as reduced peripheral glucose disposal.  No 

significant effects upon hepatic glucose output or lipolysis were observed.  

Anastrozole resulted in lower serum leptin levels, in the absence of any effect on 

leptin adipose mRNA expression, which potentially reflects either redistributed or 

reduced adiposity.  Relatively modest changes in circulating sex steroid hormones 

may not accurately reflect differences in target tissue estrogen and androgen action. 
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Chapter 6 

 

Conclusions 
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It is clear that sex steroid hormones exert an influence upon body composition and 

energy metabolism; multiple sources of evidence attest to this in animal models and in 

humans.  Aromatase occupies a central role in determining estrogen levels in men and 

post-menopausal women both in the circulation and, perhaps more importantly, 

within target tissues.  Models of aromatase deficiency are associated with adverse 

metabolic phenotypes yet, despite their widespread clinical use, little attention has 

focused on the potential metabolic consequences of aromatase inhibitors.   

 

The study described in chapter 3 confirmed associations between sex steroids and 

measures of cardiometabolic risk in men.  It also raised the possibility that, in men, 

availability of substrate androgen, rather than abundance of aromatase (using 

adiposity as a proxy), is of greater significance in determining plasma estrogen 

concentrations.  However this study was subject to a number of important limitations, 

not least the inherent difficulty in establishing direction of association in a cross-

sectional design.  In addition, plasma steroid measurements were performed using 

immunometric assays, which are increasingly recognised to be unreliable at the lower 

end of expected concentration ranges (Huhtaniemi  et al. 2012).  This simple study 

raised questions regarding the extent to which adipose tissue and total body aromatase 

activity mediates circulating estradiol concentration in men.  To address these 

questions, a study was designed where labelled androstenedione would be infused 

into subcutaneous adipose tissue, using microdialysis, with measurement of the 

resultant conversion to labelled estrone.  Preliminary assessment of the feasibility of 

this approach (not reported in the thesis) identified a significant, ultimately 

insurmountable, problem with adsorption of sex steroid hormones to the plastic 

microdialysis tubing (Bruning et al. 1981).  An alternative approach would be to 
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infuse stable isotope estrogen tracers systemically in order to measure whole body 

aromatisation; preparatory work was performed, not reported in the thesis, to establish 

the pharmacokinetics of stable estrogen tracers.  However, challenges in the accurate 

LC-MS/MS measurement of estradiol at low picomolar concentrations thwarted 

progress in this regard to date.  The flux of sex steroids through the aromatase 

pathway in men therefore remains unquantified.  Another approach to deduce its 

significance, however, is to use enzyme inhibitors and this avenue proved fruitful, 

generating the results reported in chapters 4 and 5. 

 

The study described in chapter 4 sought to assess the metabolic effects of aromatase 

inhibition in post-menopausal breast cancer patients, the main group exposed to this 

medication class in clinical practice.  Aromatase inhibitors were associated with 

reduced lean mass, greater body fat percentage, significantly higher serum leptin and 

correspondingly greater leptin mRNA levels in subcutaneous adipose tissue.  

Aromatase inhibitor therapy was also associated with significantly greater insulin 

resistance, as determined by ‘Matsuda-ISI’.  Whilst cases and controls were matched 

as closely as possible, with no significant difference in age or BMI, case-control 

design is susceptible to confounding by unrecognised factors.  Furthermore, although 

reported to correlate closely with the results of insulin infusion clamps (Matsuda et al. 

1999), ‘Matsuda-ISI’ is not the gold standard method for assessing insulin sensitivity 

and does not inform the relative contributions of hepatic, adipose and peripheral 

insulin sensitivity.  

 

The study described in chapter 5 represented an advance upon the earlier studies with 

respect to study design (randomised, double-blind, placebo-controlled crossover 
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study), assessment of insulin sensitivity (hyperinsulinaemic euglycaemic clamp with 

stable glucose and glycerol tracers) and measurement of sex steroid hormones (LC-

MS/MS).  Aromatase inhibition, in men, was associated with decreased insulin 

sensitivity; specifically, with reduced insulin-stimulated peripheral glucose disposal. 

Although sensitive modalities for detecting change in body composition were not 

employed, a fall in serum leptin is consistent with previously observed shifts from 

subcutaneous to visceral adiposity with aromatase inhibition in men (Finkelstein et al. 

2013).   

 

A significant deleterious effect upon insulin sensitivity was observed both in women 

(24.3% lower by ‘Matsuda-ISI’) and in men (23.7% decrease in peripheral glucose 

disposal during high dose clamp) following aromatase inhibitor therapy.  This raises 

the possibility of an important pathogenic effect of aromatase inhibition in skeletal 

muscle, particularly as lean mass was lower in women treated with aromatase 

inhibitors.  In support of this, estrogen deficiency impairs skeletal muscle glucose 

uptake (Campbell et al. 2002), reduces transcription of genes involved in muscle fatty 

acid oxidation (D’Eon et al. 2005) and reduces muscle AMPK signalling in rodent 

models (Rogers et al. 2009).  The focus in this thesis had been on potential adipose 

tissue effects of aromatase inhibition but, in view of these findings, it would be 

interesting to assess effects upon intramyocellular lipid content in skeletal muscle and 

to determine whether significant changes in mRNA transcription are effected in 

muscle.   
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The effects of aromatase inhibition upon body composition may be sexually 

dimorphic.  In women, higher serum leptin levels were observed in those receiving 

aromatase inhibitors whereas, in men, serum leptin fell following anastrozole 

administration.  Detailed assessment of body composition was only performed in 

women, as the duration of the male study was not considered long enough to detect 

any significant differences.  A low estrogen-high androgen state, as expected in 

aromatase inhibitor treated adipose tissue, would be predicted to favour android fat 

deposition (Elbers et al. 2003). However, body fat percentage was increased across 

both lower limbs and trunk.  Future detailed assessment of changes in the visceral and 

subcutaneous adipose compartment would be of value.  Previous investigations in 

men have shown aromatase inhibitors to preferentially increase visceral adiposity 

(Finkelstein  et al.  2013), which is potentially consistent with the observed fall in 

serum leptin (Gottschling-Zeller et al. 1999). 

 

The effect of aromatase inhibition upon mRNA transcript levels in subcutaneous 

adipose was minimal in men.  In women, upregulation of genes associated with anti-

adipogenic effects was observed (LKB1 and β-catenin) although leptin mRNA levels 

were greater, in keeping with higher serum levels.  Overall, effects on transcription in 

adipose tissue were less than anticipated, based on previously described 

transcriptional effects of estrogens and androgens in adipose tissue.   

 

Plasma sex steroid measurements were performed using gold standard LC-MS/MS 

methodology for the male aromatase inhibitor study reported in chapter 5, where all 

previous similar investigators have employed less reliable immunometric assays.  The 
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degree of estradiol suppression by anastrozole was less than observed in previous 

similar studies and the absence of any effect upon circulating androgens was 

unanticipated (T’Sjoen et al. 2005); measurement of LH should help elucidate the 

reason for these findings. Measurement of SHBG is also planned, as a fall in SHBG 

may occur with estrogen suppression (Pasquali et al, 1997), leaving open the 

possibility of differences in calculated free testosterone.  Ultimately, the most relevant 

sex steroid measurements in men and post-menopausal women are likely to be direct 

assessment of target tissue levels (e.g. adipose tissue or skeletal muscle), as 

circulating values are substantially lower and only passively reflect local tissue 

generation  (Simpson et al. 2005).  However, measurement of tissue sex steroid 

hormones is technically challenging, not to mention the difficulties in accessing the 

necessary tissue compartments.  The possibility that changes in aromatase activity 

may be compensated for by changes in estrogen sulfotransferase (or other enzymes 

involved in estrogen metabolism) requires further assessment. 

 

A potential confounder encountered in previous aromatase inhibitor studies is the 

suppressive effect of letrozole, although apparently not anastrozole (Buzdar  et al. 

2001), upon basal (Bisagni  et al. 1996) and ACTH-stimulated cortisol (Bajetta et al. 

1999).  The fact that this effect appears to be durable over several months, by which 

point ACTH compensation would be expected, raises the possibility that the effect is 

mediated by changes in corticosteroid-binding globulin (CBG).  Further elucidation of 

effects of aromatase inhibition upon the CBG concentration is planned.  Previously 

reported effects of aromatase inhibition on the growth hormone axis, specifically a 
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fall in IGF-1 in younger men, also require further attention (Mauras et al. 2000; 

Lapauw et al. 2009).   

 

Having established that aromatase inhibitors are likely to exert deleterious effects 

upon insulin sensitivity in post-menopausal women, it is important that larger studies 

are undertaken to confirm these findings.  With over a million prescriptions issued 

annually for aromatase inhibitors in England alone (Prescribing and Primary Care 

Services, Health and Social Care Information Centre, 2013), there are potentially 

significant implications related to an increased risk of T2DM in this population.   

 

Another interesting avenue for further investigation would be establishing whether 

increased aromatase activity is responsible for obesity related male hypogonadism, 

secondary to the expanded adipose pool of aromatase.  Tracer studies assessing total 

body aromatase activity, as well as changes in estrogen generation across the adipose 

tissue arterio-venous gradient, would help resolves this contentious question. 

Aromatase inhibition employed in the treatment of hypogonadism in obese men, 

targeting normalisation of testosterone and estradiol, may not result in adverse 

metabolic consequences and is worthy of further investigation.  
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Addressing the original hypotheses advanced in this thesis: 

 

1. Lower levels of circulating estrogens are associated with poorer metabolic 

health in both men and women:  The results presented in chapter 3 support an 

association between plasma estrogens and metabolic health in men, albeit 

unavoidably confounded by androgen levels. 

 

2. Aromatase inhibition is associated with deleterious effects upon body 

composition: The results presented in chapter 4 are consistent with an adverse 

effect upon body composition in aromatase inhibitor treated women. 

 

3. Aromatase inhibition is associated with increased insulin resistance:  Increased 

insulin resistance was observed in aromatase inhibitor treated women (chapter 

4) and men (chapter 5). 

 

4. Aromatase inhibition results in alterations in circulating adipokines and 

cytokines, through an effect on transcription in adipose tissue:  A sexually 

dimorphic effect was observed with respect to leptin, which was higher in 

aromatase inhibitor treated women but fell during aromatase inhibitor therapy 

in men.  Effects upon adipose transcription were limited, suggesting changes 

in another target tissue (e.g. skeletal muscle) may be of greater importance. 
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Appendix 
 
Supplemental information (Chapter 5) 

 
Although baseline (screening) cholesterol profiles were measured, these were 
obtained at varying times and in a non-fasted state.  Consequently, a comparison 
between baseline and the anastrozole treatment phase was not regarded as valid.  This 
is confirmed by comparison of baseline samples and placebo phase samples.  The 
significant differences in total cholesterol, triglyceride and HDL cholesterol (table) 
are highly likely to be accounted for by differences in sampling conditions.   

 Baseline Placebo p 
Total cholesterol 
(mmol/L) 

4.5 4.1 0.04 

Triglyceride (mmol/L) 1.7 1.1 0.003 
HDL cholesterol 
(mmol/L) 

1.21 1.08 0.007 

LDL cholesterol 
(mmol/L) 

2.5 2.5 0.6 


