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ABSTRACT

The macrolide immunosuppressant FK506 has potent neuroprotective properties in
focal and transient global cerebral ischaemia and improves motor performance

following middle cerebral artery occlusion. In this thesis I seek to identify those
actions ofFK506 responsible for its neuroprotective properties.

These neuroprotective properties have been attributed to a calcineurin- mediated
inhibition of nitric oxide synthase (NOS) activity. In cerebellar prisms from neonatal
rats N- methyl D-aspartate (NMDA) induces a rapid rise in NOS activity which in
turn stimulates the enzyme guanylate cyclase and leads to the accumulation of
cGMP. I demonstrate that cGMP accumulation begins within a minute of NMDA
stimulation and is inhibited by the NMDA receptor antagonist MK-801 and the broad

spectrum NOS inhibitor L-NAME. The nitric oxide (NO) donor SNP also stimulates
cGMP production, and this is not inhibited by either MK-801 or L-NAME. These
results are consistent with NMDA inducing accumulation of cGMP through
stimulation of NOS. Following NMDA stimulation FK506 augments protein

phosphorylation in cerebellar prisms consistent with calcineurin inhibition. However,
FK506 was entirely without effect on NMDA stimulated cGMP production,

suggesting that its neuroprotective actions may not be mediated through NOS
inhibition. Recent evidence supports the view that the neuroprotective effect of
FK506 is not dependent on inhibition of neuronal NOS (nNOS) activity. In neuronal
cultures lacking nNOS FK506 retains neuroprotective efficacy, and nNOS activity is
not reduced by neuroprotective treatment with FK506 following middle cerebral

artery occlusion in rats.

If FK506 is exerting its neuroprotective effects through other mechanisms, what

might these be? FK506 is known to inhibit activation- induced apoptosis in T

lymphocytes, and apoptosis is now recognised as an important mode of neuronal
death in cerebral ischaemia. FK506 might therefore be reducing infarct size in focal
cerebral ischaemia by inhibiting the apoptotic contribution to neuronal death.
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To examine the role of FK506 in neuronal apoptosis I have examined apoptotic cell
death in the SHSY-5Y neuroblastoma cell line. Initial experiments used
differentiated SHSY-5Y cells at high passage. Neither their morphology nor their

response to various toxins was constant. I therefore identified a source of low

passage SHSY-5Y cells and compared their behaviour with high passage cells under

differentiating conditions. Treatment of low passage cells with retinoic acid and
serum reduction for 7 days resulted in the development of neuron- like morphology,
with stabilisation of cell number and the development of immunopositivity for the
neuronal marker MAP2 and the cell cycle G0 marker p21waf.

In terminally differentiated SHSY-5Y cells the calcium ionophore ionomycin caused

rapid and simultaneous loss of mitochondrial respiratory activity and membrane

integrity (determined using the MTS and LDH assays respectively) and had no effect
on endogenous (PARP) or synthetic (Ac-DEVD-amc) Caspase 3 substrate cleavage.
FK506 had no effect on ionomycin induced death. The broad spectrum protein kinase
C inhibitor staurosporine also caused death in SHSY-5Y cells in a concentration

dependent fashion, but the onset of the death was slower than with ionomycin. This
was associated with increased cleavage of the synthetic caspase 3 substrate Ac-
DEVD-amc. The decline in viability determined using the MTS assay, an index of
mitochondrial function, was more pronounced than that seen using the LDH assay, a

measure of membrane integrity. FK506 had no effect on staurosporine- induced
death. Serum withdrawal caused the apoptosis of a proportion of SHSY-5Y cells, as
evidenced by characteristic nuclear changes, caspase activation and cleavage of

caspase substrates. FK506 partially reduced the decline in viability seen following
serum withdrawal, but was without discernable effect on caspase activation.

In conclusion, I have demonstrated that FK506 can be without effect on NOS activity
in brain tissue. Secondly, I describe the terminal differentiation of SHSY-5Y cells. In
these cells both serum withdrawal and staurosporine cause a decline in viability that
has some of the features of apoptosis; the effect of serum withdrawal, but not

staurosporine, is partially reversed by FK506. These findings, interpreted along with
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the published work of others, suggests that the neuroprotective effect of FK506 is not
mediated through an effect on nNOS activity. While the neuroprotective actions of
FK506 may involve inhibition of apoptosis, other mechanisms such as its reported

neurotrophic properties may also be involved.
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CHAPTER 1

INTRODUCTION

Acute ischaemic stroke is the most common neurological cause of death and

disability in the world. In 1998 over 5 million persons around the world died from
cerebrovascular disease, making stroke responsible for almost one in every ten

deaths on the planet (WHO, 1999).

Stroke presents a potentially attractive target for neuroprotective drugs. It is a

common and disabling disease, and a drug that had even a small effect on outcome

would have significant public health benefits. The natural history of stroke is of
sudden disease onset, with brain damage that evolves over subsequent hours and

days. In consequence, treatments might be effectively given for this limited period.
This contrasts with chronic neurodegenerative diseases where pathological processes
are ongoing and therefore longer term treatment would be required. Finally, in some

centres most patients are already admitted to hospital within a few hours of stroke
onset (Harper et al., 1992) and so are in an environment where potentially dangerous
treatments might be given under close medical supervision.

In this chapter I set the clinical context by discussing the epidemiology and
classification of stroke. Then, I review the pathophysiology of acute ischaemic

stroke, in particular the role of excitotoxicity, nitric oxide and free radical

production, reperfusion injury and apoptosis. After reviewing the outcome of trials of
different therapeutic strategies I discuss the neuroprotective properties of the
macrolide immunosuppressant FK506 and outline the approach that I have taken to

investigating the fundamental mechanism(s) subserving the neuroprotective effects
ofFK506.
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EPIDEMIOLOGY AND CLASSIFICATION

In the Oxford Community Stroke Project, one year after a first stroke 23% ofpatients
were dead and a further 28% were disabled (Bamford et ah, 1991). Generalising
these results to the UK as a whole, stroke can be expected to result in 40,000 deaths
and 60,000 newly disabled persons each year. The average general practitioner can

expect to see 6 patients with acute stroke per year, ofwhom one will die and two will
become dependent on others. Stroke therefore represents a considerable burden on

individuals, carers, the health service and on society as a whole.

The clinical manifestations of ischaemic stroke depend on the location and the extent

of brain injury. These clinical features can be used to classify the stroke and give
some predictions about likely outcomes. The Oxford Community Stroke Project
Classification (Bamford et al., 1991) is a well validated system of classification

(Anderson et al., 1994) which is based on clinical evaluation and which correlates
well with neuroradiological findings at CT scanning (Wardlaw et al., 1996):-

Total anterior circulation syndromes (TACS) result from occlusion of an internal
carotid or middle cerebral artery and lead to a triad of [1] contra- lateral weakness of
the face, arm and leg with or without disturbance of sensation, [2] homonymous

hemianopia, and [3] dysphasia and/ or neglect (dominant hemisphere) or visuo-

spatial disturbance and/ or neglect (non- dominant hemisphere). Conscious level is
often impaired early in the course of the illness. TACS are associated with a poor

prognosis, with 56% of patients being dead at 6 months and only 4% of survivors

being independent (Modified Rankin Handicap Score 0-2) (Bamford et al., 1991).

Partial anterior circulation syndromes result from a branch occlusion of the middle
cerebral artery and lead to two out of three of the components of a TACS described
above or dysphasia, visuospatial disturbance, or neglect occurring in isolation. The

prognosis is markedly better, with 10% of patients dead at 6 months and 45% of
survivors being independent (Bamford et al., 1991).

Lacunar syndromes occur following occlusion of small perforating vessels supplying
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the brain stem, pons, thalamus, basal ganglia and internal capsule. The clinical

consequences depend on the structure affected, but can include pure motor stroke,

pure sensory stroke, mixed sensory- motor stroke and ataxic hemiparesis. The

prognosis is good, with only 7% of patients dead at 6 months and 67% of survivors

being independent (Bamford et al., 1991).

Posterior circulation syndromes affect the territory supplied by the vertebral arteries
and can cause cerebellar signs, brain stem signs, homonymous hemianopia and/ or
cortical blindness. The prognosis is intermediate, with 14% of patients dead at 6
months and 68% of survivors independent (Bamford et ah, 1991).

PATHOPHYSIOLOGY OF HUMAN STROKE

Beyond the Circle ofWillis, cerebral blood supply travels through end arteries with
limited distal anastomosis. Occlusion of one such blood vessel therefore results in a

rapid and almost complete interruption of blood flow to a volume of brain. This
ischaemia deprives tissues of oxygen, glucose and other nutrients and leads to the
accumulation of toxic metabolites that would otherwise be removed via the venous

drainage to the systemic circulation.

The consequences of occlusions to cerebral end arteries depend on the duration of
ischaemia and the extent of any residual flow. In primates, the amplitude of

somatosensory evoked potentials falls dramatically when blood flow falls below
20mls per lOOg brain tissue per minute (Symon, 1980), and such reductions in flow

might result in, for instance, paralysis of a limb or loss of the power of speech. If
flow is restored within a short period function returns to normal and the clinical

syndrome is known as a transient ischaemic attack. However, sustained reductions in
blood flow result pathologically in irreversible brain damage and clinically in stroke;
Jones et al measured blood flow and subsequent infarction in awake monkeys and
estimated thresholds for infarction of 3 hours at 12ml/ lOOg brain/ min, 2 hours at

6ml/ lOOg/ min and 1 hour at 2ml/ lOOg/ min (Jones et al., 1981).
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The cause of the blood vessel occlusion that leads to ischaemic stroke varies with

patient age and with geographical and environmental factors. In the Western world,
ischaemic stroke in middle- aged to elderly patients is commonly the result of extra¬
cranial (particularly carotid bifurcation) vascular disease with thrombo-embolism of

platelet thrombi to the intra- cranial arterial arbourisation. Other sources of emboli
include thrombotic or infected vegetations formed on damaged heart valves,
intracardiac thrombus formation occurring as a result of cardiac rhythm
abnormalities (e.g. atrial fibrillation) or of local wall motion abnormalities (e.g. left
ventricular aneurysm following myocardial infarction), and paradoxical embolism of

systemic deep venous thrombosis through a patent foramen ovale.

In younger patients other causes are relatively more common and include dissection
of the carotid or vertebral arteries; inherited tendencies to thrombus formation such

as deficiency of Protein C, Protein S or antithrombin III; and vasculitis affecting the
intracranial vasculature. In the Far East, intra- cranial vascular disorders such as

Moya-Moya disease are a more common cause of stroke than extra- cranial vascular

disease, while in the developing world causes such as the vasculitis associated with

syphilis infection are more common than elsewhere (Warlow et al., 1996).

EXPERIMENTAL MODELS OF STROKE

The study of the fundamental biological processes that subserve acute ischaemic
stroke is based on the establishment of experimental paradigms using animal or cell
culture models that are held to reflect certain features of human stroke. In addition to

providing a means to study the mechanisms subserving pathophysiological

processes, such models allow the testing of the efficacy of various agents that are

imputed to have therapeutic properties. Clearly such models have their limitations,
but they provide an important tool for the study of stroke.

Animal models of the focal ischaemia that occurs in stroke generally involve large
vessel occlusions in the anterior cerebral circulation, thereby providing models
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imitating total anterior circulation rather than lacunar syndromes. Particular benefits
from the use of such animal models include the ability to determine precisely the
time of onset of, and hence the duration of, ischaemia and to reinstate blood flow

after variable defined periods of ischaemia; to reproducibly create infarcts of
consistent size and distribution in a homogenous population of animals to test the

efficacy of candidate drugs; to do so with close control of physiological variables
such as body temperature, blood pressure and arterial oxygen saturation and avoiding
the potentially confounding effects of diabetes, hypertension and aging; and the

provision of post mortem material at various time points for histological and
biochemical analysis.

However, it may be inappropriate to generalise from a homogenous population of

young rats with standard sized infarcts to humans of all ages where there is huge
variation in infarct size. Furthermore, such experiments require the use of significant
numbers of laboratory animals, with the attendant ethical concerns.

While the cerebral circulation of primates closely reflects that in humans, resource
and ethical concerns militate against their widescale use. The cerebral circulation of
other large animals such as cats, dogs, pigs and sheep includes an extensive network
of anastomotic arteries, veins and sinuses involving the terminal carotid artery

termed the carotid rete mirablis which is not present in humans and this restricts their

suitability in models of focal ischaemia. Among the rodents, gerbils do not possess

vertebral arteries, and therefore rely on two carotid arteries for the entirety of their
cerebral blood flow, and infarction can be induced relatively easily by the ligation of
vessels in the neck.

Rats and humans both possess paired carotid and vertebral arteries that join within
the cranium in a structure called the Circle of Willis from which the major
intracerebral blood vessels arise. However, rats differ from humans in that their

Circle ofWillis is generally incomplete, with no anterior communicating artery, and
the posterior communicating artery is larger relative to the other components. Rats
also lack gyrification of the cortical mantle. However, in spite of these differences
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the rat remains the animal most suited to the experimental modelling of human focal
cerebral ischaemia.

In the experimental modeling of stroke it is important to distinguish between the
effects of ischaemia alone and those of ischaemia followed be reperfusion.

Experimental paradigms for the study of focal ischaemia may therefore be classified

according to whether they cause permanent or temporary ischaemia. A number of
methods have been described including (1) permanent occlusion of the intracranial
middle cerebral artery by its surgical exposure and subsequent transsection,

photocoagulation or diathermy (Tamura et al., 1981a; Tamura et al., 1981b); (2)

permanent or reversible middle cerebral artery occlusion by the passage of an

intralumenal thread of known caliber (Koizumi et al., 1986; Zea Longa et al., 1989);

(3) variably reversible thromboembolic models where fibrin clot or inert

microspheres are introduced to the carotid circulation and embolise distally (Hill et

al., 1955; MCauley, 1995; Overgaard, 1994); and (4) permanent or reversible middle
cerebral artery occlusion by extravascular stereotactic application of vasoconstrictive

agents such as endothelin 1 (Sharkey et al., 1993; Sharkey and Butcher, 1995).

A number of factors may confound the results of such experiments. Small mammals
such as rodents readily become hypothermic during operative procedures and

hypothermia is itself neuroprotective (Buchan and Pulsinelli, 1990; Busto et al.,

1989). The anaesthetic used must be chosen with care as some, including the
dissociative anaesthetic ketamine and the GABA A agonist chloral hydrate, have

potential intrinsic neuroprotective activity. The effect of putative neuroprotective

agents on haemodynamic variables and cerebral blood flow should be determined, as
observed effects may be secondary to changes in cerebral perfusion. Finally, the

ability of drugs under investigation to penetrate the blood brain barrier and reach
their putative site of action should be demonstrated.
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Pathophysiology of stroke in animal models

Ionic disturbances

Neuronal function requires the active maintenance of transmembrane gradients in the
concentrations of key ions including potassium and sodium. It has been estimated
that almost two-thirds of neuronal ATP consumption is used in the maintenance of
these ionic gradients (Alberts et ah, 1994), which form the basis of the resting
membrane potential and which in their controlled discharge allow membrane

depolarisation and the action potential. The membrane bound enzyme sodium-

potassium- ATPase is responsible for much of the maintenance and "recharging" of
the membrane potential and consumes one molecule of ATP for every three sodium
ions expelled. Neurons have little capacity for energy storage and rely on constant

production of ATP, constant operation of the mitochondrial respiratory chain, and
therefore constant supply of substrate, particularly oxygen and glucose.

In the ischaemic core energy failure leads to rapid anoxic depolarisation with
extracellular [K+] rising to 70 mM within 1-3 minutes (Gido et al., 1997) and this is

independent of NMDA receptor activity (Lauritzen and Hansen, 1992). In the
ischaemic penumbra, where blood flow and ATP levels are less compromised,
anoxic depolarisation does not occur. However, transient sporadic depolarisations (or

spreading depressions) occur in waves of 3 to 5 minutes duration, are dependent on

glutamate receptor activity (Iijima et al., 1992), and may originate from glutamate
release in the ischaemic core.

Excitotoxicity and increased intracellular calcium

Glutamate is the most abundant neurotransmitter in the brain, and within 2 hours of

experimental middle cerebral artery occlusion extracellular concentrations of

glutamate rise by as much as 17- fold in ischaemic cortex and 27-fold in striatum

(Butcher et al., 1990). While some of this glutamate originates from synaptic

activity, it appears that a larger proportion accumulates as the result of failed
neuronal and glial glutamate uptake that is in turn a consequence of impaired energy
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status due to hypoxia (Wahl et al., 1994).

High extracellular concentrations of glutamate exert toxic effects on neurons through
a number of pathways. Activation of the ionotropic NMDA and AMPA/kainate

receptors results in sodium influx and subsequent loss of membrane potential. This
adds to the energy crisis, as ATP is required to reinstate the resting membrane

potential. Intracellular calcium concentrations rise markedly, probably due to a

combination of entry through NMDA receptor channels, calcium- induced calcium
release from the endoplasmic reticulum, and sodium- induced calcium release from
mitochondria. The magnitude of the rise in intracellular calcium correlates with

histological damage (Uematsu et al., 1989), and increased intracellular calcium
results in diverse effects including activation ofMAP kinases (Schwarzschild et al.,

1999), immediate early genes (Xia et al., 1996), calpain and nitric oxide synthase.

Nitric oxide andfree radical production

Neuronal nitric oxide synthase (nNOS) is a 160 kdal NADPH- and calmodulin-

dependent enzyme which catalyses the conversion of arginine to citrulline and nitric
oxide. It is inactive at basal calcium concentrations, but activated when calcium

levels increase and, it is thought, by phosphorylation by kinases including cAMP

dependent protein kinase, protein kinase C and calcium/ calmodulin dependent

protein kinase (Bredt et al., 1991a); however, it seems that phosphorylation does not

always result in increased nNOS activity (Okada, 1995; Okada, 1996). In healthy
neuronal tissues NO has some functions as a messenger molecule, diffusing to

surrounding cells and activating guanylate cyclase, leading to the accumulation of
the second messenger cyclic GMP (Dawson et al., 1992). However, in ischaemic
brain nNOS activity is also associated with the production of free radicals, in

particular peroxynitrile, which are promiscuous electron donors and can damage

many cellular structures including DNA and mitochondrial membranes.

In primary cortical cultures NOS inhibition reduces neuronal death (Dawson and

Snyder, 1994), and cultures prepares from nNOS knockout animals are protected
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from NMDA and oxygen/glucose deprivation induced death (Dawson et al., 1996).

Furthermore, NOS donors mimic the effects ofNMDA. In animal models of stroke,

treatment with specific nNOS inhibitors such as 7-nitroindazole leads to reduced
infarct size (Yoshida et al., 1994). Infarct size is also reduced following ischaemia in
nNOS knockout animals (Hara et al., 1996; Huang et al., 1994). In addition, agents
that are able to "scavenge", or inactivate, free radicals, are also protective in cell
culture and animal models of stroke (Hall et al., 1996).

Free radicals may also be produced as a result of other processes including the
oxidative metabolism of products of membrane breakdown (Katsuki and Okuda,

1995; Tegtmeier et al., 1990) and altered mitochondrial function (Piantadosi and

Zhang, 1996).

Reperfusion injury

In focal cerebral ischaemia, experiments seek to replicate the sequence of events in
human stroke. This might include not only the occlusion of a middle cerebral or
internal carotid artery, but also the reopening of that vessel at a later time. In humans
it is not possible to identify such reperfusion clinically, as there are seldom any

immediate or dramatic changes in the patients condition. Zanette et al (Zanette et al.,

1995) used transcranial Doppler ultrasonography to measure middle cerebral artery
flow in 56 patients 6, 24, 48 hours, 7 days and 3 to 9 months after acute ischaemic
stroke (Table 1.1). At 6 hours, 41% of patients had normal flow in the relevant
middle cerebral artery, increasing to 45% at 24 hours, 57% at 48 hours, 71% at 7

days and 92% at 3 to 9 months. While no flow was detectable in 28% of patients at 6

hours, this fell to 22% at 24 hours, 17% at 48 hours, 14% at 7 days and 4% at 3 to 9

months.

That is, one half of stroke patients with initially abnormal MCA flow will regain
normal flows within the first week. The proportion of patients with no flow declines
most rapidly in the first 24 hours, and the proportion of patients with normal flow
increases most rapidly between 24 and 48 hours (Table 1.1).
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Table 1.1: Transcranial Doppler findings following acute ischaemic stroke

% patients with no flow % patients with normal flow at
at transcranial Doppler transcranial Doppler examination

examination
6 hrs 28 41
24 hrs 22 45
48 hrs 17 57
7 days 14 79

3-9 months 4 92
Rate of resolution of "no flow" Rate of restoration of "normal

flow"
6 - 24 hrs 8 5.3
24 - 48 hrs 5 12
48 hrs - 7 day 0.6 2.8

Hemispheric transcranial doppler findings in 56 patients with carotid territory stroke.
Data calculated from Zanette et al (Zanette et ah, 1995).

Timing of reperfusion is held by some investigators to be important because of the

potential for so called "reperfusion injury" (Aronowski et ah, 1997), a phenomenon

by which normalisation of oxygen delivery to metabolically impaired brain is held to

lead to worsening tissue damage, perhaps through the production of free radicals.

If reperfusion injury were to represent a biologically significant phenomenon in
human stroke, it would have an important bearing on the development of stroke
treatments. Pathological processes implicated in reperfusion injury, notably free
radical induced damage resulting from normalised oxygen delivery in the face of

impaired oxygen and free radical detoxifying systems, might serve as important

therapeutic targets, and by contrast treatments designed to normalise blood flow may

be associated with increased reperfusion injury.

A number of strands of evidence are cited in support of existence of reperfusion

injury:-

Progressive neuronal injury
Brain injury continues to worsen for hours and sometimes days after the restoration
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of blood flow. In a rat four vessel occlusion forebrain ischaemia model a 30 minute

occlusion resulted in neuronal damage (assessed at light microscopy) in neocortex

and hippocampus which continued to increase between 24 and 72 hours after the

onset of ischaemia (Pulsinelli et al., 1982). A similar progression of neuronal damage
has been observed in rat cortex more than a week after a 30 minute filament -

induced MCA occlusion (Nakano et ah, 1990).

However, progressive neuronal damage may equally be due to past rather than

contemporary insults. In 1982 Kirino et al described a sequence of changes in the

CAi area of the hippocampus following brief (Wen et ah, 1996) bilateral carotid

artery occlusion in the Mongolian gerbil (Kirino, 1982). The phenomenon of delayed

hippocampal damage following global cerebral ischaemia has also been observed at

postmortem in humans dying 2 days to 18 months after a cardiorespiratory arrest

from which they had initially recovered (Petito et ah, 1987). More recently Chen et

al have demonstrated increased expression of caspase 3 mRNA, cleavage of the

caspase 3 substrate PARP and of caspase 3 itself, TUNEL positivity and DEVD

cleavage activity in gerbil hippocampal CAi region following transient global
ischaemia. Furthermore, neuronal survival was increased by the ventricular infusion
of the selective caspase 3 antagonist z-DEVD-fmk (Chen et al., 1998).

There is therefore a substantial body of evidence to suggest that at least some of the

damage that continues to occur after the reversal of a temporary ischaemic insult has
features of apoptosis. Since apoptosis may continue after the initiating stimulus is

withdrawn, it may be that such delayed neuronal injury is a consequence of the initial
ischaemia rather than of subsequent reperfusion.

Damage in reperfused brains compared with permanent occlusion
There is conflicting evidence regarding the effects of permanent and temporary

ischaemia on brain oedema and infarct volume. An early report of the effects of

MCAO in the squirrel monkey suggested that while a 3 hour occlusion caused less

morbidity or mortality than permanent occlusion, deaths following temporary

occlusion occurred earlier than those following permanent occlusion. The authors
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suggested that this might be due to the more rapid development of cerebral oedema

following reperfusion (Sundt et al., 1969).

Reversible ischaemia in the Mongolian gerbil (6hrs left common carotid artery

cliping followed by 3hrs of reperfusion) resulted in only a small increase in brain
water content (83.5% wet weight v 82%) compared with permanent (9hrs occlusion)
ischaemia (Ito et ah, 1979). In support of the hypothesis that reperfusion is associated
with increased damage, the same authors reported that passage of radiolabelled
albumin through the blood brain barrier was increased in reversible compared to

permanent occlusion, but since the tracer was introduced via the systemic venous

circulation it is not possible to determine whether the observed differences were due
to reduced hemispheric perfusion in the permanently occluded group or to increased
blood brain barrier permeability in the reperfused group (Ito et ah, 1979).

While the work of Memezawa and coworkers is often cited in this context

(Memezawa et ah, 1992), their study in the rat compared the effects of reversible
MCAO at 7 days with a historical control group subjected to 24 hours of permanent
MCAO. Their data do not therefore allow meaningful comparisons of the effects of
occlusion with or without reperfusion.

Kaplan et al compared the effects in the rat of permanent versus reversible (1, 2, 3 or

4 hours, all animals sacrificed at 24hrs) MCAO. They found that the extent of
oedema and infarction increased with increased duration of ischaemia up to 3 hours,
after which there was no further increase (Kaplan et ah, 1991). In none of the

reperfused groups was edema or infarct volume greater than that observed with

permanent occlusion.

Yang and Betz compared permanent and 3 hours filament- induced MCAO at 6
hours in the rat. The reperfused group had increased infarct size but there was no

difference in cerebral oedema as measured by hemispheric water content. They also

report increased blood brain barrier permeability, but as with the work of Ito et al
cited above (Ito et ah, 1979) they injected a radiotracer to the systemic venous
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circulation and therefore it is not possible to determine whether their observed

differences were due to reduced hemispheric perfusion in the permanently occluded

group or to increased blood brain barrier permeability in the reperfused group (Yang
and Betz, 1994).

Aronowski et al describe the effects of 24 hours of permanent or reperfused MCAO
in the Long Evans rat induced by elevation of the MCA and clipping of the ipsilateral
common carotid artery. They report that reperfusion occuring at between 2 and 5
hours was associated with a significant increase in infarct size compared with

permanent ischaemia (Aronowski et al., 1997). The mean infarct volume reported for
the permanently occluded animals, at 31mm , is much lower than that found in other
MCA occlusion models, and when experiments were repeated with a more severe

insult (three vessel occlusion in the Long Evans rat) and with spontaneously

hypertensive rats where infarct volumes were higher the deleterious effect of

reperfusion was lost (Aronowski et al., 1997).

Interpretation of their results is further complicated because different experimental

groups received different doses of chloral hydrate, an anaesthetic which may have
intrinsic neuroprotective activity. 2,2,2-trichloroethanol, its active agent, inhibits
NMDA- induced intracellular calcium accumulation in cultured cortical and

mesencephalic neurons (Scheibler et al., 1999) and potentiates GABA- induced
currents in hippocampal neurons (Lovinger et al., 1993) and in xenopus oocytes

expressing GABAa receptors (Garrett and Gan, 1998).

The evidence regarding reperfusion injury is therefore mixed. There are no well-
defined experimental paradigms which will reproducibly induce reperfusion injury,
and in many paradigms reperfusion occurs without any apparent deleterious

consequences. However, in some experimental situations it does appear that

reperfusion may result in increased damage.

Apoptosis

First described in 1972 (Kerr et al., 1972), apoptosis is a process through which cells
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die with resulting debris being removed with minimal disturbance to neighboring
cells. As such it contrasts with necrosis, where rupture of cellular membranes leads
to the indiscriminate release of intracellular contents to the potential hazard of

surrounding cells. There are many biological situations in which such discrete cell
death is advantageous. For instance, cells undergoing viral infection can be
eliminated before viral replication is complete (Cuff and Ruby, 1996), and immune
cells can be destroyed once infection had been eliminated (Boise et al., 1995).

During development, cells that are redundant in the adult, or that have not developed
in the correct position or with the correct connections, can be removed without

disturbing properly placed and well connected adjacent cells (Chen and Zhao, 1998),
and cells with damaged DNA can be eliminated before mutated cell cycle associated

genes result in unrestricted cell division and cancer (Oren, 1994).

Features of apoptosis
In 1972 Wyllie and colleagues (Kerr et al., 1972) reported novel morphological
features not typical of necrosis demonstration in tumour tissues examined at electron

microscopy. They hypothesised that these features were the consequence of a

regulated form of cell death, and they termed this process apoptosis, from the Greek
"to fall, as a leaffrom the tree". Subsequently they and others have gone on to

describe the process of apoptosis, or programmed cell death, in substantial detail.

Apoptosis is a process by which cells die without rupture of cell membranes or

extracellular release of intracellular contents. Its salient features include:

Activation of one or more cysteine- containing aspartate proteases (caspases)
The basic mechanisms of apoptosis appear to be conserved across diverse cell types
and have been observed in species from the slime mould to humans. A proximal

signalling pathway, often specific to the nature of the apoptotic stimulus, leads to the
activation of one or more members of a family of proteases (caspases). These

enzymes, of which 13 have been described to date, all contain an active site cysteine

residue, cleave specific substrates at aspartic amino acids and reside in healthy cells
as inactive proenzymes that are themselves activated by proteolysis into large and
small subunits (Thornberry et al., 1997). Active caspases subsequently cleave diverse
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cellular proteins including structural proteins and those responsible for repair

processes. Extracts prepared from cells or tissues undergoing apoptosis show caspase

activity against fluorescently- or colourimetrically- conjugated synthetic tetrapeptide
substrates.

Fragmentation ofmacromolecules including proteins and DNA
Activated caspases cleave a number of structural proteins including lamin, actin,

gelsolin and intermediate filaments which lead to dissassembly of cytoskeletal and
nuclear architecture. In addition they cleave and inactivate enzymes involved in
DNA repair such as poly- ADP ribose polymerase (PARP) and DNA dependent

protein kinase. They cleave and activate other caspase family members and they
activate the caspase- activated DNAse CAD (Enari et al., 1998) by cleaving the
inhibtor protein ICAD (Sakahira et al., 1998). Activation of CAD leads to DNA

cleavage at internucleosomal sites; at agarose gel electrophoresis this results in the
"DNA ladder" caused by the presence ofDNA fragments whose length is an integer

multiple of the length of DNA associated with a single nucleosome, 180 base pairs

(Wyllie, 1980). The ends of these DNA fragments are not blunt, and may be labeled

using terminal deoxyUTP nick end labelling (TUNEL staining).

Changes in cell morphology

Early in the course of apoptotic cell death there is decreased cell volume, with cells
become more spherical and, in tissue culture, becoming phase bright and detaching
from the culture monolayer. In the nucleus there is chromatin condensation along
with nuclear shrinkage and fragmentation. At later stages the cell may fragment into
a number of smaller, membrane bound apoptotic bodies.

Change in the external composition of cells and apoptotic bodies

Healthy cells manifest an asymmetry in the membrane distribution of

phosphatidylserine lipid moieties, with more than 99% being found on the inner part
of the lipid bilayer. This distribution is actively maintained by enzymes including an

ATP dependent aminophospholipid translocase (Bevers et al., 1996). During

apoptosis, in some instances within 1 hour of stimulation, that asymmetry is lost
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(Fadok et al., 1992a; Fadok et al., 1992b). This requires caspase activation, and is
inhibited by tetrapeptide caspase inhibitors such as DEVD-fluoromethylketone
(Martin et al., 1996). The appearance of phosphatidylserine on the external lipid

bilayer is one of a number ofmembrane changes including changes in phospholipid

packing (Fadok et al., 1992a), in surface charge (Savill et al., 1989), and in the

carbohydrate profile (Duvall et al., 1985; Morris et al., 1984), at least some of which
serve to target the cell for phagocytosis. Phosphatidylserine exposure results in

changes in binding properties for molecules such as Annexin V, and increased
Annexin V binding, detected immunohistochemically or at flow cytometry, has been
used as the basis of quantitative assays of apoptosis (van Engeland et al., 1996).

Evidence for apoptosis in stroke

In a number of experimental systems moderate levels of chemical or physical insult
result in death by apoptosis while higher levels of stress lead to necrosis (Ankarcrona
et al., 1995;Bonfoco et al., 1995). It is likely that overwhelming noxious stimulation
leads to such derangement of cellular energy status and homeostasis as to prevent

completion of the apoptosis program. At intermediate insult intensities a mixed

pattern of cell death may be apparent, with features of both apoptosis and necrosis,
the balance of these depending on the extent to which apoptosis had been able to

proceed before necrosis intervened.

The reduction in blood flow occurring as a result of occlusion of a vessel is not

uniform throughout the affected volume. At its heart lies a densely ischaemic core

where blood flow has been reduced to less than 15mls per 1 OOmg brain per minute
for a prolonged period and where damage is most intense, with the vast majority of
neurons being destined to die. Between the ischaemic core and normal brain lies a

region termed the ischaemic penumbra where blood flow has been reduced to

intermediate levels and where neuronal death is less certain (Astrup et al., 1981).

There is considerable evidence, reviewed below, to suggest that apoptosis may make
a significant and potentially reversible contribution to neuronal death in stroke.
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Evidence from post- mortem human tissue
There have been few morphological studies of post mortem material in human
stroke. Guglielmo et al found increased TUNEL staining in penumbral neurons in

patients dying two to three days after a stroke (Guglielmo et al., 1998). In 14

patients dying up to 6 months after a cardiorespiratory arrest Kaplan et al found
features of delayed hippocampal damage (Kaplan et al., 1991) similar to the delayed
neuronal death observed in rodents following transient global ischaemia; in rodents
this process manifests many characteristic features of apoptosis but such factors were
not examined by Kaplan et al.

Animal studies

Observational Studies

Following rat MCAO neurons exhibit oligonucleosomal DNA fragmentation (Linnik
et al., 1993; Linnik et al., 1995a; Tominaga et al., 1993), TUNEL positivity (Li et al.,

1995a; MacManus et al., 1994) and apoptotic nuclear morphology (Li et al., 1995b),
and these changes appear to be more pronounced in neurons of the ischaemic

penumbra (CharriautMarlangue et al., 1996).

Focal cerebral ischaemia leads to caspase activation as evidenced by increased
DEVD cleavage activity (Fink et al., 1998; Namura et al., 1998) and the development
of immunoreactivity to active caspase 3 (Namura et al., 1998; Velier et al., 1999) and
8 (Velier et al., 1999). Expression of caspase 3 is increased following focal cerebral
ischaemia (Asahi et al., 1997), and the abundance of the apoptosis associated

transcription factor p53 is increased following transient focal cerebral ischaemia

(Chopp et al., 1992).

Transient global ischaemia leads to hippocampal apoptosis as evidenced by DNA

fragmentation (Heron et al., 1993; MacManus et al., 1993; Gillardon et al., 1997),
increased caspase 3 expression (Gillardon et al., 1997; Ni et al., 1998), caspase 3
activation (Gillardon et al., 1997) and increased DEVD cleavage activity (Chen et

al., 1998; Gillardon et al., 1997). Furthermore, following global ischaemia the

expression of the apoptosis repressor genes Bcl-2 and Bcl-xL was increased in cortex
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and hippocampus (Chen et ah, 1997).

Interventional Studies

Transgenic animals
Infarct volume following middle cerebral artery occlusion is reduced in mice which
lack p53 (Crumrine et ah, 1994) and in those overexpressing Bcl-2 using either a

transgenic approach (Martinou et ah, 1994) or viral vector expression systems

(Lawrence et al., 1996; Linnik et ah, 1995b). It is also reduced in mice

overexpressing the X chromosome linked inhibitor of apoptosis protein XIAP (Xu et

ah, 1999).

Caspase inhibition
Neuronal damage is reduced following intracerebroventricular treatment with

caspase inhibitors following focal (Cheng et ah, 1998; Endres et ah, 1998; Hara et

ah, 1997; Li et ah, 2000; Loddick et ah, 1996) or transient global (Chen et ah, 1998;
Himi et ah, 1998) ischaemia.

Cell culture studies

Exposure of cultured primary cortical neurons to low concentrations of the
excitotoxin NMDA leads to the development of morphological and biochemical
features of apoptosis whereas high concentrations lead to necrosis (Ankarcrona et ah,

1995); similarly under certain conditions nitric oxide donors can induce apoptosis in
neuronal cell cultures (Bonfoco et ah, 1995). NMDA- induced apoptosis in primary
cortical culture is blocked by caspase inhibition (Tenneti et ah, 1998), and in rat

cerebellar granule cells glutamate toxicity is associated with release of cytochrome C
from mitochondria, an important step in the apoptotic cascade (Atlante et ah, 1999).

There is therefore a significant body of evidence to suggest that apoptosis plays an

important role in neuronal cell death in both focal and transient global ischaemia. In
some regions, particularly the ischaemic penumbra, apoptotic and necrotic death may

proceed in adjacent cells. Indeed, individual cells might manifest features of both

apoptosis and necrosis, the final outcome depending on whether the cell has
sufficient resources to complete the apoptosis program before necrosis ensues.
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In the search for an effective stroke treatment the question is not the precise
definition of the mode of neuronal death, but rather the identification of death

pathways which might be interrupted therapeutically. While there remains some

debate as to the magnitude of the contribution of apoptosis to neuronal death in

stroke, it is beyond question that apoptosis does play some role, and that in animal
models inhibition of apoptosis results in significant reductions in neuronal damage.

Against this background, the attribution of anti-apoptotic properties to a drug would

provide a potential explanation of its neuroprotective properties.

TRIALS OF TREATMENT IN STROKE

In one of the first papers to address the potential benefits and hazards of restoring
flow through a previously occluded middle cerebral artery the authors begin by

stating that ...

"At the present time a patient with an acute middle cerebral artery occlusion
represents an unanswered challenge for effective treatment. Conservative
management has done little to alter the size of the resulting cerebral infarctions and
the magnitude ofrelated neurological deficits." (Sundt et al., 1969)

In the thirty years since that publication it might be argued that little has changed
regarding pharmacological treatments for stroke.

Therapeutic strategies include treatments to achieve rapid reinstatement of blood
flow; treatments designed to interfere with the cellular consequences of ischaemia
and to limit its impact; and treatments and management strategies designed to
minimise further damage and to maximise functional recovery.

Trials of thrombolysis in acute ischaemic stroke

Five large randomised controlled trials investigating the potential benefit of either
streptokinase (Candelise et al., 1995; Donnan et al., 1996; MAST-E Study Group,
1996) or tissue plasminogen activator (Hacke et al., 1995; Hacke et al., 1998; The
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National Institute of Neurological Disorders Stroke rt-PA stroke study group, 1995)
as thrombolytic agents given within at most 6 hours of acute ischaemic stroke have

reported in the last four years (Table 1.2). In two of these trials (Donnan et al., 1995;
Hommel et ah, 1995) recruitment to at least some sections of the trial was stopped

early on the advice of the data monitoring committee because of significant adverse
effects in the treatment group, notably excess mortality.

Those studies that did proceed to completion suggested that there might be a

reduction in dependency amongst stroke survivors treated with thrombolysis which

may occur at the expense of some increased mortality. In no study was significant
benefit shown in an intention to treat analysis against a predefined combined end

point of death or dependence at the end of the follow- up period. The incidence of

symptomatic intracerebral haemorrhage was increased by as much as ten- fold in

patients receiving thrombolysis.

Only in the NINDS study was a significant benefit seen on the predefined end point
of disability alone. In this study randomization resulted in well balanced groups

except for a small excess of lacunar, and hence good prognosis, strokes in the
treatment group. Treatment with alteplase (0.9mg/kg) within three hours of stroke
onset resulted in significant improvements in the number of patients with favourable
outcomes whether this was determined using the Barthel Index, the Modified
Rankine Handicap Score, the Glasgow outcome scale, the NIH Stroke Score or a

combination of all scales. Death rates were 17% in the treatment group compared
with 21% in the placebo group. The rate of intracranial haemorrhage was 12% in the
treatment group and 5% in controls, although there was a more marked difference in
the incidence of symptomatic intracranial haemorrhage (7% v 1%).

While tissue plasminogen activator has been licensed by the US Food and Drug
Administration for use within 3 hours of acute ischaemic stroke, there are

considerable practical difficulties in getting patients to hospital, clinically evaluated,
CT scanned and treatment commenced within three hours of symptom onset. Indeed,
the average number of patients randomised in each participating centre in the NINDS
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Table 1.2: Trials of thrombolysis in acute ischaemic stroke

Trial Agent Time & No. Outcome Odds
Dose Patients Measures Ratio*

MAST-I Streptokinase < 6 hrs 622 6 month 0.76
Candelise et al 1.5MU death and (0.48-1.21)
1995 disability
MAST-E Streptokinase < 6 hrs 310 6 month 0.86
MAST-E Study 1.5 MU death and (0.49-1.51)
Group 1996 disability
ASK Streptokinase 0 - 4 hrs 340 3 month 1.16

Donnan et al 1.5 MU death and (0.76-1.78)
1996 0 - 3 hrs 70 disability 0.66

(0.28-1.58)
3 - 4 hrs 270 1.22

(0.80-1.86)
ECASS rt-PA < 6 hrs 620 3 month Not given
Hacke et al 1995 1.1 mg/kg disability

1 month 1.20

mortality (0.98-1.46)
NINDS rt-PA 0-90 302 BI 0.6
NINDS 1995 0.9 mg/kg mins (0.3-0.8)

MRHS 0.6

(0.4-1.0)
GOS 0.6

(0.4-1.0)
NIHSS 0.5

(0.3-0.8)
90-180 322 BI 0.6
mins (0.4-0.9)

MRHS 0.4

(0.3-0.7)
GOS 0.5

(0.3-0.8)
NIHSS 0.5

(0.3-0.8)
ECASS II rt-PA 0 - 3 hrs 158 3 month 0.8
Hacke et al 1998 0.9 mg/kg disability (0.4-1.7)

3 - 6 hrs 635 0.8

(0.6-1.2)

Odds ratio < 1 favours treatment, > 1 favours placebo:
BI, Barthel Index; MRHS, Modified Rankin Handicap Score; GOS, Glasgow
Outcome Scale; NIHSS, National Institute of Health Stroke Scale:
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trial was only three per year (The National Institute ofNeurological Disorders Stroke
rt-PA stroke study group, 1995), and enrollment within 3 hours in the ASK study
was so slow that the study was terminated before the recruitment target was met

(Donnan et al., 1996). A recent meta- analysis of the results from all identifiable
trials of thrombolysis in acute ischaemic stroke (Wardlaw et al., 1999) concluded
that "the data so far are scant, and quite insufficient to make any definite conclusion
about the benefit or otherwise of thrombolysis to treat acute ischaemic stroke".

In spite of these concerns, thrombolysis given within 3 hours of stroke onset

according to the NINDS protocol has been successfully adopted in the treatment of at
least a proportion of strokes in both urban and rural settings. In Houston, Texas 3%
of stroke patients presenting to three hospitals received thrombolysis on average 157
minutes after symptom onset and had outcomes broadly similar to those of the
treatment group in Part II of the NINDS study (Chiu et al., 1998). Similarly, over 6%
ofpatients presenting to 20 mostly rural hospitals in Illinois received thrombolysis an

average of 147 minutes after symptom onset and had outcomes if anything slightly
better than those of the NINDS study (Wang et al., 2000). Both of these studies are

uncontrolled, and so it is not possible to make a robust estimate of the magnitude of

any benefit accruing to patients. However, they do demonstrate that for around 5% of
stroke patients thrombolysis is a practicable, relatively safe and potentially
efficacious treatment.

Trials of putative neuroprotective agents in acute ischaemic stroke

An alternative therapeutic strategy has been to attempt to arrest or reverse the

pathophysiological consequences of ischaemia rather than the ischaemia itself. While
a large number of drugs have been shown to be effective in limiting infarct size and

reducing behavioural deficits in animal models of stroke efficacy has yet to be
demonstrated in human stroke. Possible reasons for this have been extensively
reviewed and include include heterogeneity of infarct size and time since stroke;

comorbidity in a predominantly elderly population; the use of functional measures of
outcome rather than assessment of lesion size; physiological differences in the
neuronal response to and tolerance of ischaemia between humans and rodents; and
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difficulties in attaining appropriate drug concentrations in blood and brain because of

haemodynamic compromise or concerns over side effects.

A number of agents that have been shown to have activity in animal stroke models
have been tested in large-scale clinical trials. In some cases these trials have been

suspended prior to completion, and so data is not available. In others, no effect was
found (eg lubeluzole (Diener, 1998)). In some, initial studies suggested that

particular subgroups of patients might benefit, and subsequent trials are ongoing to

test these hypotheses (for example clomethiazole, a GABA-mimetic (Wahlgren et al.,

1999), and piracetam, which may have AMPAkine activity (De Deyn et al., 1997)),

The efficacy of a number of other putative neuroprotective drugs has been

investigated in somewhat smaller studies. Taken together these trials, along with
those discussed above, indicate that no compound yet tested leads to a dramatic
reduction in death and disability in unselected patients with stroke.

Other treatments in acute ischaemic stroke

The International Stroke Trial (International Stroke Trial Collaborative Group, 1997)
examined the effect of starting treatment with aspirin (300mg per day) and/ or

heparin (5,000 or 12,500 i.u. twice daily) in 19,435 patients within 48 hours of the
onset of acute ischaemic stroke. Heparin at either dose had no effect on 14- day

morality or on death or dependency at 6 months. While patients on heparin had
fewer recurrent ischaemic strokes this was offset by an increased incidence of

haemorrhagic stroke and they also had increased incidence of extracranial bleeding
and requirement for transfusion. In contrast, the aspirin group showed a significant
reduction of 1.1% in death or recurrent stroke occurring within 14 days; they had a

non- significant 1.3% reduction in the number of patients dead or dependent at six
months (61.2% versus 62.5%) which reached significance after adjusting for
baseline stroke severity.

The Chinese Acute Stroke Trial (CAST Collaborative Group, 1997) examined the
effect of treatment with aspirin (160mg) started within 48 hrs of acute ischaemic
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stroke and demonstrated a significant reduction in 4 week in- hospital mortality.

Taken together these two large trials demonstrate that early treatment with aspirin
leads to a small (0.9%) but significant (p = 0.001) reduction in the proportion of

patients rendered dead or disabled (CAST Collaborative Group, 1997).

A recent meta- analysis of 20 controlled trials of stroke unit care demonstrated a 17%
reduction in death, a 23% reduction in death or institutional care and a 25% reduction

in death or dependency at 6 months. The benefits of stroke units were most marked
in those over 75, males, and those with severe strokes (Stroke Unit Trialists'

Collaboration, 1999).

Summary

Aspirin and stroke units improve outcome following stroke. Early thrombolysis is
beneficial in some patients, but appears to be practicable in less than 10% of patients.
In spite of a major research effort, no agent that has been shown to have

neuroprotective properties in animal models of ischaemia has been demonstrated to

have activity in clinical trials. Stroke therefore continues to represent a major

challenge to the neuroscience community.

FK506 (TACROLIMUS)

FK506 is a macrolide immunosuppressant isolated from Streptomyces tsukubaensis
strain 9993 in 1984 (Ochiai et ah, 1987). Its structure is shown in Figure 1.1. FK506
first received attention as an inhibitor of interleukin 2 (IL-2) production in vivo in the

mouse, and in this effect it was 30 times more potent than cyclosporine. FK506 was

subsequently reported to inhibit IL-2 receptor expression in human T cells in mixed

lymphocyte culture; in this case FK506 was 30 to 100 fold more potent than

cyclosporine. In 1987 FK506 treatment following heterotopic cardiac

allotransplantation in the rat was shown to result in permanent allograft survival in
most animals, compared with mean graft survival in the control group of less than
one week (Ochiai et ah, 1987). FK506 has gone on to widespread clinical use as an

immunosuppressant following kidney and liver transplantation.
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Figure 1.1: Structure of FK506

At the cellular level, FK506 interacts with a subfamily of immunophilins termed the
"FK506 binding proteins" (FKBPs), which exhibit peptidyl-prolyl cis-trans
isomerase activity (Harding et al., 1989; Siekierka et al., 1989), and are widely
distributed in brain and other tissues (Dawson et al., 1994; Steiner et al., 1992). The

immunosuppressive action of FK506 requires inhibition of protein phosphatase 2B

(calcineurin; E.C. 3.1.3.16; (Clipstone and Crabtree, 1992; O'Keefe et al., 1992)) by
a complex of FK506 and a 12kDa FKBP (FKBP12; (Kissinger et al., 1995; Liu et

al., 1991)). Nuclear Factor of Activated T cells (NFAT) is a transcription factor
whose targets include the gene encoding IL-2. Normally resident in the cytoplasm,
NFAT is dephosphorylated and translocates to the nucleus following stimuli

including ionomycin, and this translocation is associated with increased DNA

binding activity (Shaw et al., 1995). NFAT dephosphorylation is mediated by
calcineurin and inhibited by FK506 and cyclosporine (Loh et al., 1996; Shaw et al.,

1995). The immunosuppressive properties of FK506 are due in large part to this
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inhibition of IL-2 production in activated T cells.

In addition to these affects on T cell activation, FK506 inhibits activation induced

apoptosis in T cell hybridomas (Bierer et ah, 1990), an effect thought to be mediated

through reduced expression ofFas ligand (Brunner et al., 1996).

FK506 also protects tissues in animal models of cardiac (Nishinaka et al., 1993),
liver (Sakr et al., 1993) and intestinal (Kubes et al., 1991) ischaemia, although the
mechanism of these effects is not clear. In the nervous system, FK506 has no effect
on striatal excitotoxicity following intraperitoneal injection of NMDA, AMPA or

quinolinate (Butcher et al., 1997). However, it is a potent neuroprotectant in animal
models of focal (Bochelen et al., 1999; Sharkey and Butcher, 1994) and transient

global (Drake et al., 1996; Tokime et al., 1996) cerebral ischaemia. In focal cerebral
ischaemia at least this effect is shared by other calcineurin inhibitors such as

cyclosporin (Sharkey and Butcher, 1994) and SDZ ASM 981 (Bochelen et al., 1999)
and is blocked by rapamycin, a drug which binds FKBP12 but does not inhibit
calcineurin, implying that inhibition of calcineurin is required for neuroprotective

efficacy. However, the precise mechanism(s) underlying this protective effect are not
clear.

While some have attributed the neuroprotective actions of FK506 to a reduction in
calcineurin- mediated dephosphorylation and activation of neuronal nitric oxide

synthase (Dawson et al., 1993) there remains considerable debate regarding the
effects of phosphorylation on the activity of nNOS and on the relevance of any such
effects to the neuroprotective actions ofFK506. Other candidate mechanisms include
a trophic effect of FK506 (Gold et al., 1999a; Steiner et al., 1997), or an effect on
one of the many other putative FK506 targets including TGF-13 (Wang et al., 1994),

IP3 (Cameron et al., 1995) ryanodine (Brillantes et al., 1994) and steroid hormone

(Beckman, 1991; Kosano et al., 1998; Milad et al., 1995; Silverstein et al., 1997;

Yem et al., 1992) receptors; and the RAFT/MTOR kinases which belong to the
ataxia telangiectasia mutuated (ATM)/ PI3 kinase family (Alarcon et al., 1996).
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PURPOSE OF RESEARCH

The purpose of this research was to explore potential mechanisms of the

neuroprotective effect of FK506. First, I have examined the effect of FK506 on

NMDA stimulated cGMP accumulation in cerebellar prisms derived from neonatal
rats. Subsequently I have described the characteristics of SHSY-5Y neuroblastoma
cells under different culture conditions and their terminal differentiation, and I go on

to examine the effects of FK506 on death induced by the protein kinase C inhibitor

staurosporine, by the calcium ionophore ionomycin and by serum withdrawal in

terminally differentiated SHSY-5Y cells.
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CHAPTER 2

MATERIALS

SOURCES OF

1,1,2- triflurotrichloroethane

13 mm diam. glass coverslips

180 cm2 tissue culture plates

2- mercaptoethanol

24 well tissue culture plates

3-[cyclohexylamino]-1 -
propanesulphonic acid

35 mm diameter tissue culture dishes

75 cm2 tissue culture plates

A1.1 T cell hybridoma cell line

acetic acid

acetyl-DEVD- aldehyde

acetyl-DEVD-
aminomethylcoumarin

AND METHODS

MATERIALS USED

BDH Laboratory Supplies

BDE1 Laboratory Supplies

NUNC

Sigma Chemical Company

NUNC

Sigma Chemical Company

NUNC

NUNC

gift from Doug Green, La Jolla,
California

BDH Laboratory Supplies

Bachem

Bachem
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acrylamide

all- trans retinoic acid

ammonium persulphate

anti- calcineurin A monoclonal

antibody

anti- calcineurin B monoclonal

antibody

anti- caspase 3 polyclonal antibody

anti- FKBP12 (3F4-70) monoclonal
antibody

anti- MAP2 monoclonal antibody

anti- p21wafmonoclonal antibody

anti- PARP monoclonal antibody

anti- phosphoserine polyclonal
antibody 16B4

anti- tubulin amonoclonal antibody

aprotinin

avidin-biotin Elite™ mouse IgG
ABC™ kit

BCA™ protein assay kit

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Transduction Laboratories

Upstate Biotechnology Incorporated

gift from Don Nicolson, Merck Frosst
Centre for Therapeutic Research,
Quebec, Canada

Fujisawa Pharmaceutical
Company Ltd.

Sigma Chemical Company

Pharmingen

gift from Guy Poirier, Centre de
Recherche du CHUL, Quebec, Canada

Alexis Neurochemicals

Sigma Chemical Company

Sigma Chemical Company

Vector Laboratories

Pierce
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bis-acrylamide

bovine serum albumin

Bromophenol Blue

calcium and magnesium free Hanks
balanced salt solution

Calcein AM™

Complete Protease Inhibitor
Cocktail™ tablets

Coomassie Brilliant Blue™

cyclic GMP radioimmunoassay kit

DAB™ peroxidase substrate kit

dexamethasone

dimethylsulphoxide

disodium hydrogen orthophosphate
anhydrous

dithiothrietol

donkey anti-rabbit HRP linked
secondary antibody

Dulbecco's minimal essential
medium

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Gibco

Molecular Probes

Boehringer Mannheim

Sigma Chemical Company

Amersham Life Sciences

Vector Laboratories

Sigma Chemical Company

Sigma Chemical Company

BDH Laboratory Supplies

Sigma Chemical Company

Amersham Life Sciences

Gibco
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Ecl+Plus™ chemilumenescence

reagents

Emulsifier-Safe scintillant

ethylene glycol-bis (B-aminoethyl
ether) N,N,N',N' tetraacetic acid

ethylenediaminetetraacetic acid

FK506

Fluoroscan Ascent fluorescent plate
reader

foetal calf serum

glucose

glutaraldehyde

glycerol

glycine

Ham's F12 medium

Ham's F14 medium

Hanks balanced salt solution

horse serum

Amersham Life Sciences

Packard Instrument Company

Sigma Chemical Company

Sigma Chemical Company

Fujisawa Pharmaceutical
Company Ltd.

Labsystems

Gibco

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Gibco

Gibco

Gibco

Gibco
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hydrochloric acid

hydrogen peroxide

isopropanol

L-nitro arginine methyl ester

laminin

LDH assay kit

leupeptin

L-glutamine

L-thyroxine

lysine hydrochloride

magnesium chloride

magnesium sulphate

Mcllwaine tissue chopper

MK-801

modified Fuchs- Rosenthal

haematocytometer

Sigma Chemical Company

Sigma Chemical Company

BDH Laboratory Supplies

Sigma Chemical Company

Sigma Chemical Company

Promega

Sigma Chemical Company

Gibco

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Mickle Laboratory
Engineering Co. Ltd.

Research Biochemicals
International

Fisher Scientific UK Ltd.
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MTS Assay

N- methyl D-aspartate

N,N,N',N', tetramethyethylene
diamine

N-[2-hydroxyethyl]piperazine-
N'[2-ethanesulphonic acid

nitrocellulose electrophoresis
membranes

non fat dried mild

orthophosphoric acid

paraformaldehyde

PD10 columns

penicillin

pepstatin

phenylmethylsulphonyl flouride

polyornithine

polyoxyethylene (20) sorbitan
monolaurate

polyvinylidine difluoride
(Immobilon™)
electrophoresis membranes

Promega

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Amersham Life Sciences

Bio Rad Laboratories

BDH Laboratory Supplies

Fisher Scientific UK Ltd.

Amersham Pharmacia Biotech

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company
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potassium chloride BDH Laboratory Supplies

potassium dihydrogen
orthophosphate

potassium hydroxide

progesterone

putrescine

BDH Laboratory Supplies

BDH Laboratory Supplies

Sigma Chemical Company

Sigma Chemical Company

recombinant human nerve growth
factor

sheep anti- mouse HRP linked
secondary
antibody
SHSY-5Y cells (passage 8)

SHSY-5Y cells (passage 72)

SigmaPlot 4.0 graphical software
package

sodium bicarbonate

R&D Systems

Amersham Life Sciences

European Collection of
Animal Cell Cultures

gift from Prof. Nahorski,
University of Leicester, UK

Jandel Scientific

BDH Laboratory Supplies

sodium cacodylate BDH Laboratory Supplies

sodium chloride Sigma Chemical Company

sodium dihydrogen orthophosphate
dihydrate

sodium dodecyl sulphate

BDH Laboratory Supplies

Sigma Chemical Company
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sodium fluoride

sodium hydroxide

sodium nitroprusside

sodium periodate

sodium selenite

streptomycin

sucrose

trichloroacetic acid

triiodothyronine

tri-n-octylamine

tris [hydroxymethyl] aminomethane

Triton X-100

trypan blue

trypsin

urea

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

Sigma Chemical Company

BDH Laboratory Supplies

Sigma Chemical Company

BDH Laboratory Supplies

Sigma Chemical Company

Kool-light Ltd Havershill
Sussex England

Gibco

Gibco

Sigma Chemical Company
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CYCLIC GMP PRODUCTION IN NEONATAL RAT CEREBELLAR

PRISMS

Tissue Preparation

8 day old Sprague Dawley rats of either sex were killed by decapitation and their
cerebella rapidly dissected. These were transferred to pre-warmed (37°C) and pre-

gassed (95% 02/5% C02) Krebs-bicarbonate buffer (118mM NaCl, 4.7mM KC1,
1.2mM KH2PO4, 1.2mM MgS04, ll.lmM glucose, 25mM NaHC03, and 1.2mM

CaCl2) and chopped on a Mcllwain tissue chopper into 400pm2 prisms. The prisms

were transferred to a conical flask in a shaking water bath containing pre-warmed

(37°C) and pre-gassed (95% 02/5% C02) Krebs-bicarbonate buffer. The buffer was

changed every 15 minutes for an hour; FK506 was included after the second buffer

change where indicated.

Drug Exposure

50pl aliquots of gravity packed prisms were transferred to flat-bottomed tubes in the

shaking water bath after the fourth buffer change. Prisms were exposed to NMDA or

sodium nitroprusside (SNP), in the presence or absence ofMK801, L-nitro arginine

methyl ester (L-NAME) or FK506 in a final volume of 300pl for 5 minutes except

where indicated. The reaction was terminated by the addition of 300pi ice cold 1M
trichloroacetic acid, and the samples were left to stand on ice.

cGMP estimation

After 20 minutes the samples were vortex mixed and 500pl of the supernatant was

added to 125pl of ethylenediaminetetraacetic acid (EDTA) (lOmM, pH 7.0) and

500pl of a freshly made 1:1 mixture of 1,1,2-triflurotrichloroethane and tri-n-

octylamine to remove unwanted impurities to the organic phase. Samples were

vortex mixed and centrifuged at 10,000 g for 3 minutes and 400pl of the aqueous

phase was added to lOOpl of 60mM NaFICOs prior to storage at 4°C. Concentration
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of cGMP was measured by radioimmunoassay according to the manufacturer's
instructions. For each experiment, two 50pl aliquots of gravity packed prisms were

taken for protein estimation. These samples were homogenised in lOOpl phosphate
buffered saline (PBS) and protein content was measured using the Bradford protein

assay (Bradford, 1976).

Western Blotting

For determination of FKBP12 and calcineurin prisms were homogenised in

Complete™ protease inhibitor solution according to the manufacturers instructions.
An equal volume of 2x Laemmli sample buffer (final concentrations, sodium

dodecyl sulphate, 2%; glycerol, 10%; dithiothrietol, ImM; 2-mercaptoethanol, 5%;
Tris-HCl [pFI 6.8], 62.5mM; and Bromophenol Blue, 0.001%) was then added, and

samples were heated to 80°C for 10 minutes. Sodium dodecyl sulphate -

polyacrylamide gel electrophoresis was performed using a 12.5% gel, and proteins
were transferred to Immobilon-P™ polyvinylidene difluoride membranes overnight
at 70mA. Membranes were blocked in PBS with 5% non-fat dry milk and 0.1%
Tween20 for 30 minutes prior to exposure to antibodies against FKBP12 (1/200),
calcineurin A (1/500) or calcineurin B (1/1000) for 2 hours. The membrane was

washed for 4 x 5 minutes in the blocking solution before incubation with a horse
radish peroxidase-conjugated sheep anti-mouse secondary antibody (1:1000) for one
hour. These antibody dilutions were determined in preliminary experiments to

represent the optimal balance between high specific and low non- specific binding.
The membrane was washed for 3 x 10 minutes in blocking solution and for 30

minutes in PBS prior to detection of antigen by chemiluminescence using
Ecl+Plus™.

For phosphosereine residue detection prisms were exposed to drug for 5 minutes as

above then snap frozen on dry ice. They were homogenised in PBS and an equal
volume of 2x Laemmli sample buffer was added as above. Samples were centrifuged
at 10,000 rpm for five minutes to remove debris. Protein concentrations were

estimated by Coomaassie staining against standard concentrations and adjusted by
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further dilution with Laemmli sample buffer to 1 mg/ ml. Samples were heated to

90°C for 10 minutes. 10 pg of protein was added to each lane of a 10% gel and
sodium dodecyl sulphate - polyacrylamide gel electrophoresis performed. Proteins
were transferred to Immobilon-P polyvinylidene difluoride membranes overnight at
70mA. Membranes were blocked for 1 hour in Tris buffered saline pH 7.4 with 0.5%

BSA, 0.2% Tween20 and lOmM NaF prior to exposure to antibody 16B4 (0.1 pg/

ml) in blocking solution. Membranes were washed 5 times for five minutes in TBS

(pH 7.4) containing 0.1% Tween20 and incubated for 1 hour with an HRP-

conjugated sheep anti-mouse secondary antibody (1:1000). These antibody dilutions
were determined in preliminary experiments to represent the optimal balance
between high specific and low non- specific binding. Membranes were again washed
5 times for five minutes in TBS (pH 7.4) containing 0.1% Tween20 prior to rinsing
in TBS pH 7.4 and signal detection using ECL+Plus. Membranes were then stripped

by incubation in 0.2M Glycine pH2.0, 0.1% SDS, 0.1% Tween20 at room

temperature for 60 minutes and reprobed with a primary antibody directed against
tubulin (1/1000) to correct for differences in protein loading. The resulting
immunoblots were digitally captured and exported as .tif files to the AIDA software

package, where the optical density of phosphoserine immunopositivity was

normalised to tubulin immunopositivity to give the abundance of phosphorylated
serine residues relative to the abundance of tubulin and by inference to total protein.
Since calcineurin acts as a serine/ threonine protein phosphatase, changes in the

activity of calcineurin will be reflected in changes in the relative abundance of

phosphorylated serine residues.

Data analysis

Data represent the means of at least three independent experiments. Where a number
of treatments were being compared to control, for instance in cell viability assays or

effects of a number of drugs on cGMP concentration, statistical significance was

assessed using one way analysis of variance. Where ANOVA indicated that a

significant difference between groups existed then Dunnett's post hoc test was used.
Where a single comparison was being made, for instance Ac-DEVD-amc cleavage
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activity in serum withdrawn cultures versus control, or the effect of FK506 on

phosphoserine immunoreactivity in cerebellar extracts, then the students' t-test was
used. .

For the calculation of EC50 values for the cerebellar cGMP response to NMDA data
were fitted to the formula y = y0 + aJ (1+exp (- ( (x-xo)/b)) using SigmaPlot 4.0,
where x represents the concentration of NMDA, y represents the concentration of
cGMP and yo, a, b and xq are constants.

GENERATION OF TERMINALLY DIFFERENTIATED NEURON- LIKE

CELLS

Cell culture

Cells were plated at a density of 106 cells per 175cm2 flask and grown in an

incubator at 37°C in an atmosphere of 5% CO2 and 95% air. They were grown in a

medium consisting of Dulbecco's minimum essential medium (DMEM) containing
2mM L-Glutamine, lOOiu/ml penicillin, 100 mg/ml streptomycin (DMEM/G/P/S)
and 10% foetal calf serum (FCS)(Control medium). A tabulated description of the

composition of the various media used is given in Table 2.1. Medium was changed
after four days and cells were passaged after 7 days by detachment in Hank's
balanced salt solution (HBSS) containing 0.1% EDTA, counting in a modified
Fuchs- Rosenthal haematocytometer and replating.

Effect of differentiation on cell number

For determination of the effects of differentiation on cell number 2.5 x 106 cells at

low or high passage were seeded to 80 cm flasks in Control medium. After 24 hours
medium was replaced with fresh medium of the same composition or with
DMEM/G/P/S containing 1% FCS and lOpM retinoic acid (Differentiating medium),
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and the medium was thereafter changed every 48 hours. Retinoic acid (RA) was

prepared as a 1 OmM stock solution of all- trans retinoic acid in dimethylsulphoxide

(DMSO)

Table 2.1: Composition of designated media

Basic

Composition

Foetal Calf

Serum

Retinoic Acid Designation

DMEM

+ F-Glutamine

+ penicillin
+ streptomycin

10% none Control

lOpM Retinoic acid

1% none Serum reduction

10pM Differentiating
none 10pM Serum withdrawal

and stored in the dark at -70°C until required. Unused stocks were discarded after
two weeks.

1, 4 and 8 days after plating (0, 3 or 7 days after the induction of differentiation)
cells were detached by incubation in HBSS/ 0.1% EDTA and Trypan Blue excluding
cells were counted in a modified Fuchs- Rosenthal haematocytometer.

Morphology and Immunocytochemistry

For morphological studies and immunocytochemistry cells were seeded at 50,000
cells per well on 13 mm diameter glass coverslips in 24 well plates in DMEM/G/P/S

containing either 10% FCS (Control medium), 1% FCS (Serum reduction medium),
10% FCS and lOpM RA (Retinoic Acid medium) or 1% FCS and 10pM RA

(Differentiating medium). Medium was replaced every 48 hours. At 1 or 8 days after

plating cells were washed in PBS (pH 7.4) and fixed in a paraformaldehyde-lyseine-

periodate fixative containing 60mM lyseine hydrochloride, 32.5mM Na2HP04,
7.5mM NaH2P04.2H20, 20mg/ml paraformaldehyde and 2mg/ml sodium periodate
for 30 minutes. Cells were again washed in PBS, permeabilised for 5 minutes in
0.25% Triton- X, rinsed again in PBS and stored in PBS at 4°C.
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For immunocytochemistry fixed cells were incubated with 0.6% hydrogen peroxide
in methanol for 5 minutes, rinsed in water and incubated in PBS containing 0.2%

bovine serum albumin (BSA) for 5 minutes. Non specific binding was blocked by

incubating cells in PBS containing 10% BSA for 30 minutes prior to incubation with
mouse anti- MAP2 monoclonal antibody or mouse anti- p21waf monoclonal antibody
in PBS containing 3% BSA for two hours. Cells were subsequently washed three
times for five minutes each in PBS with 0.2% BSA prior to sequential incubation
with components of the avidin-biotin Elite mouse IgG ABC kit according to the
manufacturer's instructions. Immunoreactivity was visualised using a DAB

peroxidase substrate according to the manufacturer's instructions. Initial

immunostaining was performed with a range of primary antibody dilutions to

identify the optimal balance between specific and non-specific binding, and the final
dilutions used were 1/1000 for the anti- MAP2 antibody and 1/200 for the anti-

p21waf antibody. For each experiment for each condition sister preparations of fixed
cells were processed with the omission of primary antibody to confirm the specificity
of the observed immunoreactivity. Fixed cells were examined and photographed
under phase contrast or light microscopy as appropriate.

CELL SURVIVAL EXPERIMENTS

SHSY-5Y cells

SHSY-5Y cells at passage 8 to 16 were seeded at 50,000 cells in 500pl medium per

well in 24 well plates and differentiated as described above. After 7 days the effects
of exposure to drugs or insults of interest was determined by washing cells 3 times in
DMEM then incubating with the drug of interest dissolved in Differentiating medium
or in Serum free medium (Differentiating medium lacking FCS). Cell survival was
measured determined by measuring fractional LDH release, the MTS reduction assay

or the Calcein AM™ assay.
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LDH assay

50jli1 of culture medium was removed in duplicate from each well and processed for
estimation of prelysis LDH concentration. The volume was readjusted to 500pi

through the addition of 90pl of the appropriate medium and lOpl of 10% Triton X-
100 to lyse remaining cells. After 15 minutes incubation 50pl of medium was

removed in duplicate and processed for estimation of postlysis LDH concentration.

Background signal was measured independently for prelysis (medium alone) and

postlysis (49:1 mix of medium and 10% Triton X-100) samples. LDH concentration
was measured by incubating the 50pl samples with 50pl of the reaction mixture in
the dark for 30 minutes, after which time the reaction was stopped according to the
manufacturer's instructions and absorbance at 560nm read in a colourimetric plate
reader. The percent cell survival may be derived as follows:

Prelysis[LDH]
% Death = x 100 (1)

Total[LDH]

Total [LDH] = Prelysis[LDH] + Newly released[LDH] (2)

Because the addition of lOOgl of fluid will dilute LDH present before cell lysis
occurs by a factor of 400/500, the Postlysis[LDH] cannot be taken to represent the
sum ofPrelysis[LDH] and Newly released[LDH], Rather,

Measured postlysis[LDH] = Newly released[LDH] + {400/500 x Prelysis[LDH]}

Therefore

Newly released[LDH] =Measured postlysis[LDH] - {400/500xPrelysis[LDH]} (3)

Combining (3) with (2)

TotalfLDH] = Measured Postlysis[LDH] + {0.2 x Prelysis[LDH]} (4)
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Combining (4) with (1),

Prelysis [LDH]
% Death = x 100

Measured Postlysis [LDH] + {0.2 x Prelysis [LDH]}

While this correction has little impact at low levels of cell death, where death is
100% the uncorrected calculation estimates death to be 120%. The correction is valid

provided that the starting volume of medium in which the cells were bathed is 500pl.
While evaporation of medium does occur even in humidified tissue culture

incubators, measurement of volume ofmedium remaining after 24 hours (the elapsed
time since the last change of medium for these cells under most experimental

conditions) showed an average volume reduction of less than 20pl per well. This is
of no practical consequence, and would have resulted in maximum overestimation of
death of less than one percent.

MTS assay

lOOpl of the MTS reagent was added to wells containing cells and to blank wells

containing medium alone 3 hours before the end of the period of drug exposure. At
the end of the drug exposure period lOOpl aliquots in duplicate were removed and
absorbance at 490 nM measured in a colourimetric plate reader.

Calcein AM assay

The Calcein AM assay is based on the unhindered passage of non-fluorescent
Calcein AM into living cells, where cytoplasmic esterases cleave the AM group

resulting in the development of fluorescence, which can then be quantified on a

fluorescent plate reader. Preliminary experiments using Calcein AM as a measure of
survival showed substantial variability in signal. In differentiated but otherwise
untreated SHSY-5Y cells, measuring fluorescent signal from 37 discrete positions
within the well showed great variability in the signal in different parts of the well

(Figure 2.1; n=4 wells). These differences might reflect differences in the distribution
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Figure 2.1: Effect of well position on Calcein AM signal

SHSY-5Y cells were seeded to 24 well plates at 50,000 cells per well and grown in
Differentiation medium for 7 days, cell were then washed in PBS and exposed to
PBS containing lpM Calcein AM™ for 30 minutes. The well area was divided into
37 squares and intracellular retention of the esterase cleavage product Calcein was
determined for each square by measuring emission at 520nM (excitation = 490nm)
over an acquisition time of 60ms.
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of cells within the well, optical characteristics of the tissue culture plastic, or a

combination of the two. This, along with the variability seen in the Calcein AM

signal, argued against the use of Calcein AM to estimate survival in SHSY-5Y cells.

Nuclear Morphology following serum withdrawal

Passage 8 SHSY-5Y cells were plated at 5 x 106 cells per 175cm2 flask and
differentiated for 7 days. They were washed 3 times in DMEM then exposed to

Differentiating medium or Serum withdrawal medium for 24, 48 or 72 hours. Cells
were detached in HBSS containing 0.1% EDTA and washed in warm cadolyate
buffer (0.1M pH 7.4) before fixing in 3% glutaraldehyde in cadolyate buffer and

processing in thick sections by toluidine blue staining by staff of the electron

microscopy facility at the Royal Dick Veterinary College.

Ac-DEVD cleavage activity
Treated cells were harvested by scraping with a rubber policeman, washed in ice cold
PBS (pH 7.4) and collected by centrifugation at lOOOg for 15 minutes. Cells were

lysed in a buffer containing lOmM N-[2-hydroxyethyl]piperazine-N'[2-

ethanesulphonic acid (HEPES) KOH pH 7.4, 50mM KC1, 2mM MgCl2, 5mM

ethylene glycol-bis (13 -aminoethyl ether) N,N,N',N' tetraacetic acid (EGTA), 0.5%

3-[cyclohexylamino]-l-propanesulphonic acid (CHAPS), ImM

phenylmethysulphonyl flouride, lOpg/ml pepstatin A, lOpg/ml leupeptin, lOpg/ml

aprotinin and ImM dithiothrietol (DTT) for 30 minutes on ice, subjected to one

freeze/thaw cycle in liquid nitrogen and centrifuged at 2000g for 30 minutes. Protein
concentration in the supernatant was measured after 1:10 dilution in distilled water

using the BCA method according to the manufacturer's instructions and was adjusted
to 2mg/ml by dilution in a buffer containing 25mM HEPES-KOH pH 7.4, 50mM

NaCl, 5mM EGTA, 0.1% CHAPS, lOmM DTT, 5mM EDTA and 10% sucrose. An

extract prepared by Dr. Timothy Allsopp from Al.l cells undergoing apoptosis

following dexamethasone treatment served as positive control.

lOpl of extract was incubated at 37°C with Ac-DEVD-amc (final concentration
25pM) in the presence of absence of inhibitor (Ac-DEVD-aldehyde; final

-62-



concentration 187.5nM). Fluorescence at 460nm was measured every 90s for 90

minutes, and DEVD cleavage activity was determined by fitting a straight line to the
linear portion of the fluorescence accumulation curve. Results are expressed as units
of fluorescence per mg protein per minute and represent the means of at least three

independent determinations.

Western blotting
Treated cells were harvested by scraping with a rubber policeman, washed in ice cold
PBS (pH 7.4) and collected by centrifugation at lOOOg for 15 minutes. Cells were

resuspended in a buffer containing 2% sodium dodecyl sulphate, 10% glycerol, 6M

urea, 5% 2-mercaptoethanol, 62.5mM Tris-HCl [pH 6.8] and 0.001% Bromophenol
Blue before sonication for 20s on ice. Protein content was estimated by Coomassie

staining and 15pg of protein per lane was loaded to 8% (PARP) or 15% (Caspase 3)

gels for SDS-PAGE. Electrophoresis was performed at 40mA prior to transfer to
nitrocellulose (PARP) or polyvinylidene difluoride (Caspase 3) membranes at

60mV. For PARP, membranes were blocked in PBS with 5% non-fat dried milk and

0.1% Tween (PBSMT) for 1 hour prior to incubation with a mouse anti-PARP
monoclonal antibody (C2-10, 1/10,000, gift from Guy Poirier, Centre de Recherche
du CETUL, Quebec, Canada) overnight. The membrane was washed five times for 5
minutes in PBSMT prior to incubation with sheep anti-mouse HRP linked secondary

antibody (1/2000) for 30 minutes. These antibody dilutions were determined in

preliminary experiments to represent the optimal balance between high specific and
low non- specific binding. The membrane was again washed five times for five
minutes in PBSMT and then for 30 minutes in PBS. Signal was detected by
chemiluminescence (ECL+Plus™).

For Caspase 3 immunoreactivity, membranes were blocked in tris buffered saline pH
8.0 (TBS) with 5% non-fat dried milk and 0.1% Tween for 1 hour prior washing
twice for five minutes in TBS/ 0.1% Tween and subsequent incubation with a rabbit

anti-Caspase 3 polyclonal antibody (1/2,000, gift from Don Nicolson, Merck Frosst
Centre for Therapeutic Research, Quebec, Canada). The membrane was washed three
times for 5 minutes in TBS/ 0.1% Tween prior to incubation with donkey anti-rabbit
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HRP linked secondary antibody (1/2,500) for 1 hour. These antibody dilutions were

determined in preliminary experiments to represent the optimal balance between high

specific and low non- specific binding. The membrane was washed three times for
five minutes in TBS/ 0.3% Tween then three times for five minutes in TBS/ 0.1%

Tween prior to detection of signal by chemiluminescence (Ecl+plus™).

Trigeminal Sensory Ganglion Cell Culture

To investigate the effects of FK506 in a previously described model of trophic factor
withdrawal induced apoptosis a series of experiments was performed by Dr. Timothy

Allsopp. These experiments were designed to complement the work on SHSY-5Y
cells and so are reproduced here with due acknowledgement. The methodology used
was as follows.

Mouse embryos were removed from time mated pregnant females and staged at

embryonic day 14 according to the criteria of Theiler (Theiler, 1972). At this stage in
vivo trigeminal sensory neurons are undergoing naturally- occurring cell death that is

suppressed by target- derived nerve growth factor (NGF). Ganglia were aseptically
dissected using sharpened tungsten needles and incubated for 7 min at 37°C with
0.05% trypsin in calcium/ magnesium free Hanks balanced salt solution. After
removal of the trypsin solution cells were washed in Ham's F12 medium containing
5% heat inactivated horse serum and were separated by gentle trituration through a

fire polished siliconised Pasteur pipette to give a single cell suspension. 300 to 700
cells were plated in 35mm diameter culture dishes which had been precoated with

polyornithine (0.5 mg/ml) and laminin (20 pg/ml). Neurons were grown at 37°C,
5% CO2 in Ham's F14 supplemented with 2mM glutamine, 0.35% bovine serum

albumin, 60ng/ml progesterone, 16pg/ml putrescine, 400ng/ml L-thyroxine, 38ng/ml
sodium selenite, 340ng/ml triiodothyronine, 60mg/ml penicillin, lOOmg/ml

streptomycin and 4ng/ml recombinant human NGF. These conditions resulted in
cultures composed of over 90% neurons.

After 24 hours the number of neurons in a 12mm x 12mm grid in the centre of each

dish were counted. Neurons were then washed in NGF-free medium and then grown
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with or without NGF in the presence of varying concentrations of FK506. For
estimates of cell viability the number of viable neurons remaining in the same 12mm
x 12mm grid were counted every 24 hours and the results expressed as a percentage

of the initial count. Neurons were considered viable if they possessed a phase bright
cell soma and intact neurites more than two cell body diameters in length.

In vitro stability of FK506 in solution

In order to ensure the continuing bioavailability of FK506 in tissue culture plates
concentrations of FK506 in culture medium were measured by radioligand binding

assay (kindly performed by Dr Abby Charters). Briefly, FK506 was added to

Differentiation medium at concentrations ranging from InM to lpM and these
solutions placed in triplicate in wells of a 24 well plate for 24 hours in the tissue
culture incubator. 50pl aliquots ofmedium or of freshly prepared FK506 were added
to a reaction buffer containing 50mM Tris-HCl, pH 7.4, 172pM [3H]FK506, 40pg/ml
cytosolic protein, and 2mg/ml BSA and incubated at room temperature for 60
minutes. Non specific binding was determined in the presence of lpM FK506.
Bound ligand was separated from free by gel filtration on PD-10 columns and eluted
with 50mM NaCl. 1ml eluent was mixed with 20ml Emulsifier-Safe scintillant and

counted in a scintillation counter. A straight line was fitted to a plot of log(average

DPM) against log(concentration known FK506) and from the formula describing this
line the concentration ofFK506 remaining at 24 hours was estimated.

Table 2.2: Stability of FK506 in tissue culture environment

[FK506] added Measured [FK506] at 24
hours

1 pM 172 nM

100 nM 33 nM

10 nM 1.8 nM

1 nM 950 pM

The results are given in Table 2.2, from which it can be seen that concentrations had
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fallen by four fifths at 24 hours. Based on these results it was judged that for

exposures to FK506 of 24 hours or less a single application of FK506 was sufficient,
but that for longer exposures it would be necessary to apply fresh FK506 every 24
hours.
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CHAPTER 3

EFFECT OF FK506 ON NITRIC
OXIDE SYNTHASE- MEDIATED
CYCLIC GMP PRODUCTION IN
NEONATAL RAT CEREBELLAR

PRISMS

INTRODUCTION

The stereotactically guided application of the potent vasoconstrictor endothelin-1 to

the proximal middle cerebral artery of rats consistently results in the development of

large cortical and striatal infarcts (Sharkey et al., 1993; Sharkey and Butcher, 1995).
Administration of the macrolide immunosuppressant FK506 up to 60 minutes after
the onset of vasoconstriction results in a reduction in the volume of cortical

infarction of at least 46% (Sharkey and Butcher, 1994) and improved performance on

tests of skilled motor tasks (Sharkey et al., 1996). These protective effects have also
been demonstrated in models of global ischaemia (Drake et al., 1996; Tokime et al.,

1996). FK506 also has protective effects in animal models of cardiac (Nishinaka et

al., 1993), liver (Sakr et al., 1993) and intestinal (Kubes et al., 1991) ischaemia. The
mechanism by which this protection occurs is presently unclear.

At the cellular level, FK506 interacts with a subfamily of immunophilins termed
"FK506 binding proteins" (FKBPs), which exhibit peptidyl-prolyl cis-trans
isomerase activity (Harding et al., 1989; Siekierka et al., 1989), and are widely
distributed in brain and other tissues (Dawson et al., 1994; Steiner et al., 1992). In
focal cerebral ischaemia at least it appears that the interaction with FKBPs is

required for neuroprotection, as displacement of FK506 from FKBPs by rapamycin
blocks the protective effect. Furthermore, the neuroprotective properties of FK506
are shared by SDZ ASM 981, a drug which binds FKBP12 and inhibits calcineurin

(Bochelen et al., 1999), and by cyclosporin (Sharkey and Butcher, 1994), which
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inhibits calcineurin by a different mechanism.

The immunosuppresive action of FK506 requires inhibition of protein phosphatase
2B (calcineurin; E.C. 3.1.3.16) by a complex of FK506 and a 12kDa FKBP

(FKBP12) (Kissinger et al., 1995; Liu et al., 1991). In addition, FKBP 12 interacts
with several other proteins including the skeletal muscle ryanodine receptor

(Wagenknecht et al., 1997), the inositol triphosphate receptor (IP3) (Cameron et al.,

1995; Ohi et al., 1999), and the type 1 transforming growth factor-B receptor (Wang
et al., 1994); FKBP56 is associated with steroid receptor complexes (Yem et al.,

1992). Effects of FK506 on the function of these proteins may be direct, via
inhibition of the intrinsic isomerase activity of the relevant immunophilin, or

indirect, via disruption of FKBP-mediated anchoring of calcineurin to a target

protein. For example the effect of FK506 on calcium flux through the IP3 receptor is
mediated by displacement of calcineurin from a protein complex that includes
FKBP 12 and the IP3 receptor (Cameron et al., 1995).

FK506 inhibits excitotoxic cell death in vitro (Dawson et al., 1993), but not in vivo

(Butcher et al., 1997). Both excitotoxin- and free radical- induced damage may

contribute to neuronal death in stroke; indeed, excitotoxic stimulation of NMDA

receptors results in activation of NOS and production ofNO free radicals (Bredt and

Snyder, 1989). It is now clear, both from studies with specific inhibitors of nNOS
such as 7 -nitroindazole (Dalkara et al., 1994) and from experiments using animals
with targeted deletions in genes encoding NOS isoforms (Huang et al., 1994;
Samdani et al., 1997), that nNOS activation contributes to neurotoxicity in cerebral
ischaemia and that its inhibition is neuroprotective. Since NOS activity may be

regulated by phosphorylation (Bredt et al., 1992; Dawson et al., 1993), FK506 might
exert its neuroprotective effect by increasing NOS phosphorylation (via inhibition of

calcineurin), leading to inhibition ofNOS activity and a consequent reduction in NO

production (Dawson et al., 1993).

Other potential mechanisms subserving the neuroprotective effect of FK506 include
an effect on apoptosis following stroke. There is considerable evidence, reviewed
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above, to indicate an important contribution of apoptosis to neuronal death in
cerebral ischaemia. It is therefore of interest that FK506 inhibits apoptotic cell death
in lymphocytes (Bierer et al., 1990) and in ischaemic brain FK506 reduces

expression of Fas ligand and TNF related apoptosis inducing ligand (TRAIL)

(MartinVillalba et al., 1999). Also, FK506 has been observed to have neurotrophic
effects (Snyder and Sabatini, 1995; Steiner et al., 1997; Gold et al., 1999b), and these

might sustain neurons deprived of endogenous survival influences following
ischaemia.

In this chapter I describe a series of experiments designed to test the hypothesis that
the neuroprotective effect of FK506 is mediated through inhibition ofNOS. nNOS is
activated in response to NMDA receptor stimulation and catalyses the conversion of

arginine to citrulline and NO. NO thus produced diffuses to surrounding cells and
activates guanylate cyclase, leading to the accumulation of the second messenger

cyclic GMP (Dawson et al., 1992). Here I describe the effects of FK506 on NMDA

stimulated, nNOS-mediated accumulation of cGMP in a well characterised system,

the neonatal rat cerebellar prism (Garthwaite et al., 1988; Garthwaite and Balazs,

1978).

RESULTS

Optimisation of methodology

1. Measurement ofNOS activity

Since cGMP has a longer half life than NO and NO is freely diffusible the level of
cGMP provides a more stable indication of NOS activity than the measurement of
NO. Furthermore, in preliminary experiments both the Griess reaction and a

commercially available nitrate detection assay were insensitive to stimulation of
neonatal rat cerebellar prisms with supramaximal concentrations of either NMDA or

the NO donor sodium nitroprusside (SNP).

2. Choice of tissue

While the cerebellum may be damaged following ischaemia in posterior circulation

-69-



Syndromes (see page 20), ischaemia of the cerebral hemispheres in anterior
circulation syndromes is a more common cause of stroke. Furthermore, most animal
work models forebrain ischaemia and it would therefore be appropriate to study the
cGMP response in cortical or hippocampal prisms. Finally, because most strokes
affect adults rather than neonates, it would be most appropriate to study the response

in adult tissues. However, prisms prepared from adult cortex and hippocampus
showed no detectable cGMP response to supramaximal concentrations of NMDA or

SNP. Neonatal cortex was also unresponsive, and the small volume of tissue
recovered from the harvesting of neonatal hippocampi militated against using this
tissue because of the large numbers of animals that would be required.

In the cerebellum, the supersensitivity of cGMP to NMDA is a transient phenomenon
first seen around 5 days, observed maximally in tissue from 8 day old pups and much
reduced by 21 days (Garthwaite and Balazs, 1978). I therefore used prisms prepared
from the cerebella of 8-day-old rats. This is a tissue in which a robust cGMP

response has been described, from which nNOS was originally sequenced (Bredt et

al., 1991a) and which contains high levels of nNOS mRNA and protein (Bredt et al.,

1991b; Sessa et al., 1993).

Response of neonatal rat cerebellar prisms

In neonatal rat cerebellar prisms NMDA induced a rapid accumulation of cGMP (Fig

3.1). This effect reached a maximum at 2 minutes (p<0.05). All subsequent

experiments were carried out with a five-minute incubation. The response was

concentration dependent (Fig 3.2) with an EC50 of 16pM and maximum cGMP

production of 240 +/-15 pmol per mg protein (mean +/- s.e.m.) in response to 100gM
NMDA. NMDA- stimulated cGMP production was inhibited by the NMDA receptor

antagonist MK801 (lOpM) (p<0.05) and by the NOS inhibitor L-NAME (10 pM)

(p<0.05). Neither of these agents affected SNP-stimulated cGMP production (Fig

3.3).

FK506 had no affect on NMDA- induced cGMP accumulation when added

simultaneously (data not shown), and pre-incubation with FK506 for 30 minutes was
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Figure 3.1: Timecourse of cGMP accumulation.

50jj.l of packed cerebellar prisms were exposed to lOOpM NMDA in a final volume
of 300|il for the times indicated. The reaction was terminated by addition of 1M
trichloroacetic acid and cGMP was extracted and quantified by radioimmunoassay.
cGMP is expressed as pmol/mg protein and each point represents the mean ± s.e.m.
of at least 5 determinations. *p<0.05 versus 10 seconds sample (one way ANOVA
with Dunnett's method for multiple comparisons).
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Figure 3.2: Effect of FK506 on NMDA-induced cGMP accumulation.

Following a 30 minute incubation with vehicle (0.1% ethanol), lOOnM FK506 or
lpM FK506 samples were exposed to varying concentrations of NMDA for five
minutes and cGMP accumulation quantified as previously described. Data points
represent the mean ± s.e.m. of at least 6 determinations.
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also ineffective; under these conditions the EC50 and maximum cGMP production
were 22pM and 265 ± 19 pmol per mg protein respectively for lOOnM FK506 and

18pM and 247 ± 12 pmol per mg protein for lpM FK506 (Fig 3.2).

To show that FK506 could inhibit calcineurin under these conditions I first sought to
demonstrate that the relevant proteins are present. Western blotting of samples from
neonatal cerebellar prisms demonstrated immunoreactivity at appropriate molecular

weights for FKBP12, calcineurin A and calcineurin B using specific antibodies (Fig

3.4a).

To determine whether FK506 can inhibit calcineurin activity in cerebellar prisms I
measured the abundance of phosphoserine residues in protein extracts of NMDA-
stimulated prisms. Calcineurin acts as a serine phosphatase, and its stimulation, for
instance following treatment with NMDA, will lead to reduced levels of serine

phosphorylation. Inhibition of this stimulated activity, for instance by FK506, should
lead to increased serine phosphorylation.

Because the cGMP response to NMDA was determined following a 30-minute

preincubation with FK506 or vehicle, prisms were preincubated with FK506 for 30
minutes prior to NMDA exposure and subsequent determination of phosphoserine
residues. Using an anti- phosphoserine antibody Western blotting demonstrated the

presence of a number of immunopositive proteins of varying molecular weight

following treatment with ImM NMDA. However, when prisms had been

preincubated with lOOnM FK506 for 30 minutes prior to NMDA exposure relative

phosphoserine immunopositivity was increased by 26 +/- 4% (mean +/- s.d., n=3)
over that seen with NMDA alone (Fig 3.4b,c), confirming inhibition of calcineurin

activity.

DISCUSSION

The results presented in this chapter demonstrate that NMDA stimulated cGMP
accumulation is inhibited by the NMDA receptor antagonist MK801 and the NOS
inhibitor L-NAME but not by FK506.
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Figure 3.3: Effect of MK801 and L-NAME on NMDA- and SNP-stimulated
cGMP accumulation.

Samples were incubated for five minutes in the presence or absence of NMDA
(lOOpM), SNP (lOOpM), MK801 (lOpM) and L-NAME (lOpM) before cGMP
quantification as previously described. Data points represent the mean ± s.e.m. of at
least 4 determinations. *p<0.05 versus control, JpcO.05 versus NMDA alone (one
way ANOVA with Dunnett's method for multiple comparisons).
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A potential criticism of this interpretation is that cerebellar prisms from neonatal rats

might not express the full repertoire of proteins required to transduce FK506
mediated calcineurin inhibition. To meet this criticism I have demonstrated the

presence of FKBP12 and both A and B subunits of calcineurin by Western blotting.

A second criticism might be that even given the necessary components, FK506 might
not inhibit calcineurin activity at the concentrations tested in this preparation over

this timescale. FK506 is known to inhibit calcineurin in vitro, so simply

demonstrating calcineurin inhibition in extracts prepared from cerebellar prisms does
not demonstrate inhibition of activity in the prisms themselves; conditions might be
created during preparation of samples for assays of calcineurin activity that allowed
FK506 to inhibit calcineurin under assay conditions when it was without activity
before the extraction. For instance, FKBP12 and calcineurin might exist in separate

cellular compartments prior to extraction, and be brought together following tissue

homogenisation. For these reasons, measuring the effect of FK506 on calcineurin

activity as measured in for instance the RII kinase assay (Perrino et al., 1992) is not

helpful.

To demonstrate FK506 inhibition of calcineurin following a 30 minute incubation I

have measured the abundance of immunoreactive phosphoserine residues at Western

blotting and demonstrated that serine phosphorylation in NMDA treated prisms is
increased following pre-incubation with FK506 consistent with calcineurin
inhibition. The speed with which these samples were processed minimises any

likelihood of artefactual changes in phosphorylation occurring during sample

preparation.

The present data demonstrate that in neonatal rat cerebellar prisms cGMP
accumulates through the activity ofNOS; that this accumulation is inhibited by NOS

inhibition; and that a concentration ofFK506 that increases serine phosphorylation of
cellular proteins has no effect on NMDA stimulated cGMP accumulation. While it is

possible that FK506 is altering protein serine phosphorylation through some

mechanism other than inhibition of calcineurin, direct effects on other phosphatases
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Figure3.4:Proteinsandproteinphosphorylationincerebellarprisms (a)Westernblottingofproteinextractsfromneonatalratcerebellum.ProteinwasextractedasdescribedinMaterialsand MethodsandwesternblottingperformedusingantibodiesagainstcalcineurinA,calcineurinBorFKBP12.Molecularweights (kdal)wereestimatedfromcolouredmolecularweightstandards,(b)unstimlatedcerebellarprisms(1),andprismspreincubated for30minuteswithvehicle(2)orlOOnMFK506(3)priorto5minuteexposuretoImMNMDA(2,3),weresnapfrozenindry ice,homegenisedinicecoldPBSandresuspendedinLaemmlisamplebufferpriortowesternblottingwithanti-phosphoserine antibody,(c)densitometryofimagesfrom(b)(threeindependentblots)normalisedtoabundanceoftubulinconfirmsincreased anti-phosphoserineimmunopositivityinpresenceofFK506(m=3,p<0.01,t-test). -76-



or kinases have not been described at these concentrations of FK506, and the most

parsimonious interpretation of the data is that FK506, while inhibiting calcineurin

activity, has no effect on NOS activity.

Phosphorylation of NOS was not measured directly because the effects of

phosphorylation on NOS activity are not clear. In a genetically modified human

kidney cell line overexpressing nNOS, where the nNOS sequence had been derived
from rat cerebellum, phosphorylation of NOS results in reduced activity (Dawson et

al., 1993). Similarly, NOS activity is reduced by activation of protein kinase C

(PKC) (Bredt et ah, 1992) and protein kinase A and G (Dinerman et ah, 1994). PKC

depletion or inhibition increases basal and stimulated NOS activity in cultured
cerebellar granule cells (Riccio et ah, 1996), and NMDA-stimulated cGMP

production is reduced by PKC activation in mouse cortical cultures (Carroll et ah,

1996).

However, PKC-activation increases cGMP production in response to metabotropic

glutamate receptor stimulation in adult rat cerebellar slices (Okada, 1995) and
NMDA stimulated NOS activity in cultured mouse striatal neurons is dependent on
PKC (Marin et ah, 1992). While CaM kinase II-mediated phosphorylation decreases
NOS activity in whole brain extracts, phosphorylation by PKC increases activity

(Nakane et ah, 1991). In nNOS purified from cerebellar tissue PKC increases the
maximal in vitro activity while in cerebellar slices it increases the calcium sensitivity
but has no effect on maximal nNOS activity. This increased calcium sensitivity
occurs without an increase in nNOS phosphorylation, implying the phosphorylation
of an intermediary protein (Okada, 1996). The effects of phosphorylation on NOS

activity are therefore not clear, and consequently reduced NOS activity cannot be
inferred from increased NOS phosphorylation.

In addition to these context- dependent differences in the effects of NOS

phosphorylation, the cGMP response of cerebellar prisms to NMDA changes with

age. Prisms from animals 5-21 days old demonstrate a pronounced cGMP response

that is not seen with prisms from older animals. Not all of this age related decline in



responsiveness can be attributed to disruption of neuronal arborisation during tissue

preparation, since at intermediate ages there is reduced responsiveness in the face of

preservation of structure (Garthwaite and Balazs., 1978), and differences between
neonatal and adult tissue in the distribution of cGMP production may be more

important in this regard (De Vente et ah, 1990). In addition, a two component

inhibition of NMDA-stimulated cGMP production in neonatal rat cerebellar prisms
has been observed with L-NG-nitroarginine (East and Garthwaite, 1990), implying
the co-existence ofmultiple regulatory pathways.

While the data presented here demonstrate that FK506 has no effect on NOS activity
in neonatal cerebellar prisms, they cannot be taken to prove the lack of such an effect
in adult cortex. Not only are there age related differences in cGMP responsiveness,
but also the activity of phosphorylated NOS varies depending on the tissue in which
it is tested. Without further evidence it would therefore be unjustified to generalise
from the current data to infer a lack of effect of FK506 on NOS activity in adult rats

subjected to focal cerebral (predominantly cortical) ischaemia.

However, such further evidence does exist. In 1993, Dawson et al demonstrated a

protective effect of FK506 on NMDA toxicity in primary cortical culture that was
associated with reduced NOS activity as evidenced by reduced cGMP production.

They attributed this effect to reduced NOS activity caused by FK506- mediated
calcineurin inhibition (Dawson et ah, 1993). However, the same authors have more

recently reported that the protective effect of FK506 is still observed in cultures

completely devoid of nNOS derived from transgenic animals with a deletion of the
nNOS gene (Dawson et ah, 1996). Furthermore, the neuroprotective effect of FK506

following gerbil transient global ischaemia (Tokime et ah, 1996) or rat middle
cerebral artery occlusion (Toung et ah, 1999) is not a consequence of nNOS
inhibition.

In conclusion, evidence from primary cortical culture and animal models along with
this evidence from cerebellar prisms provide strong evidence that the neuroprotective
effect of FK506 is not a consequence of NOS inhibition. To address the issue of
which alternative mechanisms might be involved I have adopted a cell culture based
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approach, and the characterisation of terminal differentiation in the SHSY-5Y
neuroblastoma cell line is described in the next chapter.
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CHAPTER 4

CHARACTERISATION OF THE
TERMINAL DIFFERENTIATION

OF SHSY-5Y CELLS

In this chapter I report the characterisation of the properties of SHSY-5Y cells at low
and high passage in response to serum reduction, retinoic acid or combined serum

reduction and retinoic acid. In low passage SHSY-5Y cells combined treatment leads
to terminal differentiation to a neuron- like phenotype, as manifest by a stabilisation
of population number, the development of rounded phase bright cell bodies and of

immunopositivity for the neuronal marker MAP-2 and the G0 associated protein

p21waf. At higher passages this process of differentiation is incomplete.

INTRODUCTION

SHSY-5Y cells

SHSY-5Y cells have been used for more than two decades in studies of the neuronal

response to diverse stimuli. However, in spite of their widespread application there is
no clear consensus on their optimal use. Many different differentiation regimes have
been reported, and often no reference is made in such reports to the passage number
at which the cells are used or even to the differentiation status.

Over 25 years ago the SK-N-SH cell line was derived from a bone marrow aspirate
of a 4 year old girl with metastatic neuroblastoma (Biedler et al., 1973), and its

subcloning to form the SHSY-5Y cell line was reported in 1978 (Biedler et al, 1978).
Undifferentiated cells form homogenous neuroblast- like populations and
demonstrate levels of dopamine fi- hydroxylase and butyryl cholesterase activity
similar to those seen in extracts of neural tissue (Biedler et al., 1978; Ross et al.,

1983).
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As a tumour cell line derived from human tissue SHSY-5Y cells have a number of

potential advantages over other in vitro and in vivo approaches. Compared with

primary culture and notwithstanding the recent growth in the availability of

transgenic animals, tumour cell lines provide greater opportunity to influence

patterns of gene expression. Sub cloned cell lines manifest, at least at early passages,

more substantial genetic identity between preparations than do cells in primary
cortical culture. Furthermore, the capacity of tumour cell lines for population

expansion allows a ready supply of material without the need for animal sacrifice.

Compared with animal models of disease cell lines are less expensive, are easier to

manipulate for biochemical or molecular analyses, and avoid ethical concerns about
the use of animals in scientific procedures. A further advantage enjoyed by SHSY-
5Y cells is that, being derived from a human tumour, they enjoy a compliment of

human, rather than rat or mouse, genes and proteins.

Novel proteins may be introduced to such cell lines using viral transfection

techniques, and because population expansion occurs cells bearing transcripts can be

selected, for instance by co-transfection with genes bearing resistance to antibiotics
such as neomycin. Similarly, cells may be grown for prolonged periods in the

presence of antisense oligodeoxynucleotides, or DNA encoding antisense sequences

may be introduced, leading to reductions in the expression of target proteins.

Undifferentiated SHSY-5Y cells have been used to study the effects of diverse
insults including staurosporine (Posmantur et al., 1997), beta amyloid peptide (Li et

al., 1996), and 1-methyl 4-phenylpyridinium (MPP+) (Itano and Nomura, 1995), but
the extent to which the results of these investigations are relevant to terminally
differentiated adult neurons is not clear. Treatment with retinoic acid (Pahlman et al.,

1984), nerve growth factor (Jensen, 1987; Perez-Polo et al., 1979), phorbol ester

(Spinelli et al., 1982) or dibutyrl cyclic AMP (Perez-Polo et al., 1979) has been

reported to result in the terminal differentiation of SHSY-5Y cells as evidenced by
neurite outgrowth and enhanced electrical excitability. However, many studies do not

record the passage number at which cells were used, and the effects of passage
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number on the differentiation process are unclear.

The capacity to grow and divide which is central to tumour cell lines is not a feature
of mature adult CNS neurons. Indeed, at least in undifferentiated tumour cells,

regulation of cell survival is by definition disordered. Any inferences made from the

study of cell death in such systems must therefore be qualified, and supportive
evidence sought from other disease models.

Preliminary experiments

Because of the advantages outlined above, in particular the human derivation of the
SHSY-5Y line and the potential to use an antisense strategy to reduce the expression
of putative targets of FK506, I set out to test the efficacy of FK506 in preventing
SHSY-5Y cell death in response to a number of stimuli. Other workers in the

laboratory had demonstrated no effect on death caused by exposure to glutamate or

to NMDA. Therefore the insults chosen were ionomycin, staurosporine, and serum

withdrawal.

Preliminary experiments to examine the toxic effects of ionomycin and staurosporine
were carried out on cells at passage 74 to 80 derived from stocks frozen at passage

72. The differentiating regime used at this time was exposure to 10pM retinoic acid
in medium containing 10% serum. Laboratory practice was to make up a lOmM
solution of retinoic acid in alcohol, to store this protected from light in the fridge for

up to six months and to treat cells once in a seven-day differentiating period.

However, it became apparent that after 7 days there was considerable variability in
cell morphology and number, with many cells appearing more like fibroblasts than
neurons. This was reflected in marked variability in the cellular response to a given

insult, and resulted in considerable difficulty in robustly reproducing any given
result.
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Stability of retinoic acid

One possible reason for the variation was differences in the activity of added retinoic
acid. Following discussion with the technical support section of the Sigma Chemical

Company laboratory practice in the preparation of retinoic acid was changed such
that it was subsequently made up in DMSO at lOmM and stored in aliquots at -70°C
for a maximum of one month before use. Because of concerns about its stability in

aqueous solution medium containing retinoic acid was replaced every 48 hours

during differentiation rather than only once.

High passage

A second potential explanation was that at high passage the homogeneity of the
SHSY-5Y population might be compromised, with culture conditions selecting

emergent clones with shorter cell cycles, resistance to the population- stabilising
effects of differentiating agents, and more primitive morphologies. Indeed, there is
some evidence to support this view, with the demonstration that while at passage 3
clusters of SHSY-5Y cells have exclusively neuroblast morphologies, by passage 19
non- neuroblast (epithelial or mixed) morphologies were seen in 4.9% of such
clusters (Ross et al., 1983).

To test the homogeneity of passage 82 SHSY-5Y cells 1,500 cells per well were

plated to 6 well plates and grown under normal, non- differentiating conditions. After
seven days the cells were fixed and stained for MAP2 as described in Chapter 2.
Under these conditions cells are sufficiently widely distributed for those cells arising
from a single plated cell - that is cells of clonal origin - to be clearly identifiable in
well-localised clusters within which there was a high degree of morphological

homology.

In 100 such clusters the morphology was neuron- like in 27%, epithelial in 37%,
intermediate in 20% and mixed in 16%. Photomicrographs of such clusters are

shown in Figure 4.1. In (a) the morphology is in large part epithelial, although a few
cells show phase bright spindle shaped cell bodies, some ofwhich show more MAP2
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Figure 4.1: Phase contrast images and MAP2 immunopositivity in p82 SHSY-
5Y clusters at 7 D.I.V.

Phase Contrast MAP

Bar = 50jrm.
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immunopositivity than neighbouring cells. In (b), which is at higher power, cells are

more uniformly epithelial, forming a carpet of cells with only one pyramidal
neuron- like MAP2 positive cell. In (c) the cells are more typically neuron- like,

being widely distributed and demonstrating rounded to phase bright cell bodies with
fine neuritic processes and MAP2 positivity at immunostaining. (d) shows a similar
cluster at higher power, and in addition to the features in (c) also shows the presence

of numerous connections between adjacent cells.

These findings provided compelling evidence that at passage 82 SHSY-5Y cells
cannot be considered to be a clonal cell line. I therefore identified a source of low

passage SHSY-5Y cells (the European Collection of Animal Cell Cultures, ECACC
number 94030304) and compared the behaviour of cells at high and low passage.

Differentiating regimen

A third explanation might be that the differentiating regime was not optimal. In a

number of tumour cell lines, differentiation is achieved by a combination of a

differentiating agent and a reduction in the amount of serum added to the culture
medium. I therefore examined the effects of retinoic acid and of reducing the serum

concentration from 10% to 1%.

Experimental approach

The extent of terminal differentiation was determined quantitatively on the basis of
cell number and qualitatively by effects on cell morphology and the abundance of the
neuronal marker MAP2 and the G0 associated protein p21waf. MAP2 was chosen as it
is ubiquitously expressed in neurons but not in other cell types, and so would serve

as a marked for a neuron- like phenotype. Terminally differentiated SHSY-5Y cells
should exit the cell cycle and demonstrate increased abundance ofproteins associated
with G0, and for this reason p21waf immunopositivity was determined.

In this chapter I demonstrate that treatment of undifferentiated cells at passage 13 to

15 with lOpM retinoic acid and serum reduction from 10% to 1% for seven days
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results in stabilisation of population number, a more neuron- like morphology and
increased immunopositivity for MAP2 and p21waf. However, cells at passage 74 to

77 subjected to the same treatment resume population expansion after three days.
These results provide a method for the terminal differentiation of low passage

SHSY-5Y cells.

RESULTS

Population number

Undifferentiated cells

Population number for cells grown with 10% FCS increased rapidly, and the rate of
increase was similar for cells at both low and high passage. The number of Trypan
Blue excluding cells doubled after three days in culture and was increased five fold
after 7 days (Fig 4.2).

Differentiating conditions

In the presence of 1% serum and 10gM retinoic acid cultures at low passage showed
no significant increase in population number at three or seven days. In contrast, while
cell number in high passage cultures was unchanged at three days, by seven days it
was significantly higher than control (6.45m +/- 0.24m versus 2.32m +/- 0.11m,
mean +/- s.e.m., p<0.05, one way ANOVA with Dunnetf s method for multiple

comparisons) (Fig. 4.3).

These data are brought together in Figure 4.4, demonstrating that once population

expansion begins in high passage cells under differentiating conditions, the rate of

expansion is similar to that seen under non-differentiating conditions. It appears that

high passage cells become almost completely resistant to the restraining influence of

differentiating conditions on the rate of cell division.
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Figure 4.2: Population expansion under non- differentiating conditions

2 4

Days in Vitro

Increase in number of harvested Trypan Blue excluding SHSY-5Y cells at passage 8
(filled circles) or 72 (open circles) under non - differentiating conditions. Results
represent means of three independent experiments, *p<0.05 versus day 0, one way
ANOVA with Dunnetfs post hoc test.
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Figure 4.3: Population expansion under differentiating conditions

Increase in number of harvested Trypan Blue excluding SHSY-5Y cells at passage 8
(filled circles) or 72 (open circles) grown in 1% serum and lOpM retinoic acid.
Results represent means of three independent experiments, *p<0.05 versus day 0,
one way ANOVA with Dunnetfs post hoc test.
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Figure 4.4: Population expansion under differentiating and non- differentiating
conditions
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Combined data from Figs 2 and 3. Increase in number of harvested Trypan Blue
excluding SHSY-5Y cells at passage 8 (circles) or 72 (inverted triangles) under non-
differentiating (10% serum, filled symbols) of differentiating (1% serum and lOpM
retinoic acid, open symbols) conditions. Results represent means of three
independent experiments, *p<0.05 versus day 0, one way ANOVA with Dunnett's
post hoc test.
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High passage cells

Cell morphology

Figure 4.5 compares the morphologies of high passage cells treated for seven days
with serum reduction and retinoic acid alone or in combination. Both treatments lead

to a reduction in cell density, and this is more marked when they are given in
combination. This reduction in density is associated with the development of
rounded, phase bright cell bodies and neuritic processes seen most clearly with
combined treatment. However, even under these conditions many cells retain a more

primitive, undifferentiated appearance.

p2pwaf immunopositivity
With the exception of occasional cells no treatment was associated with p21waf
immunopositivity above background levels (Fig 4.6). A higher magnification view of
cells subjected to combined treatment is shown in Fig. 4.7, and again no

immunopositivity is apparent.

MAP2 immunopositivity

Serum reduction and retinoic acid treatments were each associated with a minor

increase in MAP2 immunopositivity (Fig. 4.8), and with combined treatment this
effect was more pronounced. At higher magnification (Fig. 4.9) it can be seen that
MAP2 immunoreactivity is localised to cells manifesting neuron- like morphologies,
and that within such cells it has a peri-nuclear and axonal distribution.

Low passage cells

Cell morphology

Figure 4.10 compares the morphologies of low passage cells treated for seven days
with serum reduction and retinoic acid alone or in combination. Both treatments lead

to a reduction in cell density, and this is considerably more marked when they are
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Figure 4.5: Effect of 7 days treatment with serum reduction, 10|jM retinoic
acid or both on phase contrast appearance of high passage SHSY-5Y cells.

10% 1%

Bar = 50|im.

Figure 4.6: Effect of 7 days treatment with serum reduction, 10pM retinoic
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Figure 4.6: Effect of 7 days treatment with serum reduction, 10|jM retinoic
acid or both on p21waf immunopositivity in high passage SHSY-5Y cells.

10% 1 %

Bar = 50(im.
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Figure 4.7: Effect of 7 days treatment with serum reduction and 10pM retinoic
acid on p21waf immunopositivity in high passage SHSY-5Y cells.

Bar = 12.5fj.m.

-93 -



Figure 4.8: Effect of 7 days treatment with serum reduction, 10pM retinoic
acid or both on MAP2 immunopositivity in high passage SHSY-5Y cells.

Bar = 50(a.m.
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Figure 4.9: Effect of 7 days treatment with serum reduction and 10pM retinoic
acid on MAP2 immunopositivity in high passage SHSY-5Y ceils.

Bar = 12.5(j.m.
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given in combination. This reduction in density is associated with the development of

rounded, phase bright cell bodies and neuritic processes seen most clearly with
combined treatment, although some cells retain a more primitive appearance.

p2 jwaf immunopositivity
Under control conditions, scattered cells are p21wal positive (Fig. 4.11). Serum

reduction, but not retinoic acid, leads to increased immunopositivity, and in
combination this difference is pronounced. At higher magnification (Fig. 4.12) it is
clear that this immunopositivity is distributed throughout neuron- like cells, but is
most pronounced in the nucleus. However, it is also clear that epithelial cells remain
even under these conditions, and these do not stain for p21waf.

MAP2 immunopositivity

Under control conditions a large proportion of cells are MAP2 positive, although
there is also a considerable contribution from epithelial, immunonegative cells (Fig.

4.13). Serum reduction but not retinoic acid led to a qualitative increase in the

proportion ofMAP2 positive cells, and in combination serum reduction and retinoic
acid lead to MAP2 immunopositivity in cells with neuron- like

morphologies (seen at higher power in Fig. 4.14). However, there remain cells with

epithelial morphologies that do not stain for MAP2.

DISCUSSION

These results demonstrate that treatment of low passage SHSY-5Y neuroblastoma
cells with serum reduction and retinoic acid for seven days results in them assuming
a phenotype more typical of terminally differentiated adult neurons. This change is
manifest as a stabilisation of population number, the development of rounded phase

bright cell bodies set against a dense neuritic network and immunopositivity for
MAP2 and p21waf. However, even under these conditions a proportion of cells
remain which have epithelial morphology and which do not stain for p21wat or for
MAP2. In contrast, while high passage cultures show some reduction in population

growth in response to the combination of retinoic acid and serum reduction this
effect is not sustained, and while they develop some immunopositivity for MAP2
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Figure 4.10: Effect of 7 days treatment with serum reduction, 10pM retinoic
acid or both on phase contrast appearance of low passage SHSY-5Y cells.

Bar = 25|im.
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Figure 4.11: Effect of 7 days treatment with serum reduction, 10|jM retinoic

Bar = 50|im.
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Figure 4.12: Effect of 7 days treatment with serum reduction and 10pM
retinoic acid on p21waf immunopositivity in low passage SHSY-5Y cells.

Bar = 12.5|im.
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Figure 4.13. Effect of 7 days treatment with serum reduction, 10pM retinoic
acid or both on MAP2 immunopositivity in low passage SHSY-5Y cells.

10% 1%

Bar = 50|nm.
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Figure 4.14: Effect of 7 days treatment with serum reduction and 10|jM
retinoic acid on MAP2 immunopositivity in low passage SHSY-5Y cells.

Bar = 12.5(im.
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they do not do so for p21waf.

p21waf belongs to a family of proteins that interact with and inhibit cyclin - cyclin

dependent kinase complexes, resulting in cells withdrawing from the cell cycle. The

gene for p21waf contains a functional retinoic acid response element in its promoter

region (Liu et al., 1996). However, in the current experiments the effect of serum
reduction alone was more marked than that of retinoic acid alone. One possible

interpretation is that increased p21waf abundance may be a general feature of
differentiation independent of the differentiating stimulus. This view is supported by
the increased p21waf abundance observed in SHSY-5Y cells differentiated with

aphidocolin and nerve growth factor (Poluha et ah, 1996). Indeed application of this

differentiating stimulus to SHSY-5Y cells where p21wat expression had been blocked

using antisense techniques resulted in cell death with nuclear changes typical of

apoptosis, implying that p21waf expression is required for cell survival during
differentiation (Poluha et ah, 1996).

High passage SHSY-5Y cells are clearly less responsive to serum reduction and
retinoic acid than those at low passage. This may be related to increased genomic

instability at higher passages leading to the emergence of clones resistant to terminal
differentiation. In their original paper Biedler et al (Biedler et ah, 1973) reported that
the modal number of chromosomes in the parent SK-N-SH cell line was 47 (range 45
to 48), the most common additional chromosome being a long, structurally abnormal
submetacentric marker of unknown origin. Subsequently Ross et al (Ross et ah,

1983) demonstrated changes in the distribution of different colony types with

passage number. After 3 passages each of 1,000 colonies examined demonstrated
neuroblastic morphology, but after a further 16 passages 37 of 1,000 colonies
manifested epithelial morphology and 12 a mixed morphology. The observation

reported here that only 27% of colonies at passage 82 had a predominantly neuron

like morphology is consistent with the emergence of yet more heterogeneity, and

divergence from neuroblast- like properties, at passages higher than those examined

by Ross et ah
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These findings demonstrate that following treatment with retinoic acid and semm

reduction low passage SHSY-5Y cells develop features of terminally differentiated
neurons. However, not all cells manifest all such features, and indeed some manifest

none of them. On this basis low passage terminally differentiated SHSY-5Y cells
should be used with caution. While they have many of the advantages described
above for cell lines and are human in origin, they cannot be considered to represent a

uniform population of neuron- like cells, and therefore some dilution of any effect

may be anticipated.

At higher passages the effect of retinoic acid and serum reduction is much less

pronounced. SHSY-5Y cells should not be used at high passage, and reports of the
use ofSHSY-5Y cells should specify the passage number.

Terminally differentiated SHSY-5Y cells provide an opportunity to study the death
of a neuron- like cell in response to diverse stimuli. Such death in response to the
calcium ionophore ionomycin, the protein kinase C inhibitor staurosporine and to

serum withdrawal is described in the next chapter.
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CHAPTER 5

RESPONSE OF SHSY-5Y CELLS
TO IONOMYCIN,

STAUROSPORINE AND SERUM
WITHDRAWAL

INTRODUCTION

One approach to the investigation of the mechanism(s) subserving the

neuroprotective actions of FK506 in animal models of focal cerebral ischaemia is to

identify cell culture systems in which cells die in response to a relevant stimulus and
in which FK506 prevents or inhibits that death. The importance of proteins purported
to mediate the protective effect of FK506 might then be assessed either through the
use of pharmacological inhibitors of such proteins, of primary cultures derived from

transgenic animals lacking genes encoding those proteins or of cell lines using
antisense techniques to reduce the expression of those proteins.

The terminal differentiation of the SHSY-5Y neuroblastoma cell line was described

in the previous chapter. These cells have some properties that might be considered
useful in the investigation of the neuroprotective effect of FK506. As tumour cells

they provide an effectively unlimited source of cells that can be grown for prolonged

periods in the presence of antisense oligodeoxynucleotides, allowing reductions in
the level of proteins. Alternatively, they might be transfected with foreign DNA to

over express proteins of interest, or DNA encoding antisense sequences to genes of

interest, or DNA encoding mutated proteins with dominant- negative activity. Using
cotransfection with antibiotic resistance genes it would be possible to select cells in
which foreign DNA had been successfully incorporated, and then using retinoic acid
and serum reduction to terminally differentiate these cells to a mature neuron- like

phenotype. Furthermore, as a human cell line they would be, in some respects, more

representative of cellular responses following human neuronal cell injury than
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models using tissue derived from other animals.

Against this background I have examined the effect of ionomycin, staurosporine,
serum withdrawal on terminally differentiated SHSY-5Y cells.

Ionomycin is a calcium ionophore, exposure to which causes a rapid increase in
intracellular calcium. In T lymphocytes ionomycin causes activation of NFAT1 and
T lymphocyte activation. This effect is blocked by FK506 (Shaw et al., 1995). In
HL-60 human promyelocyte cells, ionomycin causes apoptosis (Park et al., 1996)
and in neuronal primary cortical cultures ionomycin reduces survival (Durkin et al.,

1996).

Staurosporine is a broad-spectrum protein kinase C inhibitor which also has

inhibitory effects on other protein kinases and which in addition has recently been
shown to increase the activity of a previously uncharacterised c-Jun NH2 terminal
kinase (Yao et al., 1997). In a wide range of cell types including neurons exposure to

staurosporine rapidly leads to a cell death with morphological and biochemical
features of apoptosis (Wiesner and Dawson, 1996; Weil et al., 1996; Jacobson et al.,

1996; Krohn et al., 1998). The precise mechanism through which this occurs is not

known. Given the evidence discussed in Chapter 1 suggesting an important role for

apoptosis in the neuronal cell death in stroke I have examined staurosporine-induced
death in SHSY-5Y cells and the effect on this ofFK506.

In many neuronal cell culture systems withdrawal of serum leads to apoptotic cell
death (Miller and Johnson, 1996; Umegaki et al., 1996; Kim et al., 1999; Howard et

al., 1993). In undifferentiated SHSY-5Y cells, serum withdrawal causes apoptotic
cell death (Posmantur et al., 1997), and I have examined the consequences of serum
withdrawal in terminally differentiated SHSY-5Y cells and the impact on this of
FK506.

Exposure to excitotoxins is often used in cell culture models of stroke, and indeed
FK506 has been shown to have protective effects in primary neuronal culture in
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response to such stimuli (Dawson et al., 1993). However, previous work in our

laboratory had shown no effect of FK506 on glutamate- or NMDA- induced death in
SHSY-5Y cells, and so the effect of FK506 on excitotoxic death in SHSY-5Y cells

was not tested.

RESULTS

lonomycin

Time course

Exposure to ionomycin at a concentration of lpM caused a rapid reduction in
survival as measured using release of lactate dehydrogenase to the surrounding
medium. This effect was most pronounced in cells grown at low density (50,000 cells

per well), where near- maximal death was observed within 2 hours of ionomycin

exposure. However, even in cells grown at high density (150,000 cells per well)
death was rapid, with near maximal death occurring within 4 hours (Fig. 5.1).

Concentration dependence

This death was concentration dependent at both low- and high- density. LDH release
at 24 hours is shown in Figure 5.2. Interestingly, under control conditions

proportionate LDH release at 24 hours was higher in cells grown at low density, and
the concentration- response curve for ionomycin for low density cells was shifted
downwards with respect to high density cells, implying that cells at low density are

more susceptible to the toxic effects of medium change (control conditions) and

ionomycin. The EC50 was estimated by curve fitting to be 200nM at low density (r2 =
0.996), and 450nM at high density (r2 = 0.991) (Fig 5.3). However, when the data
was normalized such that survival under control conditions was defined as 100%

survival (Fig 5.4), there was no significant difference between the concentration-

response curves at the two densities (F=3.171, p=0.077, two way ANOVA).
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Figure 5.1: Timecourse of death in response to ionomycin

8 12 16

Time (hours)
High density
Low density

Survival of terminally differentiated SHSY-5Y cells at passage 12 to 14 at high
(filled circles: 150,000 cells per well) and low (open circles: 50,000 cells per well)
density measured using the LDH assay 0, 2 4, 6 and 24 hours following exposure to
1 pM ionomycin (mean ± s.e.m.: n=8 per point).
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Figure 5.2: Concentration- response curves for ionomycin
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Concentration- response curves for LDH release following 24 hours exposure to
ionomycin in terminally differentiated SHSY-5Y cells at passage 12 to 14 at high
(filled circles: 150,000 cells per well) and low (open circles: 50,000 cells per well)
density (mean ± s.e.m.: n=8 per point).
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Figure 5.3: Curve fitting to ionomycin concentration- response data

100 -|

log [lonomycin]

Low density •
High density o

Fitting of ionomycin concentration- response data from Figure 2 to the formula
Survival (y) = y0 + (a/(l+eA((xo-log[ionomycin])/b) where a, b, x0 and y0 are
constants. The correlation coefficient r2 for the line- fit was 0.996 for low density
(closed circles) and 0.991 for high density (open circles) cultures.
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Figure 5.4: Normalised ionomycin response

[lonomycin]

^■1 High density •

1 1 Low density

Data from Figure 2 normalised to Control survival = 100%. Note that the
concentration- response curves become closer compared with figure 2, and the data
for low (closed circles) and high (open circles) density cultures are not significantly
different (mean± s.e.m.: Two way ANOVA; n=8, F=3.171, p=0.077).
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Comparison ofdifferent endpoints

Both the Calcein AM™ and LDH assays measure the integrity of the cell membrane,
whereas the MTS assay is an index of mitochondrial respiratory activity, measuring
the conversion of MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxyphenoxyphenyl)-

2-(4-sulphophenyl)-2H-tetrazolium] to a coloured formazan product. While both
mitochondrial function and cell membrane integrity are lost as cells die, the
timecourse of these changes may be different, and at any one time they may have

proceeded to a different extent. In particular, loss of cell membrane integrity is often
held to be an early event in necrotic cell death and a late event in apoptosis.

I therefore compared the MTS, LDH and Calcein AM assays after exposure to

ionomycin for 24 hours. Figure 5.5 shows that across these assays the response to

increasing concentrations of ionomycin is broadly similar, and the normalised curves

are superimposed.

Characterisation of ionomycin- induced death

In primary cortical culture ionomycin causes neuronal death with some features of

apoptosis, but the response of SHSY-5Y cells has not been characterised. The
features of ionomycin induced SHSY-5Y death were therefore examined, with

particular regard to the presence or absence of features of apoptosis.

Caspase activity

Apoptosis requires the efficient disassembly of the cell, co-ordinated by the activity
of one or more members of the caspase family. Using an antibody that detects the

processed subunits of caspase 3 the large pi7 subunit was not detected, and there
was no proteolysis of one known caspase 3 substrate, poly (ADP-ribose) polymerase

(PARP). In extracts from cells exposed to ionomycin, caspase 3-like activity

(measured using a fluorogenic Group II caspase peptide substrate (Ac-Asp-Glu-Val-

Asp-; Ac-DEVD-AMC; Thornberry et al, 1997) was not significantly increased
above control levels (Table 5.1). However, activity was present in extracts ofA 1.1 T
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Figure 5.5: Comparison of different endpoints for ionomycin- induced death
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Concentration- response curves for ionomycin- induced death in terminally
differentiated SHSY-5Y cells at passage 13 to 18 at high density (150,000 cells per
well) measured using the MTS (closed circles), LDH (open circles) and Calcein AM
(inverted triangles) assay systems. For each assay survival is normalised to Control
survival = 100%. Note that the curves are superimposed one on the others (mean ±
s.e.m.: n=12 per point).
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cell hybridomas that had been induced to undergo apoptosis following exposure to

dexamethasone.

Table 5.1: Effect of ionomycin on DEVD cleavage activity

Negative Control Ionomycin 300nM Positive Control
Dexamethasone treated
Al.l cells

0.144 ±0.016 0.243 ± 0.073 1.091 ±0.064

mean ± s.d; relative fluorescent units per mg protein per minute; Data from three
independent experiments

Other features of apoptosis

Oligonucleosomal DNA fragmentation was not present, nor were the nuclear changes
found in apoptosis; neither Hoescht 33258 fluorescence or light microscopy of
toluidine blue stained thick sections demonstrated nuclear fragmentation or

crescentic chromatin condensation.

Effect ofFK506

Figures 5.6 and 5.7 show survival in cells exposed to 300nM ionomycin either alone
or in combination with three different concentrations ofFK506 for 2, 4, 6 or 24 hours

at low (Fig. 5.6) or high (Fig. 5.7) density. At no combination of duration of

exposure, concentration of FK506 or cell density was a protective effect of FK506

seen, and indeed at the highest concentration, particularly in high density cultures,
there is a trend towards a toxic effect of FK506. In these experiments, cells were

incubated with FK506 for 24 hours before ionomycin was added, but the results were

comparable ifFK506 was added at the same time as ionomycin.

Discussion

Ionomycin causes death in SHSY-5Y cells at similar concentrations as reported for

primary cortical cultures (Takei et al., 1995; Datta et al., 1997a). The timecourse of
death in SHSY-5Y cells is very rapid, with near maximal death occurring in low-
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Figure 5.6: Effect of FK506 on ionomycin- induced death in low density
cultures
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Survival in low density cultures cells exposed to 300nM ionomycin for 2 (closed
circles), 4 (open circles), 6 (closed triangles) or 24 (open triangles) hours in the
presence of increasing concentrations of FK506. FK506 was without effect (mean ±
s.e.m.: n= 8 per point).

-114-



Figure 5.7: Effect of FK506 on ionomycin- induced death in high density
cultures
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Survival in high density cultures cells exposed to 300nM ionomycin for 2 (closed
circles), 4 (open circles), 6 (closed triangles) or 24 (open triangles) hours in the
presence of increasing concentrations of FK506. FK506 was without effect (mean ±
s.e.m.: n= 8 per point).
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density cultures within two hours. While apoptosis can proceed to completion over

such short timescales, it usually takes longer.

Furthermore, the equivalence of concentration- response curves using endpoints

measuring mitochondrial function and membrane integrity implies that membrane

integrity is not preferentially preserved, as occurs in apoptosis. Finally, there was no

caspase activation, DNA fragmentation or nuclear changes of apoptosis.

Taken together, these observations demonstrate SHSY-5Y cells exposed to

ionomycin do not die by apoptosis. This is in contrast to primary cortical culture,
where exposure to relatively high (lpM) concentrations of ionomycin have been

reported to lead to the development of changes in nuclear morphology typical of

apoptosis (Hatanaka et al., 1996) and of oligonucleosomal DNA fragmentation

(Takei et al., 1995).

Cell survival is clearly affected by the density at which cells are grown, under both
control conditions and following ionomycin exposure. The reduction in survival
under control conditions seen in the LDH assay may reflect differences in the
concentration of survival factors elaborated by the cells themselves, with cells at high

density having higher concentrations of such survival factors. The shift of the
concentration- response curve following ionomycin exposure may simply be a

consequence of this general effect of density on survival, as when the data were

normalized (Control survival = 100%) no significant difference was observed.

While FK506 effectively inhibits ionomycin- and calcium- mediated events

including cell death in lymphocytes, it was without effect on SHSY-5Y cells. This
was the case across a range of concentrations of FK506 against a concentration of

ionomycin causing approximately 60% cell death. FK506 was also unable to delay

death, as it was without effect at 2, 4, 6 or 24 hours, and this lack of effect occurred

whether FK506 was added 24 hours before, or at the same time as ionomycin. At the

highest concentration studied, FK506 showed a non-significant trend towards
increased death, which could represent a negative effect on neuronal survival that
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would be more apparent at higher concentrations.

Staurosporine

Time course

Exposure to staurosporine at a concentration of 300nM caused a less rapid reduction
in survival compared with that observed for ionomycin. Again, death was most

pronounced in cells grown at low density (50,000 cells per well), where almost half
of the observed death occurred within the first 4 hours; at high density, in contrast,

half of the observed death occurred within 6 hours (Fig 5.8).

Concentration dependence

Staurosporine induced death was concentration dependent at both low- and high-

density. LDH release at 24 hours is shown in Figure 5.9. Under control conditions,
the proportionate LDH release at 24 hours was higher in cells grown at low density.

Following staurosporine exposure the concentration- response curve for low-density
cells was shifted to the left with respect to high-density cells, implying that cells at

low density are more susceptible to the toxic effects of staurosporine. Fitting a four

component sigmoid curve to the concentration response curve demonstrated an EC50
of approximately 30nM at low density (r2 = 0.996), and of 200nM at high density (r2
= 0.999) (Fig 5.10). When the data was normalised to control survival being 100%
this difference remained (Fig 5.11), and the curves were significantly different

(F=38.6, p<0.001, two way ANOVA).

Comparison ofdifferent endpoints

Again, the MTS, LDH and Calcein AM™ assays were compared following exposure

to staurosporine for 24 hours. In contrast to the results for ionomycin, the MTS assay

is significantly more sensitive to staurosporine-induced death than either the Calcein
AM™ or the LDH assays (Figure 5.12) (Two way ANOVA, F= 11.8, p<0.001). At
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Figure 5.8: Timecourse of death in response to staurosporine

High density
Low density

8 12 16

Time (hours)

Survival of terminally differentiated SHSY-5Y cells at passage 12 to 14 at high
(filled circles: 150,000 cells per well) and low (open circles: 50,000 cells per well)
density measured using the LDH assay 0, 2 4, 6 and 24 hours following exposure to
lpM staurosporine (mean ± s.e.m.: n=8 per point).
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Figure 5.9: Concentration- response curves for staurosporine
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Concentration- response curves for LDH release following 24 hours exposure to
staurosporine in terminally differentiated SHSY-5Y cells at passage 12 to 14 at high
(filled circles: 150,000 cells per well) and low (open circles: 50,000 cells per well)
density (mean ± s.e.m.: n=8 per point).
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24 hours, staurosporine has a more pronounced effect on mitochondrial respiration
than on membrane integrity consistent with it causing apoptotic death.

Characterisation ofstaurosporine- induced death

Caspase activity
lOOnM staurosporine caused a significant (p<0.03) increase in DEVD cleavage

activity (Table 5.2), in contrast to ionomycin, and consistent with the more

pronounced effect on mitochondrial respiration described above.

Table 5.2: Effect of staurosporine on DEVD cleavage activity

Negative Control Staurosporine lOOnM Positive Control
Dexamethasone treated
Al.l cells

0.056 ± 0.068 0.908* ±0.215 1.429 ±0.126

mean ± s.d; relative fluorescent units per mg protein per minute;
*p<0.03 (t-test); Data from three independent experiments.

Effect ofFK506

No combination of duration of exposure (from 2 to 24 hours), concentration of
FK506 (from InM to lOOnM) or cell density was associated with a protective effect
of FK506 in cells exposed to lOOnM staurosporine (Figs 5.13 and 5.14). These
results were comparable whether FK506 was added 24 hours before or at the same

time as staurosporine.

Discussion

Staurosporine causes a concentration dependent death in SHSY-5Y cells with a

timecourse of 4 to 6 hours, consistent with death occuring by apoptosis. The
increased estimate of death using the MTS assay ofmitochondrial function compared
with the LDH assay of membrane integrity implies that membrane integrity is in this
case preferentially preserved, as occurs in apoptosis. Furthermore, SHSY-5Y death
was associated with caspase activation as manifest by a 16- fold increase in the rate
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Figure 5.10: Curve fitting to staurosporine concentration- response data

Low density •
High density o

Fitting of staurosporine concentration- response data from Figure 9 to the formula
Survival (y) = yo + (a/(l+eA((xo-log[staurosporine])/b) where a, b, xo and yo are
constants. The correlation coefficient r2 for the line- fit was 0.996 for low density
(closed circles) and 0.999 for high density (open circles) cultures.
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Figure 5.11: Normalised staurosporine response
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Data from Figure 9 normalised to Control survival = 100%. Note that the
concentration- response curves remain separated, and the data for low (closed
circles) and high (open circles) density cultures are significantly different (mean ±
s.e.m.: Two way ANOVA; n=8, F=38.552, p<0.001).
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Figure 5.12: Comparison of different endpoints for staurosporine- induced
death

[Staurosporine]

■1 MTS
i nwU LUn

■ Calcein AM

Concentration- response curves for staurosporine- induced death in terminally
differentiated SHSY-5Y cells at passage 13 to 18 at high density (150,000 cells per
well) measured using the MTS (closed circles), LDH (open circles) and Calcein
AM™ (inverted triangles) assay systems. For each assay survival is normalised to
Control survival = 100%. Note that while the curves for Calcein AM™ and LDH
assays are superimposed one on the other the MTS concentration- response curve is
more sensitive to staurosporine (mean ± s.e.m.: n=12 per point).
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of cleavage of a synthetic Class II caspase substrate. Taken together, these
observations demonstrate that, in common with many neuronal culture systems,

SHSY-5Y death following staurosporine exposure manifests several features of

apoptosis.

The difference in the toxic effects of staurosporine between high and low density
cultures was more pronounced than seen with ionomycin, with a 6 to 7- fold
reduction in the EC50. Even when the effect of density on baseline survival is
eliminated, there remains a significant effect of density on staurosporine- induced
death. Clearly there is some survival influence present in high density cultures,
whether this be due to chemical or physical interactions between cells or to the
removal of some toxic compound - perhaps even staurosporine itself - from the
culture medium. The larger difference in the EC50 is consistent with staurosporine

causing death more typical of apoptosis and ionomycin causing death more typical of
necrosis, as many such survival influences appear able to inhibit apoptosis, while few

appear able to inhibit necrotic cell death.

FK506 was without effect in staurosporine treated SHSY-5Y cells. This was the case

across a range of concentrations of FK506 against a concentration of staurosporine

causing approximately 60% cell death. FK506 was ineffective if given 24 hours
before or at the same time as staurosporine, and was also unable to delay death, being
without effect at 2, 4, 6 or 24 hours. At the highest concentration, FK506 again
showed a non-significant trend towards increased death, as was seen with ionomycin
induced death.

Serum withdrawal

When serum was withdrawn from differentiated SHSY-5Y neurons a proportion of
the cells decreased in size, fragmented and eventually detached from the culture dish.
At 24 hours ofwithdrawal, analysis of collected, centrifuged cells using a chromatin
stain revealed a proportion of cells with shrunken nuclei containing condensed
chromatin (Fig. 5.15). At 48 hours these changes for individual cells appeared more
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Figure 5.13: Effect of FK506 on staurosporine- induced death in low density
cultures
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Survival in low density cultures cells exposed to 1 OOnM staurosporine for 2 (closed
circles), 4 (open circles), 6 (closed triangles) or 24 (open triangles) hours in the
presence of increasing concentrations of FK506. FK506 was without effect (mean ±
s.e.m.: n= 8 per point).
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Figure 5.14: Effect of FK506 on staurosporine- induced death in high density
cultures
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Survival in low density cultures cells exposed to lOOnM staurosporine for 2 (closed
circles), 4 (open circles), 6 (closed triangles) or 24 (open triangles) hours in the
presence of increasing concentrations of FK506. FK506 was without effect (mean ±
s.e.m.: n= 8 per point).
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pronounced and by 72 hours the chromatin in some cells was crescent shaped and

marginalised to the nuclear membrane. At later times however the overall proportion
of cells displaying this morphological change was not greatly increased and at 24 and
72 hours many apparently normal cells were observed. It was not possible to quantify
the numbers of apoptotic cells due to the limitations of the technique used.

Oligonucleosomal DNA fragmentation was not observed.

Apoptosis requires the efficient disassembly of the cell co-ordinated by the activity
of one or more members of the caspase family. Using an anti-caspase 3 antibody that
detects processed subunits the large pi 7 subunit of caspase 3 was detected in serum

deprived but not in control extracts at 24 hours, indicating processing and therefore
activation of the enzyme (Fig. 5.16a). Caspase 3- like activity, measured using

cleavage of a fluorogenic peptide substrate (Ac-DEVD-amc; Group II caspase

(Thornberry et ah, 1997)), was significantly increased following 24 hours of serum

deprivation (Table 5.3) (p<0.05, t-test). In these and related samples, the proteolysis
of a known caspase 3 substrate, PARP, was observed (Fig 5.16b) particularly at 48
hours. Cleaved PARP was undetectable in control extracts.

Table 5.3: Effect of serum withdrawal on DEVD cleavage activity

Negative Control Serum withdrawal Positive Control
Dexamethasone treated
A1.1 cells

0.115 ±0.025 0.209* ± 0.019 1.885 ±0.487
mean ± s.d; relative fluorescent units per mg protein per minute;
*p<0.03 (t-test); Data from three independent experiments.

FK506 may have neuroprotective properties through an inhibition of neuronal

apoptosis. I therefore examined whether FK506 could prevent serum withdrawal
induced apoptosis in SHSY 5Y cells. Exposure of serum-deprived cells to FK506
lead to a significant, concentration- dependent increase in survival at 24 hours

(F=8.38, p<0.001, one way ANOVA) as quantitatively assessed using the MTS

assay. After 24 hours of serum withdrawal alone cell viability was reduced to 69% of
that seen in controls (Fig 5.17); there was no further decline in viability at longer
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durations of serum withdrawal. The maximum effect of FK506 was observed at

30nM (viability 12% higher than serum withdrawal alone, p<0.05 with Dunnett's
method for multiple comparisons). No concentration of FK506 was able to

completely prevent the loss of viability that results from serum withdrawal. Indeed,
as with the experiments on the effect of FK506 on the toxicity of ionomycin and of

staurosporine, there is a suggestion of a toxic effect of FK506 at concentrations

greater than lpM. The survival- promoting effect was not augmented when cells
were pre-incubated with FK506 for 24 hours prior to serum withdrawal.

To determine whether the effect of FK506 was due to inhibition of apoptosis I
examined its effects on markers of caspase activation. FK506 did not prevent either
the processing of caspase 3 to yield the large 17kdal subunit (Fig. 5.16a) nor the

proteolytic cleavage ofPARP in SHSY-5Y cells deprived of serum for 48 hours (Fig.

5.16b). Furthermore, Ac-DEVD-amc cleavage activity was not reduced by FK506

(Fig. 5.16c). Thus FK506 was able to promote the apparent short term viability of a

proportion of SHSY-5Y cells without inhibiting caspase activation or activity.

NGF withdrawal in mouse trigeminal ganglion sensory neurons

To determine whether FK506 had protective effects in other models of survival
factor withdrawal induced apoptosis the effect of FK506 on NGF withdrawal-
induced apoptosis in cultured embryonic mouse sensory neurons (Allsopp et al.,

1993) was examined by Dr. Timothy E Allsopp.

More than 90% of these cells (determined by direct counting of neurons) die within
48 hours of NGF withdrawal (Fig. 5.18). FK506 was only able to suppress a small

proportion of this death (F=15.48, p<0.001) with maximum effect seen at a

concentration of 100 nM (survival 18% of NGF-treated controls, compared with
survival of 4% in the absence of FK506; p<0.05 with Dunnett's method for multiple

comparisons). At higher concentrations FK506 did not promote survival and at the

optimum concentration (100 nM) FK506 was unable to promote the long-term
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Figure 5.15: Effect of serum withdrawal on nuclear morphology

Terminally differentiated SHSY-5Y cells were either maintained in serum-containing
medium (1) or deprived of serum and retinoic acid for 24 (2), 48 (3) or 72 (4) hours.
Cells were then collected, rinsed in ice cold PBS and pelleted in preparation for
fixation and embedding. Thick sections were cut and stained with toluidine blue. At
24 hours some increased chromatin condensation is apparent and by 48 hours there is
crescent-shaped chromatin condensation (arrows). At 72 hours smaller chromatin
fragments consistent with nuclear break up are observed against a background of
cells which appear normal.
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Figure 5.16: Serum withdrawal results in caspase 3 processing, poly (ADP-

ribose) polymerase (PARP) cleavage and DEVD-amc cleavage activity

serum +

FK506 - - +
Neurons were maintained under control conditions (lane 1) or subjected to serum
deprivation for 48 hours in the absence (lane 2) or presence (lane 3) of lOOnM
FK506. Extracts were prepared for SDS-PAGE analysis with immunoblotting for (a)
caspase 3 or (c) PARP processing. Serum withdrawal results in accumulation of
caspase 3 pl7 subunit and PARP proteolysis. FK506 does not prevent either of these
effects, (b) Neurons were serum-deprived for 24 hours then collected, extracted and
caspase 3-like Ac-DEVD-amc cleavage activity analysed (Life Sciences Resources;
Fluoroskan Ascent) using appropriate excitation (340 run) and emission (460 nm)
filters. Serum withdrawal leads to 3 fold increase in DEVD-amc cleavage activity
(p<0.05, One way ANOVA with Dunnett's method for multiple comparisons) and
FK506 has no effect on this activity.
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Figure 5.17: Effect of serum withdrawal on the viability of terminally
differentiated SHSY-5Y cells

120 -i

[FK506]

Neurons were serum deprived for 24 hours in the absence of FK506 (vehicle) or the
presence of various FK506 concentrations. Viability was subsequently assessed
using the MTS assay (see Materials & Methods) and data is expressed as viability as
a percentage of the maximum MTS signal in control cultures. 24 hours of serum
deprivation causes a decline in viability to 69% of non-deprived controls. FK506
treatment results in a promotion of viability (F=8.38, p<0.001, n-12) which is
concentration- dependent and which reaches a maximum of 77% of control at 10 nM
(*p<0.05, Dunnett's post hoc test).
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Figure 5.18: Effect of NGF withdrawal on the viability of mouse trigeminal

ganglion sensory neurons
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Embryonic sensory neurons were initially grown in the presence of NGF (4 ng/ml)
and then deprived of NGF by extensive washing. The number of viable neurons
possessing a phase bright soma and intact neurites longer than 3 times the cell soma
diameter were initially counted in a defined area. 48 hours later the number of
remaining viable neurons in each experimental condition was assessed and the data
expressed as a percentage of the maximum cell survival seen in control (+NGF)
cultures. NGF deprivation, shown here on a logarithmic scale, causes a decline in
viability to 4% of control. FK506 treatment resulted in a concentration-dependent
promotion of viability (F= 15.48, p<0.001, n=16) to a maximum of 18% of control at
100 nM (*p<0.05, Dunnett's post hoc test).
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viability of NGF-deprived neurons. Nearly all neurons maintained by FK506
treatment at 48 hours were dead by 72 hours of NGF deprivation (data not shown).
Thus FK506 was able to delay the death of a proportion of these neurons following
NGF deprivation.

Discussion

SHSY-5Y cells apoptose in response to serum deprivation

Terminally differentiated SHSY-5Y neurons undergo apoptosis in response to serum

withdrawal, as shown by changes in nuclear morphology, caspase processing and
activation and endogenous caspase substrate proteolysis. 24 hours serum withdrawal
leads to a 31% reduction in survival measured using the MTS assay. This is the first
demonstration of apoptosis occuring in response to serum withdrawal in
differentiated SHSY-5Y cells.

There was no further decline in viability from 24 to 72 hours, so the maximum
reduction in survival was 31%, indicating that many terminally differentiated SHSY-
5Y cells are resistant to serum withdrawal induced apoptosis. Survival beyond 72
hours was not measured because it would not be possible to distinguish between the
effects of withdrawing serum and of falling retinoic acid concentrations due to its

instability in solution; in SHSY-5Y cells withdrawal of retinoic acid has been

reported to cause apoptosis (Lovat et al., 1997). In Chapter 4 I have demonstrated
substantial heterogeneity of SF1SY-5Y cells following differentiation, with many

cells retaining non-neuronal morphologies and remaining negative for the
differentiation markers MAP-2 and p21waf~\ Furthermore, being of malignant origin
these cells may have blunted responses to apoptotic stimuli. There may be
differences between cells in the integrity of death pathways and this may give rise to

substantial heterogeneity in the response to injury.

Oligonucleosomal DNA fragmentation was not observed in SHSY-5Y cells

following serum withdrawal using standard techniques that were able to detect such
DNA laddering in dexamethasone treated Al.l T cell hybridoma cells. While DNA
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laddering is considered to be one of the cardinal features of apoptosis, there are

reports of apoptotic cell death occuring without oligonucleosomal DNA

fragmentation in hepatocytes exposed to transforming growth factor B (Oberhammer
et ah, 1993) MOLT-4 cells exposed to staurosporine (Falcieri et ah, 1993) and PC-12
cells subjected to serum withdrawal (Mesner et ah, 1992). Alternatively, it may be
that because only one third of cells die their fragmented DNA contributes a smaller

proportion of total DNA which is therefore more difficult to detect on agarose gels. It
would be possible to address this question directly using alternative means of

demonstrating DNA fragmentation, for instance by growing cells in the presence of

bromodeoxyuridine (BrdUr) and staining electrophoresed DNA with an anti-BrdUr

antibody, or using a ligation mediated PCR based technique to amplify the DNA

fragments prior to conventional ethidium bromide/ agarose gel electrophoresis.

FK506 has no effect on markers of apoptosis following serum withdrawal
FK506 partially protects SHSY-5Y neurons from the decline in viability seen

following serum withdrawal. While this death response manifests several hallmarks
of apoptosis, the promotion of survival occurs without a detectable effect on caspase

3 processing or cleavage of Ac-DEVD-amc or PARP. Given the limited effect on

survival, it may be that western blotting is not sufficiently sensitive to detect changes
in caspase 3 processing or PARP cleavage. However, the lack of effect on Ac-
DEVD-amc cleavage activity at 24 hours suggests that FK506 does not inhibit

caspase activity following serum withdrawal. Alternatively, FK506 may inhibit

caspase activity earlier in the course of the response to serum withdrawal, reflected
in increased survival at 24 hours, with this inhibitory effect being lost by 24 hours.
This could be due to a reduction in the concentration of FK506 at 24 hours, as

described in Chapter 2, or to FK506 being able to delay but not prevent apoptosis

following serum withdrawal.

The MTS assay was chosen as the primary endpoint because it appeared to be more

sensitive to the development of apoptotic death following staurosporine exposure

than either the LDH or the Calcein AM assays. As the MTS assay measures

mitochondrial respiratory activity, it is conceivable that FK506 could be promoting
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an increase in mitochondrial activity independent of an effect on cell survival.
However, there was no such promotion ofMTS signal in the continuing presence of

serum, and a similar effect of FK506 was observed in preliminary experiments using
the LDH assay. While Gold and colleagues have shown a trophic effect of FK506 on

SHSY-5Y cells (Gold et al, 1999), this occurs at lower concentrations (10 pM to 10

nM) than the survival promoting effect observed here. Furthermore, since FK506 had
no effect on the MTS signal under control conditions a direct trophic effect is

unlikely. Therefore, the most reasonable explanation for the observed effect of
FK506 following serum withdrawal in SHSY-5Y cells is an effect on cell survival.

Effect of FK506 on mouse trigeminal ganglion cells

Embryonic mouse sensory neurons undergo apoptosis when deprived ofNGF and the
reduction in viability is partially inhibited by FK506. The effect of FK506 was

quantified by counting the number of remaining cells and is therefore not reliant on
the MTS assay. As with SHSY-5Y cells FK506 had no effect on viability under
control conditions, providing further evidence against a neurotrophic mechanism for
the observed effects.

As with SHSY-5Y cells, the effect of FK506 is small, with a maximum of less than

20% of neurons remaining viable following 48 hours of NGF deprivation. This

compares with rescue rates of over 90% in cells treated with the caspase inhibitor

acetyl-Asp-Glu-Val-Asp-aldehyde (Allsopp et al., 1998).

Mechanism(s) of survival promoting effect of FK506
The mechanism(s) through which FK506 protects cells from the consequences of
survival factor withdrawal is not clear. In both SHSY-5Y cells and mouse trigeminal

sensory neurons less than one third of dying cells can be rescued, and in SHSY-5Y
cells there is no inhibition of caspase activity. Together with the near total inhibition
of NGF withdrawal induced apoptosis seen in trigeminal ganglion sensory cells
treated with caspase inhibitors this suggests that the protective effect of FK506 may

not be mediated through an inhibition of apoptosis.
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FK506, cyclosporin and their analogues have been shown to augment the neurite

outgrowth-promoting effect of NGF on dorsal root ganglion explants and PC 12 cells

(Steiner et al., 1997), and Gold et al have recently shown that a similar effect of

picomolar concentrations of FK506 on SHSY-5Y cells is due to inhibition of the

activity of FKBP 52 (Gold et ah, 1999b). However, the lack of effect ofFK506 under
control conditions on the end points used in both SHSY-5Y cells and trigeminal

ganglion sensory neurons in the present study argues against a neurotrophic
mechanism for the observed promotion of viability.

The immunosuppressant cyclosporin inhibits glutamate induced apoptosis in
cerebellar granule cells, and it is thought that this may occur through inhibition of
mitochondrial processes (Ankarcrona et ah, 1996). However, this is not likely with

FK506, as in contrast to cyclosporine, FK506 has no effect on the mitochondrial

permeability transition (Friberg et ah, 1998).

It may be that FK506 is able to inhibit some but not all components of the apoptotic

machinery, or that it is able to delay but not prevent caspase activation. FK506 is
known to inhibit the calcium dependent phosphatase calcineurin (protein phosphatase

2B), from which a number of consequences for neuronal survival might be predicted.

Survival signals such as insulin- like growth factor maintain neuronal survival by

stimulating phosphatidyl inositol 3' kinase (PI3K), and inhibition of PI3K by

compounds such as wortmannin results in cell death with many features of survival
factor withdrawal induced apoptosis (D'Mello et ah, 1997). PI3K activation leads to

activation of protein kinase B (Akt) (Dudek et ah, 1997). Akt activation leads to

reduced caspase 9 activity (Cardone et ah, 1998); to activation of the transcription
factor NF kappaB (Ozes et ah, 1999; Romashkova and Makarov, 1999), which can in
turn induce TRAF1, TRAF2, c-IAPl and C-IAP2 leading to inhibition of apoptosis

(Wang et ah, 1998); to retention of the Forkhead transcription factors FKHRL1 and
AFX in the cytoplasm, inhibiting their proapoptotic activity (Brunet et ah, 1999:
Takaishi et ah, 1999); and to phosphorylation of the proapoptotic Bcl2 family
member Bad.
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Overexpression of calcineurin kills cells by apoptosis (Shibasaki and McKeon 1995)
and phosphorylation of Bad inhibits apoptosis (Zha et al 1996, Datta et al 1997);

preventing Bad phosphorylation at serinel36 by expressing mutant Bad where this
residue is replaced by alanine abrogates the survival promoting effect of IGF-1 in
cerebellar granule cells (Datta et al., 1997b). Recently Wang et al have shown that
calcineurin can dephosphorylate Bad at multiple sites; that following L-glutamate
treatment of primary rat hippocampal neurons Bad is dephosphorylated and
translocated to mitochondria; and that these changes are blocked by FK506 and by

overexpression of mutated calcineurin with dominant-negative activity (Wang et al.,

1999).

Following survival factor withdrawal, decreased PI3K activity may lead to reduced
Akt activity; under the influence of calcineurin, Bad phosphorylation may diminish
with a consequent increase in its apoptosis- inducing activity. Therefore by reducing
calcineurin activity FK506 may delay the apoptosis-promoting activity of Bad

(Figure 5.19).

A number of experimental approaches could be adopted to further explore the
mechanisms of FK506's neuroprotective actions. Determining whether FK506

Figure 5.19: Possible mechanism of action of FK506
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analogues that are unable to inhibit calcineurin have survival promoting effects, or
whether FK506 protects cells when calcineurin expression is reduced by antisense

techniques, would confirm that FK506 mediates its effect through an effect on

calcineurin. Testing the effect on SHSY-5Y cell survival of PI3K inhibitors such as

wortmannin or LY 294002 would demonstrate whether or not survival influences

were mediated through tonic activation of a survival factor-PI3K- Akt pathway in
these cells. Finally, the effects of serum withdrawal and FK506 on serinel36

phosphorylation ofBAD could be examined using the specific antibody generated by
Datta et al (Datta et al., 1997b).

GENERAL DISCUSSION AND CONCLUSIONS

Using three different insults I have demonstrated 3 different patterns of death in

terminally differentiated SHSY-5Y cells. The calcium ionophore ionomycin caused

rapid loss of mitochondrial function and membrane integrity, and FK506 was not

able to inhibit that death. The protein kinase inhibitor staurosporine caused a slower
loss of first mitochondrial function and then membrane integrity, and while this death
had some features of apoptosis FK506 was again without effect.

Withdrawal of serum resulted in SHSY-5Y apoptosis as manifest by nuclear changes
and caspase activation, and this reduction in survival was partially inhibited by
FK506. As has been found in some other systems, SHSY-5Y apoptosis was not

accompanied by oligonucleosomal DNA fragmentation; however, it may be that the
use of more sensitive techniques would be able to detect its presence. FK506 was

without effect on caspase activation at 24 hours, but any inhibition might be manifest

only at earlier time points.

How FK506 protects these cells is not clear, and further experiments are needed to

define its mechanism of action in this system. However, given that only one third of
cells die following serum withdrawal and that FK506 is only able to rescue around
one third of these, it may be difficult to design experiments where small changes in
the efficacy of FK506 would be apparent. Furthermore, since two-thirds of cells do
not appear to be affected by serum withdrawal, and two thirds of the remainder do

-138-



not appear to be affected by FK506, changes in protein expression or enzyme activity
in the remaining ninth may be difficult to detect. In spite of these reservations, I
believe further study of serum withdrawal induced apoptosis in terminally
differentiated SHSY-5Y cells offers the potential to increase our understanding of the
mechanism of action ofFK506.
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CHAPTER 6

DISCUSSION

FK506 is one of a number of chemicals, along with staurosporine, rapamycin and

wortmannin, that occur naturally in fungi and that have profound effects on signal
transduction in mammalian cells. This conservation of effect across species barriers

suggests that these compounds may be involved with modulating fundamental

processes common to much of the living world. With FK506 in particular, the
involvement of its binding proteins in diverse signaling pathways including calcium

release, the transforming growth factor B receptor and steroid receptor complexes

along with its ability, in complex with FKBP12, to inhibit the protein phosphatase
calcineurin gives it many possible mechanisms of action. Where biological effects
are of potential therapeutic importance, as with the immunosuppressive and

neuroprotective effects of FK506, understanding the mechanism(s) that subserve
these effects may help in the search for and the design of other drugs with greater

efficacy and lower toxicity.

FK506 has potent neuroprotective properties in focal cerebral (Sharkey and Butcher,

1994) and transient global (Tokime et al., 1996) ischaemia and improves motor

performance following middle cerebral artery occlusion (Sharkey et al., 1996). In

primary neuronal cortical culture, FK506 inhibits glutamate- induced neuronal death

(Dawson et al., 1993). In this thesis I have described the approach I have taken to

identify those actions ofFK506 responsible for its neuroprotective properties.

Previously, these neuroprotective properties had been attributed to inhibition of
calcineurin-mediated dephosphorylation of nitric oxide synthase leading to reduced
nitric oxide production and reduced free radical mediated damage. Evidence in

support of this hypothesis came from primary cortical culture, where the

neuroprotective effect of FK506 was associated with increased phosphorylation and
reduced activity of nitric oxide synthase (Dawson et al., 1993). However, these
authors did not demonstrate that inhibition of NOS was required for the
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neuroprotective effect of FK506. Nonetheless, considerable evidence from both

pharmacological nNOS inhibition with 7-nitroindazole (Yoshida et al., 1994) and
from experiments in transgenic animals lacking nNOS (Hara et ah, 1996; Huang et

ah, 1994; Panahian et ah, 1996) suggests that nNOS makes an important contribution
to neuronal death in stroke and that its inhibition has neuroprotective effects.

In Chapter 3 I describe experiments testing the hypothesis that FK506 is able to

inhibit NMDA induced NOS activity in cerebellar prisms ex-vivo. In prisms from
neonatal rats NMDA induces a rapid rise in NOS activity that in turn stimulates the

enzyme guanylate cyclase and leads to the accumulation of cyclic GMP. Using a

radioimmunoassay for cGMP I have demonstrated that cGMP accumulation begins
within a minute of NMDA stimulation and is inhibited by the NMDA receptor

antagonist MK-801 and the broad spectrum NOS inhibitor L-NAME. The NO donor
SNP stimulated cGMP production, and this was not inhibited by either MK-801 or L-
NAME. These results are consistent with NMDA inducing accumulation of cGMP

through stimulation ofNOS. I have gone on to demonstrate that in cerebellar prisms
FK506 augments protein phosphorylation following NMDA stimulation, although I
have not examined directly the effect of FK506 on NOS phosphorylation. In this

system FK506 was entirely without effect on NMDA stimulated cGMP production.

The effect on protein phosphorylation demonstrates that FK506 is able to inhibit
calcineurin in this preparation. It may be that calcineurin and NOS exist in separate

cellular compartments, or that while inhibiting NO mediated cGMP accumulation
FK506 simultaneously promotes cGMP accumulation through an alternative

pathway; unfortunately it was not possible to measure NO production directly.

However, the most credible explanation for these data is that in neonatal cerebellar

prisms FK506 does not inhibit NOS activity.

The extent to which it is possible to generalise from this finding to the effect of
FK506 on nNOS activity in adult cortex following middle cerebral artery occlusion
is not clear. Attempts to measure cGMP production in prisms from adult rat

hippocampus and cortex were unsuccessful because levels of cGMP produced were
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below the limits of detection of the radioimmunoassay used.

The absence of an effect on cGMP production found here is in contrast to the

findings in primary cortical culture ofDawson et al (Dawson et ah, 1993) that FK506
inhibits NMDA mediated cGMP production. This may reflect a regional difference
in the regulation of NOS activity. Alternatively, it may be that regulation of nNOS

activity in dissociated culture does not reflect the situation in ex vivo preparations
and in vivo following stroke, where FK506 may not inhibit nNOS activity.

Recent evidence supports the view that the neuroprotective effect of FK506 is not

dependent on inhibition of nNOS activity. Cortical cultures derived from mice

lacking nNOS are partially protected from NMDA- induced death, but not to the
same degree as wild type cultures protected with FK506. Furthermore, in cultures

lacking nNOS FK506 was still neuroprotective, reducing death by almost 30%

(Dawson et ah, 1996), demonstrating that nNOS is not required for the

neuroprotective effect of FK506. More recently, the same group has reported that
nNOS activity is not reduced by neuroprotective treatment with FK506 following
middle cerebral artery occlusion in rats (Toung et ah, 1999). That is to say, the effect
of FK506 on nNOS activity in animal models of focal cerebral ischaemia mirrors the
effect shown in Chapter 3 in cerebellar tissue prisms ex vivo, and not the effects

reported earlier from primary cortical culture.

If FK506 is exerting its neuroprotective effects through other mechanisms, what

might these be? FK506 is known to inhibit activation- induced apoptosis in T

lymphocytes (Bierer et al., 1990), a process which involves marked increases in
intracellular calcium similar to those seen in neurons exposed to hypoxia or

excitotoxins. Apoptosis is now recognised as an important mode of neuronal death in
cerebral ischaemia (Choi, 1996; Linnik, 1996), and FK506 might be reducing infarct
size in focal cerebral ischaemia by inhibiting the apoptotic contribution to neuronal
death.

To examine the role of FK506 in neuronal apoptosis I have examined apoptotic cell
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death in a SHSY-5Y neuroblastoma cell line. This cell line was chosen because as a

human cell line its characteristics are potentially more generalisable to human
neurons than cell lines derived from other animals. Of the human neuronal cell lines

available, SHSY-5Y cells were easier to grow and differentiate than for instance
NTera II cells (Pleasure et al., 1992; Pleasure and Lee, 1993).

Initial experiments used differentiated SHSY-5Y cells at high passage. Neither their

morphology nor their response to various toxins was constant. I therefore identified a

source of low passage SHSY-5Y cells and compared their behaviour with high

passage cells under differentiating conditions. A retinoic acid / serum reduction
differentiation regime was chosen because other regimes such as those using phorbol
esters or cAMP analogues might have a greater confounding impact on neuronal
second messenger systems involved in signaling death pathways than retinoic acid.
This work is described in Chapter 4, where I demonstrate that treatment of low

passage cells with retinoic acid and serum reduction for 7 days results in the

development of neuron- like morphology, with stabilisation of cell number and the

development of immunopositivity for the neuronal marker MAP2 and the cell cycle

Go marker p21waf.

In Chapter 5 I describe the response of terminally differentiated SHSY-5Y cells to

three different death inducing stimuli. The calcium ionophore ionomycin caused

rapid and simultaneous loss of mitochondrial respiratory activity and membrane

integrity (determined using the MTS and LDH assays respectively) and had no effect
on endogenous (PARP) or synthetic (Ac-DEVD-amc) Caspase 3 substrate cleavage.
This demonstrates that in SHSY-5Y cells at the concentrations studied ionomycin
does not cause apoptotic death. This contrasts with findings from primary neuronal

culture, where at similar concentrations it has been reported to induce apoptosis

(Hatanaka et al., 1996; Takei and Endo, 1994). While FK506 has been reported to

inhibit ionomycin- induced responses in T- lymphocytes (Mattila et al., 1990) it was
without effect on ionomycin- induced cell death in SHSY-5Y cells.

The broad spectrum protein kinase C inhibitor staurosporine also caused death in
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SHSY-5Y cells in a concentration dependent fashion, but the onset of the death was

slightly slower, and there was a significant difference between the MTS and LDH

assays. The decline in viability determined using the MTS assay, an index of
mitochondrial function, was more pronounced than that seen using the LDH assay, a

measure of membrane integrity. Because loss of membrane integrity is a held to be a

late event in apoptosis, this finding suggests that staurosporine may be causing

apoptosis in SHSY-5Y cells. This is supported by the increased cleavage of the

synthetic caspase 3 substrate Ac-DEVD-amc seen following staurosporine treatment.

Staurosporine was chosen as a prototypical inducer of neuronal apoptosis. The
mechanism of this action is not clear, as in addition to its effect on protein kinase C

staurosporine activates a p57 Jun Kinase (Yao et al., 1997). It has also been reported
to have NGF- like effects on PCI2 cells (Yao et al., 1997), G protein mediated
effects on phospholipase D activity in peritoneal neutrophils (Kanaho et al., 1992),
and it may induce ceramide pathways in primary culture of embryonic chick cortical
neurons (Wiesner and Dawson, 1996). Irrespective of the mechanism through which

staurosporine induces apoptosis in SHSY-5Y cells FK506 was again without effect.

Serum withdrawal caused the apoptosis of a proportion of SHSY-5Y cells, as

evidenced by characteristic nuclear changes, caspase activation and cleavage of

caspase substrates. FK506 partially reduced the decline in viability seen following
serum withdrawal, but was without discernable effect on caspase activation.

However, given the magnitude of the FK506 effect changes in caspase activity below
the limits of detection of the methods used, or indeed caspase inhibition occuring at

an earlier timepoint, cannot be excluded. While FK506 has been reported to have

neurotrophic effects in cell culture, these generally occur at lower concentrations to

those at which it has its protective effect here. No effect of FK506 on MTS signal
was observed under control conditions, making this an unlikely explanation for the
observed effects.

SHSY-5Y apoptosis following serum withdrawal results from the withdrawal of
some factor or factors present in serum whose continuing presence is required for
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cell survival. Neuronal apoptosis induced by withdrawal of such factor is though to

be mediated through a reduction in the tonic activity of a PI3K pathway that

normally has a number of apoptosis- inhibiting consequences. One such consequence

is increased Bad phosphorylation, and by reducing calcineurin activity FK506 may

delay Bad dephosphorylation following serum withdrawal.

It is not yet clear to what extent deactivation of this PI3K pathway is responsible for
neuronal apoptosis following stroke. Experiments targeting components of other

pathways, such as those with transgenic animals lacking the DNA damage sensing

protein p53 (Crumrine et al., 1994), or with pharmacological inhibition of NMDA

receptors (Didier et al., 1996; Ikeda et al., 1996), suggest that these pathways are

important routes to apoptosis following stroke. Involvement of the PI3K signaling in
neuronal injury following stroke has yet to be demonstrated. However, Bad

phosphorylation is not solely a consequence of PI3K pathway activation, as it is also
a target for the MAP kinase survival promoting pathway (Bonni et al., 1999).

Furthermore, expression of a dominant negative form of calcineurin inhibits L-

glutamate mediated excitotoxicity in hippocampal cells (Wang et al., 1999).

Therefore, the effect ofFK506 may be mediated through such an interaction even if a
PI3K pathway is not itself activated in focal cerebral ischaemia.

Abrupt changes in mitochondrial permeability (the mitochondrial permeability

transtion) are thought to act as a signal for cell death, and cyclosporine blocks the
mitochondrial permeability transition. However, this cannot explain the

neuroprotective properties of FK506 as FK506 has no effect on the mitochondrial

permeability transition (Friberg et al., 1998).

FK506 has been shown to have neurotrophic properties in cell culture (Gold et al.,

1999b) and in neurite regrowth following injury (Steiner et al., 1997). While the
effect on SHSY-5Y cells following serum withdrawal is unlikely to be due to such an

effect, for the reasons given above, it may be that the neuroprotective effects of
FK506 following focal cerebral ischaemia are due to such neurotrophic properties
rather than to an effect on neuronal apoptosis.
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In conclusion, I have demonstrated that FK506 can be without effect on NOS activity
in brain tissue. Secondly, I describe the terminal differentiation of SHSY-5Y cells. In
these cells both serum withdrawal and staurosporine cause a decline in viability that
has some of the features of apoptosis; the effect of serum withdrawal, but not

staurosporine, is partially reversed by FK506.
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