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Abstract 

The controlled translocation of submolecular units is seen as an important 

requirement for the future development of "machines" which function through 

mechanical motion at the molecular level. Mechanically-interlocked molecules, i.e. 

catenanes and rotaxanes, are ideal candidates for application as components for 

molecular devices due to the inherent restrictions in the degrees of freedom presented 

in their architectures. Hydrogen bond-directed assembly offers powerful strategies 

for the synthesis of such structures on a scale where practical applications become a 

realistic area for study. This thesis focuses on (i) the use of hydrogen bonding 

interactions in the synthesis of structurally different fuimaramide template-containing 

[2]rotaxanes, (ii) the control of the rotational and translational motion in stimuli-

responsive [2]rotaxanes and (iii) the control of a physical property, such as elliptical 

polarization, in a stimuli-responsive two-station [2]rotaxane. The stimuli required to 

promote the submolecular motion are light and heat. 
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General Remarks of Experimental Data 
All the melting points (m.p.) were determined using a Electrotermal 9100 melting 

point apparatus and are uncorrected. 'H (400 MHz) and 13C (100 MHz) NMR spectra 

were recorded on a Bruker DPX 400 MHz spectrometer using dilute solution in 

CDC13, CD2C12, c4-DMSO, C2D2CL4 without any internal reference and referenced to 

the residual solvent signal as internal standard (CHC13 at ö, = 7.27, s; öc = 77.0, t; 

CDHCl2 at oH = 5.32, t; Oc = 53.5, m d5-DMSO at 011 = 2.54, m; öc = 40.5, m; 

C2DHC1I at oH = 5.96, s; & = 78.0, t) and the chemical shifts are reported in part per 

million (ppm) from low to high field. All the 'H and ' 3C NMR spectra were recorded 

at 298K unless otherwise stated. The FIDs were processed by the software WinNMR C, 

and where it was necessary the FIDs were treated with different kind of apodization 

functions. 'H NMR are reported as follows: br = broad, s = singlet, d = doublet, dd 

doublet of doublets, t = triplet, dt doublet of triplets, q = quartet, m = multiplet, 

2J(H,H) = geminal coupling constant, 3J(H,H) = vicinal coupling constant, 4J(H,H) = 

dihedral coupling constant. ' 3C NMR are reported as follows: ArC (ipso) = 

quaternary aromatic, ArCH = non quaternary aromatic. H-H COSY, HMQC, HMBC, 

NOESY 2D were also recorded for some compounds to enable more detailed 

assignement of 'H and 13C signals. Rotaxanes and their respective threads have been 

named using IUPAC/ACD software. Column chromatography was carried out using 

Kiesegel C60 (Merck) as stationary phase. TLC detection was performed on silica 

gel plates (0.25 mm thick, 60 F254, Merck, Germany). The TLC plates were 

observed under UV light or stained with iodine vapours, or spotted used different 

developing solutions as 8% sulphuric acid, 0. IN KMnO4  or 0.2% ninhydrin in EtOH 

and successively heated using an heatgun. Mass spectrometry and IIRMS analyses 

were performed by the University of Warwick and University of Edinburgh mass 

spectrometry service using fast atom bombardment (FAB) from m-nitrobenzyl 

alcohol matrix unless otherwise stated. Elemental analyses were performed by the 

University of Warwick and University of Edinburgh elemental analysis service. The 

CD measurements were recorded in the range 235-320 nm on a JASCO J-810 

spectropolarimeter at 0.1 mM substrate, concentration with a path length of 0.1 cm. 

The path length allowed the reproducible measurements of the CD spectra even in 

CHC13 in the range 235-320 nm, despite the strong absorbance of the solvent at these 
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wavelengths. Photo-isomerizations were carried out in quartz vessels using a 

multilamp photoreactor model MLU18 manufactured by Photochemical Reactors 

Ltd, Reading UK. Reagents and anhydrous solvents used for the reactions were 

purchased from Aldrich and were in general used without further purification. 

Isophthaloyl dichloride was routinely recrystallized from hexane and para-

xylylenediamine was distilled under reduced pressure. Anhydrous chloroform used 

for the rotaxane formation reactions was stabilized with ainylenes. 
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Layout of this Thesis 

The 'work presented in this thesis describes (i) the synthesis of rotaxanes by using 

hydrogen bonding and (ii) the control of motion of their submolecular components. 

A brief review of the literature is given in chapter one describing the background to 

controlled motion at the molecular level, from rotational motion in trypticene groups 

to the translational motion in molecular shuttles. 

The remainder of the thesis discusses my own experiments in this area - sometimes 

in collaboration with colleagues - and is presented in the form of five chapters that 

are actually articles that have either already been published, are in press or have been 

prepared for submission to a peer-reviewed journal. No attempt has been made to 

rewrite the work out of context, instead the contributions of others are gratefully 

acknowledged at the start of each chapter. For the benefit of the reader - and the 

flow of the story - a brief synopsis is included before each chapter to set the scene, 

outline the ideas behind the work and the approach that was taken. I hope that the 

reader will forgive me for the small amount of repetition that stems from this 

approach! 

Giovanni Bottari February 2003 
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Chapter One 

Molecular Machines: 

The Beginning of a Revolution 

"Fatti non foste a viver come bruti, 
ma per seguir virtute e canoscenza" 

Dante Alighieri 
Inferno, Canto XXVI, vv 119-120 

"Ye were not made to live like unto brutes, 
but for pursuit of virtue and of knowledge" 



Chapter One 

1.1 From Macroscopic to Artificial Molecular-Level Machines 

Since their first appearance, lost in the midst of time, macroscopic machines have 

significantly changed and continue to deeply influence the face of our society. 

Nowadays in fact we use machines, designed to perform a diverse range of tasks, in such 

an extensive way that our society would be inconceivable without them. 

A new "revolution" is now taking place extending the concept of macroscopic machines 

down to the molecular level and opening new, interesting fields of research found within 

the broad topic of nanoscience. 

The first time the possibility of constructing artificial molecular-level machines was 

contemplated was in 1959 by the Nobel Laureate Richard Feynman during the annual 

meeting of the American Physical Society in his historical address: "There is Plenty of 

Room at the Bottom". 1  Here are some prophetic sentences from this lecture: 

What would be the utility of such machines? Who knows? I 

cannot see exactly what should happen, but I can hardly doubt 

that when we have some control of the arrangement of things on 

a molecular scale we will get an enormously greater range of 

possible properties that substances can have, and of the 

different things we can do. 

This new approach requires a fine manipulation of molecules, the smallest entities with 

defined shape and property present in Nature, therefore a prominent role is assigned to 

the chemists. Their ability and creativity, particularly in the last two decades, has made it' 

possible to create molecules of high complexity and in sufficient yields to allow studies 

of properties, making it possible to apply such a systems to everyday life. 
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Chapter One 

1.1.1 Main Features of Artificial Molecular-Level Machines 

A molecular-level machine can be defined as an assembly of a discrete number of 

molecular components designed to perform mechanical-like movements (output) as a 

consequence of appropriate external stimulus (input). 2  The main features of such a 

machine are i) the kind of energy by which it is powered, ii) the type of movement 

performed, iii) the manner in which the motion can be monitored and controlled and iv) 

the function performed by the machine. 

As pointed out by Feynman more than 40 years ago, such a machine should be powered 

by "cold" chemical reactions because of the impossibility of an internal combustion 

engine of molecular size. Moreover the reactions must be reversible so that the work 

performed by the machine can be cycled more than once. Examples of such reactions are 

isomensation of double bonds, acid-base reactions, redox processes and complexation-

decomplexation equilibria such as forming and breaking of hydrogen bonds. The use of 

chemical reagents as "fuel" for such machines would result in accumulation of by-

products and ultimately could compromise a proper functioning of the machine itself, 

whereas photochemically or electrochemically reactions are instead ideal being in 

general fast and relatively clean processes. As a result of the external input applied a 

change in the relative position of some of the constitutive parts of the molecular level 

machine is achieved. The movement can then be monitored by following changes in 

some of the physical properties of the molecular species. Finally the functions that can 

be performed as consequence of the submolecular motion of some of the machine 

components are, to a large extent, still unpredictable and unexplored. 

The dynamic of these machines is strictly dependent upon the shape and the spatial• 

arrangement of the molecular components. Two distinct categories of molecular level 

machines can be envisaged, by analogy with their macroscopic counterparts: i) systems 

with rotating moving parts and ii) systems with translating moving parts. 
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1.2 Molecular Level Devices with Covalently-Connected Rotating Parts 

1.2.1 Molecular propellers and gears 

Historically, molecular species consisting of two or three aryl rings covalently connected 

to a central atom, are considered the first examples of molecules presenting internally 

restricted motion reported in the literature (1 and 2). A combination of NMR 

spectroscopy and X-ray crystallography provided evidence that the aromatic rings are 

tilted in the same direction relative to the reference plane in an arrangement similar to 

the blades of a propeller. Even though there are no restrictions to the independent 

rotation of each of the aromatic units, this process is energetically disfavoured compared 

to the concerted rotation of the aryl rings. 

9 
Z . 

Z=CH2, NH 

Z'CH, N 

1 
	

2 

The concept of the interdependent motion of aryl units in molecular propellers has been 

exploited in the design of a new class of molecules presenting restricted internal motion, 

the molecular "bevel gears". These molecules present two or more tightly intermeshed 

rotating units arranged in such way that the rotation of these groups are mutually 

dependent. 

An example of this phenomenon is 3, which consists of two bridged triptycene groups in 

which the rotational movement of one of the units induces the concerted motion of the 

second one as the two units are interdigitated. 4  A combination of 'H and 13C NMR 

spectroscopy quantified the energy barrier of the "gear rotation" of the triptycyl unit as 8 

kcal mol', whereas molecular modelling showed a much higher value, 30-40 kcal mol' 

for the uncorrelated rotation of the tridentate unit, referred as a "gear slippage". 
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CI 

0 

CI 

The concept of a double connected bevel gear has been implemeited by the synthesis of 

4, which consists of three triptycil units. 5  In this system the rotation of the two external 

non-directly connected triptycyl groups is mutually influenced and the concerted 

rotational motion made possible by the presence of a third central-bridging triptycyl 

group.6  

1.2.2 Controlled Chemical Rotors 

In the molecular rotors mentioned so far the interdependent rotational motion of the 

triptycyl units is powered by the thermal energy of the system and thus uncontrolled. 

Kelly and co-workers attempted to overcome this limitation by synthesising a 

"molecular brake".7 nnected to a The molecule 5 is a triptycyl derivative covalently co  

chelating 2,2'-bipyridine unit (Scheme 1.1). The rapid rotation around the carbon-carbon 

bond connecting the two units is demonstrated by the presence in the 1H NMR at 30 °C 

of four distinct signals for the aromatic protons of the triptycyl unit (brake off). 

5 
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5 (brake oft) 	 6 (brake on) 

Scheme 1.1 The molecular brake is controlled through the complexation-decomplexalion of the bipyridine 
unit The brake is turned on by addition of Hg2  (6) and sequentially turned off upon addition of EDTA 
(5). 

Treatment of 5 with Hg 2  affords a new molecular species 6 where the metal cation is 

coordinated to the two pyridine nitrogens. This chelation aligns the two bipyridyl units 

hence slowing the rotation of the triptycyl unit as confirmed by the loss in the 

degeneration of some of its aromatic protons at —30 °C (brake on). At 30 °C however the 

protons of the triptycene coalesce in a broad signal indicating that the steric hindrance of 

the pyridyl group is not sufficient to stop the spontaneous rotation of the trypticene and 

slippingof the brake is occurring. The original demetallated species 5 can be restored by 

adding EDTA to 6 proving the reversibility of the system. 

1.2.3 Towards Unidirectional Molecular Motors 

In order to generate a chemical rotor that exhibits unidirectional motion, the design of 

the molecular brake 5 was modified. The 2,2'-bipyridine group was replaced by an 

[4]helicene unit flinctionalised with a hydroxypropyl group whereas the tnptycyl unit 

was fI.inctionalised with an amine, to obtain the molecular rotor 7 (Scheme 1.2). 8  

rel 
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H2N 

(CH2)30H 

7a 

(CH2)3O0 
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Me 

0 
A. 	 cl-u-cl 

Et3N 
(CH2)30H 

7  

Me 

rotate 

(CH2)30H 

8 

urethane 
formation 

Me 
NaBH(OEt) 3 , 	/  
(cleaves 	I rotate 
urethane) 	 over Eact  

HN 
'I 

O — ç.J 
0O-(CH)3 

9a 

Scheme 1.2 Sequence of the 1200  unidirectional rotation of a chemically powered rotor 7. 

Treatment of 7 with COC12 and Et 3N gives the isocyanate 8 which once formed can react 

intramolecularly with the hydroxyalkyl group of the helicene affording the urethane 9 in 

a highly strained conformation. Compound 9 then rotates around the single bond 

connecting the helicene to the triptycyl unit forming the isomer 9a and thus releasing the 

strain. Finally cleavage of the urethane with H20 affords the compound 7a in a 

conformation which is different from its isomer 7. This new conformation is obtained as 

result of a unidirectional 120° rotation promoted by the formation and breaking of a 

covalent bond. 

1.2.4 Light- and Temperature- Driven Unidirectional Molecular Rotor 

Feringa and co-workers reported the first example of molecular motor displaying 

repetitive and controlled 360° unidirectional motion around an alkene bond in response 

7 
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to photomc and thermal stimuli (Scheme 1 
•3)9  The system is constituted by two 

tetrahydrophenanthrene units covalently connected by a carbon-carbon double bond.' °  

Each of the two helical groups, due to stenc reasons, can adopt a right-handed (P) or a 

left-handed (M) helicity, distorting the expected planarity imposed by the double bond. 

The four step rotation is achieved by an initial irradiation at X 2 280 nm at —55 °C of 

(P,P)-trans-1O to obtain the (M,M)-cis-10 isomer. 

~ 280 nm 
a- 

~ 380 nm 

(P,P)-tmns-10 
	

(M,M)-cis-1O 

60 C 
	

20 C 

~ 380 nm 

~ 280 nm 

(MJt'f)-tmns-10 	 (P,P)-cis-10 

Scheme 1.3 The 3600  unidirectional rotation is achieved in a four-step process involving alternative 
isomerisation of double bond and thermal interconversion of helicity. 

Interconversion of helicity, while maintaining the Z configuration, is achieved by 

heating the solution of (M,M)-cis-10 at 20 °C generating the thermodynamically more 

stable (P,P)-cis-10 isomer bearing the two methylene groups in a less sterically 

demanding axial position. A further 180° rotation is obtained by Z—+E isomerisation at ?. 

2 280 nm to afford (M,A4)-trans-10 whose helicity can be inverted by heating the 
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solution at 60 °C to obtain the original (P,P)-Irans-10 isomer, the most 

thermodynamically stable of the all four isomers of the cycle, where the methylene 

substituents are, once again, adopting a more stable equatorial orientation. The overall 

process can be monitored by following the changes in the absorption intensity of circular 

polarised light at 217 nm. The correct functioning of the system depends crucially on the 

control of the temperature, in fact by irradiating the compound (P,P)-trans-10 at 60 °C 

all the four species are obtained at once without control. 

Control over the speed of the unidirectional rotation in molecular rotors has been 

achieved by synthesising a series of overcrowded alkenes, 1119.11 The phenomenon is 

exploited by changing the nature of the heteroatoms X and Y thereby modifying the 

energy barrier of the helical inversion, the rate-determining step of the unidirectional 

rotation. The speed of the thermal inversion of helicity changes by a factor of 400 from 

17 to 16. 

R1 

X=S, Y= S, R1 =OMe, R2 H 

X=S, Y= S, R1 H, R2=0Me 

XS, Y= S, R1 =H, R2=H 

X=S, Y= S, R1 =OMe, R2=OMe 

X=S, Y= 0, R 1 =H, R2=H 

2 16, XS, Y= C(CH3)2, R 1=H, R2=H 

X=CH2, Y= S, R1 =H, R2=H 

X=CH, Y= C(CH3)2, R1 =H, R2=H 

X=CH2, Y= CHCH, R1 =H, R2=H 

The construction of stimuli-responsive molecular species that could lead to changes in 

some of the macroscopic properties of a system is one of the major endeavours in 

contemporary science. Recently, Feringa and co-workers demonstrated that if the 

molecular rotor (P,P)-trans-10 is doped into a nematic liquid crystal film and irradiated 

at A > 280 nm, the demonstrated unidirectional rotation of the molecular rotor induces a 

01 
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rearrangement of the mesogenic molecules which leads to a gradual change in the colour 

of the doped film from purple to red after only 80 seconds of irradiation (Figure 1.1). 
12  

The colour of the mesogenic film can be finely tuned by changing parameters such as 

irrac 1 ' 	n me 	'\eienet1i used or 	Intencitv 

Figure 1.1 Colors of a molecular rotor doped liquid crystal phase. starting from pure (J',P)-1rc1fl.-1O (far 
left) upon irradiation at ? >280 nm at room temperature, until an irradiation time of 80 s (far right) 

1.3 Molecular Level Devices with Noncovalently-Con nected 

Translating Parts 

1.3.1 Catenanes and rotaxanes 

Catenanes and rotaxanes, molecules consisting of mechanically interlocked, non-

covalently connected components, are ideal candidates for use, as molecular devices 

where translational movement is required (Figure 1.2).13 

[2]catenane 	 [2]rotaxane 

Figure 1.2 Cartoon representing the topology of a [2]catenane and a [2]rotaxane 

A catenane, from the Latin calena, meaning chain, is a molecular species formed by 

two, or more, interlocked macrocycles which can be separated only by breaking one or 

more covalent bonds. Instead a rotaxane, from the Latin rota and axis meaning 

respectively wheel and axle, consists of a macrocycle threaded onto a linear molecule 

10 
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(thread) which bears two bulky groups (stoppers) at its extremities preventing the 

slippage of the macrocyclic unit. A rotaxane without "stoppers" is referred to as a 

pseudo-rotaxane. A prefix number in square bracket is usually present for such 

molecules indicating the number of the interlocked components. 

1.3.2 Early synthetic approaches in the synthesis of Il21rotaxanes 

The first synthesis of a [2]rotaxane, 20, was reported by Harrison and Harrison in 

1967.14 The synthesis was performed using a statistical approach based on the random 

threading of a linear dialcohol onto a 30-membered ring. The obtained pseudo-rotaxane 

was then "stoppered" by reaction with an excess of a bulky acid chloride resulting in the 

formation of the [2]rotaxane in 6% yield after repeating the reaction 70 times (Scheme 

1:4). 

solid support 

ozOO  
OCH,),a 

i) triphenylmethyl 
chloride 

pyridine 

DMF HO  
Ph 

 
toluene 	Ph 

Ph 0 	
Ph 

Ph fl) cleavage 	 (CH2)28 	Ph 

20 (CH 

HO ,,_OH 

Scheme 1.4 Synthesis of the first rotaxane, 20, obtained in a 6% yield by a statistical method repeated 70 
times 

Shortly after, Schill and co-workers reported another synthetic methodology consisting 

of the synthesis of a rotaxane precursor species, 21, followed by selective cleavage of 

covalent bonds to afford the desired interlocked molecule 22 (Scheme l.5).15  This later 

methodology however left unsolved the major and limiting problem in the synthesis of 

such interlocked molecules: the extremely poor yields. 

11 
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0 
(CH2)12 

(cH2)i ,, JLL) 
N > (CM2)12 

(CH2)12 

21 	4 

/C 

(cH2)12,.JL I j 
(CH2)12  

Ac 

22 

Scheme 1.5 Synthesis of the first rotaxane, 22, obtained by "covalently"directed synthesis 

1.3.3 Supramolecular chemistry assistance in the synthesis of [21rotaxanes 

The advent of "supramolecular assistance" represented the real breakthrough in the 

synthesis of interlocked species. 16  A variety of attractive, non-covalent interactions 

(metal-ligand, it donor-it acceptor, hydrophobic and/or hydrogen bonding) have been 

exploited in the last few decades, in so-called template directed synthesis. The 

supramolecular interactions are required in order to organise the precursor components 

of the interlocked molecule prior the interlocking. 

To this point three distinct strategies have been developed for the synthesis of rotaxanes 

(Figure 1.3): i) the "slippage" 7  where a macrocyclic unit passes over the stoppers of a 

thread, usually at elevated temperatures, ii) the "threading" 8  where the equilibrium-

dependent formation of a pseudo-rotaxane is trapped by a "capping" reaction with two 

bulky stoppers preventing the macrocycle from unthreading, and iii) the "clipping" 9  

where the rotaxane is obtained by the closure of an acyclic unit templated around a 

"stoppered" thread. 

12 
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+ 0 
f4 44 	79  VA =MMWP_ 7 1 ft , 

0 : 0 W 0 

iii)Q_MW4 	
Ak 

Figure 1.3 Cartoon representing the three different synthetic strategies to obtain rotaxanes. In the last case 
the formation of the desidered rotaxane is accompanied by the production of other species such as 
macrocycles and catenanes 

1.3.4 Rotaxanes as molecular shuttles 

Rotaxanes are ideal candidates to exploit translational movements at the molecular level 

due to their unique mechanically interlocked architectures. A "shuttling" movement of 

the macrocycle along the dumbbell-shape component is realised if more than one 

binding site for the macrocyclic ring is present on the thread. The binding sites, called 

stations, must present accessible free activation energy barriers between them and be 

located far enough apart so that the shuttling movement can be well distinguished from 

any other internal motion governed by conformational rearrangements. A [2]rotaxane 

containing two degenerate and well-separated stations on its thread can be considered as 

the simplest example to study the shuttling phenomenon (Figure 1.4). 

13 
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Figure 1.4 A cartoon representing the shuffling movement in a two degenerate stations-containing 
[21rotaxane and the associate potential energy profile. 

In such a system the macrocycle shuttles back and forward between the two 

isoenergetic, and thus equally occupied, stations. The first example of molecular 

shuttling in a rotaxane architecture was reported by Stoddart and co-workers in 1991 

(Scheme 1.6).20 

+ 	 + N 	 N 	 23 

_____ I' _____  
SIO 0 0 O—J—OO 0 0 0 	 0 0 

1: 	LG - 13 kcal mo 1  
N.e. 	(CD3)2C0 

N 

4Si-0 0 0 0 	0 0 0 0 0\;)-00 0 O-S  

+N 

Scheme 1.6 The first molecular shuttle. The cyclophane unit moves back and forth between two 
isoenergetic stations 

14 
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The rotaxane 23 consists of a it-electron poor tetracationic cyclophane mechanically 

interlocked onto a linear thread containing two isoenergetic it-electron rich 

hydroquinone stations separated by a polyether spacer. Since the two stations are 

identical, the macrocyclic unit has no preference for either of the two sites and shuttles 

between them with a k = 2360 s_ I  in (CD3)2C0 at 34 °C measured by 'H NMR 

spectroscopy. The motion of the macrocycle is powered by the molecular tumbling of 

the medium which provides the energy required to overcome the free activation energy 

barrier between the two stations so that two "co-conformations" 2'  are obtained. This 

molecular shuttle does not perform any work because the AG' of the system is zero. 

In order to have a stimuli-responsive [2]rotaxane the two binding sites on the thread 

must be different so that the AGO between the two stations is not zero (Figure 1.5). 

tG0(state I )o 

IG1  

ttG° (state2)<0 	(state2) 

( 
State I 

stimulus A a4C 
p 

I 	State  

stimulus B 

4 

Figure 1.5 A cartoon representing a rotaxane as a molecular machine, showing the work cycle together 
with the associated potential energy curves for the two different states. 
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In such a rotaxane the macrocycle sits preferentially over the station that provides the 

best stabilisation energy (i.e. state 1, station green). An appropriate external stimulus 

applied, can then increase the binding affinity of the macrocycle for the initial less 

favourite station (as in the cartoon of Figure 1.5) or destabilise the binding affinity of the 

macrocycle for the initial favourite station. This ultimately, results in the shuttling of the 

macrocycle over to the initial unfavoured station (i.e. state 2, blue station) that now 

provides the best stabilisation energy. Applying a second stimulus restores the original 

state and closes the cycle. All the stimuli-responsive molecular machines based on 

rotaxane architectures reported in literature work along these principles; 22  the only 

difference lies on the nature of the stimuli applied. 

1.3.5 Chemically and electrochemically switchable molecular shuttles 

Stoddart and co-workers have reported in 1994 the first example of stimuli-responsive 

rotaxane, 24 4+  (Scheme 1.7). 23  This rotaxane consists of a it-electron poor tetracationic 

cyclophane macrocycle mechanically interlocked onto a thread containing two stations 

with different it-donor abilities, namely a benzidine and a biphenyl station. At —44 °C in 

CD3CN the benzidine station has a greater it-electron donor ability than the biphenol 

station therefore the it-electron poor macrocyclic unit spends 84% of its time over it. 
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+N 

0 0 HN 	-- 	C-NH 0 0 :\j_jjo 0 0 °Xii 25 

-e 	+e - 

+ N  

/\ 	.' 	I' / 	I\ 	- 	 / 	I. 	/ 
0 0 HNj\jjNH 0 0 0 - 	 0 0 0 01K 24 

+N 

TFA 	pyridine 

+N 	 N+ 

1 ' 	 / 	+ 
SFO 0 0 H 7 	 0 0 O jO 0 0 	 26 

Scheme 1.7 The shuttling process of the tetracatiomc cyclophane macrocycle along the thread in 24 can 
be achieved both electrochemically (25) or chemically (26) 

An electrochemical stimulus oxidises the neutral benzidine unit to a monocationic 

radical (24—+25), and the resulting repulsion of charges, induces the cyclophane unit 

to move from the station where it was residing to the biphenol station which now 

provides the best stabilisation energy. Evidence of this molecular dynamic is obtained by 

analysing the cyclic voltammetric (CV) response of 24 and model compounds 

containing benzidine units. The shuttling process is reversible and cyclable therefore the 

original species 24 41  can be re-obtained by reducing 25 restoring the original 

equilibrium. The electrochemically-responsive tetracationic rotaxane 24 can also be 

switched by using a chemical stimulus. The macrocyclic cyclophane moves from the 
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preferred benzidine station in 24 to the biphenol unit in 266  upon double protonation 

of the diamine unit. The shuttling movement can be reversed by deprotonation of the di- 
41 

cationic amine upon addition of pyridine to 26 6 to afford the original species 

Sauvage and co-workers took a different approach to produce an electrochemically-

powered shuttling movement by synthesising the metal-containing two-station rotaxane 

27 (Scheme 1.8).24 

C' 

ci? 	I 	H  
N 

Cu 
 

I I -e- 

 

2? 

 0  

-0  

Scheme 1.8 An electrochemically switchable molecular shuttle based upon oxidation-reduction of copper 
metal ions 

The shuttling movement lies on the different coordination geometry adopted by a mono-

and di- cationic copper species. The rotaxane consists of a macrocycle containing a 

bidentate, 1,10 phenanthroline ligand, which is also present on the thread as one of the 

binding stations. The second binding site on the thread is a terdentate terpyridine ligand. 

In 27 the copper(I) cation species adopts a low coordinate, tetrahedral geometry 

coordinating to the two bidentate phenantroline ligands of both thread and macrocycle. 

The shuttling of the macrocycle is promoted by the oxidation of Cu '  to Cu2+ to obtain 
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282+. The preference of Cu 2  for a high coordination geometry causes the macrocycle to 

"glide" along the thread around the terpyridine station where the copper(H) can adopt a 

more stable, trigonal, pentacoordinating arrangement. Cyclic voltammetry 

measurements proved that the motion of the macrocycle after the oxidation of Cu to 

Cu2  is slow (hours). The oxidation process is reversible and reduction of Cu 2  to Cu 

drives the macrocycle back to the phenantroline station so that the cycle can be repeated 

again. 

1.3.6 Solvent-switchable molecular shuttles 

In 1997 Leigh and co-workers prepared via hydrogen bond-directed synthesis, a series of 

rotaxanes, 29-31, displaying translational motion of the macrocycle along the dumbbell-

shape component in response to a change in the nature of the solvent (Scheme 1 •9)25 
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Scheme 1.9 Example of solvent switchable molecular shuttles 
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The molecular shuttles are composed of a benzylic tetra-amide macrocycle mechanically 

interlocked onto threads containing two degenerate templating glycyl-glycine peptide 

stations separated by different lipophilic alkyl chains. At room temperature in a non-

hydrogen bonding disrupting solvent such as CDCI3 the macrocycle shuttles between the 

two isoenergetic peptidic stations and the rates of shuttling determined by variable 

temperature 1 H NMR experiments. The shuttling movement occurs through the 

disruption of the hydrogen bonding interactions, which are the driving force for the 

formation of the rotaxane between the macrocyclic unit and the templating dipeptide 

station. Changes in the polarity of the solvent mediate the shuttling process, e.g. addition 

of 5% CD30D to a deuterochloroform solution of 31 increases the shuttling rate by more 

that 100 orders of magnitude at 25 °C. In response to a major change in the polarity of 

the environment of the rotaxane, from the apolar CDCI3 to the polar, hydrogen bonding 

disrupting solvent d6-DMSO, the macrocycle stops shuttling between the stations and 

resides exclusively over the lipophilic chain as proved by 'H NIvIIR spectroscopy. 

1.3.7 PhotochemicaHy switchable molecular shuttles 

A limiting factor to the long-term functioning of chemically-driven molecular machines 

is the build up of waste products as each cycle is repeated. 

Alternatively the use of a photonic stimulus is a potentially clean and reversible way to 

generate translational motion of the macrocycle in rotaxane architectures. 

The [2]rotaxane E-324  comprises a toroidal-shape a-cyclodextrin, locked onto a 

tetracationic thread containing a trans-azobiphenoxy moiety (Scheme 1.1 0).26 
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Scheme 1.10 Photochemically-driven shuttling movement of an a-cyclodextnn in an azobenzene-
containing thread through reversible EIZ photoisomerisation 

'H NMR spectra comparison of the [2]rotaxane and its "free" acyclic component in D 20 

at 30 °C shows two sets of resonances for the alkene protons of the azobenzene in the 

unlocked thread, which are split into four separate resonances in the rotaxane due to the 

presence of the macrocycle with its toroidal shape over the azobiphenoxy recognition 

site. Irradiation of E-324  at 360 nm for 15 minutes causes E—Z interconversion of the 

azobenzene unit and the formation of Z-324  in 67% yield. The interconversion causes 

the macrocycle to move from the sterically demanding cis-azobenzene station to the end 

of the thread. The original rotaxane E-324  can be re-obtained by isomerising Z-3244  at 

430 rim. 

Recently an example of unidirectional shuttling in an a-cyclodextrin-containing 

[2]rotaxane has been reported by Anderson and co-workers (E-33, Scheme 1.1 1).27 The 

translational movement of the macrocycle is based on the reversible E/Z photochemical 

isomerisation of a stilbene unit incorporated on the thread. Isomerisation at 340 nm of E-

33 to the cis isomer Z-33 induces the macrocycle to move from the stilbene station in a 

unidirectional shuttling movement and brings the major rim of the a-cyclodextrin close 
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to one of the thread stoppers, as confirmed by NOE investigation. The co-conformer 

bearing the macrocycle over the other end of the thread is not observed. The E—+Z 

isomerisation process can be reversed by irradiating Z-33 at 265 nm to reform E-33. 

hv 
at 340 nfl, 

hv 

at 265 nm 

E-33 
	

Z-33 

Scheme 1.11 Unidirectional translational motion of an a-cyclodextrin macroc cie along a stilbene-
containing thread obtained through reversible EIZ photoisomerisation 

Leigh and co-workers recently reported an interesting example of photochemically -

driven molecular shuttle. The system consists of a benzylic tetra-amide macrocycle 

threaded onto a linear component featuring two potential stations: a succinic diamide 

unit on one side and a naphthalamide unit on the other side of the thread, both separated 

by a C12 lipophilic chain (34, Scheme 1.12)28. 
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Scheme 1.12 Cycle of a photoresponsive, hydrogen bond assembled, molecular shuttle 
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In the neutral state of this rotaxane, as confirmed by 'H NMR spectroscopy, the tetra-

amide macrocycle is preferentially positioned over the succinic template as the 

naphtalamide unit has poor hydrogen bond accepting ability (succ-34 co-conformer). A 

laser pulse at 355 nm in conjunction with an electron donor D (DABCO, 1,4-

diazabicyclo[2.2.2]octane, 1-10 mM) is used to photoreduce the naphthalamide unit. In 

its reduced state the radical naphthalamide anion is a better hydrogen bond acceptor for 

the macrocycle, inducing the ring to shuttle, ni-34. Analysis of the transient changes in 

the optical absorption spectrum of succ-34 after the laser pulse proves that the 

submolecular movement is fast (-.1 ts) compared to the previous molecular shuttles 

where it was on the time scale of minutes to hours. Charge recombination of the radical 

naphthalamide anion with the donor radical cation D occurs over a slow timeframe 

(.100 ts), after which the macrocycle shuttles back to the succinic station to afford 

succ-34 and the cycle is ready to be repeated again. This molecular shuttle is reminiscent 

of a piston functioning through a power stroke (the laser pulse) and a recovery stroke 

(charge recombination). The molecular "machine" if cycled by a laser at the frequency 

of its recovery stroke (10 s) can produce .10.15  W of mechanical power per molecule. 

1.3.8 From molecular shuttles to a molecular muscle 

Sauvage and co-workers have recently reported the first example of a linear rotaxane-

like dimer 352+  capable of contracting and stretching under the action of a chemical 

stimulus, in a manner reminiscent of a skeletal muscle (Scheme 1. 13). The movement 

of the "molecular muscle" is powered by the different coordination geometry adopted by 

the copper (I) and zinc (II) cations. The molecule 352±  was initially synthesised in its 

extended conformation with two copper (I) cations coordinating to two phenanthroline 

units each. Demetalation of 352+  using KCN followed by treatment with zinc (II) 

produces where contraction occurs in response to the new coordination 

requirements of the two zinc (II) cations each coordinating a phenanthroline and a 
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terpyridine unit. The original stretched conformation could be obtained again by 

subjecting 36 41  to Cu(CH3CN)4PF6. 

H- 

t-Bu 

t8uo 1 
MW 

Cu(CH3CN)4PF6 	i) KCN 

ii)Zn2  

Zn 2. 

(° o 	oJ 	 Th 	t-Bu 	
364+ 

(o 
 

Zn2* 	o-Q 	t8u 

tBu 

Scheme 1.13 Reversible chemically induced motion in an interlocked molecule between its extended 
(352) and contracted (36') conformation 

1.3.9 Reflections 

Interlocked molecules in general, and rotaxanes in particular, present interesting features 

for possible applications as constitutive components of macroscopic devices. 

The realisation of sophisticated artificial molecular systems that mimic the functioning 

of macroscopic machines has rapidly grown in the last years thanks to our increasing 

comprehension of some of the basic concepts operating at the molecular level. However, 

many challenges and obstacles remain, beginning from the incompatibility between the 

solution media in which the majority of the systems so far reported have been studied 

and their possible behaviour in the solid phase in which practical applications of such 

molecular architectures are likely to first find application. 
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Chemists throughout the world, in collaboration with physicists, material scientists, 

biologists and engineers, are actively researching in an interdisciplinary "playground" in 

order to effectively reduce the gap between the macroscopic and the molecular "world" 

finally realising Feynman's vision. 

1.4 Preamble to the Thesis 

In 1995 Leigh and co-workers reported the serendipitous discovery of benzylic amide 

catenanes by hydrogen bond-directed synthesis. 30  This template strategy has been 

subsequently adapted towards the assembly of benzylic amide macrocycles around 

linear components to give rotaxanes. 3 ' 

The general mechanism leading to this class of rotaxanes involves a five-component 

"clipping" reaction of the macrocycle precursors around the thread template (Scheme 

1.14). 

- 
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38 R,=H R2=H 62% 

R,Ue R2.H 60% 
0 	R 	0 
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H 	0 	92 
41 P, = H R2 	CH2Ql(CH3)2 37% 

47 R,  = H R2=CH2CH28CH3  36% 
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Scheme 1.14 Hydrogen bond-directed synthesis of a series of benzylic anüde macrocycle-containing 
12jrotaxanes through a five-component "clipping" reaction. 
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This route to mechanically interlocked architectures allowed the preparation of a whole 

series of rotaxanes (37-43), the yields ranging from 28% using an isophthalamide 

template (37) to 62% with a glycyiglycine-containing thread (38). 

Although the dipeptide motif is clearly a good template for the benzylic amide 

macrocycle system, the thread template possesses several internal degrees of freedom 

that are lost in the key supramolecular complex I of Scheme 1. 14, including torsional 

freedom around the three backbone bonds (Scheme 1.1 5a). 
4-11  

a) 
	

b) 

R=H 

- 

R 

Scheme 1.15 The free dipeptide template can present a) rotation movements around the glycyl backbone 
and b) formation of seven-membered ring intramolecular hydrogen bonds. 

Furthermore the peptide template can adopt a conformation leading to the formation of 

seven-membered ring intramolecular hydrogen bonds in the non-polar solvents used for 

promoting the rotaxane formation (Scheme 1.1 5b). 

It seems likely, therefore, that the unfavorable requirements of breaking intramolecular 

hydrogen bonds and/or the loss in entropy in going from a flexible thread to the much 

stricter conformational and co-conformational requirements of the supramolecular 

transition state could be overcome more efficiently by preorganising the hydrogen 

bonding sites of the thread in a spatial arrangement already suited for templating 

benzylic amide macrocycle formation. 

Introducing rigidity in the template backbone through the use of a fi.imaric diamide unit 

afforded the rotaxane 44 in an astonishing 97% yield, a "world record" yield for a 

[2]rotaxane synthesis (Scheme 1.1 6).32  The success of the fumaramide template can be 

attributed to the spatial arrangement of the co-operative hydrogen bonding sites on the 

thread kept by the E-alkene double bond in a fixed position at an ideal distance apart to 
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template the formation of the benzylic amide macrocycle through the formation of 

intercomponent hydrogen bonds. 

44 X,Y=NH 	97% 

45 X=O,Y=NH 35% 
Ph 

46 X.Y=O 	3% 

Scheme 1.15 Fuinaramide-containing [2]rotaxanes 

Remarkably enough the high preorganisation offered by the template is so effective that 

even if one or both the amides of the thread are substituted for much weaker hydrogen 

bond acceptor groups as esters still the formation of the rotaxane is observed (45 and 

46). 

This thesis describes the synthesis of stimuli-responsive fumaramide-based rotaxanes 

and the study of their interesting dynamic properties. In chapter two the synthesis, the 

solid state determination and the photochemical behaviour of a family of structurally 

different fumaramide-based rotaxanes is reported, once again confirming the remarkable 

ability of the flimaramide unit as template for the formation of benzylic amide 

macrocycles. The remaining four chapters exploit the possibility to influence some of 

the dynamic properties present in fumaramide-based rotaxane architectures. From the 

control of the rotation in fumaramide-based rotaxanes through E/Z isomerisation 

(chapter three) to the synthesis of a family of stimuli-responsive molecular shuttles 

(chapter four). The last two chapters report about the realisation of the first entropy-

driven, temperature-dependent molecular shuttle (chapter five) and the possibility of 

control a physical property such as the CD absorption of a dipeptide rotaxane through 

controlled submolecular motion of the ring (chapter six). 
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Chapter Two- Synopsis 

In this chapter the ability of fumaramide -containing threads to template the 

formation of structurally diverse benzylic amide macrocycles, ultimately leading to 

[21rotaxanes, has been exploited (Scheme 1). 

0 	R Ph 

Ph 	
NPh 

Ph 
R=H 

R=Me 

oQo 
CHCI3  

NH2 	

Phy 

NH2 	

Ph 
Et3N 

Ph 

Scheme 1 General scheme of the hydrogen bonded-directed synthesis of[2Jrotaxanes by reaction of 
fumaramide -containing threads with different substituted diamines and acid dichlorides. 

The interlocked species are formed via a five-component "clipping" reaction in 

which an acyclic macrocycle precursor, formed by the condensation of acid 

dichlorides and diamines, templates around the fumaric diamide unit through the 

formation of hydrogen bonding interactions. The threads proved to be tolerant 

towards significant variations in the nature of the reagents, giving in one case a 

rotaxane in an amazing 97% yield! The remarkable template ability of the threads 

towards benzylic amide macrocycles can be attributed to the rigidity offered by the 

double bond, which holds the fumaramide carbonyls, excellent hydrogen bonding 

accepting groups, in a fixed transoid arrangement, at an ideal distance to template 

the formation of the ring. X-ray crystal structures were obtained for the all 

[2]rotaxanes synthesised providing some insight into the intra- and inter- molecular 

hydrogen bonding interactions between the mechanically interlocked components. 

Irradiation at 254 nm in CH2C12 of some of the fumaramide-containing rotaxanes 

afforded the maleamide rotaxane isomers, otherwise inaccessible via direct 

synthesis, due to the cisoid arrangement adopted by the maleamide carbonyl units, 

which are not suitable as templates for the formation of the benzylic macrocycles. 

The isomerisation process has been proved to be reversible by using a thermal 

stimulus as amply demonstrated in the following chapters. 
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Chapter Two 

2.1 Introduction 

Through supramolecular chemistry,' the utilisation of non-covalent interactions has 

made possible the synthesis of interlocked molecules, such as rotaxanes, 2  in high yields. 

The formation of hydrogen bonding interactions between rotaxane precursor species in 

solution can be exploited in order to induce preorganisation of the rotaxane components 

prior to the interlocking. 3  Being able to prepare non-trivial molecules in high yields 

allows to readily study the interesting structural and dynamic properties of such 

molecules. The flimaramide-based thread E-1 has been shown to template, in non-

hydrogen bonding disrupting solvents, the formation of the benzylic amide macrocycle, 

affording rotaxane E-2, in an astonishing 97% yield (Scheme 2. i). 

0 	RPh 

Ph L1LJ 
Ph 

Ph 

E-1 	R=H 

E-1-Me RMe 

o" So, 

ci 	ci 	ci 	CI 

r i2  

E1 	Et3N 	CHCI3  

NH2  

Phy  

Ph 

Ph 

-11 

Scheme 2.1. Preparation of the [2]rotaxanes E-2-11 (Table 2.1) via a five-molecule condensation reaction. 

The interlocked species E-2 is formed via a five-component "clipping" reaction in which 

an acyclic macrocycle precursor is templated around the flimaric diamide unit. The 

"world record" yield for a synthesis of rotaxane can be attributed to the rigidity offered 

by the double bond, which holds the flimaramide carbonyls, excellent hydrogen bonding 

accepting groups, in a fixed transoid arrangement, at an ideal distance to template 

formation of the benzylic amide macrocycle. Due to this high preorganisation the 

fumaramide unit templates the acyclic macrocycle precursor and successive 

macrocyclisation affords the mechanically interlocked molecule E-2. The 

preorganisation offered by the templating unit on the thread is so remarkable that when 
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one or even both of the amide groups are substituted for esters (poor hydrogen bond 

acceptor groups), the formation of hydrogen bonded assembled rotaxanes still takes 

place. The fact that the rotaxane forming reaction occurs is even more surprising if one 

considers the high concentrations of amines, amides and halide ions in solution, all 

significantly stronger alternative hydrogen bonding acceptors than esters! 5  

2.2 Results and discussion 

The synthesis, solid state structure and photochemical behaviour of a family of 

structurally diverse fumaric-based [2]rotaxanes, E-2-11, has been studied (Table 2.1). 

Variation in both the aromatic dicarbonyl dichloride compound [(1,3- dicarbonyl phenyl 

(E-2), 1 ,4-dicarbonyl phenyl (E-8), nitro substituted phenyl (E-3-4), thiophenes (E-7), 

pyridines (E-5-6)] and the benzylic spacer [(1,4-phenylene (E-2-7) and 1,3-phenylene 

(E-8-9)] were tolerated by the fumaramide template giving, in all cases, the expected 

[2]rotaxane. Even N-alkylation of E-1 to afford the dimethylated fumaramide thread E-

1-Me still gave an efficient template for the benzylic amide macrocycle (E-10-11). 

The [2]rotaxanes listed in Table 2.1 were all prepared by simultaneous dropwise 

addition of commercially available or readily accessible dicarboxylic acid dichiorides 

and diamines to "stoppered" fumaric-based threads (E-1 or E-12) in the presence of Et3N 

in a non-polar, non hydrogen bonding disrupting solvent such as CHC1 3. After 1 hour 

the resulting suspensions were filtered and the filtrates concentrated in volume and 

purified by column chromatography to yield the unconsumed threads, [2]catenanes and 

the desired [2]rotaxanes. X-ray crystal structures were obtained for the all [2]rotaxanes 

synthesised providing some insight into the intra- and inter- molecular hydrogen 

bonding interactions between the mechanically interlocked components. 
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-f- 	N—R 	[2]Rotaxane 	A 	B 

0 	(.i  -0- 
NH E-2 97% 	45%(Z-2) 

02N—<[ 	02N-0 -CJ--- M4 E-3 65% 	32%* (Z-3) 

< -(3>-- NH E-4 27% 	54% (Z-4) 

N 	N  NH E-5 42% 	decompose 

<'N 	€4 NH E-6 37% 	51% (Z-6) 

NH E-7 30% 

NH E-8 30% 

NH E-9 3%  

We E-10 33% 	47% (Z-10) 

€4 	<N -Q-- NMe E-11 27% 

A=Yield of the rotaxane-forming reaction; B=Yield of the photochemical isomerisation of the 
E-rotaxane to its corresponding Z-isomer (* = calculated by I  H NMR) 

Table 2.1. Products and yields of (A) the fumaric-containing rotaxanes and (B) their photochemical 
isomerisation to their maleamide-containing isomers 
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Solid state structures of E-2 from crystals grown in hydrogen bonding disruptive 

solvents (i.e. DMF and DMSO, Figure 2.1a and 2.1b respectively) show remarkable 

similarity, having the region comprising the macrocycle and the fumaric unit virtually 

superimposable. The macrocycle adopts in both structures a perfect chair-like 

conformation with its four amide hydrogens forming double bifurcated, intramolecular 

hydrogen bonds orthogonal to the lone pairs of the fumaramide carbonyl groups. Two 

more hydrogen bonds are formed between the two fumaramide hydrogens of the thread 

and the carbonyl units of the solvent molecules (either DMSO or DMF). 

C 

Figure 2.1. X-ray crystal structures of the fumaramide-based [21rotaxane E-2 (a) crystallised from DMF 
and (b) crystallised from DMSO. The carbon atoms of the macrocycles are shown in blue, carbon atoms of 
the threads in yellow, oxygen atoms in red, sulphur atoms in light green and nitrogen atoms in dark blue. 
The amide and alkene hydrogen atoms are shown in white while all others are removed for clarity. 
Intramolecular hydrogen bond distances (A) are the following: (a) 040-I-1N21043-HN20 = 1.98, 040-
HNI 1/043-HN29 = 2.06; (b) 040-HN2/043-1-1N20 = 2.09, 040-HNI 1/043-14N29 = 1.89. 

By crystallising E-2 from a solvent with a poor hydrogen bonding acceptor ability such 

as CH3CN, a different crystal lattice is observed in the solid state structure of E-2 

(Figure 2.2a). In this example, the number of intramolecular, intercomponent hydrogen 

bonds has decreased from the maximum four possible (as observed in DMSO and DMF) 

to two. The loss in the number of intramolecular hydrogen bonds is compensated for by 
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the formation of two sets of bifurcated, intermolecular hydrogen bonds as revealed by 

the crystal packing (Figure 2.2b). 

INN 

Figure 2.2. X-ray crystal structures of the fuinaramide-based [21rotaxanes E-2 crystallised from 
CH3CN (a) as single crystal and (b) in its crystal packing. The carbon atoms of the macrocycles are shown 
in blue, carbon atoms of the threads in yellow, oxygen atoms in red, sulphur atoms in light green and 
nitrogen atoms in dark blue. The amide and alkene hydrogen atoms are shown in white while all others are 
removed for clarity. Intramolecular hydrogen bond distances (A) are the following: 040-HN2/043-1-N20 
= 1.99. Intermolecular hydrogen bond distances (A) are the following: 021-HN1 1'/03'-HN29 = 2.16, 
02 1 -HN44'/03'-HN3 9 = 2.14. 

This new arrangement adopted by the rotaxane in the solid state allows all the six amide 

hydrogens to act as hydrogen bond donors at the price of distorting the chair-

conformation of the macrocycle seen in the previous structures. 

The dinitro rotaxane E-3 was obtained in 65% yield. The crystal structures of E-3 and 

the unsubstituted rotaxane E-2, both from DMF, present similar hydrogen bonding 

patterns with the dinitro substituted macrocycle in E-3 adopting a twisted conformation 

(Figure 2.3a). 

The truly remarkable ability of the fumaramide unit to template benzylic amide 

macrocycles allowed to exploit the synthesis of an unsymmetrical macrocycle- 
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containing rotaxane through a statistical reaction. The [2]rotaxane E-4 containing a 

mononitro-substituted benzylic amide macrocycle was synthesised in 27% yield by 

simultaneous addition of 10 equivalents of para-xylylene diamine and 5 equivalents 

each of isophthaloyl acid dichloride and 5-nitro isophthaloyl acid dichloride to a solution 

of E-1. 

(b) 

045 

c 
fN2 

 042 

Figure 2.3. X-ray crystal structures of the fumaramide-based [21rotaxanes (a) E-3 and (b) E4, both 
crystallised from DMF. The carbon atoms of the macrocycles are shown in blue, carbon atoms of the 
threads in yellow, oxygen atoms in red, sulphur atoms in light green and nitrogen atoms in dark blue. The 
amide and alkene hydrogen atoms are shown in white while all others are removed for clarity. 
Intramolecular hydrogen bond distances (A) are the following: (a) 043-14N2 = 1.91, 043-l-1N12 = 2.15, 
046-14N21 = 2.13, 046-1-1N3 I = 2.01; (b) 045-HN2/042-HN2 1 = 1.97. 

The desired rotaxane E-4 was separated from the other statistical products, E-2 and E-3, 

by column chromatography. The 'H NMR (400 MHz, 298K) spectra of E-1 and E-4 in 

d6-DMSO shows the influence upon interlocking in the chemical shift of the thread 

protons (Figure 2.4). The tight fitting nature of the interlocked macrocycle provoke, with 

its xylylene aromatic units, the shielding of the encapsulated region of the thread, in 

particular the E-alkene protons, "core" of the fumaramide templating unit. Solid state 

structure of E-4 from crystals grown in DMF shows the macrocycle adopting a stretched 
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conformation forming only two intramolecular hydrogen bonds with the carbonyl units 

of the thread (Figure 2.3b). 
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Figure 2.4. 400 MI-li 'H NM spectra of (a) thread E-I and (b) rotaxane E4 in d6-DMSO at 298K. 

The pyridine macrocycle-containing rotaxanes E-5 and E-6 were obtained in a 42% and 

37% yield respectively. Solid state structures obtained from crystals of E-5 and E-6 both 

grown in DMSO show how the different position of the pyridine nitrogen in the two 

macrocyclic units results in a different hydrogen bonding motif between the two isomers 

(Figure 2.5a and 2.5b). In rotaxane E-5 the interlocked components form two sets of 

bifurcated, intramolecular hydrogen bonds, resembling the hydrogen bonding motif 

already seen in the structure of E-2 from the same solvent. Rotaxane E-6 shows a 

different hydrogen bonding motif where beside the two sets of intercomponent, 

bifurcated hydrogen bonds, two more sets of intracomponent, bifurcated hydrogen bonds 
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are observed between the amide hydrogens of the macrocycle and the pyridine nitrogens 

that act, with their electron lone pairs, as hydrogen bond acceptor groups. 

Figure 2.5. X-ray crystal structures of the pyridine macrocycle-containing [2]rotaxanes (a) E-5 and (b) 
E-6, both crystallised from DMSO. The carbon atoms of the macrocycles are shown in blue, carbon atoms 
of the threads in yellow, oxygen atoms in red, sulphur atoms in light green and nitrogen atoms in dark 
blue. The amide and alkene hydrogen atoms are shown in white while all others are removed for clarity. 
Intramolecular hydrogen bond distances (A) are the following: (a) 040-11N2/043-HN20 = 2.09, 040-
14NI 1/043-HN29 = 1.89; (b) 040-HN2 = 1.92, 040-HNI I = 1.97, 043-HN29 = 1.93, 043-HN20 = 1.90, 
N5-HN2 = 2.27, N5-1-1N1 1 = 2.25, N23-1-1N29 = 2.2 1, N23-HN20 = 2.19. 

The remarkable macrocycle-templating ability of the fumaramide unit was once again 

confirmed in the formation of the sulphur-containing rotaxane E-7 in 30% yield. The 

solid state structure of E-7 from crystals grown in DMSO shows the sulphur atoms of 

the macrocycle involved in the formation of two sets of intracomponent, bifurcated 

hydrogen bonds with the four amide hydrogens of the macrocycle, similar to the 

pyridine nitrogens in E-6 (Figure 2.6). Moreover two intercomponent hydrogen bonds 

are formed between two macrocycle amide hydrogens and the divergent carbonyls of the 

fumaric unit on one side and between the remaining two amide hydrogens of the 

macrocycle and the it-cloud of the alkene double bond on the other. The "inverted" 

benzylic amide macrocycle-containing rotaxane E-8, isomer of E-2, was obtained in 

30% yield. Solid state structure of E-8 from crystals grown in MeOH (Figure 2.7a) 
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shows, with its two sets of bifurcated intramolecular hydrogen bonds, a hydrogen 

bonding motif already seen for its isomer E-2, although the conformation adopted by the 

macrocycles in the two rotaxanes is remarkably different. 

Figure 2.6. X-ray structures of fumaramide-based thiophene rotaxanes E-7 crystallised from MeOH. 
The carbon atoms of the macrocycles are shown in blue, carbon atoms of the threads in yellow, oxygen 
atoms in red, sulphur atoms in light green and nitrogen atoms in dark blue. The amide and alkene 
hydrogen atoms are shown in white while all others are removed for clarity. Intramolecular hydrogen bond 
distances (A) are the following: (a) 041-l-INIO/038-HN27 = 1.89, S5-HNIO/S22-14N27 = 2.56, S5-
HN2/S22-HN19 = 2.5 1, HN2-it alkene/l-1N19-it alkene = 3.41. 

(a) 

Nil 
N2 

043 

29 

Figure 2.7. X-ray structures of fumaramide-based rotaxanes (a) E-8 crystallised from MeOH and (b) E-9 
crystallised from EtOH. The carbon atoms of the macrocycles are shown in blue, carbon atoms of the 
threads in yellow, oxygen atoms in red, sulphur atoms in light green and nitrogen atoms in dark blue. The 
amide and alkene hydrogen atoms are shown in white while all others are removed for clarity. 
Intramolecular hydrogen bond distances (A) are the following: (a) 040-1-1N2/043-HN20 = 2.17, 040-
1-EN I 11043-HN29 = 2.34; (b) 040-I-1N2/043-l-1N20 = 2.12, 040-HN1 1/043-HN29 = 2.31. 
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By comparing the crystal structures of E-8 and E-2 it is possible to notice that the cavity 

presented by the two structurally different isomeric macrocycles is considerably tighter 

in case of E-8 due to a different positioning of the macrocyclic amides. Since the 

transition state of the rotaxane-forming reaction is similar in structure to the final 

rotaxane, 6  this could explain the lowering in the yield of the rotaxane forming reaction 

observed going from E-2 to its isomer E-8, presenting this last one a higher activation 

energy for macrocyclisation. 

A drastic variation in the geometry of the rotaxane benzylic amide macrocycle was 

realised by subjecting the fumaramide-based thread E-1 to the simultaneous addition of 

1,3-substituted acid dichloride and meta-xylylenediamine in presence of Et3N obtaining 

the rotaxane E-9 in a 3% yield. While at first sight this yield may appear low compared 

to the previous example, that the rotaxane-forming reaction proceeds at all is 

remarkable, considering the crystal structure of E-9 (Figure 2.7b). Rotaxanes E-1-8 each 

bear 26-membered benzylic amide macrocycles, whereas E-9 contains a smaller 24-

membered macrocycle. This smaller macrocycle adopts a distorted high-energy 

conformation although still able to form two sets of bifurcated hydrogen bonds between 

amide hydrogens of the macrocycle and carbonyl units of the thread. As already seen for 

E-8, even for E-9 the restricted cavity offered by the macrocycle to the fumaramide 

template ultimately results in a lower yield of the interlocked molecule formation. 

A modification in the fumaramide motif (from the secondary fumaric amides of E-1 to 

the tertiary N-methylated fumaric amides of E-1-Me) has also been exploited in 

rotaxane-forming reactions. The rotaxanes E-10 and E-11 containing a N-methylated 

fumaramide template unit were both synthesised from E-1-Me in 33% and 27% yield 

respectively. Solid state crystal structures of both E-10 and E-11 (Figure 2.8a and 2.8b) 

show remarkable similarity in the hydrogen bonding patterns with their respective 

unmethylated rotaxane analogues E-2 and E-6. 

Somewhat remarkably however, given the tight encapsulated binding site and that only 

the trans-olefin has hydrogen bonding sites complementary to the benzylic macrocycle 
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geometry, irradiation at 254 nm of some of the E-rotaxanes 7  in CH2Cl2 resulted in the 

conversion of the iIimaramide rotaxanes into their corresponding Z-rotaxane isomers 

(except in the case of E-5) in 32-54% yield. 

"C (b) 

 

 

Figure 2.8.X-ray crystal structures of the N-methylated fumaramide rotaxanes (a) E-10 and (b) E-11. The 
carbon atoms of the macrocycles are shown in blue, carbon atoms of the threads in yellow, oxygen atoms 
in red and nitrogen atoms in dark blue. The amide and alkene hydrogen atoms are shown in white while all 
others are removed for clarity. Intramolecular hydrogen bond distances (A) are the following: (a) 040-
HIN2/043-HN20 = 2.22, 040-HN1 l/043-HN29 = 1.94; (b) 040-HN2/043-HN20 = 2.10, 040-
HNI 11043-HN29 = 2.17, N5-HN21N23-HN20 = 2.24. N5-I-IN1 1/N23-HN29 = 2.23. 

It is worth noticing that the photochemical isomerisation of the E-rotaxanes is the only 

possible way to obtain the Z-rotaxanes otherwise unobtainable via hydrogen bonded 

templated synthesis of the maleamide isomer of E-1, a consequence of the mis-matching 

between the carbonyl groups in the Z-thread and the amide hydrogens of the benzylic 

macrocycle. The 1H NMR spectra in C13202 of Z-3, product of the photoisomerisation 

of E-3, and its uninterlocked maleamide-containing linear component are shown in 

Figure 2.9 as example. As already seen for E-3, the presence of the macrocycle in Z-3 

causes a considerable upfield shift in the chemical shift of the encapsulated region, 

affecting mainly the Z-alkene protons. The Z-rotaxanes can be converted once again in 

their E-isomers by using a thermal stimulus to provoke the maleamide—)fumaramide 

interconversion, as described in the following chapters. 
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Figure 2.9. 400 MHz 'H NMR spectra of (a) uninterlocked maleamide-containing thread and (b) rotaxane 
Z-3 in CD2Cl2 at 298K 

2.3 Conclusions 

In this chapter the remarkable ability of flimaramide units as templates in the synthesis 

of structurally different benzylic amide macrocycles-containing [2]rotaxanes has been 

shown. The formation in solution of intercomponent hydrogen bonds between thread 

and macrocycle precursor, driving force for the rotaxane-forming reaction, is partially 

maintained in the solid state as confirmed from the X-ray crystal structures obtained for 

all of the hydrogen bonded rotaxanes synthesised. The presence in the E-rotaxanes of a 

photoisomeri sable fumaramide unit allowed us to use a photonic stimulus to afford the 

respective maleamide rotaxane isomers. The consequences of the isomerisation over the 

dynamic properties of rotaxanes will be discussed in the next chapters. 
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2.4 Experimental Section 

2.4.1 General Method for the Preparation of Benzylic Amide Macrocycle 

Containing Fumaramide I2lRotaxanes. 

The thread (E-1 or E-1-Me) (0.5 mmol) was dissolved in CHC13 (100 mL) (in the case of 

E-1 9.5/0.5 CHC13/CH3CN) and stirred vigorously whilst solutions of the diamine (5 

mmol) and Et3N (10 mmol) in CHC13 (40 ML) and the acid dichloride (5 mmol) in 

CHC13 (40 mL) were simultaneously added over a period of 2 h using motor-driven 

syringe pumps. After a further 1 h the resulting suspension was filtered and concentrated 

under reduced pressure. 

2.4.2 General Method for the Photoisomerization of Fumaramide 12jRotaxanes. 

The E-rotaxane (0.10 mmol) was dissolved in CH2Cl2 (20 mL) [except for solubility 

reasons E-2, MeOHJCH2C12 (1/9)] in a quartz vessel. The solutions were directly 

irradiated at 254 nm using a multilamp photoreactor model MLU18 manufactured by 

Photochemical Reactors Ltd, Reading UK. The progress of photoisomerization was 

monitored by TLC (silica gel, CHC13/EtOAc 4/1) or 1 H NMR. The different 

photostationary states were reached in a range of times not exceeding 30 mins after 

which the reaction mixture was concentrated under reduced pressure to afford crude 

product. Because the photoisomerisation process produces few byproducts it could be 

recycled more times. 

I 
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N,N'—bis (2,2—diphenyl-ethyl)- (E)-butendiamide, E-1 

Ph 
H  

Ph )L N 	
I 

	

Ph c 	0 

To a stirred solution of 2,2-diphenylethylamine (0.493 g, 2.50 mmol) and Et3N (0.252g, 

2.50 mmol) in CH202 (20 mL) at 0 °C was added dropwise a solution of fumaryl 

dichloride (0.191 g, 1.25 mmol) in CH202. After 3 h the solution was washed with IN 

HC1 (2 x 20 mL), IN NaOH (2 x 20 mL) and H20 (1 x 20 mL). The organic layer was 

dried over anhydrous MgSO4, filtered and the solvent removed under reduced pressure 

to obtain a solid that was recrystallized from CH202 to afford colourless needles (E-1, 

1.150 g, 97 %). m.p(2-253 °C. 'H NMR (400 MHz, CDC13): 6 = 7.36-7.28 (m, 8H, 

ArCH), 7.26-7.20 (m, 12H, ArCH), 6.66 (s, 2H, CH,), 5.66 (br t, 3J(H,H) = 5.8 Hz, 2H, 

NH), 4.20 (t, 3J(H,H) = 7.8 Hz, 2H, CH,) and 3.98 (dd, 3J(H,H) = 7.8 Hz, 3J(H,H) = 5.8 

Hz, 4H, CHb); ' 3C NMR (100 MHz, d6-DMSO): 6 = 163.7 (CO), 142.7 (ArC (ipso)), 

132.5 (GHj), 128.4 (ArCH (meta)), 127.8 (ArCH (ortho)), 126.3 (ArCH (para)), 49.9 

(CHa) and 43.3 (CHb); HRMS (FAB) Calcd. for C32H31N202 [M+H] 475.23855. Found 

475.23799. 

N,N'- Dimethyl-b,s(2,2-diphenyl-ethyl)- (E)-butendiamide, E-1-Me 

	

0 	Me Ph 

Ph 
Me 	0 Ph 

To a stirred solution kept under inert atmosphere of E-1 (1 g, 2.10 mmol) in dry THF 

(20mL) was added at 0 °C under nitrogen NaH (0.2 g, 60% dispersion in oil, excess) 

portion-wise. After the effervescence had subsided, methyl iodide (0.3 mL, excess) was 
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added in one portion. The reaction was allowed to warm to rt and stirred for 16 h, then 

1120 (20 mL) and ammonia solution (10 mL) added drop-wise to quench the reaction. 

Most of the solvent was removed under reduced pressure, and the remainder partitioned 

between 1120 and CH202 (3 x 20 mL). The organic extracts were washed with IN 

NaOH (20 mL) and dried over anhydrous MgSO4. The filtered solution was 

concentrated under reduced pressure to give an oil that slowly solidified. 

Recrystallization from CH202/diisopropyl ether afforded colorless needles (E-1-Me, 

0.876 g, 83%). m.p. 134-136 °C; 111  NMR (400 MHz, C2D2CL1 at 363K): 6 = 7.34-7.19 

(m, 2011, ArCH), 6.99 (s, 211, CHd), 4.37 (t, 3J(H,H) = 8.0 Hz, 2H, CH,), 4.04 (d, 

3J(H,H) = 8.0 Hz, 4H, CHb) and 2.79 (s, 6H, CH); ' 3C NMR (100 MHz, C21320  at 

400K): 6 = 166.7 (CO), 143.0 (ArC (ipso)), 132.1 (GHd), 129.7 (ArCH (meta)), 128.9 

(ArCH (ortho)), 127.2 (ArCH (para)), 55.5 (CHa), 51.0 (CHb) and 37.5 (CH); MS 

(FAB, mNBA): m/z = 502 [(M+H)4]; Anal. Calcd. for C341434N202: C 81.24, H 6.82, N 

5.57. Found: C 81.61, H 6.68, N 5.43. HRMS (FAB) Calcd. for C34H35N202 [M+H] 

503.26985. Found 503.27004. 

121(1,7,14,20-Tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane)-(N,N'—bis 	(2,2—diphenyl-ethyl)-(E)-butendiamide)- 

rotaxane, E-2 
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Rotaxane E-2 was obtained using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from thread E-1 (0.237 g) using as diamine the 

p-xylylenediamine (0.681 g) and as acid dichloride the isophthaloyl dichloride (1.015 g). 

The crude was purified by trituration of the solid in CH202 (to remove the polar 

impuries- catenane, macrocycles, Et 3HN'Cl, etc), and subsequently the rotaxane 

separated from the unreacted thread through trituration in hot toluene. Rotaxane E-2 was 

recrystallized from DMF (E-2, 0.488 g, 97%). m.p. 3 55-356 °C (DMF/H20); 1  NMR 

(400 MHz, CDC13): 8 = 8.40 (br t, 2H, 4J(HC,HB) = 1.8 Hz, ArCHc), 8.21 (dd, 411, 

J(HB,HA) = 7.8 Hz, J(HB,HC) = 1.8 Hz, ArCHB), 7.66 (t, 211, 3J(HA,HB) = 7.8 Hz, 

ArCHA), 7.43 (br t, 4H, 3J(H,H) = 5.3 Hz, NHD), 7.32-7.20 (m, 12H, ArCH (meta and 

para thread)), 7.14 (d, 811, 3J(H,H) = 6.8 Hz, ArCH (ortho thread)), 6.74 (s, 8H, ArCHF), 

5.99 (br t, 2H, 3J(H,H) = 5.8 Hz, NHC), 5.44 (s, 211, CHd), 4.40 (d, 8H, 3J(H,H) = 5.3 Hz, 

CHE), 4.10 (t, 2H, 3J(H,H) = 7.8 Hz, CH.) and 3.70 (dd, 4H, 3J(H,H) = 7.8 Hz, 3J(H,H) 

= 5.8 Hz, CHb); 13C NMR (100 MHz, d6-DMSO): 8 = 166.1 (CO thread), 165.7 (CO 

macrocycle), 143.0 (ArC (ipso thread)), 136.7 (ArC-CH2NH), 134.6 (ArC-CO-), 

131.1(CH8), 129.6 (CHj), 129.4 (CH A), 128.9 (CHF), 128.8 (ArCH (meta thread), 128.1 

(ArCH (ortho thread)), 126.9 (ArCH (para thread)), 125.7 (CHc), 50.3 (CHa), 44.0 (CHb) 
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and 43.6 (CHE); HRMS (FAB) Calcd. for C64H59N606  [M+H] 1007.44961. Found 

1007.44972. 

[2J(1,9,16,24-Tetraaza-2,8,17,23-tetraoxo-5,20-dinitro-3,7,1 1,14,18,22,26,29-

tetrabenzocyclohexacosane))-(N,N'—bis(2,2—diphenyl-ethyl)-(E)-butefldiaiflide)-

rotaxane, E-3 

NO2  

o4o  
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NNE 
D 	 Ph 

a 	7-11  
Ph 

Ph 

NO2  

Rotaxane E-3 was obtained using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from thread E-1 (0.237 g) using as diamine the 

p-xylylenediamine (0.681 g) and as acid dichloride 5-nitroisophthaloyl dichloride (1.240 

g). The crude obtained was purified by column chromatography on silica gel using a 

gradient of CH2C12IEtOAc as eluent to obtain the desired compound as a colourless 

powder (E-3, 0.357 g, 65%). m.p. 324 °C; 1 H NMR (400 MHz, d6-DMSO): S = 8.96 (s, 

2H, ArCHc), 8.76 (s, 4H, ArCHB), 8.41 (br t, 411, NHD), 7.28-7.14 (m, 22H, ArCH + 

NIL), 6.75 (s, 8H, ArCHF), 5.71 (s, 2H, CHd), 4.30 (d, 8H, J(HE,HD) = 4.8 Hz, CHE), 
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4.02 (t, 2H, 3J(Ha,Hb) = 7.3 Hz, CH,,), 3.66 (br dt, 4H, CH,); 13C NMR (100 MHz, d6-

DMSO) 6 167.0, 165.5, 150.2, 144.4, 137.9, 137.7, 132.6, 131.3, 130.4, 130.3, 129.4, 

128.3, 126.8, 51.7, 45.3, 45.1; HRMS (FAB) Calcd. for C64H57N80I0 [M+H] 

1097.41977. Found 1097.41991. 

[2](1,9,16,22-Tetraaza-2,8,17,21-tetraoxo-5-nitro-3,7,1 1,14,18,20,24,27-

tetrabenzocyclohexacosane))-(N,N'—bis(2-dipheflyl-ethyl)-(E)-bUtefldiamide) 

rotaxane, E-4 

XB' 2 

N *jj  Ph 

Ph 

/ 

°"v B 
A 

Rotaxane E-4 was obtained using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from thread E-1 (0.237 g) using as diamine the 

p-xylylenediamine (0.681 g) and as acid dichloride isophthaloyl dichloride (0.507 g, 2.5 

mmol) and 5-nitroisophthaloyl dichloride (0.620 g, 2.5 mmol). The crude obtained was 

purified by column chromatography on silica gel using a gradient of CH2C12IEtOAc as 

eluent to obtain the desired compound as a colourless powder (E-4, 0.142 g, 27%). m.p. 

318 °C; 111  NMR (400 MHz, d6-DMSO) 6 9.00 (s, 1H, 4J(HC',HB') = 1.5 Hz, ArCHc'), 

8.79 (t, 2H, J(FIB',HC') = 1.5 Hz, ArCHB.), 8.63 (s, 111, 4J(HC,HB) = 1.5 Hz, ArCHc), 

8.49 (t, 211, 3J(H,Hb) = 5.6 Hz, NHC), 8.38 (t, 211, J(HD',HE') = 5.0 Hz, NHD'), 8.18 (t, 

_t. 	. 
1J 	

1 
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214, J(HD,HE) = 4.9 Hz, NHD), 8.12 (2H, d, 4J(HB,14C) = 1.5 Hz, 3J(HB,HA) = 7.8 Hz, 

ArCHB), 7.74 (t, 111, J(}TIA,HB) = 7.8 Hz, ArCHA), 7.30-7.15 (m, 20H, ArCH), 6.73 (s, 

811, ArCHF and F'), 5.70 (s, 2H, CHd), 4.30 (d, 4H, J(HE',HD') = 5.0 Hz, CHE'), 4.27 (d, 

4H, J(HE,HD) = 5.0 Hz, CHE), 4.10 (t, 211, 3J(Ha,Hb) = 7.7 H, CHa), 3.69 (dd, 4H, 

J(Hb,Ha) = 7.7 Hz, 3J(Hb,Hc) = 5.6 Hz, CHb); 13C NMR (100 MHz, d6-DMSO) 8 166.2 

(CO), 165.6 (CO), 164.1 (CO), 142.9, 136.9, 136.3, 134.6, 131.1, 129.8, 129.5, 128.9, 

128.8, 128.1, 126.9, 125.6, 125.4, 50.3 (CH,), 44.0, 43.8, 43.6; HRMS (FAB) Calcd. for 

C64H58N708 [M+H] 1052.43469. Found 1052.43498. 

121 (1,5,9,16,20,24-Hexaaza-2,8,17,23-tetraoxo-3,7,1 1,14,18,22,26,29-

tetrabenzocyclohexacosane))-(N,N'—bis(2,2—diphenyl-ethyl)-(E)-butendiamide)-

rotaxane, E-5 

0 

~\4 0 
N1N \E 

R74  
Ph c 

Rotaxane E-5 was obtained using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from thread E-1 (0.237 g) using as diamine the 

p-xylylenediamine (0.681 g) and as acid dichloride 3,5 pyridyl acid dichloride (1.020 g). 

The crude obtained was purified by column chromatography on silica gel using a 

Ph 

Ph 
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gradient of CH2C12/EtOAc as eluent to obtain the desired compound as a colourless 

powder (E-5, 0.211 g, 42%). m.p. 320 °C decomp.; 'H NMR (400 MHz, CDC13): 6 = 

9.23 (s, 4H, ArCH8), 8.85 (s, 2H, ArCHc), 8.11 (br t, 2H, NH,), 7.78 (hr t, 4H, NHD), 

7.32-7.06 (m, 2011, ArCH, 6.64 (s, 8H, ArCHF), 5.48 (s, 2H, CHd), 4.27 (s, 8H, CHE), 

4.05 (t, 211, 3J(H,H) = 7.3 Hz, CHa), 3.67 (br dd, 4H, CHb); ' 3C NIvIR (100 MHz, 

CDC13) 6 167.4 (CO), 166.9 (CO), 153.4, 143.3 (ArG (ipso)), 138.0 (ArC (ipso)), 134.9, 

131.4, 130.7, 130.5, 129.4, 128.8, 52.1 (Ma), 46.2(CHb), 45.7 (CH,); HRMS (FAB) 

Calcd. for C 62H57N806 [M+Hf 1009.44011. Found 1009.44075. 

(2] (1,4,7,14,17,20-Hexaaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane))-(N,N'—bis(2,2--diphenyl-ethyl)- 	(E)-butendiamide)- 

rotaxane, E-6 

A 

0 

C 0 

\ 	Ph 

Ph c 

oV/O  
Rotaxane E-6 was obtained using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from thread E-1 (0.237 g) using as diamine the 

p-xylylenediamine (0.681 g) and as acid dichloride 2,6 pyridyl acid dichloride (1.020 g). 

The crude obtained was purified by column chromatography on silica gel using a 
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gradient of CH2C12IEtOAc as eluent to obtain the desired compound as a colourless 

powder (E-6, 0.187 g, 37%). m.p. 330 °C decomp.; 'H NMIR (400 MHz, CDC13): ö = 

9.63 (t, 4H, 3J(H,H) = 6.1 Hz, NHD), 8.41 (d, 411, 3J(H,H) = 7.6 Hz, ArCHB), 8.12 (t, 

211, 3J(H,H) = 7.6 Hz, ArCHA), 7.29-7.11 (m, 22H, ArCH and NHC), 6.48 (s, 8H, 

ArCHF), 5.00 (s, 211, CHd), 4.90-4.18 (br, 811, CHE), 4.16 (t, 211, 3J(H,H) = 7.8 Hz, 

CHa), 4.16 (br dd, 4H, CHb); 13C NMR (100 MHz, CDC13) 8  165.4 (CO), 164.0 (CO), 

149.1 (ArC (ipso)), 141.7 (ArC (ipso)), 139.0 (CHA), 137.5 (ArC (ipso)), 128.9, 128.3 

(CHF), 127.7, 127.4 (CHd), 127.2, 125.1 (CHB), 50.3 (Ma), 44.7 (CHE), 44.5 (CHb) 

HRMS (FAB) Calcd. for C6214 57N806 [M+Hf 1009.44011. Found 1009.44013. 

121 (1,8,14,21-Tetraaza-2,7,15,20-tetraoxo-3,6,1O,12,16,19,23,25-

tetrabenzocyclohexacosane))-(N,N'—bts(2,2--diphenyl-ethyl)-(E)-butendiamide)-

rotaxane, E-8 
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Rotaxane E-8 was obtained using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from thread E-1 (0.237 g) using as diamine m- 

xylylenediamine (0.681 g) and as acid dichloride terephthaloyl dichloride (1.015). The 
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filtrate was then washed with HC1 (0.2M, 100 mL) and Na2CO3 solution (100 mL). The 

organic layer was then dried over MgSO4 and the solvent removed in vacuo to leave a 

cream solid. The rotaxane was isolated by column chromatography on silica gel (2% 

MeOHICH2C12) (E-8, 0.151 g, 30 %). m.p. 329.9-331.9°C; 'H NMR (400 MHz, 46-

DMSO): 8 = 8.35 (t, 2H, 3J(H,H) = 6.5 Hz, NHC), 8.00 (t, 411, 3J(H,H) = 5.5 Hz, NHE), 

7.74 (s, 2H, ArCHc), 7.31 (22H, m, ArCH), 7.19 (t, 411, 3J(F1,H) = 7.5 Hz, ArCH), 6.80 

(8H, s, ArCHF), 4.85 (s, 2H, CHd), 4.58 (d, 8H, 3J(F1,H) = 5.5 Hz, CHD), 4.21 (t, 2H, 

3.J(H,H) = 6.5 Hz, CH,), 3.77 (dd, 4H, 3J(H,H) = 6.5 Hz, CHb); 13C NMR (100 MHz, d6-

DMSO): 6 = 167.6 (CO), 165.3 (CO), 143.2 (ArG (ipso)), 139.5 (ArG (ipso)), 138.2 

(ArG (ipso)), 132.1 (CHj), 132.0 (ArCH), 128.9 (ArCH), 128.8 (ArCH), 126.9 (ArCH), 

126.7, (ArCH), 126.5 (ArCH), 125.4 (ArCH), 50.8 (CH), 44.0 (CH2), 43.4 (CH2); MS 

(FAB): m/z = 1007 [M+H]; Anal. Calcd. for C64H5806N6:  C 76.32, H, 5.80, N, 8.34. 

Found C 75.96, H 5.83, N 8.19. 

121 (1,7,13,19-Tetraaza-2,6,14,18-tetraoxo-3,5,9,1 1,15,17,21,23-

tetrabenzocyclohexacosane))-(N,N'—bis(2,2—diphenyl-ethyl)-(E)-butendiamide)-

rotaxane, E-9 

A 

C 

Ph 

Ph 

Ph c 

O1 Ao 
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Rotaxane E-9 was obtained using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from thread E-1 (0.237 g) using as diamine m-

xylylenediamine (0.681 g) and as acid dichloride isophthaloyl dichloride (1.015 g). The 

filtrate was then washed with HC1 (0.2M, 100 mL) and saturated Na2CO3 solution (100 

mL). The organic layer was then dried M92SO4 and the solvent removed in vacuo to 

leave a cream solid. The rotaxane was isolated by column chromatography on silica gel 

(2% MeOHICH2C12) (E-9, 0.015 g, 3%). m.p. 332.2-334.2°C; 'H NMR (400 MHz, d6-

DMSO): 8 = 8.52 (br s, 2H, ArCHc), 8.29 (t, 411, J = 5.0 Hz, NHD), 8.03 (d, 4H, 3J(H,H) 

= 8.0 Hz, ArCHB), 7.69 (t, 211, 3J(H,11) = 8.0 Hz, ArCHA), 7.28 (m, 14H, ArCH + 

CHCH2NH), 7.19 (m, 811, ArCH), 6.79 (m, 4H, ArCH), 6.68 (m, 411, ArCH), 6.08 (s, 

2H, CHd), 4.06 (d, 811, 3J(H,H) = 5.5 Hz, CH,), 3.75 (t, 4H, 3J(H,H) = 7.0 Hz, CH,), 

3.67 (t, 211, 3J(H,H) = 7.0 Hz, CHa); 13C NTvfR (100 MHz, d6-DMSO): 8 = 166.1 (CO), 

166.0 (CO), 142.7 (ArG (ipso)), 137.9 (ArC (ipso)), 134.8 (ArC (ipso)), 131.6 (cud), 

130.5 (ArCH), 128.6 (ArCH), 128.5 (ArCH), 128.4 (ArCH), 128.2 (ArCH), 127.8 

(ArCH), 127.7, (ArCH), 126.9 (ArCH), 126.6 (ArCH), 50.0 (CH), 43.5 (CH2), 42.5 

(CH2); MS (FAB): m/z = 1007 [M+H]; Anal. Calcd. for CH 5806N6: C 76.32, H 5.80, 

N 8.34. Found C 76.5 1, H 5.64, N 8.16. 
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[2J(1,7,14,20-Tetraaza-2,6,15,19-tetraoxo-3,5,9,12,l6,l8,22,25-

tetrabenzocyclohexacosane)-(N,N'-(dimethyl)-bis(2',2'-diphenYlethYl}-(E)-

butendiamide)-rotaxane, E-10 
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NPN 
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(E-10, 0.170 g, 33%). m.p. 320-323°C; 'H NMR (400 MHz, d6-DMSO at 403K): 8 

8.51 (br s, 211, ArCHc), 8.09 (dd, 4H, 3J(H,H) = 7.8 Hz, ArCHB), 7.78 (br t, 411, NHD), 

7.60 (t, 2H, 3J(H,H) = 7.8 Hz, ArCHA), 7.35-7.11 (m, 2011, ArCH), 6.96 (s, 8H, ArCHF), 

5.92 (br s, 211, CHd), 4.40 (br d, 8H, 3J(H,H) = 5.4 Hz, CHE), 4.26 (br t, 211, CHa), 3.91 

(br d, 4H, CHb), 2.41 (s, 611, CH); ' 3C NMR (100 MHz, CDCI3): 6= 166.9-166.0, 

142.9, 138.9, 134.9, 129.3-127.6, 125.1, 53.9-53.1, 49.8, 44.6-44.1, 36.3-36.1; FAB-MS 

(mNBA matrix): m/z = 1036 [(M+H)]; Anal. Calcd for C661162N606: C 76.57, H 6.04, N 

8.12. Found: C 76.88, H 6.20, N 8.30; HRMS (FAB) Calcd. for C66H63N606 [M+H] 

1035.48091. Found 1035.48 124. 
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N,N'—bis (2,2—diphenyl-ethyl)-(Z)-butendiamide, Z-1 

Ph 	 Ph 

Ph 	 N1< Ph 

Compound Z-1 was obtained using the general method for the photoisomerization of 

fumaramide [2]rotaxanes from thread E-1 (0.047 g). The compound was isolated by 

column chromatography on silica gel (2% MeOHJCH2C12) (Z-1, 0.027 g, 56%). m.p. 86-

87 °C; 'H NMR (400 MHz, CD2C12) S 8.14 (br s, 211, NHC), 7.41-7.22 (m, 20H, ArCH), 

5.92 (br s, 211, CHd), 4.21 (t, 2H, 3J(HA, HB) = 7.7 Hz, ArC Ha), 3.93 (dd, 41-1, 3J(Hb,Ha) 

= 7.7 Hz, 3J(Hb,Hc) = 6.0 Hz, ArCHb); 13C NMR (100 MHz, CD202) 8 164.7 (CO), 

141.8 (ArC (ipso)), 130.6 (CHd), 128.9 (ArCH (meta)), 128.5 (ArCH (ortho)), 126.8 

(ArCH (jara)), 50.2 (CHa), 44.2 (GHb); HRMS (FAB) Calcd. for C321131N202 [M+H] 

475.23855. Found 475.23879. 

E21 (1,7,14,20-Tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane))-(N,N'—bis(2,2—diphenyl-ethyl)-(Z)-butendiamide)-

rotaxane, Z-2 
A 

ot#&O 
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PhNHH E 	
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Ph 
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Rotaxane Z-2 was obtained using the general procedure for the photoisomerisation of 

fumaramide [2]rotaxanes from rotaxane E-2 (0.100 g) and the crude obtained subjected 

to column chromatography on silica gel (CH2C12IEtOAc) to obtain a colourless solid (Z-

2, 0.045 g, 45%). m.p. >300 °C (decompose); 'H NIv1R (400 MHz, CDC13): 6= 8.22 (d, 

411, 3J(H,14) = 7.8, ArCHB), 8.13 (s, 211, ArCHc), 7.73 (t, 4H, 3J(H,H) = 5.4 Hz, NHD), 

7.62 (t, 2H, 3J(H,14) = 7.8 Hz, ArCHA), 7.27-7.11 (m, 18H, ArCH (ortho and meta 

thread) and NH.), 6.98 (d, 4H, 3J(H,H) = 7.5 Hz, ArCH (J)ara thread)), 6.83 (s, 8H, 

ArCHF), 5.11 (s, 211, CHd), 4.38 (d, 8H, 3J(H,H) = 5.4 Hz, CHE), 3.87 (t, 2H, 3J(H,H) = 

7.8 Hz, CHa) and 3.41 (dd, 4H, 3J(H,H) = 7.8 Hz, 3J(H,14) = 5.7 Hz, CHb); 13C NMR 

(100 MHz, CDC13): 6 = 166.8 (CO macrocycle), 165.5 (CO thread), 141.8 (ArC ipso 

thread), 137.4 (ArC ipso), 134.3 (ArC-CO ipso), 131.9 (CH), 131.2 (CHd), 129.9 

(CHA), 129.3 (ArCHF), 129.2 (ArCH (meta thread)), 128.5 (ArCH (ortho thread)), 127.5 

(ArCH (para thread)), 124.8 (CH), 50.32 (M a), 44.9 (CH) and 44.8 (CHE); MS (FAB, 

mNBA): m/z=1029 [(M+Na) 4]. Anal. Calcd. for C64H58N606:  C 76.32, H 5.80, N 8.34. 

Found: C 76.39, H 5.91, N 8.19. 

[2](1,9,16,22-Tetraaza-2,8,17,21-tetraoxo-5-nitro-3,7,1 1,14,18,20,24,27-

tetrabenzocyclohexacosane))-(N,N'-bis(2,2--diphenyl-ethyl)-(Z)-butendiamide)-

rotaxane, Z-4 
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Rotaxane Z-4 was obtained using the general procedure for the photoisomerisation of 

fumaraniide [2]rotaxanes from rotaxane E-4 (0.105 g) and the crude obtained subjected 

to column chromatography on silica gel (CH 2C12/EtOAc) to obtain a colourless solid (Z-

4, 0.057 g, 54%). m.p. 281 °C; 'H NMR (400 MHz, CD202)8 8.91 (d, 2H, 4J(HB',Hc') 

= 1.3 Hz, ArCH8'), 8.62 (t, 1H, 4J (H', HB') = 1.3 Hz, ArCHc'), 8.03 (dd, 2H, 4J(H8,Hc) 

= 1.8 Hz, 3J(HB,HA) = 7.8 Hz, A1CHB), 7.90 (t, 2H, J(HD',HE') = 4.8 Hz, NH0'), 7.91 (d, 

1H, 4J(HC,HB) = 1.8 Hz, ArCHc), 7.59 (t, 111, 3J(HA,HB) = 7.8 Hz, ArCHA), 7.20-7.06 

(m, 13H, ArCH (ortho and para thread) and ArCHc), 7.00-6.91 (m, 16H, ArCH (meta 

thread), ArCHF and ArCHF'), 6.82 (t, 2H, 3J(HD,HE) = 5.5 Hz, NHD), 5.10 (s, 2H, CHd), 

4.49 (d, 411, J(HE',HD') = 5.0 Hz, CHE'), 4.40 49 (d, 4H, 3J(HE,HD) = 5.5 Hz, CHE), 3.77 

(t, 2H, 3J(Ha,Hb) = 7.9 HZ, CH,,), 3.36 (dd, 4H, J(Hb,Ha) = 7.9 Hz, 3J(Hb,H) = 5.8 Hz, 
CH  b); 13C NMR (100 MHz, CD202) 8  167.0 (CO-NHD macrocycle), 166.0 (CO thread), 

164.7 (CO-NHD' macrocycle), 142.5 (ArC (ipso)), 138.2 (ArC-CHE'), 137.7 (ATC-CHE), 

136.9 (ArC-CO-NHD'), 135.0 (ArC-CO-NH 0), 131.4, 130.3, 130.2, 130.1, 129.6, 129.5, 

128.3, 127.7, 126.9, 50.9 (CH a), 45.3 (CHE'), 45.2 (CHE), 44.8 (CHb); FIRMS (FAB) 

Calcd. for C64H58N708 [M+Hr 1052.43469. Found 1052.43528. 
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121 (1,4,7,14,1 7,20-Hexaaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane)-(N,N'—bis (2,2—diphenyl-ethyl)-(Z)-butendiamide)-

rotaxane, Z-6 
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Rotaxane Z-6 was obtained using the general procedure for the photoisomerisation of 

fumaramide [2]rotaxanes from rotaxane E-6 (0.101 g) and the crude obtained subjected 

to column chromatography on silica gel (CH2C12/EtOAc) to obtain a colourless solid (Z-

6, 0.051 g, 51%); 'H NMR (400 MHz, CDC13) 8 9.18 (t, 4H, 3J(H,H) = 5.8 Hz, NHD), 

8.89 (br s, 211, NH,;), 8.50 (t, 4H, 3J(H,H) = 7.9 Hz, ArCH11), 8.14 (t, 2H, 3J(H,H) = 7.9 

Hz, ArCHA), 7.14-7.09 (m, 12H, ArCH), 6.96-6.91 (m, 811, ArCH), 6.70 (s, 8H, 

ArCHF), 5.49 (s, 2H, CHd), 4.50 (hr d, 814, 3J(H,H) = 5.8 Hz, CHE), 3.87 (t, 2H, 3J(H,H) 

= 7.3 Hz, CHb); 13C NMR (100 MHz, CDC13) 8 165.4 (CO), 163.7 (CO), 149.6 (ArC 

(ipso)), 141.5 (ArC (ipso)), 138.9 (Cl-Id), 136.8 (ArC (ipso)), 129.1, 128.9, 127.2, 127.1, 

125.8, 50.2 (Ma), 45.3, 43.5; HRMS (FAB) Calcd. C 621157N806 [M+Hr 1009.44011. 

Found 1009.44018. 
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[2](1,7,14,20-Tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocycIohexacosane)-(N,N-(dimethy1)-bis{2',2'-dipheny1ethy1}-(2)-

butendiamide)-rotaxane, Z-10 

A 

ots#&o 
icr 

Ph 	NHHN E 	
Ph 

a  

PhflN<  

\ 
P 

Me 	
h 

 

o o  

Rotaxane Z-10 was obtained using the general procedure for the photoisomerisation of 

fumaramide [2]rotaxanes from rotaxane E-10 (0.103 g) and the crude obtained subjected 

to column chromatography on silica gel (CH2C12IEtOAc) to obtain a colourless solid (Z-

10, 0.049 g, 47%). m.p. > 300 °C (decompose); 1H NMR (400 MHz, C2D2CL at 403K): 

6 = 8.13 (dd, 411, 3J(H,H) = 7.8 Hz, AxCHB), 7.91 (br s, 2H, ArCHc), 7.63 (t, 2H, 

3J(H,H) = 7.8 Hz, ArCHA), 7.35-7.11 (m, 24H, ArCH + NHD), 6.98 (s, 8H, ArCHF), 

4.92 (br s, 211, CHd), 4.40 (br d, 811, 3J(H,H) = 5.4 Hz, CHE), 4.07 (b t, 2H, CH,,), 3.51 

(br d, 411, CHb), 2.21 (s, 6H, CH); ' 3C NMR (100 MHz, CDC13): 6= 166.9-166.0, 

142.9, 138.2, 134.9, 129.3-127.6, 125.1, 53.9-53.1, 49.8, 44.6-44.1, 36.3-36.1; FAB-MS 

(mNBA matrix): m/z=1036 [(M+H)]; Anal. Calcd. for C661162N606: C 76.57, H 6.04, N 

8.12. Found: C 76.98, H 6.30, N 8.23. 
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Chapter Three- Synopsis 

In chapter two the remarkable templating ability offlimaramide-based threads in the 

formation of structurally-diverse benzylic amide macrocycle-containing 

[2]rotaxanes has been demonstrated Photochemical isomerisation of the E-

rotaxanes afforded the corresponding Z-isomers. In the following chapters we will 

focus our attention on possibility to control some of the dynamic processes present in 

rotaxane architectures. 

In this chapter control over the rate of pirouetting of the macrocycle around the 

thread in tetra-amide benzylic macrocycle-containing [21rotaxanes is achieved 

through EIZ isomerisation. The isomerisalion process is reversible and driven by 

photonic and thermal stimuli, bringing about changes in the rate of the pirouetting of 

more than six orders of magnitude. 

A series of flimaramide-based rotaxanes were synthetised and converted in their 

respective, thermodynamically unfavoured, Z isomers by using light (Scheme 1). 

E-1 	R'= R2= CH2CO2CH2Ph 	Z-1 

E-2 	R 1 = Me, R2= CH2CHPh2 	Z-2 

E-3 	R 1 = H, R2= CH2CHPPI2 	Z-3 

011ce 
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E-4 	R 1= R2= CH2CO2CH2Ph 	Z-4 

E-5 	R 1 = Me, R2= CH2CHPh2 	Z-5 

E-6 	R1 = H, Rz=  cH2CHPh2 	Z-6 

Scheme 1 The [2]rotaxanes E-4-6 were synthesised from the corresponding threads (E-1-3) and 
converted in their respective 7-isomers (7-4-5) by using a photonic stimulus. The isomerisation 
process can be reversed by applying a thermal stimulus affording the original E-rolaxanes. 
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The change in geometry accompanied with the isomerisation process alters the 

strength of the intercomponent hydrogen bond interactions between the macrocycle 

and the thread and consequentially the rotational dynamic of the macrocyclic unit. A 

thermal stimulus is then used to reverse the photoisomerisation process to give back 

the thermodynamically more stable E isomers. 

Variable temperature 'H MVIR spectroscopy experiments were used to determine the 

energies barrier for the pirouetting process of the macrocycle for E-4 and Z-4 giving 

spinning rates of -1 s7l and -1.2 x 106  s 1  respectively. Energies barrier for the 

circumrotation of the macrocycle for E-4 and Z-4 were also calculated by 

computational simulations using M1v13 forcefield and the TINKER program giving 

results in excellent agreements with the experimental values. 
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Chapter Three 

3.1 Introduction 

Large amplitude internal rotations which resemble to some extent processes found in 

authentic machinery have recently inspired analogic molecular versions of gears', 

turnstiles 2, brakes', ratchets 4 '5 , rotors6  and unidirectional spinning motors 7-10, and are an 

inherent characteristic of many catenanes and rotaxanes 1113 . Establishing methods for 

controlling aspects of such movements is a prerequisite for the development of artificial 

devices that function through rotary motion at the molecular level.t  In this regard, we 

recently reported the unexpected discovery that the rate of rotation of the interlocked 

components of benzylic amide macrocycle-containing nitrone and fumaramide 

[2]rotaxanes can be slowed ("dampened") by 2-3 orders of magnitude by applying a 

modest (-.4Vcm 1) external oscillating electric field 14. Here we demonstrate that the rate 

of rotation of the interlocked components of the olefin-based rotaxanes can also be 

accelerated - by more than six orders of magnitude - using another broadly useful 

stimulus, light. 

I  Speculation over the possible utility of submolecular rotation in synthetic molecular structures ranges 
from 'gearing' systems, where controlled motion in one part of a molecule brings about changes in 
conformation in another (e.g. to generate catalysts with rotating binding sites, cf. F 1 -ATPase etc), to 
systems which rotate functional groups on surfaces, or in the bulk, to bring about changes in local or 
macroscopic characteristics( 11,23). Indeed, for wonderful examples of the use of submolecular rotational 
motion to bring about property changes in materials see (24) and (25). Examples of specifically 
controlling the frequency of large amplitude internal rotary motions include the redox-mediated 
acceleration/deceleration of the spinning of porphyrin ligands in cerium and zirconium sandwich 
complexes(26), the environment-dependant rate of circuinrotation in hydrogen bonded [2]catenanes(27), 
and the electrochemically-induced pirouetting of a macrocycle in a rotaxane(28). 
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3.2 Results and Discussion 

Fumaramide threads template the assembly of benzylic amide macrocycles around them 

to form rotaxanes in high yields ' 5 . This cheap and simple preparative procedure (suitable 

threads are prepared in a single step from fumaryl chloride and a bulky primary or 

secondary amine) is particularly efficient because the trans-olefin fixes the two 

hydrogen bond-accepting groups of the thread in an arrangement which is 

complementary to the geometry of the hydrogen bond-donating sites of the forming 

macrocycle. However, the feature of the fumaramide unit that makes it such an effective 

template also provides an opportunity to enforce a geometrical change in the thread after 

rotaxane formation, thus altering the nature and strength of the interactions between the 

interlocked components. Isomerization of the olefin from E- to Z- must necessarily 

disrupt the near-ideal hydrogen bonding motif between macrocycle and thread and 

therefore also change any internal dynamics governed by those interactions. 
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To test this idea, the photochemical isomerization of three fumaramide-based threads (E-

1-3) and rotaxanes (E-4-6) was investigated. The synthesis of rotaxanes E-4 and E-6 has 

previously been described" and E-5 was prepared in analogous fashion from the 

corresponding thread, E-2, isophthaloyl dichloride and p-xylylene diamine (Scheme 

3.1).t Under the same reaction conditions the cis-olefin (maleamide) threads, Z-1-3, did 

not give detectable quantities of the corresponding Z-rotaxanes. 

0 	R 1  

E-1 	R 1 = R2= CH2CO2CH2Ph 	Z-1 

E-2 	R 1 = Me, R2= CH2CHPh2 	Z-2 

E-3 	R1 = H, R2= CH2CHPh2 	Z-3 

(I) 

o,Ly 
pN 	

hu 254 nm 

R2. 
 

R1 	0 

oicy o  
E-4 	R 1 = R2= CH2CO2CH2Ph 	Z-4 

E-5 	R 1 = Me, R2= CH2CHPh2 	Z-5 

R 1 = H, R2= CH2CHPh2 	Z-6 

Scheme 3.1. Synthesis of [21rotaxanes E/Z-4-6. (1)4 equivs. isophthaloyl dichloride, 4 equivs. p-xylylene 
diamine, Et3N, 4 h, high dilution; CHCI 3  for E-4 (67%) and E-5 (33%), 1/9 MeCN/CHCI3  for E-6 (97%). 
Direct irradiation (254 nm, 30 mm.) of a solution of an E-rotaxane (0.1 M, RI, CH 2Cl2  [1:9 MeOHICHCI3  
for E-6]) yields the "accelerated" Z-isomer (45-50% single experiment; >90% from 4 successive cycles). 
Heating a 0.02 M solution of a Z-rotaxane at 400K reforms the "dampened" E-isomer (E-6: C2D2CL, 7 
days, 84% or d.-DMSO, 4 days, 100%). 

The modest yield (33%) of E-5 is probably a consequence of the {EE)- and/or {E,Z}- tertiary amide 
rotamers being sterically mismatched with the forming macrocycle. Interestingly, a small amount (2%) of 
rotaxane E-6, presumably arising from p-xylylene diamine-catalyzed isomerization of the thread, was 
isolated from the reaction of pristine Z-3, again exemplifying the extraordinary efficiency of the E-3 
template for rotaxane formation. 
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Single crystals suitable for investigation by X-ray crystallography were obtained for each 

of the three E-rotaxanes. In each case the solid-state structure shows two sets of 

bifurcated hydrogen bonds between the amide groups of the macrocycle and the 

carbonyl groups of the fumaramide system' 5 . The crystal structure of E-5 is typical (Fig. 

3.1), and shows the macrocycle in a chair conformation forming short, close-to-linear, 

hydrogen bonds orthogonal to the lone pairs of the fumaramide carbonyl groups. Of the 

three different tertiary amide rotamers present in solution (as observed by NMR) only 

the (ZZ}amide rotamer of E-5 is found in the crystal. 

Figure 3.1. X-Ray crystal structure of [2]rotaxane E-5 (for clarity carbon atoms of the macrocycle are 
shown in blue and the carbon atoms of the thread in yellow; oxygen atoms are depicted in red, nitrogen 
atoms dark blue and selected hydrogen atoms white). Intramolecular hydrogen bond distances (A): 
040—HN2/043—l-1N20 = 2.22, 040—HN I 1/043—HN29 = 1.94. 

All three fumaramide threads E-1-3 and rotaxanes E-4-6 smoothly undergo 

photoisomerization' 6" 7  (254 rum; 0.1 M solution in CH202 or, for solubility reasons in 

the case of E-6, 1:9 MeOH/CHC13; 30 mm.) to the corresponding maleamide (Z-olefin) 

systems. The yields for the rotaxanes, 45-50%, are remarkably good considering the 

confined cavity that the molecular rearrangement has to occur in and that the 

intercomponent hydrogen bonding between the thread and macrocycle is complementary 

to the positions of the amide groups only in the E-olefin. Unanticipated enhanced 

solubility of the Z-rotaxanes in nonpolar solvents allowed the separation of the E/Z 

70 



Chapter Three 

photochemical reaction mixtures into the individual isomers by simple trituration 

(PhMe/CH202, 1:1). The photoisomerization reaction produces few byproducts so 

rotaxanes recovered in this way could be recycled leading to >90% overall conversion to 

the Z-isomer from a series of irradiation experiments. 

The 'H NMR spectra of each pair of E- and Z-olefin rotaxanes gives insight regarding 

their structure and relative dynamic properties in nonpolar solvents. The trends are 

similar in all cases but the clearest information is provided by E/Z4.* 

The variable temperature 'Fl NMR spectra of E-4 and Z-4 in C13202 (223-273K) and 

C21320I (339-393K) are shown in Fig. 3.2 (the wide temperature range involved meant 

different non-hydrogen bond-disrupting solvents were required to monitor the dynamic 

processes at high and low temperatures). Pirouetting, a 180° rotation of the macrocycle 

about the axis of the arrow plus formal chair-chair flip of the macrocycle, is the simplest 

process that must occur in order to translate the equatorial macrocycle methylene 

protons, HE2,  onto the axial, HE!,  sites. In the fumaramide system the HE protons 

coalesce at 273K and are fully resolved into the HE! and HE2  resonances at 223K (Fig. 

3.2a). The coupling constants confirm the axial and equatorial assignments of HE! and 

11E2. Spin polarization transfer by selective inversion recovery (SPT-SIR) experiments 

provided a direct measure of the rate of the exchange process I (i.e. half circumrotation 

of the macrocycle) at 298K corresponding to an energy barrier AG 13.4±0.1 kcal mol' 

which extrapolates to a rate of macrocycle rotation of --1 s 1  at 2230. 

In contrast, the macrocycle methylene protons (HE) in Z-4 remain sharp and well 

resolved throughout this temperature range and only begin to broaden significantly at 

* The spectra of Z-6 are complicated because intracomponent hydrogen bonding of the maleamide group 
desymmetrizes the rotaxane (the macrocycle methylene groups appear as an ABX system because the two 
faces of the macrocycle experience different environments). Similarly, the temperature-dependent 
equilibrium between the populations of the different amide rotamers present in the methylated rotaxanes 
E/Z-5 makes their study nontrivial, whereas the symmetrical tertiary amides means E/Z-4 suffers no such 
complication. For a discussion of the effect of the different strengths of intercomponent hydrogen bonding 
in E4 and Z-4 on the dynamics of amide rotainerization see the Experimental Section. 
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223K (Fig. 3.2b); remarkably, the broadening of HE in Z-4 at 223K is comparable to that 

in E-4 at 359K - a 136° temperature difference between the two rotaxane isomers! 

(a) 	 (b) 
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Figure 3.2. Variable temperature 'H NMR spectra (400 MHz) of (a) E-4 and (b) Z-4 in CD2Cl2 at 223K 
(main traces) and 223-273K (stackplot expansions) and C 2132C4 339-393K (stack-plot expansions). 
Lettering corresponds to selected non-equivalent proton environments. A 1800  rotation of the macrocycle 
about the axis of the arrow, plus chair-chair flipping of the macrocycle, translates the HE   (equatorial) 

protons onto the HE,  (axial) sites. The NMR spectra in (a) reveal slow pirouetting of the macrocycle 

about the thread in E4, (HE, and HE   coalesce at 273K, A($=13.4±0.1 kcal mol'; process 1) and slow 

rotation of the thread tertiary amide bonds (H ajand Ha2/Hbi  and  Hb2  fully resolved even at 393K, EG 
21.1±0.1 kcal mor'; process II). The NMR spectra in (b) show that process I is much lower in energy for 
Z-4 (AG=6.8±0.8 kcal mor') than E-4 and that process H is also more facile (H a,and Ha/Fibj  and  Hb2  
broadening at higher temperatures, G= 20.0±0.1 kcal mor'X30). 
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Exchange is so fast in Z-4 that it is not possible to resolve the signals and prove 

unequivocally by experiment that the process responsible for the broadening at this 

temperature is, in fact, macrocycle pirouetting (it could be occurring at even lower 

temperatures). However, making the assumption (vide infra) that this is the process 

responsible for broadening, line shape analysis gives an energy barrier of 6.8 ±0.8 kcal 

moF', i.e. a macrocycle spinning rate> 1.2 x 106  at 223K. 

Remarkably, it was possible to obtain an X-ray crystal structure of one of the rotaxanes 

with a 'switched off' recognition motif. Small crystals of Z-5 suitable for investigation 

using a synchrotron source were grown from slow evaporation of a saturated solution in 

CHC13/MeOH. In contrast to the crystal structure of E-5, two of the three tertiary amide 

rotamers, i.e. {ZE} and {EE} rotamers are present in the unit cell of Z-5 (Fig. 3.3a and 

3.3b, respectively). 

Figure 3.3. X-ray crystal structures of (a) {ZE} and (b) {EE} rotamers of NN'-dimethylmaleamide 
[2]rotaxane Z-5. Intramolecular hydrogen bond distances (A): (a) 040-I-EN I I = 2.08, 043-HN2 = 2.05; (b) 
040-14NI I = 1.76, 043-1-1N2 = 2.08. 

Both forms are consistent with the dramatic increase in the rate of rotation in solution for 

the cis-rotaxanes observed experimentally by 'H NMR spectroscopy; the consequence of 

isomerizing the double bond is that the amide groups of the thread are held in positions 

such that they can hydrogen bond to only one of the two isophthalamide groups of the 
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macrocycle. It is interesting to note that the energy barrier for the trans-rotaxane with 

four intercomponent hydrogen bonds (13.4 kcal moi5 is almost exactly twice the value 

for the cis-rotaxane with two intercomponent hydrogen bonds (-6.8 kcal moF'). 

In order to obtain a more detailed understanding of the dynamic properties of these 

systems and, in particular, to confirm that the low energy dynamic process measured by 

NMR in the maleamide rotaxane was circumrotation, we carried out simulations of the 

dynamic processes present in both E- and Z-4. 

Using a computational procedure which employs the MM3 forcefield' 8  and the TINKER 

program' 9, and has previously proved successful in describing the circumrotation 

pathway in catenanes20, macrocycle pirouetting in rotaxanes' 3  and other properties in 

mechanically-interlocked molecules 21 ' 22 , it was possible to locate the saddle points for 

macrocycle circumrotation in E-4 and Z-4. Fig. 3.4 shows the transition states, the 

arrows indicating the initial motion that the macrocycle would undergo away from the 

saddle point (arrows showing the movement of the thread are not shown for clarity). 

Figure 3.4. Calculated transition-state structures for the macrocycle ring motions for rotaxanes (a) Z-4 and 
(b) E-4. Green arrows represent the corresponding atomic motion vectors connecting the transition states 
to their minima. 

The calculated activation energies (13.51 kcal mo! 1  for E-4 and 6.53 kcal mol' for Z-4) 

compare well with the NMR determined AG's of 13.4±0.1 and 6.8±0.8 kcal moi', 
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respectively, and thus confirm that macrocycle pirouetting is probably a major 

contributor to the broadening of resonances observed in the low temperature NMR 

spectra of Z-4. The good agreement of calculations and experiments also allows one to 

take a closer look at the contributions of various kinds of interactions to the dynamic 

process of pirouetting. Table 3.1 shows the different energy contributions to the E-4 and 

Z-4 minima and transition states. Interestingly, from the calculations the -7 kcal mol' 

difference between the activation barriers of circumrotation in the two molecules can be 

ascribed to contributions from all the energy components, not just H-bonding. 

E EH-bonding '-sWcking EVdw 

E4a 29.18 -20.14 -15.36 -24.91 

E4b 33.09 -13.75 -12.65 -24.40 

(3.91) (6.39) (2.71) (0.51) 

z4 38.11 -16.84 -14.89 -30.97 

Z4b 44.66 -15.99 -16.73 -29.99 

(6.55) (0.85) (-1.84) (0.98) 

(a) energy minimum (b) transition state energy 

Table 3.1. Molecular energy contributions (kcal moo divided into four components: (i) a valence term, 
E, which includes stretchings and in-plane and out-of-plane bendings, (ii) a hydrogen bond contribution, 

EH-bonding, (iii) r-t stacking energy, E..stacking  and (iv) the remaining van der Waals components, 

'dw The energy differences between the minima and the transition states are given in parentheses. 

Preliminary studies show that it is possible to reverse the photo-isomerization process 

thermally. Heating each of Z-4-6 (C2D2C14 or d6-DMSO, 400K, 4-7 days) resulted in re-

conversion to the more thermodynamically stable E-rotaxanes in good-to-excellent (80-

100%) yields. Other simple cis-trans olefin interconversion reactions are currently 

being investigated. 

Attempts to grow crystals of Z-6 resulted in significant yields of crystalline E-6 although no E-6 could be 
detected at any stage in solution! It appears that the growing crystal surface of E-6 is able to catalyse the 
cis-trans isomerization process. Such a phenomenon is not unprecedented (29). 
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3.3 Conclusions 

The post-assembly photoconversion of a precise hydrogen bonding, rotaxane-forming, 

template to a motif that does not template the formation of mechanical bonds is 

unprecedented. The resulting mis-match in recognition sites between macrocycle and 

thread dramatically reduces the energy barrier to macrocycle pirouetting in the rotaxane. 

Such control could be useful for the future construction of synthetic molecular machines 

that utilize large amplitude internal rotary motions. 
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3.4 Experimental Section 

Preparation of thread (E)-NM- dimethyl-bis(2,2-diphenylethyl)-butendiamide (E-

2). 

0 	Ye Ph 

Ph,,rb 

Ph Me 	0 

To a stirred ice-cooled solution of bis-(2,2-diphenylethyl) fumararnide (1g. 2.10 mmol) 

in dry THF (20 mL) under nitrogen was added NaH (0.2 g, 60% dispersion in oil, 

excess) portion-wise under nitrogen. After the effervescence had subsided, methyl 

iodide (0.3 mL, excess) was added in one portion. The reaction was allowed to warm to 

room temperature and stirred overnight and water (20 mL) and ammonia solution (10 

mL) added drop-wise to quench the reaction. Most of the solvent was removed under 

reduced pressure, and the remainder partitioned between water and CH202 (3 x 20 mL). 

The organic extracts were washed with sodium hydroxide (IN, 20 mL) and dried over 

anhydrous magnesium sulfate. The filtered solution was concentrated under reduced 

pressure to give an oil that slowly solidified. Recrystallization from CH2C12/diisopropyl 

ether afforded colorless needles (E-2, 0.87g, 831/o); m.p. 134-136°C; 'H NMR (400 

MHz, C2D2C14 at 363K): 6 = 7.34-7.19 (m, 2011, ArCH), 6.99 (s, 211, CHd), 4.37 (t, 

3J(H,H) = 8.8 HZ, 2H, CH,), 4.04 (d, 3J(H,H) = 8.8 Hz, 4H, CH,), 2.79 (s, 6H, CH); 13C 

NMR (100 MHz, C2D2C14  at 393K): 6 = 166.7, 143.0, 132.1, 129.7, 128.9, 127.2, 55.5, 

51.0, 37.5; MS (FAB, mNBA): m/z = 502 [(M+H)]; Anal. Calcd. for C34H34N20 2: C 

81.24, H 6.82, N 5.57. Found: C 81.61, H 6.68, N 5.43. 

3.4.1 General Method for the Preparation of Benzylic Amide Macrocycle 

Fumaramide 12lRotaxanes. 

The threads E-1-3 (1.00 mmol) and Et3N (2.1 mL, 15.7 mmol) were dissolved in CHC13 

(100 mL) or, in the case of E-3, 1/9 CH3CN/CHCI 3, and stirred vigorously whilst 
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solutions of the diamine (1.09 g, 4 equivs.) in CHC13 (45 mL) and the acid chloride (1.62 

g, 4 equivs.) in CHC13 (45 mL) were simultaneously added over a period of 2 hours 

using motor-driven syringe pumps. After a further two hours the resulting suspension 

was filtered and concentrated under reduced pressure. The rotaxanes E-4 and E-5 were 

purified by trituration of the respective solids in CH202 (to remove the polar impurities 

- catenane, macrocycles, Et3IIN 4 CF etc), and subsequently separating the rotaxane from 

unreacted thread through trituration in hot toluene. Rotaxane E-6 was obtained by 

spontaneous crystallization from the reaction mixture as previously described. 15 

Selected data for ([ 21(1 ,7,14,20-tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane)-((E)-N,N'-(dimethyl)-bic{2',2'-diphenylethyl}-

butendiamide)-rotaxane (E-5): 

A 
~40  

N 

I' 

ol2Ao 
(E-5, 0.34 g, 33%); m.p. 320-323°C; 'H NMR (400 MHz, d6-DMSO at 403K): 8 = 8.51 

(br s, 211, ArCHc), 8.09 (dd, 3J(H,H) = 7.8 Hz, 4H, ArCHB), 7.78 (br t, 411, NHD), 7.60 

(t, 3J(H,H) = 7.8 Hz, 211, ArCHA), 7.35-7.11 (m, 2011, ArCH), 6.96 (s, 811, ArCHF), 5.92 

(br s, 2H, CHd), 4.40 (hr d, 3J(H,H) = 5.4 Hz, 8H, CHE), 4.26 (br t, 2H, Ma), 3.91 (br d, 
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4H, CHb), 2.41 (s, 6H, CH); ' 3C NMR (100 MHz, CDC13): 8 = 166.9-166.0, 142.9, 

138.9, 134.9, 129.3-127.6, 125.1, 53.9-53.1, 49.8, 44.6-44.1, 36.3-36.1; FAB-MS 

(mNBA matrix): mlz = 1036 [(M+H)4]; Anal. Calcd. for C66H62N606: C 76.57, H 6.04, 

N 8.12. Found: C 76.88, H 6.20, N 8.30. 

3.4.2 General Method for the Photoisomerization of Fumaramide [2]Rotaxanes. 

The rotaxanes E-4-6 (0.60 g) were dissolved in CH202 [except for solubility reasons E-

6, MeOH/CHC13 (1/9)] in a quartz vessel. The solutions were directly irradiated at 254 

nm using a multilamp photoreactor model MLU 18 manufactured by Photochemical 

Reactors Ltd, Reading UK. The progress of photoisomerization was monitored by TLC 

(silica, CHCI3/EtOAc 4/1) or 1 H NMR. The different photostationary states were 

reached in a range of times not exceeding 30 mins after which the reaction mixture was 

concentrated under reduced pressure to afford the crude products (Z-4-6). The 

unconverted trans isomers were isolated by triturating the solids with PhMe/CH2C12 

(1:1, -20 mL) and, because the photoisomerization process produces few byproducts, 

could be recycled eventually leading to >90% conversion of each rotaxane to the 

corresponding cis-isomer. The solutions were then passed through a pad of silica 

(CHC13IEtOAc 4:1) to afford the cis isomers E-4-6 in 50, 47 and 45% yields, 

respectively, from a single photoisomerization experiment. 
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Selected data for [2](1,7,14,20-tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane)-benzyl-2-[12-(benzyloxy)-2-OxOethyl] ((Z)-5-(bisl2-

(benzyloxy)-2-oxoethyljamino))2,5-dioxo-3-pentenyl)aminojacetate-rotaxane (Z4): 

A 
f)B 

Ph 	
C

YO 	
Ph 

 
b NH -E 

	

• °>\ 	
/\K0 

o 
a2 	b2 	

H IH 
Ph 	 Ph 

O / o 

(Z-4, 0.3 g, 50%); m.p. 243-244°C; 'H NMR (400 MHz, CD2Cl2): 6 = 8.92 (dd, 4J(H,H) 

= 1.7 Hz, 3J(H,H) = 7.8 Hz, 414, ArCHB), 7.60 (t, 4J(H,H) = 1.7 Hz, 211, ArCHc), 7.40 (t, 

3J(H,H) = 7.8 Hz, 2H, ArCHA), 7.30 (t, 3J(H,H) = 5.1 Hz, 4H, NHD), 7.23-7.11 (m, 2011, 

ArCH), 7.03 (s, 8H, ArCHF), 4.89 (s, 4H, CHb2), 4.83 (s, 2H, CHd), 4.78 (s, 4H, CHb 1), 

4.36 (d, 3J(H,H) = 5.1 Hz, 811, CHE), 3.63 (s, 4H, CH), 3.58 (s, 4H, CHI); 13C NMR 

(100 MHz, CDC13): 6 = 168.4, 167.6, 166.6, 166.2, 137.3, 135.9, 134.5, 134.4, 132.5, 

129.9-128.6, 123.4, 68.8, 68.3, 50.9, 50.6; LSIMS, m/z = 1239 [(M+H)1, 1262 

[(M+Na)1. Anal. Calcd. for C72HN6014: C 69.78, H 5.37, N 6.78. Found: C 69.56, H 

5.32, N.6.68. 
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Selected data for (121( 1 ,7,14,20-tetraaza-2,6,15,19-tetraoxo-,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane)-((Z)-N,N'-(dimethyl)-bis{2',2'-dipheflylethyl}-

butendiamide)-rotaxane (Z-5): 

A 

ogo  
Ph 
	

NHH \E 

FO 

dt"10  
(Z-5, 0.28 g, 47%); m.p. > 300 °C (decompose); 'H NMR (400 MHz, C2D2CLI at 403K): 

= 8.13 (dd, 3J(H,H) = 7.8 Hz, 4H, ArCHB), 7.91 (br s, 2H, ArCHc), 7.63 (t, 3J(H,H) = 

7.8 Hz, 211, ArCHA), 7.35-7.11 (m, 24H, ArCH+ NHD), 6.98 (s, 811, ArCHF), 4.92 (br s, 

2H, CHd), 4.40 (br d, 3J(H,H) = 5.4 HZ, 8H, CHE), 4.07 (b t, 2H, CHa), 3.51 (br d, 4H, 

CHb), 2.21 (s, 611, CH); ' 3C NMR (100 MHz, CDC13): 8 = 166.9-166.0, 142.9, 13 8.2, 

134.9, 129.3-127.6, 125.1, 53.9-53.1, 49.8, 44.6-44.1, 36.3-36.1; FAB-MS (mNBA 

matrix): ,n/z = 1036 [(M+H) 4]; Anal. Calcd. for C66H2N606: C 76.57, H 6.04, N 8.12. 

Found: C 76.98, H 6.30, N 8.23. 
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Selected data for (12](1 ,7,14,20-tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane)-((2)-N,N'-(dimethyl)-biS{2',2'-diPheflYlethYl}- 

butendiamide)-rotaxane (Z-6): 

A 

o,o  

Ph 	NHH E 	Ph 

> —o  
Ph H / 

oiV/o 
(Z-6, 0.27 g, 45%); m.p. >300 °C (decompose); 'H NMR (400 MHz, CDC1 3) 8 = 8.22 (d, 

3J(H,H) = 7.8 Hz, 414, A1CHB), 8.13 (s, 211, ArCHc), 7.73 (t, 3J(H,H) = 5.4 Hz, 4H, 

NHD), 7.62 (t, 3J(H,H) = 7.8 Hz, 211, ArCHA), 7.27-7.11 (m, 18H, ArCH + NHC), 6.98 

(d, 3J(H,H) = 7.5 Hz, 411, ArCH), 6.83 (s, 8H, ArCHF), 5.11 (s, 211, CHd), 4.38 (d, 

3J(H,H) = 5.4 Hz, 8H, CHE), 3.87 (t, 2H, CH,), 3.41 (d, 4H, CH,); ' 3C NMR (100 MHz, 

CDC13): ö= 166.8, 165.5, 141.8, 137.4, 134.3, 131.9, 131.2, 129.9, 129.3, 129.2, 128.0, 

127.5, 124.8, 50.3, 44.9, 44.8; MS (FAB, mNBA): m/z = 1029 [(M+Na)1. Anal. Calcd. 

for C64H58N606:  C 76.32, H 5.80, N 8.34. Found: C 76.39, H 5.91, N 8.19. 

3.4.3 X-Ray Crystallographic Structure Determinations: 

E-5: C64H58N606, M1039.22, crystal size 0.18A.044.02 mm, triclinic P-i, 

a13.4337(13), b16.2778(16), c=29.964(3) A, a75.716(2), 387.934(2), Y--  71.880(2) 

0  V6028.9(10) A3 , Z4, Pcalcd1.145  Mg m 3; synchrotron radiation (CLRC 

Daresbury Laboratory Station 9.8, silicon monochromator, ?0.69290 A), J.L=0.107 mm 

Mj 
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1,  T150(2)K. 23260 data (12003 unique, Rj=0.0466, 1.73<9<20.000), were collected 

on a Siemens SMART CCD diffractometer using narrow frames (0.3° in o), and were 

corrected semi-empirically for absorption and incident beam decay (transmission 0.20-

1.00). The structure was solved with S1R97 (Altomare A., Burla M.C., Camalli M., 

Cascarano G.L., Giacovazzo C., Guagliardi A., Moliterni A.G.G., Polidori G., Spagna R. 

.1. App!. Cryst. 32, 115-119 (1999)) and refined by full-matrix least-squares on F2  values 

of all data (G.M.Sheldrick, SHELXTL manual, Siemens Analytical X-ray Instruments, 

Madison WI, USA, 1994, version 5) to give wR={[w(Fo2—Fc) 2]/Y4w(F02) 

2]}1/20 2771, conventional R0.0952 for F values of 12003 reflections with 

F02>2a(Fo), S=1.050 for 1480 parameters. Residual electron density extremes were 

1.093 and —0.420 A 3 . 

Z-5: CH62N606, M1035.22, crystal size 0.30x0.14x0.08 mm, monoclinic, P21/c, 

a10.5696(3), b27.7157(9), c-10.7503(3) A, 0=1 15.2530(10), V=2848.27(15) A3 , 

Z'2, Pcalcd=i  .207 Mg m 3 ; MOKa  radiation (graphite monochromator, X=0.71073 A), 

t=0.078 mnf', T293(2) K. 13437 data (4049 unique, Rt=0.1701,  1.47<0<23.29°), 

were collected on a Siemens SMART CCD diffractometer using narrow frames (0.3° in 

c)), and were corrected semi-empirically for absorption and incident beam decay 

(transmission 0.20-1.00). The structure was solved by direct methods and refined by 

full-matrix least-squares on F2  values of all data (G.M.Sheldrick, SHELXTL manual, 

Siemens Analytical X-ray Instruments, Madison WI, USA, 1994, version 5) to give 

wR={[w(Fo2 Fc2) 2]/[w(F02) 2]}1=0.2136,  conventional R=0.081 1 for F values of 

4049 reflections with F02>2cy(Fo), S0.754 for 361 parameters. Residual electron 

density extremes were 0.355 and -0.337 A 3. Amide hydrogen atoms were refined 

isotropically subject to a distance constraint N-H = 0.98 A, with the remainder 

constrained; anisotropic displacement parameters were used for all non-hydrogen atoms. 

Crystallographic data for E-5 and Z-5 (excluding structure factors) have been deposited 

with the Cambridge Crystallographic Data Centre as supplementary publication numbers 

1" 

83 



Chapter Three 

CCDC-149672 and 149673 (E-5 and Z-5). Copies of the data can be obtained free of 

charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, 

UK (fax: +44-1223-336-033; e-mail: teched@chemcrys.cam.ac.uk).  

3.4.4 The Effect of Olefin Stereochemistry on Amide Bond Rotamerization in 

E/Z-4. 

The energy barrier for amide bond rotamerization in tertiary amide rotaxanes increases if 

intercomponent hydrogen bonding occurs to stabilise the R2N=C-0 resonance 

contribution of the tertiary amide group [W. Clegg, C. Gimenez-Saiz, D. A. Leigh, A. 

Murphy, A. M. Z. Slawin,, S. J. Teat, .1 Am. Chem. Soc., 1999, 121, 4124-4129]. In Fig. 

2a, slow amide bond rotamerization is responsible for the magnetically distinct 

environments observed for Hal  and Ha2  (and Hb1fHb2). Even though the coalescence 

temperature for their interconversion cannot be reached in C 2D2CLI, their exchange rate 

can be measured directly by SPT-SIR and gives an energy barrier of 21.1 kcal mor' at 

383K (cf 17.2 kcal mol' at 383K for rotamerization in the trans thread, obtained by 'H 

line shape analysis). In contrast, it is clear from the broadening of the Haj1Ha2  

resonances in Fig. 2b that the same process is occurring with a lower energy barrier in 

the cis-rotaxane. Indeed, 13C line shape analysis ('H line shape analysis was not possible 

because the diastereotopic methylene protons in the cis thread are accidentally 

isochronous) experiments give the energy barrier of 20.0 kcal mol' for Z-4 at 383K (cf. 

17.4 kcal mol' at 383K for rotamerization of the cis thread). 
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Chapter Four- Synopsis 

In chapter three it has been demonstrated how the rate of the pirouetting of the 

macrocycle around the thread in [2]rotaxanes can be controlled through reversible 

E'Z isomerisation. 

In this chapter we show the possibility to influence and control, by applying different 

stimuli, another dynamic property present in hydrogen-bonded rotaxane 

architectures: the translational motion (shuttling movement). 

A series of two-station rotaxanes, E-1-3, were synthesised each containing on the 

thread afumaramide station (green) that has been proved to be a pholochemically 

isomerisable and a highly efficient lemplating unit (chapters two and three) and a 

non-photoreactive station (orange) (Scheme 1). 'H JVMR studies in CHC13 at room 

temperature showed unambiguously that in all the three E-rolaxanes the macrocycle 

sits preferentially over the fumarwnide unit presenting a remarkable positional 

discrimination between the two well-separated stations as a consequence of the quite 

different binding affinity that it has for the two templating units. 

o4o  
RH FIN  

Ph 

Ph 
Ph 

Ph 

E-1,n1;X0 	N k 
E-2, n1; XNH 	- 
E-S. n3; X=NH 	 0 

hv254nm 

A 

Ph 

 

Ph 

Nt1 	Z-1n1;X=O 
Z-2. n1 X=NH 
Z$,n3;X=NH 

Scheme 1 The positioning of the macrocycle along the thread can be controlled in response to 
photonic or thermal stimuli. 

A photonic stimulus is then used to isomerise the fumaramide group into the poor 

macrocycle-templating maleamide unit (blue) thus provoking the shuttling of the 

macrocycle over the initially poorly-bindea non-photoreactive, station that now 

offers the higher binding affinity for the ring as confirmed by 'H NAM spectroscopy 

studies in CHC13  at room temperature of Z-1-3. The positional discrimination of the 

macrocycle between the two templating units present on the thread is extremely good 

for the rotaxanes Z-1-2, whereas for Z-3 is surprisingly poor even though the 

adipamide unit should be a much better template than the maleamide unit for the 

lxxxviii 



benzylic amide macrocycle. A thermal stimulus is then used to reverse the 

photochemical isomerisation process converting the Z-rotaxanes in their respective 

E-isomers. Molecular modelling calculations of the rotaxanes E/Z-1-3 were also 

performed leading to results broadly in line with the experimental data, although 

they could not reproduce the anomalously poor binding of the adipamide station in 

Z-3. 
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Chapter Four 

4.1 Introduction 

Stimuli-responsive molecular 'shuttles" -" (i.e. mechanically interlocked molecules 

where a macrocycle can be translocated between different sites in response to an 

external signal) all operate through the same basic principle. The external stimulus does 

not induce directional motion of the macrocycle per Se, rather it alters the equilibrium 

between different translational co-conformers by increasing the binding strength of the 

less populated station and/or destabilizing the initially preferred binding site. The 

motion of the components arises from the background thermal energy, the net result 

being a change in the position of the macrocycle through biased Brownian motion 

(Figure 4.1). 

AG 
AAG orange-blue 

LL\G orange-green 

Figure 4.1. Macrocycle translation in a stimuli-responsive molecular shuttle. Stimulus A induces a blue-
to-green transformation, stimulus B a green-to-blue transformation. The equilibrium distribution of the 
macrocycle between two stations is determined by the difference in their binding energies (AGo ,bjue , 

AAGorwegreen) and the temperature. 
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4.2 Results and Discussion 

Given this mode of action, a major problem in trying to design photo-active shuttles that 

could function as practical components for molecular machinery is finding ways of 

generating sufficiently large, long lived, binding energy differences between pairs of 

positional isomers. 2 ' 0  A Boltzmann distribution at 298K requires a AAG between 

translational co-conformers of --2 kcal mor' for 95% occupancy of one station. 

Achieving such discrimination in two states to form a positionally bistable shuttle (i.e. 

both AAG orange.blue  and AAG orangegreen ? 2 kcal mor') by modifying only intrinsically 

weak, non-covalent binding modes thus presents a significant challenge. The problem 

has previously been overcome in part by using photochemistry to block the position of 

the macrocycle in what are essentially 'one station' rotaxanes. 5101  In these systems the 

macrocycle is only able to sit on an azobenzene 5  or stilbene unit' °  in the E- diastereomer 

of the rotaxane and must reside elsewhere in the Z-form. Unfortunately, the integrity of 

macrocycle positioning in such systems is likely to be limited unless the thread is very 

short. Here we describe photo- and thermally-responsive shuttles (1-3) where the 

macrocycle moves over a relatively large distance (--1.5 nm) between two discrete 

stations with remarkable positional integrity (even at room temperature), despite the fact 

that the discrimination between the binding sites is caused only by 'matched' and 'mis-

matched' hydrogen bonding motifs. Each translational form is stable until a new 

stimulus is applied. 

The basis for the new shuttles lies in the photochemical and thermal interconversion of 

fumaramide and maleamide groups.' 2  The irans-olefin bis-amide acts as an excellent 

template for the formation of benzylic amide macrocycle-based rotaxanes (e.g E-4, 

Figure 4.2) because the amide carbonyl groups of the thread are rigidly held in positions 

that fit the hydrogen bond-donating sites of the forming macrocycle (an arrangement 

maintained even in crystals of E-4 obtained from DMSO, Figure 4.2a). 3  Irradiation of 

fumaramide rotaxanes at 254 nmM  produces the corresponding cis- (maleamide) 
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rotaxane in which the maximum number of intercomponent hydrogen bonds changes 

from four to two (Figure 4.2b), considerably reducing the strength of binding 15  between 

macrocycle and thread. By incorporating a second binding site into the thread we 

reasoned it might be possible to generate photoinduced, thermally reversible, translation 

of the rotaxane components. 

a) 	H 	0 	b) Me, 	00 	Me 

yield (97%)h131 	 yield (0%) 

/ 

HO 
	

d) 
	 e)HQ 

yield (52%)181 	 yield (8%) 	 yield (4%) 

'2 
- f I 

Figure 4.2. X-ray structures of model single binding site [2]rotaxanes showing hydrogen bonding 
characteristics of predicted (a) 'strong', (b) 'weak', and (c)-(e) 'intermediate strength' hydrogen bonding 
stations. (a) fumaramide rotaxane E-4 crystallized from DMSO; (b) N,N'-dimethyl derivative of the 
corresponding maleamide (Z) rotaxane; (c) succinamide analogue of E-4; (d) adipamide analogue of E-4; 
(e) succinic amide ester analogue of E-4. Intramolecular hydrogen bond distances and angles: (a) 
040-14N2/040A-14N2A 2.13 A, 173.70 ; 040—HNI 1/040A-14NI 1A 1.89 A, 169.3°; (b) 040—HNI I 
2.08 A, 139.3 0 ; 043—HN2 2.00 A, 142.1°; (c) 040—HN2/043—HN20 1.88 A, 165.3 0 ; (d) 
040—HN2/045—HN28 2.00 A, 168.80 ; (e) 040—HNI 1/043-1-1N29 1.89 A, 156.10.  For clarity the carbon 
atoms of the macrocycles are shown in blue and the carbon atoms of the threads in yellow; oxygen atoms 
are red, nitrogen atoms dark blue and selected hydrogen atoms white. In all cases the rotaxane 'stoppers' 
are -CH 2CHPh2. 
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Chapter Four 

We prepared three different molecular shuttles (1-3, Scheme 4.1), each containing a 

fumaramide/maleamide site plus a non-photoactive second station of predicted 

intermediate macrocycle binding affinity. 
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Scheme 4.1. Synthesis of bistable molecular shuttles 1-3. (i) succinic anhydride, Et 3N, CH202, 90%. (ii) 
H7N(CH2) 12NHBoc, 4-dimethylaminopyridine (DMAP), I -(3-dimethylaminopropyl)-3-ethyl-carbodiimide 
hydrochloride (EDCI.HCI), CH 2Cl2, 68%. (iii) trifluoroacetic acid, CHCI 3, quantitative. (iv) fumaric acid 
monoethylester, DMAP, EDCI.HCI, CH 202, 85%. (v) NaOH in H 20, EtOH, 91%. (vi) DMAP, 
EDCI.HCI, DMF, E-5, 76%. (vii) isophthaloyl dichloride, p-xylylenediamine, Et3N, CHCI3, E-1, 57%. 
(viii) hv at 254 nm for 30 mm., CH 2Cl2, Z-1, 54%; Z-2, 48%; Z-3, 39%. (ix) C 2H204  at 120 °C for 7 days, 
E-1, 80%; E-2, 80%; or I day, E-3, 95%. (x) maleic anhydride, anhydrous THF, 75%. (xi) succinic 
anhydride, anhydrous THF, 95%. (xii) SOCl2, 1,12 diaminododecane, CH2Cl2, 35%. (xiii) adipic acid 
monoethylester, DMAP, EDCI.HCI, CH 202, 86%. (xiv) KOH in H20, EtOH, 95%. (xv) 
H2N(CH 2) 12NHBoc, DMAP, EDCLHCI, CHCI 3, 92%. (xvi) trifluoroacetic acid, CH0 3, quantitative. 
(xvii) DMAP, EDCI.HCI, CHCI 3, Z-5, 70%; Z-6, 70%; Z-7, 70%; (xviii) isophthaloyl dichloride, p-
xylylenediamine, Et3N, CHCI3, Z-1, 2%, Z-2, 40% and Z-3, 20%. Full experimental procedures can be 
found in the Experimental Section. 
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Since the transition state of the rotaxane-forming reaction is similar in structure to the 

final rotaxane, 16  it seemed likely that the macrocycle binding affinity of a given station 

should be related to its ability to template the formation of the rotaxane. Several factors 

are known to affect both template efficacy and the nature of the intercomponent 

hydrogen bonding interactions (NH OC distances, angles etc, Figure 4.2) including: 

the hydrogen bond basicity of the functional groups (e.g. amides are better than esters B), 

preorganisation (e.g. fumaramide is better than succinamide' 7) and distance between the 

binding sites (succinamide better than adipamide' 8). 

Some features of the synthetic routes to 1-3 are worthy of note: Although E-1 was 

prepared from the corresponding thread, E-5, in good yield the other E-threads were 

insufficiently soluble in non-hydrogen bond-disrupting solvents to be utilized in this 

way. Rotaxanes Z-2 and Z-3 were therefore prepared from the corresponding Z-threads 

and converted to the E-rotaxanes thermally (120 °C, 1-7 days, C 21-1204 , 80-95%). In 

fact, the E-isomers of each molecular shuttle could be converted to the Z-forms with 

light (E--+Z, direct irradiation at 254 nm, CH202, 30 mm, 39-54% or with catalytic 

benzophenone sensitizer at 350 nm, CH 2C12  5 mm, 60-65%) and back again via heat or 

reversible Michael addition (catalytic ethylenediamine, 60 °C, 4 h, 75-85%). 

Since the xylylene rings of the macrocycle shield encapsulated regions of the thread, the 

position of the macrocycle in CDC1 3  could be determined for each pair of rotaxane 

diastereomers by comparing the chemical shift of the protons in the rotaxane with those 

of the corresponding thread (or suitable model compounds in the case of E-2 and E-3). 19  

The spectra of E/Z-1 and E/Z-5 in CDC1 3  (400 MHz, 298K) are shown in Figures 3 and 

4. The H1  and H protons of the fumaramide group are shielded in the rotaxane E-1 

compared to the thread E-5 by 1.09 and 1.02 ppm, whereas the chemical shifts of the H 

and Hd protons of the succinic amide-ester group are similar in both compounds (Figure 

4.3). In the maleamide isomer, the situation is completely reversed (Figure 4.4). 
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Figure 4.3. 400 MHz 'H NMR spectra of (a) thread E-5 and (b) rotaxane E-1 in COd 3  at 298K. The 
assignments correspond to the lettering shown in Scheme 4.1. 

The Z-olefin protons (H1' and Hi') occur at almost identical chemical shifts in the 

rotaxane and thread, whereas the succinic amide-ester methylene groups (H c  and Hd) are 

each shielded by >1.3 ppm in the rotaxane. A similar series of shifts occurs in the 'H 

NMR spectra of the other molecular shuttle pairs. Thus, even at 298K, in each of E-1, 

E-2 and E-3 the occupancy of the fumaramide station is greater than 95% (the limit we 

can determine with reasonable confidence using this method). The occupancy of the 

alternative, non-photoactive station in the corresponding maleamide rotaxanes is 

similarly high for Z-1 and Z-2. In Z-3 the maleamide:adipamide occupancy ratio is 

reduced to —'15:85 (Figure 4.5), corresponding to a AAGof --1.1 kcal mol". 
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Figure 4.4. 400 MHz 'Fl NMR spectra of (a) thread Z-5 and (b) rotaxane Z-1 in CDCI3  at 298K. 

It is interestingly to note that our predictions of the relative station binding affinities 

from rotaxane yield and hydrogen bond distances/angles are not completely accurate. 

Although the maleamide station is significantly populated in Z-3 the same station does 

not compete at all with the succinic amide ester site in Z-1 (Figure 4.4), even though the 

yields  20  and X-ray structure suggest the adipamide group should be the better station. 

Overall the discrimination for the macrocycle for the different stations is excellent and, 

at temperatures which require substantial energy differences to significantly bias the 

population distribution, somewhat remarkable (most notably between the fumaramide 

and succinamide stations in E-2 which offer virtually identical hydrogen bonding 

surfaces to the macrocycle). 
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Figure 4.5. 400 MHz 'H NMR spectra of (a) maleamide-adipamide thread Z-7 and (b) rotaxane Z-3 in 
CDCI3  at 298K. 

To probe this further, molecular modelling' 6,17,21-24  was carried out by simulated 

annealing followed by geometrical optimization using the TINKER program with the 

MM3 forcefield. The difference in co-conformer stability for each pair of rotaxane 

diastereomers was calculated by comparing the energies (including zero point energies) 

of the occupied and unoccupied stations in each co-conformer to give: 
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AAG 3.6 kcal moV' (fumaramide cf succinic amide ester occupancy) in E-1; 

AAG 2.9 kcal mol' (succinic amide ester cf. maleamide occupancy) in Z-1; 

\AG 3.6 kcal moF' (fumaramide cff, succinamide occupancy) in E-2; 

&G 3.0 kcal moF' (succinamide cf maleamide occupancy) in Z-2; 

AG 3.9 kcal moF' (fumaramide cff, adipamide occupancy) in E-3; 

LAG 3.1 kcal moF' (adipamide cf. maleamide occupancy) in Z-3. 

Whilst in each case there is probably overbinding as a result of solvation and folding not 

being included in the model, the calculations are broadly in line with the experimental 

results (i.e. iG's ? 2 kcal moF'), although at this level they do not reproduce the 

anomalously poor binding of the adipamide station in Z-3.2°  However, the calculations 

do offer a simple explanation for why the positional discrimination is so good in these 

rotaxane systems: when it's not occupied, each station - except fumaramide - can 

intramolecularly hydrogen bond to itself and so the positional isomer which has that 

station occupied has at least one hydrogen bond less than the positional isomer with the 

fiimaramide station occupied (Figure 4.6). 
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Figure 4.6. Translational isomerism in fumaramide-succinamide shuttle E-2. Positional discrimination is 
excellent (>95:5 at 298K in CDCI3) even though the fumaramide and succinamide stations present nearly 
identical surfaces to the macrocycle. 

The use of 'self-binding' to compensate for the lack of station occupancy could prove a 

useful concept for driving submolecular motion in molecular machines that rely only on 

weak, noncovalent, interactions. 
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4.3 Experimental Section 

4.3.1 General Procedure for the Preparation of Benzylic Amide Macrocycle-

Containing I2lRotaxanes and Shuttles 

The thread (1 equiv.) and Et3N (24 equiv.) in anhydrous CHC13 [or for E-4 and E-1, 

CH3CN/CHC13 (1/9)] (100 mL) were stirred vigorously whilst solutions of para-xylylene 

diamine (12 equiv.) in anhydrous CHC13 (40 mL) and isophthaloyl dichloride (12 equiv.) 

in anhydrous CHC13 (40 mL) were simultaneously added over a period of 2 h using 

motor-driven syringe pumps. After a further 2 h the resulting suspension was filtered 

and the solvent removed under reduced pressure. The resulting solid was subjected to 

column chromatography (silica gel) to yield unconsumed thread, [2]rotaxane, 

[2]catenane and, in some cases, [3]rotaxane. 

4.3.2 General Procedure for the Photoisomerization of Fumaramide Derivatives: 

The fumaramide derivative (0.05 mmol) was dissolved in C11202 (30 mL) [except for 

solubility reasons E-4 and E-2, MeOHJCHC13 (1/9)] in a quartz vessel. The solution was 

directly irradiated at 254 nm using a multilamp photo-reactor. The progress of the 

photoisomerization was monitored by TLC [CHC13/EtOAc (4/1)] or 'H NMR. Different 

photostationary states were reached in a range of times not exceeding 30 mm, after 

which the reaction mixture was concentrated under reduced pressure to afford the crude 

product. 

4.3.3 General Procedure 	for the Thermal-Isomerization of Maleamide 

Derivatives: 

The maleamide derivative (0.02 mmol) was dissolved in C2D2C4 or d6-DMSO (30 mL) 

and heated at 400K for 4-7 days, resulting in the conversion to the more 

thermodynamically stable fumaramide derivative in good-to-excellent (80-95%) yields 

as indicated by 'H NMR. 
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I21(1,7,14,2OTetraaza-2,6,15,19-tetraoxo-3,5,9,12,l6,lS'22'25 - 

tetrabenzocyclohexacosane)-((E)-N-{12-13-(2,2-dipheflYlethYlc11rbamoYl) 

acryloylammoj-dodecyl}-succinamic acid 2,2-diphenylethyl ester)-rotaxane, E-1. 
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Rotaxane E-1 has been made using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from the thread E-5 (0.19 g, 0.25 mmol). The 

crude material was subjected to column cromatography on silica gel using a gradient of 

CH202 to CH2C12/EtOAc (80/20) as eluent to obtain the desired compound as a 

colourless powder (E-1, 0.19 g, 57%). 

Rotaxane E-1 has been also obtained using the general procedure for the thermal-

isomerization from rotaxane Z-1 (70% in C 2H2C14). m.p. 186-187 °C. 'H NIVIR (400 

MHz, CDC13,): 8 =  8.31 (br t, 4J(HC,HB) = 1.2 Hz, 2H, ArCHc), 8.08 (dd, J(HB,HC) = 

1.2 Hz, J(HB,HA) = 7.8 Hz, 4H, ArCHB), 7.68 (br t, 3J(H,H) = 5.4 Hz, 411, NHD), 7.60 

(br t, 3J(H,1-1) = 5.7 Hz, 1H, NHh), 7.56 (t, 3J(HA,HB) = 7.8 Hz, 211, ArCHA), 7.45 (br t, 

3J(H,H) = 5.7 Hz, 111, NHk), 7.31-7.14 (m, 2011, ArCH), 6.95 (s, 811, AICHF), 5.86 (br 

t, 3J(H,H) = 5.7 Hz, 1H, NHe); 5.77 (d, 3J(H,H) = 14.8 Hz, 1H, CH, or CHJ), 5.69 (d, 

3J(H,H) = 14.8 Hz, 1H, CH, or CHJ), 4.59 (d, 3J(1-1,11) = 7.7 Hz, 211, CHb), 4.42 (br d, 
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3J(H,H) = 5.4 Hz, 8H, CHE), 4.32 (t, 3J(H,H) = 7.7 Hz, 1H, CHa), 4.24 (t, 3J(H,H) = 8.0 

Hz, 1H, CH.), 3.84 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CA), 3.17-3.07 (m, 

4H, CHf and CHg), 2.47 (br t, 3J(H,H) = 7.0 Hz, 2H, CH,), 2.23 (br t, 3J(H,H) = 7.0 Hz, 

2H, CHd), 1.51-1.36 (m, 4H, -CH2-CHf and -CH2-CHg) and 1.31-1.10 (m, 16H, CH2 

(alkyl chain)); ' 3C NMR (100 MHz, CDC13,): 8 = 173.0 (CH,-CO-0), 171.3 (CIHLj-CO-

NH), 166.6 (CO macrocycle), 165.5 (CO fumaric), 165.2 (CO fumaric), 141.4 (ArC-CH 

(ipso thread)), 141.0 (ArC-CH (ipso thread)), 137.0 (ArC-CHE), 134.6 (ArC-CO), 131.3 

(CHB), 130.3 (CHj or CHJ), 129.8 (CHI  or CHJ), 129.1 (ArCHA), 129.0 (ArCHF), 128.9 

(ArCH (meta thread), 128.6 (ArCH (meta thread), 128.2 (ArCH (ortho thread), 127.8 

(ArCH (ortho thread), 127.2 (ArCH (para thread), 126.8 (ArCH (para thread), 124.5 

(ArCHc), 67.0 (CHb), 50.3 (M a), 49.8 (CH,), 44.8 (CHI), 44.2 (GHE), 40.1 (CHf or 

CHg), 39.6 (CHf or CHg), 30.8 (CH2), 29.6 (CH2), 29.5 (CH2), 29.3 (CH2-), 29.1 ( 

CH2-), 26.9 (-CH2-) and 26.8 (-CH2-); 'H NMR (400 MHz, d6-DMSO): 8 = 8.59 (br t, 

3J(H,H) = 5.7 Hz, 1H, NHh), 8.53 (br t, 3J(H,14) = 5.6 Hz, 4H, NHD), 8.41 (s, 2H, 

ArCHc), 8.26 (br t, 3J(H,H) = 5.8 Hz, 1H, NHk), 8.03 (d, J(HB,HA) = 7.6 Hz, 4H, 

ArCHB), 7.64 (t, 3J(HHB) = 7.6 Hz, 3H, ArCHA and NH,), 7.36-7.28 (m, 16H, ArCH), 

7.26-7.19 (m, 4H, ArCH), 6.99 (s, 8H, ArCHF), 6.27 (s, 2H, CH, and CHJ), 4.56 (d, 

3J(H,H) = 7.6 Hz, 2H, CHb), 4.40-4.29 (br m, 9H, CHE and CHa), 4.22 (t, 3J(H,H) = 7.5 

Hz, 1H, CH,), 3.81 (dd, 3J(H,H) = 7.5 Hz, 3J(H,14) = 5.8 Hz, 2H, CHI), 2.87-2.77 (m, 

4H, CHI,  and CHg), 2.32 (br t, 3J(H,H) = 6.8 Hz, 2H, CH,), 2.20 (br t, 3J(H,H) = 7.0 Hz, 

2H, CHd), 1.19-1.11 (m, 4H, -CH2-CHf and -CH2-CHg) and 0.99-0.87 (m, 16H, CH2 

(alkyl chain)); MS (FAB): m/z = 1290 [(M+H)]; Anal. Calcd. for C80H87N709: C 74.45, 

H 6.79, N 7.60. Found: C 74.53, H 6.92, N 7.66. 

101 



Chapter Four 

121-(1,7,14,20-Tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane)-((E)-but-2-euedioic acid 2,2-diphenylethylamide {12-

[3-(2,2-diphenylethylcarbamoyl)-propionytaminol-dodecyl}-amide)-rotaxane, E-2. 
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Rotaxane E-2 was obtained using the general procedure for the thermal-isomerization 

from rotaxane Z-2 (80% in C21320I, isolated by preparative TLC). 

m.p. 186-187°C; 1H NMR (400 MHz, CDC13, 320K): 8 = 8.39 (br t, 4J(HC,HB) = 1.2 Hz, 

2H, ArCHc), 8.11 (dd, 4J(HB,Hc) = 1.2 Hz, 3J(HB,HA) = 7.6 Hz, 4H, ArCHB), 7.63 (br t, 

3J(H,H) = 5.4 Hz, 4H, NHD), 7.71 (t, 3J(HA,HB) = 7.6 Hz, 211, ArCHA), 7.30-7.14 (m, 

21H, ArCH (thread) and NHk), 6.93 (s, 8H, ArCHF), 6.86 (br t, 3J(11,H) = 5.7 Hz, 1H, 

NH), 6.27 (br t, 3J(H,H) = 5.7 Hz, 1H, NHf), 6.13 (br t, 3J(H,H) = 5.7 Hz, 111, NH,), 

5.89 (d, 3J(H,H) = 15.1 Hz, 1H, CHI or CH.), 5.72 (d, 3J(H,H) = 15.1 Hz, 1H, Cit1 or 

CH,), 4.42 (br d, 3J(H,H) = 5.4 Hz, 8H, CH,,), 4.20 (t, 3J(H,H) = 7.8 Hz, 111, CH or 

CHa), 4.15 (t, 3J(H,H) = 7.7 Hz, 1H, CH or CH,,), 3.85-3.78 (m, 4H, CHb and CH,,), 

3.14-3.06 (m, 411, CHg  and CHJ), 2.08 (br s, 4H, CHd and CH.), 1.50-1.39 (m, 411, CHh 

and CHI) and 1.30-1.15 (m, 16H, -CH2- (alkyl chain)); 13C NMR (100 MHz, CDC13) 

172.4 (CO succinic), 172.2 (CO succinic), 166.7 (CO macrocycle), 165.6 (CO fumaric), 
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165.3 (CO fumaric), 141.9 (ArC-CH- (ipso, thread)), 141.6 (ArC-CH (ipso, thread)), 

136.9 (ArC-CHE), 133.6 (ArC-CO), 131.3 (C11), 130.7 (CHI or CH,,,), 128.9 (CHI or 

CH,,,), 129.1 (ArCHF), 129.0 (CHA), 128.9 (ArCH (meta thread)), 128.7 (ArCH (meta 

thread)), 127.9 (ArCH (ortho thread)), 127.8 (ArCH (ortho thread)), 127.1 (ArCH (para 

thread), 126.8 (ArCH (para thread), 124.6 (CHc), 50.5 (CHI, or CH',), 50.4 (CH" or CH), 

44.8 (CHI, or CH,)), 44.2 (CHE), 43.9 (CHI, or CH), 40.0 (CH g  or CH), 39.6 (CHg  or 

CHJ), 31.8 (-CH2-), 31.7 (-CH2-), 29.7 (-CH2-), 29.4 (-CH2-), 29.3 (-CH2-), 29.2 (-CH2-), 

29.1 (-CH2-), 29.0 (-CH2-), 26.9 (-CH2-) and 26.7 (-CH2-); MS(FAB): m/z = 1289 

{(M+H)i; Anal. Calcd. for C 801188N808: C 74.51, H 6.88, N 8.69. Found: C 74.62, H 

7.01, N 7.12. 

(E).N-{12-3-(2,2-Dipheny1ethylcarbamoy1)acry1oy1aminoJ-dodecyI}-succinamic 

acid 2,2-diphenylethyl ester, E-5. 

Ph 	 0 	 h 0 
Ph 

)O LN 'N phab 	II 	d 	H 	 7g 
0 	e 	 0 	k Ph 

To a stirred solution of SlO (0.52 g, 0.89 mmol) in anydrous CHC13 (30 mL) was added 

TFA (5 mL) and the solution allowed to stir for 2 h. The solution was reduced in volume 

and the excess of TFA removed in vacuo over 16 h. The resulting oil was taken up in 

anydrous DMF (40 mL) and S12 (0.36 g, 1.21 mmol), 4-DMAP (0.20 g, 1.65 mmol) and 

EDCFHC1 (0.42 g, 2.17 mmol) added in order under argon at 0°C whilst stirring. After 

16 h the solution was reduced in volume and the resulting oil taken up with CHC13 and 

washed with 0.5N HCl (3 x 100 mL). The organic layer was dried over anhydrous 

MgSO4, filtered and the filtrate reduced in volume to obtain a compound that was 
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purified by column cromatography (CH2C12/EtOAc) to obtain the desidered compound 

as a colourless solid (E-5, 0.51 g, 76%). 

Compound E-5 has been also obtained using the general procedure for the thermal-

isomerization from thread Z-5 (75% in C2D2CL4). m.p. 151-152 °C; 'H NMR (400 MHz, 

CDC13): 3 = 7.34-7.18 (m, 20H, ArCI]), 6.86 (d, 3J(H,H) = 14.8 Hz, 111, CH1  or CHJ), 

6.71 (d, 3J(H,il) = 14.8 Hz, 111, CH or CHJ), 6.05 (br t, 3J(H,H) = 5.7 Hz, 111, NHh), 

5.91 (br t, 3J(H,H) = 5.7 Hz, 111, NHk), 5.59 (br t, 3J(H,H) = 5.7 Hz, 1H, NH,), 4.64 (d, 

3J(H,H) = 7.7 Hz, 2H, CHb), 4.34 (t, 3J(H,H) = 7.7 Hz, 11-1, CHa), 4.21 (t, 3J(H,H) = 8.0 

Hz, 111, CH.), 3.98 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 211, CH.), 3.30 (td, 3J(H,H) 

= 7.0 Hz, 3J(H,H) = 5.7 Hz, 211, CHg), 3.17 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 2H, 

CHf), 2.58 (t, 3J(H,H) = 7.0 Hz, 211, CH,), 2.34 (t, 3J(H,H) = 7.0 Hz, 211, CHd), 1.55-

1.38 (m, 411, -CH2-CHf and -CH2-CHg) and 1.34-1.17 (m, 16H, -CH2- (alkyl chain)); 13C 

NMR (100 MHz, CDC13): 6 = 173.1 (CH,-CO-0), 171.7 (-CO-NIT,), 165.2 (CO 

fumaric), 164.9 (CO fumaric), 141.8 (ArC- (ipso)), 140.9 (ArC- (ipso)), 132.8 (CH1 or 

CHJ), 132.0 (CHI  or CHJ), 128.5 (ArCH (meta)), 128.4 (ArCH (meta)), 128.0 (ArCH 

(ortho)), 127.9 (ArCH (ortho)), 126.7 (ArCH (para)), 126.6 (ArCH (para)), 66.9 (CHb), 

50.2 (CHm  or CH,,), 49.7 (CH. or CH a), 44.2 (CH,), 39.7 (CHg  or CHf), 39.4 (CH or 

CHf), 30.6 (CH), 29.5 (CH(j), 29.3-29.0 (-CH2-), 28.9 (-Gil2-) and 26.8 (-Gil2-); 'H 

NMR (400 MHz, d6-DMSO): 3 = 8.51 (t, 3J(H,H) = 5.9 Hz, 111, NHh), 8.39 (t, 3J(H,H) = 

5.6 Hz, 111, NHk), 7.82 (t, 3J(H,H) = 5.8 Hz, 1H, NH,), 7.36-7.28 (m, 16H, ArCH), 7.27-

7.19 (m, 411, ArCH), 6.81 (d, 3J(H,H) = 14.9 Hz, 1H, Cl!1  or CHJ), 6.76 (d, 3J(H,H) = 

14.9 Hz, 1H, CH1 or CHJ), 4.61 (d, 3J(H,H) = 7.6 Hz, 211, CHb), 4.35 (t, 3J(H,H) = 7.6 

Hz, 111, CH,,), 4.25 (t, 3J(H,H) = 7.8 Hz, 1H, CHm), 3.84 (dd, 3J(H,H) = 7.8 Hz, 3J(H,H) 

= 5.6 Hz, 211, CHI), 3.12 (br dt, 211, CHg), 3.02 (br dt, 211, CHf), 2.41 (t, 3J(H,H) = 7.1 

Hz, 211, CHC), 2.28 (t, 3J(H,H) = 7.1 Hz, 2H, CHd), 1.44-1.34 (m, 411, -CH2-CHf and - 

CH2CHg) and 1.30-1.17 (m, 1611, -CH2- (alkyl chain)); MS (FAB): m/z = 758 

[(M+H)]; Anal. Calcd. for C48H59N305: C 76.06, H 7.85, N 5.54. Found: C 76.21, H 

8.08, N 5.49. 
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(E)-But-2-enedioic 	acid 	2,2-diphenyl 	ethylamide{12-[3-(2,2- 

diphenylethylcarbamoyl)-propionylaminoj-dodecyl}-amide, E-6. 

P 
o 	

h
o 

Phab 	II 	e 	H 	h 	j 	"m 

o 	Ph 
9 	71 	H 	I 

	

Ph C 	 0 	 k 

To a stirred solution of S12 (0.50 g, 1.69 mmol) in CH202 was added thionyl chloride 

(0.124 mL, 1.69 mmol). The solution was heated until complete dissolution of S12 had 

occurred and the resulting solution was added dropwise to a solution of S14 (0.81 g, 

1.69 mmol) and Et3N (0.17 g, 1.69 mmol) in CH202 at 0 °C and allowed to stir for 30 

mm. The solution was then filtered and the solid recrystallized from hot DMSO to give a 

colourless solid (E-6, 0.56 g, 44%). m.p. 213-214 °C; 'H NMR (400 MHz, d6-DMSO, 

400K): 8 = 8.12 (br t, 3J(H,H) = 5.7 Hz, 1H, NH), 8.01 (br t, 3J(H,H) = 5.7 Hz, 111, 

NH,), 7.52 (br t, 3J(H,H) = 5.7 Hz, 1H, NHC), 7.40 (br t, 3J(FI,H) = 5.7 Hz, 1H, NH,), 

7.32-7.15 (m, 20H ArCh), 6.76 (d, 3J(H,H) = 15.3 Hz, 1H, CHI  or CH.), 6.71 (d, 

3J(H,H) = 15.3 Hz, 1H, CHI or CHm), 4.26 (t, 3J(H,H) = 8.0 Hz, 1H, CH), 4.20 (t, 

3J(H,H) = 8.0 Hz, 1H, CHa), 3.82 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHO), 

3.70 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHb), 3.12 (td, 3J(H,H) = 7.0 Hz, 

3J(H,H) = 5.7 Hz, 2H, CHJ), 3.00 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CH,), 

2.22 (s, 4H, CHd and CHe), 1.48-1.34 (m, 4H, CHh and CHI) and 1.32-1.20 (br m, 16H, - 

CH2- (alkyl chain)); ' 3C NMIR was not possible to be recorded for the low solubility of 

the compound; MS (FAB): m/z = 757 [(M+H) 1]; Anal. Calcd. for C48H60N 404: C 76.16, 

H 7.99, N 7.40. Found: C 75.89, H 8.04, N 7.65. 
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(E)-Hexanedioic acid 2,2_diphenylethylamide{12-[3-(2,2-dipheflYlethYlCarbamoYl) 

acryloylammol-dodecyl}-amide, E-7. 

0 	
h 	 m 0 

Phab 	e 	g 	H 	j 	k 	H i, 	ii 	q 	Ph 

ii 	0 IH 
Ph c 	 0 	 0 	P Ph 

A solution of S12 (0.053 g, 0.18 mmol), S18 (0.1 g, 0.20 mmol) and 4-DMAP (0.02 g, 

0.18 mmol) in CHC13 (10 mL) was stirred at 0 °C for 10 mins. EDCIHC1 (0.034 g, 0.18 

mmol) was added and the reaction mixture allowed to stir for 16 h at rt. The reaction 

was diluted with CHC13 (10 mL) and the combined organic phase washed with IN HC1 

(3 x 10 mL), saturated NaHCO3 (3 x 10 mL) and brine (1 x 10 mL). The organic layer 

was dried over anhydrous MgSO4, filtered and concentrated to give the product as a 

colourless solid (E-7, 69 mg, 45%). 1H NMR (400 MHz, d6-DMSO, 400K): 8 = 8.47 (br 

t, 1H, NH), 8.34 (br t, 1H, NHm), 7.82 (br t, 1H, NHC), 7.69 (br t, 1H, NHh), 7.31-7.19 

(m, 20H, ArCH), 6.80 (d, 3J(H,H) = 15.3 Hz, 111, CH or CHO), 6.73 (d, 3J(H,H) = 15.3 

Hz, 1H, CH or CHO), 4.24 (t, 3J(H,H) = 8.0 Hz, 1H, CH,), 4.19 (t, 3J(H,H) = 8.0 Hz, 111, 

CH,), 3.82 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 H, 211, CHq), 3.69 (dd, 3J(H,H) = 8.0 

Hz, 3J(H,H) = 5.7 Hz, 211, CHb), 3.10 (td, 3J(H,H) = 7.014z, 3J(H,H) = 5.7 Hz, 2H, CHI), 

3.01 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 211, CHI), 1.96 (m, 4H, CHd and CHg), 

1.35 (m, 811, CH, CHk, CH, and CHf), 1.25 (m, 1611. CH2 (alkyl chain)). 13C NMR was 

not possible to be recorded for the low solubility of the compound. MS(FAB): m/z = 785 

[(M+H)]; Anal. Calcd. for C5011N404: C 76.50, H 8.22, N 7.14. Found: C 76.75, H 

8.35, N 7.24. 
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I21(1,7,14,2O-Tetraaza-2,6,15,19-tett1oxo-3,5,9,l2,l6,lS,22'2S 

tefrabenzocyclohexacosane)-((Z)-N-{12-13-(2,2-dipheflylethYlCarbamoYl) 

acryloylaminoj-dodecyl}-succinamic acid 2,2-diphenylethyl ester)-rotaxane, Z-1. 

, C 

Dh F 

Ph 
Ph/ 

k ,  

g 

N 
7 	H. 

h 

Rotaxane Z-1 was obtained using the general procedure for the photo-isomerization from 

rotaxane E-1. The crude was subjected to column chromatography using a solvent 

gradient of CH202 to CH2C12/EtOAc (70/30) to obtain the desired compound as a 

colourless solid (Z-1, 35 mg, 54%). m.p. 152-154 °C; 'H NMR (400 MHz, CDCI3): ö 

8.55 (brt, 3J(H,H) = 5.7 Hz, 1H, NHh), 8.28 (brt, 4J(Hc,HB)= 1.2 Hz, 211, ArCHc), 8.18 

(dd, 4J(HB,HC) = 1.2 Hz, J(HB,HA) = 7.8 Hz, 411, ArCHB), 7.82 (br t, 3J(H,H) = 5.7 Hz, 

1H, NHk), 7.60 (t, 3J(HHB) = 7.8 Hz, 211, ArCHA), 7.38 (br dd, 411, NHD), 7.32-7.10 

(m, 20H, ArCH), 7.00 (s, 8H, ArCHF), 6.36 (t, 3J(H,H) = 5.7 Hz, 1H, NH,), 5.90 (d, 

3J(H,H) = 13.4 Hz, 1H, CH1 or CHJ), 5.82 (d, 3J(H,H) = 13.4 Hz, 1H, CH1 or CHJ), 4.55 

(dcl, 2J(HE,H'E) = 14.1 Hz, J(HE,HD) = 5.8 Hz, 4H, CHH'E), 4.44 (d, 3J(H,H) = 7.7 Hz, 

2H, CHb), 4.40 (dd, J(HE,HE) = 14.1 Hz, J(HE,HD) = 5.0 Hz, 411, CHH'E), 4.20 (m, 

CH, and CHm), 3.88 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 211, CH'), 3.04 (td, 

3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 211, CHg), 2.94 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 
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Hz, 211, CHf), 1.47 (m, 2H, CHC), 1.16 (m, 2H, CHd),1.43-1.34 (m, 4H, CH2-CHf and 

CH2CHg) and 1.30-1.13 (m, 1811, -CL!2- (alkyl chain)); 13C NIvIR (100 MHz, CD202): 

= 174.7 (CH,-CO-0), 172.6, (-CO-NH) 166.9 (CO macrocycle), 166.0 (CO maleic), 

165.4 (CO maleic), 142.7 (Arc-CH- (ipso thread)), 141.9 (ArC-CU- (ipso thread)), 

138.5 (ArC-CHE), 135.0 (ArC-CO), 134.2 (Cl-I1 or CHJ), 132.1 (CHI  or CHJ), 132.0 

(ArCHB), 130.0 (ArCHA), 129.8 (ArCHF), 129.5 (ArCH (meta thread)), 129.4 (ArCH 

(meta thread)), 128.8 (ArCH (ortho thread)), 128.6 (ArCH (ortho thread)), 127.8 (ArCH 

(para thread)), 127.6 (ArCH (para thread)), 124.8 (ArCHc), 68.1 (CUb), 51.2 (CHa  or 

CH.), 50.5 (Cl-Ia  or CH.), 44.9 (CHI), 44.8 (CUE), 40.7 (CHf or CHg), 40.6 (CHI,  or 

CHg), 30.2 (CH), 30.1 (CHd), 29.9 (CH2), 29.829.6 (CH2), 29.5 (CH2), 29.4 ( 

CH2-), 27.5 (-CU2-) and 27.3 (-CH2-); MS (FAB): m/z = 1291 [(M+H)]; Anal. Calcd. 

for C80H87N709: C 74.45, H 6.79, N 7.60. Found: C 74.62, H 6.68, N 7.49. 

121-(1,7,14,20-Tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane)-((2)-but-2-enedioic acid 2,2-diphenylethylamide 112 - 

I3(2,2dipheny1ethyIcarbamoy1)-propiony1ami11oI-dodecy1}-amide)-rotaxane, Z-2. 

Ph 	
Ph

/ 

n 
ii /0 

o'" ''N 

N&J o  
H 	1m 
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Rotaxane Z-2 was obtained using the general procedure for the preparation of the 

benzylic amide macrocycle containing [2]rotaxane from the thread Z-6 (0.50 g, 0.66 

mmol). Column chromatography of the crude obtained using a solvent gradient of 

CHC13 to CHC13/MeOH (95/5) gave a colourless solid (Z-2, 0.34 g, 40%). 

Rotaxane Z-2 was also obtained using the general procedure for the photo-isomerization 

from rotaxane E-2 (48% by 'H NMR). m.p. 171-172 °C; 'H NMR (400 MHz, CDC13): 

8.67 (br t, 3J(}{,H) = 5.7 Hz, 1H, NHk), 8.31 (br t, 4J(HC,HB) = 1.2 Hz, 2H, ArCHc), 

8.16 (br t, 3J(H,H) = 5.7 Hz, 111, NH), 8.14 (dd, 4J(HB,HC) = 1.2 Hz, 3J(HB,HA) = 7.8 

Hz, 4H, ArCHB), 7.67 (br t, 3J(H,H) = 5.4 Hz, 411, NHD), 7.56 (t, 3J(HA,HB) = 7.8 Hz, 

2H, ArCHA), 7.31-7.10 (m, 2011, ArCH (thread)), 7.02 (s, 8H, ArCHF), 6.53 (br t, 

3J(H,H) = 5.7 Hz, 1H, NH,), 6.15 (br t, 3J(H,H) = 5.7 Hz, 1H, NH,), 5.92 (d, 3J(H,H) = 

13.6 Hz, 1H, CHI or CHm), 5.83 (d, 3J(H,H) = 13.6 Hz, 1H, CHI or CHm), 4.50 (dd, 

2J(HE,H'E) = 14.1 Hz, 3J(HE, HD) = 5.4 Hz, 4H, CHH'E), 4.43 (dd, J(HE,HE) = 14.1 Hz, 

3J(H'E, HD) = 5.4 Hz, 4H, CHH'E), 4.23 (t, 3J(H,H) = 8.0 Hz, 1H, CH), 4.06 (t, 3J(H,H) 

= 8.0 Hz, 1H, CHa), 3.90 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHO), 3.67 (dd, 

3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHb), 3.15 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 

Hz, 2H, CHJ), 2.99 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHg), 1.48 (m, 2H, 

CH,), 1.38 (m, 211, CHh), 1.33-1.16 (m, 16H, -CH2- (alkyl chain)) and 1.07 (m, 4H, CHd 

and CH.); 13C NMR (100 MHz, CDC13): 8 = 173.0 (CO succinic), 172.9 (CO succinic), 

166.6 (CO macrocycle), 165.0 (CO maleic), 164.7 (CO maleic), 141.7 (ArC-CH (ipso 

thread)), 141.6 (ArC-CH (ipso thread)), 137.5 (ArC-CHE), 133.8 (ArC-CO), 133.1 (CH, 

or CH.), 131.5 (ArCHB), 131.4 (Cl-I, or CH m), 129.2 (ArCHF), 129.1 (ArCHA), 128.8 

(ArCH (meta thread)), 128.7 (ArCH (meta thread)), 127.9 (ArCH (ortho thread)), 127.8 

(ArCH (ortho thread)), 127.1 (ArCH (para thread)), 126.8 (ArCH (para thread)), 124.0 

(ArCHc), 50.5 (CHp), 50.3 (CHa), 44.2 (CH0), 44.1 (GlIb), 44.0 (CHE), 39.7 (CH and 

Mg), 29.8 (CHj or CH,), 29.4 (CHj or CH,), 29.3 (CH2), 29.2 (-CH2), 29.1 (CH2-), 

29.0 (-Gil2-), 28.8 (-CH2-) and 28.7 (-CH2-); MS (FAB): m/z = 1289 [(M+H)1; Anal. 

Calcd. for C 80H88N808: C 74.5 1, H 6.88, N 8.69. Found C 74.69, H 6.94, N 8.76. 
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[2j-(1,7,14,20-Tetraaza-2,6,15,19-tetraoxo-3,5,9,l2,l6,lS,22,25-

terabenzocyclohexacosane)-((Z)-hexaflediOiC acid (2,2-diphenylethyl)-amide {12-[3-

(2,2_diphenylethylcarbamoyl)-acrylOYlamif101-dOdeCYl}-amide)rOtaxafle, Z-3. 

la 

A kB 
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k 	H n o  
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Rotaxane Z-3 has been made using the general procedure for the formation of the 

benzylic amide macrocycle containing [2]rotaxane from thread Z-7 (1.5 g, 1.9 mmol). 

Column chromatography of the crude product (silica gel, 3:97, MeOWCHC13) gave the 

product as a colourless solid (Z-3, 0.5 g, 20 %). m.p. 115 °C; 1 H NMR (400 MHz, 

CDC13): 6 = 8.82 (hr t, 3J(H,H) = 5.7 Hz, 1H, NHm), 8.24 (hr s, 3H, ArCHc and NH), 

8.13 (dd, 4J(HB,HC) = 1.5 Hz, 3J(IHIB,HA) = 7.8 Hz, 4H, ArCHB), 7.63 (t, 3J(H,H) = 5.3 

Hz, 4H, NHD), 7.53 (t, 3J(HA,HB) = 7.8 Hz, 2H, ArCHA), 7.32-7.15 (m, 20H, ArCH), 

7.05 (s, 8H, ArCHF), 6.20 (hr t, 3J(H,H) = 5.6 Hz, 1H, NHh), 6.03 (br t, 3J(H,H) = 5.1 

Hz, 1H, NHC), 5.79 (d, 3J(H,H) = 13.4 Hz, 1H, CH or CH.), 5.71 (d, 3J(H,H) = 13.4 Hz, 

1H, CH or CHO), 4.55 (dd, 2J(FIE, H'E) = 14.4 Hz, 3J(HE, HD) = 5.3 Hz, 4H, CHH'E), 

4.45 (dd, 2J(HE, HE) = 14.4 Hz, 3J(H'E, HD) = 5.3 Hz, 4H, CHJI'E), 4.19 (t, 3J(H,H) 

7.8 Hz, 1H, CH,), 4.13 (t, 3J(H,H) = 7.8 HZ, 1H, CH,), 3.87 (2d, 3J(H,H) 7.8 HZ, 2H, 

CHq), 3.66 (2d, 3J(H,H) = 7.8 Hz, 2H, CHb), 2.94 (m, 4H, CHj and CHI), 1.41 (hr m, 2H, 

-CH2-, (alkyl chain)), 1.33 (hr m, 4H, CHd and CHg), 1.25-1.18 (m, 22H, -CH2- (alkyl 
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chain)), 0.76 (hr m, 4H, CHd and CHg); ' 3C NMR (100 MHz, CDC13): 6 = 173.4 (CO 

adipamide), 173.3 (CO adipamide), 166.4 (CO macrocycle), 165.4 (CO maleic), 164.6 

(CO maleic), 142.1 (ArC- (ipso thread)), 141.5 (ArC- (ipso thread)), 137.6 (ArC-CHE), 

133.9 (ArC-CO-), 133.2 (CH or CHO), 131.9 (CH, or CHO), 131.8 (ArCHB), 131.4 

(ArCHF), 129.2 (ArCHA), 128.4 (ArCH (meta thread)), 128.0 (ArCH (ortho thread)), 

126.91 (ArCH (para thread)), 124.4 (CH), 50.7 (CH,), 50.2 (CHa), 44.4 (CRq) , 44.3 

(CHb), 44.0 (CHE), 40.1 (CH,), 39.7 (CR1), 35.5 (Cl-Li or CHg), 35.4 (Cl-Li or Mg), 29.4 

(-CH2-), 29.3 (-CR2-), 29.2 (-CH2-), 29.1 (-CH2-), 29.0 (-CH2-), 28.9 (-CH2-), 28.6 (-

CH2-), 26.8 (-CR2-), 26.7 (-CR2-), 24.7 (-CR2-) and 24.5 (-CH2-); HRMS (FAB, NBA 

matrix) Calcd. for C821193N808 [(M+H)1 1317.71164. Found: 1317.70829. 

(Z),N{12-I3-(2,2-DiphenyI-ethyIcarbamoy1)-acryIoy1aminoJ-dodecy1}-succinamic 

acid 2,2-diphenylethyl ester, Z-5. 

Ph 
Ph 

k 
e 

Ph 	b 	LI 	d 	H 	 g 

Ph 	 0 	 h 

To a stirred solution of SlO (0.25 g, 0.43 mmol) in anydrous CRC13 (30 mL) was added 

TFA (5 mL) and the solution stirred for 2 h. The solution was reduced in volume and the 

excess of TFA removed in vacuo over 16 h. The resulting oil was taken up in anydrous 

CHC13 (200 ML) and Et3N (1 ML), S8 (0.14 g, 0.47 mmol) and EDCIHCI (0.10 g, 0.51 

mmol) added sequentially under cooling with an ice bath. After 16 h the solution was 

reduced in volume and the resulting oil taken up with CHC13 and washed with 0.5N HC1 

(3 x 100 mL). The organic layer was dried over anhydrous MgSO4, filtered and the 
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filtrate reduced in volume to give a colourless solid that was purified by column 

chromatography CHCI3/MeOH (90/10) (Z-5, 0.23 g, 70%). 

Compound Z-5 has been also obtained using the general procedure for the photo-

isomerization from the thread E-5 (57% by 'H NMR). m.p. 54-56 °C; 1 H NMR (400 

MHz, CDC13): S = 8.45 (br t, 3J(H,H) = 5.7 Hz, 1H, NHh), 7.91 (br t, 3J(H,H) = 5.7 Hz, 

1H, NHk), 7.28-7.08 (m, 20H, ArC!]), 5.90 (d, 3J(H,H) = 13.4 Hz, 1H, CH1  or CHJ), 5.82 

(d, 3J(H,H) = 13.4 Hz, 1H, Cf!1 or CHJ), 5.53 (br t, 3J(H,H) = 5.7 Hz, 1H, NH,), 4.55 (d, 

3J(H,H) = 7.7 Hz, 2H, CHb), 4.27 (t, 3J(H,H) = 7.7 Hz, 111, CH.), 4.17 (t, 3J(H,H) = 8.0 

Hz, 1H, CHm), 3.87 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHI), 3.16 (td, 3J(H,H) 

= 7.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CH5), 3.08 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 2H, 

CHf), 2.48 (t, 3J(H,H) = 7.0 Hz, 2H, CHC), 2.24 (t, 3J(H,H) = 7.0 Hz, 2H, CHd), 1.5 1- 

1.40 (m, 2H, CH2-CHg), 1.40-1.31 (m, 2H, CH2-CHf), 1.30-1.12 (m, 16H, -CH2-, (alkyl 
Chain)); 13C NMR (100 MHz, CDC13): S = 173.3 (CH-CO-O), 171.6 (CO-NH,,), 165.4 

(CO maleic), 165.0 (CO maleic), 142.2 (ArC- (ipso)), 141.4 (ArC- (ipso)), 133.9 (Cl-I1 or 

CH), 131.7 (Cl-I 1  or CH), 129.1 (ArCH- (meta)), 129.0 (ArCH- (meta)), 128.6 (ArCH-

(ortho)), 128.4 (ArCH- (ortho)), 127.2 (ArCH- (para)), 67.3 (Cl-li,), 50.7 (Ma), 50.2 

(CH,), 44.6 (CHI), 40.2 (CHg  or Cl-If), 40.0 (CHg  or CHf), 31.4 (Cl-Id or CFI), 30.1 (CHd 

or CH,,), 29.9 (-CH2-), 29.8-29.7 (-CH2-), 29.6 (-CH2-), 29.5 (-Gil2-), 27.4 (-CH2-) and 

27.3 (-Gil2-); MS(FAB): m/z = 758 [(M+H)]; Anal. Calcd. for C48H59N305 : C 76.06, H 

7.85, N 5.54. Found: C 76.09, H 8.11, N 5.63. 
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(Z)-But-2-enedioic 	acid 	2,2-diphenylethylamide 
	

112-13-(2,2- 

diphenylethylcarbamoyl)-propionylaminol-dodecyl}-amide, Z-6. 

Ph p Ph 
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N H> N)&J 0  h 

Ph 	 d 	g 	I 	H 	m 
P h c 	0 	 k 

To a stirred solution of S14 (0.50 g, 1.04 mmol) in anhydrous CHC13 (50 mL) at 0 °C 

was added S8 (0.34 g, 1.15 mmol), 4-DMAP (0.15 g, 1.25 mmol) and EDCFHC1 (0.24 

g, 1.25 mmol) and the resulting reaction mixture stirred for 16 h at rt. The solution was 

then washed with a solution of IN NaOH (3 x 100 mL), IN HC1 (3 x 100 mL) and H20 

(1 x 100 mL). The organic layer was dried over anhydrous MgSO4, filtered and the 

solvent removed under reduced pressure to obtain a colourless solid that was subjected 

to column cromatography using a solvent gradient of CH202 to CH 2C12/MeOH (95/5) 

(Z-6, 0.63 g, 70%). m.p. 68-69 °C; 'H NMR (400 MHz, CDC13): 8 = 8.40 (br t, 3J(H,H) 

= 5.7 Hz, 111, NHk), 7.80 (br t, 3J(H,H) = 5.7 Hz, 1H, NH), 7.25-7.09 (m, 20H, ArCH), 

5.91-6.00 (br m, 2H, NH and NHf), 5.92 (d, 3J(H,H) = 13.3 Hz, 1H, CHI or CH.), 5.83 

(d, J = 13.3 Hz, 1H, CHI or CH.), 4.18 (t, 3J(H,H) = 8.0 Hz, 1H, CH), 4.09 (t, 3J(H,H) 

8.0 Hz, 111, CHa), 3.87 (dd, 3J(H,H) = 8.0 Hz, 3J(}I,H) = 5.7 Hz, 2H, CHO), 3.79 (dd, 

3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHb), 3.16 (td, 3J(H,14) = 7.0 Hz, 3J(H,H) = 5.7 

Hz, 2H, CHJ), 3.08 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHg), 2.29 (s, 411, CHd 

and CH,,), 1.45 (m, 2H, Cl!1), 1.37 (m, 2H, CHh) and 1.12-1.29 (m, 16H, -CH2- (alkyl 
Chain)); 13C NMR (100 MHz, CDC13): 8 = 172.6 (CO succinic), 172.4 (CO succinic), 

165.4 (CO maleic), 164.9 (CO maleic), 142.2 (ArC- (ipso)), 142.1 (ArC- (ipso)), 133.9 

(CHI or CH), 131.6 (CHI or CH.), 129.1 (ArCH (meta)), 128.4 (ArCH (ortho)), 127.2 
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(ArCH (para)), 51.0 (CHp), 50.7 (CHa), 44.6 (CHO), 44.2 (CHb), 40.2 (CHJ  or CIIg), 40.0 

(CHg  or CHJ), 32.2 (C}Li or CH,), 32.1 (GHj or CHe), 29.9-29.8 (-CH2- (alkyl chain)), 

29.6-29.5 (-Gil2- (alkyl chain)), 27.3 (-Gil2- (alkyl chain)) and 27.2 (-Gil2- (alkyl 

chain)); MS (FAB): m/z = 757 [(M+H)1; Anal. Calcd. for C48H60N404: C 76.16, H 7.99, 

N 7.40. Found: C 75.98, H 8. 10, N 7.45. 

(Z)-Hexanedioic acid 2,2dipheny1ethy1amide{12-I3-(2,2-diphenyJethyICarbafl1OY1)-

acry1oy1amino-dodecy1}-amide, Z-7. 

Ph 

Ph—V 

	

0 	 h 

Ph 	b II 	e 	g 	H 	j 	
° 

 d- 	

f I 
NN)  

k 	H n'°  
C 	 0 	 m 

Ph 

A solution of S8 (0.16 g, 0.54 mmol), S18 (0.3 g, 0.59 mmol) and 4-DMAP (0.07 g, 0.54 

mmol) in CHC13 (10 mL) was stirred at 0 °C for 10 mins followed by addition of 

EDCFHC1 (0.10 g, 0.537 mmol). The reaction mixture was stirred for 16 h at rt. The 

solution was diluted with CHC13 (10 mL) and the combined organic phase washed with 

IN HC1 (3 x 10 mL), saturated NaHCO3 (3 x 10 mL) and brine (1 x 10 mL). The organic 

layer was dried over anhydrous MgSO4, filtered and the filtrate concentrated to give the 

product as a colourless solid (Z-7, 0.35 g, 83%). 'H NMR (400 MHz, CDC13): 8 = 8.45 

(br t, 3J(H,H) = 5.7 Hz, 1H, NH), 7.88 (br t, 3J(H,H) = 5.7 Hz, 1H, NH), 7.33-7.20 (m, 

20H, ArCH), 6.02 (d, 3J(H,H) = 13.3 Hz, 1H, CH or CH.), 5.92 (d, 3J(H,H) = 13.3 Hz, 

1H, CH or CHO), 5.72 (br m, 211, NH and NHh), 4.26 (t, 3J(H,H) = 8.0 Hz, 1H, CH,), 

4.20 (t, 3J(H,H) = 8.0 Hz, 1H, CHa), 3.96 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, 
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CHq), 3.89 (dd, 3J(H,H) =8.0 Hz, 3J(H,H) = 5.7 Hz, 211, CHb), 3.23 (m, 4H, CH1  and 

CHI), 2.10 (t, 3J(H,H) = 7.3 Hz, 2H, CHd or CHg), 2.07 (t, 3J(H,H) = 7.3 Hz, 2H, CHd or 

CH,), 1.55-1.47 (m, 811, CH,, CHf, CH and CHk), 1.32-1.27 (m, 16H, -CH2- (alkyl 

Chain)); 13C NMR (100 MHz, CDC13): 8 = 172.8 (CO adipamide), 172.6 (CO 

adipamide), 165.0 (CO maleic), 164.6 (CO maleic), 141.9 (ArC- (ipso)), 141.8 (ArC-

(ipso)), 133.4 (CH or CH), 131.4 (CH or GIL), 128.7 (ArCH (meta)), 128.6 (ArCH 

(meta)), 128.0 (ArCH (ortho)), 126.8 (ArCH (J)ara)), 50.6 (CH,), 50.3 (GHa), 44.2 (CHq) 

43.8 (GHb), 39.8 (CHI), 39.5 (041), 36.2 (GIld or Mg), 36.1 (GIld or CHg), 29.5 (CH2 

), 29.3 (-GH2-), 29.1 (-CH2-), 29.0 (-GH2-), 26.9 (-GIl2-), 26.8 (-GIl2-) and 24.9 (-GIl2-). 

HRMS (FAB, NBA matrix) Calcd. for C 50H65N404 [(M+H)] 785.5005 8. Found: 

785.49929. 

N,N'-bic-(2,2-Diphenylethyl)-succinamide, Si. 

Ph 0 	HI Ph a b 

d 	 Ph 

Phc 	0 

To a stirred solution of 2,2-diphenylethylamine (0.50 g, 2.54 mmol) and Et3N (0.26 g, 

2.54 mmol) in C11202 (20 mL) at 0 °C was added dropwise a solution of succinyl 

dichloride (0.2 g, 1.27 mmol) in CH202. The obtained solution was allowed to stir for 3 

h and then washed with IN HC1 (2 x 20 mL), IN NaOH (2 x 20 ML) and 1120 (1 x 20 

mL). The organic layer was dried over anhydrous MgSO4, filtered and the solvent 

removed under reduced pressure to obtain a solid that was recrystallized from acetone to 

give colourless needles (Si, 0.59 g, 97%). m.p. 168-169 °C; 'H NMIR (400 MHz, 

CDC13): 6 = 7.34-7.18 (m, 20H, ArCh), 5.84 (br t, 3J(H,H) = 5.7 Hz, 2H, NH,), 4.14 (t, 

3J(H,H) = 8.0 Hz, 211, CH,), 3.83 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 411, CHb), 
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2.28 (s, 4H, CHd); 13C NMR (100 MHz, CDC13): 6 = 172.0 (CO), 141.8 (ArG-CH-

(ipso)), 128.9 (ArCH (meta)), 128.0 (ArCH (ortho)), 126.8 (ArCH (para)), 50.5 (CH,,), 

43.8 (CII,,) and 31.6 (CHd); MS(FAB): m/z = 477 [(M+H)]; Anal. Calcd. for 

C32H32N202: C 80.64, H 6.77, N 5.88. Found: C 81.03, H 6.92, N 6.09. 

[2J-(i,7,14,20-Tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25-

tetrabenzocyclohexacosane)-(N,N'-bis-(2,2-diphenyl-ethyl)-succinamide)-rotaxane, 

S2. 

A 
Bf Ur0  

O tu\ 
Ph1 %N  

Ph 

Rotaxane S2 was obtained using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from the thread Si (0.50 g, 1.05 mmol). The 

crude obtained was subjected to column cromatography on silica gel [CH3CIIMeOH 

(5/95)] to obtain a colourless solid (S2, 0.55 g, 52%). m.p. 230-232 °C; 'H NMR (400 

MHz, CDC13): 6 = 8.31 (br t, 4J(FIC,HB) = 1.3 Hz, 211, ArCHc), 8.19 (dd, J(HB,Hc) = 

1.3 Hz, 3J(HB,HA) = 7.7 Hz, 4H, ArCHB), 7.62 (t, 3J(HA,HB) = 7.7 Hz, 211, ArCHA), 7.47 

(br t, 3J(H,H) = 5.4 Hz, 411, NHD), 7.30-7.15 (m, 12H, ArCH (para and meta thread)), 

7.12 (d, 3J(H,H) = 7.1 Hz, 8H, ArCH (ortho thread)), 6.85 (s, 811, ArCHF), 5.87 (br t, 

3J(H,H) = 5.6 Hz, 2H, NH,,), 4.43 (d, 3J(H,H) = 5.4 Hz, 811, CHE), 4.04 (t, 3J(H,H) = 7.8 

Fol 

h 

[Irli  
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Hz, 2H, CH,), 3.65 (dd, 3J(H,H) = 7.8 Hz, 3J(H,H) = 5.6 Hz, 4H, CHb) and 0.89 (s, 4H, 

CH  d); 13C NMR (100 MHz, CDC13): 8 = 172.8 (CO thread), 166.5 (CO macrocycle), 

141.4 (ArC-CH- (ipso thread)), 137.6 (ArC-CHE), 134.0 (ArC-CO-), 130.8 (ArCHB), 

129.3 (ArCHF), 129.0 (ArCHA), 128.9 (ArCH (meta)), 127.8 (ArCH (ortho)), 127.2 

(ArCH (para)), 125.4 (ArCHc), 49.4 (CHa), 44.3 (CHb), 43.9 (CHi) and 28.4 (CHd); 

MS(FAB): m/z = 1009 [(M+H)]; Anal. Calcd. for C64H60N606: C 76.17, H 5.99, N 8.33. 

Found: C 76.28, H 5.85, N 8.16. 

X-ray crystallographic data for compound S2. 

C76H58N10010, M = 1301.56, crystal size 0.24 x 0.06 x 0.06mm, triclinic P-i, a = 

9.8887(5), b = 13.1481(6), c = 15.3131(7) A, a= 108.0300(10),,6= 106.0530(10), y= 

101.9480(10) O  v = 1723.58(14) A3 , Z = 11 Pcalcd = 1.254 Mg m 3 ; MOKa  radiation 

(graphite monochromator, 2 = 0.71073 A), p = 0.084 mmd , T = 293(2) K. 8463 data 

(4770 unique, R1 = 0.0628, 1.50 < 9< 23.3 1°), were collected on a Siemens SMART 

CCD diffractometer using narrow frames (0.3° in o), and were corrected semi- 

empirically for absorption and incident beam decay (transmission 1.00-0.70). The 

structure was solved by direct methods and refined by full-matrix least-squares on F 2  

values of all data (G.M.Sheldrick, SHELXTL manual, Siemens Analytical X-ray 

Instruments, Madison WI, USA, 1994, version 5) to give wR = 

= 0.2659, conventional R = 0.0866 for F values of 4770 

reflections with F02 > 2o(F0), S = 1.027 for 446 parameters. Residual electron density 

extremes were 0.356 and -0.250 eA 3 . Amide hydrogen atoms were refined 

isotropically with the remainder constrained; anisotropic displacement parameters were 

used for all non-hydrogen atoms. 
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Hexanedioic acid bL-2,2-diphenylethylamide1, S3. 

0 	 Ph 

Ph a
b 	II 	e 

I H d 
	 J"'~Ph 

Ph C 

To a solution of 2,2-diphenylethylamine (0.42 g, 2.1 mmol) in CH202 (10 mL) was 

added Et3N (0.25 g, 2.5 mmol) followed by dropwise addition of hexanedionyl 

dichloride (0.18 g, 1 mmol) in CH202 (5 ML) over 10 min at 0°C. The reaction mixture 

was allowed to stir for 16 h at rt and then washed with IN HC1 (2 x 10 mL), saturated 

aqueous NaHCO3 (2 x 10 mL) and brine (10 mL). The organic layer was dried over 

anhydrous MgSO4, filtered and the solution concentrated under reduced pressure to give 

a colourless solid that was recrystallized in CH2C12IMeOH to afford colourless needles 

(S3, 0.40 g, 79%). m.p. 183 °C; 'H NMIR (400 MHz, CDC13): S = 7.35-7.22 (m, 2011, 

ArCH), 5.60 (br t, 3J(1-I,H) = 5.7 Hz, 211, NHC), 4.21 (t, 3J(H,H) = 8.0 Hz, 211, CHa), 3.91 

(dcl, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 411, CHb), 2.03 (m, 411, CHd) and 1.47 (m, 411, 

CH,); "C  NMR (100 MHz, CDCI3): 5 = 172.6 (CO), 141.9 (ArC-CH- (ipso)), 128.7 

(ArCH (meta)), 128.0 (ArCH (ortho)), 126.8 (ArCH (para)), 50.6 (CH.), 43.7 (CHb), 

36.1 (CHd) and 24.7 (CH,); HRMS (FAB, THIOG matrix) Calcd. for C34113 7N202 

[(M+H)i 505.28695. Found: 505.28550. 
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[2]-(1,7,14,20-Tetraaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25 

tetrabenzocyclohexacosane)-(hexanedioic 	acid 	bis-12,2-diphenylethylamidefl- 

rotaxane, S4. 

A 
B /\ 

oUo 

E\ C Ph 
11 Fd) 

b Ph 
Ph 

\ H'H 
ri 

Rotaxane S4 was prepared from thread S3 (0.50 g, 0.99 mmol) according to the general 

procedure for the preparation of benzylic amide macrocycle containing [2]rotaxane. The 

crude product was purified by column chromatography (CHC13/MeOH (97/3)) to give 

the desidered compound as a colourless solid (S4, 0.08 g, 8%). m.p. 264 °C; 'H NMR 

(400 MFIz, CDC13): 8 = 8.16 (br t, 411, ArCHB), 8.14 (br s, 2H, ArCHc), 7.59 (t, 3J(H,H) 

= 7.8 Hz, 2H, ArCHA), 7.49 (br t, 411, NHD), 7.40-7.25 (m, 2011, ArCH (thread)), 7.06 

(s, 811, ArCHF), 5.99 (br t, 2H, NHC), 4.55 (d, 3J(H,H) = 5.6 Hz, 8H, CH,,), 4.12 (t, 

3J(H,H) = 7.8 Hz, 211, CHa), 3.65 (dd,, 3J(I{,H) = 7.8 Hz, 411, CHb), 0.91 (m, 4H, CHd) 

and 0.50 (m, 4H, CHe); 13C NMR (100 MHz, CDC13): 8 = 173.5 (CO thread), 166.5 (CO 

macrocycle), 142.0 (ArC-CH (ipso thread)), 137.8 (ArC-CHE), 134.1 (ArC-CO), 131.1 

(ArCHa), 129.3 (ArCHA), 128.8 (ArCHF), 128.7 (ArCH (meta thread)), 128.0 (ArCH 

(ortho thread)), 126.9 (ArCH (para thread)), 124.5 (ArCHc), 50.2 (CHa), 44.2 (CHb), 

43.8 (CHE), 34.7 (CHj) and 23.8 (CH); HRMS (FAB, THIOG matrix) Calcd. for 

C1-165N606 [(M+H)] 1037.49395. Found: 1037.49656. 
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X-ray crystallographic data for compound S4. 

Crystals of rotaxane grown in CHC13IMeOH: C 68H72N606, M = 1101.32, crystal size 

0.10 x 0.06 x 0.05 mm, monoclinic, C2/c, a = 30.939(6), b = 11.3 129(18), c = 18.568(3) 

A, 6= 118.147(17)°, V = 5730.5(17) A3 , Z = 4, Pcajcd = 1.277 Mg m 3 ; synchrotron 

radiation (CCLRC Daresbury Laboratory Station 9.8, silicon monochromator, 2 = 

0.69230 A), p= 0.084 mm', T= 150(2) K. 18920 data (7604 unique, R—=  0.0348, 2.42 

<0< 29.30 0)  were collected on a Siemens SMART CCD diffractometer using narrow 

frames (0.3° in 0)), and were corrected semi-empirically for absorption and incident 

beam decay (transmission 1.00-0.60). The structure was solved by direct methods and 

refined by full-matrix least-squares on F2  values of all data (G.M.Sheldrick. SHELXTL 

manual, Siemens Analytical X-ray Instruments, Madison WI, USA, 1994, version 5) to 

give wR = {[w(F02—F2)2]/[w(F02)2]}' 0.1361, conventional R = 0.0541 for F values 

of 7604 reflections with F02 > 2o(F02), S = 1.070 for 384 parameters. Residual electron 

density extremes were 0.429 and —0.411 eA 3. Amide hydrogen atoms were refined 

isotropically with the remainder constrained; anisotropic displacement parameters were 

used for all non-hydrogen atoms. 

2,2-Diphenylethyl succinic acid mono ester, S5. 

Ph 	 0 

Ph LOH 

0 

To a stirred solution of 2,2-diphenylethanol (3.00 g, 15.0 mmol) in CH202 (150 mL) 

was added one drop of Et3N and a solution of succinic anhydride (1.66 g, 16.7 mmol) in 

CH2C12 (25 mL) added slowly over 30 mins. After 16 h the solution was reduced in 
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volume and recrystallized from CH202 (10 mL) to obtain a colourless solid (S5, 4.00 g, 

90%). m.p. 103-104 °C; 'H NMR (400 MHz, d6-DMSO): 8 = 7.38-7.21 (m, 1OH, 

ArCh), 4.61 (d, 3J(H,H) = 7.7 HZ, 2H, CHb), 4.35 (t, 3J(H,H) = 7.7 Hz, 1H, CHa) and 

2.40 (m, 4H, CH and CHd); '3C NMR (100 MHz, d6-DMSO): ö = 173.9 (CO), 172.4 

(CO), 141.8 (ArC-CH- (ipso)), 128.8 (ArGH (meta)), 128.3 (ArCH (ortho)), 127.0 

(ArCH (para)), 66.5 (Mb), 49.6 (GHa), 29.1 (GI-L or GHj) and 28.9 (CH. or Gild); MS 

(FAB): m/z = 299 [(M+H)1; Anal. Calcd. for C18H,804: C 72.47, H 6.08. Found: C 

73.01, H 6.22. 

N-(2,2-Diphenylethyl)-succinamic acid 2,2-diphenyl-ethyl ester, S6. 

e 	Ph 

Ph 	)Lk___r
C 	 f Ph 

Ph 	 0  

To a stirred solution of S5 (1.0 g, 3.40 mmol), 2,2-diphenylethylamine (0.66 g, 3.40 

mmol) and 4-DMAP (0.49 g, 4 mmol) in CH202 (350 mL) cooled in an ice bath was 

added EDCI.HC1 (0.71 g, 3.68 mmol) and the solution allowed to stir for 16 h. The 

reaction mixture was washed with a saturated solution of citric acid (3 x 50 mL) and 

1120 (3 x 50 mL). The organic layer was dried over anhydrous MgSO4, filtrated and the 

filtrate reduced in volume and the resulting solid purified by chromatography on silica 

gel using a gradient of CH202 to CH2C12/EtOAc (80/20) to obtain the desired compound 

as a colourless powder (S6, 1.16 g, 71%). m.p. 150-153 °C; 'H NMR (400 MHz, 

CDC13): 8 = 7.42-7.22 (m, 20H, ArCH), 5.60 (br, 1H, NH,), 4.64 (d, 3J(H,H) = 7.8 HZ, 

211, CHb), 4.38 (t, 3J(H,H) = 7.8 Hz, 1H, CH,), 4.21 (t, 3J(H,H) = 8.0 HZ, 111, CHg), 3.90 

(dt, 3J(H,H) = 8.0 HZ, 1H, CHf), 2.55 (t, 3J(H,H) = 7.0 Hz, 2H, CH,) and 2.27 (t, 3J(H,H) 

= 7.0 Hz, 2H, CHd); ' 3C NIVIR (100 MHz, CDC13): 8 = 173.1 (CH-G0-0), 171.6 (-GO- 
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Nil), 142.3 (ArC-CH (ipso)), 141.5 (ArC-CH (ipso)), 129.2 (ArCH (meta)), 129.0 

(ArCH (meta)), 128.6 (ArCH (ortho)), 128.5 (ArCH (ortho)), 127.3 (ArCH (para)), 67.3 

(CHb), 51.0 (CHa), 50.0 (Mg), 44.3 (Cilç), 31.3 (CH C) and 29.9 (CFLj); FABMS: m/z 

478 [M+H]; Anal. Calcd. for C 321-13 1NO3: C 80.48, H 6.54, N 2.93. Found: C 80.70, H 

6.68, N 3.02. 

I21(1,7,14,2O-Tetraaza-2,6,15,19-tet11oxo-3,5,9,12,16,l8,22,25-

tetrabenzocyclohexacosane)-(N-(2,2-diphenylethyl)-suCCiflaflhiC 	acid 	2,2- 

diphenylethyl ester)-rotaxane, S7. 

A 

o o  

NH 	E 	Ph 
b 	

RI 
ar 7 k~9  I 

9  Ph 

OtAo  

Rotaxane S7 was obtained using the general procedure for the preparation of benzylic 

amide macrocycle containing [2]rotaxane from thread S6 (1.16 g, 2.4 mmol). The solid 

crude was subjected to column chromatography on silica gel using CH2C12IEtOAc 

(75/15) as eluent to obtain the desired compound as a colourless powder (S7, 95 mg, 

4%). m.p. 204-205 °C. 'H NMR (400 MHz, CDC13): 8 =  8.21 (dd, 4J(HB,HC) = 1.5 Hz, 

3J(HB,HA) = 7.8 Hz, 4H, ArCHB), 8.17 (br t, 4J(Hc,H) = 1.5 Hz, 2H, ArCHc), 7.66 (t, 

3J(HA,HB) = 7.8 Hz, 2H, ArCHA), 7.31-7.08 (m, 24H, ArCH(thread) and NHD), 6.84 (s, 
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8H, ArCHF), 7.33 (br t, 3J(H,H) = 5.6 Hz, 1H, NH,), 4.46 (dd, 2J(HE,H'E) = 14.4 Hz, 

3J(HE,HD) = 5.6 Hz, 4H, CHH'E), 4.40 (dcl, J(HE,HE) = 14.4 Hz, 3J(H'E,HD) = 5.3 Hz, 

4H, CHH'E), 4.34 (d, 3J(H,H) = 7.3 Hz, 2H, CHb), 4.14 (t, 3J(H,H) = 7.3 Hz, 111, CHa), 

4.05 (t, 3J(H,H) = 7.8 Hz, 111, CHg), 3.57 (dd, 3J(H,H) = 7.8 Hz, 3J(H,H) = 5.6 Hz, 2H, 

CHf), 1.26 (br t, 3J(H,H) = 7.5 Hz, 2H, CH,) and 0.86 (br t, 3J(H,H) = 7.5 Hz, 214, CHd); 

' 3C NIvIR (100 MHz, d6-DMSO): 6 = 173.1 (CH-CO-O), 171.9 (-CO-NHe), 166.1 (CO 

macrocycle), 143.2 (ArC-CH (ipso thread)), 141.6 (ArC-CH (ipso thread)), 137.6 (ArC-

CHE), 134.9 (ArC-CO-), 130.7 (ArCila), 129.1 (ArCHA), 128.8 (ArCHF), 128.7 (ArCH 

(meta thread)), 128.0 (ArCH (ortho thread)), 126.9 (ArCH (para thread)), 126.7 (ArCH 

(para thread)), 125.8 (ArCHc), 66.3 (CHb), 50.4 (CHa  or CHg), 49.3 (CH,, or CHg), 43.6 

(CHf), 43.5 (CHE), 28.8 (CH C  or Gild) and 28.1 (CH,, or Gild); MS (FAB): m/z = 1010 

[M+H]; Anal. Calcd. for C64H59N507: C 76.09, H 5.89, N 6.93. Found C 76.3 1, H 5.78, 

N 6.79. 

X-ray crystallographic data for compound S7. 

C72H82N5011S4, M = 1321.67, crystal size 0.15 x 0.10 x 0.08mm, triclinic P-i, a = 

9.9959(4), b = 12.8280(4), c = 15.1241(6) A, a = 107.0330(l 0), /3= 105.5420(l 0), y= 

99.0490(10)°, V =1726.95(11) A3, 2' = 1, Pcajcd=  1.271 Mg m 3 ; MOKa  radiation (graphite 

monochromator, 2 = 0.71073 A), p 0.201 mm', T = 180(2) K. 11064 data (7963 

unique, Rmt = 0.05 10, 1.72 < 9< 28.97 0),  were collected on a Siemens SMART CCD 

diffractomeer using narrow frames (0.3° in o)), and were corrected semi-empirically for 

absorption and incident beam decay (transmission 1.00-0.45). The structure was solved 

by direct methods and refmed by full-matrix least-squares on 172  values of all data 

(G.M.Sheldrick, SHELXTL manual, Siemens Analytical X-ray Instruments, Madison 

WI, USA, 1994, version 5) to give wR = JE[w(FO2_FC2)2]/y[W(FO2)2])11 = 0.2697, 

conventional R = 0.0963 for F values of 7963 reflections with F02 > 2o(F0), S = 0.873 

for 438 parameters. Residual electron density extremes were 0.998 and —0.719 eA 3 . 
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Amide hydrogen atoms were refined isotropically with the remainder constrained; 

anisotropic displacement parameters were used for all non-hydrogen atoms. 

N-(2,2-Diphenylethyl)-maleamide acid, S8. 

0 0 "~r  ')\~ Ph a  b 
N 

Ph 	
I; 	d e 	f 

To a stirred solution of 2,2-diphenylethylamine (5.00 g, 25.3 mmol) in anhydrous THF 

(25 mL) at 0 °C, was added dropwise a solution of maleic anhydride (2.50 g, 25.5 mmol) 

in anhydrous THF (10 mL). The mixture obtained was allowed to stir at rt for 16 h and 

then reduced in volume and the resulting oil taken up with CHC13 (50 mL) and washed 

with a solution of IN NaOH (3 x 20 mL) and H20 (1 x 20 mL). The organic layer was 

dried over anhydrous MgSO4, filtered and the solvent removed under reduced pressure 

to obtain a colourless solid which was recrystallized from CH202 (S8, 5.62 g, 75%). 

m.p. 209 °C; 1 H NMR (400 MHz, CDC13): 6 = 7.29-7.23 (m, 4H, ArCH (meta)), 7.20-

7.14 (m, 6H, ArCH (ortho and para)), 6.43 (br t, 3J(H,H) = 5.7 Hz, 111, NHC), 6.19 (d, 

3J(H,H) = 12.6 Hz, IH, CH,), 6.02 (d, 3J(H,H) = 12.6 HZ, 1H, CHd), 4.18 (t, 3J(H,H) = 

8.0 Hz, 111, CH,) and 3.95 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHb); 13C NMR 

(100 MHz, CDC13): 6 = 166.0 (-CO-OH), 164.5 (-CO-NI e), 140.7 (ArC-CH (ipso)), 

137.1 (CH,), 130.2 (Gild), 129.0 (ArCH (meta)), 127.9 (ArCH (ortho)), 127.4 (ArCH 

(para)), 50.0 (CHa) and 44.6 (Clii,); HRMS (FAB, THIOG matrix): m/z = 262.12884 

[(M+ff)] (Anal. Calcd. for C 18H1 8NO3: m/z = 296.12867). Anal. Calcd. for C 1 8H 1 7NO3: 

C 73.20, H 5.80, N 4.74. Found: C 73.13, H 5.85, N 4.61. 
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12-Aminododecylcarbamic acid terI-butyl ester, S9. 

> O 
NH2 

a 	
o..JLNC 

d 	 f 
b 

To a stirred solution of 1,12-diaminododecane (20.00 g, 100 mmol) in dC13 (500 mL) 

was added di-tert-butyl dicarbonate (11 g, 50 mmol). The reaction was allowed to stir 

for 16 h at rt after which time the solvent was removed under reduced pressure and the 

residual oil subjected to column cromatography using a solvent gradient of 

CHC13/MeOH (95/5) to CHC13/MeOHINH40H (89/10/1) to obtain a colourless solid 

(S9, 9 g, 60%). m.p. 96-97 °C. 'H NMR (400 MHz, CDC1 3): 6 = 4.50 (br t, 3J(H,H) = 

5.7 Hz, 111, NH,,), 3.10 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 211, CHC), 2.67 (t, 

3J(H,H) = 7.0 Hz, 2H, CHf), 1.49-1.36 (br, 13H, CH,, CHe  and CHd) and 1.33-1.20 (br, 

16H, -CH2- (alkyl chain)); 13C NMR (100 MHz, CDC13): 6 = 156.3 (CO), 79.2 

(G(CH3)3), 42.6 (CH.), 40.9 (Gil t), 34.2 (-Gil2-), 30.4 (-GEl2-), 30.0 (-CH2-), 29.9 (-Gil2-

), 29.7 (-Gil2-), 29.6 (-GH2), 29.2 (-CH2-), 28.9 (CH2-), 28.8 (GH a), 27.2 (-Gil2-) and 

27.1 (-GFI2-); HRMS (FAB, THIOG matrix): m/z = 301.28491 [(M+H)] (Anal. Caled. 

for C 17H37N202: m/z = 301.28550). Anal. Calcd. for C17H36N202: C 67.95, H 12.08, N 

9.32. Found: C 67.73, H 11.94, N 9.31. 

N-(12-Iert-Butoxycarbonylaminododecyl)-succmamic acid 2,2-diphenylethyl ester, 

Sb. 

Ph k 
0 

Ph ( N flI <  
0 	e 	 0 
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To a stirred solution of S5 (0.40 g, 1.30 mmol), S9 (0.40 g, 1.30 mmol) and 4-DMAP 

(0.20 g, 1.60 mmol) in anhydrous CH202 (200 mL) cooled on an ice bath, was added 

EDCFHC1 (0.28 g, 1.50 mmol) and the reaction allowed to to stir for 48 h at rt. The 

solution was washed with a saturated solution of citric acid (2 x 50 mL) and 1120 (2 x 50 

mL) and the organic layer dried over anhydrous MgSO4, filtered and the filtrate reduced 

in volume. The solid obtained was subjected to column cromatography using a solvent 

gradient of CH30 to CH 3CIJMeOH (90/10) to obtain a colourless solid (Sb, 0.52 g, 

68%). m.p. 88-89 °C; 'H NIvIR (400 MHz, CDC13): ö = 7.22-7.18 (m, 4H, ArCH (meta)) 

7.17-7.09 (m, 6H, ArCH (ortho and para)), 5.52 (t br, 3J(H,H) = 5.7 Hz, 111, NH,,), 4.56 

(d, 3J(H,H) = 7.7 Hz, 211, CHb), 4.47 (br, 1H, NH), 4.28 (t, 3J(H,H) = 7.7 Hz, 111, CHa), 

3.10 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHf), 3.02 (br, 2H, CHI), 2.50 (t, 

3J(H,H) = 7.0 Hz, 211, CH,), 2.25 (t, 3J(IT,H) = 7.0 Hz, 2H, CH,), 1.42-1.30 (m, 1311, 

CHk, CHg  and CHh) and 1.25-1.13 (m, 1611, -CH2- (alkyl chain)); 13C NMR (100 MHz, 

CDC13): ö = 173.2 (CH-00-0), 171.6 (C0-NH), 156.3 (CO), 141.4 (ArG- (ipso)), 

128.9 (ArCH (meta)), 128.6 (ArCH (ortho)), 127.2 (ArCH (para)), 79.4 (G(CH3)3), 67.3 

(GlIb), 50.2 (CHa), 41.0 (CH,), 40.0 (CH1), 32.4 (GH), 31.0 (GH 1i), 30.4 (-GH2-), 30.1 ( 

Gil2-), 30.0-29.9 (-Gil2-), 29.6 (-Gil2-), 29.5 (-Gil2-), 29.4 (-GIl2-), 28.8 (CHk), 27.3 (-

GH2-) and 27.2 (-GH2-); MS (FAB): m/z = 581 [(M + 11)1; Anal. Calcd. for 

C35H52N205: C 72.38,119.02, N 4.82. Found: C 72.62, H 9.40, N 5.02. 

N-(2,2-Diphenylethyl)-fumaric acid ethyl ester, Si!. 

Ph C 

H d 	ii 	f 

Phab 	ii 	e 	g 
0 

To a stirred solution of 2,2-diphenylethylamine (0.50 g, 2.50 mmol), fumaric acid 

monoethylester (0.37 g, 2.50 mmol) and 4-DMAP (0.33 g, 2.70 mmol) in anhydrous 
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CH202 (200 mL) cooled on an ice bath was added EDCFHC1 (0.52 g, 2.7 mmol). After 

24 h the solution was washed with a saturated solution of citric acid (3 x 50 mL) and 

H20 (3 x 50 mL) and the organic layer dried over anhydrous MgSO4, filtered, and the 

filtrate reduced in volume to obtain a colourless solid that was recrystallized from 

EtOAc (Si!, 0.70 g, 85%). m.p. 112-113 °C. 'H NMR (400 MHz, CDC13): 6 = 7.34-

7.27 (m, 4H, ArH (meta)), 7.26-7.19 (m, 611, ArH (ortho and para)), 6.77 (d, 3J(H,H) = 

14.4 Hz, 111, CHe), 6.72 (d, 3J(14,H) = 14.4 Hz, 1H, CHd), 5.90 (br t, 3J(H,H) = 5.7 Hz, 

1H, NHC), 4.25-4.15 (m, 311, CHa  and CHf), 3.98 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 

Hz, 214, CHb) and 1.28 (t, 3J(H,H) = 7.0 Hz, 311, CHg); 13C NMR (100 MHz, CDC13): 6 

= 165.6 (-CO-OEt), 163.6 (-CO-NH), 141.5 (ArC- (ipso)), 136.0 (CHe), 130.6 (CH,), 

128.9 (ArCH (meta)), 128.1 (ArCH (ortho)), 127.0 (ArCH (para)), 61.2 (CHf), 50.3 

(CHa), 44.1 (CHb) and 14.1 (CHg); MS (FAB): m/z = 324 [(M+H)]; Anal. Calcd. for 

C201-12,NO3: C 74.28, H 6.55, N 4.33. Found: C 74.83, H 6.91, N 4.38. 

N-(2,2-Diphenylethyl)-fuinaramide acid, S12. 

Ph c 

	
OH Ph 	II 

d 
N 

e 
0 

To a stirred solution of Si! (0.70 g, 2.20 mmol) in EtOH (50 mL) was added dropwise a 

solution of NaOH (0.10 g, 2.40 mmol) in H 20 (2.5 mL). After 16 h the solution was 

reduced in volume and washed several times with Et 20 to obtain a colourless powder 

that was recrystallized from CHC13 (S12, 0.58 g, 91%). m.p. >270 °C (decomp). 'H 

NMR (400 MHz, d6-DMSO): 6 = 12.83 (br s, 1H, -COOH), 8.57 (br t, 3J(H,H) = 5.7 Hz, 

11-1, NH,), 7.33-7.15 (m, 1OH, ArCH), 6.87 (d, 3J(H,H) = 15.4 Hz, 1H, CHe), 6.47 (d, 

3J(H,H) = 15.4 Hz, 11-1, CHd), 4.22 (t, 3J(H,H) = 8.0 HZ, 111, CH.) and 3.81 (dd, 3J(H,H) 

= 8.0 Hz, 3J(H,H) = 5.7 Hz, 211, CH,); 13C NMR (100 MHz, d6-DMSO) 6 168.0 (GO- 
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OH), 164.5 (CO-NH), 143.1 (ArC- (ipso)), 134.3 (CH,), 134.0 (CHj), 128.8 (ArCH 

(meta)), 128.2 (ArCH (ortho)), 126.7 (ArCH (para)), 50.3 (CHa) and 43.7 (CUb); MS 

(FAB): m/z = 296 [(M+H)1; Anal. Calcd. for C 1 8H17NO3: C 73.20, H 5.80, N 4.70. 

Found: C 73. 10, H 5.20, N 4.73. 

N-(2,2-Diphenylethyl)-succinamic acid, S13. 

0 
Phf)LOH 

Ph 

To a stirred solution of succinic anhydride (2.53 g, 25.3 minol) in anhydrous THF (25 

mL) was added at it dropwise a solution of 2,2-diphenylethylamine (5.00 g, 25.3 mmol) 

in anhydrous TIff (25 mL). After 16 h the sovent was removed under reduced pressure 

and the resulting oil recrystallized in CH202 to obtain a colourless solid (S13, 7.16 g, 

95%). m.p. 153-154 °C; 'H NMR (400 MHz, CDCI3): 6 = 7.34-7.28 (m, 411, ArCH 

(meta)), 7.26-7.19 (m, 611, ArCH (ortho and para)), 5.63 (br t, 3J(H,H) = 5.7 Hz, 111, 

NHC), 4.18 (t, 3J(H,H) = 8.0 Hz, 11-1, CHa), 3.90 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 

Hz, 2H, CH,), 2.63 (t, 3J(H,H) = 6.5 Hz, 2H, CHe) and 2.39 (t, 3J(H,H) = 6.5 Hz, 211, 
CH  

d); ' 3C NMR (100 MHz, CDCI3): 6 = 176.2 (CO-OH), 172.1 (CO-NH), 141.5 (ArC-

(ipso)), 128.8 (ArCH (meta)), 128.0 (ArCH (ortho)), 127.0 (ArCH (para)), 50.4 (CH a), 

44.0 (CUb), 30.6 (CHe) and 29.6 (CH(J); MS (FAB): m/z = 298 [(M+H)1; Anal. Calcd. 

for C 18H1 9NO3: C 72.71, H 6.44, N 4.71. Found: C 72.83, H 6.57, N 4.80. 
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N(12Amnododecy1)-IV-(2,2-diphenyIethY1)-SUCCiflaflhide, S14. 

0 
Ph 	Ii 	be 	H 	h 	 j 

-r H 	0 9 

N 	
NH2 

Ph 

To a stirred solution of S13 (0.50 g, 1.68 mmol) in CH2C12 was added thionyl chloride 

(0.12 mL, 1.68 mmol). The solution was heated until complete dissolution of S13 and 

the resulting solution added dropwise to a solution of 1,12-diaminododecane (1.68 g, 

8.40 mmol) and Et3N (0.17 g, 1.68 mmol) in CH2C12 at 0 °C. After 30 min the reaction 

mixture was washed with IN NaOH (1 x 100 mL) and H20 (1 x 100 mL). The organic 

layer was dried over anhydrous MgSO4, filtered and the filtrate reduced in volume to 

obtain a solid that was subjected to column cromatography using a solvent gradient of 

dC13 to CHC13IMeOH (90/10) to obtain a colourless solid (S14, 0.28 g, 35%). m.p. 78-

79 °C. 'H NMR (400 MHz, CDC13): 8 = 7.36-7.29 (m, 411, ArH (meta)), 7.28-7.21 (m, 

6H, ArH (ortho and para)), 6.14 (br t, 3J(H,H) = 5.7 Hz, 1H, NHC), 6.09 (br t, 3J(H,H) 

5.7 Hz, 1H, NH1), 4.19 (t, 3J(H,H) = 8,0 Hz, 111, CH,), 3.89 (dd, 3J(H,H) = 8.0 Hz, 

3J(H,H) = 5.7 Hz, 211, CHb), 3.19 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 211, CHg), 

2.69 (t, 3J(H,H) = 7.0 Hz, 211, CHJ), 2.41 (m, 4H, CHd and CH.), 1.401.54 (m, 414, CHh 

and CH1) and 1.20-1.40 (m, 16H, -CH2- (alkyl chain)); 13C NMIR (100 Mhz, CDC13): 

172.6 (CO), 172.3 (CO), 142.3 (ArC- (ipso)), 129.1 (ArCH (meta)), 128.4 (ArCH 

(ortho)), 127.2 (ArCH (para)), 51.0 (M a), 44.2 (CHb), 42.7 (CH), 40.0 (M g), 34.3 

(CH,), 32.2 (Old or CH.), 32.1 (CHd or CH), 30.0 (CH2-), 29.9 (CH2), 29.8 (CH2-), 

29.7 (-CH2-), 27.3 (-CH2-) and 27.2 (-CH2-); MS (FAB): m/z = 480 [(M+H)4]; Anal. 

Calcd. for C30H45N302: C 75.11, H 9.46, N 8.76. Found: C 75.23, H 9.65, N 8.87. 
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5-(2,2-Diphenylethylcarbamoyl)-pentanoic acid ethyl ester, S15. 

Ph 	b 	e 	g)  

Ph c 	 0 

A solution of adiptic acid monoethyl ester (4.01 g, 23 mmol), 2,2-diphenylethylamine 

(5.00 g, 25 mmol) and 4-DMAP (2.81 g, 23 mmol) in CH202 (250 mL) was stirred at 0 

°C for 10 min followed by addition of EDCFHC1 (4.42 g, 23 mmol). After 16 h the 

organic phase was washed with IN HC1 (3 x 70 mL), saturated aqueous NaHCO3 (3 x 70 

mL) and brine (1 x 70 mL). The organic layer was dried over anhydrous MgSO4, filtered 

and the filtrate concentrated to give the product as a colourless solid (S15, 7.03 g, 86%). 

m.p. 44 °C; 'H NMR (400 MHz, CDC13): 6= 7.34-7.21 (m, 1011, ArCH,), 5.70 (br t, 

3J(H,H) = 5.7 Hz, 1H, NH), 4.23 (t, 3J(H,H) = 8.0 Hz, 1H, CHa), 4.13 (q, 3J(H,H) = 7.0 

Hz, 2H, CHh), 3.91 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 2H, CHb), 2.26 (t, 3J(H,H) 

= 7.0 Hz, 211, CHd or Mg), 2.09 (t, 3J(H,H) = 7.0 Hz, 2H, CHd or Mg), 1.56 (m, 4H, 

CH, and CHf), 1.27 (t, 3J(H,H) = 7.0 Hz, 3H, CH1); 13C NMR (100 MHz, CDC13): 

6 = 173.8 (CO-OR), 172.9 (CO-NH), 142.3 (ArC- (ipso)), 129.1 (ArCH (meta)), 128.5 

(ArCH (ortho)), 127.2 (ArCH (J)ara)), 60.7 (CHh), 51.0 (M a), 44.2 (CHb), 36.6 (CHd or 

CHg), 34.3 (CHi or Mg), 25.4 (CH, or CHf), 24.7 (CH, or CHf) and 14.7 (CH1); HRMS 

(FAB, THIOG matrix) Calcd. for C22H28NO3 [(M+H)] 354.20692. Found: 354.20660. 

5-(2,2-Diphenylethylcarbamoyl)-pentanoic acid, S16. 

	

Pha 	
N 

b 

	

I 	H 	d 	f 	II 

	

Ph 	 0 
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To a solution of S15 (7.03 g, 19.9 mmol) in EtOH (50 mL) was added aqueous KOH 

(5.58 g in 9 mL of 1120, 99.4 mmol) and the resulting solution stirred for 2 h at 78 °C. 

The yellow solution was cooled to rt, poured into water and acidified with dropwise 

addition of concentrated HC1 resulting in a colourless precipitate that was filtered and 

dried in vacuo to give the product as a colourless solid (S16, 6.12 g, 95%). m.p. 124 °C; 

'H NMIR (400 MHz, CDC13): 6=7.36-7.23 (m, 1OH, ArCh), 5.55 (br t, 3J(H,H) = 5.7 

Hz, 1H, NH), 4.21 (t, 3J(H,H) = 8.0 Hz, 1H, CHa), 3.92 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) 

= 5.7 Hz, 2H, CHb), 2.33 (t, 3J(H,H) = 7.0 Hz, 2H, CHg), 2.12 (t, 3J(H,H) = 7.0 Hz, 2H, 

CHd), 1.59 (m, 4H, CH, and CHf); 13C NMR (100 MHz, CDCI3): 6= 178.2 (-CO-OH), 

172.8 (-CO-NH), 141.7 (ArC- (ipso)), 128.7 (ArC- (meta)), 128.0 (ArC- (ortho)), 126.9 

(ArC- (para)), 50.6 (CHa), 43.8 (CHb), 36.2 (CHg), 33.5 (CH), 24.9 (CHe  or CHf) and 

24.0 (CHe or CHf); HRMS (FAB, THIOG matrix) Calcd. for C20H24NO3 [(M+H)'] 

326.17562. Found: 326.17637. 

(12-5(2,2Dipheny1ethy1carbamoy1)-pentanoy1amino]-dodecy1}-carbamic acid ten-

butyl ester, S17. 

	

0 	 h 	 0 
Ph 	b H 	e 	g 	H 

'J'N ~~d f  ~ N 
I 7k H 

Ph C 	 0 	 m 

A solution of S16 (0.50 g, 1.54 mmol), S9 (0.51 g, 1.69 mmol) and 4-DMAP (0.19 g, 

1.54 mmol) in CHC13 (20 mL) was stirred at 0 °C for 10 min followed by addition of 

EDCIHC1 (0.29 g, 1.54 mmol). After 16 h the reaction mixture diluted with CHC13 (10 

mL) and the organic phase washed with IN HC1 (3 x 10 mL), saturated NaHCO3 (3 x 10 

mL) and brine (1 x 10 mL). The organic layer was dried over anhydrous MgSO4, filtered 

and the filtrate concentrated to give the product as a colourless solid (S17, 0.85 g, 92%). 
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m.p. 114 °C; 'H NMR (400 MHz, CDC13): 5 = 7.33-7.20 (m, 101-1, ArCH), 5.84 (br t, 

3J(H,H) = 5.7 Hz, 1H, NHh), 5.79, (br t, 3J(H,H) = 5.7 Hz, 1H, NH"), 4.57 (br t, 3J(H,H) 

= 5.7 Hz, 111, NH.), 4.22 (t, 3J(H,H) = 8.0 Hz, 1H, CHa), 3.90 (dd, 3J(H,H) = 8.0 Hz, 

3J(H,H) = 5.7 Hz, 2H, CHb), 3.23 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, Hz, 2H, CH1), 

3.11 (m, 211, CHI), 2.11 (t, 3J(H,H) = 7.3 Hz, 2H, CHd or CHg), 2.09 (t, 3J(H,H) = 7.3 

Hz, 2H, CHd or CHg), 1.56 (m, 411, CH,, and CHf), 1.46 (s, 13H, CH, CHk and CH), 

1.27 (br s, 16H, -CH2- (alkyl chain)); 13C NMR (100 MHz, CDC13): 8 = 172.7 (CO), 

172.5 (CO), 157.6 (NHm GOO), 141.9 (ArG- (ipso)), 128.7 (ArCH (meta)), 128.0 

(ArCH (ortho)), 126.8 (ArCH (para)), 79.4 (G(CH3)3), 50.6 (CH,,), 43.7 (CHb), 40.6 

(CH), 39.6 (CHI), 36.2 (Cl-Li or CHg), 36.1 (CH(j or Gig), 30.0 (-CH2-), 29.6 (GH2-), 

29.5 (-Gil2-), 29.3 (-Gil2-), 28.4 (-Gil2-), 26.9 (-Gil2-), 26.8 (-Gil2-), 24.9 (-Gil2-) and 

24.8 (-Gil2-); MS(FAB): m/z = 608 [(M + H)]; HRMS (FAB, THIOG matrix) Calcd. 

for C37il58N304 [(M+H)] 608.44273. Found: 608.44148. 

Hexanedioic acid (12-aminododecyl)-amide (2,2-diphenylethyl)-amide, S18. 

0 	 h 

-'~-
rH 

d 	f 	
i 	 k 

Ph 

A solution of S17 (0.4 g, 6.58 mmol) in TFA (15 mL) was stirred at rt for 30 mm. The 

reaction mixture was concentrated under reduced pressure and CH2C12 (20 mL) added. 

The organic phase was washed with IN NaOH (2 x 10 mL), brine (1 x 10 mL), dried 

over anhydrous MgSO4, filtered and the filtrate concentrated to give the product as a 

colourless solid (S18, 0.22 g, 66%). m.p. 91 °C; 'H NMR (400 MHz, CDC13): 8 = 7.3 5-  

7.22 (m, lOil, ArCH), 5.77 (br t, 3J(il,H) = 5.7 Hz, 111, NH or NHh), 5.75 (br t, 3J(11,H) 

= 5.7 Hz, lil, NH or NHh), 4.22 (t, 3J(H,H) = 8.0 HZ, 111, CHa), 3.91 (dd, 3J(H,il) = 8.0 
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Hz, 3J(H,H) = 5.7 Hz, 2H, CHb), 3.24 (td, 3J(H,H) = 7.0 Hz, 3J(H,H) = 5.7 Hz, 211, CA), 

2.69 (m, 2H, CHk), 2.11 (t, 3J(H,H) = 7.3 Hz, 2il, CHd or CHg), 2.09 (t, 3J(H,H) = 7.3 

Hz, 2H, CHd or CHg), 1.58 (m, 411, CHe  and CHf), 1.51 (m, 2H, CHJ), 1.45 (m, 2H, 

CIA), 1.28 (brs, 16H, -CH2-, alkyl); 13C NMR (100 MHz, CDCI3): 8 = 172.7 (CO), 

172.6 (CO), 141.9 (ArC- (ipso)), 128.7 (ArCH (meta)), 128.0 (ArCH (ortho)), 126.8 

(ArCH (pi)), 50.6 (GH a), 43.7 (CH1,), 42.2 (CH I), 39.5 (CHI), 36.2 (CI{d or Mg), 36.1 

(GHd or CHg), 33.7 (-Gil2-), 29.629.5 (-CH2-), 29.4 (GH2-), 29.2 (Gil2-), 26.9 (-Gil2-), 

26.8 (-G112-), 24.9 (-Gil2-) and 24.8 (-Gil2-); HRMS (FAB, THIOG matrix) Calcd. for 

C32H50N302 [(M+H)] 508.39030. Found: 508.39143. 

4.3.4 Details of X-Ray Crystal Structure Determination 

Crystallographic data for E-4, S2, S4 and S7 (excluding structure factors) have been 

deposited with the Cambridge Crystallographic Data Centre as supplementary 

publication numbers CCDC-157383, 157381, 199285 and 199286 respectively. Copies 

of the data can be obtained free of charge on application to The Director, CCDC, 12 

Union Road, Cambridge C132 1EZ, UK (fax: +44-1223-336-033; e-mail: 

teched@chemcrys.cam.ac.uk).  

133 



Chapter Four 

4.4 References 

For recent reviews see a) V. Baizani, A. Credi, F. M. Raymo, J. F. Stoddart, Angew. 

Chem. 2000, 112, 3484-3530; Angew. Chem. mt. Ed. 2000, 39, 3349-3391. b) 

Special issue on Molecular Machines, Acc. Chem. Res. 2001, 34, 409-522. c) 

Special issue on Molecular Machines and Motors. Structure and Bonding Vol. 99 

(Ed.: J.-P. Sauvage), Springer, Berlin, 2001. 

A. C. Benniston, A. Harriman, Angew. Chem. 1993, 105,1553-1555; Angew. Chem. 

Int. Ed. Engl. 1993, 32, 1459-1461. 

A. C. Benniston, A. Harriman, V. M. Lynch, .1 Am. Chem. Soc. 1995, 117, 5275-

5291. 

A. C. Benniston, Chem. Soc. Rev. 1996, 25, 427-436. 

H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake, N. Nakashima, J. Am. Chem. 

Soc. 1997, 119, 7605-7606. 

P. R. Ashton, R. Ballardini, V. Baizani, A. Credi, K. R. Dress, E. Ishow, C. J. 

Kleverlan, 0. Kocian, J. A. Preece, N. Spencer, J. F. Stoddart, M. Venturi, S. 

Wenger, Chem. Eur. J 2000, 6,3558-3574. 

N. Armaroli, V. Baizani, J. P. Cohn, P. Gavina, J. P. Sauvage, B. Ventura, .1 Am. 

Chem. Soc. 1999, 121, 4397-4408. 

A. M. Brouwer, C. Frochot, F. G. Gatti, D. A. Leigh, L. Mottier, F. Paolucci, S. 

Roffia, G. W. H. Wurpel, Science 2001, 291, 2124-2128. 

G. W. H. Wurpel, A. M. Brouwer, I. H. M. van Stokkum, A. Farran, D. A. Leigh, .J 

Am. Chem. Soc. 2001, 123, 11327-11328. 

C. A. Stanier, S. J. Alderman, T. D. W. Claridge, H. L. Anderson, Angew. Chem. 

2002, 114, 1847-1850;Angew. Chem. mt. Ed. 2002, 41, 1769-1772. 

For examples featuring the use of stimuli other than light to induce shuttling in 

rotaxanes see a) R. A. Bissell, E. Cordova, A. E. Kaifer, J. F. Stoddart, Nature 1994, 

369, 133-137. b) J. P. Collin, P. Gavina, J. P. Sauvage, New J. Chem. 1997, 21, 525- 

134 



Chapter Four 

528. c) C. Gong, H. W. Gibson, Angew. Chem. 1997, 109, 2426-2428; Angew. 

Chem. mt. Ed. Engl. 1997, 36, 2331-2333. d) A. S. Lane, D. A. Leigh, A. Murphy, 

.1 Am. Chem. Soc. 1997, 119, 11092-11093. e) C. P. Collier, E. W. Wong, M. 

Belohradsky, F. M. Raymo, J. F. Stoddart, P. J. Kuekes, R. S. Williams, J. R. Heath, 

Science 1999, 285, 391-394. f) H. Shigekawa, K. Miyake, J. Sumaoka, A. Harada, 

M. Komiyama, .1. Am. Chem. Soc. 2000, 122, 5411-5412. g) M. C. Jimenez-Molero, 

C. Dietrich-Buchecker, J. P. Sauvage, Chem. Eur. J 2002, 8,1456-1466. h) Y. Luo, 

C. P. Collier, J. 0. Jeppesen, K. A. Nielsen, E. Delonno, G. Ho, J. Perkins, H. R. 

Tseng, T. Yamamoto, J. F. Stoddart, J. R. Heath, ChemPhysChem 2002, 3, 519-525. 

G. Campari, M. Fagnoni, M. Mella, A. Albini, Tetrahedron Asym. 2000, 11, 1891-

1906. 

F. G. Gatti, D. A. Leigh, S. A. Nepogodiev, A. M. Z. Slawin, S. J. Teat, J. K. Y. 

Wong, J Am. Chem. Soc. 2001, 123, 5983-5989. 

The wavelength for the reaction has not yet been optimised [F. G. Gatti, S. Leon, J. 

K. Y. Wong, G. Bottari, A. Altieri, A. M. Farran Morales, S. J. Teat, C. Frochot, D. 

A. Leigh, A. M. Brouwer, F. Zerbetto, Proc. Nati. Acad. Sci. US.A. 2003, 100, 10-

14]. 

'H NMR experiments show that the macrocycle spins >106  times faster in the Z-

form of the rotaxane than the E-form in CD2C12 at 233K. 

G. Brancato, F. Coutrot, D. A. Leigh, A. Murphy, J. K. Y. Wong, F. Zerbetto, Proc. 

Nat!. Acad. Sci. U S. A. 2002, 99, 4967-4971. 

V. Bermudez, N. Capron, T. Gase, F. G. Gatti, F. ,Kajzar, D. A. Leigh, F. Zerbetto, 

S. W. Zhang, Nature 2000, 406, 608-611. 

D A Leigh and J K Y Wong, unpublished results 

Unlike rotaxanes with dipeptide stations separated by alkyl chains[ref lid], E-1-3 

do not behave as solvent-switchable shuttles; even in d6-DMSO the fumaramide 
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Chapter Five - Synopsis 

In this chapter the unexpected behaviour of a molecular shuttle in response to 

changes in the temperature is reported. The rotcaane E-1 consists of an endo pyridyl 

macrocycle locked onto a thread containing two hydrogen bonding sites, namely a 

photoactive fumaramide (green) and a succinic amide-ester (orange) stations, 

separated by a C12 lipophilic chain (purple) (Scheme 1). 'H NA'IR experiments 

(298K) prove that in E-1 the macrocycle is positioned almost exclusively over the 

fumaramide unit, similarly to its isophthaloyl analogous seen in chapter four. The 

discrimination of the ring for the photoactive unit is maintained even by lowering the 

temperature (258K). Isomerisation at 254 nrn of E-1 gives the maleamide containing 

rotaxane Z-1 therefore inducing the shuttling of the macrocycle over the amide-ester 

station as confirmed by 'H NMR spectroscopy at 308K (co-conformer Z-la). 

Interestingly enough low temperature 'H AMR experiments (258K) on Z-1 suggest 

that the Z-rotaxane adopts a co-conformation resulting in the positioning of the 

pyridyl macrocycle over the a/kyl chain with the thread disposed in a "5" shape 

conformation (co-conformer Z-lb). 
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Scheme 1 An example of tn-stable rotaxane. The interconversions between the two co-conformers Z-
la and Z-lb are the entropy-driven processes 

The temperature-driven co-conformational changes are possible in virtue of the 

different enthalpic and entropic stabilisation that the two co-conformers have. In Z- 
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lb the high entropic cost paid by the system in order to organise the thread in an 

"S" shape conformation is paid back by a better enthalpic stabilisation (formation of 

strong amide-amide hydrogen bonds). In Z-la the situation is reversed with the 

poorer en!ha/plc stabilisation (formation of weak amide-ester hydrogen bonds) 

compensated by the lower entropic term associated with this co-conformation. Being 

the LlGbinding = Z1Hb,ndingJ'-15 binding if the ASbi nding terms of the two co-conformations 

are sufficiently different then the relative binding affinity of the macrocycle for the 

two stations can be reversed increasing or decreasing the temperature, as it happen 

in this rotaxane; the first example of entropy-driven molecular shuttle! 
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Chapter Five 

5.1 Introduction 

Stimuli-responsive molecular "shuttles" are mechanically interlocked molecules in 

which a macrocycle can reside on stations of different binding affinities (Figure 5.1a).' 

In response to an external stimulus one of the stations is chemically changed and the 

relative binding affinity of the macrocycle for the stations altered, resulting in a 

"shuttling" of the ring by biased Brownian motion (Figure 5.1b). 

stimulus 

IV 

AGblnding  

Figure 5.1 A stimuli-responsive molecular shuttle. 

Although many external stimuli have been used to induce shuttling (e.g. pH,2  light , 3  

electrons4  etc.), a temperature change is not one of them (except when it brings about a 

chemical change in one of the stations, as already seen in chapter four) because changing 

the temperature will normally not change the relative binding affinity of the stations for 

the macrocycle, only the degree of discrimination that the macrocycle has for the two 

stations. However, in principle, a change of relative binding affinity with temperature is 

possible because AGluding  AHbinding TASbinding. If the ASbincjing  terms of the two stations 

are sufficiently different then the relative binding affinity of the macrocycle for the two 

stations can be reversed by increasing or lowering the temperature. 

Here we describe the first example of this phenomenon in the form of a molecular 

shuttle where the ring moves between two different portions of the thread with high 
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fidelity in response to changes in the temperature. During this shuttling processes there 

is no change to the covalent structure of the molecule or the environment (except for the 

temperature change). The rotaxane in question is, in fact, a tn-stable shuttle in which 

interconversion between three forms is achieved by photo and thermal stimuli (Figure 

5.2). Switching between two of the three forms is the entropy-driven process. 

/Gb fldIflg 

	

\f\J 

a) 	 b) 

QMeW 	 high T 

Figure 5.2 Macrocycle translocation in a tn-stable photo- and thermally- responsive molecular shuttle. 

5.2 Result and Discussion 

The rotaxane E-1, synthesised in a 32% yield from the thread E-2, contains two 

hydrogen bonding sites for the endo pyridyl tetraamide macrocycle, namely a 

photoactive fumaramide (green) and a succinic amide-ester (orange) units, separated by 

a C12 lipophilic chain (purple) and can be considered, as we will see later, a three station 

shuttle - the fumaramide/maleamide, the succinic amide-ester and the alkyl chain 

(Scheme 5.1). 

Since the xylylene units of the macrocycle shield the encapsulated regions of the thread, 

the position of the ring in E-1 could be determined by 'H NMR spectroscopy by 

comparing the chemical shift of the protons in the rotaxane with those of the 

corresponding thread. 
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Scheme 5.1 Synthesis of tn-stable molecular shuttles E/Z-1. (i) isophthaloyl dichloride, p-
xylylenediamine, Et3N, CHCI3 , E-1, 32%; (ii) hv at 254 am for 15 nuns in CH 202. Z-1, 48%. Full 
experimental procedures can be found in the Experimental Section. 
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As seen for to the two-station flimaramide-containing rotaxanes of the previous chapter, 

in E-1 the trans-olefin bis-amide unit presents a better binding affinity for the 

macrocycle compared to the succinic amide-ester station (Figure 5.2a). The 'H NMR 

spectra (400 MI-Iz, 298K) of E-1 and the linear component E-2 in CDC13 show in fact 

the E-alkene protons H 1  and H shielded by more that 1.5 ppm in the rotaxane E-1 

compared to the thread E-2, whereas the chemical shifts of the succinic amide-ester 

protons I-It  and I-Li are unchanged (Figure 5.3). 
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Figure 5.3 400 MRz 'H NMR spectra of (a) thread E-2 and (b) rotaxane E-1 in CDC1 3  at 298K. The 
assignments correspond to the lettering shown in Scheme 5.1 

It is interesting to notice from the spectrum of E-1 at room temperature how the 

restricted rotamerisation of the benzylic amides of the macrocycle, imposed by the 

formation of intracomponent hydrogen bonds between the amide hydrogens and the 

pyridine nitrogens, ultimately results in a "dampening" of the circumrotation of the ring. 

This is indicated by the coalescence of the diastereotopic benzylic protons HE (for a 
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detailed explanation of the circumrotation process in hydrogen-bonded rotaxanes see 

chapter three). 

Low temperature 'H NIN4R experiment (25 8K) of E-1 showed the same chemical shifts 

for the flimaric and succinic amide-ester protons as seen at 298K, only resulting in the 

resolution of the benzylic protons HE as consequence of the slowed circumrotation, thus 

proving that at this temperature, as at room temperature, the co-conformer bearing the 

macrocycle over the fi.imaric station is by far the major one (>95%). 

Isomerisation of the fumaramide-containing rotaxane E-1 at 254 nm afforded the 

corresponding cis-rotaxane isomer Z-1 in a 48% yield. In Z-1 the excellent Fumaramide 

template has been converted into a poor one (i.e. maleamide unit). To our surprise, the 

'H NMR spectra of this rotaxane proved highly temperature dependent, in contrast to E-

1 and the isophthalamide analogue of Z-1 seen in the previous chapter. 

At 308K, 'H NMR spectra (400 MHz) in CDCI3 of the rotaxane Z-1 and the maleamide 

thread show identical chemical shifts for the maleamide protons Hi' and I-Ij' whereas the 

succinic amide-ester ones H and H3 are shifted upfield by —1.2 ppm (Figure 5.4a and 

b), thus confirming the positioning of the ring over the succinic amide-ester unit at this 

temperature (co-conformer Z-la, Figure 5.2b). 

The low temperature 'H NIMIR spectrum (258K) of Z-1 shows an increased complexity 

(Figure 5.4c). Remarkably, at this temperature the succinic amide-ester protons H and 

l-Lj occur at the same chemical shifts as in the uninterlocked maleamide thread, as do the 

maleamide protons H and Hj , . However the alkyl protons of the C12 chain experience 

dramatic upfield shift (up to I ppm). Moreover a splitting is observed in the chemical 

shifts of the protons of the macrocycle suggesting that the two halves of the ring are 

experiencing magnetically different environments. 
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Figure 5.4 400 MHz  H NMR spectra in CDCI 3  of (a) maleamide isomer of E-2 at 308K, (b) rotaxane Z-1 
at 308K and (c) rotaxane Z-1 at 258K. The assignments correspond to the lettering shown in Scheme 5.1 

Although these are preliminary data and more experiments (NOESY, TOCSY) and 

calculations (molecular modelling) need to be done, it seems that at this temperature the 

Z-rotaxane adopts a co-conformation resulting in positioning of the pyridine macrocycle 

over the lipophilic region of the thread. The two "uncovered" stations of the thread 

probably act as hydrogen bond acceptors towards the amide hydrogens of the 

macrocycle forcing the alkyl chain to adopt a "S" shape conformation (co-conformer Z-

lb. Figure 5.2c). 

Interestingly the "S" shape conformation of the thread that we assume to be present for 

the co-conformer Z-lb at low temperature is observed in the solid state structure of an 

isophthalamide rotaxane containing two amide units separated by a C12 lipophilic chain 

(Figure 5.5). It is worth noting that at room temperature in a non-polar solvent such as 

CDCI3  in this rotaxane the isophthalamide macrocycle shuttles along the linear 

component displaying no discrimination for any particular portion of the thread! 
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Figure 5.5,V-Ray crystal structure of an isophthaloyl-based rotaxane in which the two amide are separated 
by a C 12  alkyl chain. The carbon atoms of the macrocycles are shown in blue, carbon atoms of the threads 
in yellow, oxygen atoms in red and nitrogen atoms in dark blue. The amide and the C 12  alkyl hydrogen 
atoms are shown in white while all others are removed for clarity. Intramolecular hydrogen bond distances 
and angles are the following: 040-HN1 1/040A-HN1 1A 1.92 A, 156.40 . 

To summarise, at higher temperature (308K) the macrocycle of rotaxane Z-1 resides 

predominantly (>95%) on the succinic amide-ester station, whereas at lower temperature 

(258K) it shuttles to spend >95% encapsulating the alkyl chain! The reversal of the 

binding affinity of the macrocycle for the succinic amide-ester and the alkyl chain at 

different temperatures caniy occur by the TISS term reversing the relative AGbinding of 

these two stations (Figure 5.2b and c). 

5.3 Conclusions 

Why does the Z-rotaxane behave in such a way whereas E-1 and the isophthalamide 

analogue of Z-1 seen in the previous chapter do not? Clearly the endo pyridyl nitrogen 

atoms play a crucial role. The amide hydrogens of the macrocycle are in fact partially 

self-satisfied by the formation of intracomponent hydrogen bonds with the pyridine 

atoms and hydrogen bonding to the thread is therefore relatively weak. 
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In the co-conformer Z-la two of the amide hydrogens of the macrocycle bind to the ester 

carbonyl (a significantly weaker hydrogen bond acceptor than the amide - estimated of 

—1 kcal mol' in related rotaxane systems) whereas in the co-conformer Z-lb all the 

hydrogen bonds are formed to amide carbonyls which gives a better enthalpic 

stabilisation for that co-conformation but obviously requires considerable organisation 

of the alkyl chain into the "S" shape. 

In Z-lb the entropic cost paid by the thread in order to restrict its numerous degrees of 

freedom and assume an "S" shape conformation (a C12 chain has more than 500000 (3 
12)

possible C-C rotamers between the amide carbonyls!) is paid back by the enthalpic 

stabilisation derived from the formation of the stronger amide-amide hydrogen bonds. 

The raising of the temperature results in an increase of the entropic term of the co-

conformer Z-lb so that the Z-rotaxane predominantly adopts the enthalpically less 

favourable but ultimately entropically preferred Z-la co-conformation. 
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5.4 Experimental Section 

The synthesis and the spectroscopic data of the linear components of the rotaxanes E-1 

and Z-1 have been reported in the Experimental Section of chapter four. 

II21(1,4,7,14,17,2O_Hexaaza_2,6,15,19-tetraoxo-3,5,9,l2,l6,lS,22,2S - 

tetrabenzocyclohexacosane)_((E)-N-{12-13-(2,2-dipheflylethylCarbalflOyl)-

acryloylaminoj-dodecyl}-succinamic acid 2,2-diphenylethyl ester)-rotaxane, E-1. 
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Rotaxane E-1 has been synthesized using the general procedure for the preparation of 

benzilyc amide macrocycle containing [2]rotaxane from the thread E-1 (0.19 g, 0.25 

mmol). The crude was subjected to column cromatography on silica gel using a gradient 

of CH2C12  to CH2C12/EtOAc (80/20) as eluent to obtain the desired compound as a 

colourless powder (E-1, 0.10 g, 32%). 'H NIVIR (400 MHz, CDC13, 298K): 6 = 9.47 (m, 

4H, NHD), 8.36 (d, 3J(H,Ii) = 7.6 Hz, 414, CHB), 8.04 (t, 3J(H,H) = 7.7 Hz, 2H, CHA), 

7.33-7.17 (rn, 20H, ArCH), 6.82 (br s, 8H, ArCHF), 6.12 (br s, 1H, NHk), 6.05 (br s, 1H, 

NHh), 5.73 (t, 3J(11,H) = 5.3 Hz, 1H, NH--), 5.22 (d, 3J(H,H) = 14.5 Hz, 1H, CH1  ), 5.16 
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(d, 3J(H,H) = 14.5 Hz, 11-L 	4.80-3.70 (br m, 8H, CHE), 4.63 (d, 3J(H,H) = 7.6 

Hz, 2H, CHb), 4.34 (t, 3J(H,H) = 7.6 Hz, 2H, CH,,), 4.22 (t, 3J(H,Ii) = 8.0 Hz, 1H, CH.), 

3.97 (m, 2H, CHI), 3.25 (dt, 2H, CHg), 3.16 (dt, 21-L CHf), 2.56 (t, 3.J(H,11) = 6.8 Hz, 2H, 

CH,), 2.32 (t, 3J(H,I{) = 6.8 Hz, 2H, CHd), 1.55 (m, 2H, -CH2-CHf), 1.44 (m, 21-L -CH2-

CHg), 1.35-1.17 (m, 161j, -CH2-); 13C NMR (100 MHz, CDC13,): 8 = 172.8 (CO 

succinic), 171.1 (CO succimc), 165.2 (CO fumaric), 164.9 (CO flimaric), 163.6 (CO 

macrocycle), 149.1, 141.4, 141.0, 138.7 (CHA), 137.9, 129.0, 128.6 (CHF), 128.2, 127.8, 

127.3, 126.8, 124.9 (CH), 66.9 (Mb), 50.3 (CH.), 49.8 (M a), 44.7 (CHI), 40.2 (Mg), 

39.6 (CHf), 31.0 (CH11), 29.7 (CH C), 29.5, 29.4, 29.3, 29.2, 29.1, 27.0, 26.8; HRMS 

(FAB) Calcd. for C7gHN9O9 [M+H]' 1292.65485. Found 1292.65598. 

[21(1,4,7,14,17,2O-Hexaaza-2,6,15,19-tetraoxo-3,5,9,12,16,18,22,25 - 

tetrabenzocyclohexacosane)-((Z)-N-{12-[3-(2,2-diphenylethylcarbamOyl)-

acry1oy1amino-dodecy1}-succinamic acid 2,2-diphenylethyl ester)-rotaxane, Z-1. 
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Rotaxane Z-1 was obtained by photochemical isomerisation at 254 nm of E-1 (0.05 g, 

0.04 mmol) in CH202 for 15 mins. The solution was then concentrated and columned on 

silica gel using a gradient of CHC1 3IEtOAc 3/1 to obtain the desired compound as a 
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colourless solid (Z-1, 0.02 g, 48%). 'H NMR (400 MHz, CDC13, 308K): 5 = 9.21 (s, 4H, 

NHD), 8.64 (br s, 1H, NHh), 8.47 (d, 3J(14,H) = 7.8 Hz, 4H, CHB), 8.09 (br s, 1H, NHk), 

8.07 (t, 3J(H,H) = 7.7 Hz, 214, CHA), 7.35-7.12 (m, 20H, ArCH), 6.94 (br s, 814, ArCHF), 

6.88 (br 5, 1H, NHe), 5.97 (d, 3J(H,H) = 13.4 Hz, 111,, CH1 j'), 5.83 (d, 3J(H,H) = 13.4 

Hz, 1H, CH1 '), 5.25-4.79 (br m, 4H, CHE), 4.59 (d, 3J(H,H) = 7.1 Hz, 2H, CHb), 4.39-

3.88 (br m, 4H, CHE), 4.31 (t, 3J(H,H) = 7.1 Hz, 1H, CH.), 4.24 (t, 3J(H,H) = 8.0 Hz, 

111, CHm), 4.01 (br dd, 2H, CHI), 3.21 (br ff1, CHg + CHf), 1.52-0.45 (br m, -CH2- + CH';  

+ CH'); 13C NMR (100 MHz, CDC13): 5 = 174.2 (CO), 171.9 (CO), 163.5 (CO), 158.1 

(CO), 149.1 (CO), 141.0, 13 8.7, 129.0, 128.8, 128.6, 128.1, 127.7, 127.3, 126.9, 125.4, 

60.4, 50.9, 49.7, 42.9, 39.7, 29.7, 29.5, 29.4, 29.2, 29.2, 26.8; HRMS (FAB) Calcd. for 

C78HN909 [M+H] 1292.65485. Found 1292.65564. 
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Chapter Six- Synopsis 

In this Chapter we describe a chiral [21rotaxane (E-1, Scheme I) in which stimuli-

induced translocation of the macrocycle between the two stations of a thread causes 

remarkable changes in the circular dichroism (CD) absorption. The molecule E-1 

consists of a benzylic amide macrocycle mechanically interlocked onto a thread 

containing a photoisomerisable fumaramide station (green) and a chiral, non-

photoactive, glycyl-(L)-leucine dipeptide station (orange). 

_ ('H 

To 
NH HN_
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Ph hv254nm 	 Ph 

A 	 Ph 
Ph 	 Ph 

E-1 	 Z-1  

t 	 r - 
Scheme 1 An example of photo- and thermal- induced stimuli-responsive molecular shuttle in which 
the submolecular motion of the ring is accompanied by changes in the CD absorption spectrum. 

Similarly to the stimuli-responsive flimaramide containing two-station [2Jrotaxanes 

seen in the previous two chapters, also in E-1 at room temperature the macrocycle 

resides preferentially over the fumaramide template as confirmed by 'H NM]? 

spectroscopy. E--+Z photochemical isomerisation is then used to convert the 

fumaramide unit into the poor maleamide temp/ate thus resulting in the translocation 

of the ring over the dipeptide portion as confirmed by 'H NMR spectroscopy (Z-1). 

The photochemical isomerisalion process can be reversed by subjecting Z-1 to a 

thermal stimulus, as already seen in the previous chapters, thus re-obtaining the 

rolaxane isomer E-1. CD spectra of dilute chloroform solutions of E7-1 and their 

respective uninterlocked linear components were recorded in the aromatic excitation 

region between 235-320 tim. The CD spectra shows that in rotaxane Z-1, where the 

macrocycle is positioned over the dipeptide portion, the absorption is more that four 

fold of magnitude bigger than in E-1 and the other Iwo uninterlocked linear 

components The phenomenon, already reported for simpler "one station" dipeplide 

rotaxanes, is related to the possibility of transmitting chirality from the amino acid 

asymmetric center on the thread via the macrocycle to the C-terminal stopper of the 

rotaxane. 
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6.1 Introduction 

A rotaxane 1  is a molecule consisting of a macrocycle trapped onto a dumbbell-shaped 

component by two bulky stoppers. The unique architecture of rotaxanes give rise, in 

some cases, to remarkable changes in the physical properties of the mechanically 

interlocked molecule with respect to its separate, uninterlocked constituents. 2  

Moreover rotaxanes are a class of compounds well-suited for exploring switching 

phenomena. Control of the translocation of the macrocycle from one portion of the 

thread to another, a so-called "molecular shuttle", is a key feature for the realisation of 

such switchable molecules, the forerunners of artificial molecular machines. 3  To date 

several systems have been developed in which the shuttling movement is promoted by 

the use of different external stimuli such as light, electrons, pH and the nature of the 

environment. 4  

6.2 Results and Discussion 

Here we describe the first examples of bistable hydrogen bonded rotaxanes (EIZ-1) in 

which the expression of the chirality can be switched "on" and "off' through large 

amplitude translational motion of the macrocycle over the stoppered thread in response 

to photonic or thermic stimuli. 

It has been shown how chiral peptide units induce an asymmetric response in the optical 

absorption band of achiral partners (lCD) in rotaxane architectures 
. 2' The phenomenon 

is related to the transmission of chirality from the amino acid asymmetric center via the 

macrocycle to the C-terminal aromatic stoppers of the rotaxane as consequence of the 

tight fitting of the intrinsically achiral ring onto the chiral dipeptide. The magnitude and 

sign of this absorption can be altered either thermally or by changes in the nature of the 

environment. By incorporating a chiral dipeptide unit in a bistable rotaxane we reasoned 

that it might be possible to obtain the same switching phenomenon through the 

controlled shuttling movement of the cyclic unit. 
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The chiral peptido[2]rotaxane E-1, containing two distinct and separated (-1.5 nm) 

binding stations for the benzylic tetra-amide macrocycle, namely a fumaric diamide and 

a glycyl-(L)-Ieucine, was synthesized from E-2 in 58% yield (Scheme 6.1). 

Ph2CHCH20H 	 PhCHCH 2NH2  
(u) - (vi) 	(vii), (viii) 

(tx) 
I 	 k 

Phb 	e H 8 	J P Ph 

E-2 'r
13  

a N

E-1 Ph1. 

Ph 

Z-1 

Scheme 6.1 Synthesis of bistable molecular shuttles &Z-1; i) N-(tert-butoxycarbonyl)-L-leucifle 
monohydrate. 4-dimethylaminopyridine (4-DMAP), 1-(3-dimethylaminopropyl)-3-ethyl-cartxXlfliflide 
hydrochloride (EDCI), CHCI 3, 94%. ii) trifluoroacetic acid (TFA), CHCI 3, quantitative. iii) N-(lerl-

butoxycarbonyl)-glycine, 4-DM", EDCI, CHCI3, 91%. iv) TFA, CHCI3, quantitative. v) N-(tert-
butoxycarbonyl)- 11 -undecanoic acid, 4-DMAP, EDCI, CHCI 3, 82%. vi) TFA, CHCI 3, quantitative. vii) 
fumaric acid monoethylester, 4-DMAP, EDCI, CHC1 3, 85% viii) EtOH, NaOH, 91 0/m ix) 4-DMAP, 
EDCI, DMF, 741/6. x) para-xylylenediamine, isophthaloyl dichloride, Et3N, CHCI3. 58%. xi) 
CH2C12/MeOH, 20 nuns, 254 mu, 420/m xii) C21-1204  at 130°C, 6 days, 95%. Full experimental procedures 
can be found in the Experimental Section. 

The 'H NMR spectrum of this rotaxane shows remarkable positional discrimination of 

the macrocycle in virtu of its different binding affinity towards the two diamide stations. 
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In fact where the peptidic protons are only slightly affected by the aromatic shielding 

effect of the molecular ring thus occurring at almost identical chemical shifts to that of 

the thread (e.g. j -0.2 ppm), instead the E-olefin protons are shifted upfield (i.e. d and e 

—1.2 ppm). This suggests that the co-conformer having the macrocycle over the 

fumaramide portion is the major isomer on the NMR timescale (Figure 6. 1  and 6. Ib). 
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Figure 6.1. 400 MHz H NMR spectra in CDCI 3  at 298K of a) thread E-2, b) rolaxane E-1, c) maleamide 

isomer of E-2, d) rotaxane Z-1. The assignments correspond to the lettering shown in Scheme 6.1. 
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Light-driven E—Z isomerization is then used to reverse the binding affinity order of the 

macrocycle for the two stations, and consequentially its preferred position shifts from 

the fumaramide station to the peptidic portion.' The 'H NMR spectra in Figure 6. 1  and 

6. Id show that the position of the macrocycle on the thread is completely reversed in the 

maleamide isomer Z-1. The Z-olefin protons lid,  and He are almost isochronous in the 

rotaxane and the thread, whereas the glycine methylene protons are now shielded by 0.9 

ppm, suggesting that the macrocycle is situated preferentially over the peptide. By 

heating a solution of Z-1 in C 2H2CLI at 130 °C for 6 days the !Iimaramide isomer E-1 is 

obtained in a 95% yield. Circular dichroism (CD) measurements in the wavelength 

region of the aromatic excitation (235-320 nm) were carried out on dilute (0.1 MM) 

solutions of the two rotaxanes EIZ-1 and their respective linear uninterlocked 

components in CHC13 at 10 °C (Figure 6.2). Of the four dipeptide molecules only 

rotaxane Z-1 presented a strong (13k deg cm 2  dmol') negative induced CD (9) value in 

the scanned region whereas for rotaxane E-1 and the two uninterlocked threads the 

elliptical polarization fell close to zero. The result is in perfect agreement with both our 

understanding about the mechanism of the generation of the CD response in chiral 

peptide rotaxanes and the positional discrimination of the macrocycle in rotaxanes E/Z-1 

deduced by 'H NMR. 
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Figure 6.2. CD spectra (0.1 mM) in CHC1 3  at 283K of rotaxane Z-1 (red), E-1 (purple). E-2 (green) and 
maleamide isomer of E-2 (blu). 

In rotaxane Z-1 in fact the macrocycle is preferentially situated over the peptide unit in 

close proximity to the C- terminal phenyl stoppers, the aromatic units considered 

responsible for the CD absorption, whereas in the E-1 isomer this proximity is 

drastically diminished and consequentially the CD absorption extinguished. 

6.3 Conclusions 

It has been shown how control of the positioning of submolecular units in rotaxane 

architectures can be used to alter the CD absorption. Control of the expression of the 

chirality in switchable interlocked systems using light and heat stimuli through hiding or 

revealing chiral units could have important application in areas where chiral 

transmission from one chemical entity to another underpins a physical or chemical 

response, such as the seeding of supertwisted nematic liquid crystalline phase or 

asymmetric synthesis. 
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6.4 Experimental Section 

(2S)tertButoxycarbonyIaIfliflO-4-methYI-Pefltafl0 1C acid 2,2-diphenyl-ethyl ester, 

Si 

g 

b a Ph 

0 d Yef Ph 

To a stirred solution of N-(tert-butoxycarbonyl)-L-leucifle monohydrate (3 g, 12 mmol) 

in anhydrous CHCI3 (150 mL) at 0 °C were simultaneously added under argon 4-DMAP 

(1.76 g, 14.4 mmol) and EDCFHC1 (2.65 g, 13.8 mmol). After 5 min 2,2-

diphenylethylamine (2.38 g, 12 mmol) was added and the reaction mixture allowed to 

stir for 16 h under inert atmosphere. The solution was then washed with IN HC1 (3 x 

100 mL) and the organic layer dried over anhydrous MgSO4 and filtered. The filtrate 

was then evaporated under reduced pressure to obtain a colourless oil that was purified 

by column chromatography (petroleum ether:diethyl ether 12:1) to afford the desired 

compound as a colourless oil (51, 4.65 g, 94%). [a] 25D =  -280  (c = 0. 5, MeOH); 'H NMR 

(400 MHz, CDCI3) ö 7.38-7.29 (m, 411, ArCH (meta)), 7.28-7.20 (m, 6H, ArCH (ortho 

and para)), 4.82 (br m, 2H, CIIH'b and NHg), 4.62 (br m, 1H, CHH'b), 4.42 (br dd, 1H, 

CH,,), 4.23 (m, 1H, CH), 1.48-1.40 (in, 1OH, CH and CHh), 1.33-1.21 (m, 211, CHd), 

0.82 (d, 3J(14,1{) = 6.3 Hz, 3H, CHf), 0.79 (d, 3J(H,H) = 6.5 Hz, 3H, CHr); 13C NMR 

(100 MHz, CDC13) ö 173.3 (CH,,:-CO-0), 155.3 (Mg-COO), 140.9 (ArC- (ipso)), 140.7 

(ArC- (ipso)), 128.6 (ArCH (meta)), 128.2 (ArCH (ortho)), 128.1 (ArCH (ortho)), 126.9 

(ArCH (para)), 79.7 (C(CH3)3), 67.2 (CH1,), 52.0 (CH,), 49.8 (CHC), 41.7 (CHj), 28.3 

(Cu11), 24.6 (CHe), 22.5 (CH1), 21.9 (CHr); MS (FAB): m/z = 412 [(M+H)]; Anal. 

Calcd. for C25H33N104: C 72.96, H 8.08, N 3.40. Found: C 72.49, H 8.29, N 3.69. 
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(2S)(2tertButoxycarbonylamiflo-aCetyIamiflO)-4-methYlPeflta110iC 	acid 	2,2- 

diphenyl-ethyl ester, S2 

g 

"~O N 	
0-*~ Y's  H 0 	 Ph 

To a stirred solution of Si (2.30 g, 5.6 mmol) in anydrous CHC13 (30 mL) was added 

TFA (7 mL). After 2 h the solution was reduced in volume and the remained TFA 

removed in vacuo. The resulting oil was taken up in anhydrous CHCI3 (100 mL) and N-

(tert-butoxycarbonyl)-glycine (0.98 g, 5.6 mmol), 4-DMAP (0.82 g, 6.7 mmol) and 

EDCIHC1 (1.18 g, 6.2 mmol) added sequentially under argon at 0°C whilst stirring. 

After 16 h the solution was washed with 0.5N HO (3 x 100 mL) and the organic layer 

was dried over anhydrous MgSO4, filtered and the filtrate reduced in volume to obtain a 

yellow oil that was purified by column chromatography (CH2Ch/EtOAc) (S2, 2.42 g, 

91.2%). [a]25  D =  -23°(c = 0.5, MeOH); 'HNMR (400 MHz, CDC13) 8 7.36-7.29 (m, 4H, 

AECH (meta)), 7.28-7.22 (m, 6H, ArCH (ortho and para)), 6.38 (d, 3J(H,H) = 8.1 Hz, 

1H, NHg), 5.05 (hr. 1H, NHI), 4.80 (dd, 2J(H,H) = 10.6 Hz, 3J(H,H) = 8.3 Hz, 1H, 

CHH'b), 4.59 (dd, 2J(H,H) = 10.6 Hz, 3J(H,H) = 7.3 Hz, 1H, CHH'b), 4.53 (m, iF!, CH,), 

4.40 (br dd, 1H, CHa), 3.73 (in, 2H, CHh), 1.504.38 (m, 1011, CH. and CHJ), 1.34 (in, 

2H, CHd), 0.81 (d, 3J(H,1{) = 6.3 Hz, 3H, CHf), 0.78 (d, 3J(H,H) = 6.6 Hz, 3H, CHc); 13C 

NMR (100 MHz, CDC13) ö 172.4 (CHCOO), 169.1 (N}{g GO), 155.2 (NHi-000), 

140.7 (ArC- (ipso)), 140.5 (ArC- (ipso)), 128.6 (ArCH (meta)), 128.2 (ArCH (ortho)), 

128.1 (ArCH (ortho)), 126.9 (ArCH (para)), 79.7 (C(CH3)3), 67.3 (Mb), 50.7 (GIL), 

49.8 (CHC), 442 (GIL), 41.3 (GIL), 28.2 (CHj), 24.6 (GIL), 22.6 (CH), 21.8 (CHf'); MS 

(FAB): m/z = 469 [(M+H)1; Anal. Calcd for C 27H36N205: C 69.21, H 7.74, N 5.98. 

Found: C 69.84, H 7.52, N 6.42. 
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1 1tert-Butoxycarbony1amino-undeCaflOiC acid, S3 

N 

 
~~OH 

H 

To a stirred solution of 1 1-aminoundecanoic acid (5 g, 24.8 mmol) in a mixture 

THF/H20 (130 m1J130 mL) was added NaOH (2.18 g, 54.5 mmol). After 10 min di-

teri-butyl dicarbonate was added and the reaction mixture let to stir for 20 h. The 

solution was reduced in volume, taken up with CHC13 (150 mL) and washed with IN 

HC1 (3 x 100 mL). The organic layer was then dried over MgSO4, filtered and the filtrate 

reduced in volume to obtain a colourless powder that was recrystalized from hexane (S3, 

7.15 g, 96%). m.p. 68 °C; 'H NMR (400 MHz, CDC13) ö 4.55 (br, 1H, NH), 3.12 (br, 

11-L NH-CH2), 2.37 (t, 3J(H,H) = 7.5 Hz, 211, CH2-CO), 1.66 (m, 211, CH2-CH2-CO), 

1.54-1.41 (m, 11H, C(CH3)3 and CH2), 1.40-1.24 (m, 12H, CH2); 13C NMR (100 MHz, 

CDC13) ö 179.1 (CO-OH), 155.7 (NH-CO-0), 79.1 (C(CH3)3), 40.6, 34.0, 30.0, 29.4, 

29.2, 29.1, 29.0, 28.9, 28.4 (C(CH3)3), 26.7, 24.7; MS (FAB): ,n/z = 302 [(M+H)+]; 

Anal. Calcd. for C 16143 1N04: C 63.75, H 10.37, N 4.65. Found: C 63.28, H 10.08, N 

4.62. 

(2S)-12-(1 1tertButoxycarbonyIamino-undecanoyIamino)-aCetY1aIfliflO1-4-methYI-

pentanoic acid 2,2-diphenyl-ethyl ester, S4 

m0 	 g

>~O'~' 	 N cA b a Ph 
O— Y 

	

H 	 I 	H 	0d 	f 	I 

	

I 	 i 	 Ph 
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To a stirred solution of S2 (2.62 g, 5.6 mmol) in anydrous CHC13 (30 mL) was added 

TFA (6 mL). After 2 h the solution was reduced in volume and the remained TFA 

removed in vacuo. The resulting oil was taken up in anhydrous CHC13 (100 mL) and S3 

(1.69 g, 5.6 mmol), 4-DMAP (0.82 g, 6.7 mmol) and EDCFHC1 (1.18 g, 6.2 mmol) 

added sequentially under argon at 0°C whilst stirring. After 16 h the solution was 

washed with 0.5N HC1 (3 x 100 mL) and the organic layer was dried over anhydrous 

MgSO4, filtered and the filtrate reduced in volume to obtain a colourless oil that was 

purified by column chromatography (CH2CWEtOAc) (S4, 3 g, 82%). [a]25D = -18° (c = 

0.5, MeOH); 'H NMR (400 MHz, CDC13) ö 7.34-7.26 (m, 41-L ArCH (meta)), 7.25-7.20 

(m, 6H, ArCH (ortho and para)), 6.62 (d, 3J(14,}{) = 7.8 Hz, 1H, NHg), 6.34 (t, 3J(H,H) 

5.0 Hz, 1H, NHL), 4.78 (dd, 2J(H,H) = 11.1 Hz, 3J(H,H) = 8.6 Hz 1H, CHH'b), 4.56 (dd, 

2J(HH) = 11.1 Hz, 3J(Ij,I{) = 7.3 Hz, 214, CHH'1, and NH1), 4.45 (dd, 3J(H,H) = 7.8 Hz, 

3J(H,H) = 7.0 Hz, 1H, CHC), 4.38 (br dd, 111, CH.), 3.87 (d, 3J(H,H) = 5.0 Hz, 211, CHh), 

3.09 (m, 211, CH,), 2.20 (t, 3J(H,H) = 7.7 Hz, 211, CHJ), 1.62 (m, 2H, CH2-0-j), 1.50-

1.39 (in, 1OH, CH. and CH.), 1.35 - 1.24 (m, 1611, CH2 and CHd), 0.78 (d, 3J(14,H) = 6.6 

Hz, 311, CHf), 0.76 (d, 3J(14,H) = 6.6 Hz, 31-L CHr); 13C NMR (100 MHz, CDC13) ö 

173.7 (NHj-CO), 172.3 (CH,,:-CO-0), 168.9 (NHg CO), 157.9 (NA-CO-0), 140.7 (MC 

(ipso)), 140.5 (ArC- (ipso)), 128.6 (ArCH (meta)), 128.2 (ArCH (ortho)), 128.1 (ArCH 

(ortho)), 126.9 (ArCH (para)), 79.0 (C(CH3)3), 67.3 (CH,,), 51.0 (CHa), 49.8 (CHc), 43.0 

(Cf1i), 41.0 (GIl4), 40.6, 36.3, 33.9, 30.0, 29.4, 29.3, 29.2, 29.1, 28.4 (CH.), 26.8, 25.6, 

24.6 (CHC), 22.5 (GIl1), 21.8 (CH1); MS (FAB): m/z = 652 [(M+H)1; Anal. Calcd. for 

C38H57N306: C 70.01,118.81, N 6.45. Found: C 70.21,119.11, N 6.97. 
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N-(2,2-Diphenylethyl)-fumariC acid ethyl ester, S5 

0 
PhfAof 

Ph 	
0 

To a stirred solution of 2,2-diphenylethylamine (0.50 g, 2.50 mmol), flimaric acid 

monoethylester (0.37 g, 2.50 mmol) and 4-DMAP (0.33 g, 2.70 mmol) in anhydrous 

CH202 (200 mL) at 0 °C was added EDCFHC1 (0.52 g, 2.7 mmol). After 24 h the 

solution was washed with a saturated solution of citric acid (3 x 50 mL) and H20 (3 x 50 

mL) and the organic layer dried over anhydrous MgSO4, filtered and the filtrate reduced 

in volume to obtain a colourless solid that was recrystallized from EtOAc (S5, 0.70 g, 

85%). m.p. 112-113 °C. 'H NIMR (400 MHz, CDC13): ö = 7.34-7.27 (m, 4H, ArCH 

(meta)), 7.26-7.19 (m, 6H, ArCH (ortho and para)), 6.77 (d, 3J(H,I{) = 14.4 Hz, 1H, CHd 

ore), 6.72 (d, 3J(H,1{) = 14.4 Hz, 111, CHdore), 5.90 (t, 3J(H,H) = 5.7 Hz, 1H, NHC), 4.25-

4.15 (in, 3H, CH. and CHf), 3.98 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H) = 5.7 Hz, 211, CHb), 

1.28 (t, 3J(H,H) = 7.0 Hz, 3H, CHg); 13C NMR (100 MHz, CDC13): ö = 165.6 (CHeCO 

0), 163.6 (C0-NH), 141.5 (ArC- (ipso)), 136.0 (CH4j), 130.6 (CH ti ore), 128.9 (ArCH 

(meta)), 128.1 (ArCH (ortho)), 127.0 (ArCH (para)), 61.2 (CHi), 50.3 (M a), 441 (CHb), 

14.1 (Mg); MS (FAB): m/z = 324 [(M+H)1; Anal. Calcd. for C201121NO3: C 74.28, H 

6.55, N 4.33. Found: C 74.83, H 6.91, N 4.38. 

N-(2,2-Diphenylethyl)-fumaramide acid, S6 

0 
Phf)L OH 

Ph 
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To a stirred solution of S5 (0.70 g, 2.20 mmol) in EtOH (50 mL) was added dropwise a 

solution of NaOH (0.10 g, 2.40 mmol) in H20 (2.5 niL). After 16 h the solution was 

reduced in volume and washed several times with Et 20 to obtain a colourless powder 

which was recrystallized from CHC13 (S6, 0.58 g, 91%). m.p. >270 °C (decomp); 'H 

NMR (400 MHz, c4-DMSO): ö = 12.83 (br s, 1H, 011), 8.57 (t, 3J(H,H) = 5.7 Hz., 1H, 

NH), 7.33-7.15 (ni, 1OH, ArCh), 6.87 (d, 3J(H,H) = 15.4 Hz, 1H, CHd e), 6.47 (d, 

3J(H,H) = 15.4 Hz, 1H, CHd e), 4.22 (t, 3J(14,H) = 8.0 Hz, 1H, CH.), (dd, 3J(H,H) = 8.0 

Hz, 3J(H,HT) = 5.7 Hz, 21, CHb); ' 3C NMR (100 MHz, c4-DMSO) ö 168.0 (CO-OH), 

164.5 (CO-NH), 143.1 (ArC- (ipso)), 134.3 (CH1 e), 134.0 (CHi01 e), 128.8 (ArCH 

(meta)), 128.2 (ArCH (ortho)), 126.7 (ArCH (para)), 50.3 (CH.), 43.7 (CHb); MS 

(FAB): m/z = 296 [(M+H)1; Anal. Calcd. for C,5H 17NO3: C 73.20, H 5.80, N 4.70. 

Found: C 73. 10, H 5.20, N 4.73. 

(2S)-(2-{1 1(3-(2,2Dipheny1-ethykarbamoy1)-(E)-acrY1OyIaffliflO1-

undecanoylamino}-acetylamino)-4-methyl-PefltaflOiC acid 2,2-diphenyl-ethyl ester, 

E-2 

	

o 	
f 	0 	k 0 

Ph 	b 1 	e 
a 	 N 	iLN y 	

Ph 

TN H 	d 	II 01 
Ph C 	 0 	 0m 	Ph  Y,, 

To a stirred solution of S4 (0.90 g, 1.38 mmol) in anydrous CHC13 (20 niL) was added 

TFA (2 mL). After 2 h the solution was reduced in volume and the remained TFA 

removed in vacuo. The resulting oil was taken up in anhydrous DMF (80 mL) and S6 

(0.56 g, 1.88 mmol), 4-DMAP (0.31 g, 2.56 mmol) and EDCFHC1 (0.60 g, 3 mmol) 

added sequentially under argon at 0°C whilst stirring. After 16 h the solution was 

reduced in volume, taken up in CHC13 (150 mL) and washed with 0.5N HC1 (3 x 100 
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mL). The organic layer was dried over anhydrous MgSO4, filtered and the filtrate 

reduced in volume to obtain a colourless compound that was purified by column 

chromatography (CHCbIMeOH) (E-2, 0.85 g, 74%). m.p. 132°C; 'H NMR (400 MHz, 

CDC13) ö 7.33-7.26 (m, 4H, ArCH (meta)), 7.26-7.19 (m, 6H, ArCH (ortho and para)), 

7.04 (d, 3J(H,H) = 14.9 Hz, IH, CHdOTe), 7.00 (d 3J(H,I{) = 7.4 HZ, 1H, NHk), 6.87 (t, 

3J(H,H) = 5.9 Hz, 1H, NHf), 6.75 (d, 3J(H,H) = 14.9 Hz, 1H, CHd )re), 6.54 (t, 3J(H,H) = 

5.2 Hz, 1H, NHI), 6.18 (t, 3J(H,I{) = 5.4 Hz, 1H, NHC), 4.74 (dd, 2J(H,H) = 11.1 Hz, 

3J(H,H) = 8.6 Hz, 1H, CHH' P), 4.55 (dd, 2J(H,I{) = 11.1 Hz, 3J(H,H) = 7.3 Hz, 1H, 

CHH'), 4.55 (dd, 3J(I1,I{) = 7.8 Hz, 3J(HR) = 7.4 Hz, 1H, CHI), 4.37 (br dd, 1H, CHC1), 

CHb), 3.91 (t, 3J(H,Ii) = 5.2 Hz, 2H, CHJ), 3.32 (m, 2H, CHg,), 2.22 (t, 3J(H,H) = 7.3 Hz, 

2H, CHh), 1.63 (m, 21L CH2-CHh), 1.55 (m, 2H, CH2-CHJ, 1.43 (m, 1H, CH), 1.36-

1.26 (m, 141, CH2 and CH.), 0.75 (d, 3J(H,I{) = 6.6 Hz, 3H, CH.), 0.74 (d, 3J(H,H) 

6.3 Hz, 3H, CH0'); 13C NMR (100 Mhz, CDC13) 8 173.9 (CH,-CO), 172.4 (CH,-CO-O), 

169.3 (CHj-CO), 165.0 (CO fumaric), 164.8 (CO fi.imaric), 142.0 (ArC-CH. (ipso)), 

140.8 (ArC-CI q  (ipso)), 140.6 (ArC-CHq  (ipso)), 133.7 (CHci ore), 132.5 (CHiore), 128.7 

(ArCH (meta)), 128.6 (ArCH (meta)), 128.5 (ArCH (meta)), 128.2 (ArCH (ortho)), 

128.1 (ArCH (ortho)), 128.0 (ArCH (ortho)), 126.9 (ArCH (J)ara)), 126.9 (ArCH (para)), 

126.8 (ArCH (para)), 67.2 (CH), 51.0 (CH 1), 50.2 (CHa), 49.8 (CH1), 44.4 (Mb), 43.2 

(CH,), 40.8 (CH.), 39.9 (CH1), 36.1, 29.3, 29.2, 29.1, 29.0, 28.9, 26.9, 25.6, 24.6 (CI{), 

22.6 (CHO), 21.8 (CH0); HRMS (FAB) Calcd. for C511-165N406 [M+HJF 829.49041. 

Found: 829.48997. 
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tetrabenzocyclohexacoSafleH2SH2{' 1[3-(2,2_diphenyI-ethylcarbamOYI)-(L)-

acry1oylaminoJundecanoylamflO}aCeY1amif0)methYPeb 0 c acid 2,2-

diphenyl-ethyl ester)-rotaxane, E-1 

IN 

A 

O/O 
'role 

NH  FE  
D\f 	

0 	k  
F e/ )LJ HJPPh 

'Q 	 iY,, 	Ph 0 m 

otAo 
To a stirred solution of E-2 (0.40 g, 0.48 mmol) in anhydrous CHC13 (100 mL) was 

added simultaneously solutions of para-xylylenediamine (0.78 g, 5.76 mniol) and Et3N 

(1.16 g, 11.5 mmol) in CHC13 (40 niL), and isophthaloyl dichloride (1.17 g, 5.76 mmol) 

in CHC13 (40 niL) over a period of 2 h using motor-driven syringe pumps. After a 

further 2 h the resulting suspension was filtered and the filtrate concentrated under 

reduced pressure to afford the crude product that was purified by column 

chromatography on silica gel using a gradient of CHC13 to CHCblacetonitrile (1/1) as 

eluent to obtain the desired compound as a colourless powder (E-1, 0.38 g, 58%); 

Rotaxane E-1 can also be obtained by thermal-isomensation of its isomer Z-1 at 130°C 

in C21320I for 6 days (E-1, 95%). m.p. 194 °C; 'H NMIR (400 MHz, CDC13) ö 8.42 (s, 

2H, ArCHc), 8.15 (d, 3J(H,I{) = 7.3 Hz, 4H, ArCHB), 7.67 (s br, 4H, NHD), 7.60 (t, 

3J(H,H) = 7.3 Hz, 21L ArCHA), 7.34-7.25 (m, 8H, ArCH (meta)), 7.25-7.16 (m, 12H, 
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ArCH (ortho and para)), 7.15 (br t, 1H, NHf), 6.96 (s, 8H, AICHF), 6.90 (br t, 1H, Me), 

6.79 (d, 3J(H,1{) = 7.6 Hz, 111, NHk), 6.32 (t, 3J(H,H) = 4.9 Hz, 1H, NH1), 5.81 (d, 

3J(H,H) = 15.2 Hz, 1H, CHd or e), 5.68 (d, 3J(H,l{) = 15.2 Hz, 111, CHd or e), 4.78 (dd, 

2J(H,H) = 10.9 Hz, 3J(H,H) = 8.3 Hz, 1H, CHH'), 4.54 (dd, 2J(H,H) = 10.9 Hz, 3J(H,H) 

= 7.3 Hz, 111, CHH'), 4.48-4.41 (br d, 9H, CHE and CHI), 4.38 (m, 1H, CHO), 4.21 (t, 

3J(H,H)= 7.7 Hz, 1H, CH.), 3.84 (br t, 2H, CHb), 3.71 (d, 3J(H,H) = 4.9 Hz, 2H, CHJ), 

312 (in, 211, CHg), 2.12 (t, 3J(H,H) = 7.5 Hz, 211, CHh), 1.54 (in, 211, CH2-CHI)), 1.46 

(in, 311, CH2-CHg  and CH), 1.29-1.17 (m, 1411, CH2 and CHm), 0.78 (d, 3J(H,1{) = 5.3 

Hz, 311, CH.), 0.76 (d, 3J(H,1{) = 5.5 Hz, 3H, CH.,); 13C NMR (100 MHz, CDC13) 

173.7 (CH11-CO), 172.3 (CH1-CO-0), 168.7 (CA-CO), 166.7 (CO macrocycle), 165.3 

(CO fumanc), 165.0 (CO fiimaric), 141.4 (ArC-CH. (ipso)), 140.7 (ArC-CH q  (ipso)), 

140.5 (ArC-CHq  (ipso)), 137.1 (ArC-CHE (ipso)), 133.8 (ArC-CO-NHD (ipso)), 131.3 

(ArCHn), 130.5 (CILi or e), 129.8 (GH1 or e), 129.1, 129.0, 128.9, 128.6 (ArCH (meta)), 

128.5 (ArCH (meta)), 128.1 (ArCh (ortho)), 128.0 (ArCh (ortho)), 127.8 (ArCh 

(para)), 127.1, 127.0, 124.5 (ArCHc), 67.4 (CH), 51.0 (CH q), 50.3 (CHa), 49.8 (CHI), 

44.7 (CH1,), 44.1 (CHE), 42.9 (CHj), 41.0 (Gum), 40.1 (Chili 1), 36.0, 29.1, 29.0, 28.7, 26.8, 

25.5, 24.6 (CH.), 22.5 (GIL), 21.9 (CH. ,); HRMS (FAB) Calcd. for CH93N8010 

[M+H] 1361.70147. Found: 1361.70093. 

(2S)-(2-{1 1[3-(2,2dipheny1ethy1carbamoy1Z)-aCrYIOYlamiflO1-

undecanoylamino}-acetylamiflO)-4-IflethYl-Pefltafloic acid 2,2-diphenyl-ethyl ester), 

Z-2 
k 

e 	 J1 JLRPh 

0m o 

d 	
\() 	 I 	

Ph b N—H Yn 
/  

Ph 
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A CH202 solution (20 mL) of E-2 (0.10 g, 0.12 mmol) in a quartz vessel was directly 

irradiated for 40 min at 254 nm using a multilamp photo-reactor. The reaction mixture 

was concentrated under reduced pressure to afford the crude product that was subjected 

to column chromatography on silica gel using a gradient of CHC13 to CHC13/EtOAc 

(1/3) as eluent to obtain the desired compound as a colourless powder (Z-2, 0.05 g, 

54%). m.p. 121 °C; 'H NMR (400 MHz, CDC13) ö 8.49 (t, 3J(IHL,H) = 5.8 Hz, lIT, NHf), 

7.97 (t, 3J(H,Ii) = 5.3 Hz, 1H, NHC), 7.35-7.18 (m, 20H, ArCH), 6.62 (d, 3J(H,H) = 7.8 

Hz, 1H, NHk), 6.33 (t, 3J(H,1{) = 5.2 Hz, 1H, NHI), 6.00 (d, 3J(H,I{) = 13.1 Hz, 1H, CHd' 

&), 5.92 (d, 3J(H,H) = 13.1 Hz, 1H, CHd' or e'), 4.78 (dd, 2J(H,I{) 11.1 Hz, 3J(H,H) = 

8.3 Hz, 1H, CHH'P), 4.56 (dd, 2J(H,HT) = 11.1 Hz, 3J(H,H) = 7.3 Hz, 1H, CHH'), 4.45 

(in, IH, CHI), 4.38 (d, 3J(H,H) = 8.0 Hz, 1H, CHq), 4.26 (d, 3J(H,H) = 8.0 Hz, 1H, CH.), 

CHJ), 3.24 (br dt, 2H, CHg), 2.20 (t, 3J(H,H) = 7.6 Hz, 21L CH,), 1.61 (m, 2H, CH2-

CHh), 1.53 (in, 2H, CH2CHg), 1.44 (iii, 1H, CH), 1.364.27 (in, 1411, CH2  and CH.), 

0.79 (d, 3J(H,H) = 6.6 Hz, 3H, CHO), 0.77 (d, 3J(H,I{) = 6.6 Hz, 3H, CH.);  13C NMR 

(100 MHz, CDC13) 6 173.7 (CHh-CO), 172.3 (CH1-CO-0), 168.8 (CA-CO), 165.1 (CO 

maleic), 164.6 (CO maleic), 141.8 (ArC-CH. (ipso)), 140.7 (ArC-CHq  (ipso)), 140.6 7 

(ArC-CHq  (ipso)), 133.4 (CH1' or e'), 131.3 (CFL1' or e'), 128.7 (ArCH (meta)), 128.6 

(ArCH (meta)), 128.5 (ArCH (meta)), 128.2 (ArCH (ortho)), 128.1 (ArCH (ortho)), 

128.0 (ArCH (ortho)), 127.0 (ArCH (para)), 126.9 (ArCH (para)), 126.8 (ArCH (para)), 

67.3 (CH,), 51.0 (CHq), 50.3 (Clii), 49.8 (CHa), 44.2 (GIl,,), 43.0 (CHj), 41.0 (CH m), 

39.8 (Mg), 36.3, 29.3, 29.2, 29.1, 29.0, 28.9, 26.9, 25.5, 24.7 (CH n), 22.5 (CHo), 21.8 

(CH0); HRMS (FAB) Calcd. for C 51H65N406 [M±Hj1  829.49041. Found: 829.49082. 
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tetrabenzocyclohexacoSafleH2S-(2-(l 1I3(2,2dipheny1-ethyIcarbamoy1)-(Z)- 
acid 	2,2- 

diphenyl-ethyl ester)-rotaxane, Z-1 
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A CH2C12IMeOH (20 ML, 9/1 v/v) solution of E-1 (0.26 g, 0.19 mmol) in a quartz vessel 

was directly irradiated for 20 mins at 254 nm using a multilamp photo-reactor. The 

reaction mixture was concentrated under reduced pressure to afford the crude product 

that was subjected to column chromatography on silica gel using a gradient of CHC13 to 

CHC13IEtOAc (1/1.5) as eluent to obtain the desired compound as a colourless powder 

(Z-1, 0.11 g, 42%). m.p. 169 °C; 'H NMR (400 MHz, CDC13) 5 8.60 (t, 3J(H,H) = 5.2 

Hz, 1H, NHf), 8.48 (t, 3J(H,H) = 5.3 Hz, 111, NHC), 8.34 (5, 2H, ArCHc), 8.15 (d, 

3J(H,H) = 7.8 Hz, 411, ArCH8), 7.74 (d, 3J(H,1{) = 7.3 Hz, 1H, NHk), 7.56 (t, 3J(H,H) = 

7.8 Hz, 2H, ArCHA), 7.55 (br s, 4H, NHD), 7.31-7.12 (m, 28H, ArCH and ArCHF), 6.01 

(d, 3J(H,F[) = 13.4 HZ, 1H, CHd' or e'), 5.89 (d, 3J(H,H) = 13.4 Hz, 11-L CHd'ore'), 5.63 (d, 

3J(H,H)=3.8Hz, 114,NH),4.76(dd, 2J(1 )11.1HZ, 3J(H,H)z8.6HZ, 111, 

CHH'P), 4.58-4.43 (m, 81L CH,,), 4.40 (dd, 2J(H,1{) = 11.1 Hz, 3J(KR) = 7.3 Hz, 1H, 
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CHH'), 4.28 (br dd, 1H, CHq), 4.25 (t, 3J(H,H1) = 8.0 Hz, 1H, CH.), 4.19 (in, IH, CH1), 

3.92 (dd, 3J(H,H) = 8.0 Hz, 3J(H,H1) = 5.8 Hz, 2H, CHb), 3.11 (in, 21L CHg), 2.90 (d, 

3J(H,Ii) = 3.8 Hz, 2H, CH), 1.71 (t, 3J(H,H) = 8.0 Hz, 21FL  CHh), 1.48-1.37 (m, 3H, 

CH2 CHg  and CH), 1.35-0.95 (in, 1614, Cf!2  and CH.), 0.77 (d, 3J(H,}I) = 6.8 Hz, 31t 

CH0), 0.75 (d, 3J(H,H) = 6.8 Hz, 31t CH.'); 13C NMR (100 MHz, CDC13) ö 173.7 (CH1-

GO), 172.1 (CH1-CO-0), 169.6 (CA-CO), 166.4 (CO macrocycle), 166.3 (CO 

macrocycle), 165.1 (CO maleic), 164.7 (CO maleic), 141.8 (ArC-CH. (ipso)), 140.5 

(ArC-CHq  (ipso)), 140.2 (ArC-CHq  (ipso)), 137.5 (ArC-CHE (ipso)), 137.3 (ArC-CHE 

(ipso)), 133.7 (ArC-CO-NHc, (ipso)), 133.0 (CH1' ore'), 131.7 (Gj' ore'), 131.6 (ArCHB), 

131.5 (ArCHB), 129.3, 129.2, 129.0, 128.7 (ArCH (meta)), 128.6 (ArCH (meta)), 128.1 

(ArCH (ortho)), 128.0 (ArCH (ortho)), 127.9 (ArCH (ortho)), 127.1 (ArCH (J)ara)), 

127.0 (ArCH (Para)), 126.8 (ArCH (para)), 123.8 (ArCHc), 67.5 (CH), 51.4 (CH, 

50.3 (CH.), 49.8 (CHI), 44.3 (CHb), 44.1 (CHE), 42.0 (CHj), 40.5 (CH.), 40.0 (CH1), 

36.0, 29.1, 29.0, 28.9, 28.8, 26.7, 24.9, 24.7 (CH), 22.5 (CHO), 21.7 (CH0'); HRMS 

(FAB) Calcd. for C83H93N8010 [M+Hj 1361.70147. Found: 1361.69808. 
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Francesco Zerbetto 

Recently, it has been shown that the rate of spinning of a 

macrocycle mechanically locked onto a dumbbell thread, a 

[2]rotaxane, can be tuned in solution by an external AC electric 

field."' As a solid, such large-amplitude motions 

are reduced, or forbidden, by the presence of 

nearby molecules. In general, some effects of 

molecular interlocking still exist, however, and 

may give rise 'to important properties.' 2  To date, 

solid-state vibrational spectroscopy has not been 

able to find direct evidence of the presence of the Ph2CH 
large amplitude intercomponent motions intro-

duced by the mechanically interlocked architec-

tures present in catenanes and rotaxanes. 131  Iden-

tification of vibrational band(s) that are caused by 
the respective motions of the noncovalently linked 
components becomes of fundamental and applied 

interest. 
In this work, we measure the inelastic neutron scattering (INS) 

of rotaxané 2 and of the thread 1 that results from the removal of 

a benzylic amide macrocycle. INS spectroscopy is not subject to 

the restrictions of optical selection rules present in infrared or 

Raman spectroscopies. This permits the observation of all the 
motions present in a system (proportional to the contribution of 
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the hydrogen atoms). An impressive example of such ability was 
provided by Hudson and collaboratorsm for dodecahedrane, 

where 19 of its 30 modes are both infrared- and Raman-silent. 

The case of 1 and 2 is perhaps unique for a spectroscopic 

investigation: In fact, the addition of the macrocycle to 1 does 

not introduce any new functional groups, or types of vibrations, 

in addition to those already present (both macrocycle and 

thread contain only phenyl and amide groups). No new types of 

vibration and bands are therefore expected when comparing the 

spectra of 1 and 2. However, comparison of the spectra showed 

that the region between 350 and 400 cm' is markedly different 

(see Figure 1). This difference was not anticipated, but can be 

readily ascribed to the effect of interlocking on the molecular 

motions of the rotaxane. The aim of this work is therefore to 

understand qualitatively the origin of this spectral difference. To 

achieve this goal, molecular dynamics (MD) simulations based 

on molecular mechanics (MM) are well suited. The model 

satisfies several basic requisites: 

fk 

e MM has been used in the past to study the potential energy 
surfaces and the dynamics of thism and related systems, and 

was able to locate the multiple minima that arise from the 
non- or weakly bonding interaction that govern the dynamics 

of these molecules; 
• MM can be used both in the isolated molecule approximation 

and in the solid phase; 
• The combination of MM and MD includes anharmonic effects, 

which are important when large amplitude motions are 

investigated. 

Ii 
-'4 

I 
300 	350 	400 	450 	500 

wavenuntherB / cm 

Figure 1. The spectral region of most pronounced difference for the INS spectra 
oil (—) and 2(----). The arrows are used to assist the eye in matching the 

bands. 
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The first point can be further elaborated. The conclusion of 

previous work on the interlocked dimer of the benzylic amide 

macrocycle and a variation of itiseJ was that the model proved to 

be sufficiently accurate to distinguish between vibrations that 

give large contributions to the INS response. Moreover, the 

comparison of the results for simulations performed in the 

isolated molecule approximation and the solid-state approach 

showed the superiority of the latter, which was taken as a further 

validation of the various features of the model. Finally, the 

validation of the MD calculations through their accurate 

simulation of the INS spectrum justified their further analysis 

to extract the information that are contained in the INS spectra. 

Because of the similarity of the structures of the systems treated 

here and those modeled previously, one is therefore justified in 

using the same approach. Differences in frequencies can be 

expected, but the dynamics of the system should be delivered 

by the model. 
Figure 2 compares the experimental and calculated spectra of 

1. While there are some shifts in the positions of the bands, their 

number and shape are well reproduced. Analogously, Figure 3 

compares the experimental and calculated spectra of 2; the 

experimental extra line of the spectrum of 2 is present in the 

calculations although somewhat broader and shifted to higher 

wavenumbers by 15-20 cm -1 . Notice that the calculations were 

performed using periodic boundary conditions that mimic the 

43 
"4 

'4 
4) 
"4 

300 	 350 	 400 	 450 	 500 

wavenunbers / cm '  -. 

Figure 2. Experimental (—) and calculated (-- --) spectra of I. 
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Figure 3. Experimental (—) and calculated (- -- -) spectra 012. 

to 
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wavenumbera / cm '  —, 

Figure 4. Calculated spectra of 2 lathe solid phase (—) and as a free molecule 

solid phase present in the experiments. Importantly, the system 

of bands between 350 and 400 cm -' of Figure 1 can now be 

assigned. The sharp feature present in the experimental 

spectrum of the rotaxane 2, slightly above 350 cm', is the 

enhancement of the very weak band of 1. This band is therefore 

taken as a fingerprint of molecular threading. 

In order to determine the nature of the 350 cm - ' rotaxane 

band, and those of the bands located nearby, three types of 

simulations were performed for 2. 

In the first set of calculations (Figure 4) the INS spectrum was 

obtained in the isolated molecule approximation: Upon removal 

of the periodic boundary condition, some pronounced changes 

are observed above 400 cm -1  where the most prominent band is 

not reproduced by the calculations. The results therefore 

support the notion that it is the combination of molecular 

threading and solid-state interactions that introduces a molec-

ular motion, detected by INS spectroscopy, absent in the 

unthreaded dumbbell and in the isolated rotaxane molecule. 

In the second set of calculations, the contributions of the 

different hydrogen atoms were selectively set to zero and the 

spectrum recalculated (Figure 5). The hydrogen atoms were 

divided into five sets: 
• Set I was formed by the hydrogen atoms of the terminal 

groups of the dumbbell; 
• Set II was formed by the p-xylylene hydrogen atoms of the 

macrocycle; 
• Set III was formed by the isophthaloyl hydrogen atoms of the 

macrocycle; 

• Set IV were the amide atoms; 

• Set V included the atoms of the central C=C bond of the 

fumaric motif at the center of the dumbbell. Removal of Set IV 

and V atoms hardly modified the spectrum (not shown here). 

Sets I to Ill contribute to the spectral region of the rotaxane 

fingerprints, however, in quantitative terms the major contribu-

tion is given by the isophthaloyl hydrogen atoms of the ring. 

In the third set of calculations, a vibrational analysis of the 

region of the rotaxane fingerprints was performed. The local 

contributions to the 15 vibrations located between 360 and 

380 cm - ' were examined individually. Three types of motions 

were found to be mainly present: Scissoring of the phenyl 

stopper impeded by the presence of the macrocycle, chair-to- 
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Figure S. Spectra of 2 in the solid phase (—) and three calculated ones upon 

removal of the hydrogen atoms of the stoppers (- - --), upon removal of the 

hydrogen atoms of the p-xylyl groups (- - --), and upon removal of the hydrogen 

atoms of the isophthoioyl groups (...J. 

boat interconversion of the threaded macrocycle, and rocking of 

the whole macrocycle hindered by the presence of a terminal 

group of the dumbbell. Examples of the motions are shown in 

Figure 6. The contemporaneous presence of the three motions 

in the same vibrations confirms that they interact and both the 

value of frequency and the shape of the motions are affected by 

interlocking, which is therefore ultimately responsible for the 

fingerprint region of the rotaxane. 

While this is the first time that a spectroscopic signature of 

molecular threading is found, it is not the first time that some 

important properties of rotaxanes containing a benzylic amide 

macrocycle were determined by the interaction between thread 

and macrocycle. A recent study of the induced circular dichro- 

ism, in a series of dipeptide rotaxanes, 161  showed that chiral 

information is passed from the chiral center of the thread to the 

stoppers via the macrocycle through long-range spatial inter- 

actions. Future work will have to develop molecular dynamics 

models able to simulate the region below 100 cm -1  where other 

intermoiety motions of interlocked systems are located. Here we 

have shown that a fundamental spectroscopic technique, whose 

use is continuously increasing, can detect the first- solid-state 

evidence of molecular threading, a feature that had not 

previously emerged.  

Experimental Section 

The neutron experiment was performed using the indirect geometry 
time-of-flight spectrometer TOSCA at the ISIS pulsed spallation 

neutron source of the Rutherford Appleton Laboratory (UK). A 

combination of graphite crystal analyzers and cooled beryllium filters 
is used as a narrow bandpass filter to select the energy of neutrons 

scattered at a fixed angle of 135 °  (E = 4 mV). The spectrometer is 

optimal in the energy transfer range from 0 to 500 mI (0-

4000 cm -1), with the best results below 250 meV. The energy transfer 
resolution is of about 2% over the whole range. Polycrystalline 
samples (,t:2 g) were synthesizedm and checked to be entirely 
solvent-free. For the neutron experiment, a 1 mm thick sample was 
wrapped in aluminum foil, attached to the centrestick of a dosed 

cycle refrigerator and cooled to 20 K. 

The theory of incoherent neutron scattering by vibrating molecules 

has been discussed by several authors' 91  The contributions to the 

neutron cross-section for an initial energy E, final energy E, and solid 

angle Q can be written as Equation (1), where a is the scattering 

length, that can be incoherent or coherent, S(Q,w) is the dynamic 

structure factor, ra is the vibrational. frequency, - Q=k1 -k f  is the 

scattering vector, and k is the wave vector for which the well-known 

relationship of Equation (2) holds (m is the mass of a neutron). 

da 	fE  

E dQ dcu 	

\ 
= -[a,. S(Q,ca) + O,,h SCOh(Q,cu)]°3  J 	 (1) 

	

\ 	 - - 	 / 

h2  
—w = 	= ---(!-k) 

h 	h 	 :(2) 
—Q-_---(k-k.,) 	-- 	.- 
2A 	. 27r 

Most atoms give comparable coherent and incoherent scattering. 
- Hydrogen is, however, an exception because of its very large 
incoherent scattering length that makes it dominate the INS 

- response of organic. molecules. The incoherent scattering cross-
• section is the space- and time-Fourier transform of the self- - 
correlation function and can be expressed as Equation (3), 10]  

where W is the Debye-Waller factor, which can be considered to 
be a constant for a given temperature, and the + sign corresponds 
to creation of a vibrational quantum in the material whilst'- 

corresponds to the annhilation of a quantum. - - 

(4;rk,T 
± i] (3) 

Figure 6. Illustrative examples of the vibrational motions located between 360-380cm' - '. The arrows are proportional to the atomic displacements. 
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SHORTtCOMMUNICATIONS 

At the low temperatures of the experiments, only the first process 

(Stokes or down scattering) occurs. 

The density of states g(o) was here obtained as the Fourier transform 

of the velocity (v) autocorrelation function of the N hydrogen atoms 

according to Equation (4). 

= ! 	.__ J exp(icot)(va(0) V(t))dt 	 (4) 
N 2x 

The atom velocities were obtained by molecular dynamics calcu-

lations performed at constant energy (NVE ensemble) after equili-

brating the system at 20 K. The time step was set to 02 fs and 

velocities were collected for 25ps. 

All the calculations were performed with the linker program" and 

the MM3 force field.'3  This approach has found wide application in 

our laboratories for the investigation of similar systems and related 

problems. 11' 51  Molecular dynamics were run both on isolated systems 

• and applying boundary conditions to reproduce the crystal structure. 

The g(co) calculations were performed in the NVE ensemble rather 

than the NVT where the constant temperature introduces spikes in 

the velocities and therefore in their Fourier transform. 
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TMR contract no HPRN Cr2000- 00024 (MIPA) the EPSRC and the 
MURST project "Dispositivi Supramolecolan" 

 

DAL is an EPSRC 
Advanced Research Fellow (A F/982324) We thank the Rutherford 

Appleton Laboratoiy for access to neutron beam facilities 

484,349; A. Degli Espostl, 0. Moze, C Talianu, J. T. Tomkinson, R. Zamboni, 

F. Zerbetto, J. Chem. Phys. 1996, 104,9704; A. Degli Esposti, F. Zerbetto, J. 

Phys. (hem. A 1997, 101, 7283. 

A. J. Ramirez-Cuesta, P.C. H. Mitchell, S. Parker, P. M. Rodger, Phys. (hem. 

(hem. Phys. 1999, 1, 5711; A.J. Ramirez-Cuesta, P.C.H. Mitchell, A.P. 

Wilkinson, S.F. Parker, P. M. Rodger, (hem. Comm un. 1998,653. 

J. Ponder, F. Richards, J. CompuL (hem. 1987, 8, 1016; C. Kundrot, J. 

Ponder, F. Richards,.). Comput (hem. 1991,12,402; M.J. DudelçJ. Ponder, 

J. Comput (hem. 1995, 16, 791. 

N.LAflinger,V.H.Yuh,J.-H. Liu,J. Am. Chem. Soc 1989,111, 8551; J.-H. UL 

N. L Allinger, J. Am. (hem. Soc. 1989, 111, 8566; J.-H. Lii, N. L Allinger, J. 

Am. (hem. Soc. 1989, 11?, 8576. 

Received: August 28, 2002 [Z497] 

Two-Dimensional Self-Assembly of 

Liquid-Crystalline Perylene Diimide 
Derivatives at the Air/Water Interface 

Guodong Su i,[a1 Jhony  OrbuIescu,la 

Mustapha Mabrouki,lal Roger M. LebIanc, 
Shenggao LiU,[b] and Brian A. Gregg* 

V. Bermudez, N. (apron, T. Gase, F. C. Gatti, F. Kajzar, D. A. Leigh, F. 

Zerbetto, S. Zhang, Nature 2000,406,608-611. 

a) C P. Collier, E. W. Wong, M. Beloh radsky, F.M. Raymo, J. F. Stoddart, P. J. 

Kuekes, R. S. Williams, J. R. Heath, Science 1999, 285, 391-394; b)C.P. 

Collier, G. Mattersteig, E. W. Wong, V. LuO, K. Bevedy, J. Sampalo, F. Wi. 

Raymo, J. F. Stoddart, J. R. Heath, Science 2000,289, 1172 -1175. 

[31 a) M. Fanti, C.-A. Fustin, D. A. Leigh, A. Murphy, P. Rudolf, R. Caudano, R. 

Zamboni, F. Zerbetto, J. Phys. Chem. A 1998, 102,5782; b) C. A. Fustin, P. 

Rudolf A. F. 1äminiaux F. Zerbetto, D. A. Leigh, R. Caudano, Thin Solid 

Films 1998,329,321-325; c) C_-A. Fustin, D. A. Leigh, P. Rudolf D. limpel, 

F. Zerbetto, ChemPhysChem 2000, 1,97-100. 

[41 B. S. Hudson, D. A. Braden, S. F. Parker, H. Pnnzbach, Angew. Chem. Int. Ed 

2000, 39, 514-516. 
a) D. A. Leigh, A. Murphy, J. P. Smart, M. S. Deleuze, F. Zerbetto, J. Am. 

(hem. Soc. 1998, 120, 6458; b) M. S. Deleuze, D.A. Leigh, F. Zerbetto, J. 

Am. (hem. Soc. 1999,121,2364; c) M. Cavallini, R. Lazzaroni, R. Zambonk F. 

Biscarini, D. Timpel, F. Zerbetto, G. J. Clarkson, D. A. Leigh,.). Phys. (hem. 8, 

2001, 105,10826-10830; d) F. Biscarini, C. Cavall!nL D. AL Leigh, S. LeOn, 

S. J. Teat, J. K. W. Wong, F. Zerbetto, J. Am. Chem. Soc. 2002,124,225 - 233; 

e) D. A. Leigh, S. F. Parker, D. Timpel, F. Zerbetto, J. (hem. Phys. 2001, 114, 

5006-5011. 

M. Asakawa, G. Brancato, M. Fanti, D. A. Leigh, 7. Shimizu, A. M. Z. Slawin, 

J.KV. Wong, F. Zerbetto, S. Zhang, J. Am. (hem. Soc. 2002, 124, 2939-

2950. 
(7] F. C. Gattl, D. A. Leigh. S. A. Nepogodiev, A. M. Z. Slawin, S. J. Teat, J. K.Y. 

Wong, J. Am. Chem. Soc. 2001, 123,5983-5989. 

A. C. Zemach, R.J. Glauber, Phys. Rev. 1956, 101, 118; W. Marshal, S.W. 

Lovesey, Theory of Thermal Neutron Scattering, Oxford University Oxford, 

1971; M. W. Thomas, R. E. Ghosh, Mal. Phys. 1975,29,1489; A. Griffin, H. 

Jobk, J. (hem. Phys. 1981, 75, 5940; J. Howard. B.C. Boland , J.T. 

Tomkinson,J. Chem. Phys. 1983, 77 145; Chemical Applications of Thermal 

Neutron Scattering (Ed.: B. 7. M. Willis) Oxford University Press, Oxford, 

1973. 
B. S. Hudson,.). Phys. (hem. A 2001, 105, 3949 -3960; G.J. Keartey, (hem. 

Soc. Faraday Trans. 2 1986,82,41; G. J. Kearley, Spectrochim. Ada 1992, 

Liquid crystalline (LC) perylene diimide derivatives such as PPEEB 

and PPMEEM are potentially promising agents for organic 

photovoltaic solar cells, not only because of their electrical 

properties but also because of their self-assembly properties in 
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Establishing methods for controlling aspects of large amplitude 
submolecular movements is a prerequisite for the development of 
artificial devices that function through rotary motion at the mo-
lecular level. Here we demonstrate that the rate of rotation of the 
interlocked components of fumaramide-derived [2]rotaxanes can 
be accelerated, by >6 orders of magnitude, by isomerizing them to 
the corresponding maleamide [21rotaxanes by using light 

molecular machines I dynamics 

L arge amplitude internal rotations that resemble to some 
extent processes found in authentic machinery have recently 

inspired analogic molecular versions of gears (1), turnstiles (2), 
brakes (3), ratchets (4, 5), rotors (6), and unidirectional spinning 
motors (7-10) and are an inherent characteristic of many 
catenanes and rotaxanes (11-13). Establishing methods for 
controlling aspects of such movements is a prerequisite for the 
development of artificial devices that function through rotary 
motion at the molecular level) In this regard, we recently 
reported the unexpected discovery that the rate of rotation of the 
interlocked components of benzylic amide macrocycle-
containing nitrone and fumaramide [2]rotaxanes can be slowed 
("dampened") by 2-3 orders of magnitude by applying a modest 
(eel V.cm') external oscillating electric field (14). Here we 
demonstrate that the rate of rotation of the interlocked com-
ponents of the olefin-based rotaxanes can also be accelerated, by 
>6 orders of magnitude, using another broadly useful stimulus, 
light. 

Fumaramide threads template the assembly of benzylic 
amide macrocycles around them to form rotaxanes in high 
yields (15). This cheap and simple preparative procedure 
(suitable threads are prepared in a single step from fumaryl 
chloride and a bulky primary or secondary amine) is particu-
larly efficient because the trans-olefin fixes the two hydrogen 
bond-accepting groups of the thread in an arrangement that is 
complementary to the geometry of the hydrogen bond-
donating sites of the forming macrocycle. However, the feature 
of the fumaramide unit that makes it such an effective template 
also provides an opportunity to enforce a geometrical change 
in the thread after rotaxane formation, thus altering the nature 
and strength of the interactions between the interlocked 
components. Isomerization of the olefin from E- to Z- must 
necessarily disrupt the near-ideal hydrogen bonding motif 
between macrocycle and thread and therefore also change any 
internal dynamics governed by those interactions. 

To test this idea, the photochemical isomerization of three 
fumaramide-based threads (E-1-3) and rotaxanes (E-4-6) 
was investigated. The synthesis of rotaxanes E-4 and E-6 has 
been described (15), and E-5 was prepared in analogous 
fashion from the corresponding thread, E-2, isophthaloyl  

dichloride and p-xylylene diamine (Scheme 1).** Under the 
same reaction conditions the cis-olefin (maleamide) threads, 
Z-1-3, did not give detectable quantities of the corresponding 
Z-rotaxanes. 

Experimental Procedures 
General Method for the Photoisomerization of Fumaramide [2]1111otax-
anes. The rotaxanes E-4--6 (0.60 g) were dissolved in CH2Cl2 
[except for solubility reasons E-6, MeOH/CHCI3 (1/9)] in a 
quartz vessel. The solutions were directly irradiated at 254 nm by 
using a multilamp photoreactor model MLU18 manufactured by 
Photochemical Reactors (Reading, UK). The progress of pho-
toisomerization was monitored by TLC (silica, CHCI 3 /EtOAc 
4:1) or 'H NMR. The different photostationary states were 
reached in a range of times not exceeding 30 min after which the 
reaction mixture was concentrated under reduced pressure to 
afford the crude products (Z4--6). The unconverted trans 
isomers were isolated by triturating the solids with PhMe/ 
CH2Cl2  (1:1, ee20 ml) and, because the photoisomerization 
process produces few byproducts, could be recycled, eventually 
leading to >90% conversion of each rotaxane to the correspond-
ing cis-isomer. The solutions were then passed through a pad of 
silica (CHCI3 /EtOAc, 4:1) to afford the cis isomers Z-4-6 in 
50%, 47%, and 45% yields, respectively, from a single photo-
isomerization experiment. 

Other Procedures. Experimental procedures for the synthesis of 
Z-5, x-ray crystallography of E-5 and Z-5, and selected charac- 

This paper was submitted directly (Track II) to the PNAS office. 

Data deposition: Crystallographic data for E-5 and Z-5 (excluding structure factors) have 

been deposited with the Cambridge Crystallographic Data Centre as supplementary pub-

lication nos. CCDC-149672 and CCDC-149673. 

To whom correspondence may be addressed. E-mail: david.leigheed.ac.uk , fredO 

science.uva.nI, or gattc@ciam.unibo.it . 

Ispeculation over the possible utility of submolecular rotation in synthetic molecular 

structures ranges from "gearing" tysterns, where controlled motion in one part of a 

molecule brings about changes in conformation inanother(e.g., to generate catalysts with 
rotating binding sites, in analogy to F,-ATPase, etc.), to systems that rotate functional 

groups on surfaces, or in the bulk, to bring about changes in local or macroscopic 

characteristics (11. 23). Indeed, for wonderful examples of the use of tubmolecular 
rotational motion to bring about property changes in materials, see refs. 24 and 25. 

Examples of specifically controlling the frequency of large amplitude internal rotary 

motions include the redox-mediated acceleration/deceleration of the spinning of por-
phyrin ligands in cerium and zirconium sandwich complexes (26), the environment-

dependant rate of circumrotation in hydrogen bonded 121catenanes (27), and the elec-

trochemically induced pirouetting of a macrocyde in a rotaxane (22). 

"The modest yield (33%) of E-5 is probably a consequence of the (EE)- and/or [E_71- 
tertiary amide rotamers being sterically mismatched with the forming macrocyde. 

Interestingly, a small amount (2%) of rotaxane E-6, presumably arising from p-xylylene 

diamine-catalyzed isomenzationof thethread, was isolated from the reaction of pristine 

Z-3, again exemplifying the extraordinary efficiency of the E-3 template for rotaxane 

formation. 

10-14I PNAS I January 7.2003 I vol. 100 I no. 1 	 www.pnas.org/cgi/doi/10.1073/pnas.0134757100  



0 	 R' R' 	00 	R' 

2 	 N 
/ 

P2  

E-1 
0

R'= R CH 2CO2CH2F`h 	2-1 

E-2 	R 1 = Me. R CH2CHPh 	2-2 

E-3 	R= R2= CH2CHPh., 	2-3 

(01 	 4 

Fig. 1. X-ray crystal structure of [2]rotaxane E-5 (for clarity, carbon atoms of 

the macrocycle are shown in blue and the carbon atoms of the thread in 

yellow; oxygen atoms are depicted in red, nitrogen atoms are dark blue, and 

selected hydrogen atoms are white). Intramolecular hydrogen bond distances 

(A): 040—HN2/043—HN20 = 2.22, 040—HN11/043—HN29 = 1.94. 

hi, 254nm 	R 

- 	 R 

E-4 	R R2= CH2CO2CH2F`h 	2-4 
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Scheme 1. Synthesis of [21rotaxanes E/Z-4-6. (1) Four equivalents isophtha-

loyl dichloride, four equivalents p-xylylene diamine. Et,N. 4 h, high dilution; 

CHCI, for E-4 (67%) and E-5 (33%), 1/9 MeCN/CHCI, for E-6 (97%). Direct 

irradiation (254 nm. 30 mm) of a solution of an E-rotaxane (0.1 M, room 

temperature, CH,Cl, [1:9 MeOH/CHC]3 for E-6])  yields the "accelerated" Z-

isomer (45-50% single experiment; >90% from four successive cycles). Heat-

ing a 0.02 M solution of a Z.rotaxane at 400 K reforms the "dampened" 

E-isomer (E-6: C2D2C14, 7 days, 84% or d6-DMSO, 4 days, 100%). 

terization data for Z-5 and E-4-6 are provided as Supporting 
Text, which is published as supporting information on the PNAS 
web site, www.pnas.org . 

Results and Discussion 
Single crystals suitable for investigation by x-ray crystallography 
were obtained for each of the three E-rotaxanes. In each case the 
solid-state structure shows two sets of bifurcated hydrogen bonds 
between the amide groups of the- macrocycle and the carbonyl 
groups of the fumaramide system (15). The crystal structure of 
E-5 is typical (Fig. 1) and shows the macrocycle in a chair 
conformation forming short, close-to-linear, hydrogen bonds 
orthogonal to the lone pairs of the fumaramide carbonyl groups. 
Of the three different tertiary amide rotamers present in solu-
tion (as observed by NMR) only the {ZZ}amide rotamer of E-5 
is found in the crystal. 

All three fumaramide threads E-1-3 and rotaxanes E-4-6 
smoothly undergo photoisomerization (16, 17) (254 nm; 0.1 M 
solution in CH2Cl2 or, for solubility reasons in the case of E-6, 
1:9 MeOH/CHCI,; 30 mm) to the corresponding maleamide 
(Z-olefin) systems. The yields for the rotaxanes, 45-50%, are 
remarkably good considering the confined cavity that the mo-
lecular rearrangement has to occur in and that the intercompo-
nent hydrogen bonding between the thread and macrocycle is 
complementary to the positions of the amide groups only in the 
E-olefin. Unanticipated enhanced solubility of the Z-rotaxanes 
in nonpolar solvents allowed the separation of the E/Z photo-
chemical reaction mixtures into the individual isomers by simple 
trituration (PhMe/CH202, 1:1). The photoisomerization reac-
tion produces few byproducts so E-rotaxanes recovered in this  

way could be recycled, leading to >90% overall conversion to the 
Z-isomer from a series of irradiation experiments. 

The 'H NMR spectra of each pair of E- and Z-olefin rotaxanes 
gives insight regarding their structure and relative dynamic 
properties in nonpolar solvents. The trends are similar in all cases 
but the clearest information is provided by E/Z-4. tt  

The variable temperature 'H NIMR spectra of E-4 and Z-4 
in CD202 (223-273 K) and C 2D2Cl4 (339-393 K) are shown in 
Fig. 2 (the wide temperature range involved meant different 
nonhydrogen bond-disrupting solvents were required to mon-
itor the dynamic processes at high and low temperatures). 
Pirouetting, a 180° rotation of the macrocycle about the axis 
of the arrow plus formal chair-chair flip of the macrocycle, is 
the simplest process that must occur to translate the equatorial 
macrocycle methylene protons, HE2, onto the axial, FEj, sites. 
In the fumaramide system the HE protons coalesce at 273 K 
and are fully resolved into the HE, and H2 resonances at 223 
K (Fig. 2a). The coupling constants confirm the axial and 
equatorial assignments of H1 and HE2. Spin polarization 
transfer by selective inversion recovery experiments provided 
a direct measure of the rate of the exchange process I (i.e., half 
circumrotation of the macrocycle) at 298 K corresponding to 
an energy barrier AG* = 13.4 ± 0.1 kcal-mol', which extrap-
olates to a rate of macrocycle rotation of '1 s 1  at 223 K (15). 
In contrast, the macrocycle methylene protons (HE) in Z-4 
remain sharp and well resolved throughout this temperature 
range and only begin to broaden significantly at 223 K (Fig. 
2b); remarkably, the broadening of HE in Z-4 at 223 K is 
comparable to that in E-4 at 359 K, a 136° temperature 
difference between the two rotaxane isomers! Exchange is so 
fast in Z-4 that it is not possible to resolve the signals and prove 
unequivocally by experiment that the process responsible for 
the broadening at this temperature is, in fact, macrocycle 

"The spectra of Z-6 are complicated because intracomponent hydrogen bonding of the 
maleamide group desymmetrizes the rotaxane (the macrocycle methylene groups 
appearas an ABX system because the twofaces of the macrocycle experience different 
environments). Similarly, the temperature-dependent equilibrium between the pop-

ulations of the different amide rotamers present in the methylated rotaxanes E/Z-5 

makes their study nontrivial, whereas the symmetrical tertiary amides means E/Z-4 

suffers no such complication. For a discussion of the effect of the different strengths 

of intercomponent hydrogen bonding in E-4 and Z-4 on the dynamics of amide 

rotamerization. see Supporting Text. 
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Fig. 2. Variable temperature 'H NMR spectra (400 MHz) of E-4 (a) and Z-4 (b) in CD202 at 223 K (main traces) and 223-273 K (stackplot expansions) and C2D2CL at 

339-393 K (stackplotexpansions). Lettering correspondsto selected nonequivalent proton environments. A 180 rotation of the macrocyde about the axis of the arrow, 

plus chair-chair flipping of the macrocyde, translates the Hc (equatorial) protons onto the HE, (axial) sites. The NMR spectra in a reveal slow pirouetting of the 

macrocycle about the thread in E-4 (HE, and HE2  coalesce at 273 K. A6 = 13.4:t 0.1 kcalmol'. process I) and slow rotation of the thread tertiary amide bonds (H e , 
and H/Hb, and H,1ulIy resolved even at 393 K, = 21.1 ± 0.1 kcalmol'; process II). The NMR spectra in bshow that process I is much lower in energy for Z-4(A6 

= 6.8 ± 0.8 kcaImol') than E-4 and that process II is also more facile (Hai and H/Hs, and Hb2 broadening at higher temperatures, AG* = 20.0:t 0.1 kcaImol') (30). 

Fig. 3. X-ray crystal structures of (Zfl (a) and {Efl (b) rotamers of N,N'-dimethylmaleamide L2lrotaxane Z-5. Intramolecular hydrogen bond distances (A): 
(a)040-HN1 1 = 2.08, 043-HN2 = 2.05; (b) 040-HN11 = 1.76. 043-HN2 = 2.08. 
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Fig. 4. Calculated transition-state structures for the macrocyde ring motions for rotaxanesZ-4 (a) and E-4 M. Green arrows represent the corresponding atomic 

motion vectors connecting the transition states to their minima. 

pirouetting (it could be occurring at even lower temperatures). 
However, making the assumption (see below) that this is the 
process responsible for broadening, line shape analysis gives an 
energy barrier of 6.8 ± 0.8 kcalmol', i.e., a macrocycle 
spinning rate >1.2 x 106  s_ I  at 223 K. 

Remarkably, it was possible to obtain an x-ray crystal 
structure of one of the rotaxanes with a "switched off' 
recognition motif. Small crystals of Z-5 suitable for investi-
gation with a synchrotron source were grown from slow 
evaporation of a saturated solution in CHCI3/MeOH. In 
contrast to the crystal structure of E-5, two of the three tertiary 
amide rotamers, i.e., {ZE} and {EE} rotamers, are present in 
the unit cell of Z-5 (Fig. 3 a and b, respectively). Both forms 
are consistent with the dramatic increase in the rate of rotation 
in solution for the cis-rotaxanes observed experimentally by 'H 
NMR spectroscopy; the consequence of isomerizing the dou-
ble bond is that the amide groups of the thread are held in 
positions such that they can hydrogen-bond to only one of the 
two isophthalamide groups of the macrocycle. It is interesting 
to note that the energy barrier for the trans-rotaxane with four 
intercomponent hydrogen bonds (13.4 kcal-mol') is almost 
exactly twice the value for the cis-rotaxane with two inter-
component hydrogen bonds (6.8 kcaFmol'). 

To obtain a more detailed understanding of the dynamic 
properties of these systems and, in particular, to confirm that the 
low energy dynamic process measured by NMR in the maleam- 

Table 1. Calculated contributions to the rotaxane energy minima 
and transition states 

EH.i,Qn.Jiflg 	 E,,-kj g 	 E,,w 

E4* 	29.18 	-20.14 	-15.36 	 -24.91 

E-45 	33.09 (3.91) -13.75 (6.39) 	-12.65(2.71) 	-24.40(0.51) 

Z.4* 	38.11 	-16.84 	-14.89 	 -30.97 

Z4t 	44.66 (6.55) -15.99 (0.85) 	-16.73 (-1.84) 	-29.99(0.98) 

Molecular energy contributions (kcal.moI) divided into four components: 
a valence term. E. which includes stretchings and in-plane and out-of-plane 
bendings; a hydrogen bond contribution. EH4,O,,4I,,. 721T stacking energy, 

and the remaining van der Waals components. E. The energy 
differences between the minima and the transition states are given in paren-
theses. 

Energy minimum. 
flransition state energy. 

ide rotaxane was circumrotation, we carried out simulations of 
the dynamic processes present in both E-4 and Z-4. 

Using a computational procedure that uses the MM3 force-
field (18) and the TINKER program (19) and has proved successful 
in describing the circumrotation pathway in catenanes (20), 
macrocycle pirouetting in rotaxanes (13), and other properties in 
mechanically interlocked molecules (21, 22), it was possible to 
locate the saddle points for macrocycle circumrotation in E-4 
and Z-4. Fig. 4 shows the transition states, the arrows indicating 
the initial motion that the macrocycle would undergo away from 
the saddle point (arrows showing the movement of the thread are 
not shown for clarity). The calculated activation energies (13.51 
kcal'mol' for E-4 and 6.53 kcalmol' for Z-4) compare well 
with the NMR-determined AGs of 13.4 ± 0.1 and 68 ± 0.8 
kcal'mol', respectively, and thus confirm that macrocycle pir-
ouetting is probably a major contributor to the broadening of 
resonances observed in the low-temperature NMR spectra of 
Z-4. The good agreement of calculations and experiments also 
allows one to take a closer look at the contributions of various 
kinds of interactions to the dynamic process of pirouetting. Table 
1 shows the different energy contributions to the E-4 and Z-4 
minima and transition states. Interestingly, from the calculations 
-the "7 kcalmol' difference between the activation barriers of 
circumrotation in the two molecules can be ascribed to contri-
butions from all the energy components, not just H bonding. 

Preliminary studies show that it is possible to reverse the 
photoisomerization process thermally. Heating each of Z-4-6 
(C2D2C4 or d6-DMSO, 400 K, 4-7 days) resulted in reconversion 
to the more thermodynamically stable E-rotaxanes in good-to-
excellent (80-100%) yields. Other simple cis-trans olefin inter -
conversion reactions are currently being investigated.** 

The post-assembly photoconversion of a precise hydrogen-
bonding, rotaxane-forming template to a motif that does not 
template the formation of mechanical bonds is unprecedented. 
The resulting mismatch in recognition sites between macrocycle 
and thread dramatically reduces the energy barrier to macro-
cycle pirouetting in the rotaxane. Such control could be useful 
for the future construction of synthetic molecular machines that 
use large amplitude internal rotary motions. 

"Attempts to grow crystals of Z-6 resulted insignificant yields of crystalline E-6, although 

no (-6 could be detected at any stage in solution! It appears that the growing crystal 

surface of E-6 is able to catalyze the cis-trans isomerization process. Such a phenomenon 

is not unprecedented (29). 
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Novel strategies for information storage tech-
nology rely upon multistable systems that can be 
controllably switched between diflinent config-
urations of comparable free energy. Multistabil-
ity is present in many molecular and suprarno-
lecular systems through a variety of properties 
(conformations, redox and spin stales, shape and 
dimensionality) that can be influenced by exter-
nal stimuli. In the solid state, however, it is 
difficult to amplify the effects of molecular 
switching to higher length scales in order to 
relay the response to the outside world. 

Rotaxanes (1) are molecules in which a 
macrecycle is mechanically locked onto a 
"thread" by two bulky "stoppers." Their archi-
tecture, analogous to that of an abacus, suggests 
that they could be used as switchable compo-
nents for artificial machines (2) that function 
through mechanical motion at the molecular 
lvvii3, 4). Controlling such motion in the 
solid state could be used to store information. 

Thin films (3- to 35-nm thickness) of each of 
three amide-based rotaxanes (1 to 3, Scheme 1) (5) 

were grown by drop casting and postthermal an-
nealing onto graphite and mica. The films can be 
imaged by atomic force microscopy (AFM) in 
contact mode with a set point force below a thresh-
old value of 2 nN. They exhibit a homogeneous 
morphology over a cm2  area and are stable over a 
period of several months. 

An increase in the load force to just above the 
2-nN threshold results in a mechanical perturba-
tion whose effect is localized at the contact area of 
the tip. When the tip is continuously scanned along 
a line, a string of regularly spaced dots appeals. 
The dots emerge upon repealing the line scan 
a number of times (between 4 and 20) depend- 

mg on the scan rate (typically I to 2 Hz). Scanning 
a series of lines results in a regular array of dots of 
imiform width, height and pitch 
(Fig. IA). The number of dots is 
proportional to the length of each 
line scan (Fig. IB), so that any 
predetermined number of dots can 
be reliably fabricated on the sur-
face. The film thickness controls 
the dot size and the spacing and 
hence the density of dots per unit 
line; the thinner the film, the dens-
er and smaller the dots are. The 
transformation can be induced 
over a large area (Fig. lC), and it 
produces robust features even in 
the presence of surface steps and 
terraces. The linear dependence 
on the scan length allows one to 
write information as strings of 
bits (Fig. ID). 

The effect of the mechanical 
perturbation on the film appears 
during line scans as a roughening 
of the topographical profile, with 
the position of the dots fixed at Fig. 1. (A) A 

early stages. The transformatron the AFM tip 
can be interrupted and restarted by pyrolitic r number  
turning Off and on  the Perturbation-  number of d 
No sign of scraping or wear of the Film thidmE 
film is observed, ruling out plow- thickness in 
big with the AFM tip, which in- increases fro 
stead occurs as the set point force from 40 to 
exceeds 3 to 4 aN. 	 dispersion ci 

each on an 
The transformation takes place concept for 

only with the rotaxanes, not 	hexadecimal 
component threads or macrecycles 

alone, and is thus intrinsically related to the 
mechanically interlocked architecture. Mo-
lecular lecular modeling of the solid state miaxane 
structure (4) shows the existence of two 
nearly degenerate surfaces, (100) and (101), 
which can be switched with a relatively low 
activation energy (200.4 kJ mol) by cir-
cummiation of the macrocycles. The collec-
tive fabrication of dots arises from coupled 
nucleation recrystallization favored by the 
ease of intercomponent mobility in the solid 
state. The scanning AFM tip gives the en-
orgy to the molecules along the line to re-
organize into nuclei. As nuclei coarsen by 
ripening, a characteristic distance emerges. 
Finally, stable nuclei grew by incorporation  

of the mobile molecules to form the dots. 
Information storage by writing individual 

dots with a scanning probe has previously 
been demonstrated (6, 7). Our approach en-
ables the writing of multiple dots simulta-
neously. This could make it suitable for scal-
ing up to a lithography based on multiple 
sources of perturbation, for instance by using 
a stamp. With such an approach, information 
storage on a thin film could reach densities of 
10 to 100 Gbit/in 2 . 

rray of dots fabricated of 1 by individual line scans of 
on a S-nm-thick film of 1 deposited on highly oriented 
phite. (B) For a given thickness (here 20 nm), the 
dots is linearly proportional to the scan length. The 
ots can be determined with an accuracy of at least 2%. 
ss controls the characteristic size. Varying the film 
the range between 3 and 35 rim, interdot distance 

im 100 to 500 nm, the dot full-width-half-maximum 
250 nm, and the dot height from 1 to 20 nrn, with a 
rio to 20%. (C) Pattern made of 31 lines with 45 dots 
"=30 by 30 p.m2  area on a thicker film. (D) Proof-of-
information storage. The sequence c 7 a 8 in the 
base corresponds to the number 968616. 
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