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Abstract 

The input impedance of a brass musical instrument is a good representation of its resonance 

characteristics. Methods of calculating input impedance for a known instrument shape, or 

bore-profile, are reviewed, and an extension to existing theory for bent waveguides is given. 

These input impedance methods form the basis for consideration of the inverse problem; 

to find a bore-profile with given impedance characteristics. Such problems can be formulated 

as bore reconstruction - finding an unknown bore from its impedance, and performance 

optimisation - altering certain characteristics of a known bore. 

The inverse problem is solved by means of optimisation, using either genetic algorithms 

or the Rosenbrock direct-search method. A number of new techniques are used to improve 

convergence speed by minimising both the size of the search space and the number of design 

variables. These techniques are incorporated into an elegant object-oriented instrument rep-

resentation, allowing convenient and flexible problem definition and forming the basis of an 

integrated application in C++. 

Experimental impedance measurements on a series of trombones are conducted, and typi-

cal results presented. These data are used to formulate optimisation targets. The optimiser is 

then used for bore reconstruction and performance optimisation to solve real-world trombone 

design problems. 
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Chapter 1 

Introduction 

1.1 Motivation: Musical Instruments 

Music is notoriously difficult to define in rigorous scientific terms, but a reasonable, if incom-

plete, definition is 'a series of rhythmic and harmonically-related sounds produced to evoke 

an emotional response'. Musicians use their instruments to create pleasing sounds; the better 

the musician, the more pleasant the sound. However, the quality of music is also dependent 

on the instrument; one can play a Mozart Horn Concerto using a mouthpiece and a piece 

of hose, but it will not sound as pleasant, and will therefore be less musical, than the same 

piece played on a finely-crafted horn. Instruments are a necessary tool for producing good 

music, and, as is the case in general, good-quality tools facilitate better results. 

The quality of instruments, like the quality of music, is a subjective judgement made by the 

performers and the audience, and musicians strive to produce the best possible performance. 

They will use the instrument that they perceive will best allow them to achieve their musical 

goals, which may vary depending on the music performed, and will certainly vary from 

player to player. There is therefore a clear motivation for manufacturers to produce the best 

instruments, because inferior models will be more difficult to sell. While forces such as brand 

recognition will have an effect, among professional players the instrument market is strongly 

driven by quality. 

From an engineering standpoint, a cheap, mass-produced violin is almost indistinguish-

able from a Stradivarius, but to a violinist there is a world of difference. Musicians are highly 

skilled, work to extremely small tolerances, and possess very fine judgement; they are there- 
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fore sensitive to very small changes in equipment. Instrument craftsmen have been constantly 

improving their designs for centuries, and there are only small differences between excellent 

and merely very good instruments; a musician will favour (and buy) the excellent one. It 

is therefore difficult to improve on modern instruments, but manufacturers are constantly 

trying, and succeeding, to do so. Another issue is that general trends in taste change over 

time, a process which is complicit with the development of new models. 

It is not possible to define, in any defensible and quantitive way, the properties of a 

perfect instrument, or indeed the meaning of 'perfect', even within the bounds of stringent 

assumptions about a specific player's tastes and requirements. It is reasonable for a given 

musician to state that under given criteria a given instrument is the best he has played, but the 

inherently qualitative nature of this judgement cannot rule out in principle the possibility 

of a better one. There is therefore always room for improvement, for a given meaning of 

improvement, regardless of the quality of the existing instruments. 

When compared to almost any other manufacturing industry, the process of instrument 

design has not changed much for centuries. A prototype of a potential design will be built 

and tested in a costly trial-and-error process, requiring much time and materials to produce 

what may potentially be a very bad instrument. Manufacturers have accumulated a vast 

amount of knowledge and intuition to help them choose the next design to try, but this is 

a fundamentally unscientific approach - while it is proven beyond doubt as being effective, 

it may yet benefit from being augmented with scientific techniques. Given that the quality 

of the end result is judged subjectively by musicians, the design process cannot be entirely 

objective and is therefore dependent on the human expertise of the manufacturers and players. 

Computers will never be able to design instruments by themselves, but they are potentially 

an invaluable tool to assist human designers; this is also the case in countless other industries. 

When considering brass instruments, such as trumpets, trombones, horns and the like, 

there are several ways in which acoustical science can assist instrument design; we focus here 

on two. First, a computational way of evaluating the playing properties of an instrument 

would allow theoretical designs to be tested, thus allowing unsatisfactory designs to be iden-

tified without the time and expense of construction. Second, the computer can try many 

different designs to find the best match for desired criteria, which can then be built and 



tested in the traditional manner. Given that it can try many more designs much faster than 

can a human designer, it may be able to suggest solutions that a human may not otherwise 

have tried. 

This work focusses on the development of computational tools useful for augmenting the 

design process of the manufacturers of brass instruments. We will give an overview of the 

relevant acoustics, which we will use to define an objective method for judging instruments. 

We will then specify how a computer might choose which instruments to try, implement the 

method computationally, and then explore the capabilities of the resulting software. 

1.2 Acoustics of Brass Instruments 

In the simple case of a cylindrical pipe open at both ends, the acoustic pressure, being the 

difference between the local air pressure inside the instrument and the ambient mean atmo-

spheric pressure, is, to a first approximation, zero at both ends. The acoustic pressure within 

the pipe may vary with time, and will therefore form standing waves with nodes at the ends 

and integer numbers of half-wavelengths in the pipe. The set of possible standing waves forms 

a harmonic series; the first harmonic (that with one half-wavelength) is the fundamental, and 

the higher harmonics have frequencies of integer multiples of this fundamental. It is much 

easier to drive standing waves at any, or all, of these frequencies, or resonances, than at other 

frequencies. 

Now consider a similar pipe closed at one end. The acoustic pressure is required to be 

zero only at the open end, so the standing wave solutions have an odd number of quarter-

wavelengths in the pipe. The fundamental will be half the frequency of that for the open 

pipe, and the only the odd harmonics will be present. 

The assumption of having pressure nodes at the open ends is somewhat crude, as is does 

not allow sound to be radiated from the instrument. More detailed consideration of open 

ends is given in Chapter 3, but the simplified model is sufficiently accurate for the purposes 

of this argument. 

When brass instruments are played, the musician closes the mouthpiece end with his lips, 

and blows through them. This causes the lips to commence a self-sustained oscillation, with 

a small aperture between the lips rapidly opening and closing, thus inducing an oscillatory 
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volume velocity, which may drive the standing waves described. The oscillation of the air 

column couples non-linearly with that of the lips, forming a stable note and encouraging the 

lips to oscillate at a resonance of the instrument ('slotting'); skilled players can overcome 

this and allow the lips to oscillate at frequencies away from resonances ('lipping'). A small 

fraction of the energy of the standing waves is radiated at the open end of the instrument, 

and is audible as sound. 

We now introduce the concept of input impedance, being the frequency-dependent quo-

tient of pressure and volume-velocity at the plane of the mouthpiece; Figure 1.1 shows an 

input impedance plot typical of brass instruments. Each peak corresponds to a resonance, 

with taller peaks denoting a stronger response, and therefore greater ease of maintaining a 

standing wave at that frequency. The pitch of the radiated sound is that of the excitation, but 

the lips may additionally provide excitation at harmonics of this frequency. The magnitude 

of the impedance at the excitation frequency and at its harmonics will affect the amplitude 

of oscillation at these frequencies, and therefore the timbre of the sound. A cylindrical brass 

instrument, such as a trumpet or trombone, is a closed pipe, and we might therefore expect 

the resonances to be the odd harmonics only. However, the flaring bell section shifts the res-

onances into approximately a complete harmonic series. Consequently, when the instrument 

is excited at one of its resonances, it will give strong support to oscillations at this frequency 

and also its harmonics, thus producing a pleasant sound rich in harmonic content. 

In practice, the resonances of brass instruments are close to being harmonically related 

However, the first resonance is often very flat in comparison to the fundamental of the har-

monic series which closely matches the other resonances. This resonance gives a weak response 

and is not played, but it is possible to excite the instrument at the 'fictitous' fundamental of 

the harmonic series and receive a strong response, producing a sound which has a very low 

fundamental component (a 'pedal note'). 

1.3 Objective Judgements 

Musicians judge instruments in subjective ways, which may depend on the player's individual 

technique, personal preferences, and the type of music in which he specialises. Different musi-

cians may give different judgements of the same instrument; while such methods are effective 
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Figure 1.1: Input impedance of typical trombone. 

from the musician's point of view, a scientific approach requires an objective method. We 

have seen that a good approximation of the behaviour of an instrument, at least in the linear 

regime, is given by its input impedance, which is therefore a good candidate for our objective 

measure. It has the additional benefits of allowing the use of established experimental tech-

niques for measuring real instruments, and numerical techniques for theoretical instruments; 

the agreement between the two is very good, but not perfect as we shall see in Chapter 8. 

The relationship between impedance and playing characteristics is understood only in 

broad terms. It is generally easy to identify bad instruments from impedance features like 

badly-aligned resonances and non-smooth peaks, but it is not yet possible to distinguish 

the good from the very good. Analysis of a wide range of instruments of varying quality, 

identifying common features, will give insight into what a quantitative description of a good 

instrument may be. It is possible, indeed likely, that there are features of an instrument not 

present in its impedance which affect its quality as judged by a musician. Until these features 

are identified and understood, we must neglect them for our purposes. Any process which 

produces objective data describing a fundamentally subjective system must, at some stage, 

involve a human judgement; clearly the more data available, the more informed this judge- 
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Figure 1.2: A modern trombone. 

ment may be. In this case, we must acknowledge that the objective data are incomplete; this 

merely affects how well-informed is the judgement, not whether the judgement is necessary. 

A better understanding of the subjective properties of input impedance is useful, but is not 

essential to the process. 

Input impedance models for straight general horn shapes were considered, with a plane-

wave assumption, in [1, 21, and with the inclusion of higher modes in [3, 4, 5]. Bent tubes 

were investigated in [6, 7] and modelled in [8, 9, 10, 11, 121. The effects of losses at the walls 

of the instrument were covered in [13, 14, 15], and the impedance at the radiating end in 

[16, 17, 18]. 

1.4 Brass Instrument Design 

To a first approximation, a brass instrument is a long piece of narrow, straight, cylindrical 

or slowly-flaring metal tubing terminated by a rapidly-flaring bell. In practice, there will be 

certain discontinuities in the bore connecting sections of different radius, the tubing will have 

a number of bends, and the cross-section may not always be exactly circular. A cup-shaped 

mouthpiece is used for playing. The radius of the instrument can be expressed as a function of 

position down the axis of the instrument, termed the bore-profile, on which the performance 

of the instrument is strongly dependent. Although there are other design features, such as 

choice of valves, wall material and thickness, placement of braces etc., there is, to the author's 

knowledge, no scientific method for accounting for these choices, so we discount them and 

focus on input impedance, which is dependent only on geometry. 

A designer can identify desired impedance features to give a quantitative target, and the 



fitness of a potential design can be evaluated by comparing its impedance to this target. 

Calculating the impedance of a given bore profile and comparing to a target is sufficiently 

fast that a computer can try many different designs in a short time. This process can be 

combined with optimisation algorithms, which attempt to find an optimal solution with the 

smallest number of tries. 

Techniques have already been developed to use optimisation algorithms to try many dif-

ferent bore profiles in search of certain impedance characteristics. The first attempt, by 

Kausel [19], is commercially available and has already been successfully used by manufac-

turers [20]. Noreland [21] uses a more advanced algorithm and develops ways to represent 

instruments numerically. Both these methods model only the plane-wave, and use relatively 

simple representations. 

The primary objective of this work is to develop computer software that includes input 

impedance calculations, functions for evaluating the fitness of a design, and optimisation 

techniques in such a way as to provide a tool useful to assist instrument manufacturers with 

their design processes. This will comprise developing a sophisticated instrument representa-

tion, allowing flexibility of use and improving optimisation speed, and using more accurate 

physical models. 

1.5 Thesis Aims 

The aims of this thesis are: 

To review existing methods for input impedance calculation, and to derive appropriate 

methods for bent tubing. 

To develop the underlying techniques used in brass instrument optimisation, particu-

larly the instrument representation. 

To investigate the comparative efficacy of the Rosenbrock and genetic algorithms for 

brass instrument optimisation. 

To develop integrated and easy-to-use software, written in C++, to perform optimisation 

and other related tasks. 
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To conduct experimental measurements of real trombones to gain insight into the 

impedance properties of good instruments. 

To use the optimiser to reconstruct an instrument from its impedance. 

To use the optimiser to modify existing instruments to alter certain impedance prop-

erties. 

1.6 Summary of Thesis 

Chapter 2 gives an overview of the physics of brass instruments, and considers in detail 

the linear propagation when only one (plane) acoustic mode is considered. The model is 

extended in Chapter 3 to include higher modes in both straight and bent tubes, giving more 

accurate results by considering motion in the transverse directions. Optimisation algorithms 

are laid out in general in Chapter 4, with particular focus on the Rosenbrock and genetic 

algorithms; their application to brass instrument design is considered in Chapter 5, along with 

a detailed examination of the techniques developed for this work. The methods by which 

these components are implemented and combined in the development of computer software 

are considered in Chapter 6. An experimental study of the input impedance of trombones is 

conducted in Chapter 7, providing target data for the optimiser. A numerical comparison of 

the various methods for calculating impedance is conducted in Chapter 8. The capabilities 

of the optimisation software are examined in Chapter 9. 



x 

Chapter 2 

Plane-wave Propagation in Straight 

Acoustic Horns 

In this chapter we will derive results for evaluating the input impedance of a general horn 

under the plane-wave assumption. 

2.1 Webster Horn Equation 

Consider a horn of arbitrary radius profile Rx), where x is the axial coordinate [22], having 

cross-sectional area S(x) = 7rR.(x) 2  (figure 2.1a). A small volume V = S6x is contained 

between two planes perpendicular to the axis (figure 2.1b), separated by length cx. These 

planes are subject to displacements (x) and (x + ox) respectively, giving change in volume 

(a) Horn with arbitrary bore profile. 	 (b) Displacement in a volume element. 

Figure 2.1: Diagrams of components of a general horn. 
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= [S(x + 5x)(öx +e(x  +öx)) —(x)S(x)] - S(x)Sx 

a 
- 	x—(S(x)) 	 (2.1) 

(requiring S(x) differentiable), or fractional change 

5V 	1 
-- (Se). 	 (2.2) iiax 

We define the bulk modulus K quite generally by 

8V 
P = -iC-f-, 	 (2.3) 

where p is the acoustic pressure. For air under the conditions that concern us [2], we may 

use IC = pc2 , where p is the equilibrium air density and c the speed of sound. Combining 

with (2.2) gives 

P = —PC 2- (SO  . 	 ( 2.4) 
S 09X 

The force imparted on the gas between the planes by the gas to the left is Sp(x) and from 

the right is S(p(x) +öx), giving a net force of —S8x. We equate this to the product of 

particle acceleration and the mass pSSx by Newton's 2nd  Law 

— S 49P Jx  ox — pS&c, 	 (2.5) 

giving 

1 Op - 
(2.6) 

Differentiate twice with respect to t and substitute into equation (2.4) and to give 

'a (°''° 	 (2.7) 
SOX\ Oxj 	c2  8t2 ' 

which is the Webster horn equation; alternatively, 

lul 



a2  	flaS\ap 	I 92 
49X2 	S 09X ax 	C2 &2 

	

ô2p apa 	 192p 
= 	 (2.8) 

	

09X 09X 	 C2 &2 

Note that if S(x) is constant with respect to x, then this reduces to the 1-dimensional wave-

equation. 

Assuming the motion is simple harmonic, we have p(x, t) = p(x ) eiwt, where w is the 

angular frequency, giving 82p/ôt2  = — w 2p. This yields 

+ 	(In (S)) + k 2p = 0, 	 (2.9) 

where k = w/c is the wavenumber. This is a (Helmholtz) horn equation for a horn of general 

shape, and is based on the following assumptions: 

The horn is straight and has rigid, smooth walls 

The fluid is inviscid and there is no friction with the walls of the horn 

Pressure variations are infinitesimal 

The pressure is uniform over the wavefront - i.e. is planar. 

Given this general horn equation and a known bore profile 5(x), we differentiate the logarithm 

of this profile to produce a horn equation for that specific geometry. In general, this is not 

analytically soluble, but there are certain special cases with such solutions. 

2.2 Cylinders 

Consider a cylindrical waveguide of length d with bore radius R.0 such that S(x) = S0 for 

X e [0, d]. The throat and mouth (by which we mean the input and output ends) are located 

at axial coordinates x0 and x1. From (2.9), the horn equation is then 

2 	 (2.10) 

with solution 
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Figure 2.2: Schematic of cylindrical duct, length d and radius R0. 

p(x) = 	+ Bei, 	 (2.11) 

where A and B are the forward- and backward-moving amplitudes. This implies that the 

motion is sinusoidal in space as well as in time. Using momentum conservation 

gives acoustic particle velocity 

j op v(x)=------ 
pw Ox 

(2.12) 

V (x) = 	A e_jkx - Be'). 	 (2.13) 
pw 

Although the particle velocity is strictly a vector field in three-dimensional space v(x), under 

the plane-wave assumption there is a component only in the axial direction and it is a function 

of axial coordinate only, so it therefore reduces to a scalar field v(x). Define the impedance 

at axial coordinate x as being 

Z(X) 
= S(x)v(x) 	

(2.14) 

Strictly speaking, this should be notated z(x, w) as it is (importantly) a function of the 

angular excitation frequency (likewise p(x, w), v(x, w)), but this is omitted for clarity. Using 

k = L,)/c, the impedance at the mouth x1 is 

Aei1 + Be' 
Z1 = ZcAe_jkxl - Bei'1 	 (2.15) 
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where z = pc/So is the characteristic impedance. Noting that x0 =x, -  d, we have the 

impedance at the throat x0 

Ae_jc(x1_d) + Bejk(x1_d) 
Z0 = ZCA jk(xd) - Bei'(x1) 

cos(kd)(Aei'1 + Be3 1 ) +jsin(kd)(Aei'1 - Bei'1) 
= Zccos(kd)(Ae_jkxl - Be3kxl) +jsin(kd)(Aei' 1  + Beikxl) 

cos(kd)zi + JZc  sin(kd) 

z'jsin(kd)zi+cos(kd)' (2.16) 

which is the lossless input impedance of a cylinder as shown in [1] table 2, equation 1, and 

also equation 8.23 on page 179 of [2]. We introduce a dissipative model from Keefe [13, 2], 

which models the effects at the wall by means of a boundary layer. This replaces lossless 

characteristic impedance z and wavenumber k with lossy z and k*  respectively: 

Z* = z[( 1  + O.369r') - jO.369r'], 

k* = k[1.045r 1 +j(1+1.045r 1 )], 	 (2.17) 

where 

r = 	 (2.18) 

is the ratio of the pipe radius to the boundary layer thickness, and q is the shear viscosity 

component - setting this to zero gives the lossless case of z = z and k* = jk. Noting that 

cos(iO) cosh(0) and sin(jO) j sinh(0), we have 

cosh(ktd)z i  + z s inh(k*d) 
2.19 sinh(k*d)zi + cosh(k*d) 

which is the lossy input impedance of a cylindrical duct (cf. [1] Table 2, Equation 2). 

2.3 Cones 

Consider a conical waveguide, (fictitous) apex at the origin, solid angle ®, with throat and 

mouth located at coordinates x0 and x1 respectively along the central axis x of the cone, 
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Figure 2.3: Schematic of conical horn section, axial length d. 

separated by distance d. The cross-sectional area is 8(x) = ex2 , and the mouth and throat 

radii are 7?-o and R.. From (2.9), we have 

a2 	49P  
+ —--(ln(ex 2 )) + k 2p = 0, 	 (2.20) 

49X 49X  

giving 

a2p 2 9 
(2.21) 

X 09X 

which is the horn equation for a conical horn with plane waves. The complete solution is 

7 e_i 
x 	

e\ iWt p(x, t) = ( A 	+ B— x ) e. 	 (2.22) 

	

\. 	 j 

Momentum conservation (2.12), recalling that p(x, t) = p(x ) e t, relates the acoustic particle 

velocity to the pressure by 

av(x,t) 	iap(x,t) 

	

at 	— p ax 	
(2.23) 

where p is the equilibrium density of the medium; separating the time-dependence 6jwt  we 

have 

av(x,t) - 	iap(x)&wt 
at 	- pax 
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-cos(kd) - -sin(kd)) z 1  +jz fL sin (kd) 
XO 	 kxO = 

v(x,t) - __LaP(x)&wt 	 (2.24) 
- 	jpw t9x 

from which we can now ignore the time-dependence in the usual manner. The pressure and 

particle velocity are then 

P 	= 	[(A + B) cos(kx) - j(A - B) sin(kx)], 	 (2.25) 

V (x) 
= 	

([(A+B)cos(kx) —j(A—B) sin (kx)] 

+ B)sin(kx) +j(A - B)cos(kx)]). 	 (2.26) 

The impedance at the mouth x1, area Si = S(x i ) is 

1 	 pw[(A - B) sin(kx i )) + j(A + B) cos(kx i )] 
Zl 
 - 

- Si [(A + B) cos(kxi) - j(A - B) sin(kx i )} + k[(A + B) sin(kx i ) + j(A - B) cos(kx i )]' 
(2.27) 

It is shown in appendix A that this gives the input impedance 

(2.28) 
- 	jz' {(i_ + 	sin(kd) - (4) cos(kd)] z + 	(- sin(kd) + cos(kd)) 

This is the lossless input impedance of a conical horn in terms of its output impedance. This 

expression is identical with Table 2, Equation 3 in [1], and indeed with Equation 8.51 on page 

191 of [2]. Applying the iossy model (2.17) under the approximation that S = 747Z 0  +7Z1) 2 /4 

gives 

zo = 

	

(- cosh(k*d) - —i--- sinh(k*d)) z1 + 	sinh(k*d) k* xo  

	

jz' 
[( - 4) sinhk*d + ( 2.) cosh(k*d)j 1 + 	 sinh(k*d) + cosh(k*d))' 

(2.29) 

which is the lossy input impedance of a conical waveguide (cf. [1] Table 2, Equation 4). 

2.4 Transmission Matrices 

We have a formula for expressing the input impedance of cylindrical and conical waveguides 

in terms of their output impedance. Defining the acoustic volume velocity Uo = S0v0 gives 

input impedance z0  = po/Uo, and we express (2.16), (2.19), (2.28) or (2.29) as 
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Figure 2.4: Discretisation of bore with conical sections. 

a0z 1  + b 0  
zo —

-  
coz i  + d 

or as 

- aspi + b0v1  
v0 - copi + d0 v 1  

Then we put the coefficients a, b, c, d into a matrix 

TO 
 
=(0 b0 

) 
Co d0 

from which we deduce 

P0 P1 
I, 

\uo J Ui) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

where all terms are frequency-dependent; we term To  a transmission matrix. Now consider 

the case where a second waveguide is attached to the first, such that the input of waveguide 

2 is the output of waveguide 1. Given the output of section 2, we can solve for the input of 

waveguide 1: 
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(PO 	
=TOT, (P2 
	

. 	 (2.34) 
Uo) 	\U2) 

If Ne  waveguides are placed end-on-end in a similar fashion, we have 

/ 	\ 	Ne —i 	I 

f P0 	
= fi T,..  ( PN 

 ) 	 (2.35) 
\UoJ 	z=o 	\UNe J 

Then, if the radiation impedance Zr at the output end is known, we have 

N-1 P0 ,UN, ) = 11 T. 	
Zr 	

(2.36) 
\Uo/UNJ 	i=0 	\ 1) 

Using this method, we can approximate a horn of general shape as a discretised series of 

truncated cylinders and cones placed end-on-end. Each section of the horn has an associated 

transmission matrix, which is dependent on its dimensions. The matrix product of these 

transmission matrices is then used, along with a known radiation impedance, to find the 

pressure and volume velocity at the input of the horn, from which the input impedance 

follows. This calculation must be performed once for each frequency, as the transmission 

matrices and radiation impedance are, in general, frequency-dependent. Noreland [21] gives 

a proof that, as Ne - oo, the approximate transmission matrix T of the piecewise-conical horn 

converges to the exact transmission matrix found from solving the Webster horn equation 

directly. 

2.5 Bessel Horns 

We are now able to derive transmission matrices for Bessel Horns (see Appendix B). Consider 

a waveguide 

	

7Z(x) 
	

(2.37) 

	

S(x) = 7rb2 (—x) 2 , 	 (2.38) 

i.e. a Bessel-horn lying to the left of the origin with flare increasing from left-to-right. This 

definition is valid in the domain (-, 0), but in practice will only be needed in a subset of 

this domain. From (2.9), 
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2 3 P 	ap 
X 	- 2'yx— + k 2x 2p = 0, 	 (2.39) ax2  

which, by (C.2) has solution 

P(X) = x 112  [AJ +112 (kx) + BY +112 (kx)], 	 (2.40) 

giving 

V (x) = _ x7+1I2[AJ112(kx) + Bx 112 Y_ i,2 (kx)]. 	(2.41) 
Jpw 

This solution is general for all values of the order 'y + 1/2. Then, following the same recipe 

as the conical case above, we find: 

where 

az1 + b 
zo= 

czi + d 
(2.42) 

a = [J71 1 2 (kxo)Y_ 1 1 2 (kxi) - Y +11 2 (kx o )J_1 1 2 (kx i )] 
—2y 

b = JZc 

 

(X0) 	
[J 1 12 (kxo) 1 12 (kx i ) - 

Xj 

j [Y_ 1 12 (kxo)J_ 1 12  (kxi) - J._ 1,2  (kxo)Y_ 1 12 (kx 1 )] 
zc  

d 

 = ()

- 2y  XO  
[Y_ 1 12 (kxo)J711 2 (kx i ) - J_1 1 2 (kxo) 1 12 (kx 1 )], 	(2.43) 

"xl 

which is an expression for the transmission matrix of a Bessel-horn. This line of reasoning is 

mentioned briefly in [2] but is not taken to this conclusion. 

Validation: Conical Bessel-horn 

To check the above transmission-matrix, we substitute 'y = —1, to give a conical horn profile. 

Using the results (C.4) we simplify (2.43) term-by-term 

I 	. 
a = 	

2 	
k  c0s() - 1 sin 

kir/? 	 kx1 



2 	

( Xj

xO\ 
2 

 Ijkzsin(kd) b 
= k7r/ 	j 

C 
= kir/z [(_- - 	

cos(kd) - (k20xi + i) sin(kd)] 

2 
d 	

kir I - j k I cos(kd) + --- sin(kd)]. 	 (2.44) 

	

/E5?i \x 1 j 	L 	kx 0  

If we substitute these terms back into (2.42), cancel over 217r/T and multiply by x 1 /xo 

we get (2.28), thus showing that the conical transmission-matrix is indeed a special case of 

the Bessel-horn matrix. 

2.6 Exponential Horns 

As with Bessel horns, we can derive transmission matrices for exponential horns (see Appendix 

B). Consider a waveguide of the following shape: 

S(x) = S0e, 

(x) = 	 (2.45) 
so 

i.e. an exponential horn with flare constant y. From (2.9), 

a2 P 	OP  + 	+ k 2p = 0, 	 (2.46) 

which is a linear, second-order equation with constant coefficients and solution dependent 

on the relative values of 'y and k 2 . Note that this is equivalent to the governing equation of 

damped simple harmonic motion. We are considering only a propagating mode, so we may 

safely assume k 2  > 'y2  (analagous to under-damping in SHM). Then 

P(x) = Ae\1x + BeA2X, 	 (2.47) 

where Al and \2  are roots of the auxiliary equation 

A 2  + yA + k2  = 0, 	 (2.48) 

giving 
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4 
2 - 	 (2.49) 

from which 

1-YX CM p(x) = A e_ xe_3Z + 

=+ B) cos (ax) —j(A - B) sin ax], 	 (2.50) 

V(X) 	4_e±X GKA+B)cos(ax)—j(A - B)sin(ax)] 

+a[(A + B) sin(ax) + j(A - B) cos(ax)J), 	 (2.51) 

where a = rk2- 4. Proceeding as above, we find the mouth impedance 

1 	 pw[(A - B) sin(ax i )) + j(A + B) cos(axi)] 
Z1 

- 

- S1 2 {(A + B) cos(ax i ) - j(A - B) sin(ax i )] + a[(A + B) sin(ax i ) + j(A - B) cos(ax i )] 
(2.52) 

This is very similar to the equivalent expression (2.27) for a cone, saving that a replaces k, 

and '-y/2 replaces 11xo and 11x i . We can therefore follow the same derivation, noting that 

= 
1
-e 

Si so 

in this case, to find the input impedance 

(2.53) 

- 	 k (a cos(ad) - sin(ad)) zi + jzk 2 e 	sin(ad) 

jza [( 
	

+ i) sin(ad) 
- () 

cos(ad)] z + kei (sin(ad) + acos(ad)) 

(2.54) 

Setting x0 = 0 and x1 = d as in Appendix B gives 

k (a cos(ad) - sin(ad)) zi + jzk 2 e 	sin(ad) 
ZO - 

jza [ cos(ad) + asin(ad)] zi + ke_acos(ad)' 	
(2.55) 

or, eliminating explicit use of y, 

k (a cos (ad) - In () sin(ad) z1 + jzk2 
() 

2  

zo= 
jz'a I ln 

 () 
cos(ad) + a sin(ad)] z1 + k 

(Ea)  2 
cos (ad) 

(2.56) 

This can be represented as a transmission matrix in the familiar manner. 
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Figure 2.5: Schematic of bore discontinuity between two concentric cylinders of radius R0 

and 7Z1. 

Validation: Cylindrical Exponential Horn 

Setting 'y = 0 gives S(x) = So, i.e. a cylinder, and ci = k. Substituting these values into 

(2.55), we find an expression identical to the transmission-line of a cylinder (2.16) of length 

2.7 Bore Discontinuities 

Consider junction of two ducts with radii R-o and R1. They meet such that they share a 

common central axis, with an abrupt jump in radius at the junction. Figure 2.5 shows this 

for two cylinders, but this argument holds for ducts of arbitrary geometries provided they 

are symmetric about the central axis. We seek how this jump will affect the propagation of 

a plane wave. 

In order to preserve continuity, and recalling the the plane-wave assumption, the pressure 

to one side of the jump must equal that on the other (°) = ('). Similarly, so must the 

volume velocity u° = though it follows that the particle velocity will change such that 

	

S ° v °  = 	 (2.57) 

It also follows that the input impedance is equal on either side 

	

= 	 (2.58) 

and that the bore discontinuity can be discounted from plane-wave impedance calculations. 

Note that the characteristic impedance z = pc/S will differ on either side of the discontinuity, 
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and therefore z/z will likewise differ. 

2.8 Spherical Waves in Cones 

Until now, the wave propagation has been assumed to be planar. Flaring horns, in practice, 

exhibit waves with curved wavefronts [2]. We can approximate this behaviour by assuming 

instead that the wavefronts are spherical. Consider a point source in free space. The three-

dimensional wave-equation is 

82p 	22 --=cVp. 	 (2.59) 

Again assuming sinusoidal time-dependence, we have 

V 2p + k2p = 0. 	 (2.60) 

Assuming rotational symmetry - i.e. spherical waves - gives the solution in terms of radial 

component r 

2 	la(28p\ 
r2 ar 	 , 

Vp= — —r 
h-  ) 	

(2.61) 

from which 

32p 29p 
+ - h-- + k  = 0. 	 (2.62) 

For a point-source radiating spherically, a rigid conical waveguide with walls perpendicular 

to the wave-fronts (i.e. lying on radial axes) will not affect the propagation. The above 

equation can therefore be considered as the Webster equation for a conical horn with spherical 

waves; although the equation is the same as that for the plane-wave case (2.21), the base 

assumptions, and therefore geometry, are different. Radial coordinate r is used in place of 

axial coordinate x, and the wavefront curves into and bulges out of a flaring cone at the throat 

and mouth respectively. For a spherical wavefront at given radial position r, the equivalent 

planar wavefront is located at axial coordinate x such that the two fronts would intersect at 

the walls of the tube (figure 2.6). Along the central axis of the cone, the distance between 

the spherical and planar wavefronts is 

22 



- - - 

Figure 2.6: Spherical (solid) and plane (dotted) wavefronts in a conical duct. 

h = r - \/r2 - R(x) 2 , 	 (2.63) 

where 7(x) is the bore radius at the mouth of the cone. Secondly, the surface area of the 

wavefront is that of a spherical cap of radius r, height h 

Si = 2irrh. 	 (2.64) 

These two corrections are sufficient to modify the plane-wave derivation to describe the 

system with spherical waves. It should be noted that when two conical sections of different 

flare are joined together, the different locations of their respective fictitious apices results 

in a mismatch of the entry and exit wavefronts, with a corresponding 'missing volume' in 

between, thus introducing a systematic inaccuracy into the model (even within the bounds 

of its rather strong assumptions). This can be minimised by ensuring that the difference in 

flare between any two adjacent cones is small. A further problem occurs when a cone (with 

spherical waves) is modelled with a cylinder (plane); the bulging section of the wavefront 

protrudes into the cylinder, thus resulting in a 'doubly-defined' volume. This inaccuracy 

is avoidable only by the introduction of 'scattering regions' [23], which smoothly join the 

wavefronts; consideration of this is beyond the scope of this work, and the effect is small. 
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2.9 Radiation Impedance 

The radiation at the open end of an instrument is here modelled [16] as a piston in an 

unflanged cylinder of radius 7?. 

Zr = 	+ 0.6133j. 	 (2.65) 
ire 	 it??. 
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Chapter 3 

Multi-modal Propagation in 

Straight and Bent Acoustic Horns 

3.1 Introduction 

For a given excitation frequency, an acoustic duct has an infinite number of possible oscillatory 

pressure patterns, or modes. Assuming a circular cross-section, these modes can be described 

by a set of indices (m, n), representing a mode with m nodal diameters and n nodal circles, 

where the plane-wave is mode (0, 0). Some of these modes are shown in a cross-section of 

the tube in figure 3.1. Each mode has an associated cut-off frequency below which it cannot 

propagate and is exponentially damped, or evanescent. In a general situation there will be 

a finite number of propagating modes and an infinite number of evanescent modes being 

excited; how many modes propagate depends on the excitation frequency in comparison to 

the cut-off frequencies of the various modes as determined by the geometry of the duct. These 

modes form an orthogonal basis, so any given pressure and velocity fields in the duct can 

therefore be decomposed into a sum of contributions from each of these modes. 

Brass instruments generally feature tubing which is cylindrical in cross-section, is signif-

icantly longer that it is wide, and is excited generally at low frequencies (we will neglect 

non-linear effects in loud-playing). Consequently, only the plane-wave, which always has a 

cut-off frequency of zero, will propagate. However, when the radius of the instrument changes, 

energy is transferred between the modes through mode conversion. Energy is therefore lost 
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(a) (0,0) mode 
	

(b) (0,1) mode 	 (c) (0.2) mode 

4dft. a AP%k  
JAME-1 

(d) (1,0) mode 	 (e) (1,1) iiiude 	 (f) (1,2) mode 

00 0 0 

(g) (2.0) mode 	 (Ii) (2,1) inude 	 (i) (2,2) mode 

Figure 3.1: Transverse pressure patterns t/, for (m, n) modes with in nodal diameters and ii 

nodal circles. 
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from the propagating plane-wave and transferred into evanescent higher modes, thus affecting 

the overall acoustic properties of the instrument. Brass instruments feature rapidly-flaring 

bell sections in which a significant amount of mode conversion takes place; this process like-

wise occurs at the radiating end. Any accurate treatment of such instruments must take 

account of this effect. 

We saw in Chapter 2 how a duct (or horn) of general shape can be discretised into a series 

of short sections for numerical calculation. With the multimodal model we use a piecewise-

constant discretisation, approximating a general horn as a series of short cylindrical sections 

joined by small concentric bore discontinuities. Consideration is given to bent ducts, modelled 

as toroidal bends of constant curvature and tube radius. A series of short such bends joined 

with bore discontinuities can likewise be used to discretise more general bends. Derivation of 

a radiation impedance model is also necessary to provide a boundary condition at the open 

end. 

Kemp [5] gives a thorough review of the modal decomposition technique set out by Pag-

neux, Amir & Kergomard [3, 4]. This technique is again reviewed here, presented in an 

alternative derivation, to give a starting point for a review of the corresponding theory for 

bent ducts, as presented by Felix and Pagneux [8, 9, 10, 111, which is then adapted and 

extended for our purposes. 

3.2 Cylinders 

3.2.1 Matricial Derivation 

Consider a cylindrical tube of length d, radius R.0 and cross-sectional area 8o The walls are 

rigid, the tube contains air of density p and speed of sound c, and the angular excitation 

frequency is w. We define p(x) as the acoustic pressure (scalar field) and v(x) as the particle 

velocity (vector field). From the equations of mass and momentum conservation, we have 

V.v = 
-3W 

 --p, 	 (3.1) 
PC 

jwv = —Vp. 	 (3.2) 
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Applying the gradient operator in cylindrical coordinates r e [0, 1?.o], 0 E [0, 2ir] and x E [0, d] 

(a la a 
V 	

kar'raçi'ax  ) 
	

(3.3) 

and eliminating radial and angular components Vr and vçj, gives 

aVX -  II (k2P + 1 ap a2p 1 a2p \ 
- pc 	\ 	

(3.4) 
o9x

op - 
—jkpcv, 	 (3.5) 

ax 

where k = w/c is the wavenumber. We introduce the separation of variables 

00  p(r, 0 ,  x )  t) 
=

Pa 	a  (x)(r, )wt, 	 (3.6) 

1 00 

v(r, , x,t) = 	U(x)(r, )e3wt, 	 (3.7) 
so Ce=0 

where Pa  and Ua are the pressure and volume velocity amplitudes in the axial direction, 

and a is an index we will define below. Unlike Kemp we do not assume an axisymmetric 

excitation and therefore must include nodal-diameter modes; for simplicity we do, however, 

restrict our solution to those cases with a single plane of symmetry along the central axis (i.e. 

a duct which is bent only in one axis). From the transverse parts of (3.5), 0a  are therefore 

the eigenfunctions obeying the transverse eigenproblem 

02 a 1 aba 	1 020a  
0r2 + a + r2  O2 = — kja cba, 	 (3.8) 

Va E [0, oo), where kia  is the transverse wavenumber of mode a, with the homogeneous 

Neumann boundary condition on the (rigid) walls 

	

= 0. 	 (3.9) 
i9r LRO  

The orthogonality relation is 

fo ""O  fo
2ir  

	

0,00 rdqdr 	 (3.10) = a/3, 
 

0,00-' 
 

or, in inner product notation, 

MV 



= 6ckl:3. 	 (3.11) 

Solving for 0 gives 

0-li- 
A

\ mnr\ 	
(MO +), 	 (3.12) = 	aJm( 

( 

10 
JSlfl 

\ 	I 

if m 0, 
- 	

( A0, 	

{ 	

1 

- 	 1 
if m>0, 	

3.13) 

/(S0/2)(1 - 

where Jm is the Bessel-function of the first kind of order m, J'mn  is the (n + l)th  zero of J, 

and each value of a is defined to correspond to one set of values of (m, n, a), ordered by their 

cut-off transverse wavenumbers k10, = 'ymn /7O, giving 00  as the plane-wave (see table 3.1). 

m is the number of nodal diameters (Kemp sets this to zero), n the number of nodal circles. 

The index 3 corresponds to the modal indices (, v,,;). 

The third index o,, ,; is a symmetry index with value 0 or 1. It has the effect of rotating the 

transverse pressure pattern through a right-angle about its central axis, thus describing two 

indepedent sets of modes (when m > 0). We have chosen to restrict consideration to those 

special cases with a single plane of symmetry along the central axis; in effect, we are choosing 

a value of a and holding it constant throughout. This assumption is, in effect, roughly similar 

to Kemp's assumption of m = 0 throughout. We may therefore drop use of a as an index for 

brevity, but will maintain treatment of its (constant) value. 

Physically, we are assuming that the bends all take place in the same plane; at any given 

cross-section of the duct there will be a line of symmetry normal to that plane, and we can 

choose, without loss of generality, the coordinate system such that this plane corresponds to 

either 0 = 0 or 0 = 7r/2. By so doing, any given pressure pattern can be represented using 

linear combinations of the subset of 0 having a constant value a. Were the coordinates not 

so aligned, or the system had bends other than in that plane, then linear combinations of 

with both values of a would be required to describe a general pressure profile. This physical 

assumption does not significantly restrict the applicability of the analysis for the purposes of 

this thesis, and reduces the number of indices required. 

Having given due consideration to a, we return to the other indices. By lumping m, n 
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c m n Ymn 

0 0 	0 0.00 

1 1 	0 1.84 

2 2 	0 3.05 

3 0 	1 3.83 

4 3 	0 4.20 

5 4 	0 5.32 

6 1 	1 5.33 

7 5 	0 6.42 

8 2 	1 6.71 

Table 3.1: Correlation between values of c and m, n, ordered by Ymn 

into a , and i, ii into 3, and by holding cr constant, we are able to produce the following 

derivation using matrices; without such lumping, tensor analysis would be required (this is 

left for future work). 

Having established the transverse behaviour, we can define infinite column vectors P = 

(Pa)c>O, U = (U)a>0 and ip = (I'a) ~!ø, omitting terms of e3t for clarity, such that 

P 
= pTp 	 (3.14) 

VX  = 	'J,T.J 	 (3.15) 

We can now project equations (3.4) & (3.5) over the orthogonal function basis 0 and solve 

for P and U. Starting with the projection of (3.5), 

= —jk(v x ,b). 	 (3.16) 
PC ax 

Substituting the definitions (3.6) & (3.7) and rearranging, noting that Pc (X) is a function of 

x only, gives 

1 	8P13 
(3.17) 

PC 	9x 	 so 

Using the orthogonality relation (3.10) gives 
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Ipl 	jk 
PC 

Q 
	

so 	
(3.18) 

from which 

P' = — jkzU, 	 (3.19) 

where z = PC/SO is the characteristic impedance. Proceeding in a similar fashion, we project 

(3.4) term-by-term. The left-hand-side gives 

' ua 
\ax'/So ' 

while the first term of the right-hand-side gives 

(3.20) 

J 	(kp,i,b) = 	4k 2Pa , 	 (3.21) 
pcjk 	 pcjk 

and the remaining terms give, recalling equation (3.8), 

11/(1 ap a2p 	i32 	\ 
,ba,) ---i  kLPa. 	 (3.22) 

Recombining gives 

U' = ---KP, 	 (3.23) 
j kz 

where K is a square matrix defined in terms of axial wavenumber Ka  = k aSa3, where 

k2 = k a  + k±a  (3.24) 

We define the impedance matrix Z such that P = ZU, and use P' = Z'U + ZU' along with 

(3.19) and (3.23) to find: 

= —jkzI - ----ZKZ, 	 (3.25) 
kz 

which is the matrix Ricatti equation given in [3], but is, in this case, only of passing interest. 

We use (3.19) and (3.23) to give 

P" + KP = 0, 	 (3.26) 
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which has solution 

P = D(x)i + D'(x)2, 	 (3.27) 

where Dp(x) = eII5 is a spatially-dependent diagonal matrix and i, S2 are constant 

column-vectors, determined from the initial conditions, which will subsequently be eliminated. 

Defining diagonal matrix A with elements 1/jk11, differentiating (3.27) and substituting 

(3.19) gives: 

Z'P = -----A'(D(x)1 - D 1 (x)2). 	 (3.28) 
3 Z 

Define 

	

H = 
1
-KA, 	 (3.29) 
j kz 

which, noting that K = -A 2 , gives 

	

H = --4-A', 	 (3.30) 
3 kz 

from which 

Z'P = H(D(x)i - D'(x)2). 	 (3.31) 

We equate (3.27) and (3.31) over P and evaluate at the input (x = 0) 

(1 + 22) = Z0H(E1 - 2) 	 (3.32) 

and output (x = d) ends 

(V1 + D 1 2) = ZdH(Dl - V''= 2 ), 	 (3.33) 

where V = D(d) and Zo, Zd the impedances at the input (unknown) and output (known) 

ends. We can eliminate over 2  and El to get 

(I - Z0H) = (I + Z0H)V(I + ZdH)-'(I - ZdH)V, 	 (3.34) 
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where I is the identity matrix. Define 

E = D(I + ZdH) 1  (I - ZdH)V 	 (3.35) 

to give solution 

Zo  = (I - E)(I + E)'H', 	 (3.36) 

which is an expression for the input impedance in terms of the output impedance and geom-

etry of the duct. 

3.2.2 Validation and Discussion 

The matrices derived are infinite to account for the infinite basis of orthogonal modes. In 

practice, we must truncate these matrices to finite size Nm ; the more modes included, the 

more accurate the result, and the higher computation cost (Chapter 8). By considering the 

scalar case where only one mode is included - i.e. the plane wave - we can derive a familiar 

result. In this case 

and H = 11ZC;  noting that 

E = e_2uhi' - ZdH 
1+ZdH' 

(3.37) 

D + V = 	+ ejkd 

= 2cos(kd), 	 (3.38) 

- V = e_jC - ej' 

= —2jsin(kd), 	 (3.39) 

we evaluate the input impedance 

ZO 
- Zd cos (kd) +jz c  sin (kd) 

- jz 1 Zd sin (kd) + cos (kd)' 	
(3.40) 

which we recognise as the plane-wave result (2.16). 
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The derivation given is that of [3], extended to give a solution of the Ricatti equation - the 

cited paper gives the Ricatti equation for a varying-radius duct and uses numerical methods 

to solve for Z0 ; here we take the cylindrical case and solve analytically. Kemp [5] adopts a 

different approach, and while it produces a solution which is intuitively more satisfying, his 

recipe is more difficult to apply to more complicated cases. 

Although the derivation given is for a cylinder, which is axisymmetric by definition, it 

does not assume that the oscillation is axisymmetric. Physically, this implies that either the 

overall duct system or the excitation is non-axisymmetric, or both. The simplest example of 

a non-axisymmetric duct is that of the toroidal bend, which is common in brass instruments; 

the model of any system which includes at least one such bend must account for the non-

axisymmetric oscillation throughout the length of the horn, much of which may consist of 

axisymmetric ducts. 

We now move to consider such a toroidal duct. Consideration of the above matricial 

derivation allows us to tackle the bent case having already dealt with many of the difficulties 

faced. 

3.3 Toroidal Bends of Constant Radius 

Consider a tube of constant circular cross-section S0 with radius fl.0. The tube is bent 

toroidally, such that the central axis is a constant radius from an imaginary origin, 

where ic is termed the curvature. The length along the axis is d. We proceed along similar 

lines to the derivation above. In the toroidal coordinate system r e [0, fl.o ], q  E [0, 27r] and 

S E [0, d] shown in figure 3.2, we have (using unit vectors u) 

dr = drfl + rdq5fl, + (1 - kr cos cb)dsfi, 	 (3.41) 

from which we have the gradient and divergence operators, using dummy scalar and vector 

functions f and F, 

af._ 	1  a 	1 	aj. 

	

V/f = 	Ur + "U4, + 	 Us 	 (3.42) 
09r 1—icrcosqas 

	

V.F = 	+(- 
kCO57 \ 	laF0 

ar 	r 	1 - icr cos J 	r i9q 
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Figure 3.2: Schematic of toroidal bend, curvature ic, tube radius R.0, length d along toroidal 

axis s. 

+ 
ic sin q F

O  + 	
1 

1 - r cos 	1 - r cos 0 as 

We apply this to (3.1) & (3.2), and eliminate components Vr and vo  to give 

ôv5 - I -_ (2i - ir cos )p + ( - 
	1 ap 

1 2Krcos)--+ 
85 - pcjk\ 	 rDr 

132p 	lôp\
r2,902 	r 

(1— Krcosç— + (1— krcos)— 	+ 
ar2

op - —(1 - #cr cos çb)jkpcv 8 . as 

Projecting this over the same basis 0 (3.12) gives 

(3.43) 

(3.44) 

(3.45) 

where 

U' = 
kz 

P' = —jkzBU, 

= —jkzB - 
1

—Z(C + KB)Z, 
j kz, 

(3.46) 

(3.47) 

(3.48) 

K.0 (k2 'frnn" 

= - 
(3.49) 
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10
17-'o f 27,

(1 -  icr cos 	rdçbdr, 	 (3.50) 

( -'-nr) AaApIcMmii fo rj+i  	 dr 
RO 	 o 	o 

—AApmic(M m  -Lm 	
° 

j) 	 Jm ( -'-' r) 

 	
( -' A ' r)  di, 	(3.51) I 

f
(3

2ir  airs 
	(I-LO

U7t 

 

.52) 

 2ir 
07t\ 

	([to
Oir

Lm =  
f 	

(3.53) 

which can be simplified to 

K.,3 = k11&p 	 (3.54) 

( -'mnr ) 	( -"vr ) 
 Bp 	5aAcApicMmj / r2Jm dr, 	 (3.55) 

JO RO 
7r

Mmji = 	Im_ILI,1( 1  + (6a1 - 8a0)( 6mi — 8 mo)), 	 (3.56) 

IT 
L mp  = 	(8p_m ,i(1 — 	— Scr0)6mü) — 6 m _ u,i(1 + (cr' - 5u0)6u0)). 	(3.57) 

Taking the Ricatti equation (3.48), we apply a matrix equivalent of the change of variables 

commonly used for simplifying Riccati equations [24, 25] 

= —'' (—jkz, 
(C + KB))_

1 
 (3.58) 

giving the transformed Jacobi differential equation 

	

P" + B(C + KB)P =0, 	 (3.59) 

which is a matrix equivalent of the simple-harmonic motion equation. This can be found 

more directly from (3.46) and (3.47), thus giving a physical interpretation to what would 

otherwise be an arbitrary change of variables. 

Now assume that B(C+KB) is diagonalisable, with eigenvalues ) 
2  and the corresponding 

eigenvectors being the columns of the square matrix X. Then 

B(C+KB) = — XA 2X', 	 (3.60) 
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where A is a diagonal matrix with elements 1/j). (3.59) then becomes 

P" - XA 2X'P = 0, 	 (3.61) 

which, exploiting the spatial independence of B, C, K, and therefore X, gives 

(X'P)" + (— A 2 )(X 1 P) = 0. 	 (3.62) 

This equation is now of the same form as (3.26), with solution 

P = X(D(s) i  + D 1 (s)E2 ), 	 (3.63) 

where D(s) is a spatially-dependent diagonal matrix with elements 	Differentiating 

(3.63) with respect to s and substituting (3.47) gives 

Z'P = 	-B'XA'(D 1  - D'2). 	 (3.64) 
3 Z 

Define 

to give 

H = ±B 1 XA_ 1  
j kz 

(3.65) 

Z 1 P = H(D(s) i  - D(s) 1 2), 	 (3.66) 

which is in the same form as (3.31). We proceed as before (3.31)-(3.36); defining 

E = D(X + ZdH)-'(X - ZdH)D, 	 (3.67) 

we have 

Zo  = (X - XE)(H + HE) - '. 	 ( 3.68) 

This gives the input impedance of a toroidal bend in terms of its known output impedance. 

Such a result, when combined with an appropriate bore discontinuity model, can be used to 

discretise a bend of varying radius and curvature. 
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We note the solution found previously for straight ducts (3.27) is a special case with 

= 0, X = I and ) = kila. Once again, it can also be shown that evaluating the above 

result in a 1-mode (scalar) case results in the classical plane-wave result, demonstrating that 

the propagation of the plane-wave is independent of bends in the duct. 

3.4 Bore Discontinuities 

Any general system must include nodal-diameter modes throughout. Kemp [5] assumes axi-

symmetry and excludes these modes; here we are considering instruments which may have 

bends, and therefore a more general formulation including these modes is necessary. We 

follow Kemp's derivation and generalise it to include these modes. Readers are referred to 

that work for a derivation from first principles; here we give a brief description of the early 

part, and continue in detail from where this derivation diverges. 

3.4.1 Derivation 

Consider a join between two tubes with circular cross-section of radii 7o  and 1Z1. They meet 

concentrically - i.e. they share the same central axis (figure 2.5). They need not have the 

same curvature properties. The impedance matrices on either side of the jump are z° and 

The pressure field on the plane of the dicontinuity is similarly described by p(°)  and 

p(l), and these must be equal on the shared area. We assume a rigid (Neumann) boundary 

condition on the annular perpendicular section surrounding the discontinuity. We start from 

equation 2.97 of [5] 

= FZ(l)FT, 	 (3.69) 

where, from B.15 of [5], adapting to our notation, 

J
pRo 

Fa 
= 	

127r 	

b'rdqdr, 	 (3.70) 

with 	and OM the transverse pressure profiles either side of the jump. The pressure 

profile of the circle radius R0 is the same on both sides. Given (3.12) we have 



Oir\ 	

2 
F 	

2ir 
= AaA f sin (m + 	(po+ sin 	) df rjm 

(m

) 

	

nr\ 
j 	dr. 

0 	 R  
(3.71) 

Consider first the 0 integral. This vanishes if m i - i.e. modes couple only with modes 

with the same number of nodal diameters. Then, 

I 

	

 
J cos(m)2d= 	

2ir ifm=O 	
(3.72) 

ir ifm>O, 

giving 

ç2ir 
I cos(mq) cos()d = m,z(m0 + 1). 	 (3.73) 

Jo 

likewise 

f27r 
I sin(m4) sin(po)do = 7r6m,1 8m0, 	 (3.74) 

Jo 

therefore, assuming that c = 1 when m = 0 without loss of generality, 

2ir oir \ 
[ sin (mO + 	sin 	+ 	dq = 7t8m11 (6mO + 1). 	 (3.75) 

Jo 

In considering the r integral in (3.71), we can now assume m = i without loss of generality 

	

RO 	

(mnr) 
	('nv

) 
dr. 	(3.76) JO 

= AA mi (6m0 + 1) 	rJm  
7?-o 

Using a standard integral (C.6), we have 

F,,,,3 = A aAp7röm,z (Smo + 1) 	 - YmnJm_i('Ymn)Jm('Ym)) 

- 2,.y2 
(3.77) 

where = flo/7Z1. This is the tranformation matrix for a bore-discontinuity, including the 

nodal-diameter modes. 
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Figure 3.3: Diagram demonstrating small jumps required for discretisation of a general horn 

using short cylinders and bore jumps. 

3.4.2 Validation 

Consider the special case where m = 	0 (i.e. omitting the nodal-diameter modes). We 

have 

TYocJ(-yoT)J-'eyo1) - yoJ_ieo)J-o1;F = 2AaAp 	
( 

 

	

 - 22 	
). 	

(3.78) 

We note that J_i('yo) = 0 and use equation (C.7) to find 

A 2 	2 	
)' 	

(3.79) F = 2A pir'R.0 ( 
	'YOu - 'YOn 

which, using the results (3.13) for A, becomes 

2J1(yo()7o( 
F= 	 (3.80) 

This is the result given by Kemp, of which the result (3.77) is a generalisation. 

3.4.3 Small Discontinuities for Discretisation 

It is convenient to approximate a general bore profile as a series of short cylinders, connected 

with bore discontinuities. These discontinuities may be arbitrarily small. We here briefly 

examine the behaviour of the bore discontinuites in cases of close to 1. 

Consider, for general m> 0, the case with no discontinuity - i.e. (= 1. We expect this to 

give F = I, the identity matrix. First, we look at the off-diagonal terms (a 3, i.e. n $ v). 

From equation (C.8) follows 
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Jm_i(ymn) 
Ymn 	 = m, 

J. (-Y..) 
(3.81) 

which, when substituted into (3.77), gives 

Jm-i('ymv) 	Jm_i(ymn) 
7mn 

	

1 	1 	(7mu Jm(mv) 	Jm(mn) ) 
-2 _-, __ 	 2 

mv 

	

V 	7mn y 

	

= 0. 	 (3.82) 

Evaluating the diagonal terms will require a limiting case; analytically this is very involved, 

but numerically the limit tends to 1, excepting a region very close to c = 1 where numerical 

errors dominate. For the purposes of discretising a general horn this need not concern us as 

the stiff region is sufficiently small. 

3.5 Radiation Impedance 

We use here the model by Zorumski [17]. Kemp reviews this model and presents a more 

convenient derivation, but omits the nodal-diameter modes; as before we follow his derivation 

and generalise it. Consider a circular duct, radius R0 and cross-sectional area So , terminated 

by a rigid infinite baffle and radiating into free space. Given the pressure and velocity profiles 

at the radiating plane, we can calculate the influence that the velocity at each source point 

(R, ) on the plane has on the pressure field a distance h into the free space. From this, 

we calculate an expression for the coupling between the pressure and velocity modes at the 

radiating plane, and, from there, derive an expression for the radiation impedance. 

We take as our starting point equation 3.14 from [5], which is still general enough for our 

purposes. Here we are integrating across the opening area twice - once to get the pressure 

field due to the sum of all source elements, and again to isolate a single modal pressure 

amplitude component. Adapting to our index notation, we have 

	

   

2ir 	1 	2ir 	R 
Z-0 -___S 

 
, 
	

r 
 
RdRddrdq, 	(3.83) 

 JO f f 	h  

where R and are dummy variables representing integration over the source elements, and 
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Figure 3.4: Radiation of a plane piston in an infinite baffle (Kemp, figure 3.1). 

h = /r2 + R2  - 2rR cos( - 	 (3.84) 

We have the transverse pressure modes 

( 'ymn r air \  
A. J.

) 
 sin (MO + 

---), 	
(3.85) 

from which 

2ir Ro 2ir f

i0

air
.  ( 	

air
Z 	- 	AaA 

f 	
sin (m + 	sin ç5 + -) 

- 2irS 2 	 2 

(ymnR\ j ('iwr'\ 
X Jm 	

) 	
) h rRdRddrdq. 	 (3.86) 

We can eliminate h using Sonine's integral ([26] p.416, eq. 4), 

-jkh 	00 

e h = kf -r (-r - 1)Jo(rkh)dr, 	 (3.87) 

where r is a dummy variable of integration, and Neumann's addition formula ([261 p.358, eq. 

1) 

CO 

Jo(Tkh) =Jq (rkr)Jq(rkR)e, 	 (3.88) 
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and 

[

2ir 
sin()eød = j(Sq  +öq(_))(1 - 

Jo 

which give 

air \ 

fo sin (ø+
) 	= 	+ äq())(ä 1  + öoj(1 -öqo)) 

 2ir 

Define 

with dummy index q. Substituting into (3.86) gives 

= 2 7r S02 

X[ 
 

2r jRo  
I 
	R

sin 
	alr 	

jm  
(R'j (^,Mr)I 	(mb 	 sin 	

+ 

JO

00 	 00 

xk 	r(r2  - 1) 	Jq (rkr)Jq (rkR) 	dr rRdRddrdqf. 	(3.89) 
 q=-00 

Separating and rearranging the integrals gives 

= 
27r S02 

2ir 	
/ \  f2, 

sin 	+ 
ai 
-i-) edçb 	 (3.90) X 

00 

 fo 
sinm4 +

q00  
00 	

i 	

( R)

R0 	(yvr\ x k 2 

 fo r(r 2  - 1) 	/ RJm 	Jq (rkR)dR fo  rJ 	Jq (rkr)drdr.
IZO  JO  

We can now simplify the integral terms in 0 and , which differ from those in [5] due to the 

additional modes. Consider the integrals 

J cos(4)edçb = 
0  

i 	27r 

1 (ejt'O+ 

21r ifq=p=0 

7r 	ifq=±1i0, 

0 	ifq±, 

7r5q1i + (3.91) 

(3.92) 

(3.93) 
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2ir 	 2ir 7r\ 
Qmtz() = I sin 

I 	

+ -i--) 
e'd f sn (/Io + 

2
¶) ejq0d.0, 	(3.94) 

Jo 

which, with (3.93), becomes 

Qmp(q) =(jqA + c5q(_ j ))(6qm  + 5q(_m))(a1  + 60j(1 - öqo)) 

= 7r2 (l5qm + 	 2 m,i(öu1 + 670j(1 - Sq)). 	 (3.95) 

This vanishes if m 0 m, and also if q 	we can therefore substitute into (3.90) and 

discard terms in the sum to leave only q = m and q = —m, requiring m = 

ipc

J

00  
Zai - 
	

Aa A 	Qmiz() 	r(r2 -1) 2- X 
- 4 2 S 

q=-m,m 	 1?.o 

(
Ro

mnr\ 	

kJ0rJm(mnuT Jq (rkr)drdr. (3.96) J rJm  
0 	

) Jq(kr)dr 	
0 	' R.0 ) 

Define 

Cmnq (r) = kv,J0 rJm /ymnr\ 
R ) J

q (rkr)dr. 	 (3.97) 

to give 

P00 

Za  = 43 AaAí 	Qm()J y(r2 - 1)G mmq (r)Gmvq (r)dr. 	(3.98) 
q= —mm 

Given that q E Z, and that J_q (x) = (_ 1)"Jq (x) (equation C.7), we have 

G..(— q) (r) = (_1)Gq(r), 	 (3.99) 

giving 

p00 

Za  = 3 A aA [Q m (m) + Qmi (_m)]j r(r2  - 1)Gmnm (r)Gmv (r)dr. (3.100) 

Then we assume, without loss of generality, that a = 1 when m = 0, and find 
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J (2)5m 	 if m = 0, 
Qm (m) + Qm(—m) 	

1 26m (1 +j6a0) if m>0, 

= (1 + 8mo) 27r26mp( 5cy1 + jöqo ). 	 (3.101) 

Substitute into (3.100) to find 

= 	 + äm0) 8m(&ri +iSao)J r(r2 - 1)Gmn (T)Cmv (T)dT(3.102) 
2So 

where Gm 	Gmj tm . Note that putting m = IL = 0 gives eq. 3.21 from [5]. The integral 

(3.97) for C can be solved analytically using a standard integral ([281 p.146) 

TJm(mn)Jm_l(TkO) - 	fmnJm_i(ymn)Jm(kø) 
Cmn(T) = 	

kR.0 	
. 	(3.103) 

(7mn\ 	T2 
kIZo  

We now simplify the integral in (3.102), which is real for 0 < 'r < 1 and imaginary for 

1 <T < oc. We split the integral into real and imaginary parts and substitute 'r = sin x and 

= cosh respectively. 

Zc 	= 	A c, A i (1+Smo)ömi (äcri+jöcro) 

x 
[ 	

sin (sin2 - i  
+ f cosh e(cosh 2  - 1) G,, (cosh)Cmv(cosh ) sinh ede]. (3.104) 

Now sin  x - 1 = cos2  x and cosh  - 1 = sinh 2  , giving 

= 	 (3.105) 

(f 	 coo 
X ( / sinCmn (sin)Cmv (sin)d +j / coshGmn (cosh)Cmv (cosh)d 

Jo 	 Jo 

The first integral can be evaluated using Simpson's rule, and the second (truncated to be 

finite) by Gaussian quadrature. 
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3.6 Wall Losses 

3.6.1 Straight Ducts 

In real instruments there is a loss of acoustic energy to heat through viscous and thermal 

losses in a thin boundary layer beside the walls of the tube. In the straight case, this is 

modelled as a modification of the boundary condition (3.9) found by imagining that there is 

a flow into the (rigid) walls [14]:

ik  

- 	
= ---- EL) ( , 	 (3.106) 

Or 	 1c 

where Ea is the boundary specific admittance at the wall for mode a. From this we find the 

lossy transverse cutoff wavenumber 

k* _____ ta - 	+32 - m2' 	 (3.107) 
 )zo

'mm 

which gives the lossy axial wavenumber 

k 	k2 - 	
- 2jk 

lice - 	fl_U 	7o 	
(3.108) 

We use the following simplified expression for the boundary admittance under standard con-

ditions at frequency f 

= [(i - sin  9,) 2.03 x 10 5  + 0.95 x 10] (1 + j)f"2 . 	(3.109) 

When the mode a is propagating, sin 2  9,-a  > 0 and O  can be thought of as the angle of 

incidence with the side wall. When the mode is evanescent, sin 2  9 <0 and °a  has no direct 

physical interpretation [14, 151. Calcuting the values of Oa  using the Neumann conditions 

gives 

= K k2;2) 2.03 x 10-5 + 2.98 x 10-5] ( 1 +j)f112
. 	(3.110) 

Since the tubes we are modelling are significantly longer than they are wide, we neglect 

the effect on the transverse wavenumbers kla  and consider only the effect on the axial 

wavenumbers kjia• Essentially we are using the lossless (Neumann) boundary condition to 
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model the transverse motion, and the lossy condition to model the axial motion. Any truly 

rigorous treatment would maintain the same boundary conditions throughout. 

3.6.2 Bent Ducts 

Treatment of wall losses in bent ducts is altogether more involved. The derivations given in 

[10, 12] work under the boundary condition 

 
= jkEba . 	 (3.111) 

r 
LRO 

Comparing this with equation (3.106), we note the key difference of the lack of index on 

- i.e. the admittance here is not dependent on the mode index, and is therefore the 

same for all modes. The boundary admittance model used for straight ducts defines this 

(simulated) admittance in terms of the incidence angle O, which is dependent on index c. It 

is therefore not possible to use the boundary condition (3.111) in conjuction with the above 

admittance model. Even were this not the case, further complications are caused by the 

bend. The incidence angle will vary through the length of the bend, and will vary around 

the circumference of the bend (i.e. depend on angle ). Such complications will make such 

a derivation, which has not yet been successfully attempted, rather difficult. 
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Chapter 4 

Optimisation Algorithms 

4.1 Design Optimisation Problems 

Optimisation is the process of finding the minimum of an objective function 0(a) and the 

values of the design variables a which give this minimum. In general, a may represent a 

set of any number of variables of any kind, and 0 may be any scalar function and need not 

be analytical. Often many evaluations of the objective function are required, each time with 

different arguments, before an optimum is found. A problem may also specify constraints, 

restricting the possible values that a can take. In addition, algorithms generally include a 

set of parameters to be chosen by the user; a degree of 'tuning' is necessary to find the values 

best suited to the problem in hand. 

More formally, define a space A' with N dimensions, which we call the design space. 

This represents all possible solutions, good or bad. Define a e A as a set of N design 

variables a = ( a1, a2 . . . aNn ) representing a single possible solution. The objective function 

o A i— maps from its domain, being the design space, to a single real number of 

arbitrary range. Thus 0(a) is used to evaluate the merit, or fitness, of each solution a. 

That set of values a* = arg minQEANV  0(a) which gives the minimum value 0(a*) is the 

optimum solution. Note that minimisation and maximisation problems are equivalent and 

are interchangeable by substitution of -o for 0. 

An optimisation algorithm is a process which systematically searches the multi-dimensional 

space of possible designs to find a minimum value of the objective function. Objective func-

tion minima may be either global, being the lowest value possible in the design space, or local, 
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Figure 4.1: A function of two variables, with a global maximum and several local maxima. 

being the minimum of a contiguous sub-space but not the entire design space. In essence, the 

algorithm is a method to choose which point in the design space to 'try' next given knowledge 

of the previous tries. On the most simplistic level, it may simply try every possible point on 

a given grid in the space and select the best; in general, algorithms are more sophisticated 

than this and can find optima with far fewer tries. Various different optimisation algorithms 

exist, including direct search, gradient-based and stochastic methods. Direct search methods 

require only the objective function, and navigate the search space based solely on known val-

ues; they tend to be robust, but converge slowly when close to an optimum. Gradient-based 

methods require the objective function to have a known derivative, and attempt to speed 

the convergence by using knowledge of this gradient; they converge more quickly than direct 

search methods, but again tend to get 'stuck' in local optima. Stochastic processes are based 

on random numbers and use a non-determininistic approach: they can be good at finding 

global optima, but, due to their inherently random nature, repeated attempts at the same 

problem may yield different solutions. 

Design optimisation is a process by which the design of a real object is described as a set 

of numerical parameters Q and a function 0(a) is chosen to judge the merit of a possible 

design given specified goals; by minimising 0 we find the design of the object which best 

matches these goals. 
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4.2 Gradient-Based Algorithms 

4.2.1 Simple Gradient Methods 

Steepest Descent 

The most simple gradient-based optimisation algorithm is steepest descent. Put simply, if we 

take a small step of length I away from a point a' in a space, the greatest possible change 

in the objective function 0(a) will be in the direction of the gradient vector. We therefore 

choose a step such that 

a = a* - IVO(a), 

where 

r ao1 
II 
I ao I 

V0(a)=I Oa2 I. 

aCin 
80 

Li 
By repeating this process iteratively, we expect to reach a local minimum. Note that the 

step-length I is not fixed between steps, though choice is not trivial: a small value will result 

in slow convergence when starting far from an optimum, even with a favourable objective 

function 0; too large a step size can result in the optimum being 'jumped over', and even in 

other local optima being explored. 

In practice, this algorithm can converge very slowly to local optima, particularly if the 

curvature in different directions varies greatly. It is also very unsuited to finding global 

optima in regions with many local optima, as it will readily become 'stuck' in local optima. 

Newton-Raphson 

The Newton-Raphson method is a more sophisticated algorithm, using the second derivative 

in addition to the gradient vector. 

(4.1) 

(4.2) 

IVO( a*)H_l (0(a*)), 	 (4.3) 
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where H is the Hessian matrix 

82 0 02 0 82 0 
0a OalOa2 8cj8a, 

02 0 82 0 820 

H(O(a)) = Ock2Oal 
'aa2 

5c20an (4.4) 

02 0 82 0 82 0 
8a8ai OanOa2 

Geometrically, the Newton-Raphson method approximates the function with a quadratic, 

and then steps towards the minimum of that quadratic. 

Problems with the method include the Hessian being expensive to compute, and being 

required to be invertible; numerical instabilities can also arise if the matrix is nearly invertible. 

As a local method, it still suffers from the same local optima problems as the steepest descent 

method. 

Quasi Newton-Itaphson 

These methods are in principle similar to the Newton-Raphson method, but use approxima-

tions to the Hessian matrix instead of the exact value. A popular example is that of Broyden, 

Fletcher, Goldfarb & Shanno, the BFGS method. It approximates the Hessian with matrix 

B', refining it such that 

Jim Bi  = H'. 	 (4.5) 

The method is composed of four steps: 

A direction of step d(c)  is determined such that 

d(k) = —B(O(a))V(O(o)). 	 (4.6) 

An optimal step size 1(1c)  is obtained by minimising O(a(Ic) + 1d (c)) using a line or grid 

search. 

The next step is taken such that 

a(k+l) = cx(k) +ld. 	 (4.7) 
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4. Define F = 	- VO(k) and G = 1(c)d(c) .  Then we refine the matrix B according 

to 

GGT B(k)FFTB(k) 
B1 = B(k) + FTG - FTB(k)F + FTB(k)FSST, 	(4.8) 

where 

C 	B(k)F 

S = CTF - FTB(k)F 	
(4.9) 

4.2.2 Trust Region Methods 

Newton-Raphson-based methods rely on the objective function being globally approximated 

by a quadratic function; this is often not a valid assumption. Trust region methods restrict 

the approximation to a within a local hyper-sphere of radius L(k).  The radius is increased 

or decreased according to the closeness of the quadratic approximation as measured by 

(k) - (9(a(c)) - o((k) + 1(c)d(k)) 	
4 P - Q(k) (0) - Q(k)(1(k)d(k)) (10 ) 

where Q is the quadratic approximation. If p(C)  is close to 1, then the approximation is good 

and we increase (1c);  if it is close to  then we decrease z(k). 

Levenberg-Marquardt 

This popular algorithm is best applied to minimising a function which is the sum of squares 

of nonlinear functions 

0(a) = 	 (4.11) 

It searches in the direction d such that 

(J 'Jk + )tkl)dk = — Jfk, 	 (4.12) 

where Ak are non-negative 'damping parameters', and J the Jacobian matrix. 
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4.2.3 Applicability to Problem 

Gradient-based methods, by definition, require explicit computation of derivatives of the 

objective function with respect to the design variables. While the potential performance 

benefits offered as a result are appealing in principle, in practice work must be done to 

formulate the problem appropriately. Noreland [21] has done precisely that; by careful choice 

of formulation, the problem is expressed in terms of the gradient of an objective function 

based on the plane-wave impedance calculations like those in Chapter 2. 

The work in this thesis may in principle follow a similar path to Noreland's. However, 

the primary aims of this thesis are to explore the possibilities of higher-order instrument 

representations, and to develop and implement more accurate multi-modal models. In order 

to attempt this with a gradient-based method, derivatives of the models in Chapter 3 with 

respect to the design variables would have to be derived; given the complexity of these models, 

such derivations are outside the scope of this thesis. We will hence consider only algorithms 

which do not require explicit derivatives. It is plausible that future work will address this 

particular problem, and allow the gradient methods to be used with the multi-modal models. 

4.3 Rosenbrock Algorithm 

4.3.1 Review of the Procedure 

The Rosenbrock algorithm [29, 30, 31] is a direct search method, meaning that it searches the 

target space without explicit calculation of the gradient of 0 with respect to a. Broadly, the 

algorithm takes a series of steps in orthogonal directions, proceeding from the last successful 

step. At intervals, it changes the directions in which it moves to point in those directions 

most likely to yield successes - this allows it to navigate, for example, ridges diagonal to its 

coordinate system much more effectively than a simple direct search. 

We seek a row-vector a = (al, a2 ... aNn ) of N design variables (each lying on a co-

ordinate axis of an N,-dimensional space) to give the optimum mm 0(a) of the objective 

function. Throughout the procedure we retain a*  and Q* = 0(a*) to denote the best values 

found so far; an initial 'guess' at a must be made to give a starting value of 0* .  

Define an N x N matrix D, whose columns are N mutually-orthogonal directions d 
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Figure 4.2: Example of Rosenbrock navigating a contour plot of a function of two variables, 

completing two stages. Black and grey lines denote successful and failed steps respectively. 
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such that IdI = 1 (usually these are set as the coordinate directions for the inital stage). 

Define 1 = (ii, 12. . . lN) as a row-vector of step-sizes to be taken in the directions d (using 

to denote a unit-vector), and two tuning parameters a> 1 and 0 <b < 1. Then 

. A step of length li is taken in direction di from point a*,  giving 

a=a*+1j T 	 (4.13) 

• 0(a) is evaluated. If a success is found, i.e. 0(a) 	0(a*),  then li is increased by a 

factor of a and a*  set to equal a. If a failure, the step is discarded and li multiplied 

by —b. 

• This procedure is repeated for each dimension i = 1 . . . N. 

This process constitutes a phase, and is repeated until both a success and a failure are 

found in each direction; at this point the exploratory stage is complete. The direction vectors 

are then modified as follows, using the notation d °  to denote directions used in the 0th 

stage. 

If Ai is a sum of all successful steps in direction 	we define a matrix with columns 

Nu  
Ak = E Aa(0), 	 (4.14) 

in the special case that the directions 	are the coordinate vectors, we have 

A 1  

.A2 	A2 	
(4.15) 

AN AN ... 

The column A 1  is a sum of all the successful steps taken in a stage, and is therefore a vector 

joining the start and end points of the exploratory stage. A2 is a sum of the successful steps 

in all directions except the first, and so on. We can use the Gram-Schmidt orthogonalisation 

procedure to gain a new set of directions 

- 

— Au' 

55 



i-i 

d' = A-(A.dj')dj' ) , 
k=1 

= d' 	
for 2 < i < Na ., 	 (4.16) 

Id'I 

The vector d' points in the direction of progress in the previous exploratory phase; we 

expect this to be a good approximation to the direction of best advance. a( 1 is the best 

direction which is normal to d' and so on. 

We seek an equivalent orthogonalisation procedure which avoids summation, and is there-

fore less computationally expensive. Gram-Schmidt is applicable for general A; here we are 

interested only in those cases which satisfy (4.14). Combining this with (4.16), we find [31] 

the orthogonalisation procedure 

- A 

-, 

a1) = 	AIA_iI2-  A_iiAI 2  for 2<i<N. 	(4.17) 
IA_1iIAI/1iA_1I2 - iAi2 

As we shall see, this is only of passing interest. Consider the case in which one or more A is 

zero; for sake of argument, choose A1 = 0 where 1 < p - 1 < N. Then 

A_ 1  = 

1 =p-1  

N 

= 
1 =p 

= A, 	 (4.18) 

giving us two identical adjacent columns in the matrix A. It is clear that the denominator 

of d in (4.17) will be zero in this case, as will the term /iA_iI2 - A p i 2 ; hence d is 

undefined. This is clearly unacceptable. (Note that, from (4.14), the denominator can only 

be zero when some A = 0). 

Palmer resolves this difficulty by rearranging d 2  such that terms of A i  cancel, leaving d' 

determinate (unless A i  = 0 Vi, which is not possible with the Rosenbrock algorithm). In this 

vein, it can be shown that the following expression is equivalent to (4.17) 
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V) - k - 
Ak_lAk - d ) 1 IAkI 2  

IA ki IIA k I (4.19) 

__.(') 	__ . (o) with the exception that evaluating this equation when Ap_i = 0 yields d = —d_ 1  which 

is determinate in all non-trivial cases. Readers are referred to Palmer's paper for a complete 

derivation. 

With our new orthogonal set of direction vectors, we commence another exploratory phase, 

and s is reset to default values (see section 4.3.2). The entire process, alternating exploratory 

phases with orthogonalisation, repeats until certain termination criteria have been met (see 

section 4.3.3). 

Observation 

Palmer's modification to the orthogonalisation procedure was motivated by cases in which 

some Ai = 0; Rosenbrock was aware of this difficulty ([ 291, p. 177) and states that it is 

avoided in his method. This is, however, not strictly true. The Rosenbrock method ensures 

that it has moved in each direction over the course of a stage, but the total movement in a 

given direction may yet be zero if the optimiser has returned to a previous position in one 

direction after movement in another - in two dimensions this might reasonably be described 

as a 'U-turn'. The optimiser may take a successful step 1 i  in direction d, followed by some 

failed steps in this direction (interleaved with steps in other dimensions, some of which will 

be successful). The step size may subsequently become lj (using, say, a = 2 and b = 0.5 

this is not uncommon) and another successful step is taken in direction d. Now X = 0, 

because two steps of equal magnitude have been taken in this direction, one positive and one 

negative, and > 1 successes and failures have been found. If no further successes are found 

in this direction before the end of stage, Ai retains its value of 0, and can therefore cause 

problems in the orthogonalisation procedure unless dealt with using Palmer's method. 

4.3.2 Constrained Optimisation & Step Sizes 

In some optimisation problems, the design variables must be constrained in order to ensure 

feasible results. For example, lengths must be held to be strictly positive to ensure the design 

is physically realistic; likewise upper and lower bounds may be placed on variables to exclude 
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Figure 4.3: Contour plot of a function of two variables with demonstration of a U-turn taken 

by Rosenbrock. 

realistic but impracticable designs. 

Rosenbrock [29] gives a boundary-layer method for considering constraints, but this was 

stated with the expectation that optima are likely to lie on, or beyond, the constraints of 

one or more variables, as is often the case in linear programming problems. In problems 

where the constraints are arranged such that the optima are expected to lie away from the 

boundary regions, there is no need for numerical consideration of a boundary layer; in such 

cases we can set the objective function to a maximum value for all c outside the feasible 

region without further computation. We define the constraints 

< c < aX, 

ammn < a <umax 	 (4.20) 

and define the N,-dimensional feasible region enclosed as A. This region is convex. 

The feasible region may have some dimensions with boundaries which are several orders 

of magnitude larger than others. Choosing step-sizes 1 is therefore not trivial, as a given step 

size may be very small in one dimension and very large in another - while the optimisation 

algorithm is capable of dealing with this, there are more efficient solutions. We can normalise 

the finite-sized space A into another space A', such that the constrained region is of unit size 

in each direction, by the simple normalisation 
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min , __________ 
cax_arnin' 	 (4.21) 

where a E A and a' E A'; the optimiser then moves in space A', but de-normalises into A 

to compute the objective function (and termination criteria). It is then reasonable to set the 

step sizes to a common value at the beginning of each stage; a good choice for the initial 

stage has been found to be I (0)  = 0.1 Vi, which corresponds to 10% of the total size of the 

constrained space. 

Various values were tried for the step size at the beginning of subsequent stages; it was 

found that a peculiarly effective method was to leave the step sizes unchanged from one stage 

to the next, i.e. i' = Conceptually, this is difficult to justify because there is no direct 

(0) . 	. 	. 	(0) 	. 	. 	. 	(1) correlation between a step of size 	in direction d and in direction d2  . We retain the 

effectiveness while resolving this difficulty by setting every new step size to be the mean 

absolute value of the previous step sizes Vk. 

N 
- _ 2 _ 	1i(°) 

k 	NV'—'I 
i=1 

(4.22) 

We expect the vectors to point towards the direction of best progress, so the step sizes should 

all be positive at the beginning of a stage. 

4.3.3 Termination Criteria 

There are several candidate criteria for termination of the procedure; we consider them each 

in turn. First, we must consider when these criteria might be applied. There are three 

sensible possibilities: after each single evaluation, after each phase (i.e. one step in each 

direction) and after each stage (i.e. immediately before the orthogonalisation procedure). 

We note the possibility that, even in an otherwise successful optimisation, a single phase may 

yield no change to the design (e.g. if the initial direction vectors all pointed away from a 

single optimum) and care must be taken when applying convergence criteria here. 

The most simple criterion is to count the total evaluations of 0, and terminate the 

program once a specified maximum has been reached, allowing an upper bound to be placed 

on the total computation time. This may be applied after each evaluation, but doing so after 

each single phase allows each design variable to receive equal consideration. 
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Placing some criterion on the step size, for example max(1) < E, may seem intuitively 

appealing, but this is of little use as 1 dictates the size of the next step to be taken, and is 

not therefore a direct representation of the progress of the optimisation during the preceding 

phase or stage. When no further improvements are found by movement in a given direction, 

the step sizes will become progressively larger, while at the same time progress is being made 

in other dimesions, with the corresponding step sizes becoming smaller. Hence the optimiser 

may be very close to an optimum and yet have some very large step sizes. 

Comparing Q*  against some earlier, retained value, terminating if difference 6 < e is a 

reasonable method when applied at the end of a stage. The Rosenbrock procedure tends to 

converge slowly and somewhat sporadically when it is close to an optimum; this criterion 

may be useful for coarse approximations but will not be sufficiently reliable for fine work. 

We consider now terminating if the total steps taken in a each direction d i  are all small, 

i.e. max(A 2 ) < e, after a completed stage. This is a good measure of how far the optimiser is 

'moving' around the target space, but suffers from the vectors d i  being linear combinations 

of the design variables and therefore having no direct physical interpretation. We instead 

simply subtract c from some previously retained value (say a*  after the previous stage) 

to give ,u, being the distances travelled in each coordinate direction during that stage (note 

that ti and A are equivalent if d are the coordinate directions). We now have a measure 

of how much each design variable has been changed - if the design variables all represent 

lengths then we can set a length E as a tolerance, so when the largest changes are below this 

tolerance we deem the optimisation to have converged. 

4.4 Genetic Algorithms 

4.4.1 Overview 

Genetic algorithms [32] are examples of stochastic optimisation; they converge to optima 

by simulating processes found in evolutionary biology. There are several distinct types of 

genetic algorithm, differing in details of implementation; we focus here on a simple genetic 

algorithm (in practice this is no less complicated than other types, but is thus named as 

it was the first type to be developed). An initial population of individuals (i.e. possible 

solutions c E A) is randomly generated, or otherwise determined, with the values of each 



design variable cei called chromosomes. The fitness of each individual is evaluated. A new 

generation of individuals is introduced into the population to replace the existing individuals 

(The fittest, elite, members of the population are not replaced). The chromosomes of the new 

individuals are found by mating two 'parent' individuals from the previous generation; thus 

the 'child' will share certain characteristics with each of its parents. The process by which 

parents are paired together is called selection, and is commonly based on the fitness data. 

Additionally, random perturbations, or mutations, may be applied to introduce new 'genetic 

material' into the population. The process is then repeated, with one generation's children 

becoming the parents of the next, until the termination criteria have been met. 

4.4.2 Selection, Crossover & Mutation 

In order to produce a new generation, members of the current generation must mate; selection 

is the process by which these mates are paired up. For each child to be generated, the 

parents are randomly selected. Under roulette-wheel selection, the probability of a parent 

being chosen is directly proportional to its fitness relative to the population - thus the fittest 

parents will have the most children. 

Crossover is the process by which two parents' chromosomes are combined to produce a 

child. The method described here is array uniform crossover. If one parent is the 'father' 

and the other the 'mother', for each of the N chromosomes (design variables), there is a 

prescribed probability that the child will inherit its father's version of this chromosome; it 

otherwise inherits that of its mother. The child will therefore have a mixture of its mother's 

and father's chromosomes. 

Each of the chromosomes of each new child is subjected, with prescribed probability, to a 

perturbation, or 'mutation', to the value of the chromosome, the size of which is randomly-

determined within a prescribed range. While crossover jumbles existing genetic material 

into different combinations, mutation introduces new material into the population. Either of 

these processes may result in a child which is more or less fit than its parents. Two parents 

which are not the fittest may produce the fittest offspring due to a fortuitous combination of 

chromosomes. 
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Chapter 5 

Optimisation of Brass Instruments 

5.1 Introduction 

The calculation of the input impedance of a brass instrument from its bore-profile has been 

covered in Chapters 2 & 3. The inverse problem of finding the bore of an instrument from 

its impedance can be solved using optimisation techniques. This requires an optimisation 

algorithm such as those in Chapter 4, a suitable geometric representation of the instrument 

as a set of design variables to be optimised, and an objective function with which to judge 

the merit of each potential match. 

To the author's knowledge, two previous attempts have been made at this inverse problem. 

The first, by Kausel [19] represents the instrument using a piece-wise linear interpolation of 

points along the bore ('point-wise'), and optimises using either the O th1 -order Rosenbrock 

search algorithm, or (unsuccessfully) an incremental genetic algorithm. This method has 

been incorporated into a commercially-available product, and has been successfully used by 

a Swiss manufacturer to design trumpet leadpipes [20]. While practical use of this kind is 

most encouraging, the method certainly has room for improvement. The second attempt, by 

Noreland [21, 33], uses a point-wise representation of the second derivative of the bore radii, 

and the gradient-based Levenberg-Marquardt algorithm to give smoother bore-profiles. Both 

of these techniques use only the plane-wave model. Similar techniques have been applied to 

the optimisation of xylophones [34, 35], and to leak detection [36]. 

Optimisation techniques of this kind can be applied either to bore reconstruction problems, 

which find an unknown bore from a known impedance curve, or performance optimisation 



problems, which improve the design of a given bore so that its impedance matches desired 

characteristics (such as intonation or impedance envelope). While these problems are concep-

tually quite different, when considered from an optimisation standpoint they can be solved 

in very similar ways. 

Instrument manufacturers have an enormous amount of accumulated expertise regarding 

the design and construction of high-quality instruments, and newly-designed models are pro-

duced frequently. The design process is costly and time-consuming, as it generally involves 

building prototypes which may or may not be an improvement over existing models. An 

easy-to-use computational design tool would be an invaluable asset as it would allow a great 

many potential designs to be tried very cheaply and quickly. Given a successful and fast 

optimisation technique, an accurate physical model, accurate measurements of the bore and 

impedance of real instruments, and an understanding of the correlation between impedance 

properties and playing characteristics, a tool can be created which is of genuine use for brass 

instrument design; while human expertise in design and testing will always be paramount, 

such a computational tool may give valuable assistance. 

In this chapter we consider the concepts behind the optimisation technique presented in 

this thesis. In Chapter 6 we consider the practical implementation of the technique, and we 

explore its capabilities in Chapter 9. 

5.2 Problem Definition 

5.2.1 Objective Functions 

In order to set up an optimisation problem, we must have a quantitative method of evaluat-

ing possible designs. Input impedance magnitude is an objective acoustic property, contains 

much useful information about the performance of the instrument, is experimentally measur-

able, and can be calculated numerically; this combination of features allows us to centre our 

optimisation around it. The peak locations (frequency, magnitude) have the greatest influ-

ence on the performance, though other properties, such as the width and shape of peaks, also 

have an effect. We wish to find the instrument shape whose impedance curve best matches 

certain targets; this target will be defined in terms of another impedance curve and/or certain 

specific characteristics regarding the impedance peaks. 
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An objective function must be chosen to compare the impedance properties of each 'tested' 

instrument to target impedance data. In the manner of Chapter 4, we denote the instrument 

geometry symbolically by a - we will return to the details of this later. Three objective 

functions are used here in different combinations depending on the task, each giving scores 

between 0 (a perfect match) and 1 (no match). Typical tuning-parameter values, found 

from experience, are given. The objective functions are formulated as for a minimisation 

problem, though in practice a percentage score (maximisation) may prove more intuitive, 

and conversion to such an output is trivial. The first function is a windowed linear least-

squares comparison of the entire (discrete) impedance magnitude curve with N pt  points 

Nt 	(6z)2 	
if  Jzi <v, 

V2 	 (5.1) 
1 	if 6zi  > v, 

where 6zi = z(f) - 2(f)I, i.e. the difference between tested impedance magnitude z and 

target 2 measured at a series of frequencies f, and ii is the half-width of the window (usually 

100 - 300kl). The windowing eliminates the case where the score of a certain very bad 

feature can overwhelm the more subtle difference between another feature being good and 

very good, thus improving overall convergence. Both Kausel and Noreland use this least-

squares approach, but without the windowing. The second function is a windowed-Gaussian 

comparison, scoring only the peak-frequencies 

Npk I 
pk 

1—exp 	
) 

1 - exp(—) 
if Sq (5.2) 

1 
	

if 60i  ~! 

where Sq j  = cbj -  Oi l, i.e. the difference between tested peak-frequency Oi and target peak-

frequency j  of peak i, the window half-width ii (typically 10Hz), po is a 'strictness' pa-

rameter (typically 20 - see figure 5.1) and Nk the number of impedance peaks being tested. 

The function joins smoothly at the window bounds O i  ± vp to take a value of 1. The gradient 

of the Gaussian function is much steeper at a moderate distance from the target than the 

equivalent least-squares function, and consequently offers improved convergence speed in this 

region. 

A very similar function 03 is also used for the peak-heights, using difference 
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Figure 5.1: Gaussian objective function, half-window size 1, with strictness parameter ji = 20 

(solid) and t = 40 (dashed). 

and magnitude-dependent window half-width vz(), with parameters v, and pz  (typically 

0.05 and 10 respectively). We then define an overall objective function 

0(a) = ciOi(a) +;202(a) + ;303(a) 

cl+c2+c3 	
, 	 ( 5.3) 

where cl ... 3 are weights which can take any real value, but are generally 0 or 1. Later we refer 

to the choice of objective function as e.g. {0, 1, 01, denoting values of c.  We then seek a to 

maximise 0(a). 

5.2.2 Instrument Representation 

Analogy 

In the most general terms, there are two basic approaches to design problems: top-down and 

bottom-up. Top-down design considers the problem as a whole and divides it into a series 

of tasks which are then, in turn, divided into sub-tasks, and so on until the specification 

is detailed enough to give a complete design. Bottom-up design starts with the specific 

placement of the most basic components (often within an outline of the overall project) 

and builds up, section by section, until the design is complete. The most efficient choice of 

approach depends on the problem. 

Consider two example projects: an architect designing a house, and a writer authoring 

a book. The architect may begin by specifying the locations of the walls and roof, followed 

by the windows and doors, followed by plumbing and other fixings, and so forth - only 

.6 

0 
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at the end of the process are the finest details specified. At the most fundamental level, 

consideration of the size and location of the individual bricks is the last part of the design 

process, and even this may be delegated to a builder. The architect would not begin by 

choosing a total number of bricks and considering how best to place them to suit his overall 

goals. This is an example of a problem that is suited to top-down design - while it is possible 

to use a bottom-up approach, it is clearly not the most effective method. Now consider the 

writer. Having decided on a rough overall structure, she writes each chapter in detail before 

proceeding to the next. Clearly there will be some interconnection between the chapters, but 

her primary concern is ensuring that words and sentences flow continuously. She would not 

begin by laying out the meaning of every chapter, paragraph and sentence in the book before 

returning to fill in the words. This is an example of a problem that is suited to bottom-up 

design; again, it is possible to use the opposite approach, but it is clearly less efficient. 

In both examples, the end result is simply a complicated combination of unit elements 

(bricks or words), the correct placement of which is essential. The problems are not different 

in principle, but in practice they are solved in quite different ways. Consider all the possible 

ways of arranging of a number of bricks. The vast majority of these would be described as 

'a pile' and not as 'a wall' or 'a house', and are therefore useless to the architect. However, 

the same is true in the case of words - the vast majority of possible permutations of words 

are nonsensical, which is clearly undesirable for writers. The manner in which these useless 

cases are best avoided may dictate the approach used - the architect specifies the wall first 

and arranges the bricks accordingly, whereas the writer arranges the words into sentences 

and builds them into chapters. 

Brass Instruments 

Returning to the problem in hand, we observe the previous attempts at solving it - we 

recall the distinction between bore reconstruction and performance optimisation. In both 

Kausel's and Noreland's methods, the instrument is represented point-wise as a large number 

of points along the horn (assuming axi-symmetry); the coordinates of these points are the 

design variables. In Kausel's method, no attempt is made to avoid inappropriate designs, so 

many outlandish shapes are possible; for example, [19] fig. 6 cannot reasonably be described 
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as 'a brass instrument'. Noreland's method uses the second derivative of the geometry to 

ensure smooth transitions from point to point. Nevertheless, 'wiggly' shapes are common 

([21] fig. 14); while this is clearly an improvement, it can still give unsatisfactory solutions. 

Using the above analogies, it may be argued that Kausel's method is akin to searching 

for a wall within all the possible permutations of bricks, whereas Noreland's method ensures 

that each brick is placed next to the previous one in a (locally) orderly fashion (as the writer 

might with her words), but again does not guarantee a (global) wall. These are bottom-up 

approaches; while they are both successful, they may not be the most efficient solution. Here 

we present a top-down approach to the same problem, which has proven to be most effective 

at providing feasible instrument shapes and avoiding 'jagged' or 'wiggly' designs. 

Implementation 

In general, the convergence rate of optimisation algorithms is strongly dependent on the 

number of design variables N and the size of the design space; by reducing each of these 

properties without compromising effectiveness, we can improve the performance of the opti-

misation. Here we lay out a technique that both reduces the number of design variables and 

constrains the design space as much as possible by trading off generality that is not relevant 

to the problem in hand. Care must be taken to avoid pre-determining the eventual solution 

by constraining the space too restrictively; the optimiser must be given enough freedom to 

explore many reasonable solutions. 

Let us consider the design of a trombone from a top-down approach. Neglecting the 

mouthpiece, it can be divided into two basic sections: the slide and the flaring bell section. 

To a first approximation, the slide is a long cylindrical tube, the geometry of which can 

be described completely by its length and radius. Likewise, a simple, higher-order way of 

approximating a trombone bell is with a Bessel-horn (see appendix B), defined as 

r(x) = 
	

(5.4) 

where r is the bore radius a distance x along the axis of instrument, y  is a flare constant 

and b a constant usually defined in terms of specified length and input/output radii. This 

simple analytical equation gives a good first approximation of real instrument bells; given 
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Figure 5.2: Two Bessel-horns with different flare parameters. 

appropriate constraints on length, radius and flare, we can define a space of possible shapes, 

all of which resemble trombone bells. This, combined with the cylindrical slide section, uses 

5 design variables to give a design space which consists entirely of reasonable (albeit simple) 

trombone shapes. By confining the design space in this manner, we have eliminated a large 

number of unacceptable possible solutions which human judgement would reject out of hand. 

Bessel-horns, however, are not exact matches for real trombone bells, so the design space 

here is too limited to solve the problems for which it was intended. 

Continuing in this manner, we can expand on the description of the bell to allow a greater 

freedom of design. By describing the bell as a number of shorter Bessel-horns placed end-on-

end [37], we can achieve much closer matches to real instruments. We term this piece-wise 

Bessel-horn interpolation. As with other piecewise interpolation techniques, we must allow 

a discontinuity of gradient at the joins between pieces, without which the two pieces would 

be indistinguishable from a single piece and would therefore confer no additional freedom. 

Cases with small gradient discontinuities are realistic, but some unrealistic designs with large 

gradient discontinuities do exist into the space (e.g. figure 9.2); while this is not ideal, they 

are proportionately far less frequent than for other representations. In practice, the shape 

of a real trombone bell can be very closely described by 5 Bessel-horns of different flares, 

giving N = 12, where one variable is the length of the sections, 6 describe the input and 
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output radii of the sections and 5 give their flare coefficients (point-wise approaches typically 

require N 100). Use of this higher-order description has therefore conferred significant 

reduction in the number of design variables, and therefore an increase in optimisation speed 

when compared to pointwise representations. Examples are given in Chapter 9. Note that, 

under the plane-wave assumption, the Bessel-horn transmission matrix (2.43) may be used 

to reduce computation time. 

In this way, we can form descriptions of the complete general shape of the instrument to 

be designed [38]; we term this a design template, and it is a representation of the detailed 

geometry of the instrument without the exact dimensions (roughly speaking, the designer 

knows the topology of the design without knowing the topography). A template can be 

constructed that can describe all trombones fairly closely; however, in practice it is more 

effective to have more detailed templates for more specific problems, such as tenor and bass 

trombones. 

Approaching optimisation problems in this manner trades off generality to improve con-

vergence. One of the advantages of the pointwise approach was the suitability to any given 

problem with little or no prior knowledge of the instrument shape - so-called 'black-box' prob-

lems. The approach given here assumes that the rough shape of the instrument is already 

known; while this is less attractive in principle, the disadvantage is negligible in practice. 

Given that the primary objectives are the reconstruction and optimisation of brass instru-

ments, it is not unreasonable to assume that the class of the instrument (e.g. trumpet, 

trombone) is already known, and therefore that the rough shape is also known; we can thus 

choose a template from prior knowledge of these instruments. We set the constraints to be 

large enough that the design space includes all known instruments of that class, so that it 

is still general enough to include all solutions to the specific problem in hand, but removes 

many of the unreasonable solutions that another, more general, approach would include. This 

approach favours pragmatism over rigorous generality, but it should be noted that we can 

construct templates to consider general problems in the same (point-wise) way as [19], so, 

rather than being lost, this generality is merely put aside unless needed. Results are given in 

Chapter 9. 

Given the reliance on templates, a user must have the ability to define new templates 



easily. The task of implementing this computationally is fax from trivial; however, an elegant 

solution is given in Chapter 6, along with other practical details of the optimisation technique. 

5.2.3 Templates 

In the previous section, we defined a template as being an abstract description of the geometry 

of an instrument without the exact dimensions. We will expand on this definition here, and 

give some example templates. 

We define, as our base unit, an element. Each element represents part of the instrument. 

There are two types of element: single and list. Single elements describe a section of the in-

strument, often with simple geometry; examples include cylinders, cones, bore discontinuities 

and Bessel-horns. Single elements are defined in terms of variables dictating their individual 

properties (e.g. length, radius, flare constant) - an instrument may then be constructed 

from these elements. The properties of one element may depend on those of another - for 

example, two adjacent cones may be defined such that the input radius of one is the output 

radius of the other to ensure a continuous join. List elements describe more complex parts 

of the instrument as a list of single elements. They have no additional properties, but are 

merely a convenient way of treating a distinct section of the instrument as a single element; 

for example, a mouthpiece is well-suited to being represented as a list element consisting of 

cone elements, so it may then be moved easily between instruments. An entire instrument is 

itself a list element, and may recursively contain other list elements. 

Symbolically, once a template has been defined, we can specify values of the design vari-

ables in order to construct an instrument a. We return to our simple example and model 

a trombone as a cylindrical slide a' and a Bessel-horn a 2 ; the trombone a is then a 

column-vector of elements such that cx = [a ( ' ) , a( 2)] Continuing in more detail, the slide 

has a length d' and a radius rM, giving a' = [d( ' ) , r( ') ], and the Bessel-horn has length 

input radius r' (i.e. a smooth connection), output radius r 2), and flare y(2),  giving 

= [d(2), r(l), r( 2), y ( 2)]. Combining this gives aT = [d(l),r(l),d(2),r(2),y(2)] - so we have 

constructed a set of N = 5 numerical design variables from our template (note that r' 

appears only once). 

The template approach has several advantages, which we examine more closely in Chapter 
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Figure 5.3: Bore-profile generated by template from table 5.1 with each element numbered. 

6. Point-wise approaches describe the instrument as a series of points relative to a coordinate 

origin; if, for example, one section were to be lengthened, all other points further down the 

instrument would have to be modified accordingly. With the elemental method, elements 

can be modified, removed or added without affecting the rest of the instrument. This self-

contained approach has been proven to be convenient for defining and modifying templates. 

Example 

Detailed measurements were taken of the geometry of a real trombone. A template was 

constructed, and specific values were chosen to approximate this bore profile (table 5.1, figure 

5.2.3). This template contains 14 elements and 22 design variables; the mouthpiece and lead-

pipe section is specified as preset, as is the input radius; all other parameters are variables. 

For optimisation, wide constraints are placed on each the design variables, such that all 

reasonable designs are included. Note that the flares of the shorter Bessel-horn sections differ 

somewhat from the flare of the closest equivalent single Bessel horn with 'y = 0.7. 
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No. Element length radius flare Description 

1 LIST 26.145 1.286. .0.664 Mouthpiece & lead-pipe 

2 JUMP 0.664. .0.695 

3 CYLR 139.439 0.695 Main slide 

4 JUMP 0.695. .0.725 

5 CYLR 26.910 0.725 Neck-pipe 

6 JUMP 0.725. .0.755 

7 CONE 21.990 0.755. .0.990 Tuning-slide 

8 CYLR 6.732 0.990 Sleeve 

9 JUMP 0.990. .1.053 

10 CONE 5.336 1.053. .1.105 Bell 

11 BESS 15.042 1.105. .1.507 1.260 

12 BESS 15.042 1.507. .2.228 0.894 

13 BESS 9.685 2.228. .4.118 0.494 

14 BESS 5.593 4.118. .10.860 1.110 

Table 5.1: Templated description of a trombone (units/cm). 
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5.2.4 Design Tolerances 

When applying the Rosenbrock algorithm to trombone design, we must ensure that the value 

of tolerance E is appropriate for all the design variables - the largest of the distances travelled 

in each coordinate direction must be less than this tolerance value for the optimisation to 

terminate. Michael Rath Trombones [39] specify that a tolerance of 0.01mm is ample for 

their design purposes, so no further precision on any direct physical parameter is necessary. 

However, we use here the flare coefficients for Bessel horns as design variables; these generally 

take values between 0 and 1.5. In order to meet the specified tolerance on the dimensions of 

instruments, we must examine how the flare parameter affects these dimensions. The software 

stores length values in centimetres, so the tolerance in these units is therefore 1 x 10 3 cm. 
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Figure 5.4: Difference in bore between two Bessel horns, demonstrating effect of changing 

flare constant from 0.7 to 0.701. 

We choose two Bessel horns of dimensions typical of a complete trombone bell (length 

44cm, radius 1.13 - 10.6cm) with flare constants of 0.7 and 0.701 respectively. Fig. 5.4 shows 

a plot of the difference in radius of these two bells throughout their length; we see that the 

maximum difference is 6 x 10 3cm; this is the same order of magnitude as the tolerance, but 

a little too large. We repeat the test with a shorter section from the extreme bell (length 

14.8cm, radius 4.4 - 10.6cm), such as that might be found in a 4-Bessel bell, with flares 0.7 

and 0.701 - we find the maximum difference is 1.5 x 10 3 cm, which is only slightly too large. 

For most work a tolerance of E = 1 x 10 for all variables is acceptable, but for fine work 

= 5 x 10 is needed to enforce the design tolerance rigidly with multiple Bessel-sections 

and E = 1 x iO with one. 
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Chapter 6 

Design of Optimisation Software 

6.1 Introduction 

In previous chapters, details of optimisation algorithms, objective functions, instrument rep-

resentations and impedance calculations have been laid out. In this chapter we consider the 

practical details of their implementation, with an emphasis on the programming problems 

faced. 

A primary objective of this work is to develop software for optimising brass instruments; 

this software must be easy to use, fast, and flexible enough to be applied to a variety of 

problems. It is common practice for computational work in this field to produce a series of 

short ad-hoc programs in an interpreted language (e.g. MATLAB). While this has obvious 

advantages, it is not sufficient for our purposes; we instead attempt the more difficult task 

of a self-contained application in a compiled language. The software produced is a single 

executable application which requires no programming knowledge to use. Care has been 

taken to ensure that the code is properly laid out, commented, easy to read, and easy to 

modify and expand with minimal effort. The code is highly modular, and sections may be 

reused for future applications (e.g. [40]). Approximately 6000 lines of source code constitute 

the program, and represent a very substantial time investment. 

ANSI C++, a modern object-oriented compiled language, was chosen for the source code. 

There exist C++ compilers for virtually any hardware platform, so the software is easily 

portable, and has already been used on both Linux and Windows-based PC's. The CCC [41] 

compiler (which is very widely available under a GNU license) was used during development. 
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At present, the software operates from the command-line, though a graphical user-interface 

(GUI) could be added easily; development of this is beyond the scope of this work. Instead, 

graphical output, such as impedance plots and bore profiles, is provided in a format readable 

by either the MATLAB or Maple mathematical software environments. 

With interpreted languages it is common practice to 'hard-code' input values (e.g. opti-

misation parameters) into the program itself, so the program can evaluate only one special 

case and is modified for each desired case; with compiled languages this is more inconvenient 

and is considered inelegant. A considerable amount of programming effort has ensured that 

all input data can be provided by the user in plain-text files, so the program requires no 

modification to attempt a given problem. Given the complex nature of the data structures 

used, this is not a trivial task, but it allows software to be applicable to the general case, and 

makes it considerably easier for a new user to learn how to use the software. 

The description of the software is far from exhaustive, and omissions are intentionally 

made for clarity. This thesis is written from the point of view of a physicist rather than 

a computer programmer; while a large proportion of the work pertaining to this thesis has 

been invested in the programming of this software, a detailed analysis is not relevant within 

these bounds, and would require a lot of background to be given for the average physicist to 

comprehend it in full. The main underlying concepts are laid out, along with the fundamental 

aspects of the program design. Any reader interested in a greater amount of detail should 

consult the source code on the CD-ROM which accompanies this thesis. 

6.2 Instrument Representation 

In order to best implement the template-based instrument representation described in chapter 

5, the program requires an object-oriented design. We give an overview of the key concepts 

of object-orientation sufficient to give details of the template implementation. 

6.2.1 Object Orientation 

This is a modern programming paradigm common in the development of large-scale appli- 

cations. Rather than the source code being a list of functions or instructions, it is instead 

organised into objects, being self-contained data structures with all functions necessary for 

75 



their own maintenance and operation. Objects can be created, manipulated and destroyed 

by other objects. 

Consider first the classic analogy of a dog, which we'll name 'Fido'. This dog is of a certain 

size, has four legs, can propel itself (walk), and can fetch sticks. Fido is like other dogs, but 

is not identical - other dogs may be larger for example, but will share the same inherent 

'dogginess'. Dogs are mammals, and operate biologically in a similar way to other mammals. 

All mammals propel themselves in some way, but only dogs fetch sticks. All mammals have 

the property of size, but not all have four legs. A dog is an example of a mammal; Fido is 

an example of a dog, but also an example of a mammal. Fido has characteristics unique to 

dogs, and 'doggy' versions of characteristics common to all mammals. 

In more general programming language, objects are described by (among others) the 

following terms: 

Class: An overall description of a set of possible objects which share certain basic character-

istics and behaviour, but differ in the details. 

Base class: A high-level description of possible objects which share common features but 

may have significant differences, e.g. mammal. 

Derived class: A more specific description of one type of object (e.g. dog) which also belongs 

to one or more base classes (dogs are mammals). The range of certain values may be more 

closely specified (e.g. size), and other values may be known exactly (e.g. number of legs). 

Object: A single instance of an entity belonging to a class, e.g. Fido. All values describing 

the object are exactly specified. There may be many different objects of the same class (e.g. 

another dog called 'Rover') which may differ in certain ways (e.g. Rover may be a larger dog 

than Fido). 

Member Function: An operation which an object of that class is capable of performing, either 

on itself or on other objects. For example, dogs have the 'fetch stick' member function. 

Member Variable: A value describing a feature of the class, e.g. size is a member variable of 

mammal (and therefore dog), whereas 'preferred stick length' is a member only of dog. 

Encapsulation: The inclusion of relevant functions within an object, so that the object may 

act by itself, e.g. Fido does not need to be told how to fetch a stick, he knows how to do that 
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by himself - the 'fetch stick' function is encapsulated within the dog. 

Inheritance: The process by which objects of a derived class obtain the members defined in 

a base class. For example, all mammals, including dogs, can propel themselves. While dogs 

may move differently from, say, whales, the ability of propulsion is inherent to mammals, not 

just dogs. Therefore, we say that a dog's ability to move is inherited from its definition as a 

mammal. 

Override: A derived class may replace functions defined in its base class with its own versions. 

For example, a dog class will override the 'propel self' function with one that specifies the 

details of its own style of movement; a whale may do likewise, and, while the details will be 

very different to the dog's function, the effect will be equivalent. 

Polymorphism: The ability of a function to act on objects of various derived classes that 

share a common base class, which may or may not act differently depending on the identity 

of the derived class. For example, one might stroke a cat and a dog in a similar way, but a 

horse in a different way; the 'stroke' function is polymorphically applicable to all mammals 

(by contrast, the 'throw stick' function is applicable only to a dog; both of these would be 

member functions of class 'human'). 

6.2.2 Element Implementation 

As we saw in chapter 5, the template representation is based on elements, which are sections 

of tubing which can be combined to build an instrument. Single elements describe a distinct 

section with an analytical description of its geometry, such as cylinders, cones and Bessel-

horns. We now axpand this description to two categories: primitive and composite elements. 

A primitive element has simple geometry and an analytical solution for its input impedance, 

such as cylinders and (in the plane-wave approximation) cones. A composite element has no 

such analytical solution, but its impedance can be calculated numerically by approximating 

it as a series of primitive elements - e.g. a Bessel-horn is a single element, but its geometry 

must be approximated by cylinders or cones to obtain a (lossy) impedance result. In addition, 

a list element consists of a series of single elements - e.g. a mouthpiece may be a list element 

consisting of many cone elements. 

In keeping with the principles of object-oriented design, we define a base class called 

77 



HornElement, which we will use to describe the general properties of elements. We then 

define a series of derived classes inheriting from this base class, each representing one of various 

single elements. Consider first CylinderSection. This class contains members describing 

the geometry of the cylinder and encapsulated member functions to calculate its own input 

impedance from a given output impedance. Other primitive elements, such as ConeSection 

and BoreJumpSection are defined in a similar way. Then we define a composite element 

BesselHornSect ion; in order to calculate its input impedance, it approximates itself as a 

series of cones and calls the appropriate ConeSection impedance methods, then returns the 

overall result. 

We now have a set of classes describing the single elements; we now consider the list 

elements, for which we will use a linked-list data structure. In general terms, this is an 

efficient way of representing an ordered list of objects of a given class. Given that a list 

element (and, therefore, an instrument) is likely to contain several different types of element, 

we must define this linked-list polymorphically. Hence, we define list<HornElement*> - we 

set up a list of HornElements (actually pointers to HornElements, but we will not consider 

the details of pointers here), so that any object which inherits from HornElement may be 

included. However, we wish for list elements to include other list elements, so they must also 

inherit from HornElement. We have thus set up a recursive, polymorphic linked-list, which 

is the central part of the structure of our instrument representation. It is therefore very easy 

to add and remove elements from this list as required. 

Given the linked-list structure we have set up, we now define the class Windlnstrument, 

which we use to represent entire instruments. The class inherits from HornElement (and can 

therefore be included in list elements) and has, as a member, a list as described above. Its 

impedance member functions call, in turn, the impedance functions of each element in the 

list to obtain the impedance of the whole instrument. Windlnstrument also contains member 

functions that can load and save instruments from stored text files, the implementation of 

which was not trivial. Due to the elegance of the template approach, complex instruments 

can be described (and modified) very easily in these text files, and it is significantly easier 

for a user to 'tinker' with instrument shapes than it is with a point-wise approach. 

New element types can be defined and included very easily; this has obvious advantages 
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Figure 6.1: Class heirarchy, showing base classes (bold), inheritance (solid lines), derived 

classes (solid) and member data (dashed). 

for future development. Indeed, at a later stage the author added the new element type 

CylinderBendSection with minimal difficulty - adding the capability for such objects to a 

point-wise representation would be troublesome, and inelegant at best (though implementing 

the input impedance calculations is equally difficult in either case). 

As an example of the easy expansion of this software, we take the leak-detection optimi-

sation problem attempted in [36]. In order to attempt similar problems, a ToneHoleElement 

class would need to be defined, and the relevant impedance model defined as a member func-

tion. Then, once an appropriate design template was constructed, the software would be 

able to attempt leak-detection problems with no further difficulties. Each of these tasks is 

rendered straightforward by the flexible program design; without it they would likely cause 

some considerable difficulty. 

6.2.3 Template Implementation 

It has been shown how the elemental description of an instrument provides a greater deal of 

flexibility than does a point-wise representation. However, the principal advantage becomes 

apparent when optimisation problems are considered. The concept of top-down design and 

its application to brass instruments has already been discussed, and the concept of templates 



introduced. The object-orientation and elemental implementation described above are es-

sential to the template representation; while they were difficult to implement, the flexibility 

gained allows other complex tasks, such as templates, to be achieved very easily. Without the 

sophisticated elemental representation, the templates would be very difficult to implement in 

a general way. 

A user may easily specify, in a text file, a template for an instrument to be optimised. All 

that is required is to specify the element types required for each section, along with constraints 

or constant values for each geometric parameter. Each design variable is therefore specified 

ready for optimisation. Other saved list elements, such as a mouthpiece, may be included 

and held constant. Each design variable may specify dimensions for several elements, such as 

a bell with multiple Bessel-sections of equal length, or two sections always meeting smoothly. 

At present it is not possible to co-optimise over several different valve or slide positions, 

though the necessary expansion should be relatively straightforward. 

The net result of this approach is to allow the user a fast and flexible method of defining 

optimisation problems, with the additional benefit of minimising the size of the design space. 

It is easily expandable: it works for any general template, is independent of the choice of 

objective function, and it can be used with any appropriate optimisation algorithm, including 

both the Rosenbrock and genetic algorithms used here, and also the Levenberg-Marquadt 

algorithm used in [18] (Noreland sets out how this algorithm may be used with paramaterised 

representations). The template approach can therefore be declared not only a success, but a 

good starting point for any future attempts at instrument optimisation. 

6.3 Impedance Curves 

Although the objective functions have been stated mathematically (5.1, 5.2), the practical 

implications of their implementation must be considered. Most notably, in discrete impedance 

curves the magnitude will be known only at certain values. Calculated impedance curves are 

commonly approximated by a series of points at regular frequency intervals. Finer grids 

give more accurate peak locations but are computationally more expensive; an alternative 

adaptive grid is offered here. A coarse grid, calculating impedance every 8.011z, is used to 

give a first approximation. The peak frequencies are then refined to a given tolerance by a 

ME 



combination of the bisection method and inverse parabolic interpolation. 

To seek numerically the extremum of a smooth function 1(x) known at three points 

1(a) < 1(b) > 1(c) with the extremum bracketed by a and c, and a < b < c, the bisection 

method evaluates the function at two new points 1(d) = f() and 1(e) = f() equally 

spaced between the centre point and the right and left points. Then, max{f(d), f(b), f(e)} is 

chosen as the new centre point, and new points are inserted equidistant between it and the 

nearest known points to either side. This process continues recursively until the distances 

between known points, and therefore the peak location, is within a given tolerance E. 

A more effective but less robust method for solving the same problem is inverse parabolic 

interpolation [42]. Given 1(a) < 1(b) > 1(c) as above, a parabola is drawn through these 

three points. It is assumed that this parabola is a good approximation of the function; for 

any smooth function this is valid when close to a peak. The maximum of this parabola 

- 1 (b - a)2[f(b) - 1(c)] - (b - c)2[(f(b) - 1(a)] 
x=b 	 (6.1) 

2 (b—a)[f(b) —1(c)] - (b—c)[f(b) —f(a)] 

will therefore be a good guess at the location of the maximum of 1. This point, along with 

its two neighbours, can recursively be used to give another parabola, and so on until the 

tolerance criterion is met. 

By using either of these peak-finding algorithms, an impedance curve can be represented 

in the region (0, 2000)Hz with peaks known to a tolerance of 0.00001Hz by 850 points, 

compared with 2 x 108  points needed with a regular grid; these peak data are then passed to 

(5.2). 

The HornElements have member functions for calculating impedance using either the 

plane-wave or the multi-modal method. A user may specify which model to use, along with 

how many modes to include. These functions return the values which together form an 

impedance curve; any subsequent treatment of the impedance curve is independent of the 

choice of model. 

A class ImpedanceCurve is defined, which holds linked-lists of points on the curve. The 

objective functions are encapsulated; given a target curve and relevant tuning parameters, the 

impedance curve compares itself and returns the fitness value. Other objective functions can 

be defined and added easily. Saved impedance curves can be specified as targets, including 



the output from BIAS [43]. 

6.4 Optimisation Algorithms 

For the experiments using genetic algorithms, the well-established free program library GALib 

[32] was used. An implementation of the Rosenbrock algorithm was written from scratch. 

GALib is an extensive programming library, allowing genetic algorithms to be set up and 

run easily. It contains classes to describe the genome (structure) of individuals and the whole 

population, and functions to handle the evolution of the population from one generation to 

the next. It is highly customisable for individual problems. 

The capabilities of the template representation have already been discussed, but funda-

mentally the instrument c is represented by a vector of real numbers. When setting up the 

genetic algorithm, rather than using the built-in GAlDArrayGenome, we gain greater freedom 

by having Windlnstrument inherit from GAGenome, and having each HornElement encapsu-

late its own crossover and mutation operators. We therefore use the template representation 

throughout the genetic algorithm, without at any point needing to reduce the problem to 

an array of numbers. The same technique is not possible with Rosenbrock, because the 

movement of the algorithm around the design space depends on a vector of all the design 

variables. The template must be reduced to an array of design variables during a Rosenbrock 

optimisation. 



Chapter 7 

Experimental Input Impedance 

Measurements 

Before we attempt instrument optimisation, it is useful to gain an understanding of the 

impedance curves of real instruments so that the features of high-quality instruments may be 

identified and desirable characteristics specified. The results given here are good examples of 

quality instruments, and may reasonably be set as design targets. Possible modifications are 

also discussed. 

Additionally, these results may be used to attempt to identify correlations between 

impedance and playing characteristics; although similar results were also gained for a variety 

of other instruments (not shown), there are insufficient data for drawing firm conclusions, 

and any analysis of this kind should be treated as somewhat speculative. Nevertheless, when 

considered in conjunction with known performance characteristics of these instruments, cer-

tain patterns emerge which suggest causal links; these may form a basis for a more rigorous 

future study. This analysis neither affects nor compromises the usefulness of the impedance 

results for optimisation purposes (see also discussion in section 1.3), but forms a useful basis 

for interpretation. 

Bertsch has made extensive studies into the correlation between input impedance and 

playing characteristics as determined through blind testing [44, 45, 46]. Plitnik &? Lawson 

study the effect of varying the mouthpieces of French Horns [47]. Poirson [48] conducted 

research into the effect of mouthpiece depth on trumpet timbre, conducting a principal com- 



ponent analysis to find that the impedance peak corresponding to the second harmonic of a 

played tone is highly correlated with its brightness. 

7.1 Measurement Techniques 

7.1.1 BIAS Equipment 

For the impedance measurements, the Brass Instrument Analysis System, or BIAS, was 

chosen; the system offers a fast and convenient method of measuring a wide variety of instru-

ments with their mouthpieces. It is based on the capillary method [49], where microphones 

are placed either side of a narrow, high-impedance capillary, which is then connected to the 

instrument. 

Figure 7.1: The BIAS measuring head. 

The version of the BIAS equipment available for these experiments was, however, not in 

prime factory condition and had some limitations for fine work. The impedance plot below 

50Hz is unusable due to the very large amount of noise (omitted from the plots); likewise, 

higher frequencies (> 80011z) are also somewhat noisy. Certain impedance peaks, particularly 

those of lower frequency, can have some noise near the peak, adding a significant uncertainty 

into the location of the peak in both frequency and magnitude of +1Hz and ±1Mg respec-

tively. There are additional problems with repeatability. Despite the calibration procedure, 
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results taken in different sessions on different days have large disagreements, particularly 

when variations of the temperature of the air and the instrument exist. This problem causes 

discrepancies of ±5c and ±lMft Measurements of different instruments taken in the same 

session under the same conditions do not suffer from these problems, and can reasonably be 

compared to each other (i.e. plotted on the same axes), which is not strictly the case with 

those from different sessions. 

After the initial submission of this work, an improved BIAS head in factory condition 

was made available. Some repeat measurements were made (see Appendix E). The results 

suffered from greatly reduced noise and measurement artifacts, were measured over a greater 

frequency range; repeatability problems similar to those found with the damaged old head 

were not observed. Nevertheless, for the purposes of the following analysis, the results were 

qualitatively similar, and so the remainder of this chapter presents the more extensive mea-

surements taken with the old head. 

7.1.2 Limitations of Impedance 

While the input impedance of an instrument contains much useful information about its 

musical performance characteristics, it is not a complete description. It assumes linear be-

haviour, which in practice is attainable only at very low dynamics [50]. It is a steady-state 

(frequency-domain) measure, and therefore contains no information about the attack and 

decay transients of a played now for both player and listener the articulation at the onset 

of a note has an important effect on its perception. The player's lips are very complex, and 

are in no way accounted for; given the strong coupling that exists between the lips and the 

air column, these effects cannot be neglected in any truly complete model of an instrument 

- indeed, players with different anatomies and techniques may interact differently with the 

same instrument. Impedance measurements are here taken only with the slide closed in first 

position; in practice the player will spend much of his time in other positions, which will have 

somewhat different acoustic properties. 

In addition to the effects of the air column are those of the instrument itself. A long-

established belief of manufacturers and players alike [39, 51] is the musically-significant effect 

of the material from which the instrument is constructed. There is no incontrovertible scien- 
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tific proof of this either way, despite a number of studies [52, 53, 54]; it is therefore reasonable 

to cite this as a possible limitation in the absence of evidence to the contrary. At any rate, 

structural resonances are unlikely to have any effect at the low amplitudes at which the 

instrument is excited during impedance measurement. 

7.1.3 Harmonicity of Resonances 

100 	200 	300 	400 	500 	600 	700 	800 
Frequency/Hz 

Figure 7.2: Theoretical impedance curve of a tenor trombone with slide closed. Peaks com-

prising the regime of B2 highlighted. 

Benade [55] gives a thorough examination of why the characteristic shape of a brass 

instrument has arisen. Briefly, when the lips are playing a given note, they will excite the 

instrument at the frequency of that note and at integer multiples of that frequency. It 

is therefore advantageous to arrange some of the higher resonances of the instrument to 

coincide with these harmonics, thus allowing a cooperative multi-frequency 'regime' to be 

set up for that note, providing greater stability to the player and a more pleasant timbre. 

By repeating this process iteratively, we arrive at a series of resonances which coincide with 

a complete harmonic series (the very definition of Western European tonal music is based 

on the same integer relationships). Modern brass instruments have sets of resonances which 



approximate this harmonic series, allowing regimes of several harmonically-related peaks to 

be employed over a wide and musically-useful tonal range. For example, Bb2 played on a 

trombone excites the resonances numbered 2, 4, 6 etc., represented by the corresponding 

impedance peaks (figure 7.2). The relative influence of each of the higher resonances on the 

regime is dependent on the dynamic level played; qualitatively, at pianissimo the excitation 

is nearly sinusoidal and only the sounded resonance has a significant influence, whereas at 

fortissimo (excluding 'brassy' cases [50]) the higher resonances have a much larger effect. It 

should be noted that some peaks (e.g. 4, 6 & 8) are part of the regimes of several sounded 

notes, whereas others (those of prime index) contribute only to one regime. Given the above 

reasoning, the following naturally follows: 

Hypothesis: An 'ideal' instrument will have all its peaks lying exactly on a harmonic series 

in order to maximise the stability of the note to the player, and the harmonic content in the 

radiated sound. 

We may reasonably suspect that this is somewhat oversimplified. From a purely musi-

cal standpoint, the objective is not to maximise harmonic content (or 'brightness'), but to 

maximise the pleasantness of the sound. While it is true that brass instruments with strong 

harmonic content are considered to be more pleasant than the 'dull' sounds yielded by simi-

lar tubes with non-harmonically-aligned resonances, it is not clear that 'pleasantness' (in the 

absence of a quantitative term) increases monotonically with brightness. Put simply, 'can the 

sound be too bright?'. The answer to this question may vary between different instruments, 

players, and musical styles. 

Equivalent Fundamental Pitch 

We now defined a quantitative measure of the harmonicity of a series of resonances. The 

peak-frequencies of an impedance curve can be plotted in terms of equivalent fundamental 

pitch (EFP) [56], by calculating, for each peak frequency f, the fundamental frequency of 

which it is an exact jth  harmonic, and the intonation of this equivalent fundamental pitch 

relative to an arbitrary reference frequency F. This gives a measure, in cents, of the individual 

harmonic alignment of the peak frequencies, and therefore how closely the peaks collectively 

match a harmonic series. An example EFP plot is given in figure 7.3; our hypothetical ideal 



instrument would show a vertical line on this plot. 

EFP(f) 
= log log (-i).  	

(7.1) 

When plotting EFP for several different instruments on the same axes, it is often conve-

nient to normalise by choosing F = f4/4 for each instrument, thus shifting all plots such that 

each peak 4 lies on the vertical axis, effectively retuning the instruments so that each of the 

4th modes coincide (It is this fourth resonance which is generally used by musicians to tune 

their instruments). The shape of the plots is independent of F. The lowest peak of many 

brass instruments is generally extremely flat (some 7 semi-tones in the case of a trombone) 

and is not plotted here. 

Strictly speaking, the points in an EFP plot should not be joined as the data are discrete 

and not continuous. Likewise, EFP is the dependent variable and should strictly be on the 

vertical axis. Both of these points are neglected for the sake of greater clarity. 
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Figure 7.3: EFP plot of a typical large-bore tenor trombone, showing resonances 2-14 

(F=58.3Hz). 



7.2 Trombone Measurements 

7.2.1 Medium-bore, Large-bore and Bass Trombones 

Three different-sized trombones, all made by the same manufacturer, were measured for 

comparison, namely a Rath Rio, a medium-bore jazz tenor trombone, an R4, a large-bore 

orchestral tenor trombone, and an R9, a bass trombone. Each was measured with an ap-

propriate mouthpiece (namely a Rath Sli, L5 and 131.5 respectively); due to different shank 

sizes it was not possible to measure each with the same mouthpiece - in any case these results 

would have little musical relevance as mouthpieces of such widely different sizes are seldom 

mixed between instrument types. The trombones were all measured with the slide closed in 

first position. 

We start with a brief description of the general playing characteristics of these instruments, 

gained from detailed discussion with the manufacturers [39] and a number of professional 

players [51]; it is impossible to get a 'perfect' description of the instruments for any definition 

of the word as musicians will have differing preferences and abilities, but the terms stated 

here are those for which a clear consensus exists. There is no doubt, for example, that a bass 

trombone is more suited to playing low than a tenor, as this is the purpose for which it was 

designed. 

In general terms, it is progressively more difficult to obtain a clean, accurate and pleasing 

sound on larger equipment (i.e. instruments and mouthpieces). Likewise, larger equipment 

gives greater assistance to low playing, and less to high playing; larger equipment provides a 

darker (less harmonic content), less 'penetrative' timbre. 

Consider first the input impedance magnitude plot in figure 7.4, which overlays a measured 

impedance plot for each of the three trombones. The most striking difference is in the peak 

heights for the Rio, which are consistently rather taller than for the larger instruments. The 

peak heights of the bass trombone (119) are generally, but not always, somewhat shorter than 

those for the R4, particularly in the upper range of the instrument. The peaks of the RIO 

in the upper range are particularly tall, which may be linked with the comparative ease of 

playing in this register with this instrument. 

From these magnitude plots are produced EFP plots (figure 7.6a) based on the peak 

frequencies in each plot. It is clear that the peak frequencies do not represent an exact 
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Figure 7.4: Measured impedance plots for Rath RIO (blue), R4 (red) & R9 (black). 

harmonic series. For each trombone the second peak is rather flat; markedly less so for the 

bass trombone. Given the comparatively similar peak heights in the lower range between 

the R4 and R9, and the knowledge that the R9 (bass) would be generally preferred to the 

the R.4 (tenor) for music written predominately in this register (which might reasonably be 

described as 'outperforming'), we can tentatively link this preference with the large difference 

in the alignment of peak 2, which is very important in lower-range playing, and suggest that 

closely-harmonic resonances make notes easier to play and produce a more pleasant sound. 

This would seem to support our earlier hypothesis; however, there is evidence to the contrary. 

Each instrument shows a general right-hand diagonal trend on the EFP plot, denoting 

that higher peaks are tuned to a progressively sharper equivalent fundamental; the effect is 

lesser in the smaller trombone. Similar results were taken with the same BIAS equipment 

on French Horns [56], and demonstrate that B5 horns have peaks which are considerably 

closer to a harmonic series. From these two studies, given that these instruments are con-

sidered of first-rate quality, we must conclude that inharmonicity of this kind is a desirable 

feature contributing to the characteristic sound of the trombone, and particularly the large-

bore trombone. We can reject our hypothesis that brass instruments should have exactly 

harmonically-aligned peaks as being somewhat naïve, and state that the 'ideal' harmonicity 

may vary between instruments, and indeed sub-types of instruments. 
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It should be stated in passing that the inharmonicity mentioned in brass instruments 

is acoustically distinct from other inharmonic effects, such as 'octave-stretching' in pianos. 

Pianos have an inharmonicity of the overtones in their radiated sound, caused by stiffness 

effects in the strings; to minimise 'beating', piano tuners align the fundamental of one piano 

key with the slightly-sharp first overtone of the key one octave below. Thus two separate 

nearly-harmonic series are aligned to maximise the pleasantness of the sound. In a brass 

instrument, the overtones of the radiated sound are exact integer multiples (at least in the 

linear regime) due to mode-locking, and the inharmonicity of the resonances therefore is not 

related to octave-stretching. 

7.2.2 Varying the Mouthpiece 

The experiment in the previous section varies not just the instrument but the mouthpiece as 

well; here we isolate the effect of the mouthpiece. We choose one instrument, the R4, and use 

three different mouthpieces: the L6.5, which is considered too small for this trombone, the 

L5, a popular size, and the B1.5, which is a bass trombone mouthpiece and is considered far 

too large. From the impedance plots in figure 7.5, we see that this has a significant effect on 

the heights of the peaks. The small mouthpiece makes the upper peaks much taller, and the 

larger makes the lower peaks taller, and the upper peaks shorter to a lesser degree. While it 

is clear that the mouthpiece has an effect on the peak magnitudes, this effect is not sufficient 

to explain certain features of the results from the previous section (e.g. the peaks around 

350Hz), allowing us to deduce that the instrument bore, as one might expect, also has an 

independent effect on the peak magnitudes. 

Moving on to the EFP plots in figure 7.6b, we see that the different mouthpieces have 

caused some changes in alignment, but not to the extent of the differences seen between the 

different instruments; most notably the alignment of peak 2 is largely unaffected. 

On the whole it is-reasonable to suggest that taller and more closely-aligned impedance 

peaks contribute to the ease of playing and the brightness of the tone produced; determining 

exactly what the ideal is for a given instrument is not simple. Given that large-bore trombones 

were created specifically for their darker sound, it would appear that a degree of playing ease 

has been traded off in the process. Beginner trombonists are frequently told to avoid large- 
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Figure 7.5: Measured impedance plots for R.4 with mouthpiece L6.5 (blue), L5 (red) & 131.5 

(black). Note measurement artefacts on the lower peaks. 

bore instruments in the early stages of their development as they require a greater level of 

proficiency to play to a given standard. 

7.2.3 Commentary - Room for Improvement? 

Consider the regimes of B3 (i.e. peaks 4, 8, 12 etc.) & D4 (peaks 5, 10, 15 etc.) of the 

R9 - peak 8 has an equivalent fundamental that is +30c sharper than that of peak 4, and 

peak 12 is likewise +40c sharper; similarly peak 10 is -22c and peak 15 -26c compared to 

peak 5. It is reasonable to suggest that a player moving from the regime of peak 4 (+30. 

+40) to that of peak 5 (-22.,-26) with the R9 will therefore have to make a larger adjustment 

to his embouchure than he would with the RiO (+7, +20 and -6, +1) as the two regimes 

differ much more in relative peak intonation. Players may be sensitive to this difference, and 

further investigation of this matter may prove valuable. In the case of the R9, it is reasonable 

to suggest that the sharp fifth peak was a necessary compromise in order to obtain the aligned 

second peak we will explore this matter with the optimiser. 

It is common for trombones to be fitted with valves to provide the option for extra tubing, 

most commonly im to lower the instrument from B to F (bass trombones commonly have 

another such valve, often in Gb). A feature of these F-attachments found on all instruments 
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Figure 7.6: EFP plots for Rath trombones, normalised to 4th  resonance. 

measured was a very flat (".450c) second peak (figure 7.7); given that the F-attachment is 

most frequently used to access the low notes available on this resonance, there is clear room 

for improvement - trombones are well known to be 'stuffy' when using the valve. A similar 

problem exists in F/Th Horns [56]; this appears to be symptomatic of adding a significant 

length of cylindrical tubing to an instrument with tuned resonances. If it were possible to alter 

the bore profile of the additional tubing such that this resonance were more closely aligned 

without compromising the other features of its impedance, it is likely that an improvement 

in performance would result. 

We now consider the question of why the inharmonicity present in a large-bore trombone 

is desirable. Consider a hypothetical trombone with many tall harmonic peaks (similar to the 

RIO in many respects). This instrument would have a large tonal range and a bright tone. 

If this brightness were undesirable, as it generally is in orchestral settings, then a designer 

might combat this by reducing the heights of the middle and upper peaks to reduce the 

harmonic content in the sound. However, this would have the knock-on effect of reducing the 

stability of the higher tones. In order, therefore, to reduce the brightness without affecting 

the tonal range, some inharmonicity is necessary to reduce the influence of the higher peaks 

on the lower tones. In reality the orchestral tenor trombone (114) may be thought of as such a 
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compromise, featuring shorter. less harmonic peaks than the jazz trombone (RiO) but having 

a similar tonal range. 
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Figure 7.7: Measured EFP plot for R9 with F-valve engaged (F=43.OHz). 
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Chapter 8 

Numerical Results 

In this (llal)ter we apply t lie numerical models described in chapters 2 k 3 to virtual instru-

ments based on geometrical measurements of existing instruments. The models are compared, 

and convergence analyses conducted. Theoretical results are compared with the experimen-

tal results from chapter 7. Most of the results are based on a Conn 88H large-bore tenor 

trombone owned by the author. 

8.1 Plane-wave and Spherical-wave Assumptions 

To compare the effects of the plane-wave assumption (section 2.3) with those of the spherical-

wave assumption (section 2.8) we compute the impedance of the 88H using both models, and 

compare with that from the multi-modal method. It should he noted that certain assumptions 

are not entirely consistent between calculations. The planar and spherical models share the 

same loss and radiation models, but these differ for the multi-modal method. In any case, 

the differing effects of the loss and radiation models can be shown to he much less significant 

than the geometrical effects under consideration; readers are referred to [57] for further detail. 

The plane-wave model is a crude first approximation to the wave behaviour inside a flaring 

instrument. The spherical-wave model attempts to improve upon the plane assumption by 

modifying the shape of the wavefront to model more closely the real behaviour. The multi-

modal method, by including more complicated oscillation patterns (figure 3.1), gives a more 

accurate picture than either of the single-mode models, and can be used to generate pressure 

plots showing the wavefronts, which are nearly spherical ([5] figure 4.6). 
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Figure 8.1: Impedance of 88H. with plane-waves (black), spherical waves (blue) and 11 modes 

(red). 

We see from figure 8.1 that the multimodal (11 modes) plot lies between the two single-

mode plots in magnitude; given the above commentary, we therefore conclude that the spher-

ical assumption over-corrects the error in the plane-wave assumption, and over-estimates the 

effect of the higher modes. 

Consider also figure 8.4, which compares the EFP plots for the 11-mode result and the 

spherical-wave result. The two theoretical results are very similar for peaks 1-10, but diverge 

sharply for higher peaks. Clearly the effect of the higher modes becomes at this point large 

enough to cause a significant change to the frequency of the peaks (the magnitudes being 

significantly affected from peak 8 upwards). We conclude that the spherical wave model is 

suitable for those cases where the frequency region of interest lies in the first 8-10 peaks of a 

trombone in B. 

8.2 Effect of Higher Modes 

The impedance of the 88H was calculated using the multi-modal method (see chapter 3), 

including several different numbers of nodal-circle modes. The flaring parts of the instrument 

were divided into sections of length 1mm (see [5] section 4.3 for a detailed convergence 
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Figure 8.2: Plot of input impedance of 88H, with varying numbers of modes included. 

analysis). We see in figure 8.2 that the inclusion of the second mode (the plane-mode being 

the first) has a significant effect, shifting the peaks to lower frequency and magnitude. The 

addition of further modes has a progressively smaller effect, rapidly becoming insignificant. 

This result concurs with those in [4] and [5]. 

8.3 Comparison of Theory and Experiment 

Figure 8.3 shows a comparison of a plot measured experimentally with BIAS (including error 

bars representing the ±5c uncertainty found (section 7.1.1) from repeat measurements), and 

a plot calculated theoretically using 11 nodal-circle modes, respectively for the 88H and a 

virtual model of same based on bore measurements. As we can see. there is good agreement 

between the two; the peaks are of similar magnitude, envelope and frequency. However, none 

of these properties shows an exact match, and clear discrepancies exist. Figure 8.4 compares 

the EFP for the theory and experiment; we see a broad agreement (note the same reference 

frequency for all plots), but discrepancies of up to 40c, most notably for peak 5. 

These discrepancies may be caused by any of the following: 

. Inaccuracies in the results from the BIAS equipment, the shortcomings of which are 

discussed in section 7.1.1. 

. Lack of a rigid infinite baffle. The theoretical model assumes such a baffle; no approx-

imation was used in the measurement. Amir et al. [4] conducted experiments on a 
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trombone bell with and without baffle, finding a small effect; once the rest of the trom-

bone is included this effect is likely to be too small to explain fully the discrepancies 

found. 

• Inaccuracies in the virtual bore-profile. The profile was carefully measured as closely 

as possible, but certain regions, such as the bends and the leadpipe, are difficult to 

measure accurately. Given that the impedance can be sensitive to small changes in 

bore in certain regions of the instrument (section 9.1 gives more detail), it is possible 

that this may have a significant effect. 

• Shortcomings in the modelling. The majority of the theoretical model is discussed in 

chapter 3 and appears to be well-grounded. However, we cannot discount the possibility 

of an invalid assumption or approximation sufficient to render the model inaccurate. 

[4] shows a similar discrepancy but gives no explanation. Of the constituent parts of 

the model, that of the wall-losses is undoubtedly the least rigorous, and seems the most 

likely cause of any numerical discrepancies. 

• Lack of bends in the model. This matter is considered in section 8.4; several bends 

are present in the experimental results but not the theory, and may potentially explain 

the discrepancies in part. However, the discrepancies in [4] were found in an entirely 

straight trombone bell section, indicating that bends cannot be the sole cause. 

Further work is required to establish the exact causes of such discrepancies and to rectify 

any problems found. 

8.4 Effect of Bends 

Previously, numerical models have treated brass instruments as straight and neglected the 

bends which are present in the tubing of any real instrument. With the formulation derived 

in chapter 3, we are now in the position to perform a numerical investigation into the effects 

that these bends have, first in isolation, and then as part of a complete instrument. 

Firstly, we conduct a series of experiments on various bend geometries; the dimensions are 

similar to those found in musical instruments, with obvious variations made for the purposes 

of experiment. 
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Figure 8.5: Convergence of resonance of bent tube with increasing number of modes included. 

8.4.1 Convergence Analysis 

In order to establish the comparative effects of each of the possible modes included, a conver-

gence analysis was performed. A bend with curvature and radius r' -1  = 7o = 5.842mm and 

length d = 100mm, which resembles the tuning-slide of a trumpet, was defined. The input 

impedance of this bend was repeatedly calculated to include Nm  from 1 to 32 modes, and 

the frequency of the first resonance peak was plotted. The bend was left with an open end 

using the radiation condition described in chapter 3. In all cases only the plane-mode was 

propagating in the frequency range of interest. The results converge to a limit as more modes 

are added; we see behaviour comparable with the convergence results in figure 3 of [9] (which 

are for the pressure field). After the first modes, certain later modes have a greater influence 

than others - we note that the (0, n) modes, being those with only nodal circles (the 4th, 

101h ,  181h and 29th  modes), have the greatest influence. This may, at first glance, suggest 

that the other modes are insignificant, but they too are dependent on the bend geometry and 

can have a very large effect, as we see below. We also plot error cN. = fNm - f321 where 

fNm is the resonance frequency when Nm  modes are accounted for. Note that the index 

(see e.g. table 3.1) starts at zero, whereas the number of modes Nm  starts at 1. 

8.4.2 Effects of Bend Geometry 

Here we will will use bend A 1  to denote a bend with #c1 = Ro = 5.842mm and axial length 

d = 100mm. This bend is an approximation of a tightly-wrapped helical tube and was cho- 

I 
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Name t'/mm Freq.(Hz) Mag. (ku) Description 

Al 5.842 1011.539 401891.403 Helical bend 

A2 31.83 821.248 995764.524 U-bend 

A3 1.000 x 104  818.240 1011532.581 Near-straight bend 

A4 818.240 1011532.596 Straight (all modes) 

AS 818.240 1011532.596 Straight (nodal-circle) 

Table 8.1: Geometry of bent tubes A having d = 100.0mm, 1Z0 = 5.842mm, with first 

resonance as calculated with the model stated. 

sen to exaggerate the effects of the curvature. Bend A 2  is a similar bent tube with bend 

radius 31.83mm (as used above, i.e. a U-bend), bend A 3  has very low curvature (i.e. almost 

straight), A 4  is the equivalent result for a straight cylinder using the straight-tube theory 

from chapter 3 including nodal-diameter modes, and A 5  is a straight cylinder without these 

modes. This allows us to vary the curvature while keeping the other geometrical parameters 

constant. All results are calculated with 32 modes, except A 5  which has only 5 (i.e. the same 

set of nodal-circle modes but omitting the nodal-diameter modes). 

There is a ±0.0005Hz error in peak location arising from the very fine, but finite, adaptive grid 

size used near the peaks. The straight and near-straight cases agree to 6 significant figures, 

which sufficiently close to he considered perfect agreement for our purposes. The straight case 

was measured both with 32 modes, including nodal-diameter modes, and, equivalently, with 

4 nodal-circle modes and the plane-wave - there is again perfect agreement in both cases. As 

expected, taking account of the nodal-diameter modes does not affect the impedance of an 

axi-symmetric waveguide. 

When comparing the bent tubes, we see that increasing the curvature of the bend causes 

the resonance to shift upwards in frequency and downwards in impedance magnitude. 

Next another set of bends were investigated, having length d = 100mm and RO = 15mm. 

B 1  has , = 15mm and B 2 , B3 . B4  have values of C' equal to those of the previous set - 

these are relatively wide tubes with the same length and curvature properties as tube A. 

We see that the larger radius tubes show a greater correction due to the bend, but exhibit 
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Name ,c'/rnm 	I Freq.(Hz) Mag. (kQ) I Description 

B1 	15.00 877.032 	14090.763 Helical bend 

B2 	31.83 779.815 	25010.123 U-bend 

B3 	1.000 x 10 4  764.124 	27516.289 Near-straight bend 

B4 764.124 	27516.291 Straight (all modes) 

B5 764.124 	27516.291 Straight (nodal-circle) 

Table 8.2: Geometry of bent tubes B having d = 100.0mm, R.o = 15.00mm, with first 

resonance as calculated with the model stated. 

Name '/mm Freq.(Hz) Mag. (kI) Description 

Cl 5.842 1041 .273 379987.923 Helical bend 

C2 31.83 820.952 996488.978 U-bend 

C3 1.000 x 104  817.643 1013006.585 Near-straight bend 

C4 817.643 1013006.584 Straight (all modes) 

C5 817.643 1013006.584 Straight (nodal-circle) 

Table 8.3: Geometry of bent tubes C having d = 310.0mm. flo = 5.842mm, with first 

resonance as calculated with the model stated. 

the same qualitative properties. A third set of tubes with length d = 310mm and both 

bend radius and radius (R.0 = 5.842mm) as A was chosen, allowing us to observe the effect. 

of the length of bend when compared with shorter but otherwise similar tubes; the length 

was chosen such that the second resonance of tube C approximately corresponds to the first 

resonance of tube A. We see that lengthening the bend has had little influence on the effect 

of the curvature. 

Previous theoretical and experimental studies in the literature [6, 7] report an increase in 

the frequency of the resonance: this effect is seen here, with a similar order of magnitude of 

lOcent. 

8.4.3 Concluding Remarks 

A numerical model of lossless toroidal bends has been formulated for input impedance cal- 

culations and the effect of these bends has been investigated. A small increase in resonance 
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frequency and decrease in impedance magnitude has been observed in agreement with previ-

ous studies, though this model is lossless and therefore not entirely realistic. 

The inclusion of losses is discussed briefly in section 3.6.2, and is geometrically involved. 

Once losses are included in the model (lossy effects are stated to be greater in bent tubes; 

the results here make no account of any losses), we will have a better idea of the true effect 

of curvature. With the above results we may speculate that, in the case of brass instruments, 

the effect will be small enough to neglect even if losses are included. 

A model of the 88H was modified to include the bends in the main and tuning slides and 

the impedance calculated. To ensure a controlled test, this result (with realistic bend curva-

ture) was compared to the same instrument with very small (i.e. near-straight) curvature. 

The effect of the bends is then isolated, and proves to be very small, with peaks differing 

by 0.01Hz. A result including losses in the bend will he of greater interest - if it also 

demonstrates an effect of this magnitude, we will have evidence suggesting that the bends 

of the instrument are not directly significant. In practice some indirect effects, such as an 

alteration to the geometry of the tube as it is bent, may be musically significant. 

8.5 Computation Times 

A simple instrument was used as a benchmark, comprising a cylinder, a discontinuity and 

a cone. Repeated impedance calculations were made, and the computation time recorded. 

Varying numbers of modes were included in both the straight and bent models. Calculations 

were performed on a Pentium 4 PC running Linux. 

As we see in figure 8.6., the inclusion of higher modes causes the computation time to 

increase roughly as the square of the number of modes, owing to the (generally dense) matrix 

multiplication taking place. The bent ducts take roughly six times as long to compute than 

do straight ducts, due to the more complex calculations (including finding the eigenvectors of 

an Nm  x Nm  matrix) required. For comparison, plane-wave transmission matrix calculations 

took 0.007s, whereas the corresponding single-mode calculations in the straight and bent 

multimodal methods took 0.29s and 8.04s respectively. This is partly due to the conical 

section being treated analytically in the transmission-line, but as a series of short cylinders 

in the multimodal methods. 
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Chapter 9 

Optimisation Results 

This chapter gives results found through the use of the optimiser described in Chapters 

4, 5 & 6. The performance of two different optimisation algorithms is compared. The 

superior algorithm is then used to reconstruct instrument geometries from both theoretical 

and experimental results, and to modify the bore of a real trombone for the purposes of 

design optimisation. Certain problems found through use of the optimiser are discussed. 

9.1 Visualising the Design Space 

Given a method for impedance calculation and a suitable objective function (section 5.2.1), 

we can investigate the behaviour of the objective 0 as a function of the design variables a. 

It is desirable for this function to be as smooth and well-behaved as possible (e.g. figure 4.2), 

as this will allow the optimiser to operate effectively; a jagged, discontinuous, or 'bumpy' 

objective function provides a more difficult optimisation task. 

A simplified trombone, consisting of a cylinder and a single Bessel-horn connected by a 

preset tuning-slide section, was created as a test subject. A target impedance curve of a 

more detailed virtual trombone was set (i.e. a perfect match was outside the design space). 

The design space consisted of 6 variables: Cylinder length and radius, bell mouth and throat 

radii, bell length and ball flare coefficient. The design space was then systematically traversed 

point-by-point along a regular grid, varying two variables at a time and holding the others 

constant. This provided plots of the objective as a series of functions of two variables. 

The objective function was restated as a maximisation problem with a percentage score for 
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convenient plotting. Each of the plots is a two-dimensional slice through a 6-dimensional 

space; it therefore represents a small part of the space, but allows us to get an overall picture 

of the behaviour of the objective function 0. To the author's knowledge, no previous analysis 

of this kind has been conducted on musical instruments. 

Consider first figure 9.1a, which plots the objective as a function of the lengths of the 

two sections. This takes the form of a ridge, with a line of high values (red - a good match) 

dividing a region of low values (blue - a poor match). The same plot is also shown in 3-D in 

figure 9.1b. The clear shape of the ridge is to be expected; the impedance peak frequencies 

are strongly dependent on the total length of the instrument, and the ridge follows a line of 

constant total length. Some regions of the ridge have a higher fitness value than others; the 

relative lengths of the two sections affects the relative locations of the peaks, and therefore 

the fitness (compare with figure 8.19 in [2], which shows how the peak locations are affected 

by the relative lengths of a cylinder and a cone). 

Figure 9.1c shows a similar basic ridge structure, but with two clear maxima at the top 

and bottom of the plot, and a saddle-like structure in between; likewise figure 9.1d has three 

peaks. Figure 9.1e shows a single, elongated peak, whereas figure 9.1f shows a somewhat more 

complicated structure; several peaks lie on a saddled ridge running right-left, intersected by 

a second diagonal ridge in the lower-left corner. 

On the whole, we can conclude that the design space is relatively smooth, but possesses 

many local maxima. 

9.2 Bore Reconstruction Results 

9.2.1 Problem Definition 

In order to set up and test the optimiser, some problems must be defined. The most straight-

forward problems are those we term perfect-feasible. A perfect result is known to be within 

the design space (and therefore feasible), so a good optimiser will be able to reproduce it 

to a close tolerance. Such problems can be defined by setting up an instrument template, 

specifying values for each design variable (often to give an approximation to a known real 

instrument bore) and calculating its impedance curve; this curve is then set as the target for 

the optimiser, which should then he able to reproduce the specified design values. In general 
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usage, problems will not a priori be perfect-feasible (but may, in principle, be found a pUs-

tenon to be so), but such problems are a useful step for testing and tuning the optimiser: 

any results can be compared against the known 'correct' result, and discrepancies used to 

improve the procedure. 

No constraints are placed on the smoothness of the bore. This is particularly relevant in a 

multi-Bessel bell, where a large discontinuity in gradient may arise as a result of the interpo-

lation. In practice, we find that the optimiser performs better without such a constraint, and 

only returns unsatisfactory solutions with such gradient discontinuities in problems which it 

cannot otherwise solve (see section 9.4.1). 

It would he desirable to have a proof of the uniqueness and one-to-one relationship between 

a bore and its impedance curve. In the absence of such a proof, we nevertheless neglect the 

possibility of two significantly different bores giving, to a close tolerance, the same impedance 

curve. In practice there is very little chance of such duplicate solutions occurring, so even 

without a uniqueness theorem we proceed under the assumption that solutions are unique. 

Perfect-infeasible problems arise because of discrepancies between the design and the 

target; these discrepancies may arise in the geometry of the design, or in the objective function 

(i.e. impedance calculation). Theoretical problems may be based on calculated impedance 

curves of target instruments with a greater level of complexity than the template permits - the 

measured bore of a real instrument will be complex, and a template may approximate certain 

areas with more simple shapes. Perfect solutions are therefore not feasible (under the above 

uniqueness assumption) as a result of this approximation. Experimental problems set the 

experimentally-measured impedance of a real instrument as the target; a discrepancy arises 

if the theoretical and experimental results do not concur (as is presently the case), and likewise 

the simple-template discrepancy may also arise. Performance optimisation problems attempt 

to modify an existing instrument by specifying modifications to its impedance properties; the 

solution is unknown, and a satisfactory match may not exist. 

Table 9.1 is an index of the bore reconstruction experiments performed. 



Number I Description 
	

Model 	Target Data 

I Reconstruct simplified virtual trumpet Spherical-wave Theoretical 

II Reconstruct virtual trumpet Spherical-wave Theoretical 

III Reconstruct simplified virtual trombone Spherical-wave Theoretical 

IV Reconstruct virtual trombone Spherical-wave Theoretical 

V Reconstruct virtual trombone 2 modes Theoretical 

VT Reconstruct virtual trombone 2 modes Experimental 

Table 9.1: Table of bore reconstruction experiments. 

9.2.2 Genetic Algorithm 

A virtual trumpet had its cylindrical section smoothed to remove kinks' due to the valves, 

tuning-slide etc. The optimisers were asked to reconstruct the bore of this instrument from its 

calculated impedance (experiment I - perfect-feasible). The kinks in the cylindrical section 

were then replaced, altering the target impedance (expt II - perfect-infeasible) accordingly. 

The instrument had a reconstruction prototype of a cylinder attached to a multi-Bessel bell; 

the bell length was a variable but each Bessel-section was an equal fraction of this length. 

Wide constraints were set on all variables and objective function {1, 1, Of was used (recalling 

the notation defined in section 5.2.1). 

After considerable experimentation, the best results were found by optimising a 4-Bessel 

bell (Ni, = 11) for two 50-individual generations, then, for each member of the population, 

splitting each Bessel-section into two equal parts, giving an 8-Bessel bell (N1, 19), and 

optimising for a further 18 generations. Results were inconsistent, not always producing 

good matches when experiments were repeated with the same parameters. Experiment I (at 

best) gave a good match to both impedance and bore in '5 minutes; experiment II gave 

very poor results (figure 9.2 gives an example of a failed optimisation). Although the GA 

performance is a significant improvement on that in [19], it is still neither stable nor capable 

enough to be practicable. As we shall see, the GA is again outperformed by Rosenhrock; 

given that GA's generally perform best in low-N, problems such as that formulated here, we 

can conclude that further use of genetic algorithms for for brass instrument optilnisation is 

not worthwhile. 
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Figure 9.2: Example of an unsatisfactory bore-profile from a poorly-converging optimisation. 

9.2.3 Rosenbrock 

Experiment I was repeated using the Rosenbrock algorithm, with a 4-Bessel bell (N = 11). 

Results were in every way superior to the GA: a near-perfect match of both impedance and 

bore was found with total repeatability. Experiment II was then attempted, and is perfect-

infeasible due to the kinks in the target's cylindrical section, which were intentionally not 

accounted for in the reconstruction template. In spite of this, an equally-good match of 

the bore (excepting the kinks in the cylinder) was found - the closest impedance match 

was still very close to the correct bore-profile, suggesting that this optimiser is capable of 

reconstructing an instrument's bell without any knowledge of its valve sections. 

Having established the clear superiority of Rosenbrock over the genetic algorithm, we move 

on to more challenging problems. The template in table 5.1 was used to reconstruct the 88H. 

First, the perfect-feasible experiment III was conducted, with target impedance generated 

from a virtual instrument (including mouthpiece) fitting the template. A near-perfect match 

was found; the most significant discrepancy lay in the location of the discontinuities - this 

is examined in more detail in section 9.4.3, and was of order 3mm (figure 9.3a). The error 

in the bell section was generally less than 0.01mm, and was at worst 0.25min at the extreme 

bell end - the model is very insensitive in this region. The optimiser is therefore declared a 

1 Ii) 



success, having been proven capable of finding a very fine reconstruction of a perfect-feasible 

target, with the given problem of the discontinuities. Objective function {1, 1, 11 was used. 

with very strict parameters v = lOOkft Vcj, = 1011z. ji., = 20, vz = 0.05, pZ = 10. Npj = 25, 

taking 1500 evaluations and approximately 15 minutes. 

Experiment IV set as the target the impedance of a virtual 88H - i.e. a more detailed 

bore-profile than the template could model exactly, giving a perfect-infeasible problem. The 

reconstruction was only slightly less close than than for Ill, but still within acceptable tol-

erances. The discontinuous section, in which a perfect match was impossible due to the 

coarseness of the template in this area, had similar discrepancies (figure 9.4a), and the bell 

section had an error of generally less than 0.01mm, with a maximum error of 0.5mm. The 

reconstruction required 2037 evaluations and 20 minutes, using parameter ii = 300k1, with 

the others unchanged from III. This result is proof that the optimiser can reconstruct the 

geometry of a real instrument from calculated impedance data. 

9.2.4 Reconstruction with Higher Modes 

Experiment IV was repeated, this time with both target and candidate impedance curves 

calculated using the multi-modal method, with 2 modes included (experiment V). Results 

of comparable quality and geometry to the plane-wave case were found. This result is proof 

that the effectiveness of the optimiser is not significantly affected by changes to the model 

used for impedance calculation. The choice of 2 modes is arbitrary, but offers the best 

compromise between computation time and improved accuracy (figure 8.2). Due to the high 

number of cylindrical sections needed to model each conical section to sufficient accuracy, the 

computation time is very much larger than for the plane-wave; 2477 evaluations took a total 

1 - 20 hours of computation - i.e. approximately 50 times the corresponding reconstruction 

It 11 the spherical waves. For the multimodal method to be sufficiently convenient for design 
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from the optimiser to have any relevance to real-world construction, the optimiser must move 

from the experimental to the theoretical domain without a significant loss of accuracy in the 

instrument geometry. 

To test the capability of the optimiser to solve problems of this kind, a BIAS measurement 

of the 88H was set as a target, and the above trombone template used above was once 

again employed (experiment VI). The most successful result took 1463 evaluations and ran 

overnight, using objective function 11, 1, 01 with parameters ii = 100k1, vO = 10Hz. z0  = 

20, vz  = 0.05, pz = 10. 2 modes were used in the calculation. The error between the 

reconstructed and 'correct' geometry was, aside from the extreme bell region, less than 0.5mm, 

and no greater than 0.1mm for much of the length of the instrument; however, in the final 

8cm of the bell, the reconstruction differed by —1cm. The bell geometry is a smooth and 

plausible curve. 

On the whole this is an encouraging result. The optimiser has successfully converged to 

a good, if not perfect, reconstruction of the entire instrument in a strongly perfect-infeasible 

problem. Given the discrepancy between theory and experiment (section 8.3), the inaccura-

cies found in the extreme bell region are to be expected. The remainder of the instrument was 

reconstructed to within a satisfactory tolerance. However, this tolerance is not fine enough 

to guarantee sufficient accuracy for detailed design work. Although the optimiser has proven 

to be sufficiently powerful for such problems, the theory-experiment discrepancy is a signifi-

cant handicap, and until this discrepancy is resolved, or at least reduced, the required design 

tolerance is unattainable in problems of this kind. 

9.3 Performance Optimisation Results 

Number I Description 	 Model 	Target Data 

VII 	Tuning peak 2 	 Spherical-wave Modified theoretical 

VIII 	Increasing height of peaks 8-10 Spherical-wave Modified theoretical 

IX 	I Tuning peak 2 of F-attachment Spherical-wave Modified theoretical 

Table 9.2: Table of performance optimisation experiments. 
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9.3.1 Tuning Peak 2 

It was established in Chapter 7 through experimental comparison of a tenor and bass trom-

bone that the tuning of peak 2 relative to the higher even-numbered peaks (particularly 

peak 4) has a significant effect on the quality of the lower playing register of the instrument. 

In this experiment, we take an existing tenor trombone design and attempt to improve its 

lower register by shifting this peak into a closer alignment without compromising any other 

resonance properties. 

Experiment VII takes again the template for the 88H (a large-bore tenor). The impedance 

of the instrument was calculated with the spherical-wave model and the peak frequencies set 

as an optimisation target, with the following modifications: the target frequency of peak 2 

was shifted from 112.0Hz to 115.0Hz (a shift of +45c), and peak 5 shifted from 292.5Hz to 

295.0Hz (a shift of +15c). It was found that allowing freedom in the location of peak 5 granted 

greater flexibility in the location of peak 2. Note also that it often proved advantageous for 

target shifts to he greater than that actually desired, allowing the optimiser space in which 

to compromise. The 'correct' geometry for the 88H was set as the starting point. Objective 

function {0, 1,01 was used (i.e. the peak frequencies were optimised without magnitude data), 

with tuning parameters po  = 10, vb = 10Hz. Only peaks 2, 3, 4 and 5 were optimised over 

i.e. no targets were set for the other peak locations. The optimisation took 1516 evaluations 

and 14 minutes. 

As we can see in figure 9.7, the optimiser has converged to a solution which closely matches 

I he target set. Peaks 2 and 5 are now located at 114.7Hz and 295.1Hz respectively. Peaks 3 

uid 4 have not been significantly altered. We see from the EFP plot (figure 9.6b) that the 

desired re-alignment of peak 2 has occurred. As a compromise, the higher peaks have all 

been shifted by between +5c and +20c; these are all rather smaller than the +41c shift of 

peak 2. The impedance magnitudes of the peaks have been affected, notably peaks 3-6, which 

have been shortened, and peaks 8 & 9, which are taller. Bearing in mind the discussion in 

Chapter 7, it is reasonable to suggest that this optimised trombone would have a significantly 

improved lower range (due to the alignment shift of peak 2) and an improved upper range 

liie to the taller peaks). The effect on the middle range is more difficult to predict; the 
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Figure 9.7: Bore profile from tuning peak 2 of 88H before (dashed) and after (solid) optimi-

sation (expt VII). 

and make it more difficult to play, but the increased peak height would tend towards the 

opposite effects. Which of these will dominate is unclear at this point. 

\Ve now turn our attention to the optimised bore profile figure 9.7a. Firstly, note that 

the bore design is smooth, entirely plausible, and could be built by a manufacturer with no 

additional difficulty; it can be described as a modified version of an existing design (indeed a 

very popular one). The bore of the cylindrical section (i.e. the main slide) has been reduced 

from 0.695cm (or, in the conventions of the instrument industry, a 0.547" diameter bore) 

to 0.663cm (0.522" diameter). The overall instrument length is some 2.6cm shorter than 

before, and the bell contour has been subtly altered, as has the taper of the tuning slide. 

Given the predicted performance in the previous paragraph, these results are surprising; we 

are attempting to replicate a feature of a bass trombone and so we would have expected the 

instrument to have been made generally larger in radius. 

Clearly the trombone design space is complicated. Certain regions of high performance 

are well-established in the industry (for example the American large-bore paradigm to which 

the 88H and R4 belong [51]), and it may be that the optimiser has uncovered a region which 

might have otherwise been unexplored. Exactly how the optimised trombone will play, and 



the desirability of same, will remain unknown until an example has been built and tested. 

The design given here is at least worthy of such experimentation, and a proof of the capability 

of this software to perform whole-instrument intonation optimisation. 

9.3.2 Modifying Peak Magnitudes 

The 88H was again used, here in an attempt to modify the impedance envelope. Experiment 

VIII took the usual base target, this time modified such that peaks 8, 9 & 10 were targeted 

to increase in magnitude by 10%, and no target was set for the magnitude of peaks 1-7. 

The peak frequencies were left unchanged. Objective 10, 1, 11 was used, with parameters 

vo = 10Hz, pp = 20, vz = 0.1, iz = 10, Nk = 10. The optimisation required 1509 

evaluations and 14 minutes. 

We see from figure 9.8a that the optimisation was successful, increasing peak 8 from 

16,110kcl to 17,602k1, peak 9 from 12,358k1 to 13,668kI, and peak 10 from 7,094kg to 

8,064kft respectively increases of 9.2%, 10.6% and 13.6%. Certain lower-index peaks were 

shortened, most notably peak 5 from 28,671k1 to 25,820kl, a decrease of 9.9%. The fre-

quency (and therefore EFP) of peaks 2-10 was not significantly changed; higher peaks were 

each made roughly 5 cents sharper. The bore-profile (figure 9.8b) again shows a reduction in 

the radius of the main slide from 0.695cm (0.547" diameter) to 0.665cm (0.524"), and some 

subtle changes (a maximum of 0.5mm) to the bell contour. The experiment was repeated 

but with 20% increases specified; the optimiser was unable to converge to a geometrically-

satisfying solution. 

These results demonstrate that it is possible to modify the impedance envelope without 

modifying the peak intonation. The changes made here to the envelope are of similar propor-

tion to those found in experiment VII, but had only a small effect on intonation. As a result 

of these changes, we would expect the optimised trombone to produce a somewhat brighter 

timbre than its predecessor, and possess a higher register which is somewhat easier to play. 

9.3.3 Tuning F-attachments 

It was shown in section 7.2.3 that trombones with the F-valve engaged have very fiat (150c) 

second peaks. We here attempt to modify the additional cylindrical tubing to rectify this 
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discrepancy without compromising other impedance features (expt IX). A design which is 

simple to manufacture is also a priority. 

As a starting point, a virtual 88H had an additional un of cylindrical tubing added in the 

neckpipe area (the valve itself was assumed to be of constant bore, and bends were neglected). 

The impedance was calculated with the spherical-wave model and was used, with its second 

peak modified, as the optirnisat.ion target. We are interested in the low-frequency behaviour, 

so higher modes are not necessary and the transmission-line model will be sufficiently accurate 

for our purposes. Given that players will seldom, if ever, use the fifth and seventh resonances 

(note the prime index), the target location of these peaks was left free. Objective {0, 1, 01 

was used, with parameters ,i, = 30Hz, u0  = 20, Nk = 20. 

A variety of different geometrical templates were tried. The radius of the extra tubing 

at each end was fixed, but all other parameters left free. The most successful template was 

a series of stepped tubes of equal length and varying radii (this would be relatively easy to 

manufacture when compared with other potential designs). The results, compared with the 

cylindrical tube, are shown in figures 9.9 & 9.10. 

1.5 

1.3 

u, 1.1 
•0 
Co 

T 
0 

cO 0.9 

0.7 

0.5 
180 	200 	220 	240 	260 	280 	300 	320 	340 

Axial distance/cm 

Figure 9.9: Bore profile of F-attachment tubing before (dashed) and after (solid) optimisation 

(expt IX). 

We see in figure 9.10 that the second peak was successfully shifted by 125c from 77.1Hz to 

80.0Hz; peak 4 was shifted by -13c, giving a net change in misalignment (i.e. the difference in 
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cents between the two equivalent fundamentals) of -139c. Peaks 5 and 7 were of no interest, 

and the peaks from 6 upwards were largely unaffected. However, the compromise needed 

was for peak 3 to be shifted by -24c, and substantially reduced in magnitude. One might 

speculate that this new geometry would make the low register (peak 2) rather easier to play, 

and the next register (peak 3) somewhat more difficult. In the absence of a more complete 

understanding of the impedance-performance relationship, a prototype must be built in order 

to examine the true playing characteristics of this revised instrument. 

9.4 Difficulties Encountered 

\Vlieri designing an optimisation technique, certain features unique to a given problem will 

arise and must be considered on a case-by-case basis. 

9.4.1 General Observations 

As a general rule, it is almost impossible to modify a single feature of an impedance curve 

without affecting other features. The design problems solved above represent good compro-

mises of a variety of features; they do not modify a single impedance feature, but rather 

modify all of them in such a way as to make certain changes negligible. This is a subtle 

distinction; it is not a question of finding the single change in bore to effect the correct 

impedance change, but rather making many changes in the bore so that the undesirable 

impedance changes largely cancel out, leaving only the desired change. There is an inherent 

lack of freedom, certainly within the continuum of realistic bore shapes, in the brass instru-

ment optimisation problem, but this can be circumvented, to a certain extent, by careful use 

of the optimiser. 

There are certain tasks to which the optimiser is not suited. For example, if we were 

attempting to alter a given trombone such that the intonation of a single peak is changed 

while keeping every other peak unmoved, the optimiser will generally not move away from the 

starting point. This is partly due to the aforesaid lack of freedom in altering the impedance 

curve, and partly due to the optimiser starting in a very strong local maximum and therefore 

having difficulty navigating away from it. This can be counteracted, at least in part, in 

several ways. Firstly, certain less important features can be left unspecified in the target; for 
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example, with trombones, the location of peak 1 is almost entirely irrelevant to the player, 

and can be left free without a loss of performance. Secondly, the number of design targets 

Nk can be reduced (in principle this is not very different from the previous point. but in 

practice it is implemented differently). Thirdly, the optimiser may be modified in future to 

assign weights to each individual peak; at present they all score on an equal weighting, but 

in cases of this kind it would allow a greater 'incentive' for the optimiser to move away from 

the local maximum on which it starts. In general, such weighting is not necessary, but may 

prove a useful addition to the range of tools available. 

The optimiser may be given a target which is outside of its capabilities. Most generally, 

this is a target which is not only unattainable within the constraints of the specified design 

space (this has already been described as 'perfect-infeasible'). but for which no reasonable 

approximation exists either. This is again a subtle distinction, but to the optimiser they are 

quite different, as the two problems will differ greatly in ease of convergence. If a reasonable 

match exists, the optimiser is likely to converge to it relatively easily; if no such approximate 

match exists, it is likely to explore the more extreme regions of the space in an attempt to 

find a solution (as any good optimiser might) and, as a consequence, will sometimes return 

unacceptable geometries (e.g. figure 9.2). If such results are returned, it can be assumed quite 

safely that the target is not attainable with the given template (and therefore constraints) 

and one or both must be modified to gain a more satisfactory result. 

9.4.2 Displaced Peaks 

If only the least-squares objective {1, 0, 01 is used, there is a tendency for it to give dispropor -

tionately high scores to poorly-located peaks if the candidate and target impedance curves 

overlap. 

In figure 9.11 are shown two peaks which demonstrate this point. Both are equally poor 

matches of peak location, but peak (b) will give a much higher least-squares score than 

peak (a), because the right-hand tail of the peak is close to the target: the peak is the 

wrong location and the wrong shape, but gains a good score, thus providing a spurious local 

maximum. In the hybrid objectives 11, 1, 01 and 11, 1, 11, this effect is generally avoided by 

the peak-frequency optimisation. 
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9.4.3 Non-Uniqueness and Insensitivity 

Given the limited amount of information describing the target impedance, particularly if the 

least-squares whole-curve fitting is not used, it is to be expected that solutions may not be 

unique, and additionally that there may be local maxima describing close, 'incorrect' matches. 

This makes the optimiser's task more difficult, as it must either avoid or traverse away from 

these local maxima in search of the global optimum. Likewise, if there are two regions in the 

search space that provide two or more matches of nearly equal quality, it is difficult for the 

optimiser to choose between them without prior knowledge of the 'correct' solution (which 

would violate the purpose of the optimisation). A complete study of the uniqueness problem 

is beyond the scope of this work, but we can demonstrate the problem with numerical results. 

The impedance of an approximation of the 88H was calculated. This instrument has 

several jump discontinuities in its bore, resulting from the various tuning slides and fixings 

required of practical instruments; here we focus on the discontinuity between the main slide 

and the neckpipe, which is a join between two long cylindrical sections of slightly different 

radius. The virtual instrument was then modified such that location of this jump was altered 

(fig. 9.12), but the total length and the radii of the cylinders were unchanged. The jump was 

moved, by respective shortening and lengthening of the cylinders, by 1cm in either direction. 

This is a large change in the scale of the problem, but resulted in only a minimal change 

in impedance of 0.1Hz and 20kl the impedance is comparatively insensitive to this 

change. The optimiser may then choose 'incorrect' values for the location of this jump, and 

make much smaller changes in a more sensitive area to compensate. This is compounded by 

the known tendency of the Rosenbrock algorithm to converge poorly when very close to an 

optimum. 

In considering the results of reconstructions featuring bore discontinuities in otherwise 

fairly straight sections, it must be accepted that a small degree of error results from the 

inability of the optimiser to resolve such discrepancies. 

9.4.4 Multi-Bessel Bells 

One disadvantage of describing a bell with multiple Bessel-horns is the non-uniqueness that 

results. For a given horn shape, there is a continuum of piece-wise-Bessel horns which are 
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close interpolations. To the optimiser. this will appear as a series of very similar local maxima 

which may differ only fractionally in quality. In practice, we are not interested in how the 

bore-profile of a result is described, but rather its shape, and therefore a user will not consider 

this problem with any great interest. 
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Chapter 10 

Conclusions 

10.1 Fulfilment of Aims 

10.1.1 Aim 1 

To review existing methods of input impedance calculation, and to derive appropriate methods 

for bent tubing. 

A full review of the derivation of the plane-wave transmission-line model was given, stating 

wall effects and radiation impedance. New transmission matrices for Bessel and exponential 

horns were derived. An alternative derivation of the multi-modal method was given, and 

used as a basis for the derivation of a model for bent waveguides, which extended previous 

work to produce input impedance matrices compatible with the existing multi-modal method. 

Results for bore discontinuities and radiation impedance were extended to include the nodal-

diameter modes. The multi-modal wall loss mechanism was briefly reviewed for the purposes 

of highlighting the contradictory boundary conditions on which the model is based. 

A comparison of the numerical results for the different models was conducted, using a 

complete instrument including a mouthpiece. In agreement with previous studies, the addi-

tion of higher modes has a significant effect, diminishing progressively with each additional 

mode. The spherical- and plane-wave assumptions were compared with the multi-modal 

method; the spherical wave is shown to be an overestimate of the the effects of higher modes, 

but with a greatly smaller computational cost. 

The newly-derived bends model was used to investigate the effects of curvature on tubing 
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resembling that in brass instruments. It was shown analytically that plane-wave propagation 

is not affected by tubing bends. Numerically, increasing the curvature has the effect of raising 

the resonance frequency and lowering the impedance magnitude. The model was included 

with the higher-modes model to simulate a complete trombone, including bends. The effect 

of the curvature was found to be clear but negligibly small: if a similar result is found once 

losses are included, we will be able to say definitively that bends have no direct effect on the 

impedance of a trombone. Further work is required to derive such a loss model. 

10.1.2 Aim 2 

To develop the underlying techniques used in brass instrument optimisation, particularly the 

instrument representation. 

A number of innovations in brass instrument optimisation technique are presented. New 

objective functions are presented, as are methods for finding impedance peaks with mini-

mal computational overhead. A novel template-based instrument representation is proposed 

and implemented, including models of instrument bells with a series of short Bessel-horns. 

providing close approximations to real instruments with very few design variables. 

The template representation allows the geometry of an instrument to be defined without 

knowledge of its exact dimensions; if one knows the class of instrument(e.g. trombone), then a 

template can be defined based on prior knowledge. This can be used to constrain the search 

space to include only reasonable 'trombone shapes' without omitting any useful potential 

solutions: by thus reducing the search space, the optimisation speed is substantially improved. 

The use of multi-Bessel hell approximations, and therefore fewer design variables, further 

improves the optimisation speed. Use of the templates requires some a priori knowledge 

of the instrument, and reconstructions therefore lack the 'black-box' assumption; in practice 

this is seldom necessary, and the generality which is traded off is not generally required. Fully 

general problems can still be defined if needed. 

Regardless of how the geometry is represented (e.g. point-wise, Bessel-horns), the tem-

plate implementation has proved to be an elegant and very flexible solution. Both conceptu-

ally and in practice, it is compatible with any geometrical representation and any optimisation 

technique, and can therefore form a sound and useful basis for any future work in instrument 
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optimisation. 

10.1.3 Aim 3 

To investigate the comparative efficacy of the Rosenbrock and genetic algorithms for brass 

instrument optimisation. 

Reconstruction experiments were performed with both optimisation algorithms; the ge-

netic algorithm was significantly outperformed by Rosenhrock, which gave better results, 

converged faster and has deterministic repeatability. Given that problems with few design 

variables are better suited to genetic methods, and considering the results in [19], we conclude 

that further use of genetic algorithms for brass instrument optimisation is not worthwhile. 

10.1.4 Aim 4 

To develop integrated and easy-to-use software, written in OH-, to perform optimisation and 

other related tasks. 

A significant time investment has produced software to perform a variety of useful tasks 

related to instrument optimisation. The software is written in C-H-, is fully object-oriented 

and uses a variety of advanced programming techniques. It was developed in Linux, but 

will be easily ported to other operating systems. It is run from the command-line, using 

convenient plain-text input files, and outputs to either MATLAB or Maple for easy plotting. 

The software can perform optimisation using either the Rosenbrock or genetic algorithms. 

Targets are defined in terms of a saved impedance curve and/or peak data. The optimisation 

template (along with its constraints), target data and tuning parameters are specified for each 

problem in a user-defined file. It can evaluate and save the impedance of a given instrument, 

calculated with a user-specified number of modes. Experimental data from BIAS [43] can 

he imported and set as targets. Benchmark tests can be performed, evaluating a simple 

instrument repeatedly, to compare the computation times of various methods. Each of these 

tasks is included in a single application, and is easily available through various command-line 

parameters. 

During the course of this work much effort has been spent to ensure that the software 

is as flexible, powerful, expandable and easy-to-use as possible. The author has used this 

130 



software extensively, and is convinced by this experience that the complex programming task 

of implementing the sophisticated template representation has been amply justified by the 

end result. Due to the choice of language and the carefully-designed source code, future 

additions and modifications to the software will present little difficulty, ranging from the 

addition of other (more accurate) physical models to new element types representing other 

geometries. 

10.1.5 Aim 5 

To conduct experimental measurements of real trombones to gain insight into the impedance 

properties of good instruments. 

A series of BIAS impedance measurements were performed on a variety of modern trom-

bones and mouthpieces. While the BIAS equipment is very portable and easy to use, 

the model available gives results which suffer from some noise, and imperfect repeatability 

(though subsequent results using a newer model in factory condition are markedly better). 

Nevertheless, useful results were gained. Equivalent Fundamental Pitch plots were used to 

assist analysis of the harmonicity of the resonances. 

Results demonstrate that exactly harmonic alignment of resonances is not always desir-

able; trombones, particularly the larger models, show a trend of higher peaks having gradually 

sharper equivalent fundamentals, whereas French Horns do not [56]; clearly there is some vari-

ation between instrument classes. It appears that a degree of inharmonicity is essential to 

give the characteristic timbral qualities required of certain instruments. 

Smaller trombones generally demonstrate taller impedance peaks, particularly in the up-

per frequency range. Varying the mouthpiece likewise affects the peak heights, and has a 

small effect on the peak frequencies. When taken in combination, the results suggest that 

taller and more closely aligned peaks contribute to the ease of playing and the brightness of 

the tone produced. The measured impedance of a trombone is significantly dependent on the 

bore of both the mouthpiece and the trombone. 

The experimental measurement of a trombone was compared to a theoretical plot based on 

geometrical measurements of the same instrument: while there is broad agreement, significant 

discrepancies are present. Possible causes include experimental error, the lack of an infinite 
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rigid baffle in the measurements, inaccuracies in the measurement of the instrument geometry 

and shortcomings in the theoretical modelling. As far as the latter is concerned, the boundary 

conditions in the multimodal wall loss model are proposed as the most likely cause. 

10.1.6 Aim 6 

To use the optimiser to reconstruct an instrument from its impedance. 

The optimiser was successfully used to reconstruct, to within a fine tolerance, a complete 

virtual trombone from its calculated impedance, both using the spherical-wave assumption 

and with the multi-modal method. This task required no a priori knowledge of the specific 

dimensions of the instrument, and was successful both with targets based on simplified ge-

ometry and those based on fully-detailed measurements of a real instrument. These results 

demonstrate the effectiveness of the optimiser to solve bore-reconstruction problems in the 

absence of modelling discrepancies. 

A more stern test was the reconstruction of an instrument from its experimental impedance 

as measured by BIAS. A good reconstruction was found, with the problem of being inaccurate 

in the bell region. This can largely be ascribed to the discrepancy between the theoretical 

and experimental impedance plots found for this instrument outwith the optimiser. The mag-

nitude of the discrepancy made the reconstruction problem very difficult, and the optimiser 

was still able to produce a reasonable approximation. Given that the optimisation method 

itself has separately proven to be sound, we conclude that, once the discrepancy between 

theory and experiment has been resolved, the optimiser will be capable of such experimental 

bore-reconstruction. 

10.1.7 Aim 7 

To use the optimiser to modify existing instruments to alter certain impedance properties. 

The optimiser was successfully used to provide solutions to design problems relevant to 

modern instrument design. The experiments were based on a Conn 88H, a popular large-bore 

tenor trombone model, and attempted to modify the geometry of the instrument to improve 

its performance. Firstly, the alignment of peak 2, which has a strong effect on the lower 

register performance of the instrument, was successfully shifted to be more closely harmonic 
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with the other peaks. It is expected that the modified design, were it built, would have a 

significantly improved lower register as a result of the changes. Secondly, the height of several 

peaks in the upper playing range were made taller, giving the expectation of an improved 

upper register. In both cases some compromises in other aspects of the impedance curve were 

needed, but were rather smaller than the desired change. Both experiments produced smooth 

designs which could be built with no additional difficulty. Thirdly, the extra tubing of the 

F-attachment was optimised to make the badly misaligned peak 2 more closely harmonic; 

at present the author is aware of no previous attempts by any manufacturer at having a 

non-cylindrical bore in such an attachment. This novel optimisation successfully brought the 

peak into much closer alignment, with an associated expectation of a large improvement in 

performance in that register, but required a compromise in the location of peak 3, which is 

likely to have an adverse effect on the next highest register. The construction and testing 

of a prototype will show whether this trade-off is favourable, and further work may reveal 

better compromises. 

These results demonstrate the effectiveness of the optimiser to solve realistic problems in 

rombone design. Due to the above discrepancy between the experiment and the nmltixnodal 

i lieory, and the further discrepancy between the multimodal model and the spherical-wave 

model used for the optimisation, we cannot make any firm conclusions about how the pro-

posed designs would perform if they were built; furthermore, musicians would be required to 

provide subjective judgements as to the quality of the performance. However, most of the 

improvements focus on the lower-frequency performance, in which region the spherical-wave 

model assumption holds, and can therefore be considered a good indication of performance 

in this range. Excepting improvements in the modelling, the next stage of the process is to 

build prototypes of the designs, and perform tests to investigate the real performance of these 

proposed designs. 

10.2 Comparison with Previous Studies 

10.2.1 Kausel 

Kausel's pioneering work provided the first genuine attempt at an automated instrument op-

timiser. Using a point-wise representation, a least-squares objective function, and the Rosen- 
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brock algorithm (a genetic algorithm was also unsuccessfully used), it successfully reconstructs 

entire instruments, albeit with some 'ripples' in the bell section and using "admittedly count-

less" evaluations. Intonation optimisation can be performed over all 7 valve combinations, 

a capability which remains unique. This software has a graphical user-interface, and has 

been successfully used commercially. The present work may be viewed as a continuation of 

Kausel's approach. 

10.2.2 Norelarid 

This approach was based around use of the gradient-based Levenberg-Marc1uadt algorithm. 

and reformulates the transmission-line model to give the gradient of the least-squares objec-

tive function with respect to the geometric parameters (generally point-wise, but parametri-

sations were also attempted). Under the assumption that the imaginary part of the input 

impedance vanishes at the magnitude maxima, it is evaluated at the target frequencies and 

used directly as a measure of fitness of peak frequency. The second derivative of the (point-

wise) segment radius with respect to length is used to give smooth, if sometimes wiggly, bell 

geometries. The method was generally used to reconstruct bell sections for which the length, 

input and output radii were known and fixed; although good results are found with very rapid 

convergence, it is a rather less difficult reconstruction problem than that attempted here. 

10.3 Future Work 

10.3.1 Theory-Experiment Discrepancy 

The most obvious avenue for future work is that of the theory-experiment discrepancy. Work 

is elsewhere in progress to improve input impedance measurement techniques [58]; use of 

such equipment in detailed experiments with a large rigid baffle in place may yield improved 

experimental results. Likewise, improvements in the modelling can yield dividends. 

Consider first the plane-mode models. Noreland proposed a hybrid spherical-wave model 

with finite-element modelling of the hell; while this yielded improved accuracy, it was compu-

tationally too expensive for optimisation purposes. Another possibility is that of combining 

theory with experimental results. Under the plane or spherical wave assumptions, it can be 

shown that the transmission matrix of an arbitrary bore can be deduced if it is measured ex- 
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perimentally with four different known termination impedances. If, for example, a trombone 

without a bell were terminated in turn by four different stopped tubes and measured, then 

its transmission-matrix can be deduced. If the bell were then added and another measure-

ment taken, then the impedance of the bell and its radiating end can also be deduced. This 

can then be used as the termination impedance in theoretical calculations of the instrument, 

and may confer an increase in accuracy as the spherical-wave assumption is good in the rest 

of the instrument. The same technique may also be employed to produce a model of the 

radiation impedance of a French Horn including the player's hand in the bell, allowing horns 

to be optimised in a similar way. Such an experimental technique has not, to the author's 

knowledge, been attempted. 

Moving onto the multi-mode model, the wall-loss mechanism merits further attention. It 

is based on two contradictory boundary conditions, and neglects the effect of the boundary 

layer on the transverse behaviour. It is not clear to what extent this assumption is valid, 

but given the wide variation in radius found in brass instrument bells it is not obvious that 

such transverse effects are negligible when compared to the axial effects. Further study in 

this area, possibly including experimental data, may prove valuable. 

Continuing in this vein, we come to the bends model. The current experiments have 

indicated that the curvature has a negligible effect on the impedance of a complete trombone. 

However, this model lacks any account of the wall losses. A complete formulation of such 

losses would give a definitive answer to the question of the effect of the bends. Such a 

formulation is likely to be very involved. Similarly, an experimental investigation into the 

possible indirect effect of bends would be valuable - for example, the precise geometry of a 

nominally toroidal bend in an instrument. It is possible that the process by which such bends 

are manufactured causes some small perturbations to the geometry, which may in turn have 

an effect on the impedance. Nederveen [6] suggests that such perturbations exist, though his 

destructive method is unsuitable for precious instruments. The conventional rod-and-ruler 

based method of measuring bore-profiles suffers from rather limited precision, and is useless 

for bent ducts. One might suggest some small laser-based probe attached to a flexible rod 

capable of navigating the entire instrument as being suitable, though this may prove difficult 
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Further work with multi-modal methods may be facilitated by rederiving the models in 

tensor form; given the multiple indices (which are currently lumped together) and non-trivial 

coordinate spaces, a tensor analysis may provide a good deal more flexibility than the existing 

model. 

Once the discrepancy has been resolved, the optimiser will become a viable alternative to 

acoustic pulse reflectometry [5, 591 for the task of bore reconstruction. 

10.3.2 Software & Optimisation 

The ongoing ARTSIM project [40] intends to provide a comprehensive library of computa-

tional tools to model acoustic systems. Much of the code written for this thesis could be 

included in such a library with relatively little modification. 

The template model and implementation are applicable to any other optimisation tech-

nique, and will prove useful to any future attempts at similar problems. Combining the 

template representation with the gradient-based optimisation technique in [21] may yield a 

further improvement in convergence speed. 

At present, the design space is normalised to be of uniform size. This normalisation is 

a simple linear scaling. Some advantage may be gained by investigating non-linear scaling, 

chosen so as to bias the optimiser toward being near the centre of the space without reducing 

the design space. 

The computation speed of the optimiser may be improved by the retention of previously 

calculated impedance data. Not every section is altered in each step of the optimiser, so 

those sections unaltered may use existing data. For this to be worthwhile, the computational 

overhead pertaining to the storage and subsequent access of a database of impedance matrices 

must be less than the time saved by such retention; it is not clear that this condition will 

necessarily be met in all cases, but the matter is certainly worthy of investigation. The 

computation speed of the spherical-wave model may be improved by the derivation of a lossy 

transmission matrix for a Bessel-horn; at present only a lossless model exists. 

The addition of a graphical user interface to the software would significantly increase 

its ease of use, particularly for those less familiar with its inner workings. Any commercial 

product must have such an interface. 
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The templates developed for this work have proven to be effective, but in order to he useful 

in general bore reconstruction problems, they must he tested carefully on other instruments 

different to those for which the templates were developed. A broad database of templates for 

a variety of different instruments and instrument classes can be constructed. 

10.3.3 Instrument Performance 

The construction of a large database of impedance measurements of a wide variety of in-

struments would be valuable, particularly if it can be combined with the evaluations of 

professional players. Ideal1y one will be able to obtain a reliable method of predicting how a 

musician will judge an instrument based on its impedance curve. Some work to this end ap-

pears in this thesis, but it is neither comprehensive nor rigorous enough to give a sufficiently 

solid grounding. Experiments can be devised whereby a component of a given instrument is 

chosen, and various alternative designs of that component are designed with the optimiser to 

investigate certain impedance properties. Such components can then he built and tested by 

musicians, and correlations sought between their evaluations and the impedance properties. 

Current plotting methods are unable to display satisfactorily on a single plot the har-

monicity and magnitude of a given impedance curve. Such a plot would assist interpretation 

and prediction of performance. For example, a broad, tall but somewhat inharmonic higher 

peak may provide a greater contribution to a regime than a narrow, short harmonic peak: the 

EFP plot makes no account of this. One possible method is to use an existing EFP plot, and 

overlay horizontally around each peak a row of narrow coloured vertical bands, the colour of 

which represents the magnitude of the impedance a given number of cents from that peak. 

Such a plot would resemble a rectangle filled with rows of coloured bands, and would allow 

one to see at a glance not just the harmonicity, but also the associated impedance magnitude 

both at and around the peaks. 

The optimiser has proven capable of making feasible modifications to complete instru-

ments and meeting specified parameters. Prototypes of such designs could be built. their 

impedance measured and compared with that predicted by the modelling, and played by mu-

sicians to determine if they perform as predicted. Kausel's optimiser has already been used 

to produce commercial products. Given the improvements made in this work, it is reasonable 
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to expect that this software will be capable of similar usage. Once its effectiveness has been 

proven in the experimental domain.,it may prove invaluable to an instrument designer. A 

detailed and comprehensive exploration of the capabilities of the optimiser as applied to a 

wide range of instruments is likely to prove most interesting. 

The effect of a player moving between two regimes with quite different harmonicity is 

unclear. It is proposed in section 7.2.3 that the player may find greater ease in slurring 

between two regimes of similar harmonicity. An experimental investigation into such effects 

would be valuable. 

Although the effect, in the absence of losses, of the bends in a trombone was examined 

and found to be negligible, this does not make any statement about other instruments. The 

trumpet features some sharp bends in its valve tubing, as does the French Horn which also 

features bent tubing almost exclusively throughout its bore. Similar numerical investigations 

on these instruments may yield interesting results. 
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Appendix A 

Conical Plane-Wave Derivation 

Equation 2.27 gives the impedance at the mouth of a conical horn. Using. for convenience, 

the impedance per unit area i = Sz, we have 

- 	 pw[(A - B) sin(kxi)) + j(A + B) cos(kxi)] 
Zl - 
	{( A + B) cos(kx i ) - j(A - B) sin(kxi)} + k[(A + B) sin(kx i ) + j(A - B) cos(kx i )] 

we have 

A + B = [ jsin(kx i ) -jkcos(kx 1 )]j ± pwsin(kxi) 	
( A. 1 ) A - B 	[-cos(kx i ) + ksin(kx i )}z i  - jpwcos(kx i ) 

Equating this fraction at the mouth and the throat xo gives 

[j sin(kx0 ) - jkcos(kxo)] + pw sin(kro) 	[j sin(kx i ) - jk cos(kx i )] j + pwsin(kx i ) 

[cos(kxo)+ksill(kxo)] - jpwcos(kxo) 	[-I-cos(kxi) +ksin(kx i )]uj - jpcos(kx i ) 
(A.2) 

For ease of notation we define a series of dummy variables 'y1...8  such that 

1ZO+2Y5Z1+Y6 	
'A3 

3ZO + 4 - 7Z + 8 

giving 

zo  = ('y4'y5 - Y2'y7)Z1 + (74 1y6 - 7278) 	 (A.4) 
( -y' -y 	35)Z1 + (71Y8 - Y316) 

Then, noting the the length of the cone section d =x, -  x0, we have 

139 



cos(kd) = cos(kx i )cos(kx o ) +sin(kx1)sin(kxo) 

sin(kd) = sin(kx1)cos(kxo) —cos(kx j )sin(kx o ). 	 (A.5) 

We then simplify (A.4) term-by-term: 

'y475 —Y2Y7 = [—jpcos(kx o )] [Jsin(kxi ) _jkcos(kx i )] 
XI 

—[pw sin (kx o
)] 1XI

Icos(kx1) + ksin(kx i )] 

= 	(sin(kd) - kcos(kd)). 	 (A.6) 

'y476 - 'Y2'Y8 = [— jpL.'cos(kxo)][pwsin(kx i )} - [pwsin(kxo)][—jpwcos(kxi)] 

= —jp2w 2 sin(kd), 	 (A.7) 

NIO 	 j 

1 1 
17 - 35 = 	jsin(kx o ) - jkcos(kxo)I —cos(kx i ) + ksin(kx i )

[ XI 	
]] 

- [-- cos(kro) + k sin (kx o
)] 1XI

±jsin(kx) - jkcos(kxi)] 
XO 	

+1)

7d 
= jk 	

\ 	
(A.8) 

	

2 
 [_ (k 2 xoxl 	 \kx o x i ) 

	

sin(kd) + 1 	1 cos(kd) 

1 
- 'Y36 = 	— J sin(kx o ) - j  cos(kxo) I [—jpw cos(k;ri)] 

IX0 	 J 
- 	cos(kx 0 ) + k sin(kx o )] [pw sin (kx i )] 

L so 

( sin(kd) 	). 	
(A.9) = - 	 +kcos(kd) 

 XO 

)(h iI1() H\ 	IV( 

( siii(kd) - k cos(Ld)) Z1 - jp' 2  siiikd) 

- 	 1)sin(kd)+ 
( 1 )cos(kd)] £j _p(sin(kd)+kcos(kd)) 

(A. 10) 

ilieii. using = kc, mouth and throat impedances = Sozo and £j = S1 z 1 , where S0 and 

Ow (1 	;I j 	' 4 ; 	 11 	1 	III 	;i 	11](0 1111. 	I\I 

/ Wk (L sili(kd) - k cus(kd)) zi - jpck 2  sin (W) 

" 	 (ar'ox + i) sinkd) + () cos(kd)] z1 - k ( sin(kd) + k cos (kd)) 



Defining the characteristic impedance z. = pc/So  and observing that 11S1 = r/i?So yields 

2 k (- sin(kd) - k cos(kd)) z1 - z -4jk sin(kd) 
zo = zc  

jk2 [ (k2oxi + i) sin(kd) + 	cos(kd)] 	- z- 

x i  

____ 	
d 	 x2k(ii(kd)k(kd)) 

I 	
X0 

 

Multiply by -xi /k 2 xo  and cancel over z to find 

zo  = 
jz c- 

LL 

 

cos(kd) - - sin(kd)) Z1 + JZc  sin(kd) 
XO XI 

1 +, sin(kd) - () cos(kd)] z1 + 	(-L sin(kd) + cos(kd) 
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Appendix B 

Bessel & Exponential Horns 

We consider in this appendix two horn shapes which offer analytical solutions to the Webster 

equation (2.9). 

B.1 Bessel Horn 

A waveguide of the following shape is defined to be a Bessel-horn: 

= 

where R. is the bore radius a distance x along the axis of instrument, -y is a flare constant 

and b a constant. The horn lies to the left of the origin, with the mouth facing right. The 

bore function is valid only in the domain (—oc, 0) and becomes unbounded at the origin. 

Now consider a Bessel-horn, flare 'y,  length d and radius ranging from R0 at the throat 

to 7? I at the mouth. From (B.1), we can choose b such that the horn expands (in (x, r) 

coordinates) from (x0, R0) to (xo + d, R1) as x increases. 

7Zo = b(—x o ) 

Iz i  = b(—x o  - d) 
	

(B.2) 

Solving for b,x 0  gives 
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Figure B.1: Two Bessel-horns with same length and radius properties, with flare constants 

0.5 (solid) and 0.7 (dashed). Dimensions approximately match a trombone bell. 

b 
(d 

= 

	

SO = - (RO) 
	

(B.3) 

We can use this result to specify a continuum of Bessel-horns with given length and in-

put/output radii by varying the choice of flare 'y (figure B.1). 

B.2 Exponential Horn 

A wivriiilv of t1 le 	\ViYI 	4l11)( i 	(l(fI1I('(1 I 	an 	xft iienl ml li )F1l 

	

=RO C 2, 	 (B.4) 

1 	tlaie (u111aI1t and 	an arbitrary parameter. Consider an exponential horn 

U length d, with throat and mouth radii RO and R.i arbitrarily located on the x-axis at x 

iid xi respectively; we seek a set of such horns matching these given criteria. We attempt 

coordinate transform + o = :r. defined such that the throat of the horn is at = 0 and 



1R() = 

= (Roe 0 ) e, 	 (B.5) 

so a translation 	in the x-axis can be absorbed into the multiplicative transform fl.0: we 

may therefore discard the translation by setting o = 0 and safely assume, without loss of 

generality, that the throat is located at x 0  = 0 and the mouth at x 1  = d. Then 

	

1Z(d) = 	 (B.6) 

giving 

	

2 G7z
)

1

In 	 (B.7) 

therefore given any two points there is only one exponential horn, with flare 'y  as shown, that 

passes through both these points. 
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Appendix C 

Properties of Bessel Functions 

C.1 Solutions of Bessel's Equation 

Bowman [27] transforms the Bessel differential equation such that 

x2 	+ (2p + 1)x 	+ (2x2,"  + 	= 0 	 (Ci) 

	

,9X2 	 09X 

has general solution 

(~ ) 'c \
y(x) = X [CiJqir T  + C2Yq/r

r)j (C.) 

valid for all real values of the order q/r, where q = 	- 32, and J and Y are respectively 

Bessel-functions of the first and second kinds. Bowman gives this solution to supplement, in 

cases of integer order, a similar one in which a term replaces that of but does not 

mention that the latter solution can he used in all cases; [26] (p.76) makes it clear that J(x) 

and Y(x) always form a fundamental system of solutions, and therefore a cylinder function 

C(x) = aJ(x) + bY(x) is a general solution of the Bessel equation or its transforms. We 

r((il1 tI1k 	(1(fi11i1i! 	H;] ( 1).6 1 )  

Lrj = 
.11 (i) u(ii) - 

sin(v7r) 
(C.3) 

- 11 4 1 that the function l',(x) is continuous in ii (except where x = 0), because the limit of 

lie above expression is taken as ii - ii where n is an integer. This definition may also be 

11 - ed. with retained values of .J,, and J_,. to improve (OIIlplltatiOfl speed. 



C.2 Some Identities 

The following results hold [26] (1).54-55): 

= 
cos(x), 

 

ir.r J 

J_312(x) 	
= (2" 2 (_  Cos (x) 

_sin(x)) 
x) x 

J112(x) 	
= (2h/ 2  

7rx J 

J312(x) 	
= () 

1/2 (sin(x) - cos(x)). 

(C.4) 

Then, using (C.3), we have 

= J1 12 (x). 

Y_ 312 (x) = J31 2 (x). 	 (C.5) 

From [28] p.146, 

xJin(ax)Jm(bx)dx 
= bxJm(ax)Jm_i(bx) - axJm_i(ax)Jm(bx) 

a2  - b2 	
. 	( C,6) f  

From [27] equation 6.4 

(C.7 

C.3 Zeros 

1 - roin equation 9.5.5 On p.370 of [60] 

11111 ziu 	f 	1I\i\ 	.1'. 



Table of Zeros 

For the Bessel-function Jm of the first kind, we tabulate 'y 	[60] (p.411) 

'Ymn 0 1 2 

n 

3 4 5 6 7 

0 0.0000 3.8317 7.0156 10.1735 13.3237 16.4706 19.6159 22.7601 

1 1.8411 5.3314 8.5363 11.7060 14.8636 18.0155 21.1643 24.3113 

2 3.0542 6.7061 9.9695 13.1704 16.3475 19.5129 22.6716 25.8260 

3 4.2012 8.0152 11.3459 14.5859 17.7888 20.9725 24.1449 27.3101 

in 	4 5.3178 9.2824 12.6819 15.9641 19.1960 22.4010 25.5898 28.7678 

5 6.4156 10.5199 13.9872 17.3128 20.5755 23.8036 27.0103 30.2029 

6 7,5013 11.7349 15.2682 18.6374 21.9317 25.1839 28.4098 31.6179 

7 8.5778 12.9324 16.5293 19.9419 23.2681 26.5450 29.7908 33.0152 

Table C.1: Zeros 'y7  of Bessel function derivative J 
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Appendix D 

Physical Constants 

Keefe [13] gives values for the thermodynamic constants of air at room temperatures. For air 

at atmospheric pressure at temperature TV , using the value AT = T - 26.85 , we have 

P = 1.1769 x 10(1 - 0.00335LT)g cm -3 

= 1.846 x 10(1 + 0.0025T)g s -1  cm-1  

c = 3.4723 x 10(1 + 0.001166zT)cm s - 1 , 	 (D.1) 

accurate within A T = ±10'C. 
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Appendix E 

Repeat Experimental 

Measurements 

E.1 Experimental Measurements 

Since the initial submission of this work, a new BIAS head has been made available. This 

is the latest version, offering improved performance over its predecessor, and is factory con-

dition. This new equipment was used to repeat certain of the measurements above in an 

attempt to produce results with smaller measurement errors. The exact instruments and 

mouthpieces were not available, so the closest available match was substituted. 

It has already been commented that directly comparing measurements with the same 

equipment on the same instruments taken during different sessions in different conditions is 

iiot valid. It is therefore certainly not valid to compare directly measurements taken with 

different equipment on different instruments during sessions separated by over two years. Nev-

rtheless, given the existence of presumably improved experimental equipment it is necessary 

I) employ it to validate the analysis of Chapter 7. Most of this analysis is based on EFP. 

I (11 appears to be much less sensitive to the above inconsistencies, and can be normalised 

ii It quency; direct comparisons between the two measurements, keeping in mind differences 

i the instruments, is sufficient to test whether the qualitative EFP features observed are 

iiiaffected. 

ill Fi'llrc L.2n tli( J;JJ) 	f 	(11i 	ii vjtli 	[)(1ii 	\\ik  L\l. iiI)11tli1)t(  1!i(tiii(I 
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Figure E.1: Impedance of 8H, experimental measurement (black), and calculated with 11 

modes (red). 

with the new BIAS compared with that of a Conn 88H with another 5AL measured with 

the old BIAS. According to the manufacturers, the two trombones are nominally identical in 

bore-profile save for a rotary valve mid-way through the length of the 88H. The mouthpieces 

are likewise nominally identical. A musician would expect the two instruments to be virtually 

indistinguishable during playing. We see no significant difference in EFP between the two 

measurements. 

In Figure E.2b the EFP of a Rath R9 with a Denis WIck 3AL mouthpiece measured with 

the new BIAS compared with that of another R9 with B1.5 mouthpiece measured with the 

old BIAS. The trombones are very similar, but not identical in design, and the mouthpieces 

are rather different in design. Nevertheless, the results are still qualitatively comparable the 

only significant difference being the alignment of peak 2; the new measurement is, if anything, 

more supportive of the preceding analysis than was the old measurement. 

We conclude that there is nothing in the new measurements which would cause us to 

reconsider the above discussion. 
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Figure E.2: EFP plots for trombones comparing old and new BIAS equipment, normalised 

to 4th  resonance. 

E.2 Optimisation 

Experiment VI, being the reconstruction of a trombone from an experimental BIAS mea-

surement, was repeated using results gained from the new equipment. The result was not a 

significant improvement over that already found; given the continued presence of the theory-

experiment discrepancy this is not surprising. 
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