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Abstract

Despite recent advances in tumour cell biology, the prognosis for patients suffering
from malignant glioma remains poor. Although primary glioma rarely metastasises
outside the central nervous system (primary being defined as the mass of tumour
cells at the original site of the neoplastic event) median survival of adults is less than
1 year after diagnosis.The efficacy of existing therapeutic interventions is limited by
poor penetration of chemotherapeutic drugs across the blood brain barrier, the
inherent radioresistance of glioma tissue and the infiltrating nature of the tumour.
Further progress is likely to be achieved through analysis of the complex biology of
these tumours and the development of novel therapeutic strategies. The purpose of
this study was to investigate the therapeutic potential of the n-6 essential fatty acids
arachidonic acid and gamma-linolenic acid, which may inhibit tumour proliferation
by acting as substrates for the production of potentially cytotoxic reactive oxygen
intermediates and stimulating apoptotic cell death, both alone and in conjunction
with radiation.

Experiments were undertaken to investigate the effects of exogenous arachidonic
acid and gamma-linolenic acid on cellular peroxidation, proliferation, viability and
apoptosis. These investigations were carried out on single cell suspensions of
morphologically heterogeneous fresh human glioma tissue and associated normal
brain, human phagocytes and the rat C6 glioma cell line. It was shown that oxidative
activity was impaired in human glioma tissue. Addition of 4-40pM arachidonic acid
and gamma-linolenic acid induced a concentration dependant increase in tumour
reactive oxygen intermediate production and apoptotic activity. Although the
kinetics of reactive oxygen intermediate formation in the presence of arachidonic
acid and gamma-linolenic acid followed an exponential function in both normal and
tumour cell preparations, tumour cells showed a significantly higher sensitivity to
exogenous essential fatty acid stimulus. The kinetics of this stimulation were grade
dependent, with high grade tumours responding in a more rapid and sustained
manner in comparison with lower grade tumours. The morphological heterogeneity
of the human glioma preparations was confirmed with immunohistochemical
analysis and flow cytometry using monoclonal and polyclonal anti-Glial Acidic
Fibrillary Protein (GFAP). GFAP positive cells responded to exogenous arachidonic
acid and gamma-linolenic acid with increased reactive oxygen intermediate
production, indicating a high sensitivity of glioma cells to essential fatty acid
stimulus. Reactive oxygen intermediate production was also investigated in
phagocyte preparations of patients undergoing pulmonary resection for lung cancer.
It was found that reactive oxygen intermediate generation was stimulated in patient
and control phagocytes by exogenous 1 -40(iM arachidonic acid and gamma-linolenic
acid both pre and post-operatively. Increased reactive oxygen intermediate formation
was detected in the cell population identified as leukocytes in preparations of human
primary glioma, although this response was less than that of associated tumour. It
was also found that surgery was associated with an increase in phagocyte reactive
oxygen intermediate at 2 and 7 days post-operatively in lung cancer patients. The
interactive effects of arachidonic acid, gamma-linolenic acid and therapeutic
radiation were demonstrated in the rat C6 glioma cell line. The rate of reactive
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oxygen intermediate production in response to exogenous arachidonic acid and
gamma-linolenic acid increased within the first hour, and elevated oxidative activity
was detected for up to three hours. However, a different pattern of reactive oxygen
intermediate generation was observed in response to radiation alone. Similarly, an
early apoptotic response was observed following exogenous arachidonic acid and
gamma-linolenic acid stimulation. In comparison, radiation induced stimulation of
apoptosis occurred over the 12 hour period of incubation and was maximal between
6 and 8 hours post-irradiation. An enhanced radiation response was observed when
the stimulation of apoptosis induced by essential fatty acid stimulus alone was low,
suggesting that essential fatty acids and radiation may interact to potentiate reactive
oxygen intermediate generation and apoptosis.

In conclusion, this study has provided evidence that glioma tissue has low basal
oxidative activity in comparison with associated normal brain, and that addition of
exogenous arachidonic acid and gamma-linolenic acid stimulates peroxidative and
apoptotic activity in glioma tissue a grade dependant manner. Studies on the cellular
heterogeneity of human glioma samples indicate that the stimulation of reactive
oxygen intermediate production by exogenous arachidonic acid and gamma-linolenic
acid occurs in GFAP positive cells. This indicates high sensitivity ofhuman glioma
to exogenous essential fatty acid stimulus. Phagocyte populations from lung cancer
and malignant glioma patients also respond with increased reactive oxygen
intermediate production to exogenous arachidonic acid and gamma-linolenic acid,
although the magnitude of this increase is less than that observed for tumour cells. In
addition, there is evidence ofpotentiation of the oxidative and apoptotic response of
the rat C6 cell line to exogenous arachidonic acid and gamma-linolenic acid in the
presence of therapeutically relevant doses of radiation. These results are consistent
with a clinical role for arachidonic acid and gamma-linolenic acid in the treatment of
malignant glioma.
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Chapter 1:

The Role of Essential Fatty Acids in Cell Proliferation and Death:

Relation to Reactive Oxygen Species Formation and Human

Primary Glioma

1.1 Introduction

Gliomas are the most common group of intrinsic brain neoplasms in children and
middle aged adults (Prados and Levin, 2000). These tumours are currently classified

according to presumed cellular origin and histological features associated with

increasing malignancy, generally using the WHO system or the system of Daumas-

Duport et al (1988). The WHO classification defines these tumours on the basis of

cellularity, nuclear and cellular pleomorphism, mitoses, endothelial proliferation and

necrosis, with glioblastoma, the highest grade tumour in this system, generally

possessing high degrees of each of these characteristics (Berens and Giese, 1999).

Anaplastic astrocytomas do not generally contain regions of endothelial proliferation
or necrosis, are less cellular and pleomorphic and contain fewer mitoses.

Astrocytomas are characterised by moderate cellularity and minimal pleomorphic

change, with only occasional mitoses. The Daumas-Duport system grades tumours of

glial origin on the presence or absence of four major criteria: nuclear atypia, mitoses,
endothelial proliferation and necrosis. Grade one neoplasms have none of these

features, grade two have one, grade three have two and grade four have at least three

(Daumas-Duport, 1988).

Although there have been significant technical advances in surgical and radiation
treatments for brain tumours in recent years, the impact of these developments on

clinical outcome has been disappointing (Berens and Giese, 1999 and Neider et al,

2000). This poor prognosis is due in part to the progression of low grade tumours
towards more malignant phenotypes and the poor clinical response ofmalignant

gliomas to existing treatment options (Darling, 1990). Surgery is limited by tumour
invasion into surrounding normal brain (Turazzi and Licata, 2000), radiotherapy by
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the inherent radioresistance ofmalignant glioma and poor normal tissue tolerance

(Mansur et al, 2000) and chemotherapy by the poor penetration of chemotherapeutic

drugs across the blood brain barrier (Brandes and Pasetto, 2000 and Olivi et al,
2000). Improvements in patient survival are therefore likely to arise from novel

therapeutic interventions which increase tumour cytotoxicity, either alone or in

conjunction with conventional treatment options (Neider et al, 2000, Brandes and
Pasetto, 2000 and Darling, 1990).

A number of investigations have indicated that essential fatty acids may have clinical
relevance in the treatment ofhuman maligant glioma. Essential fatty acids are highly
unsaturated lipids which cannot be synthesised de novo and must be acquired from
the diet or other external sources (Burr and Burr, 1929 and Burr and Burr, 1930).

They are generally classified into two groups - omega-3 (n-3) and omega-6 (n-6), the
number in brackets indicating the position of the first double bond from the methyl
terminus of the hydrocarbon chain (Burr and Burr, 1929 and Burr and Burr, 1930).

Omega-3 and omega-6 essential fatty acids are not metabolically interconvertible,
and they often have different structural, physiological and biochemical functions in

vivo (Kinsella, 1988 and Simopoulos, 1991). The empirical structure of a typical fatty
acid molecule is shown in Figure 1.1a and the molecular configuration of the C20

essential fatty acid arachidonic acid is shown in Figure 1.1b. Typical naturally

occurring sources of essential fatty acids are shown in Table 1.1, and processes
involved in their metabolism are shown in Figure 1.2.

Although there is limited information on the activity of essential fatty acids in human

glioma cells, in vitro investigations have indicated that essential fatty acids are

associated with loss of glioma cell viability in established cell lines, possibly through

potentiation of cellular oxidative activity (Das, 1990a, Das, 1990b, Traynelis et al,
1995 and Hrelia et al, 1996). These studies concur with other data which indicate that

essential fatty acids inhibit the growth of transformed cells by acting as substrates for
the production ofpotentially cytotoxic reactive oxygen species and lipid peroxides

(Cornwell and Morisaki, 1984 and Gonzalez, 1992). Breast (Cheeseman et al, 1984)
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and hepatic tumour tissues (Bartoli and Galeotti, 1979) have low levels of

peroxidative activity, possibly due to dietary deficiency and/or lack ofmetabolic
conversion of essential fatty acid precursors (Bartoli and Galeotti, 1979, Cornwell
and Morisaki, 1984 and Vatten et al, 1993). This may result in loss of cellular
oxidative activity and hence dysregulation ofmolecular pathways involved in cell

proliferation and death (Cheng and Levy, 1979, Galeotti et al, 1984 and Galeotti et al,

1986). The processes involved in the initiation of lipid peroxidation are shown in

Figure 1.3.

In addition to mediating direct tumour cytotoxicity, essential fatty acids may augment
the therapeutic response to conventional cancer therapy. As there is evidence that

radiotherapy and chemotherapy may induce tumour cell death, in part at least,

through stimulation of lipid peroxidation (Ewing and Jones, 1987, Ma et al, 1991 and
Alaoui et al, 1992), provision of exogenous essential fatty acids may provide pro-
oxidative substrate upon which radiation can act (Yamanaka et al, 1978, Oberley and

Buettner, 1979 and Yamaguchi, 1994).The relevance of this hypothesis to glioma

therapy has been demonstrated in vitro, where essential fatty acids increased the

radiosensitivity of rat astrocytoma cell lines while exhibiting minimal toxicity to

normal rat astrocytes (Vartak et al, 1997 and Vartak et al, 1998).

While the mode of glioma cell death resulting from essential fatty acid

administration, either alone or in conjunction with radiation, has not yet been fully

characterised, preliminary evidence indicates that this action may be due to
stimulation of a morphologically stereotyped and genetically regulated process

termed apoptosis (Nakatsu et al, 1996 and Zhu et al, 1996) rather than a pathological
form of cell death termed necrosis which occurs in response to tissue insults

including hypoxia and membrane disruptants (Kerr et al, 1972, Wyllie, 1974, Wyllie
et al, 1980 and Bellamy et al, 1995). These preliminary studies therefore suggest that
essential fatty acids may be involved in tumour-specific molecular pathways

mediating programmed cell death and radiosensitivity.
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H3C-(CH2)n-CH2-CH2-C

CO P OL OH

Figure 1.1a. Typical Structure of a fatty acid molecule. Fatty acid carbon atoms are
numbered from the carboxyl terminus. Carbon atoms 2 and 3 are referred to as a and
P respectively, and the methyl carbon atom at the end of the chain is called go or 8.
The structure of a fatty acid molecule is usually symbolised by the x:y n-z notation
where x represents the total number of carbon atoms in the hydrocarbon chain, y, the
total number of double bonds and z, the position of the first double bond from the
methyl terminus.

Figure 1.1b. Energy optimised configuration of the C20 essential fatty acid
arachidonic acid as determined by the Oxford Molecular Program optimised over 400
cycles. Green: carbon, white: hydrogen, yellow: aliphatic double bond, red: oxygen
atoms of carboxyl tenninus. Molecular modelling was performed by I. Dawson and
A. Leaver (Department of Pharmacology).
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Table 1.1. Characteristics and Sources of the Principal Naturally
Occurring Fatty Acids

family name structure maior source

saturated palmitic acid 16:0 dairy produce and red meat

stearic acid 18:0 dairy produce and red meat

unsaturated oleic acid 18:1 n-9 various vegetable oils
including olive oil

linoleic acid 18:2 n-6 dairy produce, offal, human
milk and vegetable seed oils
e.g. sunflower, safflower corn
and olive oils

y-linolenic acid 18:3 n-6 various seeds including
evening primrose, borage and
blackcurrant

a-linolenic acid 18:3 n-3 green vegetables, soya and
linseed oil

arachidonic acid 20:4 n-6 dairy produce, meat and
various vegetable oils

eicosapentenoic
acid

20:5 n-6 fish, fish oil and shellfish

docosahexaenoic 22:6 n-3 fish, fish oil and shellfish
acid



Figure 1.2. Overview of the metabolic pathways traditionally
believed to be involved in the metabolism of the n-3, n-6 and n-9
series essential fattv acids.

n-3 series n-6 series n-9 series

C16:0

(palmitic acid)

I
C18:0

(stearic acid)

CI8:3 n-3

(a-linolenic acid)

I 56-desaturase

CI8:4 n-3

> f

C20:4 n-3

55-desaturase

C20:5 n-3

(eicosapentaenoic acid)

V
C22:5 n-3

\ ■

C22:6 n-3

(docosahexaenoic acid)

CI 8:2 n-6

(Iinoleic acid)

56-desaturase

CI 8:3 n-6

(7-linolenic acid)

C20:3 n-6

(dihomo-7-linolenic acid)

55-desaturase

C20:4 n-6

(arachidonic acid)

\y
C22:4 n-6

V
C22:5 n-6

CI 8:1 n-9

(oleic acid)

1 56-desaturase

CI 8:2 n-9

T

C20:2 n-9

55-desaturase

V
C20:3 n-9

V
C22:3 n-9

i
C22:4 n-9

*these metabolic conversions proceed slowly in subjects consuming typical western
diets. This is because high concentration of 18:2 n-6 fatty acid precursor in cell
membrane phospholipids enables successful competition for active sites on
desaturase and elongase enzymes. Additional pathways for essential fatty acid
metabolism involving the transfer of 24 carbon fatty acids from the endoplasmic
reticulum to peroxisomes are discussed in Section 1.4.
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Figure 1.3. Processes involved in the initiation of lipid peroxidation (from Krmsky et
al, 1992).
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1.2 The Role of Essential Fatty Acids and Oxidative Metabolism in

Tumour Proliferation and Death in vivo and in vitro

The role of essential fatty acids in tumour cytotoxicity was suggested through

epidemiological studies which investigated the involvement of dietary lipid in
tumour pathogenesis. The relatively low incidence of certain forms of cancer among

populations whose diets contained little or no saturated fat, e.g. the Eskimos and

Japanese, implied there was an inverse association between polyunsaturated fatty
acid consumption and the occurrence ofmalignant disease (Armstrong and Doll,
1975 and Pritchard et al, 1989). Additionally, epidemiological studies indicated that
the probability ofmigrant Eskimo and Japanese populations developing breast and
colon cancer was not significantly different from native western populations. This

suggested that environmental rather than genetic factors were important determinants
of the pathogenesis of these diseases (Armstrong and Doll, 1975).

Although these epidemiological and dietary studies demonstrated a positive link
between saturated fat consumption and cancer of the colon (Committee on Diet and

Health, 1989 and Willet et al, 1990), the involvement of saturated dietary lipid in the

pathogenesis of breast tumours is less well established (Willet et al, 1992). Little or

no association between total fat intake and breast cancer has been observed in most

epidemiological studies (Goodwin and Boyd, 1987 and Willet et al, 1992), although a

pooled analysis of twelve case controlled investigations suggested a weak but

statistically significant positive association between saturated fatty acid intake and
the incidence of breast cancer (Howe, 1992).

The limited nature of the evidence supporting the involvement of saturated fatty acids
in breast tumour pathogenesis lead to the proposal that the type of fat consumed may
be more important than the dietary ratio of unsaturates:saturates, and that essential

fatty acids may mediate certain anti-tumour activities (Pritchard et al, 1989 and

Horrobin, 1990a). Evidence supporting this hypothesis has been acquired from in

vivo investigations. Low levels of alpha-linolenic acid in adipose breast tissue are

associated with increased risk ofbreast cancer (Klein et al, 2000), and dietary studies
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have demonstrated that administration of the essential fatty acids eicosapentaenoic

acid and docosahexaenoic acid to rats was associated with a reduction in the

development of breast tumours and metastasis (Pritchard et al, 1989 and Rose et al,

1995). However, additional studies are required to further characterise the role of
unsaturated lipids in mammary tumour pathogenesis.

The anti-tumour activities of essential fatty acids in vivo have been demonstrated in
other malignancies. Omega-3 and omega-6 fatty acids inhibited the proliferation of

spontaneously occurring tumours (Tinsley et al, 1981), solid tumour allografts

(Hillyard and Abraham, 1979) and tumours induced chemically (Chan et al, 1977 and
Nicholson et al, 1990) or by irradiation (Hillyard and Abraham, 1979 and Silverman
et al, 1980). Additionally, arachidonic acid, gamma-linolenic acid, docosahexaenoic
acid and eicosapentaenoic acid inhibited tumour growth in vitro in over one hundred
transformed cell lines (Roos and Choppin, 1984, Burns and Spector, 1987, Horrobin,

1990a, Stubbs et al, 1992, DeBranvo et al, 1994, deKock et al, 1994, Finstad et al,

1994, Fujiwara et al, 1986, Meijer et al, 1987, deAntueno et al, 1988 and Cantrill et

al, 1997). The majority of these cell types responded to gamma-linolenic acid,

eicosapentaenoic acid and docosahexaenoic acid with either a retardation of cell

growth or an induction of cell death.

Although the cytotoxic activities of n-3 and n-6 essential fatty acids have been
demonstrated in a large number of in vitro and in vivo investigations, there is

inconsistency regarding the relative potencies of arachidonic acid, gamma-linolenic

acid, docosahexaenoic acid and eicosapentaenoic acid. This may be due to varying
concentrations of intracellular mediators known to influence lipid peroxidation, for

example anti-oxidants and bivalent cations. Additionally, the activities of the n-9

fatty acid oleic acid and the n-6 essential fatty acid linoleic acid in tumour tissue have
not been well characterised. Most studies indicated that oleic acid had little effect on

tumour cytotoxicity (Horrobin, 1990a, Motaung et al, 1999 and Menendez et al,

2001). This suggested fatty acid-specific modulation of pathways involved in the
inhibition of cell proliferation and/or the stimulation of cell death. However, a recent
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study indicated that oleic acid increased tumour proliferative activity in mouse

murine mammary gland adenocarcinoma and salivary gland tumours, and increased
the incidence and multiplicity ofmetasteses. Linoleic acid had little effect in this

investigation (Actis et al, 1999 and Munoz et al, 1999), although other studies

suggested that linoleic acid increased proliferative activity in breast, colon, prostate
and pancreatic tumour cells (Rose et al, 1991, Gonzalez, 1993, Rose et al, 1993,

Appel et al, 1994, Welsch et al, 1995 and Godley et al, 1996).

Although the molecular-genetic pathways involved in linoleic acid and oleic acid-
mediated stimulation of tumour proliferation have not been well characterised, a
recent report indicates that linoleic acid-mediated stimulation of tumour cell growth
occurs through potentiation of phospholipase C and protein kinase C activity (Park et

al, 2000). Other studies suggest that rather than possessing direct tumourigenic

activity, increasing the availability ofnon-essential fatty acids to tumour cells may

augment deficiency of long chain highly unsaturated membrane lipids, and that this

may constitute a pro-tumourigenic condition (Monis and Eynard, 1981, Eynard et al,

1997a, Eynard et al, 1997b, Eynard, 1998, Actis et al, 1999 and Munoz et al, 1999).

Omega-6 essential fatty acid deficiencymay be potentiated through lack ofmetabolic
conversion of linoleic acid, as delta-6 desaturase activity is known to be impaired in
transformed tissue (Dunbar and Bailey, 1976).

A number of studies have indicated that essential fatty acid deficiency may increase
the risk of tumour development by reducing cellular oxidative activity. Essential fatty
acid deficiency resulting from loss of elongation and desaturation products in
cultured human keratinocytes attenuated toxicity due to lipid peroxidation (Wey et al,

1993), and supplementation of porcine endothelial cells with polyunsaturated fatty
acids increased lipid peroxidation and toxicity (Hart et al, 1991). In comparison,
endothelial cells supplemented with saturated and monounsaturated fatty acids had
less peroxidative activity and toxicity than the unsupplemented controls (Hart et al,

1991). Inhibition of tumour proliferation in the breast (Pritchard et al, 1989) and

glioma cell lines (Das, 1995) by gamma-linolenic acid and in the pancreas by
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eicosapentaenoic acid (Zhang and Go, 1996) is associated with accumulation of the

products of lipid peroxidation. Tumour cell cytotoxicity is increased by the addition
of Fe2+ and Cu2+, which stimulate lipid peroxidation (Cantrill et al, 1997 and Sziraki
et al, 1999). This effect was inhibited by antioxidants up to five days after essential

fatty acid administration (Begin et al, 1988, Cantrill et al, 1997, Vartak et al, 1997
and Vartak et al, 1998).

Gamma-linolenic acid mediated inhibition of cell proliferation in the GHP-212
neuroblastoma cell line was also associated with stimulation of cellular oxidative

activity (Hrelia et al, 1996). Although gamma-linolenic acid was metabolised to

dihomo-gamma-linolenic acid and arachidonic acid in these cells, the highest

cytotoxic effect was observed when gamma-linolenic acid was not converted to its

metabolites. This suggests that gamma-linolenic acid toxicity to these tumour cells is
not dependent on its metabolites but is due to gamma-linolenic acid itself (Hrelia et

al, 1996).

1.3 The Role of Essential Fatty Acids and Oxidative Metabolism in

Glioma Proliferation and Death in vivo and in vitro

(a) The cytotoxic activities of essential fatty acids in malignant

glioma

The majority of studies investigating the cytotoxic activities of essential fatty acids in

malignant glioma cells have been carried out in vitro. Gamma-linolenic acid,

eicosapentaenoic acid and docosahexaenoic acid reduced clonogenic survival in rat

36B10 astrocytoma cells (Vartak et al, 1997 and 1998), peroxidised low density

lipoprotein inhibited proliferative activity in human glioma cell lines (Kikuchi et al,

1997) and cA-unsaturated fatty acids inhibited proliferation and stimulated cell death
in a variety of glioma cell lines (Das et al, 1990a). Although information on the

cytotoxic activity of essential fatty acids in malignant glioma in vivo is limited, there
is evidence that polyunsaturated fatty acid (PUFA) administration was associated
with the rejection of transformed microglial tumour cells in rats (Frei et al, 1994).

Furthermore, an intracerebral infusion study indicated that gamma-linolenic acid is
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not cytotoxic to normal rat brain (Das et al, 1995).

Although intercranial infusions of gamma-linolenic acid have shown efficacy in

inhibiting glioma proliferation (Frei et al, 1994), little is known about the dose

response characteristics of glioma cells to essential fatty acid therapy in vivo.

However, a recent study used a spheroid model to address this important

pharmacological issue (Bell et al, 1999). Spheroids derived from a variety of glioma
cell lines were grown in collagen gel and exposed to a range of concentrations of

gamma-linolenic acid (0-1mM) for five days. Low concentrations of gamma-
linolenic acid (less than 100uM) increased both apoptosis and proliferation, with a

net increase in spheroid growth and invasion. In contrast, high concentrations of

gamma-linolenic acid (greater than 1 OOpM) reduced spheroid growth. Although the

proliferative activity of low dose gamma-linolenic acid may be a hazard in the
clinical treatmentmalignant glioma, its low toxicity against normal cells means

higher doses could be used to reduce tumour size.

The cytotoxicity of gamma-linolenic acid in vivo has also been investigated in a small
clinical trial (Das et al, 1995). Fifteen patients were selected on the basis of

histological and radiological evidence ofmalignant glioma, and following surgical
resection the subjects were given lOmg of gamma-linolenic acid orally each day for
ten consecutive days. After gamma-linolenic acid therapy was completed, the patients
received a CT scan followed by monthly clinical examinations. Administration of

gamma-linolenic acid induced glioma regression and improved patient survival, with

80% of the subjects being alive two years after surgery. However, only fifteen

patients were assessed in this study, and no control groups were included.

Additionally, plasma concentrations of gamma-linolenic acid were not measured,

although other studies in rats indicate that essential fatty acids are easily absorbed
and readily cross the blood brain barrier when administered at equivalent
concentrations (Dhopeshwarkar and Mead, 1973, Spector, 1998, Punchard et al, 2000
and Tso et al, 2002). Further studies are therefore required to characterise the

response ofmalignant glioma to essential fatty acid therapy in vivo.
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Essential fatty acid-mediated cytotoxicity in glioma cells may be associated with
modulation of cellular oxidative activity. Inhibition of tumour proliferation in glioma
cell lines was associated with stimulation of lipid peroxidation (Das et al, 1990a and
Das et al, 1990b), cis-parinaric acid, an 18C PUFA was cytotoxic to human and rat
cell lines via an oxidative pathway (Traynelis et al, 1995) and polyethylene-stabilised

glucose oxidase, an enzyme capable of producing reactive oxygen species, induced

significant growth delay in subcutaneous rat 9L gliomas (Ben-Yoseph and Ross,

1994). Oxidative stress induced through glutathione depletion has also been
associated with C6 glioma cell death (Mawatari et al, 1996). This effect was inhibited

by serotonin, which reduced lipid peroxidation (Shinagawa, 1994). However, it has
been reported that the lipid peroxidation inhibitors U78517F and U74006F had no

significant effect on tumour growth or viability (Megyesi et al, 1990 and Del Maestro
et al, 1991).

Analysis of basal cellular oxidation in human brain tumour tissue and glioma cell
lines has provided additional evidence that reactive oxygen species are implicated in
the control of cell division and death. An in vitro study indicated that lipid

peroxidation was higher in low grade astrocytoma cell lines in comparison with those
derived from more malignant lesions (Louw et al, 1997), and the PUFA content of

glioma cells was 50% of that observed in normal astrocytes (Preuss et al, 2000).

Additionally, when cellular oxidative activity was investigated ex vivo in human

glioma and meningioma tissue, basal oxidation was consistently lower in tumour

cells in comparison with associated normal brain (Levcheko and Demchuk, 1991).

However, no statistically significant differences in basal oxidative activity were
detected between gliomas of different grades in this study (Levcheko and Demchuk,

1991).

In C6 glioma cells, arachidonic acid-induced loss of cell viability was associated with
cell swelling, which occurred due to H20 influx resulting from increased sodium

permeability (Chan and Fishman, 1982, Staub et al, 1994a and Staub et al, 1994b).
This effect was reduced following the administration of SOD, and virtually abolished
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by the aminosteroid U-74389F, which is an antagonist of lipid peroxidation (Staub et

al, 1994b). It has also been shown that the hydroxyl radical is associated with
stimulation of lipid peroxidation and membrane blebbing in C6 glioma cells

(Goldberg et al, 1991). As membrane blebbing is a morphological characteristic
associated with apoptosis (Kerr et al, 1972 and Wyllie et al, 1980), this observation

suggests that lipid peroxidation may induce tumour cell cytotoxicity by modulating
molecular pathways which mediate programmed cell death.

Other studies suggest that the activity of anti-oxidant enzymes is a determinant of
cell proliferation rather than reactive oxygen species formation. The sensitivity of the

glioblastoma cell lines A-172 and U-87 MG to docosahexaenoic acid and

eicosapentaenoic acid was not related to intracellular content of the products of lipid

peroxidation, but rather cellular anti-oxidant activity (Schonberg et al, 1997). An in

vitro study also indicated that the malignant progression of low grade astrocytoma
was associated with increased expression of intracellular glutathione (Louw et al,

1997). It has also been observed that while gamma-linolenic acid upregulated the
antioxidant enzyme CAT in normal astrocytes, it had no significant effect in glioma
cells. This suggests that the cytotoxic effect of gamma-linolenic acid in malignant

glioma may be due, in part at least, to its inability to upregulate CAT (Preuss et al,

2000).

Preliminary evidence indicates that essential fatty acid administration is not
associated with significant toxicity to non-neoplastic brain tissue. Although cis-

parinaric acid was cytotoxic to human and rat glioma cell lines, this CI8 PUFA did

not cause significant toxicity to foetal rat astrocytes (Traynelis et al, 1995). Similarly,
while gamma-linolenic acid, docosahexaenoic acid and eicosapentaenoic acid
administration was associated with cytotoxicity and radiosensitisation in the rat
36B10 astrocytoma cell line, these essential fatty acids were not toxic to normal rat

astrocytes (Vartak et al, 1998). It has been postulated that this selective cytotoxicity
is associated with increased oxidative stress in glioma cells (Vartak et al, 1999). This

may be due to the inability of gamma-linolenic acid to upregulate glioma cell CAT,

14



and selective uptake of essential fatty acids by glioma cells (Preuss et al, 2000).

Docosahexaenoate, palmitate and arachidonate preferentially penetrate cerebrally

implanted tumours once they have gained access to the brain (Naraia et al, 1993), and

although the PUFA content of glioma cells was significantly lower than that of
normal astrocytes, both cell types contained similar levels ofPUFAs following a 24
hour supplementation with gamma-linolenic acid (Preuss et al, 2000).

(b) Additional evidence supporting a potential clinical role for

essential fatty acids in glioma therapy

Immunological, biochemical and neuropathological studies have indicated that
essential fatty acids possess biological actions which may augment their cytotoxic

potential in vivo. Both n-3 and n-6 essential fatty acids readily cross the blood brain
barrier (Abumrad et al, 1981, DeGrella and Light, 1985 and Spector, 1988), where in
addition to mediating direct cytotoxicity they may inhibit glioma invasion (Jiang et

al, 1995a, Jiang et al, 1995b, Jiang et al, 1995c, Jiang, 1996 and Mareel et al, 1996)
and blood vessel formation (Ito et al, 1993, Byres et al, 1995 and Cai et al, 1999),
both ofwhich are associated with malignant progression (Louis, 1997). Additionally,

pathogenesis of glial tumours is associated with local immunosuppression (Roszman
et al, 1991 and Tada and deTribolet, 1993). Essential fatty acids including
arachidonic acid and gamma-linolenic acid have specific activities on macrophages
and T-cells including NADPH activation and stimulation of the respiratory burst

(Flenderson and Chappell, 1992, Henderson et al, 1993, Aebischer et al, 1993,
Sumimoto et al, 1994 and Sawai et al, 1993) (Chapter 3).

Octadecenoic, myristic and oleic acid enter the brain via a saturable,

probenecid/phoretin sensitive mechanism (Abumrad et al, 1981 and Spector, 1988),
which may be located in cerebral capillaries (Spector, 1988). This uptake is

dependent on the ratio of fatty acid:plasma protein in the periphery and the CNS.
Linoleic acid also readily gains access to the CNS, and there is evidence that this
transfer is largely probenecid insensitive (Spector, 1988). The lack of interaction
between linoleic acid and the probenecid sensitive carrier may be due to the presence
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of two double bonds on the hydrocarbon chain which alter its shape and solubility. It
has been proposed that linoleic acid and certain other essential fatty acid preparations
enter the CNS by diffusion (Abumrad et al, 1981). As there is little or no net

extraction of linoleic acid from the blood during a passage through the brain

(Pardridge and Mietus, 1980) and phoretin can inhibit both the influx and efflux of

fatty acids from the isolated adipocyte (Ambumrad et al, 1981) it has been suggested
that there is a specialised exchange mechanism for fatty acids at the blood brain
barrier.

Studies on cerebral microvasculature indicate that arachidonic acid increases

membrane permeability in a dose dependant manner. This effect was inhibited by co¬

administration of the anti-oxidants superoxide dismutase and catalase, and by the
iron chelator desferoxamine, suggesting a role for reactive oxygen species in the

regulation of the blood brain barrier (Easton and Fraser, 1998). Although the integrity
of the blood brain barrier is compromised during the pathological progression from

grade I astrocytoma to grade IV glioblastoma, the poor penetration of chemotherapy

agents into the brain remains a barrier to cure (Brandes and Pasetto, 2000 and Olivi et

al, 2000). This activity may therefore have therapeutic relevance.

The development of intratumoural microvascluture is involved in the progression of
low grade astrocytoma to high grade glioblastoma (Louis, 1997). Inhibitors of
arachidonic acid metabolism inhibit angiogenesis in human microvascular
endothelial cells in vitro (Ito et al, 1993). Gamma-linolenic acid inhibits vessel

formation in vitro (Cai et al, 1999), possibly by reducing vascular endothelial cell

motility (Jiang et al, 1997) and modifying the expression of cell adhesion molecules

(Jiang et al, 1995a, Jiang et al, 1995b, Jiang et al, 1995c and Byers et al, 1995). This
action may be due, in part at least, to the formation ofmetabolites (Ito et al, 1993).

However, arachidonic acid may stimulate angiogenesis by stimulating the production
of tumour necrosis factor (TNF) (Sakata et al, 1987, Chaudhri and Clark, 1989 and
Carman-Krzan and Wise, 1993). TNF initiates vascular endothelial cell growth in
human malignant glioma by increasing expression of the vascular endothelial growth
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factor gene (Ryuto et al, 1996). The potentiation ofTNF production by arachidonic
acid and reactive oxygen species may therefore contribute to vessel formation in
vitro.

1.4 Current Opinions on the Biochemistry of Essential Fatty Acid-

Mediated Tumour Cytotoxicity

(a) Essential fatty acids and apoptosis

Although there is evidence that essential fatty acids are associated with tumour

cytotoxicity (Section 1.2), relatively few studies have analysed the molecular

pathways mediating these cell death responses. However, preliminary evidence

suggests that stimulation of apoptosis is the principal cause of essential fatty acid-
mediated cytotoxicity. Gamma-linolenic acid stimulates apoptosis in human cervical
carcinoma (deKock et al, 1996), arachidonic acid, gamma-linolenic acid,
docosahexaenoic acid and eicosapentaenoic acid stimulate apoptosis in Hep2 human

larynx tumour cells (Colquhoun et al, 1998), arachidonic acid stimulated apoptosis in
GH3 cells (Yasuda et al, 1999) and eicosapentaenoic acid stimulates apoptosis in

pancreatic tumour tissue (Lai et al, 1996). There is also evidence that linoleic acid
induces apoptosis in endothelial cell cultures (Meerarani et al, 2000), although
linoleic acid and oleic acid had little effect on cell death in Hep2 human larynx
tumour cells (Colquhoun et al, 1998).

The stimulation of apoptosis by essential fatty acids may be due to potentiation of
reactive oxygen production. In vitro evidence has indicated that the pro-apoptotic

activity of conjugated eicosapentaenoic acid and docosahexaenoic acid in various
transformed cell lines involved potentiation of lipid peroxidation, and it has been

proposed that the increase in apoptotic activity observed in human glioma cell lines

following addition of selenium is attributable to stimulation of cellular oxidative

activity (Nakatsu et al, 1996 and Zhu et al, 1996). Hydrogen peroxide, a reactive

oxygen species formed during the oxidation of highly unsaturated membrane lipids,
has also been shown to stimulate apoptosis in GH3 and hepatoma cell lines (Yasuda
et al, 1999 and Li et al, 2000), and the induction of apoptosis in human
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retinoblastoma Y79 cells involved oxidative stress (Vento et al, 2000). Additionally,

time-dependent episodes of increased apoptotic activity have been observed in

dopamine secreting neurons and human colon carcinoma cell lines. This may
correlate with peaks of oxidative activity in these cells (Shirvan et al, 1997). It has
also been proposed that gamma-linolenic acid may stimulate apoptosis in vivo by

disrupting integrin association with matrix proteins (Frisch et al, 1994 and Frisch et

al, 1996), as an association between cell-matrix adhesion and cell cycle progression
has been characterised (Assoian and Zhu, 1997).

The anti-apoptotic activity of various anti-oxidant enzymes provides additional
evidence for a role of reactive oxygen species in the potentiation of programmed cell
death. Alpha-tochopherol suppressed the pro-apoptotic activity of conjugated

eicosapentaenoic acid and docosahexaenoic acid in cultured human tumour cells

(Igarashi and Miyazawa, 2000), arachidonic acid-induced apoptosis in HepG2-
MV2E1-9 cells was inhibited by the iron chelator desferioixamine (Chen et al, 1998)
and depletion of cellular glutathione was associated with increased toxicity of
arachidonic acid in HepG2-MV2El-9 cells (Chen et al, 1998). Glutathione depletion
has also been implicated in the initiation of apoptosis in rat C6 glioma cells (Higuchi
and Matsukawa, 1999). However, the observation that vitamin E prevented

eicosapentaenoic acid-induced apoptosis in Raji cells but not Ramose cells lead to

the proposal that the cytotoxic activity of essential fatty acids in vitro is dependant on
the cell type used, and that lipid peroxidation may not be the only pathway mediating
essential fatty acid-induced stimulation of tumour cell death (Finstad et al, 1998 and

Das, 1999).

Preliminary results indicate that unsaturated fatty acids may inhibit apoptosis in non-

transformed cells. Addition of docosahexaenoic acid prevented the formation of

apoptotic nuclei and increased cell survival in rat retinal cells stimulated into

apoptosis through serum deprivation (Rotstein et al, 1997). It has also been
demonstrated that cfs-oleic acid prevented the loss of cardiomyocyte viability
induced by the saturated fatty acid 16:0 (deVries et al, 1997). This implies essential
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fatty acids may have a protective effect on tumour-associated normal brain tissue.

(b) Essential fatty acids and oncogene expression

Essential fatty acids modify the activity of genes implicated in tumour proliferation
and death (Tebbey and Buttke, 1993, Clarke and Jump, 1994 and Sen and Packer,

1996). Linoleic acid regulated the expression ofHER-2/neu levels in MCF-7 cells

(Tiwari et al, 1991), eicosapentaenoic acid up-regulated expression of the tumour

supressor gene nm23-Hl (Jiang et al, 1997), the activity of c-myc was regulated by
linoleic acid (Earashi et al, 1996) and n-3 fatty acids induced apoptosis during colon

carcinogenesis by reducing activation of the ras oncogene (Chapkin et al, 1997).
There is also evidence that expression of the pro-apoptotic oncogene Fas is increased

following stimulation of lipid peroxidation (Haider et al, 1995), and that jun activity
is sensitive to redox regulation in vitro (Abate et al, 1990).

Other putative molecular targets of essential fatty acids and their metabolites include
the anti-apoptotic oncogene bcl2. The observation that bcl2 protein possessed anti¬
oxidant activity lead to the proposal that i) activation of this oncogene inhibited

apoptosis by reducing the expression or action of reactive oxygen species (Buttke and

Sandstrom, 1995, Epperly et al, 1994, Sarafian and Bredessen, 1994 and Steinman,

1995), and ii) that essential fatty acid-mediated stimulation of cellular oxidative

activity may represent a mechanism to subvert bcl2-mediated inhibition of tumour
cell death (Das et al, 1999). Although other reports suggest reactive oxygen species
are not required for the initiation of programmed cell death (Hug et al, 1994, Muschel
et al, 1995 and Jacobson, 1996), there is evidence that bcl2 is not capable of

inhibiting apoptosis induced by lipid hydroperoxides (Sandstrom et al, 1995). It has
also been proposed that essential fatty acids may inactivate bcl2 protein through

phosphorylation (Haider et al, 1995 and Das, 1999), although additional studies are

required to confirm this hypothesis.

There was no evidence of a correlation between bcl2 expression and the presence or

degree ofmalignancy in reactive and neoplastic astrocytes (Krishna et al, 1995).
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However, expression ofwild type p53 was associated with expression of bcl2 in an

immunohistochemical study of a series ofhuman gliomas (Alderson et al, 1995).
This may represent a mechanism to subvert p53 mediated apoptosis (Alderson et al,

1995). Recent evidence suggests that the induction of apoptosis by p53 involves the

activity of reactive oxygen species (Polyak et al, 1997). In addition, docosahexaenoic
acid-mediated inhibition ofmammary tumour proliferation has been associated with

up-regulation of p53 gene transcription (Tillotson et al, 1993).

1.5 Essential Fatty Acids and Conventional Cancer Therapy

Essential fatty acids may potentiate cytotoxic responses to chemotherapy and

radiotherapy. Radiotherapy and certain chemotherapy drugs stimulate the generation
of reactive oxygen species (Barber and Wilbur, 1959, Yamanaka et al, 1979, Sodhi
and Gupta, 1986, Kanofsky, 1986, Dennis and Shibamoto, 1990, Yamaguchi et al,
1994 and Bordoni et al, 1999), which may be involved in modulating cell

proliferation and/or apoptosis (George et al, 1983, Schlager et al, 1983, Ramu et al,

1984, Ewing and Jones, 1987, Ma et al, 1991 and Alaoui et al, 1992). It has been

proposed that exogenous essential fatty acids may potentiate radiation-induced
reactive oxygen species formation, and hence tumour cell cytotoxicity, by providing
substrates for lipid peroxidation upon which radiation can act (Yamamoto et al, 1985,

Porter, 1986 and Krinsky, 1992).

Vincristine-resistant human cervical carcinoma cell lines contain low levels of alpha-
linolenic acid, gamma-linolenic acid, eicosapentaenoic acid and docosahexaenoic
acid in comparison to vincristine sensitive cells (Das et al, 1998), and pre-incubation
of vincristine resistant cells with sub-optimal doses of these essential fatty acids
increased the cytotoxic action ofvincristine (Das et al, 1998). In addition, gamma-
linolenic acid, eicosapentaenoic acid and docosahexaenoic acid increased the
radiation sensitivity ofmalignant astrocytoma cell lines (Vartak et al, 1997 and
Vartak et al, 1998). This effect was blocked by antioxidants and was not observed in

response to oleic acid (Vartak et al, 1997).
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There is also evidence that gamma-linolenic acid potentiates chemosensitivity to

placitaxel. In human breast cancer cells, placitaxel-mediated inhibition of cell

proliferation was significantly greater following exposure to gamma-linolenic acid in

comparison with the non-peroxidisible fatty acid oleic acid (Menendez et al, 2001).
However, as gamma-linolenic acid-induced chemosensitivity was only partially
abolished by the lipid peroxidation inhibitor vitamin E, the influence of oxidative
metabolism on placitaxel cytotoxicity may be limited (Menendez et al, 2001).

In addition to potentiating therapeutic response, it has been postulated that essential

fatty acids reduce the occurrence ofpathological side effects associated with
conventional cancer therapy (Horrobin, 1991). It has been proposed that these

pathological side effects occur, in part at least, due to elevated free radical production
in non-malignant tissue (Freeman and Crapo, 1982, Slater, 1984a, Slater 1984b,
Galeotti et al, 1986, Halliwell and Gutteridge, 1986, Halliwell and Gutteridge, 1989
and Cadenas et al, 1989). This theory would predict that provision ofpolyunsaturated

fatty acids should potentiate radiation induced damage by making available
additional substrate for free radical formation. However, preliminary evidence

suggests that dietary gamma-linolenic acid inhibits radiation-induced damage to

porcine epidermis (Hopewell et al, 1993). In vivo studies have also demonstrated that

gamma-linolenic acid reduces central nervous system damage associated with

radiotherapy (Liebel and Sheline, 1991). It has therefore been proposed that

pathological side effects associated with exposure to radiation are not caused by free
radical activityper se, but rather by chain reaction-mediated loss of essential fatty
acids from cell membrane phospholipids (Horrobin, 1991).

Essential fatty acids may also reduce the occurrence of certain pathological side
effects associated with chemotherapy. Fatty acid metabolites associated with lung
inflammation and fibrosis, including hydroxyproline (a marker for collagen

synthesis) and the pro-inflammatory leukotriene LTB4, are reduced by dietary

gamma-linolenic acid (Ziboh et al, 1997). Additional in vitro evidence suggests that
both n-3 and n-6 fatty acids with two or more unsaturated sites containing 18-22
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carbon atoms in the hydrocarbon chain are potent antagonists at the LTB4 receptor

(Yagaloff et al, 1995).

Recent in vitro evidence also indicates that the cardiotoxicity of doxorubicin is

associated with the formation of conjugated dienes, impairment of fatty acid
desaturation and elongation and a reduction in cellular essential fatty acid content

(Bordoni et al, 1999). Additionally, at therapeutic concentrations doxorubicin
induces membrane peroxidation of the endoplasmic reticulum where fatty acid
metabolism occurs, further reducing the rate at which essential fatty acid
accumulation can occur (Bordoni et al, 1999). These observations are consistent with
the hypothesis that provision of exogenous essential fatty acids may protect against
certain side-effects of chemotherapy.

Essential fatty acids may inhibit the formation of radiation induced tumours

(Horrobin, 1990 and Horrobin, 1991). Protein kinase C is rapidly and transiently
activated following exposure to ionising radiation (Hallahan et al, 1991b, Woloschak
et al, 1990 and Uckun et al, 1993) resulting in increased expression of the proto-

oncogenes c-jun, Egr-1 and zif-268 (Hallahan et al, 1991a, Hallahan et al, 1991b and
Hallahan et al, 1992). Radiation induced transformation and proliferation can be
reduced by inhibitors ofprotein kinase C (Hallahan et al, 1991a, Hallahan et al,
1991b and Hallahan et al, 1992 and Umans and Kennedy, 1992). It has also been
demonstrated that protein kinase C inhibitors induce apoptosis in human malignant

glioma cell lines (Couldwell et al, 1994 and Ikemoto et al, 1995). There is evidence
that n-3 and n-6 essential fatty acid are able to inhibit activated protein kinase C

(Chen and Murakami, 1992, Holian and Nelson, 1992 and May et al, 1993).

1.6 Current investigations

(a) Hypotheses to be investigated

The purpose of this study was to investigate the pro-oxidative and cytotoxic activity
of arachidonic acid and gamma-linolenic acid in human glioma. Human malignant

glioma is a highly invasive tumour which is refractory to all currently available
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treatment options (Berens and Giese, 1999 and Neider et al, 2000). However, in vitro
evidence has indicated that essential fatty acid-mediated stimulation of glioma
oxidative activity is associated with tumour cytotoxicity, both alone and in

conjunction with radiation (Das, 1990a, Das, 1990b, Hrelia et al, 1996, Vartak et al,
1997 and Vartak et al, 1998).

These results are consistent with a potential clinical role for arachidonic acid and

gamma-linolenic acid in the clinical management of human malignant glioma.

However, the kinetics of reactive oxygen formation in fresh human tissue are not

well documented. Additionally, most of these investigations have been carried out on
established cell lines, and use of these cells is associated with experimental

limitations (see Section 1.6b). This study addressed these issues by investigating the

following primary hypotheses:-

1) Oxidative activity is impaired in human glioma tissue in comparison with tumour-

associated normal brain

2) Addition of exogenous essential fatty acids stimulates tumour reactive oxygen

species generation

3) Potentiation of tumour reactive oxygen species generation is associated with
tumour cytotoxicity, in part at least through stimulation of apoptosis

4) Stimulation of tumour oxidative and apoptotic activity by arachidonic acid and

gamma-linolenic acid is potentiated by simultaneous exposure to therapeutic doses
of radiation

(b) Choice of tissue

Fresh human glioma tissue was used for this analysis, after first establishing

appropriate experimental conditions using human lymphocyte preparations. Fresh
human glioma tissue was used because of limitations associated with established cell
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lines. Cell culture is associated with loss of phenotypic markers, and this increases

with passage frequency (Pilkington, 1992). Additionally, relatively homogeneous cell
lines do not contain cell populations often present in biopsy samples which may

influence tumour growth and proliferation, for example infiltrating immune cells

(Pilkington, 1992 and Thomas and Graham, 1995, Chapter 1).

The use of established cell lines may also explain, in part at least, the discrepancy
between the reported pro-oxidative and cytotoxic activities of arachidonic acid,

gamma-linolenic acid, docosahexaenoic acid and eicosapentaenoic acid. As the

growth inhibitory actions of essential fatty acids are dependent upon pre-existing
levels of agents known to modulate cellular oxidative activity, for example anti¬

oxidants and bivalent cations, it is possible that intracellular variations between these
factors are responsible for the differences in essential fatty acid activity which have
been observed. This suggests that studies carried out on fresh tissue may predict the

response of human malignant glioma to essential fatty acid therapy in vivo more

accurately than those performed on established cell lines, where the native tumour

phenotype is less well conserved.

As the human glioma samples received for analysis contained cell populations other
than transformed glial cells, it was possible to analyse individual glioma sub-

populations. Sub-population oxidative activity and essential fatty acid sensitivity
were correlated with expression of the glial cell marker glial fibrillary acidic protein

(GFAP). Additionally, the pro-apoptotic activities of arachidonic acid and gamma-
linolenic acid in GFAP-positive cell populations were investigated. GFAP is an

intermediate filament protein expressed in brain and spinal cord. It is present in

astrocytomas and ependymomas, but not tumours ofneural origin including
neuroblastoma and Schwannoma (Debus et al, 1983, Miettinen et al, 1984, Coakham
et al, 1985 Garson et al, 1985 and Royds et al, 1986). It can therefore be used as a

marker of tumours ofglial origin.
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Essential fatty acid-mediated radiosensitisation of glioma cells was also investigated.
Insufficient quantities of human tissue were available for this analysis. Additionally,
it was predicted that cellular heterogeneity would make tumour-specific responses
difficult to interpret. The rat C6 cell line was therefore used for this investigation.
The C6 cell line is a clonal line which was developed in randomly bred adult Wistar
rats from a glioblastoma induced through transplacental exposure to N-

nitrosomethylurea (Benda et al, 1963). It was selected because of its well
characterised astrocytic morphology, and its possession of glial markers such as

GFAP and S-100 protein (Benda et al, 1963, Pfeiffer et al, 1971, Cravioto et al, 1973,
Cravioto et al, 1974 and Weiss et al, 1976).

(C) Choice of reagents

In these studies, the activity of the essential fatty acid arachidonic acid and its n-6

precursor gamma-linolenic acid were examined. Arachidonic acid is an important
metabolic and structural polyunsaturated fatty acid in CNS phospholipids (Chan and

Fishman, 1980 and Chan and Fishman, 1982) which has been shown to induce the
transient formation of superoxide radicals and lipid peroxides in brain cortical slices

(Chan and Fishman, 1980). There is evidence that human malignant glioma has
deficits in the n-6 products of delta 6-desaturation including arachidonic acid and

gamma-linolenic acid (Martin et al, 1996).

The uptake of arachidonic acid into the brain is up to twenty times greater than that
of docosahexaenoic acid (Easton and Fraser, 1998) and arachidonic acid

preferentially penetrates intracerebrally implanted carcinosarcoma in vivo in

comparison with surrounding normal brain (Nariai et al, 1993). There is also
evidence that fatty acids from the n-6 series, including linoleic acid, arachidonic acid
and gamma-linolenic acid modulate leukocyte activity (Bromberg and Pick, 1984,
Poulos et al, 1991 and Braun et al, 1993). These cells are present in human glioma
tissue and are involved in modulating tumour oxidative activity and apoptosis

(Roszman et al, 1991 and Tada and deTribolet, 1993).
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Docosahexaenoic acid is also an important metabolic and structural component of the
brain. Docosahexaenoic acid was not chosen for analysis in these studies because of
its involvement in brain specific biochemical pathways not associated with tumour

metabolism (Uauy et al, 1996 and Kaplan and Greenwood, 1998). These include

cognitive development in neonates, photoreceptor function (Uauy et al, 1989, Uauy
and Hoffman, 1991, Carlson et al, 1994, Uauy et al, 1996 and Birch et al, 1998) and

sleep regulation (Warne et al, 1979). Additionally, high concentrations of
docosahexaenoic acid are localised in specific brain regions including the cerebral
and occipital cortex and retina (Greiner et al, 1997 and Martinez, 2001). As the

biopsy samples received for analysis had different cellular and anatomical origins,
this non-uniform distribution of docosahexaenoic acid would have made tumour

specific responses to docosahexaenoic acid difficult to analyse.

Gamma-linolenic acid, which is commercially available and currently licensed for
human therapeutic use, may have potentially therapeutic activities in human

malignant glioma. In vivo and in vitro studies have demonstrated that gamma-
linolenic acid induces tumour cell cytotoxicity in established brain tumour cell lines

(Das, 1990a, Das, 1990b and Hrelia et al, 1996), induces tumour regression and

improves patient survival in a small clinical trial of human glioma patients (Das et al,

1995). Gamma-linolenic acid also inhibits glioma motility and invasion in vivo

(Jiang, 1996). Western blot and immunohistochemical studies have demonstrated

that gamma-linolenic acid increases expression of the cell adhesion molecule E-

cadherin and the desmosonal adhesion complex in lung, colon, breast melanoma and
liver cancer cells (Jiang et al, 1995a, Jiang et al, 1995b and Jiang et al, 1997). This is
associated with increased cell aggregation in vitro. Studies in lung, colon, breast,
melanoma and liver cancer cells in vitro suggested arachidonic acid was not able to
induce alterations in E-cadherin expression (Jiang et al, 1995a and Jiang et al,

1995b). There is also evidence that gamma-linolenic acid is more effective than

eicosapentaenoic acid and docosahexaenoic acid in selectively increasing the
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sensitivity of the rat 36B10 astrocytoma cell line to radiation-induced tumour cell kill
(Vartak et al, 1997).

(d) Investigations undertaken

(i) Stimulation of tumour reactive oxygen species production by

essential fatty acids

This study examined the stimulation of reactive oxygen production by arachidonic
acid and gamma-linolenic acid in single cell preparations of explants ofhuman

glioma tissue obtained at biopsy. These cells were characterised in terms of their
basal oxidative activity i.e. reactive oxygen generation in the absence of exogenous
essential fatty acid stimulation, and sensitivity to exogenous essential fatty acid
stimulus. Differences between glioma tissue and tumour-associated normal brain
were analysed, and tumour oxidative activity was correlated with tumour grade and
cell membrane permeability. This analysis was carried out using novel statistical

parameters derived in association with the University of Edinburgh Department of
Statistics.

(ii) Investigation of glioma heterogeneity and its relation to

oxidative metabolism

As human glioma preparations are characterised by cellular heterogeneity (Louis,

1997) analysis of the oxidative responses of these tumours was complex. In order to
establish the experimental and dose response conditions required for the study of
human glioma preparations, the oxidative activity of relatively homogeneous fresh
human leukocyte preparations acquired from patients undergoing pulmonary
resection for bronchogenic carcinoma was investigated. These cells were
characterised in terms of their basal oxidative activity and sensitivity to exogenous

arachidonic acid and gamma-linolenic acid, both before and after surgery. This

analysis also provided information on the previously uncharacterised effects of

surgery on human leukocyte reactive oxygen production and facilitated identification
of a sub-population thought to represent leukocytes in human glioma preparations.
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Cell size and DNA content were used to identify additional cell types present in

human glioma. These sub-populations were characterised in terms of their basal
oxidative activity, sensitivity to exogenous n-6 essential fatty acids, cell membrane

integrity and GFAP expression. This study was used to confirm the cellular

heterogeneity associated with malignant progression, and provided additional
information on tumour-specific responses to exogenous arachidonic acid and gamma-

linolenic acid.

(iii) Investigation of the stimulation of glioma apoptosis by essential

fatty acids

It is recognised that dysregulation of apoptosis is implicated in the pathogenesis of

neoplasia. This has prompted the development ofnew therapeutic strategies which

may increase cellular apoptosis in tumour tissue (Bellamy et al, 1995). This study

investigated the hypothesis that exogenous arachidonic acid and gamma-linolenic
acid stimulate apoptosis in fresh explants of human glioma obtained at biopsy. The
biochemical pathways which mediate the cytotoxic responses to essential fatty acids
and their metabolites are incompletely understood and it is not known whether

apoptosis or necrosis are the principal causes of essential fatty acid-mediated
stimulation of cell death. This study examined the stimulation of apoptosis in fresh
human glioma tissue removed at biopsy in response to stimulation by exogenous

arachidonic acid and gamma-linolenic acid. This was correlated with basal apoptotic

activity observed in fresh human glioma tissue and paraffin-fixed sections, cell
membrane integrity and tumour grade. These studies also examined the kinetics of

apoptotic activity in fresh human glioma tissue and their relation to tumour grade.
The effect of arachidonic acid and gamma-linolenic acid on cell proliferation in the
rat C6 cells line was also examined and correlated with apoptotic activity.
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(iv) Investigation of the interaction between radiation and essential

fatty acids

It has been demonstrated that arachidonic acid and gamma-linolenic acid increase the

radiosensitivity of the rat 36B10 malignant astrocytoma cell line (Vartak et al, 1997
and Vartak et al, 1998). However, the kinetics of reactive oxygen species formation
in glioma cells following simultaneous exposure to essential fatty acids and radiation
has not been investigated. Additionally, the mode of cell death resulting from this
interaction has not been characterised. The purpose of this study was to address these
issues by investigating the interaction of arachidonic acid and gamma-linolenic acid
with radiation. The rat C6 glioma cell line was used to examine the effects of
arachidonic acid and gamma-linolenic acid on cellular oxidative activity, apoptosis
and cell membrane permeability in the presence or absence of a therapeutically
relevant dose of irradiation. These studies were carried out to investigate a potential

therapeutic role for arachidonic acid and gamma-linolenic acid as radiosensitisers.
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Summary of the Aims of theWork

The principal aims of this research were as follows:-

1) To establish the conditions required for analysis of glioma peroxidative activity by

investigating the oxidative responses of relatively homogenous phagocyte

preparations (Chapter 3).

2) To analyse basal oxidative activity and the kinetics of the response to exogenous

arachidonic acid and gamma-linolenic acid in more heterogeneous samples of
human glioma tissue, to establish any differences between tumour tissue and
normal brain and to correlateWHO tumour type and grade ofmalignancy with

peroxidative activity (Chapter 4).

3) To differentiate between the cell populations present in human glioma

preparations and to characterise them in terms of their basal oxidative activity,

sensitivity to arachidonic acid and gamma-linolenic acid and expression of the

glial cell marker GFAP (Chapter 5).

4) To investigate the effects of exogenous arachidonic acid and gamma-linolenic acid
on apoptosis and proliferation in human glioma explants and cell lines, and to
correlate apoptotic activity with tumour peroxidation and WHO tumour type and

grade ofmalignancy (Chapter 6).

5) To investigate the interaction between arachidonic acid, gamma-linolenic acid and

radiation on the oxidative and apoptotic responses in the rat C6 glioma cell line

(Chapter 7).
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Chapter 2:

Materials and Methods

2.1 Introduction

All investigations were carried out on lymphocyte preparations, human glioma tissue
or the rat C6 cell line. Fresh lymphocytes, obtained from patients undergoing

pulmonary resection, were used to investigate lymphocyte reactive oxygen species

generation in the presence and absence of exogenous arachidonic acid and gamma-
linolenic acid. This initial study was undertaken to help characterise experimental
and dose response conditions appropriate for subsequent analysis of glioma oxidative

activity. Human glioma tissue, obtained at the time of surgery, was either preserved
in paraffin for routine diagnostic procedures or digested into single cell suspensions

using collagenase. Single cell suspensions were used to investigate oxidative or

apoptotic activity, or were preserved in ethanol for analysis ofGFAP expression.

Experiments on the rat C6 cell line were conducted on adherent cells or on single cell

suspensions obtained through trypsinisation. Adherent cells were used for analysis of

apoptotic and proliferative activity. Single cell suspensions were used to investigate
oxidative and apoptotic activity in the presence and absence of exogenous
arachidonic acid and gamma-linolenic acid, sodium nitroprusside and radiation. Cell

viability, determined through analysis ofmembrane permeability to vital dyes, was

routinely measured following each analysis ofmetabolically active cells.
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Table 2.1. Overview of the Experimental Analysis Undertaken

tissue preparation experimental analysis

lymphocytes ortholyse purification oxidative activity

viability

human glioma collagenase digestion oxidative activity

apoptotic activity

viability
GFAP expression

paraffin fixation routine diagnosis
GFAP expression

C6 cell line adherent cells apoptotic activity

proliferative activity

trypsin digestion oxidative activity

apoptotic activity

viability
radiosensitisation
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2.2 Initial Preparation of Fresh Tissue

(a) Human Phagocytes

Peripheral blood lymphocytes were withdrawn between 8.00a.m. and 9.30a.m from

patients undergoing pulmonary lobectomy for peripheral pulmonary opacity
consistent with peripheral bronchogenic carcinoma. Additional blood samples were
taken post-operatively and 2 and 7 days after surgery. Blood withdrawn from healthy
donors at similar time intervals was used as a contemporary control. Lymphocytes
were purified using Ortholyse solution within 2 hours of venupuncture, and the cells
were resuspended at a density of 106 cells/ml in phosphate buffered saline.

(b) Human Glioma Tissue

Tumour samples obtained at the time of surgery were placed in Hams F-10 medium

containing 20mM HEPES buffer pH 7.5, 10% foetal calf serum (FCS), 200pg/ml

penicillin, 200pg/ml streptomycin, lOOpg/ml kanamycin and 2.5pg/ml amphoterecin
within 15 minutes of removal. Obvious non-tumour material was removed and the

remaining tissue chopped into l-2mm fragments with sterile disposable scalpels. The
tissue was resuspended in Hams F-10 medium containing 200 units/ml collagenase

(clostidopeptidone A; EC 3.4.24.3. Type 1 Lot 113H1019, Sigma, Poole, U.K.) for 4-
18 hours at 37°C, and agitated regularly to facilitate the formation of a single cell

suspension. Once tumour dissagregation was complete, the cells were centrifuged
and resuspended at a density of 106 cells/ml in collagenase-free Hams F-10 medium

containing 10% FCS.

(c) The Rat C6 Glioma Cell Line

C6 glioma cells, obtained initially from Porton Down Laboratories, Sussex, U.K.,
were grown from samples stored at -70°C in 10% dimethylsulphoxide in Hams F-10
medium containing 10% FCS. The frozen cells were thawed in a water bath at 37°C,

centrifuged with 10-12ml ofHams F-10 medium containing 10% FCS and 5%

penicillin and streptomycin, and grown in 15ml ofHams F-10 complete medium at

37°C and 5% C02 for 2-3 days or until confluent.
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Single cell suspensions of rat C6 glioma cells were obtained by briefly incubating
adherent C6 cells with 10ml trypsin diluted 1:10 with Hams F-10 solution containing
10% FCS. Excess solution was removed, and the cells were incubated at 37°C for 5

minutes. Trypsinisation was terminated by the addition of 10ml Hams F-10 solution

containing 10% FCS. The cells were centrifuged and resuspended at a density of 105
cells/ml for analysis of apoptotic activity, or 106 cells/ml for analysis of oxidative

activity.

2.3 Experimental Analysis of Oxidative Activity

Oxidative activity was investigated using flow cytometric analysis of the intracellular
accumulation 2',7'-dichlorofluorescein. 2',7'-dichlorofluorescein is fluorescent

oxidation product derived from the non-fluorescent precursors 2'7'-
dichlorofluorescin diacetate and 2'7'-dichlorofluorescin (Figure 2.1). As a result of

its high lipid solubility, 2'7'-dichlorofluorescin diacetate readily traverses cell

membranes, and is converted to 2'7'-dichlorofluorescin by non-specific intracellular
esterases. In the presence of intracellular peroxides and reactive oxygen species, 2'7'-
dichlorofluorescin is converted to 2'7'-dichlorofluorescein, whose green fluoresence
can be measured at 515-545nm. 2'7'-dichlorofluorescein-associated fluorescence is

therefore directly proportional to cellular oxidative activity.

2',7'-dichlorofluorescein was chosen for this analysis because of its rapid cellular

uptake and well characterised metabolism and stochiometry (Cathcart et al, 1983 and
Leaver et al, 1995). However, it has the disadvantage that certain tumour cells may
metabolise diacetete esters more slowly than non-transformed cells (Watson et al,

1978). Additionally, intracellular fluorescein degradation has been demonstrated, and
the probe slowly leaks from cells (Watson et al, 1978). Therefore the endogenous

leakage and degradation of the probe was corrected by expressing stimulated
metabolism as a ratio of the unstimulated rate. In order to correct for variations in

uptake, 2',7'-dichlorofluorescein fluorescence was expressed in terms of the change
in initial fluorescence.
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Figure 2.1. Intracellular oxidation of 2'7'-dichlorofluorescin.

H3COC

cell membrane

COCH3

2'7' -dichlorofluorescin
diacetate

non-fluorescent 2'7'-
dichlorofluorescin

fluorescent
2'7'-dichlorofluorescein

Figure 2.1. The intracellular oxidation of the fluorescent probe 2'7'-
dichlorofluorescein. The non-fluorescent substrate 2'7'-dichlorofluorescin
diacetate traverses the cell membrane and is converted to non-fluorescent 2'7'-
dichlorofluorescin by non-specific intracellular esterases. 2'7'-
dichlorofluorescin can then interact with peroxides and oxygen based free
radicals to form the fluorescent product 2'7'-dichlorofluorescein. 2'7'-
dichlorofluorescein-associated fluorescence is therefore proportional to cellular
oxidative activity.
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(a) Phagocyte Preparations

Purified leukocyte preparations were incubated with 5pM 2',7'-dichlorofluorescin
diacetate (Kodak, Harrow, U.K.) for 10 minutes at 37°C, and analysis of2',7'-
dichlorofluorescin oxidation was carried out using an Ortho flow cytometer with
Immunocount software and Orthocount calibration.

The kinetics of reactive oxygen intermediate production were analysed in duplicate

samples ofmononuclear and polymorphonuclear lymphocytes at 30 second intervals.
Oxidative activity was analysed for 7 minutes in the absence of exogenous
arachidonic acid or gamma-linolenic acid. The stimulated rate of reactive oxygen
intermediate generation was then measured following the addition of arachidonic
acid (sodium salt, Sigma) or gamma-linolenic acid (lithium salt, Scotia

Pharmaceuticals, Stirling, U.K.) for 13 minutes.

(b) Human Glioma Preparations

Cell suspensions of 106 cells/ml in Hams F-10 medium containing 10% FCS were

centrifuged and loaded with 2',7'-dichlorofluorescin by incubating with 5ml 5pM

2'7'-dichlorofluorescin diacetate (Kodak, Harrow, U.K.) for 10 minutes at 37°C. The
cells were washed and resuspended at approximately 106 cells/ml in collagenase free
medium containing 10% FCS. Flow cytometric determination of oxidative activity
was carried out by analysing 2'7'-dichlorofluorescin-associated fluorescence at 515-

545nm using LYSIS software on a FACScan flow cytometer.

Basal reactive oxygen intermediate formation was determined for up to 7 minutes.
The sample was then treated with 4-40pM arachidonic acid (sodium salt, Sigma) or

gamma-linolenic acid (lithium salt, Scotia Pharmaceuticals, Stirling, U.K.), and
intracellular 2',7'-dichlorofluorescin oxidation monitored as described above for up

to 3 hours. Basal and stimulated oxidative activity was assessed on 5 000 cells every
10 seconds. Statistical analysis of human glioma peroxidation is described in Section

2.4b.
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(c) Human Glioma Sub-Populations

Although macroscopically normal and necrotic tissue was removed prior to oxidative

analysis, the cellular composition of the tumours analysed was highly heterogeneous,

containing varying proportions of transformed glial cells at various stages of

differentiation, reactive astrocytes, vascular cells and normal brain (Darling, 1990
and Thomas and Graham, 1995, Chapter 1). To differentiate between these various

populations, up to 6 sub-populations within each tumour analysed was identified on

the basis of their laser scatter characteristics. The oxidative activity of these sub-

populations was calculated using flow cytometric analysis of stored data obtained

following the initial analysis ofwhole tumour reactive oxygen species formation.

2.4 Statistical Analysis of Reactive Oxygen Species Generation

(a) Human Phagocyte Preparations

Analysis of 2',7'-dichlorofluorescin-associated oxidation in monocyte and neutrophil

populations indicated a normal distribution of fluorescence. Analysis of variance was

therefore used to compare treatment groups (Ratkowsky, 1989).

(b) Human Glioma Preparations

The kinetics glioma reactive oxygen intermediate production did not fit any well
established linear model well. Nonlinear reaction kinetics were therefore required to

calculate the rate of 2',7'-dichlorofluorescin oxidation with time (Ratkowsky, 1989).

This was achieved using the exponential function:-

y = I + (3[l-exp(-Kt)] (Equation 1)

where y=the ratio of the stimulated/unstimulated reactive oxygen intermediate

formation, I=the intercept on the y axis i.e. the value of y at t=0, (3=the range of the

response between t0-°°, i.e. the total extent of stimulated oxidation at the x asymptote

and K=the rate of stimulated oxidation, i.e. the rate at which y changed from its initial

value I at t=0, to its final value at t=°°.
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The rate of 2',7'-dichlorofluorescin oxidation in the absence of essential fatty acid

stimulation was analysed using the equation:-

y = alog(-p)+ alog(log time+200sec) (Equation 2)

where y=mean cell fluorescence in unstimulated cells compared with cells

immediately after loading with 2',7'-dichlorofluorescin, i.e.(mean fluorescence at x

seconds)/(mean fluorescence at 0 seconds)xlOO. The y intercept I=alog(-p) indicates

probe metabolism per cell at 200 seconds and a is the rate constant describing the

change in cell associated metabolism per second. All statistical analysis of human

glioma preparations was carried out on a Sun SPARC computer station using the
statistical analysis software program (SAS Institute Inc. N. Carolina, 1991).

(c) Human Glioma Sub-Populations

As a result of the relative heterogeneity and small population size of the human

glioma sub-populations, oxidative activity could be described using linear reaction
kinetics (Ratkowsky, 1989). Basal oxidative activity in human glioma sub-

populations was analysed using the equation:-

where ABF= mean basal 2',7'-dichlorofluorescein-associated fluorescence. The time

periods in seconds are shown as subscripts in parentheses. For each determination of
mean basal fluorescence over a 200 second interval, 10 values ofmean 2',7'-

dichlorofluorescein- associated fluorescence were used.

The rate of increase of cellular oxidation in human glioma sub-populations following
the addition of exogenous arachidonic acid or gamma-linolenic acid was analysed

using the equation:-

ABF(0-200) ~ ABF(200-400) X100 (Equation 1)

F(0-200) ~AF(2OO-4OO) /AF(O_2OO) x 100 (Equation 2)
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where AF=the mean % increase in 2',7'-dichlorofluorescein-associated fluorescence

over the time periods shown in parentheses. Arachidonic acid or gamma-linolenic
acid was added at time t=0.

2.5 Analysis of GFAP Expression

Flow cytometric analysis ofGFAP staining intensity was carried out on human

glioma cells which had been fixed in 100% ethanol and stored at -20°C for 2-8
weeks. Glioma sections were used for the positive control and the primary antibody
was omitted for the negative control. The ethanol preserving process did not alter the
characteristic laser scatter profile which was observed in samples of the fresh tissue.

(a) Monoclonal GFAP staining

Monoclonal rabbit anti-cow GFAP (protein concentration 14.0 g/L, Dako) was
diluted 1:5, 1:10 and 1:20 and phycoerythrin was diluted 1:10, in phosphate buffered
saline (PBS) containing 20% FCS and 5% tween (Bio-Rad, Watford, U.K., CAS

9005-64-5, batch 126714A). Ethanol preserved cells were washed twice with 1ml
PBS and resuspended at a density of approximately 106 cells in 1ml PBS containing
20% FCS and 5% tween. lOOp.1 of antibody solution was added to each cell pellet and
incubated at room temperature for 30 minutes. The cells were centrifuged,

resuspended in 1:10 phycoerythrin and incubated at 4°C for 2 hours. GFAP labelled
cells were suspended in 1ml PBS containing FCS and tween, centrifuged and

resuspended in 1ml PBS for flow cytometry at 564-607nm using a Becton-Dickinson
FACScan flow cytometer and LYSIS software. Control samples were incubated with
the fluorochrome alone. This method was adapted from standard techniques applied
in flow cytometric immunohistochemistry (Ormerod, 1990 and Darzynkiewicz and

Crissman, 1990).

(b) polyclonal GFAP Staining

FITC-conjugated polyclonal swine anti-rabbit GFAP (protein concentration 0.5g/L,

Dako) was diluted 1:5, 1:10 and 1:20 in PBS containing 20% FCS and 5% tween.

lml aliquots of ethanol preserved cells containing 106 cells/ml were washed twice in
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lml PBS-FCS-tween solution and incubated with lOOgl of the antibody solutions at

4°C for 2 hours. GFAP labelled cells were suspended in lml PBS-FCS-tween

solution, centrifuged and resuspended in lml PBS for flow cytometry at 564-607nm

using a Becton-Dickinson FACScan flow cytometer and LYSIS software. Control

samples were incubated with the fluorochrome alone. This method was adapted from
standard techniques applied in flow cytometric immunohistochemistry (Ormerod,
1990 and Darzynkiewicz and Crissman, 1990).

2.6 Analysis of Cell viability

Loss of cell viability is associated with reduced cell membrane integrity and
increased permeability to vital dyes. In these studies, leukocyte and human glioma
cell viability was assessed by analysing the cellular uptake of ethidium homodimer
and propidium iodide respectively, both ofwhich are excluded from cells whose
membrane is intact. Ifmembrane integrity is compromised and these compounds gain
access into the cell, they bind with high affinity to nuclear DNA, and form a

fluorescent product which can be detected using flow cytometry at 564-607nm. The
fluorescence associated with ethidium homodimer and propidium iodide is therefore

inversely proportional to cell viability (Ormerod, 1990 and Darzynkiewicz and

Crissman, 1990).

Human glioma cell viability was also determined by analysing cellular uptake of the

hydrophilic dye trypan blue. Light microscopy was used to determine the proportion

of cells which were stained with this dye. Staining was associated with reduced cell
membrane integrity and hence loss of viability.

(a)Analysis of lymphocyte and human glioma cell viability

Lymphocyte and glioma cell viability was determined at the end of each analysis of
oxidative activity. Human glioma cells were suspended at a density of 106 cells/ml,
incubated with lmg/ml propidium iodide at 20°C for 10 minutes, and analysed with
LYSIS software on a FACScan flow cytometer. In lymphocyte preparations, viability
was determined by assessing cell permeability to ethidium homodimer.
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2.7 Analysis of Apoptosis

Apoptotic activity was determined flow cytometrically using the TUNEL assay.

During the process of apoptosis, Ca2+ activated endonucleases are responsible for the
induction of double strand breaks in chromosomal DNA (Arends et al, 1990). The

TUNEL assay uses the enzyme deoxyuridine-5'-triphosphate (dUTP) to label these

oligonucleotide fragments. Flow cytometric detection of dUTP binding, which is

proportional to cellular apoptotic activity, is made possible by the covalent addition
of the fluorescent tag fluorescein isothiocyanate (FITC) to dUTP. This reaction is

catalysed by the enzyme terminal deoxynucleotidly transferase (TdT) (Gorczyca et al,

1992, Gavrieli et al, 1992 and Gorczyca et al, 1993).The major advantage of this
method is its ability to reveal early DNA breaks during apoptosis (Vermes et al,

2000). However, since DNA strand breaks are not unique to apoptosis

(Darzynkiewicz et al, 1992), it is important that cell viability is determined

simultaneously.

(a) Analysis of Apoptotic Activity in Human Glioma Preparations

Collagenase dispersed human glioma cells were resuspended at a density of 106
cells/ml in Hams F-10 medium, and incubated in the presence or absence of 20-

30pM arachidonic acid or gamma-linolenic acid for up to 36 hours at 20°C. At
intervals of 0, 15, 30, 45 minutes and at hourly intervals for up to 36 hours, 1ml

aliquots ofhuman glioma cells were fixed in ethanol and stored at -20°C.
These ethanol preserved preparations were washed twice in TBS and resuspended in
40pi cacodylate terminal deoxynucleotidyl transferase reaction buffer (Promega,

Madison, U.S.A.) diluted 1:5 with distilled water. The cells were incubated at room

temperature for 10 minutes, centrifuged and resuspended in 25pl of reaction buffer

containing 19.5pl of distilled water, 5pi of terminal deoxynucleotidyl transferase
reaction buffer, 0.25pl of terminal deoxynucleotidyl transferase Co2+ (20 units/ml,

Promega, Madison, U.S.A.) and 0.25pl of fluorescein-12-2'-deoxyuridine-5'-

triphosphate (Fluorescein-12-dUTP), and incubated at 37°C for 2 hours. The reaction
was terminated by centrifuging the cells twice with TBS. The cells were left to stand
at room temperature for 15 minutes before analysing 2 000-10 000 cells on a
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FACScan flow cytometer using LYSIS software. This identified apoptotic cells on
the basis of dUTP/FITC-associated fluorescence and side scatter.

At the same time as glioma cells were fixed in ethanol, membrane integrity was
measured by analysing trypan blue permeability. Approximately 0.5x106 cells were
incubated with lOOpl trypan blue for 2 minutes at 20°C, and viewed on a modified
Fuchs Rosenthal haemocytometer (Webber Scientific International) at magnification
x40. Cell viability was expressed as the percentage ofnon-staining cells in a random
field containing 100-200 cells. Paired data sets comparing apoptotic activity and cell

viability were compared using Students t-test. Results were calculated as the mean ±
SEM of n determinations.

(b) Analysis of Apoptotic Activity in Rat C6 Glioma Cells

Pre-confluent C6 cells were incubated with Flams F-10 medium containing 10%

FCS, penicillin, streptomycin, glutamine and gamma-linolenic acid at concentrations

OpM, lpM, 5pM, 10pM, 20pM and 40pM. The medium bathing the cells was
harvested and replaced every 6 hours, and centrifuged at 2 500rpm. The resulting

pellet contained C6 cells which had detached from culture and was stored in ethanol
for subsequent assessment of apoptotic activity using the TUNEL method (Section

2.7).

After 7 days, adherent C6 cells were harvested using 10% trypsin digestion (Section

2.2c). The cells were resuspended at a density of 106 cells/ml, and their viability was

measured using flow cytometric analysis of propidium iodide uptake. The remaining
adherent cells were stored in ethanol for TUNEL analysis of apoptotic activity

(Section 2.7).

2.8 Analysis of Cell Proliferation

Cells proliferation was assessed using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide) assay. Cells were incubated with MTT, which was

converted to formazan crystals by intracellular dehyrogenases. The formazan crystals
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were solubilised using dimethyl sulphoxide, and absorbance of the resulting solution
was measured at 540nm. As cell proliferation in each of the C6 populations analysed
was directly proportional to the activity of intracellular dehydrogenases, absorbance
at 540nm gave an indication of the overall rate of proliferative activity.

Confluent C6 cells were harvested using trypsin digestion (Section 2.2c) and

suspended in Hams F-10 medium containing OpM, lpM, 5pM, 20|iM and 40pM

gamma-linolenic acid (lithium salt, Scotia Pharmaceuticals, Stirling, U.K.) at a

density of 103 cells/1 OOjal ofmedium. lOOpl of each solution was added to seven 96
well plates, which were left overnight to allow the cells to adhere to the surface of the
well. 50pl ofMTT solution at a concentration 1.5mg perml of culture medium was

aliquoted into each test well and the cells were incubated at 37°C for 7 days. 150ul of

dimethylsulphoxide containing 0.5% FCS was added to each well, and the plates
were shaken at room temperature on an orbital shaker for 30 minutes. Absorbance
was measured at 540nm on a microplate reader (model 450; Bio-Rad Laboratories,
Hemel Hempstead, Hertfordshire, U.K.).

2.9 The Interaction of Glioma Cell Preparations with Sodium

Nitroprusside and Radiotherapy

(a) Sodium Nitroprusside

Single cell suspensions of human glioma tissue and the rat C6 cell line were

resuspended at a density of 106 cells/ml and incubated in the presence or absence of
arachidonic acid or gamma-linolenic acid and the nitric oxide donor sodium

nitroprusside (Sigma). Immediately, and at hourly intervals for 10 hours, 1ml aliquots
were withdrawn for analysis of peroxidative metabolism (Section 2.3), apoptosis

(Section 2.7) and viability (Section 2.6).

(b) Irradiation

Approximately six 250ml flasks of rat C6 glioma cells at different phases of growth
and development were harvested with trypsin to form a single cell suspension

(Section 2.2c). The cells were centrifuged and resuspended at a density of 106
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cells/ml in the presence or absence of exogenous arachidonic acid or gamma-
linolenic acid. Care was taken to exclude all air gaps, and the cells were irradiated
with a single dose of irradiation at 2Gy. Immediately, and at hourly intervals for 10

hours, 1ml aliquots were withdrawn for analysis of peroxidative metabolism,

apoptosis and viability using flow cytometry, and proliferation using the MTT assay.

2.10 Analysis ofParaffin Fixed Human Glioma Tissue

The WHO classification of each tumour analysed for peroxidative and apoptotic

activity was assessed using standard histopathological techniques (Liebovitz, 1990)
Paraffin-fixed tissue sections were stained with haematoxylin and eosin to determine

diagnostic indicators such as necrosis, vascularity, the presence ofmitotic bodies and
cellular differentiation. Where required, GFAP expression was also analysed in order
to confirm the glial origin of the tumour. The diagnosis was recorded in a definitive

histopathology report whose conclusions were confirmed by a second independent
observer. In addition, the expression of bcl2 and p53 was determined by

immunocytochemistry in a limited series of tumours.

(a) Pathological and Diagnostic analysis

Pathological and diagnostic analysis was carried out on each of the human glioma

samples analysed for oxidative activity. This was achieved using standard

histopathological and immunohistochemical techniques (Liebovitz, 1990). Tumour

diagnosis was determined following analysis of glioma sections stained with

haematoxylin and eosin. Where appropriate, GFAP expression was also investigated.

(i) Haematoxvlin and Eosin

Paraffin embedded tumours were cut into 5pm sections, floated onto poly-L-lysine

(PLL) coated microscope slides and allowed to dry at 80°C for at least 60 minutes.
The sections were rehydrated by sequential exposure to xylene, ethanol, picric acid
and hydrogen peroxide as shown in Table 2.1, and incubated with Meyer's

haematoxylin solution for 5 minutes. The sections were rinsed in tap water, placed in
lithium carbonate for 30 seconds and rinsed in tap water. The sections were
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dehydrated according to the protocol shown in Table 2.2 and fixed with clean

microscope slides.

(ii) Glial Fibrillary Acidic Protein

Paraffin embedded tumours were cut into 5pm sections, floated onto PLL coated

microscope slides and allowed to dry at 80°C for at least 60 minutes. The sections
were rehydrated by sequential exposure to xylene, ethanol, picric acid and hydrogen

peroxide as shown in Table 2.1, incubated with 3% aqueous hydrogen peroxide for
10 minutes and rinsed with tap water. The sections were incubated with 20% normal
swine serum for 10 minutes, followed by polyclonal GFAP (Dako) diluted 1:200 in
20% normal swine serum for 30 minutes. The sections were washed in TBS for 5

minutes, incubated with ABC reagent containing lOOpl streptavidin (Dako) for 30
minutes and rinsed in tap water, and incubated with 3,3-diaminobenzidine

tetrahydrochloride (DAB) solution for 5 minutes. After being rinsed in tap water, the
sections were incubated with lithium carbonate solution for 30 seconds, rinsed in tap

water and dehydrated according to the protocol shown in Table 2.2. The sections
were mounted on a clean microscope slide. A section of normal brain was used as a

positive control, and the primary antibody was omitted for the negative control.
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Reagent Time of Exposure

xylene 5 minutes

95% ethanol 3 minutes

70% ethanol 3 minutes

picric acid 15 minutes

hydrogen peroxide 5 minutes

Table 2.2. Rehydration procedure for paraffin embedded tumours used for
histopathological analysis of tissue ultrastructure (haematoxylin and eosin) and glial
fibrillary acidic protein (Section 2.10). The sections were exposed sequentially to the
reagents shown below for the time periods stated.

Reagent Time of Exposure

70% ethanol 2 minutes

74% ethanol 2 minutes

100% ethanol 2 minutes

100% ethanol 2 minutes

xylene 2 minutes

xylene 2 minutes

Table 2.3. Dehydration procedure for paraffin embedded tumours used for
histopathological analysis of tissue ultrastructure (haematoxylin and eosin) and glial
fibrillary acidic protein (Section 2.10). The sections were exposed sequentially to the
reagents shown below for the time periods stated.
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Chapter 3:

The Effects of Arachidonic Acid and Gamma-Linolenic Acid on

Monocyte and Neutrophil Reactive Oxygen Species Production

3.1 Introduction

The main purpose of this study was to use flow cytometry to i) investigate the effect
of exogenous arachidonic acid and gamma-linolenic acid on cellular reactive oxygen

species formation in human phagocytes and ii) investigate the phenotype of these
cells. This was undertaken using phagocyte preparations acquired from lung cancer

patients undergoing pulmonary resection. Initially, these cells were purified and their
forward and side scatter characteristics determined. Basal and stimulated reactive

oxygen species formation was then investigated by analysing phagocyte oxidative

activity in the presence and absence of exogenous arachidonic acid and gamma-
linolenic acid. Cell viability was assessed by measuring permeability to ethidium
homodimer. These parameters were analysed pre and post-operatively to evaluate the
effect of surgery and essential fatty acid sensitivity on phagocyte activation.

These studies were carried out primarily to assist in subsequent flow cytometric

analysis of human glioma cells. Although a number of studies have analysed glioma
cell lines using flow cytometry (Knott, 1990, Pellicciari et al, 1995, Yahanda et al,

1995, Li et al, 1997, Rooprai et al, 1999 and Ly et al, 2001) fresh human cells

acquired from biopsy samples have not been studied extensively using this technique.

Consequently, it was necessary to optimise experimental and dose response

conditions using cell types whose flow cytometric properties were better
characterised. Phagocyte preparations were chosen for this analysis because of their
well established laser scattering properties, relative homogeneity and ready

availability (Ormerod, 1990 and Darzynkiewicz and Crissman, 1990).

In addition to establishing appropriate conditions required for the analysis of human

glioma reactive oxygen species formation, the involvement of arachidonic acid and

47



gamma-linolenic acid in phagocyte activity is of interest because essential fatty acid
mediated stimulation of leukocyte reactive oxygen species production may be
associated with tumour cytotoxicity (Cornwell and Morisaki, 1984 and Gonzalez,

1992). It is known that patients with primary intracranial tumours have altered
immune function, due, in part at least, to inhibition of T-cell function (Bullard et al,

1986). However, there is evidence that certain fatty acids, including arachidonic acid,

gamma-linolenic acid and docosahexaenoic acid potentiate superoxide formation in
human neutrophils and cell free extracts (Badwey et al, 1981 and Poulos et al, 1991).
This may be associated with generation of the cellular immune response against

malignant glioma (Holladay and Wood, 1993).

The generation of reactive oxygen species by lymphocytes which have infiltrated
tumour tissue involves activation ofNADPH oxidase (Badwey et al, 1981), and

specific roles for arachidonic acid have been identified at several molecular sites
associated with NADPH oxidation (Henderson and Chappell, 1992 and Henderson et

al, 1993). These include i) the interaction of the NADPH oxidase component rap 1A
with rap-GTPase activating protein (Mohazzab et al, 1994) ii) the activation of rap-
GTPase activating protein by arachidonic acid (Ligeti et al, 1993) resulting in iii) the

exposure of the p47-SH3 region crucial for oxidase assembly (Sumimoto et al, 1994)
and iv) the binding of cytochrome b protein p22 phox and the p67 phox protein

(Sumimoto et al, 1994). Additionally, arachidonic acid induces translocation of rac

p21s to the membrane and the activation ofNADPH oxidase (Sawai et al, 1993).

The involvement of arachidonic acid in physiological changes associated with

phagocyte activity are less well characterised. However, an arachidonic acid-specific

phospholipase A2, which is sensitive to nanomolar Ca2+ and responds to the
chemotactic peptide fMet-Leu-Phe and the g-protein agonist guanosine 5'[y-thio]-

triphosphate has been identified in neutrophils (Bauldry et al, 1996). Additionally,
recent evidence indicates that arachidonic acid is involved in phagocyte NADPH-
oxidase activation through induction of a conformational change to p47phox (Shiose
and Sumimoto, 2000). The release of arachidonic acid by cytoplasmic PLA2 has also
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been implicated in the activation of an NADPH-oxidase-associated H+ channel (Levy
et al, 2000). These specific activities of arachidonic acid on phagocyte activation may
contribute to tumour cytotoxicity in vivo.

In order to investigate the role of arachidonic acid and gamma-linolenic acid in

phagocyte oxidative activity, individual cell types, specifically lymphocytes,

monocytes and granulocytes, were identified using sub-population analysis. Reactive

oxygen species formation in each population was then investigated in the presence
and absence of exogenous arachidonic acid and gamma-linolenic acid, both before
and after surgery. These studies established suitable parameters for the investigation
of human glioma cell oxidative activity, while simultaneously providing information
on the previously uncharacterised effect of arachidonic acid and gamma-linolenic
acid in phagocyte activation.

3.2 Materials and Methods

Blood samples were withdrawn between 8.00 and 9.30a.m.from patients undergoing

pulmonary lobectomy for peripheral bronchogenic carcinoma (Section 2.2a). All

patients underwent bronchoscopy, media stenoscopy and computed axial tomography
of the thorax and upper abdomen. Routine haematological and biochemical profiles
were performed, and isotopic bone scans were carried out when indicated. All

patients had pulmonary function adequate for lobectomy and stable cardiac status.

Blood samples were taken pre-operatively, 2 and 7 days after surgery. Informed
consent and local ethical board permission was obtained for this study. Blood
withdrawn from healthy blood donors at the same time as patient blood samples were
collected were used as contemporary controls.

Leukocyte preparations were purified using ortho-lyse solution within 2 hours of

venepuncture. The cells were loaded with 2',7'-dichlorfluorescin (Section 2.3a),

and patient and control phagocytes were analysed using an Ortho flow cytometer

with Immunocount software and Orthocount calibration. Oxidative activity was
determined in duplicate mononuclear and polymorphonuclear phagocytes derived
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from the same individual. The rate of reactive oxygen species formation was

analysed at 30 second intervals for 7 minutes before that addition of arachidonic acid
and gamma-linolenic acid and for 13 minutes after.

3.3 Results

(a) Effect of Arachidonic Acid and Gamma-Linolenic Acid on

Phagocyte Reactive Oxygen Species Generation

Preliminary analysis indicated a normal distribution of fluorescence in gates B

(monocytes) and C (neutrophils) but not A (lymphocytes) (Figure 3.1). Mean
fluorescence associated with phagocyte populations B and C was therefore used to
estimate reactive oxygen species generation. Analysis of variance (ANOVA) was
used to compare treatment groups.

The rate of reactive oxygen species generation in peripheral mononuclear and

polymorphonuclear phagocytes was significantly stimulated (P<0.05-P<0.001)

following addition of l-40pM arachidonic acid and gamma-linolenic acid (Figure

3.1). In both patient and control phagocytes, this stimulation was associated with
increased dichlorofluorescein-associated fluorescence and a broadening of the
fluorescence distribution describing reactive oxygen species formation (Figure 3.1).
Cell viability was greater than 58%, and was not significantly different in patients
and control phagocytes.

(b) The Kinetics of Arachidonic Acid and Gamma-Linolenic Acid

Induced Activation of Phagocyte Reactive Oxygen Species

Generation

Arachidonic acid and gamma-linolenic acid increased reactive oxygen species
formation in each peripheral leukocyte category (Figure 3.2). Similar kinetics were

observed in response to arachidonic acid and gamma-linolenic acid, although
arachidonic acid had the greatest stimulatory effect. Essential fatty acid-mediated
stimulation of oxidative activity followed a linear regression curve during the first 10
minutes of analysis, even at the lower concentration of the weaker agonist (6pM
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gamma-linolenic acid). Correlation coefficients for the rate of increase of reactive
oxygen species with time in phagocytes treated with 6uM gamma-linolenic acid were

0.685 in patient monocytes, 0.839 in patient neutrophils, 0.862 in control monocytes
and 0.862 in control neutrophils.

(c) Comparison ofGamma-Linolenic Acid and Arachidonic Acid

Stimulation in Patient and Control Phagocytes

Essential fatty acid-mediated stimulation of phagocyte reactive oxygen species

generation was significantly less in patient groups in comparison with control cells

(p<0.005, n=15), although this difference was more apparent in neutrophils than

monocytes (Figure 3.2). Stimulation of control neutrophils was significantly greater
than patient neutrophils at 15uM (p<0.05, n=15) and 30uM (p<0.05, n=16)
arachidonic acid. The mean increase in reactive oxygen species production over 5.5

minutes ranged from 1.5± 2.7% for patient neutrophils treated with 8pM gamma-

linolenic acid to 50.1±15.0% for control neutrophils stimulated with 15p.M
arachidonic acid.

(d) Generation of Reactive Oxygen Species in Patient Phagocytes

Before and After Surgery

The effect of surgery on reactive oxygen species generation was compared by pairing

pre-operative and post-operative levels of reactive oxygen species production, and

analysing differences between these groups using ANOVA. Significantly greater
reactive oxygen species generation was detected in post-operative patient phagocytes

(p<0.05-p<0.01) (Figure 3.3). Additionally, analysis of the pre-operative group

suggested that the neutrophils of lung cancer patients were activated (p<0.001, n=21).
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Figure 3.1. The effect of 40gM gamma-linolenic acid on granulocyte peroxidation in
a peripharal blood leukocyte preparation from a patient with lung cancer. Diagram 1
indicates the forward and side scatter of (A) lymphocytes, (B) monocytes and (C)
granulocytes in peripharal blood leukocytes previously incubated with 5gM 2'7'-
dichlorofluorescein diacetate. Diagram 2 is a sub-population histogram of the
intensity of dichlorofluorescein associated fluorescence (x-axis) vs. cell number (y-
axis) in granulocytes (region C of the cytogram) in cells incubated with 40[iM
gamma-linolenic acid for 8 minutes at 20°C ( ■) compared with cells from the same
region and individual in the absence of exogenous essential fatty acid stimulus (□).
**The mean intensity of fluorescein in control cells (granulocytes without exogenous
gamma-linolenic acid).
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patient control

Figure 3.2. The effects of arachidonic acid and gamma-linolenic acid on
mononuclear and polymorphonuclear reactive oxygen production in lung cancer
patients and healthy controls. The percentage of pre-stimulated reactive oxygen
intermediate production in patient phagocytes loaded with 2',7'-dichlorofluorescein
and paired normal control phagocytes were analysed simultaneously using flow
cytometry ofmean 2',7'-dichlorofluorescein fluorescence in mononuclear (mono)
and polymorphonuclear (poly) cells from the same individual. Results describe mean
± SEM reactive oxygen intermediate production in phagocytes exposed for 5.5
minutes in vitro to either: (A) gamma-linolenic acid, lithium salt 6pM (□) or 30pM (
■ ) or (B) arachidonic acid, sodium salt, 4uM (Q) or 15pM ( ■ ). Mean reactive
oxygen intermediate production in the presence of n-6 essential fatty acids was
expressed as a percentage of unstimulated reactive oxygen intermediate production in
the same individual. *reactive oxygen intermediate production significantly different
from pre-stimulation reactive oxygen intermediate production P<0.05, **P<0.01,
***P< 0.001 using ANOVA to compare stimulated values with pre-stimulated values
in the same individual. In (A), sixteen leukocyte samples from the control group and
16 leukocyte samples from the patient group and sixteen samples from the control
group were incubated with 6pM (Q) and 30pM ( ■ ) respectively. In (B), 16 samples
in the patient and control groups were incubated with 4uM arachidonic acid (Q) and
5 samples in the patient and control groups were incubated with 30pM arachidonic
acid (■).
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Figure 3.3. The generation of reactive oxygen intermediate production in patient
phagocytes expressed as a percentage ofmean control phagocyte production before
(group 1) and after (groups 2 and 3) pulmonary resection. Group 2 leukocytes were
taken 48 hours after surgery and group 3 leukocytes 7 days after surgery. Mean
reactive oxygen intermediate production (± SEM) was analysed by monitoring 2',7'-
dichlorofluorescein associated fluorescence in 20 patients and 20 paired controls in
monocytes ( ■ ) and neutrophils (Q) after 5.5 minutes incubation. Post-operative
monocyte and neutrophil reactive oxygen intermediate (groups 2 and 3) were
compared with pre-operative reactive oxygen intermediate in the same patient.
Significant increases in reactive oxygen intermediate after surgery *(P<0.05),
**(P<0.01) are indicated in monocytes and neutrophils in both surgical groups.
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3.4 Discussion

The main purpose of this study was to characterise experimental and dose response
conditions suitable for analysis of human primary glioma. This was achieved using
flow cytometric analysis of the oxidative activity of phagocyte preparations acquired
from lung cancer patients undergoing pulmonary resection. The morphological

properties of these cells were investigated, and were found to correlate well with

previously established forward and side-scatter characteristics (Ormerod, 1990 and

Darzynkiewicz and Crissman, 1990). Dose response characteristics were analysed,
and a significant stimulation of reactive oxygen species formation in patient and
control phagocytes was observed at 1 -40uM arachidonic acid and gamma-linolenic
acid (Figures 3.1 and 3.2).

The kinetics of reactive oxygen species formation following addition of arachidonic
acid and gamma-linolenic acid were similar in monocytes and neutrophils, although
2-3 fold greater concentrations of gamma-linolenic acid were required to produce

equivalent stimulation (Figure 3.2). This suggests that gamma-linolenic acid may act

as a partial agonist at the molecular sites where arachidonic acid induces stimulation
ofphagocyte reactive oxygen species production. It is unlikely that differences in cell

viability accounted for the relatively low sensitivity of patient phagocytes to

exogenous essential fatty acid stimulus, as no significant differences in phagocyte

permeability to ethidium homodimer were detected.

Differences were observed between basal oxidative activity and essential fatty acid

sensitivity in i) patient and control phagocytes, and ii) phagocytes obtained pre and

post-operatively. Reactive oxygen species production was elevated in neutrophils

acquired from lung cancer patients, and when stimulated with exogenous arachidonic
acid and gamma-linolenic acid these cells responded with low reactive oxygen

species formation in comparison with those obtained from healthy donors. Similarly,

monocytes and neutrophils acquired post-surgically were characterised by elevated
basal reactive oxygen species formation. These differences are consistent with partial

55



activation of phagocytes by lung cancer and its surgical treatment via arachidonic

acid-dependant pathways.

These results suggest that phagocytes previously activated by lung cancer or surgery

are activated less by exogenous n-6 essential fatty acids. This lack of

hyperstimulation may be important as the antiproliferative properties arachidonic
acid and gamma-linolenic acid may be pertinent to bronchogenic carcinoma.

Although there has been little improvement in long term survival following resection
ofbronchogenic carcinoma over the last 20 years (Shields et al, 1994), recent
evidence suggests that arachidonic acid and gamma-linolenic acid are associated with
inhibition of tumour proliferation and viability in a human lung carcinoma grown in
nude mice(deAntueno et al, 1998). Additionally, there is evidence that phagocytes are

associated with tumour cytotoxic reactions in human lung cancer (Braun et al, 1993),
and that stimulation of peripheral blood monocytes ofhuman lung tumour patients

may be involved in the control ofmetastasis (Braun et al, 1993, Gjomarkaj et al,
1994 and Karmali et al, 1986).

The stimulation of phagocyte reactive oxygen by n-6 essential fatty acids may also be
relevant to malignant glioma therapy. Although it is well established that glioma

patients are immunosupressed, especially in their T-cell function (Roszman et al,
1991 and Tada and Tribolet, 1993), there is often evidence of a rudimentary attempt
of the host to reject the tumour (Jaeckle, 1994). Approximately 30-60% of primary
human gliomas have mononuclear cell infiltrates (Bullard et al, 1986 and Stevens et

al, 1988), and antigen-antibody complexes have been observed in gliomas (Wood
and Morantz, 1979 and Wood et al, 1980). In addition, activated microglia have been
observed surrounding invading tumour cells (Streit, 1994).

The suppression ofT-cell function observed in glioma patients may arise from the
release of immunosuppressive factors such as transforming growth factor-beta

(TGFP) from transformed glial cells (Weller and Fontana, 1995). TGFpi inhibits the

proliferation of certain cancer cells in vitro, and there is evidence that this activity is
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increased by polyunsaturated fatty acids (Newman, 1990). Similar results have been
obtained with other cytokines including tumour necrosis factor (TNF), and certain
interleukins and growth factors (Puntis and Jiang, 1994). It has been hypothesised
that this action is due to the conversion of essential fatty acids to a common lipid
mediator which acts as a second messenger for these cytokines and their receptors

(Begin and Horrobin, 1985, Peppelenbosch et al, 1993 and Mollerup and Haugen,

1996).

Potentiation of reactive oxygen in CNS leukocytes may therefore induce inhibition of
tumour proliferation through potentiation of the immune response. However,
additional studies are required to evaluate the effect of exogenous essential fatty
acids on oxidative activity in glioma-associated leukocytes, and to characterise the
contribution of phagocyte reactive oxygen species generation to glioma cytotoxicity.

3.5 Conclusions

This study established experimental conditions appropriate for the evaluation of
human glioma oxidative activity. In addition, this analysis provided information on

reactive species generation in phagocytes, its stimulation in response to malignant
transformation and surgery, and its regulation by arachidonic acid.

Elevated reactive oxygen species formation was detected in the neutrophils of lung
cancer patients and in the monocytes and neutrophils of patients after surgery.
Further stimulation of oxidative activity was observed following the addition of
arachidonic acid and gamma-linolenic acid, with gamma-linolenic acid being the
weaker agonist. However, phagocytes activated by malignant transformation were

characterised by low sensitivity to exogenous essential fatty acid stimulation. These
differences are consistent with activation of phagocyte reactive oxygen species
formation by arachidonic acid-sensitive pathways in response to lung cancer and its

surgical treatment.
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Chapter 4:

The Stimulation of Cellular Oxidative Activity in Human Glioma by

Arachidonic Acid and Gamma-Linolenic Acid

4.1 Introduction

The purpose of this study was to analyse the oxidative activity of human glioma cell

preparations in the presence and absence of exogenous arachidonic acid and gamma-
linolenic acid. Differences were investigated between i) the basal oxidative activity of
tumour tissue and tumour-associated normal brain, ii) the kinetics of reactive oxygen

species formation in normal and tumour tissue and iii) the essential fatty acid

sensitivity of tumours of different grades.

These studies were undertaken to investigate a potential clinical role for n-6 essential

fatty acids in glioma therapy. The mean adult survival for patients suffering from

malignant glioma is typically less than one year following diagnosis (Thomas and

Graham, 1995, Chapter 1, Berens and Giese, 1999 and Neider et al, 2000), and it is

unlikely that this poor prognosis can be improved through increasing the efficacy of

existing therapeutic procedures (Darling, 1990). The elucidation of novel therapies
with the potential to increase tumour cytotoxicity, either alone or in conjunction with
conventional treatments, would therefore have important clinical implications.

The pro-oxidative activities of essential fatty acids may be pertinent to malignant

glioma therapy. In vitro and ex vivo studies have demonstrated an inverse association

between basal reactive oxygen species formation and malignant progression of glioma

(Levcheko and Demchuk, 1991 and Louwe et al, 1997), supporting the hypothesis
that oxygen-based free radicals are involved in the regulation of tumour proliferation
and death. Oxidative activity in a series of astrocytoma cell lines was inversely

proportional to the grade of tumour from which the cell lines were derived, thus it was
observed that the oxidative activity of human glioma tissue was lower than that of
associated normal brain (Louw et al, 1997). Additionally, the oxidative activity of
human astrocytoma and meningioma cells has been shown to be lower than that of
non-transformed brain tissue (Levcheko and Demchuk, 1991). As it has been
demonstrated that human glioma is deficient in the products of delta-6-desaturation,
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including arachidonic acid, gamma-linolenic acid and docosahexaenoic acid (Martin
et al, 1996), this supports the hypothesis that the low levels of basal oxidation
observed in transformed glial cells are due to deficiency of essential fatty acids
(Bartoli and Galeotti, 1979 and Cheeseman et al, 1984).

These observations suggest that addition of exogenous essential fatty acids may
inhibit glioma proliferation by providing substrate for the production of potentially

cytotoxic oxygen-based free radicals and lipid peroxides (Cornwell and Morisaki,
1984 and Gonzalez, 1992), and evidence supporting this hypothesis has been acquired
from in vitro investigations. Arachidonic acid-mediated inhibition of cell division in a

human glioma cell clone was associated with increased oxidative activity (Liepkalns
et al, 1982), and inhibition of cell proliferation in glioma cell lines by gamma-
linolenic acid was associated with potentiation of free radical activity (Das et al,

1990a).

Although these observations are consistent with a therapeutic role for arachidonic acid
and gamma-linolenic acid in the management ofmalignant glioma, there is limited
information on a number of parameters of clinical importance. A correlation between
tumour grade and essential fatty acid sensitivity has not yet been established, and the
kinetics of reactive oxygen species formation in human glioma tissue in response to

exogenous essential fatty acid stimulation have not been described. The purpose of
this study was to address these issues by investigating the effect of exogenous
arachidonic acid and gamma-linolenic acid on reactive oxygen intermediate

generation in short-term primary cultures of fresh human glioma tissue removed at

biopsy.

However, the kinetics of oxidative activity in human glioma explants were not
described well by existing statistical methods (Ratkowsky, 1989). This was due

predominantly to cellular heterogeneity which is a characteristic of glial tumours,

particularly those ofhigh grade. Consequently, it was necessary to derive novel
statistical parameters which more accurately described the complexity of the reaction
kinetics observed in mixed cell populations.
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Using these novel statistical models, the dynamics of tumour reactive oxygen

intermediate generation in the presence and absence of arachidonic acid and gamma-

linolenic acid was investigated, and the dependence of reactive oxygen intermediate
formation on essential fatty acid type and concentration was determined. To further
characterise the association between cellular oxidative activity, essential fatty acid

sensitivity and malignant progression, reactive oxygen species formation in human

glioma tissue was compared with that of associated normal brain. Additionally, the
kinetics of glioma cell oxidation in the presence of exogenous arachidonic acid and

gamma-linolenic acid was compared with that of tumour-associated normal brain and
areas of focal tumour necrosis. The results from this study provide further information
on the control of reactive oxygen intermediate formation in human primary brain
tumours and the scientific rationale behind putative therapies for brain tumours using
arachidonic acid and gamma-linolenic acid.

4.2 Materials and Methods

(a) Tissue Preparation

Explants of fresh glioma, and, if available, tumour-associated normal and necrotic

tissue, were obtained at the time of surgery. Informed consent and local ethical board

permission was obtained. The tissues were chopped using sterile disposable scalples,

digested with collagenase, washed and resuspended at a density of 106 cells/ml in
Hams F-10 medium. The cells were loaded with 2'7'-dichlorofluorescin diacetate,
the intracellular probe of oxidative activity (Section 2.2b and 2.3b).

(b) Analysis of Cellular Oxidative Activity

The kinetics of2'7'-dichlorofluorescin oxidation were determined in the presence and
absence of exogenous essential fatty acids at 10 second intervals. The pre-stimulated
rate of reactive oxygen intermediate generation was determined for 7 minutes, and the
essential fatty acid-stimulated rate of reactive oxygen intermediate production was

determined in the presence of4-40pM arachidonic acid or gamma-linolenic acid for

up to 3 hours (Section 2.3b). At each time point, 5 000 or 10 000 cells were analysed.

2'7'-dichlorofluorescin was chosen for analysis of oxidative activity because of its
rapid cellular uptake and well characterised metabolism and stochiometry (Cathcart et
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al, 1983 and Leaver et al, 1995). However, use of this probe was associated with a

number of problems: probe leakage following cellular uptake has been reported,
intracellular fluorescin degradation can take place (Makrigiorgos et al, 1996) and the

activity of intracellular esterases, which are responsible for the metabolic conversion
of dichlorofluorescin to dichlorofluorescein, may be low in tumour cells (Watson et

al, 1978). To compensate for this, the rate of endogenous probe leakage and

degradation was corrected by expressing oxidative metabolism in the presence of

exogenous essential fatty acid as a ratio of the unstimulated rate. In unstimulated

cells, the fluorescence of 2'7'-dichlorofluorescein was expressed in terms of the

change in fluorescence of the initial 2',7'-dichlorofluorescin load per cell at the

beginning of the incubation, thus correcting for variations in uptake.

(c) Statistical Analysis of Essential Fatty Acid Induced Stimulation of

Tumour Oxidation

Reactive oxygen intermediate production was analysed using the exponential
function:-

where y=the ratio of the stimulated/unstimulated reactive oxygen intermediate

production, I=the intercept on the y axis when t=0 seconds, P= the range of the

response between to seconds and t°°, and k= the rate at which y changed from its initial
value I at t=0 seconds to its final value as it approached its asymptotic maximum at t=
OO seconds.

(d) Statistical Analysis of Tumour Oxidation in the Absence of

Essential Fatty Acid

Tumour oxidation in the absence of essential fatty acid was analysed using the

equation:-

y = I+P[l-exp(kt)] (Equation 1)

y=olog(-p) + olog (log time + 200 seconds) (Equation 2)
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where y=mean cell fluorescence in unstimulated cells compared with cell
fluorescence immediately after loading cells with 2'7'-dichlorofluorescin. The y

intercept I=olog(-p) indicates probe metabolism per cell at 200 seconds and a is the
rate constant describing the change in cell associated fluorescence per second. The

goodness of fit of this model was estimated using the residual means squared value
(Section 2.4b).

(e) Analysis of Cell Viability

Cell viability was determined in the presence and absence of arachidonic acid or

gamma-linolenic acid at the end of each analysis of oxidative activity. 1ml aliquots of
collagenase-dispersed glioma cells were incubated with lmg/ml propidium iodide.

Propidium iodide-associated fluorescence, which is inversely proportional to cell

viability, was determined using flow cytometry (Section 2.6).

(f) Analysis of Tumour Pathology

The WHO classification and grade of each tumour analysed for peroxidative activity
was determined using standard histopathological techniques (Section 2.10). Where

appropriate, the glial origin of the tumour was investigated using immuno-
histochemical analysis ofGFAP expression.

4.3 Results

(a) The Effects of Arachidonic acid and Gamma-Linolenic Acid on

the Kinetics of Reactive Oxygen Intermediate Generation

The brain tumours analysed in this study were obtained from 30 patients undergoing

surgical resection or biopsy. Median age was 51 years (range 5-74) and 20 of the 30

patients were male. 18 of the 30 tumours received were glioblastomas (grade IV), and
within this group mean patient age was 58.5 years. Three of these GBM patients were
below the age of 35 and 12 were male. 9 of the remaining 12 tumours were

astrocytomas (grades I-II), 3 were anaplastic astrocytomas (grade III), one was an

anaplastic ependymoma (grade III) and one was an anaplastic oligodendroglioma

(grade III). Five samples of peritumoural normal brain and one sample of tumour-
associated necrotic tissue, each derived from biopsy specimens of glioblastoma, were
also available for analysis.
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Collagenase-dispersed cells derived from these tissues were used to investigate the
effect of arachidonic acid and gamma-linolenic acid on tumour cell peroxidation.
This was achieved by analysing the stimulation ratio, i.e. the ratio of basal reactive

oxygen species formation to reactive oxygen species formation in the presence of

exogenous essential fatty acid, in 5 000 or 10 000 cells at 10 second intervals for up to

three hours. High, intermediate and low doses of arachidonic acid and gamma-
linolenic acid were randomised after the dose response characteristics of essential

fatty acid associated stimulation of reactive oxygen intermediate production were

established. These concentrations were selected to fall within a range known to elicit a

significant (p<0.005) stimulation of reactive oxygen intermediate production within
10 minutes, while having minimal effects on cell membrane integrity (Section 4.3e).

The stimulation ratio was used to derive two kinetic constants: the asymptotic
maximum (3 and a rate constant K. A good estimate of the asymptotic maximum (3,
which indicated the total extent of stimulated oxidation, was obtained when the

stimulation ratio approached the asymptote during the course of the experiment.

However, the estimate of (3 was poor for the four curves whose stimulation ratios
continued to rise at a more uniform rate. When analysing the kinetic constant K, the

inverse of K was plotted, as lower values of K indicated a more rapid rate of increase
of the stimulation ratio with time (Figure 4.1, Table 4.1 and Table 4.2).

A significant correlation between arachidonic acid and gamma-linolenic acid
concentration, asymptotic maximum (3 (p<0.001) and the rate constant k were

detected in the 38 samples analysed using multivariate ANOVA. An effect of fatty
acid type on the maximum stimulation (3 was also detected (p<0.003), with gamma-

linolenic acid being more active than arachidonic acid in stimulating tumour

peroxidation (Tables 4.1 and 4.2). The goodness of fit of this model was estimated

using the residual means squared value was r2=0.977±0.00469, range 0.837-0.998.
The rate of unstimulated 2',7'-dichlorofluorescin oxidation in these samples therefore
showed a good fit to equation 2. A compartmental model using equation 1 for the
initial t=0-200 second stage did not give a better fit to the unstimulated rate curve.
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Basal oxidative metabolism was analysed using equation 2. Dichlorofluorescein-
associated fluorescence was expressed as a proportion of initial cell associated probe
because deficits in tumour cell esterase activity compared with normal cells, which

may result in impaired cell loading of the probe, have been reported (Watson et al,
1978). The y axis intercept I at 200 seconds was used to analyse probe metabolism
and the rate constant a was used to investigate probe leakage from cells. The two
stimulation ratio kinetic constants (3 and k, and the unstimulated kinetic constants a

and I for each of the 38 cell preparations are shown in Tables 4.1 and 4.2. The

goodness of fit of this model was estimated by analysing the y axis intercept and the
residual means squared (r2). The y intercept i.e. the ratio of the
stimulated/unstimulated reactive oxygen intermediate production at t=0 seconds was
close to the predicted value of 1, being 1.019±0.0229 (mean± SEM of 38 data sets,

range 0.783-1.528). The residual means squared was r2=0.9719-0.00476 (mean± SEM
of 38 data sets, range 0.902-0.998).

(b) The Effect of Tumour Grade on Essential Fatty Acid Induced

Stimulation ofCellular Oxidation

A correlation was found betweenWHO tumour grade and the stimulation constant

(3, with high grade tumours generally exhibiting the highest overall level of cellular
oxidation in the presence of exogenous n-6 essential fatty acid (Figures 4.2 and 4.4).
This association was not linear, and was greatest in grade I-13I tumours (Figure 4.4).
The initial rate of essential fatty acid-mediated stimulation of oxidative activity,
which was proportional to 1/k, also tended to be greater in high grade tumours. These
observations suggest that high grade tumours are characterised by high sensitivity to

exogenous essential fatty acid stimulus.

The linear (Pearson) correlation coefficient between tumour grade and log(3 was 0.614
for the 12 grade I-III tumours analysed in this study. This was calculated by dividing
the stimulation constant (3 by essential fatty acid concentration. When the stimulus
concentration was not corrected, the correlation coefficient for tumour grade versus

log[3 was 0.543. The correlation coefficient between tumour grade and the rate

constant k was 0.408. This was also calculated by dividing k by stimulus
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concentrations, as essential fatty acid concentration has been shown to influence the
kinetic rate constant k.

An increase in the variability of (3 was observed in high grade tumours. This may be
due to cellular heterogeneity, which increases with malignant progression of human

glioma. The oxidative responses measured in this study were those ofmixed cell
populations, and immunohistochemical analysis indicated a greater variability of cell
types present in tumours ofhigh grade. A significant inverse relationship between
tumour grade and propidium iodide permeability was also detected (Figure 4.4A).
This observation is consistent with histological features of these tumours, as areas of
necrosis are most commonly associated with grade IV tumours.

(c) Reactive Oxygen Intermediate Production in Normal and Tumour

Cells

Basal oxidative activity and sensitivity to exogenous arachidonic acid were analysed
in cell preparations obtained from 5 human primary gliomas and associated

peritumoural normal brain (Table 4.3). During each investigation, up to 95
measurements of basal and stimulated oxidative activity were made at 10 second
intervals in samples containing 5 000 or 10 000 cells. Basal oxidative activity was

significantly lower in tumour tissue in comparison with normal brain (Figure 4.3).
Differences were also observed between the responses of normal and tumour tissue to

exogenous essential fatty acid stimulation. The stimulation ratio of 71 paired 10 000
cell samples was significantly greater in tumour tissue following a 0-20 minute
incubation with arachidonic acid or gamma-linolenic acid (p<0.0000017). These
differential responses were detected in the initial phase of the stimulation curve (3-6

minutes), and also at the later phase (10-20 minutes) when most curves were

approaching their asymptotic maximum (3.

(d) Reactive Oxygen Intermediate Production in Necrotic and Viable

Tumour Cells

One glioblastoma sample received for analysis possessed a large visible region of
tumour-associated necrosis. The necrotic region was dissected, and used for analysis
of oxidative activity in the presence and absence of 12pM gamma-linolenic acid. A
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significantly lower rate of basal oxidation was observed for the dissected necrotic

region in comparison with viable tumour cells (pO.OOOl), and the stimulation ratio
was significantly higher in non-necrotic tissue. These differences were observed

throughout the course of the investigation (Figure 4.5).

(e) Cell Viability

Cell viability was determined using flow cytometric analysis ofPI uptake

immediately following analysis of oxidative activity. Mean viability±SEM of the 30
tumour cell preparations was 91.2±1.56% (Tables 4.2 and 4.3). This was not

significantly different from the viability of tumour cells incubated in the presence of

4-40pM arachidonic acid and gamma-linolenic acid (90.3±2.45%). Tissue storage did
not significantly increase cell permeability to propidium iodide. Mean viability of 25
tissue preparations analysed less than 24 hours following resection was 91.0±1.92%

compared with 91,6±2.81% 3 days after surgery (n=13).
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Figure 4.1. The rate of reactive oxygen intermediate formation in cells derived from
a glioblastoma tumour incubated in the presence (closed circles) or absence (open
circles) of 36pM sodium arachidonate, as measured by 2',7'-dichlorofluorescein
oxidation. The y-axis indicates mean 2',7'-dichlorofluorescein oxidation per cell at
515-545nm. Total cell fluorescence at 488nm was proportional to the mean cellular
content of oxidised probe.
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FA type |lM % V Days P K (/ I
AA 4 97.81 0.771 0 1 NA NA

AA 18 96.235 0.781 0.191 1.442 33.07 66.14

AA 18 94.81 3 0.4 0.0058 100 112.48
GLA 40 99.14 3 4.175 0.0071 100 112.74

AA 4 60.09 0.771 0 1 NA NA

AA 18 87.99 2 0.301 0.0049 61.47 90.3

AA 36 84.61 2 0.077 0.0084 98.21 114.18

AA 4 98.31 2.813 0.118 1 168.67 166.74

AA 18 93.27 3 1.198 0.0028 77.18 97.96

AA 18 70.28 0.104 0.583 0.0212 100 124.43

AA 18 86.99 0.781 0.062 0.0529 36.81 73.62

AA 18 96.53 0.781 0.074 0.008 52.82 80.23

GLA 12 91.06 3 0.449 1 40.34 72.41

GLA 27 97.98 1 2.143 0.0023 50.33 81.8

GLA 27 98.77 4 3.676 0.0013 97.45 104.49

GLA 40 95.45 3 5.746 0.0093 79.27 84.56

Table 4.1. Kinetic rate constants of oxidative metabolism in cells derived from

explants ofhuman primary gliomas. Column 1: grade: WHO grade I-III, 0=normal
brain, stimulated with either arachidonic acid or gamma-linolenic acid. Column 2:
fatty acid type. Column 3: fatty acid concentration (pM). Column 4: The overall
viability (%V) of cells acquired from tumour explants. Column 5: the period of
tissue storage in days in Hams F-10 medium. Columns 6 and 7: the kinetic rate
constants (3 and k of stimulated cells (see Figure 4.3). Columns 8 and 9: the kinetic
rate constant 8 and the intercept I of unstimulated cells.
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Grade FA

Type
pM % V Days P K oC I

4 AA 4 84 1 0 0.0941 34.53 69.06

4 AA 18 87.36 0.7604 0.264 0.0178 126.15 135.17

4 AA 18 90.4 0.792 0.8 0.0004 141.97 142.52

4a AA 18 86.76 0.833 0.747 0.0036 100 199.17

4b : AA 18 93.76 0.833 0.838 0.0164 89.93 114.83

4 AA 18 94 0.9375 0.058 1 34.76 69.52

4e AA 18 95 0.8125 0.385 1 56.93 84.46

4f recurr AA 18 79.96 0.8125 0.468 0.0019 44.27 72.7

4 AA 18 98.08 1 0.485 0.0061 125.43 132.95

4c AA 18 98.81 1.03 0.102 1 41.13 82.26

4d stor AA 18 99.11 4.0313 0.436 0.0127 53.75 78.52

4 AA 36 93.86 0.948 0.75 0.0036 50.04 77.22

4a' GLA 12 92.17 1.885 1 0.0014 100 117.11

4b' necr GLA 12 94.65 1.885 1 0.0005 100 119.42

4 GLA 12 98.59 0.917 0.326 0.011 99.1 101.77

4 GLA 12 98.35 0.917 0.11 0.0132 100 115.77

4a GLA 20 83.99 0.125 0.127 0.0028 49.48 77.69

4b GLA 20 94.32 0.125 6.883 0.0001 100 123.83

4 GLA 20 97.69 1 0.622 0.0024 70.21 88.12

4a GLA 20 97.21 1 0.524 0.0095 100 123.12

4b GLA 20 97.72 1 0.556 1 82.88 95.8

4 GLA 27 61.24 6 0.394 0.0069 100 117.35
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Table4.3.Comparisonofarachidonicacidstimulatedoxidationinnormaland tumourcells time(minutes)numberofpairedsamplesmeanstimulationratio
(meanoxidationinstimulated/unstimulatedcells±SEM) normal

tumour

0-2.67

13

1.44±0.153

1.68±0.310

2.67-6.67

21

2.17±0.300

2.68±0.468*

6.67-10.00

14

2.70±0.454

3.46±0.765

10.00-15.00

12

2.62±0.588

3.07±0.917*

15.00-20.00

11

4.41±0.376

6.15±0.504**

Themeanstimulationratio(meanroiinarachidonicacidstimulated/unstimulatedcellsfromthesameindividual±SEM)for71pairedsamples eachcontaining10000cellsderivedfromthesameindividuals.The5tumoursampleswereastrocytoma(gradesI-III),oligoastrocytoma (gradeII),gemistocyticastrocytoma(gradeIII)andglioblastomamultiforme(gradeIV).Thebasalunstimulatedroiin95pairednormaland tumourcellpreparationsfromthesamepatientbeforearachidonicacidadditionwassignificantly(p<0.00002)lowerintumourcells (49%±5.72theroiofpairednormalcontrolcellsderivedfromadjacentnon-tumourtissue).Afterexposuretoexogenousarachidonicacid forthetimeperiodsindicatedincolumn1,thestimulationratiosofcellroiinnormalandtumourcellswasanalysed(columns2and3).The tumourstimulationratiosweresignificantlygreaterthannormalcontrolcellstimulationratiosareindicated*p<0.05,**p<0.0005(pairedt- test).
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Figure 4.5. Comparison of the stimulation of reactive oxygen intermediate
formation in viable and necrotic regions of an explant ofglioblastoma
multiforme by the addition of 12pM gamma-linolenic acid at 270 seconds. The
rate of 2'7'-dichlorofluorescein formation is shown in black diamonds for the
viable cells and open squares for necrotic cells. Results are expressed as %
stimulation ofmean basal cell fluorescence.
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4.4 Discussion

This study describes oxidative metabolism in the presence and absence of arachidonic
acid and gamma-linolenic acid in 36 collagenase-dispersed explants of human
primary brain tumours. In each of the samples analysed, arachidonic acid and gamma-

linolenic acid rapidly increased intracellular reactive oxygen intermediate production
(Figure 4.1). The initial increase in peroxidation 0-200 seconds after addition of
arachidonic acid or gamma-linolenic acid was greater than any subsequent increase in

peroxidative activity, and in most tumour samples the rate of peroxidation approached
an elevated steady state after 10 minutes incubation (Tables 4.1 and 4.2). All the
tumour cell preparations analysed responded to exogenous arachidonic acid and

gamma-linolenic acid in a grade dependent manner, with high grade tumours tending
to have higher values of the asymptotic maximum P and the rate constant k. The
stimulation of reactive oxygen intermediate generation by arachidonic acid was

significantly greater in tumour tissue in comparison with normal human brain in the
five paired samples for which non-transformed tissue was available (p<0.0000017,

paired t-test, n=71).

In both normal and tumour tissue, the stimulation of reactive oxygen intermediate
formation was proportional to essential fatty acid type and concentration. Although
the kinetics of the reactive oxygen intermediate response to arachidonic acid and its
C18 precursor gamma-linolenic acid were similar, the extent of gamma-linolenic
acid-induced stimulation of reactive oxygen intermediate production was greater at

equimolar concentrations. This suggests that the ability of long chain PUFA to

stimulate reactive oxygen species formation is not proportional to hydrocarbon chain

saturation, and that essential fatty acids may potentiate glioma oxidative activity by

modulating molecular pathways other than lipid peroxidation.

In each of the thirty tumour preparations, the lower rate of reactive oxygen

intermediate production by necrotic cells was confirmed by sub-population analysis.
The laser scatter profile of necrotic cells is characterised by low forward angle and

right angle light scatter. A significantly (p<0.0001) lower response was obtained
when necrotic cells of a mixed tumour population were gated (see also Chapter 5). An
association was also observed between cell membrane permeability and tumour grade
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with grade IV tumours exhibiting greater membrane permeability to vital dyes. This
correlates with histochemical features used in the diagnosis ofmalignant gliomas, as

glioblastoma is characterised by areas of focal necrosis.

Evidence for an anti-proliferative effect of exogenous gamma-linolenic acid at the
concentrations used in this study has been demonstrated in a number of tumour types

(Karmali et al, 1985, Begin et al, 1986, Hyashi et al, 1990 and Pritchard and Mansell,

1990). Although the pathways by which arachidonic acid and gamma-linolenic acid
exert their tumour cell toxicity are poorly characterised, there is evidence that reactive

oxygen intermediates can diffuse rapidly across membranes during lipid peroxidation

(Slater, 1984a and 1984b) and that the metabolic flux of arachidonic acid and gamma-
linolenic acid in membranes is involved in cell signalling and cell death (Merrill and

Schroeder, 1993 and Leaver et al, 1995). This may involve modulation of the activity
of the transcription factors NF-k(3 and bcl2 associated pathways (Abate et al, 1990,
Schreck et al, 1992 and Kane et al, 1993). In addition, arachidonic acid directly
activates c-jun, resulting in cellular apoptosis (Rizzo and Carlo-Stella, 1996), and p53
involvement in reactive oxygen intermediate metabolism has recently been
demonstrated (Polyak et al, 1997). However, additional studies are required to further
characterise the molecular events associated with essential fatty acid-mediated
induction of tumour cytotoxicity.

4.5 Conclusions

The results of this study support the hypotheses that i) reactive oxygen intermediate

generation is impaired in human malignant glioma in comparison with associated
normal brain and that ii) exogenous arachidonic acid and gamma-linolenic acid
stimulate glioma peroxidative activity. Analysis of tumour-associated normal brain
indicated that human glioma tissue was characterised by low basal oxidative activity
and high sensitivity to exogenous essential fatty acid stimulus in comparison with
non-transformed cells. Reactive oxygen species formation in the absence of
arachidonic acid or gamma-linolenic acid was significantly lower in tumour tissue in
each of the 5 samples available for analysis. Although both normal and tumour cells

responded to exogenous essential fatty acid stimulus with increased reactive oxygen
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species formation, this increase was significantly greater in cells derived from
transformed tissue (p<0.0000017).

The magnitude of essential fatty acid-mediated stimulation of glioma oxidative

activity was a function of tumour grade, with more malignant tumours responding
with higher sensitivity to exogenous n-6 essential fatty acids. Both the rate (defined

by the constant k) and extent (defined by the asymptotic maximum (3) of stimulated
oxidative metabolism were greater in high grade tumours, although this association
was not linear for (3. The kinetics of oxidative metabolism observed in response to

exogenous arachidonic acid and gamma-linolenic acid were similar, although gamma-

linolenic acid was the more potent agonist at equimolar concentrations. Neither
arachidonic acid nor gamma-linolenic acid was associated with loss of cell membrane

permeability at the concentrations used in this study.
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Chapter 5:

The Stimulation of Reactive Oxygen Intermediate Production in

Glioma Populations by Arachidonic Acid and Gamma-Linolenic

Acid

5.1 Introduction

The purpose of this study was to provide preliminary information on the flow

cytometric characteristics and oxidative activities of human glioma sub-populations.

Sub-populations were selected on the basis of their forward scatter, which is

proportional to cell size, and side scatter, which is proportional to granularity which
is related to DNA content. These regions were analysed in terms of i) basal oxidative

activity, ii) oxidative activity following stimulation by exogenous arachidonic acid
and iii) propidium iodide permeability. Following this analysis, additional studies
were undertaken to investigate the oxidative activity of cells of glial origin present in
tumour biopsy samples. This was achieved using flow cytometric analysis ofGFAP
distribution.

This sub-population analysis was undertaken because it is known that glial tumours,

particularly those of high grade, are characterised by cellular heterogeneity (Figure

5.1) (Darling, 1990 and Thomas and Graham, 1995, Chapter 1). This heterogeneity
is due in part to pathological processes associated with malignant progression, for

example cellular dedifferentiation, angiogenesis and necrosis (Greaber et al, 1996
and Louis, 1997). Additionally, glial tumours rapidly invade surrounding normal

brain, resulting in diffuse boundaries between neoplastic and non-neoplastic tissue

(Turazzi and Licata, 2000). For these reasons, cell preparations derived from biopsy

specimens contain varying proportions of tumour cells at various stages of

dedifferentiation, normal brain cells, erythrocytes, reactive and non-reactive

leukocytes, blood vessel endothelium and tumour cells characterised by low viability

(Darling, 1990, Thomas and Graham, 1995, Chapter 1 and Berens and Giese, 1999)

(Figure 5.1).

Although the cellular heterogeneity of human glioma is well established, the various
cell types present in primary tumour samples have not been studied extensively
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using flow cytometry. However, these considerations are important as the sensitivity
of individual reactive populations to exogenous n-6 essential fatty acids will
contribute to the overall level of reactive oxygen species formation observed. These

investigations were undertaken to provide further information on the dynamics of
reactive oxygen species formation in human glioma tissue. Analysis of the glioma

sub-population characterised by GFAP-positivity was undertaken to test the

hypothesis that malignant glial cells are characterised by impaired basal reactive

oxygen species formation, but high sensitivity to exogenous arachidonic acid and

gamma-linolenic acid.

Preliminary observations indicated that unlike the phagocyte preparations analysed
in Chapter 3, cells derived from glioma explants were not sorted into discrete sub-

populations. In addition, variability of cellular composition meant that a cell

population which occurred in an individual tumour did not necessarily occur in all

glioma preparations. It was therefore necessary to select tumours whose laser scatter

profiles were similar, so that gates selected for one tumour could readily be applied
to the others being investigated. This selection provided 5 glioblastomas (including 1
which had recurred), and 1 anaplastic oligidendroglioma and 1 pilocytic

astrocytoma. These tumours had all been treated with 18 or 36pM arachidonic acid,
and their oxidative activity had been analysed at similar time intervals.

A total of 6 populations were analysed in each of these tumours, including a region

along the x=y gradient characterised by low to medium forward and side scatter

(Gl), a region of low side scatter which occurred below this main population (G2), a

region of high side scatter and medium forward scatter (G3), a region ofmedium
forward and side scatter (G4) and cells possessing very high forward and side scatter

(G5). In addition, a region close to the origin was selected (G6) (Figure 5.2).

Linear regression models were then used to define the following parameters: i) the

rate constant k, ii) the asymptotic maximum p, iii) basal oxidative activity, iv) %
stimulation of reactive oxygen intermediate generation and v) the rate ofprobe
efflux. The rate ofprobe influx was compared with the influx of the viability probe

propidium iodide. Unlike the analysis of cellular oxidation in ungated glioma

preparations (Chapter 4), it was not necessary to use complex statistical analysis in
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this study. This was due in part to the relatively small population size and the more

heterogeneous nature of the cell populations being investigated.

Analysis of the oxidative activity of cells of glial origin present in tumour biopsy

samples was achieved using flow cytometric analysis ofGFAP distribution. The sub-

population of cells expressing GFAP was identified in ethanol-fixed cell

preparations acquired from 17 tumours grades I-IV by i) the binding of a polyclonal
anti-GFAP antibody and ii) the high forward angle and high side angle laser scatter
characteristic of differentiated cells. This GFAP-positive cell population was gated
and the stimulation of reactive oxygen intermediate generation in response to n-6

essential fatty acid was analysed in fresh cells.

GFAP was used in these studies because it is a well characterised astrocytic marker

(Debus et al, 1983, Miettinen et al, 1984, Coakham et al, 1985 Garson et al, 1985
and Royds et al, 1986) with an established role in the routine diagnosis of the biopsy

samples which were analysed for oxidative activity (Chapter 4). The previously
established record ofGFAP immunoreactivity made it possible to ensure that all the

samples selected for flow cytometric analysis were GFAP-positive. This was

necessary because of an important disadvantage of this marker, namely that it may
not be present in all astrocytic tumours. This is particularly so for those characterised

by a high degree of cellular dedifferentiation (Kurpad et al, 1994).

Other well established astrocytic markers are S-100 protein and vimentin. Vimentin
is an intermediate filament protein found predominantly in immature glia (Yang et

al, 1994). S-100 protein is a highly acidic protein which is also localised primarily in

glial cells, although some may be present in neuronal nuclei or the plasma membrane

(Moore, 1982). Vimentin and S-100 protein possess all the disadvantages associated
with GFAP, and are less commonly used in routine diagnosis. Other tumour

markers, e.g. nuclear proliferation markers (BrdU, PCNA, MIB-I), growth factors

(EGF) and oncogene and tumour suppressor gene products (bcl2 and p53) have
limited value in predicting clinical outcome, and cannot be correlated precisely with
WHO tumour type and grade ofmalignancy (Kurpad et al, 1995, Stemmer-
Rachamimov and Louis, 1997, McKeever, 1998, Grzybicki and Moore, 1999,
Morrison and Prayson, 2000 and Reavey-Cantwell et al, 2001).
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The lack of specific markers for malignant astroglial cells remains an important

problem in neuro-oncology research (Yang et al, 1994, Kurpad et al, 1995, Stemmer-
Rachaminov and Louis, 1997 and Grzybicki and Moore, 1999). Despite recent

advances in the profiling of gene expression and monoclonal antibody technology,
little progress has been made in elucidating molecular markers of glioma diagnosis
and prognosis (Kurpad et al, 1995 and Grzybicki and Moore, 1999). One exception

may be the intermediate-filament-associated protein IFAP-300KDa (Yang et al,

1994). An immunofluorescence study has indicated that IFAP-300KDa is detectable
in all astrocytic tumours, but not normal mature or reactive astrocytes. This protein

may therefore represent a specific marker for transformed astrocytes, and it may
have a role in subsequent characterisation of the tumour sub-population.

Figure 5.1. A histological section of glioblastoma showing regions of cellular
heterogeneity. Apoptotic nuclei are visible in the viable glioblastoma tumour cells
adjacent to an area of necrosis (right). Haematoxylin and eosin x200.
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5.2 Materials and Methods

(a) Characterisation of Typical Laser Scatter Profiles

Tumour sub-population analysis was conducted retrospectively from stored data
which was acquired during investigation of glioma oxidative activity (Chapter 4).

(b) Characterisation of the GFAP-Positive Population

(i) Monoclonal GFAP Staining

Ethanol-preserved glioma cells were washed, resuspended at a density of lxl06
cells/ml and incubated with monoclonal rabbit anti-cow GFAP diluted 1:5, 1:10 and

1:20 in distilled water. The cells were incubated at room temperature for 30 minutes,

centrifuged, resuspended in phycoerythrin diluted 1:10 in distilled water and
incubated at 4°C for 2 hours. GFAP-positive cells were identified using flow

cytometry (Section 2.5a).

(ii) Polyclonal GFAP staining

lml aliquots of ethanol preserved cells were washed and incubated for 2 hours with
anti-GFAP-FITC at dilutions 1:5, 1:10 and 1:20. The cells were centrifuged and

resuspended for flow cytometry at 564-607nm using a Becton Dickinson FACScan
flow cytometer and LYSIS software (Section 2.5b).

(c) Statistical Analysis ofHuman Glioma Sub-Population Oxidation

Basal oxidative activity in human glioma sub-populations was analysed using the

equation:-

ABF(0_2oo) - ABF(20o-4oo) xlOO (Equation 1)

where ABF=the change in mean basal 2',7'-dichlorofluorescein-associated
fluorescence over the time periods shown (in seconds) as subscripts in parentheses.
For each determination ofmean basal fluorescence over a 200 second interval, 6-10

values ofmean 2',7'-dichlorofluorescein-associated fluorescence were used. The
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rate of decrease of 2',7'-dichlorofluorescein-associated cellular oxidation gave an

indication of the rate of probe efflux and hence loss ofmembrane permeability. This
was compared with the extent of influx of the viability probe propidium iodide

(Section 2.4c).

The rate of increase of cellular oxidation in human glioma sub-populations

following the addition of exogenous arachidonic acid was analysed using the

equation:-

AF(o-2oo) -AF(200-400) /AF(0-200) x 100 (Equation 2)

where AF=the mean % increase in 2',7'-dichlorofluorescein-associated fluorescence

over the time periods shown in parentheses. Arachidonic acid was added at t=0.

Further determinations of the increase in reactive oxygen intermediate generation

every 200 seconds for up to 1 200 seconds were made if possible. The SEM of all
determinations was calculated in analysis of both basal and stimulated reactive

oxygen intermediate generation (Sections 2.4c).

5.3 Results

(a) Analysis Tumour Sub-Population Oxidative Activity

The six regions selected for analysis are shown in Figure 5.2 and their fluorescence
distribution profiles in Figure 5.3. Their responses to exogenous essential fatty acid
stimulus are described in Figure 5.4, Table 5.1 and Table 5.2. Sub-population

analysis of cell membrane permeability is shown in Table 5.3, and the rate of probe
efflux is described in Table 5.4. The morphological and oxidative characteristics of
human glioma sub-populations are discussed in Section 5.3b.
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Figure 5.2. Dot plot of cells derived from a collagenase dispersed explant of human
glioblastoma multiforme. Cells are separated on the basis of forward scatter (FCS)
(x-axis), which is proportional to cell size, and side scatter (SSC) (y-axis), which is
proportional to granularity. Similar regions were selected for an additional four
glioblastoma tumours, one anaplastic astrocytoma and one pilocytic astrocytoma.
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Figure 5.3. Fluorescence intensity distributions for the tumour sub-populations
described by gates 1-6 in Figure 5.2. The y-axis indicates 2'7'-dichlorofluorescein-
associated fluorescence, which is proportional to cellular peroxidation, and the x-
axis indicates cell number.
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Figure 5.4. Rate curves describing the stimulation ratio of cellular peroxidation by
36pM arachidonic acid in human glioma sub-populations. The stimulation profiles
shown for gates 1 to 6 indicate the oxidative responses of cells gated by the laser
scatter regions illustrated in Figure 5.2. No significant stimulation of cellular
peroxidation was observed in region 6 (data not shown).
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diaanosis reaion time (s) time <s)

0-200 200-400
mean SEM mean SEM

astro. G1 103.1946 0.023451 103.5295 0.083818

(grade 1) G2 106.4201 1353483 100.1448 2.545388
G3 98.90995 1.241533 99.10099 4.123364
G4 114.7819 2.518534 119.3178 3.198115
G5 101.9837 3.3085 110.5634 3.562616
G6 103.3532 -0.02854 103.8153 1.109435

mean SEM mean SEM
AA G1 100.8479 -1.38526 102.4207 1.217805

(qrade II) G2 1C3.S893 1.428315 109.0909 1.55499

G3 99.93717 1.83443 98.7568 3.900485
G4 105.8254 1.623941 105.1085 2.594544

G5 115.1428 1.587672 113.6377 2.783379
G6

mean SEM mean SEM

GBM G1 118.949 3.055285

(qrade IV) G2 117.8698 3.206817 154.9604 3.85537
G3 122.3102 1.980024 128.289 1.208461
G4 123.2211 16.68486 127.8485 10.33746
G5 98.98336 14.86495 110.2033 8.461848
G6 115.0281 2.941634 137.3116 3.915765

mean SEM mean SEM
GBM G1 100.6305 -0.42859 107.2163 1.610611

(grade IV) G2 107.8161 2.817088 113.6984 3.233605
G3 105.58 1.464795 111.5144 2.86143
G4 103.2048 3.517723 116.0883 4.323675
G5 113.1336 12.34382 113.3629 18.58938
G6 98.3345 -0.51521 106.1528 0.835862

mean SEM mean SEM
GBM G1 120.0262 1.014269 145.4456 2.424145

(grade IV) G2 117.631 5.261634 153.3514 3.985527
G3 120.546 7.747371 134.3915 4.304141
G4 115.4541 7.284966 126.348 6.210505
G5 202.0921 19.33363 219.0529 15.96918
G6 119.9983 1.471631 147.726 1.683237

mean SEM mean SEM
GBM G1 115.0677 3.586096 119.4991 1.874596

(grade IV) G2 115.077 4.151504 123.7289 6.852435
G3 124.2637 10.07214 136.8946 6.0168
G4 147.266 8.521032 149.968 7.652833
G5 107.5625 4.856717 125.5983 1.14844
G6 109.0644 2.008869

mean SEM mean SEM
GBMrecurr G1 110.8598 1.247929 118.3283 -0.02905
(grade IV) G2 123.1584 5.604772 146.3973 5.363785

G3 120.8266 4.294948 149.1854 ! 2.945346
G4 128.5069 0.999287 115.3945) 6.39961
G5 152.8398 22.29511 207.1123 I 21.85634
G6 !

Table 5.1. Sub-population analysis of arachidonic acid-mediated stimulation of
reactive oxygen intermediate generation in the seven samples of human gliomas
grades I-IV using equation 2. Results were calculated as mean percent stimulation of
2'7'-dichlorofluorescein-associated fluorescence over the time periods 0-200
seconds, 200-400 seconds and 400-600 seconds for each sub-population (gates 1-6)
indicated in Figure 5.2. Results are expressed as the mean ±SEM.
astro.=astrocytoma, G=gate.
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TIME fsl m GATE 1 GATE 2 GATE 3 GATE 4 GATE 5 GATE 6

0-200 mean 0.145822 0.192328 0.04363 0.12358 0.086534 0.168675
SEM 0.035443 0.049153 0.034106 0.052914 0.022709 0.029032
n 5 5 5 5 4

200-400 mean 0.03564 -0.05984 0.082228 -0.04377 0.136332 -0.01149
SEM 0.028736 0.06627 0.043636 0.051911 0.174125 0.030942
n 4 5 5 5 5 4

Table 5.2. Stimulation of reactive oxygen intermediate formation in 4 explants of
human glioblastoma by 18gM arachidonic acid at 0-200 seconds, 200-400 seconds
and 400-600 seconds in the cell sub-populations described by gates 1-6 in Figure
5.2. AF1 indicates the increase in 2'7'-dichlorofluorescein-associated fluorescent
Results are expressed as the mean ±SEM
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diaanosis reaion tlmefs) ! Kiiiiini
0-200 I 200-400
mean SEM mean SEM

astro. G1 0.054576 0.04374 0.065719 -0.46821

(grade 1) G2. 0.097778 107392128 i 0.143753 i-0.39998 |
G3 10.012988 0.14734 i 0.098002 0.078515
G4 0.112528 -0.23839 0.11314 0.477271
G5 0.021569 0.196143 ;0.104159 -0.6624
G6 10.043409 -0.16825 , 0.055064 0.157876

I I
I mean SEM I mean SEM

AA G1 0.00249 0.122073 |-0.00499 -0.66559

(qrade II) G2 -0.0023 0.414722 i0 0.261451
G3 -0.02253 -0.09224 0.015198 0.011119
G4 -0.01675 -0.31143 0.05906 0.407942
G5 0.005209 -0.09411 -0.05246 -1.31981
G6 -0.0075 -0.92154 1-0.00186 0.14001

i
mean SEM I mean SEM

GBM G1 0.196197 -0.55608 I
(qrade IV) G2 0.208433 -0.10157 10.208232 0.17403

G3 0.225658 10.300236 10.134088 0.162519
G4 -0.12626 1-1.25082 10.178815 -0.01972
G5 -0.50092 I-0.33C39 10.127401 0.567403
G6 0.160099 1-0.06181 10.129766 0.54781

I
mean SEM | mean SEM

GBM G1 0.07396 1-0.18457 i 0.058401 -0.03284
(grade IV) G2 0.163628 10.09738 10.1834 0.515198

G3 0.127864 -0.13268 0.101252 0.157431
G4 0.092031 0.25103 0.121343 0.063568
G5 -0.20051 -0.15537 0.188992 0.166304
G6 0.060968 -0.15383 0.07708 0.119766

mean SEM mean SEM
GBM G1 0.090211 0.515517 10.057866 -0.17932

(grade IV) G2 0.010924 0.097557 [0.062514 -0.57457
G3 0.086132 -0.64214 0.01122 -0.56492
G4 -0.00013 0.163884 i 0.001277 0.070949
G5 0.186128 -0.09321 0.186224 0.367297
G6 0.087107 -0.16 0.054903 -0.00803

mean SEM I mean SEM
GBM G1 0.046674 -0.32617 I 0.049572 0.347764

(grade IV) G2 0.043758 0.262472 I -0.04702 0.03893
G3 -0.10337 -0.16746 | 0.088956 0.122716
G4 1-0.16547 0.12696 | 0.08759 -0.01114
G5 10.091355 0.145202 i 0.102549 -0.11102
G6 109.0644 | 2.008869 I

!
mean | SEM i mean SEM

GBMrecurr G1 0.017325 -0.84011 I 0.111042 0.537366
(grade IV) G2 0.17606 0.184007 I 0.181325 0.34312

G3 0.127174 0.240625 I 0.14176 0.453791
G4 0.018799 -0.37522 0.070577 -0.09006
G5 0.089455 0.456672 -0.13163 -0.44659

' ! G6 1 -3.9 -277.03 I 0.815537 0.99635

Table 5.3. Sub-population analysis of cell membrane permeability in the seven
samples ofhuman primary glioma grades I-IV using equation 1. Results were
calculated as the mean decrease in 2'7'-dichlorofluorescein-associated fluorescence
over the time periods 0-200 seconds and 200-400 seconds for each sub-population
(gates 1-6) indicated in Figure 5.2. using equation 1. Results are expressed as the
mean±SEM. astro=astrocytoma, G=gate.



time (5) ae1 gate 1 GATE 2 GATE 3 GATE 4 GATE 5 gate 6,

0-200 mean -0.08478 -0.12056 -0.09269 0.036206 0.066896 0.898

SEM -0.08487 0.034972 0.04841 0.042704 0.113092 0.866794

(n) 5 5 5 5 5 4

200-400 mean -0.06922 -0.11769 -0.09546 -0.09192 -0.09471 -0.26932
SEM 0.012199 0.043239 0.020792 0.026159 0.052772 0.158265

(n)

400-600 mean -0.03885 -0.09922 -0.0266 -0.04971 -0.03306 -0.03906
SEM 0.017225 0.023257 0.028358 0.008944 0.054922 0.003592

(n) 3 4 4 4 4 3

Table 5.4. Rate ofprobe efflux in 4 explants of human glioblastoma multiforme at
0-200 seconds, 200-400 seconds and 400-600 seconds in the cell sub-populations
described by gates 1-6 in Figure 5.2. AF1 indicates the change in 2'7'-
dichlorofluorescein-associated fluorescence in the absence of exogenous essential
fatty acid stimulus. Results are expressed as the mean ±SEM.
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(b) Morphological and Oxidative Characteristics ofHuman Glioma
Sub-Populations
Gate 1: In each of the tumours analysed, the largest sub-population was represented

by region 1. This region lay along the x=y gradient, and was characterised by low to

medium forward and side scatter. Smaller sub-populations gated within G1 were did
not possess normal fluorescence distributions, indicating the overall heterogeneity of
cells within this region. However, it was observed that as individual regions selected
within G1 moved further along the x=y gradient away from the origin, basal
oxidative activity, essential fatty acid sensitivity and sub-population homogeneity
increased.

Gate 2: The cell population defined by G2 was characterised by low forward and
side scatter, and occurred slightly below the largest cell population Gl. Low values
of forward and side scatter are characteristic of small size and low DNA content

respectively. Although it is not possible to accurately identify this population, it is

possible that cells within this region represent red blood cells, as this would be
consistent with the morphological properties described above. Additional evidence

supporting the hypothesis that these cells may represent tumour-associated

erythrocytes was acquired from flow cytometric analysis of high grade tumours.
When the laser scatter profiles of glioblastoma explants possessing macroscopically
visible erythrocyte contamination were compared with those of low grade

astrocytomas free from ertythrocyte contamination, a cell population was observed
in the high grade tumour whose morphological characteristics were similar to those
observed in G2: both these populations were characterised by low forward and side

scatter, and both had low basal oxidative activity and sensitivity to exogenous

essential fatty acid stimulus. Preliminary investigations also suggested that the
occurrence of this population increased with tumour grade. This is consistent with
the observation that malignant progression is associated with the local release of

angiogenic factors which increase vascular proliferation.

Gate 3: The cells in region 3 were characterised by high side scatter and low to

medium forward scatter. Again, it is not possible not possible to accurately identify
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this population, however, it is possible that this region represents polymorphonuclear

leukocytes. These cells are characterised by high granularity, and previous studies
indicated that these cells respond to exogenous n-6 essential fatty acids with
increased reactive oxygen species formation (Chapter 3).

Additionally, it was demonstrated in Chapter 3 that leukocytes are activated by

surgery. Consequently, the relatively high level basal oxidative activity observed in
this sub-population may represent lymphocyte activation following glioma resection.
These changes may also be due to local inflammatory reactions associated with
tumour proliferation. However, further studies are required to confirm the identity of
this population.

Gate 4: Gate 4 was characterised by high side scatter which separated it from the

largest cell population Gl, however, it was more difficult to distinguish this

population from G3 and also from the large cells occurring in G5. Cells in G4 were

characterised by low basal oxidative activity, low membrane permeability and high

sensitivity to exogenous arachidonic acid. At concentrations of arachidonic acid and

gamma-linolenic acid greater than 12p,M, the stimulation profile of this population
tended to follow linear kinetics.

Gate 5: The highest level of basal oxidative activity occurred in the relatively
diffuse gate 5, which was characterised by large cells which possessed high forward
and side scatter. This population also responded with increased reactive oxygen
intermediate production to exogenous n-6 essential fatty acid stimulus. Although the

relatively small number of cells in this population precluded further detailed sub-

population analysis, there was limited evidence that basal oxidation became lower as

side scatter was reduced, and that this was associated with an increase in sensitivity
to exogenous arachidonic acid.

Gate 6: The population closest to the origin had the lowest basal oxidative activity
and essential fatty acid sensitivity of all the populations studied, and analysis of the
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propidium iodide permeability of the cells in this region suggested significant loss of
membrane integrity. As the laser scatter profile ofmacroscopically necrotic tissue
demonstrates that a high proportion of the cells analysed in this preparation were
located towards the origin, it was concluded that this region is likely to represent

non-viable cells and cell debris resulting from mechanical damage during tissue

preparation.

(c) Characterisation of the Oxidative Response of the GFAP

Positive Population

When ethanol-preserved human glioma preparations were labelled with monoclonal

GFAP, the proportion of GFAP-positive cells was typically less than 5% of the total
cell population. A normal distribution of GFAP-associated fluorescence was not

observed, and the kinetics of reactive oxygen species formation in GFAP-positive
cells was characterised by high scatter. In contrast, GFAP positivity was expressed in

up to 15% of cells when polyclonal GFAP was used. These differences may have
been due to higher affinity of the polyclonal antibody for GFAP epitopes, or the

presence of larger numbers ofpolyclonal GFAP binding sites. For these reasons,

polyclonal GFAP staining was used in all subsequent analyses ofGFAP positivity
and oxidative activity.

The sub-population of cells expressing GFAP in ethanol-fixed cell preparations was
characterised by i) the binding of anti-GFAP antibody and ii) high forward and side
scatter which characteristic of differentiated cells (Figure 5.5 and Table 5.5). This

GFAP-positive cell population was gated, and used to identify a similar region in
fresh cells derived from the same tumour. The kinetics of reactive oxygen

intermediate generation in this sub-population was analysed in the presence and

absence of exogenous n-6 essential fatty acid.

The GFAP-positive cells responded with high sensitivity to exogenous essential fatty
acid stimulus, with the mean increase in 2'7'-dichlorofluorescein-associated

fluorescence being greater than that of the ungated population (Figures 5.6).
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However, the kinetics of this increase in oxidative activity were not described well

by linear statistical models. This is a characteristic of heterogeneous cell

populations, and it is possible that the GFAP-positive population represents a

mixture of untransformed glial cells (possibly reactive astrocytes), and tumour cells
with varying GFAP expression. The wide distribution of reactive oxygen
intermediate within this sub-population may also be the result of the relatively small

population size: approximately 125 cells/sample were present in the GFAP positive

population compared with 5 000 cells in the ungated tumour population (Table 5.5).

There was evidence that GFAP expression was a function of tumour grade, however,
this association was not linear (Figure 5.7). Highest GFAP positivity was observed
in grade III tumours and lowest in grade II tumours. The low expression ofGFAP in

glioblastoma tumours may be due to loss ofglial phenotype resulting from cellular

dedifferentiation. Tumours analysed flow cytometrically for GFAP expression were
also analysed using immunohistochemistry, and a correlation was observed between
the GFAP staining intensity characterised by these two methods. However,
numerical analysis of this association was difficult because of cellular heterogeneity
and regional variation characteristic of these tumours.

GFAP positivity was also observed in the very large cells occurring in G5, and

regions ofG3 and G4 with high side scatter and intermediate forward scatter.

Morphologically similar cell types were observed on laser scatter profiles of

macroscopically normal brain, suggesting that these cells may represent
untransformed neurones and glia. Additionally, cells in this region were
characterised by lower granularity than those thought to represent malignant tumour,

suggesting lower DNA content.
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Figure 5.5. Flow cytometric analysis ofpolyclonal GFAP expression in a
collagenase-dispersed explant of human glioblastoma. GFAP positivity is
analysed in the ungated population (page 96) and in the populations expressing
high (Gl) (diagram 1 page 97) and intermediate (G2) (diagram 2 page 98)
GFAP/FITC-associated fluorescence. GFAP positivity was analysed using
FITC-conjugated polyclonal GFAP at dilutions 1:5, 1:10 and 1:20. Control
samples were incubated with the fluorochrome alone.
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Figure 5.5 continued
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5000 5000
271 267

5000 5000
84 63
1206 1354

5000 5000
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5000 5000

147 162
398 456

5000 5000
173 226
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5000 5000
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5000 5000

127 90

5000 5000
440 323
1514 1629

5000 5000
557 535
948 744

5000 5000
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332 421

5000 5000
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5000 5000
255 242
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312 297
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272 305

5000 5000

677 610

Ufl Ufl

5000 5000
289 288

5000 5000
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5000 5000
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5000 5000
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5000 5000
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5000 5000
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5000 5000
390 317
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5000 5000
562 526
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5000 5000
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362 393

5000 5000
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751 711

5000 5000
278 244

5000 5000
320 223
700 671

5000 5000
297 320
774 995

5000 5000
198 152

5000 5000
297 262
305 304

5000 5000
174 156
634 640

Table 5.5. Summary ofGFAP positivity in populations expressing high (Gl) and
intermediate (G2) GFAP/FITC-associated fluorescence. 5 000 cells were analysed at
each determination ofGFAP expression in the ungated tumour population (WP).
Oligoastro-oligoastrocytoma, gem. astro.-gemistocytic astrocytoma, AO-anaplastic
oligodendroglioma, glioblastoma-glioblastoma, GBMrecurr- recurrent glioblastoma.
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Figure 5.6. The stimulation of reactive oxygen intermediate formation in an explant
of collagenase dispersed human ependymoma, WHO grade III, and a GFAP-positive
sub-population. Graph A shows the forward (x-axis) (FSC) and side scatter (y-axis)
(SSC) cytogram of the whole tumour population and G1 represents a cell population
with high GFAP expression. The mean stimulation ratio of reactive oxygen
intermediate formation by 27|aM gamma-linolenic acid (added at 120 seconds) is
shown in graph B for the whole tumour population and graph C for the GFAP-
positive population.
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Figure 5.7. Flow cytometric comparison of the cell numbers exhibiting high
GFAP/FITC-associated fluorescence (as indicated by gate 1 in Figure 5.5) in
collagenase dispersed explants ofhuman primary gliomas grades I-IV. Cells were
incubated with polyclonal GFAP at dilutions 1:5 (black diamonds) and 1:10 (black
squares) and analysed on a Becton Dickinson FASCsan flow cytometer. 5 000 cells
were analysed at each determination ofGFAP positivity.
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5.4 Discussion

The characterisation of total glioma reactive oxygen intermediate generation in the

presence and absence of exogenous arachidonic acid and gamma-linolenic acid was

described in Chapter 4. However, the oxidative activity of the tumour cell

preparations observed in vitro were those ofmixed cell populations containing

differing proportions of transformed glial tissue at varying stages dedifferentiation,

erythrocytes, leukocytes, normal brain and vascular endothelium. The purpose of this

study was to carry out preliminary differentiation between various cell types present
in human glioma explants, and to characterise them in terms ofbasal oxidative

activity, essential fatty acid sensitivity and cell membrane permeability.

Preliminary investigations confirmed the heterogeneity of the human glioma

preparations analysed for oxidative activity. The variability of cellular composition

generally increased with tumour grade, and this observation correlates with the
occurrence of known diagnostic indicators (Darling, 1990, Thomas and Graham,

1995, Chapter 1, Berens and Giese, 1999 and Turazzi and Licata, 2000). Rapid cell
division results in high metabolic demand, which may induce necrotic cell death in
areas of the tumour exposed to unfavourable diffusion gradients for oxygen and
nutrients. Consequently, clonal selection may result in the emergence ofhypoxia

resistant, highly malignant cells, facilitating more aggressive tumour growth

(Graeber et al, 1996 and Louis, 1997). In addition, there is evidence that hypoxia is
associated with the release of angiogenic factors, in particular vascular endothelial

growth factor (VEGF), which results in endothelial proliferation (Louis, 1997).

Unlike the flow cytometric analysis of lysed whole blood, where lymphocytes were
distributed in distinct populations of known size and granularity (Chapter 3, Figure

3.1), human glioma cell populations were less discrete. Overlap occurred between
the sub-populations representing the various cell populations present in human

glioma, and individual cell types could not be distinguished easily. Despite these
difficulties however, the regions described by gates 2, 3, 5 and, to a lesser extent 4,
were characterised by normal distributions of fluorescence intensity. This suggested
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that homogeneous cell populations occurred within these regions. In comparison, the
cells which possessed intermediate values of forward and side scatter in gate 1 could
not be completely resolved due to population heterogeneity.

Different rates of basal reactive oxygen species generation were observed in each of
the cell populations investigated, and these differences were consistent with the

hypothesis that reactive oxygen intermediate generation is low and essential fatty
acid sensitivity is high in tumour tissue. Analysis of the laser scatter profiles of

macroscopically normal brain indicated that the cells present in G5 were most likely
to represent non-malignant brain tissue, while the cells present in G4 were thought to

represent malignant glioma cells. This was due to their GFAP-positivity and high
side scatter, which is indicative of elevated DNA content. In comparison with the
cells present in the G5 region, G4 cells possessed lower basal oxidative activity.

However, both G4 and G5 cells responded with increased formation of reactive

oxygen intermediates following the addition of exogenous n-6 essential fatty acids.

The morphological properties of other cell populations were investigated, and

preliminary conclusions were made concerning their possible identity. The laser
scatter profiles of i) a glioblastoma tumour with macroscopically visible erythrocyte

contamination, ii) tumour associated necrotic tissue and iii) peripheral leukocyte

preparations assisted in the identification of red blood cells, non-viable cells and
reactive immune cells. It was concluded that these populations may be represented

by G2, G6 and G3 respectively. The high level ofbasal oxidative activity observed
in G3 may represent lymphocyte activation through surgery or local inflammatory

changes associated with glioma pathogenesis, as similar observations were made in

lymphocyte preparations acquired from patients undergoing pulmonary resection

(Chapter 3). However, additional studies are required to confirm the identity of these
and other tumour-associated cell populations.
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5.5 Conclusions

This study has confirmed that the human glioma explants analysed for oxidative

activity are characterised by cellular heterogeneity. Preliminary analysis indicated
that some of the glioma cell populations indicated by flow cytometric analysis may

represent red blood cells, tumour-associated lymphocytes and necrotic tissue, as the

morphological and oxidative characteristics of these populations correlated with
those acquired from analysis of known tissue samples.

This study also identified a group of cells which may represent malignant glioma.
These cells were characterised by high side scatter, which suggests abnormal DNA

content, and GFAP positivity, which is indicative of a glial phenotype. These cells
were present in regions G4, G5 and, to a lesser extent G3. The cells in these regions

responded with increased reactive oxygen species generation following stimulation

by exogenous essential fatty acids, suggesting that at least one GFAP-positive sub-

population is characterised by essential fatty acid sensitivity. Additional studies are

required to confirm the identity of this and other reactive cell populations, and to
examine the biological significance of reactive oxygen species generation in tumour-

associated cells.
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Chapter 6:

The Stimulation of Apoptotic Activity in Human Glioma and the

Rat C6 Glioma Cell Line by Arachidonic Acid and Gamma-

Linolenic Acid

6.1 Introduction

The purpose of this study was to provide evidence supporting the hypothesis that the
stimulation of reactive oxygen species formation in human glioma tissue (which was

demonstrated in Chapter 4) has biological significance. This was undertaken by

analysing human glioma cell death following administration of arachidonic acid and

gamma-linolenic acid at concentrations previously shown to stimulate glioma
oxidative activity. Specifically, this investigation i) characterised the pro-apoptotic
activities of arachidonic acid and gamma-linolenic acid in collagenase-dispersed
human glioma tissue, ii) examined the kinetics of this pro-apoptotic activity, iii)

investigated differences in sensitivity to the pro-apoptotic activities of n-6 essential

fatty acids between tumours ofdifferent grades, and tumour-associated normal brain
where available and iv) correlated endogenous endonuclease activity with cell
membrane permeability.

The stimulation of apoptotic activity by arachidonic acid and gamma-linolenic acid in
human glioma tissue was undertaken to provide further information on the poorly
characterised mechanisms underlying essential fatty acid-mediated potentiation of

glioma cell death. The study of tumour cell death is of clinical importance because

although traditional cancer therapy was developed largely on attempts to limit the
rate of cell proliferation, more recent evidence suggests that tumours may also have

deficits in the control of cell death (Graeber et al, 1996, Malcomson et al, 1996 and
Novelli et al, 1996). In particular, recent interest has been focused on the study of

apoptotic cell death which is an energy requiring genetically determined process

which is under the control ofboth environmental and autocrine regulators (Wyllie et

al, 1980, Arends et al, 1990 and Bellamy et al, 1995). It has characteristic features
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such as chromatin condensation and DNA cleavage which differentiate it from
necrosis. The final stage of apoptosis involves segmenting cellular fragments into
membrane bound apoptotic bodies which are readily engulfed by phagocytes without
associated tissue inflammation (Wyllie et al, 1980 and Arends et al, 1990). Apoptosis
is therefore biochemically and morphologically distinct from a pathological form of
cell death termed necrosis, which may result from inflamatory or ischaemic tissue
insults.

Treatments which increase apoptosis may represent a novel approach to the

management ofmalignant glioma, and there is evidence that tumour cytotoxicity
induced by essential fatty acids may be attributable to stimulation of this mode of cell
death. Eicosaepentaenoic acid induced cell cycle arrest and apoptosis in pancreatic
cancer cells in vitro (Lai et al, 19969, arachidonic acid induced a concentration and
time dependant toxicity to HepG2-MV2El-9 cells (Chen et al, 1998), arachidonic

acid, gamma-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid induced

apoptosis in Hep2 human larynx tumour cells (Colquhoun et al, 1998) and
arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid stimulated

apoptosis in various leukaemia cell lines (Finstad et al, 1998).

In vivo studies have also indicated that essential fatty acids stimulate apoptosis. Oils
rich in n-3 and n-6 essential fatty acids inhibited the formation of skin papilloma
induced by croton oil (Ramesh and Das, 1996 and Ramesh and Das, 1998a),

hepatoma induced by diethylnitrosamine (Ramesh and Das, 1995) and ascitic tumour

growth (Ramesh and Das, 1998b) and eicosapentaenoic acid and docosahexaenoic
acid inhibited the growth ofMorris hepatocarcinoma transplanted into ACI/T rats

(Calviello et al, 1998). Additionally, immunohistochemical analysis of a series of

high grade malignant gliomas suggested that apoptotic cells surround the tumour
central necrotic cores (Iwaki et al, 1994). This is consistent with the stimulation of

apoptosis by locally released inflammatory mediators including arachidonic acid

(Iwaki et al, 1994).
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Although there is evidence that essential fatty acids are associated with the
stimulation of apoptotic cell death, the kinetics essential fatty acid-mediated
stimulation of apoptosis are difficult to interpret. This may be due to inter-

experimental variations in cellular susceptibility to pro-apoptotic stimuli. There is
evidence that cells exist in at least two different states with regard to their

predisposition to apoptosis (Bellamy et al, 1995). In the primed state, cells are

endowed with the necessary effector proteins to enter into apoptosis if appropriately

triggered. In the unprimed state, the effector mechanisms associated with apoptosis
need to be synthesised before apoptosis can proceed. This susceptibility depends

upon environmental considerations such as local availability of growth and survival

factors, and also the activity of tumour suppressor genes and oncogenes, both of
which can be upregulated prior to the initiation of programmed cell death (Collins et

al, 1994). As this study was undertaken on fresh human glioma tissue obtained at

biopsy, it was predicted that the phenotype of these cells, and hence inherent

sensitivity to pro-apoptotic stimuli, would be more representative ofmalignant

glioma occurring in situ than established cell lines and experimentally induced
tumours.

During these investigations, human glioma cell apoptosis was determined in the

presence and absence of 30pM arachidonic acid at 0, 15, 30 and 45 minutes, and then
at hourly intervals for up to 36 hours. This concentration was selected as it is known
to stimulate tumour cell peroxidation, but is not associated with changes in plasma
membrane permeability. The sampling frequency of this study was designed

primarily to analyse apoptotic activity over time periods when increased reactive

oxygen species formation had been detected in human glioma preparations (Williams
et al, 1997) (Chapter 4).

Apoptotic activity was analysed using TUNEL flow cytometry in collagenase-

dispersed tumour cells. Stimulation of endogenous endonuclease was investigated

following the addition of exogenous arachidonic acid and gamma-linolenic acid, and
differences in the rate and extent of tumour cell apoptosis were determined in
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gliomas of various grades and tumour-associated normal brain where available. Flow

cytometry was also used to investigate basal apoptosis in high and low grade glioma,
and results were compared with histological features ofprogrammed cell death
observed in paraffin-fixed sections of the same tumour. The effect of arachidonic
acid and gamma-linolenic acid on glioma cell necrosis was determined by analysing
membrane permeability to vital dyes.

Radiation-induced programmed cell death in the rat C6 cell line was used to establish

experimental conditions, and to characterise the response of a single cell type

undergoing early, intermediate and late apoptosis. C6 cells were also used to

investigate the previously uncharacterised effect of gamma-linolenic acid on

apoptotic activity in long term culture, and to determine the effect of gamma-
linolenic acid on glioma cell proliferation.

6.2 Materials and Methods

(a) Standardisation of the Apoptotic Response using Radiation

Confluent C6 cells were harvested using trypsin digestion (Section 2.2c),

resuspended at a density of 106 cells/ml in Hams F-10 medium containing 10% FCS
and irradiated at 2Gy (Section 2.9b). At intervals of 0 andl5 minutes and 6, 8 and 9

hours post-irradiation, 1ml aliquots were fixed in 100% ethanol.

Ethanol preserved glioma cells were used for TUNEL analysis of apoptotic activity.
The cells were washed with phosphate buffered saline, incubated for 10 minutes at

room temperature with cacodylate buffer and centrifuged and incubated with reaction
buffer containing terminal deoxynucleotide transferase and fluorescein-12-2'-dUTP
for 2 hours. The cells were resuspended in phosphate buffered saline for 15 minutes
and analysed by flow cytometery. This identified apoptotic cells on the basis of
fluorescein-12-dUTP-associated fluorescence (Section 2.7).
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(b) Analysis of Apoptotic Activity in Human Glioma Tissue

(i) Cell preparation

Single cell suspensions of fresh human glioma tissue and, if available, tumour-
associated normal brain were obtained using collagenase digestion (Section 2.2b).
Cell suspensions were washed, resuspended at 1x10s cells/ml in collagenase free
Hams F-10 medium and incubated in the presence or absence of 30pM arachidonic
acid or gamma-linolenic acid. At 0, 15, 30 and 45 minutes, and hourly intervals for
periods ofup to 36 hours, 1ml aliquots were fixed in 100% ethanol for TUNEL

analysis of apoptotic activity (Section 2.7).

(ii) Analysis of Tumour Cell Viability

Tumour cell viability was measured immediately after ethanol fixation. 1 OOpl aliquots
of collagenase-dispersed cells were incubated with 50pl trypan blue for 2 minutes at

room temperature. Stained nuclei were counted in a microscopic field containing
100-200 cells at magnification x40, and expressed as a percentage of viable non-

staining cells (Section 2.6).

(iii) Pathology

The pathology of each tumour analysed for apoptotic activity was determined using
standard histopathological techniques (Section 2.10).

(c) Analysis of Apoptotic Activity in the Rat C6 Glioma Cell Line

Pre-confluent C6 cells were incubated with Hams F-10 medium containing 10% FCS
and gamma-linolenic acid at concentrations OpM, lpM, 5pM, lOpM, 20pM and
40pM. Medium bathing the cells was harvested and centrifuged every 6 hours, and
cell pellets were stored in 100% ethanol for TUNEL analysis of apoptotic activity.
After 7 days, adherent C6 cells were harvested using trypsin digestion, and cell
viability was determined by measuring propidium iodide uptake. Remaining adherent
cells were stored in 100% ethanol for TUNEL analysis (Sections 2.7).
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(d) Analysis of Proliferative Activity in the Rat C6 Glioma Cell Line

Proliferative activity was determined in the rat C6 glioma cell line in the presence

and absence of exogenous gamma-linolenic acid using the MTT assay as a measure

of the activity of intracellular dehydrogenases (Section 2.8).

6.3 Results

(a) Flow cytometric characterisation of apoptosis in the rat C6

glioma cell line

Flow cytometric analysis of irradiated cells indicated the presence of a group of cells
which were distinct from those constituting the highest proportion of the total

population. These cells were characterised by high dUTP/FITC-associated

fluorescence, which indicated high endogenous endonuclease activity and hence the
occurrence of apoptosis. In the absence of radiation, 0.038% of cells assayed for

apoptotic activity exhibited high dUTP-associated fluorescence (Figure 6.1), and this
increased to 0.14% at 15 minutes post-irradiation. After 6 hours a large increase in

endogenous endonuclease activity was observed, and this was associated with the

emergence of a population which had not been identified previously. In comparison
to the population previously associated with stimulation of apoptotic activity, cells

present in this new region were characterised by lower side scatter and lower dUTP-
associated-fluorescence. These morphological changes are consistent with small cell
size and increased membrane permeability. This is suggestive of the development of

apoptotic bodies which are formed during the latter phases of apoptosis. At 8 hours
the formation of these apoptotic bodies had increased by approximately 50%,

although there was continued evidence ofTUNEL positivity in the population

thought to represent cells undergoing early apoptotic events. At 9 hours both early
and late apoptotic populations were indistinguishable from the non-apoptotic

population.

As a result of their high fluorescence intensity, cells undergoing early and
intermediate apoptotic events could be defined by a single gate termed Fl-1. This
method was used in preference to gating individual sub-populations because cells
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undergoing apoptosis exhibited changes in morphology and fluorescence intensity,
and consequently passed rapidly through smaller fixed gates. However, if these bit

maps were reset during the course of an experiment, it would not have been possible
to compare individual time points on a quantitative basis.

The Fl-1 gate was used to estimate apoptotic index, which is defined as the ratio of
cells present in the Fl-1 gate to the number of cells in the whole population. The

single gate gave lower estimates of arachidonic acid induced stimulation of apoptosis
than more restricted bit maps defining individual sub-populations. This was because

sub-populations in late apoptosis with intermediate to low dUTP-associated
fluorescence were not included in the Fl-1 gate.

Having established the apoptotic activity ofC6 cells in response to radiation, the

single Fl-1 gate was used to analyse apoptotic activity in human glioma cells in the

presence and absence of arachidonic acid and gamma-linolenic acid. Patterns of

patterns of dUTP/FITC associated-fluorescence were similar to those observed in

Figure 6.1 (Figure 6.2 and 6.3). However, in two human tumour samples (one

oligoastrocytoma and one glioblastoma multiforme), it was necessary to use a

horizontal gate to differentiate between populations of differing side scatters in
addition to the vertical Fl-1 gate. This was because changes in endonuclease activity
were detected predominantly in the small cell fraction of these tumours. Another

glioblastoma multiforme showed evidence of a small cell population which was

incompletely gated by the single Fl-1 gate, and was therefore underestimated.
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Figure 6.1. The stimulation of apoptosis in the rat C6 glioma cell line by 2Gy
irradiation. Cells were selected for TUNEL positivity using a single high
fluorescence gate (Fl-1). The early apoptotic population is shown in red and the late
apoptotic population in green.
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Figure 6.2. Apoptosis in cell preparations acquired from explants ofhuman glioma
using TUNEL flow cytometry. Collagenase dispersed samples of anaplastic
oligodendroglioma incubated in the presence (B) or absence (A) of 30pM
arachidonic acid for 15 minutes were labelled with FITC conjugated dUTP. This
identified apoptotic cells (indicated by black arrow) on the basis ofFITC associated
fluorescence (FL-1), x axis and side scatter, y axis on a Becton Dickinson FACScan
flow cytometer using LYSIS software. In each sample 5 000-10 000 cells were
analysed and cells with FL-1>80 were gated. The proportion ofTUNEL-positive
cells in was 20.53% and 6.57% in the presence and absence of arachidonic acid
respectively. The basal apoptotic rate of cells derived from this tumour is shown in
Table 6.1 .
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Figure 6.3. The effect of arachidonic acid on apoptosis in tumour cells prepared from
a sample of cerebellar oligoastrocytoma. Isolated cells were incubated in the presence
(B) or absence (A) of 30pM arachidonic acid for 15 minutes. Apoptotic activity was
assessed using TUNEL flow cytometry on a Becton Dickinson FACSscan flow
cytometer using LYSIS software. In each sample 10 000 cells were analysed and cells
with FL-1>80 were gated. The proportion ofTUNEL-positive cells was 0.76% and
6.62% in the absence and presence of arachidonic acid respectively. The basal
apoptotic rate of cells derived from this tumour is shown in Table 6.1.
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(b) Analysis of Basal Apoptosis in Human Glioma Cells

The basal apoptotic index of the human tumour preparations analysed was

determined at each time point. Mean apoptotic index was 3.04±0.81% over the initial
incubation period of 0-2 hours, and 1.64%±0.45% over the later period of 3-24 hours

(Table 6.1). Although basal apoptosis varied with time and tumour type, a significant

proportion of cells acquired from human tumours had a basal apoptotic index of less
than 1%. This supports the finding that glial tumours have lower rates of endogenous

apoptotic activity than normal brain tissue (Schiffer et al, 1995 and Kordek et al,

1996). However, a relatively high mean apoptotic rate (5.2±3.1%) was observed in
one oligodendroglial tumour. Morphological features of apoptosis were also observed
in a paraffin-fixed section of this tumour stained with haematoxylin and eosin.

Similarities in the basal rate of apoptosis within certain classes of tumours were
noted (Figure 6.4). Early (0-2 hour) peaks of apoptotic activity followed by later

peaks between 9 and 12 hours were detected in three glioblastoma multiforme
tumours (Figure 6.4). However, individual variations were detected in the amplitude
and duration of these periodic increases in apoptotic activity. In addition, differences
between individual tumours of the same class occurred with respect to the timing and
duration of these changes. As a result of this observation, the basal rate of apoptosis
at each incubation time was used to determine the apoptotic index, rather than the
initial or final rate of apoptosis.
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grade

n

n

hi

hi

diagnosis

oligoastrocytoma

fibrillary
astrocytoma

III

III

anplastic
oligoastrocytoma

anaplastic
astrocytoma

apoptosis %

0.694±0.097
0.774±0.108

1.09±0.225

oligodendroglioma 5.2±3.1

3.08±0.777

2.19±0.176
1.08±0.478

M

(5)
(16)

(10)

(2)

(5)

(11)
(14)

III

IV

anaplastic
oligodendroglioma

glioblastoma
multiforme

0.644±0.071
0.556±0.136
0.308±0.047
0.206±0.097

2.13±0.644
1.32±0.300
1.36±0.294
0.269±0.025
0.23±0.050

(18)
(16)
(16)
(14)

(16)
(13)
(16)
(14)
(7)

Table 6.1. basal apoptosis in 16 human gliomas analysed at 0-12 hours. TUNEL-
positive cells are indicated as a percentage total of cells analysed ±SEM of (n) 2 000-
10 000 determinations from each tumour. Cells were selected for high endonuclease
activity using a single high fluorescence (Fl-1) gate. This tends to underestimate cells
in early apoptosis (moderate Fl-1, high side scatter), and also in late apoptosis (low to
moderate Fl-1, low side scatter).
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Figure 6.4. The basal rate of tumour cell apoptosis in vitro. Basal apoptosis was
determined in three glioblastomamultiforme tumours using TUNEL flow cytometry.
The mean fraction of cells exhibiting TUNEL-positivity was analysed in 45
5 000-10 000 cell samples from three different tumours. Results from individual
tumours are identified using different symbols.
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(c) The Effect of Arachidonic Acid on Glioma Cell Apoptosis

A statistically significant increase in human glioma cell apoptosis was detected in the

presence of exogenous arachidonic acid. Increases in arachidonic acid stimulated
endonuclease activity were transient, with each peak lasting for 2-3 hours. However,
more than one peak in apoptotic activity was detected in most tumour preparations

(Figure 6.5). Overall, 12 peaks were detected in the 7 tumour cell preparations where
the proportion of essential fatty acid treated cells in the apoptotic gate was

significantly greater than that of control cells (p<0.006, paired t-test).

Differences in the kinetics of arachidonic acid-induced stimulation of endogenous
endonuclease activity were detected in tumours of different grades, with low grade

tumours, particularly oligodendrogliomas, tending to respond more rapidly to the

pro-apoptotic stimuli. In a collagenase dispersed explant of anaplastic

oligodendroglioma, the proportion of cells characterised by high endonuclease

activity increased from 6.6% to 20.53% after a 15 minutes incubation with
arachidonic acid (Figure 6.2). Cells derived from an explant of anaplastic

oligoastrocytoma had lower basal apoptosis before arachidonic acid stimulation, but

responded with a statistically significant increase in endonuclease following a 15

minute incubation with 30pM arachidonic acid (Figure 6.3).

The stimulation of apoptosis by exogenous essential fatty acids in both high and low

grade tumours was not associated with significant changes in membrane permeability

during in vitro incubations. This suggests the induction of a cytotoxic mechanism
distinct from necrosis (Table 6.2).
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Figure 6.5. The effect of arachidonic acid on glioma apoptosis. The apoptosis ratio
was determined in seven tumour preparations treated with 30mM arachidonic acid.
The proportion ofTUNEL-positive cells in 132 2 000-10 000 cell samples obtained
from arachidonic acid treated/untreated cells between 0-12 hours is shown in 1

oligodendroglioma (black bars), three astrocytomas (white bars) and three
glioblastoma multiforme tumours (red bars).
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VIABILITY OF HUMAN GLIOMA CELLS:
EFFECT OF ARACHIDONIC ACID

TIME %VIABILITY % VIABILITY (n)
(hours) CONTROL ARACHIDONIC

ACID

0 91.8±3.21 92i2.9 (5)
0.5 89±4.19 89.7i4.01 (3)
0.75 84±7.07 87±3.54 (2)

1 90.8±3.55 89.4i4.53 (5)
2 84±6.36 80.5i6.01 (2)
3 88.5±3.72 82.75il.43 (4)
4 89.25±2.63 89.5il.87 (4)
5 88.5±3.13 84.75i2.7 (4)
6 86±3.24 83.8i3.65 (5)
8 85.4±3.31 84.2i3.1 (5)
9 78.3±3.6 78i3.68 (3)
10 77.3±4.48 74i3.68 (3)
12 78.7i2.76 85.7i4.38 (3)

Table 6.2. Viability of human glioma cells following a 0-12 hour incubation with
30pM arachidonic acid. Human glioma cell membrane integrity was measured by
monitoring trypan blue permeability throughout the experiments. Results are shown
as the percentage of viable cells at each time point ±SEM. The number of
determinations of cell viability is shown in parentheses.
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(d) The effect of Arachidonic Acid on Normal and Tumour Tissue

Apoptosis

Apoptotic activity in human glioma tissue and tumour-associated normal brain was

investigated over 0-12 hours in the presence and absence of exogenous arachidonic
acid (Figure 6.6). In normal brain preparations, mean basal apoptotic index over the
incubation period was 1.75±0.172%. In the presence of arachidonic acid, normal
cells exhibited a modest increase in mean apoptotic activity. Similarly, an increase in

apoptosis in the presence of arachidonic acid was detected in tumour cells, but this
effect was greater, with peaks of apoptotic activity of 3.22%, 3.07% and 4.29% being
detected at 5, 8 and 12 hours respectively. These increases in tumour cell apoptosis in
the presence of arachidonic acid resembled those of the two other glioblastoma
tumours in which possessed a similar rate of basal apoptosis. The apoptotic indices of
normal and tumour cells in presence and absence of arachidonic acid is shown in

Figure 6.6.
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Figure 6.6. The effect of arachidonic acid on apoptosis in cells derived from normal
and tumour tissue. The apoptosis ratio was determined in cell preparations acquired
from an explant of glioblastoma multiforme and associated normal brain over a
period of 12 hours. Cell preparations were incubated in the presence or absence of
30|iM arachidonic acid. The proportion ofTUNEL positive cells is shown in white
bars for normal tissue and black bars for glioblastoma multiforme tissue.
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(e) The effect of exogenous gamma-linolenic acid on apoptosis and

proliferation in the rat C6 glioma cell line

Gamma-linolenic acid induced a concentration-dependant stimulation of apoptotic

activity in rat C6 glioma cells over a period of seven days (Figure 6.7). Maximum
stimulation of apoptotic activity occurred at seven days with the highest
concentration (40pM) of gamma-linolenic acid. The stimulation of apoptotic activity
fluctuated with time with the first peaks in endogenous endonuclease activity

occurring at 1 and 3 days after the addition of gamma-linolenic acid (Figure 6.8). In
the adherent C6 monolayer, gamma-linolenic acid had little effect on apoptosis in the
concentration range l-40pM. At higher concentrations of gamma-linolenic acid

(50jiM-lmM) no cells were available as an adherent monolayer. Stimulation of

apoptosis in the rat C6 cell line by gamma-linolenic acid in the concentration range

20-40pM was associated with inhibition of cell proliferation, as measured by the
MTT assay. Lower concentrations of gamma-linolenic acid (0-5fiM) had little effect
on apoptosis but increased cell proliferation (Figure 6.8).
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Figure 6.7. Estimation of apoptosis using the TUNEL assay in non-adherent glioma
cells collected from C6 cultures incubated in the presence and absence of 0-40uM
gamma-linolenic acid. Detached cells were removed every six hours for analysis.
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Figure6.8.EstimationofcellproliferationintheratC6gliomacelllineduringa7dayincubationwith0-40mMgamma-linolenicacid.They- axisindicatestheopticaldensity(OD)at540nmofformazancrystalsproducedbyintracellularmitochondrialoxidasesandisproportionalto cellularproliferation.Thex-axisindicatedtimeindays.TheseresultswerekindlyprovidedbyHelenBell(DepartmentofClinical Neurosciences).
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6.4 Discussion

This study has indicated that arachidonic acid and gamma-linolenic acid stimulated

apoptosis in glioma cells derived from human brain tumours and the rat C6 glioma
cell line, as measured by TUNEL analysis of endogenous endonuclease activity. In
human tumour preparations, the apoptotic activity of cell preparations acquired from
tumours of different grades responded with different kinetics to exogenous

arachidonic acid and gamma-linolenic acid. High grade tumours generally responded
less rapidly, with maximum stimulation of endogenous endonuclease activity

occurring between 10-12 hours. Low grade tumours typically responded within two

hours. Low grade tumours may respond more rapidly to exogenous arachidonic acid
and gamma-linolenic acid because constitutively expressed pro-apoptotic effector

pathways sensitive to essential fatty acids and their metabolites are primed and

rapidly initiate apoptosis if appropriately triggered. The relatively slow response of

high grade tumours may be due to the requirement for activation of gene transcription
ofpro-apoptotic mediators. Development of grade IV glioblastoma multiforme
involves gene mutations which can result in loss of sensitivity to pro-apoptotic
stimuli (Louis, 1997). This insensitivity may be exacerbated by structural and

morphological conditions. High metabolic demands resulting from rapid proliferation
and competition for oxygen and nutrients can lead to selective pressures which may

favour the survival of cell populations least resistant to necrosis and other forms of
cell death (Louis, 1997).

A primary contribution of inflammatory processes to the initiation of apoptosis in
human tumour preparations was not obvious. Morphological and histological
evidence indicated limited leukocyte infiltration and astrocyte activation at the sites
of apoptosis. In addition, flow cytometric analysis of tumour cell preparations
sensitive to the pro-apoptotic actions of arachidonic acid did not show a

predominance ofhigh side scatter, small to medium sized cells typical of phagocyte

populations. It is possible however that changes detected in tumour cells were

secondary to stimulated peroxidation in adjacent cells.

127



The stimulation of apoptotic activity in human glioma and the rat C6 cell line
fluctuated with time. In human glioma tissue there was evidence of an initial increase
in endonuclease activity during the first two hours of incubation, which was followed

by further peaks in the stimulation of apoptotic activity between three and 36 hours.

Similarly, in the rat C6 glioma cell line there was evidence of time dependant
variations in apoptotic activity, with peaks occurring at 1, 3 and 7 days. Similar
kinetics have been observed in human colon carcinoma cell lines (Wyllie et al, 1992).

The molecular pathways which mediate these time-dependant episodes of increased

apoptotic activity have not been well characterised. However, the initial stimulation
of apoptosis may involve induction ofmetabolic pathways associated with pro-

apoptotic activity in cells endowed with the necessary effector proteins (Bellamy,

1995). Further peaks may occur when the effector proteins associated with apoptosis
have been synthesised de novo. There is evidence that dopamine is capable of

inducing apoptosis in post-mitotic sympathetic neurones via its oxidative

metabolites, which correlates with two peaks of cyclin B and proliferating cell
nuclear antigen expression (Shirvan et al, 1997). The essential fatty acid-sensitive
inositol trisphosphate/Ca2+ signalling pathway may also be involved in generating
fluctuations in apoptotic activity (Berridge, 1997), and it has been reported that up-

regulation of apoptosis during embryogenesis involves several time dependant

changes in gene expression (Furlow et al, 1997).

This study indicated that individual human tumours exhibited variable basal rates of

apoptosis. This finding concurs with that of Schiffer et al (1995) and Kordeck et al

(1996), who described varying levels of apoptosis in different brain tumour types.

Despite these variations, high grade tumours were generally characterised by low
basal rates of apoptosis in this study. An inverse association between tumour

proliferative activity and apoptosis has also been established in glial tumours of

embryonal orogin, where a trend towards low apoptotic activity was observed in
tumours with high mitotic indices (Schiffer et al, 1995).
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6.5 Conclusions

This study has demonstrated that arachidonic acid and gamma-linolenic acid

stimulate apoptotic activity in human glioma tissue and the rat C6 glioma cell line.
This stimulation fluctuated with time, with peaks of apoptotic activity generally

being followed by a reduction in dUTP-associated fluorescence one hour later. The
kinetics of n-6 essential fatty acid-mediated stimulation of apopotosis were grade

dependant. Tumour tissue responded with high sensitivity to exogenous arachidonic
acid in comparison with tumour-associated normal brain, and high grade GBM
tumours generally took longer to respond to the pro-apoptotic stimulus than low

grade astrocytomas. It was also observed that high grade tumours were characterised

by low basal apoptotic activity. At the concentrations of arachidonic acid and

gamma-linolenic acid used, there was no evidence of statistically significant changes
in cell membrane integrity, further supporting the hypothesis that the induction of

apoptosis is the principal cause of essential fatty acid-mediated cytotoxicity. These
observations provide additional evidence supporting a clinical role for n-6 essential

fatty acids in the treatment ofmalignant glioma.
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Chapter 7:

The Interaction of Irradiation with Arachidonic Acid and Gamma-

Linolenic Acid

7.1 Introduction

The purpose of this study was to investigate the potentiation of tumour reactive

oxygen species formation and apoptosis in rat C6 glioma cells in the presence and
absence of arachidonic acid, gamma-linolenic acid and radiation. These activities
were investigated at concentrations of arachidonic acid and gamma-linolenic acid

previously shown to stimulate glioma oxidative activity and programmed cell death,
and over time periods where peaks in apoptotic activity had been observed.

These investigations were undertaken to investigate a potential clinical role for n-6
essential fatty acids as a therapeutic adjuvant in glioma radiotherapy. These
considerations are important because of the poor clinical response of malignant

glioma to standard fractionated radiotherapy. Despite the recent introduction of
stereotactic radiosurgery and gamma knife radiotherapy, which increase the

precision of positioning of small treatment beams, the prognosis for patients

suffering from malignant glioma is not significantly better now than it was thirty

years ago (Taphoorn et al, 1994, Forsyth and Cairncross, 1995 and Sichez, 1996). In

addition, ultra high dose rates (Cygler et al, 1994), intraoperative radiotherapy

(Shimbamoto et al, 1994 and Hara et al, 1995), accelerated hyperfractionation

(Glinski, 1993, Sugawara et al, 1994 and Freeman et al, 1996) and concurrent

radiotherapy and standard and multiagent chemotherapy (Eyre et al, 1993, Heideman
et al, 1993, Jeremic et al, 1994, Dillman et al, 1995, Hui et al, 1995 and Buchsbaum

and Robertson, 1996) have not been associated with significant clinical benefit.

It has been proposed that essential fatty acid-mediated potentiation of cellular
oxidative activity may increase the sensitivity ofmalignant glioma to radiotherapy
because of the pivotal role of reactive oxygen intermediates in radiation induced

cytotoxicity is well established (Halliwell and Gutteridge, 1985 and Hagen, 1989).
Radiation-induced stimulation of reactive oxygen intermediate production may,
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under appropriate conditions, result in self-propagating chain reactions leading to
DNA double strand breaks and locally denatured regions (Halliwell and Gutteridge,

1985, Hagen, 1989 and Wardman and Ross, 1990). This induces p53 dependant G,

phase cell cycle arrest which allows time for DNA repair or elimination of lethally
damaged cells by apoptosis (Gupta et al, 1996).

Results presented in this thesis and elsewhere indicate that human glioma cells are

characterised by low basal reactive oxygen species formation (Levchenko and

Demchik, 1991 and Williams et al, 1997). This may be partially due to deficiency of
n-6 essential fatty acids including arachidonic acid and gamma-linolenic acid

(Martin et al, 1996). These observations suggest that addition of exogenous essential

fatty acids may be associated with potentiation of radiation-induced cytotoxicity by

providing pro-oxidative substrate upon which radiation can act.

In these investigations, the kinetics of cellular peroxidation, apoptotic activity and
cell membrane integrity were investigated in rat C6 glioma cells in the presence and
absence of radiation and exogenous n-6 essential fatty acid. The cells were irradiated
at 2Gy because this is a therapeutically relevant dose (Chang et al, 1995) associated
with tumour cytotoxicity in human glioma cell lines (Ross et al, 1994). In addition,

2Gy is close to the mid-point used in irradiation experiments using the C6 cell line
and sensitising agents (Zhang et al, 1993, Stapper et al, 1995 and Bergenheim et al,

1995).

In addition, the interaction of arachidonic acid and sodium nitroprusside was

investigated. Sodium nitroprusside is a NO donor which may have a role as a

therapeutic adjuvant in the management ofhuman glioma due to its action as a

vasodilator (Whittle 1996). This may increase the delivery of cytotoxic drugs to
tumour tissue. In addition, there is evidence that NO donors potentiate free radical

activity (Ioannidis and deGroot, 1993 and Hata et al, 1996), which may contribute to
tumour cell cytotoxicity in vivo (Krinsky et al, 1992). Essential fatty acid-mediated

potentiation of this action may be associated with increased glioma cell death.
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7.2 Materials and Methods

(a) Cell Preparation

(i) Cell Irradiation

Rat C6 glioma cells were harvested and resuspended at a density of 106 cells/ml in
Hams-FlO medium. This cell suspension was used to completely fill 50ml cell
culture flasks, taking care to exclude all air gaps. The flasks were irradiated at 2Gy
with a 6MV X-ray beam in the presence and absence of20pM arachidonic acid or

gamma-linolenic acid (Section 2.9b). At intervals of 1, 2, 3, 4, 6, 8 and 10 hours

post-irradiation, 1ml aliquots were analysed for peroxidative and apoptotic activity,
and cell membrane integrity (Sections 2.3, 2.6 and 2.7).

(ii) The Interaction of n-6 Essential Fatty Acids with Sodium

Nitroprusside

C6 cells were harvested, resuspended at a density of 106 cells/ml in Hams F-10

medium and incubated in the presence and absence of 0.1mM sodium nitroprusside
and/or 20pM arachidonic acid (Section 2.9a). Glioma cell peroxidation, viability and

apoptosis was analysed as described previously (Section 7.2ai).

(b) Analysis of Peroxidative Activity

C6 cells were centrifuged and incubated with 5pM 2',7'-dichlorofluorescin diacetate
for 10 minutes at 37°C. The cells were washed and resuspended in Hams F-10
medium containing 10% FCS. The rate of reactive oxygen intermediate production
was determined using flow cytometric quantitation of2',7'-dichlorofluorescein

production (Section 2.3).

(c) Analysis ofApoptotic Activity

C6 cells were fixed by exposure to 100% ethanol and stored at -4°C for 1-3 weeks.

Apoptotic activity was determined using TUNEL flow cytometery (Section 2.7).
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(d) Analysis of Cell Viability

Cell viability was determined immediately after analysis ofperoxidative activity

using flow cytometric analysis ofpropidium iodide permeability (Section 2.6).

7.3 Results

(a) Effect of Irradiation. Arachidonic Acid and Gamma-Linolenic

Acid on Oxidative Activity in the Rat C6 Glioma Cell Line

Oxidative activity in the rat C6 glioma cell line was increased in response to

irradiation and exogenous n-6 essential fatty acid stimulus (Figure 7.1). Potentiation
of glioma cell reactive oxygen species formation following addition of arachidonic
acid and gamma-linolenic acid typically occurred within 3 hours of stimulation, with

peaks ofup to 700% of the untreated control being observed after 2 hours.

Subsequent smaller increases of up to 200% occurred within the next 7 hours. The
maximum stimulation of oxidative activity in response to radiation was less than that
observed in response to arachidonic acid or gamma-linolenic acid, with peaks ofup
to 400% of the untreated control occurring. This stimulation occurred throughout the
incubation period with fewer fluctuations in reactive oxygen intermediate generation
with time. In one experiment the maximum stimulation of oxidative activity
occurred between 4 and 8 hours. These results suggest different kinetic mechanisms
for the stimulation of reactive oxygen intermediate production by essential fatty
acids and radiation. No statistically significant differences were observed between

the kinetic profiles of arachidonic acid or gamma-linolenic acid either alone or in

conjunction with radiation.
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Figure 7.1. The stimulation of cellular peroxidation in 6 single cell suspensions of
the rat C6 glioma cell line by (A) 20pM exogenous arachidonic acid or gamma-
linolenic acid and (B) 2Gy irradiation. The y-axis indicates reactive oxygen
intermediate formation which is expressed as percent stimulation of the untreated
control and the x-axis indicates time in hours.
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(b) Analysis of Apoptotic Activity in the Rat C6 Glioma Ceil Line

Irradiation and exogenous n-6 essential fatty acid stimulus potentiated apoptotic

activity in the rat C6 glioma cells (Figure 7.2 and Figure 7.3). There was evidence of
an early stimulation of endogenous endonuclease activity, although in certain cases

additional peaks of smaller magnitude were observed after 4 and 6 hours. The
kinetics of the stimulation of apoptotic activity were complex, and peaks in

apoptotic activity were often followed by a reduction in TUNEL positivity one hour
later. The kinetics of these episodic increases in apoptotic activity were similar to
those observed in human astrocytoma (Chapter 6).

Radiation induced stimulation of endogenous endonuclease activity also occurred
within one hour, although the magnitude of this early response was generally less
than that observed in response to exogenous arachidonic acid and gamma-linolenic
acid (Figure 7.2b). This stimulation was maintained for up to 10 hours post-
irradiation. In certain cases, peaks of apoptotic activity occurred at 5 and 6 hours

post-irradiation, with maximum stimulation being approximately 600%. In general

however, fewer episodic fluctuations of endogenous endonuclease activity occurring
with time in comparison with the effect of 20pM exogenous arachidonic acid or

gamma-linolenic acid alone.

The maximum stimulation of apoptotic activity induced by exogenous essential fatty
acid stimulus occurred within the first two hours of incubation. This is in contrast to

the later response observed following exposure to radiation. However, the magnitude
of the maximum stimulation was similar in both cases, with increases ofup to 600%
of the unstimulated control being observed. These results suggest the induction of
different kinetic mechanisms for the stimulation of apoptosis by radiation and
arachidonic acid and gamma-linolenic acid.

Simultaneous exposure to radiation and exogenous n-6 essential fatty acids was
associated with greater than additive potentiation of apoptotic activity. In most cases

this synergistic stimulation was maintained over the 10 hour incubation period,
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however maximum peaks were observed at 4, 7 and 8 hours post-irradiation. Again,
the kinetics of this stimulation were complex and there was evidence that peaks in

apoptotic activity were followed by a reduction in endogenous endonuclease activity
1 hour later. The maximum stimulation of apoptosis was approximately 4 000% of

the untreated control. No statistically significant differences were observed between

the stimulation of apoptosis by arachidonic acid or gamma-linolenic acid.

During the analysis of apoptotic activity, contemporary sampling was used to
calculate changes in endogenous endonuclease activity. This was due to the
observation that the apoptotic index (AI) in untreated tumour samples changed with
time. There was evidence of variable basal apoptotic indices in human tumours

(Chapter 6). There is also evidence that variation ofAI occurred with time in single
cell suspensions of the rat C6 cell line. This may be partly related to cell damage
caused by trypsinisation and resuspension, and subsequent recovery from mechanical

damage sustained during cell preparation. In addition, membrane damage due to
essential fatty acid effects was studied. Pre-stimulation analysis of apoptotic activity
was also carried out initially but this was not routinely calculated. This was due

principally to subsequent negative values in certain tumour preparations which were

difficult to analyse statistically and the initial low viability of cell preparations

following trypsinisation and resuspension.
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Figure7.2.ThestimulationofapoptosisintheratC6gliomacelllineinresponseto(A)20pMexogenousarachidonicacidorgamma-linolenic acid,(B)2Gyirradiationand(C)exogenousarachidonicacidorgamma-linolenicacidandradiationcombined.Thestimulationofapoptotic activityisexpressedasthepercentstimulationofTUNELpositivityinstimulatedcomparedwithunstimulatedcells(y-axis).Thex-axis indicatestimeinhours.
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Figure 7.3. The stimulation of apoptosis in rat C6 glioma cells irradiated at 2Gy in
the presence (B) and absence (A) of 20pM exogenous arachidonic acid or gamma-
linolenic acid. Cells were selected for TUNEL positivity by using a high
fluorescence (Fl-1) gate.
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(c) The Effect of Sodium Nitroprusside on Oxidative Activity in the
Rat C6 Glioma Cell Line
Sodium nitroprusside stimulated reactive oxygen intermediate formation in rat C6

glioma cells (Figure 7.4). This stimulation occurred within one hour and was

maintained throughout the 10 hour duration of the investigation. The magnitude and
kinetics of sodium nitroprusside-mediated potentiation of glioma reactive oxygen

species formation was similar to that observed in response to addition of exogenous
arachidonic acid, and although the stimulation of reactive oxygen intermediate

generation was generally higher in response to sodium nitroprusside, this difference
was not statistically significant.

Simultaneous exposure to arachidonic acid and sodium nitroprusside resulted in

potentiation of oxidative activity. This potentiation was maximal during the first
hour of incubation but was maintained throughout the 10 hour exposure.
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Figure 7.4. The stimulation of reactive oxygen intermediate formation in rat C6
glioma cells by the nitric oxide donor sodium nitroprusside. Results are expressed as
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7.4 Discussion

This study has provided preliminary evidence that arachidonic acid, gamma-
linolenic acid and radiation stimulated apoptotic and peroxidative activity in single
cell suspensions of the rat C6 glioma cell line. However, differences were observed
between the kinetic profiles of these stimulatory effects. Arachidonic acid and

gamma-linolenic acid stimulated apoptosis and reactive oxygen intermediate
formation within the first three hours of exposure. This early oxidative response

observed in glioma cells following arachidonic acid and gamma-linolenic acid

exposure was similar to that described for the short term stimulation of peroxidative

activity in Chapter 4. In contrast, radiation induced stimulation of oxidative activity
occurred throughout the duration of the experiment, although the maximum
stimulation was lower. These results suggest different kinetic mechanisms for the
stimulation of reactive oxygen intermediate production by radiation and essential

fatty acids.

Preliminary investigations also indicated that sodium nitroprusside potentiated

peroxidative activity in the rat C6 glioma cell line. The kinetics of this stimulation
were similar to those induced by arachidonic acid. There was also evidence that
reactive oxygen intermediate generation was potentiated when C6 cells were

simultaneously exposed to both sodium nitroprusside and arachidonic acid. This

potentiation was greatest during the first two hours of exposure.

The stimulation of apoptosis in response to exogenous n-6 essential fatty acids also
occurred relatively rapidly, with maximum increases in endogenous endonuclease

activity typically occurring within the first three hours of incubation. Although
radiation-induced stimulation of apoptosis also occurred within one hour, maximum
stimulation was typically observed towards the end of the incubation period. The
stimulation of apoptosis induced by exogenous arachidonic acid or gamma-linolenic
acid was generally greater than that induced by radiation.

141



There was evidence of potentiation of apoptotic activity following simultaneous

exposure to arachidonic acid or gamma-linolenic acid and radiation. This stimulation
occurred throughout the ten hour incubation period, but was typically maximised at

6-8 hours post-irradiation. In one case, dUTP-associated fluorescence in C6 cells

exposed to gamma-linolenic acid and radiation was up to 4 000% of the non-

irradiated control.

These results are consistent with the hypothesis that essential fatty acids potentiate

glioma cell response to radiotherapy. Although the molecular pathways responsible
for this activity have not been well characterised, it has been proposed that essential

fatty acids may reduce radioresistance by modulating PIP3 activity (Woloschak et al,
1990 and Uckun et al, 1993). Inhibition of protein kinase C is associated with
sensitisation of human tumours to ionising radiation (Hallahan et al, 1992), and there
is evidence that essential fatty acids reduce the activity of activated protein kinase C

(Chen and Murakami, 1992, Hilian and Nelson, 1992 and may et al, 1993). This
inhibition may be associated with reduced expression of activated ras, an oncogene

which confers radiation resistance and is associated with protein kinase C activity

(Sklar, 1988 and Borner and Weinstein, 1990). There is also evidence that pre¬

exposure of glioma cell lines to the cytokines IFNy and TNFa, whose activity and/or
secretion can be modified by linoleic acid, arachidonic acid, and gamma-linolenic
acid (Ku et al, 1991 and Baldie et al, 1993), can inhibit bcl2 mediated rescue from

apoptosis following irradiation by sensitising for FAS/APO-1 dependent killing

(Weller et al, 1995).

In addition to increasing efficacy, essential fatty acids may reduce the occurrence of

pathological side effects associated with radiotherapy (Hopewell et al, 1993). It has
been proposed that damage to peri-tumoural tissue which occurs following exposure

to radiation may result from loss of essential fatty acids rather than the accumulation
of toxic metabolites. This implies that increasing the availability of essential fatty
acids will limit and/or reverse radiation-induced damage to normal tissue (Horrobin,

1990). These radio-protective actions may result, in part at least, from modification
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of eicosanoid metabolism. Radiation causes an imbalance in the ratio of

mono:dienoic eicosanoids (Schneidkraut et al, 1984, Weshler et al, 1987 and Ward,

1990) however gamma-linolenic acid increases the production ofmonoenoic PGE,
rather than dienoic prostaglandins such as PGE2 and TXA2 (Hopewell et al, 1993). In

addition, gamma-linolenic acid inhibits leukotriene formation (Horrobin and Manku,

1990).

7.5 Conclusions

This study has provided evidence that arachidonic acid and gamma-linolenic acid
interact with radiation to potentiate oxidative and apoptotic activity in vitro. The
increase in reactive oxygen intermediate formation occurred within the first three
hours of exposure to exogenous essential fatty acid stimulus post-irradiation,

suggesting that stimulation of reactive oxygen intermediate production is an early
event. This result concurs with the observation that oxidative activity increased
within 10 seconds of exogenous essential fatty acid stimulation in collagenase

dispersed explants of human malignant glioma, and that this increase can be
maintained for up to 3 hours (Chapter 4).

In conclusion, this study has provided evidence that exogenous arachidonic acid,

gamma-linolenic acid and therapeutically relevant doses of irradiation stimulated
reactive oxygen intermediate generation and apoptotic activity in the rat C6 glioma
cell line. There was also preliminary evidence that arachidonic acid interacted with

the nitric oxide donor sodium nitroprusside to potentiate reactive oxygen

intermediate formation. These results are consistent with a possible role for
arachidonic acid and gamma-linolenic acid as a therapeutic adjunct in the treatment
ofhuman primary glioma.
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Chapter 8:

Discussion

8.1 Aims and Hypotheses

Despite the considerable progress which has been made in understanding the
molecular biology ofmalignant gliomas, the prognosis for patients suffering from
these tumours has not improved substantially in recent years (Roth and Weller,

1999). Furthermore, cytoreductive surgery and radiotherapy remain the preferred

treatments for malignant glioma, although it is thought that novel cytotoxic drugs

may represent the most promising therapeutic strategies for the future (Darling, 1990
and Roth and Weller, 1999). The evaluation of alternative anti-tumour agents is

therefore an important aim of neurooncology research.

One promising strategy may be modulation of the oxidative activity of these tumours

through administration of essential fatty acids. These highly unsaturated lipids act as

substrates for the production of lipid peroxides, which may be implicated in glioma

cytotoxicity and radiosensitisation (Cornwell and Morisaki, 1984 and Gonzalez,

1992). C/s-unsaturated fatty acids inhibited the growth of glioma cell lines in vivo

and in vitro (Das et al, 1990a), PUFA administration was associated with the

rejection of transformed microglial tumour cells in vivo (Frei et al, 1994),

peroxidised low density lipoprotein was cytotoxic to human glioma cell lines

(Kikuvhi et al, 1997) and gamma-linolenic acid, eicosapentaenoic acid and
docosahexaenoic acid were cytotoxic to 36B10 rat astrocytoma cell lines in vitro

(Vartak et al, 1997 and 1998). Additionally, oral administration of gamma-linolenic
acid induced tumour regression and improved patient survival in a small clinical trial

(Das, 1995). However, only fifteen patients were assessed in this study, and adequate
control groups were not included.

Although these previous studies provided evidence supporting a clinical role for n-6
essential fatty acids in malignant glioma therapy, limited information was available
on the activity of essential fatty acids in fresh human glioma tissue. Most
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investigations had been carried out on established cell lines, and the limitations of
these experiments were concerned predominantly with loss of tumour phenotype
associated with cell culture, and the lack of comparative analysis of the oxidative
activities of tumours of different grades. Additionally, the mode of cell death

resulting from essential fatty acid administration had not been well characterised.
There was also limited information on the interactive effects of essential fatty acids

and radiation in malignant glioma cells, particularly with respect to the kinetics of
reactive oxygen species formation and the mode of cell death induced. The purpose
of this study was to provide additional information on the role of essential fatty acid
metabolism in glioma cytotoxicity and radiosensitisation by investigating the

hypotheses that:-

1) Oxidative activity is impaired in human glioma tissue in comparison with
tumour-associated normal brain

2) Addition of exogenous essential fatty acids stimulates tumour reactive oxygen

species generation

3) Potentiation of tumour reactive oxygen species generation is associated with
tumour cytotoxicity, in part at least through stimulation of apoptosis

4) Stimulation of tumour oxidative and apoptotic activity by arachidonic acid and

gamma-linolenic acid is potentiated by simultaneous exposure to therapeutic
doses of radiation

8.2 Investigations Undertaken

(a) General practical considerations

Investigation of these hypotheses lead to a number of important practical
considerations. These related predominantly to tissue availability, and the

complexity of experimental and data analysis which arose from the cellular

heterogeneity which is characteristic of this tumour type. Preliminary investigation
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of the initial hypotheses suggested that analysis of essential fatty acid-mediated
stimulation of glioma oxidative and apoptotic activity was likely to be complex. This
was due to variations in basal oxidative activity, cell composition, viability and

tumour grade between tumours acquired from different patients, and also the cellular

heterogeneity of tumour preparations derived from individual tumours. As a result of
these confounding factors, it was initially necessary to use relatively homogeneous
cell preparations to characterise the experimental conditions required to analyse the
both the pro-oxidative and the pro-apoptotic activities of arachidonic acid and

gamma-linolenic acid in vitro.

These preliminary investigations were undertaken using fresh leukocyte

preparations, which were used to define the conditions most appropriate for analysis
of tumour oxidative activity. In addition to characterising experimental conditions,

analysis of the oxidative response of these cells may be relevant to the overall

cytotoxic activities of essential fatty acids, as infiltrating lymphocytes are sometimes

present in human gliomas (Roszman et al, 1991 and Tada and Tribolet, 1993).
Results of this study also assisted the identification of the characteristics a human
tumour sub-population thought to represent infiltrating phagocytes.

Cellular heterogeneity was also responsible for the complexity of analysis of

apoptotic activity in human glioma. Consequently, the terminal desoxynucleotidyl
transferase binding characteristics of the rat C6 cell line stimulated into apoptosis by
a therapeutically relevant dose of radiation was used to identify human tumour cell

populations undergoing programmed cell death. As insufficient quantities of human

glioma tissue were available for analysis, and cellular heterogeneity would have
made tumour-specific responses difficult to delineate, the rat C6 cell line was also
used for investigation of essential fatty acid-mediated radiosensitisation. Although
further investigations are required to analyse essential fatty acid-mediated
radiosensitisation in human glioma tissue, the results of this study provided

preliminary information on the previously uncharacterised association between the
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kinetics of reactive oxygen species formation and apoptotic cell death in glioma
cells.

(b) Human glioma oxidation

It has been postulated that impaired reactive oxygen species generation is associated
with increased proliferative activity (Barber and Wilbur, 1959, Bernheim, 1963,
Mead and Fulco, 1976 and Masotti et al, 1988, Cheeseman et al, 1984, Levchenko
and Demchik, 1991 Bartoli and Galeotti, 1979, Barber and Wilbur, 1959, Bernheim,

1963, Mead and Fulco, 1976 and Masotti et al, 1988), and that tissues with low basal
oxidative activity respond to exogenous essential fatty acid stimulus with increased

production of potentially cytotoxic lipid peroxides. This study demonstrated for the
first time that these hypotheses are pertinent to human malignant glioma. Reactive

oxygen intermediate formation was an inverse function ofproliferative activity in

collagenase-dispersed glioma tissue, the basal rate of tumour oxidation being

significantly lower than that of associated normal brain (p<0.0000017). Additionally,
the kinetics of essential fatty acid-mediated stimulation of glioma oxidative activity
were grade dependent. Although the kinetics of essential fatty acid-stimulated
reactive oxygen intermediate formation followed an exponential function in both
normal and tumour cell preparations, tumour cells showed significantly higher

sensitivity than normal tissue (p<0.0000017).

Sub-population analysis also provided preliminary evidence supporting the

hypothesis that tumour cells have low basal oxidative activity and high sensitivity to

exogenous essential fatty acid stimulation. Preliminary investigations revealed a

GFAP-positive population which was characterised by high side scatter (which is
indicative ofhigh granularity and hence DNA content). These morphological and
immunohistochemical features are characteristic of the known properties of human

glioma cells. The cell population identified in this way possessed low basal
oxidative activity and reacted with high sensitivity to exogenous arachidonic acid
and gamma-linolenic acid.
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(c) Glioma apoptosis and proliferation

The biological significance of arachidonic acid and gamma-linolenic acid-mediated
stimulation of cellular oxidation was investigated through analysis of glioma cell

proliferation and apoptosis. It was confirmed that at concentrations previously
shown to stimulate glioma reactive oxygen species formation, arachidonic acid and

gamma-linolenic acid inhibited cell proliferation and stimulated apoptosis. The
effects of gamma-linolenic acid on C6 glioma cell proliferation were investigated

using the MTT assay, and preliminary results indicated that gamma-linolenic acid
inhibited tumour cell proliferation over 7 days. These results concur with previous

investigations which demonstrated that gamma-linolenic acid inhibited cell

proliferation in glioma cell lines (Das, 1990), and that inhibition of cell proliferation
in the GHP-212 neuroblastoma cell line was associated with stimulation of cellular

oxidative activity (Hrelia et al, 1996).

The stimulation of apoptotic activity by arachidonic acid and gamma-linolenic acid
was investigated in collagenase-dispersed explants of fresh human primary glioma
obtained at biopsy. Both arachidonic acid and gamma-linolenic acid stimulated

apoptosis for up to 36 hours, with arachidonic acid being more active. The
stimulation of apoptotic activity by exogenous arachidonic acid and gamma-

linolenic acid varied with time: episodes of increased apoptotic activity were

generally followed by lower levels of apoptosis one hour later.

The apoptotic activity of cell preparations acquired from tumours of different grades

responded with different kinetics to exogenous arachidonic acid and gamma-

linolenic acid. High grade tumours generally responded less rapidly, with maximum
stimulation of endogenous endonuclease activity occurring between 10-12 hours.
Low grade tumours typically responded within two hours. Low grade tumours may

respond more rapidly to exogenous arachidonic acid and gamma-linolenic acid
because constitutively expressed pro-apoptotic effector pathways sensitive to
essential fatty acids and their metabolites are primed and rapidly initiate apoptosis if

appropriately triggered. The relatively slow response of high grade tumours may be

148



due to the requirement for activation of gene transcription ofpro-apoptotic
mediators. Development of grade IV glioblastoma multiforme involves gene

mutations which can result in loss of sensitivity to pro-apoptotic stimuli (Louis,

1997). This insensitivity may be exacerbated by structural and morphological
conditions. High metabolic demands resulting from rapid proliferation and

competition for oxygen and nutrients can lead to selective pressures which may
favour the survival of cell populations least resistant to necrosis and other forms of
cell death (Louis, 1997).

Although the down-stream pro-apoptotic targets of reactive oxygen intermediates
have not been fully characterised, a number of candidate molecular pathways have
been proposed. There is evidence that hydrogen peroxide induces apoptosis in

hepatoma cells by modulating intracellular Ca2+ and Mg2+, resulting in DNA
fragmentation and activation of the pro-apoptotic enzyme poly(ADP-ribose)

polymerase (Li et al, 2000). Other putative targets include Bcl2, cytochrome P450
and intracellular anti-oxidants. Recent studies indicate that essential fatty acid-
mediated stimulation of apoptosis is associated with depletion of glutathione and
inhibition of carnitine palmitoyl transferase I in cells over expressing cytochrome
P450 (Das, 1999). These studies also suggested that essential fatty acids reduce

expression of anti-apoptotic bcl2, possibly through P450 phosphorylation. Each of
these activities was associated with increased lipid peroxidation (Das, 1999).

Additionally, there is evidence that modification of the activities of certain growth
factors sensitive to essential fatty acids and their metabolites may be implicated in
the initiation of programmed cell death. Deprivation ofPDGF initiates apoptosis in
human glioma cells (Collins et al, 1994 and Westermark et al, 1995) possibly by

modulating the Ras.Raf pathway (Westermark et al, 1995). PDGF is secreted by
transformed glial cells and has been identified in neurones and their processes where
it stimulates astrocyte migration and proliferation (Westermark et al, 1995,

Engebraaten et al, 1993, Whelan et al, 1993 and Pedersen et al, 1994). PDGF and
PDGF receptors are frequently over-expressed in human glioma and specific and
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non-specific PDGF antagonists block the growth of some glioma cell lines in vivo

and in vitro (Kuratsu et al, 1995, Kurimoto et al, 1994, Kurimoto et al, 1995, and
Westermark et al, 1995). Additionally, it is known that the v-sis oncogene of simian
sarcoma virus, which is a retroviral homologue of the B-chain ofPDGF, induces

malignant glioma in experimental animals (Westermark et al, 1995). It is known that

eicosapentaenoic acid inhibits certain well characterised actions of PDGF including
inhibition of PDGF-mediated elevation of intracellular calcium (Locher et al, 1991).

There is also evidence that NGF inhibits growth and stimulates apoptosis in a human

anaplastic glioma cell line (Marushige et al, 1992), possibly by reducing the

expression of bcl2 (Kamada et al, 1996) and augmenting FAS-mediated killing

(Kamada et al, 1996 and Yashima et al, 1996). Arachidonic acid lipoxygenation may

stimulate nerve growth factor secretion in astroglial cultures (Carman-Krzan and

Wise, 1993). NGF may also inhibit tumour growth by stimulating lipid peroxidation

by stimulating the production of hydrogen peroxide (Weese et al, 1993). NGF-
mediated stimulation ofhydrogen peroxide may further increase NGF synthesis

(Pechan et al, 1992).

Additional research is also required to characterise which oxidative products of lipid
metabolism mediate tumour cytotoxicity, either directly or through modulation of
downstream molecular pathways. Although the stimulation of apoptosis in glioma
cell lines following addition of selenium has been attributed to increased reactive

oxygen intermediate generation (Nakatsu et al, 1996 and Zhu et al, 1996), relatively
little is known about the identity of the individual oxygen based free radicals which
are implicated in cell death pathways. Preliminary evidence suggests that increased
formation of conjugated dienes and/or hydroperoxyl groups in polyunsaturated fatty
acid molecules is pertinent to gamma-linolenic acid-induced cytotoxicity (Takeda et

al, 1993). Studies on human arterial smooth muscle cells indicated that moderately
oxidised low density lipoprotein, which contained the highest concentration of lipid

hydroperoxides, induced smooth muscle cell apoptosis within six hours, whereas
other forms of low density lipoprotein had no effect (Siow et al, 1999). It has been
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proposed that lipid hydroperoxides may stimulate cell death by inhibiting bcl2-
mediated rescue from apoptosis (Sandstrom, 1995 and Siow et al, 1999).

(d) Glioma radiosensitisation

The inherent radioresistance of human malignant glioma is a barrier to cure (Mansur
et al, 2000). Research is therefore required to characterise therapeutic interventions
which selectively increase the radiosensitivity of tumour cells while minimising

toxicity to surrounding normal brain. A number of studies have suggested that
essential fatty acids may fill both these criteria. Both radiation and essential fatty
acids stimulate tumour reactive oxygen intermediate generation (Barber and Wilbur,

1959, Dennis and Shimbamoto, 1990 and Yamaguchi et al, 1994), and it has been
demonstrated that potentiation of tumour oxidative activity is associated with tumour

cytotoxicity (Karmali et al, 1984, Das et al, 1987 and Begin et al, 1988). The
relevance of these studies to glioma radiosensitisation has been demonstrated in

vitro. Gamma-linolenic acid, eicosapentaenoic acid and docosahexaenoic acid
decreased the clonogenic capacity of the 36B10 rat astrocytoma cell line following

exposure to therapeutically relevant (0-1 OGy) doses of radiation (Vartak et al, 1997),
and a later study demonstrated that gamma-linolenic acid-mediated potentiation of

radiosensitivity was associated with tumour reactive oxygen species formation

(Vartak et al, 1998). However, these investigations did not evaluate the mode of cell
death resulting from combined essential fatty acid and radiation exposure, and the
kinetics of reactive oxygen species formation in these cells was not reported.

This study addressed these issues by demonstrating that arachidonic acid and

gamma-linolenic acid synergistically stimulated oxidative and apoptotic activity in
rat C6 glioma cells in conjunction with a therapeutically relevant dose of radiation

(Chapter 7). Initially, the individual effects of n-6 essential fatty acids and radiation
on glioma reactive oxygen species generation and apoptosis were investigated.
Arachidonic acid and gamma-linolenic acid administration was associated with an

early potentiation of oxidative activity (typically within the first three hours of the

investigation). Conversely, radiation-induced stimulation of tumour reactive oxygen

151



species production typically occurred 6-10 hours post-irradiation. This suggested
that radiation stimulated the induction of a reactive oxygen intermediate producing
mechanism different from that induced by arachidonic acid and gamma-linolenic

acid.

An early apoptotic response was also observed in C6 glioma cells exposed to

arachidonic acid or gamma-linolenic acid alone. In comparison, radiation-induced
stimulation of apoptosis occurred over a period of 12 hours and was maximal
between 6 and 8 hours post-irradiation. This increase was observed when the
stimulation of apoptosis induced by arachidonic acid or gamma-linolenic acid alone
was low. These preliminary experiments suggested that arachidonic acid and

gamma-linolenic acid and radiation may interact to potentiate reactive oxygen

intermediate generation and apoptotic events sensitive to lipid peroxides and their

products.

These results provide additional information on the controversy concerning the

physiological and pathological roles of oxidative metabolism. A pathological role for

oxygen based free radicals has been proposed following exposure to ionising
radiation and cytotoxic drugs (Halliwell and Gutteridge, 1985). Ultraviolet light, X-

rays and gamma-radiation stimulate the formation of reactive oxygen intermediates

including the hydroxyl radical, which has been implicated in the formation ofDNA
lesions known to increase genomic instability (Boon et al, 1984 and Drecher and

Junod, 1996). It has also been proposed that free radicals formed in vivo attack

biological molecules such as lipids, carbohydrates, proteins and DNA to induce
membrane damage, denaturation of protein, inactivation of enzymes, DNA strand

breakage and modification ofDNA bases, which may eventually cause a variety of

pathological events including cancer and ageing (Niki et al, 1991, Davies, 1991,

Sies, 1991 and Halliwell and Gutteridge, 1989).

The hypothesis that reactive oxygen intermediates are implicated in the initiation of

malignant transformation would predict that provision of essential fatty acids would
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potentiate cell damage and tumour proliferation by increasing the availability of
substrate upon which free radicals can act. However, in vivo and in vitro evidence
has indicated that essential fatty acids decrease tumour proliferation (Gonzalez,

1992) and stimulate apoptosis (Lai et al, 1996 and deKock et al, 1996). Additionally,
it has been shown that gamma-linolenic acid reduced radiation-induced damage to

porcine epidermis (Hopewell et al, 1993). An alternative hypothesis has been

proposed which states that while reactive oxygen intermediates may mediate some

degree of cell damage, in many situations it is free radical-induced loss ofmembrane
essential fatty acids which produces much of the pathology (Horrobin, 1991).

The present study supports the hypothesis which suggests a therapeutic role for
essential fatty acid-mediated stimulation ofglioma oxidative activity. However,
additional studies are required to evaluate the combined effects of radiation and
essential fatty acid administration in untransformed human brain tissue. Although an

in vitro study has indicated that the radiosensitising properties of gamma-linolenic
acid are not associated with normal cell toxicity (Vartak et al, 1997), and results

presented in this thesis indicate that tumour-associated normal brain reacts to

essential fatty acid stimulation with lower reactive oxygen species production in

comparison with human glioma tissue (Williams et al, 1997), additional research is

required to further clarify the role of oxidative metabolism in human brain in vivo.
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8.4 Summary

The following findings and conclusions have been made:-

1) Analysis of the peroxidative activity of cell preparations derived from fresh
human glioma samples and tumour-associated normal brain indicated that basal
cellular oxidation was significantly lower in tumour cells (p<0.0004-0.00001),

2) Arachidonic acid and gamma-linolenic acid stimulated glioma oxidation.
Statistical analysis of the kinetics of the essential fatty acid induced response

suggested that more aggressive tumours, for example glioblastoma multiforme,

responded in a more rapid and sustained manner than less malignant tumours e.g.

astrocytomas.

3) Preliminary immunohistochemical and flow cytometric analysis indicated a group

of cells which was identified as the tumour sub-population. These cells were
characterised by low oxidative activity but high sensitivity to exogenous

arachidonic acid and gamma-linolenic acid.

4) Arachidonic acid and gamma-linolenic acid were not associated with significant
loss of cell membrane integrity, as measured by the uptake of vital dyes,

suggesting that forms of cell death other than necrosis are responsible for

mediating the cytotoxic activities of arachidonic acid and gamma-linolenic acid.

5) FlowTUNEL analysis of human primary brain tumour preparations indicated that
arachidonic acid and gamma-linolenic acid stimulated apoptosis over 24 hours.

Long term cell culture experiments with the rat C6 glioma cell line demonstrated

dose-dependent episodes of increased apoptotic activity over a period of 7 days.

6) There was evidence of a synergistic stimulation cellular oxidation and apoptotic

activity by radiation and exogenous arachidonic acid and gamma-linolenic acid.
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Peaks in oxidative activity may correlate with transient reductions in cell

viability, as measured by the uptake ofvital dyes.

8.3 Conclusions

This study has provided evidence that glioma tissue has low basal oxidative activity
in comparison with tumour-associated normal brain. These observations support the

findings of Cheeseman et al (1984) and Bartoli and Galeotti (1979) who described
low levels of basal oxidative activity in breast and hepatic tumour tissue. Exogenous
arachidonic acid and gamma-linolenic acid stimulated peroxidative activity and

apoptosis in a grade dependant manner (Chapter 4). This finding is in agreement

with previous reports that essential fatty acids stimulate cellular oxidative activity

(Yamamoto, 1985, Porter, 1986, Esterbauer et al, 1987 and Meydani et al, 1990).

Studies on the cellular heterogeneity of human glioma samples have indicated that
the stimulation of reactive oxygen intermediate by exogenous arachidonic acid and

gamma-linolenic acid occurred in GFAP-positive cells (Chapter 5). This finding

provided further evidence supporting the hypothesis that human glioma cells possess

high sensitivity to exogenous arachidonic acid and gamma-linolenic acid.

Additionally, cells possessing high side angle scatter, which was indicative ofGFAP

positivity, rapidly underwent apoptosis when stimulated with exogenous arachidonic
acid and gamma-linolenic acid. These findings are consistent with the hypothesis
that sensitivity to exogenous essential fatty acids is inversely related to cellular

proliferative activity (Horrobin, 1990).

Phagocyte populations from lung cancer and malignant glioma patients have also
been analysed, and there is evidence that they responded with increased reactive

oxygen intermediate production to arachidonic acid and gamma-linolenic acid

(Chapter 3). The magnitude of this increase was generally less than that observed for
human glioma tissue (Chapter 5).
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Concentrations of arachidonic acid and gamma-linolenic acid shown to stimulate

oxidative activity induced apoptosis in human glioma tissue and the rat C6 cell line.
This finding concurs with the observation that gamma-linolenic acid induced

apoptosis in human cervical carcinoma (deKock et al, 1984). Preliminary evidence

suggested that this activity was also associated with inhibition of glioma

proliferation (Chapter 6). Gamma-linolenic acid had previously been shown to

inhibit the proliferation of a glioma cell line in vitro (Das et al, 1990). In addition,

potentiation of the oxidative and apoptotic response of the rat C6 cell line to

exogenous arachidonic acid and gamma-linolenic acid has been demonstrated in the

presence of a therapeutically relevant dose of radiation (Chapter 7). Analysis of the
kinetics of this stimulation indicated that radiation and exogenous arachidonic acid
and gamma-linolenic acid stimulated oxidation and apoptosis at different phases of
the 12 hour incubation period. However, radiation and arachidonic acid and gamma-
linolenic acid may interact to potentiate the stimulation of peroxidative and

apoptotic activity. These results concur with those ofVartak et al (1997 and 1998)
who demonstrated that gamma-linolenic acid inhibited the clonogenic capacity of a
rat astrocytoma cell line in conjunction with radiation.

These results are consistent with a potential therapeutic role for arachidonic acid and

gamma-linolenic acid in the management ofmalignant glioma. Additional research
is necessary to further characterise the pathways which mediate these cytotoxic
activities. Additionally, the response ofmalignant glioma to exogenous essential

fatty acid administration in vivo is not well characterised. Additional research is

necessary to investigate behavioural and toxic side effects of essential fatty acid
administration in vivo, in addition to biochemical and neuropathological responses.
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