
An evolutionary algorithm approach

to poetry generation

Hisar Maruli Manurung

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Communicating and Collaborative Systems

School of Informatics

University of Edinburgh

2003





Abstract

Poetry is a unique artifact of the human language faculty, with its defining feature being a

strong unity between content and form. Contrary to the opinion that the automatic generation

of poetry is a relatively easy task, we argue that it is in fact an extremely difficult task that

requires intelligence, world and linguistic knowledge, and creativity.

We propose a model of poetry generation as a state space search problem, where a goal state is

a text that satisfies the three properties of meaningfulness, grammaticality, and poeticness.

We argue that almost all existing work on poetry generation only properly addresses a subset

of these properties.

In designing a computational approach for solving this problem, we draw upon the wealth of

work in natural language generation (NLG). Although the emphasis of NLG research is on the

generation of informative texts, recent work has highlighted the need for more flexible models

which can be cast as one end of a spectrum of search sophistication, where the opposing end

is the deterministically goal-directed planning of traditional NLG. We propose satisfying the

properties of poetry through the application to NLG of evolutionary algorithms (EAs), a well-

studied heuristic search method.

MCGONAGALL is our implemented instance of this approach. We use a linguistic represen-

tation based on Lexicalized Tree Adjoining Grammar (LTAG) that we argue is appropriate for

EA-based NLG. Several genetic operators are implemented, ranging from baseline operators

based on LTAG syntactic operations to heuristic semantic goal-directed operators. Two eval-

uation functions are implemented: one that measures the isomorphism between a solution’s

stress pattern and a target metre using the edit distance algorithm, and one that measures the

isomorphism between a solution’s propositional semantics and a target semantics using struc-

tural similarity metrics.

We conducted an empirical study using MCGONAGALL to test the validity of employing EAs

in solving the search problem, and to test whether our evaluation functions adequately capture

the notions of semantic and metrical faithfulness. We conclude that our use of EAs offers

an innovative approach to flexible NLG, as demonstrated by its successful application to the

poetry generation task.

iii



Acknowledgements

I am hugely indebted to my supervisors, Henry Thompson and Graeme Ritchie, for their invalu-

able guidance and comments, constant support, and for their tolerance towards my consistently

creative interpretation of the word ‘deadline’.

I also owe many thanks to the various people I had fruitful discussions with concerning my

work, whether remotely or in person, among others Paul Bailey, Mark Dras, Mick O’Donnell,

Hasan Kamal, Nikiforos Karamanis, and Matthew Stone; and to those who provided me with

a wealth of advice and support in completing my thesis, among others Ben Curry, Jacques

Fleuriot, and Thomas Segler. I am especially indebted to my great friend and colleague, Ewen

Maclean, who ended his thesis on the same day as me.

I am very grateful to my thesis examiners, Chris Mellish and Richard Power, whose comments

and suggestions helped me to improve this thesis.

I am also very grateful to my numerous friends and colleagues here in Edinburgh, both at the

South Bridge and Buccleuch Place schools, who have provided me with great friendship, a

stimulating research environment, and put up with my temperament during the last stages of

my thesis-writing; also to all the extremely kind folks at the Scottish Language Dictionary; and

members of the Indonesian community in Edinburgh, particularly David and Yufrita Skyner.

Finally, my utmost gratitude to my family and to my beloved Anna, who showed more patience

and understanding than I probably deserved.

This work was possible due to funding from the World Bank QUE Project, Faculty of Computer

Science, Universitas Indonesia.

iv



Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified.

(Hisar Maruli Manurung)

v



To Anns.

vi



Table of Contents

1 Introduction 1

1.1 Motivation for this research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Methodological issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 What this thesis is not about . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Chapter outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Poetry and automatic poetry generation 7

2.1 What is poetry? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 First attempt at definition . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Characteristics and features . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 The issue of poetic license . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Our definition of poetry . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The process of creating poetry . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Automatic poetry generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Word salad generators . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Template and grammar-based generators . . . . . . . . . . . . . . . . 20

vii



2.3.3 Form-aware text generators . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Poetry generation systems . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Natural language generation 31

3.1 What is NLG? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Input specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2 Output specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Processes and tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Traditional NLG system organisation . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Alternative architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Better search methods for NLG . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.1 Hillclimbing and greedy search . . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Systematic, exhaustive search . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Stochastic search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Overgeneration and ranking methods . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Opportunistic planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Poetry generation from the NLG viewpoint . . . . . . . . . . . . . . . . . . . 50

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Evolutionary algorithms for poetry generation 55

4.1 Poetry generation as stochastic search . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Evolutionary algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii



4.2.4 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.5 Island model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.6 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.7 Implementation of constraints . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Linguistic representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Enforcing grammaticality through representation and operators . . . . . 69

4.3.2 Optimizing meaningfulness and poeticness: a trade-off . . . . . . . . . 70

4.4 Designing Evaluators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Identification of features to be evaluated . . . . . . . . . . . . . . . . . 72

4.4.2 Quantifying features . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.3 Combining scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Designing operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Baseline grammatical operators . . . . . . . . . . . . . . . . . . . . . 77

4.5.2 Knowledge augmented smart operators . . . . . . . . . . . . . . . . . 79

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Representations for MCGONAGALL, an Instance of EA-based NLG 81

5.1 MCGONAGALL in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Semantic representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.3 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Linguistic representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Lexicalized Tree Adjoining Grammars . . . . . . . . . . . . . . . . . . 86

ix



5.3.2 Deep lexicon and the sharing of syntactic information . . . . . . . . . 88

5.3.3 Derivation tree as primary data structure . . . . . . . . . . . . . . . . . 89

5.3.4 Feature-structures for unification . . . . . . . . . . . . . . . . . . . . . 91

5.3.5 Unification and nonmonotonicity . . . . . . . . . . . . . . . . . . . . 94

5.3.6 Obligatory adjunction and incomplete syntactic structures . . . . . . . 95

5.3.7 TAG and Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.8 Semantic-syntactic interface . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.9 Lexical representation . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Evaluation functions for poetry generation 109

6.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Decoding and scaling functions . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Metre evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.1 Minimum edit distance . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.2 Target and candidate form . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.3 Operation costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.4 Context-sensitive compensation scoring . . . . . . . . . . . . . . . . . 118

6.3.5 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.6 Validation of evaluation function . . . . . . . . . . . . . . . . . . . . . 122

6.3.7 Scoring potential of incomplete derivations . . . . . . . . . . . . . . . 126

6.4 Semantic Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.1 A model of semantic similarity . . . . . . . . . . . . . . . . . . . . . . 130

6.4.2 Mapping two semantic expressions . . . . . . . . . . . . . . . . . . . 132

x



6.4.3 An evaluation function for semantic similarity . . . . . . . . . . . . . . 139

6.4.4 Validation of evaluation function . . . . . . . . . . . . . . . . . . . . . 141

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Genetic operators for linguistic structure building 149

7.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2 Baseline operators: ensuring grammaticality . . . . . . . . . . . . . . . . . . . 151

7.2.1 BLINDADD operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2.2 BLINDDELETE operator . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.3 BLINDSWAP operator . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2.4 Testing the baseline operators . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Smart operators: achieving meaningfulness . . . . . . . . . . . . . . . . . . . 170

7.3.1 The principle of semantic consumption . . . . . . . . . . . . . . . . . 171

7.3.2 Computing the unrealized semantics . . . . . . . . . . . . . . . . . . . 172

7.3.3 Semantically-aware lexical choice . . . . . . . . . . . . . . . . . . . . 174

7.3.4 Smart signatures: grounding Slexical in terms of Starget . . . . . . . . . . 175

7.3.5 Semantically-motivated nonmonotonic operations . . . . . . . . . . . . 178

7.3.6 Testing the smart operators . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3.7 Comparison with PROTECTOR and SPUD . . . . . . . . . . . . . . . 185

7.4 Compound operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.4.1 Ensuring complete derivations . . . . . . . . . . . . . . . . . . . . . . 188

7.4.2 Ensuring complete derivations with greedy semantic consumption . . . 190

7.4.3 Simulating PROTECTOR and SPUD . . . . . . . . . . . . . . . . . . 196

7.4.4 Ensemble of operators . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

xi



8 Empirical Study and Discussion 207

8.1 Objective of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.2 Methodology and design of the study . . . . . . . . . . . . . . . . . . . . . . . 208

8.3 MCGONAGALL as form-aware generator . . . . . . . . . . . . . . . . . . . . . 209

8.3.1 Initial form-aware test . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.3.2 Plugging the holes: syntax-surface balance test . . . . . . . . . . . . . 219

8.3.3 Plugging the holes: complete derivation operators test . . . . . . . . . 223

8.3.4 Enjambment and linebreaking test . . . . . . . . . . . . . . . . . . . . 226

8.3.5 Effect of scale test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.3.6 Reduced grammar test . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8.3.7 Crossover operator test . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.3.8 Summary of discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.4 MCGONAGALL as tactical NLG component . . . . . . . . . . . . . . . . . . . 239

8.4.1 Initial tactical NLG test . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.4.2 Smart operators test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.4.3 PROTECTOR and SPUD-like operator test . . . . . . . . . . . . . . . 257

8.4.4 Summary of discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 262

8.5 MCGONAGALL as poetry generation system . . . . . . . . . . . . . . . . . . . 262

8.5.1 Initial poetry generation test . . . . . . . . . . . . . . . . . . . . . . . 263

8.5.2 Smart operators poetry generation tests . . . . . . . . . . . . . . . . . 269

8.5.3 Distribution of heuristics test . . . . . . . . . . . . . . . . . . . . . . . 272

8.5.4 Line-by-line generation . . . . . . . . . . . . . . . . . . . . . . . . . . 276

8.5.5 Summary of discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 286

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

xii



9 Conclusions and future work 289

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

A Target semantics and metre 295

A.1 Semantic targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

A.2 Metre targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

A.2.1 haiku . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

A.2.2 limerick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

A.2.3 mignonne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

B Metre compensation patterns 301

C Linguistic resources 305

C.1 Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

C.1.1 Closed class words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

C.1.2 Nouns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

C.1.3 Verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

C.1.4 Adjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

C.1.5 Additional lexicon for “Relativity” limerick . . . . . . . . . . . . . . . 323

C.2 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

C.2.1 Sentence frame trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

C.2.2 Verb phrases and related trees . . . . . . . . . . . . . . . . . . . . . . 328

C.2.3 Copula constructions and related trees . . . . . . . . . . . . . . . . . . 330

C.2.4 Noun phrases and related trees . . . . . . . . . . . . . . . . . . . . . . 331

C.2.5 Adverbial phrases and related trees . . . . . . . . . . . . . . . . . . . 333

xiii



C.2.6 Prepositional phrases and related trees . . . . . . . . . . . . . . . . . . 333

C.2.7 Relative clauses and related trees . . . . . . . . . . . . . . . . . . . . . 334

C.2.8 Miscellanous trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

C.2.9 Additional syntax for “Relativity” limerick . . . . . . . . . . . . . . . 338

D Empirical study statistics 343

D.1 MCGONAGALL as form-aware generator . . . . . . . . . . . . . . . . . . . . . 343

D.1.1 Initial form-aware test . . . . . . . . . . . . . . . . . . . . . . . . . . 343

D.1.2 Plugging the holes: syntax-surface balance test . . . . . . . . . . . . . 345

D.1.3 Plugging the holes: complete derivation operators test . . . . . . . . . 347

D.1.4 Enjambment and linebreaking test . . . . . . . . . . . . . . . . . . . . 347

D.1.5 Effect of scale test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

D.1.6 Reduced grammar test . . . . . . . . . . . . . . . . . . . . . . . . . . 349

D.1.7 Crossover operator test . . . . . . . . . . . . . . . . . . . . . . . . . . 352

D.2 MCGONAGALL as tactical NLG component . . . . . . . . . . . . . . . . . . . 353

D.2.1 Initial tactical NLG test . . . . . . . . . . . . . . . . . . . . . . . . . . 353

D.2.2 Smart operators test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

D.2.3 PROTECTOR and SPUD-like operator test . . . . . . . . . . . . . . . 356

D.3 MCGONAGALL as poetry generation system . . . . . . . . . . . . . . . . . . . 360

D.3.1 Initial poetry generation test . . . . . . . . . . . . . . . . . . . . . . . 360

D.3.2 Smart operators poetry generation tests . . . . . . . . . . . . . . . . . 363

D.3.3 Distribution of heuristics test . . . . . . . . . . . . . . . . . . . . . . . 363

D.3.4 Line-by-line generation . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Bibliography 367

xiv



List of Figures

2.1 An example of strong stress metre . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 An example of syllabic stress metre . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Ambiguity in partitioning metre into feet . . . . . . . . . . . . . . . . . . . . . 11

2.4 Sample output from ELUAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Sample output from ALFRED . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Hillaire Belloc’s “The Lion” . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 George and Ira Gershwin’s “Someone To Watch Over Me” . . . . . . . . . . . 16

2.8 Greeting card poetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Random concatenation of words . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10 Sentence templates and sample output from RETURNER . . . . . . . . . . . . 20

2.11 Rules and sample output from Masterman’s computerized haikus . . . . . . . . 21

2.12 Sample output from WASP (Gervás, 2000) . . . . . . . . . . . . . . . . . . . . 22

2.13 Sample output from Kurzweil’s “Cybernetic Poet” . . . . . . . . . . . . . . . . 23

2.14 Examples of (a)input message, (b)verse pattern, (c)output from adaptation, and

(d)output from revision in COLIBRI . . . . . . . . . . . . . . . . . . . . . . . 28

2.15 Examples of (a)input semantics and (b)output limerick from our chart genera-

tion system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 The three Reiter processes in a pipeline architecture . . . . . . . . . . . . . . . 36

xv



3.2 Variety of NLG system architectures . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 (a) The author-reviewer architecture of Oberlander and Brew (2000), and (b)

as it is implemented in a NITROGEN-like system . . . . . . . . . . . . . . . . 48

4.1 An idealization of poetry generation as state space search . . . . . . . . . . . . 56

5.1 Elementary trees in TAG consist of (a) Initial trees and (b) Auxiliary trees . . . 87

5.2 The substitution operation in TAG . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 The adjunction operation in TAG . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Specifying linguistic knowledge in the grammar and lexicon . . . . . . . . . . 90

5.5 A derivation tree captures the process of composition of elementary trees . . . 91

5.6 Unification of features in substitution . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Unification of features in adjunction . . . . . . . . . . . . . . . . . . . . . . . 92

5.8 Dynamically specifying local constraints using feature structures . . . . . . . . 93

5.9 The derivation tree facilitates access to original local feature structures during

adjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 Obligatory adjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.11 The semantics of an anchored elementary tree . . . . . . . . . . . . . . . . . . 99

5.12 Compositional semantics through unification of signatures . . . . . . . . . . . 100

5.13 (a) Anchor nodes of nouns and genitives (b) Computing antecedents . . . . . . 102

5.14 I T KO: “Kickoff tree” for a newly initialized individual . . . . . . . . . . . . . 105

6.1 An example of comparing stress patterns . . . . . . . . . . . . . . . . . . . . . 111

6.2 (a) the alignment between “intention” and “execution” that yields the mini-

mum edit distance, (b) represented as a list of operations (example from Juraf-

sky and Martin (2000)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Target forms for (a) a limerick, (b) a haiku, and (c) Belloc’s “The Lion” . . . . 115

xvi



6.4 The candidate form is a concatenation of lexical stress . . . . . . . . . . . . . 116

6.5 An alignment is pattern-matched against pre-defined patterns with associated

compensation scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 The effects of varying λ1 on sedit for “The Lion” . . . . . . . . . . . . . . . . 121

7.1 Examples of search operators on S-expression parse trees, taken from Angeline

(1996) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.2 Example of the BLINDADD operator and its effect on both derivation and de-

rived tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.3 choosing (a) node d in T , (b) node n in td , (c) tree tg, and (d) word l that results

in a valid operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.4 The stochastic depth-first search explicitly traverses four levels of representation 158

7.5 Example of the BLINDDELETE operator and its effect on both derivation and

derived tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.6 Example of BLINDDELETE where choice of d results in an invalid T
�

. . . . . 162

7.7 Example of the BLINDSWAP operator and its effect on both derivation and

derived tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.8 I T KO: “Kickoff tree” for a newly initialized individual . . . . . . . . . . . . . 166

7.9 Individuals where literals in Scandidate do not properly convey Starget . . . . . . 173

7.10 (a) SMARTADD should not violate the predicate-argument structure of Starget ,

(b) Smart signatures derived from Starget facilitate this . . . . . . . . . . . . . . 176

7.11 The target semantics used for testing in this section . . . . . . . . . . . . . . . 180

8.1 Sample limerick output using BLINDSWAP crossover operator . . . . . . . . 238

B.1 Pattern and cost for consecutive deletion of candidate syllables . . . . . . . . . 302

B.2 Pattern and cost for consecutive insertion of target syllables . . . . . . . . . . . 302

B.3 Patterns and cost for natural destressing of syllables . . . . . . . . . . . . . . . 303

xvii



B.4 Patterns and cost for natural stressing of syllables . . . . . . . . . . . . . . . . 303

C.1 Example of a node in the grammar . . . . . . . . . . . . . . . . . . . . . . . . 327

D.1 Maximum and average of best fitness scores for Ftarget
� (a)haiku, (b)limerick,

and (c)mignonne, initial form-aware test . . . . . . . . . . . . . . . . . . . . . 344

D.2 Maximum and average of best fitness scores for Ftarget
� (a)haiku, (b)limerick,

and (c)mignonne, syntax-surface balance test . . . . . . . . . . . . . . . . . . 346

D.3 Maximum and average of best fitness scores for Ftarget
� (a)haiku, (b)limerick,

and (c)mignonne, complete derivation operators test . . . . . . . . . . . . . . . 348

D.4 Maximum and average of best fitness scores for Ftarget
� (a)haiku, (b)limerick,

and (c)mignonne, enjambment and linebreaking test . . . . . . . . . . . . . . . 350

D.5 Maximum and average of best fitness scores for effect of scale test . . . . . . . 351

D.6 Maximum and average of best fitness scores for reduced grammar test . . . . . 351

D.7 Maximum and average of best fitness scores for crossover operator test . . . . . 352

D.8 Maximum and average of best fitness scores for (a) weighting 1, (b) weighting

2, and (c) weighting 3, Starget
� lionhalf, initial tactical NLG test . . . . . . . 354

D.9 Maximum and average of best fitness scores for (a) weighting 1, (b) weighting

2, and (c) weighting 3, Starget
� lion, initial tactical NLG test . . . . . . . . . 355

D.10 Maximum and average of best fitness scores for (a) weighting 1, (b) weighting

2, and (c) weighting 3, Starget
� lionhalf, smart operators test . . . . . . . . . 358

D.11 Maximum and average of best fitness scores for (a) weighting 1, (b) weighting

2, and (c) weighting 3, Starget
� lion, smart operators test . . . . . . . . . . . 359

D.12 Maximum and average of best fitness scores for (a)PROTECTOR-like and

(b)SPUD-like operator test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

D.13 Maximum and average of best fitness scores for Ftarget
� (a)haiku, (b)limerick

and (c)mignonne, initial poetry generation test . . . . . . . . . . . . . . . . . . 362

D.14 Maximum and average of best fitness scores for Ftarget
� (a)haiku, (b)limerick

and (c)mignonne, smart operators poetry generation test . . . . . . . . . . . . 364

xviii



D.15 Maximum and average of best fitness scores for Ftarget
� (a)haiku, (b)limerick

and (c)mignonne, distribution of heuristics test . . . . . . . . . . . . . . . . . 366

xix





List of Tables

5.1 Carnegie Mellon University pronouncing dictionary phoneme set . . . . . . . . 107

5.2 Lexical entry for ‘lion’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Alphabet of target syllables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Alphabet of candidate syllables . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Operation costs for substitution, insertion, and deletion . . . . . . . . . . . . . 118

6.4 Candidate forms for iambic pentameter . . . . . . . . . . . . . . . . . . . . . 123

6.5 Candidate forms for Figure 6.3(c) . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6 Fitness scores using default operation costs . . . . . . . . . . . . . . . . . . . 124

6.7 Modified insertion and deletion costs . . . . . . . . . . . . . . . . . . . . . . . 126

6.8 Fitness scores using modified operation costs . . . . . . . . . . . . . . . . . . 126

6.9 Sample lestimate values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.10 Example of applying Fbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.11 Prioritized criteria for selecting best proper match . . . . . . . . . . . . . . . . 137

6.12 Semantic similarity fitness scores for candidates (6.14) to (6.20) . . . . . . . . 143

6.13 Semantic similarity fitness scores for candidates (6.21) to (6.26) . . . . . . . . 146

7.1 Roundup of baseline operators . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 Testing of BLINDADDSUBSTITUTE . . . . . . . . . . . . . . . . . . . . . . . 166

xxi



7.3 Testing of BLINDADDADJOIN . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4 Testing of BLINDADDADJOIN on existing derivation . . . . . . . . . . . . . . 167

7.5 Testing of BLINDADDSUBSTITUTE and BLINDADDADJOIN with probabili-

ties of (a) 0.75 and 0.25, (b) 0.5 and 0.5, and (c) 0.25 and 0.75 . . . . . . . . . 168

7.6 Testing of BLINDDELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.7 Testing of BLINDSWAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.8 Roundup of smart operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.9 Testing of SMARTADDSUBSTITUTE . . . . . . . . . . . . . . . . . . . . . . . 180

7.10 The “dead-end” encountered by SMARTADDADJOIN, SMARTADDMATCH-

SUBSTITUTE, and SMARTADDMATCHADJOIN . . . . . . . . . . . . . . . . . 181

7.11 Testing of SMARTADDADJOIN on existing derivation . . . . . . . . . . . . . . 182

7.12 Testing SMARTADDMATCHSUBSTITUTE and SMARTADDMATCHADJOIN on

existing derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.13 Testing of SMARTADDSUBSTITUTE and SMARTADDADJOIN with probabili-

ties of (a) 0.75 and 0.25, (b) 0.5 and 0.5, and (c) 0.25 and 0.75 . . . . . . . . . 183

7.14 Testing SMARTDELETE on an individual constructed using a combination of

baseline and smart operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.15 Testing SMARTSWAP on an individual constructed using smart operators . . . . 185

7.16 Testing of BLINDCREATECOMPLETE . . . . . . . . . . . . . . . . . . . . . . 190

7.17 Testing of BLINDADJOINCOMPLETE . . . . . . . . . . . . . . . . . . . . . . 191

7.18 Testing of BLINDDELETECOMPLETE . . . . . . . . . . . . . . . . . . . . . . 191

7.19 Testing of SMARTCREATECOMPLETE . . . . . . . . . . . . . . . . . . . . . . 194

7.20 Testing of SMARTADJOINCOMPLETE . . . . . . . . . . . . . . . . . . . . . . 195

7.21 Testing of SMARTDELETECOMPLETE . . . . . . . . . . . . . . . . . . . . . . 196

7.22 Testing of PROTECTORLIKE . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.23 Testing of SPUDLIKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

xxii



7.24 Testing of SPUDLIKEDISCOURSE . . . . . . . . . . . . . . . . . . . . . . . . 202

7.25 Roundup of compound operators . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.1 Edit distance costs for initial form-aware test . . . . . . . . . . . . . . . . . . 211

8.2 Best individual for Ftarget
� haiku, initial form-aware test . . . . . . . . . . . 214

8.3 Best individual for Ftarget
� limerick, initial form-aware test . . . . . . . . . 214

8.4 Best individual for Ftarget
� mignonne, initial form-aware test . . . . . . . . . 215

8.5 Best individual for Ftarget
� haiku, syntax-surface balance test . . . . . . . . . 220

8.6 Best individual for Ftarget
� limerick, syntax-surface balance test . . . . . . . 220

8.7 Best individual for Ftarget
� mignonne, syntax-surface balance test . . . . . . . 221

8.8 Best individual for Ftarget
� haiku, complete derivation operators test . . . . . . 224

8.9 Best individual for Ftarget
� limerick, complete derivation operators test . . . 224

8.10 Best individual for Ftarget
� mignonne, complete derivation operators test . . . 225

8.11 Edit distance costs for enjambment and linebreaking test . . . . . . . . . . . . 227

8.12 Best individual for Ftarget
� haiku, enjambment and linebreaking test . . . . . 228

8.13 Best individual for Ftarget
� limerick, enjambment and linebreaking test . . . 228

8.14 Best individual for Ftarget
� mignonne, enjambment and linebreaking test . . . 229

8.15 Best individual for effect of scale test . . . . . . . . . . . . . . . . . . . . . . . 232

8.16 Best individual for reduced grammar test . . . . . . . . . . . . . . . . . . . . . 234

8.17 Best individuals for crossover operator test . . . . . . . . . . . . . . . . . . . . 237

8.18 lionhalf and lion encode the first 2 and 4 lines of “The Lion” . . . . . . . . 240

8.19 Three weighting schemes for the terms in the similarity equation . . . . . . . . 241

8.20 Best individual for weighting 1, Starget
� lionhalf, initial tactical NLG test . . 243

8.21 Best individual for weighting 2, Starget
� lionhalf, initial tactical NLG test . . 244

8.22 Best individual for weighting 3, Starget
� lionhalf, initial tactical NLG test . . 244

xxiii



8.23 Best individual for weighting 1, Starget
� lion, initial tactical NLG test . . . . . 245

8.24 Best individual for weighting 2, Starget
� lion, initial tactical NLG test . . . . . 246

8.25 Best individual for weighting 3, Starget
� lion, initial tactical NLG test . . . . . 247

8.26 Best individual for weighting 1, Starget
� lionhalf, smart operators test . . . . 251

8.27 Best individual for weighting 2, Starget
� lionhalf, smart operators test . . . . 252

8.28 Best individual for weighting 3, Starget
� lionhalf, smart operators test . . . . 252

8.29 Best individual for weighting 1, Starget
� lion, smart operators test . . . . . . . 253

8.30 Best individual for weighting 2, Starget
� lion, smart operators test . . . . . . . 254

8.31 Best individual for weighting 3, Starget
� lion, smart operators test . . . . . . . 255

8.32 Best individual for PROTECTOR-like operator test . . . . . . . . . . . . . . . 259

8.33 Best individual for SPUD-like operator test . . . . . . . . . . . . . . . . . . . 260

8.34 Best individual for Ftarget
� haiku, initial poetry generation test . . . . . . . . . 266

8.35 Best individual for Ftarget
� limerick, initial poetry generation test . . . . . . . 267

8.36 Best individual for Ftarget
� mignonne, initial poetry generation test . . . . . . . 268

8.37 Best individual for Ftarget
� haiku, smart operators poetry generation test . . . 270

8.38 Best individual for Ftarget
� limerick, smart operators poetry generation test . 270

8.39 Best individual for Ftarget
� mignonne, smart operators poetry generation test . 271

8.40 Best individual for Ftarget
� haiku, distribution of heuristics test . . . . . . . . 273

8.41 Best individual for Ftarget
� limerick, distribution of heuristics test . . . . . . 274

8.42 Best individual for Ftarget
� mignonne, distribution of heuristics test . . . . . . 275

8.43 Arthur H.R. Buller’s ‘relativity’ limerick with relativity semantic target . . 277

8.44 Modified ‘relativity’ limerick consisting of four complete sentences . . . . . . 277

8.45 Best individual for entire relativity limerick . . . . . . . . . . . . . . . . . . . 280

8.46 Best individual for first line, relativity limerick . . . . . . . . . . . . . . . . . 281

xxiv



8.47 Best individual for second line, relativity limerick . . . . . . . . . . . . . . . . 281

8.48 Best individual for third and fourth line, relativity limerick . . . . . . . . . . . 281

8.49 Best individual for last line, relativity limerick . . . . . . . . . . . . . . . . . . 282

8.50 Best individual for first line, relativity limerick, double semantic fitness . . . . 284

8.51 Best individual for second line, relativity limerick, double semantic fitness . . . 284

8.52 Best individual for third and fourth line, relativity limerick, double semantic

fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

8.53 Best individual for last line, relativity limerick, double semantic fitness . . . . . 285

A.1 Our slightly altered version of Belloc’s “The Lion” . . . . . . . . . . . . . . . 295

A.2 lionhalf encodes the first two lines of the poem in Table A.1 . . . . . . . . . 296

A.3 lion encodes all four lines of the poem in Table A.1 . . . . . . . . . . . . . . 296

A.4 Arthur H.R. Buller’s ‘relativity’ limerick . . . . . . . . . . . . . . . . . . . . . 296

A.5 relativity1 to relativity4 semantic targets . . . . . . . . . . . . . . . . . 297

A.6 haiku target form and sample haiku by John Cooper Clarke . . . . . . . . . . 297

A.7 limerick target form and sample limerick from Lear (1947) . . . . . . . . . . 298

A.8 mignonne target form and original poem by Clément Marot . . . . . . . . . . . 300

C.1 List of closed class words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

C.2 List of nouns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

C.3 List of verbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

C.4 List of adjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

C.5 List of additional words for ‘relativity’ limerick (Section 8.5.4) . . . . . . . . . 326

D.1 Summary statistics of best fitness scores from final populations for initial form-

aware test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

xxv



D.2 Summary statistics of best fitness scores from final populations for syntax-

surface balance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

D.3 Summary statistics of best fitness scores from final populations for complete

derivation operators test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

D.4 Summary statistics of best fitness scores from final populations for enjambment

and linebreaking test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

D.5 Summary statistics of best fitness scores from final populations for effect of

scale test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

D.6 Summary statistics of best fitness scores from final populations for reduced

grammar test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

D.7 Summary statistics of best fitness scores from final populations for crossover

operator test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

D.8 Summary statistics of best fitness scores from final populations for Starget
� lionhalf,

initial tactical NLG test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

D.9 Summary statistics of best fitness scores from final populations for Starget
�

lion, initial tactical NLG test . . . . . . . . . . . . . . . . . . . . . . . . . . 356

D.10 Summary statistics of best fitness scores from final populations for Starget
� lionhalf,

smart operators test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

D.11 Summary statistics of best fitness scores from final populations for Starget
� lion,

smart operators test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

D.12 Summary statistics of best fitness scores from final populations for PROTEC-

TOR and SPUD-like operator test . . . . . . . . . . . . . . . . . . . . . . . . 360

D.13 Summary statistics of best fitness scores from final populations for initial po-

etry generation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

D.14 Summary statistics of best fitness scores from final populations smart operators

poetry generation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

D.15 Summary statistics of best fitness scores from final populations for distribution

of heuristics test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

xxvi



D.16 Summary statistics of best fitness scores from final populations, ‘relativity’

limerick generation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

xxvii





Chapter 1

Introduction

This thesis describes a model of computer generation of poetry as a state space search problem

where a goal state is a text that satisfies the properties of grammaticality, meaningfulness,

and poeticness. It advocates the solving of this problem using evolutionary algorithms, a well

known stochastic search technique. This model was implemented in our program, MCGONA-

GALL, and an empirical study using this program was conducted.

In this chapter, we will first provide the context and motivation for this research, and discuss

the methodological issues that underlie our work. We then present a very brief overview of

the work contained in this thesis, along with the contributions that this thesis makes. We then

present an outline for the remainder of this thesis.

1.1 Motivation for this research

There are two different factors that motivate the research work presented in this thesis. The

first is the more philosophically-oriented aim of showing that computer programs can indeed

autonomously generate texts that are considered poetic, as this can be seen as an indication of

general intelligence. We shall call this the AI motivation. The second is the more technically-

oriented aim of exploring novel architectures that provide the degree of flexibility which recent

work in natural language generation calls for. We shall call this the NLG motivation. We will

now discuss these two motivations in more detail:

1. The AI motivation

1



2 Chapter 1. Introduction

From as early as 1962, the generation of poetry by computers, whether autonomous or

supervised, has been a subject of much interest (Bailey, 1974). The reason for this inter-

est can be attributed to the fact that certain tasks are often cited as being key benchmarks

of general human intelligence. Minsky (1963) claims that a suitable goal for AI research

is to get a computer to do “ ����� a task which, if done by a human, requires intelligence to

perform”. As remarked by Binsted (1996), these benchmarks are changeable: before the

advent of systems such as Deep Blue, people considered the ability of programs to beat

chess grandmasters as such a benchmark for AI. Now, more artistic-based tasks, such as

the autonomous generation of music, visual art, stories, and poetry are often proposed to

be the defining benchmark.

Unfortunately, given the notoriously subjective nature of appreciating and critiquing po-

etry, such poetry generation systems have not been subjected to serious scientific treat-

ment until recent works such as Gervás (2002).

Although this motivation does indeed serve as the main inspiration for our work, it must

be stated clearly that the passing of this benchmark is not something that we have set

out to achieve in this thesis. We believe that the generation of ‘genuine’ poetry, i.e. texts

which members of the general public can observe and with a high degree of certainty

state are indeed poetry, is not the goal of this study. We believe that this is far beyond

the scope of a single thesis, and that research work in this area is in far too early a stage

to be achieving such ambitions. Instead, our aim is to provide a baseline model for the

poetry generation task which stands up to the rigours of scientific research, and which

can serve as a common framework for future work in this field.

2. The NLG motivation

As will become evident throughout this thesis, our research work into poetry generation

is heavily influenced by the discipline of natural language generation (NLG), the sub-

field of artificial intelligence that focuses on the production of understandable texts in

a human language based on non-linguistic communicative goals (see Chapter 3). Since

poetry is a specific genre of human language, our task is therefore a highly specialized

instance of NLG.

In recent years, NLG researchers have called for more flexible approaches to the gen-

eration task. In particular, the rigidly architectured conventional approach to NLG is

unable to account for situations where interdependent linguistic decisions are required



1.2. Methodological issues 3

for the generation of fluent and natural-sounding texts, or where the communicative goal

is vague (see Section 3.2). As poetry is an extreme case of natural language which exac-

erbates these problems, it is a useful testing domain for ideas and techniques that attempt

to solve these problems, and it is our hope that the architecture and techniques introduced

in this thesis may be applicable to other genres of text as well.

1.2 Methodological issues

As mentioned above, research work into the generation of poetry suffers from the inherently

subjective nature of the evaluation and critiquing of art. As Binsted (1996) remarks, it is

difficult, if not impossible, to disprove the claim “this is art”.

For a model to be scientific, it must be falsifiable. That is, it must make certain predictions

about the phenomena it is intended to describe, to which one can devise a possible experi-

ment to prove these predictions wrong. A falsifiable model of poetry makes predictions about

whether a given text is a poem or not, and it should be possible to test whether this prediction

is accurate through independent, objective evaluation.

Thus, one should be able to use a falsifiable model of poetry, and poetry generation, to test

whether the output of a given system, which claims to generate poetry, is indeed poetry or not.

In our research, we choose to steer clear of the difficult questions of creative and artistic merit of

poetry, whether generated by humans or computers, and of the abstract and subjective aspects

of imagery, metaphor, and figurative language. Instead, we concentrate on the more concretely

observable features of poetry, i.e. metre and propositional semantics.

We believe that our restricted definition of poetry presented in Section 2.1.4, which is used

throughout our thesis, both captures the essential notions of a subclass of poetry, and crucially,

can be used as a basis for falsifiable experiments.

1.3 Overview of the thesis

This thesis describes our efforts to address the issues raised in Section 1.1. Based on our re-

stricted definition of poetry as texts that simultaneously satisfy the properties of grammaticality,



4 Chapter 1. Introduction

meaningfulness, and poeticness (Section 2.1.4), we proposed a model of poetry generation as

a state space search, which we solve using evolutionary algorithms, or EAs (Chapter 4).

Three crucial aspects of an EA system were addressed for our specific task: design of represen-

tational scheme, evaluation function, and genetic operators. We employ a flat semantic repre-

sentation and a linguistic representation based on LTAG (Chapter 5). Two evaluation functions

were developed: metre similarity (Section 6.3) and semantic similarity (Section 6.4), both of

which employ structural alignment algorithms to yield a measure of similarity between a target

structure and the appropriate features of a candidate solution. We developed an array of genetic

operators which stochastically modify LTAG derivation trees in a nonmonotonic fashion while

always ensuring well-formedness (Section 7.2). More semantically motivated operators, akin

to tactical NLG systems, were also developed (Section 7.3). All this was implemented in our

system, MCGONAGALL.

Finally, we conducted an empirical study using MCGONAGALL to justify our approach of us-

ing EAs to solve our problem of poetry generation, and to validate our metre and semantic

evaluation functions as measures of conformance to metre and semantic faithfulness (Chap-

ter 8).

1.3.1 Contributions of this thesis

1. This thesis presents a restricted definition of poetry (Section 2.1.4), and a model of poetry

generation based on this definition (Section 4.1), which is computational, falsifiable, and

implementable. Although it does not account for all the myriad aspects of poetry, we

believe it is a useful framework for future research into this subject.

2. This thesis proposes an alternative technique for NLG based on evolutionary algorithms.

Similar work has been done before, e.g. Mellish et al. (1998a) and Cheng (2002), but

has typically been confined to a very specific subtask of the generation process, e.g. text

structuring, aggregation.

3. This thesis provides a computational model of metre similarity (Section 6.3). Although

it is based on a well-known existing method of structural alignment, i.e. the minimum

edit distance, we believe we have made a significant contribution in explicitly defining a

similarity metric for the metre patterns exhibited by human texts.

4. This thesis proposes an LTAG-based representational scheme (Section 5.3), and an array



1.4. Chapter outline 5

of genetic operators using this representation (Chapter 7), for the generation of linguistic

structures in the nonmonotonic fashion as required by evolutionary algorithms. In partic-

ular, these operators allow the stochastic, nonmonotonic incremental generation of texts

which guarantee linguistic well-formedness (Section 7.2) and are semantically motivated

(Section 7.3). We believe this is a contribution not only for poetry generation, but the

NLG research field in general.

5. The implemented system described in this thesis, MCGONAGALL, is a proof-of-concept

system that can be employed as a testbed platform for other NLG tasks that require

flexibility in achieving surface constraints, or where communicative goals are vague.

1.3.2 What this thesis is not about

As mentioned in Section 1.2, this thesis does not discuss issues of creativity theory and artistic

merit. Furthermore, although these are briefly alluded to in Sections 2.1.2 and 4.4, we do

not consider the more abstract features of poetry such as metaphor, imagery, and figurative

language.

1.4 Chapter outline

The following chapters in this thesis describe our model of poetry generation using evolutionary

algorithms, our implementation of this model, MCGONAGALL, and the results of an empirical

study carried out using MCGONAGALL.

Chapter 2 discusses the salient features of poetry and presents a restricted definition of poetry

for the purpose of this thesis. It also discusses existing poetry generation systems, and whether

or not they do indeed generate poetry as previously defined.

Chapter 3 provides an overview of the natural language generation (NLG) literature. In par-

ticular, it identifies certain methods that are relevant to our task, and provides a characterisation

of our poetry generation task from an NLG viewpoint.

Chapter 4 describes our model of poetry generation as a state space search, and advocates the

use of evolutionary algorithms (EAs) as an appropriate mechanism to solve the search problem.



6 Chapter 1. Introduction

It then presents, on a theoretical level, a description of the representational scheme, evaluation

functions, and genetic operators that are appropriate for poetry generation using EAs.

Chapters 5 to 7 describe the representational scheme, evaluation functions, and genetic oper-

ators of MCGONAGALL, our implemented instance of EA-based poetry generation presented

in Chapter 4.

Chapter 8 reports on an empirical study that we carried out using MCGONAGALL to justify our

approach of using EAs to solve our problem of poetry generation, and to validate our metre and

semantic evaluation functions as measures of conformance to metre and semantic faithfulness.

Chapter 9 presents a summary of the conclusions that can be drawn from the work presented

in this thesis, and suggests possible avenues of further work.



Chapter 2

Poetry and automatic poetry

generation

In this chapter we will discuss poetry, the general target domain of our research. We will

provide a general definition of poetry by first surveying the literature and describing its defining

characteristics, before stating the restricted definition of what we consider to be poetry for the

purpose of this thesis.

We will then discuss the process of poetry creation and give a brief survey of existing work on

the automatic generation of poetry.

2.1 What is poetry?

2.1.1 First attempt at definition

Providing a concrete definition of poetry that does it justice is very difficult, as poetry varies

greatly between genres, each with its own characteristics, such that for any attempted definition,

one can probably find a poem that serves as a counterexample for that defintion.

Furthermore, the definition of poetry, like other forms of artistic expression, is highly subjec-

tive. The sort of recursive definitions such as “a poem is a poem because people call it a

poem”, albeit in principle perhaps most accurate, does not provide us with much insight. How-

ever, the following definition from the Oxford English Dictionary makes for a good starting

7



8 Chapter 2. Poetry and automatic poetry generation

point:

“Composition in verse or metrical language, or in some equivalent patterned ar-
rangement of language; usually also with choice of elevated words and figurative
uses, and option of a syntactical order, differing more or less from those of ordi-
nary speech or prose writing.”

Additionally, Levin (1962) states that:

“Poetry is a literary form in which language is used in a concentrated blend of
sound and imagery to create an emotional response.”

These definitions point to a strong interaction between a poem’s form and content. Essen-

tially, this means that a poem’s diction and grammatical construction affects the message that it

conveys to the reader over and above its obvious denotative meaning. Various phonetic devices

such as rhythm, rhyme, alliteration and assonance work in conjunction with the propositional

meaning being conveyed to create the whole effect that a reader experiences and appreciates.

Consider the difficulties of poetry translation in comparison to the translation of other docu-

ments such as newspaper articles and software user manuals. A straightforward translation of

a poem may very well retain the denotational meaning but lose its emotional impact. Levin

(1962) goes on to restate this claim of a strong sense of unity between concept and form in the

following quote:

“... in poetry the form of the discourse and its meaning are fused into a higher unity
... “form” in fact embraces and penetrates “message” in a way that constitutes a
deeper and more substantial meaning than either abstract message or separable
ornament.”

This contrasts with the commonly-held linguistic notion that a piece of text serves purely as a

medium for conveying its semantic content (see Section 3.1).

2.1.2 Characteristics and features

Here we identify various aspects that are considered to be defining features that make up the

look and sound of poetry, and set it clearly apart from other types of texts, e.g. prose.

1. Rhythm and metre

The organization of patterns in the rhythm of natural language, particularly in poetry, is

known as metre. The rhythm in poetry is more noticeable than in prose because it is

more regularly defined (Attridge, 1995, Beeferman, 1996).



2.1. What is poetry? 9

Before proceeding any further, however, it is best to clarify what is meant by stress, a

term which will appear extensively throughout this section. Stress is a rhythmic property

of syllables, functioning as boundary markers for the division of utterances into feet, the

fundamental rhythmic unit of speech. Thompson (1980) differentiates between abstract

stress and manifest salience, where stress is the potential locus of salience, which is

what actually occurs in an utterance. The actual acoustic phenomenon is a combination

of length, pitch, and loudness, approximately in that order. For our purposes, we only

consider stress as an abstract rhythmic unit, without actually considering these acoustic

features. We do not use the term salience, simply because in the study of poetry and

literature it has been well established to use the term stress instead.

Sansom (1994) identifies four different kinds of metre:

(a) Strong stress metre

Here the sense of rhythm is achieved through having a certain number of syllables

in a line being strongly stressed, or accented. Between these strongly stressed syl-

lables there may be many redundant unstressed syllables, but the lines are isochronous,

meaning that despite the number of intervening unstressed syllables, the stressed

syllables fall at more or less regular intervals. Examples of poetry that use this

metre are the Old English poems such as Beowulf. Another easily recognizable

example is a fragment of the popular children’s rhyme, Three Blind Mice, in Fig-

ure 2.1. Note that the � at the end of the last line denotes silent stress, which is

similar to a rest in music.

They all ran after the farmer’s wife,

She cut off their tails with a carving knife,

Did you ever see such a thing in your life,

as three blind mice. � 1

Figure 2.1: An example of strong stress metre

This metre is similar to what is known as sprung verse, made popular by the poet

Gerald Manley Hopkins (Hobsbaum, 1996).

(b) Syllabic metre

This metre is concerned only with the number of syllables that appear in a line.



10 Chapter 2. Poetry and automatic poetry generation

This is used in languages that do not have a sense of stress, e.g. French poetry.

(c) Quantitative metre

This metre was supposedly used by the ancient Greek and Roman poets, where it

is claimed that attention was paid to the actual time needed to pronounce syllables,

i.e. in theory, “bit”, “bid”, and “bide” have increasingly longer pronounciation

times.

(d) Syllabic stress metre

This is the most common form of metre in English poetry, and can be seen as a

combination of the first two types of metre. As well as paying attention to the

pattern of stressed and unstressed syllables, lines are divided up into rhythmic units

known as feet, which have a pre-defined syllable count.

In syllabic stress metre poetry, there are certain types of metrical feet, defined by

the syllable length and where the stressed syllable appears. These feet are based on

the classical metrics of Latin and Greek. For example, some of the most common

feet are:� Trochee, 2 syllables, the stress falling on the first one, e.g. incest� Iamb, 2 syllables, the stress falling on the last one, e.g. inject� Dactyl, 3 syllables, the stress falling on the first one, e.g. terrible� Amphibrach, 3 syllables, the stress falling on the middle one, e.g. incumbent� Anapest, 3 syllables, the stress falling on the last one, e.g. interrupt

Certain sequences of feet are very well-known and often-used patterns. For exam-

ple, a sequence consisting of 5 iambs, also known as iambic pentameter, is one of

the most widely-used metres. It is claimed that this is probably because it most

closely resembles the rhythm of naturally occuring speech. Figure 2.2 shows a fa-

mous example of this metre, the opening stanza from Thomas Grey’s Elegy Written

in a Country Churchyard. The / symbol marks a foot boundary.

Note that the main difference from the poem in Figure 2.1 is that here the number

of unstressed syllables is maintained to be equal. To achieve this constrained form,

several less conventional grammatical constructions have been used, for example



2.1. What is poetry? 11

The cur/few tolls / the knell / of par/ting day,

The low/ing herd / wind slow/ly o’er / the lea,

The plough/man home/ward plods / his wea/ry way,

And leaves / the world / to dark/ness and / to me.

Figure 2.2: An example of syllabic stress metre

the placement of the adverb homeward in the third line. Moreover, boundaries of

metrical feet do not necessarily coincide with word and constituent boundaries. For

instance, the words curfew and parting are split up into different feet.

In our account of syllabic stress metre, we abandon the concept of feet, and in-

stead concentrate on its underlying features, namely the number of syllables and

the placement of stress. By doing this, we conveniently sidestep the huge debates

that arise over the division of metre into feet, a problem which is ambiguous as

shown in Figure 2.3. This account is advocated by, among others, Attridge (1995).

iamb amphibrach
(w s) / (w s w)����� and leaves the world to �����
(w s w) / (s w)

amphibrach trochee

Figure 2.3: Ambiguity in partitioning metre into feet

2. Rhyme and other phonemic patterns

Aside from rhythmic patterns, poetry also employs many phonemic patterns, both with

consonants and with vowels. They commonly appear at the end of lines in a poem,

but they also work with words in the middle of a line. The various phonemic patterns

are (Roberts, 1986):

(a) Rhyme occurs between two words when their last stressed vowel and the sounds

that follow it match, e.g. biology and ideology. A distinction is often made between

masculine rhyme, where only one syllable rhymes, e.g. butt and shut, and feminine

rhyme, which occurs over two or more syllables, and typically only the first one is

stressed, e.g. lighting and fighting.



12 Chapter 2. Poetry and automatic poetry generation

(b) Alliteration refers to the repetition of a word’s opening consonant sounds, e.g. butt

and bend.

(c) Assonance is when only the vowel sound remains the same, e.g. butt and hull. This

is sometimes referred to as a half or partial rhyme.

(d) Consonance is when only the closing consonant sound remains the same, e.g. butt

and hate.

3. Figurative language

Figurative language is the means used by poets to enrich the experience of poetry inter-

pretation through rich wordplay and imagery. Strictly speaking, figurative language is

not exclusive to poetry, as it is often used in many other types of texts as well.

Various methods known as figures of speech, or tropes, are employed. They operate at

two different levels, namely the symbolic and rhetorical level (Quinn, 1982):

(a) Symbolic level: here analogies, metaphor, and the connotative sense of carefully

chosen words are used to convey meaning. One example is synechdoche, which is

the substitution of a part for a whole, for example when Marlowe writes “Was this

the face that launched a thousand ships, and burnt the topless towers of Ilium?”

(b) Rhetorical level: here special linguistic structures are used to emphasize certain

points or to create an effect unachievable by conventional linguistic means. One

example is hyperbaton, which is the intended deviation from conventional word

order of a single constituent, for example when Robert Frost writes “I was in my

life alone”.

Quinn (1982) lists a taxonomy of 60 different types of figures of speech, both at the

symbolic and the rhetorical level.

2.1.3 The issue of poetic license

The last characteristic mentioned in the previous section, i.e. figurative language, poses an im-

portant philosophical issue that we believe must be addressed by research on poetry generation.

As mentioned above, figurative language can be found in all genres of text, yet is most often

associated with poetry, due to what is referred to as poetic license. According to the Oxford



2.1. What is poetry? 13

English Dictionary, poetic license is the “deviation from recognized form or rule, indulged in

by a writer or artist for the sake of effect”, whereas the Oxford Advanced Learner’s Dictionary

states that it is the “freedom to change the normal rules of language when writing verse (e.g.

by reversing word order, changing meaning etc.)”. The crucial question is: when appraising

the output of a software program that is claimed to generate poetry, to what extent do we hold

poetic license accountable for deviations that may be present in the text?

When assessing the output of Masterman’s “computerized haikus” (Masterman, 1971), Boden

(1990) claims that:

“Readers of [poetry] are prepared to do considerable interpretative work. ����� In
general, the more the audience is prepared to contribute in responding to a work
of art, the more chance there is that a computer’s performance (or, for that matter,
a human artist’s) may be acknowledged as aesthetically valuable ����� Much of the
beauty, might one say, is in the eye of the beholder ����� Hence poetry, especially
poetry of a highly minimalist type (such as haiku), is more tolerant of programmed
production than prose is.”

The implication here is that the automatic generation of poetry is relatively easy, due to the fact

that the burden of assigning meaning to a text is carried by the reader.

We believe that those who rely on this argument to claim that a given system generates po-

etry are misusing poetic license, and that by taking such an argument to the extreme, one can

potentially justify any randomly created text as being poetry.

In fact, we believe that the opposite of Boden’s claim should be the case: the automatic genera-

tion of poetry is harder than that of prose. The reason is that poetry is even further constrained

by rules of form that prose need not adhere to. If anything, the invoking of poetic license

to turn a phrase requires even greater mastery of the language than that for producing prose.

Deviations from the rules and norms must be justified.

2.1.4 Our definition of poetry

For a hypothesis to be scientific it must be falsifiable, i.e. there must be a possible experiment

or discovery which would prove the hypothesis false. This is the basis of Sir Karl Popper’s

principle of falsifiability (Johnson-Laird, 1988). If we follow the line of argumentation from

Boden in the previous section and allow any randomly generated output from a program to

be considered poetry, then the hypothesis that that program is indeed generating poetry is not



14 Chapter 2. Poetry and automatic poetry generation

falsifiable.

Binsted (1996) points out that falsifiable models are essential for AI research work on subjec-

tively defined artifacts, which in her case consists of jokes. We believe research into poetry

generation must step up to the demands of falsifiability.

To illustrate the problem, Figures 2.4 and 2.5 are sample outputs from existing “poetry gener-

ators” that we discuss in greater detail in Section 2.3. They are known to employ pure random

processes. We make no claims as to being able to determine whether these texts are indeed po-

ems or not. More to the point, we feel that the very decision of whether these texts are poems

or not is beyond the scope of this thesis.

Sparkles of whiteness fly in my eyes,

The moan of stars swang branches of trees,

The heart of time sings in the snowy night.

Seconds of Eternity fly in grass,

The Clock of rain turns,

Death of the Apples,

The Equinox penetrates the words.

Figure 2.4: Sample output from ELUAR

wheresoever amorphous – just barely the nightclub,

howsoever apostolic amidst a calamity,

a dragon will irrigate a Copernican currant – an emphysema.

His cowlick must have incinerated a housebroken revelry as per a melamine.

your inactive hydrocarbon could atone.

Figure 2.5: Sample output from ALFRED

Therefore, our account of poetry hinges primarily on its observable aspects, e.g. rhythmic pat-

terns, rhyme, and propositional meaning. Although we clearly recognize the presence of as-

pects such as imagery, metaphor, and figurative language in poetry, we feel it would be far too

difficult to tackle them in this thesis. Firstly, it is not fully understood what the mechanisms

that lie behind these aspects are, and more crucially, it is difficult to observe and analyse these

aspects.

Our research seeks to account for the unique interaction between form and content in poetry as

discussed in Section 2.1.1. If we can construct a model of poetry generation which is able to



2.1. What is poetry? 15

capture the interaction between the dimensions of metre and propositional content, hopefully

it will be extensible to the more abstract aspects in the future.

As there is no clear definition of what counts as “valid” poetry, for the purpose of this thesis

we will focus our attention on texts of which the following three properties hold:� Meaningfulness

This property states that a text must intentionally convey some conceptual message

which is meaningful under some interpretation, i.e. with respect to a given knowledge

base.

This is a property that can be said to be held by all types of texts, not just poetry.

Essentially, by stipulating this property, we are more critical of what we consider not

to be poetry, i.e. texts which cannot clearly be said to intentionally convey a conceptual

message. We believe the texts in Figures 2.4 and 2.5 fall into this category.

M is the set of all texts that fulfill the property of meaningfulness.� Grammaticality

A poem must obey linguistic conventions that are prescribed by a given grammar and

lexicon. This is perhaps the most obvious requirement that by definition all natural lan-

guage artifacts should fulfill. However, in the context of poetry, it is important to state

explicitly, as there is the danger of invoking poetic license (see previous section). De-

spite the notion of grammaticality in poetry being perhaps less constrained than that of

ordinary texts, they are nonetheless governed by rules of figurative language tropes. For

example, the use of hyperbaton in Section 2.1.2 allows for the line “I was in my life

alone”, but the line *“In I life was alone my” would be unacceptable.

Essentially, we are ruling out simply random sequences of words.

G is the set of all texts that fulfill the property of grammaticality.� Poeticness

A poem must exhibit poetic features, and we must stress again that our definition of

poetry hinges on its observable aspects, and thus in the case of poeticness we refer to

phonetic features such as rhythmic patterns and rhyme. We make the distinction between



16 Chapter 2. Poetry and automatic poetry generation

poetic constraints, which must be satisfied, and poetic preferences, which are desirable

but not necessary.

P is the set of all texts that fulfill the property of poeticness.

For our purposes, then, A poem is a natural language artifact which simultaneously fulfills

the properties of meaningfulness, grammaticality and poeticness. In other words, a text x

is a poem if x
� M � G � P .

Note that for this definition to be complete, these properties, particularly meaningfulness and

poeticness, must be specified further. We deliberately choose not to do so here to preserve the

generality of the model. In Section 5.1 we explicitly define, for the purposes of our imple-

mented system, MCGONAGALL, our interpretations of meaningfulness as semantic similarity

and poeticness as metre similarity.

This characterization, particularly poeticness, suggests a “classical” account of poetry, i.e. one

where adherence to regular patterns in form is paramount. One prime candidate is the syllabic

stress metre poetry (Section 1) that obeys certain rhyming patterns, commonly referred to as

rhythm and rhyme poetry. This genre is often regarded as being relatively simple and traditional

poetry, and can be found, among others, in popular music lyrics, children’s poetry, and greeting

card poetry. See Figures 2.6 to 2.8 for examples.

The Lion, the Lion, he dwells in the waste,

He has a big head and a very small waist;

But his shoulders are stark, and his jaws they are grim,

And a good little child will not play with him.

Figure 2.6: Hillaire Belloc’s “The Lion”

There’s a saying old, says that love is blind.

Still, we’re often told, “Seek and Ye shall find”.

Figure 2.7: George and Ira Gershwin’s “Someone To Watch Over Me”

Far and away you may be,

But the presence of your love is here with me

Figure 2.8: Greeting card poetry



2.2. The process of creating poetry 17

In a sense, this characterisation of what we consider to be poetry creates an artificial lower and

upper bound within the realm of poetry. It is a lower bound in the sense that we require poems

to adhere to classical notions of poetry, e.g. exhibiting metrical and rhythmic patterns. On the

other hand, it is an upper bound in the sense that we will not be considering abstract notions of

imagery and metaphor in this thesis.

2.2 The process of creating poetry

The process of writing poetry is often claimed to proceed in a much more flexible manner than

other writing processes. It is perhaps almost impossible to formally define and characterise the

process of writing poetry. Not only is it difficult to conduct research of an introspective nature

into the thought processes of a poet, but these processes vary between poets.

Sharples (1996) models the process of writing as that of creative design, involving a cycle of

analysis, known as reflection, and synthesis, known as engagement. For example, consider a

journalist who is writing an article about a topical issue like an election campaign. She will

have a clear mission, that is to convey to the reader the salient and newsworthy points of the

event, i.e. the “5W + 1H” questions (who, what, when, where, why, and how). A rough draft

of the article that conveys these points may be written. Upon reviewing this draft, she may

call upon certain journalistic writing practices to make the article more appealing. Perhaps

some historical background information on the candidates can be mentioned as well. Finally,

the writing might have to conform to non-content specifications, such as having to fit a given

amount of column space.

The process of writing poetry can be seen to follow a similar pattern, but the unity between

content and form makes the coupling of the reflection and engagement processes much tighter.

In particular, the role of reflection might play a bigger role in determining the eventual message

of the poem, where there is often no well-defined communicative goal, save for a few vague

concepts such as “wintery weather” or “a scary lion”. A poet could begin writing a poem

inspired by a particular concept, or scenario, but end up writing a poem about an altogether

different topic. During the reflection phase, when looking at an intermediate draft of the poem

on paper, a poet may come to realize the opportunities of surface features that can be exploited,

which enables further content to be explored upon subsequent engagement phases. Levy (2001)

describes a similar model of poetry creation.



18 Chapter 2. Poetry and automatic poetry generation

Another possible distinction that is suggested by both Sharples (1996) and Boden (1990) is

that while a ‘conventional’ writer such as our journalist needs to accept the constraints of

goals, plans, and schemas, creative writing requires the breaking of these constraints. Yet these

constraints are still necessary, as they allow for the recognition and exploiting of opportunities.

2.3 Automatic poetry generation

Bailey (1974), van Mechelen (1992), and Gervás (2002) are the only works we are aware of that

extensively document existing attempts at automatic poetry generation. It is also interesting to

note that there is very little intersection between the poetry generation systems covered by

these surveys, underlining the fact that the field of poetry generation, if it can be said to exist, is

still in its infancy, and does not yet have a well-established community, let alone shared goals,

perceptions and principles.

Bailey (1974) and van Mechelen (1992) provide information on very early systems which

Gervás terms template-based poetry generators. A lot of these systems were written by actual

poets who were keen to explore the potential of using computers in writing poetry. In fact,

several of the systems reported in Bailey (1974) were not fully autonomous, but were used by

these poets to assist them in their own poetry writing. This form of computer-assisted poetry is

sometimes known as aleatoric poetry. One example is the work of the American poet Jackson

MacLow.

Gervás (2002) discusses more recent, sophisticated approaches to poetry generation, and pro-

vides a taxonomy of poetry generation systems based on the approaches and techniques they

use, i.e.:� Template-based: ALAMO “rimbaudelaires” (Rubaud et al. (2000), based on read-

ing Gervás (2002))� Generate and test: WASP (Gervás, 2000), our chart generation system (Manurung,

1999)� Evolutionary approach: POEVOLVE (Levy, 2001), MCGONAGALL, i.e. the imple-

mented system detailed in this thesis, a very early version of which was reported in Ma-

nurung et al. (2000)� Case-based: ASPERA (Gervás, 2001), COLIBRI (Diaz-Agudo et al., 2002)



2.3. Automatic poetry generation 19

There are many ways of categorizing poetry generation systems. Although the technique-based

taxonomy is a very useful resource, especially from an engineering viewpoint, we will attempt

to categorize existing poetry generation systems based on the goals they try to achieve. In

particular, we will categorize poetry generation systems in terms of how their output texts

relate to the three sets that embody the properties of meaningfulness (M ), grammaticality (G ),

and poeticness (P ) that we have defined in Section 2.1.4.

Under this taxonomy, existing poetry generation systems can be categorized as follows:� Word salad� Template and grammar-based generators (G -text generators)� Form-aware text generators (P and G � P -text generators)� Poetry generation systems (G � P � M -text generators)

Note that under this categorization, the natural language generation systems described in Chap-

ter 3 can be viewed as G � M -text generators.

2.3.1 Word salad generators

Most early attempts at poetry generation systems were relatively simplistic programs that paid

no heed whatsoever to any of the properties of meaningfulness, grammaticality, and poetic-

ness. These systems simply concatenated random words together. Figure 2.9 shows “LYRIC

3205” by Pete Kilgannon, which van Mechelen (1992) cites as a poem that is constructed by a

computer program in exactly this fashion.

judy gotta want upon someone.

wanna sadly will go about.

sammy gotta want the thief him but the

every reason. real distance carry.

Figure 2.9: Random concatenation of words

Under our restricted definition (Section 2.1.4), these systems do not produce poetry.



20 Chapter 2. Poetry and automatic poetry generation

2.3.2 Template and grammar-based generators

A slightly more sophisticated approach is adopted by what Gervás (2002) terms template-

based systems. Typically, generation proceeds by randomly selecting words from a lexicon

and using them to fill gaps in pre-defined sentence templates. The words and gaps are catego-

rized by part of speech, and typically only substantive words, i.e. nouns, verbs, adjectives and

occasionally adverbs, can be varied. Thus, these systems can be said to satisfy, albeit in a very

limited fashion, the property of grammaticality.

Certain systems use a slightly more sophisticated account of syntax by using simple phrase

structure rules that allow it to generate sentences that are more varied than those generated by

template-filling systems.

Figure 2.10 shows an example of some sentence templates and sample output from RETURNER,

an archetypal template-filling program discussed in van Mechelen (1992), and Figure 2.11

shows the haiku template and sample output from Masterman’s computerized haikus, as dis-

cussed in (Boden, 1990).

1. IN THE MORNING + noun phrase with a noun as head + WILL + APPEAR / BE / BECOME /

SEEM / TURN + adjective phrase

2. Noun phrase with a noun as head + ALSO / NEVER / OFTEN / SOMETIMES + verb in the

present tense + AGAIN

3. LAST NIGHT / TODAY / TOMORROW + pronoun + verb phrase (a verb in past/present/future

tense) + pronoun + THROUGH THE WILLOWS

In the morning crowbars will be nearly round.

Separate blankets never step again.

Tomorrow I will ring him through the willows.

Figure 2.10: Sentence templates and sample output from RETURNER

Aside from RETURNER and Masterman’s computerized haikus, van Mechelen (1992) lists

several other systems of this type, e.g. APPI, BORANPO, etc. We have also found similar

systems available on the World Wide Web such as ELUAR, ALFRED The Agent, The Poetry

Creator, etc. Figures 2.4 (ELUAR) and 2.5 (ALFRED) in Section 2.1.4 show some output texts

from these systems.



2.3. Automatic poetry generation 21

All � 1 � in the � 2 �
I � 3 �	� 4 �
� 5 � in the � 6 �� 7 � the � 8 � has � 9 �
All green in the leaves

I smell dark pools in the trees

Crash the moon has fled

All white in the buds

I flash snow peaks in the spring

Bang the sun has fogged

Figure 2.11: Rules and sample output from Masterman’s computerized haikus

Two notable systems are RACTER and PROSE (Hartman, 1996), which have the distinction

of having their poetry being published. The 1984 poetry anthology “The Policeman’s Beard is

Half Constructed” consisted solely of poems constructed by RACTER.

These template-filling systems often employed several clever ’tricks’ and heuristics on top of

the randomness to give the appearance of coherence and poeticness, such as:

1. assigning ad-hoc “emotional categories”, e.g. � ethereality, philosophy, nature, love, dy-

namism � in ELUAR,

2. choosing lexical items repetitively to give a false sense of coherence, as in RACTER,

and

3. constructing highly elaborate sentence templates with only a handful of holes, often to

the point that the resulting poems would have to be attributed more to the human template

writer than to the program.

Once again, under our restricted definition (Section 2.1.4), these systems still do not produce

poetry.

2.3.3 Form-aware text generators

These generators explicitly attempt to fulfill the properties of grammaticality and poeticness,

specifically that of metre. Note that although Masterman’s program produces haikus (Fig-

ure 2.11), which are a well-defined poetic form, we do not place it in this category as the



22 Chapter 2. Poetry and automatic poetry generation

fact that it satisfies poeticness is external to the system: it is imposed by the very restricted

templates and careful selection of words that fill the slots.

1. Gervás’ WASP system (Gervás, 2000) creates poems in the mould of classical Spanish

poetry that satisfy the constraints of strophic forms such as romances, cuartetos, and ter-

cetos encadenados. The generation makes use of verse patterns, which can be considered

to be analogous to the templates used in template-filling systems but are more sophisti-

cated in that they are a more abstract representation of syntactic and surface properties

of the desired verses. Gervás (2000) lists information such as number of words per verse,

rate of adjectives per noun, and tense, as being encoded by these verse patterns. Gen-

eration proceeds as a form of greedy search by starting from the first word in the verse

pattern and incrementally selecting words that satisfy all the imposed requirements. Ad-

ditional heuristics that avoid word repetition are also used. Figure 2.12 shows a sample

cuarteto by WASP. Note the abba rhyme scheme.

Muérome por llamar Juanilla a Juana,

que son de tierno amor afectos vivos,

y la cruel, con ojos fugitivos,

hace papel de yegua galiciana.

Figure 2.12: Sample output from WASP (Gervás, 2000)

2. Ray Kurzweil’s Cybernetic Poet, or RKCP (Kurzweil, 2001), is a commercial software

product, and thus employs proprietary algorithms that we were unable to analyze in

depth. However, the information specified on the product website suggests that it gener-

ates well-formed poems based on rhythmical properties of words that are compiled in a

statistical language model trained on existing poems, as described in the following quote:

“RKCP uses the following aspects of the original authors that were analyzed
to create original poems: the (i) words, (ii) word structures and sequence pat-
terns based on RKCP’s language modeling techniques (while attempting not
to plagiarize the original word sequences themselves), (iii) rhythm patterns,
and (iv) overall poem structure. There are also algorithms to maintain the-
matic consistency through the poem. RKCP uses a unique recursive poetry
generation algorithm to achieve the language style, rhythm patterns and poem
structure of the original authors that were analyzed, without actually copying
the original authors’ writings.”

Figure 2.13 shows a sample output from RKCP. Note that although these outputs are



2.3. Automatic poetry generation 23

explicitly listed on the RKCP website as being haikus, they do not in fact satisfy the

strict syllable requirement of a haiku, i.e. three lines of five, seven, and five syllables.

Nevertheless, we are prepared to afford it the benefit of the doubt that this is due to the

easing of constraints as discussed in the following quote, again from the product website:

“Sometimes RKCP will discover that it is unable to write the poem or a sec-
tion of a poem (i.e., a line) when it has fully and recursively exhausted all of
the possibilities. It then uses an algorithm to ease the constraints inherent in
the goals for particular words. It continues this process of easing constraints
and recursively writing the poem (both forwards and backwards) until it can
successfully write the poem or section of the poem.”

Scattered sandals

a call back to myself,

so hollow I would echo.

Crazy moon child

Hide from your coffin

To spite your doom.

You broke my soul

the juice of eternity,

the spirit of my lips.

Figure 2.13: Sample output from Kurzweil’s “Cybernetic Poet”

3. Another interesting example is the Rimbaudelaires generated by the ALAMO group

(Rubaud et al. (2000), based on reading Gervás (2002)). They first create sentence tem-

plates by “cutting out” the nouns, verbs, and adjectives from a given sonnet by Rimbaud.

Poems are then generated by completing these templates with words selected from the

poetry of Baudelaire. Although essentially a template-filling system as the ones seen

above, the words chosen to fill the gaps are claimed to follow “strong syntactic and

rhythmic constraints”, suggesting that conforming to form is an explicit goal of the gen-

erator.

4. Levy (2001) presents a computational model of poetry generation that is remarkably

similar in several aspects to the work presented in this thesis, although completely inde-

pendently arrived at.

Like the model we introduce in Chapter 4, Levy’s model is based on the theory of evo-



24 Chapter 2. Poetry and automatic poetry generation

lution, which he notes is the prevailing metaphor in creativity theory, after Gruber and

Davis (1988). The proliferation of “genetic art” projects such as Sims (1991) bears wit-

ness to this.

Levy’s model consists of a generator module, which constantly creates “poetic objects”

that are analysed by the evaluator module, which applies numerical ratings represent-

ing their interest in these objects. The generator and evaluator modules run as parallel

processes. Levy also states the need for a lexical, syntactic, and conceptual knowledge

base with which well-formed poetic objects can be created.

One very interesting aspect is a two-tiered approach to the evaluators, where the lower-

tier performs the actual evaluation on the generated objects, and the higher-tier evaluators

control the organization of the lower-tier evaluators. This serves two functions. The first

is that it is intended to represent the cognitive state, or “consciousness”, of a poet that can

choose to devote special attention, or focus, to promising objects. For example, it may

direct the system to devote more attention, i.e. processing power, to objects that show

relatively more promise and are close to being successful poems. The second function

is to determine the relative importance to qualities, or combinations of qualities, that are

rated by individual lower-tier evaluators.

The lower-tier evaluators contain either neural networks that have been trained on hu-

man judgments of existing texts for subjective qualities, or explicit rules for objective

qualities.

An implementation of this full model has not yet been constructed, but there is a proto-

type, called POEVOLVE, which is hoped to show the potential of the system.

POEVOLVE creates texts that satisfy the form specifications of limericks, i.e. two lines

of eight syllables with a stress pattern of w,s,w,w,s,w,w,s (where ‘w’ is a weakly stressed

syllable, and ‘s’ is a strongly stressed one), followed by two lines of five syllables with

a stress pattern of w,s,w,w,s, and closed with one more line similar to the first two. The

first, second, and last lines must end with rhyming words, as must the third and fourth

lines. No account of syntax nor semantics is attempted, for the sake of parsimony and

computational feasibility.

It employs a genetic algorithm, a well known heuristic search method that we discuss

in detail in Section 4.2. An initial population is created by selecting, from a pool of



2.3. Automatic poetry generation 25

1107 words that include phonetic and stress information, appropriately rhyming words

that can appear at the end of the five lines, and then selecting more words to fill the

rest of the line based on their stress information. Evolution was achieved by mutation

and crossover operators that modified the words contained in the limericks. Evaluation

was performed using a neural network that was trained on human judgments of how

“creative” a selection of limericks are, with a rating from 1 to 6. 25 human-written and

25 randomly generated limericks were used. The randomly generated limericks were

generated using the same system as for the initial population.

Kempe et al. (2001) report this experiment in more detail. The neural network was

trained on 36 of the limericks and tested on the remaining 14. Unfortunately, no indi-

cation of the proportion of human-written and randomly-generated limericks was given.

Furthermore, we were unable to obtain any examples of the randomly-generated lim-

ericks. The neural network is claimed to have captured some dimensions used by the

judges to evaluate the limericks. For the human-written limericks it produced an average

rating of 3.4 (compared to 4.8 by the human judges), and for the randomly generated

poems it produced an average rating of 1.9, compared to 1.7 by the human judges.

When used in a GA that ran for 1000 iterations to evaluate the generated limericks, the

difference in quality from the initial population, 1.2, and last 100 generations, 1.6, was

claimed to be a small but significant improvement.

Once again, under our restricted definition (Section 2.1.4), these systems still do not produce

poetry. Note that although Levy’s theoretical model that underlies POEVOLVE describes a

fully-fledged poetry generation system such as the ones described in Section 2.3.4, the imple-

mented system itself is only a P -text generator.

2.3.4 Poetry generation systems

This last category consists of systems that explicitly attempt to fulfill the three properties as

stated in our restricted definition of poetry (G � P � M ).

1. ASPERA and COLIBRI

ASPERA (Gervás, 2001) and COLIBRI (Diaz-Agudo et al., 2002) are two similar sys-

tems which use case-based reasoning to generate formal Spanish poetry.



26 Chapter 2. Poetry and automatic poetry generation

Case-based reasoning is a general problem-solving technique in AI. A case-based rea-

soner attempts to solve a new problem by consulting an explicit database of existing

problems and their solutions (Luger and Stubblefield, 1998). This process is described

by Aamodt and Plaza (1994) as a cycle of four processes, namely retrieve, reuse, re-

vise, and retain. Essentially, an existing solved problem, i.e. a case, that is deemed to be

similar to the current problem at hand is selected (“retrieve”), and its solution is applied

to the current problem (“reuse”). However, since the problems are not identical, this may

involve having to alter the solution to be applicable to the current problem, or to yield an

acceptable solution (“revise”). Finally, if the procedure is successful, it is stored to the

database as another case (“retain”).

In ASPERA, the problem to be solved is specified through user input consisting of a

prose description of the intended message, and the type of poem required, i.e. length,

mood, and topic. This input is first passed to a custom-built ’Poetry Expert’ knowledge

base which selects a particular strophic form, similar to the ones used in WASP, which is

deemed to be suitable for the given input.

Cases in ASPERA are encoded as line patterns, which are similar to the templates used

by the systems in Section 2.3.2. Each pattern encodes both the part of speech tags and

the actual words from a line in an existing poem of the chosen strophic form. Aside

from these cases, the system also loads a vocabulary that is also specified by the chosen

strophic form.

Furthermore, the input message is distributed into “poem fragments”, which will eventu-

ally correspond to a line in the resulting poem. For the example given in Gervás (2001),

the input message ‘‘Peter loves Mary they go together to the beach’’ is split into

three fragments:

(fragment 1 Peter loves Mary)

(fragment 2 they go together)

(fragment 3 to the beach)

At this point, the case-based reasoning can begin. Generation of a poetry is done on a

line by line basis in the following manner:

(a) Retrieve step: for each poem fragment, adequate line patterns and words must be

selected. This is done based on a similarity metric that prefers words appearing in



2.3. Automatic poetry generation 27

the fragment, and words with the required rhyme pattern.

(b) Reuse step: a draft for the current line is constructed by using the part of speech

information from the chosen line pattern as a template. Words from the vocabulary

with the appropriate part of speech are substituted into the correct positions.

(c) Revise step: after a full draft has been generated, it is presented to the user, who

is required to validate it. It is during this stage that modifications should be made

to ensure metrical correctness. However, Gervás (2001) states that this feature is

not yet implemented and therefore assumes that the user performs the necessary

modifications.

(d) Retain step: all validated verses are stored in a personal database that can be used

as an extension to the existing corpus of line patterns.

COLIBRI (Diaz-Agudo et al., 2002) performs in a vaguely similar fashion to ASPERA,

but the CBR method for generation is applied to the whole verse rather than line-by-line.

Additionally, the cases are stored in a very flexible representation using LOOM, a De-

scription Logic system. This enables COLIBRI to exploit the inferences enabled by the

inheritance of features in the ontology. Furthermore, COLIBRI has an implemented sys-

tem of repairs and revisions that ensure rhyme and metrical properties are met following

the adaptation process, that strives to achieve meaningfulness.

As an example of how these systems work, observe Figure 2.14(a)-(d). In (a) we see

an example of the “input semantics”. It is not treated as an encoding of semantics as

such, but as a list of keywords that will inspire the choice of words during the gener-

ation process. In (b) we see a case that is retrieved from the corpus of poems in the

appropriate strophic form. The result of adaptation (i.e. reuse step) can be seen in (c):

the words marked in boldface are taken from the input message, and have been chosen

based on their part of speech. Finally, in (d) we see the result of the repair/revision step,

where the words marked with * have been substituted in to maintain the metre and rhyme

specifications.

In both these systems, we can observe that grammaticality is upheld through the use of

line and verse templates, and the fact that word substitution is only done with words with

the correct part of speech. It is not clear, however, whether other facets of grammaticality

are considered, i.e. subcategorization, selectional restriction, agreement.



28 Chapter 2. Poetry and automatic poetry generation

una boca ardiente pase techo y suelo

(a)

no sólo en plata o viola truncada

se vuelva mas tú y ello juntamente

en tierra en humo en polvo en sombra en nada

(b)

no sólo en boca y viola ardiente

se pase mas tú y ello juntamente

en tierra en techo en suelo en sombra en nada

(c)

no sólo para* boca y viola ardiente

se pase mas tú y ello juntamente

en tía* en techo en suelo en sombra en serpiente*

(d)

Figure 2.14: Examples of (a)input message, (b)verse pattern, (c)output from adaptation, and

(d)output from revision in COLIBRI

Meaningfulness is approximated through the rather simplified use of an “input message”

that consists of a sequence of words that the system will attempt to distribute across the

text. These words are intended to represent the semantic message of the resulting text.

Lastly, poeticness is achieved through the use of domain knowledge that encodes the

rules of the strophic forms in formal Spanish poetry. COLIBRI possesses explicitly

designed procedures for fulfilling these forms.

We note two limitations of these systems. Firstly, although we categorize ASPERA and

COLIBRI as poetry generation systems (G � P � M -text generators) because we see

all three properties explicitly represented within these systems, their approximation of

semantics using a list of keywords that are randomly distributed across an existing verse

template is a very shallow account of meaning, and such a treatment cannot be said to

truly satisfy the property of meaningfulness.

Secondly, we note that in both these systems meaningfulness is first handled during the

retrieve and reuse steps, while poeticness is handled separately during the revise step.

Regardless of the sophistication of the account of meaningfulness, modifications to the



2.4. Summary 29

text at the latter stage, which are motivated by poeticness, may perturb whatever meaning

has already been set up in the earlier stages. Thus, there is no way of ensuring that the

end result satisfies meaningfulness. This is a problem reminiscent of the architectural

problems in NLG (Section 3.2).

2. Our chart generation system

Manurung (1999) reports our initial attempt at poetry generation, where we developed

a system that performs an exhaustive search for a text that conveys the semantics of a

given first order logic proposition (meaningfulness) and satisfies a given rhythmic stress

pattern (poeticness), according to a given lexicon and grammar (grammaticality). Due

to the combinatorial explosion of the problem, we employed chart generation, a well

known technique in natural language processing which yields polynomial running times,

as opposed to exponential (Kay, 1996). Chart generation is discussed in detail in Sec-

tion 3.4.2.

Figure 2.15(b) shows a sample text that exhibits the rhythmic patterns of a limerick while

managing to convey the semantics specified in (a). In terms of satisfying its notions of

grammaticality, meaningfulness, and poeticness, this chart generation system performs

immaculately.

Unfortunately, due to its exhaustive search, it is computationally very expensive, despite

the use of the chart. Furthermore, it is limited in its flexibility, in the sense that it can

only generate immaculate results. In cases where the given linguistic resources are un-

able to produce the required output, it fails completely. We believe that the robustness of

a poetry generation system that is able to produce as good as possible an output, given

the resources at its disposal, is a desirable property. Finally, unlike our eventually cho-

sen model of poetry generation as stochastic search (Section 4.1), this system does not

facilitate the exploiting of opportunities for generating a poem’s content.

2.4 Summary

In this chapter we have examined some of the defining characteristics and features of poetry,

and subsequently formulated our restricted definition of a poem as a text that fulfills the three

properties of meaningfulness, grammaticality, and poeticness.



30 Chapter 2. Poetry and automatic poetry generation

cat(c)  dead(c)  eat(e,c,b)  past(e)  bread(b)  gone(b)

(a)

The cat is the cat which is dead.

The bread which is gone is the bread.

The cat which consumed

the bread is the cat

which gobbled the bread which is gone.

(b)

Figure 2.15: Examples of (a)input semantics and (b)output limerick from our chart generation

system

We have also examined existing work on automatic poetry generation, and note that most sys-

tems only account for a subset of the three properties of our definition of poetry. Although

ASPERA and COLIBRI attempt to account for meaningfulness, grammaticality, and poetic-

ness, their account of semantics is far too shallow. Our own chart generation system is thus the

only example of an existing implemented system which is a proper poetry generation system

according to our restricted definition. Unfortunately, from a computational cost standpoint it is

prohibitively expensive, and it lacks robustness in finding solutions.

Secondly, we noted an architectural rigidness inherent in ASPERA and COLIBRI, where mean-

ingfulness and poeticness are each handled during separate steps, unlike our chart generation

system, where every added edge is always checked against the three properties of meaningful-

ness, grammaticality, and poeticness.

In the next Chapter we will provide a survey of natural language generation, or NLG, a sub-

field of artificial intelligence and computational linguistics which heavily influences the design

of MCGONAGALL, our implemented poetry generation system. As poetry is an instance of

natural language, we feel that our endeavour into poetry generation should be informed by the

NLG literature. Furthermore, as mentioned in Section 2.3, NLG systems can be seen to satisfy

grammaticality and meaningfulness, two of the three properties in our definition of poetry.

Thus, studying the NLG literature is relevant to our work.



Chapter 3

Natural language generation

In this chapter we will provide an overview of research work done in the field of natural lan-

guage generation, or NLG. As poetry is an instance of natural language, it seems obvious that

any research endeavour into poetry generation should be well-informed of natural language

generation.

This chapter is not intended to serve as a general review of the entire NLG literature. Instead,

we will focus on several areas of interest that we feel address issues encountered in our task of

poetry generation.

We start by describing what has come to be accepted as a fairly standard definition of what

NLG is, along with the processes and tasks involved, and discuss the most prevalent paradigm,

i.e. that of NLG as being communicative goal-driven planning (Section 3.2).

We will then discuss work that has exposed the limitations of this paradigm, along with various

alternative models which attempt to overcome these limitations. In particular, we review work

on � alternative NLG architectures (Section 3.3),� better search methods for NLG (Section 3.4),� overgeneration and ranking methods of NLG (Section 3.5), and� opportunistic planning in NLG (Section 3.6).

We will also describe several instances of NLG systems that implement these alternative mod-

31



32 Chapter 3. Natural language generation

els, especially those that are of significant relevance to our work. Finally, we will relate these

problems to our task domain of poetry generation and discuss the requirements of our poetry

generation system.

3.1 What is NLG?

Natural language generation, or NLG, is the sub-field of artificial intelligence and computa-

tional linguistics that focuses on the development of computer systems that can produce un-

derstandable texts in a human language, starting from some nonlinguistic representation of a

communicative goal as input (Reiter and Dale, 2000). To achieve this, NLG systems employ

knowledge resources about both the specified human language and the application domain.

Evans et al. (2002) remark that standard definitions of what an NLG system should specifically

do are notoriously asymmetrical. For instance, although there seems to be a consensus as to

the output of an NLG system, namely human language texts, the form of input it should receive

and the different types of processes to be performed on it, vary from system to system. Indeed,

comparative studies of existing NLG systems such as Paiva (1998) and Cahill and Reape (1999)

reveal many differences as to what, how, and when operations are performed, if at all. However,

certain theories and models have come to be widely accepted, and we will discuss them in the

following sections.

3.1.1 Input specification

As we have briefly mentioned, the input to an NLG system is some nonlinguistic representation

of a communicative goal coupled with various knowledge resources. Examples of such goals

are informing, requesting or persuading the hearer to do something or to provide information.

As formally defined by Reiter and Dale (2000), the input to an NLG system is a four tuple� k � c � u � d � , where k is the knowledge source to be used, c is the communicative goal to be

achieved, u is the user model of the intended audience, and d is the discourse model.

The knowledge source, k, is essentially all the background information about the task domain.

Its representation varies from system to system, e.g. first order predicate logic propositions,

relational database tables. For instance, ILEX (O’Donnell et al., 2001), an NLG system that

generates short texts describing pieces of jewellery in a museum, uses a database of known



3.1. What is NLG? 33

facts and relations concerning the pieces, whereas FOG (Goldberg et al., 1994), a weather

forecast report generator, receives as its input a table of sampled meteorological data.

The communicative goal, c, is the purpose of the text to be generated. This usually consists of

an underspecification of some propositional information to be conveyed. Some systems further

specify rhetorical relations within the propositional information that are to be conveyed by

the text. Additionally, c can include non-propositional constraints that must be obeyed by the

resulting text, e.g. a requirement that the resulting document fit on a certain number of pages.

The user model, u, is a characterisation of the intended audience for whom the text is gen-

erated, which can affect the generated text according to prior knowledge of that audience’s

expectations. For instance, a stock market reporting system could have a report tailor-made

for a broker, an executive analyst, or a public newsfeed. Factors which could be affected by

u include content, grammar and stylistic preferences, e.g. a broker’s report could be much

more in-depth and detailed in terms of content, whereas a public newsfeed could include clear

explanations for technical terms.

Finally, the discourse model, d, keeps track of the history of what has been conveyed by the

system so far. This is useful during the syntactic and lexical realisation stages, for instance,

for referring back to material that has already been conveyed for clarity or brevity’s sake, i.e.

anaphora.

These last two components, u and d, are not always present in NLG systems, or sometimes

they are implicitly “hardwired” into the system.

Note that linguistic resources, i.e. the grammar and lexicon of the particular human language

being targeted, is not specified in Reiter and Dale (2000)’s four-tuple, implying that this re-

source is an internal component of the NLG system. It is plausible, however, to envision an

NLG system for which these linguistic resources are viewed as a separate input, e.g. a multi-

lingual system that can target a document to several different languages.

3.1.2 Output specification

The output from a natural language generation system is, naturally, a text, i.e. a natural lan-

guage artefact that can be understood by a human. Most research in NLG is not concerned

with the formatting details of the output, and will simply produce strings of words. However,

recent research has looked at augmenting NLG systems with the ability to produce texts that



34 Chapter 3. Natural language generation

incorporate information on visual layout (Bouayad-Agha et al., 2000) and prosody for speech

synthesis (Prevost, 1996).

3.1.3 Processes and tasks

What takes us from the given input of communicative goal to the desired output of natural

language text, and how is this process organized?

Reiter and Dale (2000) contend that it is unlikely for a complex and complete NLG system to be

constructed as a single monolithic process. Instead, it is decomposed into distinct, well-defined

and easily-integrated modules. From a practical point of view, the system becomes easier to

build and debug, whereas from a theoretical point of view, the generation task can be handled

at separate representational levels of language that are already widely used and studied, e.g.

semantics, syntax, lexis, etc.

A common broadstroke description of the NLG process comprises two levels, the strategic

level and the tactical level (Thompson, 1977, McKeown, 1985). The first level can roughly

be paraphrased as being the “what-to-say” level, and the latter the “how-to-say-it” level. They

have also been referred to as deep generation and surface generation (McKeown and Swartout,

1988), and the conceptualizer and formulator (De Smedt et al., 1996).

The “Reiter model” is a widely held model that refines the strategic/tactical distinction into

three processes (Reiter, 1994):

1. Content determination

The first process is to construct a selection of information from k that realizes the com-

municative goal in c, or in terms of propositional semantics, is subsumed by the under-

specification in c. In certain cases, c may already explicitly provide the exact information

to be conveyed.

This process of selecting information can be affected by the user model u, e.g. the level

of a user’s technical expertise may determine whether certain domain-specific concepts

are explicitly elaborated or simply glossed over.

2. Sentence planning

Once the propositional information has been determined, it must then be structured and



3.2. Traditional NLG system organisation 35

ordered so as to produce a coherent and meaningful text. This includes “chunking” the

information into smaller segments, determining the relationship between these segments,

and constructing the global syntactic structures that will be used to realize these segments

as spans of text, e.g. generating referring expressions, choosing content words, etc.

3. Surface realisation

When the global syntactic structure has been realized, the available linguistic resources

are consulted to produce actual spans of text. The tasks here include determining the

complete syntactic structure of the sentences, choosing the appropriate function words

to be used, and fulfilling all necessary grammatical requirements such as inflectional

morphology.

Roughly speaking, content determination corresponds to the strategic level, and surface real-

isation corresponds to the tactical level. The process of sentence planning overlaps both the

strategic and tactical levels.

Mellish and Dale (1998) refine this further by identifying six main categories of problems that

are addressed in most NLG research: content determination, document structuring, lexicaliza-

tion, aggregation, referring expression generation, and surface realization.

3.2 Traditional NLG system organisation

A prevalent paradigm adopted in NLG research, and one that reflects the definition in the

previous section, is that of NLG as a top-down, goal-driven, planning process. The production

of an utterance is a communicative act, an attempt to satisfy some communicative goal. As a

result, the processes of content determination, text planning, and surface realisation are often

implemented as a deterministic pipeline that starts from the communicative goal and gradually

transforms it into a text, using all linguistic and domain knowledge sources available to it.

This often involves the matching of various schema-like rules to select transformations to be

applied. Figure 3.1 shows a diagram of this pipeline architecture.

The benefit of this is the relative simplicity and elegance of making local decisions at the

various linguistic representational levels. Content determination deals with the propositional

semantics of the message. Once it has selected a set of propositions, it commits to this selec-

tion and proceeds to the sentence planning phase, where syntactic structures are selected and



36 Chapter 3. Natural language generation

arranged to convey the selected propositions. Finally, during the surface realisation phase, the

linguistic resources are consulted and the syntactic structures are transformed into text strings.

From a practical point of view, this results in a simpler, more manageable and implementable

system, due to the strict decomposition of data and processes.

Content
Determination

Communicative
Goal Planning

Sentence Surface
Realisation

Output
Text

Figure 3.1: The three Reiter processes in a pipeline architecture

This paradigm is not without its limitations. A lot of decisions must be made during the gener-

ation process, particularly during text planning. For example, aggregation, pronominalization,

generation of referring expressions, etc. These decisions are interdependent: making choices

in one aspect can preclude the possibility of choices in other aspects. When these decisions

are made by the separate modules in the pipeline architecture above, the resulting texts may be

suboptimal, and in the worst case, the system may fail to generate a text at all. This problem

has been identified in Meteer (1991) as the “generation gap”, in Kantrowitz and Bates (1992)

as “talking oneself into a corner”, and also in Eddy (2002), who notes that it is not easy to

determine what effect a decision taken at an early stage in the pipeline will have at the surface,

and decisions taken at one stage may preclude at a later stage a choice which results in a more

desirable surface form. Examples of aspects of surface form which may want to be controlled

are: collocations and idiomatic constructions (Stone and Doran, 1996, Kamal, 2002), docu-

ment length (Reiter and Dale, 2000), and emulating individual personality traits (Kantrowitz

and Bates, 1992).

Although the drawbacks to this approach of tackling interdependent decisions one by one are

known to the NLG community, nevertheless a significant proportion of NLG research and

development adopts this approach. From an academic viewpoint, the individual processes and

tasks themselves are often the subject of investigation, and thus it makes sense to observe them

independently of other factors. From an applied viewpoint, this is due to the fact that aside

from being the easiest solution to design and implement, it is often the most computationally

efficient method, and it works for suitably restricted domains, which is true of most real-world

NLG applications. Unfortunately, the drawback here is that often the ordering and interaction

between the separate modules that handle the various tasks are so finely tuned for a specific

restricted domain that they are not portable to other domains.



3.3. Alternative architectures 37

Nevertheless, in recent years research into alternative methods to overcome these limitations

has become increasingly popular. We can roughly divide them into the following three cate-

gories, although as we shall see, there is considerable overlap in these approaches:� Alternative architectures: identifying the pipeline architecture as the main culprit,

works such as Nirenburg et al. (1989), Kantrowitz and Bates (1992) and Robin (1994)

explore different ways of organizing the modules. This approach is discussed in Sec-

tion 3.3.� Better search methods for NLG: works such as Eddy (2002), Stone et al. (2001), Mel-

lish et al. (1998a), and Kamal (2002) view NLG as a constraint satisfaction problem,

and propose solving it with various search algorithms. This approach is discussed in

Section 3.4.� Overgeneration and ranking methods: a unique search method that places emphasis

on a discriminative, as opposed to generative, model of NLG. Examples of this approach

are Langkilde and Knight (1998), Oberlander and Brew (2000), and Varges (2002). This

approach is discussed in Section 3.5.

3.3 Alternative architectures

Although most NLG systems seem to employ the same subtasks and modules, they differ in

the way these modules are organised. This is an issue of which architecture is used for the

system as a whole. Figure 3.2 gives a sketch of the different architectures that have been used

in NLG systems, with the maximally-independent pipeline, or sequential, architecture at one

extreme, and the integrated architecture, where knowledge at all levels act together, at the other

(De Smedt et al., 1996).

We have already described the pipeline architecture above. Due to its computational efficiency

and relative simplicity and maintainability, it is the most commonly used architecture in applied

NLG systems. However, it suffers from a problem of architectural rigidness, where the possible

interactions and mutual constraints between various linguistic levels might not be accounted for

(see Section 3.2).

The revision architecture adds another phase, revision, where the resulting text originating

from the pipeline is modified to repair any deficiencies that can be identified, or to greedily



38 Chapter 3. Natural language generation

Revision module

Blackboard

Revision

Feedback

Blackboard

Integrated

Pipeline

Figure 3.2: Variety of NLG system architectures

achieve remaining auxiliary goals as much as possible.

The feedback architecture tries to remedy this by providing some manner of feedback infor-

mation flow from the latter stage, e.g. surface realiser, back to the conceptual module. Initially,

content determination supplies an underspecified input. Therefore, ’gaps’ or ’holes’ will ap-

pear in the partially generated form, which is passed back to content determination as feedback

to guide further provision of input. There are several ways of implementing the facilitation

of feedback. In POPEL (Reithinger, 1991), a separate request handler is used to provide the

necessary interface between modules, while in IGEN (Rubinoff, 1992), the surface realisation

component provides feedback to the content determination component in the form of annota-

tions that tell it how much of the content can be covered by a particular word choice (De Smedt

et al., 1996). However, these approaches do not elegantly handle certain multi-level linguistic

phenomena, which require a combination of many individual local effects that contribute to

create a global effect.

Another form of interaction is provided by the blackboard architecture, which consists of sev-

eral modules that operate independently and pass and receive information without knowing

exactly which other modules use it. Instead, each module posts its information in a shared

resource called a blackboard, and also looks in it for information posted by other modules

that it needs. The advantage is a highly flexible and modular system where independent mod-

ules need not execute according to a sequential plan, but act whenever the required triggering

information becomes available. Although this architecture seems capable of of handling the

aforementioned multi-level linguistic phenomena, the flexible interaction requires a lot of extra



3.4. Better search methods for NLG 39

control mechanisms to resolve conflicts and maintain efficiency. Examples of systems that use

this architecture are DIOGENES (Nirenburg et al., 1989) and the HealthDoc sentence plan-

ner (Wanner and Hovy, 1996).

Finally, the integrated architecture is perhaps the most radical approach where there is no

explicit modularisation at all. Instead, all decision-making processes are uniformly handled

as a constraint-satisfaction problem. The particular technique used to solve this problem can

vary, e.g. planning, constraint logic programming, theorem proving, or the various state space

search methods. The advantage of this approach is that it enables simultaneous consideration

of constraints at different representation levels, thereby overcoming the limitations described

in Section 3.2. The disadvantage, however, is that finding a solution to a constraint satisfaction

problem requires search, which can be computationally expensive. Moreover, the integration

of different levels of linguistic constraints imposes requirements on the representation and rea-

soning mechanisms, and can lead to them being difficult to develop and unwieldy.

KAMP (Appelt, 1985) and GLINDA (Kantrowitz and Bates, 1992) are examples of this kind

of architecture. The majority of systems described in the next section can also be seen as

integrated architectures, although they are explicitly designed as tactical components of NLG

systems, thus achieving integration for the sentence planning and surface realisation modules.

3.4 Better search methods for NLG

Following on from the previous section, where we introduced the integrated architecture, many

NLG researchers feel that it is this approach that best overcomes the limitations of the pipeline.

Reiter and Dale (2000) state that in principle, integrated architectures should allow NLG sys-

tems to generate better texts than pipeline architectures. However, they note the drawback that

from a practical perspective they are very expensive to engineer. Solving multiple constraint

satisfaction problems with search methods is a well-known problem in many AI domains, and

to that end various techniques have been adapted for the NLG process.

We believe, as does Eddy (2002), that the distinction between pipelined and integrated archi-

tectures is not a sharp one, and can be analysed from a state space search point of view as being

opposing ends on a spectrum of increasing complexity. A pipeline architecture aggressively

constrains its search space when committing to decisions at earlier stages. This is both an

appealing factor, in terms of computational efficiency, and a drawback, in terms of its limited



40 Chapter 3. Natural language generation

expressiveness.

One feature that we have observed from the search approaches to NLG that we describe below

is that they all deal with the tactical aspect of generation, i.e. how to realize a previously

selected, and possibly structured, set of propositions. Thus, the integration they achieve is

between the stages of sentence planning and surface realisation, which includes tasks such as

aggregation, referring expression generation, ordering, embedding, and lexicalization. Indeed,

it is between these two stages where the problematic interdependent linguistic constraints most

commonly lie.

We will now examine several NLG systems that implement the paradigm of NLG as search.

3.4.1 Hillclimbing and greedy search

Hillclimbing search is perhaps the simplest form of heuristic search. Starting from an initial

state, which is either a randomly selected state or a special state that represents some domain-

dependant initial configuration, hillclimbing search considers all possible moves it can make

and always selects the best one according to its heuristics. It repeatedly does this until it reaches

a state where no move yields a better state. It is very efficient, but has the drawback of being

liable to get trapped in a local maximum (or minimum) (Russell and Norvig, 1995). Greedy

search is very closely related to hillclimbing search. Like hillclimbing, it employs a heuristic

that evaluates all possible moves that can be made at any one time. Unlike hillclimbing, it

uses this information as a queuing function to determine the order in which to explore other

states. In other words, unless prematurely terminated by the discovery of a goal state, it will

attempt to exhaustively comb the entire search space. However, as we shall see, several works

seem to treat the terms hillclimbing and greedy interchangeably. Indeed, greedy search without

backtracking is essentially the same as hillclimbing.

The SPUD (Sentence Planning using Descriptions) system (Stone and Doran, 1997, Stone

et al., 2001) is a sentence planner that generates sentences from descriptions of syntactic, se-

mantic and pragmatic goals. It borrows from work in referring expression generation such

as Dale and Haddock (1991). The goal task of referring expression generation is to generate a

noun phrase that is minimal in a sense similar to Grice’s maxim of quantity (Grice, 1975), and

is able to uniquely identify the entity being referred to from a set of distractor entities that are

in the discourse context. This is accomplished by incrementally selecting lexical items based



3.4. Better search methods for NLG 41

on their property of ruling out as many distractors as possible.

SPUD adapts this approach for the generation of sentences. Given a set of semantic and prag-

matic goals, it incrementally selects syntactic and lexical constructions that fulfill as many

remaining goals as possible. These constructions are implemented as LTAG trees (Joshi and

Schabes, 1991) annotated with semantic and pragmatic information.

The SPUD generation algorithm is an implementation of a hillclimbing search algorithm (they

actually call it greedy search) which considers all syntactic operations (in the case of LTAG,

substitution and adjunction) that are contextually warranted, and ranks them using an ordered

list according to semantic, pragmatic and syntactic criteria. It executes the best ranked opera-

tion, and repeats this process until it can proceed no further. The list of criteria is processed in

a fashion similar to optimality theory (Prince and Smolensky, 1993), and is discussed in detail

in Stone et al. (2001).

Stone and Doran (1996) show how the simultaneous consideration of various constraints en-

ables them to generate collocations and idiomatic constructions.

Nicolov et al. (1995, 1996), Nicolov (1998) describe PROTECTOR, a tactical generation sys-

tem. It generates sentences that approximately convey semantics represented by an input con-

ceptual graph (Sowa, 1984). Given a partial semantic-syntactic structure that represents the

target text (in most cases an empty sentence node), it finds appropriate mapping rules that are

syntactically licensed and cover a portion of the input conceptual graph. Mapping rules are

semantic-syntactic structures that indicate which syntactic structures can be used to convey

certain semantic specifications.

PROTECTOR is unique in the sense that it can generate sentences that more or less convey the

input semantics, and keeps track of what differences there are between the input and generated

semantics. One can define upper and lower bounds on the semantics that can be conveyed.

The generation process is divided into several stages: building a skeletal structure, covering the

remaining semantics, and completing a derivation.

The first stage of generation attempts to select an initial mapping rule that covers as much of

the input semantics as possible, using the maximal join operation of conceptual graphs, and

is syntactically applicable to the partially constructed tree. A mapping rule may have internal

generation goals, which are applied recursively by finding appropriate mapping rules.



42 Chapter 3. Natural language generation

The second stage involves covering as much as possible of the remaining semantics using ad-

ditional mapping rules. At this stage, only mapping rules that specify the adjunction operation

are considered (to be precise, sister-adjunction as defined in D-Tree grammars, the formalism

they use). The choice of mapping rules is influenced by the criteria of connectivity, integration,

and realisability.

Finally, the derivation is completed by adding all syntactic requirements to complete a sentence.

PROTECTOR is very similar to SPUD save for the following differences:� it does not consider pragmatic constraints the way SPUD does,� it formalizes the concept of approximate generation by allowing the generation of more

or less than the original input semantics, and� it does not implement the hillclimbing algorithm in the sense that SPUD does. However,

the three “greedy” steps of building a skeletal structure, covering the remaining seman-

tics, and completing a derivation, seem to encode a manner of implicit hillclimbing.

Within each step, though, a systematic search is used (see Section 3.4.2).

3.4.2 Systematic, exhaustive search

The hillclimbing search algorithm has the limitation of being incomplete in that it cannot guar-

antee to find an optimal solution even if it exists. Although Stone et al. (2001) claim that their

use of SPUD for various NLG tasks supports their decision of using this search strategy, and

that its consistent search behaviour makes the system, and its specifications design, easier to

understand, it is nevertheless a desirable property to have a complete search algorithm.

Exhaustive search algorithms, which systematically comb the entire space, are complete algo-

rithms, although they come at a cost of computational inefficiency. Indeed, with the combina-

torial properties of syntactic structures, they can be prohibitively expensive.

Nevertheless, certain techniques that keep the problem tractable do exist, such as:

1. Chart generation

First suggested by Kay (1996), it employs the use of a data structure called the chart,

which is very widely used in parsing (Jurafsky and Martin, 2000). In parsing, the per-

vasive nondeterminism of natural language causes inefficiency when previously parsed



3.4. Better search methods for NLG 43

constituents have to be constantly reconsidered. With the chart, however, substantial

savings are achieved because the chart stores all complete constituents once they are

constructed. Thus regardless of the number of parses they may appear in, they will only

be constructed once. This is a common technique in AI known as memoization. The

chart also stores incomplete constituents, which are predictions of constituents yet to be

found.

A chart can be viewed as a graph where nodes signify positions between words in an in-

put string, and the edges signify analyses spanning substrings in the input string (Popowich,

1996). Edges which describe complete constituents are called inactive edges, whereas

incomplete constituents are represented by active edges. Edges in the chart can interact

to build up larger structures, and an algorithm that uses the chart must ensure that when

adding a new edge to the chart, all its interactions with existing edges that give rise to

new edges are considered as well. This guarantees completeness.

Kay (1996) views chart generation as the “parsing” of semantic representations such as

first-order predicate logic, which can be treated as free word order languages.

Kay (1996), Popowich (1996), and Carroll et al. (1999) are all examples of the use of

charts in generation. In a prior experiment (Manurung, 1999), we experimented with

using charts to generate texts that convey a given semantics but also adhere to a given

metrical pattern (see Section 2.3.4). Similarly, Gardent (2002) embeds the SPUD gener-

ation system described above in a chart generation framework that performs checking of

pragmatic constraints to generate fluent and natural-sounding texts. Nicolov (1998) men-

tions the use of chart generation within the PROTECTOR framework described above.

2. Truth Maintenance Systems

In addressing the issue of lexical choice, Kamal (2002) proposes using Assumption-

based Truth Maintenance Systems (de Kleer, 1986), or ATMS, as an alternative mecha-

nism to deal with the computational costs of exhaustive search. Truth maintenance sys-

tems are used in problem solving systems as ‘book-keeping’ components in conjunction

with an inference engine. The inference engine uses domain knowledge and heuristics

to logically induce a solution to the problem at hand, passing on all justifications and as-

sumptions it posits to the truth maintenance system. The truth maintenance system keeps

record of possibly conflicting assumptions, and can return to the inference engine a set

of beliefs and contradictions. In NLG, this system is therefore similar to chart generation



44 Chapter 3. Natural language generation

in that it keeps track of all partially built structures. However, Kamal (2002) claims that

an ATMS architecture is able to cache more information such as ordering information

and lexical properties. It can also record reasons for contradictions, enabling it to safely

prune the search space even further.

3. Redefining search problem

Eddy et al. (2001) take a different approach in tackling the combinatorial explosion of ex-

haustive search in NLG. They present an algorithm that transforms the search space into

a manageable one, by exploiting linguistic knowledge. Using the TAG formalism (Joshi

and Schabes, 1997), they first define the search space as the space of all possible se-

quences of compositions of elementary trees. They then introduce the concept of spe-

cific lexicalisation, which allows the transformation of a TAG into a lexicalised version

of itself. This enables them to identify symmetries and redundancies in the search space.

The resulting grammar produces the same set of surface strings but yields a much smaller

search space in terms of possible sequences of compositions.

4. Constraint logic programming

This is another approach that also prunes the search space before enumerating the search

space exhaustively. Power (2000) and Kibble and Power (2000) show how it can be

used to address the problem of text structuring, similar to that in Mellish et al. (1998a).

In their implemented system, ICONOCLAST, domain knowledge about the rhetorical

structure of the target texts is encoded as hard and soft constraints. Hard constraints are

encoded in the integer domain and, using constraint logic programming techniques, can

be used to reduce the search space by ruling out regions that are known to violate the

constraints. This reduced search space is then enumerated exhaustively and ranked by

order of preference using the soft constraints.

3.4.3 Stochastic search

Stochastic search is a form of heuristic search that relies on random traversal of a search space

with a bias towards good solutions. It is similar to hillclimbing search, but instead of always

applying the best move possible at any given state, it allows a degree of flexibility in apply-

ing other moves. A stochastic bias is applied to favour better moves. This flexibility allows

it to escape local maxima. Examples of stochastic search are, among others, simulated an-



3.4. Better search methods for NLG 45

nealing, evolutionary programs, genetic algorithms, and ant colony optimization. They have

been shown to outperform deterministic approaches in a number of domains such as planning,

scheduling and constraint satisfaction (Fogel, 1995, Bäck et al., 1997).

Mellish et al. (1998a) present some initial experiments using stochastic search methods for sen-

tence planning in ILEX, a system that generates descriptions of museum artefacts, in particular,

20th century jewellery. Their work concerns a specific aspect aspect of text planning: selecting

and ordering a set of facts into a structure that yields a coherent text. They use Rhetorical

Structure Theory (Mann and Thompson, 1987), where a text is analysed as a hierarchy of rela-

tions between text spans, and a relation holds between a nucleus text span and a satellite text

span. An analysis of a text takes the form of an RS tree .

Mellish et al. (1998a) identify 3 main approaches to controlling the search for a good RS tree:

1. Restrict what relations can appear in the nucleus and satellite. An example of this

approach is Hovy (1990) with his idea of “growth points”. This approach requires ex-

plicit commitments to be made prior to the generation task as to what configurations of

relations produce coherent and flowing text. These rules are a “hard” encoding of heuris-

tics, and thus this approach resembles schema-based NLG (McKeown, 1985). It can

therefore be expected to work very well in restricted domains where limited text patterns

are used, but in general it detracts from the advantage that RST has over schema-based

approaches, namely the capacity to generate more flexible types of text.

2. Exploit known information about the communicative goals to limit search possibil-

ities. An example of this approach is Moore and Paris (1993). This approach works well

if there are strong goals in the domain which can influence textual decisions. Unfortu-

nately, this is not always the case, as a communicative goal can often be very general

or vague. In the case of ILEX, a typical goal would be something like “say interesting

things about item X, subject to length and coherence constraints”. .

3. Perform a state-space heuristic search through all possible trees, guided by some

notion of tree “quality”. This approach was first suggested by Marcu (1997), and forms

the basis of the work in Mellish et al. (1998a), who use several stochastic search methods,

including genetic algorithms.

In their experiments, legal RS trees were randomly created from an input set of facts and

relations in Prolog-style notation. These trees were then modified using the genetic crossover



46 Chapter 3. Natural language generation

operation of subtree swapping, as widely used in genetic programming (Koza, 1994). The

trees were then evaluated by an ad-hoc scoring function which took into account factors such

as topic and interestingness, substructure size, information preconditions and focus movement.

A similar approach is taken by Cheng (2002) for the task of aggregation, and Karamanis and

Manurung (2002), in which a prototype of our system, MCGONAGALL, was used to address

the same task in Mellish et al. (1998a), but using the principle of entity-based coherence (Kara-

manis, 2001, Knott et al., 2001).

3.5 Overgeneration and ranking methods

In recent years, an alternative method of NLG has become increasingly popular. It is based

on the generate and test principle, a well known approach to problem solving in AI. The un-

derlying idea is to shift the burden of domain knowledge from a generation component, where

knowledge about the solving of complex multiple constraints is limited, to an evaluation com-

ponent that can identify a possible solution as being an optimal one. An implicit assumption

behind this idea is that it is easier to state domain knowledge in terms of what a good text

should be, i.e. a discriminative model, rather than how a good text should be written, i.e. a

generative model.

(Knight and Hatzivassiloglou, 1995, Langkilde and Knight, 1998) first introduced this novel

method of generation. The motivation for building NITROGEN, their implemented system,

was to increase robustness for sentence generation in the face of incomplete and possibly ill-

formed input. This is a problem that they had to deal with in machine translation, their appli-

cation domain. They achieve this by exploiting the power of corpus-based statistical models in

place of extensive linguistic knowledge. Such models, such as n-grams, have enjoyed signifi-

cant success in other areas of computational linguistics (Manning and Schütze, 1999).

NITROGEN consists of two main components: a symbolic generator and a statistical extractor.

The symbolic generator works from underspecified input and simple lexical, morphological and

grammatical knowledge bases. It is consciously designed to be simple and knowledge-poor,

and hence pays no heed to linguistic decisions such as word choice, number, determinateness,

agreement, tense, etc. Instead, it overgenerates many alternative utterances to convey the input,

and relies heavily on the corpus knowledge of the extractor to provide the answers to these

choices.



3.5. Overgeneration and ranking methods 47

The output of the generator is a word lattice, a compact representation of multiple generation

possibilities. A statistical extractor selects the most fluent path through the lattice using bigram

and unigram statistics collected from two years of the Wall Street Journal.

Bangalore and Rambow (2000b,a) present a very similar approach in their system, FERGUS.

The main difference is that their chosen formalism for the symbolic generation phase is TAG.

This tree-based account is claimed to capture more complex linguistic features than NITRO-

GEN’s simple surface-based rules. Accordingly, they present a statistical language model based

on trees for the ranking phase.

Oberlander and Brew (2000) follow Ward (1994) in arguing that NLG systems must achieve

fidelity and fluency goals, where fidelity is the faithful representation of the relevant knowl-

edge contained within the communicative goal, and fluency is the ability to do it in a natural-

sounding way such that it engenders a positive evaluation of the system by the user.

It is this fluency goal that sets NLG research apart from NLU (Natural Language Understand-

ing). An NLU system must recover meaning representations from strings of text, and whether

or not a given string sounds natural, elegant, or forceful is considered far less important than

identifying its propositional content.

In practice, applied NLG systems often sidestep the fluency goal by targeting a very restricted

domain of output, with a limited style that may be just enough to serve the purpose of the ap-

plication. Oberlander and Brew (2000) introduce two kinds of fluency goals that they argue are

worth achieving from a usability engineering perspective: maximizing syntactic expectedness

and maximizing user satisfaction.

To exemplify this, they stipulate two simple scenarios where NLG systems must be able to

control the sentence length and the vocabulary diversity of their generated text. The difficulty

is that these features are emergent, macroscopic properties of a large number of decisions, few

of which are based solely on stylistic considerations. Thus it is difficult to identify and control

decisions in such a way as to satisfy the requirements imposed on the text.

They propose an architecture which consists of two modules: an author and a reviewer. The

author faces the task of generating a text that conveys the correct propositional content, or

in short, achieving the fidelity goal. On the other hand, the reviewer must ensure that the

author’s output satisfies whatever macroscopic properties have been imposed on it. In other

words, achieving the fluency goal. In doing so, the two modules may collaborate to produce a



48 Chapter 3. Natural language generation

mutually acceptable text.

They note that Langkilde and Knight’s NITROGEN system essentially embodies this archi-

tecture: the symbolic generator acts as the author, and the statistical language model is the

reviewer. The difference here is that instead of collaborating, the author produces all possible

‘drafts’ that it considers acceptable from its point of view, and the reviewer selects the version

that best meets its needs.

They show how by slightly modifying the NITROGEN model, one can implement a system that

achieves the example constraints of sentence length and vocabulary diversity. The modification

is to implement both the author and reviewer as different stochastic models, unlike NITROGEN

where only the latter model is a stochastic model. In particular, the reviewer language model

characterizes the desired distributions of sentence length and vocabulary diversity through the

use of techniques such as negative binomial distributions and maximum entropy. Additionally,

the word lattice from the author module is augmented with weights attached to each path,

which reflects the degree of acceptability that the author assigns to the utterance represented

by that path. They propose that the two stochastic models can be combined through a linear

combination, where the extreme parameters would stand for systems that exclusively satisfy

fidelity or fluency goals.

Output text Output text

AUTHOR REVIEWER

Fidelity goal Fluency goal

AUTHOR REVIEWER

Fidelity goal Fluency goal

SelectionCollaboration

(a) (b)

Figure 3.3: (a) The author-reviewer architecture of Oberlander and Brew (2000), and (b) as it is

implemented in a NITROGEN-like system

Varges (2002) presents another overgeneration system that is inspired by NITROGEN. It is

significantly different in two ways. Firstly, it adopts a “lazy learning” technique in that domain

knowledge, in this case linguistic knowledge, is not compiled into a statistical model such as n-



3.6. Opportunistic planning 49

grams, but rather maintained as a set of exemplar ’instances’. The candidate texts produced by

the symbolic generator are evaluated by a distance metric comparing them to these instances.

This technique is useful for applications where there is only a limited size corpus.

The second difference is that the phases of generation and ranking are interleaved. This is

enabled by the use of a chart as the data structure shared between the generator and ranker,

instead of a complete word lattice as in NITROGEN. As the generator incrementally adds

edges to the chart, the ranker monitors the chart and, by employing the A � search algorithm, an

expectation-based heuristic search technique, it is able to prune the search space by removing

edges that are known to be suboptimal. This can be seen as a more faithful embodiment of the

author-reviewer model presented in Figure 3.3(a).

3.6 Opportunistic planning

The traditional approach to NLG as described above makes two basic assumptions: that text

generation is communicative goal-driven, and that these goals dictate a top-down approach for

the planning of the text’s structure and decomposition of goals. However, Mellish et al. (1998b)

believe that there is a class of NLG problems for which these basic assumptions do not apply.

In the case of their system, ILEX, this is due to two factors. Firstly, as ILEX is a system that

produces explanation labels of museum items on display (in this case jewelry), there is often

no clear plan or goal of a certain content to be conveyed. Instead, the system has a general

metalevel goal, i.e. “say something interesting about this artifact, within the space available, in

the context of a globally coherent discourse”. Secondly, the system can not plan far in advance,

as it has to generate text in real-time based on the choice of the viewer’s mouse-clicks. This is

a source of unexpected constraints in the selection of further items to be described.

The alternative approach they adopt is opportunistic planning. WordNet (Fellbaum, 1998) de-

fines opportunity as “a possibility due to a favorable combination of circumstances”. Because

opportunities involve combinations of circumstances, they are often unexpected, hard to pre-

dict, and too expensive, perhaps even impossible, to have complete knowledge about (Mellish

et al., 1998b).

Opportunistic planning is useful when these circumstances are unknown, or are too expensive

to predict, and long-term planning is impossible due to the lack of a well-defined goal, or



50 Chapter 3. Natural language generation

constantly changing situations which can render such plans obsolete.

Some of the key elements of opportunistic planning are:

1. Interleaving of planning and execution: this can roughly correspond to the interleaving

between the stages of content determination and surface realisation.

2. Flexible choice of tasks from an agenda.

3. Expanding “sketchy plans” as needed, taking into account the current state of the world.

4. Recognition of opportunities through detection of reference features.

In ILEX, opportunities arise when the content selection (emulating a human museum curator)

realises that a particular combination of events, i.e. items of jewelry that have already been

visited, allow the introduction of a new interesting fact, e.g. “...and it was work like this which

directly inspired work like the Roger Morris brooch on the stand which we looked at earlier”.

3.7 Poetry generation from the NLG viewpoint

The main purpose of our NLG literature survey is to identify possible insights which help us

in achieving our chosen task of poetry generation, which can be seen as a very specific form of

NLG.

At this point, we notice that there are two distinct, though not unrelated, aspects of poetry

generation that make it a unique and difficult problem within the context of NLG:

1. Interdependent linguistic phenomena and surface constraints due to ‘unity’ of po-

etry

In Section 2.1.1 we introduced the concept of unity between content and form as being

one of poetry’s defining characteristics. This plays a crucial role in trying to analyze

the task of poetry generation from an NLG viewpoint. The problem of interdependent

linguistic constraints, that was identified in Section 3.2, is exacerbated by poetry’s unity.

For example, with regards to metre, every single linguistic decision potentially deter-

mines the success of a poem in fitting a regular defined pattern.

This problem is made even more difficult in light of the fact that we do not possess any

heuristics that can be applied universally in getting a generated text to satisfy a certain



3.7. Poetry generation from the NLG viewpoint 51

metre. In informative NLG, principles such as Centering theory (Grosz et al., 1995),

Gricean maxims of quantity and quality Grice (1975), and Rhetorical Structure The-

ory (Mann and Thompson, 1987) have been used to guide the planning of a text’s prag-

matic and rhetorical structure. This provides NLG systems with a backbone with which

to organize the generation process, with the possibility of allowing “repairs” to recover

from problems encountered at the surface level, as in the revision/feedback architecture.

With metre, however, such principles do not apply, and it is unclear whether we can

ever find similar principles, which must also be compatible with the goal of conveying

a message, to motivate, for example, the inversion of syntactic structures as in Grey’s

Elegy Written in a Country Churchyard (Figure 2.2), where the adverb ‘homeward’ was

unusually positioned to satisfy the metre.

At this point we can already suggest that this problem indicates the need for search in

poetry generation.

2. Lack of clear, well-defined communicative goal

Consider the task of generating Belloc’s The Lion, as given in Figure 2.6. It seems

unlikely that the author had, from the very outset, the communicative goal of informing

the reader that the lion “dwells in the waste” and “has a very small waist”. Rather, it is

the requirement of a rhyme scheme, and the fact that the words waste and waist rhyme,

that led to these facts being conveyed. These could not have been deterministically

arrived at from the communicative goal of, for example, “write a cautionary poem about

the ferocity of a lion, intended for children”.

One might even argue that the goal of satisfying metre plays just as important a role in

the process of generating a poem as does the goal of conveying a message.

This problem is compounded by the fact that the creation of poetry often does not even

have a predefined communicative goal such as the hypothetical goal above.

Recall that in Section 2.1.4 we defined a poetry generation system as a system which

generates a text which fulfills the three properties of meaningfulness, grammaticality,

and poeticness. Note that this definition does not specify the realization of a given com-

municative goal as in the case of conventional NLG. In particular, the requirement of

the generated poem being meaningful makes no assumption as to where the meaning

originates from.



52 Chapter 3. Natural language generation

On one hand, it may be specified externally of the system, as in the case of requesting

the system to generate a poem based on a vague concept, e.g.“a poem about betrayal”,

or a more well-defined message, e.g.“a descriptive poem about the railway bridge over

the Tay river of Dundee”. In the first case, this would be similar to the goal of ILEX,

where the goal is essentially to “say something” about an object in the knowledge base.

The latter case would be more analogous to conventional NLG.

However, we contend that poetry generation can occur without any predefined message

whatsoever. In this case, it is up to the generator to construct a message based on its

knowledge sources. Although it is plausible to imagine a system that employs notions of

interestingness, novelty, and believability in its construction of a message to be conveyed,

it is important to note that poetic constraints, such as those of metre and rhyme, play an

equally crucial role in determining the content.

Thus, we can make the observation that the paradigm of NLG as communicative goal-

driven process is incongruous with the poetry generation process.

Of the NLG systems we have looked at, several of them do address these two problems, al-

though not explicitly for the purposes of poetry generation. With respect to the first problem,

the alternative architectures, search methods and overgeneration approach were born out of a

need to overcome similar issues. Perhaps Kamal (2002) is most similar in the sense that surface

constraints are the problems being addressed. With respect to the second problem, we find the

same situation arising in ILEX, which led them to employ opportunistic planning.

It is worth noting that the ILEX task resembles our task of poetry generation in that it is trying to

satisfy various linguistic preferences of which there exist no formal definitions, only informal

heuristic knowledge. While Mellish et al. (1998a) advocate the stochastic search approach they

adopt, pointing to their results as showing promise, they strongly emphasize that the results are

only as good as the evaluation function, which was constructed in an ad-hoc manner.

3.8 Summary

In this chapter we have seen the conventional paradigm of NLG as communicative goal-driven

planning, which consists of a number of different, but interdependent, tasks. Due to this in-

terdependency, the usual approach of tackling them in isolation has its limitations. To try and



3.8. Summary 53

overcome these limitations, several different approaches have been taken, i.e. using alternative

architectures, better search techniques, and overgeneration methods. Furthermore, works such

as Mellish et al. (1998b) explore the use of opportunistic planning for problems where there is

no clear communicative goal.

We have seen that many of the issues these different approaches try to tackle are also inherent

in, and exacerbated by, poetry. In particular, the unity of poetry creates an even stronger inter-

dependency between the various linguistic decisions to be taken, and the lack of a well-defined

communicative goal in poetry generation renders it incongruous to the conventional paradigm.

Thus, with respect to our research task of poetry generation, we can conclude the following

points from our survey of the NLG literature:

1. With regards to input, it is not clear whether the 4-tuple �
k � c � u � d � mentioned in

Section 3.1.1 is required for poetry generation. In particular, d, the discourse model, is

unnecessary due to poetry being a single piece of text which the reader does not engage

in conversation with.

2. The strong interdependency between the various levels of linguistic representation in

poetry renders conventional NLG system organisation (Section 3.2) unsuitable for our

task. It is difficult to clearly decompose the system into separate modules which each

only handle, for example, meaningfulness and poeticness. This is analogous to the “gen-

eration gap” problem addressed by work on alternative architectures (Section 3.3). It

is also one of the limitations that we pointed out existed in ASPERA and COLIBRI

(Section 2.3.4). We feel the integrated architecture shows promise for our task, as it

embodies a problem-solving model of constraint satisfaction, which is essentially what

our definition of poetry specifies (Section 2.1.4).

3. Following on from the previous point, solving multiple-constraint satisfaction problems

requires us to view poetry generation as search. In Section 3.4 we reviewed work that

applied well-known AI search techniques in NLG. Although, it is far from trivial to

decide which of these search techniques is best for our poetry generation task, we feel

that stochastic search methods are suitable for the following reasons:

(a) They are well-known, well-studied, general purpose algorithms that can be imme-

diately applicable to our task.

(b) They are very suitable for problems where the domain knowledge describes what a



54 Chapter 3. Natural language generation

solution should be rather than how it can be obtained (see point 4 on discriminative

models below).

(c) The specific stochastic search method known as the evolutionary algorithm is

believed to be a widely used approach in computationally “creative” systems (see

Section 2.3.3).

4. We feel that the discriminative model of generation found in overgeneration and rank-

ing methods (Section 3.5) is very applicable to our task. Our knowledge of poetry (Sec-

tion 2.1.2), and our decision to restrict our attention to concretely observable aspects

of poetry (Section 2.1.4), means that our domain knowledge is of what a poem should

look like, and not how it is constructed. Stochastic search methods such as evolutionary

algorithms are perfectly suited for problems with this type of domain knowledge.

5. As discussed in Section 3.7), the lack of a well-defined communicative goal in poetry

generation renders it incongruous to the conventional NLG paradigm. Opportunistic

planning has been found to be useful in such situations (Section 3.6), and thus seems

suitable for our task.

In the next chapter we will introduce our model of evolutionary algorithm-based poetry gener-

ation, which is influenced by the NLG approaches and techniques we have listed above.



Chapter 4

Evolutionary algorithms for poetry

generation

After defining the target domain of poetry in Chapter 2 and providing an overview of the

literature in natural language generation in Chapter 3, in this chapter we will propose the central

concept of our work, which is to implement our model of poetry generation as a state space

search problem, and to solve it with an evolutionary algorithm (EA). We will also describe the

characteristics of our EA framework for poetry generation, and NLG in general, namely the

design of representational scheme, genetic operators and evaluation functions.

4.1 Poetry generation as stochastic search

In the previous chapter, we have shown that the process of poetry generation does not fit well

with the prevailing paradigm of NLG as a communicative goal-driven, top-down planning pro-

cess.

We will now introduce one of the central concepts in this thesis, and that is to model the poetry

generation process as a state space search problem, where a state in the search space is a pos-

sible text with all its underlying representation, from semantics all the way down to phonetics.

A goal state is a text that satisfies the three requirements of meaningfulness, grammaticality,

and poeticness.

Figure 4.1 shows an example of an idealization of poetry generation as a state space search

55



56 Chapter 4. Evolutionary algorithms for poetry generation

problem. Imagine that the goal of the task is to produce an iambic pentameter couplet that

describes the act of walking and sleeping by a person named John. This goal is reflected by

the “target semantics” and “target surface” that is given as input to the system. This target

information could be used to create an initial, or start, state, e.g.“John walked. John slept”, as

shown in the first state in Figure 4.1. From here, various other states can be reached by applying

a wide range of operators that can occur at any level of representation. Consider the case where

the step taken is one of adding detail, in this case a destination for the act of walking, e.g.“to

the store”. Thus we reach the next state in the figure. If we follow the sequence of operations

taken, eventually we might arrive at a state that represents the output text “Into the bookshop

John did slowly creep, inside he fell into a peaceful sleep.”. This state is a goal state as it

satisfies the requirements imposed by the targets.

w,s,w,s,w,s,w,s,w,s,w,
w,s,w,s,w,s,w,s,w,s,w.

into the bookshop john did slowly creep,
inside he fell into a peaceful sleep.

john(j), walk(w,j), sleep(s,j)
store(st),destination(w,st)

To the store John crept.

John crept to the store.

john(j), walk(w,j), sleep(s,j)

Operator: lexical choice (walk -> creep)

John crept to the store.

Operator: clause re-ordering (topicalization)

store(st),destination(w,st)

John walked to the store.

Operator: pronominalization (john -> he)

Operator: Semantic addition (walk destination = store)

john(j), walk(w,j), sleep(s,j)

John walked.
John slept.

john(j), walk(w,j), sleep(s,j)

store(st),destination(w,st)

He slept.store(st),destination(w,st)
john(j), walk(w,j), sleep(s,j)

He slept.

john(j), walk(w,j), sleep(s,j)

john slept.

john slept.

Semantics

Surface

Surface

Surface

Semantics

Semantics

Semantics

Semantics

Surface

Surface

Target semantics:

Target surface:

Output:

Figure 4.1: An idealization of poetry generation as state space search

Such a search space is undoubtedly immense, and in fact when one considers the nature of

recursive structures in natural language, it is infinite. Our proposed solution is to employ a



4.1. Poetry generation as stochastic search 57

form of stochastic search. Stochastic search is a form of heuristic search that strongly relies

on random traversal of a search space with a bias towards more promising solutions. It has

become increasingly popular for solving computationally hard combinatorial problems from

various AI domains such as planning, scheduling, and constraint satisfaction, and has been

shown to outperform deterministic approaches in a number of domains.

The particular search methodology that we use is the evolutionary algorithm, which is es-

sentially an iteration of two phases, evaluation and evolution, applied to an ordered set (the

population) of candidate solutions (the individuals). We will discuss evolutionary algorithms

in more detail in Section 4.2.

This model is desirable owing to the following aspects:

1. Solving of multiple, interdependent constraints

The multiple constraints of meaningfulness, grammaticality, and poeticness that are im-

posed on different levels of linguistic representation make it extremely difficult to orga-

nize and structure a system for producing a poem. Just as the NLG systems described

in Section 3.4 employed search methods such as chart generation, truth maintenance

systems, and evolutionary algorithms to overcome the “generation gap” problem, our

adoption of a state space search formalism provides us with a very powerful mechanism

to satisfy these constraints.

An important point to note is that our model embodies an integrated architecture, due

to the fact that a move in the search space can occur at any level of representation of

the text, and in most cases will affect several levels. Thus, we abandon the conventional

decomposition of the generation process into content determination, text planning, and

surface realisation. Kantrowitz and Bates (1992) argue that this is necessary for handling

the many interdependent linguistic phenomena, as is exhibited by poetry.

2. Allows declarative as opposed to procedural account of poetry

With heuristic search methods, of which stochastic search is an instance, the encoding

of domain knowledge is situated within the evaluation function, which measures the

desirability of a state in the search space as a possible solution to the problem at hand.

This enables us to concentrate on specifying what we seek to produce, i.e. text artifacts

that are poems, as opposed to how to create them. In other words, we are developing a



58 Chapter 4. Evolutionary algorithms for poetry generation

declarative account of poetry.

This is closely related to the previous point, in that there is difficulty in designing a

procedural alogrithm for the satisfaction of the multiple, interdependent constraints that

are inherent in poems.

Theoretically, any domain knowledge that represents the characteristics of poetry can be

specified independently and encoded into the evaluation function, adding informedness

to the heuristic search. However, this raises the issue of how one defines the relative im-

portance of the contributions that each heuristic makes to the whole evaluation function.

This is the problem of multi-objective optimization (see Sections 4.2.2, 4.4.3).

3. Facilitates opportunistic planning

In the previous chapter we identified two major difficulties of poetry generation as viewed

from an NLG perspective, the second one being the lack of a clearly defined communica-

tive goal that can be used to drive the process of planning the resulting poem.

In this respect, our task faces the similar problems encountered in ILEX, where they

choose to adopt the paradigm of opportunistic planning (Section 3.6). Indeed, Mellish

et al. (1998b) suggest that there is a class of NLG problems for which the paradigm of

communicative goal-driven planning does not fit well. We believe poetry generation is

one of those problems.

In ILEX, opportunities arise due to a combination of events, primarily based on the

sequence of museum objects the user has chosen to visit. This enables the system to, for

example, select content that relates to previously visited objects.

During the course of generating poetry, opportunities can arise due to a combination of

partially-constructed content and form that, in an attempt to achieve some effect of a

phonetic, rhetoric or semantic nature, allows the introduction of a new content or form

element. For example, one can imagine something akin to the common poetry-workshop

game where partially constructed poems are given, and as an exercise, writers are asked

to fill in the blanks such as in the following couplet1:

When you talk to a monkey he seems very wise

He scratches his head and he �����
1The original poem by Rowena Bennett (Daly, 1984) ends the line with “blinks both his eyes”.



4.2. Evolutionary algorithms 59

The interleaving of planning and execution in opportunistic planning can be approxi-

mated through the iterative phases of evolution and evaluation in our chosen stochastic

search method of evolutionary algorithms. However, an important aspect of opportunis-

tic planning that differentiates it from an ordinary stochastic search is the fact that during

the stages of execution, opportunities are both recognized and exploited. In evolution-

ary algorithms, this is not intentionally achieved, but merely happens as a result of bias

towards more promising solutions. One can envisage, however, search operators that

do exactly this. We will attempt to explore this route by experimenting with “smart”

operators that implement heuristics that seek to make use of goals and opportunities

(Section 4.5.2).

Another aspect that we will explore is the issue of granularity in the interleaving of

stages. In ILEX, the opportunistic planning process was still structured around the two-

tiered architecture of content determination and text planning. However, due to the strong

unity between content and form in poetry (see Section 2.1.1), we feel that an even finer

grain of interleaving is required. We seek to experiment with operators of differing levels

of granularity to test this hypothesis.

It is worth noting that the interleaving of planning and execution in opportunistic plan-

ning can be seen as somewhat analogous to Sharples’ model of writing as a process of

creative design (Section 2.2), where the process of creating a text is an iterative, inter-

leaved process of reflection and engagement. It also reflects the model of poetry writing

suggested in Levy (2001), who suggests that evolution is the prevailing metaphor in cre-

ativity theory (Section 2.3.4).

4.2 Evolutionary algorithms

In this section we introduce evolutionary algorithms, our chosen method of stochastic search,

along with the crucial issues of representational schemes and the implementation of constraints

in an evolutionary algorithm, as this underlies several NLG-specific issues that we will en-

counter in later sections.

As defined in Michalewicz (1996), an evolutionary algorithm, or EA, is a multi-point stochastic

search algorithm, which means that it is a form of heuristic search that simultaneously explores

several points in a search space, and navigates the search space stochastically so as to prevent



60 Chapter 4. Evolutionary algorithms for poetry generation

getting trapped in local maxima as straightforward hillclimbing algorithms do.

All EAs maintain a population of individuals over time t as follows:

P � t � � � xi
t ��������� xn

t �
Each individual x represents a potential solution to the problem at hand, and is implemented as

some possibly complex data structure.

The main algorithm of an EA is as follows:

1. Initialization: For t � 0, construct a new population P � t � � � xi
t ��������� xn

t � , which repre-

sents a set of starting points to explore the search space. Ideally, the distribution of points

is evenly spread out across the space.

2. Evaluation: Each solution xi
t is evaluated to give some measure of its “fitness”.

3. Selection: A new population P � t � 1 � is formed by stochastically selecting individuals

from P � t � , usually with a bias towards fitter individuals.

4. Evolution: Some members of the new population undergo transformation by means of

“genetic” operators to form new solutions.

5. repeat steps 2 to 4 until termination. Termination is achieved either after

(a) a given number of iterations has elapsed, or

(b) a given fitness score has been achieved, or

(c) the EA has converged to a near-optimal solution, i.e. it has not yielded any better

solution for a given number of iterations.

Upon termination of this algorithm, the fittest individual is hoped to be an optimal, or near-

optimal, solution.

We will now elaborate on each of the steps above, insofar as it is relevant to our purposes and

interests.

4.2.1 Initialization

As mentioned above, during the initialization phase a population of individuals is created,

where each individual represents a starting point to begin exploring the search space.



4.2. Evolutionary algorithms 61

How initialization is performed varies across EA systems. Davis and Steenstrup (1987) sug-

gest that purely random initialization is useful for research purposes, as evolving a well-adapted

solution from a randomly created population is a good test of the EA. The fitness of the result-

ing solution will have been produced by the search, as opposed to being pre-programmed at

the initialization. More practical applications, however, would benefit from a more directed

approach.

If the random initialization approach is adopted, it is important to bear in mind the issues of

implementing constraints (see Section 4.2.7 below), as it is possible that any ill-formed indi-

viduals that are created during initialization may propagate throughout the evolution. Hence,

randomness here should be qualified as being randomness within the inviolable constraints that

the problem domain specifies.

4.2.2 Evaluation

During the evaluation phase, a fitness function is applied to each individual, yielding a numer-

ical score that indicates its suitability as a solution to the problem at hand.

A fitness function can actually be implemented as an aggregation of a set of separate functions,

which we will call evaluators, each of which is designed to measure a different property, or

aspect, of an individual.

This multi-objective nature introduces a problem of how to integrate all the scores returned by

each evaluator. One can aggregate them in a linear combination, but determining the optimal

weight of the contribution of each evaluator is by no means straightforward.

Other methods such as non-Pareto population based and Pareto-optimality based multi-objective

optimization have been investigated (Schaffer, 1985, Fonseca and Fleming, 1995).

4.2.3 Selection

During the selection phase, a number of individuals are chosen from the current population

whose offspring will be present in the next generation. This is the phase in which the driving

force in Darwin’s theory of evolution, natural selection, is simulated.

There are many variations of selection algorithms, such as proportionate, tournament, rank-

ing, and Boltzmann selection (Goldberg, 1989, Bäck et al., 1997). The main property shared



62 Chapter 4. Evolutionary algorithms for poetry generation

between all of them is the fact that selection is a function of an individual’s fitness (Mitchell,

1996). Where they mainly vary is in the stochastic bias towards good individuals, where one

extreme, nonregressional evolution, possibly leads to premature convergence, and the other

extreme towards inefficient searching through unpromising regions of the space.

John Holland’s seminal work on genetic algorithms (Holland, 1975) introduces the notion of

intrinsic parallelism, which states that individuals are sampled in such a way that schemata

from this space are represented in succeeding generations in proportion to their observed fitness

relative to the population average. Schaffer (1987) shows that this property holds for different

variations on the selection algorithm. In essence, there exists a degree of freedom of choice for

the selection algorithm, as whichever is chosen, the principles of evolution will still apply.

4.2.4 Evolution

An EA has a set of “genetic operators”, which are functions to modify a solution, yielding a

different solution, i.e. to cause a move in the search space.

These operators are either unary functions mi (“mutators”), i.e. mi : S � S that randomly

perturb the properties of a solution, or higher arity functions ci (“crossovers”), i.e. ci : S �������� S � S, that attempt to combine the properties of two or more solutions. The domain S is

the set of all possible individuals, or candidate solutions.

Spears (1992) notes that historically, proponents of the Holland (1975) style of genetic algo-

rithm tend to believe that crossover is more poweful than mutation, whereas researchers using

evolution strategies, another type of evolutionary algorithms, view mutation as the key ge-

netic operator. The results in Spears (1992) show that both operators have their strengths and

weaknesses, that are linked to the issues of exploitation vs. exploration: mutation is best

used to create random diversity in a population, while crossover serves as an accelerator that

promotes emergent behaviour from partial solutions. The balance between these two processes

is dependent on the specific application, and even implementation, of the EA.

4.2.5 Island model

An island model is an evolutionary algorithm where the population is segmented into groups

called islands. Each island still behaves just like a population, and each island is isolated



4.2. Evolutionary algorithms 63

from each other. For example, a maximum total population of Ntotal could be spread across M

islands, each island having a population size of Nisland = Ntotal � M.

Such models have been reported to display better search performance than large single popu-

lation models, both in terms of solution quality and reduced effort (Whitley et al., 1997).

One reason for this is that the islands develop relatively independently, allowing exploration of

different regions of the search space without prematurely converging.

On the other hand, a certain degree of information sharing between islands is facilitated through

migration, a process where islands exchange a portion of their population. This introduces the

parameters Imigration (migration interval), the number of generations between a migration, and

Nmigration (migration size), the number of individuals in an island which migrate.

4.2.6 Representation

The choice of representational scheme is a key issue in all flavours of evolutionary algorithm.

As in other areas of AI, there is often a trade-off between expressibility, the ability of a scheme

to express each point in the search space, and tractability, the degree to which the scheme

facilitates the application of operations that are inherently useful and meaningful to the problem

domain.

Although there may be many ways of representing a given search space, certain schemes are

more ‘natural’ than others. In particular, a good representational scheme would maintain a

correspondence between the measure of proximity between two points in the search space as

defined by the scheme and the proximity between the candidate solutions they encode. This

is desirable as an EA is essentially a form of stochastic hillclimbing search, where a search

localized around a near-optimal solution is hoped to yield similarly good results.

We will now discuss common representational schemes employed in evolutionary algorithms,

but first we elaborate on an important distinction derived from neo-Darwinism, that of the

genotype and the phenotype.

Genotype vs. Phenotype

In the biological sense of evolution, there is a clear distinction between an organism’s un-

derlying genetic coding (its genotype), and the behavioural, physiological and morphological



64 Chapter 4. Evolutionary algorithms for poetry generation

manifestation, or response, of that genetic information (its phenotype) (Fogel, 1995).

In particular, the neo-Darwinian theory of evolution suggests that natural selection occurs on

the phenotypic level, in that the singular measure of evolutionary fitness is the appropriateness

of a species’ behaviour and physiology in terms of its ability to anticipate its environment.

On the other hand, the indirect effect of natural selection and environmental factors determines

which genetic structures survive and which do not. This indirect force, coupled with genetic

mutation and replicative errors, is what shapes and evolves the genotypic level over time.

This distinction is important when one considers the pleiotropic and polygenic nature of the

genotype. Pleiotropy is the effect that a single gene may simultaneously affect several pheno-

typic traits. Polygeny is the effect that a single phenotypic characteristic may be determined by

the simultaneous interaction of many genes.

Natural selection is applied to a complex integration of phenotypic characteristics, not to an

individual trait. However, certain reductionist views of evolution apply fitness measures, or the

process of natural selection itself, to individual genes, i.e. elements at the genotypic level. This

simplification blurs the distinction between the genotype and the phenotype, and essentially

ignores such complex interactions as pleiotropy and polygeny.

How does this affect the computational modelling of evolution in EAs? While one may argue

that evolution as it happens in nature merely serves as an inspiration for computational models,

and that there is no strict requirement for adherence to this distinction when implementing EAs,

the very nature of the complex problem domains that are commonly solved with evolutionary

techniques usually exhibits properties of pleiotropy and polygeny.

With respect to our specific task of poetry generation, the fitness of a solution in our model

is how well it satisfies the properties of meaningfulness, grammaticality, and poeticness (Sec-

tion 2.1.4). The features in our chosen representation which can be used to measure this fitness

correspond to the phenotypic level. However, such features may not necessarily be the actual

structures of genetic code which are mutated and evolved, i.e. the genotypic level. Indeed, the

complex interactions between different linguistic representational levels (Section 3.7) suggests

the existence of pleiotropy and polygeny.

Although in practice the required features for measuring fitness may be deterministically recov-

ered from the underlying representation through some standard calculation, we believe this is

still an important theoretical distinction to be made: fitness is measured based on some explicit



4.2. Evolutionary algorithms 65

features which are different from the actual structures being genetically mutated and repro-

duced. In MCGONAGALL, the structures being manipulated are LTAG trees (Section 5.3.1),

whereas the features being measured are the conveyed propositional semantics (Section 5.3.8)

and lexical stress patterns (Section 6.3.2). Both these features are deterministically recoverable

from the LTAG structures.

String representations

Holland (1975) introduced genetic algorithms using representations of strings of characters in

a binary alphabet (bit-strings). This scheme was chosen for simplicity, tractability, and a nat-

ural resemblance to the chromosomes in living organisms. Unfortunately, a lot of subsequent

work has tended to take this scheme canonically. While this scheme is appealing due to its

relative simplicity and well-studied properties, a complex problem would often require a lot of

ingenuity in devising such a representation.

Moreover, most work with GAs tended to ignore the genotype / phenotype distinction by cal-

culating fitness functions directly on the string representations.

In recent years, “hybrid” solutions have experimented with different data structures such as

lists, trees, and graphs. We will now look at trees, and in particular how they are used in the

area of genetic programming.

Genetic programming and S-expression trees

Genetic programming is an extension of the conventional genetic algorithm in which each

individual in the population is a computer program. Koza (1994) states that the aim is to enable

computers to learn to solve problems without being explicitly programmed.

Since functional computer programs can be viewed as nested applications of functions (opera-

tions) to arguments (values), an individual is represented as an expression tree that represents

this sequence.

The most commonly used formalism is the LISP S-expression tree. Genetic mutation oper-

ations are implemented by adding, removing, or altering nodes in the tree, and crossover is

achieved through the swapping of two subtrees, each belonging to a parent individual’s expres-

sion tree.



66 Chapter 4. Evolutionary algorithms for poetry generation

As we will see in Section 5.3, this bears close resemblance to natural language parse trees, and

would seem the obvious choice for representation when evolving natural language texts.

4.2.7 Implementation of constraints

A candidate solution for a computational problem will likely have to obey certain constraints

of well-formedness, particularly if the solution involves complex data structures. As we will

see in Chapter 5, natural language generation exhibits these properties. When trying to arrive at

such a solution via an EA, these constraints are implemented through a combination of design

issues of representation, evaluation functions and genetic operators.

Davis and Steenstrup (1987) suggest two ways that inviolable constraints can be implemented,

which basically differ in the representational issue of whether invalid solutions are allowed to

be present in the search space:

1. Imposing penalties on individuals that violate a constraint

Although this has the desirable property of guiding an EA towards evolving solutions

that do not violate a constraint, this is quite an ad-hoc solution, as the property of being

inviolable is no longer upheld. Rather, the constraint is relaxed to become more of a

violable preference.

Davis and Steenstrup (1987) actually further divide this mechanism into imposing either

“heavy” or “moderate” penalties, but we see them as essentially being the same. How-

ever, it is a useful distinction to be made, as it highlights the different problems that an

EA runs into at both ends of the spectrum, and stresses the delicate nature of finding the

right balance. The potential problems with either choice are:

(a) if imposing heavy penalties:

When an EA has a high probability of evolving solutions that violate constraints,

then 1) the EA will very likely waste lots of computation wading through ill-formed

solutions, and 2) once a well-behaved solution is found, it is likely that the EA

would quickly converge on that solution, causing a premature convergence.

(b) if imposing moderate penalties:

An EA may continue to evolve solutions that violate constraints but still score better



4.3. Linguistic representation 67

than those that do not, because the rest of the evaluation function can be satisfied

better by accepting the violation penalty rather than avoiding it.

2. Ensuring that all possibly evolvable solutions never violate the constraint

This is perhaps the most principled approach. It entails designing both the initialization

phase and the genetic operators so as to always guarantee that individuals in the popula-

tion will satisfy the constraint, or at least its genotype can be interpreted as a phenotype

that satisfies the constraint.

Unfortunately, it is also usually the most computationally intensive approach.

Choosing which of the above methods to use in implementing constraints is a non-trivial task,

and is very task-specific. It will typically involve empirical testing to see which method yields

the best results for the least computational effort.

Since each constraint can be handled differently, it is very likely that a system will end up using

a combination of these methods, whichever suits a particular constraint best.

In Sections 4.3 to 4.5, we will now decide on these issues of EA design, particularly imple-

mentation of constraints, for the purposes of poetry generation. Note that this discussion will

be of a broad, theoretical nature. We will revisit these issues in more detail when we describe

MCGONAGALL, our implemented system, in Chapters 5 to 7.

4.3 Linguistic representation

The choice of representational scheme for a state space search is crucial in determining the

efficiency and effectiveness of the search in finding an optimal solution to the domain problem.

For the sake of being able to reason with the multiple, interdependent constraints encountered

in poetry, we define the search space as the space of all possible texts, with all underlying

representations being simultaneously accessible, from semantics down to phonetics.

The issue of implementing constraints is one that has an important bearing on the design of

an EA’s representational scheme. We have seen in Section 4.2.7 that there are essentially two

ways to implement constraints in an EA:



68 Chapter 4. Evolutionary algorithms for poetry generation

1. Ensure candidates do not violate constraints. This is achieved through design of genetic

operators.

2. Allow constraints to be violated, but penalize and/or reward each candidate solution with

respect to their satisfying of the constraints. This is achieved through the design of the

evaluators.

Either approach imposes requirements on the representation scheme.

Since the goal of our generation system is to create texts that satisfy the constraints of meaning-

fulness, grammaticality, and poeticness, we must make a decision on how they will be handled.

Choosing to ensure that all three constraints are not violated by a candidate solution is not a

profitable approach. This would require the system to behave like a deterministic system that

uses sophisticated procedural machinery of transforming the linguistic representation into valid

solutions. It is precisely this sophisticated machinery that we lack, and forms the root of the

problems mentioned in Section 3.7.

On the other hand, choosing to allow all three constraints to be violated and having a purely

discriminative model that quantitatively evaluates a candidate solution for its well-formedness

is inefficient.

Thus we can see a spectrum of search sophistication between these two extremes, and it is

roughly along this spectrum that the distinction between pipelined and integrated architectures,

first noted in Section 3.4, lies.

Upon further inspection, we can observe that our three constraints are not orthogonal. In par-

ticular, it can be argued that the satisfying of the grammaticality constraint is a prerequisite for

the satisfying of meaningfulness and poeticness. The widely accepted theory of composition-

ality of semantics states that the meaning of an utterance is derived from the analysis of the

utterance as being composed through well-formed syntactic operations. We believe that gram-

maticality is also an imperative precondition for poeticness to be considered. For example, we

do not regard the simple concatenation of words that yielded the metrical pattern of a limerick,

as output from the experimental POEVOLVE testbed implementation, as a poem.

Thus grammaticality is the prime constraint that must first and foremost be satisfied, and we

decide to implement it as an inviolable constraint through the design of genetic operators.

The mechanisms by which we can ensure grammaticality are very well studied, and we can call



4.3. Linguistic representation 69

on the immense resource of work done in the field of computational linguistics. It also brings

our work more in line with conventional NLG, and particularly with search-based approaches

such as Stone and Doran (1997) and Eddy (2002).

Finally, we note that most modern representations of syntax use tree-like structures, and the

manipulation of such structures in evolutionary algorithms is also well studied in the field of

genetic programming (Section 4.2.6).

4.3.1 Enforcing grammaticality through representation and operators

Given the complexity of modern computational linguistics theories in trying to capture the

various phenomena of natural language, one can expect that an adequate representation for our

purposes will have a large number of constraints on syntactic well-formedness.

Therefore, we choose to take the approach of stipulating that all possibly evolved solutions will

never violate grammatical constraints, as the alternative method of imposing penalties works

best in situations when the probability of evolving solutions that violate constraints is small.

We implement this approach by maintaining two properties:

1. All initial candidate solutions created during the initialization phase must be well-formed.

2. During any stage of subsequent evolution, if a candidate solution is well-formed, then

all possible modifications on that candidate solution must retain its well-formedness as

well.

One obvious way of doing this is to fashion the genetic operators after legal operations in a cho-

sen grammar formalism. Grammar formalisms are formal representational schemes for natural

language phenomena. Formalisms that efficiently and elegantly capture human linguistic phe-

nomena can be very complex, due to the complex and ambiguous nature of human language

usage. Essentially, a formalism defines a set of symbols that can represent linguistic artifacts,

and a set of functions on those symbols that can be used to construct well-formed structures

that can represent even more complex linguistic artifacts.

A grammar, defined under a certain grammar formalism, is a set of rules that defines, for a

particular language, which operations on which symbols result in well-formed structures, i.e.

grammatical utterances.



70 Chapter 4. Evolutionary algorithms for poetry generation

For a good introduction to this field and its related issues, we refer the reader to Jurafsky and

Martin (2000).

Many modern formalisms tend to be feature-structure based and lexicalist. Examples of these

are head-driven phrase structure grammar (Pollard and Sag, 1994), lexicalized tree adjoining

grammar (Joshi and Schabes, 1997), and combinatorial categorial grammar (Steedman, 1996).

To a certain degree, one can argue that any of these various formalisms would suit our purposes.

However, instead of arbitrarily choosing any widely-used grammatical formalism as the basis

of our representation, we will first consider what special requirements our chosen framework

places upon our representational scheme.

We require a representational scheme that:

1. simultaneously encapsulates all levels of grammatical information, which includes se-

mantics, rhetoric, syntax, lexis, and phonetics, and

2. elegantly allows for incremental and non-monotonic structure building.

The formalism we have chosen for our implemented system, MCGONAGALL, is Lexicalized

Tree Adjoining Grammar, or LTAG, and in Section 5.3 we discuss how LTAG fulfills these

requirements. Note that although we have chosen LTAG for our implementation, we do not

rule out other formalisms within the context of our theoretical model.

The choice of enforcing grammaticality through design of representation and operators pro-

motes the syntactic structure to the status of primary data structure for the representation of a

candidate solution, from which we can derive all other information, i.e. semantic, lexical, and

phonetic.

4.3.2 Optimizing meaningfulness and poeticness: a trade-off

Unlike the constraint of grammaticality, the remaining two constraints of meaningfulness and

poeticness will be implemented as penalties through the evaluation functions. These are the

main features that will be optimized by the EA.

The constraints of meaningfulness and poeticness are roughly analogous to the concepts of

fidelity and fluency discussed in Section 3.5 regarding overgeneration and ranking methods

for NLG. Meaningfulness and fidelity are both concerned with how a text achieves its intended

communicative goal. Regarding poeticness and fluency, although they are different in the sense



4.3. Linguistic representation 71

that poeticness, and specifically our restricted definition of it, is concerned with how a text

satisfies a rhythmic stress pattern, and fluency is how ‘natural-sounding’ a text is, they are

similar in the sense that they both entail surface constraints that form a trade-off with the goal

of meaningfulness/fidelity.

We have observed that the way this trade-off is dealt with in the various generation systems

we have seen is markedly different between conventional NLG systems and existing poetry

generation systems.

In the majority of conventional NLG systems discussed in Chapter 3, fidelity is the primary

constraint, and fluency is treated more as an additional constraint that is used to prefer one text

over another. This is understandable, considering that the main goal of NLG is the realization

of the given communicative goal. This can be seen implicitly from the way traditionally decom-

posed NLG systems make semantic decisions before surface decisions, and also how in over-

generation systems fidelity is first handled during the generation phase, and fluency is achieved

through the selection of the most probable candidate. In short, fidelity/meaningfulness pre-

cedes fluency/poeticness.

However, the reverse seems to hold in the few poetry generation systems that we discussed

in Chapter 2. WASP and ASPERA, for instance, clearly place metrical well-formedness as

the main constraint on their output text, as do RKCP, the POEVOLVE limerick prototype, and

all other form-aware poetry generation systems. In other words, fluency/poeticness precedes

fidelity/meaningfulness.

We believe that for poetry generation, there is in theory no justification for either of these con-

straints taking precedence over another. Our model therefore makes no such assumptions, and

treats both meaningfulness and poeticness as two separate measures that are to be optimized in

their own right. This raises the question of how these measures are combined (Section 4.4.3).

However, it must also be pointed out that handling meaningfulness and poeticness through the

evaluation functions is not the whole story. There is also the possibility of encoding them in

the genetic operators, over and above the enforcement of grammaticality, and we discuss these

‘smart’ operators in Section 4.5.2.



72 Chapter 4. Evolutionary algorithms for poetry generation

4.4 Designing Evaluators

Arguably the most crucial aspect of a stochastic search is the evaluation scheme which informs

the system how desirable a solution is. We believe there are three major issues to address for

designing our evaluation functions: identifying the features to be evaluated, quantifying these

features as numerical scores, and combining these scores in a meaningful way.

4.4.1 Identification of features to be evaluated

The most elementary question to be asked in structuring our system as an optimization problem

is: “What do we optimize?” We have already determined that our search process will be

optimizing some properties that will lead to the satisfaction of meaningfulness and poeticness

constraints. What exactly are these properties?

1. Meaningfulness

Evaluating the quality of a generated text’s semantics is a challenging task for the gen-

eration community. Mellish and Dale (1998) term this process accuracy evaluation,

and discuss how most existing work on this is external of the NLG system and involves

human judgment. It is understandable that few NLG systems incorporate the sort of self-

evaluation of semantics that we require, as the conveying of semantics is the whole goal

of the NLG process, and thus NLG systems are usually developed explicitly towards

maximizing accuracy in the first place. Overgeneration systems, particularly Varges

(2002), are perhaps the most similar systems to ours in this respect.

The existence of a given set of semantic propositions to be conveyed, call it the tar-

get semantics, gives us a clear feature to measure: how well does a candidate solution

convey the target semantics? In other words, how faithful, or similar, is the semantics

of a candidate solution compared to the target semantics? Related work on this is the

preference-based approximate generation in Nicolov (1998), which provides a good

model for reasoning about how a text can convey more or less than the target semantics,

and how to prefer one text over another based on how similar its semantic representation

is to the target semantics. The method Nicolov defines is very specifically couched in

terms of conceptual graphs (Sowa, 1984), but his intuitive notion of such a measure is

essentially the same as our own model of semantic similarity (Section 6.4).



4.4. Designing Evaluators 73

However, what if the target semantics is so vague as to be insufficient as a benchmark

for comparing the candidate solution with? For example, given a communicative goal

such as “write a poem about a lion”, e.g. as the target semantics lion � X � , what measure

can be used? In cases such as this, it would be better to view the target semantics not

as the message to be conveyed, as is the case in conventional informative NLG, but

rather as a ‘pool’ of ideas from which the system can draw inspiration. In cases such

as this, we propose devising measures of how internally consistent and how domain

consistent the semantics of a candidate solution is. In the first case, this would measure

how the semantics does not contradict itself, and in the latter case, how the semantics is

meaningful with respect to some underlying knowledge base. One could also speculate

on evaluating some notion of how interesting or novel a candidate solution’s semantics

is, but this is more related to the field of creativity theory (Pease et al., 2001, Ritchie,

2001, Wiggins, 2001) and story generation (Turner, 1994, Bailey, 1999, Pérez y Pérez

and Sharples, 1999), which is beyond the scope of this thesis.

2. Poeticness

(a) Phonetics: One of the most obvious things to look for in a poem is the presence

of a regular phonetic form, i.e. rhyme, metre, alliteration, etc. The information

needed to detect this can be derived from a pronunciation dictionary.

Similar to meaningfulness, one possible evaluation method is to specify a target

form as input, i.e. the ideal phonetic form that a candidate solution should possess,

and to then score a candidate solution based on how closely it matches this target

form.

For example, we could provide the system with the following target form (here w

means a syllable with weak stress, s a syllable with strong stress, and (a) and (b)

would determine the rhyme scheme, e.g. aabba), which effectively means we are

requesting it to generate a limerick:

w,s,w,w,s,w,w,s(a)

w,s,w,w,s,w,w,s(a)

w,s,w,w,s(b)

w,s,w,w,s(b)

w,s,w,w,s,w,w,s(a)

Alternatively, we could specify a set of these target forms, e.g. limerick, sonnet,



74 Chapter 4. Evolutionary algorithms for poetry generation

quintain, haiku, rondeau, sestina, etc., essentially creating a knowledge base of ex-

isting poetry forms. The evaluation function would then reward candidate solutions

that are found gravitating towards one of those patterns. Although a more flexible

alternative, it would probably not be as informed a heuristic, as the definition of the

goal becomes less focussed.

Finally, there is the possibility of detecting regularities in the rhythmic stress pattern

of a candidate solution without the aid of knowledge of existing forms. The suffix

tree-based methods used in computational biology and genomics (Pedersen, 1999)

for detecting regular sequences in DNA are a possible technique.

(b) Figurative language: Aside from phonetic patterns, there are other, more subtle,

features to look for in a poem, such as lexical choice, where the evaluation could

reward the usage of interesting collocations and words marked as “poetic”, syntax,

where reward could be given to usage of interesting syntactic constructs, e.g. in-

verse word and clause order, and rhetoric, where evaluation could score the usage

of figurative language constructs such as metonymy.

In our implemented system, MCGONAGALL, we choose to concentrate on the features of

semantic faithfulness, for meaningfulness, and metre conformance, for poeticness (see Sec-

tion 5.1).

4.4.2 Quantifying features

Having identified the range of possible features that can be evaluated, the next issue to address

is how to yield a numerical score that accurately reflects the merits of a candidate solution’s

fitness. By analyzing the possible features suggested above, we can categorize them into three

different strategies of scoring:

1. Score relative to target

For features which involve a direct comparison between a candidate solution and a given

target, we can employ algorithms for calculating the degree of isomorphism between two

structures, such as the edit distance algorithm for comparing two sequences (Sankoff and

Kruskal, 1983), or the computational models of analogy (Falkenhainer et al., 1989, Love,

2000) for more complex structures. Indeed, these are the approaches that we take for our



4.4. Designing Evaluators 75

implemented evaluation functions described in Chapter 6.

2. Score relative to domain knowledge base

In the absence of a specific target, one can derive a score for a candidate solution with re-

spect to a given domain knowledge base. One such feature is that of domain consistency

that we suggest in the case of meaningfulness. A candidate solution can be evaluated

against an ontology to see how conceptually valid its propositional semantics is. If the

ontology describes a lion as being a fierce desert animal, then a text that describes a lion

going into a bookstore would probably not score too highly. Another feature we sug-

gested was the evaluation of a candidate’s metre against a database of existing poetry

forms. This is reminiscent of the lazy learning method used in Varges (2002), where a

candidate is repeatedly compared against a database of exemplars. This can be seen as

an extension of the previous strategy.

3. Internal scoring

This strategy assigns a score to a candidate solution without the reference point of a given

target or knowledge base. One naive scoring method is to maintain a tally of points for

every occurrence of a desired feature encountered in a text. For example, applied to

the feature of alliteration, if we scored positively for each word that appeared in a line

starting with the same phoneme, the final output could become ridiculously riddled with

redundant repetitions of rewordings.

For now our aim is to facilitate a modular approach to the evaluation of features, so that each

particular type of feature will have its own corresponding evaluation function. This will allow

for more sophisticated approaches and techniques to be easily added in the future.

Apart from a modular approach, we also aim to parameterize the behaviour of these evaluation

functions, e.g. allow a user to set the coefficients and weighting factors that determine the

calculation of a certain score. A very interesting prospect is the interfacing of these coefficients

with empirical data obtained from statistical literary analysis, or stylometry.

In our implemented system, MCGONAGALL, we choose to adopt the first strategy suggested,

i.e. ‘score relative to target’ (see Section 5.1).



76 Chapter 4. Evolutionary algorithms for poetry generation

4.4.3 Combining scores

Assuming we have obtained numerical scores for each of the features we are considering, how

do we combine them? This is a problem of multi-objective optimization, and there are several

different methods that have been developed (see Section 4.2.2).

The simplest method is to compute a linear combination, or weighted sum, of the scores yielded

by all individual evaluators. This parameterization could possibly allow a choice between a

preference for a more faithful text and a preference for rigidly structured poetry.

Given a linear combination between the constraints of meaningfulness and poeticness, one ex-

treme would be a purely semantic-driven optimization problem, more akin to the search-based

NLG systems in Section 3.4, and the other extreme would be purely form-driven generation,

as in the systems WASP and RKCP (Section 2.3.3).

In our empirical study using MCGONAGALL, our implemented system, we use this simple

linear combination with ad-hoc weightings (Section 8.5).

4.5 Designing operators

Having discussed how to evaluate a set of candidate solutions, we will now discuss how to

create new variations of the candidates, which in effect drives the exploration of the search

space. This process can be seen as applying a collection of operators on the chosen candidates.

We have already discussed the notion of a spectrum of search sophistication, where one ex-

treme is the deterministic, rigidly architectured approach of traditional NLG typified by the

pipeline (Section 3.2), and the opposing extreme is a fullblown, exhaustive search. The design

of operators determines the position of a generation system on this spectrum.

The common wisdom in the EA community is to impose the burden of heuristic and domain

knowledge on the evaluation function, and to keep the genetic operators deliberately simple.

This is why EAs are successful in solving problems for which no algorithmic solutions are

known. However, faced with a wealth of existing domain knowledge from the field of NLG, it

would be a shame to ignore the potential of exploiting it in our system.

Adopting too much knowledge in our operators may lead us to the problems in Section 3.2, i.e.

the generation gap problem. On the other hand, adopting too little knowledge may cause the



4.5. Designing operators 77

EA to perform more inefficiently than it optimally needs to.

Finding a suitable balance in this trade-off is an issue this thesis addresses. The general

methodology that underlies our approach is to first see how much mileage one can obtain from

knowledge-free operators in an EA framework for poetry generation, and NLG in general, and

to gradually increase informedness through use of more sophisticated “smart” operators, or

what Bäck et al. (1997) term knowledge augmented operators.

We will now discuss the design of our operators, starting with the baseline operators that en-

force grammaticality, before proceeding to more knowledge-rich operators.

4.5.1 Baseline grammatical operators

Syntactic structure building is the staple of any NLP system, whether for generation or for

parsing. In generation, the goal is to find the structure that best conveys a given message,

whereas in parsing, the goal is to find the structure that best represents the surface string.

Typically, in generation this process is guided by the communicative goal in a top-down ap-

proach. The actual syntactic operations are performed based on a higher level rhetorical and

semantic structure that has already been decided upon, e.g. RS trees (Mann and Thompson,

1987), schemas (McKeown, 1985), DRSs (Kamp and Reyle, 1993).

Our baseline operators follow no such guidelines. Syntactic structure building occurs ran-

domly, but follows grammar rules that prescribe well-formedness. The hope is that with the

guidance of the evaluation functions, and the principle of evolution, a desirable candidate solu-

tion will emerge from this stochastic process. Thus, this roughly takes the form of a bottom-up

approach.

We introduce the following conceptual types of syntactic operations, which are neutral of any

particular theory or formalism of grammar:

1. Add: this operation adds linguistic content to a candidate solution through the applica-

tion of randomly selected grammatical rules.

(4.1) John walked. � John walked to the beach.

2. Delete: this operation removes linguistic content from a candidate solution whilst pre-

serving syntactic well-formedness.



78 Chapter 4. Evolutionary algorithms for poetry generation

(4.2) John likes Jill and Mary. � John likes Jill.

3. Change: this operation modifies the linguistic content of a candidate solution through

the substitution of existing lexical items or syntactic structures with different, but com-

patible, ones.

(4.3) John walked. � Tom walked.

In theory, this operation should be achievable through a composition of the Add and

Delete operations listed above. However, viewing this as an atomic operation allows us to

explicitly control the behaviour, for example by imposing that the semantic interpretation

of the text should remain unchanged by the operation, as in the case of paraphrasing as

defined by (Dras, 1999).

(4.4) John walked. � John creeped.

(4.5) John loves Mary. � Mary is loved by John.

4. Swap: this operation modifies two existing linguistic structures by swapping two com-

patible sub-structures around. It is an instance of a crossover operation (Section 4.2.4).

(4.6)
John walked to the store. � Mary walked to the store.

Mary laughed. John laughed.

One issue to be addressed in applying grammatical rules within an EA is the level of granularity

of the operators. As EAs are an interleaved process of evolution and evaluation, partially

constructed solutions are usually called upon to be meaningfully evaluated. This may present

a problem for certain grammatical formalisms. We differentiate between the following two

approaches to the stochastic building of syntactic structures:

1. Incomplete derivation building

With this approach, operators may introduce partial linguistic structures, i.e. incomplete

derivations. The potential benefit of this is that, provided we have a good evaluation

metric, this finer granularity may provide more opportunity for the search to be guided.

However, the drawback is that we have to deal with the evaluation of partially con-

structed derivations. In this respect, the notion of grammaticality of candidate solutions

is by no means trivial. Furthermore, our characterisation of the search space as the space



4.5. Designing operators 79

of all possible texts (Sections 4.1 and 4.3) must incorporate an extended notion of gram-

maticality where such incomplete derivations should be viewed as underspecifications

of syntactic structures, and they will not violate any syntactic rules once they are fully

completed.

2. Complete derivation building

With this approach, we limit the search space to that of all possible complete deriva-

tions allowed by the grammar. This is achieved by designing the operators so that they

always produce candidate solutions that represent complete derivations. One example

of this is the explicit handling of the ‘closing off’ of a derivation as in PROTECTOR

(Section 3.4.1). The benefit of this is that the notion of grammaticality of the candidate

solutions is well-defined. However, this coarser-grained operator may cause the EA to

‘miss out’ on potential solutions.

In our implemented system, MCGONAGALL, we implement (Sections 6.3.7 and 7.4.1) and test

(Sections 8.3.2 and 8.3.3) both these approaches.

4.5.2 Knowledge augmented smart operators

Recall from Section 4.3 that we choose to enforce grammaticality through our design of rep-

resentation and operators, and to optimize for meaningfulness and poeticness through search.

Thus, first of all any smart operators must be built “on top” of the baseline grammatical opera-

tors described in the previous section, i.e. to ensure grammaticality.

Smart operators seek to exploit goal-specific knowledge and heuristics by explicitly trying to

satisfy given targets, i.e. target semantics, target metre, etc. In the case of meaningfulness,

we can adapt the hillclimbing algorithm of SPUD and PROTECTOR (Section 3.4.1). In the

case of poeticness, we can employ the strategies used by WASP and RKCP (Section 2.3.3).

However, this would likely impose the requirement of a strict left-to-right derivation on the

syntactic operators used.

In Section 7.3 we present our design for semantically smart operators, and empirical tests using

them are discussed in Section 8.4.2.



80 Chapter 4. Evolutionary algorithms for poetry generation

4.6 Summary

We have argued for a model of poetry generation as a state space search problem, where a

state is a possible text with all its underlying representation, and a goal state is a text that sat-

isfies the three requirements of meaningfulness, grammaticality, and poeticness. Furthermore,

we have argued to solve this search using evolutionary algorithms, which we introduced in

detail in Section 4.2. We choose to implement our constraints in an EA by enforcing gram-

maticality through design of representation and operators, and optimizing for meaningfulness

and poeticness. We discussed issues of representation, evaluators and operators for the task of

poetry generation, and natural language generation in general. Note that the discussion in this

chapter was of a broad, theoretical nature, and that in the next three chapters we will discuss

these issues as we have specifically implemented them in MCGONAGALL. Chapters 5 to 7 will

elaborate on the various representational schemes, evaluation functions, and genetic operators

respectively.



Chapter 5

Representations for MCGONAGALL,

an Instance of EA-based NLG

In Chapter 4, we presented a rationale and a theoretical model of implementing NLG, specif-

ically for poetry, using evolutionary algorithms. In this chapter we will describe MCGONA-

GALL, an instance of such an EA-based NLG system, which we have implemented.

5.1 MCGONAGALL in a nutshell

Based on our restricted definition of poetry as a text that simultaneously satisfies the properties

of grammaticality, meaningfulness, and poeticness (Section 2.1.4), in Section 4.1 we defined

poetry generation as a state space search problem, and advocated the use of evolutionary al-

gorithms (Section 4.2) to solve this problem. In Sections 4.3 to 4.5 we discussed the issues of

representational scheme, design of evaluation functions, and design of genetic operators, for

performing EA-based poetry generation. However, this discussion was of a broad, theoretical

level. In the following three chapters we will discuss these aspects as we have implemented

them in MCGONAGALL, an instance of our poetry generation model:� Chapter 5: representation of various levels of linguistic knowledge, i.e. semantic, syn-

tactic, and lexical information.� Chapter 6: evaluation functions for semantic and metrical constraints.

81



82 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

� Chapter 7: genetic operators for exploring the search space.

As will become evident in these chapters, for the purposes of MCGONAGALL, we have further

specified our definition of meaningfulness as propositional semantics similarity, and poeticness

as metre pattern similarity, using the ‘score relative to target’ strategy proposed in Section 4.4.2.

5.2 Semantic representation

Input for NLG varies greatly between systems. For our purposes, we adopt a simple ‘flat’

semantic representation that is quite widely used in tactical NLG components (Nicolov et al.,

1995, Stone and Doran, 1997, Koller and Striegnitz, 2002) and machine translation systems (White-

lock, 1992, Brew, 1992). We will now define what we mean by such a representation, and

motivate its choice for MCGONAGALL.

5.2.1 Definition

Essentially, a flat semantic representation is one without embedded structures, or hierarchy,

of any kind. An encoding in such a representation typically consists of a set of first order

logic literals, where a literal is a predicate followed by a parenthesized list of its arguments.

The set is logically interpreted as a conjunction of all its members. We will call such a set a

semantic expression. The arguments of these literals represent concepts in the domain such as

objects and events, while the predicates state properties of these concepts, in the case of unary

predicates, or relations between concepts, in the case of n-ary predicates, where n � 1.

In our simple implementation, we do not handle negative literals. Instead, lexical items that

indicate negation, e.g.“not”, simply convey the literal not � X � , where X is some argument that

refers to an event or object that has a predication which is negated, e.g. see 5.4 below, where l

is the event of John loving Mary.

For example, the representation of the semantics of the sentence “John loves Mary” is given

in Example 5.1, where l is the event of j, who has the property of ‘being John’, loving m, who

has the property of ‘being Mary’.

(5.1) � john � j ��� mary � m ��� love � l � j � m ���
“John loves Mary”



5.2. Semantic representation 83

(5.2) � john � j ��� mary � m ��� love � l � j � m ��� believe � j � l ���
“John believes that he loves Mary”

(5.3) � john � j ��� mary � m ��� love � l � j � m ��� past � l ���
“John loved Mary”

(5.4) � john � j ��� mary � m ��� love � l � j � m ��� not � l ���
“John does not love Mary”

Within this regime, events and situations are often represented as entities in their own right (Hobbs,

1985). This allows one to simulate certain higher order constructions, such as modality (Ex-

ample 5.2), or linguistic phenomena such as tense (Example 5.3). Note that the logical form in

(5.1) can be realized by both the utterances in (5.1) and (5.3) if we allow for underspecification

of tense (but not vice versa, i.e. the logical form in (5.3) being represented by the utterance in

(5.1), unless we allow approximate generation, which we will discuss later).

Examples of flat semantic representations are Hobbs’ ontologically promiscuous semantics (Hobbs,

1985), the ‘bag of concepts’ in shake and bake machine translation (Brew, 1992, Whitelock,

1992), and minimal recursion semantics, or MRS (Copestake et al., 1995). MRS is a further

development that handles representation of quantification and scope.

5.2.2 Benefits

There are various desirable properties of a flat semantic representation detailed in the works

cited above. Of particular interest to us is that it provides a simple syntax-semantics interface.

Since semantic expressions are flat sets, compositional rules usually just involve unions of sets

with variable binding.

Moreover, such flat representations allow for underspecification of semantics, which is useful

for interleaved incremental generation of both semantic and syntactic structures.

Furthermore, as stated in Copestake et al. (1995), a flat representation conveniently sidesteps

some aspects of the logical equivalence problem, i.e. where the semantic representation of

paraphrases are slightly different due to the compositional semantics rules implicitly encoding

syntactic information. For example (taken from Copestake et al. (1995)), the logical form of

the English phrase fierce black cat as given by a simplistic grammar may be the one given in

Example (5.5), while the logical form of its Spanish translation, gato negro y feroz, might be



84 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

the one in Example (5.6):

(5.5) λx[fierce(x) � (black(x) � cat(x))]

(5.6) λx[cat(x) � (black(x) � fierce(x))]

The difference arises due to the binary nature of � giving rise to spurious bracketing ambiguity.

Although logically equivalent, some logical processing must first be executed to equate the

two. A flat semantic representation, with a canonical ordering, say alphabetically, would yield

the same formula for both utterances, avoiding any computational expense of deciding their

equivalence: � black � x ��� cat � x ��� f ierce � x ���
However, for our purposes, the main advantage of such a representation is increased paraphras-

ing power. If we view this logical equivalence problem from a generation viewpoint, we can

see that an encoding of semantics in a flat representation can be realized by many different ut-

terances. Contrast this with hierarchical representations which often already encode high level

syntactic decisions, e.g. which concept is to be realized as a verb, as its complements, how

adjuncts are ordered, etc. This issue is raised by Nicolov et al. (1995, 1996) with respect to

conceptual graphs, but applies also to our representation.

5.2.3 Drawbacks

The main drawback of generating from flat representations is its computational expense. Both Brew

(1992) and Koller and Striegnitz (2002) show that this is an NP-complete problem. However,

since we are employing evolutionary algorithms for our generation process, for reasons dis-

cussed in Chapter 4, we are already equipped with a powerful search mechanism for solving

problems of this nature. Furthermore, computational efficiency is not the focus of our research.

5.2.4 Examples

An important application of this semantic representation is as a language for defining the input,

or target, semantics. For example, one possible encoding of the first two lines in Belloc’s The

Lion,



5.2. Semantic representation 85

The lion, the lion, he dwells in the waste,

He has a big head and a very small waist.

could be� lion( ,l), dwell(d,l), inside( ,d,was), waste( ,was), own( ,l,h), head( ,h), big( ,h),

own( ,l,wai), small(s,wai), waist( ,wai), very( ,s) �
In our encoding, we assign for all predicates a first argument that corresponds to the event

entity of this predication holding. For example, in � lion � x � l ��� , the constant x represents the

event of l being a lion, or the state of l’s ‘lion-ness’. This is one of the main points of Hobbs

(1985)’s ontological promiscuity: virtually any predication can be referred to as some event or

state. Hobbs (1985) introduces a notation where for every n-ary predicate p, there is an n � 1-

ary predicate p
�
whose first argument is the condition that holds when p is true of its arguments.

For example, if big � X � means that X is big, big
� � E � X � means that E is the condition of X being

big. However, in our encoding above, we do not use this notation, choosing instead to explicitly

assign every predicate a corresponding event argument. We use a Prolog-style notation of ‘ ’

to indicate when we do not care about an argument’s value.

Thus, in our encoding of The Lion, we are only interested in the dwelling event entity d,

because we need to specify its location (“dwells in the waste”), and the condition of being

small s, because we emphasize its nature (“very small”).

There are a vast number of paraphrases that could be generated to realize this semantic encod-

ing. For example:

(5.7) The big headed lion, who dwells inside the waste, has an extremely tiny waist.

(5.8) A lion lives on the waste. Its head is big, and its waist is very small.

(5.9) The dwelling of the lion, with its very small waist and big head, is in the waste.

none of which possess the same metre pattern as the original text.

We will see how the semantics are represented in the lexicon, and how they are composed

within the grammar formalism, in Section 5.3.8.



86 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

5.3 Linguistic representation

The grammar formalism we use for MCGONAGALL is Lexicalized Tree Adjoining Gram-

mar (Schabes, 1990), or LTAG. We also employ unification-based feature structures (Vijay-

Shanker and Joshi, 1988) for the handling of linguistic phenomena. In this section, we will

first describe the aspects of this formalism pertaining to our work before discussing the ad-

vantages it provides for computational linguistics, specifically generation purposes. Lastly, we

will discuss implications of using it within a non-monotonic, incremental generation process

as performed by our EA framework.

5.3.1 Lexicalized Tree Adjoining Grammars

LTAG is based on Tree Adjoining Grammar (Joshi and Schabes, 1997), or TAG, a grammar

formalism that is widely used due to its elegant account of certain linguistic phenomena.

TAG is based on the composition of elementary trees, the primitive elements of TAG. There

are two types of elementary trees, initial trees and auxiliary trees.

A tree is an initial tree if:

1. all its internal nodes are labelled by non-terminals, and

2. all its leaf nodes are labelled by terminals, or by non-terminal nodes marked for substi-

tution.

Initial trees represent minimal linguistic structures that contain no recursion. They are minimal

in the sense that they account for all and only the arguments of the head of the syntactic con-

stituent they represent, e.g. a sentential structure would contain a verb and all its complements.

Initial trees are often notated with the symbol α. An initial tree is said to be of type X if its

root is labelled with type X . Nodes marked for substitution, or substitution nodes, are notated

with a � following the node’s label.

A tree is an auxiliary tree if:

1. all its internal nodes are labelled by non-terminals,

2. all its leaf nodes are labelled by terminals, or by non-terminal nodes marked for substi-

tution, except for exactly one non-terminal node, called the foot node, and



5.3. Linguistic representation 87

3. its foot node has the same label as its root node.

Like initial trees, auxiliary trees represent minimal linguistic structures. However, auxiliary

trees represent recursive structures. Linguistically, they account for constituents that are ad-

juncts to basic structures, e.g. adjectives, adverbials, etc..

Auxiliary trees are usually notated with the symbol β. Foot nodes of auxiliary trees are notated

with a � after the node’s label.

Furthermore, nodes are often referred to using the Gorn tree addressing scheme. A Gorn ad-

dress is a list of integers that indicates the position of a node within a tree. The Gorn address

of the i-th child of node n is the Gorn address of n with i appended to the end of the list. The

Gorn address of a root node is ε, or sometimes 0 for convenience.

Figure 5.1 shows an example of an initial and an auxiliary tree, both as a schematic figure that

shows their characteristics, and as actual phrase structure trees. The nodes are also labelled

with their Gorn addresses.

X X

X

V

NP VP

NP

loves

S

2.22.1

2.1.1

0

1 2
Adv

VP

VP*

deeply

0

1 2

1.1

(a) (b)

Figure 5.1: Elementary trees in TAG consist of (a) Initial trees and (b) Auxiliary trees

In TAG, there are two types of operations that can be used to compose elementary trees, sub-

stitution and adjunction. In substitution, the root node of an initial tree is merged with a

non-terminal leaf node that is marked for substitution in another tree, called the substitution

node, producing a new tree. The root node and the substitution node must share the same label

for the operation to be warranted. Figure 5.2 shows an example of substitution taking place.



88 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

X

X

X

V

NP VP

NP

loves

S

N

John

NP

VP

NP

S

N

John

NP

loves

V

+

Figure 5.2: The substitution operation in TAG

In adjunction, an auxiliary tree is inserted into another tree at a non-terminal node, called the

adjunction node, as follows: the subtree dominated by the adjunction node is “excised” and

attached to the auxiliary tree’s foot node, and the root node of the auxiliary tree is then merged

with the adjunction node. Figure 5.3 shows an example of adjunction.

A grammar G consists of a set of initial trees, I, and auxiliary trees, A.

Finally, a lexicalized grammar is one in which each structure is related to a lexical item. The

example trees in Figures 5.1, 5.2, and 5.3 are actually specific examples of lexicalized elemen-

tary trees. The lexical item associated with each elementary tree is called the anchor.

5.3.2 Deep lexicon and the sharing of syntactic information

With lexicalized grammars it is often the case that most of the linguistic knowledge is embed-

ded within the lexicon (hence a ‘deep’ lexicon). These linguistic structures are then combined

with a limited set of syntactic rules. The space of possible combinations of structures in LTAG

is governed by the operations of substitution and adjunction.

Because lexical items share a lot of syntactic structure in common with each other, this is



5.3. Linguistic representation 89

X

X

X*

V

NP VP

NP

loves

S

X

X

Adv

VP

VP*

deeply

+ NP VP

VP

deeply

S

NP

Adv

V

loves

Figure 5.3: The adjunction operation in TAG

efficiently encoded within a set of elementary trees. Lexical items need only specify a list of

names of elementary trees which they can potentially anchor.

Figure 5.4 is an example of a snippet of a grammar and lexicon in LTAG, showing how lexical

items, in this case adjectives, can be associated with different elementary trees. The trees in this

case are βad jective , an auxiliary tree for adjoining in adjectives, and αcopula ad j , a copula sentence

construction headed by an adjective (e.g.“John is strong”). Note that as these elementary trees

do not have a specific lexical item anchoring them yet, their anchor node is notated with a � .

Lexical entries can contain arbitrarily complex knowledge, and during the process of anchoring

trees with lexical items, one can perform further syntactic checks through the use of feature

structures (Section 5.3.4).

5.3.3 Derivation tree as primary data structure

We have seen that in TAG, complex phrase structure trees are constructed through the com-

position of elementary trees using the substitution and adjunction operators. The derivation

tree is a record of this process. It uniquely specifies its derived tree, the phrase structure tree



90 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

α

N

N*AP

Adj
copula_adj,

NP VP

S

Adj/be/

V AP copula_adj,

strong βadjective
αcolourless βadjective
αverb_transkicked

Ortho Trees

Lexicon

αβadjective copula_adj

(a) (b)

Figure 5.4: Specifying linguistic knowledge in the grammar and lexicon

obtained by the recorded operations.

Figure 5.5 gives an example of this. The derived tree in (c) is obtained by a series of operations

on the elementary trees in (a). These operations are recorded by the derivation tree in (b). Each

node in the derivation tree specifies an elementary tree. Furthermore, each node aside from the

root node also specifies the Gorn address of the node in its parent’s elementary tree where the

operation occurs. We call this the operation address, and it is indicated by the label of the

edge connecting a node to its parent. For example, αbook subtitutes into αread at address 2.2,

the object NP node. The process of composing the elementary trees is illustrated in (d).

Although a derivation tree is simply a historical record, or a roadmap, of how a derived tree

is constructed, it is of significant importance for generation, and in particular our stochastic,

incremental approach to generation.

Firstly, Joshi (1987) points out that a derivation tree implicitly characterizes the surface tree (i.e.

derived tree) as well as serving as the basis for compositional semantic interpretation. Note how

the derivation tree in 5.5(b) exhibits the predicate argument structure of the underlying seman-

tics � read � r� j � b ��� john � � j ��� book � � b ��� yesterday � r ��� . Candito and Kahane (1998) state that a

derivation tree can be viewed as a semantic dependency graph in Meaning-Text Theory. From

a generation viewpoint, the derivation tree can be seen as the basic formal object that is con-

structed during the course of sentence generation from a semantic representation (Joshi, 1987).

This can be seen in generation systems such as SPUD and PROTECTOR (Section 3.4.1), and

in our implementation of semantically-motivated operators (Section 7.3).

Secondly, as elaborated in the next few sections, it is the appropriate data structure on which to



5.3. Linguistic representation 91

readα

Johnα bookα yesterdayβ

aα

book

(d)(c)

(a)

02.2

1

1

αJohn

yesterday

αread

αbook

a

αJohn
β

αα αa

(b)

read

α

yesterdayβ

NP

NP

S

VP

read

V

N Adv

yesterday

S*

John

NP

N

book

NP

S

D

a

S

D

a

VP

S

N

book

NP

D

NP

book

V

read

VP

NP

NP

S

N

a

D
Adv

yesterday

S

S*

D

N

John

NP

read

V

NP

John

N

yesterday

Adv

Figure 5.5: A derivation tree captures the process of composition of elementary trees

perform nonmonotonic operations in our stochastic and incremental generation framework.

Thus, the TAG derivation tree is the primary data structure that an individual in our evolutionary

algorithm is composed of.

5.3.4 Feature-structures for unification

The unification of feature structures in unification-based grammars is a mechanism for captur-

ing various linguistic phenomena in a compact manner (Gazdar and Mellish, 1989). Extend-

ing TAG with a unification framework is potentially problematic due to the adjunction operator.

This is because adjunction ‘splits’ a node in two, whereas unification is essentially a destructive

operation. We recommend Vijay-Shanker and Joshi (1988) and Kilger (1992) for a discussion

of this problem.

Following Vijay-Shanker and Joshi (1988), our implemented extension to TAG for unification

is as follows: each node in an elementary tree is associated with a feature structure which

consists of a top part and a bottom part. The top part contains information relating to the tree



92 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

that dominates it, and the bottom part contains information relating to the tree it dominates.

Substitution nodes only have the top part features, as the tree substituting in carries the bottom

features.

When performing substitution, the top feature structure of the new resulting node is the union

of the top features of the original nodes. The bottom feature structure of the new resulting node

is simply the bottom feature of the root node of the substituting tree, as the substitution node

has no bottom features. For adjunction, the node being adjoined into is ‘split’ into two, and its

top feature is unified with the top feature of the adjoining tree’s root node, whereas its bottom

feature is unified with the bottom feature of the adjoining tree’s foot node. Figures 5.6 and 5.7

show these operations in a graphical manner.

For a TAG derivation to be valid, the top and bottom features structures at every node must be

unified, or “collapsed”. Since adjunction requires both the top and bottom feature structures,

nodes may not be collapsed until it is known that adjunction will not occur at that node. In

practice, the collapsing of nodes is carried out at the end of the derivation.

X

X

X

top:[a:1, b:2]
bottom:[d:2]

top:[c:1]
bottom:[d:2]
top:[a:1, b:2, c:1]

Figure 5.6: Unification of features in substitution

X

X

X*

X

X

Top:[a:1]
Bottom:[b:2]

Top:[c:3]
Bottom:[d:4]

Top:[c:1]
Bottom:[d:2]

Top:[a:1; c:3]
Bottom:[d:4]

Top:[c:1]
Bottom:[b:2; d:2]

Figure 5.7: Unification of features in adjunction



5.3. Linguistic representation 93

Within this unification-based framework, one can dynamically specify local constraints that

would otherwise require a proliferation of elementary trees.

Figure 5.8 shows a simplified account of how one might use feature structures to ensure agree-

ment between a verb and its subject. Verbs and nouns in the lexicon are marked with agreement

features. For example, the intransitive verb ‘reads’ has [AGR [3SG : +]] to indicate that it re-

quires a subject noun phrase that is third person singular. The noun ‘John’ has [AGR [3SG :

+]] and ‘dogs’ has [AGR [3SG : -]].

When a lexical item anchors an elementary tree, the feature structure of the lexical item is

copied to the bottom feature of the elementary tree’s preterminal node, thus requiring it to

unify with the preterminal’s top feature once the node is collapsed. This can be seen in the four

anchored trees of Figure 5.8.

These features are in turn propagated further by coindexed features that nodes in the grammar

are marked with. For example, the indices 4 and 5 ensure that the noun phrases that are pro-

jected by ‘John’ and ‘dogs’ will inherit the features from the lexical anchor. When substituted

into the subject position of αreads, these features will have to unify with 1 , which itself inherits

features from its anchor, the verb ‘reads’. This ensures that αdogs would fail to appear as the

subject of αreads, but only after the top and bottom features at each node have been unified.

Within αreads, one could possibly co-index the features between the NP and V node directly.

In this example, however, we allow the possibility of a tree adjoining in at VP that can alter the

relationship of agreement between subject and verb, hence the use of 1 and 2 . If adjunction

does not occur at that node, they will simply unify. In the case of adverbs such as βquietly ,

agreement is simply passed along between the root and foot nodes.

αJohnαquietlyβreadsα dogs

agr: 3

agr: 3 N

John

NP agr: 4

agr: 3sg:+

dogs

NP

agr: 3sg:-

agr: 4

agr: 5

agr: 5

V

reads

VP

S

NP
agr: 1

N
agr: 1

agr: 2

agr: 3sg:+

agr: 2

VP*

VP

quietly

Adv

Figure 5.8: Dynamically specifying local constraints using feature structures



94 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

5.3.5 Unification and nonmonotonicity

The use of unification of feature structures to dynamically specify linguistic constraints within

our stochastic and incremental generation framework requires special attention. This is be-

cause unification can mainly be seen as a monotonic operation: it always builds larger struc-

tures. However, our system involves two sources of nonmonotonic operations: the adjunction

operation, and the overtly nonmonotonic operators of subtree deleting and swapping (see Sec-

tions 7.2.2 and 7.2.3).

Recall that Vijay-Shanker’s approach to unification in TAG requires the specification of top and

bottom features for each node. This is because the adjunction operator can be seen as splitting

a node into two, corresponding to the root and foot nodes of the auxiliary tree adjoining in.

Recall also that the top and bottom features of every node must eventually be unified for a

derivation to be complete. This presents a problem within our incremental and interleaved

generation framework: when should these features be unified?

The common approach is to defer unification of top and bottom features until the end of the

derivation process. However, in an evolutionary algorithm, operators and evaluators are inter-

leaved, thus evaluators are required to evaluate candidate solutions even though they may not

be complete derivations yet. For this purpose, the feature structures of a candidate solution

must be unified at every iteration so that grammaticality can be verified.

If we do collapse top and bottom features at every iteration, the destructive nature of unification

prevents us from recovering the original features, which are needed for adjunction to occur at a

node at a later iteration. Figure 5.9(a) shows an example of the sentence “John reads”, where

the top and bottom features have been unified to ensure agreement between subject and verb.

However, we can no longer adjoin at the VP node because the original features are no longer

available.

On the other hand, deferring unification defeats the purpose of using feature structures to spec-

ify grammatical constraints.

Kilger (1992) explores this problem and proposes two possible solutions. The first solution is to

always store a copy of the original local feature structures of the elementary trees, and to unify

top and bottom features during the derivation process. When adjunction requires access to fea-

ture structures before they were unified, the currently built global feature structure is discarded

and rebuilt from the original feature structures. The second solution is to perform unification in



5.3. Linguistic representation 95

a non-destructive manner. Instead of structure-sharing when two features are unified, pointers

between the corresponding original features are created. Adjunction can then be handled by

redirecting the pointers to new feature structures as necessary. Kilger (1992) finds that both ap-

proaches have a balance of advantages and disadvantages. For the first approach, adjunction is

a very costly operation as the global feature structure must be discarded and rebuilt. However,

for the second approach, features cannot be read off directly, but must be recovered through a

traversal of the pointers. In the worst case, this could be a traversal of the entire global feature

structure.

We have chosen to use the first solution, mainly due to the relative simplicity of its implemen-

tation within MCGONAGALL. Since our primary data structure is the derivation tree, we are

implicitly storing all necessary local feature structures. When required, all we need to do is

rebuild the derived tree without unified top and bottom feature structures. This would produce

a structure as in 5.9(b), where we can adjoin in βquietly at the VP node to obtain the structure

in 5.9(c). Once the top and bottom features of this tree are unified, we obtain the final derived

tree as in 5.9(d).

We can minimize redundant computation by reusing the previously built derived tree if we

know it has not been modified. Thus every derivation tree will be associated with a cached

derived tree, and a flag to indicate whether the cached copy is still up to date.

This approach also allows us to handle the second instance of nonmonotonic operations, i.e.

the overtly nonmonotonic operations of subtree deleting and swapping as detailed in Chapter 7.

5.3.6 Obligatory adjunction and incomplete syntactic structures

Even if we do account for the destructive nature of unification, as in the previous section, the

notion of grammaticality of a partially derived tree is not trivial.

A particularly difficult case is that of obligatory adjunction, where the top and bottom features

of a node cannot unify until an auxiliary tree is adjoined in. Figure 5.10 shows an example

of this. In (a) we see the elementary trees for a transitive and auxiliary verb, αtransitive and

βauxiliary , along with a lexicon. For the sake of clarity, only the relevant features are shown.

The top feature structure for the V node in αtransitive indicates that the form of its verb must be

finite. Notice that it is placed in the top section, as this constraint can be seen to be coming

from ‘above’, i.e. what a sentence requires its verb must be in order to be grammatical.



96 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

(c)

(b)(a)

αJohn

readsα

(d)

1 2

quietlyβ

α

John

reads

α

1

agr: 3sg:+

3sg:+ 3sg:+agr:

3sg:+agr:

S

quietly

agr:

V

N

John

NP

agr: 4
agr:

agr: 1

agr: 4

agr: 3sg:+ VP3sg:+

agr: 3sg:+

NP VP

agr: 2
V

reads

Adv

quietly

VP

VP

agr: 1

reads

agr: 3

agr: 2

agr: 3

S

NP

V

reads

VP

S

NP

N

John

agr: 3sg:+

agr: 3sg:+agr: 3sg:+

agr: 3sg:+

NP

N

John

NP

agr: 4
V

reads

VP

S

NP
agr: 1

Adv

agr: 2

agr: 3sg:+

agr: 2

agr: 1

agr: 4

agr: 3sg:+

John

N

Figure 5.9: The derivation tree facilitates access to original local feature structures during ad-

junction

Verbs of finite form, such as ‘loves’, can happily anchor αtransitive , as in (b). However, the

infinitive form, ‘love’, cannot, as its feature does not unify with the preterminal’s top feature

(remember that upon anchoring, the lexical item’s feature structure is copied to the pretermi-

nal’s bottom feature, and that the top and bottom features must unify). This is not to say that it

cannot anchor αtransitive at all. This problem can be remedied by adjoining in βauxiliary at the V

node. As we see in (c), V is split into two, the top feature unifies with βauxiliary’s root, and the

bottom feature unifies with its foot. In βauxiliary , we co-index the [FIN] at the root with that of

the preterminal. Thus, only auxiliary verbs with [FIN : +] will unify. Furthermore, we specify

[FIN : -] at the root V � node, to prevent the auxiliary verb from adjoining onto elementary trees

anchored by verbs of finite form.

In our incremental framework, a partial derivation may have its top and bottom features not

unify, even though it may well be on its way to becoming a syntactic construction. For parsing



5.3. Linguistic representation 97

V

S

NP VP

NP[fin:+]

loves

[fin:+]

V

S

NP VP

NP[fin:+]
[fin:-]

love

V

S

NP VP

NP

[fin:-]
[]

love

Aux

will

[fin:+]

V[fin:+]
[fin:+]

[fin:+]

[fin: -]

V

S

NP VP

NP[fin:+]

α transitive:

β

V*

V

Aux

[]

[][fin: 1 ]

[fin: 1 ]

V

auxiliary:

[fin: +]
[fin: +]
[fin: -]
FeatureCat

V
Aux

Ortho
love
loves
will

(a) (b) (c)

Grammar

Lexicon

Figure 5.10: Obligatory adjunction

this is not a problem, as the unifying of top and bottom features can be deferred until the very

end of the construction.

We believe there are three ways that this can be handled:

1. Design the grammar so as not to employ obligatory adjunction. This is the simplest

solution, and is what we have chosen to do with our small test grammar that is used for

most of our experiments.

2. Design the operators such that obligatory adjunctions are always immediately handled.

This can be accomplished by a cascading of operations, i.e. if an operation introduces a

tree that contains a node with obligatory adjunction, then a follow-up adjunction at that

node must be performed and seen as an “atomic” operator by the EA. In MCGONAGALL,

this could be implemented using compound operators (Section 7.4).

3. Allow unification errors, and penalize them as a component of the evaluation function.

This would be similar to the approach used in SPUD (Stone et al., 2001). However,

SPUD uses this as a criteria for ranking candidates in an exhaustive greedy search, which



98 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

means that ungrammatical constructions will virtually never be considered. We feel that

implementing this approach in a stochastic heuristic search such as an EA would be

excessively inefficient.

5.3.7 TAG and Generation

Elementary trees are minimal linguistic structures that are enough to capture dependencies

locally. Put another way, an elementary tree accounts for all and only the arguments of its head.

This allows the local definability of all dependencies, the locality of feature checking, and the

locality of argument structure (Joshi, 1987). These trees are said to have an extended domain

of locality compared to, for example, the rules in CFG-based formalisms. Furthermore, the

adjunction operation factors recursion in such a way that argument structure is preserved over

arbitrarily long distances. Finally, within LTAG, each elementary tree has a lexical anchor

which is the semantic head of the constituent represented by the tree.

These features make elementary trees the appropriate syntactic building blocks to work with

while incrementally consuming semantic input to be generated. Recent tactical generators such

as SPUD and PROTECTOR employ TAG for a flexible approach to generation (Section 3.4.1).

They first construct the skeletal frame of a sentence, i.e. the verb and its complements, via

substitution. Later on, they add modifiers and adjuncts via the adjoining in of adjectives, ad-

verbials, etc.

5.3.8 Semantic-syntactic interface

Following Stone and Doran (1997), we have designed and implemented a method of handling

compositional semantics based on the notion of what we call semantic signatures. It roughly

serves the same purpose as lambda calculus expressions in conventional Montague-like com-

positional semantics (see Dowty et al. (1981) for an introduction to this).

Each word in the lexicon is labelled with a list of variables called its signature. This list corre-

sponds to the argument variables of the word’s semantic expression. Nodes in an elementary

tree may also be labelled with signatures. The signature of an anchor node corresponds to the

signature of the tree’s lexical anchor. When a word anchors an elementary tree, its signature is

unified with the anchor node’s signature, and the semantics of the elementary tree is simply the

semantics of the word.



5.3. Linguistic representation 99

Figure 5.11 shows an example of an elementary tree being anchored by a lexical item, and

the resulting semantics. When the verb ‘loves’ anchors the transitive verb tree αtransitive, its

signature, � Loving � Lover� Lovee  , is unified with that of the αtransitive’s anchor, � X � Y � Z  . The

semantics of αloves, Sαloves , thus becomes � loves � X � Y � Z ��� .
αtransitive αtransitive

={}; S α
S

NP VP

NPV

loves

S

NP VP

NPV

loves

{john(_,Person)}

{love(Loving, Lover, Lovee)}

John

loves

Signature Semantics

αloves
={loves(X,Y,Z)}; S

Ortho

Lexicon
Lovee/Z}
Lover/Y,

{Loving/X,

X

X,Y,Z

Z

Y

X

X

Loving, Lover, Lovee

X

X,Y,Z

Z

Y

X

_, Person

X

Figure 5.11: The semantics of an anchored elementary tree

The signatures of all other nodes, i.e. internal nodes, are used to encode the correct predicate-

argument structure when composing elementary trees. Roughly speaking, they correspond to

the objects and events the syntactic constituents they represent are ‘about’.

When substitution occurs, the signatures of the substitution node and the root of the substituted

initial tree are unified. Likewise, when adjunction occurs, the signatures of the adjunction site

node and the root of the adjoined auxiliary tree are unified. We can imagine the auxiliary tree’s

foot node is also labelled with a signature that is identical to that of its root, but since in TAG

adjunction does not occur at a foot node it is unnecessary to specify this. All this is in addition

to the previously mentioned unification of the signatures of a lexical item and the anchor node

of the elementary tree it anchors.

These unifications serve to maintain the predicate argument structure of the derivation, and the

compositional semantics of a derivation is simply the union of semantic expressions introduced

by words anchored at the elementary trees.

Figure 5.12 shows an example of the substituting in of two noun phrases as the subject and



100 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

object of a transitive tree. During the substitution of αJohn at the subject NP position, the

signatures �Y  and � A  are unified. Likewise, for the substitution of αMary at the object NP

position, the signatures � Z  and �B  are unified. From this, we can recover the semantics of the

derivation S � � love � X � Y � Z ��� john � � Y ��� mary � � Z ��� .

{A/Y}
{B/Z}

S

NP VP

NPV

loves

αloves αloves
={loves(X,Y,Z)}; S

NP

N

John

αJohn αJohn
; S ={john(_,A)} αMary αMary

; S ={mary(_,B)}

={loves(X,Y,Z), john(_,Y), mary(,Z)}S

Mary

N

NP

N

Mary

NP

John

N

NP

loves

V

S

VP

X

Z

X

X

_,Y

_,Z

Y

X

Z

Y

B

X,Y,Z

_,A

A

X,Y,Z

Y

X

A

_,B

Z

B

X

Figure 5.12: Compositional semantics through unification of signatures

We have subsequently discovered a very similar approach presented in Kallmeyer (2002),

which also uses a flat semantic representation, and unifies argument variables upon substi-

tution or adjunction. Similar to our signatures, semantic arguments are linked with nodes in

elementary tree trees through the specification of their Gorn address. For example, a transitive

verb would have its subject linked with node 1 and its object with node 2.2 of αtransitive in

Figure 5.11.

Kallmeyer notes that the proper way to define compositional semantics for LTAG is with re-

spect to derivation trees, as they express predicate argument dependencies.

Pronoun resolution

In MCGONAGALL, we need a method of pronoun resolution, i.e. the resolving of the an-

tecedents of words that exhibit anaphoric reference. Although this alone is a subject of inten-

sive research, we will choose to adopt a simple method, as this is not a central aspect of our



5.3. Linguistic representation 101

thesis. We have chosen to implement a purely syntactic pronoun resolution algorithm that is

based on Hobbs (1978).

Note that pronoun resolution is commonly found in natural language understanding applica-

tions, and not in NLG. This is because in NLG the semantics is already well-defined and thus

all anaphoric reference can be determined unambiguously. However, MCGONAGALL does not

proceed in the communicative goal-driven process of informative NLG, where anaphoric ref-

erence is intentionally used to convey the semantics. MCGONAGALL proceeds in a stochastic

manner where only syntactic well-formedness is ensured, and thus it has no specific intention

of anaphoric reference when adding linguistic content in the form of pronouns. In a purely

generate-and-test setting such as this, we have to recover the meaning that is conveyed by the

text in order to measure its fitness.

There are two categories of words in our lexicon that exhibit anaphoric reference: pronouns,

e.g.‘she’, ‘they’, ‘it’, and genitive determiners, e.g.‘his’, ‘their’, ‘its’. In our lexicon, these

words’ semantic expressions are empty sets. They merely serve as syntactic pointers to another

word in the derivation, i.e. their antecedent, that conveys the appropriate semantic expression.

This pointer is implemented by unifying the signature variables of these pronouns (or genitive

determiners) with that of their respective antecedents. In particular, we unify the variable that

represents the object entity. This unification must be applied to a derived tree after all other

required unifications of signatures have been performed (Section 5.3.4).

We first build a list of relevant anchor nodes by performing a preorder traversal of the derived

tree and appending anchor nodes that are either nouns or genitive determiners to the list. For

every pronoun or genitive determiner in the list, we then unify its signature with that of its

antecedent. Its antecedent is the first compatible non-pronoun noun that precedes it in the

list, where by compatible we mean that their feature structures, representing agreement and

selectional restrictions, unify.

An example of this is given in Figure 5.13. Part (a) shows the derived tree of a text containing

the sentences “The monkey ate the banana. It laughed”, with the relevant anchor nodes, i.e.

nouns, highlighted. These nodes are compiled into a list by performing a traversal of the tree,

which is shown in (b). The pronoun we are trying to resolve is ‘It’, as indicated by the large

arrow. To find its antecedent, we move to the left of the pronoun, and try to find a noun that is

not a pronoun, i.e. has the feature [PRON : -], and has AGR and SEL features that unify with

the pronoun’s features. Note that the pronoun ‘It’ has [SEL [ANIM : +]]. This is a selectional



102 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

restriction imposed by the verb ‘laughed’, i.e. only animate objects can laugh. This selectional

restriction rules out the first noun encountered, ‘banana’, and eventually it finds the antecedent

is ‘monkey’.

Having found the antecedent, the corresponding signature variables, X and Z, are unified. Note

that before pronoun resolution, the conveyed semantics was� eat � � X � Y ��� monkey � � X ��� banana � � Y ��� laugh � � Z ��� ,
but after resolution, this becomes� eat � � X � Y ��� monkey � � X ��� banana � � Y ��� laugh � � X ��� .

_,Y

_,X

monkey(_,X) eat(_,X,Y)

banana(_,Y)

laugh(_,Z)

(b)

_,Z_,Y_,X

......

Signature:Signature:Signature:

Feature:Feature:Feature:

Itbananamonkey

_,Z

(a)

.

Poem

N

It

NP

V

laughed

VP

S SB

.

Poem

SBS

VP

...

Poem

agr: 3rdsg:+

NP

sel:
pron:-

agr: 3rdsg:+

anim:-sel:
pron:-

agr: 3rdsg:+

anim:+sel:
pron:+

banana

N

the

Date

V

NP

monkey

N

The

D

...

Poem

anim:+

Figure 5.13: (a) Anchor nodes of nouns and genitives (b) Computing antecedents

Our simple algorithm has the following limitations:

1. Pronouns cannot refer to events, e.g.“John ran. It was very tiring.”.

2. No use of domain knowledge. For example, if the text in the example above read “The

monkey ate the spider. It laughed.”, it is reasonable to assume that animate objects, once

eaten, cannot laugh.

3. No handling of reflexive pronouns. Given the sentence “John hit him.”, the pronoun

‘him’ is considered to refer to ‘John’.



5.3. Linguistic representation 103

5.3.9 Lexical representation

In previous sections, we have mentioned that our lexicon stores syntactic (Section 5.3.2 and 5.3.4)

as well as semantic information (Section 5.3.8). We will now describe this in more detail, as

well as introduce another aspect that is carried by the lexicon: phonetic information. This is

needed for the handling of phonetic features such as metre.

For syntactic information, we follow the approach used in XTAG (XTAG Research Group,

2001) and SPUD (Stone and Doran, 1997), where each word specifies all the different elemen-

tary trees it can potentially anchor. Thus, each word is associated with a list of elementary tree

names. Furthermore, each word is also associated with a feature structure that specifies all its

syntactic properties such as its category, agreement, selectional restrictions, etc. In theory, this

feature structure alone is sufficient to determine which elementary trees it can anchor. How-

ever, the list of tree names reduces the need to search through the entire grammar every time

we need to find an elementary tree a given word can anchor.

For semantic information, we have already defined that a lexical entry contains a semantic

expression and a corresponding signature.

For phonetic information, each word is associated with its phonetic spelling, which we take

from the Carnegie Mellon University pronouncing dictionary (Weide, 1996). This dictionary

lists the pronunciation of over 125.000 words using a transcription based on the phoneme set

shown in Table 5.1. Additionally, the vowels are marked with lexical stress, where 0 indicates

no stress, 1 for primary stress, and 2 for secondary stress. For example, the phonetic spelling

of ‘dictionary’ is [D,IH1,K,SH,AH0,N,EH2,R,IY0].

Certain entries in this dictionary have more than one phonetic spelling, which normally indi-

cates region and dialect-specific variations. In these cases we have simply taken the first vari-

ation available. Moreover, many monosyllabic words appear with both stressed and unstressed

forms. We assign closed class monosyllabic words no stress, and open class monosyllabic

words primary stress.

We also define a special ‘phoneme’ for punctuation marks that indicate the potential site of a

linebreak, e.g.‘.’ (fullstop), ‘,’ (comma), and ‘;’ (semicolon). This is interpreted as the special

linebreaking syllable for metre evaluation purposes (see Section 6.3.2 for discussion of this).

The complete listing of information associated with a lexical entry in as follows:



104 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

1. Unique key for hashing and reference purposes. This is required as several words with

the same orthographic spelling may have different syntactic and even semantic proper-

ties.

2. Orthographic spelling.

3. Phonetic spelling. As defined above, this is taken from the CMU pronouncing dictionary.

4. Semantic expression. This is a conjunctively interpreted set of literals as defined in

Section 5.2.1.

5. Semantic signature. This is a list of argument variables appearing in the semantic ex-

pression.

6. List of names of elementary trees it can anchor.

7. Feature structure detailing the word’s syntactic properties.

Table 5.2 shows an example entry for the noun lion n. Its orthographic spelling is ‘lion’. It

can anchor the following trees:

1. I N N: noun phrase tree, e.g.: “The lion dwells in the waste.”

2. I C NP copula construction sentence, e.g.: “Leo is a lion”.

3. A R C NP relative clause variant of the copula construction, e.g.: “Leo, who is a lion,

dwells in the waste”.

Its semantic expression is lion � X � Y � , with its signature being X � Y . Note that Y is the variable

representing the object entity of the lion. X represents the event entity of Y ’s ‘lion-ness’, and

is not used in our grammar. The phonetic spelling [L,AY1,AH0,N] indicates that it consists of

two syllables, the first one receiving primary stress and the second one no stress. Lastly, the

feature structure indicates that this word is a third singular noun that is neither a pronoun nor a

proper noun. Its selectional restriction information indicates that it is an animate object.

5.4 Individuals

Essentially, a candidate solution, or individual, in our evolutionary algorithm is an LTAG

derivation tree that completely describes a syntactic derivation. Its semantics can be derived



5.5. Summary 105

through a compositional process based on unification of signatures (Section 5.3.8), and its pho-

netics can be derived from the phonetic spelling of lexical items at the anchor nodes.

When an individual is created at the beginning of an evolutionary run, or at any other point

during the run, we execute the initialization of an individual. An initialized individual starts

off with a derivation tree with one node representing the initial tree shown in Figure 5.14. This

is the special ‘kickoff’ tree, called I T KO 1, that every individual is initialized with. It repre-

sents a derivation rooted by the distinguished symbol, Poem, and consists of a single sentence

substitution node followed by a sentence boundary lexical anchor (i.e. fullstop). This structure

represents an empty text that also specifies the syntactic nature of the required solution, i.e. a

poem, which at the very least must consist of a sentence.

Poem

S SB

Figure 5.14: I T KO: “Kickoff tree” for a newly initialized individual

Before being added to the population, this initialized individual is first randomly manipulated

by applying to it a sequence of randomly chosen genetic operators from those presented in

Chapter 7. Note that no evaluation is applied during this process. This introduces random lin-

guistic content to the individual, and is an implementation of ‘randomness within the inviolable

constraints that the problem domain specifies’ as mentioned in Section 4.2.1. When an entire

population is filled with such randomly initialized individuals, it creates genetic diversity, and

is expected to cover different portions of the search space.

5.5 Summary

In this chapter we have presented our chosen semantic (Section 5.2), syntactic (Section 5.3.1),

and lexical (Section 5.3.9) representational schemes as well as the motivations that underly

these choices. We also discussed candidate solutions, or individuals, in our evolutionary al-

gorithm (Section 5.4), which are essentially LTAG derivation trees that completely describe a

1We refer the reader to Appendix C.2 regarding the specific grammar constructed for MCGONAGALL along
with our tree-naming scheme.



106 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

syntactic derivation. An individual’s semantics can be derived through a compositional pro-

cess based on unification of signatures (Section 5.3.8), and its phonetics can be derived from

the phonetic spelling of lexical items at the anchor nodes. In Chapter 6 we will present methods

for evaluating the quality of these features, i.e. semantics and phonetics, and in Chapter 7 we

will present functions that manipulate individuals.



5.5. Summary 107

Phoneme Example word Phonetic spelling

AA odd AA D
AE at AE T
AH hut HH AH T
AO ought AO T
AW cow K AW
AY hide HH AY D
B be B IY
CH cheese CH IY Z
D dee D IY
DH thee DH IY
EH Ed EH D
ER hurt HH ER T
EY ate EY T
F fee F IY
G green G R IY N
HH he HH IY
IH it IH T
IY eat IY T
JH gee JH IY
K key K IY
L lee L IY
M me M IY
N knee N IY
NG ping P IH NG
OW oat OW T
OY toy T OY
P pee P IY
R read R IY D
S sea S IY
SH she SH IY
T tea T IY
TH theta TH EY T AH
UH hood HH UH D
UW two T UW
V vee V IY
W we W IY
Y yield Y IY L D
Z zee Z IY
ZH seizure S IY ZH ER

Table 5.1: Carnegie Mellon University pronouncing dictionary phoneme set



108 Chapter 5. Representations for MCGONAGALL, an Instance of EA-based NLG

Field Value

Key lion n

Orthographic spelling lion

Phonetic spelling [L,AY1,AH0,N]

Semantic expression lion(X,Y)

Semantic signature X,Y

Anchored trees I N N, I C NP, A R C NP

Feature structure

!""""""""""""""""""""""#

CAT n

AGR

!"""""# NUM sg

PERS 3

3RDSG �
$&%%%%%'

PRON (
PROP (
SUB

!# ANIM � $'

$&%%%%%%%%%%%%%%%%%%%%%%'
Table 5.2: Lexical entry for ‘lion’



Chapter 6

Evaluation functions for poetry

generation

In this chapter we describe the two main evaluation functions that we have designed and im-

plemented in MCGONAGALL: metre similarity and semantic similarity, both of which yield a

normalized score between 0 and 1 that indicates the degree of isomorphism between a given

target structure (i.e. stress list, semantic expression) and the appropriate features of a candidate

solution. We validate both evaluators by testing them on sample structures.

6.1 Design considerations

Fitness evaluation is perhaps the most crucial aspect of an evolutionary algorithm, as it is where

the bulk of domain knowledge and heuristics is encoded. The suitability of an evaluation

function to a given problem has a huge bearing on the ability of an EA to find an optimal

(enough) solution, and to find it efficiently.

Recall from Section 4.3 that from our three properties of poetry, we choose to enforce gram-

maticality through design of representation and genetic operators, and optimize for meaning-

fulness and poeticness using the EA. In Sections 4.4.1 and 4.4.2 we suggested various features

and methods of evaluating the fitness of a text with respect to these properties.

For our implemented system, MCGONAGALL, we choose to evaluate the features of stress

patterns and propositional semantics, and choose to measure them using the ‘score to target’

109



110 Chapter 6. Evaluation functions for poetry generation

method, i.e. by measuring the degree of isomorphism between a given target structure, such as

stress list or semantic expression, and the appropriate features of a candidate solution.

We make these choices based on the following considerations:

1. These features enable a concrete and objective evaluation, both for the purposes of fitness

evaluation within the EA and for our assessment of the performance of the system itself,

thereby reducing the need for experimentation involving subjective human evaluation.

2. There already exist well studied algorithms for the computation of structural isomor-

phism such as the minimum edit distance between two sequences. In this chapter we

will describe certain adaptations that we made for our specific purposes, e.g. context

sensitivity, asymmetry, etc.

3. The computation of such measures do not require potentially expensive resources such

as domain knowledge bases of world knowledge, poetic metre, etc.

At this point, we make no assumptions as to how the individuals to be evaluated are generated,

save for the fact that they are guaranteed to be grammatical with respect to the given linguis-

tic resources. However, as we noted in Section 4.5.1, within the interleaved process of an EA

evaluation functions may be called upon to provide judgment on partially constructed solutions.

Thus, our evaluation functions must be able to handle these grammatically underspecified con-

structions. Moreover, they must be able to provide a score that reflects the potential of a partial

solution.

6.2 Decoding and scaling functions

Bäck et al. (1997) state that for an optimization problem f : M � ℜ, where M is the search

space of an objective function f and ℜ is the set of reals, a fitness evaluation function F in an

EA is defined as follows:

F : R
d( � M

f( � ℜ s( � ℜ )
F � s * f * d

where R is the space of the chromosome representation, d is a decoding function, and s is a

scaling function to guarantee positive fitness values and fitness maximization.



6.3. Metre evaluation 111

In Section 5.3.3 we defined our primary data structure as an LTAG derivation tree. Thus, R

is the space of all valid derivation trees in our grammar, and dmetre and dsemantics are decoding

functions that derive the lexical stress pattern and conveyed semantics from a derivation tree.

dmetre returns the concatenation of lexical stress information carried by words at the anchor

nodes (Section 5.3.9), and we discuss this in more detail in Section 6.3.2. Likewise, dsemantics

returns the union of semantic expressions carried by words at the anchor nodes after the neces-

sary signature unification as described in Section 5.3.8.

Finally, for the sake of consistency and clarity in the presentation of our results, we design our

evaluation functions to yield normalized scores between 0 and 1. Thus, the scaling function s

for both our metre and semantic evaluators has domain and range as follows:

s : ℜ �+� 0 � 1  
Details on the specific scaling functions for metre and semantic evaluators are given in the

following sections.

6.3 Metre evaluation

Our metre evaluation function must yield a score that indicates the similarity between a given

stress pattern, called the target form, and the exhibited stress pattern of a candidate solution,

called the candidate form.

To illustrate the sort of computation that is required, consider the five lines shown in Figure 6.1.

Line (1) shows the first line of Grey’s Elegy Written in a Country Churchyard (Figure 2.2),

which is a perfect example of iambic pentameter. Consider this line to exemplify the target

form, and lines (2) to (5) represent candidate forms.

(1) The curfew tolls the knell of parting day

(2) The day tolls the curfew of parting knell

(3) The curfew tolls the knell

(4) There once was a man from Bra- zil

(5) A metre pattern holds a bunch of beats

Figure 6.1: An example of comparing stress patterns



112 Chapter 6. Evaluation functions for poetry generation

Ignoring for the moment all other aspects but metre, which line from among (2) to (5) can we

say is the most similar to line (1)? Line (2) is simply a rearrangement of the words in line (1),

and thus has exactly the same number of syllables and beats. However, the pattern exhibited is

different, as there are no weak syllables preceding the second beat, whereas there are two weak

syllables preceding the fourth beat. Line (3) consists of the first six syllables of line (1), and

clearly falls short of an iambic pentameter. Line (4) could be a starting line for a limerick, and

although it has more syllables than line (3), it still only has three beats. Line (5) exhibits the

same stress pattern, and thus is clearly the most similar to (1).

We can justify this choice by keeping a count of ‘mistakes’ exhibited by each line. Line (2)

has two mistakes: the lack of a weak syllable before the second beat and an extraneous weak

syllale before the fourth beat. Line (3) has four mistakes, i.e. it is missing the last four syllables.

Line (4) has six mistakes: the same four mistakes of line (3), but additionally, extraneous weak

syllables before the second and third beat. Line (5) has no mistakes. Note that one can change

the definition of a mistake to arrive at different scores for these lines.

This type of calculation is the basis of the minimum edit distance, the measure that we adopt

for our evaluation function, which we will describe in the next section.

6.3.1 Minimum edit distance

Our measure is based on the minimum edit distance (Jurafsky and Martin, 2000, Ristad and

Yianilos, 1998), a well known model of string similarity that is defined in terms of the cost

of operations that are required to transform one string into another. The valid operations are

symbol insertion, deletion, and substitution, each of which is assigned a cost. The minimum

edit distance between two strings is the minimal sum of costs of operations that transform one

string into another.

Formally, the edit distance is characterized by a triple � A � B � c � , where A and B are finite

alphabets of distinct symbols, and c : E � ℜ ) is the cost function. ℜ ) is the set of nonnegative

reals, and E � Es , Ed , Ei is the set of all possible edit operations, Es
� A � B is the set of

substitutions, Ed
� A � ε is the set of deletions, and Ei

� ε � B is the set of insertions. Given

such a triple, the distance function dc : A -.� B -.� ℜ ) maps a pair of strings to a nonnegative

value.

Let x
�

A be an arbitrary string over the alphabet A, xi be the i-th symbol in x, and xt be the



6.3. Metre evaluation 113

prefix string of length t of x. The distance dc � x � y � between two strings x
�

A, of length m, and

y
�

B, of length n, can then be defined recursively as

dc � xm � yn � � /001 002 c � xm � yn �3� dc � xm 4 1 � yn 4 1 �
c � xm � ε �5� dc � xm 4 1 � yn �
c � ε � yn �5� dc � xm � yn 4 1 �

where dc � ε � ε � � 0.

The minimum edit distance between two strings can be represented as a pairwise alignment

of the symbols in the strings (plus ε), which indicates the choice of substitution, insertion, and

deletion operations that yield the minimum cost. Figure 6.2(a) shows the alignment for the min-

imum edit distance between the strings “intention” and “execution”, assuming all operations

cost the same. The alignment can also be represented as a list of operations, as in Figure 6.2(b).

i n t e n t i o nε

e x e c u t i o nε

delete i
substitute n with e
substitute t with x
substitute n with c
insert u

c : E 1

d (x,y) = 5

x

= executiony

= intention

c

(a) (b)

Figure 6.2: (a) the alignment between “intention” and “execution” that yields the minimum edit

distance, (b) represented as a list of operations (example from Jurafsky and Martin (2000))

The minimum edit distance can be computed in O � m � n � using dynamic programming, a method

of efficiently computing values from subcomputations of smaller problems. The algorithm is

given in Algorithm 6.1. The EDITDISTANCE function takes two strings, x and y, and returns

the minimum edit distance dc � x � y � . The LENGTH function returns the length of a string, and

MIN returns the minimum value of its arguments.

By augmenting this algorithm to not only store the dc value at each cell but also a pointer to

the cell which yields the minimum value among D � i ( 1 � j  6� c � xi � ε � , D � i ( 1 � j ( 1  6� c � xi � y j � ,
and D � i � j ( 1  6� c � ε � y j � , we can recover the alignment of the two strings by tracing the pointer

at D �m � n  backwards until we reach D � 0 � 0  .



114 Chapter 6. Evaluation functions for poetry generation

Algorithm 6.1 function EDITDISTANCE(x, y) returns dc � x � y �
m 7 LENGTH(x)

n 7 LENGTH(y)

create matrix D �m � 1 � n � 1  
D � 0 � 0  87 0

for i � 0 to m do

for j � 0 to n do

D � i � j  � MIN � D � i ( 1 � j  9� c � xi � ε � ,
D � i ( 1 � j ( 1  6� c � xi � y j � ,
D � i � j ( 1  6� c � ε � y j ���

end for

end for

return D �m � n  
6.3.2 Target and candidate form

The target form, Ftarget is a specification of the metrical constraints that we want our optimal

solution to satisfy. It is encoded as a list of target syllables, the alphabet of which is listed in

Table 6.1.

w Unstressed, or weak, syllable

s Stressed, or strong, syllable

x Any syllable

b Line break

Table 6.1: Alphabet of target syllables

Note that line breaks are encoded as the special line break ‘syllable’, b. Strictly speaking, b is

not a syllable in the same sense that w, s, and x are. These three target syllables specify actual

lexical content, whereas b is an indicator for formatting purposes.

Figure 6.3 shows example target forms for a limerick, a haiku, and Belloc’s “The Lion” poem

(Figure 2.6). Note that they are simply flat lists, and we have visually formatted them for

readability purposes.

The candidate form, Fcandidate , is a representation of the metre exhibited by an individual’s text.

To obtain this, first of all the stress pattern of a word is derived from its phonetic spelling.



6.3. Metre evaluation 115

[w,s,w,w,s,w,w,s,b, [w,s,w,w,s,w,w,s,w,w,s,b,

w,s,w,w,s,w,w,s,b, [x,x,x,x,x,b, w,s,w,w,s,w,w,s,w,w,s,b,

w,s,w,w,s,b, x,x,x,x,x,x,x,b, w,s,w,w,s,w,w,s,w,w,s,b,

w,s,w,w,s,b, x,x,x,x,x,b] w,s,w,w,s,w,w,s,w,w,s,b]

w,s,w,w,s,w,w,s,b]

(a) (b) (c)

Figure 6.3: Target forms for (a) a limerick, (b) a haiku, and (c) Belloc’s “The Lion”

Recall from Section 5.3.9 that in the CMU pronouncing dictionary, vowels are marked with

lexical stress, i.e.0 for no stress, 1 for primary stress and 2 for secondary stress. By ignoring

consonants and stripping away phonetic information, we are left with basic lexical stress. We

then indicate whether the word is monosyllabic or polysyllabic. This is encoded as a list of

candidate syllables, the alphabet of which is listed in Table 6.2.

Note the special candidate syllable b which represents the potential site of a line break. This

is carried by certain punctuation marks such as fullstop and comma. As is the case with the

target syllable b, the candidate syllable b is not an actual syllable in the sense that 01 � 11 � 0n � 1n �
and 2 are, as they represent actual lexical content. Instead, b represents a location which

provides a possibly natural linebreak, as fullstops and commas usually serve as sentence or

clause boundaries, and linebreaks usually occur at such points.

This allows for a very flexible handling of linebreaking anywhere in the text, in contrast to

an explicitly defined hierarchical model of metrical forms consisting of lines of syllables, e.g.

Gervás (2000, 2001), Diaz-Agudo et al. (2002). For instance, we can vary between the strict

adherence to linebreaks coinciding with sentence boundaries and more flexible enjambment by

adjusting the costs of substitution, insertion and deletion involving linebreak syllables. This is

discussed in Section 6.3.3.

For example, the stress pattern for ‘the’ ([DH,AH0]), is [01], and for ‘dictionary’ ([D,IH1,K,SH,AH0,N,EH2,R,IY0])

it is [1n � 0n � 2n � 0n].

Having derived stress patterns for words, the stress pattern of a candidate solution is simply

the concatenation of stress patterns of all the words at the leaf nodes of its derived tree. This

process can be seen as the embodiment of the decoding function dmetre (Section 6.2).

Figure 6.4 shows the derived tree of an individual representing the text “The lion has a big



116 Chapter 6. Evaluation functions for poetry generation

01 Unstressed monosyllabic word

11 Stressed monosyllabic word

0n Unstressed syllable in polysyllabic word

1n Primary stressed syllable in polysyllabic word

2n Secondary stressed syllable in polysyllabic word

b Line break

Table 6.2: Alphabet of candidate syllables

head”, and how its candidate form is obtained.

[B,IH1,G]

Candidate form:

b

Lexical stress

Lexicon:

PronunciationOrtho

Derived tree:

][ , b1, 0, 1n , 11, 11n, 0 , 1110

n,0n1

11
11

1

the
lion
has
a
big
head
.

[L,AY1,AH0,N]

[AH0]
1

[HH,EH1,D]
[-]

[DH,AH0]

[HH,AH1,Z]

01

01

Poem

.

SBS

VP

NP

NP

NP

head

Nbig

Adja

Dhas

V

NP

lion

N

the

D

Figure 6.4: The candidate form is a concatenation of lexical stress

Note that this candidate form only indicates the lexical stress in citation form of the words in

the derivation. That is to say, the stress of these words as if they are pronounced in isolation

of anything else. Lexical stress, however, is amenable to change within certain contexts. A

discussion of this along with a description of how we account for it is given in Section 6.3.4.

6.3.3 Operation costs

We use the edit distance algorithm presented in Algorithm 6.1 to compute an alignment from

the candidate form to the target form that returns the minimum cost. What is needed now is a

definition of the cost function, dc, that specifies the cost of operations, i.e. insertions of target

syllables, deletions of candidate syllables, and substitutions of candidate syllables to target



6.3. Metre evaluation 117

syllables.

The main consideration that should inform the assigning of operation costs is the relative desir-

ability of performing one operation with respect to another in computing the optimal alignment.

The most obvious decision is to assign a cost of 0 to substitutions that should naturally occur,

namely:� substituting a 01 or 0n candidate syllable with a w target syllable� substituting a 11 or 1n candidate syllable with an s target syllable� substituting any candidate syllable except b with an x target syllable� substituting a b candidate syllable with a b target syllable

The next obvious cost is that of “substituting” a 01 � 0n � 11 � 1n � or 2 candidate syllable with a

b target syllable, or substituting a b candidate syllable with either a w,s, or x target syllable.

These are illegal operations and must incur a maximum penalty (i.e. ∞) so as never to be chosen.

They are illegal because the target b and the candidate b are not actual syllables that represent

lexical content. Instead, they are merely placemarkers for a formatting aspect of the text. Thus,

it does not make sense, for example, to substitute the word “the” for a linebreak, the same way

that it does not make sense to substitute a comma for an s target syllable. There are only three

methods for handling linebreaks:� Insertion of a target b. This occurs when a linebreak is forced in the text because it is

demanded by the target form. This means that the linebreak does not coincide with any

clause or sentence boundary, resulting in what is known as enjambment, i.e. the running

on of a sentence from one line of a poem to the next.� Deletion of a candidate b. This occurs when a punctuation mark representing a sentence

boundary, e.g. a comma or a fullstop, is not used as a location for a linebreak. This

is quite a normal phenomenon, as lines in poetry are often made up of more than one

clause.� Substituting a candidate b with a target b. This is when a linebreak is placed at the point

of a clause or sentence boundary, resulting in a natural linebreak. As mentioned above,

this substitution incurs a cost of 0.

The remaining operations should incur some form of penalty, as they result in suboptimal align-

ments. This specification of costs is by no means trivial, and one possible solution would be to



118 Chapter 6. Evaluation functions for poetry generation

learn values from examples as in Ristad and Yianilos (1998). However, we have implemented

a baseline cost function using our intuitions which is detailed in Table 6.3.

Substitution Insertion Deletion

Cost w s x b Cost Cost

01 0 2 0 ∞ w 1 01 1

0n 0 2 0 ∞ s 3 0n 1

11 3 0 0 ∞ x 1 11 3

1n 3 0 0 ∞ b 10 1n 3

2n 1 1 0 ∞ 2n 2

b ∞ ∞ ∞ 0 b 0

Table 6.3: Operation costs for substitution, insertion, and deletion

Specifically regarding linebreaks, we have imposed a penalty of 10 for inserting a line break.

This is to enforce the breaking of lines to coincide with sentence boundaries. On the other

hand, there is a penalty of 0 for deleting a b candidate syllable. This is because b is introduced

by punctuation marks, and we consider it acceptable, for instance, for sentences to end and

begin within a line. In our empirical study (Chapter 8), we examine the effects of varying these

costs on the performance of the EA and the quality of the output.

We use the edit distance algorithm primarily for its alignment purposes, i.e. how to best align

the syllables in the the two metre patterns. As we will see in the next few sections, there are

other factors which affect the metre evaluation function, such as context-sensitive penalties and

rewards, score normalization, and accounting for empty substitution nodes, but they rely on the

edit distance algorithm’s alignment.

6.3.4 Context-sensitive compensation scoring

The candidate forms described in Section 6.3.2 only indicate lexical stress in citation form.

However, once words are put into the context of utterances and sentences, and taking into

consideration semantic issues such as contrasting and highlighting, stress placement becomes

more complex (Thompson, 1980, Hayes, 1995). One example is the phenomenon known as

the rhythm rule, which is the avoiding of clashes between stressed syllables appearing con-

secutively. For example, the word ‘thirteen’ in citation form is mainly stressed on its second

syllable, but in the compound noun phrase “thirteen men”, it is stressed on its first syllable.



6.3. Metre evaluation 119

This shift of stress prevents the clash of two consecutive stressed syllables. Thompson (1980)

describes this phenomena as a pressure towards alternating stress.

Most of the existing research in prosody, however, has examined stress placement in conven-

tional texts and in human dialogue. In poetry, however, stress placement is much more flexible

and fluid, and often it is the dominant metre that takes precedence over the kind of aspects

that have been looked at by prosody researchers. Roberts (1986) suggests the existence of a

rhythmic expectation in the minds of poetry readers, allowing them to correctly place stress

to fit the metre. For example, if the line “Gone is our nightingale” appeared in the context

of a predominantly dactylic stanza, we would have no difficulty in recognizing its stress as

in (6.1), where the last syllable of ‘nightingale’ receives no stress. However, if the same line

appeared in the context of a predominantly iambic stanza, its stress would be as in (6.2), where

the last syllable of ‘nightingale’ now receives stress. Note that its pronunciation in the CMU

pronouncing dictionary is [N,AY1,T,IH0,NG,G,EY0,L].

(6.1) Gone is our nightingale

(6.2) Our nightingale is gone

These factors are context-sensitive in the sense that the alternation of stress received by a syl-

lable is governed by the stress patterns of its surrounding syllables. Unfortunately, the edit

distance algorithm is context-free: operation costs are specified for individual syllables, re-

gardless of where they appear in the string. Therefore, it cannot account for these interactions

of metre in sequences of syllables.

One possible way of accounting for context-sensitivity is by using probabilistic finite state

automata models and algorithms such as the Viterbi algorithm (Jurafsky and Martin, 2000),

which can be seen as generalizations of the edit distance algorithm. However, we have chosen

to implement a simpler solution that is less powerful and computationally less expensive than

the Viterbi algorithm, but offers a good enough account of context-sensitive features in metre.

We iterate through an alignment as produced by the edit distance algorithm, and search for

occurrences of pre-defined patterns. Figure 6.5 shows the pattern of the destressing of a stressed

syllable due to it appearing just after an already stressed syllable. This is present in the last line

of Belloc’s “The Lion”, where the first syllable of ’little’ is destressed as the preceding word,

’good’, is already stressed. As c � 1n �
:;� � 3, a compensation score of ( 1 is added to dc. A list



120 Chapter 6. Evaluation functions for poetry generation

of all compensation patterns and scores is given in Appendix B.

Note that in this approach, we account for the stress received by the last syllable of ‘nightingale’

in (6.2) mainly as a result of it being flanked by unstressed syllables, and not as a result of an

iambic rhythmic expectation.

1

w

and

0
1

w

0 1

a

s

good

1
n1

lit-

0
n

w

tle

1
??

s w

Pattern:

Compensation score: -1

w

. . .

. . .

. . . . . .

. . .

. . .

Alignment:

Text:

Figure 6.5: An alignment is pattern-matched against pre-defined patterns with associated com-

pensation scores

6.3.5 Normalization

As stated in Section 6.2, we require our evaluators to yield scores of reals between 0 and 1.

Hence, we must apply normalization to our objective function, in this case the edit distance

dc � Ftarget � Fcandidate � . Marzal and Vidal (1993) introduce the normalized edit distance algo-

rithm, which measures the distance between two strings with respect to the sizes of the strings

being compared. For instance, two operations in a comparison between strings of length 3 are

more important than three errors in a comparison of strings of length 9. They also show that

this cannot be computed by first computing the standard edit distance, and by later on applying

a normalizing factor, e.g. the length of the strings. However, if we make the fair assumption

that Ftarget remains constant throughout an EA run, and hence at least one string in the compar-

ison is known to be of a given length, then the standard edit distance algorithm we have already

presented earlier should suffice. This is because what we are interested in is only the relative

merit of individuals in a population in satisfying Ftarget .

Thus, to obtain a normalized score in the interval [0,1], we use the scaling function



6.3. Metre evaluation 121

sedit � x � � λ1 <Ftarget <
λ1 <Ftarget < ) x

where =Ftarget = is the number of syllables in Ftarget , x is the value of our objective function, and

λ1 � 0 is a parameter for controlling how strict conformance to the target metre should be.

For example, given the target form of Belloc’s “The Lion” as in Figure 6.3(c), which has a

length of 48 syllables, Figure 6.6 shows the effect varying λ1 has on sedit . It plots the objective

function against the normalized function sedit for λ1 values of 0.5, 1.0 and 2.0. As we can see,

increasing λ1 makes the function more ‘forgiving’ towards edit operations.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

N
or

m
al

iz
ed

 s
co

re

Edit distance

0.649

0.787

0.881

B
el

lo
c’

s 
or

ig
in

al
 p

oe
m

 (
co

st
=

13
)

0.5
1.0
2.0

Figure 6.6: The effects of varying λ1 on sedit for “The Lion”

Note that Belloc’s original poem itself does not perfectly satisfy the target form as specified in

Figure 6.3(c), thus incurring a penalty cost. For instance, several syllables which are lexically

stressed are destressed in the context of the poem, e.g.‘big’ and ‘small’ in the second line,

and the first syllable of ‘little’ and ‘play’ in the last line. Furthermore, there are extraneous

upbeat syllables at the beginning of the last two lines. Given the operation costs defined in

Table 6.3, the compensation scores in Appendix B, and the lexical stress as given by the CMU

pronouncing dictionary, Belloc’s original poem incurs a cost of 13 when compared with the

target form in Figure 6.3(c). This is marked in Figure 6.6 as the vertical bar at edit cost = 13.

We can see that for λ1
� 0 � 5 it yields a score of 0.649, whereas for λ1

� 2 � 0 it yields a score



122 Chapter 6. Evaluation functions for poetry generation

of 0.881. These scores can be used as a rough yardstick for determining the normalization, i.e.

what score does Belloc’s poem ‘deserve’ from the point of view of metre?

Finally, given the characterisation of an evaluation function given in Section 6.2, we define our

edit distance-based metre similarity evaluation function, Fedit , as follows:

Fedit � Ftarget � Fcandidate � � λ1 <Ftarget <
λ1 <Ftarget < ) dc > Ftarget ? Fcandidate @ ) comp > Ftarget ? Fcandidate @

where comp represents the context-sensitive compensation scores we described in Section 6.3.4.

6.3.6 Validation of evaluation function

We will now validate the edit distance-based evaluation function we have described above by

applying it towards candidate forms, and their corresponding targets, for which we possess a

priori judgments as to their fitness. This is similar to the approach used in Cheng (2002) for

the validation of an evaluation metric used in a genetic algorithm-based text planner. We use

two sets of candidates that aim to satisfy, respectively, the target forms of iambic pentameter

and Belloc’s “The Lion”.

For the first set, we take the example lines in Figure 6.1 and encode them as the forms iambic1

to iambic4 shown in Table 6.4. We have ordered them according to our subjective judgment

in terms of how well they achieve the intended target form, starting from iambic1, a perfect

match, down to iambic4. Note that the relative ordering between iambic3 and iambic4, in

particular, is contentious: as we stated in Section 6.3, we feel that iambic4 is inferior due to

iambic3 due to it having “the same four mistakes of [iambic3], but additionally, extraneous

weak syllables before the second and third beat.”

For the second set, we have constructed four candidate forms, lion1 to lion4, also subjectively

ordered in terms of how well they achieve the target form (Figure 6.3(c)). lion1 is Belloc’s

original poem, lion2 is an instance of a limerick, taken from Lear (1947), lion3 is simply the

first sentence of the abstract of this thesis, and lion4 is a trivially inferior form representing

the simple sentence “John loves Mary”.

Table 6.6 is a summary of the fitness scores obtained by applying the evaluation function to

the comparison of these two sets of candidates to their corresponding target forms. We tested

our evaluation function both with and without the context-sensitive compensation scoring (Sec-

tion 6.3.4), and with normalizing factor λ1 of 0.5, 1.0, and 2.0.



6.3. Metre evaluation 123

Name Text Fcandidate

iambic1 A metre pattern holds a bunch of beats [01 , 1n, 0n , 1n , 0n , 11, 01 , 11 , 01 , 11]

iambic2 The day tolls the curfew of parting knell [01 , 11, 11 , 01 , 1n , 0n, 01 , 1n , 0n , 11]

iambic3 The curfew tolls the knell [01 , 1n, 0n , 11 , 01 , 11]

iambic4 There once was a man from Brazil [01 , 11, 01 , 01 , 11 , 01, 0n , 1n]

Table 6.4: Candidate forms for iambic pentameter

Name Text Fcandidate

lion1 The Lion, the Lion, he dwells in the waste. He

has a big head and a very small waist. But

his shoulders are stark, and his jaws they are

grim, and a good little child will not play with

him.

[01, 1n , 0n , b, 01, 1n , 0n , b, 01 , 11 , 01 , 01 , 11 , b, 01 , 11 , 01 ,

11 , 11 , 01 , 01, 1n , 0n , 11 , 11, b, 01 , 01 , 1n, 0n , 01 , 11 , b, 01 ,

01 , 11, 01 , 01, 11 , b, 01 , 01, 11 , 1n , 0n , 11 , 01 , 01 , 11 , 01 ,

01 , b]

lion2 There was an old man with a beard, who said,

“it is just as i feared! two owls and a hen,

four larks and a wren, have all built their

nests in my beard!”

[01, 01, 01 , 11 , 11 , 01 , 01 , 11 , b, 01 , 11 , b, 01, 01, 11, 01 ,

01 , 11 , b, 11 , 11 , 01 , 01 , 11, b, 11 , 11 , 01 , 01, 11 , b, 11 , 11 ,

11 , 01 , 11 , 01 , 01 , 11, b]

lion3 Poetry is a unique artifact of the human lan-

guage faculty, with its defining feature being

a strong unity between content and form.

[1n, 0n , 0n , 01 , 01, 0n , 1n , 1n , 0n, 2n , 01 , 01 , 1n, 0n , 1n , 0n ,

1n , 0n, 0n , b, 01 , 01, 0n , 1n, 0n , 1n , 0n , 1n , 0n , 01 , 11 , 1n ,

0n , 0n , 0n , 1n , 1n , 0n, 01 , 11 , b]

lion4 John loves Mary. [11, 11 , 1n , 0n , b]

Table 6.5: Candidate forms for Figure 6.3(c)

For the iambic candidates, we can see first of all that iambic1, as expected, yields a perfect

score of 1.0 for all configurations. This is because it incurs a cost of 0. iambic2 yields the

second highest score for all configurations. Note that there is no difference between the scores

for iambic2 whether the compensation scoring is used or not. This is because the operations

taken are the insertion of a w syllable before the second beat and the deletion of the 01 syllable

before the fourth beat, i.e. the one introduced by ‘of’. For these operations, no compensation

patterns apply. For iambic3 and iambic4, however, the scores are different from our initial

subjective judgments. In all configurations, iambic4 scores better than iambic3. Upon closer

inspection of the alignments, the operations applied to iambic4 are the insertions of s syllables

between the two subsequences of consecutive unstressed syllables. This is exemplified by the



124 Chapter 6. Evaluation functions for poetry generation

Text No compensation With compensation

λ1
� 0 � 50 1 � 00 2 � 00 0 � 50 1 � 00 2 � 00

iambic1 1.000 1.000 1.000 1.000 1.000 1.000

iambic2 0.714 0.833 0.909 0.714 0.833 0.909

iambic3 0.384 0.555 0.714 0.312 0.476 0.645

iambic4 0.454 0.625 0.769 0.714 0.833 0.909

lion1 0.649 0.787 0.881 0.649 0.787 0.881

lion2 0.511 0.676 0.807 0.522 0.686 0.813

lion3 0.387 0.558 0.716 0.369 0.539 0.701

lion4 0.200 0.333 0.500 0.152 0.264 0.417

Table 6.6: Fitness scores using default operation costs

line “There once was born a man from south Brazil”. These operations are different from our

characterization of operations above, and in retrospect clearly reveals iambic4 to be a better

candidate than iambic3. Note that when context-sensitive compensation scoring is used the

gap between iambic3 and iambic4 widens, as the consecutive insertions needed for iambic3

incur further penalties.

Finally, we can see that λ1 has an effect on the scores, although crucially, the relationship of

candidate scores with respect to their rank in the ordering remains constant throughout. In other

words, if what we are interested in is simply a relative comparison whether a given candidate is

better or worse than another candidate, λ1 is irrelevant. The fitness assigned to iambic3 can be

used as a rough benchmark for setting the appropriate value of λ1. Since iambic3 represents

60% of the optimal target form, it is reasonable to expect that its fitness score should be the

same proportion towards an optimal solution. The values for λ1
� 1 � 0 without compensation

(0.625) and λ1
� 2 � 0 with compensation (0.55) seem the most appropriate.

For the lion candidates, all of the fitness scores confirm our subjective ordering in the sense

that each candidate scores higher than the ones ranked below it, with Belloc’s original poem,

as encoded in lion1, scoring the highest. However, it is interesting to see that the context-

sensitive compensation scores do not change the scores for lion1 at all. This is unexpected,

as several of the compensation patterns used are designed to account for phenomena that occur

in Belloc’s poem, such as the destressing of a primary stressed syllable that appears next to a

strong syllable, e.g. the first syllable of ‘little’ in the last line.



6.3. Metre evaluation 125

By analyzing the alignment yielded by the edit distance algorithm, we discovered the cause for

this issue. As in the case of iambic4 above, the edit distance algorithm yields an alignment

that scores better but seems counterintuitive. (6.3) below shows an alignment of the last line as

our intuitions expect it to be, and (6.4) shows the alignment as calculated by the edit distance

algorithm. Syllables in normal type are either 01 or 0n candidate syllables that are correctly

substituted to w target syllables, whereas syllables in bold type are either 11 or 1n candidate

syllables that are correctly substituted to s target syllables. Additionally, syllables enclosed

in parentheses indicate 01 or 0n candidate syllables that are deleted, and syllables that are

underlined indicate 11 or 1n candidate syllables that are substituted to w target syllables, i.e. are

destressed. Lastly, an asterisk marks the insertion of a w target syllable.

(6.3) (and) a good little child * will not play with him

(6.4) (and) a good * * little * child will not play (with) (him)

As can be seen, instead of shifting the stress received by the syllables, it inserts two w syllables

between the first and second beats, and then deletes the last two 01 syllables, ‘with’ and ‘him’.

This results in an extremely awkward way of reading the line.

Regarding the compensation scores, the alignment we intuitively expect should yield an initial

cost of 19, but a compensation score of -7 results in an edit distance of 12. The actual alignment

calculated by the edit distance algorithm, on the other hand, yields an initial cost of 13 with a

compensation score of 0. This is because the compensation reward given for substitutions in

the first few lines is offset by the penalty incurred for the consecutive deletions and consecutive

insertions in the last line. This highlights the drawback of our approach to context-sensitive

scoring: as it is handled after the edit distance algorithm, the domain knowledge encapsulated

by the compensation patterns are ignored by the greedy nature of the algorithm. The result-

ing alignment also suggests that the cost of arbitrarily inserting target syllables and deleting

candidate syllables should be higher than that specified in Table 6.3.

As a result, we have experimented with a modified cost function, shown in Table 6.7. The

costs for substitution are unchanged, but the costs for insertion and deletion are now increased.

A summary of the results using this cost function is shown in Table 6.8. Although it does not

change the overall behaviour of the evaluation function, i.e. it still ranks the candidate solutions

in the same manner as before, we believe that the fitness scores assigned to them are a fairer

reflection of their metrical merit. In particular, the fitness score of lion1 is considerably higher



126 Chapter 6. Evaluation functions for poetry generation

than that of lion2, whereas in Table 6.6 the difference is not as marked.

Insertion Deletion

Cost Cost

w 3 01 3

s 5 0n 3

x 3 11 5

b 10 1n 5

2n 4

b 0

Table 6.7: Modified insertion and deletion costs

Text No compensation With compensation

λ1
� 0 � 50 1 � 00 2 � 00 0 � 50 1 � 00 2 � 00

iambic1 1.000 1.000 1.000 1.000 1.000 1.000

iambic2 0.454 0.625 0.769 0.454 0.625 0.769

iambic3 0.238 0.384 0.555 0.208 0.344 0.512

iambic4 0.333 0.500 0.666 0.454 0.625 0.769

lion1 0.545 0.706 0.827 0.600 0.750 0.857

lion2 0.358 0.527 0.691 0.364 0.533 0.696

lion3 0.276 0.432 0.604 0.329 0.495 0.662

lion4 0.120 0.214 0.353 0.101 0.183 0.310

Table 6.8: Fitness scores using modified operation costs

6.3.7 Scoring potential of incomplete derivations

Up to this point, we already have an evaluation function that adequately measures the similarity

between Ftarget and Fcandidate . However, Fcandidate is simply the concatenation of the lexical

stress patterns belonging to the words at the leaf nodes of an individual. This overlooks a crucial

aspect, namely substitution nodes that may appear as leaf nodes of incomplete derivations.

As these substitution nodes represent syntactic structures that will eventually affect the metre,

this must be reflected in the evaluation function. Consider the following two examples, where

X represents a substitution node of category X :



6.3. Metre evaluation 127

(6.5) NP resides in the waste. (Fcandidate
� � 0n � 1n � 01 � 01 � 11 � b  )

(6.6) The lion is mean. (Fcandidate
� � 01 � 1n � 0n � 01 � 11 � b  )

If we ignore the distinction of monosyllabic and polysyllabic words, both sentences have an

identical Fcandidate . Consider the case where Ftarget = [w,s,w,w,s,b]. Although the edit dis-

tance algorithm will find a transformation of cost 0 from Fcandidate to Ftarget for both sentences,

in reality Example (6.6) is better than (6.5), which still needs to realize its subject noun phrase

(NP) in order to be grammatical. This substitution will obviously increase its distance to Ftarget .

On the other hand, consider the case where Ftarget = [w,s,w,w,s,w,w,s,b]. Although both

examples again yield the same edit distance, in reality Example (6.5) is better than (6.6), as the

presence of an NP substitution node shows it has better potential to realize the target metre, for

instance by substituting the noun phrase “The lion”.

What these examples show is that substitution nodes affect, both positively and detrimentally,

a text’s ability to satisfy Ftarget in a manner which our edit distance-based evaluation function

does not cover.

One simple solution is to penalize the presence of substitution nodes. This would work for the

first case above, where Ftarget = [w,s,w,w,s,b], but not for the second case, where Ftarget =

[w,s,w,w,s,w,w,s,b]. Moreover, as there is pressure to eliminate substitution nodes, there

would be a preferential bias to substitute these nodes with structures that did not introduce even

more substitution nodes. This could result in a premature ‘stunting’ of syntactic trees.

We believe that an ideal account of substitution nodes requires a prediction of the lexical stress

patterns of the syntactic constituents eventually being substituted at these substitution nodes.

However, predicting this is extremely difficult. Fortunately, we can approximate this with the

slightly easier prediction of the length, or syllable count, of these constituents instead. The

idea is that there must be a balance between the syllable count of Ftarget and the sum of the

syllable count of Fcandidate and the total predicted syllable count of these constituents. If ltarget

and lcandidate are the lengths, i.e. syllable count, of the target and candidate forms, and lestimate

is the total predicted syllable count of constituents substituting at the substitution nodes, then

ideally we want to minimize = ltarget (A� lcandidate � lestimate �B= , where =X = is the absolute value of

X . If this equals zero then we have roughly the ‘right amount’ of syntactic structure to generate

a text that satisfies our target metre.

Thus we define the ‘syntax-surface balance’ evaluation function, using a similar normalization



128 Chapter 6. Evaluation functions for poetry generation

approach used for Fedit in Section 6.3.5:

Fbalance
� λ2 C ltarget

λ2 C ltarget ) < ltarget 4 > lcandidate ) lestimate @ <
where λ2 � 0 is a parameter for controlling how strict conformance to the target metre syllable

count should be.

This raises the question of how to obtain lestimate. We suggest two different approaches that can

be adopted: a target-driven and a resource-driven approach. A target-driven approach would

estimate the syllable count for each category of substitution node from a corpus of example

texts that satisfy the target metre. Thus, for example, if we were to satisfy the target form in

Figure 6.3(c), we could estimate these values from Belloc’s original poem. Table 6.9 gives

one such estimation. It lists the different categories that may appear as substitution nodes in an

incomplete derivation along with the estimated syllable count, and some example phrases taken

from “The Lion”. A resource-driven approach would estimate these values from the linguistic

resources used, i.e. grammar and lexicon. Note that some assumptions must be made regarding

the recursive structures, e.g. noun phrases. For example, we could place an upper bound on the

depth of adjunction. We have not attempted this approach.

Category lestimate Example

S 7 his shoulders are stark, he has a big

head and a very small waist

NP 3 the lion, he, a good little child

P , Aux , D , CV , Comp 1 in, with, will, the, a, is, are, that

Punc 0 comma, fullstop

Table 6.9: Sample lestimate values

Table 6.10 shows an example of applying Fbalance on various candidate forms, given Ftarget
�� :D��E3�
:D�
:D��E3�
:D�
:F��EG (ltarget

� 8). We set λ2
� 1 and use the lestimate values in Table 6.9. The

table lists the values for lcandidate , lestimate , and Fbalance . For comparison, it also lists the scores

given by the edit distance-based evaluation function, Fedit .

Note that the first two texts satisfy Ftarget perfectly, as shown by the 1.0 score for Fedit . How-

ever, the second text is an incomplete derivation and has a lot of substitution nodes. Thus,

Fbalance correctly scores it considerably lower.

The last two texts are also incomplete derivations, but their substitution nodes indicate potential



6.4. Semantic Similarity 129

Text lcandidate lestimate Fbalance Fedit Fmetre

There once was a man from Brazil. 8 0 1.0 1.0 1.0

NP is NP . NP read it P the child. NP will be grim. 8 13 0.615 1.0 0.884

There once was a NP . 4 3 0.889 0.333 0.499

S . 0 7 0.889 0.21 0.413

Table 6.10: Example of applying Fbalance

for further realization. Their values for Fbalance represent this potential, whereas their values

for Fedit represent their currently poor ability to approximate the target form.

Note that Fbalance and Fedit are in fact two separate evaluation functions. We have briefly

discussed the issue of multi-objective evaluation in Sections 4.2.2 and 4.4.3. In our empirical

studies (Chapter 8) we adopt the simple mechanism of linearly combining different evaluation

scores. We show here how this approach would work for these two evaluators by the following

linear combination:

Fmetre
� λ3Fedit �H� 1 ( λ3 � Fbalance

where 0 I λ3 I 1 is a parameter for controlling the relative weight of the edit distance measure

with respect to the syntax-surface balance score. As we consider the edit distance-based evalu-

ation function to be the primary measure, we feel λ3 should be suitably high. The last column

of Table 6.10 shows values for Fmetre given λ3
� 0 � 7.

Unfortunately Fedit and Fbalance are not orthogonal, as in the case when there are no substitution

nodes remaining, a candidate’s failure to satisfy the target metre due to it simply being too short

will be penalized in both values. In the case of using genetic operators that guarantee complete

derivations (Section 7.4.1), λ3 should be set to 1.0.

6.4 Semantic Similarity

In Section 4.4 we suggested several possible methods for measuring fidelity of a generated

text, i.e. similarity, meaningfulness, consistency, etc. In this section, we concentrate on the

only method that we have designed and implemented: measuring the similarity between the se-

mantics of a generated text and that of a given target semantics. This is similar to the evaluation

function we use for measuring metre similarity. Both functions are a measure of isomorphism



130 Chapter 6. Evaluation functions for poetry generation

between an individual’s features and a defined target structure. In the case of metre, we measure

the similarity between the metre pattern exhibited by an individual and the given target metre,

using the edit distance algorithm. The semantic similarity function yields a score measuring

the similarity between the semantics conveyed by an individual, which we call the candidate

semantics, and the given target semantics.

Both the candidate and target semantics use the flat semantic representation defined in Sec-

tion 5.2.1. The candidate semantics are obtained from an individual using the compositional

rules described in Section 5.3.8, whereas the target semantics are provided as input to the sys-

tem.

In the following sections, we will first introduce a model of semantic similarity as a process

of structural alignment, before detailing our implemented greedy algorithm that computes a

structurally consistent mapping in polynomial time, and a function that computes the similarity

score from the resulting mapping.

6.4.1 A model of semantic similarity

As an example of what we are trying to achieve, consider the following expressions:

(6.7) love � l � j � m �3� john � � j �5� mary � � m � (“John loves Mary.”)

(6.8) adore � a � x � y �5� mary � � x �5� applepie � � y � (“Mary adores apple pie.”)

(6.9) run � r� s �3� sprinter � � s � (“The sprinter runs.”)

Which pairs of expressions are considered more similar than the others? What issues motivate

this choice? Are (6.7) and (6.8) considered most similar due to the synonymity between love

and adore, or perhaps because they both convey information about mary (that we can assume

to be the same object)? Does the fact that they both state a binary predication over two objects,

each of which is further elaborated by a unary predicate, play a factor?

Love (2000) proposes a computational theory of similarity that is psychologically grounded.

It states that the similarity between two objects is a function not only of their common and

distinctive features, as is established in earlier accounts of similarity such as Tversky (1977),

but also of the higher-order compatibility relations among these features. For example, Falken-

hainer et al. (1989) claim that people judge the solar system and an atom as being similar not

because the elements of the two systems are inherently similar (the sun and an atom’s nucleus



6.4. Semantic Similarity 131

differ in size and composition), but because our representation of these two systems share a

number of higher order relational matches, such as the revolving of electrons around a larger

nucleus corresponding with the revolving of planets around a larger sun.

Following Love (2000), we propose two factors that our evaluation function must take into

consideration: structural similarity and conceptual similarity.

1. Structural similarity is a measure of isomorphism between the structure of two semantic

expressions. Do their literals convey the same predicate-argument structure? Do they

attribute conceptual predications to the same object variables?

An algorithm for comparing two semantic expressions is necessarily more complex than

that of the string edit distance algorithm for metre similarity, as there is higher-order

structure inherent within the propositions. One approach that can be used is the graph

distance metric based on the computation of the maximal common subgraph (Bunke

and Shearer, 1998). The graph isomorphism problem is known to be NP-hard. Another

approach that can be used is Gentner’s structure mapping theory (Gentner, 1983), which

is employed in the Structure Mapping Engine, or SME(Falkenhainer et al., 1989).

2. Conceptual similarity is a measure of relatedness between two concepts, in this case

literal functors. The simplest instance of conceptual similarity is identity: 2 literals are

the same if they share the same functor, e.g.mary in (6.7) and (6.8).

A more sophisticated approach than this binary distinction can be achieved through the

comparison of concepts with respect to some underlying ontology. A general purpose

ontology such as WordNet (Fellbaum, 1998) can be employed, as can existing concept-

relatedness metrics that have been developed for WordNet (Foo et al., 1992, Beeferman,

1998), which measure path distance in the hypo/hyper-nymy tree. For instance, the

functors love and adore would be more closely related than mary and applepie.

As mentioned in Section 4.4.1, Nicolov (1998) presents a generation system that can convey

more or less than the target semantics, and thus requires a way of preferring one text over an-

other based on how similar its semantic representation is to the target semantics. Nicolov con-

structs a relation �
G which holds between two semantic representations g1 and g2 (g1

�
G g2)

if and only if g2 is a better match for the input semantics G than g1 is. This is slightly different

from our approach, where rather than devising a metric that calculates an absolute distance

between two semantic representations, Nicolov defines a relation between two semantic rep-



132 Chapter 6. Evaluation functions for poetry generation

resentations in relation to a third, i.e. the input semantics. Nevertheless, the intuitive notion

of semantic similarity is essentially the same as our own model. The definition of � G takes

into account both structural similarity, through the use of the maximal projection operator ap-

plicable to conceptual graphs, and conceptual similarity, through the calculation of distance

between two corresponding concepts in the maximal projection.

Love (2000) notes that although most current models of comparison and analogy account for

these aspects of similarity, it is not clear how they are weighted and manifested. Providing a

clear model of the relationship between structural and conceptual similarity is one of the key

contributions of Love (2000). It specifies a computational level theory of similarity that takes

the form of a linear combination of four terms, which we discuss in Section 6.4.3.

This similarity equation requires the establishment of correspondences, or mappings, between

the features and components of two objects, and these correspondences are chosen so as to

maximize the similarity equation. Thus, quoting Love (2000): “Similarity both drives the

comparison process and is an outcome of it”. What this means is that there are two distinct

processes: the establishment of mappings and the evaluation of its ‘quality’. Love’s model is

primarily concerned with the latter, and makes no assumptions regarding the former. Gentner’s

structure mapping theory (Gentner, 1983), which SME is based on, is one method of computing

such mappings.

In Section 6.4.2, we describe our implemented algorithm of computing an optimal mapping

between two semantic expressions for the purpose of evaluating their similarity. It is based

on the algorithm of SME. In Section 6.4.3, we describe our implemented semantic similarity

evaluation function which assigns a score to such a mapping. It is based on Love’s model.

6.4.2 Mapping two semantic expressions

Before describing our algorithm, we will first define several important concepts. Firstly, recall

from Section 5.2.1 that a semantic expression, S, is an unordered set of literals, l.� Definition 1. For any two semantic expressions S1 and S2, M J S1 � S2 is a mapping

between them.

From this point onwards, we also assume that we are constructing a mapping between

Starget , the target semantics, and Scandidate , the candidate semantics.



6.4. Semantic Similarity 133

� Definition 2. In more detail, M can be seen as a set of local matches, where a local

match is a triple, m
�

M, of either of the following type:

– Proper match: m � � lt � lc � b � , where lt
�

Starget , lc
�

Scandidate , and corresponding

arguments of lt and lc that appear in the same position are bound to each other in

b, a dictionary. A dictionary is an abstract data type that stores items, or keys,

associated with values. In AI research, they are also commonly referred to as as-

sociation lists. We use the notation b � x � � y to indicate that the value y is stored

for key x in dictionary b. In our case, both keys and values are argument vari-

ables. Thus, for our argument binding purposes, if argn � l � is the n-th argument

of l, then for all n, b � argn � lc ��� � argn � lt � and b � argn � lt ��� � argn � lc � . Because of

this “mirroring” effect, where b � x � � y iff b � y � � x, we can use the more compact

notation b � � x1 K y1 �������3� xn K yn � , which states that dictionary b stores values

y1 ��������� yn for keys x1 ��������� xn respectively, and values x1 ��������� xn for keys y1 ��������� yn

respectively.

For example, if lt � love � l � j � m � and lc � adore � a � x � y � , then for proper match

m � � lt � lc � b � , dictionary b � � l K a � j K x � m K y � .
– Dangling match: mi

� � lti � ε � ε � or mi
� � ε � lci ? ε � . The former is a target literal

dangling match, and the latter a candidate literal dangling match. These sim-

ply represent literals that are not part of any proper matches. They exist because

we require a mapping to possess a local match for every literal in the semantic

expressions being mapped.

Finally, for all mi � m j
�

M, lti L� lt j and lci L� lc j . That is to say, a literal can only be

matched within a mapping once.

� Definition 3a. A mapping M is said to be structurally consistent if for every proper

match mi � m j
�

M and for all argument variables x, bi � x � � b j � x � , unless either bi � x � � ε

or b j � x � � ε (i.e. x is not bound by mi or m j). In other words, there is no argument

variable within M that is bound to two different variables.

For example, given the following two mappings between the semantic expressions of

(6.7) and (6.8) above:



134 Chapter 6. Evaluation functions for poetry generation

M1
� �3� love � l � j � m ��� adore � a � x � y ���M� l K a � j K x � m K y �N���� mary � � m ��� applepie � � y ���O� m K y �N���

M2
� �3� love � l � j � m ��� adore � a � x � y ���M� l K a � j K x � m K y �N���� mary � � m ��� mary � � x ���O� m K x �N���

we can see that M1 is structurally consistent whereas M2 is not. In M2, the first proper

match binds j K x and m K y, whereas the second proper match binds m K x. Note that

in these mappings we are only showing the proper matches for better readability.� Definition 3b. A proper match m is said to be structurally consistent with respect to a

mapping M if M
�
, the resultant mapping of adding m to M, is structurally consistent.

For example, the proper match m � � john � � j ��� mary � � x ���O� j K x �N� is structurally con-

sistent with respect to M1 above.� Definition 4. If =M = is the number of proper matches in M, a structurally consistent map-

ping Mi is a maximal structurally consistent mapping if there exists no structurally

consistent mapping M j such that =M j =��P=Mi = . Note that =M =�I min �M= Starget =Q��= Scandidate =R� ,
because a literal can only be matched within a mapping once, thus there can only be as

many proper matches as there are literals to be matched. Note also that for any Starget

and Scandidate there may be more than one maximal structurally consistent mapping.

The process of establishing correspondencies between two semantic expressions is one of struc-

tural alignment. Two examples of this are the maximal common subgraph algorithm and the

structure mapping algorithm of SME mentioned above.

However, the maximal common subgraph algorithm is only concerned with finding a maximal

structurally consistent mapping. Strictly speaking, this is not the measure we are seeking:

it corresponds to the maximization of structural similarity, but remember that our similarity

equation also takes into account conceptual similarity.

SME accounts for this by first constructing a set of local match hypotheses, which are indi-

vidual correspondences between features of the two objects being compared that satisfy given

constraints. These constraints are defined by rule sets which govern what is allowed to match.

In Falkenhainer et al. (1989), three types of rule sets are used: literal similarity, analogy, and

mere appearance. From these local matches, SME constructs global matches, which are essen-

tially all maximal structurally consistent mappings that can be built from the restricted space

of local match hypotheses. Thus, both conceptual and structural similarity are accounted for



6.4. Semantic Similarity 135

efficiently. Our greedy algorithm adopts a similar approach.

Consider the following mappings between the semantic expressions of (6.7) and (6.8) above:

(6.10) M1
� �3� love � l � j � m ��� adore � a � x � y ���O� l K a � j K x � m K y �N���

(6.11) M2
� �3� love � l � j � m ��� adore � a � x � y ���O� l K a � j K x � m K y �N���� mary � � m ��� applepie � � y ���O� m K y �N���� john � � j ��� mary � � x ���O� j K x �N���

(6.12) M3
� �3� mary � � m ��� mary � � x ���O� m K x �N���

(6.13) M4
� �3� mary � � m ��� mary � � x ���O� m K x �N���� love � l � j � m ��� adore � a � x � y �S�O� m K x � l K a � j K x � m K y �N���

M1 � M2 � and M3 are structurally consistent mappings, whereas M4 is not, because the variable

m is mapped to both x and y, and likewise, x is mapped to both m and j.

Our initial attempts at the mapping process included an exhaustive search through all pos-

sible mappings, and a greedy algorithm that sought to maximize conceptual similarity. The

first attempt proved unfeasible due to the combinatorial explosion of the number of possible

mappings. The second attempt worked by repeatedly choosing the local match that yields the

highest conceptual similarity score between the mapped literals. The evaluation function would

then score the quality of the whole mapping, taking into account both conceptual and structural

similarity. Unfortunately this proved to be a faulty heuristic, as exemplified by the mappings

shown above. As the heuristic initially chooses to map the two mary literals due to their con-

ceptual similarity (resulting in the M3 mapping), there is then no way of incorporating love

and adore in a structurally consistent manner, i.e. M4 is structurally inconsistent. Note that the

maximal structurally consistent mapping is M2, and that it does not map the two mary literals

together.

To summarize, a mapping algorithm that simply maximizes the conceptual similarity of local

matches can yield suboptimal mappings from a structural viewpoint. On the other hand, M2

does not seem to intuitively convey the similarity in meaning between the candidate and target

semantics. It is difficult to imagine a situation in which matching mary and applepie is war-

ranted. In SME, this would be prevented by the application of the rule sets in constructing local

match hypotheses. They define what local matches are conceptually acceptable. Similarly, we

define a function c � m � that returns the conceptual similarity between the functors of the literals



136 Chapter 6. Evaluation functions for poetry generation

mapped in proper match m, and determine cmin as the minimum threshold value of concep-

tual similarity for matches to be considered acceptable. Our currently implemented function is

simply that of identity, where cmin
� 1, and given m � � lt � lc � ,

c � m � � /1 2 1 if f unctor � lt � � f unctor � lc � , where f unctor � X � is the functor of literal X ,

0 otherwise.

However, there is still a problem in using such a hillclimbing procedure to map literals together.

Consider the following target and candidate semantics, which both represent the meaning con-

veyed by the utterance “The lion has a head and a waist”:� Starget
� � lion � � l ��� own � � l � h ��� own � � l � w ��� head � � h ��� waist � � w ���� Scandidate
� � lion � � a ��� own � � a � c ��� own � � a � b ��� head � � b ��� waist � � c ���

Clearly the candidate semantics conveys the target semantics perfectly well, as they are in fact

isomorphic. However, as there are two literals with the functor own in both Starget and Scandidate ,

there is an ambiguity in how they should be mapped. If the wrong mapping is made, i.e.� own � � l � h ��� own � � a � c ��� , then only � head � � h ��� waist � � c ��� can be considered as a structurally

consistent proper match, when clearly � head � � h ��� head � � b ��� is the ideal match.

We can account for this problem by deferring the matching of ambiguous literals until more

information is known. Also, the chosen mapping must be sensitive to the structural consistency

of all bound variables known at that point.

We can now describe our algorithm as such:

Starting with an empty mapping M, we firstly build a pool of all acceptable proper matches,

i.e. proper matches that� are structurally consistent with respect to M, and� yield a conceptual similarity score higher than a given threshold, i.e. c � m �.T cmin.

Next, we select the best proper match from this selected pool by using a prioritized list of

criteria, shown in Table 6.11. Each subsequent criteria is only considered if the previous criteria

cannot uniquely determine a single proper match. This approach is similar to the ranking of

constraints in optimality theory (Prince and Smolensky, 1993), and is also adopted by the

greedy algorithm of SPUD (Stone et al., 2001). If upon consideration of the last criteria there

is still more than one proper match, randomly select either.



6.4. Semantic Similarity 137

� Criteria 1 - Unambiguity: prefer proper matches that map literals that also appear in

the fewest other proper matches in the pool.� Criteria 2 - Connectedness: prefer proper matches that map the most unbound argu-

ment variables.� Criteria 3 - Conceptual bias: prefer proper matches that yield the highest conceptual

similarity score.

Table 6.11: Prioritized criteria for selecting best proper match

The selected proper match is added to M, the mapped literals are removed from Starget and

Scandidate respectively, and the process is repeated until no more proper matches can be found,

at which point all remaining literals are added as dangling matches.

This mapping algorithm is specified in Algorithms 6.2 and 6.3.

Algorithm 6.2 Mapping greedyMap(Semantics T, Semantics C, Mapping M)

m � � lt � lc �U7 bestMatch(T ,C,M)

if m L�WV3XZY5Y then

M � M � m

T � T ( lt

C � C ( lc

return greedyMap(T � C � M)

else

for i � T do

M � M �H� i � ε �
end for

for i � C do

M � M �H� ε � i �
end for

return M

end if

We will now summarise the similarities and differences between our mapping algorithm that

we have just described and SME, which we base our algorithm on. Essentially, both follow



138 Chapter 6. Evaluation functions for poetry generation

Algorithm 6.3 Match bestMatch(Semantics T, Semantics C, Mapping M)

Pool � �[�
for i � T do

for j � C do

m 7\� i � j �
if m is consistent w.r.t. M and c � m �.� cmin then

Pool � Pool � m

end if

end for

end for

select m � Pool according to prioritized criteria in Table 6.11

return m

the same approach of constructing a set of possible local matches (i.e. match hypothesis in

SME, acceptable proper matches in our algorithm) and then collecting these local matches into

a maximal structurally consistent global match, or gmaps in SME.

However, there is a difference in the construction of global matches. SME employs a more

powerful algorithm that constructs all valid structurally consistent gmaps, whereas our hill-

climbing algorithm which uses the prioritized criteria in Table 6.11 is deterministic. In terms

of complexity, the worst case complexity of global match construction in SME is O � N! � ,
whereas in our algorithm it is O � N3 � . This can be observed from Algorithms 6.2 and 6.3.

The greedyMap function simply takes the best local match suggested by bestMatch, recursing

until the semantics in T and C have been consumed, thus resulting in a worst case of O � N � .
bestMatch iterates over T and C in constructing acceptable local matches and has a worst case

complexity of O � N2 � . As a result, the worst case complexity for our global match construction

is O � N3 � .
There is also a difference in what happens after the global match construction procedure.

Whereas we proceed to score the mapping using our evaluation function based on Love’s model

(Section 6.4.3), SME performs a calculation of candidate inferences, i.e. a set of inferred ex-

pressions that are suggested to hold by the comparison represented by a gmap.

Finally, SME has a flexible method of computing the initial set of local matches by using a

set of match rule constructors, i.e. rules that specify which local matches are plausible. By

using different sets of rules, they are able to use SME to test different theories of analogy, i.e.



6.4. Semantic Similarity 139

analogy, literal similarity, and mere appearance. This is indeed one of the aims of SME, i.e. as

a tool to test Gentner’s structure mapping theory. In contrast, we use the simple c � m � function

which is currently implemented as simple identity.

6.4.3 An evaluation function for semantic similarity

Once we have found a mapping between literals in the target semantics and literals in the can-

didate semantics, we need an evaluation function that takes the set of mappings and assigns a

fitness score to it. Our evaluation function is based on Love’s computational model of similar-

ity, which defines similarity as the following linear combination (Love, 2000):

F � Starget � Scandidate � M � � α1Θ � Starget � Scandidate �3� α2ϒ � M �5� α3Ω � M �5� α4Φ � M �
where α1 � α2 � α3 � α4 T 0

Note that although we use the same four terms as Love’s similarity equation, our formula-

tion for each term is different due to our domain-specific knowledge of the structures being

compared, i.e. semantic expressions.

The first term, Θ, compares ‘raw’ conceptual similarity, and corresponds to the contrast model

of Tversky (1977). It does not score any aspect of the mapping M, but rather examines the

occurrence of similar elements present in both the semantic expressions Starget and Scandidate .

For example, if the two semantic expressions being compared are (6.7) and (6.8), this term

captures the occurrence of mary in both expressions, regardless of how they are mapped. The

equation for Θ is as follows:

Θ � Starget � Scandidate � �
ϕ1 f � Starget � Scandidate �](^� 1 ( ϕ1 �S� δ1 f � Starget ( Scandidate �5�_� 1 ( δ1 � f � Scandidate ( Starget ���

where 1 T ϕ1 T 0, and 1 T δ1 T 0.

ϕ1 determines the relative importance of commonalities and differences, and δ1 allows con-

trol over how asymmetric the similarity judgment between the two expressions is, and f is a

function over sets that is related to the importance of the elements in a set. We follow Love in

making the simplifying assumption that all elements are equally salient, and thus f � X � � =X = .
Essentially, to compute Θ we must partition the literals into 3 sets: Starget � Scandidate , Starget (
Scandidate , and Scandidate ( Starget . We use our conceptual threshold value, cmin, to decide mem-



140 Chapter 6. Evaluation functions for poetry generation

bership among these sets.

The second term, ϒ, measures the similarity arising from correspondences. Unlike Θ, ϒ only

captures the similarity between literals that are mapped under M. Love cites psychological

experiments that show that commonalities and differences arising from correspondences are

processed differently from those that are not in correspondence. The equation for ϒ is as

follows:

ϒ � M � � n
∑

i ` 1
c � mi �

where n is the number of proper matches in M, mi is the i-th proper match in M.

The third term, Ω, captures higher-order matches, as in the solar system and atom example cited

in Falkenhainer et al. (1989). Structural similarity is accounted for by this term. In the case of

semantic expressions, a higher order match occurs when when two literals are mapped under

a proper match and their arguments contain variables that are similarly mapped by another

proper match. The equation for Ω is as follows:

Ω � M � � n
∑

i ` 1

n
∑
j ` 1

c � mi � c � m j � share � mi � m j �
where and share � mi � m j � � 1 if i L� j and lti and lt j , or lci and lc j , share a common argument

variable, 0 otherwise.

The fourth term in Love’s similarity equation, Φ, is also a structural measure, which calcu-

lates the degree to which the mapping is a bijection, or one-to-one mapping. Note that since

our greedy algorithm enforces a one-to-one mapping, we do not require the full complexity of

Love’s equation for Φ. However, we still require a term that measures the degree of complete-

ness of the mapping, i.e. how many dangling matches are in M. Thus, the equation for Φ is as

follows:

Φ � M � � δ1
1

1 ) dangletarget > M @ �H� 1 ( δ1 � 1
1 ) danglecandidate > M @

where dangletarget � X � and danglecandidate � X � are the number of target literal dangling matches

and candidate literal dangling matches in X respectively.

In our experiments, we use a default “neutral” setting of parameters, where we weight all four

terms equally, i.e. α1 � α2 � α3 � α4 � 1. and treat the comparison as symmetrical, i.e.

ϕ1
� δ1

� 0 � 5. These values are suggested in Love (2000).



6.4. Semantic Similarity 141

Finally, in our implementation, each of these terms is normalized by a corresponding optimal

score which is obtained by mapping a target semantics with itself.

6.4.4 Validation of evaluation function

We will now validate both the greedy mapping algorithm and the evaluation function we have

described in the last few sections by applying it towards candidate semantic expressions and

their corresponding targets. This is similar to the approach we used in Section 6.3.6 for our

metre evaluator.

We will test our evaluator on two sets of candidate semantic expressions. The first set will be

compared against the target semantics that represents the utterance “John loves Mary”, i.e.:

Starget
� � john � 0 � J ��� mary � 1 � M ��� love � 2 � J � M ���

where 0 � 1, and 2 are variables generated for arguments that we are not interested in, i.e. are

not bound to anything else. The candidate semantics are shown from (6.14) to (6.20), where we

list their semantic expressions, Scandidate , along with the mappings M obtained by comparing

them against Starget above using the greedy algorithm presented in Section 6.4.2. Note that for

readability purposes, in these mappings we only show the literals being mapped, and not the

argument bindings, b. Also, for each candidate we provide an utterance that Scandidate can be

seen to represent.

Candidate (6.14) is merely a copy of the target, to verify that the mapping algorithm correctly

maps the corresponding literals, which it indeed succeeds at doing. Candidates (6.15) and

(6.16) are subsets of Starget , and the mapping algorithm correctly maps the literals present

in Scandidate and adds the remaining literals in Starget as dangling matches. Candidate (6.17)

introduces a different literal in the place of mary, and we see that in the resulting mapping

M, both the target literal mary and the candidate literal pizza are dangling matches, as our

conceptual similarity function c is simply one of identity. In candidates (6.18) to (6.20) we see

the existence of john appearing in the wrong argument position of love. As a result, the two

john literals in Starget and Scandidate are not mapped in a proper match. This is because the two

love literals are mapped first, according to the list of prioritized criteria in Table 6.11, and thus

mapping the two john literals would result in a structurally inconsistent mapping. This is also

true of the mary literals in (6.19).



142 Chapter 6. Evaluation functions for poetry generation

(6.14) “John loves Mary”

Scandidate a b john c 3 d X e�d mary c 4 d Y e�d love c 5 d X d Y e�f
M a b c love c 2 d J d M eMd love c 5 d X d Y egeMdc john c 0 d J e�d john c 3 d X ehe�dc mary c 1 d M e�d mary c 4 d Y egeOf

(6.15) “John loves ����� ”
Scandidate a b john c 6 d X e�d love c 7 d X d 8 e�f

M a b c love c 2 d J d M eMd love c 7 d X d 8 egeMdc john c 0 d J e�d john c 6 d X ehe�dc mary c 1 d M e�d ε eOf
(6.16) “ ����� loves ����� ”

Scandidate a b love c 9 d 10 d 11 eOf
M a b c love c 2 d J d M eMd love c 9 d 10 d 11 egeMdc john c 0 d J e�d ε e�dc mary c 1 d M e�d ε eOf

(6.17) “John loves pizza”

Scandidate a b john c 12 d X eMd love c 13 d X d Y e�d pizza c 14 d Y eOf
M a b c love c 2 d J d M eMd love c 13 d X d Y ehe�dc john c 0 d J e�d john c 12 d X ege�dc mary c 1 d M e�d ε e�dc ε d pizza c 14 d Y eOf

(6.18) “ ����� loves John”

Scandidate a b john c 15 d X eMd love c 16 d 17 d X e�f
M a b c love c 2 d J d M eMd love c 16 d 17 d X ehe�dc john c 0 d J e�d ε e�dc mary c 1 d M e�d ε e�dc ε d john c 15 d X eheOf

(6.19) “Mary loves John”

Scandidate a b john c 18 d X eMd love c 19 d Y d X e�d mary c 20 d Y e�f
M a b c love c 2 d J d M eMd love c 19 d Y d X egeMdc john c 0 d J e�d ε e�dc mary c 1 d M e�d ε e�dc ε d john c 18 d X ehe�dc ε d mary c 20 d Y ege�f



6.4. Semantic Similarity 143

(6.20) “Pizzas love John”

Scandidate a b john c 21 d X eMd love c 22 d Y d X eMd pizza c 23 d Y e�f
M a b c love c 2 d J d M e�d love c 22 d Y d X egeMdc john c 0 d J eMd ε eMdc mary c 1 d M e�d ε e�dc ε d john c 21 d X egeMdc ε d pizza c 23 d Y eheOf

Having obtained mappings for this set of candidate semantic expressions, we assign a fitness

score to them using the similarity equation in Section 6.4.3. As mentioned above, we weight all

four terms equally, i.e. α1 � α2 � α3 � α4 � 1. Also, we treat the comparison as symmetrical,

i.e. ϕ1
� δ1

� 0 � 5. The fitness scores can be seen in Table 6.12. We present the values for the

individual terms Θ, ϒ, Ω, and Φ, as well as the total fitness score, F .

Scandidate Θ ϒ Ω Φ F

(6.14) 1.0 1.0 1.0 1.0 1.0

(6.15) 0.667 0.667 0.5 0.75 0.646

(6.16) 0.334 0.334 0.0 0.667 0.334

(6.17) 0.556 0.667 0.5 0.5 0.556

(6.18) 0.667 0.334 0.0 0.417 0.354

(6.19) 1.0 0.334 0.0 0.334 0.417

(6.20) 0.556 0.334 0.0 0.334 0.306

Table 6.12: Semantic similarity fitness scores for candidates (6.14) to (6.20)

We will now discuss these fitness scores for each term. Recall from Section 6.4.3 that Θ cap-

tures raw conceptual similarity. We can see that candidates (6.14) and (6.19) yield a maximum

score of 1.0, as they both contain all the literals in Starget . The other candidates are correctly

scored lower as they are missing one or more literals. Note that candidates (6.17) and (6.20)

score lower than candidates (6.15) and (6.18) due to the penalty incurred by the presence of a

different concept, pizza.

The second term, ϒ, captures conceptual similarity of mapped literals. Again (6.14) yields a

maximum score as all literals are correctly mapped. Note that (6.19) only yields a score of

0.334, as despite having all three literals, only love can be mapped in a structurally consistent

manner.



144 Chapter 6. Evaluation functions for poetry generation

The third term, Ω, captures the structural similarity within the predicate-argument structures.

Again, (6.14) yields a maximum score. Only (6.15) and (6.17) yield a non-zero score as they

correctly convey the argument structure of john being the subject of love.

Finally, the fourth term, Φ, is another structural term that penalizes dangling matches. We can

see that the more dangling matches there are, the lower the score for Φ.

For these candidates, we feel that their overall fitness score, F , is a fair and appropriate measure

of how similar they are to Starget . Of notable interest is that candidates (6.17) and (6.20) score

lower than (6.15) and (6.18), respectively, due to the presence of the unmapped concept pizza.

For the second set of candidate semantic expressions, we use a more complex target semantic

expression that represents the second line of Belloc’s “The Lion”, i.e.“[The lion] has a big

head and a very small waist”. The semantic expression is as follows:

Starget
� � lion � 0 � L ��� own � 1 � L � H ��� head � 2 � H ��� big � 3 � H ���

own � 4 � L � W ��� waist � 5 � W ��� small � S � W ��� very � 6 � S ���
This is a subset of the encoding of the first two lines of Belloc’s “The Lion” which we presented

in Section 5.2.4.

The second set of candidate semantic expressions is shown from (6.21) to (6.26). As with the

first set of candidate semantics, (6.21) is simply an exact copy of the target semantics. (6.22)

and (6.23) are different subsets of Starget . Candidate (6.24) is the semantic encoding of the first

line of “The Lion”. Candidate (6.25) is a completely unrelated semantic expression. Finally,

note that candidate (6.26) is subsumed by (6.22). By examining the mappings obtained for all

these candidates, we can see that they are as we expect them to be, i.e. they are the maximal

structurally consistent mappings that can be built given the proper matches that are deemed

acceptable by our conceptual similarity function c � m � , with all unmapped literals being added

as dangling matches.

(6.21) “The lion has a big head and a very small waist”

Scandidate a b lion c 0 d L e�d own c 1 d L d H e�d head c 2 d H e�d big c 3 d H e�d
own c 4 d L d W e�d small c S d W e�d waist c 5 d W e�d very c 6 d S e�f

M a b c lion c 0 d L eMd lion c 0 d L egeMdhc head c 2 d H e�d head c 2 d H ege�dc own c 1 d L d H eMd own c 1 d L d H ege�dic own c 4 d L d W e�d own c 4 d L d W egeMdc big c 3 d H eMd big c 3 d H ege�dic small c S d W e�d small c S d W ehe�dc waist c 5 d W e�d waist c 5 d W ehe�dic very c 6 d S e�d very c 6 d S egeOf



6.4. Semantic Similarity 145

(6.22) “The lion has a big head”

Scandidate a b lion c 7 d L e�d own c 8 d L d H e�d head c 9 d H e�d big c 10 d H e�f
M a b c lion c 0 d L eMd lion c 7 d L egeMdhc head c 2 d H e�d head c 9 d H ege�dc own c 1 d L d H eMd own c 8 d L d H ehe�dic big c 3 d H e�d big c 10 d H egeMdc own c 4 d L d W eMd ε eMdhc small c S d W eMd ε eMdc waist c 5 d W e�d ε e�dhc very c 6 d S eMd ε e�f

(6.23) “The lion has a head and a waist”

Scandidate a b lion c 11 d L e�d own c 12 d L d H eMd head c 13 d H e�d
own c 14 d L d W e�d waist c 15 d W eOf

M a b c lion c 0 d L eMd lion c 11 d L ehe�dhc head c 2 d H e�d head c 13 d H egeMdc own c 1 d L d H eMd own c 12 d L d H egeMdhc own c 4 d L d W e�d own c 14 d L d W ehe�dc waist c 5 d W e�d waist c 15 d W ege�dic big c 3 d H e�d ε e�dc small c S d W e�d ε e�dhc very c 6 d S e�d ε eOf
(6.24) “The lion dwells in the waste”

Scandidate a b lion c 16 d L e�d dwell c d d L eMd inside c 17 d d d W eMd waste c 18 d W eOf
M a b c lion c 0 d L eMd lion c 16 d L ehe�dhc own c 1 d L d H eMd ε e�dc head c 2 d H eMd ε e�dic big c 3 d H e�d ε e�dhc own c 4 d L d W eMd ε eMdc small c S d W e�d ε e�dhc waist c 5 d W e�d ε e�dic very c 6 d S e�d ε e�dc ε d dwell c d d L egeMdhc ε d inside c 17 d d d W egeMdhc ε d waste c 18 d W ege�f

(6.25) “John loves Mary”

Scandidate a b john c 19 d j e�d love c 20 d j d m e�d mary c 21 d m eOf
M a b c lion c 0 d L eMd ε e�dic own c 1 d L d H e�d ε e�dic head c 2 d H eMd ε eMdc big c 3 d H eMd ε eMdhc own c 4 d L d W e�d ε e�dic small c S d W e�d ε e�dc waist c 5 d W e�d ε e�dhc very c 6 d S eMd ε eMdhc ε d john c 19 d j ehe�dc ε d love c 20 d j d m egeMdhc ε d mary c 21 d m ege�f

(6.26) “John and Mary love the lion’s big head”

Scandidate a b john c 22 d j e�d love c 23 d j d H eMd mary c 24 d m e�d love c 25 d m d H eMd
lion c 26 d L e�d own c 27 d L d H eMd head c 28 d H eMd big c 29 d H eOf

M a b c lion c 0 d L eMd lion c 26 d L ehe�dhc head c 2 d H e�d head c 28 d H egeMdc own c 1 d L d H eMd own c 27 d L d H egeMdhc big c 3 d H e�d big c 29 d H ehe�dc own c 4 d L d W eMd ε eMdhc small c S d W eMd ε eMdhc waist c 5 d W e�d ε eMdc very c 6 d S eMd ε eMdhc ε d john c 22 d j ehe�dhc ε d love c 23 d j d H egeMdc ε d mary c 24 d m ehe�dhc ε d love c 25 d m d H egeOf
The fitness scores assigned to these candidate semantic expressions are shown in Table 6.13.

We use the same parameters as before, i.e. α1 � α2 � α3 � α4 � 1 and ϕ1
� δ1

� 0 � 5.



146 Chapter 6. Evaluation functions for poetry generation

Scandidate Θ ϒ Ω Φ F

(6.21) 1.0 1.0 1.0 1.0 1.0

(6.22) 0.571 0.5 0.428 0.6 0.525

(6.23) 0.571 0.625 0.571 0.625 0.598

(6.24) 0.0 0.125 0.0 0.187 0.078

(6.25) 0.0 0.0 0.0 0.181 0.0451

(6.26) 0.428 0.5 0.428 0.2 0.389

Table 6.13: Semantic similarity fitness scores for candidates (6.21) to (6.26)

The first term, Θ, captures raw conceptual similarity. As expected, candidate (6.21) yields a

perfect score, and candidates (6.22) and (6.23), being subsets of Starget are scored proportion-

ately. Note that (6.24) scores 0.00, despite containing the literal lion. This is due to the penalty

incurred by the differences, which is parameterized by ϕ1. This penalty is also apparent in the

value for Θ that is assigned to (6.26). Note that although it contains the same literals as (6.22),

it scores lower due to the penalty incurred by the concepts john, love, and mary.

The second term, ϒ, captures conceptual similarity of mapped literals, and the values assigned

to these candidates is as expected. Note that the value for candidate (6.24) is 0.125, in recogni-

tion of the fact that it contains the mapped literal lion. Unlike Θ, it does not incur any penalty,

as it is only concerned with mapped literals. Similarly, note also that candidate (6.26) scores

the same as (6.22), as they have the exact same proper matches.

The third term, Ω, captures the structural similarity within the predicate-argument structures,

and we feel the scores assigned to these candidates accurately reflect this. The highest scor-

ing candidate apart from (6.21) is (6.23), where each literal has at least one argument that is

similarly bound by another proper match in M.

Lastly, the fourth term, Φ, penalizes dangling matches. Note that the value for (6.25) is the

only non-zero term assigned to this candidate. This is because Φ is an asymptotic function that

approaches zero for infinitely large semantic expressions with unmapped literals. Note that

even an empty candidate semantic expression, �[� , would score higher than candidate (6.25).

This intuitively makes sense, as from a semantic point of view it is ‘closer’ in distance to

Starget
1.

1The idiom “silence is golden” comes to mind!



6.5. Summary 147

6.5 Summary

In this chapter we have defined evaluation functions for metre similarity and semantic similar-

ity, both of which utilize a common strategy, i.e. measuring the degree of isomorphism between

a given target structure and the appropriate features of a candidate solution. For metre evalu-

ation, the well-known edit distance algorithm is used, and the resulting distance is used as the

basis of an objective function, which we augment with a simple account of context-sensitive

scoring. A separate function that measures the potential score of substitution nodes in incom-

plete derivations is also presented. For semantics, we present a greedy mapping algorithm that

is reminiscent of the algorithm used in SME (Falkenhainer et al., 1989), and measure the qual-

ity of the resulting mapping using a similarity equation proposed by (Love, 2000). All these

evaluation functions have been validated by testing them on candidate solutions for which we

have a priori judgments as to their quality, albeit ones based on intuition.





Chapter 7

Genetic operators for linguistic

structure building

In this chapter we describe the genetic operators we have designed and implemented in MCGO-

NAGALL. We will start by listing the design considerations for our operators. We then describe

the baseline ‘blind’ operators, which only adhere to syntactic well-formedness, followed by

a description of ‘smart’ operators which borrow techniques from NLG tactical systems seen

in Section 3.4.1 to explicitly achieve the goal of meaningfulness. Finally we describe com-

pound operators, particularly ones that ensure complete derivations. For each of the operators

described we present an example of its application towards some simple structures. We also

discuss the issue of determining the probability that a particular operator is applied to an indi-

vidual.

7.1 Design considerations

As described in Chapter 4, an evolutionary algorithm is essentially a form of heuristic search.

It stochastically explores the search space and considers which points to explore further based

on their fitness scores. A move in the search space is achieved by applying a genetic operator,

henceforth simply operator, to an individual. An operation that takes one individual and yields

a different one is called mutation, whereas one that takes two or more individuals is called

crossover or recombination.

149



150 Chapter 7. Genetic operators for linguistic structure building

The following is a list of properties that inform our design of operators:

1. Both mutation and crossover operations in evolutionary algorithms are stochastic in na-

ture, i.e. they modify individuals in a random manner.

2. Recall from Section 4.3.1 that we choose to enforce grammaticality of our individuals

through design of representation and operators. Thus, when designing an operator, we

can be assured that the individual it is attempting to modify is grammatical, but con-

versely, we must assure that the resulting individual must be grammatical as well.

3. We do not expect individuals to be complete solutions from the offset, i.e. from the point

of their initialization. Rather, solutions are constructed incrementally, benefitting from

the guiding hand of evolution. With respect to our individuals, this incrementality can be

realized in two different fashions: operators that may yield incomplete derivations and

operators that ensure complete derivations (Section 7.4.1).

4. As operators are stochastic, it is highly improbable that optimal solutions can be con-

structed using monotonic structure-building operators alone, for example by only ever

randomly substituting and adjoining LTAG elementary trees together. More likely, op-

timal solutions are gradually built through the ‘trial and error’ design mechanism that

evolution affords. Therefore, we need one or more nonmonotonic operators to facilitate

this, such as deletion (Section 7.2.2) and swapping (Section 7.2.3).

Michalewicz (1996) states that the representation of an individual in the population and the

set of operators used to alter its genetic code are crucial in determining a system’s success or

failure. Moreover, these two aspects are strongly related: the design of representational scheme

must consider the operators that will eventually manipulate them, and the design of operators

must exploit characteristics of the representation.

Since our individuals are represented using the LTAG formalism (Section 5.3.1), it would be

natural to try to base our genetic operators on the syntactic operations within LTAG theory, i.e.

substitution and adjunction. However, for our purpose of stochastic, nonmonotonic structure

building, we also look towards the genetic operators used in genetic programming, as they

manipulate similar structures (Section 4.2.6). Our design of baseline operators, which we

describe in the next section, is informed by such operators.



7.2. Baseline operators: ensuring grammaticality 151

7.2 Baseline operators: ensuring grammaticality

Angeline (1996) defines four search operators on S-expression parse trees, which are the struc-

tures manipulated in genetic programming: grow, shrink, switch, and cycle. The grow opera-

tor randomly selects a leaf from a tree and replaces it with a randomly generated new subtree.

The shrink operator does the opposite: it randomly takes an internal node and replaces the

subtree it dominates with a randomly generated new leaf node. The switch operator randomly

selects two nodes and swaps their position, and finally the cycle operator randomly chooses

a node and replaces it with a randomly generated node that is similar. Figure 7.1 shows an

example of these operations.

Switch

Grow Shrink

Cycle

and

d1

and

d0

if

d1

notd0 and

d0 d1d1

d2

if

d1

not not

d1

andor

and

d0 d1

and

d2d0

d1

not

d1

and

d0

not

and

d0 and

d0 d1

or

d2

if

d1

if

not

d1

and

d0 and

d0 d1

or

d2

if

d1

d2

and

d0 d1

or

d2

if

d0 d1

not

d1

and

d0 and

d0 d1

or

d2

if

d1

not

d1

and

d0 and

d0 d1

or

d2

if

d1 or

d1d0

and

Figure 7.1: Examples of search operators on S-expression parse trees, taken from Angeline

(1996)

Observing these operations, it is tempting to suggest that these operators can be applied to

LTAG phrase structure trees, i.e. derived trees. However, LTAG trees possess unique charac-

teristics not found in the parse trees manipulated in Angeline (1996). For instance, leaf nodes

in LTAG are either lexical anchor nodes, foot nodes, or substitution nodes. Of these three, the

grow operator is only meaningful on a substitution node, i.e. by applying the substitution oper-

ation. Moreover, the grow operator as defined does not account for the adjunction operation.

Randomly applying the shrink and switch operators on nodes in a derived tree could easily



152 Chapter 7. Genetic operators for linguistic structure building

result in syntactically ill-formed constructions that are impossible to derive from the grammar.

The notion of grammaticality, which in LTAG is defined in terms of substitution and adjunction

of elementary trees, would be disrupted. Moreover, the derivation tree becomes obsolete.

We believe that the appropriate structure to apply such operators on is not the derived tree, but

rather the derivation tree. The equivalent of the grow operator would be to simply add a node in

the derivation tree. Furthermore, this can account for both substitution and adjunction. This is

the BLINDADD operator that we discuss in Section 7.2.1. The equivalent of the shrink operator

would be to remove a node in the derivation tree, along with the subtree that it dominates. This

is the BLINDDELETE operator that we discuss in Section 7.2.2. And finally, the switch operator

can be implemented on the derivation tree, i.e. by swapping the positions of two subtrees, either

belonging to the same derivation (mutation) tree, or to another derivation tree (crossover). This

is the BLINDSWAP operator that we discuss in Section 7.2.3.

Note that although these operations are defined on the derivation tree, they clearly result in

manipulations on the resulting derived tree as well, and these manipulations are all defined in

terms of substitution and adjunction operations. Hence, these operators are still compatible

with LTAG theory, and the process of checking for grammaticality of the resulting individuals

is well defined, e.g. the feature structure unification discussed in Section 5.3.4.

Recall from Section 5.4 that the individuals manipulated by these operators are initialized with

the I T KO tree that represents an empty sentence substitution node.

In the next three sections, we will discuss these baseline operators in more detail.

7.2.1 BLINDADD operator

As defined in Section 4.3, our search space comprises all possible syntactic constructions. In

our chosen formalism, LTAG, this equates to all valid compositions of elementary trees in

our grammar, anchored by all possible valid lexical items in our lexicon. Thus the simplest

possible operator would be to randomly add an elementary tree onto an individual’s derived

tree through either substitution or adjunction. Since an individual’s primary data structure is the

derivation tree, which keeps record of all elementary tree compositions, this operation amounts

to randomly choosing a node in the derivation tree and adding a child to it that represents a

legal operation, i.e. substitution or adjunction.

We call such an operator the BLINDADD operator, i.e. one that does not explicitly attempt to



7.2. Baseline operators: ensuring grammaticality 153

2

11 2.22.22.2

(Adjunction)

DDALINDB
(Substitution)

DDALINDB

N

Mary

NP

D

VP

S

A

big

N

pizza

N

NP

D V

loves N

Mary

NP

D

VP

S

α loves

α mary α pizza

β big

α loves

α mary α pizza

α loves

α mary

loves

VD

NP

pizza

N

NP

S

VP

D

NP

Mary

Nloves

V

Figure 7.2: Example of the BLINDADD operator and its effect on both derivation and derived

tree

fulfill any generation goals, but instead simply adds to the linguistic content of an individual

while maintaining its syntactic well-formedness.

Figure 7.2 shows an example of two instances of the BLINDADD operator, one involving substi-

tution and the other involving adjunction. The top row shows the derivation trees that represent

individuals, and the bottom row shows the resulting derived trees. The first BLINDADD opera-

tion substitutes αpizza, a noun phrase tree anchored by the noun ‘pizza’, at the subject position

of the transitive verb tree αloves , which is still unsubstituted. Note the similarity with the grow

operator in Figure 7.1. The second BLINDADD operation takes the resulting individual from

the previous one and adjoins βbig, an adjective tree anchored by the adjective ‘big’, at the noun

preterminal node of αpizza. Note that the operation address is defined relative to the elementary

tree αpizza. We can see that adjunction facilitates a more flexible structure-building approach

than the grow operator.

More formally, given an individual’s derivation tree T , a grammar G, and a lexicon L, BLIN-

DADD stochastically yields a 4-tuple � d � n � tg � l � where:



154 Chapter 7. Genetic operators for linguistic structure building

d is a node � T ,

n is a node � td , the elementary tree represented by d,

tg is an elementary tree � G, and

l is a lexical item � L.

Furthermore, for the operation to be syntactically valid, all of the following must apply:

1. n must be a node which licenses a syntactic operation. For substitution this means a

substitution node which has not been substituted yet (in the context of T ), and for ad-

junction, an internal node which has not been the site for an adjunction yet (also in the

context of T ).

2. All feature structures of tg must license the operation at n in the context of T (to be more

precise, the derived tree obtained from T ).

3. All feature structures of l must license its anchoring of tg in the context of the previous

point, i.e. where tg is added as a child of n in T .

T
�
is the resulting derivation tree of substituting/adjoining tg, anchored by l, at n.

Figure 7.3 shows such a configuration for the first operation shown in Figure 7.2, i.e. the sub-

stitution of αpizza. The derivation tree T in (a) represents a partially constructed derivation of

the transitive verb ‘loves’ with the object ‘mary’. This can be seen from the operation address

(2.2) which indicates the object NP position. Choosing the root node as d, in (b) we see the

elementary tree td at that node, and the choice of the empty NP substitution node at Gorn ad-

dress 1 as n. Note that the NP node at 2.2 is not a valid choice as we can see from T that it has

already been substituted. Going through our grammar G, we choose the tree I N N, the basic

noun phrase tree, as tg, which is shown in (c). Finally, (d) shows the chosen l, the lexical item

pizza n. We have also shown the relevant feature structures, i.e. category and agreement, that

license the operation.

The BLINDADD operator does not attempt to satisfy any communicative goal, hence the strange

choice of l (we assume that the lexicon in this example does not have selectional restrictions

that would require, for example, that the subject of ‘loves’ is an animate entity). The only

constraint on this operation is grammaticality, which is why it selected the I N N tree and a 3rd

person singular noun to anchor it.

Furthermore, there is no restriction that the application of BLINDADD must obey any linear



7.2. Baseline operators: ensuring grammaticality 155

Name: I_N_N

l

n

T

d

2.2

(c)(a) (b) (d)

dt gt

Pron: [P,IY1,T,S,AH0]

Key: pizza_n

Feature:
A_R_C_NP]
I_C_NP,

Trees: [I_N_N,

Ortho: "pizza"

AGR: 3sg: +
CAT: v

S

VP

NP

loves
3sg: +

CAT: n

V
AGR: 1
CAT: v

CAT: n
AGR: 1

N

CAT: np
AGR: 1

NP

AGR:

NP

D
AGR: 1
CAT: np

maryα

lovesα

Figure 7.3: choosing (a) node d in T , (b) node n in td , (c) tree tg, and (d) word l that results in a

valid operation

order. Although αmary precedes αpizza in the derivation tree, in the obtained derived tree they

are correctly placed in their proper positions as indicated by their operation addresses.

Lastly, derivation trees that are built by BLINDADD are not guaranteed to be complete deriva-

tions, i.e. in the resulting derived tree there may be substitution nodes which are not yet sub-

stituted, or obligatory adjunction (OA) nodes that are not yet adjoined (Section 5.3.6). Hence,

our notion of grammaticality must be extended to include these underspecified constructions:

they are as yet ungrammatical, but repeated application of BLINDADD will eventually yield

complete and syntactically well-formed texts. Note that in the grammar we have developed for

our empirical testing, we do not use obligatory adjunction.

Since we are looking for any random 4-tuple that satisfies the conditions stated above, we

perform a stochastic depth-first search through the four levels of choices of derivation tree

node, elementary tree node, elementary tree, and lexical item. At each level of representation

we construct the set of all possible choices, taking into account all constraints at that point,

randomly choose one, and continue to the next level of representation. This continues until the

4-tuple is completed or until there are no more possible choices, at which point we backtrack

to the previous level and randomly choose another element not yet tried. If, after exhausting

all possible choices, no valid 4-tuple can be found, the operator indicates to the EA that it has

failed to do so, i.e. by returning a null value.

We will now present our algorithm for this search, but we first define the datatypes used:



156 Chapter 7. Genetic operators for linguistic structure building

DTree: a derivation tree

Tree: an elementary tree

DNode: a node in a DTree

Node: a node in a Tree

Word: a lexical item

In addition, we define four functions, DNodeFilter, NodeFilter, TreeFilter, and WordFilter,

which will aid the search in constructing the set of valid choices given a particular context. A

DNodeFilter is a function which, given a derivation tree T , returns a set of potential nodes

to be explored. In general, we would want to consider all nodes in the derivation tree, but

there are instances when we can restrict our search space to specific nodes. A NodeFilter is

a function which, given a derivation tree T and a node d
�

T , returns a set of potential nodes

from td , the elementary tree at d. For the substitution operation, for example, it will only con-

sider substitution nodes that have not been substituted yet, whereas for adjunction it will only

consider internal nodes that have not been adjoined yet. A TreeFilter is a function which,

given a grammar G, a derivation tree T , a node d
�

T , and a node n
�

td , returns a set of trees

from G which license operation at n. A WordFilter is a function which, given a lexicon L, a

derivation tree T , a node d
�

T , a node n
�

td , and a tree tg, returns a set of lexical items from

L which license anchoring of tg in the context of it being operated at n.

For the BLINDADD operator, the only constraint being checked by these filters is that of syn-

tactic well-formedness, i.e. feature structure unification.

Algorithm 7.1 is the main function of the depth first search, getAddCandidate(DTree), as

it handles the first level of representation. Given a DTree, it selects a DNode d and calls

getAddCandidate(DTree, DNode), shown in Algorithm 7.2. Given a DTree and a DNode,

this function selects a Node n and calls getAddCandidate(DTree, DNode, Node), shown in

Algorithm 7.3. Given a DTree, a DNode, and a Node, this function selects a Tree tg and calls

getAddCandidate(DTree, DNode, Node, Tree), shown in Algorithm 7.4. Finally, given a

DTree, a DNode, a Node, and a Tree, this function selects a Word l. All these functions return

a candidate, which is a 4-tuple � d � n � tg � l � that specifies a valid LTAG operation.

Figure 7.4 shows a sketch of this algorithm being applied for the second operation in Figure 7.2,

i.e. the adjunction of βbig. The four representational levels of choice are shown in order from

top to bottom. At the top level, the set of choices returned by DNodeFilter is simply that

of all nodes in the derivation tree, T . Here we choose the αpizza node as d. At the second



7.2. Baseline operators: ensuring grammaticality 157

Algorithm 7.1 getAddCandidate(DTree T)
dnodes 7 DNodeFilter(T )

while dnodes is not empty do

d 7 randomly removed DNode from dnodes

candidate 7kjml�nmo3p5pmq5r V p]s[pmr�nmlm� T � d �
if candidate L�WV5XZY3Y then

return candidate

end if

end while

return null

Algorithm 7.2 getAddCandidate(DTree T,DNode d)
nodes 7 NodeFilter(T ,d)

while nodes is not empty do

n 7 randomly removed Node from nodes

candidate 7kjml�nmo3p5pmq5r V p]s[pmr�nmlm� T � d � n �
if candidate L�WV5XZY3Y then

return candidate

end if

end while

return null

Algorithm 7.3 getAddCandidate(DTree T, DNode d, Node n)
trees 7kt3u8l3lwvZs Y nmlwuZ� G � T � d � n �
while trees is not empty do

tg 7 randomly removed Tree from trees

candidate 7kjml�nmo3p5pmq5r V p]s[pmr�nmlm� T � d � n � tg �
if candidate L�WV5XZY3Y then

return candidate

end if

end while

return null



158 Chapter 7. Genetic operators for linguistic structure building

Algorithm 7.4 getAddCandidate(DTree T, DNode d, Node n, Tree tg)

words 7yx;z�umpwvZs Y n8l�uF� L � T � d � n � tg �
if words is not empty then

l 7 randomly removed Word from words

return �
d � n � tg � l �

else

return null

end if

l:

n:

T:
d:

L:

G:

2.2 1

G:

...
bandy
big
black
...

...
a
the
...

t :g

items:

trees:
Elementary

tree nodes:
Elementary

tree nodes:

td :

Lexical

L:

Derivation
maryloves pizza

D

lovesα
{α        , α       , α       }

pizzaα

N

{NP, D, N}

{..., A_N_A, ...}

{..., bandy, big, black, ...}

mary

pizza

ND

NP

{..., I_N_D, ...}

{..., a, the, ...}

N*A

α

Figure 7.4: The stochastic depth-first search explicitly traverses four levels of representation



7.2. Baseline operators: ensuring grammaticality 159

level, the set of choices returned by NodeFilter is that of nodes in td that license syntactic

operation, i.e. the substitution node D and the internal nodes NP and N. Here we choose the

noun preterminal node, N, as n. At the third level, TreeFilter constructs a set of choices by

going through the grammar, G, and selecting valid trees. In our implementation, we perform

a quick first pass that selects trees that are rooted by nodes that share the same label as n.

At this point we also already know whether to look for initial or auxiliary trees based on the

choice of n. A more thorough second pass goes through this initial selection and tests that

the appropriate feature structures unify (Section 5.3.4). In this example we choose A N A, the

adjective auxiliary tree, as tg. Finally, at the last level of representation, WordFilter constructs

a set of choices by going through the lexicon, L, and selecting valid words. Again this can be

implemented through a quick first pass which selects words that list tg as one of the elementary

trees they can anchor, followed by a more thorough second pass that tests feature structure

unification.

The arrows and boxes in dashed lines in Figure 7.4 indicate other states that can be stochasti-

cally explored with backtracking should the algorithm reach a dead-end, i.e. exhaust all choices

at a given level. In particular, we show an alternative path that would select an operation that

substitutes a determiner for the ‘pizza’ noun phrase.

Note that the two quick first pass operations mentioned above can be efficiently implemented

by appropriate indexing of the grammar and lexicon.

In MCGONAGALL, we have implemented two different operators, BLINDADDSUBSTITUTE

and BLINDADDADJOIN, which deal with substitution and adjunction operations separately.

Although it is possible to just have one BLINDADD operator that handles both, we will see the

benefits of making this distinction when testing the operators (Section 7.2.4) and also when

designing compound operators (Section 7.4.1).

7.2.2 BLINDDELETE operator

The BLINDADD operator described above already suffices to cover the search space of all syn-

tactically well-formed constructions. However, due to the stochastic nature of our search, we

add two nonmonotonic operators that allow more flexible movement within the search space:

the BLINDDELETE and BLINDSWAP operators.

Like BLINDADD, BLINDDELETE operates on the derivation tree, thus guaranteeing that ma-



160 Chapter 7. Genetic operators for linguistic structure building

nipulations of the phrase structure tree, i.e. derived tree, are still carried out in terms of sub-

stitution and adjunction of elementary trees. The operator simply removes the subtree that is

dominated by a randomly selected node in the derivation tree. This operator effectively ‘un-

does’ the composition of elementary trees as performed by BLINDADD.

Figure 7.5 shows an example of the BLINDDELETE operation, and the effect it has on a deriva-

tion tree, shown in the top row, and the obtained derived tree, shown in the bottom row. Here,

the subtree rooted at the βdeeply node is removed. As shown in the derived tree, it corresponds

to the adverbial phrase “very deeply”. Note that the removal of this phrase from the resulting

derived tree is not something that can be achieved by Angeline’s shrink operator as described

in Section 7.2.

12.222.2 1

1

ELETEDLINDB

Adv

V

loves N

Mary

NP

D

VP

VP

S

N

John

NP

D V

loves N

Mary

NP

D

VP

S

α loves

α mary α john β deeply

β very

α loves

α mary α john

deeply

Adv

very

Adv

D

NP

John

N

Figure 7.5: Example of the BLINDDELETE operator and its effect on both derivation and derived

tree

More formally, the BLINDDELETE operator takes an individual’s derivation tree, T , and stochas-

tically yields a node d
�

T , where the subtree Td that is rooted at d is deleted. The resulting

derivation tree, where Td has been removed, is called T
�
.

Note that if we choose d to be the root node of T , we would in fact delete the entire derivation

tree. This would present a problem for some of our operators, e.g. the BLINDADD operator

requires at least a single node to exist (observe Algorithm 7.1). Thus we restrict the choice



7.2. Baseline operators: ensuring grammaticality 161

of d
�

T to exclude the root node of T . Fortunately, this is not a problem in MCGONAGALL,

because the root node of an individual’s derivation tree always represents the special ‘kickoff-

tree’, I T KO, which represents an empty sentence substitution node (see Section 5.4).

At first glance, it seems logical to assume that, provided the derived tree obtained from T is

syntactically well-formed, the derived tree obtained from T
�
is also syntactically well-formed,

albeit possibly underspecified. However, this is only true if the elementary tree td represented

by d is an initial tree, i.e. is the subject of a substitution operation. If it is an auxiliary tree,

we must first check that the resulting phrase structure is well-formed. This is because of the

nonmonotonic nature of the adjunction operation itself with respect to the feature structures

(see Section 5.3.5).

To formally specify this check, let addressd be the operation address of the deleted node d,

dparent
�

T
�

be the former parent of the deleted node d, and tdparent be the elementary tree rep-

resented by dparent . For the operation to be syntactically valid, the feature structures at node

n
�

tdparent in the context of the derived tree obtained from T
�

must unify, where the address of

n in tdparent is specified by addressd .

Figure 7.6 shows a configuration where this check reveals that the feature structures at n fail

to unify, resulting in an invalid T
�
. In (a) we see the derivation tree T that represents the text

“John will love Mary”. The choice of d is βwill , an auxiliary tree that adjoins the auxiliary

verb ‘will’ onto the bare stem verb ‘love’. The resulting derivation tree of this deletion, T
�
, is

shown in (b), which also indicates dparent is the root node (αlove). Finally, (c) shows tdparent , the

elementary tree at dparent , and the node n whose feature structures must be checked (its Gorn

address is 2.1, the operation address of d in T ). Note that the bottom agreement feature of n is

[AGR [3SG : -]], which comes from its anchor, the bare stem ‘love’, whereas the top agreement

feature is coindexed with that of the subject NP ([AGR: 1 ]). However, within the context of

T
�
, we can see that the feature structure from the substitution of α john at the subject NP position

contains [AGR [3SG : +]]. Thus, the features will fail to unify. This failure was prevented in

the derived tree obtained from T because the auxiliary verb tree, βwill , ‘splits’ the V node in

two.

The BLINDDELETE operator indiscriminately removes both ‘good’ and ‘bad’ subtrees. Since

the only constraint being checked is that of syntactic well-formedness, i.e. feature structure uni-

fication, it may well delete constituents that are contributing positively towards the individual’s

semantics or metre similarity fitness score.



162 Chapter 7. Genetic operators for linguistic structure building

d

T

12.12.2

n

(b)(a)

dparent

12.2

T’

(c)

td parent

)(from

NP

AGR:
CAT: v

AGR: 3sg: -

3sg: -

AGR: 1

CAT: v
AGR: 1

AGR: 3sg: +
CAT: v

α love

α mary β will α john

αjohn

CAT: np
johnα

CAT: v

S

VP

NP
V

love

maryα

loveα

Figure 7.6: Example of BLINDDELETE where choice of d results in an invalid T
�

Unlike the four-level deep search of BLINDADD, BLINDDELETE simply needs to search the

first level of representation, i.e. the nodes in derivation tree T . Algorithm 7.5 is the main

function of this search. The boolean function verifyDeletion performs the check described

above, and returns true if the feature structures at n are unifiable, and false otherwise. The

datatypes used are the same as those in Section 7.2.1.

Algorithm 7.5 getDeleteCandidate(DTree T)
dnodes 7 DNodeFilter(T )

while dnodes is not empty do

d 7 randomly removed DNode from dnodes

if verifyDeletion(T , d) then

return d

end if

end while

return null

7.2.3 BLINDSWAP operator

The last of our baseline operators is the BLINDSWAP operator, which takes two compatible

derivation tree subtrees and swaps their position. By compatible we mean that the resulting

derived tree, or trees, are syntactically well-formed, i.e. all feature structures unify. Note that if

the two subtrees are taken from the same derivation tree, it is an instance of mutation, but if they



7.2. Baseline operators: ensuring grammaticality 163

are taken from two different derivation trees, i.e. belonging to two different individuals, it is an

instance of crossover. In our implementation we use BLINDSWAP as a crossover operation.

Operations are recorded in the derivation tree relative to their parents, i.e. if Tn is a subtree

of derivation tree T that is rooted at node n, then the derived tree Dn obtained from Tn is a

corresponding subtree of the derived tree D obtained from T that is rooted at the node specified

by the operation address of n. This creates an elegant correspondence in that the swapping

of subtrees between derivation trees corresponds with the swapping of subtrees in the derived

trees obtained from the resulting derivation trees.

Figure 7.7 shows an example of this swapping operation. The object noun phrase in the first

derivation tree, that represents the sentence “John loves Mary”, is swapped with the object

noun phrase in the second derivation tree, that represents the sentence “The quick sprinter

runs”. As a result, the two resulting derivation trees represent the sentences “John loves the

quick sprinter” and “Mary runs”. Note the correspondences in the subtrees being swapped

at the level of derivation and derived tree. Note also that for all nodes in the derivation trees

except the two nodes that are the roots of the swapped subtrees, the operation addresses remain

the same, as they are defined relative to their parent’s elementary trees.

2121

12.21 112.2

LINDB WAPS

D

the A

quick sprinter

N

N

V

runs

VP

S

NP

N

NP

D V

loves D

the A

quick

N

sprinter

N

NP

VP

S

John

N

Mary

NP

D V

runs

VP

S

α loves

α sprinter

α the β quick

α john

α runs

α sprinter

α the β quick

α loves

α mary α john

α runs

α mary

S

VP

D

NP

Mary

Nloves

VD

NP

John

N

Figure 7.7: Example of the BLINDSWAP operator and its effect on both derivation and derived

tree



164 Chapter 7. Genetic operators for linguistic structure building

More formally, given two derivation trees T1 and T2, the BLINDSWAP operator yields a pair�
d1 � d2 � , where:

d1 is a node � T1, and

d2 is a node � T2

If Td1 is the subtree of T1 rooted at d1 and Td2 is the subtree of T2 rooted at d2, then T
�

1 and T
�

2

are the resulting derivation trees after Td1 and Td2 have been swapped around.

Furthermore, for the operation to be syntactically valid, the following must apply:

1. The elementary trees td1 and td2 , which are represented by the nodes d1 and d2, must be

the same type, i.e. they are either both initial trees or both auxiliary trees.

2. The top and bottom feature structures of the two nodes that are the swapping points in

the derived trees obtained from T
�

1 and T
�

2 must be unifiable. These two nodes are nswapd1
,

the node in the elementary tree of d1’s parent that has the Gorn address indicated by d1’s

operation address, and nswapd2
, the node in the elementary tree of d2’s parent that has the

Gorn address indicated by d2’s operation address.

Like the BLINDDELETE operator, BLINDSWAP only needs to search the first level of represen-

tation, i.e. derivation tree nodes. But since there are two derivation trees, T1 and T2, it performs

a two-level deep stochastic depth first search. Algorithm 7.6 is the main function that searches

the nodes of T1, and Algorithm 7.7 is an auxiliary function that searches the nodes of T2. The

boolean function verifySwap performs the check described above, and returns true if the top

and bottom feature structures at nswapd1
and nswapd2

are unifiable, and false otherwise.

Algorithm 7.6 getSwapCandidate(DTree T1, DTree T2)
dnodes 7 DNodeFilter(T1 )

while dnodes is not empty do

d 7 randomly removed DNode from dnodes

candidate 7{jml�n;|[:;r�};qmr V p]s�p8r�nml5� T1 � T2 � d �
if candidate L�_V3XZY3Y then

return candidate

end if

end while

return null



7.2. Baseline operators: ensuring grammaticality 165

Algorithm 7.7 getSwapCandidate(DTree T1, DTree T2, DNode d1)
dnodes 7 DNodeFilter(T2)

while dnodes is not empty do

d2 7 randomly removed DNode from dnodes

if verifySwap(T1, T2, d1, d2) then

return
� d1 � d2 �

end if

end while

return null

7.2.4 Testing the baseline operators

We will now present the results of some simple testing performed with our implementation

of these baseline operators in MCGONAGALL. Table 7.1 shows a roundup of all the baseline

operators presented so far.

Name Description

BLINDADDSUBSTITUTE Takes an individual and randomly attempts to add an

initial tree to the derivation tree, whilst maintaining

syntactic well-formedness (See Figure 7.2).

BLINDADDADJOIN Takes an individual and randomly attempts to add an

auxiliary tree to the derivation tree, whilst maintaining

syntactic well-formedness (See Figure 7.2).

BLINDDELETE Takes an individual and randomly attempts to delete

a subtree from the derivation tree, whilst maintaining

syntactic well-formedness (See Figure 7.5).

BLINDSWAP Takes two individuals and randomly attempts to swap

two subtrees between the respective derivation trees,

whilst maintaining syntactic well-formedness (See

Figure 7.7).

Table 7.1: Roundup of baseline operators

Firstly, Table 7.2 shows the behaviour of BLINDADDSUBSTITUTE. Recall from Section 5.4

that we start off with a derivation tree with one node representing the initial tree I T KO, shown

in Figure 7.8. This is the special tree that every individual is initialized with. Although in a



166 Chapter 7. Genetic operators for linguistic structure building

normal evolutionary run these initialized individuals would then be randomly manipulated by

a combination of genetic operators before being added to the population, in this testing we will

start from the initialized individual with just the root node to clearly show the effect of the

specific operators being tested.

Table 7.2 shows three instances of the incremental building of a derivation by applying only

BLINDADDSUBSTITUTE five times on a single individual. Note that in the first instance, the

resulting derivation is still incomplete.

Poem

S SB

Figure 7.8: I T KO: “Kickoff tree” for a newly initialized individual

S .

NP CV in NP .

D whale CV in NP .
D whale CV in D dish .

D whale CV in a dish .

D whale Aux be in a dish .

S .

NP play .

D they play .

they play .

they play .
they play .

S .

NP boil NP .

NP boil D whiskers .

NP boil his whiskers .

D they boil his whiskers .

they boil his whiskers .

Table 7.2: Testing of BLINDADDSUBSTITUTE

Table 7.3 shows the behaviour of BLINDADDADJOIN when it is applied five times to an indi-

vidual initialized with I T KO. It shows that only new sentence ‘frames’ can be adjoined, as it

is the only valid auxiliary tree found in the grammar.

We therefore test BLINDADDADJOIN on an individual that already has existing structure. We



7.2. Baseline operators: ensuring grammaticality 167

S .

S . S .

S . S . S .

S . S . S . S .

S . S . S . S . S .

S . S . S . S . S . S .

Table 7.3: Testing of BLINDADDADJOIN

first apply BLINDADDSUBSTITUTE five times to an initialized individual, as in Table 7.2,

before applying BLINDADDADJOIN five times. The results of three instances are shown in

Table 7.4. Unlike the test in Table 7.3, BLINDADDADJOIN now finds many possibilities of

adjoining in auxiliary trees. In these instances we can see examples of adjectives, prepositional

phrases and sentence frames being adjoined. However, in the last instance we can see that it

is struggling to add more content to the sentence “it is extinct.”, opting to adjoin new sentence

frames instead. At this point, it is clear that BLINDADDSUBSTITUTE should be applied to fill

these frames with linguistic structure.

mothers play .

tender mothers play .

tender mothers play in NP .

tender mothers play in NP with NP .

tender mothers with NP play in NP with NP .
tender mothers with NP play in NP with NP in NP .

the table is his trouble .

the bandy table is his trouble .

in NP Punc the bandy table is his trouble .

in NP Punc the bandy table is his platinum trouble .

S . in NP Punc the bandy table is his platinum trouble .

S . in NP Punc the bandy table is his very platinum trouble .

it is extinct .

S . it is extinct .

S . it is extinct . S .

S . it is extinct . S . S .

S . it is extinct . S . S . S .

S . it is very extinct . S . S . S .

Table 7.4: Testing of BLINDADDADJOIN on existing derivation

In Table 7.5, we show the results of stochastically applying both BLINDADDSUBSTITUTE and

BLINDADDADJOIN. Given an initialized individual, we apply either BLINDADDSUBSTITUTE

or BLINDADDADJOIN ten times. Each time, the operator is probabilistically decided. In (a)



168 Chapter 7. Genetic operators for linguistic structure building

the probability that the operator applied is BLINDADDSUBSTITUTE is 0.75, and for BLIN-

DADDADJOIN it is 0.25. In (b) it is 0.5 and 0.5 respectively, and in (c) it is 0.25 and 0.75.

Unlike Tables 7.2 to 7.4, here we only show the final derivation after ten iterations. For each

probability weighting we show five different results. As can be expected, the more BLIN-

DADDSUBSTITUTE is applied, the less incomplete the derivations are, in the sense that there

are fewer remaining substitution nodes. Another effect is that the resulting texts are shorter,

e.g. in number of sentences. By handling these two LTAG syntactic operations in separate

operators, we can control the intended behaviour by altering the probability weighting of their

application.

in NP , the baboon , Comp possesses NP Punc is in D stark child .

D extremely sensitive waist CV with D it in NP . its mothers play .

in the head , his men play .

S . D they play . the tiger Aux be extremely large . S .

in NP , NP dwells with men in the blubber in NP .

(a)

S . his mothers Punc who with D families Punc play , will play .

D it is in D facts Punc that with NP Punc CV his knees Punc . NP CV D town .

men boil a extinct wilderness Punc Comp CV in NP Punc . NP dwells P NP . S .

NP boil D soil in NP with NP . NP dwells P NP . S . S . NP CV D dish .

with its child Punc Comp NP has Punc Punc NP CV the boy . NP is with NP . S .

(b)

NP CV little . in NP Punc NP dwells P NP with NP with NP . S . S . NP possesses NP .

S . NP possesses NP . with NP , NP Aux be extremely round with NP with NP .

NP dwells P NP . S . S . NP play in NP in NP . S . S . S .

S . in NP Punc with NP Punc with NP Punc NP resides P D grin in NP with NP . S . S .

S . S . in NP Punc in NP Punc his toad dwells in NP with NP with NP .

(c)

Table 7.5: Testing of BLINDADDSUBSTITUTE and BLINDADDADJOIN with probabilities of (a)

0.75 and 0.25, (b) 0.5 and 0.5, and (c) 0.25 and 0.75

In Table 7.6 we show three instances of applying the BLINDDELETE operator. We first create

an individual with sufficient linguistic information using the BLINDADD operators, and show

the individual before and after applying BLINDDELETE. In the first instance, the entire last



7.2. Baseline operators: ensuring grammaticality 169

sentence is deleted. In the second instance, only the determiner ‘the’ is deleted. In the last

instance, the adverb ‘extremely’ is deleted. In each instance we can see that the derivations

after the deletion remain grammatical.

Before:
they play with his species , that possesses her , with its trouble . its sense CV his tail .

After:
they play with his species , that possesses her , with its trouble . S .

Before:
mothers play . the enormous mothers play . a man possesses her .

After:
mothers play . D enormous mothers play . a man possesses her .

Before:
its boy is extremely african with the tail with them . the men play .

After:
its boy is african with the tail with them . the men play .

Table 7.6: Testing of BLINDDELETE

In Table 7.7 we show three instances of applying the BLINDSWAP operator. We first create

two different individuals with sufficient linguistic information by stochastically applying the

BLINDADD operators to two initialized individuals. For each instance, we show the two indi-

viduals before and after applying BLINDSWAP. In the first instance, two whole sentences are

swapped. In the second instance, two noun phrases are swapped, i.e.“its trunk, that is him” and

“its head, that is grim”. Note that in the third instance, although two sentences are swapped,

their positions relative to the derivation are different. This is because in our grammar we have

two ‘sentence frame’ auxiliary trees: one that adjoins to the left of the derivation, and one that

adjoins to the right. In the first text, the swapped sentence is “the product is his whale.”, and

we can see that it appears at the end of the second text after the swap. Conversely, in the second

text, the swapped sentence is “its jaws will be platinum.”, and we can see that it appears at the

beginning of the first text after the swap. For all these instances, the derivations after applying

BLINDSWAP remain grammatical.



170 Chapter 7. Genetic operators for linguistic structure building

Before:
the skin will be with a fish . they play .

the frog dwells in a african town .

After:
the skin will be with a fish . the frog dwells in a african town .

they play .

Before:
his enormous waistline , it will not be with its trunk , that is him , .

its head , that is grim , will be with its town . NP will be with NP . the tiger CV D hand .

After:
his enormous waistline , it will not be with its head , that is grim , .

its trunk , that is him , will be with its town . NP will be with NP . the tiger CV D hand .

Before:
the boy dwells in a boy . the product is his whale .

its jaws will be platinum . with its product , that possesses D table , , a hippopotamus possesses his product .

After:
its jaws will be platinum . the boy dwells in a boy .

with its product , that possesses D table , , a hippopotamus possesses his product . the product is his whale .

Table 7.7: Testing of BLINDSWAP

7.3 Smart operators: achieving meaningfulness

Assuming that our EA employs the evaluation functions presented in Chapter 6, the three base-

line operators presented in the previous section, BLINDADD, BLINDDELETE, and BLINDSWAP,

should suffice as the set of genetic operators to be applied to individuals in the population.

These operators ensure that the individuals satisfy the property of grammaticality, while the

metre similarity (Section 6.3) and semantic similarity (Section 6.4) evaluation functions guide

the EA search towards optimization of the poeticness and meaningfulness properties.

Although one of the central principles of the theory of evolution is that populations are changed

by purposeless forces, i.e. random genetic variation and natural selection (Dawkins, 1991), if

there exists domain knowledge that can be exploited, we need not limit our artificial evolution-

ary system by not using it simply for the sake of remaining faithful to evolution as it occurs in

nature.

In Section 4.5, particularly Section 4.5.2, we mentioned the possibility of using knowledge

augmented operators, i.e. operators that are not just simple stochastic manipulators of an indi-

vidual’s genetic code, but ones that explicitly and purposefully exploit domain knowledge to



7.3. Smart operators: achieving meaningfulness 171

solve the problem at hand. One of the most common approaches to the design of knowledge

augmented operators is the combination of EAs with local search (Goldberg, 1989, Bäck et al.,

1997, Michalewicz, 1996). In this approach, given an individual representing the candidate so-

lution x, genetic operations implement a search algorithm over the restricted space N � x � , called

the neighbourhood of x. Formally, N � x � can be an arbitrary subset of the entire search space,

but typically it is defined as a set of solutions obtained from x by manipulating it in a specified

manner. A candidate solution x is locally optimal if there is no y
�

N � x � such that f � y �~� f � x � ,
where f is the objective function being optimized.

This local search in the space of N � x � itself can be either stochastic or systematic (i.e. ex-

haustive). Additionally, variations of local search can either take the first improved solution

y � N � x � where f � y �.� f � x � , or the best one.

In the last few sections we have in fact already presented genetic operators that employ lo-

cal search. Recall that we have chosen to enforce grammaticality because we believe that an

operator that allows any sequence of lexical items to appear as a candidate solution would

cause the EA search to be very inefficient, and that furthermore, we do not wish to invoke

poetic license as a justification for ungrammatical texts. The baseline operators BLINDADD,

BLINDDELETE, and BLINDSWAP all perform some degree of local search to adhere to syn-

tactic well-formedness as legislated by the linguistic resources. The local search is implicit

in the stochastic depth-first searching for legal syntactic elements, e.g. derivation tree nodes,

elementary trees, words. There is no objective function f � x � being optimized, as we treat the

property of grammaticality as discrete: a text is either grammatical or ungrammatical.

In the next few sections we will describe local search operators inspired by works mentioned

in Section 3.4.1 such as Nicolov et al. (1996), Nicolov (1998), Stone and Doran (1997), Stone

et al. (2001) that explicitly and purposefully satisfy meaningfulness. We will also compare our

operators with these systems in Section 7.3.7.

7.3.1 The principle of semantic consumption

The BLINDADD operator exploits linguistic knowledge to ensure that only syntactically li-

censed substitutions and adjunctions are considered. However, given a target semantics of� love � l � j � m ��� john � � j ��� mary � � m ��� , there seems little point in substituting the noun phrase

“big pizza” as seen in Figure 7.2. Therefore, our smart operator should only consider substi-



172 Chapter 7. Genetic operators for linguistic structure building

tuting or adjoining elementary trees which are anchored by words that bring the semantics of a

candidate solution closer to that of the target semantics.

In other words, we can informally describe our semantically smart operator, call it SMARTADD,

as one that explicitly tries to realize the target semantics, specifically that which has not yet

been realized, while simultaneously maintaining syntactic well-formedness. Nicolov calls this

gradual process the consumption of semantics.

Note that the baseline operator BLINDADD in Section 7.2.1 serves as a blueprint for SMAR-

TADD, as it already guarantees grammaticality. All we need to describe here is how to further

constrain the search to only consider LTAG operations that improve a candidate solution’s

semantics. In particular, given the modular approach with which we have designed and imple-

mented BLINDADD, essentially we only need to modify the WordFilter function.

Over and above the enforcement of grammaticality implemented by BLINDADD, SMARTADD

must also

1. compute the unrealized semantics, i.e. the portion of the target semantics, Starget , that is

not yet already conveyed by the candidate solution’s semantics, Scandidate ,

2. identify lexical items that convey a subset of the unrealized semantics, and

3. ensure that operations not only select the appropriate lexical items, but also place them

in the right context in the text represented by the candidate solution, i.e. one where it

satisfies the predicate-argument structure of the target semantics.

We will now discuss these three processes in detail in Sections 7.3.2 to 7.3.4.

7.3.2 Computing the unrealized semantics

If SMARTADD is to take an individual and modify it in such a way that the semantics it conveys,

Scandidate , better realizes the target, Starget , it should know what portion of Starget has not yet been

realized by the current Scandidate . This portion is called the unrealized semantics, Sunrealized . At

the beginning of our generation process, Scandidate is empty, and Sunrealized is equal to Starget .

For example, given

Starget
� � love � l � j � m ��� john � � j ��� mary � � m ���



7.3. Smart operators: achieving meaningfulness 173

and an individual representing the incomplete derivation “ NP loves Mary”, e.g. the first

derivation tree in Figure 7.2, where

Scandidate
� � love � 0 � 1 � 2 ��� mary � 3 � 2 ��� ,

then clearly Sunrealized
� � john � � j ��� , i.e. the actor of the love action.

As semantic expressions are sets of literals, the simplest way of calculating Sunrealized is to use

set subtraction, specifically as used in the computation of the first term, Θ, of our similarity

equation (Section 6.4.3), where we decide membership based solely on functor equality:

Sunrealized
� Starget ( Scandidate

However, there are several cases where this results in an incorrect Sunrealized . In Figure 7.9 we

present two individuals which represent the incomplete texts

(a) “ NP loves NP . D Mary runs.” and

(b) “Mary loves NP .”.

(a)

2

0

1

1

1

1

S              ={love(_0,_1,_2), mary(_3,_1)}candidateS              ={love(_0,_1,_2), run(_3,_4), mary(_5,_4)} candidate

(b)

loves

VP

NP

S

NP

SB

V

N

Mary

NP

D V.

VP

SPoem

Poem

Maryα

runs

runs

N

Mary

NP

D V

loves

VP

NP

S SB

.

Poem

α

SB

α .

α loves

α Mary

.βlovesα

.

.

α

Figure 7.9: Individuals where literals in Scandidate do not properly convey Starget



174 Chapter 7. Genetic operators for linguistic structure building

Note that α C and β C are instances of sentence frame elementary trees in our grammar, which

are rooted by the distinguished category, Poem, and introduce a sentential substitution node,

S � . They are anchored by sentence boundary punctuation marks, i.e. fullstops.

Given the target semantics Starget
� � love � l � j � m ��� john � � j ��� mary � � m ��� , set substraction would

yield the unrealized semantics Sunrealized
� � john � � j ��� for both these individuals, as their se-

mantics contain literals with the functors love and mary.

However, in (a) we can see that ‘Mary’ is the subject of the second sentence, i.e.“Mary runs”,

and therefore is unrelated to the ‘loves’ verb. This is reflected in the Scandidate , where the object

entity that represents mary is 4 and the object of love is 2. Similarly, in (b) ‘Mary’ is the

subject of ‘love’, and not the object, as is required. In the Scandidate , the object entity of mary

is 1, and it occupies the second argument position of love (compare this with Starget , where

m is the third argument). Thus in both cases, mary � � m � should be part of Sunrealized , as the

substitution of ‘Mary’ at the object NP position of the transitive verb ‘loves’ would improve

Scandidate .

To achieve this, one alternative method for computing Sunrealized is to use the semantic mapping

algorithm described in Section 6.4.2. By mapping Starget and Scandidate , Sunrealized is calculated

as a byproduct, and can be found in the set of all target literal dangling matches. In both cases

shown in Figure 7.9, this method yields the correct Sunrealized
� � john � � j ��� mary � � m ��� . Note

that the argument binding carried out by this semantic mapping algorithm is not unification,

but strict symbol equality, hence it cannot include mary � 5 � 4 � in a structurally consistent

mapping once love � 0 � 1 � 2 � has been mapped. This method is the method we have adopted

in our implementation of MCGONAGALL.

7.3.3 Semantically-aware lexical choice

Given Sunrealized , we can now augment BLINDADD to only consider words whose lexical se-

mantics, Slexical , convey a subset of this set. If we observe the stochastic depth-first search

as shown in Figure 7.4, we can see that the only stage that needs to be augmented is the last

stage, the selection of l, the word that will anchor tg. More specifically, we must augment

the functionality of WordFilter, which in BLINDADD only checks for unification of features

structures concerning agreement, subcategorization, selectional restrictions, etc.

Once again, the simplest method would be to use set operations where we decide membership



7.3. Smart operators: achieving meaningfulness 175

based solely on functor equality (Section 6.4.3), and in this instance we can check that if

Slexical � Sunrealized L� /0,

then a word can potentially improve the semantics of a candidate solution. For instance, given

Sunrealized
� � john � � j ��� mary � � m ��� , then the noun ‘John’, whose Slexical

� � john � X � Y ��� , is

an appropriate choice, whereas ‘pizza’ (Slexical
� � pizza � X � Y ��� is not.

7.3.4 Smart signatures: grounding Slexical in terms of Starget

The semantically-motivated lexical choice presented in the previous section does not yet guar-

antee that the resulting operation is a definite realization of the target semantics. One outstand-

ing issue to be resolved is that of predicate-argument structure. There are two principles that

can be applied here:

1. SMARTADD must ensure that the semantics of the chosen word, l, within the context

of the resulting Scandidate does not violate the predicate-argument structure as found in

Starget . For example, by substituting ‘Mary’ as the subject of the transitive verb ‘loves’

when it should be the object.

2. Whenever possible, SMARTADD should match the predicate-argument structure in Starget .

An instance of this would be the correct substitution of ‘Mary’ as the object of ‘loves’,

instead of at an unrelated site in the derivation.

These two principles are similar to what Nicolov calls the criteria of integration and connec-

tivity (Nicolov et al., 1996).

Figure 7.10(a) shows an example of these principles. The derived tree represents the incomplete

text “ NP loves NP . NP runs.”. Having calculated Sunrealized and determined that the noun

‘Mary’ conveys a subset of it, the operator is now trying to substitute αMary into the derived tree.

As we can see, there are three nodes where αMary can be substituted, i.e. the subject and object

positions of ‘loves’ and the subject of ‘runs’. We have included the semantic signatures at

these positions (see Section 5.3.8). Substituting αMary at the subject position of ‘loves’ violates

the predicate-argument structure in Starget . Although substituting it at the subject position of

‘runs’ does not violate the predicate-argument structure, it also does not match it. Only the

substitution of αMary at the object position of ‘loves’ will result in a realization of Starget .



176 Chapter 7. Genetic operators for linguistic structure building

(b)

(a)

targetS       ={love(l,j,m), john(_,j), mary(_,m)}

A

A

_,A

Maryα

S       ={love(l,j,m), john(_,j), mary(_,m)}

m

m

Y

Z

W

X,Y,Z

j

m

W

l,j,m
target

_,m

Maryα

V

loves

VPNP

SBS

NP runs

VP

S

NP

SB

.

Poem

N

Mary

NP

D

V

Poem

.

SB

NP

S

.

N

Mary

NP

DVP

runs

V

Poem

.

SB

NP

S

NP

VP

loves

V

Poem

Figure 7.10: (a) SMARTADD should not violate the predicate-argument structure of Starget , (b)

Smart signatures derived from Starget facilitate this



7.3. Smart operators: achieving meaningfulness 177

To implement these principles, the lexical items in the derivation must be associated with infor-

mation denoting which literals in Starget they are conveying. More precisely, for SMARTADD

to be able to check for violation and matching of predicate-argument structure, the signature

variables must be bound to the arguments of the literals they are conveying in Starget . We shall

call these smart signatures, and an example of this is given in Figure 7.10(b). Crucially, the

arguments of the literals in Starget are defined as constants, and appear in lower case. In this

example, we can see that the signature of ‘loves’ in the derived tree has been unified with the

arguments � l � j � m � , and as a consequence the signatures at the subject and object positions now

indicate the object entity they are expecting to be substituted for. Similarly, the signature of

‘Mary’ in αMary has been unified with the arguments � � m � . At this point, αMary can no longer

appear at the subject position of ‘loves’, because the constants j and m do not unify. Thus the

first principle above, of non-violation, is achieved. It can, however, still be substituted at the

subject position of ‘runs’. We can impose a further constraint that not only must signatures

unify, they must also share a constant. This achieves the second principle above, of matching

predicate-argument structure. Obviously, this can not always be satisfied, for example at the

beginning of the generation process when nothing has yet been realized. Therefore, we create

two versions of this smart operator, SMARTADD, which merely checks that signatures unify,

and SMARTADDMATCH, which requires that they must also share a constant.

How are these smart signatures obtained? As in the case of calculating Sunrealized in Sec-

tion 7.3.2, we can achieve this by moving from simple set operations to the semantic mapping

algorithm in Section 6.4.2. By mapping Slexical with Sunrealized to check whether a given word

conveys a subset of the unrealized semantics, we will also obtain the appropriate argument

bindings as a byproduct.

Note that both these smart signatures and the ‘regular’ signatures must be kept, as it is the

regular signatures that are used for deriving Scandidate for evaluation purposes. This is because

the smart signatures can falsely establish predicate-argument structure that does not arise from

the unifications described in Section 5.3.8. For instance, consider the case if SMARTADD

substituted αMary as the subject of ‘runs’ in Figure 7.10(b). If we only kept the smart signatures,

the Scandidate obtained from this derived tree would be � love � l � j � m ��� mary � � m ��� runs � � m ��� ,
when clearly the text does not state that ‘Mary’ is the object of ‘loves’.



178 Chapter 7. Genetic operators for linguistic structure building

7.3.5 Semantically-motivated nonmonotonic operations

By observing the the principle of semantic consumption (Section 7.3.1), one can imagine a

complementary principle of “semantic elimination”. This can be used to create a semantically-

motivated SMARTDELETE operator, i.e. one that removes subtrees of a derivation tree that do

not contribute to the conveying of Starget .

As before, we can either use simple set substraction to obtain the subset of Scandidate that is

extraneous to the task, i.e.

Sextraneous
� Scandidate ( Starget ,

or we can use the semantic mapping algorithm in Section 6.4.2. By mapping Starget and

Scandidate , Sextraneous is calculated as a byproduct, and can be found in the set of all candidate

literal dangling matches.

In the same way that SMARTADD is similar to BLINDADD with the exception that its WordFilter

explicitly attempts to convey Sunrealized , SMARTDELETE is thus the same as BLINDDELETE

with the exception that its DNodeFilter only considers nodes whose elementary trees are an-

chored by words with Slexical
�

Sextraneous.

Similarly, we can create a SMARTSWAP operator that is similar to BLINDSWAP with the ex-

ception that its verifySwap also checks that the proposed swap does not violate unification of

the relevant smart signatures.

7.3.6 Testing the smart operators

We will now present the results of some simple testing performed with all the smart operators

implemented in MCGONAGALL. Table 7.8 shows a roundup of these operators.

In all these tests, we set Starget as the encoding of the first two lines of Belloc’s “The Lion”, but

with a slight alteration where we have replaced the original opening noun phrase, “the lion, the

lion”, with “the african lion”. This is actually one of the target semantics used in our empirical

study (Chapter 8), and is shown in Appendix A as the lionhalf target. We repeat it here as

Figure 7.11 for convenience.

Firstly, Table 7.9 shows three instances of applying SMARTADDSUBSTITUTE five times on

a newly initialized individual. The individual is shown after every application. Note that all



7.3. Smart operators: achieving meaningfulness 179

Name Description

SMARTADDSUBSTITUTE The same as BLINDADDSUBSTITUTE, except the WordFilter now

chooses words that explicitly convey Sunrealized according to the prin-

ciple of not violating predicate-argument structure (Section 7.3.4).

SMARTADDADJOIN The same as BLINDADDADJOIN, except the WordFilter now

chooses words that explicitly convey Sunrealized according to the prin-

ciple of not violating predicate-argument structure (Section 7.3.4).

SMARTADDMATCHSUBSTITUTE The same as BLINDADDSUBSTITUTE, except the WordFilter now

chooses words that explicitly convey Sunrealized according to the prin-

ciple of matching predicate-argument structure (Section 7.3.4).

SMARTADDMATCHADJOIN The same as BLINDADDADJOIN, except the WordFilter now

chooses words that explicitly convey Sunrealized according to the prin-

ciple of matching predicate-argument structure (Section 7.3.4).

SMARTDELETE The same as BLINDDELETE, except the DNodeFilter only consid-

ers nodes whose elementary trees are anchored by words that convey

Sextraneous (Section 7.3.5).

SMARTSWAP The same as BLINDSWAP, except the verifySwap function also

checks that the proposed swap does not violate unification of smart

signatures (Section 7.3.5).

Table 7.8: Roundup of smart operators

the resulting derivations are still incomplete, unlike in Table 7.2 where only the first one was

incomplete. Moreover, the fact that in each instance the last few derivations remain unchanged

indicates that SMARTADDSUBSTITUTE is in fact unable to find any more valid operations.

This is understandable when we consider that it requires a lexical item that conveys a subset of

Sunrealized . In each of these instances, the final derivation does not provide opportunity for this.

In the last instance we see an example where the principle of not violating the predicate-

argument structure is met, but not that of matching it (Section 7.3.4). This can be seen in

the substituting of ‘lion’ at the prepositional phrase following ‘dwells’. Although this opera-

tion does not violate the predicate-argument strucure from the perspective of the local search

carried out, it is clear that it will prevent Starget from being conveyed, where the prepositional

phrase should be “in the waste”, and ‘lion’ should appear as the subject of ‘dwells’. This oc-

curs because in our representation, the predicate-argument strucure between dwells � d � l � and



180 Chapter 7. Genetic operators for linguistic structure building

“The african lion, he dwells in the waste,

He has a big head and a very small waist.”

Starget
� � a f rican � � l ��� lion � � l ��� dwell � d � l ��� inside � � d � was ��� waste � � was ���

own � � l � h ��� head � � h ��� big � � h ���
own � � l � wai ��� small � s � wai ��� waist � � wai ��� very � � s ���

Figure 7.11: The target semantics used for testing in this section

S .
NP dwells P NP .

D lion dwells P NP .

D lion dwells in NP .

D lion dwells in D waste .

D lion dwells in D waste .

S .

NP CV D waste .

NP CV D waste .
NP CV D waste .

NP CV D waste .

NP CV D waste .

S .

NP dwells P NP .

NP dwells P D lion .

NP dwells P D lion .

NP dwells P D lion .
NP dwells P D lion .

Table 7.9: Testing of SMARTADDSUBSTITUTE

waste � � was � is indirectly represented by inside � � d � was � . Had the preposition ‘in’ been sub-

stituted at P first, ‘lion’ would never be substituted as its object, as it would then result in

a violation. This issue is the difference between SMARTADDSUBSTITUTE and SMARTAD-

DMATCHSUBSTITUTE, which enforces both the principles mentioned in Section 7.3.4.

When testing SMARTADDADJOIN, SMARTADDMATCHSUBSTITUTE, and SMARTADDMATCHAD-

JOIN in a similar fashion, i.e. applying them five times on an initialized individual, we obtain

the behaviour exhibited shown in Table 7.10. Recall from Table 7.3 that BLINDADDADJOIN

could only adjoin in sentence frames, and since they do not convey any semantics, we can

see why the adjunction operators here fail to introduce anything new. In the case of SMAR-

TADDMATCHSUBSTITUTE, recall that it is required to satisfy the principle of matching the



7.3. Smart operators: achieving meaningfulness 181

S .

S .

S .

S .

S .

S .

Table 7.10: The “dead-end” encountered by SMARTADDADJOIN, SMARTADDMATCHSUB-

STITUTE, and SMARTADDMATCHADJOIN

predicate-argument structure. As there is nothing yet to match with in the derivation, it fails to

introduce anything new.

Similar to what we did in Table 7.4 for BLINDADDADJOIN, in Table 7.11 we show the results

of applying SMARTADDADJOIN to individuals that already have existing structure. We first

apply SMARTADDSUBSTITUTE five times to an initialized individual, as in Table 7.9, before

applying SMARTADDADJOIN five times. These instances show that SMARTADDADJOIN now

finds several possibilities of adjoining in auxiliary trees that convey a subset of the computed

Sunrealized , such as relative clauses (e.g.“ Punc Comp CV african Punc ”, which, once fully

realized, would be something like “, that is african,”), and adjectives (e.g.‘big’, ‘african’).

Note that the adjunction of ‘very’ in all three instances does not violate the predicate-argument

structure, but only in the last instance does it match, e.g.“very small waist”.

In Table 7.12 we show the results of applying SMARTADDMATCHSUBSTITUTE and SMAR-

TADDMATCHADJOIN on an initialized individual that has been altered by SMARTADDSUB-

STITUTE. The transitive verb ‘has’ provides these operators with something to match with,

unlike in Table 7.10. We show the state of the individual after applying SMARTADDMATCH-

SUBSTITUTE five times, followed by applying SMARTADDMATCHADJOIN five times. We can

see that SMARTADDMATCHSUBSTITUTE fills in the required complements ‘lion’ and ‘head’

and nothing else. Subsequently, SMARTADDMATCHADJOIN adjoins ‘african’ as an adjective

and ‘big’ and ‘has’ as relative clauses. This second ‘has’ conveys the own � � l � wai � literal

in Starget . If we were to complete all the purely syntactic substitution nodes present in the

last derivation, such as determiner ( D ), punctuation ( Punc ), complementizer ( Comp ), and

copula ( CV ), we would obtain the following sentence:

“The african lion, that has NP , has a head, which is big,.”

where “a very small waist” can potentially be substituted at the NP substitution node. Note



182 Chapter 7. Genetic operators for linguistic structure building

D lion dwells in D waste .

D lion Punc Comp CV african Punc dwells in D waste .

D lion Punc Comp CV very african Punc dwells in D waste .

D lion Punc Comp CV very african Punc dwells in D waste .

D lion Punc Comp CV very african Punc dwells in D waste .

D lion Punc Comp CV very african Punc dwells in D waste

D lion has D head .

in NP Punc D lion has D head .

in NP Punc D lion has D big head .

in NP Punc D lion has D very big head .

in NP Punc D lion Punc Comp dwells P NP Punc has D very big head .

in NP Punc D african lion Punc Comp dwells P NP Punc has D very big head .

his waist CV its waist .

his waist CV its small waist .

his waist CV its small waist in NP .

his waist CV its small waist Punc Comp CV small Punc in NP .

his small waist CV its small waist Punc Comp CV small Punc in NP .

his very small waist CV its small waist Punc Comp CV small Punc in NP .

Table 7.11: Testing of SMARTADDADJOIN on existing derivation

that with these SMARTADDMATCH operators, there are no operations at unrelated positions in

the derivation that can hinder realization of Starget , such as the substitution of ‘lion’ in the third

instance of Table 7.9.

In Table 7.13, we show the results of stochastically applying both SMARTADDSUBSTITUTE

and SMARTADDADJOIN. Given an initialized individual, we apply an operator twenty times.

Each time, the operator is probabilistically decided. In (a) the probability that the operator

applied is SMARTADDSUBSTITUTE is 0.75, and for SMARTADDADJOIN it is 0.25. In (b) it is

0.5 and 0.5 respectively, and in (c) it is 0.25 and 0.75. For each probability weighting we show

five different results, and we only show the final derivation after the twenty iterations.

Unlike the stochastic application of baseline operators in Table 7.5, the difference between

weightings is not as marked. This is because the smart operators are limited by the opportuni-

ties that arise, whereas BLINDADDSUBSTITUTE can usually find a random substitution node

to substitute, and BLINDADDADJOIN can always find a random internal node to adjoin to,

hence the distinct difference in terms of completeness of derivations.

It is clear that these smart operators should be used together with other operators, such as the

baseline operators in Section 7.2, in order to yield complete texts. We discuss this issue in

Section 7.4.



7.3. Smart operators: achieving meaningfulness 183

NP has NP .
NP has D head .

D lion has D head .

D lion has D head .

D lion has D head .

D lion has D head .

D lion has D head Punc Comp CV big Punc .

D african lion has D head Punc Comp CV big Punc .

D african lion Punc Comp has NP Punc has D head Punc Comp CV big Punc .

D african lion Punc Comp has NP Punc has D head Punc Comp CV big Punc .

D african lion Punc Comp has NP Punc has D head Punc Comp CV big Punc .

Table 7.12: Testing SMARTADDMATCHSUBSTITUTE and SMARTADDMATCHADJOIN on ex-

isting derivation

D very african lion has D big head in D waste .

D lion Punc Comp CV african Punc has D head Punc Comp CV big Punc in D waste .

NP CV its very big head in D waste .

in NP Punc NP CV D very african lion Punc Comp dwells P D waste Punc .

NP CV in D waste .

(a)

D very african lion Punc Comp has D big head Punc dwells in D waste .

NP CV in D waste .

D lion Punc Comp dwells in D waste Punc CV very african .

its very small waist Punc Comp in D waste Punc CV his small waist Punc CV its small waist Punc Comp NP has Punc .

NP CV in D waste .

(b)

D lion Punc Comp has NP Punc dwells in D waste .

NP CV D waste in NP .

its small waist Punc Comp NP has Punc CV his very small waist Punc Comp D african lion has in D waste Punc .

D head Punc Comp D very african lion has Punc CV big in D waste .

D very african lion Punc Comp has NP Punc dwells P its small waist Punc Comp CV small Punc in D waste .

(c)

Table 7.13: Testing of SMARTADDSUBSTITUTE and SMARTADDADJOIN with probabilities of

(a) 0.75 and 0.25, (b) 0.5 and 0.5, and (c) 0.25 and 0.75



184 Chapter 7. Genetic operators for linguistic structure building

Before:
his pole is his very big head in his waste .

After:
NP is his very big head in his waste .

Before:
in its waste , his very african lion , who has his small waist , dwells with his waist .

After:
in its waste , his very african lion , who has his small waist , dwells P his waist .

Table 7.14: Testing SMARTDELETE on an individual constructed using a combination of base-

line and smart operators

Tables 7.14 and 7.15 show the effect of applying SMARTDELETE and SMARTSWAP. Recall

from Section 7.3.5 that these nonmonotonic operators behave very similarly to their baseline

counterparts, with the exception that they are sensitive towards the smart signatures at each

node in the derivation tree.

If we test SMARTDELETE on an individual that is entirely constructed by smart operators, it

will fail to find any candidates for removal. Thus, we construct an individual using a combina-

tion of both baseline and smart operators. In Table 7.14 we show two instances of individuals

that are created by first stochastically applying SMARTADDSUBSTITUTE and SMARTADDAD-

JOIN, and then applying BLINDADDSUBSTITUTE to ‘close’ the derivation. In the first instance,

SMARTDELETE removes the noun phrase “his pole”, which is not semantically motivated.

For SMARTSWAP, we want to test that it can find candidates for subtree swapping that maintain

the unification of smart signatures. In Table 7.15 we show two instances of swapping between

two individuals that are constructed stochastically by applying SMARTADDSUBSTITUTE and

SMARTADDADJOIN. In the first instance, the relative clause “ Punc Comp has D big head

Punc ” (e.g.“, that has a big head,”) is swapped with the relative clause “ Punc Comp CV

african Punc ” (e.g.“, that is african,”). Note that both these relative clauses relate to l, the

lion, thus the swap is semantically licensed. In the second instance, the noun phrase “his head”

is swapped with “ D big head”, which is also a semantically licensed operation.



7.3. Smart operators: achieving meaningfulness 185

Before:
D african lion Punc Comp has D big head Punc dwells in D waste .

D lion Punc Comp CV african Punc has D head Punc Comp CV big Punc .

After:
D african lion Punc Comp CV african Punc dwells in D waste .

D lion Punc Comp has D big head Punc has D head Punc Comp CV big Punc .

Before:
his head CV big .

in D waste Punc D african lion Punc Comp has D big head Punc dwells P NP .

After:
D big head CV big .

in D waste Punc D african lion Punc Comp has his head Punc dwells P NP .

Table 7.15: Testing SMARTSWAP on an individual constructed using smart operators

7.3.7 Comparison with PROTECTOR and SPUD

As outlined in Section 3.4.1, PROTECTOR is a tactical NLG system that generates sentences

which approximately convey a set of semantics. The generation process is divided into three

stages, i.e. building a skeletal structure, covering the remaining semantics, and completing

a derivation. All three stages involve similar computation, i.e. given an input semantics,

InitialGraph, and a partially built semantic-syntactic structure, Partial, the greedy algorithm

in PROTECTOR tries to find a mapping rule which

1. covers a portion of InitialGraph, and

2. is syntactically and semantically applicable to Partial.

These mapping rules are added to Partial, and at any stage of processing it represents the

current semantic-syntactic structure already built.

At this point we can already see the similarities with how our SMARTADD works. Within the

context of our operators, InitialGraph corresponds to Sunrealized , and Partial corresponds to

the derived tree obtained from an individual’s derivation tree, T . Furthermore, the selection of

mapping rules corresponds to the selection of a valid 4-tuple �
d � n � tg � l � . Although we do

not use explicit mapping rules like PROTECTOR, they are implicitly represented through the

combination of feature structures, semantics, and signatures of lexical items and elementary

trees in the grammar and lexicon.



186 Chapter 7. Genetic operators for linguistic structure building

The analogue to the requirement in PROTECTOR that a mapping rule must cover a portion

of InitialGraph is the fact that SMARTADD will only consider lexical items whose semantics

have a non-empty mapping to the target semantics (Section 7.3.3).

The analogue to the second requirement, i.e. that the chosen mapping rule must be syntacti-

cally and semantically applicable to Partial, is the validation of unification of feature structures

(Section 7.2.1) and semantic signatures (Section 7.3.4) checked by the various Filter func-

tions.

The main difference is that PROTECTOR’s mapping rules can represent more complex appli-

cability semantics. For example, these semantics can be linked to internal generation rules,

which trigger recursive generation, e.g. for the complements of a verb. This way, one could

theoretically devise arbitrarily complex mapping rules that represent large spans of texts (al-

though PROTECTOR seems to stay within the boundaries of a sentence). In contrast, the scope

of knowledge specified for our SMARTADD is limited to a single elementary tree and the lexical

item that anchors it. In a sense, our “window” on the input semantics is much narrower than

PROTECTOR’s. However, given that the extended domain of locality of LTAG elementary

trees allows the specification of all complements, this is still a sufficiently large window.

In this respect, the SMARTADD operator is more similar to SPUD, which also incrementally

constructs a derivation by adding an elementary tree at each step. The SPUD generation system

as described in Section 3.4.1 is also very similar to PROTECTOR and our smart operator. The

algorithm used in SPUD, taken from Stone and Doran (1997) is shown as the pseudocode in

Algorithm 7.8.

Algorithm 7.8 Pseudocode for greedy algorithm of SPUD (Stone and Doran, 1997)
while there are still unsatisfied goals do

determine which uninflected forms apply

determine which associated trees apply

evaluate progress towards goals

incorporate most specific, best � form, tree � :

perform adjunction or substitution

conjoin new semantics

add any additional goals

end while



7.4. Compound operators 187

Note that Algorithm 7.8 implements a search algorithm that is very similar to our stochastic

depth-first search shown in Algorithm 7.1 to 7.4. The main difference is that where ours is a

stochastic search that selects the first valid solution found (i.e. a valid 4-tuple �
d � n � tg � l � ),

SPUD performs a systematic and complete search of the neighbourhood and selects the best so-

lution. Furthermore, SPUD dynamically updates its goals, as it is designed to handle pragmatic

goals which change throughout the generation process.

Note that SMARTADD is only a local search, and is used as a component of the EA search

that (hopefully) achieves the global optimum of realizing the target semantics (hence the need

for the nonmonotonic SMARTDELETE and SMARTSWAP operators), whereas PROTECTOR

and SPUD are globally greedy/hillclimbing search algorithms. In PROTECTOR, this is imple-

mented through the three different processing stages, i.e. it first builds a skeletal structure using

substitution operations before covering the remaining semantics with adjunction. Finally, it

syntactically completes a derivation.

One idea of approximating this greediness is by forcing the operators to address these goals in

a “cascading” fashion. We will now examine this approach in Section 7.4.

7.4 Compound operators

By testing our baseline and smart operators in Sections 7.2.4 and 7.3.6, we have seen that

each operator behaves in a slightly different fashion, and is particularly useful for different

conditions. For instance, the SMARTADDMATCH operators are the most accurate operators for

conveying Starget , but without the opportunities presented by existing linguistic structure, they

are unable to contribute anything, i.e. they end up in a ‘dead-end’ as in Table 7.10. Furthermore,

all the smart operators are unable to yield complete derivations, as their requirement of having

to anchor trees with words that convey a subset of Sunrealized rules out non-semantic operations

such as the substitution of determiners and complementizers, and the adjunction of sentence

frames.

In striving to show the behaviour of these operators, we ended up using them cooperatively, for

example by first using SMARTADDSUBSTITUTE to build an initial structure before ‘fleshing

out’ the derivation with SMARTADDMATCH operators (Table 7.12), or by ‘closing’ a derivation

built by smart operators by repeatedly applying BLINDADDSUBSTITUTE (Table 7.14).



188 Chapter 7. Genetic operators for linguistic structure building

This is reminiscent of the globally greedy search found in the three stages of PROTECTOR.

Recall from Section 7.3.7 that the difference between our smart operators and PROTECTOR

(and SPUD) is that SMARTADD is a local search operator within an EA, and PROTECTOR

and SPUD are globally greedy/hillclimbing search algorithms. The main issue here is that our

operators are limited to the addition of one elementary tree to an individual’s derivation tree,

thus limiting the linguistic and semantic scope within which they can exploit domain knowl-

edge. In this section we will consider moving beyond this limitation through a composition of

operators, i.e. by building compound operators that use the operators we have described in

Section 7.2 and 7.3 as building blocks.

We will use this approach in three different ways. Firstly, to merely ensure complete deriva-

tions (Section 7.4.1); secondly, to ensure complete derivations while greedily attempting to

consume the target semantics (Section 7.4.2); and lastly, to simulate the PROTECTOR and

SPUD systems (Section 7.4.3).

7.4.1 Ensuring complete derivations

In Section 4.5.1 we proposed two approaches to our incremental structure-building operations:

incomplete and complete derivation building, each with their relative merits and drawbacks.

The operators we have presented thus far in Sections 7.2 and 7.3 can yield incomplete deriva-

tions. We can use these operators in cohort to ensure that only complete derivations are con-

sidered as candidate solutions. Recall from Section 7.2.1 that the search performed by BLIN-

DADD for a valid 4-tuple � d � n � tg � l � , although stochastic, is complete, i.e. it will eventually

find a valid 4-tuple if one exists. Recall also that in our grammar we do not use obligatory

adjunction, i.e. substitution nodes are the only features of an incomplete derivation. Thus, by

repeatedly performing BLINDADDSUBSTITUTE on an individual until no more valid 4-tuples

are found, we can guarantee a derivation will be complete. This is similar to the last stage of

PROTECTOR, the completing of a derivation.

We treat all our baseline and smart operators as boolean functions that, whilst achieving the

side-effect of implementing an operation, return true if they succeed in finding and imple-

menting a valid operation, and false otherwise.

Thus we can define an auxiliary operator DERIVATIONCLOSER, that takes an individual and

repeatedly applies BLINDADDSUBSTITUTE to that individual until no longer possible. At this



7.4. Compound operators 189

point, its derivation is guaranteed to be complete. The algorithm for this operator is given in

Algorithm 7.9.

Algorithm 7.9 DERIVATIONCLOSER(Individual I)
incomplete 7 true

while incomplete do

incomplete 7 BLINDADDSUBSTITUTE(I)

end while

Using this auxiliary operator, we define three compound operators that ensure complete deriva-

tions, BLINDCREATECOMPLETE, BLINDADJOINCOMPLETE and BLINDDELETECOMPLETE.

The algorithms for these operators are shown in Algorithms 7.10 to 7.12.

Algorithm 7.10 BLINDCREATECOMPLETE(Individual I)
INITIALIZE(I)

DERIVATIONCLOSER(I)

return true

Algorithm 7.11 BLINDADJOINCOMPLETE(Individual I)
if BLINDADDADJOIN(I) = false then

return false

end if

DERIVATIONCLOSER(I)

return true

None of these operators are semantically motivated, as they are based on the baseline operators

defined in Section 7.2. They all work in a similar fashion, i.e. by first applying one primary

operator, and then applying DERIVATIONCLOSER. Note that within this regime, there is no

longer a need for a compound operator that handles substitution, as all individuals are guar-

anteed to be complete. Thus, BLINDCREATECOMPLETE actually creates a completely new

individual by re-initializing an individual (the function INITIALIZE resets a derivation tree to a

single node representing the ‘kickoff’ tree in Figure 7.8).

Note that there is no need for a dedicated compound operator that ensures subtree swapping

of complete derivations: since all individuals are already complete derivations, the result of

BLINDSWAP is guaranteed to be complete as well.

We now present some results of testing these compound operators. Table 7.16 shows five



190 Chapter 7. Genetic operators for linguistic structure building

Algorithm 7.12 BLINDDELETECOMPLETE(Individual I)
if BLINDDELETE(I) = false then

return false

end if

DERIVATIONCLOSER(I)

return true

he dwells with his names .

his blubber has the epithets .

it dwells in its expense .

a whale dwells with the whale .

its mothers will be with him .

Table 7.16: Testing of BLINDCREATECOMPLETE

instances of individuals that have been created by BLINDCREATECOMPLETE. They are all

complete single sentences, which is to be expected given the kickoff-tree.

Table 7.17 shows three instances of applying BLINDADJOINCOMPLETE five times to an in-

dividual yielded by BLINDCREATECOMPLETE. Again we can see that at the beginning they

are all complete single sentences. The adjunctions that are performed vary from simple adjec-

tives (e.g.‘grim’), relative clauses (e.g.“, that will be slimy,”), prepositional phrases (e.g.“in his

tiger,”), to complete sentences (e.g.“his mothers play.”).

Finally, in Table 7.18 we show three instances of applying BLINDDELETECOMPLETE to a

complete individual that has been created using both BLINDCREATECOMPLETE and BLIN-

DADJOINCOMPLETE. Note that when the subtree deleted is rooted by an adjunction operation,

DERIVATIONCLOSER does not have any effect. This can be seen in the first instance, when the

adjective phrase “very shocking” is deleted. In the second and third instances, DERIVATION-

CLOSER ensures that all substitution nodes created as a result of the deletion are filled.

7.4.2 Ensuring complete derivations with greedy semantic consumption

The compound operators defined in the previous section succeed in creating individuals that

are guaranteed to be complete derivations. However, they are not semantically motivated. In

this section we present compound operators that make use of the smart operators defined in

Section 7.3 to yield complete derivations that are semantically motivated.



7.4. Compound operators 191

its shoulders boil its fish .

its shoulders boil its grim fish .

its shoulders boil its grim fish with it .

its shoulders boil its grim fish with it in families .

in his tiger , its shoulders boil its grim fish with it in families .

in his tiger , its shoulders will boil its grim fish with it in families .

a soil is him .

a soil , that will be slimy , is him .

a soil , that will not be slimy , is him .

a soil , that will not not be slimy , is him .

a soil , that will not not be very slimy , is him .

a soil , that with its trouble , will not not be very slimy , is him .

its epithets are tender .

its epithets are tender . his mothers play .

its epithets are tender . with it , his mothers play .

in his whiskers , its epithets are tender . with it , his mothers play .

in his whiskers , its epithets are tender . in the men , with it , his mothers play .

with it , in his whiskers , its epithets are tender . in the men , with it , his mothers play .

Table 7.17: Testing of BLINDADJOINCOMPLETE

Before
with his names , a very shocking treatment is with its elephant .

After
with his names , a treatment is with its elephant .

Before
a animal is large . his men are very big . the man will be african .

After
a animal is large . his men are very big . the skin will be african .

Before
his expense , that is ugly with the gap , is a shocking boy .

After
its whale is a shocking boy .

Table 7.18: Testing of BLINDDELETECOMPLETE



192 Chapter 7. Genetic operators for linguistic structure building

As revealed by our testing in Section 7.3.6, these smart operators are by definition incapable

of yielding complete derivations, even when applied indefinitely. Thus our smart compound

operators will have to rely on baseline operators to ensure that a derivation is completed. They

implement a greedy mechanism similar to SPUD and PROTECTOR in that at any point they

will always try to apply the most semantically principled operator. The order of precedence is

as follows:

SMARTADDMATCH � SMARTADD � BLINDADD

SMARTDELETE � BLINDDELETE

The DERIVATIONCOMPLETER operator is replaced by the GREEDYSMARTMATCH, GREEDYS-

MART, and GREEDYBLIND operators, shown in Algorithms 7.13 to 7.15, that implement in-

creasingly semantically unprincipled operators. Note that GREEDYSMART calls GREEDYS-

MARTMATCH, and similarly, GREEDYBLIND calls GREEDYSMARTMATCH and GREEDYS-

MART. This is to ensure that the operator with the highest order of semantic precedence is

always applied. In most cases, and certainly this is true of our simple grammar, these external

function calls are unnecessary. However, we include them here for completeness sake.

Algorithm 7.13 GREEDYSMARTMATCH(Individual I)
possibleSmartMatch 7 true

while possibleSmartMatch do

possibleSmartMatch 7 SMARTADDMATCHSUBSTITUTE(I)

end while

Algorithm 7.14 GREEDYSMART(Individual I)
possibleSmart 7 true

while possibleSmart do

possibleSmart 7 SMARTADDSUBSTITUTE(I)

GREEDYSMARTMATCH(I)

end while

Using these auxiliary operators, we define our three smart compound operators, SMARTCRE-

ATECOMPLETE, SMARTADJOINCOMPLETE, and SMARTDELETECOMPLETE, which are shown

in Algorithms 7.16 to 7.18. They behave very similarly to their ‘blind’ counterparts in the

previous section, i.e. they first apply one primary operator before attempting to complete the

derivation using GREEDYSMARTMATCH, GREEDYSMART, and GREEDYBLIND. The primary



7.4. Compound operators 193

Algorithm 7.15 GREEDYBLIND(Individual I)
possibleBlind 7 true

while possibleBlind do

possibleBlind 7 BLINDADDSUBSTITUTE)(I)

GREEDYSMARTMATCH(I)

GREEDYSMART(I)

end while

operator being applied also follows the order of semantic precedence defined above. Note that

in SMARTCREATECOMPLETE we must first apply either SMARTADDSUBSTITUTE or BLIN-

DADDSUBSTITUTE once so that GREEDYSMARTMATCH will have some existing linguistic

content to match with.

Algorithm 7.16 SMARTCREATECOMPLETE(Individual I)
INITIALIZE(I)

if SMARTADDSUBSTITUTE(I) = false then

if BLINDADDSUBSTITUTE(I) = false then

return false

end if

end if

GREEDYSMARTMATCH(I)

GREEDYSMART(I)

GREEDYBLIND(I)

return true

We now present some results of testing these semantically motivated compound operators. As

in Section 7.3.6, we use the first two lines of The Lion as our target semantics (Figure 7.11). Ta-

ble 7.19 shows five instances of individuals that have been modified by SMARTCREATECOM-

PLETE. They all manage to convey a subset of Starget . Note that genitive determiners, e.g.‘his’,

‘its’, convey the lexical semantics own � Owning � Owner� Ownee � , and thus their appearance in

these texts may be as a result of smart operators that are explicitly conveying Starget , e.g.“his

waist”, or as a result of purely syntactic baseline operators, e.g.“its waste”.

In Table 7.20 we show three instances of applying SMARTADJOINCOMPLETE five times to an

individual yielded by SMARTCREATECOMPLETE. What these results show is that the initial

linguistic content to which adjunction is gradually applied to is crucial in determining the



194 Chapter 7. Genetic operators for linguistic structure building

Algorithm 7.17 SMARTADJOINCOMPLETE(Individual I)
if SMARTADDMATCHADJOIN(I) = false then

if SMARTADDADJOIN(I) = false then

if BLINDADDADJOIN(I) = false then

return false

end if

end if

end if

GREEDYSMARTMATCH(I)

GREEDYSMART(I)

GREEDYBLIND(I)

return true

Algorithm 7.18 SMARTDELETECOMPLETE(Individual I)
if SMARTDELETE(I) = false then

if BLINDDELETE(I) = false then

return false

end if

end if

GREEDYSMARTMATCH(I)

GREEDYSMART(I)

GREEDYBLIND(I)

return true

his waist will be his waist .

the lion has the head .

a lion dwells in its waste .

his waist will be small .

the lion has the head .

Table 7.19: Testing of SMARTCREATECOMPLETE



7.4. Compound operators 195

his waist is small .

his waist , that will be his waist , is small .

his waist , that will be his waist , is very small .

his waist , that will be his small waist , is very small .

his small waist , that will be his small waist , is very small .

his small waist , that will be his small waist in a waste , is very small .

the lion dwells in the waste .

the lion , who is african , dwells in the waste .

the lion , who is very african , dwells in the waste .

the bandy lion , who is very african , dwells in the waste .

the bandy lion , who in his waist , is very african , dwells in the waste .

the bandy lion , who in his waist , that will be small , , is very african , dwells in the waste .

a lion has its head .

a lion has its big head .

a lion , who is african , has its big head .

in the waste , a lion , who is african , has its big head .

in the waste , a lion , who is very african , has its big head .

in the waste , a lion , who is very african , has its very big head .

Table 7.20: Testing of SMARTADJOINCOMPLETE

quality of the eventual text. In the first instance, the sentence “his waist is small.” does not

give SMARTADJOINCOMPLETE much opportunity to realize the semantics. Contrast this with

the other two instances where ‘lion’ is included at the beginning. These instances can be seen

to support the reasoning behind the search for a mapping rule during PROTECTOR’s first

stage, where it tries to find an applicable mapping rule that covers as much as possible of the

InitialGraph.

Finally, in Table 7.21 we show two instances of SMARTDELETECOMPLETE, where it chooses

to delete semantically insignificant phrases, e.g.‘is’, ‘the’.

In these test results, there are relatively few instances of the baseline operators being applied.

One such example is the adjunction of the adjective ‘bandy’ in the second instance in Ta-

ble 7.20. This is most likely due to the input semantics being fairly rich, thus there is generally

enough opportunity for the smarter operators to find something semantically motivated to add,

especially given that we have limited this test to only five applications of the respective opera-

tors.



196 Chapter 7. Genetic operators for linguistic structure building

Before
its african head is its african lion , who is african , .

After
its african head is its african lion , who will be african , .

Before
in the waste , the grin is its very big head .

After
in a waste , the grin is its very big head .

Table 7.21: Testing of SMARTDELETECOMPLETE

7.4.3 Simulating PROTECTOR and SPUD

In this section we present our attempts at simulating the PROTECTOR and SPUD systems in

MCGONAGALL as compound operators that use the baseline, smart, and compound operators

described thus far. The goal is to create operators that almost entirely deterministically convey

the target semantics, Starget . Although this exercise is not central to the goal of this thesis, we

feel it is of significant value as it shows the potential and flexibility of this system.

In Section 7.4.2 we presented compound operators that ensure complete derivations while

greedily consuming the target semantics. The design of these operators was necessarily a

trade-off between attempting to strictly convey semantics and closing off a derivation. Fur-

thermore, in designing these operators, we limited ourselves by only using the baseline and

smart operators described in Section 7.2 and 7.3. In this section we explicitly try to simulate

the PROTECTOR and SPUD systems, and this includes developing extra baseline operators,

namely SYNTAXADDSUBSTITUTE and SYNTAXADDADJOIN.

PROTECTORLIKE is a compound operator that embodies the entire generation process in

PROTECTOR that consists of three stages: building a skeletal structure, covering the remaining

semantics, and completing the derivation. The resulting individual is hoped to be an optimal

solution. The algorithm of this operator is shown in Algorithm 7.19.

Assuming the individual I is newly initialized, it first applies SMARTADDSUBSTITUTE to cre-

ate a minimal linguistic structure which SMARTADDMATCHSUBSTITUTE, through GREEDYS-

MARTMATCH, expands upon. At the end of this stage the individual should consist of a

complete sentence with all its complements realized. It then repeatedly calls SMARTAD-

DMATCHADJOIN to convey as much additional semantics as possible. Finally, the derivation



7.4. Compound operators 197

is closed off using the SYNTAXADDSUBSTITUTE operator. Essentially it is the complement of

BLINDADDSUBSTITUTE and SMARTADDSUBSTITUTE: it only considers lexical items whose

Slexical
� /0, e.g. determiners, punctuation marks, complementizers, and copula verbs.

However, there is a fundamental difference between our PROTECTORLIKE operator and

Nicolov’s actual PROTECTOR system: although PROTECTORLIKE attempts to emulate the

three-stage process of PROTECTOR, i.e. building a skeletal structure, covering the remaining

semantics, and completing the derivation, each individual stage is implemented differently. In

particular, PROTECTOR systematically searches for the optimal local decision to be made

during each stage, whereas our operator stochastically hillclimbs.

Algorithm 7.19 PROTECTORLIKE(Individual I)
SMARTADDSUBSTITUTE(I) � Stage 1: Building a skeletal structure �
GREEDYSMARTMATCH(I)

possible 7 true

while possible do

possible 7 SMARTADDMATCHADJOIN(I) � Stage 2: Cover remaining semantics �
GREEDYSMARTMATCH(I)

end while

possible 7 true

while possible do

possible 7 SYNTAXADDSUBSTITUTE(I) � Stage 3: Completing the derivation �
end while

SPUDLIKE is a compound operator that emulates the greedy algorithm of SPUD which always

implements the best operation possible, as opposed to the first valid operation found, as is

implemented by the stochastic depth-search of our operators. The precedence of operators is

as follows:

SMARTADDMATCHSUBSTITUTE � SMARTADDMATCHADJOIN �
SMARTADDSUBSTITUTE � SYNTAXADDSUBSTITUTE

It is different from PROTECTORLIKE in that it does not embody the entire generation process

in a single operator. Rather, it only performs one LTAG operation, and it relies on the iterative

nature of the EA to execute the greedy search. As long as it finds and implements a valid

operation, it will return true, and false otherwise. An EA with a population size of one



198 Chapter 7. Genetic operators for linguistic structure building

individual and SPUDLIKE as the only available genetic operator behaves remarkably similar

to SPUD. The algorithm for this operator is shown in Algorithm 7.20.

Algorithm 7.20 SPUDLIKE(Individual I)
if SMARTADDMATCHSUBSTITUTE(I) = true then

return true

else if SMARTADDMATCHADJOIN(I) = true then

return true

else if SMARTADDSUBSTITUTE(I) = true then

return true

else if SYNTAXADDSUBSTITUTE(I) = true then

return true

else

return false

end if

Given an individual initialized with the kickoff-tree in Figure 7.8, both PROTECTORLIKE

and SPUDLIKE are limited to the generation of one sentence, as the only adjunction operator

used is SMARTADDMATCHADJOIN. Thus, we also experiment with a slight modification

of SPUDLIKE which, failing all other operations, will adjoin a new sentence frame. This is

achieved through the SYNTAXADDADJOIN operator, which only considers lexical items whose

Slexical
� /0. In terms of anchors for auxiliary trees, the only candidates are sentence boundary

punctuation marks, e.g. fullstops. We call this modified operator SPUDLIKEDISCOURSE, and

the algorithm for this operator is shown in Algorithm 7.21.

We now present some results of testing these operators on newly initialized individuals. For

these results, shown in Table 7.22 to 7.24, we set Starget as the first two lines of The Lion

(Figure 7.11).

Table 7.22 shows five instances of individuals yielded by PROTECTORLIKE. They all ac-

curately convey a subset of the target semantics. However, in the last instance, the pronoun

‘they’ is an unfortunate choice as it is of different agreement to ‘lion’. Note that auxiliary verbs

( Aux ) are not selected as they carry lexical semantics, thus they are not considered by SYN-

TAXADDADJOIN. The reason these Aux nodes appear in the first place is due to a substitution

of a copula verb node with the I C AuxCV tree (see Appendix C.2.3). Thus, we can see that in

all these results, the Aux nodes always precede the copula ‘be’.



7.4. Compound operators 199

Algorithm 7.21 SPUDLIKEDISCOURSE(Individual I)
if SMARTADDMATCHSUBSTITUTE(I) = true then

return true

else if SMARTADDMATCHADJOIN(I) = true then

return true

else if SMARTADDSUBSTITUTE(I) = true then

return true

else if SYNTAXADDSUBSTITUTE(I) = true then

return true

else if SYNTAXADDADJOIN(I) = true then

return true

else

return false

end if

the african lion , who dwells in a waste , has the head , that Aux be big , .

it is in a waste .

a african lion , who has the big head , dwells in the waste .

a lion , who dwells in a waste , Aux be african .

they Aux be in the waste .

Table 7.22: Testing of PROTECTORLIKE



200 Chapter 7. Genetic operators for linguistic structure building

Table 7.23 shows four instances where SPUDLIKE is repeatedly applied to an initialized in-

dividual until no longer possible, i.e. it returns false. The quality of the final derivations are

similar to those in Table 7.22. By observing the incremental generation in this table, we can

clearly see the phenomenon that we first mentioned when discussing Table 7.20, i.e. that the

selection of initial linguistic content is crucial in determining the quality of the eventual text. In

the first and last instance, not much opportunity is presented for the operator to expand upon.

Another way of viewing this is that it is simply a natural drawback of greedy/hillclimbing

search, i.e. it is liable to get trapped in local maxima.

Finally, in Table 7.24 we show one instance of repeatedly applying SPUDLIKEDISCOURSE

to an initialized individual. Unlike SPUDLIKE, which is limited to generating one sentence,

SPUDLIKEDISCOURSE has the ability to adjoin in sentence frames, thus opening up new

possibilities for subsequent smart operations. As result it manages to convey the entire Starget .

In fact, it already does so at the point which we have highlighted, i.e. where its text is:

“a african lion, who has a very small waist,

has the head, that is big,. he dwells in a waste.”

From that point on, it can only perform non-semantic operations, i.e. substituting pronouns

(‘they’, ‘them’), and adding new sentence frames. Unfortunately, this is the drawback of

SPUDLIKEDISCOURSE: given the opportuntiy, it will never terminate. However, since it

would be used as a genetic operator in an EA, typically there already exists an external ter-

mination method, such as once an optimal solution is found. Nevertheless, one can artifically

limit its operation by imposing a maximum number of sentence frames that can be adjoined.

7.4.4 Ensemble of operators

In the last few sections (Section 7.4.1 to 7.4.3) we have introduced an array of compound op-

erators which are undoubtedly more knowledge augmented than the single-operation baseline

and smart operators. Table 7.25 shows a roundup of these compound operators.

It is important to note, however, that the more knowledge-rich the genetic operators become, the

more constrained the EA search, and while this possibly improves the conditions for converging

to a satisfying solution, we must be careful of the potential trade-off in that it may render certain

solutions in the space unreachable. We have already seen in Sections 7.4.2 and 7.4.3 that the



7.4. Compound operators 201

S .

NP CV in NP .

NP CV in D waste .

NP is in D waste .

NP is in a waste .

D it is in a waste .

it is in a waste .

S .

NP dwells P NP .

D lion dwells P NP .

D lion dwells in NP .

D lion dwells in D waste .

D lion Punc Comp has NP Punc dwells in D waste .

D lion Punc Comp has D head Punc dwells in D waste .

D african lion Punc Comp has D head Punc dwells in D waste .

D african lion Punc Comp has D big head Punc dwells in D waste .

D african lion Punc Comp has a big head Punc dwells in D waste .

a african lion Punc Comp has a big head Punc dwells in D waste .

a african lion Punc Comp has a big head Punc dwells in the waste .

a african lion Punc Comp has a big head , dwells in the waste .

a african lion Punc who has a big head , dwells in the waste .

a african lion , who has a big head , dwells in the waste .

S .

NP has NP .

NP has D head .

D lion has D head .

D lion has D big head .

D lion Punc Comp CV african Punc has D big head .

a lion Punc Comp CV african Punc has D big head .

a lion Punc Comp CV african Punc has the big head .

a lion Punc who CV african Punc has the big head .

a lion , who CV african Punc has the big head .

a lion , who CV african , has the big head .

a lion , who Aux be african , has the big head .

S .

NP CV big .

D head CV big .

his head CV big .

his head Aux be big .

Table 7.23: Testing of SPUDLIKE



202 Chapter 7. Genetic operators for linguistic structure building

S .

NP has NP .

D lion has NP .

D lion has D head .

D african lion has D head .

D african lion has D head Punc Comp CV big Punc .

D african lion Punc Comp has NP Punc has D head Punc Comp CV big Punc .

D african lion Punc Comp has D waist Punc has D head Punc Comp CV big Punc .

D african lion Punc Comp has D small waist Punc has D head Punc Comp CV big Punc .

D african lion Punc Comp has D very small waist Punc has D head Punc Comp CV big Punc .

D african lion Punc Comp has D very small waist , has D head Punc Comp CV big Punc .

a african lion Punc Comp has D very small waist , has D head Punc Comp CV big Punc .

a african lion Punc Comp has a very small waist , has D head Punc Comp CV big Punc .

a african lion , Comp has a very small waist , has D head Punc Comp CV big Punc .

a african lion , who has a very small waist , has D head Punc Comp CV big Punc .

a african lion , who has a very small waist , has D head Punc Comp is big Punc .

a african lion , who has a very small waist , has D head Punc that is big Punc .

a african lion , who has a very small waist , has the head Punc that is big Punc .

a african lion , who has a very small waist , has the head Punc that is big , .

a african lion , who has a very small waist , has the head , that is big , .

a african lion , who has a very small waist , has the head , that is big , . S .

a african lion , who has a very small waist , has the head , that is big , . NP dwells P NP .

a african lion , who has a very small waist , has the head , that is big , . NP dwells in NP .

a african lion , who has a very small waist , has the head , that is big , . NP dwells in D waste .

a african lion , who has a very small waist , has the head , that is big , . NP dwells in a waste .

a african lion , who has a very small waist , has the head , that is big , . D it dwells in a waste .

a african lion , who has a very small waist , has the head , that is big , . it dwells in a waste .

a african lion , who has a very small waist , has the head , that is big , . it dwells in a waste . S .

a african lion , who has a very small waist , has the head , that is big , . it dwells in a waste . NP CV D them .

a african lion , who has a very small waist , has the head , that is big , . it dwells in a waste . D they CV D them .

a african lion , who has a very small waist , has the head , that is big , . it dwells in a waste . they CV D them .

a african lion , who has a very small waist , has the head , that is big , . it dwells in a waste . they Aux be D them .

a african lion , who has a very small waist , has the head , that is big , . it dwells in a waste . they Aux be them .

S . a african lion , who has a very small waist , has the head , that is big , . it dwells in a waste . they Aux be them .

Table 7.24: Testing of SPUDLIKEDISCOURSE



7.5. Summary 203

highly elaborate semantically greedy compound operators are particularly sensitive to the initial

selection of linguistic content.

One simple way to overcome this is to use these knowledge augmented operators in conjunction

with the simple baseline operators, and rely on the stochastic process of the EA to find a

solution.

In a multi-objective optimization problem such as poetry generation, one can develop sepa-

rate operators that each embody domain knowledge for optimizing separate objectives. For

example, operators that uses domain knowledge to satisfy target semantics (as defined in Sec-

tion 7.3), one for satisfying the target metre, one for the rhyme, and so forth. By using these

operators in conjunction in an EA, we conveniently sidestep the difficult issue of how best to

order control over these operations in a deterministic algorithm (Section 3.2).

7.5 Summary

In this chapter we first presented two distinct flavours of genetic operators: baseline operators

that ensure grammaticality and smart operators that explicitly attempt to achieve meaning-

fulness. Each operator behaves in a slightly different fashion, and is particularly useful for

different conditions. By using them in cooperation through our compound operators, we can

extend the linguistic and semantic scope within which they can exploit domain knowledge.

This enables us to create operators that, for instance, ensure complete derivations, and almost

deterministically convey the target semantics.

Note that the compound operators, especially the semantically-motivated ones, resemble the

more conventional NLG methods seen in Chapter 3. However, we believe that our character-

isation of NLG as a search problem (Section 4.1) still holds. The wide array of operators we

have introduced, starting from the baseline operators (Section 7.2), the smart operators (Sec-

tion 7.3), the compound operators that ensure complete derivations (Section 7.4.1), and finally

the PROTECTOR-like and SPUD-like operators (Section 7.4.3), signify different points along

a spectrum of search sophistication between strictly goal-directed planning (Section 3.2) and

our view of the entire NLG process as explicit state space search (Section 4.1). However, all

these operators still fit within the view of NLG as state space search, as even the most sophisti-

cated operators are still taking a state, i.e. individual, and randomly jumping to a different state,

i.e. through mutation or crossover.



204 Chapter 7. Genetic operators for linguistic structure building

We also propose using these various operators as an ensemble (Section 7.4.4), where we can

develop separate operators that each embody domain knowledge for optimizing separate ob-

jectives. By using these operators in conjunction in an EA, we also conveniently sidestep the

issue of how to control these operations in a deterministic algorithm (Section 3.2).

At this point we have now described all the main components of our EA: representations,

evaluation functions, and genetic operators. In the next chapter we will present the results of

the empirical studies we conducted using MCGONAGALL.



7.5. Summary 205

Name Description

Ensuring complete derivations (Section 7.4.1)

DERIVATIONCLOSER Repeatedly applies BLINDADDSUBSTITUTE until a derivation is com-

plete.

BLINDCREATECOMPLETE Re-initializes an individual and then applies DERIVATIONCLOSER.

BLINDADJOINCOMPLETE Applies BLINDADDADJOIN if possible and then applies DERIVA-

TIONCLOSER.

BLINDDELETECOMPLETE Applies BLINDDELETE if possible and then applies DERIVATION-

CLOSER.

Semantically-motivated complete derivations (Section 7.4.2)

GREEDYSMARTMATCH Repeatedly applies SMARTADDMATCHSUBSTITUTE.

GREEDYSMART Repeatedly applies SMARTADDSUBSTITUTE and GREEDYSMART-

MATCH.

GREEDYBLIND Repeatedly applies BLINDADDSUBSTITUTE, GREEDYSMART-

MATCH, and GREEDYSMART.

SMARTDERIVATIONCLOSER Applies GREEDYSMARTMATCH, GREEDYSMART, and GREEDY-

BLIND, ensuring a derivation is complete.

SMARTCREATECOMPLETE Re-initializes an individual and then applies SMARTDERIVATION-

CLOSER.

SMARTADJOINCOMPLETE Applies smartest adjoin operator, i.e.SMARTADDMATCHADJOIN,

SMARTADDADJOIN, or BLINDADDADJOIN if possible and then ap-

plies SMARTDERIVATIONCLOSER.

SMARTDELETECOMPLETE Applies smartest deletion operator, i.e.SMARTDELETE or BLIND-

DELETE if possible and then applies SMARTDERIVATIONCLOSER.

Simulating PROTECTOR and SPUD (Section 7.4.3)

PROTECTORLIKE Emulates the three stages of PROTECTOR: building a skeletal struc-

ture, covering remaining semantics, and completing the derivation.

SPUDLIKE Emulates the greedy approach of SPUD by always prioritizing the best

operator, i.e. the most semantically-motivated one.

Table 7.25: Roundup of compound operators





Chapter 8

Empirical Study and Discussion

In this chapter we report on an empirical study that we conducted using MCGONAGALL,

our implemented system that embodies the EA-based approach we have presented in previ-

ous chapters. We first present the objective of the study, and based on this, the methodology

and design used for the study. We then present the results of the three stages of the study,

namely testing MCGONAGALL with form constraints only, semantic constraints only, and both

form and semantic constraints simultaneously. For each stage we provide a summary of the

observations and discussions for the tests carried out.

8.1 Objective of the study

There are two distinct objectives that motivate our empirical study. The first is to test whether

our approach of employing an EA search method to solve the constraint satisfaction problem

of poetry generation is valid. This relies wholly on the self-evaluation properties that an EA

affords, as finding a very high scoring solution is a clear indication of the EA’s success. Under

this objective, we will be exploring the effect that the various possibilities of configurations

have on the performance of the EA.

However, the EA’s success in finding an optimal solution given a certain evaluation function

does not necessarily reflect the actual quality of that solution. As Bäck et al. (1997) warns, “The

objective function must reflect the relevant measures to be optimized. Evolutionary algorithms

are notoriously opportunistic, and there are several known instances of an algorithm optimizing

207



208 Chapter 8. Empirical Study and Discussion

the stated objective function, only to have the user realize that the objective function did not

actually represent the intended measure.”. Thus, this is the second objective of the study: to

test whether the evaluation functions presented in Chapter 6 accurately capture the notions of

semantic faithfulness and conformance to metre. Although the evaluators have been validated

to a degree in Sections 6.3.6 (for metre) and 6.4.4 (for semantics), their actual usage in this

empirical study is hoped to be a more rigorous examination of their behaviour.

In works such as Binsted (1996) and Cheng (2002), evaluation of this kind was achieved

through experiments using subjective human evaluation. This was due to the fact that the

features being analyzed were highly subjective, such as humour and textual coherence. We be-

lieve that our chosen aspects of semantic faithfulness and conformance to metre are relatively

objective and thus concretely observable features, diminishing the need for such experimenta-

tion.

Note that the production of ‘genuine’ poetry, i.e. texts which members of the general public

can observe and with a high degree of certainty state are indeed poetry, is not the goal of this

study. We feel that the necessary assumptions and simplifications made within the framework

of our thesis limit the possibility of this, and that research work in this area is in far too early a

stage to be achieving such ambitions.

8.2 Methodology and design of the study

Owing to the nature of both our domain task and the method of problem solving through EAs,

there are many unknown factors that we face from the outset. Firstly, our task domain of

generating poetry has not received much serious treatment, with the exception of the work

of Gervás and Levy which we discussed in Section 2.3.4. Furthermore, we have found no

reports of explicit evaluation performed on these systems. Thus, it is not immediately clear

whether these works can inform the design of our study. Secondly, solving problems with

EAs is a highly domain-specific task which typically requires extensive empirical testing and

fine-tuning to achieve success.

We divide the study into three stages. In the first stage, we test the capacity of MCGONA-

GALL to perform as a form-aware text generation system, i.e. where only the metre evaluation

function is used. In effect, the output texts are only expected to satisfy the properties of gram-

maticality and poeticness (G � P ). This stage is reported in Section 8.3. In the second stage,



8.3. MCGONAGALL as form-aware generator 209

we test the capacity of MCGONAGALL to perform as a tactical NLG component, i.e. where

only the semantic evaluation function is used. Thus, the output texts can only be expected to

satisfy the properties of grammaticality and meaningfulness (G � M ). This stage is reported

in Section 8.4. Finally, in the last stage we test the capacity of MCGONAGALL to perform as

a poetry generation system by using both the metre and semantic evaluation functions. The

output texts are expected to satisfy the properties of grammaticality, meaningfulness, and po-

eticness (G � M � P ). This stage is reported in Section 8.5. We refer the reader back to our

definition of poetry in Section 2.1.4 for details on these three properties.

Apart from making the task more manageable, testing these optimization tasks in isolation

should provide us with a clearer picture of the behaviour of the various components, and we

hope that insight revealed during testing at each stage can inform the specific design of tests

for subsequent stages.

In designing the actual tests that we carry out, we adopt a principle of attempting to achieve

our goals with the least bias required. More specifically, we are interested in observing the

mileage that can be obtained by using the simplest components, i.e. genetic operators, EA se-

lection algorithms and parameters, that introduce the least stochastic bias. For each of the three

stages, we start out with an initial test that defines a baseline for all aspects (EA configuration,

evaluation functions, genetic operators, etc.), perhaps even to the extent of naivety given what

we have already discussed in previous chapters regarding these aspects. Only in the event of

failing to achieve the task do we replace these aspects with more sophisticated approaches, and

these replacements form the basis for subsequent tests. By adopting this principle, we will be

able to see the relative contribution of each particular component.

8.3 MCGONAGALL as form-aware generator

8.3.1 Initial form-aware test

For our initial test, we deliberately choose a simplistic configuration. The main purpose is to

observe the behaviour of the EA in manipulating the available linguistic resources to optimize

the metre evaluation function. To that end, we adopt baseline methods and parameters for

almost all aspects. Some of these decisions can be considered naive, given what we already

know about EAs and the domain task, for example the decision to ignore substitution holes and



210 Chapter 8. Empirical Study and Discussion

linebreaking. Nevertheless, it is useful to examine baseline performance.

The task set in this test is to generate texts that satisfy a given target form. We use three dif-

ferent forms: haiku, limerick and mignonne, as shown in Appendix A. The three forms are

intended to represent the various possible form constraints that can be handled. In particular,

haiku is only concerned with syllable count, limerick requires fairly complex sequences of

metre patterns, and mignonne can be seen as emphasizing the placement of linebreaks.

However, this initial test is simplified by ignoring the issues of where linebreaking should

occur and how ‘holes’ left by substitution nodes should be accounted for. The main objective

is simply to see whether the EA can find a text that exhibits the desired metre pattern, or in the

case of haiku, syllable count. In this respect, limerick and mignonne become very similar

goals to achieve.

EA setup

� Selection algorithm: for this test, we employ one of the simplest selection algorithms,

proportionate selection, which assigns a distribution that accords parents a probability

to reproduce that is proportional to its fitness (Bäck et al., 1997). It is a well-studied algo-

rithm that is intuitive and simple to understand and implement, which is the chief motiva-

tion for its use in this test. Individuals are sampled from this distribution using stochastic

universal sampling, which minimises chance fluctuations in sampling (Baker, 1987).

There are two potential problems that are known for proportionate selection algorithms:

premature convergence due to a supersolution and stagnation due to similar fitness of

individuals in the population (Bäck et al., 1997). However, one simple approach to

overcome these problems is through the use of an elitist strategy, which we test here.

An elitist strategy ensures that a portion of the fittest individuals in the population survive

in subsequent iterations. We experiment with elitist populations of 20% and 40% of the

entire population, and also non-elitist selection (i.e. 0%).� Population size: We choose a population size of 40. The choice of this parameter is

inspired by Cheng (2002), who in turn points to empirical studies by Goldberg (1989).

Although the tasks are markedly different, and it is known that the optimal setting of

these parameters is problem-dependent, nevertheless it is a useful starting point.



8.3. MCGONAGALL as form-aware generator 211

Substitution Insertion Deletion

Cost w s x b Cost Cost

01 0 2 0 ∞ w 1 01 1

0n 0 2 0 ∞ s 3 0n 1

11 3 0 0 ∞ x 1 11 3

1n 3 0 0 ∞ b 0 1n 3

2n 1 1 0 ∞ 2n 2

b ∞ ∞ ∞ 0 b 0

Table 8.1: Edit distance costs for initial form-aware test

Evaluators

For this test we only use the edit distance function, Fedit , defined in Section 6.3.5, that has

been normalized with λ1
� 1 � 0. ‘Holes’ left by substitution nodes are ignored, even though

the function Fbalance (Section 6.3.7) is designed to account for this. The cost function c is

shown in Table 8.1. In particular, note that the cost incurred for inserting linebreaks is 0. The

context-sensitive compensation scores and patterns in Appendix B are also used.

Operators

The baseline blind operators presented in Section 7.2 are used. The probabilities of being

applied when mutation is called for are as follows:� BLINDADDSUBSTITUTE = 0.5� BLINDADDADJOIN = 0.3� BLINDDELETE = 0.2

The choice of these probabilities is intended to account for the fact that the substitution opera-

tion typically introduces the essential linguistic structures, and that adjunction is for auxiliary

constituents. Note that these operators can be applied on a text in any order, which is differ-

ent from the conventional TAG approach where all substitutions are carried out first before

adjunction is attempted, for example during the three stages of PROTECTOR.

In this test, we do not use the crossover operation, i.e. BLINDSWAP, as we believe that the mu-

tation operators are the fundamental actions that create genetic content, and we are interested



212 Chapter 8. Empirical Study and Discussion

in examining how they perform on their own.

Note that these operators do not guarantee resulting individuals to be complete derivations, as

substitution nodes are possibly not yet substituted.

Resources

The handcrafted grammar and lexicon given in Appendix C are used. It consists of 33 syntactic

structures (i.e. elementary trees), and 116 lexical items, 18 of which are closed class words.

The content words are compiled from a selection of Hilaire Belloc’s children’s poems about

animals, “The Bad Child’s Book of Beasts” (Belloc, 1991).

Expectations

� Satisfying the haiku target form should be easier to accomplish than limerick and

mignonne, as it only involves getting the correct syllable count. In fact, given the sim-

plifications of ignoring linebreaking penalties, any text with 17 syllables worth of lexical

items will be an optimal solution.� The selection pressure applied by the elitist strategy should prevent stagnation of the

population and drive the EA to an optimal solution. We hope that for each target form

there should be at least one run where the EA finds a candidate solution with a fitness

score of 1.0.� However, we expect the actual output to be of limited poetic quality due to the oversim-

plification of the fitness function being used.

Results

For this test, we run the EA with all the parameters as described above. The two factors being

varied are the target form and the elitist ratio. Hence we run this test nine times: haiku with

elitist ratios of 0%, 20%, and 40%, limerick with elitist ratios of 0%, 20%, and 40%, and

mignonne with elitist ratios of 0%, 20%, and 40%. Each individual test is run ten times, and

each run lasts for 500 iterations.

Summary statistics and graphs for this test are presented in Section D.1.1 of Appendix D.



8.3. MCGONAGALL as form-aware generator 213

Tables 8.2, 8.3, and 8.4 show the individuals that yield the best fitness scores from the last pop-

ulations of each test. They show the best individuals for the haiku, limerick, and mignonne

target forms respectively. For each target form, we present the best individual for each elitist

ratio used, showing its fitness score, raw surface text, and formatted surface text.

The following is a guide on how to interpret the formatted surface form:

1. Syllables in normal type are substituted to w target syllables, i.e. receive no stress. If they

are underlined, they indicate 11 or 1n candidate syllables that are destressed. If they have

a horizontal line directly above them, they indicate 2n candidate syllables. Otherwise,

they indicate 01 or 0n candidate syllables.

2. Syllables in bold type are substituted to s target syllables, i.e. receive stress. If they are

underlined, they indicate 01 or 0n candidates. If they have a horizontal line directly above

them, they indicate 2n candidate syllables. Otherwise, they indicate 11 or 1n candidate

syllables.

3. Syllables enclosed in parentheses indicate candidate syllables that are deleted.

4. An asterisk (*) marks the insertion of a w target syllable.

5. An exclamation mark (!) marks the insertion of a s target syllable.

6. Substitution nodes are ignored/skipped.

7. Linebreaks are displayed according to the computed alignment, i.e. where a b target

syllable is either inserted or substituted for a b candidate syllable.

8. Some further ‘prettifying’ is performed, namely using the appropriate form of the deter-

miner ‘a’/‘an’, and changing the first letter of the first word of a sentence to uppercase.

Note that as these formatted surface texts skip substitution nodes in the raw surface, they may

be ungrammatical.

Observations

The EA has no problem at all in optimizing the target (see values for the haiku target form in

Table D.1). Although it is a stochastic process, it is virtually inevitable that the given operators

will eventually yield a candidate text that contains 17 syllables worth of lexical items. Bear



214 Chapter 8. Empirical Study and Discussion

elitist 0% elitist 20% elitist 40%

Score 1.00 1.00 1.00

Surface S . NP play . in NP Punc it has NP

with NP . a man in NP CV in NP in

NP . with NP Punc the treatment with

NP will play .

it will be shocking in NP . a treatment is the

hippopotamus . NP CV D thing .

big good jaws CV with his kind mind with

her with D hippopotamus with NP . NP

dwells P NP . S . S . S .

Formatted . play . In it has with . It will be shocking Big good jaws with his
A man in in in . With the in . A treatment is the hip- kind mind with her with hippo-
treatment with will play . popotamus . thing . potamus with . dwells . . . .

Table 8.2: Best individual for Ftarget
� haiku, initial form-aware test

elitist 0% elitist 20% elitist 40%

Score 0.82 0.95 0.95

Surface men will play . with his very tender frog with a

thing , the facts will be very little . she is D

soil . the mothers , they boil the baboon .

NP CV her . NP dwells P NP . in

NP , the treatment Aux be very slimy . a bill

Aux be his hippopotamus . lonely families boil

his species with D frog in a frog . S .

NP CV in NP . NP has NP . S

. S . in NP Punc with NP Punc

D sensitive trunk with african african plat-

inum whiskers with D little trouble Aux be

very sensitive . NP CV D child with a

gap . S .

Formatted * men * will play . With his ve- her . dwells . in , the treatment be ve- in . has . . . In with sensitive trunk
ry ten * der frog with a thing , ry slimy . A bill be his hip- with african african pla-
the facts will be ve- popotamus . Lone- (ti)num whiskers with lit-
ry lit(tle) . She is soil . ly families boil tle trouble be ve-
the mothers , they boil the baboon . his species with frog in a frog . . ry sensitive . child with a gap . .

Table 8.3: Best individual for Ftarget
� limerick, initial form-aware test



8.3. MCGONAGALL as form-aware generator 215

elitist 0% elitist 20% elitist 40%

Score 0.82 0.90 0.94

Surface NP , with a bandy very large waste with

the platinum lion , the mind is his waste with

the product . in a boy , with a african pole in

his bill with his whiskers , his platinum toad

in his bill in her dwells in his bean . his hip-

popotamus will be the frog in a african child

in a soil with the fish with the tiger with the

grin in his bean .

S . S . S . S . with D baboon in

NP , D baboon , it is platinum . in D

facts , in the platinum boy , in the sensitive

animal in D lion , a sensitive platinum ele-

phant dwells with a elephant in D platinum

tail with the facts in a sensitive elephant with

D large hippopotamus in D african head

with a head with D expense with NP in

NP . NP dwells with his sensitive jaws

. S . S .

S . in his african blubber , a elephant

dwells with his sensitive dish with his sen-

sitive sensitive dish with the african tiger in

D animal in D frog in a sense in a treat-

ment . in facts , with him , african mothers

, they are with the sensitive species in D

platinum dish with a sense in a blubber . his

animal dwells with a child .

Formatted , with a ban- . . . . with baboon . In his af-
* dy ve- in , baboon , rican blub-
ry large waste it is pla- ber , an e-
with the pla- (ti)num . In facts , lephant dwells
tinum li- in the pla- with his sen-
on , the mind tinum boy , sitive dish
is his waste in the sen- with his sen-
with the pro(duct) . sitive a- sitive sen-
In a boy , (ni)mal in li- sitive dish
with an af- on , a sen- with the af-
rican pole sitive pla- rican ti-
in his bill tinum e- ger in a-
with his whis- lephant dwells (ni)mal in frog
kers , his pla- with an e- in a sense
tinum toad (le)phant in pla- in a treat-
in his bill tinum tail ment . In facts ,
in her dwells with the facts with him , af-
in his bean . in a sen- rican mo-
(His) hippopot- sitive e- thers , they are
amus will (le)phant with large with the sen-
be the frog hippopot- sitive spe-
in an af- (a)mus in af- cies in pla-
rican child rican head tinum dish
in a soil with a head with a sense
with the fish with expense in a blub-
with the ti- with in . dwells ber . His a-
(ger) with the grin with his sen- nimal dwells
in his bean. sitive jaws . . . with a child .

Table 8.4: Best individual for Ftarget
� mignonne, initial form-aware test



216 Chapter 8. Empirical Study and Discussion

in mind that this is the only requirement for an optimal solution, given the simplifications of

ignoring linebreaks and substitution holes.

The EA solves this problem easily. After roughly 10 iterations, an optimal score of 1.00 is

always achieved (Figure D.1(a)). This is true of all elitist ratios used.

The three sample outputs in Table 8.2, however, are distinctly unimpressive as haikus. Since

every run manages to produce an optimal solution, we have simply chosen the first run for each

of the elitist ratios.

The main problem that we can observe from these solutions is that they are incomplete deriva-

tions, due to the presence of substitution nodes that are not yet substituted. This is particularly

evident in the solutions for elitist ratios 0% and 40%. Although these candidate solutions can

be viewed as underspecifications of grammatical constructions, the metre edit distance func-

tion used does not take this fact into consideration. It simply compares the sequence of existing

syllables with the target metre, ignoring substitution nodes, and produces an optimal alignment.

The formatted surface texts are intended to show this alignment. However, with the removal of

the substitution nodes, the formatted surface forms are clearly ungrammatical. Nevertheless,

it can be observed that these solutions are indeed satisfying the target metre insofar as their

lexical items comprise a sequence of seventeen syllables.

Another problem that can be observed is the awkward linebreaking, for example at the end of

the second line of the haiku for elitist ratio 20% (‘hip-popotamus’).

Finding an optimal solution for the limerick target form is more of a challenge than finding

one for the haiku target form. For the non elitist-strategy EA, one run yielded a best candidate

solution that has a fitness of only 0.68 (see Table D.1).

The best fitness score obtained with a non-elitist EA is 0.82, and the individual with this score

is shown in Table 8.3. It requires several deviations from the target form, namely the insertion

of w syllables (two in the first line, one in the second line), and the deletion of an unstressed

syllable (the second syllable of ‘little’ in the fourth line). Even after ignoring the fact that it is

ungrammatical, this solution barely reads like a limerick.

For elitist ratio 0%, the EA occasionally finds solutions with high fitness (indicated by the

‘spikes’ in Figure D.1(b)), but due to its non-elitist nature, it is not preserved, resulting in a

missed opportunity.



8.3. MCGONAGALL as form-aware generator 217

Using an elitist ratio of 20%, however, enforces a monotonic increase of the maximum of the

best scores. As can be seen in Table 8.3, it produces a text that is almost metrically perfect

with a score of 0.95. The only edit required is the stressing of the secondary stressed syllable

in ‘hippopotamus’ at the end of the second line, which incurs a cost of 1 (see Table 8.1).

Strictly speaking, the stressing of a secondary stressed syllable is not a grave metrical problem.

However, this particular instance is made worse by the fact that it is followed by a very awkward

linebreak. In fact, this particular limerick has awkward enjambment for the first three lines

(i.e.‘ve-ry’, ‘hip-popotamus’, and ‘lone-ly’).

The behaviour of the test runs with elitist ratio 40% is almost identical to that of elitist ratio

20%. They both achieve a maximum best score of 0.95 and a minimum best score of 0.79. It is

interesting to note that the mean of the best scores for elitist ratio 40% is lower than for 20%.

Moreover, for elitist ratio 20%, 3 out of 10 test runs scored 0.95, whilst only 1 out of the 10 test

runs for elitist ratio 40% managed this score. This suggests that at this rate of elitist population

the selection pressure may be too high, leading to premature convergence.

As with the haiku texts, the limerick texts also exhibit the serious problem of being ungram-

matical due to their incompleteness.

As for the mignonne target form, the behaviour of the test runs are similar to those for limerick.

Utilizing an elitist strategy clearly improves the performance of the EA for this task. Although

it may seem that an elitist ratio of 40% performs better than 20% due to the maximum best

fitness score of 0.94 as opposed to 0.90, the average of the best fitness scores is quite similar,

and in fact the minimum best fitness score of 0.75 is worse than that of elitist ratio 20% (see

Table D.1).

For a non-elitist EA the average of the best fitness scores eventually stagnates around 0.7 (see

Figure D.1(c)). We also see for the non-elitist EA instances of high scoring individuals ap-

pearing throughout the evolutionary process but being lost in subsequent populations. Unlike

for limerick, however, these scores never approach the best scores reached by the elitist EAs

( � 0.90).

As for the sample output as shown in Table 8.4, we can see from the formatted surface forms

that they are rife with awkward enjambments, e.g.‘e-lephant’, ‘ve-ry’, ‘pla-tinum’, etc. This

shows the potential of the mignonne target of being a good test for the ability of an EA to

satisfy linebreaking in a target form adequately. Since we ignore linebreaking in this test, we

end up with these solutions. What is optimized, however, is the metre, and by and large the



218 Chapter 8. Empirical Study and Discussion

elitist strategy EAs achieve a reasonable solution. The solution found by elitist ratio 40% only

has two metrical problems: the deletion of the unstressed syllable ‘ni’ in ‘animal’ on line 13,

and the stressing of the unstressed syllable ‘are’ on line 19.

Discussion

The results of the initial test roughly correspond to our expectations.

Firstly, the haiku target form is an almost-trivial optimisation task, given the simplifications

adopted during this initial test.

The initial hillclimbing for haiku is extremely rapid and almost instantaneous (see Figure D.1).

For the more difficult targets of limerick and mignonne the ascent becomes gradually smoother.

Secondly, from the limerick and mignonne test runs, it is evident that the elitist strategy

implemented by using an elitist population of 20% and 40% shows a clear improvement in

the performance of the EA, and this is reflected both by the fitness scores obtained and by the

quality of the output. For example, compare the formatted surface of the best individual for

the limerick target form with elitist ratio 0% and elitist ratios 20% and 40%. There are many

other methods for applying selection pressure in a proportionate selection EA, such as sigma

scaling or altering the normalization of Fedit through the parameter λ1. However, the simple

elitist strategy used here seems sufficient for this task.

Unfortunately, contrary to our expectation, the EA failed to find an optimal score of 1.0 for

all three target forms. For limerick, the highest score achieved was 0.95, and for mignonne,

it was 0.94. Finding the reason for this failure is non-trivial: it could be any combination of

factors ranging from the specific EA parameters used, the domain knowledge available, or the

genetic operators. However, it is a feature of EAs that it provides such “satisfycing” solutions,

and given the metrical qualities of these candidate solutions, they seem of sufficient similarity

to the targets to be similar to human-written texts.

Finally, as expected, the output text of the candidate solutions severely suffer from the follow-

ing two problems:� Syntactic holes: the candidate solutions being produced by the baseline operators are

not guaranteed to be complete derivations, and the evaluation function used ignores this

aspect completely. Thus, the formatted surface texts shown in Tables 8.2 to 8.4, which



8.3. MCGONAGALL as form-aware generator 219

simply skip over substitution nodes, are clearly ungrammatical.� Linebreaking: awkward enjambment, particularly for the mignonne target form which

consists of 28 lines.

Note that these problems are not failings of the EA. We deliberately chose to ignore these

aspects for this initial test. In the next two sections we will address the issue of substitution

nodes, and in Section 8.3.4 we will address the issue of linebreaking.

8.3.2 Plugging the holes: syntax-surface balance test

This is the first of two tests in which we try to repeat the initial test but with slight alterations

in an attempt to overcome the problem of substitution nodes that result in candidate solutions

with ungrammatical texts.

In this test we aim to solve the problem by using Fmetre, defined in Section 6.3.7, as the evalua-

tion function. It incorporates the syntax-surface balance function Fbalance , which is intended to

account for substitution nodes. We set λ3
� 0 � 7. For the lestimate values, we use the very ad-hoc

estimates in Table 6.9. The parameters for Fedit are as they were during the initial test.

We also use the same three forms used in the initial test: haiku, limerick and mignonne.

The EA setup is similar to that used in the initial test. However, in this test we only use an

elitist strategy EA with an elitist ratio of 20% of the population size, as the initial test indicated

this to be an appropriate choice for the task.

We also use the same genetic operators and linguistic resources used during the initial test.

Expectations

The best individuals found by the EA should have far fewer holes than the ones found during

the initial test. Note that the fitness scores in this test are not comparable to those in the initial

test, as the evaluation function used is different. Thus, we can only rely on observations from

the actual output texts. Fortunately, it should be easy to accomplish this objectively.



220 Chapter 8. Empirical Study and Discussion

Score 1.00

Surface his families are in a baboon . his epithets are platinum .

Formatted His families are
in a baboon. His epi-
thets are platinum.

Table 8.5: Best individual for Ftarget
� haiku, syntax-surface balance test

Score 0.83

Surface a lion has a baboon . in D mothers , his mothers are his bullets , that boil its treatment , with D bullets . D mothers

boil his treatment .

Formatted A lion * has a ba boon.
In mothers, his mothers * are
his bullets, that boil
its treatment, with bul-
lets. mothers * boil * his treat(ment) .

Table 8.6: Best individual for Ftarget
� limerick, syntax-surface balance test

Results

We ran this test three times, once for each target form. Each test was run five times. Summary

statistics and graphs for this test are presented in Section D.1.2 of Appendix D.

Tables 8.5, 8.6, and 8.7 show the best individuals that yield the best fitness scores from the

last populations of each test. They show the best individuals for the haiku, limerick, and

mignonne target forms respectively. For each individual we show its fitness score, raw surface

text, and formatted surface text. See the guide given in Section 8.3.1 for an explanation of these

formatted surface texts and how to interpret them.

Observations

As in the initial test, the EA has no problems in achieving the haiku target form (see Table D.2).

Figure D.2(a) is virtually identical to Figure D.1(a).

Looking at the raw surface text of the best individual in Table 8.5, we see that there is an

improvement over the individual in Table 8.2, i.e. there are no more spurious substitution nodes,

as they have all been substituted, thus leading to a grammatical text in the formatted surface

form shown.



8.3. MCGONAGALL as form-aware generator 221

Score 0.84

Surface with a animal , D very sensitive epithets , Comp are his very sensitive shoulders , are very mild with his very big

knees , Comp are the very lonely whiskers , with D very extinct hippopotamus , Comp CV african , with D

very mild hippopotamus . NP0 dwells P a baboon . a lion has a expense .

Formatted With an a-
nimal, ve-
ry * sen-
sitive e-
* pithets ,
are his ve-
ry * sen-
sitive shoul-
ders , are ve-
ry * mild
with his ve-
ry * big
* * knees ,
are the ve-
ry * lone-
ly * whis-
kers , with ve-
ry extinct
hippopot-
amus , af-
(ri)can , with ve-
* ry mild
hippopot-
amus . dwells
a baboon .
* A li-
* on has
an expense .

Table 8.7: Best individual for Ftarget
� mignonne, syntax-surface balance test



222 Chapter 8. Empirical Study and Discussion

The scores for the limerick and mignonne target forms in Table D.2 show that the EA is

failing to find an optimal solution for these tasks. Intuitively, this can be explained by the fact

that the task is now more constrained, i.e. it must achieve syntax-surface balance as well. The

EA very rapidly converges to its best fitness scores and stagnates at that level (see Figure D.2(b)

and (c)).

The tradeoff between Fedit and Fbalance can be seen in the best individuals for limerick (Ta-

ble 8.6) and mignonne (Table 8.7). Compared to their counterparts in the initial test (Table 8.3

and 8.4, elitist ratio 20%), they have far fewer substitution nodes, and of those still remaining,

they are for categories with lestimate
� 1, e.g. D , Comp , CV , and P , except for the single

NP node in the mignonne candidate.

As a result, the formatted surface texts, where substitution nodes are skipped over, are more

grammatical. However, from a metre evaluation viewpoint, they are inferior to the individuals

obtained during the initial test, i.e. there are many more edit operations required.

Again, awkward linebreaking and enjambment is still very evident for these best individuals.

Discussion

The results obtained for the three target forms show an improvement in the output quality

achieved by accounting for the scoring potential of substitution nodes, where there are no

longer any remaining substitution nodes, as in Table 8.5, and for those few remaining in Ta-

ble 8.6 and 8.7, they are almost all categories with lestimate
� 1.

Unfortunately, there is a tradeoff between Fbalance and Fedit , and the metre similarity of the best

individuals for limerick and mignonne are inferior to their counterparts obtained during the

initial test.

The populations stagnate with individuals of similar scores (see Figure D.2(b) and (c)), sug-

gesting that this multiple objective task is diminishing the informedness of heuristics provided

by the metre evaluation function, Fedit .

As expected, the awkward linebreaking and enjambment problem is still evident.



8.3. MCGONAGALL as form-aware generator 223

8.3.3 Plugging the holes: complete derivation operators test

This is the second test where we attempt to overcome the problem of substitution nodes. In

this test we aim to solve the problem by using the compound operators that ensure complete

derivations, as defined in Section 7.4.1.

Again, we use the haiku, limerick and mignonne target forms used during the initial test

(Section 8.3.1). We also use the same evaluation function, i.e. Fedit , and linguistic resources

that were used during the initial test.

The EA setup is similar to that used in Section 8.3.2, where we only use an elitist strategy EA

with an elitist ratio of 20% of the population size.

The only aspect that we vary in this test is the use of the compound operators that ‘close

off’ derivations presented in Section 7.4.1. We use the three operators that correspond to the

baseline blind operators used in the initial test, and their probabilities being applied are also the

same as in the initial test:� BLINDCREATECOMPLETE = 0.5� BLINDADJOINCOMPLETE = 0.3� BLINDDELETECOMPLETE = 0.2

Again, no crossover operation is used.

Expectations

The compound operators used here will close off the derivation of any candidate solution, thus

all solutions will be grammatical. However, this also means a coarser level of granularity: the

operators are blindly performing more operations to an individual before subjecting them to

evaluation and selection. Whether or not this coarser granularity will be detrimental to the

performance of the EA remains to be seen, but we predict the overall performance of the EA

to be, at best, equal to that obtained during the initial test, and most probably slightly worse.

Note that unlike in Section 8.3.2, the fitness scores are directly comparable to those obtained

from the initial test due to the same evaluation function being used.



224 Chapter 8. Empirical Study and Discussion

Score 1.00

Surface facts , they are round . african facts , they are in a child . a bill is rare .

Formatted Facts, they are round. Af-
rican facts, they are in a
child. A bill is rare.

Table 8.8: Best individual for Ftarget
� haiku, complete derivation operators test

Score 1.00

Surface in facts , with a bill with a shocking town in a tail in his fish , his blubber will boil his jaws in a bean in mothers . his boy

is a mind .

Formatted In facts, with a bill with a shock-
ing town in a tail in his fish,
his blubber will boil
his jaws in a bean
in mothers. His boy is a mind.

Table 8.9: Best individual for Ftarget
� limerick, complete derivation operators test

Results

We ran this test three times, once for each target form. Each test was run five times. Summary

statistics and graphs for this test are presented in Section D.1.3 of Appendix D.

Tables 8.8, 8.9, and 8.10 show the individual that yields the best fitness scores from the last pop-

ulations of each test. They show the best individual for the haiku, limerick, and mignonne

target forms respectively, and for each individual, we show its fitness score, raw surface form,

and formatted surface text. See the guide given in Section 8.3.1 for an explanation of these

formatted surface texts and how to interpret them.

Observations

The haiku target form is consistently met with an optimal solution with fitness of 1.0. This is

achieved even faster than during the initial test (see Figure D.3(a)). This is to be expected, as

the compound operators will likely produce 17 syllables worth of text much faster. The sample

haiku in Table 8.8 is a complete and grammatical text that has the correct syllable count, albeit

rather awkward linebreaking (‘af-rican’).

The summary scores for the limerick target form in Table D.3 show that the EA is doing even



8.3. MCGONAGALL as form-aware generator 225

Score 0.96

Surface in a product , a animal dwells in his blubber . his names with a elephant boil his mothers . his sensitive mothers , they

boil the expense . with a bean with the boy , in a bean in a blubber , a fish with the jaws in it has them . the waste is his

blubber . his names will be names with a tiger . a dish is a lion . his men , they will play .

Formatted In a pro-
duct, an a-
nimal dwells
in his blub-
ber. His names
with an e-
lephant boil
* his mo-
thers. His sen-
sitive mo-
thers, they boil
the expense.
With a bean
with the boy ,
in a bean
in a blub-
ber, a fish
with the jaws
in it has
them. The waste
is his blub-
ber. His names
will be names
with a ti-
ger. A dish
is a li-
on. His men,
they will play.

Table 8.10: Best individual for Ftarget
� mignonne, complete derivation operators test



226 Chapter 8. Empirical Study and Discussion

better than during the initial test (Table D.1). It also manages to find an optimal solution with a

fitness of 1.0, which is shown in Table 8.9. This is somewhat surprising, given our expectation

that it would do slightly worse than the initial test.

The fitness scores obtained for the mignonne target form in Table D.3 are also consistenly

better than during the initial test (Table D.1). The highest scoring solution does not reach an

optimal 1.0, but only 0.96. It requires one edit of an insertion of a weak syllable, which we

feel is acceptable given the size of the target form. Unfortunately, the awkward linebreaking

prevents it from reading like a natural-sounding text that satisfies the mignonne form.

Discussion

The results from this test were surprisingly better than expected. That the output texts are

grammatical due to them being complete derivations was to be expected, as this is something

that the compound operators used will guarantee. However, the scores for metre similarity

are better than during the initial test, which, given the coarser level of granularity, is rather

counter-intuitive. One possible explanation is that the BLINDCREATECOMPLETE operator

used introduces a lot of genetic diversity that is beneficial to the EA. This is because unlike

BLINDADDSUBSTITUTE, it does not perform substitution incrementally to an existing indi-

vidual, as all individuals no longer have remaining substitution nodes. Instead, it introduces

a completely new individual, i.e. starting from the distinguished symbol. In effect, it is a far

less local move in the search space than BLINDADDSUBSTITUTE achieves. Throughout the

evolutionary process, this possibly results in faster coverage of the search space.

These results suggest that there is little justification for using the baseline operators on their

own. Not only do these compound operators solve the problem of substitution nodes, the

performance of the EA is better than those observed in the previous two tests.

8.3.4 Enjambment and linebreaking test

In this test we attempt to overcome the problem of awkward linebreaking. All the previous

tests ignored this aspect, resulting in texts which, although possibly impeccable in terms of

metre similarity, suffered from awkward linebreaking and enjambment. We aim to solve the

problem by imposing a heavy penalty for inserting linebreaks.



8.3. MCGONAGALL as form-aware generator 227

Substitution Insertion Deletion

Cost w s x b Cost Cost

01 0 2 0 ∞ w 1 01 1

0n 0 2 0 ∞ s 3 0n 1

11 3 0 0 ∞ x 1 11 3

1n 3 0 0 ∞ b 10 1n 3

2n 1 1 0 ∞ 2n 2

b ∞ ∞ ∞ 0 b 0

Table 8.11: Edit distance costs for enjambment and linebreaking test

We use the same target forms, linguistic resources, EA parameters and genetic operators used

in the previous test (Section 8.3.3).

As for the evaluation function, we use the metre edit distance function, Fedit , used in the previ-

ous test, but with a different operation cost table, shown in Table 8.11. The only difference is

that inserting a linebreak target syllable, b, incurs a relatively expensive cost of 10.

Expectations

Given the cost of inserting linebreaks, the task of satisfying the target forms is now more

difficult. This is particularly true for mignonne, which has 28 lines. Thus, we expect the

scores for mignonne to be lower than those obtained in the previous test (Table D.3). However,

given the high penalty incurred for arbitrarily inserting linebreaks, we expect lines to end with

punctuation marks which cost nothing to substitute with a b target syllable.

Results

We ran this test three times, once for each target form. Each test was run five times. Summary

statistics and graphs for this test are presented in Section D.1.4 of Appendix D.

Tables 8.12, 8.13, and 8.14 show the individual that yields the best fitness scores from the

last populations of each test. They show the best individual for the haiku, limerick, and

mignonne target forms respectively, and for each individual, we show its fitness score, raw

surface form, and formatted surface text. See the guide given in Section 8.3.1 for an explanation



228 Chapter 8. Empirical Study and Discussion

Score 1.00

Surface men , they play . in her , a boy dwells in his treatment . his species is rare .

Formatted Men, they play. In her,
a boy dwells in his treatment.
His species is rare.

Table 8.12: Best individual for Ftarget
� haiku, enjambment and linebreaking test

Score 1.00

Surface they play . a expense is a waist . a lion , he dwells in a dish . he dwells in a skin . a sensitive child , he dwells in a child

with a fish .

Formatted They play. An expense is a waist.
A lion, he dwells in a dish.
He dwells in a skin.
A sensitive child,
he dwells in a child with a fish.

Table 8.13: Best individual for Ftarget
� limerick, enjambment and linebreaking test

of these formatted surface texts and how to interpret them.

Observations

Despite the more difficult task, the haiku target form is still easily achieved by the EA (see

Figure D.4(a)). The main difference, however, is that the output in Table 8.12 is a grammatical,

well-formed haiku that has linebreaks coinciding with punctuation marks. Note that in the first

line the linebreak occurs mid-sentence (“In her, a boy dwells in his treatment”).

As for the limerick target form, Table D.4 the EA is essentially doing as well as during the

previous test (Table 8.9), where the only difference was the lack of a cost for inserting a line-

break. The rate of growth in fitness is also similar (compare Figure D.4(b) with Figure D.3(b)).

The output in Table 8.13, however, shows a clear improvement in terms of linebreaking. Ev-

ery line consistently ends with either a sentence or phrase boundary, whilst retaining the same

quality of metre similarity as before.

The mignonne target form is a good form to use in testing the ability of the EA in achieving

natural linebreaking, due to it being 28 lines long. As expected, it turns out to be the most

difficult test yet for the EA. The scores for mignonne in Table D.4 are considerably lower than

during the previous test (Table D.3), and it fails to find an optimal solution. Moreover, the rate



8.3. MCGONAGALL as form-aware generator 229

Score 0.82

Surface with a bean , in a toad , in a soil , his bullets , they with a sense , they are sensitive . in a frog , in a mind , with his trunk ,

with his fish , with the toad , in a mind , the mothers , they with facts , they are men . in a man , in the bean , in a hand ,

with the hand , in a bill , in a boy , his men , they , they play . with his fish , in his town , in his knees , in the mothers ,

she is his blubber .

Formatted With a bean,
in a toad,
in a soil,
* his bul(lets),
(they) with a sense,
they are sen(si)(tive).
In a frog,
in a mind,
with his trunk,
with his fish,
with the toad,
in a mind,
* the mo(thers),
they with facts,
they are men.
In a man,
in the bean,
in a hand,
with the hand,
in a bill,
in a boy,
* his men,
they, they play.
With his fish,
in his town,
in his knees,
in the mo(thers),
(she) is his blub(ber).

Table 8.14: Best individual for Ftarget
� mignonne, enjambment and linebreaking test



230 Chapter 8. Empirical Study and Discussion

of growth for the maximum and average of the best fitness scores is much slower than in the

previous test (compare Figure D.4(c) with Figure D.3(c).

The sample output in Table 8.14 shows that the linebreaks are indeed occurring at sentence and

phrase boundaries, but at the expense of metre similarity: compared to the output in Table 8.10,

it requires far more insertions and deletions of syllables. One interesting point is that the

linebreaking is achieved through extensive use of the prepositional phrase auxiliary tree that

adjoins at the beginning of a sentence.

Discussion

The heavy penalty incurred for arbitrarily inserting a linebreak results in solutions that have

naturally occurring linebreaks, i.e. ones that coincide with sentence and phrase boundaries.

For the haiku and limerick target forms, this means that the EA has managed to produce a

syntactically well-formed and metrically perfect text.

Unfortunately, the 28 lines of mignonne make it a very difficult target form to satisfy, and the

results in this test show that it is unable to find an optimal solution. The slow growth rate of

the scores (see Figure D.4(c)) suggests that running the EA for a longer time may yield better

scores for this particular test. Furthermore, it will be interesting to see how the EA will perform

without the availability of the prepositional phrase auxiliary tree, which it uses extensively in

this test to achieve natural linebreaking for mignonne. These two aspects are the focus of the

next two tests.

8.3.5 Effect of scale test

In this test we essentially repeat the previous test, i.e. the enjambment and linebreaking test

(Section 8.3.4), specifically for the mignonne target form, and extend the EA run to 2000

iterations. Every other aspect of the test is the same. We perform this test due to our observation

of the slow growth rate in Figure D.4(c), which suggests that running the EA for longer may

improve the final solution.



8.3. MCGONAGALL as form-aware generator 231

Expectations

We expect the output of the best individual obtained to be a marked improvement over the one

obtained in the previous test (Table 8.14).

Results

Due to the heavy computational cost of this task, we ran this test three times as opposed to five.

Summary statistics and graphs for this test are presented in Section D.1.5 of Appendix D.

Table 8.15 presents the individual that yields the best fitness score obtained from these runs,

showing its fitness score, raw surface text, and formatted surface text. See the guide given in

Section 8.3.1 for an explanation of these formatted surface texts and how to interpret them.

Observations and discussion

Comparing the statistics in Table D.5 with those for the mignonne target form in Table D.4, we

see that increasing the duration of the EA search does not markedly improve the best fitness

score achievable.

There is a slight increase, e.g. from 0.83 to 0.85, as reflected by the fewer edit operations

required in the best individual in Table 8.15 (6 deletions and 3 insertions as opposed to 8

deletions and 3 insertions for the individual in Table 8.14), but it is perhaps not what one

would hope for given the fourfold increase in computational effort. However, the minimum

and mean values for the best fitness scores does show that the extended search duration is

yielding consistently high scores, and that the 0.82 fitness achieved by the run in the previous

test was a ‘lucky’ one.

The best fitness is obtained after roughly 1100 iterations (see Figure D.5).

We can also observe from the best individual that it is still relying heavily on the prepositional

phrase to achieve natural linebreaks.



232 Chapter 8. Empirical Study and Discussion

Score 0.85

Surface they are whiskers . he will play . in a boy , it is a bean . in a bean , in a bean , in a grin , with a soil , with a soil , with a

grin , he dwells in her . it will play . in a bean , with a trunk , a gap , it is with mothers . they will play . in a frog , in a

dish , in a bill , in a bean , in a child , with a grin , they are knees . in a tail , with a grin , his men , they will play .

Formatted They are whis(kers).
He will play.
In a boy,
(it) is a bean.
In a bean,
in a bean,
in a grin,
with a soil,
with a soil,
with a grin,
* he dwells (in) (her).
It will play.
In a bean,
with a trunk,
* a gap,
(it) is with mo(thers).
They will play.
In a frog,
in a dish,
in a bill,
in a bean,
in a child,
with a grin,
They are knees.
In a tail,
with a grin,
* his men,
they will play.

Table 8.15: Best individual for effect of scale test



8.3. MCGONAGALL as form-aware generator 233

8.3.6 Reduced grammar test

In this test we essentially repeat the enjambment and linebreaking test (Section 8.3.4) for the

mignonne target form, but with a reduced set of linguistic resources, in order to observe the

impact the linguistic resources can have on the performance of the EA. More specifically,

we do not use the family of prepositional phrases (Appendix C.2.6) and relative clauses (Ap-

pendix C.2.7), two groups of auxiliary trees that we believe can be used as in Table 8.14

and 8.15 to achieve the required lines of three syllables.

Apart from this reduced grammar, all other aspects of this test are the same as for the enjamb-

ment and linebreaking test in Section 8.3.4.

Expectations

We expect the performance of the EA to be worse than that achieved in the previous two tests,

where the prepositional phrase was very extensively used to satisfy the mignonne target form.

Results

We ran this test five times. Summary statistics and graphs for this test are presented in Sec-

tion D.1.6 of Appendix D.

Table 8.16 presents the individual that yields the best fitness score obtained from these runs,

showing its fitness score, raw surface text, and formatted surface text. See the guide given in

Section 8.3.1 for an explanation of these formatted surface texts and how to interpret them.

Observations

With this reduced grammar, the EA clearly struggles to assemble a text that satisfies the

mignonne target form. The drastic reduction in quality, both from the scores in Table D.6 and

Figure D.6, and the surface form in Table 8.16, indicates that the limited linguistic resources do

not provide ample opportunities to satisfy the target form. In place of the prepositional phrases

that were used extensively in Table 8.14 and 8.15, it relies heavily on the left dislocated noun

phrase (e.g.“His men, they will play”), but this requires a lot of syllable insertions and deletions

to satisfy the target form.



234 Chapter 8. Empirical Study and Discussion

Score 0.62

Surface he will play . his knees , they are in her . his knees , they are mild . they are mild . his men , they will play . a table , it

is with them . his men , they are with jaws . a hippopotamus , he is good . a child , he dwells in her . a treatment , it has

them . a boy , he is in her . a sense , it is platinum . a toad , it is with knees . they will play . a dish , it is lonely . it will

play .

Formatted He will play.
* His knees,
(they) are in her.
* His knees,
they are mild.
They are mild.
* His men,
they will play.
* A ta(ble),
(it) is with them.
* His men,
(they) are with jaws.
(A) hippopot(a)(mus),
he is good.
* A child,
* he dwells (in) (her).
* A treat(ment),
* it has (them).
* A boy,
(he) is in her.
* A sense,
it is pla(ti)(num).
* A toad,
(it) is with knees.
They will play.
* A dish,
it is lone(ly).
It will play.

Table 8.16: Best individual for reduced grammar test



8.3. MCGONAGALL as form-aware generator 235

Discussion

This test shows the effect the linguistic resources can have on the quality of the output. Al-

though we have demonstrated an extreme case by targeting a specific family of elementary

trees that was observed to be extensively used, it suggests that in general, the more linguistic

resources available, the more opportunities it will provide the EA to satisfy the target metre

with.

8.3.7 Crossover operator test

Up until this point, the most constrained task that we have tested is the satisfying of the haiku,

limerick, and mignonne target forms with the edit distance costs used in the enjambment

and linebreaking test (Table 8.11), using the compound operators that ensure complete deriva-

tions. These represent ‘perfect’ texts in that they are definitely grammatical (due to the use

of compound operators), should satisfy the target metre, and naturally align linebreaks with

punctuation marks that mark phrase boundaries, e.g. commas and fullstops. In Section 8.3.4

we obtained optimal solutions to this task for the haiku and limerick forms, shown in Ta-

bles 8.12 and 8.13. However, thus far we have been unable to obtain an optimal solution for

the mignonne target form, even after letting the EA run for 2000 iterations (Section 8.3.5).

There are various aspects that we can alter in an attempt to solve this problem, such as choice of

selection algorithm, population size, and other EA parameters, but in this test we will observe

the impact of using the crossover operator, BLINDSWAP.

Recall from Section 4.2.4 that mutation is often viewed to be best at creating genetic diver-

sity within a population, and that crossover promotes emergent behaviour from partial solu-

tions. Given the nature of the mignonne target form, we believe that the task of satisfying it is

amenable to the crossover operator.

In previous tests, the genetic operators that have been used when constructing a population have

been limited to mutation. In other words, the probability of applying mutation to a selected

parent, pmutation , is 1, and of crossover, pcrossover , is 0. In this test we will examine the effect of

varying these probabilities.

In this test we will only use the mignonne target form. All remaining aspects of the test will

be the same as for the enjambment and linebreaking test, i.e. linguistic resources, evaluation



236 Chapter 8. Empirical Study and Discussion

function, and mutation operators.

Expectations

We hope the crossover operator used, BLINDSWAP, will be able to combine partial solutions

to create an individual that is an optimal solution, i.e. has a fitness score of 1.0.

Results

We ran this test three times, assigning pmutation the values of 0.25, 0.5, and 0.75 (and thus

assigning pcrossover 0.75, 0.5, and 0.25). Each test was run five times. Summary statistics and

graphs for this test are presented in Section D.1.7 of Appendix D.

Table 8.17 presents the individuals that yield the best fitness score obtained from these tests,

showing its fitness score, raw surface text, and formatted surface text. See the guide given in

Section 8.3.1 for an explanation of these formatted surface texts and how to interpret them.

Observations and discussion

Comparing the results in Table D.7 to the results for mignonne in Table D.4, we see that the

runs where pcrossover
� 0 � 25 and 0 � 50 yield better solutions, i.e. with fitness scores of 0.9 and

0.96 respectively. Unfortunately these are still not optimal solutions.

For pcrossover
� 0 � 75, however, the best individual obtained only has a fitness of 0.75, worse

than that obtained during the enjambment and linebreaking test, and one might interpret this as

being caused by a lack of genetic diversity which BLINDSWAP can manipulate.

Observing the individuals themselves in Table 8.17, and comparing them to the individual in

Table 8.14, we can clearly see the role that the crossover operator is playing in the manipulation

of the texts to satisfy the metre. For all three individuals shown, there is an extensive repetition

of phrases, both in terms of single lines and larger groups of lines.

In the first individual, i.e. for pcrossover
� 0 � 25, the sentence “In a bean, in a bean, with a bean,

his knees, they will play.” is essentially repeated six times to make up the entire text, with a

slight variation in the third instance, where two of the three prepositional phrases preceding the

main sentence are deleted. Similar repetitions can be seen for the other two individuals.



8.3. MCGONAGALL as form-aware generator 237

pmutation
� 0 � 75 pmutation

� 0 � 50 pmutation
� 0 � 25

pcrossover
� 0 � 25 pcrossover

� 0 � 50 pcrossover
� 0 � 75

Score 0.90 0.96 0.75

Surface in a bean , in a bean , with a bean , his knees

, they will play . in a bean , in a bean , with

a bean , his knees , they will play . in a bean

, his knees , they will play . in a bean , in a

bean , with a bean , his knees , they will play

. in a bean , in a bean , with a bean , his knees

, they will play . in a bean , in a bean , with a

bean , his knees , they will play .

in a child , in his facts , that they boil , , in a

child , in his facts , that they boil , , his facts

, that they boil , are with facts , that they boil

, in his facts , that they boil , with his facts ,

that they boil , . in a child , in his facts , that

they boil , , in a child , in his facts , that they

boil , , his facts , that they boil , are with facts

, that they boil , in his facts , that they boil ,

with his facts , that they boil , .

his mothers , who will play , are with mothers

, who will play , in his mothers , who will

play , . his mothers , who will play , are with

mothers , who will play , in his mothers , who

will play , . his mothers , who will play , are

with him . his mothers , who will play , are

with mothers , who will play , in a man . they

are kind . his mothers , who will play , are

with mothers , who will play , in his mothers

, who will play , . they are kind .

Formatted In a bean, In a child, * His mo(thers),
in a bean, in his facts, who will play,
with a bean, that they boil,, are with mo(thers),
* his knees, in a child, who will play,
they will play. in his facts, in his mo(thers),
In a bean, that they boil,, who will play,.
in a bean, * his facts, * His mo(thers),
with a bean, that they boil, who will play,
* his knees, are with facts, are with mo(thers),
they will play. that they boil, who will play,
In a bean, in his facts, in his mo(thers),
* his knees, that they boil, who will play,.
they will play. with his facts, * His mo(thers),
In a bean, that they boil,. who will play,
in a bean, In a child, are with him.
with a bean, in his facts, * His mo(thers),
* his knees, that they boil,, who will play,
they will play. in a child, are with mo(thers),
In a bean, in his facts, who will play,
in a bean, that they boil,, in a man.
with a bean, * his facts, They are kind.
* his knees, that they boil, * His mo(thers),
they will play. are with facts, who will play,
In a bean, that they boil, are with mo(thers),
in a bean, in his facts, who will play,
with a bean, that they boil, in his mo(thers),
* his knees, with his facts, who will play,.
they will play. that they boil,. They are kind.

Table 8.17: Best individuals for crossover operator test



238 Chapter 8. Empirical Study and Discussion

An animal dwells in a bill.

An animal dwells in a bill.

He has * a boy,

(who) in facts, will be large.

An animal dwells in a bill.

(Score: 0.90)

Figure 8.1: Sample limerick output using BLINDSWAP crossover operator

It is interesting to note that despite MCGONAGALL’s lack of any hierarchical concept of poetic

structure, such as that found in ASPERA and COLIBRI (Section 2.3.4), these individuals do

show what can be seen as an inherent pattern of lines and repeating structures. This is, of

course, dictated by pressure to align the linebreak target syllables with punctuation marks.

We experimented with satisfying the haiku and limerick forms using the crossover operator

as well, and although we do not present the full results for these tests, a sample output is shown

in Figure 8.1. We can see a similar repetition of phrases that conveniently coincide with lines

in the given target forms.

8.3.8 Summary of discussion

The tests conducted during this stage reveal that MCGONAGALL is able to find optimal so-

lutions when faced with the task of only having to satisfy form constraints, and that these

solutions do indeed exhibit metre patterns that are similar to their specified targets.

We believe that the compound operators that ensure complete derivations are the most appro-

priate genetic operators to use. Not only do they solve the awkward problem of substitution

nodes, but the higher fitness scores obtained in Section 8.3.2 suggest that the genetic diversity

introduced by the BLINDCREATECOMPLETE operator helps the EA in rapidly covering the

search space.

By imposing a relatively expensive penalty for arbitrarily inserting linebreaks in the text, we

are able to guide the EA in producing texts which exhibit naturally occurring linebreaks, albeit

at the possible expense of metrical similarity, particularly for the mignonne form.

Finally, the crossover operator, BLINDSWAP, is useful in combining partial solutions to build



8.4. MCGONAGALL as tactical NLG component 239

optimal solutions. It is only with this operator that a “satisfycing” near-optimal solution for the

mignonne target form was obtained (Table 8.17).

8.4 MCGONAGALL as tactical NLG component

Having experimented with MCGONAGALL as a text generator that seeks only to satisfy form

constraints in the first stage, in the second stage we will experiment with MCGONAGALL as a

more traditional NLG system, i.e. one that only strives to convey a given input semantics, and

has no consideration for metre.

The tests are conducted in a similar fashion to those in the first stage: an initial test (Sec-

tion 8.4.1) is conducted that defines the baseline configuration of operators, evaluators and

EA parameters. Based on this, further tests are conducted in an attempt to overcome the en-

countered limitations. In particular, we examine the use of our semantically smart operators in

Section 8.4.2, and the use of the even more explicitly goal-directed PROTECTORLIKE and

SPUDLIKE operators in Section 8.4.3.

8.4.1 Initial tactical NLG test

For the initial test of MCGONAGALL as tactical NLG component, we will define our baselines

with regard to the insight gleaned from the previous stage. In particular, we will adopt the

following three aspects:

1. We will use an elitist strategy EA.

2. We will use the compound operators that ensure complete derivations.

3. We will use crossover as a possible genetic operator.

Although it is arguable that our principle of least bias (Section 8.2) should dictate a more sim-

plistic baseline configuration similar to that used in the initial form-aware test (Section 8.3.1),

the results obtained in the first stage suggests that these are fair assumptions to make. These

assumptions allow us to concentrate on presenting the primary issue under investigation, i.e.

the use of our semantic similarity evaluation function in an EA framework to generate texts

that show faithfulness towards a given target semantics.



240 Chapter 8. Empirical Study and Discussion

“The Lion”:

The african lion, he dwells in the waste,

he has a big head and a very small waist;

but his shoulders are stark, and his jaws they are grim,

and a good little child will not play with him.

lionhalf:

lion( ,l), african( ,l), dwell(d,l), inside( ,d,was), waste( ,was), own( ,l,h), head( ,h),

big( ,h), own( ,l,wai), small(s,wai), waist( ,wai), very( ,s)

lion:

lion( ,l), african( ,l), dwell(d,l), inside( ,d,was), waste( ,was), own( ,l,h), head( ,h),

big( ,h), own( ,l,wai), small(s,wai), waist( ,wai), very( ,s), own( ,l,sho), shoulders( ,sho),

stark( ,sho), own( ,l,ja), jaws( ,ja), grim( ,ja), boy( ,c), good( ,c), little( ,c), play(pl,c),

with( ,pl,l), will(wpl,pl), not( ,wpl)

Table 8.18: lionhalf and lion encode the first 2 and 4 lines of “The Lion”

Target

Two sets of semantic propositions are used as Starget : lionhalf and lion, as shown in Ta-

ble 8.18 (see also Appendix A.1). They are our representations of, respectively, the first two

and four lines of Belloc’s poem “The Lion”, with a slight alteration where we have replaced

the original opening noun phrase “the lion, the lion” with “the african lion”.

EA setup

� Selection algorithm: this test uses the proportionate selection algorithm with stochastic

universal sampling, as used in the tests of the first stage. We employ an elitist strategy

EA with elitist populations of 20% and 40% of the entire population.� Population size: as in the first stage, we choose a population size of 40.

Evaluators

We use the semantic evaluation function defined in Section 6.4 to determine the semantic sim-

ilarity between the semantics of the individuals generated during the EA and the target seman-



8.4. MCGONAGALL as tactical NLG component 241

α1 α2 α3 α4

Weighting scheme 1 1.0 1.0 1.0 1.0

Weighting scheme 2 4.0 2.0 1.0 1.0

Weighting scheme 3 1.0 2.0 4.0 1.0

Table 8.19: Three weighting schemes for the terms in the similarity equation

tics. We test three different weighting schemes for the terms in our similarity equation (see

Section 6.4.3), and they are shown in Table 8.19.

Weighting scheme 1 is a baseline scheme where all four terms of our similarity equation are

given equal weight. This is the weighting scheme used in Section 6.4.4. Scheme 2 is de-

signed to emphasize the raw conceptual similarity between the target and candidate semantics,

whereas scheme 3 is designed to emphasize the higher-order structural similarity as computed

by our mapping algorithm (Section 6.4.2).

For all our tests we assume a symmetry between the target and candidate semantics, i.e. we

choose ϕ1
� 0 � 5 and δ1

� 0 � 5. In addition, as mentioned in Section 6.4.2, we use a simple

binary-valued function c � m � for conceptual similarity: two literals are considered conceptually

similar if they share the same functor.

Operators

In this test we use the compound operators that ensure complete derivations, presented in Sec-

tion 7.4.1 and first used in Section 8.3.3. The probabilities of them being applied when mutation

is called for are also the same as during the first stage:� BLINDCREATECOMPLETE = 0.5� BLINDADJOINCOMPLETE = 0.3� BLINDDELETECOMPLETE = 0.2

Additionally, when crossover is called for, the subtree swapping operator BLINDSWAP is used.

As the three mutation operators above guarantee complete derivations, BLINDSWAP always

guarantees complete derivations as well.

We assign the probabilities of applying genetic operators as pmutation
� 0 � 6 and pcrossover

� 0 � 4.



242 Chapter 8. Empirical Study and Discussion

Resources

We use the same linguistic resources used in the initial form-aware test, i.e. the handcrafted

grammar and lexicon shown in Appendix C.

Expectations

� We hope that for each Starget there is at least one obtained individual where each literal

in Starget is conveyed. This will be evident in the mapping shown for each obtained

individual, where there should not be any dangling (i.e. unmapped) target literals.� We expect that the task of conveying lionhalf should be easier than that of conveying

lion given its reduced complexity.

Results

As there are three factors being varied in this test, i.e. target semantics, weighting scheme,

and elitist ratio, we conduct twelve separate tests: Starget
� lionhalf with weighting schemes

1, 2, and 3, and Starget
� lion with weighting schemes 1, 2, and 3, all of which are run with

elitist ratios of 20% and 40%. Each individual test is run ten times, and each run lasts for

500 iterations. Summary statistics and graphs for this test are presented in Section D.2.1 of

Appendix D.

Tables 8.20 to 8.22 and Tables 8.23 to 8.25 show the individuals that yield the best fitness

scores for lionhalf and lion respectively. For each target semantics, we present the best

individual for each weighting scheme used, showing its fitness score, raw surface text, and the

mapping of Starget to Scandidate as computed by our mapping algorithm in Section 6.4.2. Just as

the formatted surface texts in the first stage show the alignment obtained from the edit distance

algorithm, which forms the basis of our metre evaluation function, this mapping shows the

alignment between the target and candidate semantics, which forms the basis of our semantic

similarity equation.

For each individual, we show the set of proper matches, the set of dangling (i.e. unmapped) tar-

get literals, and the set of dangling (i.e. unmapped) candidate literals. Recall from Section 6.4.2

that a proper match is a pair � x � y � where x is a target literal and y is a candidate literal.



8.4. MCGONAGALL as tactical NLG component 243

Elitist = 20% Elitist = 40%

Score 0.81 0.99

Surface a african lion , it dwells in her in a

waste . its big head , it has its very

small waist .

a african lion , who has a big head ,

, it dwells in a waste , that is it , . he

is its very small waist .

Proper � > lion > 0 ? l @ ? lion > 17 ? 11 @�@ ? � > inside > 2 ? d ? was @ ? inside > 37 ? 29 ? 38 @�@ ?
match > a f rican > 1 ? l @ ? a f rican > 18 ? 11 @�@ ? > lion > 0 ? l @ ? lion > 31 ? 30 @�@ ?> dwell > d ? l @ ? dwell > 10 ? 11 @�@ ? > a f rican > 1 ? l @ ? a f rican > 32 ? 30 @�@ ?> waste > 3 ? was @ ? waste > 14 ? 13 @�@ ? > dwell > d ? l @ ? dwell > 29 ? 30 @�@ ?> inside > 2 ? d ? was @ ? inside > 12 ? 10 ? 13 @�@ ? > waste > 3 ? was @ ? waste > 39 ? 38 @�@ ?> head > 5 ? h @ ? head > 26 ? 20 @�@ ? > head > 5 ? h @ ? head > 35 ? 34 @�@ ?> own > 4 ? l ? h @ ? own > 28 ? 11 ? 20 @�@ ? > own > 4 ? l ? h @ ? own > 33 ? 30 ? 34 @�@ ?> own > 7 ? l ? wai @ ? own > 23 ? 11 ? 21 @�@ ? > own > 7 ? l ? wai @ ? own > 42 ? 30 ? 41 @�@ ?> big > 6 ? h @ ? big > 27 ? 20 @�@ ? > big > 6 ? h @ ? big > 36 ? 34 @�@ ?> small > s ? wai @ ? small > 24 ? 21 @�@ ? > small > s ? wai @ ? small > 43 ? 41 @�@ ?> waist > 8 ? wai @ ? waist > 22 ? 21 @�@ ? > waist > 8 ? wai @ ? waist > 40 ? 41 @�@ ?> very > 9 ? s @ ? very > 25 ? 24 @�@�� > very > 9 ? s @ ? very > 44 ? 43 @�@��
Target /0 /0
dangling

Candidate � inside > 15 ? 10 ? 16 @ ? own > 19 ? 20 ? 21 @�� /0
dangling

Table 8.20: Best individual for weighting 1, Starget
� lionhalf, initial tactical NLG test

Note that given the different emphasis of terms in the similarity equation, two fitness scores

obtained under different weighting schemes are not comparable. However, by comparing the

obtained mappings, we can observe the relative semantic qualities of these individuals across

different weightings.

Observations and discussion

The conveying of lionhalf is a much easier task than the conveying of lion (see the values

in Tables D.8 and D.9). For all the weighting schemes used, the EA achieves near optimal

solutions for lionhalf, with the test for weighting scheme 1 and an elitist ratio of 40% yielding

the highest score. However, we will have to scrutinize the individuals themselves to find out

whether our semantic similarity equation indeed reflects the faithfulness of the texts. The

maximum values for lion, however, are considerably lower, in particular weighting scheme 1.

Again, we must examine the individuals that yield these scores.

The first observation one can make by briefly observing the individuals in Tables 8.20 to 8.25

are that that are all roughly ‘about’ the concepts within the target semantics lionhalf and



244 Chapter 8. Empirical Study and Discussion

Elitist = 20% Elitist = 40%

Score 0.93 0.93

Surface a african lion , it dwells in a waste .

its big head , that is him , , it has its

very small waist .

a african lion , who has a very small

waist , , it dwells in a waste in its big

head , that is her , .

Proper � > inside > 2 ? d ? was @ ? inside > 47 ? 45 ? 48 @�@ ? � > lion > 0 ? l @ ? lion > 64 ? 63 @�@ ?
match > lion > 0 ? l @ ? lion > 50 ? 46 @�@ ? > a f rican > 1 ? l @ ? a f rican > 65 ? 63 @�@ ?> a f rican > 1 ? l @ ? a f rican > 51 ? 46 @�@ ? > dwell > d ? l @ ? dwell > 62 ? 63 @�@ ?> dwell > d ? l @ ? dwell > 45 ? 46 @�@ ? > waste > 3 ? was @ ? waste > 71 ? 72 @�@ ?> waste > 3 ? was @ ? waste > 49 ? 48 @�@ ? > inside > 2 ? d ? was @ ? inside > 73 ? 62 ? 72 @�@ ?> head > 5 ? h @ ? head > 59 ? 53 @�@ ? > head > 5 ? h @ ? head > 76 ? 75 @�@ ?> own > 4 ? l ? h @ ? own > 61 ? 46 ? 53 @�@ ? > own > 4 ? l ? h @ ? own > 78 ? 63 ? 75 @�@ ?> own > 7 ? l ? wai @ ? own > 56 ? 46 ? 54 @�@ ? > own > 7 ? l ? wai @ ? own > 66 ? 63 ? 67 @�@ ?> big > 6 ? h @ ? big > 60 ? 53 @�@ ? > big > 6 ? h @ ? big > 77 ? 75 @�@ ?> small > s ? wai @ ? small > 57 ? 54 @�@ ? > small > s ? wai @ ? small > 69 ? 67 @�@ ?> waist > 8 ? wai @ ? waist > 55 ? 54 @�@ ? > waist > 8 ? wai @ ? waist > 68 ? 67 @�@ ?> very > 9 ? s @ ? very > 58 ? 57 @�@�� > very > 9 ? s @ ? very > 70 ? 69 @�@��
Target /0 /0
dangling

Candidate � own > 52 ? 53 ? 54 @�� � inside > 74 ? 62 ? 75 @��
dangling

Table 8.21: Best individual for weighting 2, Starget
� lionhalf, initial tactical NLG test

Elitist = 20% Elitist = 40%

Score 0.90 0.93

Surface the african lion , it dwells in a waste

. a big head , it is its expense in a

very small man , who is its waist , .

a african lion , it dwells in a waste .

he is its big head with its very small

waist .

Proper � > lion > 0 ? l @ ? lion > 96 ? 86 @�@ ? � > inside > 2 ? d ? was @ ? inside > 112 ? 109 ? 111 @�@ ?
match > a f rican > 1 ? l @ ? a f rican > 97 ? 86 @�@ ? > lion > 0 ? l @ ? lion > 113 ? 101 @�@ ?> dwell > d ? l @ ? dwell > 92 ? 86 @�@ ? > a f rican > 1 ? l @ ? a f rican > 114 ? 101 @�@ ?> inside > 2 ? d ? was @ ? inside > 95 ? 92 ? 94 @�@ ? > dwell > d ? l @ ? dwell > 109 ? 101 @�@ ?> waste > 3 ? was @ ? waste > 93 ? 94 @�@ ? > waste > 3 ? was @ ? waste > 110 ? 111 @�@ ?> head > 5 ? h @ ? head > 90 ? 80 @�@ ? > head > 5 ? h @ ? head > 98 ? 99 @�@ ?> own > 4 ? l ? h @ ? own > 89 ? 86 ? 80 @�@ ? > own > 4 ? l ? h @ ? own > 100 ? 101 ? 99 @�@ ?> own > 7 ? l ? wai @ ? own > 85 ? 86 ? 82 @�@ ? > own > 7 ? l ? wai @ ? own > 106 ? 101 ? 104 @�@ ?> big > 6 ? h @ ? big > 91 ? 80 @�@ ? > big > 6 ? h @ ? big > 102 ? 99 @�@ ?> small > s ? wai @ ? small > 87 ? 82 @�@ ? > small > s ? wai @ ? small > 107 ? 104 @�@ ?> waist > 8 ? wai @ ? waist > 84 ? 82 @�@ ? > waist > 8 ? wai @ ? waist > 105 ? 104 @�@ ?> very > 9 ? s @ ? very > 88 ? 87 @�@�� > very > 9 ? s @ ? very > 108 ? 107 @�@��
Target /0 /0
dangling

Candidate � expense > 79 ? 80 @ ? inside > 81 ? 79 ? 82 @ ? � with > 103 ? 98 ? 104 @��
dangling man > 83 ? 82 @��
Table 8.22: Best individual for weighting 3, Starget

� lionhalf, initial tactical NLG test



8.4. MCGONAGALL as tactical NLG component 245

Elitist = 20% Elitist = 40%

Score 0.55 0.60

Surface he will not play . a african lion , who

has stark shoulders , , it dwells in a

waste .

with a african lion , who dwells in

her , , a boy will not play . its stark

shoulders , they are them .

Proper � > inside > 2 ? d ? was @ ? inside > 35 ? 25 ? 28 @�@ ? � > inside > 2 ? d ? was @ ? inside > 45 ? 44 ? 46 @�@ ?
match > lion > 0 ? l @ ? lion > 29 ? 26 @�@ ? > with > 19 ? pl ? l @ ? with > 41 ? 36 ? 42 @�@ ?> a f rican > 1 ? l @ ? a f rican > 34 ? 26 @�@ ? > lion > 0 ? l @ ? lion > 43 ? 42 @�@ ?> dwell > d ? l @ ? dwell > 25 ? 26 @�@ ? > a f rican > 1 ? l @ ? a f rican > 47 ? 42 @�@ ?> waste > 3 ? was @ ? waste > 27 ? 28 @�@ ? > dwell > d ? l @ ? dwell > 44 ? 42 @�@ ?> shoulders > 11 ? sho @ ? shoulders > 32 ? 31 @�@ ? > shoulders > 11 ? sho @ ? shoulders > 48 ? 49 @�@ ?> own > 10 ? l ? sho @ ? own > 30 ? 26 ? 31 @�@ ? > own > 10 ? l ? sho @ ? own > 51 ? 42 ? 49 @�@ ?> stark > 12 ? sho @ ? stark > 33 ? 31 @�@ ? > stark > 12 ? sho @ ? stark > 50 ? 49 @�@ ?> play > pl ? c @ ? play > 21 ? 22 @�@ ? > boy > 16 ? c @ ? boy > 38 ? 37 @�@ ?> will > wpl ? pl @ ? will > 23 ? 21 @�@ ? > play > pl ? c @ ? play > 36 ? 37 @�@ ?> not > 20 ? wpl @ ? not > 24 ? 23 @�@ ? > will > wpl ? pl @ ? will > 39 ? 36 @�@��> not > 20 ? wpl @ ? not > 40 ? 39 @�@��
Target � own > 4 ? l ? h @ ? head > 5 ? h @ ? � waste > 3 ? was @ ? own > 4 ? l ? h @ ?
dangling big > 6 ? h @ ? own > 7 ? l ? wai @ ? head > 5 ? h @ ? big > 6 ? h @ ?

small > s ? wai @ ? waist > 8 ? wai @ ? own > 7 ? l ? wai @ ? small > s ? wai @ ?
very > 9 ? s @ ? own > 13 ? l ? ja @ ? waist > 8 ? wai @ ? very > 9 ? s @ ?
jaws > 14 ? ja @ ? grim > 15 ? ja @ ? own > 13 ? l ? ja @ ? jaws > 14 ? ja @ ?
boy > 16 ? c @ ? good > 17 ? c @ ? grim > 15 ? ja @ ? good > 17 ? c @ ?
little > 18 ? c @ ? with > 19 ? pl ? l @�� little > 18 ? c @��

Candidate /0 /0
dangling

Table 8.23: Best individual for weighting 1, Starget
� lion, initial tactical NLG test



246 Chapter 8. Empirical Study and Discussion

Elitist = 20% Elitist = 40%

Score 0.82 0.83

Surface they play . a african lion dwells in

a waste , that a little boy has , .

its stark shoulders , they will not be

pretty . a good boy dwells with it

in its grim jaws , that it has , . a big

waste , that it has , has its very small

waist , that has its head , .

they play . a african lion dwells in

a waste , that is with its big head ,

in its very small waist . its shoulders

are stark . a waste , that is with a lit-

tle waist , will not be good . with its

grim jaws , a boy dwells in a waist .

Proper � > with > 19 ? pl ? l @ ? with > 75 ? 73 ? 53 @�@ ? � > lion > 0 ? l @ ? lion > 128 ? 118 @�@ ?
match > inside > 2 ? d ? was @ ? inside > 62 ? 52 ? 57 @�@ ? > a f rican > 1 ? l @ ? a f rican > 129 ? 118 @�@ ?> lion > 0 ? l @ ? lion > 54 ? 53 @�@ ? > dwell > d ? l @ ? dwell > 120 ? 118 @�@ ?> a f rican > 1 ? l @ ? a f rican > 55 ? 53 @�@ ? > head > 5 ? h @ ? head > 125 ? 124 @�@ ?> dwell > d ? l @ ? dwell > 52 ? 53 @�@ ? > own > 4 ? l ? h @ ? own > 126 ? 118 ? 124 @�@ ?> waste > 3 ? was @ ? waste > 56 ? 57 @�@ ? > big > 6 ? h @ ? big > 127 ? 124 @�@ ?> head > 5 ? h @ ? head > 93 ? 92 @�@ ? > small > s ? wai @ ? small > 134 ? 131 @�@ ?> own > 4 ? l ? h @ ? own > 94 ? 53 ? 92 @�@ ? > inside > 2 ? d ? was @ ? inside > 136 ? 120 ? 122 @�@ ?> small > s ? wai @ ? small > 89 ? 86 @�@ ? > own > 7 ? l ? wai @ ? own > 133 ? 118 ? 131 @�@ ?> own > 7 ? l ? wai @ ? own > 88 ? 53 ? 86 @�@ ? > waste > 3 ? was @ ? waste > 121 ? 122 @�@ ?> waist > 8 ? wai @ ? waist > 87 ? 86 @�@ ? > waist > 8 ? wai @ ? waist > 132 ? 131 @�@ ?> very > 9 ? s @ ? very > 90 ? 89 @�@ ? > very > 9 ? s @ ? very > 135 ? 134 @�@ ?> shoulders > 11 ? sho @ ? shoulders > 70 ? 66 @�@ ? > shoulders > 11 ? sho @ ? shoulders > 141 ? 140 @�@ ?> own > 10 ? l ? sho @ ? own > 72 ? 53 ? 66 @�@ ? > own > 10 ? l ? sho @ ? own > 142 ? 118 ? 140 @�@ ?> stark > 12 ? sho @ ? stark > 71 ? 66 @�@ ? > own > 13 ? l ? ja @ ? own > 117 ? 118 ? 114 @�@ ?> jaws > 14 ? ja @ ? jaws > 80 ? 79 @�@ ? > stark > 12 ? sho @ ? stark > 139 ? 140 @�@ ?> grim > 15 ? ja @ ? grim > 82 ? 79 @�@ ? > jaws > 14 ? ja @ ? jaws > 115 ? 114 @�@ ?> good > 17 ? c @ ? good > 77 ? 74 @�@ ? > grim > 15 ? ja @ ? grim > 116 ? 114 @�@ ?> boy > 16 ? c @ ? boy > 76 ? 74 @�@ ? > boy > 16 ? c @ ? boy > 119 ? 109 @�@ ?> not > 20 ? wpl @ ? not > 69 ? 67 @�@ ? > will > wpl ? pl @ ? will > 105 ? 106 @�@ ?> own > 13 ? l ? ja @ ? own > 81 ? 53 ? 79 @�@�� > not > 20 ? wpl @ ? not > 107 ? 105 @�@��
Target � big > 6 ? h @ ? little > 18 ? c @ ? � good > 17 ? c @ ? little > 18 ? c @ ?
dangling play > pl ? c @ ? will > wpl ? pl @�� play > pl ? c @ ? with > 19 ? pl ? l @��
Candidate � own > 58 ? 59 ? 57 @ ? boy > 60 ? 59 @ ? � good > 98 ? 99 @ ? waste > 100 ? 99 @ ?
dangling little > 61 ? 59 @ ? play > 63 ? 64 @ ? with > 101 ? 99 ? 102 @ ? waist > 103 ? 102 @ ?

pretty > 65 ? 66 @ ? will > 67 ? 68 @ ? little > 104 ? 102 @ ? dwell > 108 ? 109 @ ?
dwell > 73 ? 74 @ ? inside > 78 ? 73 ? 79 @ ? waist > 110 ? 111 @ ? inside > 112 ? 108 ? 111 @ ?
own > 83 ? 53 ? 79 @ ? own > 84 ? 85 ? 86 @ ? with > 113 ? 108 ? 114 @ ? with > 123 ? 122 ? 124 @ ?
own > 91 ? 86 ? 92 @ ? waste > 95 ? 85 @ ? inside > 130 ? 120 ? 131 @ ? play > 137 ? 138 @��
big > 96 ? 85 @ ? own > 97 ? 53 ? 85 @��

Table 8.24: Best individual for weighting 2, Starget
� lion, initial tactical NLG test



8.4. MCGONAGALL as tactical NLG component 247

Score 0.73 0.73

Surface his men play . a african frog , who

his grim jaws in his stark shoulders

, that are with them , will not boil

, dwells in a grim waste . his very

small waist , it has his big head , that

has a very stark bean in a good tiger

, who is a little boy , , .

the jaws are the jaws . with a good

boy , a african child dwells in his big

head in a waste , that is it , . with his

very small waist , the big shoulders ,

they will not boil his stark shoulders

with him with his grim shoulders ,

that are little , . the men play .

Proper � > a f rican > 1 ? l @ ? a f rican > 170 ? 160 @�@ ? � > a f rican > 1 ? l @ ? a f rican > 202 ? 197 @�@ ?
match > dwell > d ? l @ ? dwell > 165 ? 160 @�@ ? > with > 19 ? pl ? l @ ? with > 226 ? 212 ? 197 @�@ ?> inside > 2 ? d ? was @ ? inside > 184 ? 165 ? 167 @�@ ? > dwell > d ? l @ ? dwell > 196 ? 197 @�@ ?> waste > 3 ? was @ ? waste > 166 ? 167 @�@ ? > waste > 3 ? was @ ? waste > 200 ? 199 @�@ ?> head > 5 ? h @ ? head > 146 ? 145 @�@ ? > inside > 2 ? d ? was @ ? inside > 198 ? 196 ? 199 @�@ ?> own > 4 ? l ? h @ ? own > 159 ? 160 ? 145 @�@ ? > head > 5 ? h @ ? head > 207 ? 208 @�@ ?> big > 6 ? h @ ? big > 147 ? 145 @�@ ? > own > 4 ? l ? h @ ? own > 210 ? 197 ? 208 @�@ ?> small > s ? wai @ ? small > 163 ? 144 @�@ ? > big > 6 ? h @ ? big > 209 ? 208 @�@ ?> own > 7 ? l ? wai @ ? own > 162 ? 160 ? 144 @�@ ? > small > s ? wai @ ? small > 224 ? 221 @�@ ?> waist > 8 ? wai @ ? waist > 161 ? 144 @�@ ? > own > 7 ? l ? wai @ ? own > 223 ? 197 ? 221 @�@ ?> very > 9 ? s @ ? very > 164 ? 163 @�@ ? > waist > 8 ? wai @ ? waist > 222 ? 221 @�@ ?> shoulders > 11 ? sho @ ? shoulders > 178 ? 177 @�@ ? > very > 9 ? s @ ? very > 225 ? 224 @�@ ?> own > 10 ? l ? sho @ ? own > 179 ? 160 ? 177 @�@ ? > stark > 12 ? sho @ ? stark > 218 ? 214 @�@ ?> own > 13 ? l ? ja @ ? own > 174 ? 160 ? 172 @�@ ? > own > 10 ? l ? sho @ ? own > 219 ? 197 ? 214 @�@ ?> stark > 12 ? sho @ ? stark > 181 ? 177 @�@ ? > own > 13 ? l ? ja @ ? own > 232 ? 197 ? 228 @�@ ?> jaws > 14 ? ja @ ? jaws > 173 ? 172 @�@ ? > shoulders > 11 ? sho @ ? shoulders > 217 ? 214 @�@ ?> grim > 15 ? ja @ ? grim > 175 ? 172 @�@ ? > grim > 15 ? ja @ ? grim > 230 ? 228 @�@ ?> boy > 16 ? c @ ? boy > 156 ? 154 @�@ ? > boy > 16 ? c @ ? boy > 205 ? 204 @�@ ?> good > 17 ? c @ ? good > 158 ? 154 @�@ ? > good > 17 ? c @ ? good > 206 ? 204 @�@ ?> little > 18 ? c @ ? little > 157 ? 154 @�@ ? > will > wpl ? pl @ ? will > 233 ? 212 @�@ ?> will > wpl ? pl @ ? will > 182 ? 171 @�@ ? > not > 20 ? wpl @ ? not > 234 ? 233 @�@��> not > 20 ? wpl @ ? not > 183 ? 182 @�@��
Target � lion > 0 ? l @ ? play > pl ? c @ ? � lion > 0 ? l @ ? jaws > 14 ? ja @ ?
dangling with > 19 ? pl ? l @�� little > 18 ? c @ ? play > pl ? c @��
Candidate � own > 143 ? 144 ? 145 @ ? own > 148 ? 145 ? 149 @ ? � play > 190 ? 191 @ ? men > 192 ? 191 @ ?
dangling bean > 150 ? 149 @ ? stark > 151 ? 149 @ ? jaws > 193 ? 194 @ ? jaws > 195 ? 194 @ ?

very > 152 ? 151 @ ? inside > 153 ? 149 ? 154 @ ? child > 201 ? 197 @ ? with > 203 ? 196 ? 204 @ ?
tiger > 155 ? 154 @ ? grim > 168 ? 167 @ ? inside > 211 ? 196 ? 208 @ ? boil > 212 ? 213 ? 214 @ ?
f rog > 169 ? 160 @ ? boil > 171 ? 172 ? 160 @ ? shoulders > 215 ? 213 @ ? big > 216 ? 213 @ ?
inside > 176 ? 172 ? 177 @ ? with > 180 ? 177 ? 177 @ ? with > 220 ? 212 ? 221 @ ? with > 227 ? 212 ? 228 @ ?
play > 185 ? 186 @ ? men > 187 ? 186 @ ? shoulders > 229 ? 228 @ ? little > 231 ? 228 @��
own > 188 ? 189 ? 186 @��

Table 8.25: Best individual for weighting 3, Starget
� lion, initial tactical NLG test



248 Chapter 8. Empirical Study and Discussion

lion. Compare these texts with those obtained from the tests during the first stage, in particular

Section 8.3.3, where the same baseline operators were used. However, this in itself is not an

impressive feat, as it could easily be achieved by only selecting appropriate lexical items prior

to the search process (a method used in Eddy et al. (2001)). Nevertheless, it shows the definite

effect on the behaviour of the EA by changing the evaluation function from metre similarity to

semantic similarity.

Observing the individual in Table 8.20 for an elitist ratio of 20%, we see that there are no

target dangling literals, as the mapping algorithm computes a structurally consistent mapping

that maps the entire set of literals in lionhalf. In a sense, this indicates success in convey-

ing Starget . However, if we observe the text itself, there are two peculiarities. Firstly, the verb

‘dwells’ has two prepositional phrases attached to it: “in her” and “in a waste”. Secondly, the

last sentence is in fact conveying that the “big head” has the “very small waist”, which is cer-

tainly not a fact conveyed by lionhalf. However, the genitive determiners “its” for both the

subject and object of this sentence are resolved to “lion”, and thus they introduce the two own

literals that are correctly mapped to the two own literals in Starget . We can see that there are two

dangling candidate literals, and they correspond to these two peculiarities: inside � 15 � 10 � 16 �
is introduced by the spurious prepositional phrase “in her”, and own � 19 � 20 � 21 � is intro-

duced by the transitive verb ‘has’ in the last sentence. Note that the variables 20 and 21 are

bound to h and wai, which represent the head and the waist. Thus we can see that the map-

ping is justified: the candidate semantics obtained from the composition of lexical semantics

does indeed convey lionhalf, and it correctly identifies the extraneous semantics as dangling

candidate literals, hence the non-optimal score of 0.81.

The other individual in Table 8.20, i.e. the one obtained for an elitist ratio of 40%, yields a

fitness score of 0.99, and for all intents and purposes is an optimal solution, i.e. it fails to be

1.0 due to a rounding error. Both the target and candidate semantics are completely mapped

in a structurally consistent manner, and there are no dangling literals. However, if we observe

the text itself, there are still some slight peculiarities. Firstly, the relative clause attached to “a

waste”, i.e.“that is it”, and secondly, the second sentence that is a copula verb construction,

“He is its very small waist”. Once again, the genitive ‘its’ correctly resolves to ‘lion’, and thus

the candidate semantics establish that the very small waist belongs to the lion. Note that these

peculiarities, i.e. the relative clause “that is it” and the copula verb construction “He is”, do

not introduce any semantics, and thus have no bearing on the semantic evaluation function.



8.4. MCGONAGALL as tactical NLG component 249

Both the individuals in Table 8.21 behave similarly: some sentences convey slightly different

meanings, which are recorded as dangling candidate literals, but the genitive “its” establishes

the correct meaning. This is reflected in the fitness scores.

The individual in Table 8.22 for elitist ratio 40% also behaves similarly. However, the indi-

vidual for elitist ratio 20% exhibits a more severe case of the peculiarities we have observed.

Although the mapping algorithm correctly finds a structurally consistent mapping for all of the

literals in Starget , the candidate semantics derived from the composition of lexical semantics,

particularly for the last sentence, is slightly awkward. Note that the copula verb ‘is’ simply

unifies the entity variables of its subject and object. Thus, the phrases “a big head, it is its

expense” and “a very small man, who is its waist”, equate the entities of head and expense,

and of man and waist. Furthermore, the genitives in these phrases resolve ownership to ‘lion’,

and thus introduce own literals that are used in the mapping. Finally, since man and waist are

deemed to be the same, the mapping to the target semantics representing the noun phrase “very

small waist” is structurally consistent. Thus, while we can see that the candidate semantics are

indeed correct, the texts that convey them are awkward. This awkwardness does not originate

from the semantic evaluation function, but rather arises from a rather unfortunate exploitation

of our handcrafted grammar. Unfortunately, this awkwardness affects subsequent tests as well,

as we have chosen to use the same grammar throughout our empirical study for consistency

of results. While it does not affect the correct scoring of texts that indeed explicitly convey

the target semantics, it skews the fitness scores favorably for individuals where the meaning is

rather unintentionally conveyed. Thus, we urge the reader to bear this in mind when observing

the individuals.

As for the individuals obtained for Starget
� lion (Tables 8.23 to 8.25), we can see a clear dif-

ference in the behaviour of the EA under different weighting schemes, particularly between

weighting scheme 1 and the other two schemes. The individuals in Table 8.23 yield relatively

low fitness scores of 0.55 and 0.60, and we can see this is due to the fact that the candidate

semantics are only conveying a subset of Starget : there are 14 dangling target literals for the

individual obtained with elitist ratio 20%, and 13 for elitist ratio 40%. However, there are no

dangling candidate literals for either individual. Contrast this with the individuals obtained

under weighting schemes 2 and 3, in Tables 8.24 and 8.25. For these individuals, there are only

four dangling target literals. In a sense, they can be considered to be better than those obtained

under weighting scheme 1, as they convey more of the target semantics. However, there is a

tradeoff in that there are many dangling candidate literals, which represent extraneous seman-



250 Chapter 8. Empirical Study and Discussion

tics conveyed by the texts. Coupled with the problem caused by the grammar described above,

they cause the target semantics to be obscured in the surface text. Note that although weight-

ing schemes 2 and 3 exhibit similar results, they are obtained for different reasons. Weighting

scheme 2 emphasizes raw conceptual similarity, whereas scheme 3 emphasizes structural simi-

larity. This is reflected by the dangling candidate literals. In Table 8.24, they are mainly literals

that are members of Starget , whereas in Table 8.24 they are mainly different literals altogether:

bean � tiger� f rog � boil, etc.

Unfortunately, in seeking to emphasize structural similarity, we only increased α2 and α3 for

weighting scheme 3, when it is evident from these results that α4, which penalizes dangling

literals, should be increased as well.

8.4.2 Smart operators test

In this test, we will examine the effect of using the semantically motivated operators presented

in Section 7.3. We will employ the compound operators that simultaneously ensure complete

derivations while greedily attempting to consume semantics (Section 7.4.2). Thus, the mutation

operators used in this test, along with their probabilities of being applied, are as follows:� SMARTCREATECOMPLETE = 0.5� SMARTADJOINCOMPLETE = 0.3� SMARTDELETECOMPLETE = 0.2

Additionally, when crossover is called for, the subtree swapping operator SMARTSWAP is used.

As the three mutation operators above guarantee complete derivations, SMARTSWAP guaran-

tees complete derivations as well.

All other aspects of the test, i.e. target semantics, EA parameters, linguistic resources, evalua-

tion function and weighting schemes, are the same as during the initial test in Section 8.4.1.

Expectations

We hope that the semantically smart operators used in this test will enable the EA to obtain

individuals that successfully convey the target semantics, and at the very least show a marked

improvement over the results obtained in the previous test. In the mappings shown for the



8.4. MCGONAGALL as tactical NLG component 251

Elitist = 20% Elitist = 40%

Score 0.93 1.00

a african lion , who has its very

small waist , dwells in a waste . its

head is big .

a african lion , who has a very small

waist , dwells in a waste . its head ,

it is big .

Proper � > inside > 2 ? d ? was @ ? inside > 12 ? 10 ? 13 @�@ ? � > inside > 2 ? d ? was @ ? inside > 33 ? 32 ? 34 @�@ ?
match > lion > 0 ? l @ ? lion > 15 ? 11 @�@ ? > lion > 0 ? l @ ? lion > 36 ? 31 @�@ ?> a f rican > 1 ? l @ ? a f rican > 16 ? 11 @�@ ? > a f rican > 1 ? l @ ? a f rican > 42 ? 31 @�@ ?> dwell > d ? l @ ? dwell > 10 ? 11 @�@ ? > dwell > d ? l @ ? dwell > 32 ? 31 @�@ ?> waste > 3 ? was @ ? waste > 14 ? 13 @�@ ? > waste > 3 ? was @ ? waste > 35 ? 34 @�@ ?> head > 5 ? h @ ? head > 25 ? 24 @�@ ? > head > 5 ? h @ ? head > 29 ? 28 @�@ ?> own > 4 ? l ? h @ ? own > 26 ? 11 ? 24 @�@ ? > own > 4 ? l ? h @ ? own > 30 ? 31 ? 28 @�@ ?> big > 6 ? h @ ? big > 23 ? 24 @�@ ? > own > 7 ? l ? wai @ ? own > 37 ? 31 ? 38 @�@ ?> small > s ? wai @ ? small > 21 ? 18 @�@ ? > big > 6 ? h @ ? big > 27 ? 28 @�@ ?> waist > 8 ? wai @ ? waist > 19 ? 18 @�@ ? > small > s ? wai @ ? small > 40 ? 38 @�@ ?> very > 9 ? s @ ? very > 22 ? 21 @�@ ? > waist > 8 ? wai @ ? waist > 39 ? 38 @�@ ?> own > 7 ? l ? wai @ ? own > 17 ? 11 ? 18 @�@�� > very > 9 ? s @ ? very > 41 ? 40 @�@��
Target /0 /0
dangling

Candidate � own > 20 ? 11 ? 18 @�� /0
dangling

Table 8.26: Best individual for weighting 1, Starget
� lionhalf, smart operators test

obtained individuals, there should not be any dangling target literals. Moreover, an optimal

solution should also not have any dangling candidate literals. Again, we expect that the task of

conveying lionhalf should be easier than that of conveying lion given its reduced complex-

ity.

Results

As in the previous section, we conduct twelve separate tests: Starget
� lionhalf with weighting

schemes 1, 2, and 3, and Starget
� lion with weighting schemes 1, 2, and 3, all of which are run

with elitist ratios of 20% and 40%. Summary statistics and graphs for this test are presented in

Section D.2.2 of Appendix D.

Tables 8.26 to 8.28 and Tables 8.29 to 8.31 show the individuals that yield the best fitness scores

for lionhalf and lion respectively. For each target semantics, we present the best individual

for each weighting scheme used, showing its fitness score, raw surface text, and the mapping

of Starget to Scandidate . See the initial test (Section 8.4.1) for a description of this mapping.



252 Chapter 8. Empirical Study and Discussion

Elitist = 20% Elitist = 40%

Score 0.99 0.99

Surface a african lion , who has a very small

waist , , it dwells in a waste . its

head , it is big .

a african lion , who has a big head ,

, it dwells in a waste . its waist , it is

very small .

Proper � > inside > 2 ? d ? was @ ? inside > 45 ? 43 ? 46 @�@ ? � > inside > 2 ? d ? was @ ? inside > 61 ? 59 ? 62 @�@ ?
match > lion > 0 ? l @ ? lion > 48 ? 44 @�@ ? > lion > 0 ? l @ ? lion > 64 ? 60 @�@ ?> a f rican > 1 ? l @ ? a f rican > 49 ? 44 @�@ ? > a f rican > 1 ? l @ ? a f rican > 69 ? 60 @�@ ?> dwell > d ? l @ ? dwell > 43 ? 44 @�@ ? > dwell > d ? l @ ? dwell > 59 ? 60 @�@ ?> waste > 3 ? was @ ? waste > 47 ? 46 @�@ ? > waste > 3 ? was @ ? waste > 63 ? 62 @�@ ?> head > 5 ? h @ ? head > 57 ? 56 @�@ ? > head > 5 ? h @ ? head > 67 ? 66 @�@ ?> own > 4 ? l ? h @ ? own > 58 ? 44 ? 56 @�@ ? > own > 4 ? l ? h @ ? own > 65 ? 60 ? 66 @�@ ?> own > 7 ? l ? wai @ ? own > 50 ? 44 ? 51 @�@ ? > own > 7 ? l ? wai @ ? own > 74 ? 60 ? 71 @�@ ?> big > 6 ? h @ ? big > 55 ? 56 @�@ ? > big > 6 ? h @ ? big > 68 ? 66 @�@ ?> small > s ? wai @ ? small > 53 ? 51 @�@ ? > small > s ? wai @ ? small > 70 ? 71 @�@ ?> waist > 8 ? wai @ ? waist > 52 ? 51 @�@ ? > waist > 8 ? wai @ ? waist > 73 ? 71 @�@ ?> very > 9 ? s @ ? very > 54 ? 53 @�@�� > very > 9 ? s @ ? very > 72 ? 70 @�@��
Target /0 /0
dangling

Candidate /0 /0
dangling

Table 8.27: Best individual for weighting 2, Starget
� lionhalf, smart operators test

Elitist = 20% Elitist = 40%

Score 1.00 1.00

Surface a african lion , who has a very small

waist , , it dwells in a waste . its

head , it is big .

a african lion , who has a very small

waist , , it dwells in a waste , that is

him , . its head , it is big .

Proper � > inside > 2 ? d ? was @ ? inside > 90 ? 80 ? 89 @�@ ? � > inside > 2 ? d ? was @ ? inside > 97 ? 96 ? 98 @�@ ?
match > lion > 0 ? l @ ? lion > 81 ? 79 @�@ ? > lion > 0 ? l @ ? lion > 99 ? 95 @�@ ?> a f rican > 1 ? l @ ? a f rican > 87 ? 79 @�@ ? > a f rican > 1 ? l @ ? a f rican > 105 ? 95 @�@ ?> dwell > d ? l @ ? dwell > 80 ? 79 @�@ ? > dwell > d ? l @ ? dwell > 96 ? 95 @�@ ?> waste > 3 ? was @ ? waste > 88 ? 89 @�@ ? > waste > 3 ? was @ ? waste > 106 ? 98 @�@ ?> head > 5 ? h @ ? head > 77 ? 76 @�@ ? > head > 5 ? h @ ? head > 93 ? 92 @�@ ?> own > 4 ? l ? h @ ? own > 78 ? 79 ? 76 @�@ ? > own > 4 ? l ? h @ ? own > 94 ? 95 ? 92 @�@ ?> own > 7 ? l ? wai @ ? own > 82 ? 79 ? 83 @�@ ? > own > 7 ? l ? wai @ ? own > 100 ? 95 ? 101 @�@ ?> big > 6 ? h @ ? big > 75 ? 76 @�@ ? > big > 6 ? h @ ? big > 91 ? 92 @�@ ?> small > s ? wai @ ? small > 85 ? 83 @�@ ? > small > s ? wai @ ? small > 103 ? 101 @�@ ?> waist > 8 ? wai @ ? waist > 84 ? 83 @�@ ? > waist > 8 ? wai @ ? waist > 102 ? 101 @�@ ?> very > 9 ? s @ ? very > 86 ? 85 @�@�� > very > 9 ? s @ ? very > 104 ? 103 @�@��
Target /0 /0
dangling

Candidate /0 /0
dangling

Table 8.28: Best individual for weighting 3, Starget
� lionhalf, smart operators test



8.4. MCGONAGALL as tactical NLG component 253

Elitist = 20% Elitist = 40%

Score 0.54 0.54

Surface a boy , who is little , will not be good

. a african lion , who has a very

small waist , dwells in a waste .

a african lion , who has a very small

waist , dwells in a waste . its shoul-

ders will not be stark .

Proper � > inside > 2 ? d ? was @ ? inside > 23 ? 21 ? 24 @�@ ? � > inside > 2 ? d ? was @ ? inside > 56 ? 48 ? 57 @�@ ?
match > lion > 0 ? l @ ? lion > 26 ? 22 @�@ ? > lion > 0 ? l @ ? lion > 49 ? 44 @�@ ?> a f rican > 1 ? l @ ? a f rican > 27 ? 22 @�@ ? > a f rican > 1 ? l @ ? a f rican > 50 ? 44 @�@ ?> dwell > d ? l @ ? dwell > 21 ? 22 @�@ ? > dwell > d ? l @ ? dwell > 48 ? 44 @�@ ?> waste > 3 ? was @ ? waste > 25 ? 24 @�@ ? > waste > 3 ? was @ ? waste > 58 ? 57 @�@ ?> small > s ? wai @ ? small > 31 ? 29 @�@ ? > small > s ? wai @ ? small > 54 ? 52 @�@ ?> own > 7 ? l ? wai @ ? own > 28 ? 22 ? 29 @�@ ? > own > 7 ? l ? wai @ ? own > 51 ? 44 ? 52 @�@ ?> waist > 8 ? wai @ ? waist > 30 ? 29 @�@ ? > waist > 8 ? wai @ ? waist > 53 ? 52 @�@ ?> very > 9 ? s @ ? very > 32 ? 31 @�@ ? > very > 9 ? s @ ? very > 55 ? 54 @�@ ?> boy > 16 ? c @ ? boy > 35 ? 34 @�@ ? > shoulders > 11 ? sho @ ? shoulders > 42 ? 41 @�@ ?> good > 17 ? c @ ? good > 33 ? 34 @�@ ? > own > 10 ? l ? sho @ ? own > 43 ? 44 ? 41 @�@ ?> little > 18 ? c @ ? little > 36 ? 34 @�@ ? > stark > 12 ? sho @ ? stark > 40 ? 41 @�@ ?> will > wpl ? pl @ ? will > 37 ? 38 @�@ ? > will > wpl ? pl @ ? will > 45 ? 46 @�@ ?> not > 20 ? wpl @ ? not > 39 ? 37 @�@�� > not > 20 ? wpl @ ? not > 47 ? 45 @�@��
Target � own > 4 ? l ? h @ ? head > 5 ? h @ ? � own > 4 ? l ? h @ ? head > 5 ? h @ ?
dangling big > 6 ? h @ ? own > 10 ? l ? sho @ ? big > 6 ? h @ ? own > 13 ? l ? ja @ ?

shoulders > 11 ? sho @ ? stark > 12 ? sho @ ? jaws > 14 ? ja @ ? grim > 15 ? ja @ ?
own > 13 ? l ? ja @ ? jaws > 14 ? ja @ ? boy > 16 ? c @ ? good > 17 ? c @ ?
grim > 15 ? ja @ ? play > pl ? c @ ? little > 18 ? c @ ? play > pl ? c @ ?
with > 19 ? pl ? l @�� with > 19 ? pl ? l @��

Candidate /0 /0
dangling

Table 8.29: Best individual for weighting 1, Starget
� lion, smart operators test



254 Chapter 8. Empirical Study and Discussion

Elitist = 20% Elitist = 40%

Score 0.88 0.61

Surface they play . in a good boy , who is lit-

tle , , a african lion , who with jaws ,

that are in its stark shoulders , , has

a very small waist , dwells in a waste

. with a boy , who has its grim jaws

, , its head will not be big .

a african lion , who has a very small

waist , dwells in a waste . its head

will not be big .

Proper � > lion > 0 ? l @ ? lion > 71 ? 62 @�@ ? � > inside > 2 ? d ? was @ ? inside > 110 ? 109 ? 111 @�@ ?
match > a f rican > 1 ? l @ ? a f rican > 85 ? 62 @�@ ? > lion > 0 ? l @ ? lion > 112 ? 108 @�@ ?> dwell > d ? l @ ? dwell > 61 ? 62 @�@ ? > a f rican > 1 ? l @ ? a f rican > 113 ? 108 @�@ ?> waste > 3 ? was @ ? waste > 63 ? 64 @�@ ? > dwell > d ? l @ ? dwell > 109 ? 108 @�@ ?> inside > 2 ? d ? was @ ? inside > 65 ? 61 ? 64 @�@ ? > waste > 3 ? was @ ? waste > 119 ? 111 @�@ ?> head > 5 ? h @ ? head > 91 ? 87 @�@ ? > head > 5 ? h @ ? head > 106 ? 102 @�@ ?> own > 4 ? l ? h @ ? own > 92 ? 62 ? 87 @�@ ? > own > 4 ? l ? h @ ? own > 107 ? 108 ? 102 @�@ ?> big > 6 ? h @ ? big > 86 ? 87 @�@ ? > big > 6 ? h @ ? big > 101 ? 102 @�@ ?> small > s ? wai @ ? small > 83 ? 73 @�@ ? > small > s ? wai @ ? small > 117 ? 115 @�@ ?> own > 7 ? l ? wai @ ? own > 72 ? 62 ? 73 @�@ ? > own > 7 ? l ? wai @ ? own > 114 ? 108 ? 115 @�@ ?> waist > 8 ? wai @ ? waist > 82 ? 73 @�@ ? > waist > 8 ? wai @ ? waist > 116 ? 115 @�@ ?> very > 9 ? s @ ? very > 84 ? 83 @�@ ? > very > 9 ? s @ ? very > 118 ? 117 @�@ ?> shoulders > 11 ? sho @ ? shoulders > 79 ? 78 @�@ ? > will > wpl ? pl @ ? will > 103 ? 104 @�@ ?> own > 10 ? l ? sho @ ? own > 80 ? 62 ? 78 @�@ ? > not > 20 ? wpl @ ? not > 105 ? 103 @�@��> own > 13 ? l ? ja @ ? own > 99 ? 62 ? 97 @�@ ?> stark > 12 ? sho @ ? stark > 81 ? 78 @�@ ?> jaws > 14 ? ja @ ? jaws > 98 ? 97 @�@ ?> grim > 15 ? ja @ ? grim > 100 ? 97 @�@ ?> good > 17 ? c @ ? good > 70 ? 67 @�@ ?> boy > 16 ? c @ ? boy > 68 ? 67 @�@ ?> little > 18 ? c @ ? little > 69 ? 67 @�@ ?> will > wpl ? pl @ ? will > 88 ? 89 @�@ ?> not > 20 ? wpl @ ? not > 90 ? 88 @�@��
Target � play > pl ? c @ ? with > 19 ? pl ? l @�� � own > 10 ? l ? sho @ ? shoulders > 11 ? sho @ ?
dangling stark > 12 ? sho @ ? own > 13 ? l ? ja @ ?

jaws > 14 ? ja @ ? grim > 15 ? ja @ ?
boy > 16 ? c @ ? good > 17 ? c @ ?
little > 18 ? c @ ? play > pl ? c @ ?
with > 19 ? pl ? l @��

Candidate � play > 59 ? 60 @ ? inside > 66 ? 61 ? 67 @ ? /0
dangling with > 74 ? 72 ? 75 @ ? jaws > 76 ? 75 @ ?

inside > 77 ? 75 ? 78 @ ? with > 93 ? 86 ? 94 @ ?
boy > 95 ? 94 @ ? own > 96 ? 94 ? 97 @��

Table 8.30: Best individual for weighting 2, Starget
� lion, smart operators test



8.4. MCGONAGALL as tactical NLG component 255

Elitist = 20% Elitist = 40%

Score 0.79 0.66

Surface in a good boy , who is little , , a

african lion , who has a waist , , it

dwells in a waste . with a skin , that

has its stark shoulders , , with her ,

a very small waist , it is its waist ,

that has its grim jaws , . its big child

, she will not be a head . they play .

a very african lion , who with its

small waist , has its stark shoulders

with a tail , that has its grim jaws , ,

dwells in a waste . his head , that is

its head , will not be big .

Proper � > lion > 0 ? l @ ? lion > 122 ? 121 @�@ ? � > inside > 2 ? d ? was @ ? inside > 177 ? 176 ? 178 @�@ ?
match > a f rican > 1 ? l @ ? a f rican > 126 ? 121 @�@ ? > lion > 0 ? l @ ? lion > 179 ? 172 @�@ ?> dwell > d ? l @ ? dwell > 120 ? 121 @�@ ? > a f rican > 1 ? l @ ? a f rican > 180 ? 172 @�@ ?> waste > 3 ? was @ ? waste > 129 ? 128 @�@ ? > dwell > d ? l @ ? dwell > 176 ? 172 @�@ ?> inside > 2 ? d ? was @ ? inside > 127 ? 120 ? 128 @�@ ? > waste > 3 ? was @ ? waste > 200 ? 178 @�@ ?> head > 5 ? h @ ? head > 156 ? 157 @�@ ? > big > 6 ? h @ ? big > 165 ? 166 @�@ ?> own > 4 ? l ? h @ ? own > 162 ? 121 ? 157 @�@ ? > own > 4 ? l ? h @ ? own > 171 ? 172 ? 166 @�@ ?> big > 6 ? h @ ? big > 163 ? 157 @�@ ? > small > s ? wai @ ? small > 199 ? 196 @�@ ?> small > s ? wai @ ? small > 139 ? 136 @�@ ? > own > 7 ? l ? wai @ ? own > 198 ? 172 ? 196 @�@ ?> own > 7 ? l ? wai @ ? own > 137 ? 121 ? 136 @�@ ? > waist > 8 ? wai @ ? waist > 197 ? 196 @�@ ?> very > 9 ? s @ ? very > 140 ? 139 @�@ ? > shoulders > 11 ? sho @ ? shoulders > 184 ? 183 @�@ ?> shoulders > 11 ? sho @ ? shoulders > 148 ? 147 @�@ ? > own > 13 ? l ? ja @ ? own > 194 ? 172 ? 191 @�@ ?> own > 10 ? l ? sho @ ? own > 150 ? 121 ? 147 @�@ ? > stark > 12 ? sho @ ? stark > 186 ? 183 @�@ ?> stark > 12 ? sho @ ? stark > 149 ? 147 @�@ ? > jaws > 14 ? ja @ ? jaws > 192 ? 191 @�@ ?> jaws > 14 ? ja @ ? jaws > 153 ? 152 @�@ ? > grim > 15 ? ja @ ? grim > 193 ? 191 @�@ ?> own > 13 ? l ? ja @ ? own > 154 ? 121 ? 152 @�@ ? > will > wpl ? pl @ ? will > 173 ? 174 @�@ ?> grim > 15 ? ja @ ? grim > 155 ? 152 @�@ ? > not > 20 ? wpl @ ? not > 175 ? 173 @�@ ?> boy > 16 ? c @ ? boy > 132 ? 131 @�@ ? > own > 10 ? l ? sho @ ? own > 182 ? 172 ? 183 @�@ ?> good > 17 ? c @ ? good > 133 ? 131 @�@ ? > head > 5 ? h @ ? head > 167 ? 166 @�@��> little > 18 ? c @ ? little > 134 ? 131 @�@ ?> will > wpl ? pl @ ? will > 158 ? 159 @�@ ?> not > 20 ? wpl @ ? not > 160 ? 158 @�@ ?> waist > 8 ? wai @ ? waist > 135 ? 136 @�@��
Target � play > pl ? c @ ? with > 19 ? pl ? l @�� � very > 9 ? s @ ? boy > 16 ? c @ ?
dangling good > 17 ? c @ ? little > 18 ? c @ ?

play > pl ? c @ ? with > 19 ? pl ? l @��
Candidate � own > 123 ? 121 ? 124 @ ? waist > 125 ? 124 @ ? � own > 168 ? 169 ? 166 @ ? head > 170 ? 166 @ ?
dangling inside > 130 ? 120 ? 131 @ ? waist > 138 ? 136 @ ? very > 181 ? 180 @ ? own > 185 ? 172 ? 183 @ ?

with > 141 ? 135 ? 142 @ ? with > 143 ? 135 ? 144 @ ? with > 187 ? 182 ? 188 @ ? tail > 189 ? 188 @ ?
skin > 145 ? 144 @ ? own > 146 ? 144 ? 147 @ ? own > 190 ? 188 ? 191 @ ? with > 195 ? 182 ? 196 @��
own > 151 ? 136 ? 152 @ ? child > 161 ? 157 @ ?
play > 164 ? 152 @��

Table 8.31: Best individual for weighting 3, Starget
� lion, smart operators test



256 Chapter 8. Empirical Study and Discussion

Observations and discussion

The results obtained for the lionhalf target semantics show that the EA is succeeding in

finding optimal solutions, i.e. texts that convey the semantics without dangling target or literal

candidates. The only exception is the individual obtained under weighting scheme 1 for an

elitist ratio of 20%, shown in Table 8.26, where there is one dangling candidate literal. Ob-

serving the surface text for this individual, we see that the dangling literal own � 20 � 11 � 18 � is

introduced due to the redundancy in the relative clause “who has its very small waist”, where

both the verb ‘has’ and the genitive ‘its’ indicate ownership of the waist by the lion. Note that

the candidate literal in the proper match that conveys this fact is own � 17 � 11 � 18 � , where the

second and third arguments, i.e. the owner and ownee entity variables, are the same as in the

dangling literal. They convey exactly the same fact, but unfortunately only one literal can be

mapped by our mapping algorithm, and thus the other is forced to be a dangling literal. All the

other individuals for this target semantics are optimal solutions. Note that one optimal solution

for lionhalf was obtained in the initial test, i.e. in Table 8.20, and that the other individuals

were also very close to being optimal solutions. However, by comparing Figure D.10 to Fig-

ure D.8 we can see that the semantically smart operators are helping the EA find these optimal

solutions much more rapidly and consistently.

The results obtained for the lion target semantics, unfortunately, are not as we had hoped

for. The individuals obtained by the EA under weighting scheme 1 (Table 8.29) show similar

properties to those in the previous test (Table 8.23). Under this weighting scheme, the EA

seems to behave very conservatively, in the sense that it considerably penalizes individuals

with dangling candidate literals. Although this ensures that the candidate semantics of the

solutions are subsets of Starget , which can be beneficial in instances where such faithfulness

is required, we believe that it is also limiting the opportunity for individuals to expand their

linguistic structure, which can ultimately convey more of the target semantics. Thus, it is

something of a “needle in a haystack” evaluation function (Bäck et al., 1997).

The individual obtained under weighting scheme 2 for an elitist ratio of 20% (Table 8.30)

shows the best solution obtained for the lion target form using the smart operators. Compared

to the individual obtained with similar parameters in the previous test (Table 8.24), we can see

that there are slightly fewer dangling target literals, but more importantly, considerably fewer

dangling candidate literals.

Note, however, the relatively low fitness of the best individual obtained for Starget
� lion under



8.4. MCGONAGALL as tactical NLG component 257

weighting scheme 2 (Table 8.30) for an elitist ratio of 40%. This suggests that when using

the semantically smart operators, the selection pressure when using an elitist ratio of 40% is

too high, causing the EA to become trapped in a local maximum. In Table 8.31, i.e. under

weighting scheme 3, we can see that an elitist ratio of 40% also performs poorly. Observing

Figure D.11 we can see a significant difference between the two elitist ratios used, which is in

contrast to Figure D.9, where the results for the two ratios are very similar.

8.4.3 PROTECTOR and SPUD-like operator test

Up to this point, MCGONAGALL has managed to produce optimal solutions for the task of

satisfying the lionhalf target semantics, but not lion. The best solution obtained is shown

in Table 8.30, and it still contains several dangling target and candidate literals. In this test, we

attempt to satisfy this target semantics by using the most explicitly goal-directed operators we

have designed, i.e. those that are designed to simulate the mechanisms of the PROTECTOR

and SPUD NLG systems (Section 7.4.3).

We run two different tests, one for each type of operator. For the PROTECTOR-like test, the

mutation operators used, along with their probabilities of being applied, are as follows:� PROTECTORLIKE = 0.6� BLINDDELETECOMPLETE = 0.2� SYNTAXADDADJOIN = 0.2

We use the SYNTAXADDADJOIN operator because otherwise, the EA will be unable to gener-

ate texts of more than one sentence.

For the SPUD-like test, the mutation operators used, along with their probabilities of being

applied, are as follows:� SPUDLIKEDISCOURSE = 0.8� BLINDDELETE = 0.2

We use the baseline blind delete operators because the structure-building operations in these

compound operators are primarily semantically motivated, and thus the SMARTDELETE oper-

ator would find little opportunity to be applied.



258 Chapter 8. Empirical Study and Discussion

Additionally, in both these tests, when crossover is called for, the subtree swapping operator

SMARTSWAP is used.

Both these tests will use the lion target semantics, and we decide to only use weighting scheme

2 for the semantic evaluation function. The EA uses an elitist ratio of 20%. All other aspects

are the same as during the previous test.

Expectations

We hope that these explicitly goal-directed operators will be able to produce optimal solutions

for the task of conveying lion, i.e. in the mappings for the obtained individuals, there should

not be any dangling target or candidate literals.

Results

The two tests for the PROTECTOR-like and SPUD-like operators were run ten times. Sum-

mary statistics and graphs for this test are presented in Section D.2.3 of Appendix D.

Tables 8.32 and 8.33 show the individuals that yield the best fitness scores for the tests using

the PROTECTOR-like and SPUD-like operators respectively. For each individual we show

its fitness score, raw surface text, and the mapping of Starget to Scandidate . See the initial test

(Section 8.4.1) for a description of this mapping.

Observations and discussion

The results achieved by the EA using PROTECTORLIKE show that it too is unable to satisfy

the lion target semantics. Furthermore, we can see the presence of an unrelated word in the

text of the best individual obtained (Table 8.32), i.e.‘knees’, despite the explicitly greedy se-

mantic consumption of PROTECTORLIKE. This word is introduced by the SMARTDELETE-

COMPLETE operator, where due to the pressure of having to complete a derivation, it can fall

back to the BLINDADDSUBSTITUTE operator if the more semantically motivated substitution

operators fail to find a better alternative.

Recall from Section 7.4.3 that PROTECTORLIKE works by trying to cram in as much se-

mantic content as possible using the SMARTADDMATCH operators, starting from one initial



8.4. MCGONAGALL as tactical NLG component 259

Score 0.85

Surface he dwells P it . a waste Aux be her . a very small waist , that Aux

be small , Aux be her . knees are in it . a good boy , who Aux be little

, will not play with a african lion , who has a big head , . stark shoulders

, that he has , are its stark shoulders , that he has , . it has grim jaws ,

that are grim , .

Proper > � inside > 2 ? d ? was @ ? inside > 57 ? 58 ? 59 @�@ ?�> with > 19 ? pl ? l @ ? with > 23 ? 21 ? 24 @�@ ?
match > lion > 0 ? l @ ? lion > 25 ? 24 @�@ ?�> a f rican > 1 ? l @ ? a f rican > 30 ? 24 @�@ ?> head > 5 ? h @ ? head > 28 ? 27 @�@ ?�> own > 4 ? l ? h @ ? own > 26 ? 24 ? 27 @�@ ?> big > 6 ? h @ ? big > 29 ? 27 @�@ ?�> waist > 8 ? wai @ ? waist > 53 ? 52 @�@ ?> very > 9 ? s @ ? very > 55 ? 54 @�@ ?�> small > s ? wai @ ? small > 54 ? 52 @�@ ?> jaws > 14 ? ja @ ? jaws > 46 ? 45 @�@ ?�> own > 10 ? l ? sho @ ? own > 38 ? 24 ? 37 @�@ ?> own > 13 ? l ? ja @ ? own > 44 ? 24 ? 45 @�@ ?�> boy > 16 ? c @ ? boy > 33 ? 22 @�@ ?> good > 17 ? c @ ? good > 34 ? 22 @�@ ?�> little > 18 ? c @ ? little > 35 ? 22 @�@ ?> play > pl ? c @ ? play > 21 ? 22 @�@ ?�> will > wpl ? pl @ ? will > 31 ? 21 @�@ ?> not > 20 ? wpl @ ? not > 32 ? 31 @�@ ?�> shoulders > 11 ? sho @ ? shoulders > 36 ? 37 @�@ ?> stark > 12 ? sho @ ? stark > 42 ? 37 @�@ ?�> grim > 15 ? ja @ ? grim > 47 ? 45 @�@��
Target � dwell > d ? l @ ? waste > 3 ? was @ ? own > 7 ? l ? wai @��
dangling

Candidate � own > 39 ? 22 ? 37 @ ? shoulders > 40 ? 37 @ ? own > 41 ? 22 ? 37 @ ? stark > 43 ? 37 @ ?
dangling grim > 48 ? 45 @ ? dwell > 49 ? 50 @ ? waste > 51 ? 52 @ ? small > 56 ? 52 @ ?

knees > 60 ? 58 @��
Table 8.32: Best individual for PROTECTOR-like operator test



260 Chapter 8. Empirical Study and Discussion

Score 0.93

Surface D good boy , Comp CV little , will not play with D african lion ,

Comp dwells in D waste , . its waist Aux be very small . D head

CV big . its jaws CV grim . NP CV its shoulders Punc Comp

CV stark Punc .

Proper > inside > 2 ? d ? was @ ? inside > 72 ? 71 ? 73 @�@ ?�> with > 19 ? pl ? l @ ? with > 68 ? 61 ? 69 @�@ ?
match > lion > 0 ? l @ ? lion > 70 ? 69 @�@ ?�> a f rican > 1 ? l @ ? a f rican > 75 ? 69 @�@ ?> dwell > d ? l @ ? dwell > 71 ? 69 @�@ ?�> waste > 3 ? was @ ? waste > 74 ? 73 @�@ ?> head > 5 ? h @ ? head > 83 ? 82 @�@ ?�> big > 6 ? h @ ? big > 81 ? 82 @�@ ?> small > s ? wai @ ? small > 76 ? 77 @�@ ?�> own > 7 ? l ? wai @ ? own > 79 ? 69 ? 77 @�@ ?> waist > 8 ? wai @ ? waist > 78 ? 77 @�@ ?�> very > 9 ? s @ ? very > 80 ? 76 @�@ ?> shoulders > 11 ? sho @ ? shoulders > 88 ? 89 @�@ ?�> own > 10 ? l ? sho @ ? own > 91 ? 69 ? 89 @�@ ?> own > 13 ? l ? ja @ ? own > 87 ? 69 ? 85 @�@ ?�> stark > 12 ? sho @ ? stark > 90 ? 89 @�@ ?> jaws > 14 ? ja @ ? jaws > 86 ? 85 @�@ ?�> grim > 15 ? ja @ ? grim > 84 ? 85 @�@ ?> boy > 16 ? c @ ? boy > 65 ? 62 @�@ ?�> good > 17 ? c @ ? good > 66 ? 62 @�@ ?> little > 18 ? c @ ? little > 67 ? 62 @�@ ?�> play > pl ? c @ ? play > 61 ? 62 @�@ ?> will > wpl ? pl @ ? will > 63 ? 61 @�@ ?�> not > 20 ? wpl @ ? not > 64 ? 63 @�@ ?
Target own > 4 ? l ? h @&�
dangling

Candidate /0
dangling

Table 8.33: Best individual for SPUD-like operator test

structure, which in our grammar is a sentence frame. Thus, the quality of the resulting text

crucially hinges on the choice of the initial structure. In Nicolov’s PROTECTOR, the initial

skeletal frame is carefully chosen by selecting the mapping rule that covers as much as possible

of the input conceptual graph. Our operator has no such heuristic, and thus it is left to random

chance. In our initial testing of PROTECTORLIKE, the results obtained were highly variable

depending on the initial structure chosen (Table 7.22).

Furthermore, tactical NLG components such as PROTECTOR are typically designed to operate

in tandem with text planning modules which ‘chunk’ the input semantics into more manageable

segments. All our semantically smart operators, save for SPUDLIKEDISCOURSE, have no ac-

count whatsoever for discourse. Considering that it is virtually impossible to convey the entire

semantics of lion within a single sentence, we can see why it poses such a difficult challenge.

Indeed, the success of MCGONAGALL in satisfying the lionhalf target semantics, even using

blind operators (Section 8.4.1), suggests that it is quite capable of faithfully conveying target

semantics of more modest size, e.g. that which can be realized within the scope of a sentence.

Another related point is that within our system, pronouns are added completely opportunisti-



8.4. MCGONAGALL as tactical NLG component 261

cally, and pronoun reference is only computed during evaluation. A fairly sophisticated treat-

ment of referring expressions is crucial for the generation of multi-sentential texts, and is an

important aspect of most modern NLG systems.

These factors might also explain the awkwardness of the texts in the individuals obtained for

the lion target semantics in Sections 8.4.1 and 8.4.2.

The best individual achieved by using the SPUDLIKEDISCOURSE operator (Table 8.33) is

by far the best result obtained by MCGONAGALL in this second stage. It manages to convey

the entire set of literals in lion save for own � 4 � l � h � , the owning of the head by the lion.

Moreover, it manages to achieve this without any dangling candidate literals. This suggests

that the incremental, per-elementary-tree approach it takes is more amenable to be used within

the stochastic framework of an EA than that of PROTECTORLIKE.

The growth rate for the EA using PROTECTORLIKE starts from a much higher fitness score,

but fairly rapidly converges to the local maximum (0.85), whereas SPUDLIKEDISCOURSE

increases more gradually (see Figure D.12(a) and (b)).

Furthermore, unlike PROTECTORLIKE, SPUDLIKEDISCOURSE can be thought of possess-

ing a small measure of discourse heuristics. Crucially, its algorithm (Algorithm 7.21) will

perform the adjoining of a new sentence frame, i.e.SYNTAXADDADJOIN, only after it has

exhausted all other possibilities of operators.

Another aspect that possibly contributes to its success is that it is under no pressure to immedi-

ately create a complete derivation. The drawback, of course, is that there are many substitution

nodes, and as a result, the individual is not yet a fully grammatical text . Fortunately, aside

from the single NP subject node in the last sentence, they are all closed class categories: de-

terminers, complementizers, copula and auxiliary verbs, and punctuation marks. If we were to

fill in these substitution nodes with obvious syntactic choices, we would obtain the following

text:

“A good boy, who is little, will not play with the african lion, who dwells in the

waste. Its waist will be very small. Its head is big. Its jaws are grim. NP are

its shoulders, which are stark.”

From this text, we can see why the EA does not substitute anything at the NP node. The most

plausible noun phrases to substitute it would either be the pronoun ‘they’, which would refer to

‘jaws’, or the noun ‘shoulders’, both of which would decrease fitness.



262 Chapter 8. Empirical Study and Discussion

8.4.4 Summary of discussion

The results obtained in the tests of this second stage show that MCGONAGALL succeeded in

finding optimal solutions for the lionhalf target semantics, even with the blind operators

(Table 8.20). Unfortunately, the task of conveying the lion target semantics was met with

less success, and it is only with the explicitly goal-directed operator SPUDLIKEDISCOURSE

that a “satisfycing” near-optimal solution is obtained. One possible explanation for this is

that aside from this operator, our genetic operators have no account for discourse whatsoever.

Considering that it is virtually impossible to convey the entire semantics of lion within a single

sentence, we can see why it poses such a difficult challenge. Ideally, some sort of sentence

planning, or ‘chunking’, should be performed for a target semantics of this size. Unfortunately,

due to to time constraints, this is not an issue we were able to explore further in this thesis.

Unlike during the first stage, where it was fairly clear to see that the resulting texts did indeed

exhibit the correct metre patterns, in this stage it is slightly more difficult to observe whether

the resulting texts convey the intended semantics. This is particularly true of the longer texts

that are intended to convey the lion target semantics. This was due to peculiarities in the texts

which arose from a combination of our very simple treatment of pronoun resolution, and the

exploitation of certain rules in the grammar, such as the nominal copula constructions, e.g.“a

big head, it is its expense”.

Although we found weighting scheme 1 to yield the most accurate realizations of the target

semantics, in the sense that the candidate semantics of the solutions are proper subsets of

Starget , we found that it caused the EA to behave too conservatively in this respect, and did

not provide enough opportunity to expand linguistic content. In terms of producing texts that

conveyed most of the given Starget , weighting scheme 2 was found most useful, although this

comes at a cost of more dangling candidate literals, which could obscure the meaning of Starget

in the candidate solution’s text.

8.5 MCGONAGALL as poetry generation system

Throughout the first and second stages of our empirical study we have experimented using

MCGONAGALL as a form-aware text generator (Section 8.3) and as a tactical NLG component

(Section 8.4). We have seen that for these tasks, MCGONAGALL is able to achieve optimal



8.5. MCGONAGALL as poetry generation system 263

solutions, and that these solutions possess the features that they are required to exhibit. The

only exception to this is the conveying of the lion target semantics, for reasons discussed

above in Section 8.4.4.

Although these tests have revealed several interesting points (see the discussions in Sections 8.3.8

and 8.4.4 for a summary), we have yet to test MCGONAGALL, and thus the EA-based NLG

theory that underlies it, at the task which it has specifically been designed for, namely the gen-

eration of texts that simultaneously satisfy grammaticality, meaningfulness, and poeticness, i.e.

our definition of poetry.

In this section we report on our attempts at this multi-objective optimization task. As in the

first two stages, we first perform an initial test (Section 8.5.1) which defines the baseline for

comparison. The subsequent tests examine the use of our semantically smart operators (Sec-

tion 8.5.2), the behaviour of the EA when we attempt to distribute the heuristics for optimizing

meaningfulness and poeticness between the genetic operators and evaluation function used

(Section 8.5.3), and the generation of texts on a line-by-line basis (Section 8.5.4).

8.5.1 Initial poetry generation test

In this test we simultaneously use the metre similarity and semantic similarity evaluation func-

tions, and examine their effect on the behaviour and performance of the EA and the best indi-

vidual obtained. In a sense, we are combining the efforts of the enjambment and linebreaking

test (Section 8.3.4) and the initial tactical NLG test (Section 8.4.1). We base the configuration

of this test on these two previous tests.

Target

Following the tests we conducted in the first stage of our study (Section 8.3), we test three

different target forms: haiku, limerick, and mignonne.

For target semantics, we choose lionhalf. As discovered during the second stage of our study

(Section 8.4), MCGONAGALL was able to find optimal solutions for this target semantics, and

it will be interesting to see how it will fare given the additional constraint of metre satisfaction.



264 Chapter 8. Empirical Study and Discussion

Evaluators

For the metre evaluation function, we use the edit distance function, Fedit , using the operation

costs defined in Table 8.11, where the insertion of a linebreak target syllable, b, incurs a rela-

tively expensive cost of 10. This was found in Section 8.3.4 to guide the EA towards solutions

that have naturally occurring linebreaks.

For the semantic evaluation function, we use the semantic similarity equation used throughout

the second stage of our study (Section 8.4), and we choose weighting scheme 2, which we

found to be most useful in finding texts that maximize the mapping to Starget (although at a cost

of increased dangling candidate literals).

In combining the two evaluation functions, we simply use a linear combination where their

scores are averaged:

Fpoetry
� Fedit ) Fsem

2

EA Setup

In this test, we use the same EA parameters used in Section 8.4.1, except we only use an elitist

ratio of 20%. More specifically:� Selection algorithm: this test uses the proportionate selection algorithm with stochastic

universal sampling, as used in the tests of the first stage. We employ an elitist strategy

EA with elitist populations of 20% of the entire population.� Population size: as in the previous stages, we choose a population size of 40.

Operators

We also use the same genetic operators used in Section 8.4.1, i.e. the compound operators that

ensure complete derivations, presented in Section 7.4.1 and first used in Section 8.3.3. The

probabilities of them being applied when mutation is called for are also the same as during the

first stage:� BLINDCREATECOMPLETE = 0.5� BLINDADJOINCOMPLETE = 0.3



8.5. MCGONAGALL as poetry generation system 265

� BLINDDELETECOMPLETE = 0.2

Additionally, when crossover is called for, the subtree swapping operator BLINDSWAP is used.

As the three mutation operators above guarantee complete derivations, BLINDSWAP always

guarantees complete derivations as well.

We assign the probabilities of applying genetic operators as pmutation
� 0 � 6 and pcrossover

� 0 � 4.

Resources

We use the same linguistic resources used throughout the first two stages, i.e. the handcrafted

grammar and lexicon shown in Appendix C.

Expectations

Our hope is that the multi-objective evaluation function, Fpoetry, will guide the EA towards an

optimal solution which satisfies both the given Ftarget and Starget .

Note that there is an interesting relationship between the target form and target semantics.

There should be a balance between them, in the sense that the target form should be large

enough to provide space for the target semantics to be conveyed, but not excessively large.

Conversely, the target semantics should provide ample semantic content to be realized over the

target form, but not too much. Such notions of ‘enough space’ and ‘ample semantic content’

are very vague. However, given that the first two lines of Belloc’s poem, i.e. a text which we

already know accurately conveys lionhalf, consists of 22 syllables, we can provide a rough

prediction of how lionhalf is conveyed as a haiku (17 syllables), limerick (34 syllables),

and mignonne (84 syllables). We would expect haiku to be the most appropriate form given

the syllable count, followed by limerick and mignonne.

Results

We ran this test three times, once for each target form. Each test was run five times. Summary

statistics and graphs for this test are presented in Section D.3.1 of Appendix D.

Tables 8.34, 8.35, and 8.36 show the individual that yields the best fitness scores from the

last populations of each test. They show the best individual for the haiku, limerick, and



266 Chapter 8. Empirical Study and Discussion

Score 0.77

Surface he dwells in a waist . his very big head has her . he dwells in his waist .

Formatted He dwells in a waist.
His very big head has her.
He dwells in his waist.

Proper � > head > 5 ? h @ ? head > 13 ? 11 @�@ ?�> own > 4 ? l ? h @ ? own > 16 ? 17 ? 11 @�@ ?
match > own > 7 ? l ? wai @ ? own > 26 ? 17 ? 24 @�@ ?�> inside > 2 ? d ? was @ ? inside > 21 ? 18 ? 20 @�@ ?> dwell > d ? l @ ? dwell > 18 ? 17 @�@ ?�> big > 6 ? h @ ? big > 14 ? 11 @�@ ?> waist > 8 ? wai @ ? waist > 25 ? 24 @�@��
Target � lion > 0 ? l @ ? a f rican > 1 ? l @ ? waste > 3 ? was @ ? small > s ? wai @ ?
dangling very > 9 ? s @��
Candidate � own > 10 ? 11 ? 12 @ ? very > 15 ? 14 @ ? waist > 19 ? 20 @ ? dwell > 22 ? 17 @ ?
dangling inside > 23 ? 22 ? 24 @��

Table 8.34: Best individual for Ftarget
� haiku, initial poetry generation test

mignonne target forms respectively, and for each individual, we show its fitness score, raw sur-

face form, formatted surface text, and mapping between Starget and Scandidate . See Sections 8.3.1

and 8.4.1 for an explanation of the formatted surface texts and semantic mappings.

Observations and discussion

Comparing the scores obtained in Table D.13 to those obtained when satisfying Ftarget and

Starget independently, i.e. Table D.4 and D.8, we can see that the multi-objective optimization

task in this test is a much more difficult one.

Examining the best individuals obtained for the haiku and limerick form, we can see that the

formatted surface texts are both metrically perfect. However, in terms of conveying lionhalf,

they both perform suboptimally.

In our expectations for this test, we predicted that the haiku form would be the most appro-

priate, due to its syllable count. However, the first two lines of the slightly altered version of

Belloc’s “The Lion” shown in Table 8.18 is already a very dense text that conveys lionhalf.

Thus, it is not a trivial task to write an even shorter paraphrase of it1. Additionally, it uses

conjunction, e.g.“a big head and a very small waist”, a space-saving turn of phrase which our

handcrafted grammar does not provide.

1Indeed, our own attempts at a terse paraphrase has 18 syllables: “the big headed, very small waisted, african
lion dwells in the waste”, one more than is provided by haiku!



8.5. MCGONAGALL as poetry generation system 267

Score 0.81

Surface a lion , it dwells in a waste . a lion , it dwells in a waste . a waste will be rare . its head will be rare . its waist , that is

small , will be rare .

Formatted A lion, it dwells in a waste.
A lion, it dwells in a waste.
A waste will be rare.
Its head will be rare.
Its waist, that is small, will be rare.

Proper � > head > 5 ? h @ ? head > 53 ? 52 @�@ ?�> own > 4 ? l ? h @ ? own > 54 ? 28 ? 52 @�@ ?
match > own > 7 ? l ? wai @ ? own > 48 ? 28 ? 45 @�@ ?�> lion > 0 ? l @ ? lion > 29 ? 28 @�@ ?> dwell > d ? l @ ? dwell > 27 ? 28 @�@ ?�> inside > 2 ? d ? was @ ? inside > 30 ? 27 ? 31 @�@ ?> waste > 3 ? was @ ? waste > 32 ? 31 @�@ ?�> small > s ? wai @ ? small > 47 ? 45 @�@ ?> waist > 8 ? wai @ ? waist > 46 ? 45 @�@��
Target � a f rican > 1 ? l @ ? big > 6 ? h @ ? very > 9 ? s @��
dangling

Candidate � rare > 33 ? 34 @ ? will > 35 ? 36 @ ? waste > 37 ? 34 @ ? dwell > 38 ? 39 @ ?
dangling lion > 40 ? 39 @ ? inside > 41 ? 38 ? 42 @ ? waste > 43 ? 42 @ ? rare > 44 ? 45 @ ?

will > 49 ? 50 @ ? rare > 51 ? 52 @ ? will > 55 ? 56 @��
Table 8.35: Best individual for Ftarget

� limerick, initial poetry generation test

However, syllable count is not the only aspect. Note that since our edit cost function is de-

signed to heavily penalize arbitrary insertion of linebreaks, there is pressure to have linebreaks

coincide with phrase boundaries. Given that the lines of haiku are only either 5 or 7 syllables,

it can be difficult to convey certain aspects of lionhalf.

The individual obtained for the limerick target form contains instances of the word ‘rare’,

which is unrelated to the semantics of lionhalf. We can see that while the phrase it appears

in, “will be rare”, contributes positively to achieving the target metre, they end up as dangling

candidate literals. Weighting scheme 2, however, is ‘forgiving’ enough of these dangling liter-

als, and in fact we can see from the mapping that this text is actually conveying a large subset

of lionhalf.

In the case of the individual for the mignonne target form (Table 8.36), we can see from the

formatted surface text that the metre is not perfect. However, it is interesting to note that the

five lines which introduce edit operations, i.e. deletion of candidate syllables, are precisely

the lines which introduce the necessary semantics to convey lionhalf. The other lines are

metrically accurate, but semantically they are extraneous, as can be seen by the abundance of

dangling candidate literals. Due to the imbalance of the size of the target semantics and target

form that we discussed in our expectations, MCGONAGALL was forced to “pad” the remaining



268 Chapter 8. Empirical Study and Discussion

Score 0.78

Surface with a pole , a african lion , it dwells in a head , that is small , in its big head , that is small , in a head , that is small , in a

head , that is very small , in a waist , that is a waste , in a head , that is small , in a head , that is small , in a head , that is

small , in a head , that is small , in a head , that is small , in a head , that is small , in a head , that is small , with its waist ,

that is small , .

Formatted With a pole,
(an) (af)rican li(on),
(it) (dwells) in a head,
that is small,
in its (big) head,
that is small,
in a head,
that is small,
in a head,
(that) is (ve)ry small,
in a waist,
(that) is a waste,
in a head,
that is small,
in a head,
that is small,
in a head,
that is small,
in a head,
that is small,
in a head,
that is small,
in a head,
that is small,
in a head,
that is small,
with its waist,
that is small.

Proper � > lion > 0 ? l @ ? lion > 111 ? 58 @�@ ?�> a f rican > 1 ? l @ ? a f rican > 112 ? 58 @�@ ?
match > dwell > d ? l @ ? dwell > 57 ? 58 @�@ ?�> waste > 3 ? was @ ? waste > 105 ? 70 @�@ ?> inside > 2 ? d ? was @ ? inside > 69 ? 57 ? 70 @�@ ?�> big > 6 ? h @ ? big > 62 ? 60 @�@ ?> own > 4 ? l ? h @ ? own > 64 ? 58 ? 60 @�@ ?�> own > 7 ? l ? wai @ ? own > 91 ? 58 ? 88 @�@ ?> head > 5 ? h @ ? head > 61 ? 60 @�@ ?�> small > s ? wai @ ? small > 90 ? 88 @�@ ?> waist > 8 ? wai @ ? waist > 89 ? 88 @�@��
Target � very > 9 ? s @��
dangling

Candidate � inside > 59 ? 57 ? 60 @ ? small > 63 ? 60 @ ? inside > 65 ? 57 ? 66 @ ? inside > 67 ? 57 ? 68 @ ?
dangling inside > 71 ? 57 ? 72 @ ? inside > 73 ? 57 ? 74 @ ? inside > 75 ? 57 ? 76 @ ? inside > 77 ? 57 ? 78 @ ?

inside > 79 ? 57 ? 80 @ ? inside > 81 ? 57 ? 82 @ ? inside > 83 ? 57 ? 84 @ ? head > 85 ? 84 @ ?
small > 86 ? 84 @ ? with > 87 ? 57 ? 88 @ ? head > 92 ? 82 @ ? small > 93 ? 82 @ ?
head > 94 ? 80 @ ? small > 95 ? 80 @ ? head > 96 ? 78 @ ? small > 97 ? 78 @ ?
head > 98 ? 76 @ ? small > 99 ? 76 @ ? head > 100 ? 74 @ ? small > 101 ? 74 @ ?
head > 102 ? 72 @ ? small > 103 ? 72 @ ? waist > 104 ? 70 @ ? head > 106 ? 68 @ ?
small > 107 ? 68 @ ? very > 108 ? 107 @ ? head > 109 ? 66 @ ? small > 110 ? 66 @ ?
inside > 113 ? 57 ? 114 @ ? head > 115 ? 114 @ ? small > 116 ? 114 @ ? with > 117 ? 57 ? 118 @ ?
pole > 119 ? 118 @��

Table 8.36: Best individual for Ftarget
� mignonne, initial poetry generation test



8.5. MCGONAGALL as poetry generation system 269

syllables.

Note that for all three individuals shown in Tables 8.34 to 8.36, they exhibit the repetition

of lines to satisfy the target form. This is because the genetic operators in this test include

the crossover operator BLINDSWAP, and as we first saw in Section 8.3.7, this repetition is an

effective method of satisfying the target form.

8.5.2 Smart operators poetry generation tests

In this test we will examine the effect of using the semantically smart operators. The configu-

ration of genetic operators is the same as in Section 8.4.2, i.e. we use the compound operators

that ensure complete derivations and greedily consume Starget .

All other aspects of the test, i.e. target form and target semantics, EA parameters, evaluation

functions, and linguistic resources, are the same as during the previous test (Section 8.5.1).

Expectations

We hope that the use of semantically smart operators will improve the semantic similarity of the

individuals obtained. However, this may be achieved at the cost of metre similarity, where the

semantically goal-directed operators may miss certain opportunities for satisfying the metre,

as in the limerick in Table 8.35, where the last three lines ends with the metrically perfect but

semantically extraneous “will be rare”.

Results

We ran this test three times, once for each target form. Each test was run five times. Summary

statistics and graphs for this test are presented in Section D.3.2 of Appendix D.

Tables 8.37, 8.38, and 8.39 show the individual that yields the best fitness scores from the

last populations of each test. They show the best individual for the haiku, limerick, and

mignonne target forms respectively, and for each individual, we show its fitness score, raw sur-

face form, formatted surface text, and mapping between Starget and Scandidate . See Sections 8.3.1

and 8.4.1 for an explanation of the formatted surface texts and semantic mappings.



270 Chapter 8. Empirical Study and Discussion

Score 0.86

Surface in a waste , a lion , who has a very small waist , dwells in a big head .

Formatted (In) a waste, a lion,
who has a very small waist,
dwells in a big head.

Proper � > lion > 0 ? l @ ? lion > 124 ? 121 @�@ ?�> dwell > d ? l @ ? dwell > 120 ? 121 @�@ ?
match > waste > 3 ? was @ ? waste > 134 ? 133 @�@ ?�> inside > 2 ? d ? was @ ? inside > 132 ? 120 ? 133 @�@ ?> head > 5 ? h @ ? head > 130 ? 123 @�@ ?�> own > 7 ? l ? wai @ ? own > 125 ? 121 ? 126 @�@ ?> big > 6 ? h @ ? big > 131 ? 123 @�@ ?�> small > s ? wai @ ? small > 128 ? 126 @�@ ?> waist > 8 ? wai @ ? waist > 127 ? 126 @�@ ?�> very > 9 ? s @ ? very > 129 ? 128 @�@��
Target � a f rican > 1 ? l @ ? own > 4 ? l ? h @��
dangling

Candidate � inside > 122 ? 120 ? 123 @��
dangling

Table 8.37: Best individual for Ftarget
� haiku, smart operators poetry generation test

Score 0.83

Surface a very african lion , who is african , dwells in a waste . its head , that is big , is very big . a waist , that is its waist , , it is

small .

Formatted A very * african li(on),
(who) is african, dwells in a waste.
Its head, that is big,
is very * big.
A waist, (that) is its waist, it is small.

Proper � > inside > 2 ? d ? was @ ? inside > 150 ? 147 ? 149 @�@ ?�> lion > 0 ? l @ ? lion > 151 ? 140 @�@ ?
match > dwell > d ? l @ ? dwell > 147 ? 140 @�@ ?�> waste > 3 ? was @ ? waste > 148 ? 149 @�@ ?> head > 5 ? h @ ? head > 138 ? 136 @�@ ?�> own > 4 ? l ? h @ ? own > 139 ? 140 ? 136 @�@ ?> own > 7 ? l ? wai @ ? own > 146 ? 140 ? 143 @�@ ?�> small > s ? wai @ ? small > 142 ? 143 @�@ ?> a f rican > 1 ? l @ ? a f rican > 152 ? 140 @�@ ?�> big > 6 ? h @ ? big > 135 ? 136 @�@ ?> waist > 8 ? wai @ ? waist > 144 ? 143 @�@��
Target � very > 9 ? s @��
dangling

Candidate � very > 137 ? 135 @ ? big > 141 ? 136 @ ? waist > 145 ? 143 @ ? very > 153 ? 152 @ ?
dangling a f rican > 154 ? 140 @��

Table 8.38: Best individual for Ftarget
� limerick, smart operators poetry generation test



8.5. MCGONAGALL as poetry generation system 271

Score 0.80

Surface a african lion , who dwells in a waste , has a waist , that in a waist , that is small , , is very small , . in a waste , in a waist

, that is small , , in a waist , that is small , , in a waist , that is small , , its head , that is big , is a head , that in a waist , that

in a waste , in a waist , that is small , , in a waist , that is small , , in a waist , that is small , , in a waist , that is small , ,

will be small , , will be big , .

Formatted (An) (af)rican li(on),
(who) (dwells) in a waste,
has a waist,
(that) in a waist,
that is small,
is (ve)ry small.
In a waste,
in a waist,
that is small,
in a waist,
that is small,
in a waist,
that is small,
* its head,
that is big,
is a head,
(that) in a waist,
(that) in a waste,
in a waist,
that is small,
in a waist,
that is small,
in a waist,
that is small,
in a waist,
that is small,
will be small,
will be big.

Proper � > lion > 0 ? l @ ? lion > 158 ? 156 @�@ ?�> a f rican > 1 ? l @ ? a f rican > 159 ? 156 @�@ ?
match > dwell > d ? l @ ? dwell > 160 ? 156 @�@ ?�> inside > 2 ? d ? was @ ? inside > 161 ? 160 ? 162 @�@ ?> waste > 3 ? was @ ? waste > 163 ? 162 @�@ ?�> very > 9 ? s @ ? very > 170 ? 165 @�@ ?> small > s ? wai @ ? small > 165 ? 157 @�@ ?�> own > 4 ? l ? h @ ? own > 217 ? 156 ? 172 @�@ ?> own > 7 ? l ? wai @ ? own > 155 ? 156 ? 157 @�@ ?�> waist > 8 ? wai @ ? waist > 164 ? 157 @�@ ?> head > 5 ? h @ ? head > 171 ? 172 @�@ ?�> big > 6 ? h @ ? big > 173 ? 172 @�@��
Target /0
candidate

Candidate � inside > 166 ? 165 ? 167 @ ? waist > 168 ? 167 @ ? small > 169 ? 167 @ ? will > 174 ? 175 @ ?
dangling inside > 176 ? 173 ? 177 @ ? waist > 178 ? 177 @ ? small > 179 ? 177 @ ? inside > 180 ? 179 ? 181 @ ?

inside > 182 ? 179 ? 183 @ ? waist > 184 ? 183 @ ? small > 185 ? 183 @ ? inside > 186 ? 179 ? 187 @ ?
inside > 188 ? 179 ? 189 @ ? inside > 190 ? 179 ? 191 @ ? waste > 192 ? 191 @ ? waist > 193 ? 189 @ ?
small > 194 ? 189 @ ? waist > 195 ? 187 @ ? small > 196 ? 187 @ ? waist > 197 ? 181 @ ?
small > 198 ? 181 @ ? will > 199 ? 200 @ ? inside > 201 ? 171 ? 202 @ ? waist > 203 ? 202 @ ?
small > 204 ? 202 @ ? inside > 205 ? 171 ? 206 @ ? inside > 207 ? 171 ? 208 @ ? inside > 209 ? 171 ? 210 @ ?
waste > 211 ? 210 @ ? waist > 212 ? 208 @ ? small > 213 ? 208 @ ? waist > 214 ? 206 @ ?
small > 215 ? 206 @ ? head > 216 ? 172 @ ? big > 218 ? 172 @��

Table 8.39: Best individual for Ftarget
� mignonne, smart operators poetry generation test



272 Chapter 8. Empirical Study and Discussion

Observations and discussion

Comparing the scores obtained in this test (Table D.14) with those in the previous test (Ta-

ble D.13) where blind operators were used, we can see that the maximum fitness scores achieved

are slightly better, but we cannot drawn conclusions from these numbers alone. Given the

multi-objective nature of the evaluation function used, we must scrutinize the individuals them-

selves.

Indeed, the individuals for the haiku, limerick and mignonne target forms all show a similar

behaviour: in terms of metre similarity, they are inferior to the solutions obtained in Sec-

tion 8.5.1, but they are semantically better, in the sense that there are fewer dangling target and

candidate literals.

In particular, we can see from Table 8.37 that, for the first time in the entire study, the EA failed

to find a perfect haiku. This is indicated by the deletion of the very first candidate syllable, ‘in’.

The text in Table 8.38, unlike the metrically perfect limerick in Table 8.35, also requires several

edit operations (2 insertions and 2 deletions). However, it conveys lionhalf much better. The

only aspect that it fails to convey is the fact that the small waist is very small. Note that the

dangling candidate literals are mainly semantically accurate duplicates of the literals mapped

in the proper matches, and not extraneous semantics. This can be seen by their arguments, i.e.

in the computed mapping, 136 represents the head, 143 is the waist, and 140 is the lion.

Unfortunately the best individual obtained for the mignonne target form (Table 8.39) is very

similar to the one obtained in the previous test (Table 8.36), where it is forced to pad out the

text with repeated prepositional phrases and relative clauses which serve only to increase the

amount of dangling candidate literals.

We believe that the results in this test, especially for the haiku and limerick forms, are

comparable to the results obtained from our chart generation system, where we adopted an

exhaustive search approach to poetry generation (see Section 2.3.4).

8.5.3 Distribution of heuristics test

In this final test, we experiment with the interesting notion of distributing the heuristics used

for achieving the multi-objective optimization of meaningfulness and poeticness between the

genetic operators and evaluation function. More specifically, we will test running the EA using



8.5. MCGONAGALL as poetry generation system 273

Score 0.90

Surface his waist is his waist . a lion , who dwells in a waste , will be african .

Formatted His waist is his waist.
(A) lion, who dwells in a waste,
will be african.

Proper � > inside > 2 ? d ? was @ ? inside > 230 ? 229 ? 231 @�@ ?�> lion > 0 ? l @ ? lion > 228 ? 227 @�@ ?
match > a f rican > 1 ? l @ ? a f rican > 226 ? 227 @�@ ?�> dwell > d ? l @ ? dwell > 229 ? 227 @�@ ?> waste > 3 ? was @ ? waste > 232 ? 231 @�@ ?�> waist > 8 ? wai @ ? waist > 219 ? 220 @�@��
Target � own > 4 ? l ? h @ ? head > 5 ? h @ ? big > 6 ? h @ ? own > 7 ? l ? wai @ ?
dangling small > s ? wai @ ? very > 9 ? s @��
Candidate � waist > 221 ? 220 @ ? own > 222 ? 223 ? 220 @ ? own > 224 ? 225 ? 220 @ ? will > 233 ? 234 @��
dangling

Table 8.40: Best individual for Ftarget
� haiku, distribution of heuristics test

the semantically smart operators, but only using the metre evaluation function.

For this test, we use the exact same setup as in the previous test (Section 8.5.2), except that we

only use the metre edit distance function, Fedit , as our evaluation function.

Expectations

We expect the results to be at best equal to those obtained in the previous test, but expect it to

be slightly inferior due to the reduced informedness provided by the evaluation function.

Results

We ran this test three times, once for each target form. Each test was run five times. Summary

statistics and graphs for this test are presented in Section D.3.3 of Appendix D.

Tables 8.40, 8.41, and 8.42 show the individual that yields the best fitness scores from the

last populations of each test. They show the best individual for the haiku, limerick, and

mignonne target forms respectively, and for each individual, we show its fitness score, raw sur-

face form, formatted surface text, and mapping between Starget and Scandidate . See Sections 8.3.1

and 8.4.1 for an explanation of the formatted surface texts and semantic mappings.



274 Chapter 8. Empirical Study and Discussion

Score 0.82

Surface its lion will not be its head , that is very big , . a species , that will be a waste , will not be a waste , that will be a waste in

a waste , .

Formatted Its lion will not be its head,
(that) is very * big *. A spe(cies),
that will be a waste,
will not be a waste,
that will be a waste in a waste.

Proper � > inside > 2 ? d ? was @ ? inside > 258 ? 255 ? 259 @�@ ?�> lion > 0 ? l @ ? lion > 243 ? 236 @�@ ?
match > waste > 3 ? was @ ? waste > 260 ? 259 @�@ ?�> very > 9 ? s @ ? very > 242 ? 241 @�@��
Target � a f rican > 1 ? l @ ? dwell > d ? l @ ? own > 4 ? l ? h @ ? head > 5 ? h @ ?
dangling big > 6 ? h @ ? own > 7 ? l ? wai @ ? small > s ? wai @ ? waist > 8 ? wai @��
Candidate � head > 235 ? 236 @ ? own > 237 ? 236 ? 236 @ ? will > 238 ? 239 @ ? not > 240 ? 238 @ ?
dangling big > 241 ? 236 @ ? own > 244 ? 245 ? 236 @ ? waste > 246 ? 247 @ ? will > 248 ? 249 @ ?

not > 250 ? 248 @ ? species > 251 ? 247 @ ? waste > 252 ? 247 @ ? will > 253 ? 254 @ ?
waste > 255 ? 247 @ ? will > 256 ? 257 @��

Table 8.41: Best individual for Ftarget
� limerick, distribution of heuristics test

Observations and discussion

In a sense, this test can be see as an approximation of the author-reviewer model of generation

in Oberlander and Brew (2000) (see Section 3.5), where the genetic operators correspond to

the author module, which seeks to achieve fidelity, and the evaluation function corresponds to

the reviewer module, which maximizes fluency.

From a semantic similarity point of view, these individuals are not as good as the ones obtained

in Sections 8.5.1 and 8.5.2. This is to be expected, however, as the EA is exerting no pres-

sure whatsoever towards the conveying of Starget . From a metre similarity point of view, these

individuals are not as good as the ones obtained in Section 8.5.1, which had the advantage of

exploiting non-semantically motivated operations (recall that it used the blind baseline opera-

tors). They are roughly equivalent in terms of metrical quality to those in Section 8.5.2, which

were equally constrained by having to use the semantically smart operators.

It would have been interesting to test the explicitly semantically-motivated operators, PRO-

TECTORLIKE and SPUDLIKE, in this test, but unfortunately we were unable to do so due

to lack of time. Nevertheless, the results obtained in this simple experiment show the potential

provided by the EA framework.



8.5. MCGONAGALL as poetry generation system 275

Score 0.81

Surface a head , that in a head , that in a head , that in a waist , that is small , , is a waste , , is a waste , , is a waste , is a waste ,

that in a head , that in a head , that in a waist , that is small , , is a waste , , is a waste , , is a waste , . a head , that in a

head , that in a head , that in a head , that in a waist , that is small , , is a waste , , is a waste , , is a waste , , is a waste , is

a waste , that is a waste , .

* A head,
(that) in a head,
(that) in a head,
(that) in a waist,
that is small,
is a waste,
is a waste,
is a waste,
is a waste,
(that) in a head,
(that) in a head,
(that) in a waist,
that is small,
is a waste,
is a waste,
is a waste.
* A head,
(that) in a head,
(that) in a head,
(that) in a head,
(that) in a waist,
that is small,
is a waste,
is a waste,
is a waste,
is a waste,
is a waste,
(that) is a waste.

Proper � > small > s ? wai @ ? small > 280 ? 278 @�@ ?�> waist > 8 ? wai @ ? waist > 279 ? 278 @�@ ?
match > inside > 2 ? d ? was @ ? inside > 265 ? 264 ? 266 @�@ ?�> waste > 3 ? was @ ? waste > 268 ? 266 @�@ ?> head > 5 ? h @ ? head > 263 ? 262 @�@��
Target � lion > 0 ? l @ ? a f rican > 1 ? l @ ? dwell > d ? l @ ? own > 4 ? l ? h @ ?
dangling big > 6 ? h @ ? own > 7 ? l ? wai @ ? very > 9 ? s @��
Candidate � waste > 261 ? 262 @ ? waste > 264 ? 262 @ ? head > 267 ? 266 @ ? inside > 269 ? 268 ? 270 @ ?
dangling head > 271 ? 270 @ ? waste > 272 ? 270 @ ? inside > 273 ? 272 ? 274 @ ? head > 275 ? 274 @ ?

waste > 276 ? 274 @ ? inside > 277 ? 276 ? 278 @ ? waste > 281 ? 262 @ ? waste > 282 ? 283 @ ?
head > 284 ? 283 @ ? waste > 285 ? 283 @ ? inside > 286 ? 285 ? 287 @ ? head > 288 ? 287 @ ?
waste > 289 ? 287 @ ? inside > 290 ? 289 ? 291 @ ? head > 292 ? 291 @ ? waste > 293 ? 291 @ ?
inside > 294 ? 293 ? 295 @ ? waist > 296 ? 295 @ ? small > 297 ? 295 @ ? waste > 298 ? 283 @ ?
inside > 299 ? 298 ? 300 @ ? head > 301 ? 300 @ ? waste > 302 ? 300 @ ? inside > 303 ? 302 ? 304 @ ?
head > 305 ? 304 @ ? waste > 306 ? 304 @ ? inside > 307 ? 306 ? 308 @ ? waist > 309 ? 308 @ ?
small > 310 ? 308 @��

Table 8.42: Best individual for Ftarget
� mignonne, distribution of heuristics test



276 Chapter 8. Empirical Study and Discussion

8.5.4 Line-by-line generation

In this test, we attempt to generate a limerick as before, but this time we also break the task

down and run MCGONAGALL on each line of the limerick individually, i.e. the targets are the

meaning and metre of the relevant line. The purpose of this test is to see whether MCGONA-

GALL can generate optimal solutions for both semantics and metre when given these smaller

targets.

The parameters used for this test in terms of EA setup, evaluators and genetic operators are the

same as those found in Section 8.5.2, i.e. we use proportionate selection with stochastic univer-

sal sampling and an elitist ratio of 20%, a population size of 40, the F poetry evaluation function

which simply averages the scores of metre and semantic evaluation, and the semantically-

motivated compound operators that ensure complete derivations.

Only the semantic targets, metre targets, and linguistic resources are changed, which we now

discuss in more detail.

Target

We have based this test on an entirely different limerick in order to show the portability and

flexibility of MCGONAGALL, i.e. by encoding the appropriate targets and augmenting the lin-

guistic resources accordingly, we should be able to generate different texts. In choosing a

limerick for this test, we were constrained by the fact that each individual line should be able to

stand on its own as a syntactically well-formed sentence. We selected the well known ‘relativ-

ity’ limerick shown in Table 8.43, along with our encoding of the relativity semantic target.

The Oxford Dictionary of Quotations (Knowles, 1999) attributes authorship of this limerick to

Arthur H.R. Buller, who first published it in Punch magazine.

Note that the original limerick consists of two sentences: the first sentence spans the first two

lines and the second sentence spans the last three lines. Since we will be trying to generate

this limerick on a line by line basis, we have modified the text slightly so that it consists of

four complete sentences which MCGONAGALL can generate individually. These four sen-

tences are shown in Table 8.44, along with the respective semantic targets, relativity1 to

relativity4.

This modified limerick preserves the metre and syllable count of the original. However, the



8.5. MCGONAGALL as poetry generation system 277

There was a young lady called Bright

who could travel much faster than light.

She set out one day

in a relative way

and returned on the previous night.

relativity:� lady � � l ��� young � � l ��� name � � l � b ��� bright � � b ���
travel � t � l ��� f aster � f � t � li ��� light � � li ��� much � � f ��� can � � t ���
leave � le � l ��� relative � � le ��� oneday � � le ���
return � r� l ��� on � � r� n ��� night � � n ��� previous � � n ���
Table 8.43: Arthur H.R. Buller’s ‘relativity’ limerick with relativity semantic target

Line 1 There was a young lady called Bright.

relativity1: � lady � � l ��� young � � l ��� name � � l � b ��� bright � � b ���
Line 2 She could travel much faster than light.

relativity2: � travel � t � l ��� f aster � f � t � li ��� light � � li ��� much � � f ��� can � � t ���
Line 3 She set out one day in a relative way.

relativity3: � leave � le � l ��� relative � � le ��� oneday � � le ���
Line 4 She returned on the previous night.

relativity4: � return � r� l ��� on � � r� n ��� night � � n ��� previous � � n ���
Table 8.44: Modified ‘relativity’ limerick consisting of four complete sentences

third and fourth lines from the original limerick have now been merged into one line. The form

targets for lines 1, 2, and 4 of the modified limerick are the same, as follows:

limerickline1: [w,s,w,w,s,w,w,s,b]

The form target for line 3 is as follows:

limerickline2: [w,s,w,w,s,w,s,w,w,s,b]

Note the lack of a linebreak syllable in the middle of limerickline2. This is because line 3 is

one sentence, and it would thus be ‘unfair’ on MCGONAGALL if we penalized it for not having

a proper linebreak at this point.

To summarize, we will be using Starget
� relativity along with Ftarget

� limerick to generate



278 Chapter 8. Empirical Study and Discussion

the entire modified limerick, Starget
� relativity1, relativity2, and relativity4 along

with Ftarget
� limerickline1 to generate lines 1, 2, and 4, and finally Starget

� relativity3
and Ftarget =limerickline2 to generate line 3.

Note that although the four lines of our modified limerick perfectly satisfy their respective

semantic targets, in terms of metre they are actually suboptimal. We will discuss this issue in

more depth along with the discussion of our test results.

Resources

For MCGONAGALL to be able to generate the ‘relativity’ limerick and its individual lines,

we must augment the available linguistic resources, i.e. grammar and lexicon, accordingly.

Furthermore, we ensured that there are several ways of realizing the targets, i.e. different para-

phrases, so as to provide ample opportunity for MCGONAGALL to convey the semantics.

In order to generate the ‘relativity’ limerick, we had to account for several syntactic structures

that we had not previously come across. For example, the existential copula sentence form

very widely used in limerick openings, i.e. “There was a NP ”. Other examples of syntactic

structures we had to account for are auxiliary NP postmodifiers (e.g. “The lady called Bright”),

comparative VP postmodifiers (e.g. “travels faster than light”), and adverbial VP postmodifiers

(e.g. “travels relatively”).

To provide MCGONAGALL with ample opportunities in realizing the targets, we ensured that

there were several different ways of conveying the same semantics. For example:� Alternative paraphrasing: “travelled in a relative way” vs. “travelled relatively”.� Pre and postmodification: “yesterday left” vs. “left yesterday”.� Synonyms: ‘set out’ vs. ‘left’, ‘faster’ vs. ‘speedier’, ‘previous’ vs. ‘preceding’.

Note that these paraphrases are considered semantically equivalent, but have different metre

patterns. In particular, we chose as synonyms lexical entries with either different syllable

counts (‘faster’ vs. ‘speedier’) or different stress patterns (‘PREvious’ vs. ‘preCEding’).

The additional lexical and syntactic resources are fully listed in Appendix C.1.5 and C.2.9. In

this test, we used these additional resources together with all the previously defined grammar

and lexicon used in preceding tests.



8.5. MCGONAGALL as poetry generation system 279

Before conducting the test proper, we informally verified that the resources could indeed be

used to generate texts that convey the given target semantics. This was done by running MCG-

ONAGALL with only semantic evaluation. For example, for Starget
� relativity3, we obtained

the following optimal solutions:

� she relatively left one day .� she left relatively one day .� she set out relatively one day .� she one day relatively set out .� she set out in a relative way, it one day .

For Starget
� relativity4, we obtained, among others, the following optimal solutions:

� on a preceding night , he returned .� on a preceding evening , she returned . she returned .� she returned on a night . it is previous .� it is it . he returned on a previous night .

In fact, we even achieved several optimal solutions in terms of both semantics and metre, even

though this was purely coincidental, given that only semantic evaluation was used to guide the

generation. For example, for Starget
� relativity2, we obtained the optimal solution:

� she could travel much faster than light .

Finally, for Starget
� relativity, i.e. the entire limerick’s semantics, we obtained the following

best solution:

� a young lady , who set out one day relatively , , she called them could travel much

speedier than light . she returned . a night , it is preceding .

This solution had a score of 0.80, and only failed to convey the semantics that the lady is called

BRIGHT (bright � � b � ) and that she returned ON the preceding night (on � � r� n � ).



280 Chapter 8. Empirical Study and Discussion

Score 0.69

Surface a lady could be on a evening , that could be preceding , one day . a young lady called bright , who set out one day ,

travelled much faster than light .

Formatted A lady could be on an eve(ning),
that could be preceding, one day.
A (young) lady called bright,
who set out one day,
* travelled much faster than light.

Proper � > f aster > f ? t ? li @ ? f aster > 167 ? 178 ? 169 @�@ ?�> name > 2 ? l ? b @ ? name > 184 ? 166 ? 186 @�@ ?
match > on > 9 ? r? n @ ? on > 210 ? 197 ? 198 @�@ ?�> travel > t ? l @ ? travel > 178 ? 166 @�@ ?> much > 5 ? f @ ? much > 170 ? 167 @�@ ?�> light > 4 ? li @ ? light > 172 ? 169 @�@ ?> lady > 0 ? l @ ? lady > 177 ? 166 @�@ ?�> young > 1 ? l @ ? young > 179 ? 166 @�@ ?> bright > 3 ? b @ ? bright > 187 ? 186 @�@ ?�> leave > le ? l @ ? leave > 192 ? 166 @�@ ?> oneday > 8 ? le @ ? oneday > 194 ? 192 @�@ ?�> night > 10 ? n @ ? night > 208 ? 198 @�@ ?> previous > 11 ? n @ ? previous > 210 ? 198 @�@��
Target � can > 6 ? t @ ? relative > 7 ? le @ ? return > r? l @��
dangling

Candidate � oneday > 199 ? 210 @ ? lady > 201 ? 197 @ ? can > 221 ? 207 @ ? can > 228 ? 213 @��
dangling

Table 8.45: Best individual for entire relativity limerick

Expectations

We hope that given the appropriate resources, and the smaller targets, MCGONAGALL should

be able to obtain optimal solutions for the individual lines. For the generation of the entire

limerick, we hope it performs well as it did with the lionhalf semantics in Section 8.5.2.

Results

We ran this test five times, once for the entire limerick and once for each individual line.

Each test was run ten times. Summary statistics for this test are presented in Section D.3.4 of

Appendix D.

Tables 8.45 to 8.49 show the individual that yields the best fitness scores from the last pop-

ulations of each test. They show the best individual for the relativity, relativity1,

relativity2, relativity3, and relativity4 target semantics respectively. For each in-

dividual, we show its fitness score, raw surface form, formatted surface text, and mapping

between Starget and Scandidate . See Sections 8.3.1 and 8.4.1 for an explanation of the formatted

surface texts and semantic mappings.



8.5. MCGONAGALL as poetry generation system 281

Score 0.82

Surface a lady called bright could be young .

Formatted A lady called bright could be young.

Proper � > name > 2 ? l ? b @ ? name > 72 ? 66 ? 74 @�@ ?�> young > 1 ? l @ ? young > 41 ? 66 @�@ ?
match > lady > 0 ? l @ ? lady > 67 ? 66 @�@ ?�> bright > 3 ? b @ ? bright > 75 ? 74 @�@��
Target /0
dangling

Candidate � can > 57 ? 81 @��
dangling

Table 8.46: Best individual for first line, relativity limerick

Score 0.66

Surface she travelled . the light could be light .

Formatted she travelled. The light could be light.

Proper � > light > 0 ? li @ ? light > 604 ? 524 @�@ ?�> can > 2 ? t @ ? can > 607 ? 526 @�@ ?
match > @��
Target � travel > t ? l @ ? f aster > f ? t ? li @ ? much > 1 ? f @��
dangling

Candidate � light > 527 ? 524 @ ? travel > 603 ? 536 @��
dangling

Table 8.47: Best individual for second line, relativity limerick

Score 0.78

Surface she set out one day . she set out one day .

Formatted She set out one day. She set out one day.

Proper � > leave > le ? l @ ? leave > 360 ? 323 @�@ ?�> oneday > 1 ? le @ ? oneday > 324 ? 360 @�@��
match

Target � relative > 0 ? le @��
dangling

Candidate � leave > 359 ? 323 @ ? oneday > 333 ? 359 @��
dangling

Table 8.48: Best individual for third and fourth line, relativity limerick



282 Chapter 8. Empirical Study and Discussion

Score 0.86

Surface she is on a previous night .

Formatted She is on a previous night.

Proper � > on > 0 ? r? n @ ? on > 43 ? 229 ? 230 @�@ ?�> night > 1 ? n @ ? night > 236 ? 230 @�@ ?
match > previous > 2 ? n @ ? previous > 241 ? 230 @�@��
Target � return > r? l @��
dangling

Candidate /0
dangling

Table 8.49: Best individual for last line, relativity limerick

Observations and discussion

In general, these results show that MCGONAGALL is still not managing to find optimal solu-

tions despite the reduced complexity of the task when generating individual lines.

Regarding the generation of the entire limerick, the individual in Table 8.45 does indeed show

a quality reminiscent of the limerick for lionhalf in Table 8.38, where there are imperfections

in both metre and semantics. Note that relativity is a harder semantic target to satisfy as

it is slightly larger. Nevertheless, we can see that a large portion of the semantics is properly

conveyed, i.e. matched, particularly in the last sentence (“A young lady called Bright, who set

out one day, travelled much faster than light.”).

Of the four individually generated lines, only for the first line (Table 8.46) does MCGONAGALL

manage to convey the entire Starget , which in this case is relativity1. For the second line

(Table 8.47), it fails to convey the literals f aster � f � t � li � and much � � f � . Note that the dangling

target and candidate travel literals are because our mapping algorithm chose to match the

can literals, and thus cannot incorporate travel in a structurally consistent fashion. However,

the computed mapping is still a maximal structurally consistent mapping. For the third line

(Table 8.48), it fails to convey the literal relative � � le � , whereas for the last line (Table 8.49),

it fails to convey the literal return � r� l � .
We know for certain that this is not due to MCGONAGALL’s inability to simply satisfy the

semantics, as during our informal test to validate the linguistic resources described above, it

indeed managed to find optimal solutions for each individual line. Thus it is clear that the

additional constraint imposed by the target metre is keeping MCGONAGALL trapped in local



8.5. MCGONAGALL as poetry generation system 283

maxima as far as meaningfulness is concerned.

However, we can clearly observe that for the individually generated lines, MCGONAGALL is

performing much better with respect to the target metre. The individuals for the second and

third lines are perfect, whereas the individuals for the first and last lines only have one imperfec-

tion each: the destressing of ‘called’ and the stressing of ‘is’. In each case, the lines generated

by MCGONAGALL are in fact superior to the ‘optimal’ solutions in Table 8.44! Although we

assume the lines in Table 8.44 to be optimal solutions, when scored by the evaluation function

used in this test, they actually yield scores of 0.68, 0.91, 0.87, and 0.91 respectively. This is

due to the fact that they either have too many syllables, as is the case with lines 2, 3, and 4, or

the stressing/destressing of syllables, as is the case with line 1, i.e. the stressing of ‘was’ and

the destressing of ‘young’ and ‘called’. Thus, as far as our evaluation function is concerned,

the individual in Table 8.46 is actually better than the first line in Table 8.44.

This suggests that our simplistic multi-objective optimization method of simply averaging the

scores, i.e.

Fpoetry
� Fedit ) Fsem

2

is unbalanced in the sense that it is not guiding the EA to optimize semantics as well as it is for

metre. Another fact that suggests this is the following individual which was generated during

the test runs for relativity4:� a night is preceding . she returned on it .

This individual has a fitness score of 0.76, which is lower than that of the individual in Ta-

ble 8.49, despite the fact that it perfectly satisfies the target semantics. Unfortunately, it has far

too many syllables (11), which is what reduces its fitness.

One simple test which we conducted was to modify the linear combination of Fedit and Fsem.

We tried generating the individual lines using the following evaluation function, which effec-

tively doubles the weight of semantic evaluation:

Fpoetry
� Fedit ) 2Fsem

3

Note that using this evaluator, the four lines in Table 8.44 now yield scores of 0.78, 0.94, 0.91,

and 0.94 respectively.

Using this modified evaluator, we repeated the test run. Tables 8.50 to 8.53 show the individ-



284 Chapter 8. Empirical Study and Discussion

Score 0.78

Surface there is a young lady called bright .

Formatted There is a young lady called bright.

Proper � > name > 2 ? l ? b @ ? name > 421 ? 415 ? 423 @�@ ?�> lady > 0 ? l @ ? lady > 445 ? 415 @�@ ?
match > young > 1 ? l @ ? young > 416 ? 415 @�@ ?�> bright > 3 ? b @ ? bright > 424 ? 423 @�@��
Target /0
dangling

Candidate /0
dangling

Table 8.50: Best individual for first line, relativity limerick, double semantic fitness

Score 0.79

Surface she will travel much faster than light .

Formatted She (will) travel much faster than light.

Proper � > f aster > f ? t ? li @ ? f aster > 399 ? 415 ? 401 @�@ ?�> travel > t ? l @ ? travel > 415 ? 393 @�@ ?
match > light > 0 ? li @ ? light > 402 ? 401 @�@ ?�> much > 1 ? f @ ? much > 407 ? 399 @�@��
Target � can > 2 ? t @��
dangling

Candidate � will > 409 ? 415 @��
dangling

Table 8.51: Best individual for second line, relativity limerick, double semantic fitness

ual that yields the best fitness scores from the last populations of each test. They show the

best individual for the relativity1, relativity2, relativity3, and relativity4 target

semantics respectively.

In general, these individuals show an improvement in meaningfulness (semantic faithfulness)

with a tradeoff in poeticness (metre satisfaction), which is to be expected given the shift in

weight towards Fsem.

The individual for the first line (Table 8.50) is now exactly the same as the ‘optimal’ first line

in Table 8.44 in terms of metre and semantics. Note that the score is 0.78 due to the various

stressing and destressing to satisfy the target metre. The relativity1 target semantics is

perfectly conveyed.

The individual for the second line (Table 8.51) is also better than the one in Table 8.47. The

only difference from the second line in Table 8.44 is the use of ‘will’ instead of ‘could’. Un-

fortunately, this reduces the semantic fitness.



8.5. MCGONAGALL as poetry generation system 285

Score 0.95

Surface she set out one day relatively .

Formatted She set out one day * relatively.

Proper � > leave > le ? l @ ? leave > 253 ? 280 @�@ ?�> oneday > 1 ? le @ ? oneday > 281 ? 253 @�@ ?
match > relative > 0 ? le @ ? relative > 283 ? 253 @�@��
Target /0
dangling

Candidate /0
dangling

Table 8.52: Best individual for third and fourth line, relativity limerick, double semantic fitness

Score 0.76

Surface she is on a preceding night .

Formatted She is on (a) preceding * night.

Proper � > on > 0 ? r? n @ ? on > 355 ? 333 ? 334 @�@ ?�> night > 1 ? n @ ? night > 335 ? 334 @�@ ?
match > previous > 2 ? n @ ? previous > 337 ? 334 @�@��
Target � return > r? l @��
dangling

Candidate /0
dangling

Table 8.53: Best individual for last line, relativity limerick, double semantic fitness



286 Chapter 8. Empirical Study and Discussion

The individual for the third line (Table 8.52) perfectly conveys the relativity3 target seman-

tics. Moreover, the metre fitness is deemed better than that of the third line in Table 8.44. Thus,

MCGONAGALL finds this solution to be better than the original line.

Unfortunately, the individual for the fourth line (Table 8.53) does not improve on the one in

Table 8.49. Semantically, it is still missing the return � r� l � literal, and metre-wise, it is even

worse. Note that the fitness score is lower not just because the metre is worse, but the emphasis

on semantics makes the lack of return � r� l � all the more significant.

Finally, if we take these individually generated lines and join them together as a limerick, we

obtain the following text:

There is a young lady called bright.

She (will) travel much faster than light.

She set out one day * relatively.

She is on (a) preceding * night.

This text very closely resembles our limerick in Table 8.44, and compared to the quality of the

limerick that was generated in whole (Table 8.45), it is certainly an improvement. This suggests

that the decomposition of the task into several smaller sized tasks improves the performance

of MCGONAGALL, and is similar to the ‘chunking’ function played by sentence planning in

traditional NLG.

We have also seen that the very simple modification of increasing the weight of semantic evalu-

ation in our linear combination results in a marked improvement in the quality of the generated

texts. Although we do not claim that this in itself proves MCGONAGALL’s success, never-

theless it shows the potential benefit that may be gained from more advanced multi-objective

optimization methods such as Pareto-optimality based and population-based approaches. This

is certainly an area for future research.

8.5.5 Summary of discussion

The results from these tests, particularly the first two tests (Sections 8.5.1 and 8.5.2), show that

MCGONAGALL is encountering difficulties in achieving optimal solutions for both semantics

and metre. We believe that our simple approach to multi-objective optimization used in these

tests, i.e. the averaging of scores obtained from metre and semantic evaluation functions, is



8.6. Summary 287

the limiting factor. The fact that the results obtained for optimizing metre similarity and se-

mantic similarity simultaneously are not as good as when optimizing them independently is

to be expected, due to the tradeoffs involved. In Section 8.5.4, we observed that MCGONA-

GALL was in fact performing better at satisfying metre than it was at satisfying semantics. This

led us to experiment with the weighting of the linear combination between evaluation func-

tions. Indeed, the simple approach of doubling the weight of semantic evaluation resulted in a

marked improvement in the quality of the output. This suggests a potential benefit that may be

gained from various methods of increasing sophistication, such as Pareto-optimality based and

population-based approaches.

Nevertheless, we feel that the metrical and semantic quality of the best outputs obtained in

Sections 8.5.2 and 8.5.4 are comparable to that of the sample output from our initial attempt

at poetry generation based on chart generation (Figure 2.15). Note that chart generation is an

exhaustive search method.

We believe that our EA framework provides great flexibility in the implementation of the

various heuristics used to optimize the constraints of meaningfulness and poeticness, which

roughly correspond to the concepts of fidelity and fluency in Oberlander and Brew (2000).

8.6 Summary

Our empirical study was divided into three stages, and the tests carried out were conducted on a

principle of least bias, where for each test we started with an initial test that defined a baseline,

and we gradually introduced components that were more heuristically-motivated.

In general, our study showed that MCGONAGALL is perfectly capable of generating solutions

that satisfy various metre constraints. With respect to semantic constraints, it encountered

difficulties when the size of the semantic target grew too large. We believe this is due to the

fact that MCGONAGALL has no real account of discourse. Finally, when trying to satisfy both

semantic and metre targets, i.e. in the case of poetry generation, there was clearly a tradeoff

between the two dimensions. By modifying the weighting of the linear combination between

evalution functions, we were able to improve performance. Although we do not claim that this

in itself proves MCGONAGALL’s success, nevertheless it shows the potential benefit that may

be gained from more advanced multi-objective optimization.



288 Chapter 8. Empirical Study and Discussion

A more detailed summary of the observations and discussions for each of the three stages of

our empirical study is provided in Sections 8.3.8, 8.4.4, and 8.5.5.



Chapter 9

Conclusions and future work

In this chapter we conclude our exposition by summarizing the main contributions of this thesis

in light of the context that originally motivated our research. We then propose several avenues

of research that would be of interest for future work.

9.1 Conclusions

As stated in Section 1.1, there are two different aspects that motivate our work: the AI moti-

vation and the NLG motivation. We now present our conclusions based on the motivational

aspect that they most pertinently address.

1. AI motivation

A fundamental decision that we made early on was to concentrate our efforts on a sub-

class of poetry which we could define in a falsifiable model (Section 2.1.4). Although

our restricted definition of poetry as a text that satisfies the properties of grammatical-

ity, meaningfulness, and poeticness, is deliberately general, we further clarified in Sec-

tion 5.1 that this thesis further defines meaningfulness as propositional semantics sim-

ilarity to a given target semantics, and poeticness as metre similarity to a given target

form. These are the features that our implementation, MCGONAGALL, seeks to opti-

mize. Samples of existing poetry which we consider to fall under this specific definition

are presented in Figures 2.6 to 2.8.

289



290 Chapter 9. Conclusions and future work

This model allowed us to characterise existing poetry generation systems in terms of

what properties their output was satisfying (Section 2.3). We found that the majority of

these systems only address a subset of these properties.

We feel that the success of future poetry generation systems will hinge on their spe-

cific accounts of these three properties, particularly meaningfulness and poeticness. In

general, the more sophisticated the account, the greater the potential for better quality

output.

Our model of metre similarity is an important step in providing a computational model

for the myriad aspects of poeticness.

Finally, our results show that our chosen mechanism of solving the state space search

problem of poetry generation, evolutionary algorithms, succeeds in generating texts that

achieve, either optimally or “satisfycingly”, these properties. When only optimizing

poeticness (Section 8.3), MCGONAGALL found solutions that managed to exhibit the

metre patterns prescribed by our three target forms, haiku, limerick, and mignonne.

When only optimizing meaningfulness (Section 8.4), MCGONAGALL found solutions

that managed to convey the semantics in the lionhalf and lion targets (although

for lion, this was only achieved with the extensively knowledge-rich SPUDLIKEDIS-

COURSE operator). Unfortunately, for the simultaneous optimization of meaningfulness

and poeticness (Section 8.5), MCGONAGALL did not perform as well as when opti-

mizing them in isolation. This is to be expected, given the tradeoffs involved. How-

ever, despite their suboptimality, we believe the best output obtained, exemplified by the

texts found in Tables 8.37 and 8.38, are comparable to the output of our previous chart-

generation based system (Figure 2.15), which employed an exhaustive search. Further-

more, by modifying the weighting of the linear combination between evalution functions,

we were able to improve performance.

2. NLG motivation

In attempting to solve our poetry generation search problem using evolutionary algo-

rithms, we have formulated an alternative technique for doing NLG. Although NLG

research employing similar techniques has been done before, e.g. Mellish et al. (1998a)

and Cheng (2002), it has typically been confined to a very specific subtask of the gener-

ation process, e.g. text structuring, aggregation.



9.2. Future Work 291

The implemented system described in this thesis, MCGONAGALL, is a proof-of-concept

system that can be employed as a testbed platform for other NLG tasks that require flex-

ibility in achieving surface constraints, or where communicative goals are vague. In this

thesis, we have attempted to show how it can simulate the workings of various exist-

ing NLG systems and techniques, i.e. Nicolov’s PROTECTOR and Stone’s SPUD (Sec-

tions 7.4.3 and 8.4.3), and Oberlander and Brew’s author-reviewer model (Section 8.5.3).

Note that this is not intended to be a formal comparison between MCGONAGALL and

these other systems. Such an exercise is beyond the scope of this thesis, and is an inter-

esting area of future research. Our attempts at simulating these systems in this thesis are

merely intended to show the flexibility of MCGONAGALL.

We observed, however, that due to the lack of account for discourse in our genetic oper-

ators, generating multi-sentential texts, such as those required to convey our lion target

semantics, was an extremely challenging task.

Finally, on a more technical note, this thesis proposes an LTAG-based representational

scheme (Section 5.3), and an array of genetic operators using this representation (Chap-

ter 7), for the generation of linguistic structures in the nonmonotonic fashion as required

by evolutionary algorithms. In particular, these operators allow the stochastic, nonmono-

tonic incremental generation of texts which guarantee linguistic well-formedness (Sec-

tion 7.2) and are semantically motivated (Section 7.3). We believe this is a contribution

not only for poetry generation, but the NLG research field in general.

9.2 Future Work

1. More extensive testing of parameters

As noted in Section 8.2, due to the nature of both our domain task and the method chosen

(EAs), there were simply too many factors to test individually within the time allotted for

the completion of this thesis. For our research purposes, we adopted a principle of least

bias, as we are most interested in observing the mileage that can be obtained from base-

line components. EA parameters and techniques such as alternative selection algorithms,

population size, and niching methods (Section 4.2.5) may improve the results.

Furthermore, running experiments with larger scale linguistic resources, e.g. the XTAG



292 Chapter 9. Conclusions and future work

grammar (XTAG Research Group, 2001), would be a very interesting endeavour. Since

good human poets command a superior mastery of their language, it is reasonable to

expect that a poetry generation system with extensive linguistic resources has more op-

portunities to create high quality texts.

2. Accounting for more poetic aspects:

In this thesis, we limited our account of poeticness to metre similarity. Phonetic aspects

such as rhyme and alliteration are obvious choices of the next aspects to be accounted for.

We also chose to ignore figurative language, but we believe that computational models

for the comprehension of analogy (Gentner, 1983) and metonymy (Markert and Hahn,

2002) may be adapted for generation. Quinn (1982), a ‘recipe book’ of over 60 ways to

turn a phrase using figures of speech, is also an exciting prospect of a resource that can

be used.

3. Interfacing with stylometry

Stylometry is a research sub-field of humanities studies which performs statistical anal-

ysis of existing literary works (Holmes, 1998). One primary example application of this

field is the attributing of authorship to disputed documents. One can imagine exploiting

the wealth of information obtained from research in this field as heuristic bias in our EA.

Indeed, this approach is adopted, albeit rather superficially, by Kurzweil’s “Cybernetic

Poet” (Section 2.3.3). Techniques such as probabilistic grammars (Bod and Scha, 1997)

are possibly applicable.

4. Opportunistic content determination:

One of the powerful features provided by our framework is the ability to generate texts

with little or no communicative goal whatsoever. Although we chose to limit the work

in this thesis to that of semantic similarity to explicitly defined targets, we believe that

MCGONAGALL has the potential to incorporate aspects of content determination. As

with the opportunistic planning of ILEX (Section 3.6), we envisage a complete NLG

system where the notion of meaningfulness is defined with respect to an underlying

knowledge base. This would require considerable inference and reasoning, and metrics

of coherence and possibly interestingness. Further down the line, notions of narrative

(i.e. story generation, see Turner (1994)) and even humour (Binsted, 1996) are not be-

yond the realms of imagination.



9.2. Future Work 293

5. Testing of “proper” NLG applications:

As mentioned above, our implemented system, MCGONAGALL, can be used as a testbed

platform for NLG tasks that require flexibility in achieving surface constraints, or where

communicative goals are vague. Already, an early version of MCGONAGALL was used

for the task of text structuring in Karamanis and Manurung (2002). Other possible re-

search areas which are of particular interest are readability (Eddy, 2002) and personal-

ization (Oberlander and Brew, 2000).

6. Aspects of creativity and artistic theory, cognitive science:

Although this thesis has next to nothing to say about the subjects of creativity and artistic

theory and cognitive science, we believe that our computational model of poetry gener-

ation may provide insight into these areas, such as an emphasis on intention in theories

of creativity as stochastic design process, and a possibly psycholinguistically plausible

model of poetry writing.





Appendix A

Target semantics and metre

In this appendix we present the target structures used in our empirical study, both for semantic

similarity (Section A.1) and metre similarity (Section A.2). Although some of them have been

presented in the main body of the thesis, we have compiled them here for convenience.

A.1 Semantic targets

For the majority of our tests, we used two different semantic expressions for our empirical

study, lionhalf and lion, where the prior is a proper subset of the latter. They are both

encodings of Hilaire Belloc’s poem, “The Lion”, taken from his collection “The Bad Child’s

Book of Beasts” (Belloc, 1991), with a slight alteration where we have replaced the original

opening noun phrase “the lion, the lion” with “the african lion” (see Table A.1).

The lionhalf semantic expression is our encoding of the first two lines of this poem, shown

in Table A.2. The lion semantic expression is our encoding of the entire poem, shown in

Table A.3. See Section 5.2 for a discussion of our semantic representation scheme.

The african lion, he dwells in the waste,

he has a big head and a very small waist;

but his shoulders are stark, and his jaws they are grim,

and a good little child will not play with him.

Table A.1: Our slightly altered version of Belloc’s “The Lion”

295



296 Appendix A. Target semantics and metre

� lion( ,l), african( ,l), dwell(d,l), inside( ,d,was), waste( ,was),

own( ,l,h), head( ,h), big( ,h), own( ,l,wai), small(s,wai),

waist( ,wai), very( ,s) �
Table A.2: lionhalf encodes the first two lines of the poem in Table A.1

� lion( ,l), african( ,l), dwell(d,l), inside( ,d,was), waste( ,was),

own( ,l,h), head( ,h), big( ,h), own( ,l,wai), small(s,wai),

waist( ,wai), very( ,s), own( ,l,sho), shoulders( ,sho), stark( ,sho),

own( ,l,ja), jaws( ,ja), grim( ,ja), boy( ,c), good( ,c), little( ,c),

play(pl,c), with( ,pl,l), will(wpl,pl), not( ,wpl) �
Table A.3: lion encodes all four lines of the poem in Table A.1

Additionally, in Section 8.5.4 we used a different semantic target based on Arthur H.R. Buller’s

“relativity” limerick, shown in Table A.4.

The semantics of this limerick are encoded in the semantic expressions shown in Table A.5.

relativity1, relativity2, and relativity4 encodes the semantics of the first, second,

and last lines respectively, whereas relativity3 encodes the semantics of the third and fourth

lines. Additionally, the semantic expression relativity is simply the union of relativity1,

relativity2, relativity3, and relativity4.

A.2 Metre targets

We used three different target forms during our empirical study, haiku, limerick, and mignonne,

which we present in the following three sections. See Section 6.3.2 for a discussion of our rep-

There was a young lady called Bright

who could travel much faster than light.

She set out one day

in a relative way

and returned on the previous night.

Table A.4: Arthur H.R. Buller’s ‘relativity’ limerick



A.2. Metre targets 297

relativity1 � lady � � l ��� young � � l ��� name � � l � b ��� bright � � b ���
relativity2 � travel � t � l ��� f aster � f � t � li ��� light � � li ��� much � � f ��� can � � t ���
relativity3 � leave � le � l ��� relative � � le ��� oneday � � le ���
relativity4 � return � r� l ��� on � � r� n ��� night � � n ��� previous � � n ���

Table A.5: relativity1 to relativity4 semantic targets

Form Sample

[x,x,x,x,x,b To convey one’s mood

x,x,x,x,x,x,x,b in seventeen syllables

x,x,x,x,x,b] is very diffic

Table A.6: haiku target form and sample haiku by John Cooper Clarke

resentation of target forms.

A.2.1 haiku

The haiku is a very traditional form of Japanese poetry. Traditionally, there are several prop-

erties which must be met of a haiku, for example, it must contain a kigo, i.e. a season word,

which indicates in which season the haiku is set. For example, cherry blossoms indicate spring,

snow indicates winter, and so forth. However, for our purposes, we concentrate purely on its

metrical form, which is a 17-syllable verse form consisting of three lines of five, seven, and

five syllables.

We chose this form as a baseline target to examine MCGONAGALL’s performance with the

relatively simple task of obtaining a specific syllable count.

Table A.6 shows our representation of the haiku form along with a well-known sample haiku

by John Cooper Clarke1.

A.2.2 limerick

The limerick is a very well-known verse form in the English language. Variants of this form

date as far back as the fourteenth century, and have typically been used in folk poetry, e.g.

1This is an oft-cited poem, but is unpublished. See the author’s homepage at
http://www.cyberspike.com/clarke/poemlist.html



298 Appendix A. Target semantics and metre

Form Sample

[w,s,w,w,s,w,w,s,b, There was an old man with a beard,

w,s,w,w,s,w,w,s,b, who said, “It is just as i feared!

w,s,w,w,s,b, Two owls and a hen,

w,s,w,w,s,b, four larks and a wren,

w,s,w,w,s,w,w,s,b] have all built their nests in my beard!”

Table A.7: limerick target form and sample limerick from Lear (1947)

nursery rhymes, drinking songs, and so forth Legman (1974). The subject matter of limericks

is very often bawdy. In comparatively recent times, limericks were popularized by the works

of Edward Lear, such as his several volumes of “Book of Nonsense”, compiled in (Lear, 1947).

A limerick consists of five anapestic lines, with a rhyme scheme of aabba. Recall from Sec-

tion 2.1.2 that an anapest consists of three syllables, where the stress falls on the last one. The

first, second, and fifth lines are trimeter (i.e. three anapests), while the third and fourth are

dimeter (i.e. three anapests). The first anapest on each line almost always has a missing upbeat,

i.e. is only two syllables long. Note that for our purposes, we ignore the rhyme scheme.

We chose this form as it has a very well defined and easily recognizable metrical pattern.

Table A.7 shows our representation of the limerick form along with a sample limerick taken

from Lear (1947).

Additionally, for the test in Section 8.5.4, we created two additional metre targets, limerickline1

and limerickline2. These were used to enable MCGONAGALL to generate a limerick on a

line-by-line basis.

A.2.3 mignonne

This target form is based on a poem written by Clement Marot, a 16th century poet, entitled

“A une Damoyselle malade”. It is the subject of a fascinating book on poetry translation by

Douglas Hofstadter, “Le Ton Beau De Marot” (Hofstadter, 1997).

The poem has a very distinctive form, consisting of 28 lines, where each line consists of three

syllables, with the stress falling on the last line (i.e. an anapest). In Marot’s original poem, there

is a rich rhyme scheme where every pair of lines ends in a rhyme. In this thesis, we ignore this

rhyme scheme.



A.2. Metre targets 299

We chose this form as it is a relatively challenging task in terms of linebreaking and enjamb-

ment.

Table A.8 shows our representation of the mignonne form along with the original poem by

Marot (taken from Hofstadter (1997).



300 Appendix A. Target semantics and metre

Form Sample

[w,w,s,b, Ma mignonne,
w,w,s,b, Je vous donne
w,w,s,b, Le bon jour;
w,w,s,b, Le séjour
w,w,s,b, C’est prison.
w,w,s,b, Guérison
w,w,s,b, Recouvrez,
w,w,s,b, Puis ouvrez
w,w,s,b, Votre porte
w,w,s,b, Et qu’on sorte
w,w,s,b, Vitement,
w,w,s,b, Car Clément
w,w,s,b, Le vous mande.
w,w,s,b, Va, friande
w,w,s,b, De ta bouche,
w,w,s,b, Qui se couche
w,w,s,b, En danger
w,w,s,b, Pour manger
w,w,s,b, Confitures;
w,w,s,b, Si tu dures
w,w,s,b, Trop malade,
w,w,s,b, Couleur fade
w,w,s,b, Tu prendras,b,
w,w,s,b, Et perdras
w,w,s,b, L’embonpoint.
w,w,s,b, Dieu te doint
w,w,s,b, Santé bonne,
w,w,s,b] Ma mignonne

Table A.8: mignonne target form and original poem by Clément Marot



Appendix B

Metre compensation patterns

In this appendix we present the various metre compensation patterns and associated costs that

we have devised. See Section 6.3.4 for a discussion of our context-sensitive compensation

scoring mechanism.

Each pattern shown here shows two consecutive syllable alignments from a candidate syllable

to a target syllable. These alignments are produced by the minimum edit distance algorithm

(Section 6.3.1). Where the candidate syllable is ε, it is an insertion operation, and where

the target syllable is ε, it is a deletion operation. Otherwise, it is a substitution operation.

Patterns are shown using regular expression notation, where ��������=h������� is a disjunction, and ? is

a ‘wildcard’.

Note that as an ideal alignment has an edit distance cost of 0, positive compensation scores are

penalties and negative scores are rewards.� Consecutive deletion

This pattern detects the consecutive deletion of two candidate syllables, excluding the

special linebreaking candidate syllable, b. It incurs a penalty cost of 1.

The pattern can be seen in Figure B.1.� Consecutive insertion

This pattern detects the consecutive insertion of two target syllables, excluding the spe-

cial linebreaking target syllable, b. It incurs a penalty cost of 1.

301



302 Appendix B. Metre compensation patterns

{ }10 2n?? { }10 2n??

εεTarget syllables:

Candidate syllables:

Pattern:

Compensation score: +1

Figure B.1: Pattern and cost for consecutive deletion of candidate syllables

{ }w s x { }w s xTarget syllables:

Candidate syllables:

Pattern:

ε ε
Compensation score: +1

Figure B.2: Pattern and cost for consecutive insertion of target syllables

The pattern can be seen in Figure B.2.� Natural destressing

This pattern detects the destressing (i.e. substitution to w) of a candidate syllable that has

primary stress in the CMU pronouncing dictionary (i.e. either 11 or 1n) when it appears

next to a strong (s) target syllable. There are two different patterns shown in Figure B.3,

which account for when the destressing occurs to the left or right of the s target syllable.

Each pattern earns a reward cost of 1.� Natural stressing

This pattern detects the stressing (i.e. substitution to s) of a candidate syllable that has

no stress in the CMU pronouncing dictionary (i.e. either 01 or 0n) when it appears next to

a weak (w) target syllable. There are two different patterns shown in Figure B.4, which

account for when the stressing occurs to the left or right of the w target syllable. Each

pattern earns a reward cost of 1.



303

? 1
?

Target syllables:

Candidate syllables:

Compensation score: -1

Pattern:

s w

1
?

?

Target syllables:

Candidate syllables:

Compensation score: -1

Pattern:

w s

Figure B.3: Patterns and cost for natural destressing of syllables

?
0 ?

Target syllables:

Candidate syllables:

Compensation score: -1

Pattern:

s w

?
?

0

Target syllables:

Candidate syllables:

Compensation score: -1

Pattern:

w s

Figure B.4: Patterns and cost for natural stressing of syllables





Appendix C

Linguistic resources

In this appendix we present our handcrafted linguistic resources used during our empirical

study in Chapter 8. Section C.1 presents the lexicon and Section C.2 presents the grammar.

C.1 Lexicon

In this section we present our handcrafted lexicon used during our empirical study in Chapter 8.

We divide the lexicon into five sections. The first four sections contain lexical entries used for

the tests in Section 8.3.1 to 8.5.3. Each section groups entries of a certain syntactic type, i.e.

closed class words (Section C.1.1), nouns (Section C.1.2), verbs (Section C.1.3), and adjectives

(Section C.1.4). These words are compiled from a selection of Hilaire Belloc’s poems about

animals, “The Bad Child’s Book of Beasts” (Belloc, 1991).

The fifth section contains additional lexical entries used for the test in Section 8.5.4, where we

attempt to generate Arthur H.R. Buller’s ‘relativity’ limerick (see Table 8.43).

For each word we show its unique key, orthographic spelling, names of elementary trees it

can anchor, lexical semantics, semantic signature, phonetic spelling, and feature structure. See

Section 5.3.9 for more detail on our lexical representation.

C.1.1 Closed class words

305



306 Appendix C. Linguistic resources

Key Ortho Trees Semantics Signature Phonetics Feature

in-prep in I-C-PP, I-P-P,

A-P-NP, A-P-

VP, A-P-S, A-

R-C-PP

inside(X,Y,Z) X � Y � Z ih0,n � CAT p�
with-prep with I-C-PP, I-P-P,

A-P-NP, A-P-

VP, A-P-S, A-

R-C-PP

with(X,Y,Z) X � Y � Z w,ih0,dh � CAT p�
that-comp that I-R-Comp dh,ah0,t ��� CAT comp

SUB � ANIM � � � ��
who-comp who I-R-Comp hh,uw0 ��� CAT comp

SUB � ANIM �M� � ��
empty-det-pron I-N-D X � Y � Z ���� CAT d

PRON �
GEN � � ���

empty-det-prop I-N-D X � Y � Z ���� CAT d

PROP �
GEN � � ���

empty-det-plural I-N-D X � Y � Z ����� CAT d

GEN �
AGR � NUM pl � � ����

empty-det-mass I-N-D X � Y � Z ����� CAT d

GEN �
AGR � NUM ms � � ����

a-det a I-N-D X � Y � Z ah0

����������
CAT d

GEN �
PRON �
PROP �
AGR � NUM sg � � ���������

the-det the I-N-D X � Y � Z dh,ah0
������ CAT d

GEN �
PRON �
PROP � � �����

his-det his I-N-D own(X,Owner,Y) X � Owner� Y hh,ih0,z

���������������������
PRON �
PROP �
GEN �
CAT d

AGRGEN
������ NUM sg

PERS 3

GNDR masc

3RDSG � � �����
SUBGEN � ANIM � �

� ��������������������
continued on next page



C.1. Lexicon 307

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

its-det its I-N-D own(X,Owner,Y) X � Owner� Y ih0,t,s

���������������������
PRON �
PROP �
GEN �
CAT d

AGRGEN
������ NUM sg

PERS 3

GNDR neut

3RDSG � � �����
SUBGEN � ANIM � �

� ��������������������
he-pron he I-N-N, I-C-NP,

A-R-C-NP, A-

N-LDS

X � Y hh,iy0

���������������������
CAT n

AGR
������ NUM sg

PERS 3

GNDR masc

3RDSG � � �����
PRON �
PROP �
CASE nom

SUB � ANIM � �
� ��������������������

him-pron him I-N-N, I-C-NP,

A-R-C-NP

X � Y hh,ih0,m

���������������������
CAT n

AGR
������ NUM sg

PERS 3

GNDR masc

3RDSG � � �����
PRON �
PROP �
CASE acc

SUB � ANIM � �
� ��������������������

she-pron she I-N-N, I-C-NP,

A-R-C-NP, A-

N-LDS

X � Y sh,iy0

���������������������
CAT n

AGR
������ NUM sg

PERS 3

GNDR f em

3RDSG � � �����
PRON �
PROP �
CASE nom

SUB � ANIM � �
� ��������������������

her-pron her I-N-N, I-C-NP,

A-R-C-NP

X � Y hh,er0

���������������������
CAT n

AGR
������ NUM sg

PERS 3

GNDR f em

3RDSG � � �����
PRON �
PROP �
CASE acc

SUB � ANIM � �
� ��������������������

continued on next page



308 Appendix C. Linguistic resources

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

it-anim-neut-pron it I-N-N, I-C-NP,

A-R-C-NP, A-

N-LDS

X � Y ih0

�������������������
CAT n

AGR
������ NUM sg

PERS 3

GNDR neut

3RDSG � � �����
PRON �
PROP �
SUB � ANIM ���

� ������������������
it-inanim-pron it I-N-N, I-C-NP,

A-R-C-NP, A-

N-LDS

X � Y ih0

����������������
CAT n

AGR ���� NUM sg

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
they-pron they I-N-N, I-C-NP,

A-R-C-NP, A-

N-LDS

X � Y dh,ey0

���������������
CAT n

AGR ���� NUM pl

PERS 3

3RDSG � � ���
PRON �
PROP �
CASE nom

� ��������������
them-pron them I-N-N, I-C-NP,

A-R-C-NP

X � Y dh,eh0,m

���������������
CAT n

AGR ���� NUM pl

PERS 3

3RDSG � � ���
PRON �
PROP �
CASE acc

� ��������������
is-cv is I-C-CV ih0,z ��� CAT cv

AGR � NUM sg � � ��
are-cv are I-C-CV aa0,r ��� CAT cv

AGR � NUM pl � � ��
be-cv be I-C-AuxCV b,iy0 � CAT cv �
will-aux will A-V-Aux, I-V-

Aux

will(X,Y) X � Y w,ih0,l � CAT aux �
very-adv very A-A-Adj very(X,Y) X � Y v,eh1,r,iy0 � CAT adv�
,-punct , I-M-Punct — � CAT punct �
.-sb . I-T-KO,

A-T-SR,

A-T-SL

— � CAT sb �
continued on next page



C.1. Lexicon 309

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

not-neg not A-M-Neg not(X,Y) X � Y n,aa1,t � CAT neg �
Table C.1: List of closed class words

C.1.2 Nouns

Key Ortho Trees Semantics Signature Phonetics Feature

bullets-np bullets I-N-N, A-R-C-

NP, I-C-NP

bullets(X,Y) X � Y b,uh1,l,ah0,t,s

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM pl

3RDSG �
PERS 3

� ���
PRON �

� ���������������
epithets-np epithets I-N-N, A-R-C-

NP, I-C-NP

epithets(X,Y) X � Y eh1,p,ah0,th,eh2,t,s

����������������
CAT n

PROP �
SUB � ANIM �M�
AGR ���� NUM pl

3RDSG �
PERS 3

� ���
PRON �

� ���������������
facts-np facts I-N-N, A-R-C-

NP, I-C-NP

facts(X,Y) X � Y f,ae1,k,t,s

����������������
CAT n

PROP �
SUB � ANIM �M�
AGR ���� NUM pl

3RDSG �
PERS 3

� ���
PRON �

� ���������������
families-np families I-N-N, A-R-C-

NP, I-C-NP

families(X,Y) X � Y f,ae1,m,ah0,l,iy0,z

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM pl

3RDSG �
PERS 3

� ���
PRON �

� ���������������
jaws-np jaws A-R-C-NP, I-

N-N, I-C-NP

jaws(X,Y) X � Y jh,ao1,z

����������������
CAT n

AGR ���� NUM pl

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
continued on next page



310 Appendix C. Linguistic resources

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

knees-np knees I-N-N, A-R-C-

NP, I-C-NP

knees(X,Y) X � Y n,iy1,z

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM pl

3RDSG �
PERS 3

� ���
PRON �

� ���������������
men-np men I-N-N, A-R-C-

NP, I-C-NP

men(X,Y) X � Y m,eh1,n

����������������
CAT n

PROP �
SUB � ANIM ���
AGR ���� NUM pl

3RDSG �
PERS 3

� ���
PRON �

� ���������������
mothers-np mothers I-N-N, A-R-C-

NP, I-C-NP

mothers(X,Y) X � Y m,ah1,dh,er0,z

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM pl

3RDSG �
PERS 3

� ���
PRON �

� ���������������
names-np names I-N-N, A-R-C-

NP, I-C-NP

names(X,Y) X � Y n,ey1,m,z

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM pl

3RDSG �
PERS 3

� ���
PRON �

� ���������������
shoulders-np shoulders A-R-C-NP, I-

N-N, I-C-NP

shoulders(X,Y) X � Y sh,ow1,l,d,er0,z

����������������
CAT n

AGR ���� NUM pl

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
whiskers-np whiskers I-N-N, A-R-C-

NP, I-C-NP

whiskers(X,Y) X � Y w,ih1,s,k,er0,z

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM pl

3RDSG �
PERS 3

� ���
PRON �

� ���������������
continued on next page



C.1. Lexicon 311

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

animal-ns animal I-N-N, A-R-C-

NP, I-C-NP

animal(X,Y) X � Y ae1,n,ah0,m,ah0,l

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
baboon-ns baboon I-N-N, A-R-C-

NP, I-C-NP

baboon(X,Y) X � Y b,ah0,b,uw1,n

����������������
CAT n

PROP �
SUB � ANIM ���
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
bean-ns bean I-N-N, A-R-C-

NP, I-C-NP

bean(X,Y) X � Y b,iy1,n

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
bill-ns bill I-N-N, A-R-C-

NP, I-C-NP

bill(X,Y) X � Y b,ih1,l

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
blubber-ns blubber I-N-N, A-R-C-

NP, I-C-NP

blubber(X,Y) X � Y b,l,ah1,b,er0

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
boy-ns boy I-N-N, A-R-C-

NP, I-C-NP

boy(X,Y) X � Y b,oy1

�������������������
CAT n

PROP �
SUB � ANIM � �
AGR

������ GNDR masc

NUM sg

3RDSG �
PERS 3

� �����
PRON �

� ������������������
continued on next page



312 Appendix C. Linguistic resources

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

child-ns child A-R-C-NP, I-

N-N, I-C-NP

child(X,Y) X � Y ch,ay1,l,d

����������������
CAT n

AGR ���� NUM sg

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
dish-ns dish I-N-N, A-R-C-

NP, I-C-NP

dish(X,Y) X � Y d,ih1,sh

����������������
CAT n

PROP �
SUB � ANIM �M�
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
elephant-ns elephant I-N-N, A-R-C-

NP, I-C-NP

elephant(X,Y) X � Y eh1,l,ah0,f,ah0,n,t

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
expense-ns expense I-N-N, A-R-C-

NP, I-C-NP

expense(X,Y) X � Y ih0,k,s,p,eh1,n,s

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
fish-ns fish I-N-N, A-R-C-

NP, I-C-NP

fish(X,Y) X � Y f,ih1,sh

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
frog-ns frog I-N-N, A-R-C-

NP, I-C-NP

frog(X,Y) X � Y f,r,aa1,g

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
continued on next page



C.1. Lexicon 313

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

gap-ns gap I-N-N, A-R-C-

NP, I-C-NP

gap(X,Y) X � Y g,ae1,p

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
grin-ns grin I-N-N, A-R-C-

NP, I-C-NP

grin(X,Y) X � Y g,r,ih1,n

����������������
CAT n

PROP �
SUB � ANIM ���
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
hand-ns hand I-N-N, A-R-C-

NP, I-C-NP

hand(X,Y) X � Y hh,ae1,n,d

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
head-ns head A-R-C-NP, I-

N-N, I-C-NP

head(X,Y) X � Y hh,eh1,d

����������������
CAT n

AGR ���� NUM sg

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
hippopotamus-ns hippopotamus I-N-N, A-R-C-

NP, I-C-NP

hippopotamus(X,Y) X � Y hh,ih2,p,ah0,p,aa1,t,ah0,m,ah0,s

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
lion-ns lion A-R-C-NP, I-

N-N, I-C-NP

lion(X,Y) X � Y l,ay1,ah0,n

�������������������
CAT n

AGR
������ NUM sg

PERS 3

GNDR neut

3RDSG � � �����
PRON �
PROP �
SUB � ANIM � �

� ������������������
continued on next page



314 Appendix C. Linguistic resources

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

man-ns man I-N-N, A-R-C-

NP, I-C-NP

man(X,Y) X � Y m,ae1,n

�������������������
CAT n

PROP �
SUB � ANIM � �
AGR

������ GNDR masc

NUM sg

3RDSG �
PERS 3

� �����
PRON �

� ������������������
mind-ns mind I-N-N, A-R-C-

NP, I-C-NP

mind(X,Y) X � Y m,ay1,n,d

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
pole-ns pole I-N-N, A-R-C-

NP, I-C-NP

pole(X,Y) X � Y p,ow1,l

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
product-ns product I-N-N, A-R-C-

NP, I-C-NP

product(X,Y) X � Y p,r,aa1,d,ah0,k,t

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
sense-ns sense I-N-N, A-R-C-

NP, I-C-NP

sense(X,Y) X � Y s,eh1,n,s

����������������
CAT n

PROP �
SUB � ANIM �M�
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
skin-ns skin I-N-N, A-R-C-

NP, I-C-NP

skin(X,Y) X � Y s,k,ih1,n

����������������
CAT n

PROP �
SUB � ANIM �M�
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
continued on next page



C.1. Lexicon 315

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

soil-ns soil I-N-N, A-R-C-

NP, I-C-NP

soil(X,Y) X � Y s,oy1,l

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
species-ns species I-N-N, A-R-C-

NP, I-C-NP

species(X,Y) X � Y s,p,iy1,sh,iy0,z

����������������
CAT n

PROP �
SUB � ANIM ���
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
table-ns table I-N-N, A-R-C-

NP, I-C-NP

table(X,Y) X � Y t,ey1,b,ah0,l

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
tail-ns tail I-N-N, A-R-C-

NP, I-C-NP

tail(X,Y) X � Y t,ey1,l

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
thing-ns thing I-N-N, A-R-C-

NP, I-C-NP

thing(X,Y) X � Y th,ih1,ng

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
tiger-ns tiger I-N-N, A-R-C-

NP, I-C-NP

tiger(X,Y) X � Y t,ay1,g,er0

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
continued on next page



316 Appendix C. Linguistic resources

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

toad-ns toad I-N-N, A-R-C-

NP, I-C-NP

toad(X,Y) X � Y t,ow1,d

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
town-ns town I-N-N, A-R-C-

NP, I-C-NP

town(X,Y) X � Y t,aw1,n

����������������
CAT n

PROP �
SUB � ANIM �M�
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
treatment-ns treatment I-N-N, A-R-C-

NP, I-C-NP

treatment(X,Y) X � Y t,r,iy1,t,m,ah0,n,t

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
trouble-ns trouble I-N-N, A-R-C-

NP, I-C-NP

trouble(X,Y) X � Y t,r,ah1,b,ah0,l

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
trunk-ns trunk I-N-N, A-R-C-

NP, I-C-NP

trunk(X,Y) X � Y t,r,ah1,ng,k

����������������
CAT n

PROP �
SUB � ANIM � �
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
waist-ns waist A-R-C-NP, I-

N-N, I-C-NP

waist(X,Y) X � Y w,ey1,s,t

����������������
CAT n

AGR ���� NUM sg

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
continued on next page



C.1. Lexicon 317

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

waste-ns waste A-R-C-NP, I-

N-N, I-C-NP

waste(X,Y) X � Y w,ey1,s,t

����������������
CAT n

AGR ���� NUM sg

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
whale-ns whale I-N-N, A-R-C-

NP, I-C-NP

whale(X,Y) X � Y w,ey1,l

����������������
CAT n

PROP �
SUB � ANIM �M�
AGR ���� NUM sg

3RDSG �
PERS 3

� ���
PRON �

� ���������������
Table C.2: List of nouns

C.1.3 Verbs

Key Ortho Trees Semantics Signature Phonetics Feature

boil-vt boil I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

boil(X,Y,Z) X � Y � Z b,oy1,l ��� CAT v

AGR � 3RDSG � � � ��
boiled-vt boiled I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

boil(X,Y,Z) X � Y � Z b,oy1,l,d �� CAT v

AGR ��
boils-vt boils I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

boil(X,Y,Z) X � Y � Z b,oy1,l,z ��� CAT v

AGR � 3RDSG �M� � ��
call-vd call I-V-D call(W,X,Y,Z) W � X � Y � Z k,ao1,l ��� CAT v

AGR � 3RDSG � � � ��
called-vd called I-V-D call(W,X,Y,Z) W � X � Y � Z k,ao1,l,d �� CAT v

AGR ��
calls-vd calls I-V-D call(W,X,Y,Z) W � X � Y � Z k,ao1,l,z ��� CAT v

AGR � 3RDSG �M� � ��
cut-vt cut I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

cut(X,Y,Z) X � Y � Z k,ah1,t ��� CAT v

AGR � 3RDSG ��� � ��
continued on next page



318 Appendix C. Linguistic resources

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

cuts-vt cuts I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

cut(X,Y,Z) X � Y � Z k,ah1,t,s ��� CAT v

AGR � 3RDSG ��� � ��
dwells-vipp dwells A-R-V-IPP, I-

V-IPP

dwell(X,Y) X � Y d,w,eh1,l,z
������� CAT v

AGR � 3RDSG � �
SUBSUB � ANIM � � � ������

find-vt find I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

find(X,Y,Z) X � Y � Z f,ay1,n,d ��� CAT v

AGR � 3RDSG � � � ��
found-vt found I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

find(X,Y,Z) X � Y � Z f,aw1,n,d �� CAT v

AGR ��
finds-vt finds I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

find(X,Y,Z) X � Y � Z f,ay1,n,d,z ��� CAT v

AGR � 3RDSG � � � ��
flatten-vt flatten I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

flatten(X,Y,Z) X � Y � Z f,l,ae1,t,ah0,n ��� CAT v

AGR � 3RDSG � � � ��
flattened-vt flattened I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

flatten(X,Y,Z) X � Y � Z f,l,ae1,t,ah0,n,d �� CAT v

AGR ��
goes-vipp goes I-V-IPP, A-R-

V-IPP

go(X,Y) X � Y g,ow1,z ��� CAT v

AGR � 3RDSG � � � ��
grew-vt grew I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

grow(X,Y,Z) X � Y � Z g,r,uw1 �� CAT v

AGR ��
grow-vt grow I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

grow(X,Y,Z) X � Y � Z g,r,ow1 ��� CAT v

AGR � 3RDSG � � � ��
grows-vt grows I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

grow(X,Y,Z) X � Y � Z g,r,ow1,z ��� CAT v

AGR � 3RDSG � � � ��
continued on next page



C.1. Lexicon 319

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

has-vt has I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

own(X,Y,Z) X � Y � Z hh,ae1,z ��� CAT v

AGR � 3RDSG ��� � ��
keep-vt keep I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

keep(X,Y,Z) X � Y � Z k,iy1,p ��� CAT v

AGR � 3RDSG � � � ��
keeps-vt keeps I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

keep(X,Y,Z) X � Y � Z k,iy1,p,s ��� CAT v

AGR � 3RDSG � � � ��
kept-vt kept I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

keep(X,Y,Z) X � Y � Z k,eh1,p,t �� CAT v

AGR ��
melt-vt melt I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

melt(X,Y,Z) X � Y � Z m,eh1,l,t ��� CAT v

AGR � 3RDSG � � � ��
melted-vt melted I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

melt(X,Y,Z) X � Y � Z m,eh1,l,t,ah0,d �� CAT v

AGR ��
melts-vt melts I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

melt(X,Y,Z) X � Y � Z m,eh1,l,t,s ��� CAT v

AGR � 3RDSG � � � ��
play-vi play A-R-V-I, I-V-I play(X,Y) X � Y p,l,ey1

������� CAT v

AGR � 3RDSG � �
SUBSUB � ANIM � � � ������

ruminated-vi ruminated I-V-I, A-R-V-I ruminate(X,Y) X � Y r,uw1,m,ah0,n,ey2,t,ah0,d �� CAT v

AGR ��
serve-vt serve I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

serve(X,Y,Z) X � Y � Z s,er1,v ��� CAT v

AGR � 3RDSG � � � ��
served-vt served I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

serve(X,Y,Z) X � Y � Z s,er1,v,d �� CAT v

AGR ��
continued on next page



320 Appendix C. Linguistic resources

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

serves-vt serves I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

serve(X,Y,Z) X � Y � Z s,er1,v,z ��� CAT v

AGR � 3RDSG ��� � ��
shoot-vt shoot I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

shoot(X,Y,Z) X � Y � Z sh,uw1,t ��� CAT v

AGR � 3RDSG � � � ��
shoots-vt shoots I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

shoot(X,Y,Z) X � Y � Z sh,uw1,t,s ��� CAT v

AGR � 3RDSG � � � ��
shot-vt shot I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

shoot(X,Y,Z) X � Y � Z sh,aa1,t �� CAT v

AGR ��
survive-vi survive I-V-I, A-R-V-I survive(X,Y) X � Y s,er0,v,ay1,v ��� CAT v

AGR � 3RDSG � � � ��
survived-vi survived I-V-I, A-R-V-I survive(X,Y) X � Y s,er0,v,ay1,v,d �� CAT v

AGR ��
survives-vi survives I-V-I, A-R-V-I survive(X,Y) X � Y s,er0,v,ay1,v,z ��� CAT v

AGR � 3RDSG ��� � ��
use-vt use I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

use(X,Y,Z) X � Y � Z y,uw1,s ��� CAT v

AGR � 3RDSG � � � ��
used-vt used I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

use(X,Y,Z) X � Y � Z y,uw1,z,d �� CAT v

AGR ��
uses-vt uses I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

use(X,Y,Z) X � Y � Z y,uw1,s,ah0,z ��� CAT v

AGR � 3RDSG ��� � ��
wander-vipp wander I-V-IPP, A-R-

V-IPP

wander(X,Y) X � Y w,aa1,n,d,er0 ��� CAT v

AGR � 3RDSG � � � ��
wandered-vipp wandered I-V-IPP, A-R-

V-IPP

wander(X,Y) X � Y w,aa1,n,d,er0,d �� CAT v

AGR ��
wanders-vipp wanders I-V-IPP, A-R-

V-IPP

wander(X,Y) X � Y w,aa1,n,d,er0,z ��� CAT v

AGR � 3RDSG ��� � ��
want-vt want I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

want(X,Y,Z) X � Y � Z w,aa1,n,t ��� CAT v

AGR � 3RDSG � � � ��
continued on next page



C.1. Lexicon 321

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

wanted-vt wanted I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

want(X,Y,Z) X � Y � Z w,ao1,n,t,ah0,d �� CAT v

AGR ��
wants-vt wants I-V-T, A-R-V-

T-Sub, A-R-V-

T-Obj

want(X,Y,Z) X � Y � Z w,aa1,n,t,s ��� CAT v

AGR � 3RDSG � � � ��
Table C.3: List of verbs



322 Appendix C. Linguistic resources

C.1.4 Adjectives

Key Ortho Trees Semantics Signature Phonetics Feature

african-a african A-R-C-A, I-C-

A, A-N-A

african(X,Y) X � Y ae1,f,r,ih0,k,ah0,n � CAT a �
bandy-a bandy A-N-A, A-R-

C-A, I-C-A

bandy(X,Y) X � Y b,ae1,n,d,iy0 � CAT a �
big-a big A-R-C-A, I-C-

A, A-N-A

big(X,Y) X � Y b,ih1,g � CAT a �
extinct-a extinct A-N-A, A-R-

C-A, I-C-A

extinct(X,Y) X � Y ih0,k,s,t,ih1,ng,k,t � CAT a �
good-a good A-R-C-A, I-C-

A, A-N-A

good(X,Y) X � Y g,uh1,d � CAT a �
grim-a grim A-R-C-A, I-C-

A, A-N-A

grim(X,Y) X � Y g,r,ih1,m � CAT a �
kind-a kind A-N-A, A-R-

C-A, I-C-A

kind(X,Y) X � Y k,ay1,n,d � CAT a �
large-a large A-N-A, A-R-

C-A, I-C-A

large(X,Y) X � Y l,aa1,r,jh � CAT a �
little-a little A-R-C-A, I-C-

A, A-N-A

little(X,Y) X � Y l,ih1,t,ah0,l � CAT a �
lonely-a lonely A-N-A, A-R-

C-A, I-C-A

lonely(X,Y) X � Y l,ow1,n,l,iy0 � CAT a �
continued on next page



C.1. Lexicon 323

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

mild-a mild A-N-A, A-R-

C-A, I-C-A

mild(X,Y) X � Y m,ay1,l,d � CAT a �
platinum-a platinum A-N-A, A-R-

C-A, I-C-A

platinum(X,Y) X � Y p,l,ae1,t,ah0,n,ah0,m � CAT a �
pretty-a pretty A-N-A, A-R-

C-A, I-C-A

pretty(X,Y) X � Y p,r,ih1,t,iy0 � CAT a �
small-a small A-R-C-A, I-C-

A, A-N-A

small(X,Y) X � Y s,m,ao1,l � CAT a �
stark-a stark A-R-C-A, I-C-

A, A-N-A

stark(X,Y) X � Y s,t,aa1,r,k � CAT a �
rare-a rare A-N-A, A-R-

C-A, I-C-A

rare(X,Y) X � Y r,eh1,r � CAT a �
round-a round A-N-A, A-R-

C-A, I-C-A

round(X,Y) X � Y r,aw1,n,d � CAT a �
sensitive-a sensitive A-N-A, A-R-

C-A, I-C-A

sensitive(X,Y) X � Y s,eh1,n,s,ah0,t,ih0,v � CAT a �
shocking-a shocking A-N-A, A-R-

C-A, I-C-A

shocking(X,Y) X � Y sh,aa1,k,ih0,ng � CAT a �
slimy-a slimy A-N-A, A-R-

C-A, I-C-A

slimy(X,Y) X � Y s,l,ay1,m,iy0 � CAT a �
tender-a tender A-N-A, A-R-

C-A, I-C-A

tender(X,Y) X � Y t,eh1,n,d,er0 � CAT a �
ugly-a ugly A-N-A, A-R-

C-A, I-C-A

ugly(X,Y) X � Y ah1,g,l,iy0 � CAT a �
Table C.4: List of adjectives

C.1.5 Additional lexicon for “Relativity” limerick



324 Appendix C. Linguistic resources

Key Ortho Trees Semantics Signature Phonetics Feature

there-dnp there I-E-DNP dh,eh0,r � CAT dnp�
was-cv was I-C-CV w,ah0,z ��� CAT cv

AGR � NUM sg � � ��
young-a young A-R-C-A, I-C-

A, A-N-A

young(X,Y) X � Y y,ah1,ng � CAT a�
lady-ns lady A-R-C-NP,

I-N-N, I-C-NP,

I-E-E

lady(X,Y) X � Y l,ey1,d,iy0

�������������������
CAT n

AGR
������ NUM sg

PERS 3

3RDSG �
GNDR f em

� �����
PRON �
PROP �
SUB � ANIM � �

� ������������������
called-vm called A-E-

NPPostMod

name(Event,Actor,Object) Event � Actor� Ob ject k,ao1,l,d ��� CAT v

AGR � 3RDSG � � � ��
bright-npr bright A-R-C-NP,

I-N-N, I-C-NP,

I-E-E

bright(X,Y) X � Y b,r,ay1,t

����������������
CAT n

AGR ���� NUM sg

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � NAME � �

� ���������������
could-aux could A-V-Aux, I-V-

Aux

can(X,Y) X � Y k,uh0,d � CAT aux �
travel-vi travel A-R-V-I, I-V-I travel(Event,Actor) Event � Actor t,r,ae1,v,ah0,l

������� CAT v

AGR � 3RDSG � �
SUBSUB � ANIM � � � ������

travelled-vi travelled A-R-V-I, I-V-I travel(Event,Actor) Event � Actor t,r,ae1,v,ah0,l,d
������� CAT v

AGR � 3RDSG � �
SUBSUB � ANIM � � � ������

much-adv much A-E-

CompAdv

much(X,Y) X � Y m,ah0,ch � CAT adv�
faster-acomp faster A-R-C-A,

I-C-A,

A-N-A, A-E-

Comparative

faster(X,Y,Z) X � Y � Z f,ae1,s,t,er0 � CAT acomp�
continued on next page



C.1. Lexicon 325

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

speedier-acomp speedier A-R-C-A,

I-C-A,

A-N-A, A-E-

Comparative

faster(X,Y,Z) X � Y � Z s,p,iy1,d,iy0,er0 � CAT acomp �
than-compcomp than I-E-Comp dh,ah0,n � CAT compcomp�
light-nms light A-R-C-NP, I-

N-N, I-C-NP

light(X,Y) X � Y l,ay1,t

����������������
CAT n

AGR ���� NUM ms

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
setout-vi set out A-R-V-I, I-V-I leave(Event,Actor) Event � Actor s,eh1,t,aw0,t ��� CAT v

SUBSUB � ANIM ��� � ��
left-vi left A-R-V-I, I-V-I leave(Event,Actor) Event � Actor l,eh1,f,t ��� CAT v

SUBSUB � ANIM ��� � ��
oneday-timenp one day A-E-PostVP-

TimeNP,

A-E-PreVP-

TimeNP

oneday(Event,Actor) Event � Actor w,ah0,n,d,ey1 � CAT timenp �
piaw in I-E-Piaw ih0,n � CAT piaw�
diaw a I-E-Diaw ah0 � CAT diaw �
niaw way I-E-Niaw w,ey0 � CAT niaw �
relatively-adv relatively A-E-

PreVP-Adv,

A-E-PostVP-

Adv

relative(X,Y) X � Y r,eh1,l,ah0,t,ih0,v,l,iy0 � CAT adv �
relative-a relative A-R-C-A, I-C-

A, A-N-A, A-

E-IAW

relative(X,Y) X � Y r,eh1,l,ah0,t,ih0,v � CAT a�
on-prep on I-C-PP, I-P-P,

A-P-NP, A-P-

VP, A-P-S, A-

R-C-PP

on(X,Y,Z) X � Y � Z ao0,n � CAT p �
continued on next page



326 Appendix C. Linguistic resources

continued from previous page

Key Ortho Trees Semantics Signature Phonetics Feature

returned-vi returned A-R-V-I, I-V-I return(Event,Actor) Event � Actor r,ih0,t,er1,n,d ��� CAT v

SUBSUB � ANIM ��� � ��
night-ns night A-R-C-NP,

I-N-N, I-C-NP,

I-E-E

night(X,Y) X � Y n,ay1,t

����������������
CAT n

AGR ���� NUM sg

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
evening-ns evening A-R-C-NP,

I-N-N, I-C-NP,

I-E-E

night(X,Y) X � Y iy1,v,n,ih0,ng

����������������
CAT n

AGR ���� NUM sg

PERS 3

3RDSG � � ���
PRON �
PROP �
SUB � ANIM � �

� ���������������
previous-a previous A-R-C-A, I-C-

A, A-N-A

previous(X,Y) X � Y p,r,iy1,v,iy0,ah0,s � CAT a�
preceding-a preceding A-R-C-A, I-C-

A, A-N-A

previous(X,Y) X � Y p,r,iy0,s,iy1,d,ih0,ng � CAT a�
Table C.5: List of additional words for ‘relativity’ limerick (Section 8.5.4)

C.2 Grammar

In this section we present our handcrafted grammar used during our empirical study in Chap-

ter 8. The grammar is loosely based on the XTAG grammar (XTAG Research Group, 2001).

We divide the grammar into nine groups of trees, shown from Section C.2.1 to C.2.9.

Each tree has a unique name that is referred to by the words in Section C.1. The naming

convention for a tree is as follows: the first letter is either A if it is an auxiliary tree or I if it is

an initial tree. The second letter indicates the group of trees it belongs to, i.e.:� T: Top-level, i.e. sentence frame trees (Section C.2.1)� V: Verb phrases and related trees (Section C.2.2)� C: Copula constructions and related trees (Section C.2.3)� N: Noun phrases and related trees (Section C.2.4)



C.2. Grammar 327

� A: Adverbial phrases and related trees (Section C.2.5)� P: Prepositional phrases and related trees (Section C.2.6)� R: Relative clauses and related trees (Section C.2.7)� M: Miscellanous trees (Section C.2.8)� E: Extra trees developed specifically for the generation of the ‘relativity’ limerick (see

Section 8.5.4).

This is followed by a short descriptive code of the tree. Thus, for example, A A VP Post is an

auxiliary tree belonging to the adverbial phrase group, and represents an adverbial postmodifier

to a verb phrase.

1

vp

AGR
CAT

1

vp

AGR
CAT

X VP
Top feature structure

Bottom feature structure

Label
Signature

Figure C.1: Example of a node in the grammar

Each node shows the semantic signature, syntactic label, and top and bottom feature structure.

An example is given in Figure C.1. If a label is followed by � , it is a substitution node, and if it

is followed by - , it is a foot node. Anchor nodes are labelled by � .

As it is a lexicalized grammar, each tree has exactly one anchor node.

Where appropriate, we provide an example phrase for a tree, highlighting the lexical anchor in

boldface type.

C.2.1 Sentence frame trees

� I T KO: “Kick-off” tree that is used to initialize a new individual. It represents a single

sentence frame. �6�h����� � � �3����� ��¡� � � �3����� � ¡¢ ¢ ¢ ¢ ££££¤ ¥i¦ � � � �;§ ¡ ¥O¨ � � � �8§ © ¡�B¡ª



328 Appendix C. Linguistic resources

� A T SR: Adds a new sentence frame to the right of the derivation.«6¬h�®�¯ ° ± ²3³�´�µR¶�·¯ ° ± ²3³�´�µR¶ ·
¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¸ ¹¹¹¹¹¹¹¹¹«6¬hº®U»¼¯ ° ± ²3³�´�µ ¶ ·¯ ° ± ²3³�´�µ ¶M· ½ ¾i¿ ¯ ° ± ²8À · ¾iÁ ¯ ° ± ²;À Â ·¯6·ÃÄ A T SL Adds a new sentence frame to the left of the derivation.Å6ÆhÇ�È�É Ê Ë Ì3Í�Î�Ï ÐMÑÉ Ê Ë Ì3Í�Î�Ï Ð Ñ
Ò Ò Ò Ò Ò Ò Ò Ò ÓÓÓÓÓÓÓÓÔ ÕiÖ×É Ê Ë Ì;Ø Ñ ÕiÙPÉ Ê Ë Ì;Ø Ú ÑÉ6ÑÛ Å6ÆhÇºÈUÜ¼É Ê Ë Ì3Í�Î�Ï ÐMÑÉ Ê Ë Ì3Í�Î�Ï ÐMÑ

C.2.2 Verb phrases and related treesÄ I V I: Intransitive verb, e.g.“The lion survived.”Ý Þàß á â ã;ä åß á â ã;ä åæ æ æ æ æ çççççè éwêNë	ìîí á â ãðï�ñâ òRó ôá âRõ ö5ï�÷ øõ ù ú û ü Ý ý3êÿþ á â ã���ñâ òRó ô �þ á â ã���ñâ òRó � �Ý ý�� á â ã��â òRó �õ ù ú õ ù ú û �ß6åÝ	�ºè 

Ä I V T: Transitive verb, e.g.“The lion has a big head.”� �� � � ��� � � � ��� �� � � � � ������ ������� � � � �"!$#� %'& (� �') *	!,+.-) / 0 1 2 � 34�65 � � ��78#� %'& ( 95 � � ��78#� %'& : 9� � � � � ������ 3;� � � �<7� % & :) / 0 ) / 0 1) / 0 = 0 > ? 2@��4AB�CA D E

D �F��GH�JI � � �"!$#� �') *LKNM.M) / 0 ? O



C.2. Grammar 329

� I V IPP: Intransitive verb with prepositional phrase complement, e.g.“The lion dwells

in the waste.” P Q�R S T U�V WR S T U�V W
X X X X X YYYYYZ [�\�]�^ _ S T U"`$aT b'c dS T'e f	`,g.he i j k l P m \6n S T U�o8aT b'c d pn S T U�o8aT b'c q p
X X X X X X X X YYYYYYYYP m _ S T UroT b c qe i j e i j ke i j s c f s t lRuWP	v Z w

x \y\ R S T U4aNa WR S T U4aNa W
X X X X X X YYYYYYx v P	v z \y^|{ S T U}ae i j te i j ~ j � � � z [�\F�B^�� S T U�`HaS T e fL���'�e i j � �

Ä I V D: Ditransitive verb, e.g.“The boy called the lion a tiger.”� ��� � � ��� �� � � ��� �� � � � � ������ ������� � � � �"�$�� �'� �� �'�  	�,¡.¢� £ ¤ ¥ ¦ � §4�6¨ � � ��©8�� �'� � ª¨ � � ��©8�� �'� « ª
� � � � � � � � �

� � ���������
��

� §¬®¯ � � �°©� � � «� £ ¤ � £ ¤ ¥� £ ¤ ± ¤ ² ³ ´� £ ¤ ± ¤ ² µ ¶ · ¸¹�@��	ºH�Cº »@¼½º »C¾ ¿
»À¾ ����Á���Â � � �"�$�� � �  LÃ�Ä'Ä� £ ¤ ¶ Å »@¼ ����ÆH�ÇÂ � � ���H�� �'�  	Ã�Ä.Ä� £ ¤ ´ Å

Ä A V Aux: Auxiliary verb (auxiliary tree), e.g.“will”.È É6Ê Ë Ì ÍÏÎ8ÐÊ Ë Ì ÍÑÎÒ Í Ó Ô Ì Õ ÖØ× ÐÙ Ù Ù Ù Ù Ù ÚÚÚÚÚÚÛ ÜFÝßÞàÊ Ë Ì Í�áNâHã ÐÊ@ÐÛ	äBÈ å È É	æçÊ Ë Ì ÍÏÎ Ðè Ë Ì ÍÑÎÌ é êìë í ê î Ò é�ïñðÒ Í Ó Ô Ì Õ Öòï ó
Ä I V Aux: Auxiliary verb (initial tree), e.g.“will”.ô õFöß÷àø ù ú û�üNýHþ ÿø@ÿô � � �



330 Appendix C. Linguistic resources

C.2.3 Copula constructions and related trees

� I C NP: Nominal copula construction, e.g.“The lion is an animal.”

� ��� � 	 
�� � � 	 
�� � � � � � ������ ��������� � 	 
����	 � � !� 	 " #$�&%('*) � +,�.- � 	 
0/1�	 � � ! 2- � 	 
0/1�	 � � 3 2� � � � � �����4 +�� - � 	 
65 /	 � � 3 2 � ���87:9; � 	 
<�=�	 � � 3� 	 " #?>@5(5A � B C D" E F G HI
9; � 	 
<�=�	 � � 3� 	 " #?>@5(5A � B C D" E F G HI

� � � � � ������ J8�LK � 	 
NM	 � � 3A � B C DA � B A O P � � 9QQ; � 	 
N�	 � � 3� 	 " #?>R5 5A � B C DA � B A O" E F G
H SSI�T�$UV� W

Ä I C A: Adjectival copula construction, e.g.“Its jaws are grim.”

X Y�Z [ \ ]�^ _Z [ \ ]�^ _` ` ` ` ` aaaaa
b c�d�e�f�g [ \ ]�h�i\ j k l[ \ m n$h&o(p*q X r,d.s [ \ ]0t1i\ j k l us [ \ ]0t1i\ j k v u` ` ` ` aaaaw r�f s [ \ ]yx t\ j k v u X z{Z [ \ ]}|1_Z~_X$��b �

Ä I C PP: Prepositional copula construction, e.g.“The fish is in the whale.”



C.2. Grammar 331� ��� � � ��� �� � � ��� �� � � � � �����
� ��������� � � ������ � � �� � � �$�&�(�*� � �,�.� � � �0�1�� � � � �� � � �0�1�� � � � �� � � � ����  ��� � � � �y¡ �� � � � � � �¢�£� � � �,�@�@�� � � �,�@� �� � � � � � ������

�$¤V�¥¤ ¦ � � � � �{�� § ¨ © ¨ ª « ��T��$¤V�¬¤ ¦  ¦ ���8®V� � � � �¯�=�� � � �}°R¡ ¡� § ¨ « �
Ä I C CV: Copula verb preterminal, e.g.“is”±¢²´³ µ ¶ ·}¸ ¹1º³Tº»
Ä I C AuxCV: Copula verb preterminal (infinitive), e.g.“will be”¼¢½´¾ ¿ À Á�Â ÃÅÄ¾ ¿ À Á�Â Ã ÄÆ Æ Æ Æ ÇÇÇÇÈ É8ÊÌËÎÍ ¾ ¿ À Á�Ï@Ð�ÑÅÄ ¼¢½´¾ ¿ À Á�Â Ã1Ä¾TÄÒ

C.2.4 Noun phrases and related trees

Ä I N D: Determiner preterminal, e.g.“the”Ó Ô´Õ Ö × Ø�Ù(ÚÕTÚÛ$Ü Ý¥ÜVÓ Þ
Ä I N N: Noun phrase, e.g.“The lion”



332 Appendix C. Linguistic resourcesß à8áãâ ä å æèç�éÅêëìí ä å æ<ç�éå î ï ðä å ñ ò óô ï õ ö ÷ñ ø ù ú û üýþ þ þ þ þ ÿÿÿÿÿ
ß ��� � ä å æ��å î ï ðô ï õ ö ÷ô ï õ ô � � ß à ëììí ä å æ<çå î ï ðä å ñ ò óô ï õ ö ÷ô ï õ ô �ñ ø ù ú û üüýâTê�
	�ß �

Ä A N A: Adjective, e.g. “grim” � �� � � ���������� � � ���� ��� �� ���  !" � # $&%" � # " '� ( ) *� � # " � +-,/.
0 11123 3 3 3 3 444445 6 � � � �87 �� �5
9 � :

� 
; ���� � � �<�� ��� �� ���  !" � # $=%" � # " '� ( ) * 0 112> � � ���" � # $&%� ��# " � +�,�%@?
Ä A N LDS: Left dislocated noun phrase, e.g.“The african lion, it” (Note: only applicable

to nouns of nominative case) A B�CED F G H<IKJF G L MNIPO-QR S T U=VXWYZ[ F G H\I]JG ^ S _L ` a bL H T R c d LfeL H T R S M c eL H T R R S R ehg ijk k k k k k k k k k llllllllllA B�Cnmpo F G H=IKJG ^ S _L ` a b qo F G H�I]JF G L MrI@O-QR S T U&VL H T R c d L V q
C sutuvxwzy F G H{J�|]IP} ~ A B�C Y[ F G H<IKJG ^ S _F G�L M=IPO�QR S T U eL ` a b gjY[ F G H<IKJG ^ S _F G�L M=IPO�QR S T U eL ` a b gjk k k k k lllllA � w�� F G H��G ^ S _R S T U eR S T R � � A B YZ[ F G H<IG ^ S _F G�L M=IPO-QR S T U eR S T R �L ` a b g ijy ~�{� A �



C.2. Grammar 333

C.2.5 Adverbial phrases and related trees

� A A Adj: Adverbial modifier for adjective, e.g.“very small”� ��� � � ������ � � ���� � � � � � ��� �� � � � � ������ �����X� � � �8�¡ �¢ ��£��
¤]� ¥ � �
¦§� � � �8� �� � � �¨�� � � � � � �ª© �
C.2.6 Prepositional phrases and related treesÄ I P P: Preposition preterminal, e.g.“with”«
¬x®¬ ¯ °²± ³ ´ µ
¶¸·±£·«
¬x®¬ ¯ ¹

Ä A P NP: Noun phrase postmodifier prepositional phrase, e.g.“The lion in the waste.”º »�¼²½ ¾ ¿ À<ÁKÂÃ Ä Å Æ=ÇÉÈÊ ¾ ¿ ÀËÁKÂ¿ Ì Ä Í¾ ¿ Î Ï ÐÎ Ñ Ò Ó ÔÕ Õ Õ Õ Õ ÖÖÖÖÖº »�¼n× Ê ¾ ¿ ÀËÁKÂ¿ Ì�Ä Í¾ ¿�Î Ï ÐÎ Ñ Ò Ó ÔØ ¾ ¿ ÀÙÁ]ÂÃ Ä Å ÆÚÇÎ À Å Ã Ã Ä Ã�Ç{Û Ü ¼Ý¼²½ ¾ ¿ À{ÂÞÂ È½ ¾ ¿ À{ÂÞÂ ÈÕ Õ Õ Õ Õ Õ ÖÖÖÖÖÖÜ
ßxº®ß à ¼&á ¾ ¿ À�ÂÎ Ñ Ò Å Ò â ã ä½ ÈÜ
ßxºåß à æ à »�¼èç Ø ¾ ¿ ÀËÁKÂ¾ ¿ Î Ïfé¡ê�êÎ Ñ Ò ã Û
Ä A P VP: Verb phrase postmodifier prepositional phrase, e.g.“boiled the frog with the

product.” ë ì�íïî ð ñ òfó�ôÞõö ð ñ òªó�ôñ ÷ ø ù úû û û û û üüüüüë ì{íný ö ð ñ ò=ó�ôñ ÷ ø ù úî ð ñ òfó�ô õ þ íÝí²î ð ñ ò{ôÞô¸õî ð ñ ò{ôÞô õ
û û û û û û üüüüüüþ
ÿ ë ÿ � í ö ð ñ ò�ô� � � � � � � úî£õþ
ÿ ë ÿ � � � � í 	�
 ð ñ ò � ôð ñ � ������� � � � �



334 Appendix C. Linguistic resources

� A P S: Sentential premodifier prepositional phrase, e.g.“With the child, the baboon flat-

tened the elephant.” � ��� � � ��� �� � � ��� �
� � � � � � � � � ��������� !"!#� � � �%$&$&�� � � �%$&$ �� � � � � � ������ %'(�)' * !,+ � � �-$. / 0 1 0 2 3 4�5� %'(�)' * 6 * 78!"9;: � � �=<>$� � . ?�@�A�A. / 0 3 B

!"CEDGF 9 � � � �H$JIK< A � � �MLN� � � �O� �� � � �O� �

C.2.7 Relative clauses and related trees

Ä I R Comp: Complementizer preterminal, e.g.“that”P"QSRUTWV X Y Z�[�\^]`_baV5ac
Ä A R V I: Intransitive verb relative clause, e.g.“The lion, who survived,”d egfih j k lOm>n&opqr j k lsm>nk t�u vj k�w x yz u { |~}w � � �w l { z u x �H�

� ��
� � � � � � � � � � � � � � � � �

� �� � � � � � � � �
�

���������
�

�����������������
��

d egf�� pr j k l�mKnk t u vj k w x yz u { |�}w � � � ��h j k l�mKnw l�{ z u x ��} o
f��G�G�K��h j k lHnJ�Km�� o �"���U� �W� j k lO�^�^ `nw � � � ¡ ¢ £ h j k lO¤ oh j k lO¤ o¢ ¥ f,� j k l§¦¨nk t u v ¡� j k l§¦¨nk t u © ¡¢ ¥«ª j k l,¦k t�u ©w � � w � � � ¬h5o¢% d ®

f��G�G�K�¯h j k lHnJ�Km�� o

Ä A R V IPP: Intransitive verb with prepositional phrase complement relative clause, e.g.“The

lion, who dwells in the waste,”



C.2. Grammar 335° ±g²i³ ´ µ ¶O·>¸&¹º»¼ ´ µ ¶s·>¸µ ½�¾ ¿´ µ�À Á ÂÃ ¾ Ä Å~ÆÀ Ç È ÉÀ ¶ Ä Ã ¾ Á ÊHË
Ì ÍÎ

Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï
Ï ÏÐ Ð Ð Ð Ð Ð Ð Ð Ð
Ð

ÑÑÑÑÑÑÑÑÑ
Ñ

ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ
ÒÒ

° ±g²�Ó º¼ ´ µ ¶�·K¸µ ½ ¾ ¿´ µ À Á ÂÃ ¾ Ä Å�ÆÀ Ç È É ÌÎ³ ´ µ ¶�·K¸À ¶�Ä Ã ¾ Á Ê�Æ ¹
²�ÔGÕGÖK×�³ ´ µ ¶H¸JØK·�Ù ¹ Ú"Û�ÜUÝ ×WÞ ´ µ ¶OÙ^ß^à`¸À Ç È É á â ã ³ ´ µ ¶Oä ¹³ ´ µ ¶Oä ¹â å ²,Þ ´ µ ¶§æ¨¸µ ½ ¾ ¿ áÞ ´ µ ¶§æ¨¸µ ½ ¾ ç áÐ Ð Ð Ð Ð Ð Ð Ð ÑÑÑÑÑÑÑÑâ åéè ´ µ ¶êæµ ½ ¾ çÀ Ç È À Ç È ÉÀ Ç È Ã ¾ Á Ã ë ì³5¹âHí ° î

ï ²ð²i³ ´ µ ¶%¸b¸ ¹³ ´ µ ¶%¸b¸&¹Ð Ð Ð Ð Ð Ð ÑÑÑÑÑÑï í â%í ñ ² ×óò ´ µ ¶ô¸À Ç È ëÀ Ç È Ä È õ ö ÷ ñ ±g²8ø ×ùò ´ µ ¶s·>¸´ µ�À Áûú�Ù�ÙÀ Ç È öÀ ¶�Ä Ã ¾ Á Ê�Æ ÷

²�ÔGÕGÖK×¯³ ´ µ ¶H¸JØK·�Ù ¹

Ä A R V T Sub: Transitive verb relative clause (subject), e.g.“The boy, who served the

dish,”

ü ýgþiÿ � � � ��� ���	 � � � ���� 
�� � ��� � �� � � ���� � � �� � � � � � ���
� ��

� � � � � � � � � � � � � � � � �
� �         
 

!!!!!!!!!
!

"""""""""""""""""
""

ü ýgþ$# �	 � � � �%�� 
 � � � � � �� � � �&�� � � � ��ÿ � � � �%�� ��� � � � �'� �
þ)(+*+,%-�ÿ � � � �/.%�10 � 2436587 -:9 � � � 0<;<=>�� � � � ? @ A ÿ � � �CB �ÿ � � �CB �@ D þE9 � � �GF �� 
 �  ?9 � � �GF �� 
 � H ?      !!!!!!@ DJI � � �KF� 
 � H� � � � � � �� � � � � L M Nÿ �@PO ü O Q R

Q ý8þTS -VU � � � ���� � � �XW 0�0� � � M� ��� � � � �C�ZY

þ)(+*+,%-¯ÿ � � � �/.%�10 �

Ä A R V T Obj: Transitive verb relative clause (object), e.g.“The dish, that the boy served,”



336 Appendix C. Linguistic resources[ \^]`_ a b c'd�egfhij a b ckd�eb l m na b o p qr m s tvuo w x yo c�s r m p zP{
| }~

� � � � � � � � � � � � � � � � �
� �� � � � � � � � �
�

���������
�

�����������������
��

[ \^]$� hj a b c�d%eb l m na b o p qr m s t&uo w x y |~_ a b c�d%eo c s r m p zCu f
])�+�+����_ a b c�e/�%d1� f �4���8� ��� a b c����<�>eo w x y � � � _ a b c�� f_ a b c�� f� � � � � � ������� \T]4�6� hj a b c�d�eb l m �a b o p�d1� �o w x ¡o c�s r m p zCu |~ � ¢ ] � a b cG£ eb l�m � �� a b cG£ eb l�m ¤ �� ¢¦¥ a b cE£b l m ¤o w x o w x ¡o w x s x § y ¨_)f�P© � © [ ª

])�«�¬�%��_ a b cPe/��d� f

Ä A R C NP: Nominal copula construction relative clause, e.g.“The boy, who is a child,”

® ¯T°²± ³ ´ µC¶�·¹¸º»¼ ³ ´ µ�¶�·´ ½�¾ ¿³ ´�À Á ÂÃ ¾ Ä Å�ÆÀ Ç È ÉÀ µ Ä Ã ¾ Á Ê�Ë
Ì ÍÎ

Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï
Ï ÏÐ Ð Ð Ð Ð Ð Ð Ð Ð
Ð

ÑÑÑÑÑÑÑÑÑ
Ñ

ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ
ÒÒ

® ¯T°$Ó º¼ ³ ´ µÔ¶%·´ ½ ¾ ¿³ ´ À Á ÂÃ ¾ Ä Å&ÆÀ Ç È É ÌÎ± ³ ´ µÕ¶%·À µ�Ä Ã ¾ Á Ê'Æ ¸
°)Ö+×+Ø%Ù�± ³ ´ µ�·/Ú%¶1Û ¸ Ü4Ý6Þ8ß Ù:à ³ ´ µCÛ<á<â>·À Ç È É ã ä å ± ³ ´ µCæ ¸± ³ ´ µCæ ¸ä ç °Eà ³ ´ µGè ·´ ½ ¾ ¿ ãà ³ ´ µGè ·´ ½ ¾ é ãÐ Ð Ð Ð Ð ÑÑÑÑÑÜ ç Ù�à ³ ´ µêÛ è´ ½ ¾ é ã ® ¯T° º»¼ ³ ´ µ�¶�·´ ½ ¾ é³ ´ À ÁXëìÛ�ÛÃ ¾ Ä Å íÀ Ç È îÀ µ�Ä Ã ¾ Á ÊCÆ

Ì ÍÎº¼ ³ ´ µÔ¶%·´ ½ ¾ é³ ´ À ÁïëìÛ<ÛÃ ¾ Ä Å íÀ Ç È î ÌÎÐ Ð Ð Ð Ð ÑÑÑÑÑ® ð Ùòñ ³ ´ µôó´ ½ ¾ éÃ ¾ Ä Å íÃ ¾ Ä Ã õ ö ® ¯ º»»¼ ³ ´ µô¶´ ½ ¾ é³ ´�À Áïë¹Û<ÛÃ ¾ Ä Å íÃ ¾ Ä Ã õÀ Ç È î
Ì ÍÍÎ±÷¸äPø ® ù

°)Ö+×+Ø%Ùú± ³ ´ µ�·/Ú%¶1Û ¸

Ä A R C A: Adjectival copula construction relative clause, e.g.“The jaws, that are grim,”



C.2. Grammar 337û üTý²þ ÿ � � ��� ���� ÿ � � ���� 	�
 �ÿ �� � �� 
 � ��� � � � � � � 
 � ���
� ��

� � � � � � � � � � � � � � � �
� � �� � � � � � � �
� �

        
  

!!!!!!!!!!!!!!!!
!!!

û üTý#" �� ÿ � � �$�� 	 
 �ÿ �  � �� 
 � �%� � � � ��þ ÿ � � �$� ��� � 
 � �&� �
ý('*)*+$,�þ ÿ � � �.-$�0/ � 1325476 ,98 ÿ � � /;:;<=� � � � > ? @ þ ÿ � �BA �þ ÿ � �BA �? C ýD8 ÿ � �FE �� 	 
 � >8 ÿ � �FE �� 	 
 G >� � � �     1 C ,98 ÿ � � / E� 	 
 G > ? H þ ÿ � �BI �þ �?KJ û L

ý('*)*+$,úþ ÿ � � �.-$�0/ �

Ä A R C PP: Prepositional copula construction relative clause, e.g.“The fish, that is in the

whale,” M NPORQ S T UBV�WYXZ[\ S T U]V�WT ^�_ `S T�a b cd _ e f�ga h i ja U e d _ b k�l
m no

p p p p p p p p p p p p p p p p
p p pq q q q q q q q
q q

rrrrrrrr
rr

ssssssssssssssss
sssM NPO#t Z\ S T UuV$WT ^ _ `S T a b cd _ e f%ga h i j moQ S T UvV$Wa U�e d _ b k&g X

O w*x*y$z Q S T U�W.{$V0| X }3~5�7� z9� S T UB|;�;�=Wa h i j � � � Q S T UB� XQ S T UB� X� � O � S T UF��WT ^ _ ` �� S T UF��WT ^ _ � �q q q q rrrr} � z9� S T UF| �T ^ _ � � � O3O�Q S T U�WYW XQ S T U�WYW�Xq q q q q q rrrrrr��� M � � O � S T U�Wa h i e i � � �Q X��� M � � � � NPO z�� S T U�V�WS T�a b��Y|;|a h i �a U e d _ b kBg��

O w*x*y$z Q S T U�W.{$V0| X

C.2.8 Miscellanous treesÄ I M Punct: Punctuation mark preterminal, e.g.“,”�(�*�*� � ¡ ¢ £�¤.¥�¦¨§ ©�(©ªÄ A M Neg: Negation for auxiliary verb, e.g.“will not”



338 Appendix C. Linguistic resources« ¬#¯®±° ² ³ ´¶µY·$¸�¹° ² ³ ´¶µY·$¸�¹º º º º º »»»»»« ¬¼¯®¾½ ° ² ³ ´¶µY·$¸ ¹° ² ³ ´¶µY·$¸ ¹ ¿ À¼ÁÃÂ ° ² ³ ´&Ä¨Å�Æ ¹°Ç¹¿�È « É

C.2.9 Additional syntax for “Relativity” limerick

Ä I E E: “Existential” copula construction sentence with NP predication, e.g.“There is a

boy.” Ê ËÍÌ Î Ï Ð¶Ñ ÒÌ Î Ï Ð¶Ñ ÒÓ Ó Ó Ó Ó ÔÔÔÔÔÕ�ÖP×(ØÙÌ Î Ï Ð¶Ú�Û$Ü Ò Ê ÝP×DÞ Î Ï ÐFß�ÜÏ à á â ãÞ Î Ï ÐFß�ÜÏ à á ä ãÓ Ó Ó Ó Ó ÔÔÔÔÔå Ý Ø Þ Î Ï Ðçæ�ßÏ à�á ä ã è Ö¼×Péëêì Î Ï ÐuÛ�ÜÏ à�á äÎ Ï�í îçïðæ�æñ á ò ó ôí õ ö ÷ øùêì Î Ï ÐuÛ�ÜÏ à�á äÎ Ï�í îçïðæ�æñ á ò ó ôí õ ö ÷ øùÓ Ó Ó Ó Ó ÔÔÔÔÔè ÕPØûú Î Ï ÐüÚÏ à á äñ á ò ó ôñ á ò ñ ý þ è Ö êÿÿì Î Ï ÐuÛÏ à á äÎ Ï í î ïYæ;æñ á ò ó ôñ á ò ñ ýí õ ö ÷
ø ��ùÌ ÒÊ�� è �

Ä I E DNP: The demonstrative noun phrase, e.g.‘there’, preterminal tree. Used specifically

by I E E. ���	��
 �  ���������
���
Ä A E NPPostMod: Auxiliary noun phrase postmodifier, e.g.“The lady called Bright.”



C.2. Grammar 339� �	��� � � � ��!" # $ %'&	()* � � � ��!� + # ,� �.- / 0- 1 2 3- �.$ " 45$ 687 9:; ; ; ; ; <<<<<� �	�>=@? � � �A�B!� +.# ,� �.- / 0- 1 2 3 CD � � � ��!" # $ %E&- � $ " 45$ 6'&	F
G H��JI � � �LKM!� + # , NI � � �LKM!� + # O N; ; ; ; ; ; <<<<<<G�P��QP R HS? � � �TK� +.# O- 1 2 - 1 2 3- 1 2 $ 2 U V C� (G�PW�XP R Y

R �	�[Z D � � �A�B!� � - /�\5].]- 1 2 V F

Ä A E Comparative: Verb phrase comparative postmodifier e.g.“travels faster than light.”^ _�`�a b c d�eMfhgi b c d eMfj d.k l b k mhl conc p q r s
t t t t t t t t t t t t

t t t t t t tu u u u
u u u

vvvv
vvv

wwwwwwwwwwww
wwwwwww

^ _�`>xzy b c dLeMfc p q r {a b c d eMfj d.k l b k mhl c'| g } ~	�����8� a b c d��5�.����f ga b c d��5�.����f g}�� ^ � � � �����'�������8��� a b c do�.����fB�.�M��f g � � ` � a b c d���fb c j � �5��� g
Ä A E CompAdv: Comparative adjective adverbial modifier tree, e.g.“much faster”� �	�����8��� � �  o¡h¢�£�¤�¥h¦� � �  §¡5¢.£�¤�¥¨   © ª � « ¬o ¦® ® ® ® ® ® ¯¯¯¯¯¯° �	±�²³� � �  o¡5´MµM¦��¦°�¶�� · � �	�����8��¸¹� � �  �¡5¢.£�¤�¥h¦� � �  º¡5¢.£�¤�¥¨  .© ª � « ¬¼» ¦
Ä I E Comp: Preterminal tree for comparative complementizers, e.g.‘than’½�¾�¿8À�½�¾�¿8À�Á Â Ã Ä�Å�Æ�Ç�ÈÉÅ�Æ�Ç�ÈhÊÁ�ÊË
Ä A E IAW: Auxiliary verb phrase ”in a ... way” adjectival modifier e.g.: “travelled in a

relative way”



340 Appendix C. Linguistic resourcesÌ Í�ÎÐÏ Ñ Ò Ó�ÔMÕhÖ× Ñ Ò ÓØÔMÕÒ Ù Ú ÛÜ Ó Ý Þ ß Ò àâáäãå å å å å æææææÌ Í�Î>çzè Ñ Ò ÓLÔMÕÒ Ù Ú Û éÏ Ñ Ò ÓêÔMÕÜ Ó.Ý Þ ß Ò àìë Ö í Î�ÎÐÏ Ñ Ò Ó�ÕhÕ ÖÏ Ñ Ò Ó�ÕhÕhÖå å å å å æææææÎ[î ïñð>òóÏ Ñ Ò Ó�ÕÉô õ�ö Ö Ì ÷	Î�Ï Ñ Ò Ó�øBÕ ÖÏ Ñ Ò Ó�øBÕ�Öå å å å ææææù	î ïñð ò Ï Ñ Ò Ó�ú�ô õhö Ö Ì ÷ûÏ Ñ Ò Ó�ø ÖÏ Ñ Ò Ó�øBÖå å å å ææææí ü Ï Ñ Ò Óoõ ÖÏ�Öí�ý Ì þ
÷ÿî ïñð>ò Ï Ñ Ò Ó ø ô õhö Ö

Ä I E Piaw: Special ”in a ... way” phrase preposition, e.g.‘in’, preterminal tree��� ����� 	 
 ���� ���������Ä I E Diaw: Special ”in a ... way” phrase determinar, e.g.‘a’, preterminal tree��� ����� � � �! #" $�%'&��&(Ä I E Niaw: Special ”in a ... way” phrase noun, e.g.‘way’, preterminal tree)+* ,�-�. / 0 13254 6�7�8.�89Ä A E PreVPTimeNP: Time noun phrase verb phrase premodifier, e.g.“yesterday travelled”

: ;=<?> @ A B3CED�FG @ A B CEDA HJI KL B M N B O P#Q R NSUT
V V V V V V WWWWWWX Y[Z \^]�_+<`> @ A B3a b cedJfgD#F>hFXij: k

: ;=<[lnm @ A BoCEDA HJI K p> @ A B CqDL B M N B O P�Q R Nsr F

Ä A E PostVPTimeNP: Time noun phrase verb phrase postmodifier, e.g.“travelled yester-

day”



C.2. Grammar 341

t u=v?w x y z3{E|�}~ x y z {E|y �J� �� z � � z � �#� � �3���
� � � � � � ������t u=v��n� x y zo{E|y � � � �w x y z {E|� zJ� � z � ��� � �s� } � �[� �^��� v?w x y z!� � �e�J�g|�}w�}

�� t  Ä A E PreVPAdv: Adverbial verb phrase premodifier, e.g.“relatively travelled”¡ ¢=£?¤ ¥ ¦ §3¨E©�ª« ¥ ¦ §¬¨E©¦  ® ¯° §J± ² ¦ ³ ´sµU¶· · · · · ¸¸¸¸¸
¹ º�»½¼¾¤ ¥ ¦ §s¿ÁÀE¨Eª¤�ª¹Âj¡ Ã

¡ ¢=£[ÄÆÅ ¥ ¦ §Ç¨E©¦  ® ¯ È¤ ¥ ¦ §É¨q©° §J± ² ¦ ³ ´ËÊ ª

Ä A E PostVPAdv: Adverbial verb phrase postmodifier, e.g.“travelled relatively”Ì Í=Î?Ï Ð Ñ Ò3ÓEÔ�ÕÖ Ð Ñ Ò×ÓEÔÑ ØJÙ ÚÛ Ò Ü Ý Ñ Þ ß^àUáâ â â â â ããããã
Ì Í=Î�änå Ð Ñ ÒoÓEÔÑ Ø Ù Ú æÏ Ð Ñ Ò¬ÓEÔÛ ÒJÜ Ý Ñ Þ ßoç Õ è é�ê½ë Ï Ð Ñ ÒsìÁíEÓEÕÏ�Õ

èî Ì ï





Appendix D

Empirical study statistics

In this appendix we present statistical summaries and graphs plotting the maximum and average

of the best fitness scores throughout the search process obtained during the runs conducted for

our empirical study.

D.1 MCGONAGALL as form-aware generator

D.1.1 Initial form-aware test

Details for this test are given in Section 8.3.1. The two factors being varied are the target form

and the elitist ratio. Hence we run this test nine times: haiku with elitist ratios of 0%, 20%, and

40%, limerick with elitist ratios of 0%, 20%, and 40%, and mignonne with elitist ratios of

0%, 20%, and 40%. Each individual test is run ten times, and each run lasts for 500 iterations.

Table D.1 shows a summary of the results obtained from these runs. For each test, we take the

best fitness scores from the last populations (i.e. the population at the end of the last iteration)

of the ten test runs. We show the minimum, maximum, mean and standard deviation values for

these best scores. Note that the range of values for all our evaluators is between 0.0, being the

lowest score, and 1.0, that of an optimal solution.

Figure D.1 plots the maximum and average of the best fitness scores of the 10 runs for each

test throughout the search process. Figure D.1(a), (b), and (c) show these scores for the haiku,

limerick, and mignonne target forms respectively.

343



344 Appendix D. Empirical study statistics

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, haiku, initial experiment

Maximum, (Elitist=0%)
Maximum, (Elitist=20%)
Maximum, (Elitist=40%)

Average (Elitist=0%)
Average (Elitist=20%)
Average (Elitist=40%)

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, limerick, initial experiment

Maximum, (Elitist=0%)
Maximum, (Elitist=20%)
Maximum, (Elitist=40%)

Average (Elitist=0%)
Average (Elitist=20%)
Average (Elitist=40%)

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, mignonne, initial experiment

Maximum, (Elitist=0%)
Maximum, (Elitist=20%)
Maximum, (Elitist=40%)

Average (Elitist=0%)
Average (Elitist=20%)
Average (Elitist=40%)

(c)

Figure D.1: Maximum and average of best fitness scores for Ftarget ð (a)haiku, (b)limerick,

and (c)mignonne, initial form-aware test



D.1. MCGONAGALL as form-aware generator 345

Min Max Mean Std.Dev

Ftarget ñ haiku
Elitist 0% 1.00 1.00 1.00 0.00

Elitist 20% 1.00 1.00 1.00 0.00

Elitist 40% 1.00 1.00 1.00 0.00

Ftarget ñ limerick
Elitist 0% 0.68 0.82 0.75 0.04

Elitist 20% 0.79 0.95 0.88 0.06

Elitist 40% 0.79 0.95 0.86 0.05

Ftarget ñ mignonne
Elitist 0% 0.66 0.82 0.73 0.04

Elitist 20% 0.80 0.90 0.86 0.03

Elitist 40% 0.75 0.94 0.87 0.05

Table D.1: Summary statistics of best fitness scores from final populations for initial form-aware

test

Test Min Max Mean Std.Dev

haiku 1.00 1.00 1.00 0.00

limerick 0.76 0.83 0.79 0.03

mignonne 0.80 0.84 0.82 0.01

Table D.2: Summary statistics of best fitness scores from final populations for syntax-surface

balance test

D.1.2 Plugging the holes: syntax-surface balance test

Details for this test are given in Section 8.3.2. We ran this test three times, once for each target

form. Each test was run five times. Table D.2 shows a summary of the results obtained from this

test. For each test, we take the best fitness scores from the last populations (i.e. the population

at the end of the last iteration) of the five test runs. We show the minimum, maximum, mean

and standard deviation values for these best scores.

Figure D.2 plots the maximum and average of the best fitness scores of the five runs for each

test throughout the search process. Figure D.2(a), (b), and (c) shows these scores for the haiku,

limerick, and mignonne target forms respectively.



346 Appendix D. Empirical study statistics

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, syntax-surface balance, haiku

Maximum
Average

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, syntax-surface balance, limerick

Maximum
Average

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, syntax-surface balance, mignonne

Maximum
Average

(c)

Figure D.2: Maximum and average of best fitness scores for Ftarget ð (a)haiku, (b)limerick,

and (c)mignonne, syntax-surface balance test



D.1. MCGONAGALL as form-aware generator 347

Test Min Max Mean Std.Dev

haiku 1.00 1.00 1.00 0.00

limerick 0.86 1.00 0.92 0.05

mignonne 0.88 0.96 0.92 0.03

Table D.3: Summary statistics of best fitness scores from final populations for complete deriva-

tion operators test

Test Min Max Mean Std.Dev

haiku 1.00 1.00 1.00 0.00

limerick 0.86 1.00 0.93 0.05

mignonne 0.65 0.82 0.76 0.07

Table D.4: Summary statistics of best fitness scores from final populations for enjambment and

linebreaking test

D.1.3 Plugging the holes: complete derivation operators test

Details for this test are given in Section 8.3.3. We ran this test three times, once for each target

form. Each test was run five times. Table D.3 shows a summary of the results obtained from

these tests. For each test, we take the best fitness scores from the last populations (i.e. the

population at the end of the last iteration) of the five runs. We show the minimum, maximum,

mean and standard deviation values for these best scores.

Figure D.3 plots the maximum and average of the best fitness scores of the five runs for each

test throughout the search process. Figure D.3(a), (b), and (c) show these scores for the haiku,

limerick, and mignonne target forms respectively.

D.1.4 Enjambment and linebreaking test

Details for this test are given in Section 8.3.4. We ran this test three times, once for each target

form. Each test was run five times. Table D.4 shows a summary of the results obtained from this

test. For each test, we take the best fitness scores from the last populations (i.e. the population

at the end of the last iteration) of the five test runs. We show the minimum, maximum, mean

and standard deviation values for these best scores.



348 Appendix D. Empirical study statistics

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, haiku, complete operators

Maximum
Average

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, limerick, complete operators

Maximum
Average

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, mignonne, complete operators

Maximum
Average

(c)

Figure D.3: Maximum and average of best fitness scores for Ftarget ð (a)haiku, (b)limerick,

and (c)mignonne, complete derivation operators test



D.1. MCGONAGALL as form-aware generator 349

Test Min Max Mean Std.Dev

mignonne 0.81 0.85 0.83 0.02

Table D.5: Summary statistics of best fitness scores from final populations for effect of scale test

Test Min Max Mean Std.Dev

mignonne 0.55 0.62 0.59 0.02

Table D.6: Summary statistics of best fitness scores from final populations for reduced grammar

test

Figure D.4 plots the maximum and average of the best fitness scores of the five runs for each

test throughout the search process. Figure D.4(a), (b), and (c) show these scores for the haiku,

limerick, and mignonne target forms respectively.

D.1.5 Effect of scale test

Details for this test are given in Section 8.3.5. Due to the heavy computational cost of this

task, we ran this test three times as opposed to five. Table D.5 shows a summary of the results

obtained from these runs. We take the best fitness scores from the last populations (i.e. the pop-

ulation at the end of the last iteration) of the three test runs, and show the minimum, maximum,

mean and standard deviation values for these scores.

Figure D.5 plots the maximum and average of the best fitness scores of the three runs through-

out the search process.

D.1.6 Reduced grammar test

Details for this test are given in Section 8.3.6. We ran this test five times. Table D.6 shows a

summary of the results obtained from these runs. We take the best fitness scores from the last

populations (i.e. the population at the end of the last iteration) of the five runs, and show the

minimum, maximum, mean and standard deviation values for these scores.

Figure D.6 plots the maximum and average of the best fitness scores of the five runs throughout

the search process.



350 Appendix D. Empirical study statistics

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, haiku, linebreaking experiment

Maximum
Average

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, limerick, linebreaking experiment

Maximum
Average

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, mignonne, linebreaking experiment

Maximum
Average

(c)

Figure D.4: Maximum and average of best fitness scores for Ftarget ð (a)haiku, (b)limerick,

and (c)mignonne, enjambment and linebreaking test



D.1. MCGONAGALL as form-aware generator 351

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, mignonne, scale test

Maximum
Average

Figure D.5: Maximum and average of best fitness scores for effect of scale test

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, mignonne, reduced grammar test

Maximum
Average

Figure D.6: Maximum and average of best fitness scores for reduced grammar test



352 Appendix D. Empirical study statistics

Test Min Max Mean Std.Dev

pmutation ñ 0 ò 75 ó pcrossover ñ 0 ò 25 0.46 0.90 0.71 0.14

pmutation ñ 0 ò 50 ó pcrossover ñ 0 ò 50 0.60 0.96 0.80 0.13

pmutation ñ 0 ò 25 ó pcrossover ñ 0 ò 75 0.52 0.75 0.67 0.09

Table D.7: Summary statistics of best fitness scores from final populations for crossover operator

test

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, mignonne, crossover test

Maximum, cross=0.25, mut=0.75
Average, cross=0.25, mut=0.75

Maximum, cross=0.50, mut=0.50
Average, cross=0.50, mut=0.50

Maximum, cross=0.75, mut=0.25
Average, cross=0.75, mut=0.25

Figure D.7: Maximum and average of best fitness scores for crossover operator test

D.1.7 Crossover operator test

Details for this test are given in Section 8.3.7. We ran this test three times, assigning pmutation

the values of 0.25, 0.5, and 0.75 (and thus assigning pcrossover 0.75, 0.5, and 0.25). Each test

was run five times. Table D.7 shows a summary of the results obtained from these runs. We

take the best fitness scores from the last populations (i.e. the population at the end of the last

iteration) of the runs, and show the minimum, maximum, mean and standard deviation values

for these scores.

Figure D.7 plots the maximum and average of the best fitness scores of the three tests through-

out the search process.



D.2. MCGONAGALL as tactical NLG component 353

Test Min Max Mean Std.Dev

Weighting 1

Elitist 20% 0.49 0.81 0.72 0.10

Elitist 40% 0.71 0.99 0.79 0.08

Weighting 2

Elitist 20% 0.74 0.93 0.85 0.06

Elitist 40% 0.79 0.93 0.87 0.04

Weighting 3

Elitist 20% 0.73 0.90 0.80 0.05

Elitist 40% 0.74 0.93 0.83 0.07

Table D.8: Summary statistics of best fitness scores from final populations for

Starget ñ lionhalf, initial tactical NLG test

D.2 MCGONAGALL as tactical NLG component

D.2.1 Initial tactical NLG test

Details for this test are given in Section 8.4.1. As there are three factors being varied in this

test, i.e. target semantics, weighting scheme, and elitist ratio, we conduct twelve separate tests:

Starget ñ lionhalf with weighting schemes 1, 2, and 3, and Starget ñ lion with weighting

schemes 1, 2, and 3, all of which are run with elitist ratios of 20% and 40%. Each individ-

ual test is run ten times, and each run lasts for 500 iterations.

Tables D.8 and D.9 show a summary of the results obtained from these runs for Starget ñ lionhalf
and lion respectively. For each test, we take the best fitness scores from the last populations

(i.e. the population at the end of the last iteration) of the ten test runs. We show the minimum,

maximum, mean and standard deviation values for these best scores.

Figures D.8 and D.9 plot the maximum and average of the best fitness scores of the runs for

each test throughout the search process for lionhalf and lion respectively. Parts (a), (b), and

(c) of these figures show these scores for the three different weighting schemes.



354 Appendix D. Empirical study statistics

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lionhalf, weighting 1

Maximum, Weighting 1 (Elitist=20%)
Maximum, Weighting 1 (Elitist=40%)

Average, Weighting 1 (Elitist=20%)
Average, Weighting 1 (Elitist=40%)

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lionhalf, weighting 2

Maximum, weighting 2 (Elitist=20%)
Maximum, weighting 2 (Elitist=40%)

Average, weighting 2 (Elitist=20%)
Average, weighting 2 (Elitist=40%)

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lionhalf, weighting 3

Maximum, weighting 3 (Elitist=20%)
Maximum, weighting 3 (Elitist=40%)

Average, weighting 3 (Elitist=20%)
Average, weighting 3 (Elitist=40%)

(c)

Figure D.8: Maximum and average of best fitness scores for (a) weighting 1, (b) weighting 2,

and (c) weighting 3, Starget ð lionhalf, initial tactical NLG test



D.2. MCGONAGALL as tactical NLG component 355

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lion, weighting 1

Maximum, Weighting 1 (Elitist=20%)
Maximum, Weighting 1 (Elitist=40%)

Average, Weighting 1 (Elitist=20%)
Average, Weighting 1 (Elitist=40%)

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lion, weighting 2

Maximum, weighting 2 (Elitist=20%)
Maximum, weighting 2 (Elitist=40%)

Average, weighting 2 (Elitist=20%)
Average, weighting 2 (Elitist=40%)

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lion, weighting 3

Maximum, weighting 3 (Elitist=20%)
Maximum, weighting 3 (Elitist=40%)

Average, weighting 3 (Elitist=20%)
Average, weighting 3 (Elitist=40%)

(c)

Figure D.9: Maximum and average of best fitness scores for (a) weighting 1, (b) weighting 2,

and (c) weighting 3, Starget ð lion, initial tactical NLG test



356 Appendix D. Empirical study statistics

Test Min Max Mean Std.Dev

Weighting 1

Elitist 20% 0.39 0.55 0.47 0.05

Elitist 40% 0.34 0.60 0.45 0.08

Weighting 2

Elitist 20% 0.74 0.82 0.78 0.03

Elitist 40% 0.71 0.83 0.79 0.03

Weighting 3

Elitist 20% 0.45 0.73 0.63 0.09

Elitist 40% 0.28 0.73 0.60 0.12

Table D.9: Summary statistics of best fitness scores from final populations for Starget ñ lion,

initial tactical NLG test

D.2.2 Smart operators test

Details for this test are given in Section 8.4.2. As in the previous section, we conduct twelve

separate tests: Starget ñ lionhalf with weighting schemes 1, 2, and 3, and Starget ñ lion with

weighting schemes 1, 2, and 3, all of which are run with elitist ratios of 20% and 40%.

Tables D.10 and D.11 show a summary of the results obtained from these runs for Starget ñ lionhalf
and lion respectively. For each test, we take the best fitness scores from the last populations

(i.e. the population at the end of the last iteration) of the ten test runs. We show the minimum,

maximum, mean and standard deviation values for these best scores.

Figures D.10 and D.11 plot the maximum and average of the best fitness scores of the runs for

each test throughout the search process for lionhalf and lion respectively. Parts (a), (b), and

(c) of these figures show these scores for the three different weighting schemes.

D.2.3 PROTECTOR and SPUD-like operator test

Details for this test are given in Section 8.4.3. The two tests for the PROTECTOR-like and

SPUD-like operators were run ten times. Table D.12 shows a summary of the results obtained

from these runs. For each test, we take the best fitness scores from the last populations (i.e.

the population at the end of the last iteration) of the ten test runs. We show the minimum,



D.2. MCGONAGALL as tactical NLG component 357

Test Min Max Mean Std.Dev

Weighting 1

Elitist 20% 0.65 0.93 0.87 0.11

Elitist 40% 0.78 1.00 0.94 0.09

Weighting 2

Elitist 20% 0.93 0.99 0.97 0.03

Elitist 40% 0.89 0.99 0.97 0.04

Weighting 3

Elitist 20% 0.64 1.00 0.84 0.12

Elitist 40% 0.64 1.00 0.88 0.14

Table D.10: Summary statistics of best fitness scores from final populations for

Starget ñ lionhalf, smart operators test

Test Min Max Mean Std.Dev

Weighting 1

Elitist 20% 0.37 0.54 0.46 0.07

Elitist 40% 0.37 0.54 0.44 0.07

Weighting 2

Elitist 20% 0.59 0.88 0.70 0.12

Elitist 40% 0.57 0.61 0.58 0.02

Weighting 3

Elitist 20% 0.44 0.79 0.55 0.12

Elitist 40% 0.33 0.66 0.48 0.11

Table D.11: Summary statistics of best fitness scores from final populations for Starget ñ lion,

smart operators test



358 Appendix D. Empirical study statistics

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lionhalf, weighting 1

Maximum, Weighting 1 (Elitist=20%)
Maximum, Weighting 1 (Elitist=40%)

Average, Weighting 1 (Elitist=20%)
Average, Weighting 1 (Elitist=40%)

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lionhalf, weighting 2

Maximum, weighting 2 (Elitist=20%)
Maximum, weighting 2 (Elitist=40%)

Average, weighting 2 (Elitist=20%)
Average, weighting 2 (Elitist=40%)

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lionhalf, weighting 3

Maximum, weighting 3 (Elitist=20%)
Maximum, weighting 3 (Elitist=40%)

Average, weighting 3 (Elitist=20%)
Average, weighting 3 (Elitist=40%)

(c)

Figure D.10: Maximum and average of best fitness scores for (a) weighting 1, (b) weighting 2,

and (c) weighting 3, Starget ð lionhalf, smart operators test



D.2. MCGONAGALL as tactical NLG component 359

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lion, weighting 1

Maximum, Weighting 1 (Elitist=20%)
Maximum, Weighting 1 (Elitist=40%)

Average, Weighting 1 (Elitist=20%)
Average, Weighting 1 (Elitist=40%)

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lion, weighting 2

Maximum, weighting 2 (Elitist=20%)
Maximum, weighting 2 (Elitist=40%)

Average, weighting 2 (Elitist=20%)
Average, weighting 2 (Elitist=40%)

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, semantics initial experiment, lion, weighting 3

Maximum, weighting 3 (Elitist=20%)
Maximum, weighting 3 (Elitist=40%)

Average, weighting 3 (Elitist=20%)
Average, weighting 3 (Elitist=40%)

(c)

Figure D.11: Maximum and average of best fitness scores for (a) weighting 1, (b) weighting 2,

and (c) weighting 3, Starget ð lion, smart operators test



360 Appendix D. Empirical study statistics

Test Min Max Mean Std.Dev

PROTECTOR-like 0.60 0.85 0.78 0.09

SPUD-like 0.42 0.93 0.75 0.18

Table D.12: Summary statistics of best fitness scores from final populations for PROTECTOR

and SPUD-like operator test

Test Min Max Mean Std.Dev

haiku 0.67 0.77 0.72 0.04

limerick 0.60 0.81 0.69 0.06

mignonne 0.61 0.78 0.69 0.04

Table D.13: Summary statistics of best fitness scores from final populations for initial poetry

generation test

maximum, mean and standard deviation values for these best scores.

Figure D.12(a) and (b) plots the maximum and average of the best fitness scores of the runs for

the tests using the PROTECTOR-like and SPUD-like operators respectively.

D.3 MCGONAGALL as poetry generation system

D.3.1 Initial poetry generation test

Details for this test are given in Section 8.5.1. We ran this test three times, once for each target

form. Each test was run five times. Table D.13 shows a summary of the results obtained from

this test. For each target form, we take the best fitness scores from the last populations (i.e. the

population at the end of the last iteration) of the runs. We show the minimum, maximum, mean

and standard deviation values for these best scores.

Figure D.13 plots the maximum and average of the best fitness scores of the five runs for each

test throughout the search process. Figure D.13(a), (b), and (c) show these scores for the haiku,

limerick, and mignonne target forms respectively.



D.3. MCGONAGALL as poetry generation system 361

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, PROTECTOR-like operator, lion

Maximum
Average

(a)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, SPUD-like operator, lion

Maximum
Average

(b)

Figure D.12: Maximum and average of best fitness scores for (a)PROTECTOR-like and

(b)SPUD-like operator test



362 Appendix D. Empirical study statistics

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, initial poetry generation test, haiku

Maximum
Average

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, initial poetry generation test, limerick

Maximum
Average

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, initial poetry generation test, mignonne

Maximum
Average

(c)

Figure D.13: Maximum and average of best fitness scores for Ftarget ð (a)haiku, (b)limerick

and (c)mignonne, initial poetry generation test



D.3. MCGONAGALL as poetry generation system 363

Test Min Max Mean Std.Dev

haiku 0.72 0.86 0.83 0.04

limerick 0.75 0.83 0.79 0.02

mignonne 0.55 0.80 0.66 0.10

Table D.14: Summary statistics of best fitness scores from final populations smart operators

poetry generation test

Test Min Max Mean Std.Dev

haiku 0.66 0.90 0.81 0.09

limerick 0.66 0.82 0.72 0.06

mignonne 0.45 0.81 0.59 0.13

Table D.15: Summary statistics of best fitness scores from final populations for distribution of

heuristics test

D.3.2 Smart operators poetry generation tests

Details for this test are given in Section 8.5.2. We ran this test three times, once for each target

form. Each test was run five times. Table D.14 shows a summary of the results obtained from

this test. For each target form, we take the best fitness scores from the last populations (i.e. the

population at the end of the last iteration) of the runs. We show the minimum, maximum, mean

and standard deviation values for these best scores.

Figure D.14 plots the maximum and average of the best fitness scores of the five runs for each

test throughout the search process. Figure D.14(a), (b), and (c) show these scores for the haiku,

limerick, and mignonne target forms respectively.

D.3.3 Distribution of heuristics test

Details for this test are given in Section 8.5.3. We ran this test three times, once for each target

form. Each test was run five times. Table D.15 shows a summary of the results obtained from

this test. For each target form, we take the best fitness scores from the last populations (i.e. the

population at the end of the last iteration) of the runs. We show the minimum, maximum, mean

and standard deviation values for these best scores.

Figure D.15 plots the maximum and average of the best fitness scores of the five runs for each



364 Appendix D. Empirical study statistics

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, smart operator poetry generation test, haiku

Maximum
Average

(a)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, smart operator poetry generation test, limerick

Maximum
Average

(b)

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, smart operator poetry generation test, mignonne

Maximum
Average

(c)

Figure D.14: Maximum and average of best fitness scores for Ftarget ð (a)haiku, (b)limerick

and (c)mignonne, smart operators poetry generation test



D.3. MCGONAGALL as poetry generation system 365

Test Min Max Mean Std.Dev

relativity 0.46 0.69 0.58 0.07

relativity1 0.80 0.82 0.81 0.01

relativity2 0.50 0.66 0.62 0.07

relativity3 0.59 0.78 0.70 0.07

relativity4 0.69 0.86 0.76 0.07

Table D.16: Summary statistics of best fitness scores from final populations, ‘relativity’ limerick

generation test

test throughout the search process. Figure D.15(a), (b), and (c) show these scores for the haiku,

limerick, and mignonne target forms respectively.

D.3.4 Line-by-line generation

Details for this test are given in Section 8.5.4. We ran this test five times, once for the entire

limerick and once for each individual line. Each test was run ten times. Table D.16 shows a

summary of the results obtained from this test. For each target form, we take the best fitness

scores from the last populations (i.e. the population at the end of the last iteration) of the runs.

We show the minimum, maximum, mean and standard deviation values for these best scores.



366 Appendix D. Empirical study statistics

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, distribution of heuristics test, haiku

Maximum
Average

(a)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, distribution of heuristics test, limerick

Maximum
Average

(b)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

F
itn

es
s 

sc
or

e

Iteration

Highest fitness scores, distribution of heuristics test, mignonne

Maximum
Average

(c)

Figure D.15: Maximum and average of best fitness scores for Ftarget ð (a)haiku, (b)limerick

and (c)mignonne, distribution of heuristics test



Bibliography

Aamodt, A. and Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological

variations, and system approaches. AI Communications, 7(1):39–59.

Angeline, P. J. (1996). Genetic programming’s continued evolution. In Angeline, P. J. and

Kinnear, K. E., editors, Advances in Genetic Programming, volume 2, pages 89–110. MIT

Press, Cambridge, USA.

Appelt, D. E. (1985). Planning English Sentences. Cambridge University Press, Cambridge,

UK.

Attridge, D. (1995). Poetic Rhythm: an Introduction. Cambridge University Press.

Bäck, T., Fogel, D., and Michalewicz, Z., editors (1997). Handbook of Evolutionary Compu-

tation. Oxford University Press and Institute of Physics Publishing.

Bailey, P. (1999). A reader-based model of story generation; or ‘stories: they’re not what you

expected’. In Proceedings of the AISB’99 Symposium on Creative Language: Humour and

Stories, pages 36–45, Edinburgh, UK. AISB.

Bailey, R. W. (1974). Computer-assisted poetry: the writing machine is for everybody. In

Mitchell, J. L., editor, Computers in the Humanities, pages 283–295. Edinburgh University

Press, Edinburgh, UK.

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. In Grefenstette,

J. J., editor, Proceedings of the Second International Conference on Genetic Algorithms,

pages 14–21, Cambridge, USA. Lawrence Erlbaum Associates.

Bangalore, S. and Rambow, O. (2000a). Exploiting a probabilistic hierarchical model for gen-

eration. In Proceedings of the 18th International Conference on Computational Linguistics

(COLING 2000), Saarbrücken, Germany.

367



368 Bibliography

Bangalore, S. and Rambow, O. (2000b). Using TAG, a tree model, and a language model for

generation. In Proceedings of the Fifth Workshop on Tree Adjoining Grammars (TAG+ 5),

Paris, France.

Beeferman, D. (1996). The rhythm of lexical stress in prose. In Proceedings of the 34th Annual

Meeting of the Association for Computational Linguistics, Santa Cruz, UK. Association for

Computational Linguistics.

Beeferman, D. (1998). Lexical discovery with an enriched semantic network. In Harabagiu,

S., editor, Use of WordNet in Natural Language Processing Systems: Proceedings of the

Conference, pages 135–141. Association for Computational Linguistics, Somerset, USA.

Belloc, J. H. P. (1991). The bad child’s book of beasts. Jonathan Cape, London, UK.

Binsted, K. (1996). Machine Humour: An Implemented Model of Puns. PhD thesis, Depart-

ment of Artificial Intelligence, University of Edinburgh, Edinburgh, UK.

Bod, R. and Scha, R. (1997). Corpus-based methods in language and speech processing. In

Young, S. and Bloothooft, G., editors, Data-Oriented Language Processing: An Overview,

pages 137–173. Kluwer Academic Publishers, Boston, USA.

Boden, M. A. (1990). The Creative Mind: Myths and Mechanisms. Weidenfeld and Nicolson,

London, UK.

Bouayad-Agha, N., Scott, D., and Power, R. (2000). Integrating content and style in docu-

ments: a case study of patient information leaflets. Information Design Journal, 9(2-3):161–

176.

Brew, C. (1992). Letting the cat out of the bag: Generation for shake-and-bake MT. In Pro-

ceedings of the 14th International Conference on Computational Linguistics, pages 29–34,

Nantes, France.

Bunke, H. and Shearer, K. (1998). A graph distance metric based on the maximal common

subgraph. Pattern Recognition Letters, 19:255–259.

Cahill, L. and Reape, M. (1999). Component tasks in applied NLG systems. Technical Report

ITRI-99-05, Information Technology Research Institute, University of Brighton, Brighton,

UK.

Candito, M.-H. and Kahane, S. (1998). Can the TAG derivation tree represent a semantic



Bibliography 369

graph? an answer in the light of meaning-text theory. In Proceedings of the Fourth Inter-

national Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4), pages

21–24, Philadelphia, USA.

Carroll, J. A., Copestake, A., Flickinger, D., and Poznański, V. (1999). An efficient chart

generator for (semi-)lexicalist grammars. In Proceedings of the 7th European Workshop on

Natural Language Generation, pages 86–95, Toulouse, France.

Cheng, H. (2002). Modelling Aggregation Motivated Interactions in Descriptive Text Genera-

tion. PhD thesis, Division of Informatics, University of Edinburgh, Edinburgh, UK.

Copestake, A., Flickinger, D., Malouf, R., Riehemann, S., and Sag, I. A. (1995). Translation

using minimal recursion semantics. In Proceedings of the Sixth International Conference on

Theoretical and Methodological Issues in Machine Translation (TMI95), Leuven, Belgium.

Dale, R. and Haddock, N. (1991). Content determination in the generation of referring expres-

sions. Computational Intelligence, 7(4):252–265.

Daly, A. (1984). Animal Poems. Ladybird Books, Loughborough, UK.

Davis, L. and Steenstrup, M. (1987). Genetic algorithms and simulated annealing: An

overview. In Davis, L., editor, Genetic Algorithms and Simulated Annealing, pages 1–11.

Pitman, London, UK.

Dawkins, R. (1991). The Blind Watchmaker. Penguin, London, UK.

de Kleer, J. (1986). An assumption-based truth maintenance system. Artificial Intelligence,

28(2):127–162.

De Smedt, K., Horacek, H., and Zock, M. (1996). Architectures for natural language gener-

ation: Problems and perspectives. In Adorni, G. and Zock, M., editors, Trends in Natural

Language Generation: An Artificial Intelligence Perspective, number 1036 in Springer Lec-

ture Notes in Artificial Intelligence, pages 17–46. Springer-Verlag, Berlin, Germany.

Diaz-Agudo, B., Gervás, P., and González-Calero, P. (2002). Poetry generation in COLIBRI.

In Proceedings of the 6th European Conference on Case Based Reasoning (ECCBR 2002),

Aberdeen, UK.

Dowty, D. R., Wall, R. E., and Peters, S. (1981). Introduction to Montague Semantics. Reidel,

Dordrecht, The Netherlands.



370 Bibliography

Dras, M. (1999). Tree Adjoining Grammar and the Reluctant Paraphrasing of Text. PhD thesis,

Macquarie University, Australia.

Eddy, B. (2002). Towards balancing conciseness, readability and salience: an integrated archi-

tecture. In Proceedings of the Second International Natural Language Generation Confer-

ence, pages 173–178, Harriman, USA.

Eddy, B., Bental, D., and Cawsey, A. (2001). An algorithm for efficiently generating summary

paragraphs using tree-adjoining grammar. In Proceedings of the 8th European Workshop On

Natural Language Generation, Toulouse, France. Association for Computational Linguis-

tics.

Evans, R., Piwek, P., and Cahill, L. (2002). What is NLG? In Proceedings of the Second

International Natural Language Generation Conference, pages 144–151, Harriman, USA.

Falkenhainer, B., Forbus, K. D., and Gentner, D. (1989). The structure-mapping engine: Algo-

rithm and examples. Artificial Intelligence, 41:1–63.

Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. MIT Press.

Fogel, D. B. (1995). Evolutionary Computation: Towards a New Philosophy of Machine Intel-

ligence. IEEE Press, New York, USA.

Fonseca, C. M. and Fleming, P. J. (1995). An overview of evolutionary algorithms in multiob-

jective optimization. Evolutionary Computation, 3(1):1–16.

Foo, N., Garner, B. J., Rao, A., and Tsui, E. (1992). Semantic distance in conceptual graphs. In

Gerhotz, L., editor, Current Directions in Conceptual Structure Research, pages 149–154.

Ellis Horwood.

Gardent, C. (2002). Generating minimal definite descriptions. In Proceedings of the 40th

Annual Meeting of the Association for Computational Linguistics, Philadelphia, USA. ACL.

Gazdar, G. and Mellish, C. (1989). Natural Language Processing in PROLOG: an Introduction

to Computational Linguistics. Addison-Wesley.

Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Sci-

ence, 7(2):155–170.

Gervás, P. (2000). WASP: Evaluation of different strategies for the automatic generation of



Bibliography 371

spanish verse. In Proceedings of the AISB’00 Symposium on Creative and Cultural Aspects

and Applications of AI and Cognitive Science, Birmingham, UK. AISB.

Gervás, P. (2001). An expert system for the composition of formal spanish poetry. Journal of

Knowledge-Based Systems, 14(3-4):181–188.

Gervás, P. (2002). Exploring quantitative evaluations of the creativity of automatic poets. In

Proceedings of the 2nd. Workshop on Creative Systems, Approaches to Creativity in Artifi-

cial Intelligence and Cognitive Science, 15th European Conference on Artificial Intelligence

(ECAI 2002), Lyon, France.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading, USA.

Goldberg, E., Driedger, N., and Kittredge, R. I. (1994). Using natural-language processing to

produce weather forecasts. IEEE Expert, 9(2):45–53.

Grice, H. (1975). Logic and conversation. In Cole, P. and Morgan, J., editors, Syntax and

Semantics Vol. 3: Speech Acts, pages 41–58. Academic Press, New York, USA.

Grosz, B. J., Joshi, A. K., and Weinstein, S. (1995). Centering: a framework for modelling the

local coherence of discourse. Computational Linguistics, 21(2):203–226.

Gruber, H. and Davis, S. (1988). Inching our way up mount olympus: The evolving systems

approach to creative thinking. In Sternberg, R. J., editor, The Nature of Creativity, pages

243–269. Cambridge University Press, New York, USA.

Hartman, C. O. (1996). Virtual Muse: Experiments in Computer Poetry. Wesleyan University

Press.

Hayes, B. (1995). Metrical Stress Theory: Principles and Case Studies. University of Chicago

Press.

Hobbs, J. (1985). Ontological promiscuity. In Proceedings of the 23rd Annual Meeting of the

Association for Computational Linguistics, pages 61–69, Chicago, USA. The Association

for Computational Linguistics.

Hobbs, J. R. (1978). Resolving pronoun references. Lingua, 44(4):311–338.

Hobsbaum, P. (1996). Metre, Rhythm, and Verse Form. Routledge.



372 Bibliography

Hofstadter, D. R., editor (1997). Le Ton Beau de Marot: In Praise of the Music of Language.

Basic Books, New York, USA.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence. University of Michigan

Press, Ann Arbor, USA.

Holmes, D. I. (1998). The evolution of stylometry in humanities scholarship. Literary and

Linguistic Computing, 13(3):111–117.

Hovy, E. (1990). Unresolved issues in paragraph planning. In Dale, R., Mellish, C., and Zock,

M., editors, Current Research in Natural Language Generation, pages 17–45. Academic

Press, London, UK.

Johnson-Laird, P. N. (1988). The Computer and the Mind: an Introduction to Cognitive Sci-

ence. Harvard University Press, Cambridge, USA.

Joshi, A. K. (1987). The relevance of tree adjoining grammars to generation. In Kempen, G.,

editor, Natural Language Generation: New Results in Artificial Intellligence, pages 233–

252. Martinus Nijhoff Press, Dordrecht, The Netherlands.

Joshi, A. K. and Schabes, Y. (1991). Tree-adjoining grammars and lexicalized grammars.

Technical Report IRCS-91-04, Institute for Research in Cognitive Science, University of

Pennsylvania.

Joshi, A. K. and Schabes, Y. (1997). Tree-adjoining grammars. In Rozenberg, G. and Salo-

maa, A., editors, Handbook of Formal Languages, volume 3: Beyond Words, pages 69–123.

Springer-Verlag, Berlin, Germany.

Jurafsky, D. S. and Martin, J. H. (2000). Speech and Language Processing: An Introduc-

tion to Natural Language Processing, Computational Linguistics, and Speech Recognition.

Prentice-Hall.

Kallmeyer, L. (2002). Using an enriched TAG derivation structure as basis for semantics. In

Proceedings of the Sixth International Workshop on Tree Adjoining Grammar and Related

Frameworks (TAG+6), pages 101–110, Universita di Venezia.

Kamal, H. (2002). An ATMS-Based Architecture for Stylistics-Aware Text Generation. PhD

thesis, Division of Informatics, University of Edinburgh, Edinburgh, UK.



Bibliography 373

Kamp, H. and Reyle, U. (1993). From Discourse to Logic: Introduction to Model-theoretic Se-

mantics of Natural Language, Formal Logic and Discourse Representation Theory. Kluwer

Academic Publishers, Dordrecht, The Netherlands.

Kantrowitz, M. and Bates, J. (1992). Integrated natural language systems. In Dale, R., Hovy,

E., Rösner, D., and Stock, O., editors, Aspects of Automated Natural Language Generation:

Proceedings of the Sixth International Workshop on Natural Language Generation, number

587 in Springer Lecture Notes in Artificial Intelligence, pages 13–28, Trento, Italy. Springer-

Verlag.

Karamanis, N. (2001). Exploring entity-based coherence. In Proceedings of the Fourth Annual

CLUK Research Colloquium, pages 18–26, University of Sheffield, UK.

Karamanis, N. and Manurung, H. M. (2002). Stochastic text structuring using the principle

of continuity. In Proceedings of the Second International Natural Language Generation

Conference, pages 81–88, Harriman, USA.

Kay, M. (1996). Chart generation. In Proceedings of the 34th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 200–204, Santa Cruz, USA. ACL.

Kempe, V., Levy, R., and Graci, C. (2001). Neural networks as fitness evaluators in genetic

algorithms: Simulating human creativity. In Moore, J. D. and Stenning, K., editors, Pro-

ceedings of the 23rd Annual Conference of the Cognitive Science Society, Edinburgh, UK.

Cognitive Science Society, Lawrence Erlbaum Associates. Poster Session 1.

Kibble, R. and Power, R. (2000). An integrated framework for text planning and pronominalisa-

tion. In Proceedings of the First International Conference on Natural Language Generation

(INLG-2000), pages 77–84, Mitzpe Ramon, Israel.

Kilger, A. (1992). Realization of tree adjoining grammars with unification. Technical Report

TM-92-08, DFKI, Saarbrücken, Germany.

Knight, K. and Hatzivassiloglou, V. (1995). Two-level, many-paths generation. In Proceed-

ings of the 33rd Annual Meeting of the Association for Computational Linguistics and 17th

International Conference on Computational Linguistics, pages 252–260, Cambridge, USA.

Knott, A., Oberlander, J., O’Donnell, M., and Mellish, C. (2001). Beyond elaboration: The

interaction of relations and focus in coherent text. In Sanders, T., Schilperoord, J., and



374 Bibliography

Spooren, W., editors, Text Representation: Linguistic and Psycholinguistic Aspects, pages

181–196. Benjamins, Amsterdam, The Netherlands.

Knowles, E., editor (1999). The Oxford dictionary of quotations. Oxford University Press,

Oxford, UK, fifth edition.

Koller, A. and Striegnitz, K. (2002). Generation as dependency parsing. In Proceedings of the

40th Anniversary Meeting of the Association for Computational Linguistics, Philadelphia,

USA.

Koza, J. R. (1994). Introduction to genetic programming. In Kenneth E. Kinnear, J., editor,

Advances in Genetic Programming, pages 21–42. MIT Press.

Kurzweil, R. (2001). Ray kurzweil’s cybernetic poet.

http://www.kurzweilcyberart.com/poetry.

Langkilde, I. and Knight, K. (1998). Generation that exploits corpus-based statistical knowl-

edge. In Proceedings of the 36th Annual Meeting of the Association for Computational Lin-

guistics and 17th International Conference on Computational Linguistics, pages 704–710,

Montreal, Canada.

Lear, E. (1947). The Complete Nonsense of Edward Lear. Faber and Faber, London.

Legman, G., editor (1974). The Limerick: 1700 Examples, with Notes, Variants and Index.

Jupiter Books Ltd., London, UK.

Levin, S. R. (1962). Linguistic Structures in Poetry. Number 23 in Janua Linguarum. ’s-

Gravenhage.

Levy, R. P. (2001). A computational model of poetic creativity with neural network as measure

of adaptive fitness. In Bento, C. and Cardoso, A., editors, Proceedings of the Fourth Inter-

national Conference on Case Based Reasoning (ICCBR’01) Workshop on Creative Systems:

Approaches to Creativity in AI and Cognitive Science, Vancouver, Canada.

Love, B. C. (2000). A computational level theory of similarity. In Proceedings of the 22nd

Annual Meeting of the Cognitive Science Society, pages 316–321, Philadelphia, USA.

Luger, G. F. and Stubblefield, W. A. (1998). Artificial Intelligence: Structures and Strategies

for Complex Problem Solving. Addison Wesley Longman, Inc., third edition.

Mann, W. C. and Thompson, S. A. (1987). Rhetorical structure theory: A framework for the



Bibliography 375

analysis of texts. Technical Report RS-87-185, USC Information Science Institute, Marina

Del Rey, UK.

Manning, C. and Schütze, H. (1999). Foundations of Statistical Natural Language Processing.

MIT Press, Cambridge, USA.

Manurung, H. M. (1999). A chart generator for rhythm patterned text. In Proceedings of the

First International Workshop on Literature in Cognition and Computer, Tokyo, Japan.

Manurung, H. M., Ritchie, G., and Thompson, H. (2000). Towards a computational model of

poetry generation. In Proceedings of the AISB’00 Symposium on Creative and Cultural As-

pects and Applications of AI and Cognitive Science, pages 79–86, Birmingham, UK. AISB.

Marcu, D. (1997). From local to global coherence: A bottom-up approach to text planning. In

Proceedings of AAAI-97. American Association for Artificial Intelligence.

Markert, K. and Hahn, U. (2002). Understanding metonymies in discourse. Artificial Intelli-

gence, 135(1-2):145–198.

Marzal, A. and Vidal, E. (1993). Computation of normalized edit distance and applications.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):926–932.

Masterman, M. (1971). Computerized haiku. In Reichardt, J., editor, Cybernetics, Art and

Ideas, pages 175–183. New York Graphic Society Ltd., Greenwich, UK.

McKeown, K. R. (1985). Text Generation: Using Discourse Strategies and Focus Constraints

to Generate Natural Language Text. Cambridge University Press, Cambridge, UK.

McKeown, K. R. and Swartout, W. R. (1988). Language generation and explanation. In Zock,

M. and Sabah, G., editors, Advances in Natural Language Generation: An Interdisciplinary

Perspective.

Mellish, C. and Dale, R. (1998). Evaluation in the context of natural language generation.

Computer Speech and Language, 12(4):349–373.

Mellish, C., Knott, A., Oberlander, J., and O’Donnell, M. (1998a). Experiments using stochas-

tic search for text planning. In Proceedings of the Ninth International Workshop on Natural

Language Generation, Niagara-on-the-Lake, Canada.

Mellish, C., O’Donnell, M., Oberlander, J., and Knott, A. (1998b). An architecture for op-



376 Bibliography

portunistic text generation. In Proceedings of the Ninth International Workshop on Natural

Language Generation, Niagara-on-the-Lake, Canada.

Meteer, M. (1991). Bridging the generation gap between text planning and linguistic realisa-

tion. Computational Intelligence, 7(4):296–304.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, New York, USA, third edition.

Minsky, M. (1963). Steps towards artificial intelligence. In Feigenbaum, E. A. and Feldman,

J., editors, Computers and Thought, pages 406–450. McGraw-Hill.

Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, USA.

Moore, J. D. and Paris, C. L. (1993). Planning text for advisory dialogues: Capturing inten-

tional and rhetorical information. Computational Linguistics, 19:651–694.

Nicolov, N. (1998). Approximate Text Generation from Non-Hierarchical Representations in

a Declarative Framework. PhD thesis, Department of Artificial Intelligence, University of

Edinburgh, Edinburgh, UK.

Nicolov, N., Mellish, C., and Ritchie, G. (1995). Sentence generation from conceptual graphs.

In Proceedings of the International Conference on Conceptual Structures, number 954 in

Lecture Notes in Artificial Intelligence, Santa Cruz, USA. Springer-Verlag.

Nicolov, N., Mellish, C., and Ritchie, G. (1996). Approximate generation from non-

hierarchical representations. In Proceedings of the Eighth International Workshop on Natu-

ral Language Generation, pages 31–40, Brighton, UK.

Nirenburg, S., Lesser, V., and Nyberg, E. (1989). Controlling a language generation planner. In

Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pages

1524–1530, Detroit, USA.

Oberlander, J. and Brew, C. (2000). Stochastic text generation. Philosophical Transactions of

the Royal Society of London, Series A, 358:1373–1385.

O’Donnell, M., Mellish, C., Oberlander, J., and Knott, A. (2001). ILEX: An architecture for a

dynamic hypertext generation system. Natural Language Engineering, 7(3):225–250.

Paiva, D. S. (1998). A survey of applied natural language generation systems. Technical Report



Bibliography 377

ITRI-98-03, Information Technology Research Institute, University of Brighton, Brighton,

UK.

Pease, A., Winterstein, D., and Colton, S. (2001). Evaluating machine creativity. Technical

Report EDI-INF-RR-0054, Division of Informatics, University of Edinburgh, Edinburgh,

UK.

Pedersen, C. N. S. (1999). Algorithms in Computational Biology. PhD thesis, Department of

Computer Science, University of Aarhus, Aarhus, Denmark.

Pérez y Pérez, R. and Sharples, M. (1999). Mexica: A computational model of the process of

creative writing. In Proceedings of the AISB’99 Symposium on Creative Language: Humour

and Stories, pages 46–51, Edinburgh, UK. AISB.

Pollard, C. and Sag, I. (1994). Head-Driven Phrase Structure Grammar. University of Chicago

Press.

Popowich, F. (1996). A chart generator for shake and bake machine translation. In McCalla,

G., editor, Proceedings of the 11th Biennial Conference of the Canadian Society for Compu-

tational Studies of Intelligence (AI ’96), Toronto, Canada.

Power, R. (2000). Planning texts by constraint satisfaction. In Proceedings of the 18th

International Conference on Computational Linguistics (COLING-2000), pages 642–648,

Saarbrücken, Germany.

Prevost, S. (1996). An information structural approach for spoken language generation. In

Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics,

pages 294–301, Santa Cruz, USA. ACL.

Prince, A. and Smolensky, P. (1993). Optimality theory: Constraint interaction in generative

grammar. Technical Report RuCCS-TR-2, Rutgers University Center for Cognitive Science,

New Jersey, USA.

Quinn, A. (1982). Figures of Speech: 60 Ways to Turn a Phrase. Hermagoras Press.

Reiter, E. (1994). Has a consensus on NL generation appeared? and is it psycholinguisti-

cally plausible? In Proceedings of the Seventh International Natural Language Generation

Workshop, pages 163–170, Kennebunkport, USA. Springer-Verlag.



378 Bibliography

Reiter, E. and Dale, R. (2000). Building Natural Language Generation Systems. Cambridge

University Press, Cambridge, UK, first edition.

Reithinger, N. (1991). POPEL - a parallel and incremental natural language generation system.

In Paris, C. L., Swartout, W. R., and Mann, W. C., editors, Natural Language Generation

in Artificial Intelligence and Computational Linguistics, pages 179–199. Kluwer Academic

Publishers, Boston, USA.

Ristad, E. S. and Yianilos, P. N. (1998). Learning string edit distance. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(2):522–532.

Ritchie, G. (2001). Assessing creativity. In Proceedings of the AISB’01 Symposium on Artificial

Intelligence and Creativity in Arts and Science, pages 3–11, York, UK. The Society for the

Study of Artificial Intelligence and the Simulation of Behaviour.

Roberts, P. D. (1986). How Poetry Works: The Elements of English Poetry. Penguin Books.

Robin, J. (1994). Revision-based generation of natural language summaries providing histor-

ical background: corpus-based analysis, design, implementation and evaluation. Techni-

cal Report CUCS-034-94, Computer Science Department, Columbia University, New York,

USA. Ph.D. thesis.

Rubaud, J., Lussonnal, P., and Braffort, P. (2000). ALAMO: Ate-

lier de littérature assisté par la mathématique et les ordinateurs.

http://indy.culture.fr/alamo/rialt/pagaccalam.html.

Rubinoff, R. (1992). Integrating text planning and linguistic choice by annotating linguistic

structures. In Dale, R., Hovy, E., Rösner, D., and Stock, O., editors, Aspects of Automated

Natural Language Generation: Proceedings of the Sixth International Workshop on Natu-

ral Language Generation, number 587 in Springer Lecture Notes in Artificial Intelligence,

pages 45–56. Springer-Verlag, Trento, Italy.

Russell, S. J. and Norvig, P. (1995). Artificial Intelligence: a Modern Approach. Prentice Hall,

New Jersey, USA.

Sankoff, D. and Kruskal, J. B., editors (1983). Time warps, string edits and macromolecules:

the theory and practice of sequence comparison. Addison-Wesley, Reading, USA.

Sansom, P. (1994). Writing Poems. Bloodaxe Books.



Bibliography 379

Schabes, Y. (1990). Mathematical and Computational Aspects of Lexicalized Grammars. PhD

thesis, Computer Science Department, University of Pennsylvania.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic algo-

rithms. In Proceedings of the International Conference on Genetic Algorithms and Their

Applications, pages 93–100, Pittsburgh, USA.

Schaffer, J. D. (1987). Some effects of selection procedures on hyperplane sampling by genetic

algorithms. In Davis, L., editor, Genetic Algorithms and Simulated Annealing, pages 89–

103. Pitman, London, UK.

Sharples, M. (1996). An account of writing as creative design. In Levy, C. M. and Rans-

dell, S. E., editors, The Science of Writing: Theories, Methods, Individual Differences, and

Applications. Lawrence Erlbaum Associates, Mahwah, USA.

Sims, K. (1991). Artificial evolution for computer graphics. Computer Graphics, 25(4):319–

328.

Sowa, J. F. (1984). Conceptual Structures: Information Processing in Mind and Machine.

Addison-Wesley Publishing Company.

Spears, W. M. (1992). Crossover or mutation? In Whitley, D., editor, Proceedings of the 2nd

Foundations of Genetic Algorithms Workshop, pages 221–237, San Mateo, USA. Morgan

Kaufmann.

Steedman, M. (1996). Surface Structure and Interpretation. MIT Press, Cambridge, USA.

Stone, M. and Doran, C. (1996). Paying heed to collocations. In Proceedings of the Eighth

International Workshop on Natural Language Generation, pages 91–100, Brighton, UK.

Stone, M. and Doran, C. (1997). Sentence planning as description using tree adjoining gram-

mar. In Proceedings of the 35th Annual Meeting of the Association for Computational Lin-

guistics, pages 198–205, Madrid, Spain. The Association for Computational Linguistics.

Stone, M., Doran, C., Webber, B., Bleam, T., and Palmer, M. (2001). Microplanning with

communicative intentions: The SPUD system. Technical Report TR-65, Rutgers University

Center for Cognitive Science, New Jersey, USA.

Thompson, H. S. (1977). Strategy and tactics: A model for language production. In Papers

from the 13th Regional Meeting of the Chicago Linguistics Society.



380 Bibliography

Thompson, H. S. (1980). Stress and salience in english: Theory and practice. Technical Report

CSL-80-8, Xerox Palo Alto Research Centre.

Turner, S. R. (1994). The Creative Process: A Computer Model of Storytelling and Creativity.

Lawrence Erlbaum Associates.

Tversky, A. (1977). Features of similarity. Psychological Review, 84(4):327–352.

van Mechelen, M. V. (1992). Computer poetry. http://www.trinp.org/Poet/ComP/ComPoe.HTM.

Varges, S. (2002). Instance-based Natural Language Generation. PhD thesis, Division of

Informatics, University of Edinburgh, Edinburgh, UK.

Vijay-Shanker, K. and Joshi, A. K. (1988). Feature structure based tree adjoining grammars. In

Proceedings of 12th International Conference of Computational Linguistics, pages 714–720,

Budapest, Hungary.

Wanner, L. and Hovy, E. H. (1996). The HealthDoc sentence planner. In Proceedings of

the Eighth International Workshop on Natural Language Generation, pages 1–10, Brighton,

UK.

Ward, N. (1994). A Connectionist Language Generator. Ablex Series in Artificial Intelligence.

Ablex Publishing, Norwood, USA.

Weide, R. L. (1996). Carnegie mellon university pronouncing dictionary.

http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

Whitelock, P. (1992). Shake-and-bake translation. In Proceedings of the 14th International

Conference on Computational Linguistics, pages 610–616, Nantes, France.

Whitley, D., Rana, S., and Heckendorn, R. B. (1997). Island model genetic algorithms and lin-

early separable problems. In Corne, D. and Shapiro, J. L., editors, Evolutionary Computing:

AISB International Workshop, Manchester, UK, April 1997 (Selected Papers), number 1305

in Lecture Notes in Computer Science, pages 109–125. Springer-Verlag.

Wiggins, G. (2001). Towards a more precise characterisation of creativity in AI. In Bento,

C. and Cardoso, A., editors, Proceedings of the Fourth International Conference on Case

Based Reasoning (ICCBR’01) Workshop on Creative Systems: Approaches to Creativity in

AI and Cognitive Science, Vancouver, Canada.



Bibliography 381

XTAG Research Group (2001). A lexicalized tree adjoining grammar for english. Technical

Report IRCS-01-03, IRCS, University of Pennsylvania.


