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Abstract

Doppler ultrasound imaging modalities arguably represent one of the most complex task per-

formed (usually in real time) by ultrasound scanners. At the heart of these techniques lies the

ability to detect and estimate soft tissues or blood motion within the human body. As they

have become an invaluable tool in a wide range of clinical applications, thesetechniques have

fostered an intensive effort of research in the field of signal processing for more than thirty

years, with a push towards more accurate velocity or displacement estimation.Coded excita-

tion has recently received a growing interest in the medical ultrasound community. The use of

these techniques, originally developed in the radar field, makes it possible toincrease the depth

of penetration in B-mode imaging, while complying with safety standards. Thesestandards

impose strict limits on the peak acoustic intensity which can be transmitted into the body. Sim-

ilar solutions were proposed in the early developments of Doppler flow-meters to improve the

resolution / sensitivity trade-off from which typical pulsed Doppler systems suffer.

This work discusses the potential improvements in resolution, sensitivity and accuracy achiev-

able in the context of modern Doppler ultrasound imaging modalities (taken in its broadest

sense, that is, all the techniques involving the estimation of displacements, or velocities). A

theoretical framework is provided for discussing this potential improvements, along with sim-

ulations for a more quantitative assessment. Colour Flow Imaging (CFI) modalitiesare taken

as the main reference technique for discussion, due to their historical importance, and their

relevance in many clinical applications. The potential achievable improvementin accuracy is

studied in the context of modern velocity estimation strategies, which can be broadly classified

into narrowband estimators (such as the “Kasai” estimator still widely used in CFI) and time

shift based wideband strategies (normalised crosscorrelation estimator used, for instance, in

applications like strain or strain rate estimation, elastography, etc.). Finally, simulations and

theoretical results are compared to experimental data obtained with a simple custom-designed

experimental set-up, using a single-element transducer.
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Chapter 1

Introduction

This introduction chapter presents all the background notions necessary to understand this PhD

work and highlights the objectives of this thesis in the context of current research. The first

section starts with a very general description of Doppler medical applications and then focuses

on signal processing techniques of velocity / displacement estimation. The second section

introduces the basic concepts of coded excitation techniques with illustrated examples, and

briefly discusses its use in the context of medical ultrasound applications. Finally, the last

section of this chapter introduces more in detail this PhD work, with the objectives, approaches

used, and the overall structure of the thesis.

1.1 Introduction to medical ultrasound Doppler techniques

1.1.1 Background

Ultrasound imaging is currently a major medical imaging modality used on an every day basis

in many clinical applications. Its relative low cost, portability, and ability to deliver real-time,

non-invasive images make it a very valuable diagnostic tool in obstetrics or inthe assessment of

cardiovascular diseases, for instance. Besides providing structuralimages, Doppler ultrasound

techniques can also be used to detect and retrieve some information about the movement of

blood or soft tissues in the human body. The origin of these techniques canbe traced back

to the work of Satomura in the late 50s [2]. Kaneko [3] reports that Samoturaplanned to use

ultrasound to detect some small movements of the heart and the wall vessels and found a high

frequency Doppler “noise” that he correctly attributed to the movement of blood. Interestingly,

it seems that soon after Samotura’s discovery the research was essentially driven by the de-

velopment of techniques to detect and measure blood flow, and gave birth tothe first Doppler

flow-meters [4]. The application of Doppler ultrasound to echocardiography, (and for instance

the application to the tracking of the myocardium’s wall) only gained a widespread clinical use

quite recently (from the 90’s, [5]) although some earlier studies can be found. Today, most of
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Figure 1.1: Illustration of the principle of the first CW Doppler flow-meters, the returned signal
(in gray) is frequency shifted compared to the emission in black. The amplitudeof the shift
depends on the velocity of the flow.

modern scanners have Doppler imaging capabilities for blood flow (CFI, for Colour Flow Imag-

ing) and echocardiography (Doppler Tissue Imaging, or DTI), although the acronyms may vary

according to the manufacturer. More advanced techniques involve the computation of strain

or strain rate in the tissues. Strain rate imaging has been recently applied to echocardiography

(for instance [6]) to monitor the heart muscle (myocardium) condition after heart attack, for

instance. A similar technique in principle, and called “elastography” or “strain imaging”( [7])

images the stiffness of tissues based on an estimation of the displacement of tissues in response

to a compression force. Some of these techniques are still at a research stage, but are quickly

moving into clinical use.

1.1.2 From CW to PW medical Doppler device

The first Doppler flow-meters were Continuous Wave (CW) Doppler systems. Transducers

were designed with two active areas, one for the transmission of an ultrasound wave in the range

of MHz, the other for the reception of the backscattered signals from blood. The difference in

frequencyfD of the returned signal frequency from the centre transmitted frequencyf0 is the

Doppler shift due to the movement of the red blood cells and is proportional tothe axial velocity

component of the flow. The situation is depicted in Fig.1.1. The Doppler shiftfD and velocity

are then related by the Doppler equation:

fD = f0
2vcosθ

c
, (1.1)
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whereθ is the angle of the blood flow with the axis of the transducer, andc is the speed of sound

in the propagating medium. The velocities to be estimated in the human body rarely exceed 1.5

m/s, so assuming a speed of sound of 1500 m/s in the human body yields a coarse estimation

of the maximum Doppler shift, which does not exceed 0.2 % of the centre frequency. Since

the clinical range of frequency is the MHz, the associated range of Doppler shifts is the kHz.

It can also be noticed from this equation that CW systems were only sensitiveto the velocity

component of the scatterers along the transmit direction. In fact, this is still thecase in most

Doppler techniques, although vector Doppler exists, which enables retrieval of the full velocity

vector.

The relatively simple CW systems offer a very valuable diagnostic tool, but suffer from a lack

of range resolution. In the example depicted in Fig.1.1, for instance, the system would only

give an average of the velocity present in the blood vessel. Fine velocity variations across

the vessel (for instance, typical parabolic velocity distributions) can notbe measured. This

problem was circumvented with the advent of coherent pulsed wave (PW)Doppler systems

[8][9]. The principle consists of transmitting sinusoidal bursts of ultrasound periodically. The

frequency at which these pulses are emitted is referred to as the Pulse Repetition Frequency

(PRF), or equivalently the inverse of this quantity is called Pulse Repetition Period (PRP). In

an idealised situation, the(n + 1)th returned signals may be thought as a time-shifted version

of the previous signal following thenth transmit, due to the movement of scatterers. The shift

in time associated with the movement is:

∆t =
2δaxial

c
(1.2)

whereδaxial is the axial shift of scatterers. Alternatively, ifvaxial = v cos θ denotes the axial

velocity component :

∆t =
2vaxialTs

c
(1.3)

For simplicity of notation in the remainder of this thesis, the notationv andδ will often be used

in place of the axial component of velocity and displacement respectively.Fig.1.2 shows the

received signals recorded after each burst transmit in this idealised situation (the signals were

obtained with simulations). The gradual shift in time of the signal’s patterns canbe observed

over the successive returned signals. From a mathematical point of view,if Ts denotes the PRP,

and assuming that the scatterers have a constant axial velocity, the 2D received signals data can
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Figure 1.2: Successive returned signals in a PW Doppler system. Illustration of the “slow time”
and “fast time” axis as well as the operation of range gating.

be described as:

r(t, nTs) = r(t − n∆t, 0), (1.4)

wherer(t, 0) is the signal received after the first pulse transmit and∆t is the time delay the sig-

nals undergo due to the displacement of scatterer. In this equation,n indexes the pulse/transmit

cycles number. For a given timet1, r(t1, nTs) can also be interpreted as signal samples along

the slow time axis, sampled at frequency1/Ts. The time of arrivalt also called “fast time

axis”, corresponds to the two way travel time from a given depth of return, or range. With this

approach, its also possible to use the same transducer for transmit and receive, the receiver is

only blind for a short time period corresponding to the pulse transmit. This is possible because

the burst are usually short (a few wavelengths at the centre frequency in the MHz range, that is,

approximately 1 mm) compared to the distance of propagation (a few centimetres). The next

subsection will describe how the returned signals received can be usedto perform velocity or

displacement estimation.
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1.1.3 Estimation strategies in a PW Doppler system

The use of pulsed “Doppler” instruments raised some new questions aboutwhether the Doppler

effect is actually used. Since the emitted pulses have a finite duration, they donot contain a sin-

gle frequency, but rather, have a finite bandwidth, and each of the frequencies in the bandwidth

can be thought of as having its own Doppler shift. The shift in the centre frequency of the pulse

could still in theory be linked to the velocity of the backscattering particles. However, the fre-

quency dependence of tissue attenuation also effectively shifts the centre frequency of a finite

duration pulse as it propagates to and from the blood vessel(downshift).Rayleigh scattering is

another effect that may also have a significant impact on the reflected pulse centre frequency

(upshift), when considering backscattering from the red blood cells (see [10], for instance). The

difference between the received signal centre frequencyf and the transmitted centre frequency

f0 may then be written as:

f − f0 = fD + ∆fatt + ∆fR, (1.5)

where∆fatt is the shift in frequency due solely to frequency dependent attenuation,and∆fR is

the shift in frequency due to Rayleigh scattering. In many practical situations, the overall shift

can actually exceed the Doppler shiftfD by one order of magnitude. A direct application of the

Doppler equation in this case would thus yield an error in the velocity estimate by one order

of magnitude. In PW Doppler techniques, the velocity can thus not be estimatedby measuring

the shift in centre frequency over a single pulse/transmit receive cycle.Different estimation

strategies can be adopted, which rely on several (at least two) transmit/receive cycles. The

principle of estimation in PW Doppler system can be broadly classified into wideband and

narrowband estimation strategies.

1.1.3.1 Wideband estimation techniques

Wideband techniques, or time-shift based techniques, rely on tracking thesignal patterns in

gated range windows to estimate the time shift∆t the signal has undergone over two succes-

sive received signals. The principle is depicted in Fig.1.2. A measure of similarity (usually

crosscorrelation) is used to match the range gated window signal pattern between instantst1

andt2 with a segment of the successive returned signal of the same time duration, taken in a

predefined interval of search. Extraction of a range gated portion of the signal is equivalent to

isolate a finite volume in space in which scatterers contribute to the signal duringthe instantt1

andt2. Fig.1.3 shows a simplified representation of a single element focused ultrasound trans-
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Figure 1.3: Schematic representation of the contributing volume of scatterersin a PW system.

ducer with its axisz. As the ultrasound burst propagates, it approximately insofinies a cylinder

of axial lengthcTp, wherec is the speed of sound in the considered propagation medium and

Tp is the time duration of the emitted ultrasonic burst. The contributing volume to the pulse

echo received signal between the instantt1 andt2 is then:

z2 − z1 ≈ c(Tp + t2 − t1)/2 and z1 = c(t1 − Tp)/2 (1.6)

Following this approach, it is possible to break the signals into adjacent successive range gated

windows, perform velocity estimation in each of these windows, and obtain a velocity (dis-

placement) profile with depth.

1.1.3.2 Narrowband phase domain estimation

Although the interpretation in terms of a Doppler effect is not obvious for PWDoppler systems,

a similar approach of estimation can be taken in terms of frequency estimation. Infact, it can

be shown that the frequency content of the slow time signals is equivalent toa Doppler shifted

spectrum version of the received signal along the fast time axis. Considering the previous model

of Eq.1.4, and neglecting finite window effects (due to range gating and a limitednumber of

pulse transmit-receive cycles in practice), it can be shown that the 2D PSD(Power Spectral

Density) of the ideal received signal is [11]:

P (f, F ) =

∣
∣
∣
∣R(f)δ(F − 2v

c
f)

∣
∣
∣
∣

2

(1.7)

Where|R(f)|2 is the PSD ofr(t, 0), f denotes frequencies along the fast-time axis, andF ,

frequencies along the slow-time axis. This equation shows that the spectralcontent of the slow-

time signal is a compressed, (with compression coefficient2v
c , depends on the axial velocity), of

the fast time axis signal PSD. In particular, this relationship shows that if the centre frequency
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F of the slow time signal can be estimated, the velocity can be estimated with the fast time

signal centre frequencyf by:

v =
c

2

F

f
, (1.8)

This is equivalent to a Doppler equation with Doppler shiftfD = F . An important aspect is

that when range gating is performed on the received signals,F “tracks” the change in the mean

frequencyf as it varies with the range gate so that their ratio is always equal to2v
c . Note that this

is an idealised model of the spectrum of the slow time signals or so-called Doppler spectrum.

In practice, the finite windows of observation need obviously to be taken intoaccount, as well

as a set of “spectral broadening” effects [12, p134-140]).

A variety of mean frequency estimators can be used to estimate the mean frequency F of the

slow-time signal. In practice, the so-called “Kasai” algorithm or “1D autocorrelator” is the most

used due to its computational efficiency and robustness in relatively high noise conditions. This

estimator relies on the complex samples at given time (depth)t = t1 of the baseband slow time

signals obtained after coherent quadrature amplitude demodulation. This type of estimation is

also often referred to as “phase domain estimation” and is a narrowband strategy of estima-

tion. Its relationship with the phase shift the signals experience over several successive pulse

transmits and the underlying narrowband approximation will be further detailed in Chapter 4.

Without any additional filter at the receiver, this estimator is ideally sensitive tothe the move-

ment of scatterers present in the elementary “sample volume” of the system, which ideally only

depends on the time duration of the pulse. The axial length of the sample volume issimply

given by:

z2 − z1 ≈ cTp/2 and z1 = c(t1 − Tp)/2 (1.9)

Two clear limitations in this estimation scheme can be pointed out. As stated in the beginning of

this section,f changes with depth due to frequency attenuation and is unknown. This quantity

is often assumed to be equal tof0. This impacts the accuracy of estimation, but not as much as

with a “true” Doppler shift direct approach, if the Doppler shift was directly estimated from a

single received signal, as the difference betweenf andf0. To illustrate this point, consider that

the actual centre frequency in the gated range window isf = f0(1 − x) due both to frequency

dependent attenuation and Doppler shift (for instance,x = 5 %). Assimilatingf to f0 yields:

v =
c

2

F

f0
=

c

2

F (1 − x)

f
=

c

2

F

f
− x

c

2

F

f
(1.10)
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And the estimated velocity differs byx = 5 % from the true value, which is not ideal but yet

acceptable. Another limitation of the preceding estimation scheme comes from the Nyquist

criterion. For an unambiguous velocity estimation, the maximum frequencyF present in the

slow time signal should not exceed half the sampling frequency, or PRF (1/Ts). This means

that:

Fmax <
1

2Ts
, (1.11)

and in terms of velocity,

vmax <
c

4Tsf0
=

λ

4Ts
=

λ

4
PRF, (1.12)

whereλ is the wavelength at the corresponding centre frequency. For an average value for the

PRF of 5 kHz, and a centre frequency of 2.5 MHz (λ ≈ 0.6 mm) this yields a maximum velocity

of 0.75 m/s. Doubling the frequency divides this maximum value by two. The maximum

velocity estimated without any ambiguity and the corresponding displacement ofλ/4 will be

referred to as “Nyquist velocity” and “Nyquist displacement”. Similarly to what happens with

spectra if the Nyquist limit is exceeded, a phenomenon of aliasing occurs withthe estimated

displacements or velocities.

1.1.4 Colour Flow Imaging

Modern scanners now use the full power of arrays of transducer elements to perform beam

steering. The ultrasound beam can be quickly steered in different directions to acquire several

lines of data. The same operations as described on a single line can be repeated over several

lines, the 2D data set of velocity estimate is then encoded into a colour code yielding a velocity

image in a region of interest. The resulting image is usually overlaid onto a grey-scale image

(so-called B-mode image) to observe the axial velocity field distribution in relation to anatomic

details. Fig.1.4 is an excerpt of the CFI display of a scanner in our lab, andillustrates the

principle. The region of interest selected manually by the user corresponds to a stenosis in

an artery flow phantom. The colour image corresponds to the velocity measured in this area.

This image also gives a good idea of the resolution of the method. The diameter of the artery

is 6 mm, it can be clearly seen that in the region of the stenosis, the colour codeoverlaps the

boundaries of the vessel in the grey-scale image.

At the receiver, the signals are amplified with a radio-frequency amplifier,and then mixed with

the signal of a local oscillator to remove the carrier. A lowpass filter is then applied to remove
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Figure 1.4: Excerpt from the CFI display of a modern scanner working on a femoral artery
stenosis phantom in our lab. The velocity colour code image is overlaid onto a B-mode grey-
scale image providing structural details.

noise (and harmonics from the demodulation process) and a clutter rejectionfilter is used to

remove the strong stationary (or slowly moving) signals from the blood vesselsand surrounding

tissues (the difference in the backscattering power between blood and tissue is between 20 and

40 dB [13]). The obtained baseband signals may then be used to performvelocity estimation,

usually using the 1D autocorrelator algorithm. The PRF used in practice is usually between

4 and 12 kHz [14], this parameter is limited at high depth, because obviously sufficient time

needs to be allowed so that the signals arrive before a new pulse is emitted, ifa maximum depth

zmax needs to be investigated, we have:

1

PRF
> 2

zmax

c
(1.13)

Combining this equation with the previous limitation concerning aliasing yields the range-

velocity limitation:

zmaxvmax <
cλ

8
(1.14)

The total frame rate of the system is limited by the number of transmit/received cycle Np

(usually between 6-12), the number of lines in a image, and the PRF used. Frame rate of 20 Hz

and more are achievable but this figure also obviously decreases for high depth.

9
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1.2 Introduction to coded excitation techniques

1.2.1 Definition and basic principles

The technique of coded excitation was introduced during the rapid development of radar tech-

nologies in the mid-50s [15]. It is now used in many engineering applications,including digital

communications, sonar systems, and medical ultrasound. A coded waveform is essentially a

waveform for which the time duration - bandwidth productTpB is superior to one. The benefits

of such waveforms can be understood in relation to the severe resolution-sensitivity trade-off

associated with conventional Continuous Frequency (CF) pulses (sinusoidal bursts described in

the previous section), for which the time-bandwidth product is approximatelyone. The sensi-

tivity in the context of this work is the amount of signal received relative to agiven level of

noise at the receiver stage, which is quantified using the Signal to Noise Ratio (SNR). Taking

the example of the returned signal from a single target, it is known that in the presence of white

stationary noise, the maximum SNR achievable depends on the energyEecho of the received

echo:

SNRmax =
Peak signal power

Average noise power
=

2Eecho

N0
, (1.15)

whereN0 is the noise power density inW/Hz of the receiver system. The energy of the

received echo is proportional to the transmitted signal energyE, this coefficient is assumed to

be one for simplicity. In the case of a conventional CF pulse (a square envelope amplitude is

also assumed for simplicity), the energy is given by:

E =
1

2
A2Tp (1.16)

which yields:

SNRmax =
A2Tp

N0
(1.17)

whereA is the amplitude of the pulse,Tp its time duration. For medical ultrasound applica-

tions, safety standards impose a strict limitation on the maximum peak pressure intensity, the

energy of the transmitted pulse can thus not be increased beyond a certainthreshold by in-

creasing the amplitudeA. Increasing the time durationTp is possible but the limitation in the

time-bandwidth productTpB ≈ 1 implies a proportional decrease of the conventional CF pulse

bandwidth and thus, of the spatial axial resolution of the system. This trade-off is illustrated

schematically in Fig.1.5. If we now consider the case of coded waveform withTpB = 10, for

example, this means that the time duration can be increased by 10 compared to a conventional

10
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Figure 1.5: Illustration of the sensitivity/resolution for a conventional CF pulse.

pulse for an equivalent bandwidthB. As a consequence, the energy of the imaging pulse is

multiplied by 10 (and thus a gain in SNR equal to the time-bandwidth product if the SNR of

Eq.1.15 is achieved), without increasing the peak amplitude of the signals andwithout compro-

mising the axial spatial resolution.

1.2.2 Decoding of the waveform, example of Linear Frequency Modulated (LFM)

chirp

A way to increase the time duration-bandwidth product of a waveform is to introduce a fre-

quency modulation in the signal. So-called linear frequency modulated (LFM)chirp are com-

monly used coded waveforms. The instantaneous frequency of these signals varies linearly

with the time duration of the waveform. In terms of its centre frequencyf0 and its fractional

bandwidth (Bf = B/f0), this waveform can be put in the form:

e(t) = sin

(

2πf0

[(

1 − Bf

2

)

t +
Bf

2Tp
t2
])

t ∈ [0, Tp]. (1.18)

Fig.1.6 (top, left) shows an example of an LFM chirp waveform with parameters Bf = 0.5,

f0 = 5 MHz andTp = 8 µs, the time-bandwidth product achieved in this case isTpB =

20. The same figure (top, right) shows an apodised conventional CF pulse with approximately

the same bandwidth. The gain in time duration achieved through coding is visible.Clearly,

the chirp waveform would have a very limited axial resolution if used as such, due to its long

duration.

An essential step in the use of coded excitation involves a decoding filter stage, or also called

compression stage at the receiver. The aim of the decoding filter is to restore the resolution of

the pulse to approximately1/B. A common way to achieve compression is to use a matched

filter, that is to filter the received signal by a time reversed version of the echo signal. In other

11
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Figure 1.6: Top: (left) LFM chirp waveform with parameters:Bf = 0.5, f0 = 5MHz and
Tp = 8 µs, (right) conventional CF 4 cycles pulse. Bottom: (left) Comparison betweenthe
compressed chirp envelope and the CF pulse envelope, (right) Comparison between the spectra
of the LFM chirp and the CF pulse
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words, if we assume that the echo of the signal from a target is an exact delayed replica of the

transmitted signals(t), the compression of the signal can be achieved using the filter of impulse

response :

hmatched filter(t) = s(τd − t) (1.19)

whereτd is a constant delay to make the filter causal. It is known as a result that the matched

filter achieves the maximal SNR of Eq.1.15 [16]. Note that the result of filterings(t) by a

matched filter is mathematically equivalent to the autocorrelation function ofs(t). Fig.1.6

(bottom,left) shows the envelope of the output of the matched filter for the chirpand compares

it with the envelope of the conventional apodised CF pulse. As the gain in SNRis equal to the

time-bandwidth product (TpB = 20), the resulting compressed pulse amplitude is increased

by a factor of
√

TpB = 4.5, with the parameters chosen for example. After compression

the duration of the pulse is clearly restored to approximately1/B but an adverse effect of

compression is the introduction of range sidelobes which are potentially a problem for imaging

applications. Finally, the spectra of the waveforms are also represented inFig.1.6 (bottom,

right). The two waveforms have different spectra, but a similar bandwidth.

1.2.3 Pseudo-random binary sequences and the specific case of Barker codes

Another particular type of coded excitation are pseudo-random binary sequences. These base-

band sequences are easily generated as sequences of “1” or “-1”.Each code is then charac-

terised by its length in bit (a bit of these codes in this case is also referred to as a ‘chip’ in

communication signal processing, as several chips may be used to encodeone bit of informa-

tion). Among all the possible binary sequences, Barker codes are sequences that achieve the

best autocorrelation properties in terms of sidelobes level. The autocorrelation function of a

Barker sequence of lengthNb has the following property:

• the peak of the autocorrelation function is equal toNb

• the sideblobes all have the same relative height of1/Nb

The gain in SNR achieved is also equal toNb, or 10.log(Nb), in dB. Unfortunately, the maxi-

mum length of a Barker sequence isNb = 13 (which yields a maximum gain of approximately

11.1 dB). Sub-optimal long sequences with larger gains can however be obtained (so-called

“M-sequences”). For transmission through an ultrasound transducerthese sequences need to
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Figure 1.7: Left: (top) Oversampled Barker 5 bit sequence to be used witha 2 cycles CF base
pulse, (bottom) autocorrelation of the oversampled Barker sequence. Right:(top) Barker coded
excitation signal (Bottom) Autocorrelation of the Barker coded excitation signal

be modulated at the carrier frequency (centre frequency) of the transducer. Following the ap-

proach given in [17] the process can be seen as convolving an “oversampled” Barker sequence,

that is, the Barker code chips are interleaved with a number of zero corresponding to an integer

number of period at the centre frequency, with a CF base pulse of the samenumber of cycles.

Fig.1.7 illustrates this process with an oversampled 5 bit Barker sequence (Nb = 5). The origi-

nal baseband 5 bit Barker sequence is given by (1 1 1 -1 1). A 2 cycles CF base pulse was used,

with centre frequencyf0 = 5 MHz (0.2µs period) , and the sampling frequency was set to 50

MHz. As can be seen from the Barker coded excitation signal obtained, the coding achieved

can be interpreted as a phase modulation of a 10 cycles long sinusoidal burst (with jumps of

180 degrees in phase corresponding to switches between 1 and -1 in the original Barker se-

quence). The obtained waveform has the same energy as a 10 cycles CFpulse but an equivalent

bandwidth to a 2 cycles CF pulse. This translates into a gain of SNR ofNb = 5 compared to

the CF base pulse after a matched filter (with Eq.1.15). The compressed pulseafter a matched

filter (autocorrelation of the Barker coded excitation signal) is shown in Fig.1.7 (bottom,right).

Fig.1.8 also shows the spectra of the different waveforms involved. The original baseband se-
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Figure 1.8: Left: (top) Oversampled Barker 5 bit sequence to be used witha 2 cycles base
pulse, (bottom) autocorrelation of the oversampled Barker sequence. Right:(top) Barker coded
excitation signal (Bottom) Autocorrelation of the Barker coded excitation signal

quence is very wideband, the “oversampled” spectrum is a periodised, compressed version of

this sequence, and the final excitation signal is centered around the normalised frequency 0.1

(corresponding to a centre frequency of 5 MHz), with a similar bandwidth tothe base CF pulse.

Writing the excitation signale and the “oversampled” sequencec and the base pulsep, the

Barker coded excitation signal is thus obtained as:

e(n) = c(n) ⊗ p(n) (1.20)

This mathematical description also can be used to emphasise the difference in role of a decoding

filter (to restore the pulse duration back to1/B) and a noise filter, which removes the noise from

outside the useful bandwidth of the signal. The Barker excitation signal maybe decoded using

a time reversed oversampled sequence c(-n), the resulting waveform would be:

e(n) ⊗ c(−n) = (c(n) ⊗ c(−n)) ⊗ p(n) (1.21)

This effectively compresses the waveform at the receiver stage, butperforms poorly in terms of

noise rejection due to the broadband nature of the oversampled sequencec(n) (see Fig.1.8). To
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obtain the expected gain in SNR, an additional bandpass filter would be necessary. Note that

the matched filter achieves both pulse decoding and optimal filtering by using thebase pulse as

an additional bandpass filter:

e(n) ⊗ e(−n) = (c(n) ⊗ c(−n)) ⊗ p(n)
︸ ︷︷ ︸

compressed pulse

⊗ p(−n)
︸ ︷︷ ︸

bandpass filter

(1.22)

1.2.4 Coded excitation in the context of medical ultrasound

Although early systems description of Doppler flow-meters using coded excitation can be found

(a specific litterature review for Doppler applications will be done in Chapter3), the use of

coded excitation in medical ultrasound had a slow uptake, and only gained a real interest quite

recently (in the last decade). In one of the early descriptions of a codedsystem by Takeuchi

in 1979 [18][19] the time-bandwidth restrictions imposed by the relatively smallbandwidth of

ultrasound transducers were pointed out. This may have impeded the development of these

techniques in medical ultrasound , until significant progress was made with transducers ma-

terials and technologies, enabling larger bandwidths. In 1992, O’Donnell [20] described the

implementation of a coded excitation ultrasound imaging system working with linear arrays.

O’Donnell showed the SNR improvement coded excitation could provide forB-mode imaging,

considering the most fundamental limit in noise source (thermal noise) and taking into account

the maximum peak power intensity required for patient safety. His results showed a potential

gain of 15-20 dB in SNR. One year later, Rao [21] described a system using a linear chirp

that was able to improve the SNR by a factor of 20 and that offered similar resolution to a

conventional short-pulse system, despite having a pulse length of 20µs.

Coded excitation is nowadays a well-established technique for grey-scaleB-mode imaging. Re-

cent studies have focused in more detail on pulse compression and specific problems associated

with ultrasound imaging, in particular, the problems of range sidelobes reduction, and issues as-

sociated with non-linear propagation and frequency-dependent attenuation in tissues. Misaridis

et al recently reviewed the potential of coded excitation in ultrasound [22], and the theory un-

derlying the use of LFM chirps, based on radar literature [23] [24]. The same authors were also

able to design a system based on a modified commercial scanner, using a pre-distorted linear

chirp, and demonstrated a gain in depth of penetration with this technique [25]. Other coded

excitation schemes like pseudo-random binary sequences were also investigated in a number of

studies, a good review of these works along with practical implementation considerations can
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be found in [17].

1.3 Presentation of this thesis work

1.3.1 Aim of the thesis

Doppler imaging modalities (this expression is used here in its broadest sense, and embraces

all the techniques dealing with the estimation of displacements or velocities) are arguably the

most complex task performed by clinical scanners, and have sustained a considerable effort

of research in terms of signal processing for the last 40 years. It wasquite natural, that, after

coded excitation techniques were successfully applied recently to B-mode grey-scale imaging,

similar improvements were sought for applications involving the estimation of bloodflows or

tissue movements. In fact, as will be more developed in Chapter 3, similar techniques had

already been considered from the seventies with the design of the first Doppler flow-meters.

This work is an investigation on the potential of coded excitation techniques to improve the

performance of velocity and/or displacement estimation in medical ultrasound,in the context

of modern estimation schemes and applications. Given the diversity of techniques and pos-

sibilities of implementations, some choices needed to be made. The notion of performance

improvement itself may be quite application dependent and thus difficult to quantify from a

general perspective. A possible approach would probably have been to implement some coded

excitation schemes in a commercial scanner, test the new system for a specific clinical applica-

tion on some physiological phantoms or on some patients in a clinical study, and then discuss

the potential improvement in terms of image quality, in terms of any performance index relevant

to the technique, and eventually, in terms of diagnostic value. This work however voluntarily

takes a much more general approach, with, most of the time, a very generalsignal processing

point of view on the potential of coded excitation. The overall goal of the thesis is thus to pro-

vide a general framework for understanding in which conditions and whycoded excitation may

lead to some improvements in the detection and estimation of motion for medical ultrasound

applications. Two general aspects of performance improvement are investigated:

• the first aspect is the improvement in sensitivity and spatial resolution: sensitivity is a

fundamental performance aspect of practical importance for blood flowestimation, for

instance, because obviously, before discussing any other performance aspect, Doppler

signals from the region of interest need first to be detected. Sensitivity improvements
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potentially lead to the ability to measure blood flow deeper in the body, or to yield better

diagnostic data in the case of “technically difficult” patients. Another key aspect linked

with sensitivity, is spatial resolution. It is known, from the first pulsed Doppler system

implementations, that there is a trade-off between the spatial resolution of the transmitted

pulse and the sensitivity: short pulses have inherently a good resolution but the energy

transmitted is in turn limited, and thus the SNR conditions are poor. Two studies [17][26]

have recently pointed out that coded excitation could be successful in improving this sen-

sitivity/resolution trade-off for CFI applications. These aspects were already introduced

in a previous section. There is a real need, however, to assess and study this potential im-

provement more quantitatively. Specific differences in terms of pulsing strategies, SNR

conditions, safety requirements from B-mode imaging techniques need in particular to

be taken into account to yield a relevant discussion.

• the second aspect is the statistical performance of the velocity estimates (bias, relative

error), and the possibility to improve the reliability of the estimates with coded excitation.

Again, a signal processing point of view is adopted, with the claim that robust estimates

with good statistical properties will yield enhanced diagnoses.

1.3.2 Approaches chosen for this PhD work

The work carried out follows a classical path, with whenever possible, atheoretical approach,

followed by some simulation studies. A comparison with some experimental data is also pre-

sented in the last chapter. A basic requirement for a simulation signal processing study is to

understand the basic statistical properties and spectral characteristics of the signals involved

and to be able to model these properties. The choices made in this work are towards simplicity,

generality, and computational efficiency for simulations. Rather than trying tograsp or model

the full complexity of signals in some specific situations, a simple signal model is used for

all the simulations (which can yet be justified within certain physical approximations). The

goal is to render some fundamental behaviour of the velocity/ displacementestimators, with

parameters like the bandwidth of the transmitted signal or the SNR conditions. Some choices

also had to be made concerning the estimators to be tested, which were categorised into phase

shift based estimators and time shift based estimators. These types of estimators are relevant

to a lot of applications in practice, although a lot of more advanced algorithms could also have

been studied. This relatively simple classification of estimators is of particular relevance for
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the use of coded excitation, as will be seen, because it also correspondsin general to narrow-

band estimation strategies and wideband strategies. Specific focus will be put in this thesis to

critically review and adapt previous works concerning the theoretical aspects of statistical per-

formance for these two types of estimation. Indeed, if it is known on a theoretical basis how

the performance of these estimators is affected, it is then easier to understand how and in which

situations coded excitation might be beneficial. Finally, the experimental work isbased on a

relatively simple system with a single element transducer and a custom-designed receiver, to

obtain a full control of the signal processing chain. The test object used for the experiments is a

rotating phantom, which was chosen again for its ease of implementation and flexibility rather

than to reproduce a specific physiological motion.

1.3.3 Structure of the thesis

Chapter 2 studies experimentally some aspects of the transmission and the compression prop-

erties of different coded waveforms with an ultrasound transducer, and in particular the impact

of coded excitation on the sample volume of systems. The goal of this chapter isalso to present

the equipment which was used for data acquisition in Chapter 6. Chapter 3 provides a theoret-

ical framework and some simulations to understand the potential improvements in resolution

and sensitivity improvement with coded excitation for velocity estimation applications. These

aspects are studied in the context of CFI applications, due to the historical importance of this

technique and its clinical relevance. This chapter also discusses and reviews a model of signals

that will be adopted in the rest of the thesis. As a complement, this chapter also addresses some

practical considerations in the implementation of a CFI system working with coded waveforms.

Two types of coded excitation, Barker codes and LFM chirps, are compared both on their po-

tential to improve the resolution / sensitivity trade-off and ease of implementation. Chapter 4

studies the potential impact of using a phase shift based estimators with some relatively wide-

band coded waveforms, in terms of statistical performance. It starts with a theoretical detailed

analysis of this type of estimator (namely the “1D autocorrelator” or “Kasai” algorithm). It

also reviews and adapts a theoretical expression for the statistical performance of the estimator,

and concludes with an extensive simulations study. Chapter 5 is dedicated to timeshift based

estimators. The importance of this type of estimator in the context of current applications is em-

phasised. The statistical performance of this type of estimator is thoroughly investigated, and a

simulation study concludes on potential improvements with coded excitation. Finally, chapter

6 compares the findings of the simulation data with some experimental data acquired with the
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custom designed rotating phantom. Each chapter can be read independently, although some

results from other chapters might be needed. For instance, the model of signals adopted and

the relatively simple simulation scheme used in Chapter 3, 4 and 5 are not repeated every time.

Chapter 3 and 4, along with the experimental results concerning the statisticalperformance of

phase shift based estimators in Chapter 6 can also be read together as a feasibility study of the

implementation of coded excitation in a CFI system. Chapter 5 is a more stand-alone, general

chapter about the performance of time shift based estimation with coded excitation which could

be applied to a lot of applications.
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Chapter 2
Transmission of coded waveforms
through an ultrasonic transducer

Due to the limited bandwidth available, ultrasonic transducers play a significantrole in the

transmission of relatively wideband coded signals. This chapter has a double objective: first,

to present the material and equipment used for the collection of experimentaldata; second,

to study pulse-echo fields obtained when transmitting coded waveforms with a single element

transducer. The same transducer will be used in Chapter 6 for velocity data acquisition experi-

ments. The first section presents the material and equipment used to collect data. Experimental

data are presented in the second section comparing the uncompressed andcompressed pulse-

echo on-axis fields. Values for the gain in SNR are compared and discussed for different LFM

chirp waveforms and Barker codes. The third section focuses on the compression properties of

the coded waveforms at the acoustic focus. The axial resolution and level of range sidelobes

after compression are examined. Finally experimental points spread functions at the focus are

obtained and compared along with the lateral resolution for the different excitation signals.

2.1 Material and equipment for data collection

2.1.1 Acquisition set-up

The basic acquisition set-up is presented in Fig.2.1 and consists of :

• an arbitrary waveform generator (AWG) Agilent 33250A that is used to generate all the

excitation signals.

• a power amplifier ENI 240L providing a gain of 50 dB necessary to generate the voltages

required to excite the transducer (typically≈ 100V).

• an "expander-limiter" protection circuit that protects the receiver duringthe transmission

of the relatively high voltages transmission voltages.
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Figure 2.1: Basic experimental set-up for data acquisition

• a custom receiver amplifier, based on two integrated circuits by Analog Devices (a pream-

plifier AD8331 and an amplifier AD605) providing a maximum gain of 89 dB.

• a 14 bit capture card GageCard CS 14100, with a maximum sampling frequency of 100

MHz.

A LabView (National Instruments) interface was developed to control the acquisition settings

of the capture card. A software trigger solution was implemented, which showed good jitter

performance (this aspect will developed more fully in Chapter 6). The LabView interface also

provides a means to independently set the gain of the preamplifier and the amplifier. Fig. 2.2

reports the frequency response of the power amplifier ENI 240L, measured with an oscilloscope

set on a 50Ω input impedance. The obtained gain is relatively constant around 49 dB for the

range 100 kHz to 8 MHz, the -6 dB cut-off frequency is approximately 10 MHz. Fig.2.3 shows

the total gain of the custom receiver amplifier for the particular settings usedin all experiments

yielding a gain of about 50 dB. The custom receiver amplifier exhibits a massive bandwidth

(the -6 dB bandwidth is approximately 150 kHz- 20 MHz), but the obtained dynamic range is

in turn a bit limited, and was measured to be around 44 dB for this particular setting (noise

level of 20 mV peak to peak of noise for a maximum swing of the output signal of 3.3 V peak

to peak). In addition to this instrumentation chain, an X-Y test rig system driven again through

a Labview interface allowed to position the transducer in a water tank, the set-up is illustrated

by a picture in Fig.2.4.
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Figure 2.2: Gain of the RF power amplifier ENI 240L against frequency.

10
−1

10
0

10
1

10
2

44

45

46

47

48

49

50

Frequency in MHz

N
or

m
al

is
ed

 a
m

pl
itu

de
 in

 d
B

Figure 2.3: Gain of the custom receiver amplifier for a particular setting against frequency.
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Figure 2.4: Picture showing the transducer mounted on a rod attached to an X-Y test rig system.

2.1.2 Transducer specifications

For all experiments, a Panametrics V309 single element transducer was used (which is pri-

marily intended for non destructive testing applications). This is a circular, concave (focused)

transducer, with the following specifications, as given by the manufacturers, measured with the

ASTM standards [27]:

• diameter: 0.5 inch

• acoustic focus: 50.9 mm

• centre frequency: 5.6 MHz

• fractional bandwidth: 79.6%

2.1.3 Acoustical calibration of the transducer

The acoustical pressures at the focus of the transducer were measured for different excitation

voltages. A PVDF membrane hydrophone (Precision acoustics Ltd., Hampton Farm, Dorch-

ester, UK) was positioned at the focus of the single element transducer (50 mm in depth), the

measurements were taken in degassed water, at ambient temperature (20◦C). A 4 cycles Contin-

uous Frequency (CF) pulse with centre frequency set at the centre frequency of the transducer
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(5.6 MHz) was transmitted at different excitation voltages from 10V to 150 V and the posi-

tive and negative peak amplitudes of signals at the output of the hydrophone preamplifier were

measured on an oscilloscope. The measured amplitudes could then be converted into an acous-

tic pressure using the sensitivity calibration curve of the hydrophone provided by the National

Physical Laboratory (Teddington, Middlesex, UK). Figure 2.5 reportsthe measurements. As

can be seen, the transducer used for experiments is able to deliver 4.5 MPa acoustic positive

peak pressure amplitude at the focus, for the maximum excitation voltage tested(150V). The

effect of non linear propagation in water, which translates into a very different behaviour of

the positive peak pressure and the negative peak pressure at high excitation voltages is clearly

seen on the figure. The maximum negative peak pressure measured was approximately of 1.8

MPa for the highest tested voltage. The corresponding Mechanical Index (MI)( which is used

to characterise the risks of mechanical damage due to exposure to ultrasound) can be readily

computed as [28, p516]:

MI =
e−0.0345f0zp−

CMI
√

f0
≈ 0.3 (2.1)

where in this equationp− is peak negative pressure in MPa, derated with the exponential term

(according to [12, p370], for an attenuation of 0.3 dB/cm/MHz),z is the focus depth (5 cm)

CMI is worth 1.0 MPa/ MHz
1

2 , andf0 is the centre frequency. In our case, this yields an MI of

0.3, which is a moderate value compared to the maximum values found in diagnosticequipment

for Colour Flow Imaging (up to 1.5, according to [29, p334]).

2.2 Study of on-axis coded pulse-echo fields

2.2.1 Acoustical fields with coded excitation: a brief review

It appears that very few authors have studied in depth the properties ofultrasonic fields at the

output of a transducer excited by coded waveforms experimentally. These aspects were recently

studied by Nowicki et al. in two papers. In [30], the sound fields generated by different coded

excitation schemes were compared. It was logically observed that the uncompressed fields ob-

tained with the long coded transmitted waveforms exhibited directivity patterns characteristics

similar to those observed for long sinusoidal excitation. In contrast, the patterns observed after

compression were similar to those produced by brief wideband sinusoisal bursts. Interestingly,

Nowicki et al. also observed that the maximum peak pressure after compression was shifted

towards the surface of the transducer by 15 mm for the Barker codes.
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Figure 2.5: Peak pressures recorded at the output of a hydrophoneas a function of the trans-
ducer’s excitation voltage.

The study also reported some values for the gain in SNR measured after compression. However,

the values reported appear to be excessively high compared to theory: 19.5 dB of gain for an 8

µs LFM chirp and 15.2 dB for a 13 bit Barker code. For the centre frequency used in the study

(f0= 2 MHz) one would expect a maximum gain in SNR (GSNR) for the chirp, (assuming a

100% fractional bandwidthBf for the transducer):

GSNR = 10.log(TBff0) = 10.log(8E − 6 ∗ 1 ∗ 2E6) ≈ 12 dB (2.2)

And for the Barker codes, the expected gain in SNR is:

GSNR = 10.log(13) ≈ 11.1 dB (2.3)

In [31], the same authors studied the compression properties of coded waveforms after propa-

gation through some pork tissue and beef liver. They were able to demonstrate that despite non

linear propagation and frequency dependent attenuation effects, which substantially affected the

beam properties, the coded waveforms maintained good compression properties, which trans-

lated into an increase of the dynamic range of the received signals compared to conventional

CF sinusoidal burst pulses.
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Figure 2.6: Pulse-echo peak amplitude against on-axis depth for CF pulses of length 4 cycles
and 8 cycles.

The preceding studies were restricted to the transmit field (i.e. as measured by a hydrophone).

We here propose to study the compression properties of LFM chirps and Barker codes in a

pulse-echo experiment. We also report experimentally obtained point spread functions for these

coded waveforms at the focus in the last section.

2.2.2 Study of on-axis uncompressed fields

The on-axis uncompressed coded acoustical fields emitted by the transducer were studied in

a pulse-echo experiment using a 100µm wire target. The wire target was set perpendicularly

to the depth axis of the transducer using the X-Y rig system and the received signals from

different excitation waveforms were recorded along depth. All the experiments were carried

out with the same excitation voltage 30V, with the same centre frequency for allsignals (5.6

MHz) and the waveforms were averaged 16 times to provide a good SNR. Fig.2.6 reports the

measured peak amplitudes along depth with two CF pulses of length 4 cycles and8 cycles.

The following figures (2.7 and 2.8) report the measurements for 3 chirps of length 10µs, and

fractional bandwidthsBf = 0.15,Bf = 0.5,Bf = 1.0 and three different Barker codes: a 5

bit code modulated by a 1 cycle pulse, 5 bit code modulated by a 4 cycle pulse and 13 bit code

modulated by a 1 cycle pulse.
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Figure 2.7: Pulse-echo peak amplitude against on-axis depth for LFM chirps of length 10µs
and fractional bandwidthsBf = 0.15,Bf = 0.5,Bf = 1.0.
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As can be seen, all the excitation signals tested yielded a very similar field profile with depth,

with the same maximum peak amplitude voltage at the receiver. This maximum is locatedat a

distance of approximately 55mm from the transducer’s surface.

2.2.3 Compressed fields

The preceding received signals were compressed using a matched filter and the obtained gains

in SNR were computed by measuring the peak amplitude level gain at each depth. The results

are reported for each of the preceding tested coded waveforms, the amplitudes were normalised

to the peak voltage amplitude of the uncompressed fields, and the measured gains were con-

verted into dB. The following figures Fig.2.9, 2.10, 2.11, and 2.12,2.13, 2.14 report the results

obtained for the tested chirp waveforms and Barker codes, respectively. As can be noticed, the

obtained compressed fields are very similar to the uncompressed fields, with simply a gain in

amplitude. This translates into a relatively constant gain in SNR with depth, apart from some

fluctuations in the near field.

Tables 2.1 and 2.2 also report the gain in SNR measured at the focus, alongwith the theoretical

expected value. The theoretical values were computed as:

GSNR = 10.log(Nb), (2.4)

for the Barker codes, whereNb is the length of the baseband Barker code used (5 or 13 bit).

For the chirps, the theoretical gain in SNR was computed using the time-bandwidth product of

the waveform:

GSNR = 10.log(TpBff0). (2.5)

The results clearly show that for wideband waveforms (chirpBf = 1.0, and Barker codes

with 1 cycle base pulse) the measured gains in SNR are significantly lower thanthe predicted

theoretical values (by 4 to 5 dB ). As the excitation waveforms become more narrowband, the

gain in SNR measured gets closer to the expected values (5.4 dB vs 7 dB for the Barker 5

bit 4 cycles pulse and 8.6 dB vs. 8.75 dB for a chirpBf = 0.15). This can be understood

by considering the role of the transducer as a bandpass filter and recalling that after a matched

filter the SNR only depends on the energy of the transmitted waveform: when trying to transmit

a very wideband pulse, a significant fraction of the energy of the excitation signal is lost by the

filtering process, and as a consequence, the obtained gain in SNR deviatesignificantly from the
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Figure 2.9: Peak amplitudes and gain in SNR in dB with depth for an LFM chirp oflength 10
µs and fractional bandwidthBf = 0.15

Chirp Gain in SNR (dB) Theoretical gain (dB)
Bf = 1.00 13.4 17
Bf = 0.50 12.8 14.5
Bf = 0.15 8.6 8.75

Table 2.1: Gain in SNR measured at the focus for three different chirps and comparison with the
theoretical values. As the bandwidth of the chirp is increased, the difference with the theoretical
predicted value becomes more important.

theoretical values. On the contrary, if the signal to be transmitted has a fractional bandwidth

smaller than that of the transducer, the transducer acts as an allpass filter and all the energy of

the excitation signal is effectively transmitted.

2.3 Study of the compression properties at focus

2.3.1 On-axis range sidelobes and axial resolution

This subsection studies the level of the range sidelobes and the axial resolution obtained after

compression of the signals received when the wire target was positioned at the focus. The sig-

nals plotted in time domain in the upper graphs of Fig.2.15,2.16, and 2.17, clearly show the

increased apodisation of the chirp excitations signals due to the transducerwhen increasing
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Figure 2.10: Peak amplitudes and gain in SNR in dB with depth for an LFM chirpsof length
10µs and fractional bandwidthBf = 0.5.
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Figure 2.11: Peak amplitudes and gain in SNR in dB with depth for an LFM chirpsof length
10µs and fractional bandwidth B=1.0 .
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Figure 2.12: Peak amplitudes and gain in SNR in dB with depth for an Barker code 5 bits 1
cycle.
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Figure 2.13: Peak amplitudes and gain in SNR in dB with depth for a Barker code 5 bits 4
cycles.
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Figure 2.14: Peak amplitudes and gain in SNR in dB with depth for a Barker code 13 bits 1
cycle.

Barker code Gain in SNR (dB) Theoretical gain (dB)
5 bit 1 cycle 1.97 7.0
5 bit 4 cycles 5.40 7.0
13 bit 1 cycle 5.99 11.1

Table 2.2: Gain in SNR measured at the focus for three different Barkercodes and comparison
with the theoretical values. A significant difference is observed in the case of the wideband
waveforms obtained with a 1 cycle base modulating pulse.
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the fractional bandwidth of the chirp excitation signal. To understand the effect of the trans-

ducer on the compression properties, the lower graph of each of these figures compares the

normalised amplitudes of the compressed experimental received signals with the compressed

excitation signals. The horizontal axis of these graphs presents the axialdistance from the peak

of the compressed signal (essentially time delays were converted into distances, assuming a

speed of sound in tissues of 1540 m/s). As can be easily understood, fornarrow bandwidths,

the sidelobes structure of the compressed experimental received signalsis very similar to that

observed when compressing the excitation signal (see 2.15 and 2.20). Asthe fractional band-

width increases, the apodisation of the transducer has a beneficial impacton the level of the

sidelobes, but the axial resolution is degraded compared to the case whenthe excitation signal

is compressed (Fig.2.17). Fig.2.18 compares the three experimental compressed LFM chirp

waveforms, the gain in axial resolution and the decrease in the levels of the primary sidelobes

is clearly visible when increasing the fractional bandwidth of the chirp.

The following figures 2.19, 2.20 and 2.21 show that in the case of Barker codes, the transducer

has little effect on the sidelobes level which remain close to their theoretical level (20.log(1/Nb),

see section 1.2.3). As can be seen as well, the spatial axial resolution of thereceived signals is

notably degraded compared to the ideal spatial axial resolution obtained when compressing the

Barker coded excitation signal when the signals are wideband (2.19 and 2.21).

The following tables Table 2.3 and Table 2.4 give more insights into the spatial axial resolu-

tion of the compressed pulses, which was measured using the Full Width at Half Maximum

(FWHM). These values can be compared with the wavelengthλ at the centre frequency used

(5.6 MHz), which is approximately of 0.26 mm. The axial resolutions obtained withthe com-

pressed received signals are thus excellent for the most wideband waveforms( 0.84λ for the

chirp Bf = 1, 0.92λ for the Barker code 5 bit 1 cycle, and 0.96λ for the Barker 13 bit 1 cy-

cle). It is clear, however, that these waveforms could not be used as such for imaging purposes,

because of the relatively large range sidelobes obtained. These sidelobes should be reduced

below the dynamic range of an image (typically 40 dB and more) to ensure that their presence

does not create any artifact.

2.3.2 Experimental point spread functions

This subsection presents the obtained point spread function recorded at the acoustic focus of

the transducer. From an imaging point view, point spread functions are important because they
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Figure 2.15: Top: Signal received from a wire target at focus for a chirp excitation signal with
fractional bandwidthBf = 0.15 . Bottom: Compressed experimental signal and comparison
with the compressed excitation signal.
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Figure 2.16: Top: Signal received from a wire target at focus for a chirp excitation signal with
fractional bandwidthBf = 0.5 . Bottom: Compressed experimental signal and comparison
with the compressed excitation signal.
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Figure 2.17: Top: Signal received from a wire target at focus for a chirp excitation signal with
fractional bandwidthBf = 1.0 . Bottom: Compressed experimental signal and comparison
with the compressed excitation signal.
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after compression (from the experimental data collected).
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Figure 2.19: Top: Signal received from a wire target at focus for a Barker 5 bit 1 cycle exci-
tation signal. Bottom: Compressed experimental signal and comparison with the compressed
excitation signal.
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Figure 2.20: Top: Signal received from a wire target at focus for a Barker 5 bit 4 cycles exci-
tation signal. Bottom: Compressed experimental signal and comparison with the compressed
excitation signal.
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Figure 2.21: Top: Signal received from a wire target at focus for a Barker 13 bit 1 cycle ex-
citation signal.Bottom: Compressed experimental signal and comparison with the compressed
excitation signal.

Chirp Resolution (mm)
Bf = 1.00 0.22
Bf = 0.50 0.35
Bf = 0.15 1.14

Table 2.3: Spatial resolution measured as the FWHM at the focus of the transducer for three
different LFM chirps.

Barker code Resolution (mm)
5 bit 1 cycle 0.25
5 bit 4 cycles 0.61
13 bit 1 cycle 0.24

Table 2.4: Spatial resolution measured as the FWHM at the focus of the transducer for three
different Barker codes.
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show how an ideal point scatterer can be resolved by a 2D imaging system. From a velocity

estimation point of view, point spread functions are equally important because they give an idea

of the sample volume, i.e. the insonified volume in which all the moving scatterers present will

contribute to yield a single single velocity estimate. The point spread functions were obtained

experimentally by scanning laterally the wire target (by steps of 12.5µm) at the focus depth

(⋍ 50 mm) and recording the signal returned from each lateral position. This effectively gives

a 2D amplitude distribution of the field at the depth of focus. Note that due to the geometry of

the single element transducer used, the results can be easily translated into a3D representation

of the sample volume, by rotation around the depth axis.

Fig.2.22 shows the point spread function obtained for two conventional CFpulses of length

4 cycles and 8 cycles. The difference in axial resolution can be easily noticed, but in the

transverse direction however, the two pulses yield a similar profile. Fig.2.23 shows the point

spread function of the three considered compressed Barker codes. Fig. 2.24 shows the point

spread functions obtained from the three different chirps. The 2D structure of the sidelobes is

clearly visible. Because the chirps used in this study have a much longer duration, the structure

of the sidelobes extends a lot more in the axial direction than for Barker codes. As can be

seen as well by comparing Fig.2.24 and Fig.2.23, LFM chirps sidelobes can become slimmer

at some points whereas in the case of Barker codes, the sidelobes structure is more regular

with depth, and are much higher in amplitude. Finally, these results show that allthe tested

waveforms yield an equivalent lateral resolution at the focus after compression. This result is

further confirmed by the following plot Fig.2.25 presenting the lateral peak amplitude pressure

profile for three different waveforms. The lateral spatial resolution measured as the FWHM (-6

dB), was similar for the three different waveform (approximately 1.1 mm).
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Figure 2.22: Comparison between the point spread functions of the 4 cycleand 8 cycle CF
pulses. The colour scale corresponds to a relative amplitude in dB.
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codes.The colour scale corresponds to a relative amplitude in dB.
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Figure 2.24: Comparison between the point spread functions of the three different chirps. The
colour scale corresponds to a relative amplitude in dB.
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Figure 2.25: Peak amplitude in the transverse direction for a CF 4 cycles pulse, the compressed
Bf = 0.5 chirp waveform and the compressed Barker code 5 bit 4 cycles waveforms.

2.4 Conclusion

This chapter has presented the experimental set-up and equipment used for the acquisition of

signals. The impact of the transducer on the transmission of coded waveforms has been studied

by pulse-echo measurements on a wire target. Three different chirp waveforms were tested

(time duration of 10µs and fractional bandwidthsBf = 0.15, Bf = 0.5, Bf = 1.0). The

observed on-axis pulse-echo fields were very similar to those observedwith conventional 4

cycles and 8 cycles CF pulses. The compressed waveforms yielded a relatively constant gain

in SNR, and the values obtained were in qualitative agreement with the theoretical values for

relatively narrowband waveforms (chirpBf = 0.15, Barker code 5 bit 4 cycles). Some larger

deviations were observed for the wideband coded waveforms (by 4 to 5 dB), which could be

expected, because the transducer then transmits a less important fraction of the excitation signal

energy. The compressed waveforms received at focus showed thatin the case of LFM chirps,

the apodisation of the excitation signals by the transducer was beneficial in terms of sidelobes

level, as the fractional bandwidth of the chirp excitation signal is increased. On the contrary, for

all Barker waveforms tested, the sidelobes level observed remained close to the theoretical val-

ues independently of the bandwidth of the waveform, and the length of Barker code used. The

obtained axial resolutions, measured as the FWHM after compression, were correlated with the

bandwidth of the transmitted waveforms (the more wideband the waveform, the better axial
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spatial resolution). Axial resolutions slightly below one wavelength at the centre frequency of

the transducer were obtained for the most wideband waveforms. These very good figures have

to be balanced with the level of the range sidelobes. In practical imaging applications, these

sidelobes have to be reduced below the dynamic range of an image [24]. One of the simplest

solution is to use an apodisation function on the envelope of the transmitted coded waveform.

This will however reduce the axial resolution and generally, there is a wellknown trade-off

between the level of these sidelobes and the axial resolution ([24], for instance). Finally, for all

the coded waveforms tested, experimental point spread functions at the focus were obtained,

which showed the 2D structure of the sidelobes for the different compressed waveforms. The

2D sidelobes pattern can largely differ for LFM chirps and Barker codes, but the lateral beam

profiles of the compressed fields were observed to be very similar to that ofthe CF pulses,

yielding a very similar lateral resolution of 1.1 mm (which is essentially governedby the trans-

ducer aperture and acoustic focus). After compression the sample volumeis thus essentially

modified axially, with the introduction of range sidelobes.
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Chapter 3
Basic considerations in the use of

coded excitation for CFI applications

The goal of this chapter is to investigate the potential improvements in spatial resolution and

sensitivity that could be provided by coded excitation techniques in a typicalCFI implementa-

tion. Specific differences from B-mode imaging applications in terms of pulsingstrategy and

safety requirements need to be taken into account. We also try to compare the relative advan-

tages of using Barker coded signals and LFM chirps as coded excitation candidates with some

quantitative figures, as well as with more qualitative aspects in terms of ease of implemen-

tation. This chapter first starts with a historical background and some general considerations

on the coded excitation scheme selection. A simple model of signals for velocity estimation

application is then reviewed. This model makes it possible to derive and compare the SNR con-

ditions for conventional and coded excitation, and to discuss the potential improvement of the

resolution-sensitivity trade-off. Significant differences from B-modeimaging applications will

be emphasised to discuss the relevance of coded excitation for velocity estimation applications

in the context of CFI. Some simulations are shown to support the statements madeand to pro-

vide some quantitative figures of resolution and sensitivity improvements both for Barker codes

and LFM chirps. Finally, some more practical aspects such as the additionalsystem complexity

and sidelobe reduction required by coded excitation techniques are discussed in the last section.

3.1 General considerations

3.1.1 Historical perspectives and literature review

The idea of using coded excitation schemes to improve the sensitivity of ultrasonic Doppler

flowmeters can be traced back to the early seventies. Cobbold [28] reports two studies pre-

sented in conferences from a Japanese team in 1970, where the possibility of using binary

sequences to monitor heart velocities is investigated [32, 33]. The same authors also published

a journal paper on the same topic a bit later on [34]. In 1972, Waag demonstrated a prototype
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system measuring the cardiac chamber flow using pseudorandom binary sequences. A bit later

on, a set of papers [35, 36, 37], reported systems for blood flow measurement based on the

transmission of broadband random noise bursts. These techniques were similar in principle to

coded excitation techniques. The authors provided a theoretical analysisof the systems, while

pointing out the main advantages of the technique in the light of the limitations of conventional

Doppler pulsed systems. These are essentially:

• the range resolution of a conventional pulse Doppler system is limited by the length of

the transmitted pulse: a short pulse provides a good resolution but the average (temporal)

transmitted intensity is then limited, which implies relatively poor SNR conditions. This

loss in sensitivity can only be compensated by the transmission of larger peakintensities

up to a certain limit, for safety reasons.

• pulse Doppler systems also have an inherent range/ maximum detectable velocity product

limitation.

The studies demonstrated that with random signal flowmeters, the resolution isonly constrained

by the bandwidth of the transmitted pulse and not any more by their time duration which allows

the transmission of long signals providing a good sensitivity. Moreover, it was shown that the

proposed systems did not suffer from the range / velocity ambiguity observed with conventional

sinusoidal bursts. It is here worthwhile to mention that these early coded excitation systems

were introduced in their historical context a few years after the introduction of pulsed Doppler

systems by Peronneau [8] and Baker [9]. The output of such devicesat the time was still

essentially Doppler spectra. Velocity profiles with multi-gate systems were only toappear a

few years later [38] and real-time CFI systems even later [39]. Cathignol et al. developed a

new approach in 1980 with the use of circular M-sequences [40], their pseudo-random signal

Doppler flowmeter was commercialised. The authors claimed an increased of 20 dB in the SNR

with their system. A few laters later, however, the same team of researcherspublished an article

dealing with some limitations of their system due to clutter signals [41]. They also pointed out

that in pseudo-random Doppler systems, the transmitted power is not limited by the peak power

but by the heating effects, which limits the gain in SNR to 10 dB in practise.

In parallel to these works, McCarty [42] proposed a CW Doppler systemwith a repetitive linear

frequency modulation of the transmitted signals, the underlining idea was to try tosolve the lack

of range resolution of a CW device by "encoding" depth with frequency.This approach was
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extended later on by Wilhjelm [43, 44] to yield a new velocity estimation approachbased on

LFM chirps. It seems that apart from the work of Wilhjelm, the use of codedexcitation for

Doppler application was not considered much further from the late eighties tothe beginning of

the 21st century. With the renewed interest for this technique in the late nineties, a few patents

were published for the use of coded CFI systems. A patent was proposed for the use of single

codes [45], two patents deal with CFI systems based on the use of Golay codes [46, 47]. Zhao

[26] gave some practical and theoretical considerations for the design of a CFI system based

on Barker codes. Some authors have also recently proposed new systems for CFI based on

a more complex use of linear arrays, where different elements are used totransmit or receive

simultaneously in different focus loci [47, 48], coded excitation is then used to compensate for

the loss in SNR associated with using only a few elements on transmit. Finally, Coweet al.

discussed the compression properties of LFM chirps for Doppler applications, with a specific

focus on Transcranial Colour Doppler (TCD) applications [49, 50].

3.1.2 Coded excitation scheme selection and scope of this study

Coded excitation is a technique derived from the radar field, where some similar tasks of imag-

ing and velocity estimation are performed. It is interesting, however, to stress some differences

in the two different fields. Radar waveforms are usually designed to yield good correlation

properties to obtain a good resolution in both range and Doppler (this is formalised through the

use of the so-called ”ambiguity function”, this notion is not introduced here, since it’s barely

used in the field of medical ultrasound). In medical ultrasound modern Doppler techniques, al-

though the movement of scatterers causes a frequency shift due to the Doppler effect, the effect

of frequency dependent attenuation may produce an important shift in frequency (two orders of

magnitude higher than the Doppler shift [23]) which will mask the Doppler shift, (this aspect

was mentioned in the introduction chapter). In general, blood or even tissuevelocity estimation

can thus not be performed using a single measurement relying on the mean frequency shift.

The estimators rely instead on the shift in time or in phase that the returned signals experience

over several (at least two) pulse transmit-receive cycles. Misaridis pointed out in [24] that there

is thereforea priori no need to retain a good resolution in the Doppler axis for the the selection

of the transmitted coded waveform.

In this chapter, two types of waveforms will be investigated, the LFM chirps and Barker codes.

LFM chirps have already proved to have interesting properties for imagingapplications[22, 23,
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24], but seem to have been less studied in the field of velocity estimation apartfrom the work

of Wiljelhm [43, 44]. Misaridis suggested to use uncompressed LFM chirpsfor blood flow

velocity estimation and noted that applying a phase-shift flow estimator on the uncompressed

data could be theoretically possible, but the effect of the varying frequency of the signal on

the estimator would have to be investigated [24]. In fact, as will be seen, compressing of the

pulse at the receiver seems to be essential to restore the resolution of the pulse, long coded

excitation pulses would otherwise yield extremely wide sample volumes. One of theproblems

that arises when compressing the waveforms at the receiver are the generated sidelobes, but the

requirements for the sidelobes level may not be identical to those for imaging conditions, this

will be discussed later in section 3.5.2. Zhao[26] has recently proposed an effective scheme to

perform CFI with Barker codes with reduced sidelobes, and pointed outthe relative simplicity

of the use of these coded waveforms. It is interesting to note that the use ofGolay codes could

solve the problem of sidelobes in theory, but this technique requires some degree of stationarity

between pulses transmits of the complementary codes for a good compression. This type of

coded excitation thus requires some specific signal processing techniques if to be used for

velocity estimation. As previously mentioned, schemes based on Golay codes toperform CFI

were proposed in a patent [51]. Other pseudo-random binary sequences are also theoretically

possible. We will however restrict our scope to the simpler cases of Barker codes and LFM

chirps, and will try to compare the relative advantages of these two types ofwaveforms.

Finally, although advanced new CFI imaging approaches are possible using coded excitation

(for instance, [48]), this chapter is primarily concerned with a “classical”CFI implementation,

with a phase shift based estimator. The goal is to see what could be the potential advantages of

using coded waveforms instead of CF pulses in a typical current scanner CFI implementation.

3.1.3 Model of the SNR conditions at the receiver and improvement by coded

excitation

Carrying on with the comparison with radar applications, the useful received signals in a radar

system usually consist of distinct echo signals from targets resolved by the imaging system

(note however that in radar systems, an additional clutter signal component is often present and

in weather radar, the clutter signal is the signal of interest). In these situations, it is known

that the matched filter maximises the SNR at the receiver, in the presence of additive white

stationary noise (see for instance, [16]). The SNR in this case is taken asthe ratio of the peak
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power of the received echo with the average noise power:

SNR =
Target signal peak power

Average noise power
(3.1)

With the use of coded excitation, the SNR at the output of a matched filter can approximately

be increased by a factor equal to the time duration-bandwidth product of the transmitted coded

waveform, without sacrificing the spatial resolution or increasing the transmitted peak ampli-

tude. This has been the basis for using coded excitation in B-mode imaging applications, to

improve the depth of penetration, without compromising patients safety. In CFIapplications,

the received signals used to infer velocities are formed by incoherent scattering of ultrasound

from a large number of randomly located scatterers which are not resolved by the system (so-

called “speckle” signals). The SNR conditions can thus no longer be adequately described by

Eq.3.1 and need to be treated with an adapted model. The next section reviewsa simple sig-

nal model from which the SNR conditions will be derived and the possible improvements in

sensitivity and resolution with coded excitation will be discussed.

3.2 Review of a model of the SNR conditions and influence of the

filter at the receiver in the case of incoherent scattering

3.2.1 Review of a simple model of the backscattered signals from blood

The speckle signals used to infer the velocities of blood and tissues in medicalultrasound are

likely to arise from a complex interaction between the ultrasound waves and themicroscopic

structure of the propagating medium. From a model point of view, speckle signals can be

described by the summation of the individual backscattered signals from a large collection (at

least, a large number in a cube of side length equal to a wavelength) of randomly located point-

like scatterers. In a continuous description of the propagating medium, incoherent scattering

arises from random fluctuations of the compressibility and density properties of the medium,

with a correlation length much smaller than a wavelength. Several studies havedealt with

the stochastic properties of the backscattered signals from blood, basedeither on a discrete or

“continuum” approach (see for instance, [52, 53, 54, 55, 56]).

The amplitude of signals at the receiver may vary significantly with the depth ofreturn because

of the spatially variant point spread function of ultrasound transducers, and effects of propaga-
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tion such as attenuation. The stochastic process to be modelled is thusa priori not stationary.

However, the hypothesis of stationarity can be made if the signal is observed for a short pe-

riod of time, like the duration of the typical gated range windows used for velocity estimation

(of the order of one microsecond). For the purpose of analysis, the non-stationary process at

the receiver can then be replaced by a stationary process having the same statistical properties

(in particular same variance, or average power) as locally, in a range gated window at a given

depth. A common approach to model the signals is to regard the stochastic process as the output

of a linear filter excited by noise (the random fluctuations in compressibility anddensity from

which backscattering arises), and impulse response, the transmitted signal.A theoretical justi-

fication was for instance given by Kristoffersen in [57], based on Angelsen’s theory of blood

backscattering [55].

The received signal processx(t) from a given depth can then be modelled as:

x(t) =

∫

s(τ)fscat(t − τ)dτ, (3.2)

wheres(t) is the transmitted signal,fscat is a noise-like scattering function. In particular, we

have the property:

< fscat(t)fscat(t + τ) >≈ ksδ(t − τ), (3.3)

where<> denotes time averaging,ks is a constant characterising the transducer transmit/receive

sensitivity function at a given depth, and the average backscattering power of blood. The pro-

cess is then characterised by its autocorrelation function:

< x(t)x(t + τ) >≈ ks

∫ +∞

−∞

s(t)s(t + τ)dt (3.4)

Note thatks has the dimensions of the inverse of a time in this expression. In particular, substi-

tuting τ = 0 in Eq.3.4 shows that in the absence of filtering at the receiver, the average power

received is proportional to the energy of the transmitted signal, through thiscoefficient:

< x(t)2 >= ksE, (3.5)

whereE is the energy of the transmitted signal. The power spectral densityP (f) of the sta-

tionary signal can also be found by taking the Fourier transform of Eq.3.4:

P (f) = ks|S(f)|2, (3.6)
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whereS(f) is the Fourier transform of the transmitted signal. In the following, we will use this

stationary model to derive the SNR conditions at the receiver after a filter.

3.2.2 Influence of the receiving filter

The filter at the receiver has a major impact on the SNR conditions, since it aimsat rejecting

noise from the useful signal bandwidth. Denoting byh the impulse response of the filter,x the

received signal process, andn, the system thermal noise process, the SNR conditions are given

by:

SNR =
< (x ⊗ h)2 >

< (n ⊗ h)2 >
, (3.7)

A simple model of the SNR conditions at the receiver can equivalently be formulated in the

Fourier domain. The thermal noise mainly arises from the transducer and theamplification

system, and its spectrum can usually be considered as flat over the bandwidth of the signal. Let

us assume a constant noise power densityN0/2 in (W/Hz). Let us further assume that the filter

at the receiver has a frequency responseH(f) . With the help of Eq.3.6, the SNR at the receiver

is then characterised by:

SNR =
2
∫

P (f)|H(f)|2df
∫

N0|H(f)|2df =
2ks

∫
|S(f)|2|H(f)|2df

N0
∫
|H(f)|2df . (3.8)

This is essentially the expression obtained by Kristoffersen [57, (34)],with ks normalised to

one. This expression is hard to work with unless the spectral shape of thefilter and the signal

have a simple analytic form. In the next section, we will examine the specific case of a matched

filter at the receiver.

The receiver filter also plays a major role in the spatial resolution of a system.The axial size of

the sample volume of a pulsed Doppler system is determined by the shape of the received echo

envelope from a point scatterer, as observed at the output of this filter.If h(t) is the impulse

response of the receiver filter, then the axial amplitude weighting of the sample volumew(t) is

given by [57]:

w(t) = Env

{∫

s(τ)h(t − τ)dτ

}

, (3.9)

whereEnv denotes the operation of extracting the envelope of a signal.
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3.2.3 Case of a matched filter at the receiver

Let us first derive the SNR expression in the particular case when a matched filter is used at the

receiver. The frequency domain expression of a matched filter is givenby [16]:

H(f) = k.S∗(f)e−j2πfτd , (3.10)

wherek is a constant amplitude factor andτd is a constant delay to make the filter causal.

SubstitutingH(f) in Eq.3.8 is straightforward and leads to:

SNR =
2ks

∫
|S(f)|4df

N0
∫
|S(f)|2df . (3.11)

In terms of spatial resolution, the weighting axial amplitude of the sample volume can be ob-

tained with the time domain impulse response of the matched filter [16]:

h(τ) = k.s(τd − τ). (3.12)

Substituting in Eq.3.9 shows that in the case of a matched filter the axial weighting amplitude

of the sample volume is the autocorrelation envelope of the transmitted pulse.

3.2.4 Optimality of the matched filter

The optimality of the matched filter in terms of SNR is not guaranteed from the previous ex-

pressions. The reader is referred to Kristoffersen’ paper [57] for a discussion on the optimality

of the receiving filter. In the context of coded excitation, it seems essential to use a matched

filter (or any decoding filter combined with a bandpass filter to reject noise) torestore the axial

length of the sample volume down to approximately the inverse of the bandwidth, (neglecting

the sidelobes of the compressed waveform). The long coded signals wouldotherwise yield

sample volumes with a very large axial length. In a conventional CFI implementation, the re-

ceived signals are usually summed in a range gate of durationTr after quadrature amplitude

demodulation. This can be understood as applying a real pure averagingfilter of impulse re-

sponse:

h(t, Tr) =







1 t ∈ [0, Tr]

0 elsewhere
, (3.13)
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on the complex demodulated data (and retaining only one value per gated range window). In

the case of conventional pulses with a rectangular amplitude envelope, ifTr is chosen equal

to Tp, the duration of the transmitted signal, the effects of the averaging filter on the baseband

data and matched filter are identical in terms of SNR and resolution. In particularthe obtained

weighting (normalised) axial function of the sample volume is a triangular function given by:

w(t) =







1 − |t/Tp| |t| < Tp

0 elsewhere.
(3.14)

In this case again, the axial length of the sample volume, for instance taken asthe full width

at half maximum (FWHM) is equal toTp ≈ 1/B, that is, approximately to the inverse of the

bandwidth of the conventional pulse used.

3.3 SNR conditions comparison for coded and conventional CF

pulses after a matched filter

In this section, we compare the SNR conditions when a conventional and a coded pulse are used,

with a matched filter at the receiver. For further simplification, the spectra ofthe transmitted

pulses are assumed to be square. As such, the LFM is chirp a is good candidate for the coded

pulse. For the conventional pulse, a sinc envelope CF pulse is used. Thenormalised sinc

envelope function is given by:

sinc(Bt) =







sin(πBt)

πBt
t ∈ R

∗

1 t = 0

, (3.15)

where B is the bandwidth of the pulse (in Hz). This waveform is not causaland is never used

in practice but has the good spectrum property (rectangular spectrum of width B) and will be

used here for discussion purposes only. We also use the fact that fora modulated waveform

with a rectangular spectrum and centre frequencyf0, |S(f)|2 is a constant in the bandpass and

is equal to :

|S(f)|2 =







E

2B
|f − f0| <

B

2

0 elsewhere.

. (3.16)
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Substituting and integrating in Eq.3.11 yields:

SNR =
ksE

BN0
. (3.17)

3.3.1 Case of conventional CF pulses

For a conventional CF pulse the energy is given by:

E =
1

2
A2Tp, (3.18)

whereA is the amplitude of the CF pulse (assumed to be constant) andTp is its time duration.

We can further use the relationshipB ≈ 1/Tp (the time-bandwidth product of a CF pulse is of

the order of one) to obtain:

SNR =
ksA

2Tp

2BN0
≈ ksA

2

2B2N0
. (3.19)

Note that in the case of a sinc envelope pulse the relationshipE = A2

2B holds exactly, so substi-

tuting in Eq.3.17 shows that Eq.3.19 is rigorous in this particular case. We thus see that the SNR

conditions are heavily dependent on the bandwidthB of the pulse, as a function of1/B2. This

relationship also illustrates the severe trade-off between resolution and sensitivity for velocity

estimation in ultrasound.

3.3.2 Case of coded excitation

In the case of an LFM chirp, the same analysis can be performed except that the time-bandwidth

product of the waveform can be set to any arbitrary value greater thanone. We thus obtain:

SNR =
ksA

2Tp

2BN0
, (3.20)

where this time,Tp is the time duration of the chirp andB is its bandwidth. This shows that in

the case of coded excitation the SNR varies as1/B.

3.3.3 Improvement in SNR

If the coded signal and the CF pulse to be compared have the same peak amplitudeA (yielding

the same transmitted peak intensity) and the same bandwidthB, the improvement in SNR is
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obtained by the ratio of expression Eq.3.19 and expression Eq.3.20. The gain in SNR is thus

equal to:

GSNR = TpB, (3.21)

whereTp is the time duration of the chirp andB is the bandwidth of the chirp and the sinc pulse.

We thus arrive to the classical result in radar theory that the improvement inSNR due to using

coded excitation is equal to the time-bandwidth product of the coded waveform, re-derived here

in the case of incoherent scattering.

3.3.4 Validation with simulations

Synthetic RF speckle signals modeling the statistical and spectral characteristics of the received

signals in a given gated range window can be obtained by convolving an excitation signale with

a Gaussian white noise realizationn1, following the signal model of section 3.2.1. To model

thermal noise at the receiver, a second independent white (all pass) Gaussian noisen2 is then

added:

r = e ⊗ n1 + n2, (3.22)

where⊗ denotes convolution. For all the simulations presented in this thesis, the centrefre-

quencyf0 used was set to 5 MHz, and the sampling frequency was set to 50 MHz. To validate

the SNR models derived in section 3.3 Eq.3.20 and Eq.3.19 with the assumption of square spec-

tral density functions, a synthetic speckler(t) signal was first generated according to Eq.3.22

using a sinc pulse excitation signale(t) with a given fractional bandwidthBf :

e(t) = sinc(Bff0t) sin(2πf0t). (3.23)

This signal was sampled fort ∈
[

− 10
Bf f0

, + 10
Bf f0

]

. In the case of coded excitation, the LFM

chirp excitation signal is given by:

e(t) = sin

(

2πf0

[(

1 − Bf

2

)

t +
Bf

2Tp
t2
])

t ∈ [0, Tp]. (3.24)

The SNR at the output of a matched filter were computed in time domain, as:

SNR =
< (e ⊗ n1 ⊗ hmatched filter)

2 >

< (n2 ⊗ hmatched filter)2 >
, (3.25)
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Figure 3.1: Plot of the SNR conditions after a matched filter as a function of thesquared inverse
of the fractional bandwidth for a sinc envelope CF pulse.

wherehmatched filter is the impulse response of the matched filter associated with either the

sinc pulse or the chirp (hmatched filter = e(τd − t)). The operation was repeated while varying

the fractional bandwidth of the pulse from 0.2 to 1. All the signals generatedto compute the

SNR values were 100 000 samples long (chosen to obtain statistically reliable results. The

results obtained are plotted in Fig.3.1 and Fig.3.2 (the SNR range conditions on the y-axis were

chosen arbitrarily). There is a very good agreement with the expected relationship between the

SNR conditions and the bandwidth. The graph in Fig.3.3 also shows the resulting gain in SNR

and the theoretical curve Eq.3.21, again a very good agreement is shown.

3.4 Potential improvement in sensitivity and resolution

3.4.1 Improvement in the SNR conditions

The preceding equations show that an improvement in SNR is possible for velocity estima-

tion applications provided a coded waveform with a significant time-bandwidthproduct can be

achieved. The obvious potential benefits of such of an improvement is to increase the threshold

of detectability of flows in deep-lying regions or for “technically difficult” patients. However,

the situation differs significantly from normal imaging conditions. Coded excitation is an attrac-

tive solution for B-mode imaging applications because the rarefaction peak pressure intensity
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Figure 3.2: Plot of the SNR conditions after a matched filter as a function of theinverse of the
fractional bandwidth in the case of coded excitation (chirp of durationTp = 10µs).
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Figure 3.3: Simulated gain in SNR (GSNR) of chirps of durationTp = 10 µs over sinc en-
velope CF pulses of the same amplitude, as a function of the fractional bandwidth, and the
corresponding theoretical improvement (TpBff0).
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is the limiting factor to achieve a better SNR for patients’ safety. For typical CFIimplementa-

tions using phase domain velocity estimation, long (narrowband) pulses are transmitted which

already provide a relatively good SNR. The margin of improvement with coded excitation is

thus limited compared to the case of the high resolution pulses used for imaging. Moreover, as

large packet size (number of pulses transmitted in the same direction) are transmitted in a rapid

interval (the pulse repetition frequencies required for velocity estimation are at least one order

higher in magnitude than a typical B-mode imaging frame rate), heating effects may be the

major limitation to increasing the sensitivity for these applications, rather than peak intensity

limitations. In terms of acoustic output, this means that the average transmitted intensity may

often be bounded for CFI. The intensity considered here is more precisely the spatial peak pulse

average intensity, defined by [13] :

Ispta =
1

Ts

∫ Tp

0
Ii(t, rmax)dt, (3.26)

wherermax is the position of maximum intensity,Ts is the pulse repetition period, andIi(t, r)

is the instantaneous intensity. Jensen [13, pp.21-22] gives the example ofa burst pulse of length

Tp propagating as a plane wave in water with a constant pressurep0. The peak intensity is then

given byIsptp =
p2
0

2Z , whereZ is the characteristic impedance of water (Z = 1.48kg/[m2.s]).

This yields the average intensity:

Ispta =
1

Ts

∫ Tp

0

p2
0

2Z
dt =

p2
0

2Z

Tp

Ts
. (3.27)

In the general case, the transmitted pulse amplitude is limited by either the demand in peak

intensityIsptp or by the demand in average intensityIspta. Jensen has discussed these inten-

sity limitations for CFI systems [13, pp.219-222], while pointing out that no definitive general

conclusion could be drawn. However, in the situations when the average intensity limit Ispta

is reached for a given pulsing strategy (a given pulse repetition period,frame rate, and packet

size), the total energy of the transmitted pulse is bounded (the termp2
0Tp/2Z cannot be in-

creased in Eq.3.27) and thus, coded excitation may not be used for any sensitivity improvement.

3.4.2 Sensitivity/Resolution trade-offs

CFI implementations are known to suffer from a sensitivity/resolution trade-off: long narrow-

band pulses provide good SNR conditions but have intrinsically a poor spatial resolution. Coded
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excitation solutions have been proposed to enhance this trade-off (transmitting wideband codes

for a good resolution while maintaining a good sensitivity thanks to the gain in SNRprovided

by the technique). Chiao [17] pointed out that unlike B-mode imaging, CFI systems typically

operate close to the average intensity limits, and reasoned that further penetration improvement

using coded excitation is generally not feasible; only resolution and frame-rate improvements

may be possible.

The critical quantity for analysing the spatial resolution in CFI systems is the extent of the

region in space over which different scatterer velocity contributions areaveraged in a single ve-

locity estimate (the “sample volume” size), this constrains the spatial resolution ofthe inferred

velocity distribution. After a matched filter, the axial length of the sample volume depends

on the bandwidth of the transmitted pulse as discussed in section 3.2.3. It can be clearly seen

from the previous expression Eq.3.17 that if the conventional pulse and the coded pulse have

the same energy (same average transmitted intensity), an increase of the bandwidth (resolution)

via coded excitation will yield a decreased SNR:

GSNR =
SNRcoded

SNRconv
=

ksE/N0Bcoded

ksE/N0Bconv
=

Bconv

Bcoded
< 1. (3.28)

Thus, coded excitation provides a more flexible sensitivity/resolution trade-off only if the en-

ergy of the coded waveforms can be increased compared to a given reference conventional

pulse.

Fig.3.4 sums up the trade-off between resolution and SNR conditions in a more synthetic way,

when both type of excitation signals have the same peak amplitude (i.e. same peakintensity),

from the expressions of the previous section. Consider a typical narrowband CF pulse of frac-

tional bandwidthBf = 0.2, this pulse provides SNR conditions arbitrarily set to 14 dB. This

CF pulse has a durationTref = 1/0.2f0. The solid light grey curve curve shows the decrease

in SNR if the bandwidth of this pulse is increased (dependence as1/B2 from Eq.3.19). Alter-

natively, the medium grey curve corresponds to the SNR provided by a coded signal with the

same peak amplitude and durationTref , as given by Eq.3.20. We can see that increasing the

bandwidth to yield a better spatial resolution will yield poorer SNR conditions. Note that the

curve was not plotted for a fractional bandwidth less thanBf = 0.2 since in this region the

corresponding hypothetical waveform would have a time-bandwidth product inferior to one,

which is not realisable. In the case when the coded waveform is longer than the considered

reference pulse (2Tref and5Tref , for the dark grey and the black lines respectively), we see
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Figure 3.4: Illustration of the Resolution / SNR trade-off for coded pulsesand conventional CF
pulses with square spectra, and for a constant excitation signal peak amplitude.

that coded excitation offers a more flexible trade-off, the spatial resolution of the waveform can

be improved (up toBf = 0.4 andBf = 1.0 respectively) without any loss in SNR, but the

transmitted energy (and thus the average transmitted intensity) has been increased by factors

of 2 and 5, respectively. This corresponds to the theoretical cases ofwaveforms with a square

spectra (section 3.3). In practise, the transmitted waveforms don’t have arectangular spectrum,

and an increasing fraction of the energy of an excitation signal is lost as itsbandwidth is in-

creased, due to the limited bandwidth of the transducer. This will be investigated in the next

subsection with simulations.

3.4.3 Sensitivity and resolution study with simulations

This subsection aims to better quantify the resolution/ sensitivity trade-offs with some fairly

realistic waveforms and simulation parameters. In practise, CF pulses of different lengths can

be used for velocity estimation depending on a particular application. In this study, we used

CF pulses ranging from 4 cycles to 12 cycles. To study the potential improvement in resolution

and sensitivity by coded waveforms, SNR values were compared after a matched filter for the

different CF pulses and two types of coded waveforms: LFM chirps andBarker codes. For all

the simulations, the hypothesis was made that the energy of the transmitted signalcould be in-

creased (increase in average intensity tolerated), the peak intensity was thus the limiting factor

60



Basic considerations in the use of coded excitation for CFI applications

for SNR improvement and all the excitation signals were scaled to yield the same peak ampli-

tude. The excitation signal was obtained with (3.24) for LFM chirps. Barker coded excitation

signals were obtained by convolving a CF pulse of a given length in cycles with the correspond-

ing “oversampled” baseband Barker codes, as the procedure described in section 1.2.3 (based

on [17]). The model used for the synthetic RF speckle signals is similar to the previous section,

except that it takes in to account the effect of a transducer, i.e. the excitation signalse were con-

volved with a synthetic transducer’s two-way impulse responsehtran (modelled as sinusoidal

Gaussian amplitude pulse, with a -6 dB fractional bandwidth of 0.5 and centrefrequencyf0 =

5 MHz), to yields:

s = e ⊗ htran, (3.29)

and then similarly to Eq.3.22), and to Eq.3.25, the received signalr and theSNR values were

obtained from:

r = s ⊗ n1 + n2, (3.30)

SNR =
< (s ⊗ n1 ⊗ hmatched filter)

2 >

< (n2 ⊗ hmatched filter)2 >
. (3.31)

The SNR gain in dB is then computed from:

GSNR = 10log(SNRcoded/SNRconv). (3.32)

3.4.3.1 Case of LFM chirps

Fig.3.5 shows the results obtained for chirps of durationTp = 10 µs, and different fractional

bandwidths. For reference, one cycle lasts 0.2µs at 5 MHz. As can be seen, the gain in SNR

provided by the different LFM chirps severely depends on their bandwidth (and thus on their

spatial resolution). For instance, a 10µs LFM chirp of 100% fractional bandwidth provides a

very good spatial resolution but is unable to provide any gain in SNR over CF pulses longer

than 7 cycles.

To further elucidate the sensitivity/resolution trade-off, Table 3.1 compares the resolution of

the different chirps and the corresponding gain in SNR they achieve over an 8 cycle CF pulse

(duration 1.6µs). The resolution was measured as the FWHM of the matched filtered pulse

envelope. For reference, the chirpBf = 0.15 and the 8 cycles CF pulse have similar bandwidth

and resolution (1.3 mm). The table also reports the increase in the transmitted signal energy

over an 8 cycles CF pulse. An increase in sensitivity and resolution is shown with the chirp
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Figure 3.5: Sensitivity improvement provided by chirps of different fractional bandwidths over
CF pulses of different lengths in cycles, for the same excitation signal amplitude.

Chirp Res.(mm) GSNR (dB) Energy increase
Bf = 1.00 0.26 -1.6 3.7
Bf = 0.50 0.42 2.9 5.3
Bf = 0.15 1.34 8.5 6.1

Table 3.1: Resolution/ Sensitivity improvement/ Increase in energy over an8 cycles CF pulse/
Comparison for 3 LFM chirps of duration 10µs. The 8 cycles reference CF pulse has a spatial
resolution of 1.3 mm.

Bf = 0.5, but the price to pay is an increase in the average transmitted intensity by approxi-

mately a factor of 5 compared to the 8 cycles CF pulse (for a similar pulsing strategy). Note

that the obtained gain in SNR is relatively small (≈ 3 dB). The gain in SNR provided by a

chirp waveform can be arbitrarily increased without compromising the spatial resolution just

by increasing the time duration of the waveform, which was set to 10µs. In practice, however,

several factors may bound the choice of the duration of the waveform, themore important being

the limitation in the average transmitted intensity for patient safety, as discussed insubsection

3.4.1.

3.4.3.2 Case of Barker codes

Barker codes differ from LFM chirps in the fact that for these coded waveforms, the time-

bandwidth product is fixed by the code used. It is possible, however, tovary the duration of
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Figure 3.6: Sensitivity improvement provided by different Barker codesover CF pulses of
different lengths in cycles, for the same excitation signal amplitude.

the coded waveform (and thus to increase the sensitivity), by adding several cycles per chip,

but the counterpart, and contrary to the case of LFM chirps is a decreased bandwidth and

resolution (so that the time-bandwidth product remains constant). Fig.3.6 shows the gain in

SNR provided by different Barker codes and illustrates the sensitivity/resolution trade-off for

this type of coded waveform. Table 3.2 gives more insights into the resolution.As can be seen,

a 13 bits Barker code with 1 cycle per chip does not provide any gain overCF pulses longer than

4 cycles, although this waveform has an excellent resolution. The energy of this waveform after

convolution by a transducer’s impulse response is only 90% of the reference 8 cycles CF pulse

energy. If a significant improvement in sensitivity is to be obtained, 4 cyclesper chip signals

have to be used, but this also bounds the maximum achievable resolution, which is then around

0.69 mm (see Table 3.2). Note again that the gains in SNR with the simulation parameters are

rather limited, but the obtained gains in resolution are still very interesting for CFI, especially

in relation to visualising small vessels.
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Barker code Res.(mm) GSNR (dB) Energy increaseTp

13 bits 1 cycl. 0.23 -7.7 0.9 2.6µs
13 bits 2 cycl. 0.37 -0.8 2.6 5.2µs
13 bits 4 cycl. 0.69 5.3 6.1 10.4µs
5 bits 4 cycl. 0.69 1.7 2.3 4.0µs

Table 3.2: Resolution/ Sensitivity improvement/ Increase in energy over an8 cycles CF pulse/
Length of the coded pulse, comparison for 4 Barker codes. The 8 cycles reference CF pulse has
a spatial resolution of 1.3 mm.

3.5 Practical considerations

3.5.1 Hardware complexity, baseband decoding of the waveforms

Implementation of a matched filter at the receiver for CFI applications add a significant com-

plexity to systems. It should be noticed that the length of the filter at the receiver is usually

superior or equal to the length of the code used, thus in general, long coded sequences provide

better SNR gains but introduce a higher computational load. It is likely that current technolo-

gies can handle this technical challenge, but in practice, an effective engineering solution will

always try to limit the hardware complexity and the costs of a technical solution.For phase

shift based velocity estimation techniques used in typical CFI implementations, decoding can

be performed on the baseband signals, which is particularly attractive, since the sampling rate

requirements are much lower after quadrature amplitude demodulation. Barker codes ( and

pseudo-random binary sequences, in general) are particularly effective for a practical hardware

implementation since the codes can be generated with bi-level pulsers, whereas in theory, LFM

chirps require multi-level pulsers. However, pseudo-chirps can also be used as demonstrated

by O’Donnell [20]. A recent study has also demonstrated an effectivesolutions to synthesise

non binary codes with good compression properties using a bipolar pulser[58].

The following illustrates the principle of baseband decoding. Consider the complex baseband

signalZ = I + jQ, the decoded baseband signalZd is obtained after a complex baseband

matched filter:

Zd = Z ⊗ (Ĩc + jQ̃c)
∗ = (I + jQ) ⊗ (Ĩc + jQ̃c)

∗ (3.33)

whereIc andQc are the in-phase and quadrature components of the demodulated coded exci-

tation signal,Q̃c and Ĩc are time reversed version ofIc andQc, ⊗ denotes convolution and∗

conjugation. The decoded In-phase and Quadrature signalsId andQd are thus the real part and

64



Basic considerations in the use of coded excitation for CFI applications

imaginary part ofZd :

Id = (I ⊗ Ĩc) − (Q ⊗ Q̃c)

Qd = (Q ⊗ Ĩc) − (I ⊗ Q̃c) (3.34)

In the case of Barker codes, the excitation signal is obtained by modulating a baseband (real

valued) sequence, as a consequence,Qc = 0. The complex baseband matched filter simply con-

sists of filtering theI andQ sequence with a time-reversed version of the modulating baseband

Barker sequenceIc. Zhao [26] investigated different complex baseband decoding strategies

(including sidelobes reduction with an inverse filter) and showed that the baseband decoding

process was equivalent to a real convolution with the I/Q channels in parallel.

Complex baseband decoding with LFM chirps is also possible. Fig.3.7 shows the in-phase

and quadrature componentsIc andQc of a quadrature amplitude demodulated chirp (fractional

bandwidthBf = 0.5, time durationTp = 10 µs, f0 = 5MHz). Fig.3.8 shows the amplitude

of the Fourier spectrum of the original LFM chirp, and that of the complex baseband chirp

(Ic + jQc). As can be expected, the resulting spectrum has the same shape as the original

spectrum, but centered on 0 and with twice the amplitude. The resulting compressed pulse

was obtained as the result of the convolution of(Ic + jQc) ⊗ (Ĩc + jQ̃c)
∗ and is shown in

Fig.3.9. It has exactly the same shape as the compressed original chirp envelope but with

twice the amplitude. Note that, to perform the complex baseband matched filtering inthe

case of LFM chirps, four convolutions have to be made in theory (Eq.3.34)instead of one, if

performed on the RF data. This means that the computational load is not necessarily reduced by

a great amount, depending on the downsampling factor, and the decoding requires a complex

correlator. Baseband decoding with chirps was demonstrated as early as1992 by O’Donnell

[20][59] who implemented a whole coded excitation system with a linear array,using pseudo-

chirps.

3.5.2 Sidelobes reduction

One of the practical aspects to consider when using coded waveforms is the magnitude of the

sidelobes after compression. This is particularly critical for standard B-mode imaging in which

case the range sidelobes have to be be reduced to a value inferior to the dynamic range (possibly

60 dB) of an image to ensure that their presence does not create any artifact. If the same pulse is
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Figure 3.7: In-phase and quadrature componentsIc andQc of the complex baseband chirp
obtained after quadrature amplitude demodulation of a chirp waveform with parametersTp =
10µs, Bf = 0.5.
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Figure 3.9: Comparison between the envelope of the compressed original chirp and the complex
baseband chirp.

used both to form the B-mode grey-scale image of the region of interest andthe velocity colour

code that will be superimposed on top of it, a reduction of 40 dB seems to be a minimum value

[26]. If the coded pulse is only used for velocity estimation purpose, the situation is however

a bit different, since the noise levels are not far from the levels of signalsbackscattered from

blood, the dynamic range of the useful signals for velocity estimation is thus limited. The

artifact Doppler signals arising from the sidelobes after compression of signals from moving

blood would probably be too low to be detected. Moreover, a threshold is usually applied, so

that velocity information inferred from too weak signals is not displayed. The other concern is

that sidelobes from slowly moving structures could create some additional clutter signals even

in a remote region from the boundaries of a vessel. But in this case again, aclutter rejection

filter is always applied anyway, which should remove these components. Acceptable levels for

sidelobes thus appear to depend a lot on a specific implementation (level of signal threshold,

clutter rejection filters, coded excitation used for velocity estimation only or bothfor the grey-

scale image and the velocity colour code).

The impact of sidelobes on the sample volume itself and the spatial resolution of the velocity

estimates are not clear either. It was shown in Chapter 1 that the sample volumewas essen-

tially perturbed axially. This means that velocities may potentially be averaged over a greater

area and a significant velocity spread may be introduced in a range cell, which could poten-

tially decrease the statistical performance of velocity estimators [11]. The overall resolution of
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the velocity estimates can however largely be dominated by signal processing. Efficient tech-

niques to reduce sidelobes have been demonstrated in the field of medical ultrasound imaging

for pseudo-random binary sequences [59][60][61]. These areusually based on inverse filtering

(spectrum inversion techniques) described in the geophysics literature [62] or in the radar liter-

ature [63]. The drawbacks of these techniques is that, in the case of Barker codes, for instance,

very long decoding sequence (much longer than the original oversampledBarker sequence) are

then necessary [26]. In the case of LFM chirps, Misaridis has reviewed the techniques to reduce

the sidelobe levels in [24] based on the radar literature [64], these involveusually and apodi-

sation or an amplitude modulation of the excitation signal, combined with a mismatched filter

at the receiver. An effective scheme based on apodisation of the LFM chirp and mismatched

filtering was demonstrated by the same author [65]. Cowe [50] also demonstrated effective

solutions for the case of Doppler applications involving a Wiener filter.

For the proposed waveforms in this study, a comparison between a system using Barker coded

waveforms and LFM chirps is quite difficult. It was shown in Chapter 1 experimentally that

Barker codes have relatively high sidelobes to start with (depending on the length of the base-

band sequence used) and relatively independent of the bandwidth of the transmitted signal. In

general the level of sidelobes is a trade-off with the axial resolution of thecompressed pulse

and the achieved gain in SNR [65]. Thus, depending on the sidelobes level required, the figures

of gain in SNR and spatial resolution could significantly depart from the figures presented in

Table 3.1.

3.5.3 Frequency dependent attenuation and non linear effects

Frequency dependent attenuation and non-linear effects are significant factors in the propaga-

tion of ultrasonic pulses in tissues. Misaridis [23] studied theoretically and withsimulations

the effect of a frequency mismatch between the received chirp and the emitted chirp due to

frequency dependent attenuation. He showed that LFM chirp compression properties are quite

robust to such effects although, a decrease in the gain in SNR is to be expected due to this

mismatch. Moreover simulations showed that frequency dependent attenuation reduced the

bandwidth of the chirp waveforms. Some studies have also proposed solutions to compensate

for these effects [66]. Chiao [17] showed the relative robustness ofpseudo-random binary se-

quences to frequency dependent attenuation and non linear propagation. These results seem to

be in agreement with the observed relative robustness of coded waveforms compression prop-
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erties after propagation in soft tissues in an experimental study [31].

One of the important aspects for velocity estimation is the shift in the centre frequency of the

transmitted pulse due to frequency dependent attenuation. In the case of aGaussian pulse,

Misaridis [23] reports the following expression for the centre frequency fmean of the pulse, as

a function of depthz, fractional bandwidthBf , an attenuation coefficientβ:

fmean = f0 − (βB2
ff2

0 )z (3.35)

This equations implies that if coded waveforms with a larger bandwidth than conventional CF

pulses are used to improve resolution, the shift in the centre frequency ofsignal will be more

important, this in turn can affect the statistical performance of a phase shiftbased estimator

such as the 1D autocorrelator. The errors introduced by a shift in the centre frequency on the

performance of pulsed Doppler techniques have been discussed in different studies [67][68],

for instance. Therefore, the use of relatively wideband code waveforms may require the use of

more advanced algorithms which take into account this shift in the centre frequency. Loupas

proposed such an estimator in [11], this algorithm and the 1D autocorrelatorwill be introduced

more in depth in the following chapter.

3.6 Conclusion

This chapter has discussed some basic considerations in using coded excitation techniques for

CFI applications in medical ultrasound. The framework of this analysis was restricted to the

study of the potential improvements in sensitivity and spatial resolution if conventional CF

pulses are replaced by coded waveforms, in a typical CFI implementation using phase shift

based velocity estimation techniques, and with a matched filter at the receiver.Specific dif-

ferences have been emphasised with the case of B-mode imaging applications. One of the

important aspects is that typical Doppler equipment operates close to the intensity limits for

patient safety. In this case, the energy of the transmitted waveform is a limiting factor and

thus the benefits of coded excitation are less dramatic. An SNR model for the specific case of

incoherent scattering found in velocity estimation was reviewed and appropriate expressions

were derived to discuss the potential resolution /sensitivity trade-off improvement with coded

excitation. For typical CFI implementation using narrowband CF pulses, SNR improvements

should be moderate compared to the possible improvements for B-mode imaging conditions
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(up to 15-20 dB [20]). Still, the achievable improvements in axial resolution are interesting in

relation to visualising small vessels, for instance.

The sensitivity / resolution trade-offs were quantified and compared fortwo types of coded ex-

citation: Barker codes and LFM chirps. If an increase in the energy of the transmitted pulse is

permitted, then coded waveforms with a moderate length (up to 10µs) can be designed which

offer a gain in both spatial resolution and sensitivity. The demand in average transmitted inten-

sity can however be greatly increased (up to factors of 5/6, see Table 3.1and 3.2), depending

on the improvement on resolution, with still, quite moderate gains in SNR (less than 10 dB).

Compared to Barker codes, LFM chirps have the unique feature that the time-bandwidth prod-

uct can be set to any arbitrary value, which allows some flexibility in choosingindependently

the time duration and bandwidth of the waveform. In particular the sensitivity can be increased

by transmitting longer chirps (up to a certain level for patient safety), without compromising

the bandwidth (and the resolution). On the contrary, Barker codes havea time-bandwidth prod-

uct fixed by the number of bits of the code, increasing the time duration by transmitting more

cycles per chip translates into a reduction of the bandwidth and resolution.

Practical considerations have however to be taken into account as well. The first is the hard-

ware complexity and cost. Again, in general, the use of long coded sequences will increase

the complexity of matched filtering at the receiver, and thus put a constrainton the length of

the code and the potential improvement in sensitivity, on top of intensity limitations for patient

safety. For phase shift based velocity estimators, an effective solution should involve complex

baseband decoding of the coded signals. Barker codes are an attractive solution for their sim-

plicity, but solutions can similarly be designed for LFM chirps. Another consideration is range

sidelobes reduction. It has been discussed that the sidelobes level requirements for velocity

estimation may differ from imaging applications. In general, reducing the sidelobes level is

a trade-off with the axial resolution and the SNR conditions, which may put a constraint on

the expected benefits in the sensitivity / resolution trade-off. Finally, the effects of frequency-

dependent attenuation were briefly mentioned. Coded waveform compression properties should

be quite robust to such effects, however, the use of relatively wideband waveforms should in-

crease the shift in the mean frequency the returned signals experience with depth, which might

decrease the performance of phase shift based estimation.

Finally, a complete discussion on the potential benefits of coded excitation as ameans to im-

prove the performance of velocity estimation and especially, to provide betterquantitative ve-
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locity estimates should involve a thorough investigation of the impact of the use ofcoded wave-

forms on the statistical performance (mean and bias) of velocity estimators. This will be the

object of the following chapters.
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Chapter 4

Phase shift based estimation with
coded excitation

The goal of this chapter is to study the possible impact of using relatively wideband coded

waveforms instead of conventional CF pulses with phase shift based estimators. The following

questions are thus central to this chapter:

• What is the influence of the bandwidth of the transmitted signals on the statistical perfor-

mance of these estimators after a matched filter at the receiver ?

• What is the influence of the SNR conditions on the statistical performance? i.e.in which

situation will the gain in SNR provided by coded excitation be beneficial, and byhow

much is the statistical performance improved?

• How does coded excitation compare with a conventional situation when the packet size

is increased? i.e. is it possible to use fewer pulses with coded excitation (increase of the

frame rate) to yield a robust velocity estimate?

• Is coded excitation still beneficial when using relatively efficient, more complex 2D al-

gorithms?

The first section introduces the principle of phase domain velocity estimation witha detailed

theoretical analysis. The “1D autocorrelator”, also called the “Kasai” algorithm is presented.

The last part of this section also introduces a more complex 2D estimator, calledthe “modified

autocorrelation algorithm”. The second section investigates the theoretical aspects of perfor-

mance with phase shift based estimators. Finally a simulation study is presented inthe last

section, which thoroughly investigates the potential impact of using coded excitation on the

statistical performance of this type of estimator.
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4.1 Principles of phase shift based velocity estimation

4.1.1 Theoretical principle

In this subsection, we review the general theoretical principle of velocity estimation based on

the measurement of the phase shift experienced by the successive returned signals from moving

scatterers. In the preceding chapter, it has been shown that the received signals due to blood

backscattering could be considered as random bandpass signals, with,in first approximations, a

centre frequency equal to that of the transmitted pulse, and the same bandwidth. For a theoreti-

cal analysis, it is useful to consider a complex signal model with a complex random amplitude

envelopeZ modulating a carrier at centre angular frequencyf0. Let us consider thenth re-

ceived signal after thenth pulse transmit and for each successive received signal, we take the

origin of time as the instant of firing. In the range gated window[t1, t2], we then have:

r(t, nTs) = Z(t)ej2πf0t = |Z(t)|ejφ(t)ej2πf0t t ∈ [t1, t2] (4.1)

wherer(t, nTs) is the value of the received signal at instantt, following thenth pulse transmit,

Ts is the time between two pulse transmits (PRP), andφ(t) the argument ofZ. This model

of complex signal was justified by Rice for random bandpass processes[69, p365] and may

be obtained from a real signal, in practise, with the use of the Hilbert transform. If now, after

another pulse transmit, the(n + 1)th received signals is a time shifted version (time shift∆t)

of this signal due to the movement of the scatterers in the sample volume:

r(t, (n + 1)Ts) = r(t − ∆t, nTs)

= Z(t − ∆t)ej2πf0(t−∆t) = |Z(t − ∆t)|ejφ(t−∆t)ej2πf0(t−∆t) t ∈ [t1, t2].

(4.2)

For simplicity of notations, we can now consider a specific instantt in the range gate, after

quadrature amplitude demodulation has taken place. The complex envelope valuesZn and

Zn+1 obtained after demodulation for this specific timet for thenth and(n + 1)th signals are

given by:

Zn = Z(t) = |Zn|ejφn

Zn+1 = Z(t − ∆t)e−j2πf0∆t = |Zn+1|ejφn+1

(4.3)
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With according to the previous equations Eq.4.1 and Eq.4.2:

φn = φ(t)

φn+1 = φ(t − ∆t) − 2πf0∆t
(4.4)

The phase shift that appears in the complex amplitude is thus, from Eq.4.4:

∆φ = φn − φn+1 = φ(t) − φ(t − ∆t) + 2πf0∆t (4.5)

If we neglect the termφ(t) − φ(t − ∆t) the phase difference is simply equal to:

∆φ ≈ 2πf0∆t (4.6)

The implications of this assumption will be studied in the next section. We can now relate this

phase shift to a velocity by substituting the expression of∆t, which depends on the velocity of

the scatterers in the intervalTs (v is the axial velocity of scatterers):

∆t =
2v

c
Ts. (4.7)

We thus find the following velocity estimator, based on a estimation of the phase shift ∆φ:

v =
c∆φ

4πf0Ts
. (4.8)

In fact, one can also interpret the two valuesZn andZn+1 as two samples of the complex

slow time signals sampled at the frequency (PRF)1/Ts. An instantaneous frequencyfi can be

computed from the derivative of the phase of the signals:

fi =
1

2π

dφ(t)

dt
≈ 1

2π

∆φ

Ts
. (4.9)

Using the expressions of the phase in shift Eq.4.6 and of∆t in Eq.4.7 yields:

fi =
∆t

Ts
f0 =

2v

c
f0, (4.10)

and thus, the frequency naturally identifies with the Doppler shift. An estimatorof the Doppler

shift is then simply given by:

fD =
∆φ

2π

1

Ts
. (4.11)
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Of course, applying the Doppler equation to this last estimator yields the same velocity estima-

tor previously obtained in Eq.4.8. In practise, the In-PhaseI and Quadrature componentQ of

the signal after coherent quadrature amplitude demodulation give accessto the cosine and sine

values of the phasesφi andφi+1. The phase shift can thus be determined by its tangent; using

some simple trigonometry:

∆φ = φn − φn+1 = arctan
sin(φn − φn+1)

cos(φn − φn+1)
= arctan

sinφn cos φn+1 − cos φn sinφn+1

cos φn cos φn+1 + sin φn sinφn+1
.

(4.12)

Noting thatZnZ∗

n+1 = |ZnZ∗

n+1|ej(φn−φn+1) the estimator can equivalently be written:

fD =
Arg[ZnZ∗

n+1]

2πTs
=

1

2πTs
arctan

Im[ZnZ∗

n+1]

Re[ZnZ∗

n+1]
(4.13)

whereArg denotes the argument of a complex number andIm[ ] andRe[ ] denote the imaginary

and real parts of a complex number. SubstitutingZn = Q(n) + jI(n) andZn+1 = Q(n +

1) + jI(n + 1) yields the simple estimator of the mean Doppler frequency, using a single pair

of signals:

fD =
1

2πTs
arctan

[
Q(n)I(n + 1) − Q(n + 1)I(n)

Q(n + 1)Q(n) + I(n + 1)I(n)

]

(4.14)

4.1.2 The narrowband approximation

All the preceding analysis was based on the assumption that:

φ(t − ∆t) ≈ φ(t) (4.15)

It is interesting to understand what this approximation means in terms of signal properties, and

under what conditions this approximation holds. A way to understand Eq.4.15is simply to

state that the random complex amplitude should not vary too much over the considered time

interval∆t. This should obviously depend on the amplitude of∆t to be measured (and thus the

corresponding velocity to be estimated for a given PRF). Note that in general, to avoid aliasing

conditions,∆t is less than half a period at the considered centre frequency. To understand the

impact of this approximation on the estimator, let us consider a hypothetical case whenZ(t) is

a sinusoid of constant amplitudeA and angular frequencyfmod:

r(t) = Z(t)ej2πf0t = Aej2πfmodtej2πf0t (4.16)
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After a shift∆t the signal becomes:

r(t − ∆t) = Aej2πfmod(t−∆t)ej2πf0(t−∆t) = Aej(2πfmodt−(fmod+f0)∆t)ej2πf0t (4.17)

We see that the phase shift appearing in the complex envelope is then:

∆φ = 2π(f0 + fmod)∆t. (4.18)

And thus, the modulation introduces an error in the estimation. The error is negligible pro-

videdf0 ≫ fmod, that is, provided the envelope does not fluctuate too much over a period of

the signal. This is a narrowband approximation on the signal because intuitively as the sig-

nal’s bandwidth is increased, some higher frequency components in the complex envelope are

introduced, and the hypothesisf0 ≫ fmod can not be satisfied anymore.

From this simple analysis, this approximation is likely to be satisfied, and thus, the overall

accuracy of the method should improve if:

• ∆t is small, i.e. if small velocities are measured or a relatively high PRF is chosen

(∆t = v/PRF). In practice, however, this cannot be easily controlled.

• the more the transmitted signal is narrowband (although the Doppler bandwidthmay

depend to some extent on factors that are independent of the bandwidth of the transmitted

signal (as already mentioned in the introduction chapter, section 1.1.3.2), thisis referred

to as “spectral broadening" [12, p134-140]).

4.1.3 Combining several pairs of signals

The estimator derived so far in Eq.4.12 only uses a single pair of signal. To increase the reliabil-

ity of estimation (of either the Doppler shift or the corresponding velocity), itis often desirable

to combine several pairs of signals, especially in typically noisy conditions found in CFI appli-

cations). This is possible in practise because although the velocities vary considerably over a

cardiac cycle in a blood vessel (or artery), the hypothesis of stationarity over a period of time

of 5 to 10 ms can be considered as a good approximation [28, p629]. This gives time to trans-

mit/receive a maximum ofNp = 25 bursts at a typical PRF of 5kHz (this is only a theoretical

value, though, because in CFI applications, some time is also allocated to refresh the B-mode

grey scale image).
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It is interesting to note that several schemes can be proposed from Eq.4.12. The simplest

approach consists in averaging the phase shifts computed fromNp − 1 consecutive pairs:

∆φ =
1

Np − 1

Np−1
∑

n=1

arctan
sin(φn − φn+1)

cos(φn − φn+1)
. (4.19)

That is, the estimated frequency over several pulse transmits becomes :

fD =
1

2πTs

1

Np − 1

Np−1
∑

n=1

∆φn, (4.20)

where∆φn = φn − φn+1.Another estimator can be obtained by averaging the numerator and

the denominator in Eq.4.12:

fD =
1

2πTs
arctan

Np−1
∑

n=1

sin(φn − φn+1)

Np−1
∑

n=1

cos(φn − φn+1)

(4.21)

These two estimators were in fact considered by Sirmans [70] and are referred to as the Scalar

Phase Change (SPC) and Vector Phase Change (VPC) estimators. In practice, the classical

estimator used in medical ultrasound slightly differs from these two, and can be written as:

fD =
1

2πTs
arctan

Np−1
∑

n=1

Im[ZnZ∗

n+1]

Np−1
∑

n=1

Re[ZnZ∗

n+1]

. (4.22)

Rewriting the preceding equation as:

fD =
1

2πTs
arctan

Np−1
∑

n=1

|ZnZ∗

n+1| sin(φn − φn+1)

Np−1
∑

n=1

|ZnZ∗

n+1| cos(φn − φn+1)

, (4.23)

we can see that this estimator performs an average of the cosine terms at the denominator and

the sine terms at the numerator, but contrary to the VPC estimator, it retains someinformation

from the envelope amplitude variations of the signals through the weighting term|Zn+1Z
∗

n| in

the sums. Following the definition ofZ, this estimator can also be easily put into form using
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theQ andI component of the demodulated signal :

fD =
1

2πTs
arctan

Np−1
∑

n=1

Q(n)I(n + 1) − Q(n)I(n + 1)

Np−1
∑

n=1

I(n)I(n − 1) + Q(n)Q(n + 1)

(4.24)

This estimator is often referred to as the “Kasai” algorithm in the field of medicalultrasound,

referring to the name of one of the researcher from a Japanese team who demonstrated for

the first time in the eighties the feasibility of a real-time CFI system using this estimator [39].

Some authors had however considered the use of similar phase shift based estimation schemes

beforehand [71][72] as noticed in [12]. The estimator is also referredto as the “1D autocorrela-

tor” algorithm, which can be understood by noting from Eq.4.22, that ifR denotes the complex

autocorrelation function of the baseband signals, then:

R(Ts) =
1

N

Np−1
∑

n=1

ZnZ∗

n+1, (4.25)

is the autocorrelation of the Doppler baseband signals at lag one. Obviously Re[
∑

Zn+1Z
∗

n] =
∑

Re[Zn+1Z
∗

n] and the same holds for the imaginary part, the estimated frequency can thus

easily be computed from the real and imaginary part of the complex autocorrelation at lag one.

This estimator had been studied from the 70’s in the radar literature and is often referred to

as the “mean frequency estimator” or the “Pulse Pair Processing” estimator (PPP) [73][74].

Sirmans [70] studied the three estimators numerically and found that the PPP offered the best

properties in noisy conditions. It is finally interesting to note that in each of theestimators

presented, it is not clear how the estimated frequency over severalNp − 1 pulse pairs relates

to the mean Doppler frequency present in theNp samples of the slow time Doppler signal. In

the case of the 1D autocorrelator, however, it can be shown that the estimated frequency is an

estimator of the mean frequency of the Doppler power spectrum of the signal, the derivation

can be found in [39].

4.1.4 More advanced algorithms: example of the 2D modified autocorrelation

Since the advent of the 1D autocorrelator estimator, and its successful implementation for a

real-time Colour Flow Imaging system, several authors have proposed refined phase shift based

algorithms. The motivations for new algorithms is an increased statistical performance. As
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hardware became cheaper and faster, the relative difficulty of implementation of more complex

algorithms became less of an issue. The basis for an increased performance is to extract the

maximum information from the available data. From this point of view, the Kasai estimator

works essentially in 1D because the algorithms only retain one value per gatedrange window.

Recall that all the theoretical analysis was performed using a single instantt in a range gated

window (usually in practise, the signal is collapsed into a single point per gated range window

by integration in the range gate [11]). A more powerful approach for estimation consists of

extracting the full information provided by the 2D dataset of sampled complex baseband sig-

nalsZ(n, m), wherem refers to samples along the fast time axis. Vaitkus [75] showed, with

a theoretical analysis based on the Cramer Rao Lower Bound (CRLB), that 2D based estima-

tion should lead to an increased statistical performance. In the next paragraph, we will focus

on the 2D estimation approach developed by Loupas in [11], which is called “the modified

autocorrelation”.

Loupas’2D estimator is derived similarly to the 1D autocorrelation estimator, but the mean

Doppler frequency is this time estimated using the 2D complex autocorrelationR(n′, m′):

R(m′, n′) =
M−m′

∑

m=1

Np−n′

∑

n=1

Z(m, n)Z∗(m + m′, n + n′), (4.26)

whereM is the total number of samples in a gated range window, andm indexes samples along

the fast time axis, with sampling periodts. The estimated Doppler frequency is then computed

from the lag one (n′ = 1):

fD =
1

2πTs
arctan

(
Im[R(0, 1)]

Re[R(0, 1)]

)

=
1

2πTs

M∑

m=1

Np−1
∑

n=1

Im[Z(m, n)Z∗(m, n + 1)]

M∑

m=1

Np−1
∑

n=1

Re[Z(m, n)Z∗(m, n + 1)]

. (4.27)

We see that this estimator makes full use of the 2D set of dataZ(m, n) from a range gate to

infer the mean Doppler shiftfD. It can be understood as performing the 1D autocorrelator on

the slow time signals at timet = mts, m ∈ [1, M ] and then averaging all the estimates. The

corresponding velocity estimatorv2D_DOP is then obtained by applying the Doppler equation:

v2D_DOP =
c

2

fD

f0
(4.28)
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Loupas pointed out that in the implementation of Eq.4.28, the centre frequencyat the denomi-

nator is considered to be constant, which will lead to some error in the velocity estimate if the

mean frequency of the returned signal has changed. This was also highlighted in the introduc-

tion chapter. Thus, the centre frequency of the fast time axisfRF should also be estimated in

the range gate in order to make a full evaluation of the Doppler equation. A similar analysis to

the preceding case shows that the mean frequency in the fast time axis signal can be estimated

from:

fRF = fdem+
1

2πts
arctan

(
Im[R(1, 0)]

Re[R(1, 0)]

)

= fdem+
1

2πts

M−1∑

m=1

Np∑

n=1

Im[Z(m, n)Z∗(m + 1, n)]

M−1∑

m=1

Np∑

n=1

Re[Z(m, n)Z∗(m + 1, n)]

,

(4.29)

wherefdem is the demodulating frequency. The final velocity estimator is then computed from:

v2D =
c

2

fD

fRF
(4.30)

This estimator was studied by Loupas using some extensive simulations, which demonstrated

an enhanced statistical performance compared to the 1D autocorrelator [11]. In the simulations

presented, the gain in performance of the centre RF frequency estimation part inv2D (Eq.4.30)

appeared to be important compared tov2D_DOP (Eq.4.28) when a significant velocity disper-

sion was simulated (scatterers with different velocities in the sample volume). Finally, it is

interesting to note that a few years later, Brands [76] derived an estimatorcalled C3M (which

stands for ’Complex Cross Correlation model) which is mathematically identical to Loupas’

estimator except that it works directly on the RF signals instead of the demodulated signals.

The benefits of such an approach are however not clear, since processing the baseband signals

reduces in general the complexity of implementation due to lower sampling requirements.

4.2 Theoretical study of the statistical performance

4.2.1 Motivations for a theoretical approach and litterature review

Since the goal of this chapter is to quantify the potential benefits of using coded excitation on

the statistical performance of phase shift based estimators, it is interesting toobtain a theoretical

expression for the variance of the velocity estimates, even if this expression only gives a partial
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picture of the performance of the estimator working in ”real" conditions. Of particular interest

in the context of this study is to obtain an expression showing the influence onthe statistical

performance of:

• the bandwidth of the transmitted signals.

• the SNR conditions.

• the packet size (total number of transmit / receive cycles used to infer one velocity esti-

mate).

Only a few papers have studied the statististical performance of the 1D autocorrelator in the

field of medical ultrasound. Such analysis in general requires some approximations, due to

the relative complexity of the analytical expressions involved. Kristoffersen [77] developed a

general theoretical framework to describe the statistical properties of mean frequency estima-

tors. Torp et al. [78] described the probability density function of the autocorrelation estimates.

Later on, a theoretical expression was presented by Loupas in the same paper introducing the

modified autocorrelation [11]. His analysis is based on an expression obtained in the early sev-

enties by Miller et al. [79], who derived the variance of the frequency estimates when a large

number of independent pairs are used. The application of these results tomedical ultrasound

is however not without flaws since the 1D autocorrelator works on consecutive pairs of signals

{Zi, Zi+1}, which are obviously not independent. Miller et al. were also able to show that

in this particular case, the estimator reaches the Cramer Rao lower bound andis asymptoti-

cally unbiased for symmetric power spectra. Sirmans [70] studied the bias ofthe estimator and

showed that the estimator remained very robust even in the case of asymmetricspectra.

The more rigorous case for medical ultrasound applications when the estimatoris used on cor-

related consecutive pairs appears to have been studied by [80] using aperturbation analysis.

Zrnic [73][74] studied in depth the statistical properties of the estimator for weather radar ap-

plications, and showed in particular that the probability density function of theerror could be

found directly, but the relative complexity of the expressions prevented from obtaining any sim-

ple insights into the statistical performance. He proposed an unifying expression for both cases

(independent and correlated pairs) and showed that incidentally, the twocases did not differ

much in terms of performance. In the next section, we propose to use and adapt the expression

of Miller[79] as Loupas in [11], but we will further arrange it to obtain aninteresting expression

in the context of this study.
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4.2.2 Derivation of an expression of the variance of the velocity estimates

The model of complex correlation assumed by Miller is based on the assumptionsof a Gaussian

signal of powerS embedded in a random white noise of powerN , which yields:

R(τ) = S.e−(2πBDτ)2/2e−j2πfDτ + N.δ(τ), (4.31)

whereBD is the Doppler bandwidth (in Hz) of the modelled signal andfD is the true mean

Doppler frequency. Loupas rearranged Miller’s expression into (adapting the notations), to

obtain the mean frequency estimator varianceσ2 :

σ2 =
(1 + 1/SNR)2 − e−2π2B2

D
T 2

s

8π2NpT 2
s e−2π2B2

D
T 2

s

, (4.32)

whereSNR is defined asS/N , Np is the number of pulse transmit/receive cycles (which yields

Np − 1 consecutive pairs of signals). To get some insights into the role of the transmitted

bandwidthB, we propose to use a simple model of the Doppler bandwidthBD. In the ideal

case when no spectral broadening occurs, and the velocity spread ofthe targets is limited, the

relationship between the two bandwidth is simply:

BD =
2v

c
B (4.33)

To reduce the number of variables in this expression, the terms inBDTs can further be arranged.

We useδ = vTs, the axial displacement of the scatterers during the sampling timeTs (or PRP),

λ the wavelength at the centre frequency, andBf , the fractional bandwidth:

BDTs = 2(δ/λ)Bf , (4.34)

The statistical performance of estimators is usually studied using the relative error, that is, the

ratio of the standard deviation of the frequency estimates to the actual true mean frequency (this

is more rigorously the definition of the ‘coefficient of variation’, we will however use the term

‘relative error’, for consistency with the literature). We obtain the following equation for the

performance:

σ

fD
=

[

(1 + 1/SNR)2 − e−8π2(δ/λ)2B2
f

32π2Np(δ/λ)2e−8π2(δ/λ)2B2
f

] 1

2

(4.35)
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Note that the termfDTs was similarly simplified into(2δ/λ) at the denominator since in our

simple model, we havefD = 2v
c f0. This yields an interesting expression, where the perfor-

mance only depends on the SNR conditions, the displacement of the scatterers between the

pulse repetition periodTs as a fraction of the wavelength, and the fractional bandwidth of the

transmitted pulse. This expression can equivalently evaluate the performance in terms of veloc-

ity estimates since the two quantities are proportional (v = c
2f0

fD). As can be seen, the final

expression obtained does not yield any simple behaviour in terms of the influence of the SNR

(function as(1 + 1/SNR)2), nor for the influence of the bandwidth of the transmitted signals

(through the exponential terms). It can be noticed however, that the relative error is decreased

as1/
√

Np, which is the same as what would be expected when averagingNp independent

estimates.

4.2.3 Plots of the expression

The expression 4.35 was plotted for different set of parameters, and anumber of pulse trans-

mit/receive cycles set toNp = 10. The relative errors obtained show that the estimator performs

very well for 10 pulse transmit/receive cycles in the idealised situation when no spectral broad-

ening occurs, and the velocity spread in the range cell is negligible. Even inthe worst SNR

conditions (5 dB) the relative error is still of the order of 10 % for narrowband waveforms.

Fig.4.1 shows the influence of the fractional bandwidth of the transmitted pulseon the per-

formance, for four different axial shifts of scatterers (0.05λ, 0.15λ, 0.20λ). Note that the

symmetric interval of non aliased velocities correspond to shifts in [-0.25λ, +0.25λ]. We

can clearly see that the performance of the estimator degrades for large fractional bandwidths.

For SNR larger than 20 dB, increased axial displacements lead to a decreased performance for

large fractional bandwidth, whereas the relative error is completely independent of the axial

displacements for fractional bandwidths less than 0.3. The situation for lower SNR is slightly

different; the expression suggests that smaller shifts are more affected for low fractional band-

widths, in particular, on can notice that the performance is significantly deteriorated for a small

shift (0.05λ) for an SNR of 5 dB and a low fractional bandwidth. Fig.4.2 presents the infor-

mation differently and shows the evolution of performance for a fixed shiftof 0.15λ, and two

different fractional bandwidths, against SNR. This figure confirms that the performance is not

significantly affected by the SNR conditions for SNR values greater than 10dB. The fractional

bandwidth has clearly a significant impact on the ultimate performance reached by the estimator

(around 2.5% forBf = 0 .15 and only 8.3 % forBf = 0.5). Finally Fig.4.3 shows the relatively
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Figure 4.1: Plot of the theoretical performance of the 1D autocorrelator against the fractional
bandwidth used, for different axial displacements of scatterers as a fraction of the wavelength
and different SNR conditions,Np = 10.

complex dependence of the performance against the non-aliased rangeof axial displacements

in relatively low SNR conditions (5 and 10 dB). Again, different behaviours are observed for

pulses with different fractional bandwidths. It can be observed that the performance is deterio-

rated forBf = 0.5 and that the curve demonstrate a minimum in this case.

4.2.4 Discussion

The preceding plots show that the estimator is quite robust when using a mediumpacket size

(Np = 10). An improvement in the SNR conditions by coded excitation appears to be beneficial

in terms of performance only for a low range of SNR (less than 10 dB). From an application

point of view, this is not completely irrelevant since for blood flow estimation theSNR is usu-

ally low. Tissue Doppler Imaging techniques, however, benefit from SNRconditions due to

the difference in backscattering power from blood and tissues (signals level from tissues are
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Figure 4.2: Plot of the performance of the 1D autocorrelator against the SNR for an axial
displacement of 0.15λ and two different fractional bandwidths,Bf = 0.15 andBf = 0.5,
Np = 10.
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Figure 4.3: Plot of the performance of the 1D autocorrelator against the axial displacement
for two different fractional bandwidths,Bf = 0.15 andBf = 0.5, and two different SNR
conditions 5 and 10 dB,Np = 10.

86



Phase shift based estimation with coded excitation

typically 20 to 40 dB higher then the observed levels for blood [13, p207]). From a resolu-

tion point of view, the preceding plots clearly show that due to the narrowband approximation

involved for the estimation technique, the performance is deteriorated if a wideband pulse is

used, at least for moderate SNR conditions (20-30 dB). These aspectswill be further studied

using simulations in the next section. In particular, since Miller’s expressionwas obtained as

an asymptotic solution (for largeNp values) it is not convenient to evaluate the performance

for smaller packet size, therefore the use of coded excitation might be beneficial in this case to

achieve a robust estimation with an increased frame rate. It also interesting tostudy the rela-

tive error of the estimator when a matched filter is used at the receiver, which is not taken into

account by Eq.4.31.

4.3 Simulations

4.3.1 Implementation of the 1D autocorrelator with coded excitation

The estimator works essentially in 1D since it is applied to the slow time signals. For aparticular

depth of return corresponding tot = t1, and consideringN successive pulse transmits,fD is

estimated as:

fD =
1

2πTs

N−1∑

n=1

Im[Z(t1, nTs)Z(t1, (n + 1)Ts)
∗]

N−1∑

n=1

Re[Z(t1, nTs)Z(t1, (n + 1)Ts)
∗]

, (4.36)

whereIm[] andRe[] denote the imaginary and real parts of a complex number.

In a conventional CFI implementation, signals are usually range gated and filtered in the same

operation after quadrature amplitude demodulation has taken place. The signals are integrated

over the duration of a range gateTr (equivalent to the averaging filter described in section

3.2.1), and the estimator is then applied on signals of the formZint(mTr, nTs) :

Zint(mTr, nTs) =

∫ (m+1)Tr

mTr

Z(t, nTs)dt. (4.37)

wherem indexes the successive range gates with depth. For optimal performance, Tr is usually

chosen to be equal to the duration of the transmitted pulse (Tp = Tr)[57].

In the case of an implementation with coded excitation the step of integration in the range gate is
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a priori not necessary since a matched filter would be applied to the data. It is also interesting to

note thatTr can then be chosen independently ofTp, since due to the 1D nature of the estimator

“range gating” becomes essentially downsampling along the fast time axis aftermatched filter-

ing and quadrature amplitude demodulation have been performed. Finally, although matched

filtering is only considered on the RF data in this study, applying the filter on the baseband data

is also possible (i.e. after quadrature amplitude demodulation). This is particularly interesting

from an implementation point of view because the sample rate requirements are lower with the

baseband data. Zhao [26] detailed the principles of a CFI system workingwith Barker codes

with long decoding sequences applied to the demodulated signals. Basebandmatched filtering

is also possible for LFM chirps, although the operation requires a complex correlator in this

case. This approach was demonstrated by O’Donnell [20] with pseudo-chirps, in the context

of B-mode imaging. The principle of baseband decoding was also introduced in the previous

chapter.

4.3.2 Simulation set-up

For all the simulations, the simple 1D model of backscattered signals presentedin section 3.3.4

(Chapter 3) was adopted. The principle is repeated here for convenience: synthetic radio-

frequency (RF) speckle signals signal are obtained by successivelyconvolving an excitation

signale (either a CF pulse or a chirp) with a transducer’s impulse responsehtrans and a Gaus-

sian white noise realisationn1:

s = (e ⊗ htrans) ⊗ n1 (4.38)

where⊗ denotes time convolution. For all simulations, the centre frequency used was5 MHz,

the transducer’s impulse response was modelled as a Gaussian modulated pulse of -6 dB frac-

tional bandwidthBf = 0.5, and the sampling frequency was set to 50 MHz. LFM chirp

waveforms were chosen for this study as an example of coded excitation. We adopt the hy-

pothesis that an increase in the transmitted intensity is permitted and that the peak intensity

of the signals is the limiting factor to improve the SNR. All excitation signal amplitudes were

thus normalised (criterion of the same peak intensity). To mimic the successive returned sig-

nals of moving blood, the obtained RF synthetic signals were shifted in time, and independent

white noise (allpass) realisations of given powers were added to model different SNR reception
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conditions. Thus, the modelled kth returned signalr(k, t) can be simply expressed as:

r(t, k) = s(t − k∆t) + n2k k ∈ [1, Np] (4.39)

wheres(t) is the generated RF synthetic speckle signal,n2k are independent white (allpass)

Gaussian noise realisations, andNp is the number of transmit/receive cycles (packet size) used

to perform velocity estimation. Note that this simulation scheme ignores all the possible effects

of decorrelation from one received signal to another (velocity spreadin the sample volume,

modulation by the transducer’s transverse field pattern due to the transverse component of the

velocity of scatterers, etc.), and is thus an ideal statistical performance case study. The time

shift ∆t was set to yield an equivalent axial displacement shift of the scatterers,measured as a

fraction of the wavelength at the centre frequency. The values were selected to span the positive

values of the symmetric non-aliased range of estimated axial shifts [-0.25λ, +0.25λ]. In order

to mimic shifts in time smaller than one sample at 50 MHz, the signals were interpolated eight

times and downsampled to the original sample frequency after time translation.

Gated range portions of the simulated returned RF signals were extracted, matched filtered,

demodulated, and processed by the velocity estimation algorithm.Tr was set to be approxi-

mately the length of the wideband compressed chirp tested (Tp = 10 µs, Bf = 0.5), which

yields 1/Bff0 = 0.4 µs. Both the 1D autocorrelator and the modified autocorrelation were

implemented based on Eq.4.22, Eq.4.27 and Eq.4.28 . In the case of the modified autocorrela-

tion algorithm only the simplified version was implemented (called the “2D_ DOP” estimator

in Loupas’ original paper [11] corresponding to Eq.4.28 and which will be referred to as the

“simplified modified autocorrelation” estimator in the rest of this chapter). Sinceour simulation

does not model any frequency dependent attenuation or velocity spread in a range cell, it was

found that the RF centre frequency estimation part of the modified autocorrelation algorithm

introduced a loss in performance at high SNR. The performance of estimation was measured

as the relative error, i.e. the ratio of the standard deviation of the estimated displacements to

the actual true displacement. In order to obtain statistically reliable results, individual standard

deviations of the displacement estimates were computed from 15000 independent range gated

windows for each combination of the simulation parameters.
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Figure 4.4: Histogram of the velocity estimates obtained for a simulated axial displacement of
0.10λ, and SNR= 5 dB for the chirp signalBf = 0.5.

4.3.3 Statistical performance analysis

A first set of simulation studies the performance of the 1D autocorrelator algorithm with a

chirp of lengthTp = 10 µs, and fractional bandwidthBf = 0.5 as an excitation signal. As

seen in the previous chapter, this coded waveform offers a small gain in SNR but a substantial

gain in spatial resolution compared to the 8 cycles CF pulse ( an improvement of2.9 dB for a

resolution of 0.42 mm against 1.3 mm for the CF 8 cycles pulse, see Table 3.1).The 8 cycles

CF pulse was used as a reference to compute the SNR conditions as in (4.40), and to compare

the performance of velocity estimation with chirps.

SNR =
< (s ⊗ hmatched filter)

2 >

< (n2k ⊗ hmatched filter)2 >
. (4.40)

Fig.4.7 shows the performance obtained for 4 different SNR conditions, agated range window

length of 0.5µs and 4 transmit/receive cycles. The histograms of the velocity estimates obtained

for a displacement of 0.10λ and 5 dB SNR conditions are also reported in Fig.4.4 for the chirp

and Fig.4.5 for the CF pulse. As can be seen, the obtained distributions do not differ much

for the two different types of signal, and even in high noise conditions, theestimator remains

unbiased (relative bias of 2 %). For all the simulations, it was observed that the bias never

exceeded 2% except close to aliasing conditions, as will be described lateron.
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Figure 4.5: Histogram of the velocity estimates obtained for a simulated axial displacement of
0.10λ, and SNR= 5 dB for the CF 8 cycles pulse.

The moderate gain in SNR provided by the chirp appears to be significantly beneficial in terms

of relative precision for relatively poor SNR conditions (6 10 dB), and for axial shifts below

0.15λ. For a medium range of SNR (20-30 dB), the performance obtained with thechirp seems

to reach a plateau, and the CF pulse achieves a better performance than thecoded waveform,

which suggests that in this region the performance is essentially driven by the bandwidth of

the excitation signal. It can also be noticed that the performance increaseswith an increasing

axial shift up to to 0.15λ, and then slightly deteriorates, at least at low SNR, for an axial shift

of 0.20λ. An inspection of the histogram in Fig.4.6 shows that this phenomenon is due to the

fact that a part of the velocity estimates distribution becomes aliased. The biasobserved in this

specific situation was obviously higher (≈ 5 %). The phenomenon is accentuated in the case of

the chirp.

Fig.4.8 shows the results obtained with the same set of conditions with the simplified modified

autocorrelation algorithm. A net overall gain in performance can be noticedwith this estimator.

A gain in performance is observed with the chirp at the lowest SNR condition for all the axial

shifts considered. The previous trend observed in the medium range SNRis confirmed; the

performance varies little from 20 dB to 30 dB and a better performance is achieved in the case

of the CF pulse (the ultimate relative error goes down to approximately 3 %, whereas it’s only

of 7.5% in the case of the chirp).
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Figure 4.6: Histogram of the velocity estimates obtained for a simulated axial displacement of
0.2λ, SNR= 5 dB for a chirpBf = 0.5, showing that part of the distribution is aliased.
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Figure 4.7: Performance comparison of the 1D autocorrelator estimator foran LFM chirp exci-
tation signalTp = 10 µs, Bf = 0.5, and a CF narrowband pulse 8 cycles excitation signal, for
different axial shifts,Np = 4, duration of the gated range window: 0.5µs.
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Figure 4.8: Performance comparison of the simplified modified autocorrelationestimator for
an LFM chirp excitation signalTp = 10 µs, Bf= 0.5, and a CF narrowband pulse of 8 cycles
excitation signal, for different axial shifts.Np = 4, duration of the gated range window: 0.5µs
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Figure 4.9: Performance comparison of the 1D autocorrelator estimator between an LFM chirp
Tp = 10µs, Bf = 0.5, and a CF narrowband pulse of 8 cycles, for differentNp, duration of the
gated range window: 0.5µs, axial shift: 0.10λ.

In Fig.4.9, the axial shift was held constant at 0.10λ and the number of pulse transmit/receive

cycles was varied from 4 to 10 with the 1D autocorrelator algorithm. As the number of pulse

transmit/receive cycles is increased, the gain in performance obtained with the chirp becomes

less and less evident for the lowest SNR conditions (5-10 dB). Yet, a similarperformance level

to the CF pulse is maintained in this region of SNR, with an improved spatial resolution.

In the last set of simulations, fig.4.10, the performance of the 8 cycles CF pulse is compared

to that of a chirp with a fractional bandwidthBf = 0.15. This waveform offers a good gain

in SNR (Table 3.1, Chapter 2), but this time no improvement in resolution is to be expected.

As can be seen, the extra gain in SNR provided by the narrowband chirp translates into a

significant improvement of the performance up to 20 dB SNR. For an SNR value of 30 dB, the

performance of the chirp and the CF pulse converge towards a similar value, which confirms

that for a medium range of SNR (20-30 dB) the performance of the 1D autocorrelator is mainly

driven by the bandwidth of the transmitted waveform. The same trend is observed in fig. 4.11

in the case of the simplified modified autocorrelation algorithm. The excellent performance

achieved in this case suggests that velocity estimation could be performed with this combination
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Figure 4.10: Performance comparison of the 1D autocorrelator estimator for an LFM chirp
excitation signalTp = 10 µs, Bf = 0.15, and a CF narrowband pulse of 8 cycles excitation
signal, for different axial shifts,Np = 4 , duration of the gated range window: 0.5µs.

of estimator and coded waveform without any need to further increase thenumber of pulse

transmit/receive cycles.

4.4 Discussion and conclusion

This chapter has presented the principles of phase-shift based velocityestimation in medical

ultrasound. Two algorithms were presented : the 1D autocorrelator algorithm and the 2D mod-

ified autocorrelation. The potential impact of using coded excitation with this type of estimator

has been studied on a theoretical basis as well as with simulations, with LFM chirps as an

example of a coded waveform. A theoretical expression was adapted to discuss the potential

improvement in statistical performance on a theoretical ground. It was shown that the 1D au-

toccorrelator estimator is quite robust for a medium packet size (Np = 10) and that potential

improvements with SNR are only significant for quite low SNR conditions (below 15 dB). It

was also shown that in moderate SNR conditions, the statistical performance issignificantly

impacted by the fractional bandwidth of the signals, a low fractional bandwidth yields a better
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Figure 4.11: Performance comparison of the simplified modified autocorrelation estimator for
an LFM chirp excitation signal T= 10µs, Bf = 0.15, and a CF narrowband pulse excitation
signal of 8 cycles, for different axial shifts,Np = 4, duration of the gated range window: 0.5
µs.
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performance, which was to be expected given the fact that this estimator works on a narrowband

approximation. The set of simulations performed shows that a significant gain in performance

and spatial resolution can be obtained for a low range of SNR (10 dB or less) with coded ex-

citation, while maintaining the same transmitted peak pressure amplitude. This suggests that

coded excitation could be used to enhance the sensitivity and spatial resolution at long ranges

or to achieve the same performance as standard techniques with a limited numberof trans-

mit/receive cycles, provided an increase in intensity is permitted. When the SNRconditions are

in a medium range (20-30 dB), the simulations confirmed the theoretical resultsthat the per-

formance of phase domain estimators is essentially driven by the bandwidth ofthe transmitted

pulse, which limits any resolution improvement without any performance degradation. These

results suggest a spatial resolution / performance trade-off in the use of coded excitation with

phase shift based estimators.
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Chapter 5

Time-shift based estimation with
coded excitation

The goal of this chapter is primarily to investigate the potential benefits of usingcoded excita-

tion with wideband time-shift based velocity estimation strategies. To understandhow the use

of coded excitation might be beneficial, it is important to know from a theoretical basis how the

performance of these estimators is affected. This chapter thus provides an up-to-date review

of the theoretical aspects of estimation performance with time-shift based velocity estimation

in the context of medical ultrasound applications. The following questions are central to this

chapter:

• Which aspects limit the performance of time-shift based estimators?

• In which situations can the gain in SNR provided by coded excitation be beneficial with

this type of estimator? By how much is the statistical performance of the estimator

improved?

• Is any gain in resolution possible? i.e. what is the impact of the bandwidth of signals on

the statistical performance of estimators?

The first section presents an overview of the current applications of these estimators, followed

by their principle and implementation. The second section is dedicated to the studyof the

theoretical performance aspects. The third section presents some simulations. And finally, the

fourth section discusses the possible improvement of performance with coded excitation in the

light of the results of sections 2 and 3.

99



Time-shift based estimation with coded excitation

5.1 Time-shift based velocity estimation in medical ultrasound

5.1.1 Motivation of this study in the context of current applications

Dotti et al. [81] appear to have been the first to consider the use of an estimation scheme based

on crosscorrelation in the field of medical ultrasound for the measurement of blood flows in

1976. Later on in 1982, Dickinson et al. [82] proposed to measure the displacement of tissues

with a correlation method. Interestingly, it seems that it was not until another publication by

Bonnefous [83] that this method raised a real interest in the field of medicalultrasound for

velocity or displacement estimation. Bonnefous’ paper was also probably amilestone in the

understanding of current velocity estimation schemes, which do not rely ona “true” Doppler

shift as with the early CW techniques. The detailed analysis of the publication clearly demon-

strated that the blood flow velocity could simply be inferred from the shift in time that the

received signals experience over two successive pulse transmits due tothe movement of the

red blood cells. A bit later, Bonnefous also proposed a statistical analysisof the performance

of the new velocity estimation scheme [84]. Embree presented some experimental results us-

ing this method to measure blood flows [67]. Hein implemented a real-time blood flowmeter

based on the crosscorrelation technique [85] and checked the obtainedstatistical performance

experimentally [86].

Following closely these early works, several studies showed that the crosscorrelation technique

outperformed the 1D autocorrelator in terms of statistical performance [87,88]. One of the

claimed advantage of these techniques over phase shift based estimators isthat they do not

suffer from aliasing problems [83]. Despite these facts, it is not clear how much current scan-

ners rely on time-shift based estimators for applications like CFI. Evans andMcDicken noted

in [12, p264] that time shift based estimation had failed so far (in 2000) to be widely intro-

duced in commercial scanners, which they imputed to the large amount of computing power

required. Another reason for this may be, as Jensen [13, p245] and Torp in [87] pointed it out,

that for applications like CFI, with relatively poor SNR conditions, it is often desirable to use

long (narrowband) pulses, which is beneficial to phase-shift domain estimators performance

(these was shown in Chapter 4). It is worth mentioning as well that some phase domain esti-

mators such as Loupas’ modified autocorrelation actually reach a very close performance to the

golden standard of normalised crosscorrelation [11, 89], yet with a muchlower computational

complexity.
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Time-shift based estimators are however nowadays extensively used in research for a number

of techniques involving the measurement of either a displacement or a velocityof soft tissues.

They are used for instance in the field of elastography [7], in the field of strain and strain rate

imaging of the heart [6], for tissue motions estimation [90, 91], or for acoustic radiation force

microscopy (ARFI) applications [89]. For all these applications, time-shiftbased estimators

and most particularly normalised crosscorrelation, have gained a widespread acceptance. [6]

reports the following benefits compared to phase-shift based estimation technique for strain and

strain rate estimation techniques:

• a better axial resolution due to the possibility of using wideband pulses.

• no problem of aliasing

• the possibilty to obtain a displacement or velocity estimate with only two pulse emissions,

whereas phase-shift based estimators typically require a few pulses to yield a robust es-

timate. (This is particularly important in elastography, because usually only twosignals

are acquired: a pre-compression signal and a post-compression signal).

• the method is more robust to frequency dependent attenuation.

A recent comparison study [92] confirmed the better robustness of time-shift based tissue

speckle tracking for strain estimation compared to phase-shift based estimation. The authors

also hypothesised that time-shift based estimation is a lot more robust to large deformation of

the scattering medium than phase shift based estimation.

A clear drawback of these techniques is that they are inherently computationally intensive, and

have a higher hardware cost compared to a relatively simple algorithms like the1D autocorre-

lator. According to [6], it was still hard in 2002 to obtain fully real-time strain imaging system,

with a good temporal resolution (high frame rate), with this type of estimator (obviously the

amount of post-processing required is also a challenge, and for some applications, off-line pro-

cessing might still be unavoidable). It is likely that with the constant gain in computing power

over time, this will become less of an issue in the future, but a good engineering solution is

always a trade-off between costs, simplicity of implementation and performance. This may

particularly be important in the context of this study, because the use of coded excitation with

a matched filter already adds a significant extra computational complexity to the system. In the

first real-time blood flowmeter solutions proposed, the full crosscorrelation of the signals could
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not be evaluated, instead, a much simpler method was implemented, called “crosscorrelation

using the sign”, or polarity coincidence method. In fact, a set of time-shift based estimators are

known to provide only slightly degraded performance compared to the normalised crosscorre-

lation, and a potentially lower hardware cost [93], like the Sum of Absolute Difference (SAD)

algorithm or the Sum of Squared Difference (SSD) algorithm , which will bepresented in the

next section. These estimators seem to have been studied only in very few papers in the field of

medical ultrasound ([94] and [95], essentially).

5.1.2 Principle of time-shift based estimation and description of the algorithms

The time delay∆t between the received signals from a single target moving at a velocityv

between two pulses transmits emitted at a time intervalTs is equal to:

∆t =
2vTs

c
(5.1)

A measure of∆t readily leads to the target displacement between the intervalTs or the mean

velocity during the same time interval. In a practical case for medical ultrasound applications,

the received signalr can be described, using a linear system description approach, by the con-

volution between the transmitted signals and a scattering functionf which depends on the

spatial scatterers distribution and backscattering power:

r1(t) = s ⊗ f1 =

∫

s(u)f1(t − u)du (5.2)

After a second transmit, the scatterers have moved yielding the second received signal:

r2(t) = s ⊗ f2 =

∫

s(v)f2(t − v)dv (5.3)

If we now examine the crosscorrelation of the two received signals, by definition of the cross-

correlation functionRr1r2
:

Rr1r2
(τ) =

∫

r1(t)r2(t + τ)dt =

∫ ∫ ∫

s(u)s(v)f1(t − u)f2(t + τ − v)dudvdt (5.4)

This relatively complex integral can be simplified if we consider that :

• the reflectivity functions are ideallyδ-correlated i.e. their autocorrelation function is a

102



Time-shift based estimation with coded excitation

Dirac impulse (the fluctuations in compressibility and density of the medium from which

backscattering arise have a correlation length much smaller than the wavelength of the

pulse, as in the model of Chapter 3).

• f2 is simply a time-translated version (time delay∆t) of f1, due to a uniform movement

of scatterers between the two pulse transmits:f2(t) = f1(t − ∆t).

We then have the following property:

∫

f1(t − u)f2(t + τ − v)dt = δ(u − v + τ − ∆t) (5.5)

The preceding equation then simplifies into:

Rr1r2
(τ) =

∫

s(u)s(u + τ − ∆t)du = Rss(τ − ∆t) (5.6)

which shows that the crosscorrelation function of the received signal issimply the autocorrela-

tion function of the transmitted signals shifted in time correspondingly to the displacement of

scatterers. In particular, a measure of the position of the peak of the crosscorrelation function

will yield the desired time delay∆t. In this idealised model, the shape of the crosscorrela-

tion function only depends on the transmitted signals; transmitting a wideband signal should

thus yield a sharp correlation peak, and thus, a good statistical performance. In real conditions

of course, Eq. 5.5 is only an approximation, andf1 andf2 are notδ-correlated. As a con-

sequence, the correlation peak may be significantly broadened (also called "decorrelation" of

signals). In particular, the hypothesis thatf2 deduces fromf1 by a simple translation requires

that the medium probed undergoes a uniform translation, and that all the scatterers remain in

the insonified volume, which is more or less realistic. Intuitively, however, thishypothesis will

be a good approximation for small displacements (or a small time interval betweenthe pulses

transmits); and if the volume probed is not too large.

5.1.3 Practical implementation

Apart from the possible decorrelation between the two successively received signals, two fac-

tors at least may impact on the performance of this method in a practical implementation. The

first of these factors, is that, to obtain a local measure of the displacement, the received signals

are range gated and crosscorrelation is thus only performed on short segments of signals. The
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size of the range gate duration is of a great importance. As it will be seen, itcan have a signifi-

cant impact on the accuracy of the method: a large window duration increases the performance;

but also reduces the spatial information provided by the estimates. This parameter can also

depend on the type of application. Walker et al. [96] reports typical values of gated range win-

dow duration as 0.65µs for blood flow estimation applications and 1.3µs for strain estimation

applications. Another difficulty is that due to the sampled nature of signals, theultimate shift in

time determined by the position of the peak may only be, in principle, determined as an integer

multiple of the sampling period. For most applications in medical ultrasound, evenat a rela-

tively high sampling rate (say, 50 MHz), the time delays to be measured are onlya few sampling

periods, the obtained time resolution is thus far too coarse. For this reason,the croscorrelation

function has to be interpolated around its peak to yield a more accurate estimate.This is usually

done by fitting a parabola through three consecutive samples at the positionof the maximum.

The method was originally described in [97]. IfR(lcoarse) is the peak value of the sampled

correlation function (lcoarse is the index which corresponds to the crosscorrelation peak) then

the fractional index valuelfine that defines the position of the peak fitted by a parabola is given

by [11]:

lfine =
1

2

R(lcoarse − 1) − R(lcoarse + 1)

R(lcoarse − 1) − 2R(lcoarse) + R(lcoarse + 1)
+ lcoarse. (5.7)

Finally, other estimators than crosscorrelation may be used, on a similar principle. The follow-

ing estimators were implemented in this study,T corresponds to the range gate duration,r1 and

r2 are two received successive signals:

• The normalised crosscorrelation estimator (NXC)

RNXC(τ) =

∫ T/2
−T/2 r1(t)r2(t + τ)dt

√
∫ T/2
−T/2 r2

1(t)dt
∫ T/2
−T/2 r2

2(t)dt

. (5.8)

The presence of the denominator normalises the crosscorrelation function, i.e. when

the signals perfectly correlate, the peak value is equal to one. The peak value is also

called the correlation coefficientρ, this coefficient measures of the “decorrelation” of

the signals (see previous paragraph). Thus, in general, unlessr2(t) is a perfect time-

translated version ofr1(t), ρ is inferior to one.
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• Crosscorrelation using the sign (Xsign)

RXSign(τ) =

∫ T/2

−T/2
sign(r1(t))sign(r2(t + τ))dt, (5.9)

where the sign function returns 1 for a positive signal value and -1 for anegative sig-

nal value. This estimator is also sometimes called the Polarity Coincidence Correlation

estimator.

• Sum of Absolute Differences (SAD)

RSAD(τ) =

∫ T/2

−T/2
|r1(t) − r2(t + τ)|dt (5.10)

• Sum of Squared Differences (SSD)

RSSD(τ) =

∫ T/2

−T/2
|r1(t) − r2(t + τ)|2dt (5.11)

For these last two estimators, the time shift∆t is estimated as the minima positions of the

functions.

5.2 Theoretical study of the statistical performance of time-shift

based estimators

5.2.1 Theoretical aspects of the statistical performance ofcrosscorrelation

The performance of time delay estimation with crosscorrelation has been a very intensively

studied problem in signal processing from the early eighties ([98], [99], [100], [101], [102],

for instance, and a more recent review is given in [103]). In the field ofmedical ultrasound,

different works have studied the performance of the crosscorrelationestimator. One of the first

analysis was due to Bonnefous [84]. Foster [104] proposed an analysis of the performance

based on a similar approach used in the radar field, and studied the impact ofa lot of different

parameters on the statistical performance with simulations. Jensen also proposed an expression

for the variance of the estimates in[13] based on [105]. [12, p271] gives an excellent review of

the work carried out in this area in medical ultrasound, while pointing out thatthe individual

results of different studies do not seem to be entirely compatible. This can be imputed to the

various simplifying assumptions in the derivation of these expressions. In fact, it seems that an
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indirect approach based on the derivation of the Cramer-Rao Lower Bound (CRLB) for the time

delay estimation problem yields the most accurate method. By definition, the CRLBbound is

a theoretical limit for the variance of any unbiased estimator, based on the behaviour of a max-

imum likelihood estimator; it is thusa priori not sure how crosscorrelation performs compared

to this ideal bound. Several studies have however confirmed that crosscorrelation was able in

some conditions to reach this bound [103]. This approach was introducedto the field of medical

ultrasound by Walker et al. [96]. In this study, Walker first makes the interesting comment that

in the presence of noise, the crosscorrelation estimation technique typically suffers from two

types of error:

• the first type is some small errors, referred to as “jitter” errors, which are due to small

deviations in the location of the peak of the crosscorrelation function around its true

value.

• the second type is called “false peak” errors and occurs when the maximumpeak of the

crosscorrelation peak is not the true peak, but an adjacent peak. Thisresults in much

larger error amplitudes.

Walker mentioned that false peak errors can be removed in practisevia non linear filtering

(although this would also supposedly reduce the spatial information of the estimated displace-

ments or velocities) whereas jitter errors can not be suppressed, and thus place a fundamen-

tal limit on the performance of crosscorrelation. He was finally able to conclude, with some

extensive simulations, that the CRLB bound accurately predicts the jitter of crosscorrelation

estimates, in a relatively large set of conditions relevant to medical ultrasound parameters.

5.2.2 Analysis of the CRLB

The expression obtained by Walker et al. in [96] for the CRLB was basedon [98]. The ex-

pression was adapted to medical ultrasound applications, by considering the case when the two

signals received are decorrelated speckle signals (introduction of the correlation coefficientρ

in the expression). This yields the following theoretical performance bound [96].

σ∆t

∆t
>

σCRLB

∆t
=

1

∆t

√
√
√
√

3

2f3
0 π2T (B3

f + 12Bf )

(

1

ρ2

(

1 +
1

SNR

)2

− 1

)

, (5.12)
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whereσ∆t is the standard deviation of estimated time delays,σCRLB is the theoretical CRLB

bound on the standard deviation of time delay estimates. Fig.5.1 plots the obtained relative

errors for three displacements, expressed as a fraction of the wavelength (0.10λ, 0.20λ and

0.40λ). The other parameters in Eq.5.12 were set tof0 = 5 MHz,T = 1µs, Bf = 0.5, andρ =

0.98, which according to [96] is a typical correlation coefficient found for blood signals, taken

here as an example. A noticeable aspect of the performance is that the relative error depends

on the inverse of the quantity to be estimated (factor 1/∆t in 5.12). As a consequence, larger

velocities or displacements (relatively to a given PRF) should always benefit from a lower

relative error. A second noticeable feature is that in the presence of decorrelation (ρ < 1),

the error does not decrease to zero, but instead, the curve demonstrates an asymptote, which

depends on the displacement to be measured, the correlation coefficient and the time duration

of the window usedT . The equation of the asymptote for high SNR is readily obtained from

Eq.5.12:

lim
SNR→+∞

σCRLB

∆t
=

1

∆t

√

3

2f3
0 π2T (B3

f + 12Bf )

(
1

ρ2
− 1

)

(5.13)

Fig. 5.2 shows the evolution of the relative error for an axial displacementof 0.10 λ and

different fractional bandwidths of the received signals. As expected, the performance improves

with the bandwidth of signals, which shows that the crosscorrelation technique is clearly a

“wideband” estimation strategy. The curves show that the performance can be quite deteriorated

for low fractional bandwidths and low SNR conditions. Finally, Fig. 5.3 shows the performance

obtained for the same set of parameters, a displacement of 0.10λ and three differentT values :

1 µs, 2 µs and 4µs, which correspond to distances of respectively of 0.8 mm, 1.84 mm and 3.1

mm. The improvement in relative error is quite slow when increasing the durationof the gated

range window ( as1/
√

T , according to 5.12), but as can be clearly seen, there is a trade-off

between resolution and performance, largeT values provide a more robust estimate, especially

in the low SNR region, but the spatial resolution is also decreased. In practical applications, it

should however be noted again that the ultimate spatial resolution can also depend to a large

extent on the signal processing chain of the data (overlapping of windows, median filtering,

etc...).
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Figure 5.1: Plot of the CRLB performance bound, for three displacements(0.10λ, 0.20λ and
0.40λ); f0 = 5 MHz, T = 1 µs, Bf = 0.5, andρ = 0.98.
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Figure 5.2: Plot of the CRLB performance bound with the fractional bandwidth of signals, for
a displacements of 0.10λ, and five different SNR conditions (5 dB, 10 dB, 15 dB, 20 dB,∞),
f0 = 5 MHz, Bf = 0.5, andρ = 0.98,f0 = 5 MHz.
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Figure 5.3: Plot of the CRLB performance bound with the time duration of the gated range
window against the SNR conditions, for a displacement of 0.10λ, f0 = 5 MHz, Bf = 0.5, and
ρ = 0.98.f0 = 5 MHz.

5.2.3 Limitations of the CRLB approach

5.2.3.1 Decorrelation of signals

The model adopted by Walker et al. incorporates the decorrelation of signals as a loss in am-

plitude of the normalised correlation peak of the signal but does not really account for the

broadening of the correlation peak, essentially the normalised crosscorrelation of the signals is

considered as a scaled version of the autocorrelation of one of either ofthe received signals:

Rr1r2
= ρRr1r1

(5.14)

Cespedes [106] showed the equivalence between the effect of an electric noise and the decorre-

lation of signals as described by Eq.5.14 in the CRLB bound Eq.5.12. In particular an equivalent

“decorrelation SNR”SNRρ can be defined as:

1

ρ
= 1 +

1

SNRρ
(5.15)

Conversely, the term1 + 1
SNR in Eq.5.12 can be replaced by an equivalent decorrelation term

1/ρ using the same expression. It follows from Cespedes’ analysis that with the model of decor-

relation of signals of Eq.5.14, decorrelation can be interpreted as an additional stationary and

109



Time-shift based estimation with coded excitation

uncorrelated noise term. Whether decorrelation can be treated as such, inpractise, is however

not clear. In general as well, the decorrelation of signals can be a function of parameters such

as the centre frequency or the time delay to be estimated itself, which gives a more complex

dependence of the bound of Eq.5.12 to these parameters. According to [84], for instance, an

approximate expression forρ is given by:

ρ =

[

1 − δtran

BW

]

(1 − 2π2f2
0 σ[∆t]2) (5.16)

The first term in the preceding equation shows the effect of decorrelation due to the scatter-

ers leaving the sample volume, and depends on the transverse displacementcomponent of the

scatterersδtran and the ultrasound beam widthBW . This term clearly approximates the lateral

beam fall-off as rectangular window of sizeBW . The dependence ofρ on the time shift to be

estimated can be made more explicit: suppose the axial shift to be measured isδaxial, giving

rise to a shift in time∆t, then the transverse displacement is given by:

δtran = δaxialtanθ =
c∆t

2
tanθ (5.17)

whereθ is the angle of the trajectory of scatterers with the axis of the transducer. The second

term in this expression is a decorrelation factor due to the velocity spread in the sample volume,

which is taken into account as a spread in the time shift to be estimated, characterised by a

varianceσ[∆t]2 =< ∆t2 >, and is proportional, according to Bonnefous’ analysis to the square

of the centre frequency of the signals.

5.2.3.2 SNR model and spectral characteristics of signals

Another limitation in the expression presented in Eq.5.12 is the model of the spectral charac-

teristics adopted for the signals, which was chosen to be rectangular (thatis constant power

densities in the bandpass) for simplicity of derivation. Moreover, [96] considers a basic SNR

model, independent of the bandwidth of signals. A more realistic SNR model, aspresented in

section 3.3 (Chapter 3), shows that the SNR after a matched filter (or a simple bandpass filter

adapted to the bandwidth of the transmitted CF pulse) has a dependence as1/B2. To obtain

some insights into the performance with this SNR model, one can arbitrarily definea refer-

enceSNRref for a fractional bandwidthBf = 0.5, an effective SNR taking into account the
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Figure 5.4: Plot of the CRLB performance bound with the fractional bandwidth of signals with
a more realistic bandwidth-dependent SNR model, for an axial displacementof 0.10λ, and
four different SNR conditions (5 dB, 10 dB, 15 dB, 20 dB).

proposed SNR model is then simply given by:

SNReff = SNRref/4B2
f (5.18)

Substituting the SNR term in 5.12 bySNReff then yields the performance bound:

σ∆̂t

∆t
>

1

∆t

√
√
√
√
√

3

2f3
0 π2T (B3

f + 12Bf )




1

ρ2

(

1 +
4B2

f

SNRref

)2

− 1



 (5.19)

This modified bound was plotted for differentSNRref values in Fig.5.4, with the same set of

conditions as in Fig.5.2. As can be clearly seen, the performance curves demonstrate a mini-

mum for low SNR, which confirms that even with a wideband estimation strategy, itadvanta-

geous to use narrowband pulses when the SNR conditions become too poor. In particular, the

curves show that for an SNR of 5 dB (with the reference used of a pulsewith a fractional band-

width Bf = 0.5), the performance is bounded with a minimum relative error of 20 %, which

shows that crosscorrelation cannot be used to yield very good estimates insuch conditions with-

out additional averaging. When the SNR conditions becomes higher, the best performance is

achieved for increasing fractional bandwidths.
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5.2.3.3 Limit of validity of the CRLB

Following Walker’s analysis of the different regimes of performance of the crosscorrelation

estimator, it seems interesting to know in which conditions the performance can deviate from

the CRLB, that is, in which conditions the crosscorrelation estimator switches from a small

error regime (“jitter”) to a large error regime i.e. “false peak” estimation regime. For medical

ultrasound applications, this is particularly important because a good performance (about 10

% relative error) is only achievable in the jitter error regime, the false peak regime requires

some further non-linear processing, which is not ideal. [96] concludedthat the CRLB is valid

when the SNR is fairly high and the correlation between signals is also high, without any

further precision. The problem of false peak error estimates was also studied in the field of

medical ultrasound by Jensen in [107]. His study showed that below a certain SNR threshold,

the probability of detection of the correct peak drops sharply, the threshold observed was of

approximately 5 dB.

In fact, it can be inferred intuitively that the SNR conditions or the decorrelation of signals

are not the only parameters driving the transition between the two regimes of errors. Recall

from our idealised model that the crosscorrelation function of two specklesignals is essentially

the shifted autocorrelation of the transmitted signals. Fig.5.5 plots the autocorrelation function

of a 4 cycles CF pulse, and that of a 10 cycles CF pulse. Clearly the autocorrelation peak is

sharper for a relatively wideband 4 cycles CF pulse, meaning that crosscorrelation estimates

with wideband signals should be less prone to a false peak detections (for an equivalent level

of noise). Clearly as well, the autocorrelation function is periodical with a period equal to the

period of the transmitted signals. A way to avoid false peak detection error is thus to restrict

the interval of search of the correlation to [-1
2f0

, + 1
2f0

]. This, however, restricts the maximum

velocity that can be estimated. Not surprisingly, this interval correspondsexactly to the non-

aliased range of velocities that can be estimated with phase domain estimators. This shows

intuitively that with crosscorrelation, it can become quite difficult to measure velocities beyond

the Nyquist limit, at least in poor SNR conditions, because large errors areintroduced by false

peak detection. Jensen mentioned this difficulty in [107], and proposed several methods to

overcome this limitation.

The problem of large errors with crosscorrelation estimates in poor SNR conditions appears

to also have been studied in the field of signal processing. Ianniello [108]proposed an an-

alytical expression of the probability of “detection anomaly" with crosscorrelation. He also
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Figure 5.5: Autocorrelation function of a 4 cycles and a 10 cycles CF pulse, with the time lag
expressed as a fraction of their period (1/f0).

concluded that signals with narrow-band spectra or with large sidelobes have a greater proba-

bility of an anomalous estimate due to the relative large values of the autocorrelation function at

time delays removed from zeros. Finally, a global description of the theoretical behaviour of the

crosscorrelation estimates was achieved by Weiss et al. using the Ziv-Zakai bound [101][102].

Essentially, the following bounds were obtained for the variance of the time delay estimates:

σ2
∆̂t

>







D2

12
BTSNR′ < γ

Threshold γ < BTSNR′ < δ

Barankin bound δ < BTSNR′ < µ

Threshold µ < BTSNR′ < η

Cramer-Rao bound η < BTSNR′

(5.20)

Where theSNR′ is defined as, given the signal powerS and the noise powerN :

SNR′ =
(S/N)2

1 + 2(S/N)
=

SNR2

1 + 2SNR
(5.21)

D is the interval of search of the correlation peak,B is the bandwidth of the signal in Hz,

γ, δ, µ, η are different threshold values delimiting the different regions of performance. In

this framework, the performance in a large error regime is described by theBarankin bound
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(this bound simply exceeds the CRLB by a factor12/B2
f ), and ultimately the performance is

bounded byD2/12, that is, the peak of the crosscorrelation function is completely randomly

located in the interval [-D/2, +D/2]. In this last case, no velocity or displacement information

can be retrieved. An interesting aspect is that both the time of observation ofsignalsT , their

bandwidthB, and the SNR as described by Eq.5.21 determine through their product in which

region of performance the estimator operates. As is easily understood according to this analysis,

a relatively largeTB product has to be achieved when the SNR is poor to operate in the small

error regime described by the CRLB. Increasing the bandwidth is however detrimental to the

SNR conditions, and increasingT , the size of the gated range window, ultimately decreases

the spatial information the estimates provide. Finally, it can be mentioned that this bound

was applied to the field of elastography by Varghese [109]. The author was able to provide a

qualitative agreement between the standard deviation of strains obtained withsimulations and

the bounds described by Eq.5.20, and concluded that a robust strain estimation can only be

performed in the CRLB regime.

5.2.4 Discussion on the potential improvement of the performance with coded

waveforms

As seen in the previous paragraph, the CRLB corresponds to a small error regime, which can

only be achieved within certain conditions in terms of SNR and decorrelation ofsignals, which

are yet not unrealistic. This is thus an interesting tool to study the potential ofcoded excitation

techniques to improve the performance of time-shift based estimation. Inspection of Fig.5.1

clearly shows that when the SNR conditions are relatively poor, a gain in SNR with coded

excitation is promising in decreasing the relative error, especially for the estimation of small

displacements. For velocity estimation, this corresponds to cases when the PRF cannot be

increased (high depth for example), or low blood flow velocities. Note, however, that in the

case of slow velocity estimation (slow relatively to a given PRF), if the scatterers remain in the

beam forP pulse transmits, it is always possible to crosscorrelate signals that are receivedkTs

apart (k ∈ [2, P − 1]) instead of crosscorrelating adjacent signals to yield a smaller relative

error [85]. The velocity is then simply inferred from:

v =
c∆tk
2kTs

(5.22)
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Figure 5.6: Plot of the CRLB performance bound two different gated range window durations
T = 1 µs andT = 2 µs, Bf = 0.5, for an axial displacement of 0.10λ, against the SNR
conditions and effect of 10 dB SNR improvement.

where∆tk is the shift in time measured when crosscorrelating signals receivedkTs seconds

apart. The graph in Fig.5.6 shows the potential impact of an increase of 10 dB in the SNR for an

axial displacement of 0.10λ. For an SNR of 5 dB and a time duration ofT = 1 µs, the relative

error goes from 30 % to about 10 %, which is quite an important gain in terms ofperformance.

The gain observed forT = 2 µs is not as large, but remains significant. Realistic gains in SNR

for some coded waveforms over CF pulses of different cycles were presented in section 3.3.4

(Chapter 3). Since crosscorrelation is a wideband estimation scheme, a 4 cycles CF pulse is

chosen as an appropriate reference to be compared with. The following table reports the gain

in SNR measured over 4 cycles CF pulse, for coded waveforms having a spatial resolution

comparable to or superior to the chosen 4 cycles reference pulse (approximately 0.68 mm,

when using the FWHM and the simulation parameters of section 3.3.4). As can beseen, an

improvement of 5 to 10 dB with coded excitation is quite realistic, even with coded waveforms

having a moderate duration (from 4µs to 10µs). For CFI applications, coded excitation could

thus bring the boost in SNR necessary to perform robust blood flow estimation without the need

to reduce the bandwidth (and thus the spatial resolution) of the transmitted signals.

On the contrary, it appears from Fig.5.1 and Fig.5.6, that for a medium range of SNR (20-30

dB), the performance of the crosscorrelation estimator is not significantly affected by the SNR

conditions and reaches an asymptotic curve which depends on the level ofdecorrelation of
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Coded signal GSNR (dB) Tp (µs) Resolution (mm)
ChirpBf = 0.50 8.91 10µs 0.42
ChirpBf = 1.00 4.41 10µs 0.26
Barker 5 bit 4 cyc. 4.99 4.0µs 0.69
Barker 13 bit 2 cyc. 7.51 5.2µs 0.37
Barker 13 bit 4 cyc. 11.31 10.4µs 0.69

Table 5.1: Different coded waveforms and the SNR improvement they achieve over a 4 cycles
pulse along with their time durationTp, and the spatial resolution, measured as the FWHM of
the compressed pulse. The reference 4 cycles CF pulse has an axial resolution of 0.68 mm

signals and the length of the gated range window used, as previously described. As pointed

out by [96], this means that apart from blood flow applications which typically suffer from low

SNR conditions, the performance of estimation with time shift based estimators is bounded by

the physical decorrelation of signals. As seen previously, decorrelation essentially depends on

the physical deformation of the medium in the volume probed (with potentially a non-uniform

velocity field across the sample volume). Consequently, the use of coded excitation should

not have a major impact on the performance for applications with a moderate to large SNR

(say above 15 dB) (it was shown in Chapter 2 , in particular, that the samplevolume obtained

with a coded waveform after compression is similar to that obtained for a wideband CF pulse,

essentially the axial resolution is perturbed by the range sidelobes, but thetransverse resolution

is the same).

This however is only true in the CRLB regime, and the limitations of this bound, as pointed

out in the previous subsections, may balance this conclusion. A first limitation concerns the

decorrelation of signals, it is not clear whether the simple proposed model fully grasps the

combined impact of physical decorrelation and the SNR conditions on the performance of esti-

mation. A further limitation of [96] is that the crosscorrelation peak search interval was limited

to the Nyquist range and used relatively large time windows (4µs). If a larger interval was

searched and a smaller window used, the crosscorrelation could significantly depart from the

jitter operation mode at a relatively higher SNR than what is observed in [96]. Following the

analysis developed by Weiss and presented in the previous subsection, this depends on theTB

product used. A clear potential performance improvement by coded excitation could thus be the

possibility to achieve the largeTBSNR′ product necessary to operate in a small error regime.

In particular, coded excitation could offer the possibility to increase the bandwidth of signals

(B) while improving the SNR conditions. This would effectively give the ability to measure
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displacements or velocities beyond the Nyquist limit without the need to remove false peaks by

any non-linear processing methods. This could be very useful in blood flow estimations stud-

ies, when aliasing is a factor limiting high temporal resolution. Another potential application is

elastography, which requires the estimation of relatively large displacements(betweenλ/4 and

10λ, according to [89]).

5.3 Study of the performance with simulations

5.3.1 Study of the systematic error introduced by interpolation of the peak of

the crosscorrelation

The necessary interpolation of the crosscorrelation peak can introducea systematic error in the

crosscorrelation estimates. One of the simplest solutions is the parabola fitting method, as intro-

duced in Eq. 5.7, but some other methods have also been considered and studied [90, 110, 111].

The effect of parabola interpolation was also specifically studied in the fieldof strain estimation

[112]. None of these studies, however, has investigated the potential impact of interpolation on

the performance using some other estimators than crosscorrelation. In this section, we propose

to study the bias introduced by the parabola interpolation scheme on the different time-shift

based estimators introduced in subsection 5.1.3. For the SAD and the SSD estimators, the prin-

ciple of interpolation is the same, except that a minimum has to be interpolated instead of a

maximum. Synthetic signals were generated according to the model of section 4.3.2 (Chapter

4), using a 4 cycles pulse, but no noise was added to the signals. The biaswas computed as the

sample mean of the difference between the estimated time delay and the true time delayusing

1000 gated range independent window realisations of lengthT = 1 µs. The same parameters

used in section 4.3.2 were used, and are repeated here for convenience: centre frequencyf0 =

5 MHz, fractional bandwidth of the transducer:Bf = 0.5.

The following graph Fig.5.7 compares the results obtained for the NXC, SSD,SAD and Xsign

estimators for different time delays, expressed as a fraction of the samplingperiod (with the

parameters used the maximum time delay tested corresponds to an axial displacement of 0.10

λ). As can be seen, for all the estimators except Xsign, the bias exhibits a periodical character.

For Xsign and SAD, the parabola can introduce a bias of up to 8-9% in the time delay esti-

mate with the parameters used, depending if relatively small time delays are to be measured.

On the contrary, the bias obtained for the SSD and NXC are very similar, andappear to be
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approximately one order of magnitude below the two other estimators.

Fig 5.8 and 5.9 show some typical outputs of the different estimators as a function of the time

lag, for a simulated axial displacement of 0.1λ, plotted for a gated range window duration

T = 2 µs. It is first noticeable that all these curves exhibit the same periodicity (period of 1/f0

with the time lag), therefore all the estimators tested should be prone to false peak detection in

the presence of poor SNR conditions. A potential explanation for the observed differences in

the performance of the parabola interpolation can be explained by the factthat theRSAD and

RXSign functions exhibit a much sharper peak than theRNXC andRSSD . The curves seem to

demonstrate a singularity at their extremum (discontinuity in the first derivative of the curve),

that may not be well interpolated by a smooth parabola curve. To test this hypothesis, a new

interpolation scheme is proposed which simply relies on a linear interpolation of the functions

at their extremum. Fig 5.10 shows the basic geometry when the minimum of the curvehas to be

interpolated (case of SAD). The interpolated minimum of the curve is at point A, the position of

which is found so that the pointsR(lcoarse−1), A and B form an isosceles triangle. This yields

the following laglfine for the position of the interpolated minimum of the curve at point A:

lfine =







lcoarse +
R(lcoarse − 1) − R(lcoarse + 1)

2R(lcoarse − 1) − R(lcoarse)
if R(lcoarse − 1) > R(lcoarse + 1)

lcoarse if R(lcoarse − 1) = R(lcoarse + 1)

lcoarse −
R(lcoarse + 1) − R(lcoarse − 1)

2R(lcoarse + 1) − R(lcoarse)
if R(lcoarse − 1) < R(lcoarse + 1)

(5.23)

The result of the implementation of this interpolation scheme is shown in Fig.5.11 andFig.5.12.

In the case of the SAD estimator, a clear improvement is observed; the systematic bias obtained

is even better than to that observed for SSD and NXC with the parabola interpolation method,

and is less than 1% even in the worst case. For the XSign estimator however,the improvement

provided by the new interpolation scheme is far less obvious.

5.3.2 Analysis of the statistical performance with a matched filter at the receiver

with simulations

In this section, the statistical performance of the four estimators is tested under different SNR

conditions, and for four different axial displacements: 0.05λ, 0.10λ, 0.20λ, and 0.40λ, when
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Figure 5.7: Comparison of the bias introduced by parabola interpolation forthe four tested
estimators. Each point represents the average bias computed with simulations over 1000 inde-
pendent realisations.
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Figure 5.11: Comparison of the bias introduced by parabola interpolation for SSD and NXC
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a matched filter is implemented at the receiver. The set-up of the simulations is similarto sec-

tion 4.3.2, except that a CF 4 cycles pulse is used as a reference to computethe SNR conditions

after the matched filter. Note that similarly to the previous simulations with phase-shift based

estimators, all sources of decorrelation between successive received signals are neglected. The

estimation is performed using only two simulated received signals. The estimatorswere im-

plemented according to subsection 5.1.3, into FORTRAN subroutines called byMATLAB to

accelerate the computations. The interpolation schemes chosen were the parabola interpolation

for the SSD and NXC estimator and the new proposed linear interpolation scheme for the SAD

and the XSign estimator. The interval of search of the extrema of the functions were restricted

to [− 1
2f0

, + 1
2f0

], for axial displacements values of 0.10λ and 0.20λ and to [− 1
f0

, + 1
f0

] for an

axial displacement of 0.40λ. Since we are interested in potential gains in resolution as well,

the gated range window duration was set to 1µs, which is a relatively low value, leading to a

potential good axial spatial resolution. For the following graphs we use thesame definition of

relative error as in Chapter 3, i.e. the ratio of the standard deviation of displacement estimates

to the actual displacement.

Fig.5.13 reports the results obtained for a small and a medium displacement (0.05 λ and 0.10

λ ). The four estimators perform very similarly in terms of relative error and bias, the Xsign

performs slightly worse than the three others. These observations are coherent with previous

results reported in [94, 92]. For these displacements, the dependence of the performance as

the inverse of the displacement to be estimated is clearly visible: doubling the axial displace-

ment from 0.05λ to 0.10λ halves the relative error. For low SNR conditions, the relative error

is quite important, 50% or more, which shows that crosscorrelation cannot be used to mea-

sure such displacements in this range of SNR without averaging the estimates over more pulse

transmit/receive cycles. In fact a good statistical performance seems to beobtained only for a

medium range of SNR (20 dB). In terms of bias, the estimators are all quite robust (around 10%

in the lowest SNR conditions tested), but again, a very low bias (2% and less) is only achiev-

able for 10 dB or less). A comparison with Fig 5.1 shows a qualitative agreement between the

CRLB and the relative error in the case of an axial displacement of 0.10λ. (Note however that

the simulations take into account the effect of a transducer, whereas the CRLB was derived for

the theoretical case of square spectra, the comparisons are thus only qualitative).

Fig.5.14 reports the results obtained for an axial displacement close to the Nyquist limit (0.20

λ) and a displacement exceeding the Nyquist limit (0.4λ). The relative errors obtained in poor
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SNR conditions are quite high, well above 50% and even higher than for anaxial displacement

of 0.10λ. A comparison of the orders of magnitude predicted by the CRLB in Fig.5.1 clearly

shows that in this region the CRLB is not achieved. The relative bias is also excessively high in

poor SNR conditions compared to the case of smaller axial displacements. These results show

that even in ideal conditions (no decorrelation), robust estimation of displacements close to, or

superior to the Nyquist limit is not possible while using only two pulse/receive cycles if the

conditions are lower than 20 dB. The obtained histograms of the estimates for an SNR of 15 dB

are quite instructive. Even in the case of a displacement of 0.20λ, for which the search interval

of the minimum was restricted to the Nyquist interval, we see that in a significant number of

cases, the boundaries of the interval are detected (corresponding to axial displacements of +/-

0.25 λ), which considerably deteriorates the performance of the estimator both in terms of

relative error and relative bias. In particular it can be seen that for large displacements, the

CRLB cannot be reached for SNR conditions lower than 20 dB. For a larger displacement of

0.40λ, a false peak is detected, at−0.10λ, which is separated from the true peak byλ/2. This

is coherent with the theoretical analysis performed.

Arguably, and as pointed by Jensen [107], the relative error bears only little information con-

cerning the performance of the estimators in these latest cases, because false peaks introduce

large errors. Following Jensen’s approach in [107], we may define a correct detection proba-

bility, as the probability that the estimated value falls between plus or minus 0.05λ around the

true value. Fig 5.17 reports the measured probability over 1000 realisationswith simulations

for the NXC estimators, an axial displacement of 0.40λ, and varying the gated range window

length. Clearly, the probability of correct detection varies with the gated range window du-

ration. For the shortest window duration tested, the probability of correctdetection becomes

maximal only for SNR values superior to 20 dB. Finally, it is interesting to notice that for these

relative large axial displacements, the Xsign estimator offers lower performance than the three

other estimators, which doesn’t seem to have been previously reported inother studies. It sug-

gests that in spite of its simplicity, this estimator may not be used to measure displacement

or velocities larger than the Nyquist limit, at least in poor to moderate SNR conditions SNR

and with the short time duration window tested (1µs). The SAD, SSD and NXC estimators

all compare similarly. Since SAD is the estimator with the potential lowest hardwarecost (no

multiplications involved), this is the estimator chosen for comparison with coded excitation in

the next subsection.

123



Time-shift based estimation with coded excitation

10 20 30
0

50

100

150

SNR in dB

R
el

at
iv

e 
er

ro
r 

in
 %

δ
axial

 = 0.05 λ

NXC
SAD
SSD
XSign

10 20 30
−15

−10

−5

0

5

δ
axial

 = 0.05 λ

SNR in dB

R
el

at
iv

e 
B

ia
s 

in
 %

NXC
SAD
SSD
XSign

10 20 30
0

20

40

60

80

SNR in dB

R
el

at
iv

e 
er

ro
r 

in
 %

δ
axial

 = 0.10 λ

NXC
SAD
SSD
XSign

10 20 30
−15

−10

−5

0

5

δ
axial

 = 0.10 λ

SNR in dB

R
el

at
iv

e 
B

ia
s 

in
 %

NXC
SAD
SSD
XSign

Figure 5.13: Up: Comparison of the relative error against the SNR conditions obtained by
simulations for the four different estimators for an axial displacement of 0.05 λ, T = 1 µs.
Down: same with an axial displacement of 0.10λ.
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Figure 5.14: Up: Comparison of the relative error and bias against the SNR conditions obtained
by simulations for the four different estimators and for an axial displacement of 0.20λ, T = 1
µs. Down: same with an axial displacement of 0.40λ.
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conditions of 15 dB, the interval of search of the correlation peak was limitedto [-0.5λ, +0.5
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Figure 5.17: Probability of correct detection of the peak of the normalised crosscorrelation
versus SNR conditions for an axial displacement of 0.4λ.
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5.3.3 Improvement of the performance with coded excitation

This subsection presents the results of the simulations obtained to assess the potential bene-

fits of using coded excitation with time-shift based estimators. As previously mentioned the

SAD was used, because it offers a very similar performance to NXC, fora potentially lower

implementation cost. The same CF 4 cycles pulse was used as a reference, twoLFM chirp

waveforms were used with a duration of 10µs and respective fractional bandwidth (Bf = 0.5

andBf = 0.1). The results obtained for axial displacements of 0.05λ and 0.10λ are reported

in Fig.5.18. A significant gain in performance is obtained for low SNR up to 20 dB. In terms of

bias, the results obtained with the chirps are excellent for all the SNR conditions tested (relative

bias inferior to 1%) in all cases. A slight difference in performance is observed between the

two chirps, the chirp with the fractional bandwidthBf = 0.5 performs slightly better than the

chirpBf = 1.0, which suggests that the performance is driven by the SNR in these conditions

and thus, the coded waveform achieving the highest gain in SNR yields the best performance

(4.41 dB versus 8.91 dB, for respectivelyBf = 0.5 andBf = 1.0, according to table 5.1) . The

results obtained for axial displacements of 0.20λ and 0.40λ are reported in Fig.5.19. The gains

in performance obtained in these cases are very significant over the low range of SNR and some

improvement is achieved up to 25 dB. This confirms that in this case, the use ofcoded excitation

can make the performance of the estimator switch from a large, “false peak”error regime, to a

small error “jitter” regime. This can be interpreted in the light of the theoreticalanalysis by the

fact that the chirp waveforms achieve theTBSNR′ product necessary to operate in the jitter

regime of errors. It can be noticed that in this case the chirpBf = 1.0 performs slightly better

than the chirpBf = 0.5. This analysis is further confirmed if we adopt the same approach as

in the preceding subsection and plot the probability of correct detection for the three different

waveforms in Fig. 5.20.

5.4 Discussion and conclusion

This chapter has presented an up-to-date review of the use of time-shift based estimators in the

context of medical ultrasound applications and their statistical performance. From a theoretical

point of view, an interesting aspect is that the performance of these estimators can achieve

the CRLB for time delay estimation. The CRLB however only describes the performance of

these estimators for relatively high values of SNR, when the errors observed are relatively

small and correspond to small deviation in the location of the correlation peak around its true
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Figure 5.18: Up: Comparison of the relative error and bias obtained by simulations for a CF
4 cycles against the SNR conditions, and two LFM Chirps of durationTp = 10 µs, and re-
spective fractional bandwidthsBf = 0.5 andBf = 1.0 with the SAD estimators for an axial
displacement of 0.05λ, T = 1 µs. Down: same for an axial displacement of 0.10λ.
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Figure 5.19: Up: Comparison of the relative error and bias obtained by simulations for a CF
4 cycles against the SNR conditions, and two LFM Chirps of durationTp = 10 µs, and re-
spective fractional bandwidthsBf = 0.5 andBf = 1.0 with the SAD estimators for an axial
displacement of 0.20λ, T = 1 µs. Down: same for an axial displacement of 0.40λ.
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value. In many cases the crosscorrelation can operate in a much larger error regime, which

is due to false peak detection. This regime of error is to be avoided in most applications,

because it implies the use of non-linear filtering to remove the false peaks, which potentially

also reduces the spatial information provided by the estimates. In particular,it was shown that

the estimation of large displacements (large velocities) above the Nyquist limit in moderate

SNR conditions can be quite difficult. Another potentially important deviation from the CRLB

regime of performance in practise is the physical decorrelation of signals.It is not clear if

the relatively simple model of decorrelation introduced by Walker et al. [96]fully describes

the dependence of the statistical performance on the physical decorrelation of signals found in

practice. On a theoretical ground, it was shown that coded excitation could be useful even in the

CRLB performance regime for SNR values lower than 15-20 dB. The marginof improvement

in terms of relative error appears to be higher for smaller displacements. Even when some

relatively high conditions in SNR are reached, it was also shown that a gainin bandwidth

through the use of wideband coded waveform could be beneficial in termsof performance (not

to mention the gain in spatial resolution itself). For applications benefiting from amoderate to

large SNR (that is most of applications in normal conditions apart from bloodflow estimation),

it is not clear how much coded excitation would be useful, because the CRLBthen shows that

decorrelation is the parameter driving the performance ultimately. Finally, we suggested that

coded excitation could enable to switch from a large error regime (false peak detection) to

a small error regime, even for low SNR conditions, and for large displacements (beyond the

Nyquist limit).

A simulation set-up very similar to that used in the previous chapter was used to study all these

aspects numerically. A first study focused on the systematic error (bias) introduced by the

extremum interpolation step, for four different time-shift based estimators(NXC, XSign, SAD,

SSD). It was shown that the bias exhibits a periodical behaviour with the axial displacement

for the SAD, SSD and NXC estimators. The XSign estimator had an erratic behaviour in our

simulations. It was also shown that the parabola interpolation scheme was notadequate for the

SAD estimator, with an observed relative bias one order of magnitude higherthan for the SSD

and NXC estimators. The reason for this is that the SAD function exhibits a sharp singularity at

its minimum that cannot be interpolated by a smooth curve like a parabola. A new interpolation

scheme based on a simple linear interpolation showed much improved results with the SAD,

with a relative bias reduced down to less than 1% and comparable to the relative bias observed

with SAD and NXC with a parabola interpolation scheme. The statistical performance of all
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these estimators was tested for different range of axial displacements andSNR conditions. It

was clearly shown that the CRLB regime of errors could not be achieved for displacements

close to or superior to the Nyquist limit (0.20λ and 0.40λ, respectively) for SNR conditions

worse than 20 dB, even when the interval of the extremum search was restricted to plus or

minus half a period at the centre frequency. In general, these simulations showed that even in

ideal conditions (no decorrelation between signals) a robust estimation (less than 10 % relative

error) with only two pulse transmit/receive cycles can only be performed for moderate SNR

(20 dB and higher). In some applications, more than two signals can be acquired for averaging

the estimates (depending on the PRF, and the computational cost of the estimation), in some

others, like elastography, only two signals are usually available (a pre-compression and post-

compression signal). It was also noticed that the XSign could only be used for very small

displacements and that the performance of this estimator deteriorates significantly compared to

the NXC estimator when large displacements are to be measured.

Finally, due its relative simplicity, the SAD estimator was used to compare the statistical per-

formance when using coded excitation and conventional CF pulses. LFM chirps were used as

a particular example of coded excitation. For small to moderate displacements (compared to

the Nyquist limit), the performance was observed to be improved significantly for SNR values

lower than 20 dB, which is what was predicted theoretically with the CRLB bound. For larger

displacements, the improvement in performance was very significant, which can be explained

by the fact the gain in SNR and the high bandwidth provided by coded excitation allows to op-

erate in a small error regime, even in poor SNR conditions (and up to 25 dB) and confirms the

points made in the theoretical section. In terms of application, this means that coded excitation

could bring a decisive advantage to CFI systems, enabling robust velocityestimation with only

a few pulses, and enabling work with velocities that are higher than the Nyquist limit (which

means the possibility to work at higher PRF, or at higher range, when the PRF is limited and

aliasing becomes a problem). This could also be interesting for strain estimation applications,

for which the displacements to be measured are quite large. In fact, a study by Liu [113] has

already confirmed with some simulations and experiments the potential of coded excitation for

this type of applications.

131



132



Chapter 6

Experimental study

The aim of this chapter is to provide a complementary experimental study to the work of previ-

ous chapters. The first basic aspect is to demonstrate the feasibility of velocity estimation using

coded excitation with phase shift and time shift based estimation schemes in realconditions,

with effects such as non-linear propagation, frequency dependent attenuation, and physical

decorrelation of signals. A second aspect of this study is to determine whether the use of coded

excitation translates into improved performance of velocity estimators, in agreement with the

results of previous chapters. The first section presents the experimental setup for this study

along with considerations in the design of a rotating phantom. The second section presents the

experimental protocol and some specific considerations taken relating to trigger jitter. Finally,

the third section presents the experimental results obtained. The conclusionand discussion

section sums up the points made and puts these results into perspective.

6.1 Design of a rotating phantom

6.1.1 Choice of a phantom

Phantoms are test objects primarily used to check diagnostic ultrasound equipments perfor-

mance. From a research perspective, phantom studies are also an interesting intermediate step

to validate a new approach or method in a controlled environment before entering a clinical

phase study. Materials with controlled acoustical and mechanical properties have successfully

been developed over the years to mimic human tissue or blood. Flow phantoms withrealistic

physiological parameters have been demonstrated for the study of stenoses in arteries, a good

review can be found in [114] for example. For some other clinical applications, like echocar-

diography, the complexity of tissues and movements of the heart however make the fabrication

of a realistic phantom particularly challenging. Simpler test objects can however be designed

to check some specific aspects of the performance of a new approach in acontrolled environ-

ment. As stated in the introduction chapter (Chapter 1, displacement and velocity estimation
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Figure 6.1: Basic geometry of the rotating phantom.O is the centre of rotation, thez axis is
the axis of the transducer which is at an offsetD from O, and the grey curves represent a very
schematic representation of the focused ultrasonic beam.

techniques in medical ultrasound can be used in a wide range of techniquesand clinical appli-

cations, with some very different physical media probed (viscous liquid in the case of blood

/viscoelastic solid in the case of soft tissues), and very different SNR conditions. With the

general scope of this study, the choice of the phantom was mainly driven by criteria of ease of

implementation with simple and highly controllable movements of the backscattering material.

The rotating phantom was chosen for this study, this is a test object that wasoriginally designed

to test the performance of scanners for Doppler Tissue Imaging applications [115][116]. It was

also used in a recent study published by our lab [117] . The next sectionpresents its geometry

and properties.

6.1.2 Basic geometry and approximations

The phantom consists of a cylinder of backscattering material rotating around its axis. The

basic geometry is reported in Fig.6.1, showing the positioning of the transducer, with an offset

D from the centre of rotation0, and a simplified representation of the spreading of the focused

acoustic beam.

Fig.6.2 examines in more details the displacements of scatterers between two firings. The angle

the phantom has rotated between two firings (during a pulse repetition period) is denoted asφ.

134



Experimental study

A scatterer initially on the axis of the transducer at positionM has moved to the real position

M ′. In fact, if φ is very small, the trajectory of the scatterer can be well approximated by

prolonging the tangent of the circular trajectory until pointM ′′. (Obviously in the figure, the

angles were exaggerated so the approximation does not appear to hold well). The amplitude of

the approximated rectilinear displacement is then:

||
−−−→
MM ′′|| = ||−−→OM || sinφ (6.1)

which can be simplified, using the approximation that for smallφ, sin φ ≈ φ:

||
−−−→
MM ′′|| ≈ ||−−→OM ||φ (6.2)

The figure also shows the axial component of the displacement vector which is the quantity

estimated with ultrasound:

δaxial = ||−→δ axial|| = ||
−−−→
MM ′′|| cos(θ) ≈ ||−−→OM ||φ cos θ. (6.3)

Some elementary geometry shows that:

cos θ =
D

||−−→OM ||
. (6.4)

and thus:

δaxial ≈ Dφ, (6.5)

which proves the remarkable property that the axial displacement probedis completely inde-

pendent of the considered positionM on the z axis of the transducer (that is, it is independent

of the considered depth). The angleθ, made by the approximated linear trajectory with the axis

of the transducer, is however dependent on the position of the pointM . If zm measures the

position ofM with respect to originO′ (projection ofO on thez axis), we have:

tan θ = zm/D (6.6)

Obviously forzm= 0 (scatterers at point0′), θ = 0 and the displacement is purely axial. Eq.6.5

can also be used to obtain some order of magnitudes to make the rectilinear approximation

a posteriori valid. Since axial displacements are usually a fraction of the wavelength (the

maximum non- aliased symmetric interval corresponds to [-0.25λ, +0.25λ]), the comparison
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Figure 6.2: Trajectory of scatterers in the rotating phantom.φ is the angle the phantom has
rotated between two firings. M’ corresponds to the real position of scatterers originally at
point M after rotation, M” is the approximated position.~δaxial is the axial component of the
displacements of the scatterers probed by the transducer.

can be made between a wavelength andD, the validity of the approximation depends on:

λ

D
≪ 1, (6.7)

which implies to set the distanceD relatively large compared to the wavelength.

Finally, in practice, the transducer probes the displacement of scattererspresent in a sample

volume around its axis, which depends on the beam acoustic properties. Fig.6.3 illustrates the

velocity (displacement) dispersion probed in a sample volume. The sample volumeclose to the

focus for a circular single element transducer can be approximated by a cylinder with a diameter

equal to the beam widthBW (equal for instance to the FWHM of the lateral profile of the

transducer beam amplitude), and an axial length set by the range gated window and/or the pulse

duration used and the axial length of the transmitted pulse. In a 2D representation a section of

the sample volume is a rectangle, of widthBW . Assuming that the acoustic focus is set close

to the pointO′, it can be seen as depicted in Fig.6.3 that scatterers entering the sample volume

represented by the rectangle on the scheme will have different different axial displacements

between two firings, because their trajectory are on different radii. A measure of the dispersion

can be computed by the ratio of the difference between the maximum and minimum axial

displacement probed in the sample volume to mean displacement. An approximate value of the
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Figure 6.3: Schematic diagram illustrating the displacement dispersion probedin a sample
volume. The sample volume is schematically represented as a rectangle, of widthBW , the
beam width.

displacement dispersion is thus given by:

Dispersion =
((D + BW/2)φ − (D + BW/2)φ)

Dφ
=

BW

D
(6.8)

SinceBW is fixed for a given transducer, we see that the distanceD controls the dispersion.

6.1.3 Physical implementation

Since modern velocity estimation techniques do not rely on a true Doppler shiftbut rather on

the shift in time or in phase that returned signals experience over severalpulses transmits, two

solutions cana priori be used for a physical implementation of the rotating phantom. One is

based on a continuously rotating phantom, the other is based on a stepping phantom, that is,

the backscattering material is stationary during each pulse transmit/receive.For this study, the

second option was chosen for two main reasons:

• Data acquisition: in a continuous rotating phantom, the system requires relatively fast

data transfer at a rate determined by the PRF (possibly up to 10 kHz), as a consequence,

the amount of data that can be collected is limited by the memory capacity of the data

capture card. On the contrary, in a stepping version of the phantom, the time constraint on

data capture is relaxed, since the phantom can remain stationary for as longas necessary

to collect and transfer data.
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Ingredient % Mass
Demi-water 82.40

Glycerol 11.32
Benzalkonium Chloride 0.92
SiC powder (400 grain) 0.53

Al2O3 (0.3 micron diameter) 0.88
Agar 3.00

Table 6.1: Massic composition of the TMM material used [1].

• Steady rotation. Previous work in our lab has shown that a steady continuous rotation is

quite hard to obtain for the relatively low angular speed required, and accurate measure-

ment needs a fine calibration of the angular speed with an optical encoder.

The backscattering material was made using a standard tissue mimicking material recipe [1],

based on agar, with SiC andAl2O3 scattering particles. The recipe is reported in Table 6.1. In

our particular case, the glycerol was omitted, since it is used to obtain a speed of sound close

to human soft tissue characteristics (c ≈ 1540 m.s−1), and this was not necessary in our study.

The diameter for the cylinder was chosen to be 43 mm. The stepping motor is a standard 7.5

degrees stepping motor (48 steps/revolution) coupled with a gear box of ratio (1:125) (from

McLennan Servo Supplies, UK), yielding an angle step ofφ = 2π/6000 rad that is, 0.06

degree. The backscattering cylinder was mounted on the shaft of the gear box and a circuit

board SAMOTRONIC101 from Saia-Burgess was used to drive the rotating phantom. Fig.6.4

shows a picture of the experimental set-up.

6.2 Acquisition of signals

6.2.1 Triggering and jitter issues

In the context of a lab experiment with a custom acquisition system, specific attention has to be

paid to trigger jitter. In contrast to an integrated scanner in which a single clock is distributed to

the different elements of the acquisition chain, the data capture card and Arbitrary Waveform

Generator (AWG) used for the experiments have their own internal clocks. Because these two

different internal clocks are not synchronised, and have a randomphase relationship, a jitter

(random error) can be introduced in the delay between the instant of firing and the start of sam-

pling of received signals, which can be detrimental for the performance of velocity estimation,

138



Experimental study

Figure 6.4: Picture showing the transducer mounted on a rod attached to an X-Y test rig system,
with the TMM cylinder mounted on the shaft of the stepping motor - gear box ensemble.

especially for low velocities (small displacements). Suppose for instance that the time delay

between signals due to motion to be estimated corresponds to 20% of the Nyquistvelocity (at 5

MHz, this leads to 20 ns time delay), a trigger jitter error of only 2 ns thus introduces a relative

error of 10% in the estimation process (2 ns corresponds to a jitter of one sample at 50 MHz

sampling rate). The acquisition-setup was already presented in Chapter 2 (See Fig.2.1). It was

found that a software triggering solution for the system offered a simple and accurate solution,

suitable for the stepping phantom (since there is no hard time constraint between two pulse

transmits, a software trigger can be used). A command is sent to the capture card to trigger an

acquisition. The capture card issues a trigger signal which is applied to a first AWG, generat-

ing the pulse for transmit. In this experiment, it is also issued to a second AWG, togenerate

the clock signal necessary to drive the stepper motor with a small delay to allowfor complete

signals capture before the rotation occurs. The software enters a waitingloop of predetermined

duration, to allow for the rotation of the phantom, and the whole operation is repeated. The

jitter performance of the system was tested by recording an echo at a fixeddepth generated by

an analog delay line (Ultrasonic echo generator NR 4110, from Nuclear Enterprise). The jitter

was measured as the standard deviation of the random time delays between 1000 successive

echo acquisitions. Fig.6.5 shows the obtained histogram of the estimated time delays by cross-

correlation technique. The obtained jitter is approximately 0.5 ns, which minimises the impact

on the relative error down to 2.5 % in our example case, which is an acceptable value.
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Figure 6.5: Histogram of the random time delays between pulse transmit and data acquisition
measured with echoes from an analog delay line. The system exhibits a goodperformance with
a jitter (standard deviation of delays) of 0.5 ns.

6.2.2 Positioning of the phantom relatively to the beam

The backscattering cylinder was positioned and immersed in the tank full of degassed water.

The transducer described in Chapter 2 (f0 = 5.6 MHz, focal depth 50 mm) was attached to the

X-Y rig system and first positioned with its axis aligned to the centre line of the phantom, this

was done by maximising the amplitude of the echo from the front face of the TMMcylinder.

The transducer was then positioned to set the focus approximately at the centre of the phantom.

Fig.6.6 shows the signal acquired in this position. The strong echo from the front face is clearly

visible, as well as the echo from the back of the phantom. The effect of attenuation on the

speckle signal can also be seen. The speed of sound in the phantom canbe calculated from this

position. The echoes from the front and back face occur at respective timest1 = 40 µs and

t2 = 98µs which corresponds to a distance∆d equal to the diameter of the phantom:

cphantom =
2∆d

(t2 − t1)
≈ 1482 m.s−1 (6.9)

Clearly the speed of sound in the phantom can be considered as equal to the speed of sound

in water, which simplifies the computations for velocity estimation. The transducerwas then

moved laterally to a position corresponding toD = 15 mm (as represented in Fig.6.1). A

signal acquired in this position is shown in Fig.6.7. It can be noted as well thatλ/D ≈ 0.017
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Figure 6.6: Signal acquired from the centre of the phantom, the focus (twoway travel time of
69µs) was set at the centre of rotation. The two echoes from the front face and back face of the
phantom are clearly visible.

with the choice made forD, and thus the approximation of Eq.6.7 is amply justified. It is also

interesting to have an order of magnitude for the displacement dispersion probed in the sample

volume close to focus. Using the result of Chapter 2 concerning the lateralbeam width (BW =

1.1 mm), we find:

Dispersion =
BW

D
≈ 7.3%, (6.10)

which is a small, yet non negligible value in terms of its impact on the statistical performance,

according to results presented in [11].

6.2.3 Experimental protocol

All the velocity data were acquired in the preceding position (D = 15 mm), for two different

axial displacements, and different excitation pulses. Table 6.2 reports thedifferent number of

steps moved by the phantom for each set of data, the angle incrementsφ and the corresponding

axial shifts. LFM chirps were chosen as an example of coded excitation in this study. For each

waveform tested, 1000 signals were acquired, corresponding to 1000rotations of the rotating

phantom for either 2 steps or 8 steps. The transducer was excited with a voltage ofVexc = 150V

yielding a MI of approximately 0.3 (see Chapter 2).
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Figure 6.7: Signal acquired from the phantom in position with an offset from the centreD =
15 mm.

# steps φ(degrees) δaxial (µm) δaxial/λ

2 0.12 31.4 0.12
8 0.48 125.2 0.48

Table 6.2: Number of steps and the corresponding angle increment and axial displacement of
scatterers
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Figure 6.8: Experimental SNR values measured in each gated range window, of duration 1µs,
for different excitation signals.

6.3 Results

6.3.1 SNR gains

For each acquisition with 2 steps rotations, the signals were matched filtered and range gated

(duration 1µs), and the power received in the different range gate was averaged over the 1000

acquisitions. Individual SNR values were then computed for each rangewindow using an

average noise power of the system after the same matched filter was applied to1000 noise

acquisitions of the system (that is, with the transmit off). The SNR values obtained were then

plotted for the different windows. The result is reported in Fig.6.8, with SNRvalues in dB.

Note that average signal power computed in each window is actually the sum of the signal and

noise powers during the acquisition, that is ifS is the backscattered signal power alone andN

the noise power of the system, theSNRexperimental measured experimentally is in fact:

SNRexperimental =
S + N

N
= 1 + SNR (6.11)

However this doesn’t differ too much from the theoretical SNR provided SNR ≫ 1.

Several features can be highlighted from fig.6.8. First, it can be noticed that the SNR condi-

tions decrease steadily (approximately linearly) with depth for range windows corresponding

to signals returned from the backscattering material of the phantom (approximately between
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window number 10 and window number 48). Second, the SNR conditions clearly fall-off down

to 0 dB outside of the scattering region of the phantom for the CF pulses. Onlynoise signals are

recorded in these range windows since ultrasound propagates freely inwater and no backscat-

tering occurs (Note that in theory the SNR in dB should go toward minus infinity sinceS = 0

in these range windows, however, with the experimentally measured SNR, theratio measured

is SNRexperimental = N
N = 1 and logically, a value of 0 dB is found). On the contrary, for LFM

chirps, the level of signal measured is non-null close to the phantom wall because of the range

sidelobes introduced after the matched filter. The level of these signals is approximately 25 dB

lower than the signal received from the TMM. This means that the range sidelobes introduced

after compression clearly limit the dynamic range of the useful signals for displacement estima-

tion if no specific attention is taken to reduce their level in the design of the coded waveform.

Finally, the gains in SNR achieved by coded excitation over conventional pulses are relatively

constant with the increasing range window number (with depth). The gains inSNR were plot-

ted between windows 15 and 45, chosen as representative range windows of the backscattered

signal from the inner TMM of the rotating phantom.

The obtained values were reported in the case of the 4 cycles CF pulse as areference ( Fig.6.9)

and the 8 cycles CF pulse as a reference (Fig.6.10). The mean values were also reported in

these figures as a solid grey line. Table 6.3 also reports these values and compare them with the

theoretical values obtained with the simulations in Chapter 3. Although a direct comparison

cannot be made, because the centre frequency used is different (respectively 5 MHz for sim-

ulations and 5.6 MHz for the experiments), and the spectral properties aredifferent (idealised

Gaussian-shaped spectral response with 50 % fractional bandwidth in the case of simulations,

80 % fractional bandwidth for the transducer used in the experiments), theresults do not differ

much. The relatively high bandwidth of the transducer used for the experiments, and the higher

centre frequency only result in a slight improvement in the gains in SNR measured for chirps

of fractional bandwidthBf = 0.15 andBf = 0.5, compared with simulations. A noticeable

aspect however, is that for a relatively wide bandwidthBf = 1.0 the gains in SNR observed

are significantly lower than predicted by simulations. This suggests that frequency dependent

attenuation may play a significant role in the sensitivity/ resolution trade-off inpractical simu-

lations for wideband coded waveforms. Overall, the results however demonstrate the validity

of the theoretical approach taken in Chapter 3 to analyse the resolution / sensitivity trade-off

with coded excitation.
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GSNR in dB (ref. 4 cycles) GSNR in dB (ref. 8 cycles)
Experimental Simulation Experimental Simulation

Bf = 0.15 15.5 14.5 8.9 8.5
Bf = 0.5 9.9 8.9 3.3 2.9
Bf = 1.0 4.1 4.4 -2.5 -1.6

Table 6.3: Comparison between experimental values and simulations of the gains in SNR pro-
vided by different LFM chirps (duration 10µs, and different fractional bandwidthsBf ) over
CF pulses of length 4 cycles and 8 cycles.
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Figure 6.9: Experimental gains in SNR measured with the CF 4 cycles pulse as areference, the
grey solid lines indicate the mean value, for each of the LFM chirp waveforms.
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Figure 6.10: Experimental gains in SNR measured with the CF 8 cycles pulse asa reference,
the grey solid lines indicate the mean value, for each of the LFM chirp waveforms.

6.3.2 Time shift based estimation

This subsection presents the results of velocity estimation performed on the collected data.

After a matched filter, the signals were range gated (range gated window duration of 1µs) and

the SAD algorithm with the linear interpolation scheme described in Chapter 5 wasapplied.

The interval of search was limited to plus or minus 5 lags of at the sampling rate (50 MHz),

which corresponds to an interval of search in terms of displacements of [-0.28λ, +0.28λ] . An

additional threshold was applied so that no velocity estimation is performed when the signals

are too weak or nonexistent (in the windows of signals corresponding to depths of return from

which no backscattering occurs, the estimation would otherwise be performed on noise signals).

The threshold is specified as a dynamic range DR, which is defined here asthe ratio between

the threshold power levelσ2
threshold to the max power level measured in a range gated window

σ2
max:

DR = 10.log

(

σ2
max

σ2
threshold

)

(6.12)

Fig.6.11 shows the result obtained. Fig.6.11(a) shows the displacement profile obtained with

the 4 cycles CF pulse, each point corresponds to the estimated displacementin a given range

window, averaged over 1000 realisations, and the error bar corresponds to plus or minus one

standard deviation of the estimates over the same 1000 realisations. Since the SNR conditions

were limited to a maximum of 25 dB in the case of the 4 cycles excitation signal (Fig.6.8),
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the threshold was chosen to be set to obtain a dynamic range of 20 dB. The obtained velocity

profile Fig.6.11(a) shows that the standard deviations of the estimates is relatively constant

with an increasing range but the estimation process is visibly degraded afterwindow number

40, which coincides with the SNR conditions becoming lower than 15 dB (Fig.6.8). To obtain

quantitative figures for comparison, a relative error and relative bias were computed for each

range window and averaged over window number 15 to 45 (chosen as representative of the

estimation process for signals coming from the interior of the rotating phantom).This yields

a relative error of 17 % and relative bias of less than 1 %. These values are reported in Table

(6.4). Fig.6.11(b) reports the results for a chirp of fractional bandwidthBf = 1.0. An overall

increased robustness of the estimation process can be observed in the displacement profile,

especially for the range windows between 35 and 45. The relative erroris constant at around 12

%, which is only a small improvement compared to the 4 cycles CF pulse, but the relative error

is more steady, and only starts to degrade after window number 45, which corresponds to SNR

conditions at around 15 dB (Fig.6.8). This result illustrates the potential of coded excitation

to increase the robustness of estimation at large depths when the SNR conditions deteriorate

below 20 dB.

Fig.6.11(c) and 6.11(d) show the same results when rotations of 8 steps were performed. These

correspond to relatively large displacements of 0.48λ, beyond the Nyquist limit (Table 6.2),

the interval of search was restricted, in this case, to 10 lags ([-0.50λ, +0.50λ]). The profile

and statistical performance achieved in the case of the 4 cycles CF pulse shows that a robust

estimation can not be performed in this case. This can be explained by the fact the estimator

operates in a large error regime with false peak detection. In these conditions, the performance

improvement achieved by the LFM chirpBf = 1.0 is massive, with a steady displacement

profile and a relative error of 5.2 %, although this performance visibly slightly degrades after

window 45. This is well illustrated by the histogram of the estimated displacements for window

number 30 in Fig.6.12 and Fig.6.13. A probability of correct detection was defined as the ratio

between the number of estimates lying in the interval [0.43λ, 0.53λ] and the total number of

estimates. The probability of correct detection is only of 0.77 in the case of the4 cycles CF

pulse and is of 0.96 in the case of the LFM chirpBf = 1.0.
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(a) CF 4 cycles, 2 steps
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(b) ChirpBf = 1.0, 2 steps
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(c) CF 4 cycles, 8 steps
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(d) ChirpBf = 1.0, 8 steps

Figure 6.11: Estimated displacement profile with the time-shift based SAD estimator, DR= 20
dB.

2 steps rotations 8 steps rotations
Bias (%) Error (%) Bias (%) Error (%)

4 cycles CF -0.9 17.0 -20.0 42.1
ChirpBf = 1.0 -0.15 11.9 0.4 5.16

Table 6.4: Performance comparison for time shift based estimation between a 4cycles CF pulse
excitation signals and an LFM chirpBf = 1.0.

148



Experimental study

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

50

100

150

200

250

Displacement estimates, as a fraction of λ

N
um

be
r 

of
 o

cc
ur

en
ce

s
Probability of correct peak detection=0.75

Figure 6.12: Histogram of the experimental displacement estimates obtained for the range win-
dow number 30, for a 4 cycles CF excitation pulse, and 8 steps rotations. The probability of
correct detection was measured as the ratio between the number of displacements estimates
lying in the interval [0.43λ, 0.53λ] and the total number of estimates.
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Figure 6.13: Histogram of the experimental displacement estimates obtained for the range win-
dow number 30, for an LFM chirpBf = 1.0, and 8 steps rotations. The probability of correct
detection was measured as the ratio between the number of displacements estimates lying in
the interval [0.43λ, 0.53λ] and the total number of estimates.
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6.3.3 Phase shift based estimation

This subsection reports the results obtained when phase shift based estimators were applied to

the collected data. The same range gated window duration was used (1µs). Fig. 6.14 reports

the displacement profiles obtained. Table 6.5 reports the results in terms of relative error and

bias, computed, as in the previous subsection, by averaging the individual relative error and

bias from window number 15 to 45. Fig.6.14(a) and 6.14(b) reports the results obtained when

applying the 1D autocorrelator respectively for an 8 cycles CF pulse andfor an LFM chirp of

fractional bandwidthBf = 0.5. The SNR conditions for the 8 cycles CF pulse reach a level 35

dB (Fig.6.8), the DR was thus extended to 26 dB, to set the threshold. The packet size used was

Np = 4 transmit/receive cycles. Note, as a consequence, that the statistics in this case are only

made using only 250 estimates for each window (since a total of 1000 signals were acquired).

A relative performance of 10.3 % is achieved for the CF 8 cycles pulse andslightly degrades

for the last windows, the bias is relatively small (1.7 %, on average). The performance achieved

with the chirp is more steady across the profile, but yet significantly worse than for the 8 cycles

pulse (relative error of approximately 15 %). Interestingly, however, the bias is actually better

(-0.25 %, on average). It can be noticed as well that the first displacement estimates in the

windows 1 to 5 are non-null, which means that some signal is detected in this region, as a

consequence of the presence of the signals introduced by the range sidelobes, and the higher

DR (26 dB). These results confirm that in the region of SNR tested, and witha small limited

packet size (Np = 4), the performance of estimation with the 1D autocorrelator is not improved

with coded excitation, even when using a moderatly wideband coded waveform.

The next figures Fig.6.14(c) and 6.14(d) show the same results when the 2D modified autocor-

relation instead of the 1D autocorrelator is applied to the data (the full estimator was applied,

including the RF centre frequency estimation part, see Chapter 4). The performance observed is

significantly better than with the 1D autocorrelator. A similar trend is observed when compar-

ing the 8 cycles CF pulse and the LFM chirp, except that this time, the performance difference

between the CF pulse and the chirp is very small (respectively 7.9 % and 8.4 %for the CF pulse

and chirp). Finally, a last set of results is presented in Fig. 6.14(e) and 6.14(f) with the modified

autocorrelator and a packet size limited toNp = 2. The performance is logically deteriorated

compared to the caseNp = 4, but this time, the performance obtained in terms of relative error

is better in the case of the LFM chirp (approximately 11 % against 16 % for the CF 8 cycles

pulse). Note as well that the relative bias is increased in the case of the chirp (2.3 %).
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(a) 1D autocorr., CF 8 cycles,Np = 4
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(b) 1D autocorr., chirpBf = 0.5,Np =

4
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(c) Mod. autocorr., CF 8 cycles,Np =

4
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(d) Mod. autocorr., chirpBf = 0.5,
Np =4
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(e) Mod. autocorr., CF 8 cycles,Np =

2
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(f) Mod. autocorr., chirpBf = 0.5,
Np = 2

Figure 6.14: Estimated displacement profile for 2 steps rotations, with the phase-shift based
estimators, DR= 26 dB.
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1D autocorr,Np = 4 Mod. autocorr,Np = 4 Mod. autocorr,Np = 2
Bias (%) Error (%) Bias (%) Error (%) Bias (%) Error (%)

CF 8 cycles 1.7 10.3 1.6 7.9 1.6 17.3
ChirpBf = 0.5 -0.25 15.3 -0.45 8.4 2.9 11.9

Table 6.5: Average performance comparison for phase shift based estimation between a CF
pulse 8 cycles excitation signals and an LFM chirpBf = 0.5.

6.4 Discussion and conclusion

The SNR analysis showed that the experiments were performed in moderate togood SNR con-

ditions (between 10 and 40 dB) depending on the waveform. This experiment has confirmed

the simulation results on the general trade-offs in sensitivity and resolution offered by coded

excitation waveforms compared to typical CF conventional pulses (4 cycleschosen as a refer-

ence for wideband estimation techniques and 8 cycles chosen as a reference for narrowband

techniques). Although the parameters used in the experiments and simulations were slightly

different, the figures obtained experimentally are in qualitative agreement. The gains obtained

experimentally with a high bandwidth transducer (80 % fractional bandwidth)and at a slightly

higher centre frequency (5.6 MHz,instead of 5 MHz in the simulations) were observed to be

higher than the simulation gains, except for the wideband chirps (Bf = 1.0). The significantly

smaller values in this latter case suggests that frequency dependant attenuation puts a more

severe constraint on the resolution/sensitivity trade-off.

The experimental displacement estimations have proved the feasibility of velocity estimation

with coded waveforms, both with narrowband and wideband methods and confirmed some

aspects of the statistical performance obtained with coded excitation, compared to conventional

pulses. The limitations in terms of dynamic range, if no specific measures are taken to reduce

the range sidelobes was also demonstrated. In general, the experiments performed showed that

for a medium range of SNR (above 15 dB), the performance is hardly affected by the SNR

conditions, a fact that was pointed out in the previous chapters with theoretical and simulations

approaches. As a consequence, relatively steady profiles were obtained with range in these

experiments. The performance in terms of relative error was however bounded around 10 %,

which is significantly higher than the figures obtained with simulations (for SNR above 20 dB,

relative errors below 5 % were obtained, even for displacements within the Nyquist range). It

is not clear whether decorrelation of signals or the displacement dispersion is the source of this

limitation in the perfomance observed experimentally. Further studies could be carried out to
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assess the relative contribution of these factors to the limitations in performance.

The improvements in performance with coded excitation were relatively modestin the range

of SNR tested, for a displacement in the Nyquist range. It should be noticed, however, that

improvements in spatial resolution are still possible with coded excitation. Indeed in each of

the comparisons made, the coded pulse had a better spatial resolution than thereference CF

pulse. Moreover, it was shown that coded excitation had the ability to enhance the performance

for long ranges when the SNR conditions drop below 15 dB with wideband strategies. The most

striking improvement, as predicted with simulations in the previous chapter, and well confirmed

by the experiments, is the ability to perform robust estimation beyond the Nyquist limit with

chirps and a relatively small range gate duration (1µs). For narrowband strategies, the benefits

of coded excitation in terms of relative error are limited if the packet size is superior or equal

to 4, but a reduction in the relative error is always possible even above 15 dB if the packet size

is reduced to 2.

Finally, in terms of practical applications, it is difficult to infer any definitive conclusion from

these results for any clinical situations. This was not the intent of the study,as clearly stated in

the introduction. Some elements need to be pointed out to put these results in perspective:

• The MI used in this experiment was quite low, and it is likely that with careful electronic

design, scanners are able to achieve much better SNR than the relatively high bandwidth

custom receiver used in the experiment. On the other hand, the depth of penetration was

quite limited (approximately 3 cm) and the centre frequency used (5.6 MHz) is probably

at the high-end of the usual range of frequencies used in practice, which maximises

attenuation in tissue.

• No specific attention was paid to range sidelobes level in this study. It is not sure what

the needs are in terms of dynamic range in practical situations but if sidelobesreduction

needs to be achieved, this may well impact the achieved resolution / sensitivitytrade-off

(Chapter 3).

• The complexity of movements and the possible resulting large decorrelation of signals in

real situations probably needs to be taken into account for its impact on the performance,

even in relatively high SNR conditions.

Finally, a similar study could have been done with flow phantoms, to check the performance
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obtained with coded excitation in lower SNR conditions. Particular attention couldbe paid to

the impact of range sidelobes, with clutter rejection filters.
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Chapter 7
Conclusion

This chapter presents an organised synthesis of the results obtained in thisthesis, and suggests

future directions of work. The first section concludes on the potential improvements in sen-

sitivity and resolution offered by coded waveforms for velocity estimation applications. The

second section develops the aspects of statistical performance improvement and the choice of

velocity estimation strategy with coded excitation. Finally, the last section gives an overview

of the possible future directions of work and future applications.

7.1 Improvement in sensitivity and resolution

Coded excitation techniques were introduced in the 50’s in the context of radar applications,

where the ideal situation of reference consists of an echo signal from asingle target, embedded

in the white thermal noise of the receiver. This approach was used in Chapter 2 to study exper-

imentally the echoes generated by a wire target, with an single element ultrasonictransducer.

Due to the relatively limited bandwidth available with an ultrasonic transducer, theexperimen-

tal SNR improvements measured after compression by a matched filter were shown to differ

from the expected theoretical values by up to 5 dB in the case of very wideband waveforms.

This was simply explained by the fact that as the bandwidth of the coded excitation signal is in-

creased, a smaller fraction of the signal energy is transmitted. After compression of the signals

using a matched filter, experimental point spread functions were obtained when the wire target

was positioned at the focus. Inspection of the results showed that the obtained axial resolutions

were in agreement with the bandwidth of the waveforms (the more wideband thewaveform,

the better the axial resolution). It was observed that the sample volumes hardly differed from

the ones obtained with CF conventional pulses after compression. In particular, the obtained

lateral resolution was very similar. The essential difference is a perturbation in the axial direc-

tion due to the introduction of range sidelobes. The 2D range sidelobes patterns were also also

observed to be different for the two types of coded waveforms investigated (LFM chirps and

Barker codes).
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A single target echo signal is a good model to study the axial resolution of a pulse Doppler

system. This model is however not very adapted to discuss the potential improvement in sen-

sitivity with the "multi-target" speckle signals encountered in velocity estimation applications.

A model of signal was introduced in Chapter 3 to develop expressions of the SNR conditions

adapted to this situation. From these expressions, the potential improvements insensitivity and

resolution offered by coded excitation techniques could be studied. CFI applications were cho-

sen as the application of reference for the discussion. It was shown theoretically that the ability

to improve the sensitivity/resolution trade-off relies on the possibility to increase the average

transmitted intensity. Specific limitations in terms of intensity limits were also pointed out in

the discussion. In velocity estimation applications, the relatively high frequency repetition rate

used (up to 10kHz), and potentially the type of waveform used (long narrowband CF pulses in

the case of CFI applications) lead to relatively high average (temporal average) transmitted in-

tensity. As a consequence, in many situations of practical relevance, this parameter may be the

fundamental limitation in improving the sensitivity. This differs significantly from the case of

B-mode imaging applications, for which the peak intensity is the limiting factor (more exactly

the rarefation peak pressure, associated with cavitation effects).

In the cases where some headroom for increasing the average transmittedintensity exists, some

simulations were performed to assess quantitatively the potential improvements inaxial reso-

lution and the SNR conditions. It was shown that an improvement in both sensitivity and axial

resolution required an increase of the transmitted intensity by a factor of five(the reference CF

pulse was 8 cycles long, chosen as a representative of narrowband pulses used in CFI applica-

tions), with coded waveforms of a few microseconds in duration. The gainsin SNR in these

cases were moderate (2-3 dB at the most), yet the obtained gains in resolution could potentially

be interesting in the context of visualising small vessels.

Some further considerations for a practical implementation of coded excitationin a CFI system

were mentioned. A brief comparison of LFM chirps and Barker codes as coded excitation

candidates was made. Barker codes are easier to implement in terms of hardware, especially

for a solution involving baseband decoding, but since the time-bandwidth product of these

waveforms is fixed, the sensitivity/resolution trade-off appeared in turn tobe less flexible than

in the case of chirps. The ultimate sensitivity/resolution trade-off may also depend on factors

like frequency-dependent attenuation and possible requirements in terms of sidelobe levels, due

for instance to clutter signals. These effects were not taken into accountby the simple model
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adopted in the simulations. In spite of the simplicity of the model used, experimentaldata

obtained in Chapter 6 gave a good support to the analysis performed for the derivation of the

SNR conditions. Furthermore, experimental results have clearly presented the limitations in

terms of the dynamic range of signals imposed by the range sidelobes level of the compressed

waveforms in practice.

Thus, this work has highlighted and demonstrated some essential trade-offs and considerations

to be taken into account for the implementation of coded excitation for velocity estimation

applications. It is worth mentioning here as well, as a conclusion of this section, that although

specific attention was paid to CFI applications, the analysis of the sensitivity/axial resolution

performed applies in general to incoherent scattering situations, and someof the results could

easily be applied to other imaging modalities, like power colour imaging, for instance. The

next section reviews the results concerning potential improvements in statistical performance,

and concludes on the choice of a strategy of estimation with coded excitation.

7.2 Improvement in statistical performance and choice of a veloc-

ity estimation strategy with coded excitation

In line with the objectives of this thesis, the potential improvements in the statistical perfor-

mance of velocity estimators with the use of coded excitation were also studied. The impor-

tance of the statistical performance was emphasised in the introduction chapter (Chapter 1) in

relation to providing reliable quantitative values for good diagnosis. This mayeven become

more important in the future as new advanced applications rely on accurate velocity or dis-

placement estimates to infer more complex parameters (for instance strain, strain rate or even

wall shear stress in arteries). If these estimates are not reliable, these new methods may suffer

from a lack of reproducibility. A broad classification of velocity estimators was made in this

thesis as phase shift based narrowband estimators and time-shift based wideband estimators.

The possibility of using coded waveforms with the long used, computationally efficient 1D au-

tocorrelator was demonstrated first in Chapter 4 with simulations and then experimentally in

Chapter 6. A theoretical expression was first proposed for the analysis of the performance of

the 1D autocorrelator, which was adapted from previous works [79, 74, 11]. Some limitations

were pointed out in the use of narrowband estimators with coded excitation. First, due to the

narrowband approximation, the performance of these estimators in medium SNR conditions (15
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dB) is dominated by the bandwidth of the transmitted pulse (the more narrowband, the better

performance). The use of relatively wideband coded waveforms in this case is then detrimental

to the statistical performance of the estimator. As noted in the previous section,long narrow-

band pulses used with this type of estimator already provide a good sensitivity, which means

that the margin of improvement in SNR is limited. Moreover, for a packet size above 10, these

estimators provide very robust estimates (relative error of 10%) even in degraded SNR (10 dB

and less). These aspects were confirmed with a simulation study. The simulations also showed,

however, that some potential may exist with low SNR conditions, and with a moderate packet

size ( below 10 pulse transmit/receive cycles), velocity estimation could then for instance be

performed faster with coded excitation (increase in the frame rate), for anequivalent statisti-

cal performance and increased axial resolution. In particular, very good results were obtained

with the 2D modifided autocorrelation algorithm [11], with a very small packet size (4 pulse

transmit/receive cycles). In all these simualtions, however, the hypothesisthat an increase in

the average transmitted intensity is permitted was made.

The situation is quite different in the case of wideband time-shift based estimation schemes. In

this case, the use of wideband coded waveforms is a winning situation both in terms of sensitiv-

ity (the margin of improvement in sensitivity over a relatively wideband 4 cyclesCF pulse can

be realistically of 10 dB as shown in the curves obtained in Chapter 3) and in terms of statistical

performance. Chapter 5 has focused in depth on the statistical performance of these estimators,

which is quite complex. The analysis framework of the Cramer-Rao Lower Bound (CRLB) is

an effective tool to predict the performance of time-shift based estimatorsin relative high SNR

conditions, or more precisely, when a highTpBSNR′ can be achieved (SNR′ only depends on

the SNR, and was defined in Chapter 5). The product of these values determines if the estimator

operate in a low regime of error (CRLB), or in a large error regime with falsepeak detections.

A potential benefit of using coded excitation appears in the situations when false peak detec-

tion occurs with conventional pulses, theTpBSNR′ product can then be increased with coded

waveforms to operate in a small error regime. This was shown to be interestingin the context

of medical ultrasound, when displacements or velocities above the Nyquist limitneed to be

estimated. The simulations tested velocity estimation with a packet size of 2 and different time

shift based estimation schemes. It was shown that the Sum of Absolute Difference algorithm

offered very similar performance to the gold standard of crosscorrelation in terms of relative

error and bias, provided a specific interpolation scheme is chosen. A simpleinterpolation al-

gorithm was proposed taking into account the shape of the curve at its minimum(sharp peak
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with a discontinuity in the first derivative). Due to its simplicity of implementation, this com-

bination of estimator/interpolation method was chosen in both simulations and experiments.

The results obtained (in Chapter 5 for the simulations and in Chapter 6, for the experimental

data with a stepping rotating phantom) confirmed the potential of coded excitationto estimate

displacements above the Nyquist limit with a dramatic improvement in statistical performance

compared to conventional pulses.

Finally, to conclude this section, it appears that wideband estimation techniques are the method

of preference to be used with coded excitation. Although this result might appear trivial, this

an interesting point to make at this stage of the development of coded excitationtechniques,

as recent papers have discussed implementations of coded excitation systems for CFI, without

specifically discussing the type of estimation strategy (and implying the use of thestandard

1D autocorrelator). As mentioned in Chapter 5, the uptake of wideband estimation techniques,

although superior in terms of performance, has been very slow in scanners for CFI techniques.

It is not clear how many scanners use these techniques nowadays. Thehypothesised reasons

for this situation are the good robustness of the 1D autocorrelator in poor SNR conditions (for

a packet size of 10 or more) , and the good sensitivity of narrowband CFpulses, which provide

a better sensitivity than wideband waveforms. The hypothesis is made in this conclusion that

coded excitation may trigger the shift to wideband excitation techniques for CFI in the coming

years, providing a better performance, the possibility to operate beyond the Nyquist limit, in-

creased frame rates (possibility of using only 2 pulse transmit/receive cycles), and an equivalent

sensitivity to conventional narrowband methods. This thesis should provide a good framework

to understand the motivations and the quantitative trade-offs in this choice ofimplementation.

In terms of technology, this also means that a significant additional constraint is put on the

complexity and computational power requirement of scanners, but it is very likely that modern

technologies can handle these challenges within reasonable costs.

7.3 Future works and potential applications

In the light of the previous conclusion, future work could focus on comparing conventional

CFI implementations, with an implementation based on a wideband estimation technique and

coded excitation. A significant effort also has to be made in terms of acoustical dosage, to

clearly identify specific practical applications for which headrooms exist toincrease the average

transmitted intensity. This will clearly influence the potential margins of improvement with
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coded excitation techniques. The benefits of coded excitation could also bequantified more

precisely with a prototype implementation in a scanner. Existing measurement techniques and

sensitivity indices [118] developed in the past to benchmark scanners could be very useful

in this matter to help comparing systems with conventional excitation and coded excitation.

Some specific aspects need also to be studied with a scanner implementation, like the influence

of clutter signals, the level of sidelobes required, and frequency dependent attenuation. All

these aspects may limit significantly the sensivity/axial resolution trade-off offered by coded

excitation in practical situations.

The possibility of estimating displacements and velocities beyond the Nyquist limit maybe

very interesting to study high velocities, especially when the PRF cannot be increased at high

depths. This may also be interesting in some other situations, for which large displacements

have to be estimated, like in elastography. In this case, the benefits of using coded excitation

have already been demonstrated in a study [113]. More generally, coded excitation could also

be applied to increase the centre frequency of operation in some applications(if the centre

frequency is doubled the Nyquist limit is then correspondingly halved), thiswould yield an

increased axial resolution (for a constant fractional bandwidth), whilecoded excitation could

compensate for the excess attenuation due to frequency-dependent attenuation, and enable re-

liable velocity estimation beyond the Nyquist limit. Finally, applications based on synthetic

aperture imaging for blood flows could also be very interesting. These techniques suffer from

relatively poor SNR because only a few elements from an array transducer are used on transmit,

but could in turn increase the frame rates. Promising developments of synthetic aperture tech-

niques for CFI using coded excitation combined with a crosscorrelation estimation technique

were demonstrated [48]. Ultimately, fast and accurate 2D images of blood flows using coded

excitation seem to be in sight for the future scanners.
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List of publications

Phase Domain Velocity Estimation in Medical Ultrasound with Linear Frequency Modulated

Chirps: A Simulation Study. Lamboul B., Bennett, M.J., Anderson, T., McDicken, N.W., IEEE

Ultrasonics Symposium, p1251-1254, New-York, NY, 28-31 Oct. 2007.

Basic Considerations In the Use of Coded Excitation For Colour Flow Imaging Applications.

Lamboul B., Bennett, M.J., Anderson, T., McDicken, N.W., IEEE Trans. Ultrason. Ferr. Freq.

Contr., vol.56, no.4, pp 727-737, April 2009.
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[93] A. Fertner and A. SjÃűlund, “Comparison of various time delay estimation methods by

computer simulations,”IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-34, no. 5,

pp. 1329–1330, 1986.

[94] F. Viola and W. Walker, “A comparison of time-delay estimators in medical ultrasound,”

IEEE Trans. Ultrason., Ferroelect.,Freq.Contr., vol. 50, no. 4, pp. 392–401, 2003.

[95] S. Langeland, J. D’hooge, H. Torp, B. Bijnens, and P. Suetens, “Comparison of time-

domain displacement estimators for two-dimensional rf tracking,”Ultrasound Med Biol,

vol. 29, pp. 1177–1186, 2003.

[96] W. Walker and G. Trahey, “A fundamental limit on delay estimation using partially corre-

lated speckle signals,”IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency

Control, vol. 42, pp. 301–308, 1995.

[97] R. Moddemeijer, “On the determination of position of extrema of sampled correlators,”

IEEE Trans. Signal Processing, vol. 39, pp. 217–219, 1991.

[98] G. Carter, “Coherence and time delay estimation,” inProc. IEEE, vol. 75, no. 2, 1987,

pp. 236–255.

[99] A.M.Quazi, “Fundamental limitations in passive time delay estimation- part ii: Wide-

band systems,”IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-29, no. 3, pp. 527–

533, June 1981.

[100] M.Azaria and D.Hertz, “Time delay etsimation by generalized cross correlation meth-

ods,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-32, no. 2, pp. 280–285, 1984.

171



Bibliography

[101] A. Weiss and E.Weinstein, “Fundamental limitations in passive time delay estimation-

part i: Narrow-band systems,”IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-31,

no. 2, pp. 472–486, April 1983.

[102] ——, “Fundamental limitations in passive time delay estimation- part ii: Wide-band

systems,”IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-32, no. 2, pp. 1064–1078,

Oct. 1984.

[103] G. S. G. Jacovitti, “Discrete time techniques for time delay estimation,”IEEE Trans. Sig.

Proc., 1993.

[104] S. Foster, P. Embree, and W. O’Brian, “Flow velocity profile via time-domain correla-

tion:error analysis and computer simulation,”IEEE Transactions on Ultrasonics, Ferro-

electrics and Frequency Control, vol. 37, no. 2, pp. 164 – 175, 1990.

[105] J. Bendat and A. Piersol,Random Data: Analysis and Measurement Procedures, 2nd ed.

Wiley: Chichester, 1986.

[106] I. Cespedes, J. Ophir, and S. K. Alam, “The combined effect ofsignal decorrelation and

random noise on the variance of time delay estimation,”IEEE Transactions on Ultrason-

ics, Ferroelectrics and Frequency Control, vol. 44, pp. 220–225, 1997.

[107] J. A. Jensen, “Range/velocity limitations for time-domain blood velocity estimation,”

Ultrasound Med Biol, vol. 19, pp. 741–749, 1993.

[108] J. Ianniello, “Time delay estimation via cross-correlation in the presence of large estima-

tion errors,”IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-30, no. 6, pp. 998–1003,

1982.

[109] T. Varghese and J. Ophir, “A theoretical framework for performance characterization of

elastography: The strain filter,”IEEE Trans. Ultrason., Ferroelect.,Freq.Contr., vol. 44,

no. 1, Jan 1997.

[110] I. Cespedes, Y. Huang, J. Ophir, , and S. Pratt, “Method for estimation of subsample time

delays of digitized echo signals,”Ultrason. Imaging, vol. 17, pp. 142–171, 1995.

[111] X.Lai and H.Torp, “Interpolation methods for time-delay estimation usingcross-

correlation method for blood velocity,”IEEE Transactions on Ultrasonics, Ferroelectrics

and Frequency Control, vol. 46, pp. 277–290, 1999.

172



Bibliography

[112] S. Alam and J. Ophir, “The effect of nonlinear signal transformations on bias errors in

elastography,”IEEE Trans. Ultrason., Ferroelect., Freq.Contr., vol. 47, no. 1, Jan 2000.

[113] J. Liu and M. F. Insana, “Coded pulse excitation for ultrasonic strain imaging,” IEEE

Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 52, pp. 231–

240, 2005.

[114] P.R.Hoskins, “Simulation and validation of arterial ultrasound imaging and blood flow,”

Ultrasound in Med. and Biol., vol. 34, no. 5, pp. 673–717, 2008.

[115] A. Fleming, W. N. McDicken, G. Sutherland, and P. Hoskins, “Asssessment of colour

doppler tissue imaging using test-phantoms,”Ultrasound in Med. and Biol., vol. 20,

no. 9, pp. 937–7951, 1994.

[116] K.Myitake, M.Yamagishi, N.Takaneda, M.Uematus, N. Yamazaki, Y. Mine, A. Sano,

and M.Hirama, “New method for evaluating left ventricular wall motion by color-coded

tissue doppler imaging: in-vitro and in-vivo studies,”J. Am. Coll. Cardiol, vol. 25, no. 3,

pp. 717–724, 1995.

[117] M. Bennett, S.McLauglin, T. Anderson, and W.N.McDicken, “Error analysis of ultra-

sonic tissue doppler velocity estimation techniques for quantification of velocityand

strain,”Ultrasound in Med and Biol., vol. 33, no. 1, pp. 74–81, 2007.

[118] J. Browne, A.J.Watson, P. Hoskins, and A. Elliott, “Validation of as sensitivity perfor-

mance index test protocol and evaluation of colour doppler sensitivity fora range of

ultrasound scanners.”Ultrasound in Med and Biol., vol. 30, no. 11, pp. 1475–1483,

2004.

173


