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Abstract 

Using objects to structure distributed systems is becoming an increasingly popular 

paradigm. This thesis examines some of the fundamental problems associated with 

resource provision in such systems. A conceptual framework for the work is created by 

the development of a reference model for object oriented distributed systems. Within 

this framework, several aspects of resource provision are examined in detail. In each 

case, an object oriented solution is sought rather than applying existing, process based 

solutions. 

The problem of object construction in a heterogeneous environment is addressed, 

leading to the development of a distributed transformation algorithm for the automatic 

construction of object representations. A novel scheduling mechanism is developed 

based upon statistical hypothesis testing. Two applications of this mechanism are 

simulated in detail : the assignment of invocation messages to object instances, and the 

suppression of redundant status update messages. The concept of 'virtual properties' is 

introduced, leading to the development of virtual templates as a re-usable mechanism 

for endowing objects with properties such as resilience and persistence. The separate 

resource provision issues addressed are then drawn together to demonstrate how the 

techniques developed can be used to satisfy users' resource requirements. 
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Chapter 1 

Object Oriented Distributed Systems 

The phrase 'object oriented distributed system' is ambiguous as both 'ob-

ject orientation' and 'distribution' have many interpretations. This chapter 

provides an introduction to both areas, establishing the interpretations as-

sumed throughout this thesis. The range of distribution for the three 

fundamental components of hardware, data and control are examined. 

Several typical configurations are identified, ranging from closely coupled 

parallel architectures to wide area networks. The flavour of distribution 

to be addressed is characterized by personal workstations connected via a 

local area network. The key features of object orientation invocation, en-

capsulation, and inheritance are defined. An overview is then presented of 

six example object oriented distributed systems. The chapter is completed 

with a description of the research aims and an overview of the remaining 

chapters. 

1 
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1.1 Distributed Systems 

In computing literature the term Distributed is applied to a wide range of multi-

computer and multiprocessor systems. The lack of standard vocabulary to describe 

the many flavours of distribution invariably results in ambiguity. Every author, 

including this one, must re-define 'distributed' to suit the particular system under 

discussion. This problem has long been recognised [Enslo78], [LeLan8l], but all 

attempts to define a standard terminology have, inevitably, failed. In this opening 

section various aspects of distribution are examined. From this discussion will 

emerge the flavour of distributed system addressed throughout this thesis. 

1.1.1 What is Distributed? 

There are many aspects of computer systems that can be 'distributed'. The three 

fundamental components are: 

Hardware 

Data 

Control 

The following discussion examines the range of distribution possible for each of 

these components. 

Distributed Hardware 

The simplest example of hardware distribution is a Single Processor. The term 

processor is used here to describe a self-contained, independent computer; for 
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example a processing element (CPU) capable of executing instructions, memory 

for storing data, and peripherals such as a keyboard and screen. The level of 

distribution in a processor spans no further than a single circuit board or perhaps 

a collection of circuit boards within a single cabinet. Within the context of this 

thesis single processors are therefore considered non-distributed. Examples include 

desktop personal computers through to large mainframes. Moving slightly into the 

realms of distribution are Shared Memory Multiprocessors. In these systems, the 

processing hardware is replicated to allow parallel processing, but the memory is 

shared. Interprocessor communication is relatively easy in such systems, utilising 

shared access to data held in common memory. This configuration is typical of 

many modern parallel processors. 

Multiple Processor systems are more distributed still. In these systems single 

processors are interconnected by some form of communication channels. There 

is no shared memory, interprocessor communication being performed by passing 

messages along the communication channels. The processors may be distributed to 

varying degrees, loosely measured by the channel 'length'. For example, messages 

may pass between processors on the same circuit board, alternatively they may 

travel up to a few thousand metres via a Local Area Network (LAN) or, ultimately, 

they may travel thousands of miles through a Wide Area Network (WAN). 

Distributed Data 

Non-distributed data occurs when only a Single Copy of the data exists throughout 

the whole system. Full Replication of data is the simplest level of distribution in 

which multiple, complete copies of the data are made. With full replication, 

modifications to any one copy of the data must also be applied to the others if 

data consistency problems are to be avoided. A greater level of distribution is 

provided by Simple Partitioning, where a single copy of the data is partitioned, 

each partition being located with a different processor. Consistency problems are 
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thus avoided since there is only one copy of each partition. Simple Partitioning 

can be extended to Redundant Partitioning by distributing multiple copies of each 

partition. Here again the multiple copies of each partition must be coordinated 

with regard to modifications, in order to maintain consistency. 

Distributed Control 

In the case of a single processing element there can only be one point of control 

and therefore the question of control distribution does not arise. Assuming more 

than one processing element, there are several possible control configurations. The 

simplest, i.e., non-distributed case is a strict master/slave relationship, where one 

processor dictates the actions of all others on a step by step basis. Control is 

therefore Centralised at the master processor. 

Control becomes more distributed when each processor is allowed Complete 

Autonomy to work on independent tasks. This allows parallel processing of inde-

pendent tasks, but there is no coordination between processors that would allow 

cooperation on common tasks. Adding cooperative behaviour yields Multiple Co-

operating Control Points. Under this configuration processors work together, each 

performing a sub-task that forms part of a larger, common task. Although control 

over each sub-task is centralised at the processor performing the sub-task, the pro-

cessors amalgamate their individual contributions in order to solve the common 

task. Hence, control of the common task is fully distributed. 

Enslow proposed that the three components of hardware, data and control be 

represented by three orthogonal axes [Enslo78). Each axis is labelled with discrete 

categories, moving from completely centralised at the origin through several stages 

to completely distributed. This gives a 'classification cube', an example of which is 

shown in Figure 1-1. The cube's axes have been labelled to make them consistent 

with the terminology introduced earlier. Distributed systems can be mapped into 



Chapter 1. Object Oriented Distributed Systems 	 5 

Maximum 
Distribution 

Multi-
T:  Processors 

•0 
1. 

. 

Figure 1-1: Enslow's Distribution Classification Cube (modified) 

a segment of the cube according to the extent of their hardware, data and control 

distribution. 

1.1.2 Examples 

The classification cube provides a simple measure of the level of distribution within 

0 

a system. Although in principle all combinations of hardware, data and control 

distribution are possible, in practice several particular combinations predominate. 
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Figure 1-2: A typical Array Processor 

Array Processors 

An array processor consists of many (possibly hundreds) of processing elements, 

each with their own dedicated memory (Figure 1-2). Data is partially replicated, 

with each memory unit typically containing an element from a large array. Every 

processing element executes the same instruction at the same time, controlled by 

a central program, i.e., there is no control distribution. Hence, array processors 

perform operations on an entire array in a single step. A more detailed analysis 

of array processing can be found in [Hwang85]. 

Closely-Coupled Systems 

Closely-coupled, or tightly-coupled systems consist of multiple processing elements 

accessing a common memory (Figure 1-3). This configuration supports single 

copies of data items, i.e., no data distribution. Control distribution could be 

completely autonomous, however, the shared memory facility provides a relatively 
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Figure 1-3: A Closely-Coupled Multiprocessor System 

inexpensive program interaction mechanism, encouraging fully cooperative con-

trol. [Hwang85] provides further details on closely-coupled systems. 

Loosely-Coupled Systems 

Loosely-coupled systems are characterized by self contained processors intercon-

nected by a local area network (Figure 1-4). Personal workstations connected 

by Ethernet provide a typical example. The degree to which data and control 

are distributed depends upon the nature of the operating system built upon this 

hardware base. Network Operating Systems typically encourage fully replicated 

data and complete autonomy. Distributed Operating Systems typically provide 

partially replicated data and cooperative control. A more detailed examination of 

these operating system types is presented in section 1.5 

Wide-Area Systems 

Wide area systems consist of geographically dispersed processors connected by 

wide area networks (Figure 1-5). The distance between adjacent processors may 
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Figure 1-4: A Loosely-Coupled Multiprocessor Distributed System 

span national and even international borders. Such systems exhibit autonomous 

control and fully replicated data. Many examples are identified in [Quart86], 

including ARPANET [Tane8la] and JANET [Patel88]. 

1.2 System Definition 

This thesis concentrates on loosely-coupled distributed systems, as depicted in 

Figure 1-4. A detailed definition of the environment addressed is presented in 

chapter 3. For the moment it will be defined simply as consisting of processors 

connected by a local area network. Henceforth the prefix 'loosely-coupled' will be 

dropped, and the phrase 'distributed system' will be understood to imply 'loosely-

coupled distributed system'. 

1.3 Benefits of Distribution 

Distributed systems offer potential for many improvements upon non-distributed 

systems. Some of these benefits are examined below. 
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1.3.1 Improved Performance 

The multiple processors of a distributed system allow multiple concurrent threads 

of execution to exist, i.e. Parallel Processing. Autonomous control can be used to 

perform independent tasks at different processors. This provides parallelism at the 

system level, but not at the user level. In order to provide parallel processing of 

individual users' work, multiple cooperative control is required, with each control 

point operating on partially replicated data towards a coordinated common goal. 

There is further scope for performance improvement by assigning tasks to 

'suitable' processors. The principle of selectively matching tasks and processors 

lies at the heart of Distributed Scheduling, a subject dealt with extensively later in 

the thesis. At present it suffices to state the basic motivation behind distributed 

scheduling, which is to make the most efficient use of available resources. 

1.3.2 Configuration Flexibility 

In principle, the resources provided by a distributed system can be increased 

simply by adding further processors to the network, causing little or no disruption 

to the existing system's operation. The ease with which a distributed system 

can be extended (or reduced) is a direct result of its distributed nature. By 

contrast, expanding the capabilities of a centralised processor implies replacing it 

with something else. 

The flexibility afforded by a distributed environment encourages the use of spe-

cialised processors for specialised tasks. Any task capable of utilising a specialised 

processor should automatically be directed there by the system. This is just 

one example of distributed scheduling as defined earlier. Specialised processors 

introduce heterogeneity into the distributed environment. Systems in which the 

processors are not all identical are generally termed Heterogeneous. Homogeneous 

distributed systems, i.e., where all processors are identical, retain the physical ex- 



Chapter 1. Object Oriented Distributed Systems 	 11 

tensibility mentioned above, but can not exploit the functional flexibility created 

by specialist hardware. 

1.3.3 Reliability 

By providing redundant hardware and data, distributed systems can mask occa-

sional processor failures. When a failure occurs, the failed processor's tasks can 

be restarted on other, 'spare' processors. The system's users remain unaware of 

the failure perceiving only, perhaps, a slightly longer execution time due to the 

re-start. 

Some systems provide a Checkpoint mechanism whereby a processor can peri-

odically save the current state of its executing tasks. Under these circumstances a 

failure does not require a complete re-start. Each task can be re-started from its 

latest checkpoint information, thereby avoiding the repetition of earlier processing. 

This technique is known as Rollback Recovery. 

1.3.4 Resource Sharing 

Attaching all processors to a common network provides shared access to the sys-

tem's resources. For example, expensive specialised processors such as printers 

and disc drives can be shared equally between many users. 

On a more general level, users of a distributed system have access to the 

entire collection of resources the system provides. Users can therefore be allocated 

resources according to their needs. For example, given ten users and ten processors 

the optimal allocation may not be one machine per user. If one user generates as. 

many tasks as the other nine combined, then the optimal configuration may be 

five processors for the large user and five processors shared between the remaining 

nine users. This form of resource sharing, generally termed Load Balancing, is 

another example of distributed scheduling. 
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1.3.5 Reduced Cost 

Historically, the price-performance ratio for computer hardware has favoured large, 

stand-alone machines over multiple, smaller machines. This observation was en-

shrined in Grosch 's Law which stated that 

"The processing capacity of a computer system is roughly proportional 

to the square of its cost." 

However, technological advances in computer hardware are continually improving 

processor performance, while also reducing costs. This has invalidated Grosch's 

law, changing the price-performance ratio to favour multiple, low-performance 

processors. As a result, distributed systems have become economically viable 

when compared to large mainframes. 

1.4 Disadvantages of Distribution 

The benefits noted above are not without cost. Distributed hardware, data and 

control introduce significant problems for the system designer. In general, the cost 

is one of greater complexity. 

Improved performance, created by utilising multiple cooperative control points 

to perform parallel processing, isgained at the expense of greater overheads in 

coordinating the parallel activities. Configuration flexibility, which encourages 

heterogeneity, requires multiple program representations, one for each heteroge 

neous processor type. Reliability through replication consumes resources since the 

redundancy created to increase reliability, ties up resources that could have been 

used for other services. Finally, sharing of resources requires careful access man-

agement. Resource usage must be monitored, with scheduling employed to avoid 

resource conflicts and ensure 'fairness'. 
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1.5 Distribution and Operating Systems 

The operating system's role is the same for both distributed and non-distributed 

environments; namely, to manage the system's resources. There are two basic 

approaches to operating system design in a distributed environment. Systems 

in which the network is visible to users are termed Network Operating Systems. 

Systems that hide the network., attempting to present distributed resources as one 

large, uniform processor, are termed Distributed Operating Systems. These two 

philosophies are examined below. 

1.5.1 Network Operating Systems 

Network operating systems are generally implemented as a collection of programs 

that run on a processor's resident, non-distributed operating system. These pro-

grams allow users, for example, to log in to remote processors, run programs 

on remote processors and copy data between processors. Utilising existing, non-

distributed operating systems in this way makes network operating systems rela-

tively easy to implement, but has been likened by Tanenbaum to 

• tying together a collection of incompatible [processors] with bailing 

wire and bubble gum." [Tane8la] 

The major drawback to network operating systems is the need for users to be 

aware of, and understand, the system's configuration. For example, to issue a 

command such as 

RUN COMMAND Y AT PROCESSOR X 

the user must be aware both that processor X exists and that it is capable of 

running command Y. The fact that these assignments are explicitly under user 
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control denies the system the chance to optimise resource usage. For example, 

processor X may be heavily overloaded whilst, unknown to the user, processor W 

is sitting idle. 

1.5.2 Distributed Operating Systems 

Distributed operating systems attempt to present distributed resources as part of 

a single, uniform processor. Items such as programs and data have logical names 

that are location independent. The operating system automatically translates be-

tween the logical name and the actual, location dependent name. This decoupling 

between user name space and system name space gives the distributed operating 

system complete control over the placement of tasks and data. For example, users 

can now issue commands such as 

RUN COMMAND Y 

It becomes the operating system's responsibility to find a suitable processor on 

which to run the command. Users perceive all commands as being run locally and 

remain unaware of processor boundaries. Tanenbaum summarised this concept 

with the rule of thumb that 

"If you can tell which [processor] you are using, you are not using a 

distributed system." [Tanen85] 

The expense associated with this improved environment is greater implemen-

tation complexity. The programming and design effort involved in creating a dis-

tributed operating system is considerably greater than that for a network operating 

system. This is particularly true if the distributed operating system is developed 

from scratch rather than building upon an existing system. For this reason, most 

extant distributed operating systems use an existing, non-distributed operating 

system as a foundation. UNIX is typically used to fulfil this role. 
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1.6 Object Orientation 

In con-rn-ion with the phrase 'distributed system', object orientation has many 

interpretations [Strou88]. Rentsch predicted with reasonable accuracy that 

"Object oriented programming will be in the 1980's what structured 

programming was in the 1970's. Everyone will be in favour of it. Ev-

ery manufacturer will promote his products as supporting it. Every 

manager will pay lip service to it. Every programmer will practice it 

(differently). And no-one will know just what it is." [Rents82] 

This section attempts to convey the general philosophy behind object orientation. 

Details specific to the environment addressed by this thesis are given in chapter 3. 

1.6.1 Objects 

An object is a repository for Data supported by a collection of Procedures to ma-

nipulate this data. The data is private to the object and can only be accessed 

indirectly by requesting the object to invoke one of its procedures. These pro-

cedures, known variously as Invocation Routines, Methods, Actors, Behaviours or 

Operations, are the only externally visible attributes an object possesses (Fig-

ure 1-6). 

Every object is defined by its Class, alternatively referred to as its Type. A 

Class Definition (implementation) is a functional description of the object's pro-

cedures and the data they operate on. It represents the blueprint from which 

Instances of the class are created. Programmers using object oriented languages 

create classes, not objects. Once a class is defined it can be used to create an 

arbitrary number of instances. Every instance of a class has identical structure, 
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Figure 1-6: The Logical Structure of an Object 

but the values assigned to the data they contain may be different. For example, 

every instance of class Thesis has a title, an abstract, and pages of contents (Fig-

ure 1-7). However, once these data items have been suitably initialised (using the 

appropriate procedures from the Thesis class definition) each instance of Thesis 

will be unique. Subsequent requests to showAbstract or showPage (also in the 

Thesis class definition) will yield different results depending upon which Thesis 

instance the request is directed to. 

1.6.2 Invocation 

In traditional procedural programming languages, a call to a sub-routine or a 

library function explicitly references the code to be executed. The calling program 

therefore decides not only which service to call, but also nominates the code to 

perform the service. 
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In object oriented systems, requests to perform a service are passed to object 

instances via Invocation Messages. An invocation message, generated by the ob-

ject requesting the service, contains the name of the object to be invoked and the 

name of the service required. It also contains the parameters the service requires, 

the name of the requesting object and, optionally, may include system specific 

information such as the requester's access privileges. An example invocation mes-

sage is shown in Figure 1-8. The requesting object's name is used as the reply 

address should the invocation generate a reply. Invocation and reply messages are 

the only legal form of interaction in object oriented systems. 

The service name specified in an invocation message is known as the Mes-

sage Selector. Each object contains a Message Handler that examines incoming 

messages, assigning requests to the appropriate procedures (Figure 1-9). This 

mechanism de-couples the what from the how. The invocation message specifies 

what is required, but the invoked object decides how it should be done. 

1.6.3 Specification and Implementation 

An object was characterized in section 1.6.1 as consisting of data and procedures. 

We can now improve this characterization by stating that an object's specification 

is defined exclusively by the invocation messages it understands. An implementa- 
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Figure 1-9: Invocation Message Handling 

tion is said to satisfy a specification if it is capable of responding to all invocation 

messages the specification defines. An object's specification and implementation 

are known as its Abstract Type and Concrete Type respectively. 

Note that a specification can be satisfied by many different implementations. 

Multiple implementations of the same specification are said to be Functionally 

Compatible or Type Compatible, because they share the same abstract type. Note 

also that, by this definition, an implementation supporting a super-set of the 

messages defined by an abstract type is also type compatible. 

1.6.4 Encapsulation 

Using message selectors, a requesting object specifies what service is required. The 

invoked object, using its message handler, has full responsibility for deciding how 

that service should be provided. This apparently trivial feature, i.e., adding a 

level of indirection to the invocation mechanism, is the key to the power behind 

object orientation because it encourages encapsulation. 
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Encapsulation minimises the interdependencies among separately implemented 

objects by defining strict external interfaces [Snyde86]. The initiator of an invo-

cation message requires no knowledge of how the object performs the service re-

quested. Indeed, if encapsulation is enforced rigorously then invokers are actively 

forbidden such knowledge. Hence, an object's implementation and the arrange-

ment of its internal data are encapsulated in a procedural shell that mediates 

all access to the object. Encapsulation therefore enforces well established soft-

ware engineering techniques such as problem partitioning, information hiding and 

abstract data typing. 

1.6.5 Inheritance 

Inheritance has been claimed as the distinguishing feature between languages sup-

porting data abstraction, and languages supporting object orientation [Strou88}. It 

provides a mechanism for organising, building and using reusable classes [Halbe87]. 

With inheritance, new classes are defined in terms of existing classes by stating 

how the new class differs from the old. Inheritance therefore promotes develop-

ment by refinement. 

If a class c directly inherits from a class p then p is a Parent of c and c is a Child 

of p. The parent and child classes are sometimes referred to as the Super-Class and 

Sub-Class respectively. Inheritance creates a Class Hierarchy or Type Hierarchy in 

which the terms Ancestor and Descendant are applied in the usual sense. 

A sub-class inherits the external interface and concrete type of its parent-class, 

which in turn inherited from its parent-class, and so on. Hence, a sub-class auto-

matically satisfies the cumulative specification of all its ancestors. The new class 

is distinguished by the addition of further procedures specific to itself. These new 

procedures are automatically available to any future descendants of the new class. 

By encouraging the reuse of existing code, inheritance considerably reduces the 



Chapter 1. Object Oriented Distributed Systems 	 21 

development effort required to create new classes. In a mature object oriented 

environment there will be an existing class possessing many of the attributes re-

quired by the new class. The new class can simply be declared as a child of this 

similar class, inheriting its implementation. The differences between the new class 

and its parent are then defined. Some languages allow Multiple Inheritance so that 

an object inherits the implementation of two or more parent classes. These are 

merged together, with suitable additions, to define the new class. 

1.7 Objects and Distributed Systems 

Object instances are self contained units that can, in theory, be arbitrarily located 

within a distributed environment. The hidden implementation of objects can 

be used to mask heterogeneity; each different processor having its own concrete 

type satisfying the object's abstract type. Invocation messages are self contained 

requests for service that can be passed across a network just as easily as they can, be 

passed between objects on the same processor. Hence, encapsulation, coupled with 

invocation messages, makebject orientation an excellent paradigm for structuring 

distributed software. In particular, object orientation is an excellent paradigm for 

constructing distributed operating systems [Jones79J. 

An Object Oriented Distributed System is a loosely coupled distributed envi-

ronment, supported by a distributed operating system whose design is based upon 

the object paradigm. 
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1.8 Example Object Oriented Distributed Systems 

The following examples have been selected to collectively illustrate the major re-

search issues tackled by current designs. The intention is to introduce the design 

problems faced when building such systems. Each example has its own special-

isation that will be used throughout the thesis to illustrate certain points. In 

particular, chapter 2, which describes the Object Reference Model, will make 

comparisons between these examples. 

1.8.1 Amoeba 

Amoeba is a research project on distributed operating systems being carried out 

at the Vrije Universiteit in Amsterdam. Its goal is to investigate capability-based, 

object-oriented systems, and to build a working prototype system to use and 

evaluate [Tane8lb], [Tanen86]. Amoeba's designers claim it to be the "World's 

Fastest Distributed Operating System" [Renes88]. 

The Amoeba architecture consists of four principal components. 

Workstations, one per user. At present, SUN-3's are used. 

. Pool processors, where most of the computing occurs. These are not assigned 

permanently to any individual user, but are allocated and deallocated dy-

namically as required. 

c. Specialised servers such as file servers, directory servers and data base servers. 

r> Gateways used to link Amoeba systems at different sites. 
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All Amoeba machines run the same kernel, which primarily provides message-

passing services. The gateways connect Amoeba systems at different sites, poten-

tially in different countries, into a single, uniform system. 

Objects in Amoeba are named using capabilities. A capability is a'authorisa-

tion token' giving its holder authority to invoke a particular service. An appro-

priate capability must be included as part of every invocation message. Access 

security is further supported by capability encryption and the use of sparse ad-

dress ports. The address port used to communicate invocations to an object is 

chosen randomly from a very large address space. The design is such that the 

probability of correctly guessing a valid port address is very small. Port numbers 

do not imply a specific location. If an object migrates to another location it carries 

its port with it. The invoker of an object must therefore possess the correct port 

number and a valid capability in order to be successful. 

As with most current systems there is a strong tie-in with UNIX. A UNIX 

emulation environment has been created on top of Amoeba to allow the porting 

of UNIX software such as shells, editors, compilers and standard utilities. 

1.8.2 Eden 

The Eden project [AImes85], [Lazow8l], [Almes87], is an experiment by the De-

partment of Computer. Science at the University of Washington, Seattle in design-

ing, building and using an "integrated distributed" computing system. It: 

"Attempts to combine the benefits of integration and distribution by 

supporting an object based style of programming on a collection of 

node machines connected by a local network." [Almes85] 

Eden objects, called Ejects, are programmed using the Eden programming 

language (EPL), [Black85]. EPL supports concurrency within Ejects, presenting 
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Eject programmers with the illusion of multiple threads of control. Eden supports 

a checkpoint operation that when invoked by an Eject creates a passive represen-

tation of the Eject - a data structure designed to endure system crashes. The 

data in a passive representation is sufficient to enable the Eject to reconstruct its 

long term state in the event of a processor failure. 

Eject naming and access control are performed using capabilities. Eject Ca-

pabilities contain a unique Eject identifier and a set of access rights granted to 

the capability's holder. Invocations are made by presenting the system with an 

Eject capability, the symbolic name of the operation to be performed and any 

parameters required. Given an Eject capability, the Eden kernel is responsible for 

locating the invoked object. 

The Eden kernel operates on a collection of VAX/UNIX systems intercon-

nected by Ethernet [Almes85], and on a network of Ethernet connected Sun work-

stations [Almes87]. In both cases, Eden is built upon and co-exists with the host's 

UNIX operating system. 

1.8.3 Clouds 

The Clouds project began in 1981 at Georgia Tech, Atlanta, to develop a fault 

tolerant distributed operating system [Dasgu86]. Fault tolerance, also known as 

resilience, is the ability to provide a reliable service based upon unreliable hard-

ware. 

Objects in the Clouds system are persistent. A persistent object is one whose 

internal state is non-volatile and once created remains in the system until explicitly 

deleted. This gives object state information the same status as other, long-lived 

data that is usually stored explicitly in files. 

Fault tolerance is provided using a primary-backup technique. Each fault-

tolerant object has associated with it a backup object located on a different pro- 
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cessor. The backup has the same facilities as the primary, but remains dormant 

most of the time. Periodically the backup probes the primary to make sure it is 

still active. If the backup detects that the primary has failed then it takes over as 

the primary object. 

Atomic Transactions are used to ensure that failures leave the system in a 'tidy' 

state. A transaction is a series of invocations delimited by start-transaction and 

end-transaction markers. The effects of a transaction are deemed atomic if they 

appear as a single action. Thus, atomic transactions either successfully terminate, 

causing a permanent update or, if aborted part-way, leave no trace at all. A more 

detailed description of this scheme is given in [Dasgu86]. 

The first Clouds prototype, running on three bare VAX 11/750s, became op-

erational in 1986. User access is through either disciess SUNs or IBM PC-ATs, 

all machines being connected via Ethernet. The lengthy five year development 

period is attributed to Clouds not being built on UNIX or any other proprietary 

OS. Rather, it has been.developed from scratch as a stand-alone operating system. 

1.8.4 Cronus 

The Cronus distributed operating system is under development at the BBN labo-

ratories, Cambridge, Massachusetts [Schan86], [Gurwi86], [Schan87]. 

The primary objective of Cronus is 

"To establish a comprehensive distributed system architecture and de-

sign for integrating a collection of different computer systems into a 

coherent, uniform computing facility that serves as a basis for devel-

oping distributed applications." [Schan861 

Cronus has three different classes of objects: 
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Primal objects, forever bound to the processor that created them. 

r. Migratory objects that can move from processor to processor as situations 

and configurations change. 

> Replicated and structured objects that have more internal structure than a 

single "atomic" object. An example is a reliable (replicated) file that has a 

number of identical primal files as its constituent parts. 

Invocations upon these objects are performed by name only, without reference to 

an object's location. 

Access control within Cronus is performed using Access Control Lists (ACLs). 

The goals of the access control mechanisms are 

"To prevent unauthorized use of Cronus and Cronus objects; to pre-

serve the integrity of the system; and to provide users with a uni-

form view of access control for all Cronus resources, services and ob-

jects." [Schan86] 

An access control list is a list of permitted invokers for an object. Invokers 

not present on an object's ACL will not be serviced. Cronus extends this basic 

idea in two ways : by providing an ACL for each individual invocation routine; 

and by creating grouped object entries in an ACL rather than naming individual 

objects. Hence, an object belonging to an authorised group is permitted to make 

invocations, even though the object's name does not specifically appear in the 

control list. 

The Cronus environment exists side by side with the original operating systems 

resident on the distributed hardware. This was a deliberate policy to ease the 

implementation effort, but also to allow users to gradually evolve to the new 

environment. Cronus currently runs on 15 hosts, including DEC VAXes running 
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VMS and UNIX, SUN workstations, BBNCC C70 UNIX systems, and several 

single-function Motorola 68000 microprocessor systems acting, for example, as file 

servers and authentication servers. 

1.8.5 Emerald 

Emerald is an object-based language and system designed at the University of 

Washington for the construction of distributed programs [Black86], [Jul 87]. Each 

Emerald object has four components 

r' A name, which uniquely identifies the object within the network. 

' A representation, which consists of the data stored in the object. The rep-

resentation of a programmer defined object is composed of a collection of 

references to other objects. 

r' A set of Operations, which define the functions and procedures the object 

can execute. Some operations are exported and may be invoked by other 

objects, while others may be private to the object. 

D An optional process, which operates in parallel with invocations on the ob-

ject's operations. An object with a process has an active existence and 

executes independently of other objects. An object without a process is a 

passive data object and executes only as a result of invocations. 

Emerald objects are fully mobile and can move from processor to processor 

within the network; even during an invocation. To support object migration the 

Emerald language includes a small number of location primitives. An object can: 

D Locate another object, i.e., determine on which processor it resides. 

Fix another object at a particular processor. 
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Unfix an object, i.e., make it movable following a fix. 

Move an object to another processor. 

All object references are location independent. The system is responsible for 

mapping between an object's name and its current location. 

A prototype Emerald kernel, running on top of Berkeley Unix, is currently 

operational. It runs on a small network of DEC MicroVAX II workstations con-

nected by a ten megabit/s Ethernet. A prototype compiler has been constructed, 

capable of compiling simple Emerald objects into VAX machine code. 

1.8.6 sos 

SOS is a general purpose distributed operating system, strongly influenced by the 

needs of office automation [Shap186], [Makpa88]. It is a subtask of Esprit Project 

367 "Secure Open Multimedia Integrated Workstation" (SOMIW). The goal of 

SOMIW is to construct an office workstation for manipulating, transporting and 

using multimedia documents that contain, for example, text, graphics, voice and 

moving images. The objective of the SOS (SOMIW Operating System) project is 

to design and implement a novel operating system based on the object oriented 

approach. 

SOS is built around the Proxy Principle which states that 

"In order to use some service, a potential client must first acquire a 

proxy for this service; the proxy is the only visible interface to the 

service." [Shapi86] 

A proxy is a representative for one or more distributed objects that collectively 

provide a single service. The proxy is the only interface to the service and, to the 
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outside world, is indistinguishable from the service. Clients are unaware of the 

proxy's existence, believing they are invoking the service directly. Proxies, one per 

client, are always located at the same site as the clients they serve. This provides 

clients with a simple, local interface to (potentially) remote or distributed services. 

A prototype version of SOS, operating on a set of workstations interconnected 

by a local area network, has been implemented on top of UNIX. The complete SOS 

network environment will ultimately consist of many local area networks intercon-

nected by wide area networks. A bare-machine version is also in preparation. 

1.9 Thesis 

1.9.1 Background and Aims 

The original aims of this research were to investigate the potential for distributed 

scheduling in an object oriented distributed environment. The intention was to 

identify attributes particular to object oriented systems that could be profitably 

exploited to improve upon current distributed scheduling techniques. These aims 

were later expanded to include wider resource provision issues, such as the auto-

matic creation' of new object instances from class descriptions, and the 'enhance-

ment' of existing objects to automatically endow them with properties such as 

fault tolerance. For each of the problems addressed, an object oriented solution 

was sought rather than applying existing, process based solutions. This thesis 

aims to demonstrate the benefits of exploiting the object paradigm for resource 

provision. 

'for the moment read 'compilation' 



Chapter 1. Object Oriented Distributed Systems 	 30 

1.9.2 Overview 

Chapter 2 defines the Object Reference Model, which was developed to place 

the resource provision research into a well defined, conceptual framework. This 

model of object-oriented distributed systems is analogous in both spirit and design 

to the ISO seven layer model of communicating systems. It provides a logical 

framework relating the various aspects of distributed systems design, allowing 

different designs to be compared and contrasted. Chapter 3 describes the specific 

target environment addressed by later chapters. It states the assumptions made 

concerning distributed hardware, network capabilities, object invocation, object 

implementation, user population and envisaged applications. 

Chapter 4 examines the problems posed by the need for multiple object repre-

sentations in a heterogeneous environment. A distributed algorithm is developed 

for controlling the translation between different object representations, the pri-

mary use of which is to automatically create executable object instances from 

high level object descriptions. 

An introduction to distributed scheduling is presented in chapter 5. In par-

ticular, the special requirements for scheduling in an object oriented environment 

are discussed. Based on these requirements chapter 6 develops a scheduling mech-

anism, known as comparison scheduling, that operates by applying statistical hy-

pothesis testing techniques to object oriented performance metrics. Simulated re-

sults of the scheduler's performance are compared to intuitive 'control' schedulers. 

Chapter 7 applies the statistical techniques employed in comparison scheduling 

to the suppression of redundant status update messages. Simulation results are 

presented, suggesting that considerable reductions in update traffic can be realised 

without degrading the scheduler's performance. 

Chapter 8 introduces the concept of virtual objects as a paradigm for structur-

ing distributed systems. Virtual templates are presented as a general mechanism 



Chapter 1. Object Oriented Distributed Systems 	 31 

for creating virtual objects, by encapsulating useful properties such as resilience 

and persistence in a re-usable form. 

The various aspects of resource provision are drawn together in chapter 9, 

which speculates on how distributed resources might be provided to users. The 

techniques developed in this thesis are then presented as a solution to users' re-

source provision needs. The effects upon resource provision of user actions and 

system configurations are also discussed. Finally, chapter 10 provides a summary 

of the thesis, examining the possibilities for future work and presenting the con-

clusions reached. 



Chapter 2 

The Object Reference Model 

This chapter defines the Object Reference Model (ORM). The background 

to the model is examined, indicating the assumptions made concerning 

distributed hardware, network facilities, applications and users. A list of 

design problems to be encapsulated by the model is then developed. The 

ISO Open Systems Interconnection model is discussed, in particular, the 

051 layering principles. These layering principles are applied to the design 

problems identified earlier, to yield the ORM layers. Each layer's purpose 

is then defined and examined in detail, with illustrative examples taken 

from the systems introduced in chapter 1. 

32 
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2.1 Introduction 

The Object Reference Model (ORM) is a conceptual model providing a frame-

work for the development of object oriented distributed systems. In particular, it 

provides a framework for describing the research in this thesis. 

ORM identifies the generic design problems associated with distributed sys-

tems, modelling the interrelationships between them. It does not specify particular 

services or protocols, rather, it identifies the general nature of the services and pro-

tocols required to construct an object oriented distributed system. The functional 

breakdown it provides can also be used to guide the decomposition of existing 

designs, thereby assisting in the analysis of current systems. 

Producing an abstract model to aid understanding in a particular area of sys-

tems design has proved useful in the past. Perhaps the best known example is the 

International Standards Organization (ISO) seven layer reference model of Open 

Systems Interconnection (051) [ISO 81]. This model of computer communica-

tion systems, examined below in section 2.6.1, provided the original inspiration 

for ORM's development. The International Standards Organization is currently 

developing a model of Open Distributed Processing (ODP). The reference model 

for ODP [ISO 89] is based upon the five Viewpoints (Enterprise, Information, 

Computation, Engineering and Technology) developed by the ANSA (Advanced 

Networked Systems Architecture) project [ANSA 89]. 

The purpose of the Enterprise Viewpoint of ANSA is to provide a framework for 

explaining and justifying the role of an information processing system within an 

organization. An enterprise model describes the overall objectives of a system in 

terms of roles (for people), actions, goals and policies. It specifies the activities that 

take place within the organization, the roles that people play in the organization, 

and the interactions between them. 
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The Information Viewpoint provides a framework for describing the informa-

tion requirements of a system. An information description of a system is made up 

of information elements, rules stating the relationships between information ele-

ments, and constraints on the information elements and rules. Information models 

must also show both how information is partitioned across logical boundaries, and 

the required quality attributes. Information models do not have to differenti-

ate between parts that are to be automated and parts that are to be performed 

manually. 

The Computation Viewpoint provides a framework for modelling the opera-

tions of information transfer, retrieval, transformation and management neces-

sary to automate information processing. The mechanisms required to support 

a computation model are specified in the engineering viewpoint of the system. 

A computation model of a system partitions the required transformations among 

processing objects as necessary to achieve the complete set of transformations. The 

partitioning thus defined is logical and not location-dependent. A computation 

describes the structuring of applications independently of the computer systems 

and networks on which they run. 

The Engineering Viewpoint provides a framework for describing how to mech-

anize the concepts identified in the computation model. This will include a defi-

nition of the physical distribution (as required) to realize the partitioning defined 

in the computation projection. 

The Technology Viewpoint provides a framework for describing the technical 

artifacts (realized components) from which the distributed system is built. It 

shows how the hardware and software that comprise the local operating systems, 

the input/output devices, storage, and points of access to communications, are 

mapped onto the mechanisms identified in the engineering model. 

The ODP reference model, based around these viewpoints, provides a frame- 

work for describing different aspects of distributed systems. The work developed 
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later in this thesis lead to the development of ORM to reflect the computation 

aspects of resource provision. Therefore, the Object Reference Model defined 

in this chapter lies firmly within the computation viewpoint, and, using ANSA 

terminology, is therefore a computation model. The examples of real systems 

used throughout this chapter, and the resource provision mechanisms developed 

throughout the remainder of this thesis, lie within the engineering viewpoint. 

A model addressing similar issues to ORM is presented by Watson in [WatsoSi]. 

This model identifies the generic problems associated with distributed system 

design, incorporating them into a series of hierarchical layers. Although Watson's 

model uses the term 'object', it is not object-oriented in the sense defined by 



Chapter 2. The Object Reference Model 	 34 

chapter 1. It also concentrates heavily on the communication aspects of distributed 

systems, an area that has subsequently received considerable attention. 

ORM has been developed along the same lines as Watson's model. However, 

ORM specifically addresses object oriented systems. Another major difference 

is in its treatment of communication. ORM assumes a comprehensive underlying 

communication facility is readily available, and therefore concentrates on the more 

abstract problems posed by distributed systems. 

2.2 Background to the Model 

Before defining ORM it is necessary to establish which aspects of object oriented 

distributed systems are to be modelled. Figure 2-1 shows the general structure 

of object oriented distributed systems from an individual user's perspective. The 

Object Reference Model is concerned only with the Object Environment component 

of the figure. However, before examining the Object Environment component in 

more detail, the following sections examine the components above and below, 

stating any assumptions made by ORM. 

2.2.1 Distributed Processors 

ORM assumes the processors in a distributed environment are heterogeneous'. 

The model does not restrict the size, type or number of processors. The only re-

quirement is that each processor is capable of supporting an object oriented inter-' 

face, i.e., capable of receiving, interpreting and responding to invocation messages. 

'A homogeneous system is a special (simple) case of heterogeneity. 
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Figure 2-1: General Structure of Object Oriented Distributed Systems 

This requirement is readily met by general purpose processors such as work-

stations. The problem is simply one of creating a suitable software environment, 

for example, an object oriented operating system. This is a task that, by their 

very nature, general purpose processors are well suited to. Specialist processors 

on the other hand are generally less adaptable, being designed exclusively to per-

form one task well. In cases such as this, a 'front-end' processor can be employed. 

A front-end processor is a general purpose processor that nominates to provide 

an object oriented interface on behalf of a specialist processor. Invocations are 

directed towards the front-end, which mediates the non-object oriented access to 

the specialist processor. Invokers, unaware of how the service is provided, perceive 

a service accessed in the usual manner, i.e., via an object oriented interface. 

Hence, either directly or by employing front-ends, all processors within a dis-

tributed environment can support an object oriented interface. 
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2.2.2 Network Protocols 

The network protocols are assumed to provide transmission facilities for a set of 

simple types such as integers, reals and characters, including any compound struc-

tures composed from these. The network is also expected to provide automatic 

translation of these types, masking any differences in the representation used by 

heterogeneous processors. It is further assumed that facilities exist to support 

encryption of invocation messages during transmission. 

As an example, the ISO standard Abstract Syntax Notation One [ASN.1] ad-

dresses some of these issues. It defines, at the bit level, the representation to be 

used when transmitting a variety of simple data types such as booleans, integers 

and character strings. Provision is also made for the encoding of sequences and 

sets, allowing structures such as arrays and records to be transmitted as complete 

units. 

ORM assumes no particular network configuration. For example, both wide 

area and local area networks are encompassed, subject to provision of the above 

services by the protocols used. However, as indicated by those examined in chap-

ter 1, current systems exclusively employ local area networks as the primary trans-

mission medium. This preference is a result of the superior performance charac-

teristics of local area networks. LANs typically provide fast transmission over a 

limited distance, with relatively few errors. In contrast, wide area networks typ-

ically transmit over unlimited distances, but with less speed and a greater error 

rate. Wide Area Networks are therefore used, if at all, only to provide limited 

inter-operability between geographically dispersed LANs. 

2.2.3 Applications and Users 

Applications use the facilities provided by the Object Environment to perform 

tasks on behalf of users. ORM places no restrictions on the type or number of 
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applications, or on the number of users. In any particular system, constraints are 

likely to be defined by the type and number of processors available, and by the 

network capabilities. 

2.3 The Object Environment 

The Object Environment provides the link between the resource requests of ap-

plications and the resources provided by the distributed environment. It takes 

a collection of heterogeneous processors, presenting them as a single, coherent 

system that supports the object oriented paradigm. In general, the Object Envi-

ronment is responsible for extracting and controlling the benefits of distribution 

and object orientation, presenting them in a uniform manner. 

Uniformity can be created on several levels. First, uniformity of presentation. 

All resources, regardless of their nature, are presented as objects. No other form 

of resource exists. Second, uniformity of naming. Using location independent, 

global naming schemes an object is referenced by the same name, regardless of 

where it is located. Finally, uniformity of access. The only method of accessing a 

resource is via an invocation message. 

The Object Environment is responsible for providing and maintaining this uni-

formity. The following section examines in detail the design problems associated 

with this. 
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2.4 Model Requirements 

ORM models the distributed operating system architectures used to realise the 

Object Environment component of Figure 2-1. This section defines the key design 

issues to be included within ORM. Each was adopted after careful examination of 

many current designs, including those described in section 1.8. Collectively these 

issues summarise the broad spectrum of design problems faced by distributed 

system designers 

D Object naming and addressing 

Object mobility 

r> Object representation and construction 

Object scheduling 

Invocation scheduling 

Security and protection 

Reliability 

> Consistency 

2.4.1 Object Naming and Addressing 

The Object Environment presents applications with a global address space, popu- 

lated exclusively by objects. It must therefore mask location dependencies, build- 

ing upon a distributed, network name-space containing processor names, to create 
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a unified object name-space containing only object names. The Object Envi-

ronment is therefore responsible for mapping between object names and network 

addresses. The naming issues involved pervade all levels of system design. 

2.4.2 Object Mobility 

As indicated earlier, the Object Reference Model concentrates on the more ab-

stract features of distribution rather than on communication. The lowest level 

of communication problem addressed by ORM is Object Mobility, i.e., migrating 

object representations between processors. Although it is assumed the underlying 

communication system provides a data transmission facility, the minimum com-

munication requirements stated in 2.2.2 are somewhat limited in scope. Many 

systems may require more advanced facilities, for example, communicating ab-

stract data types as 'atomic' structures. Although some networks may provide 

these advanced facilities, they are not univrsal. The Object Environment must 

therefore incorporate a communications element to cover such cases. 

2.4.3 Object Representation and Construction 

Every object exists in at least two forms : its human readable representation 

(usually textual); and its machine representation (usually binary). Several in-

termediate representations are normally required to transform between the two. 

These can be thought of as functionally equivalent representations of the same ob-

ject, at different levels of abstraction. Multiple representations may also exist at 

the 'same' level of abstraction. For example multiple human representations corre-

sponding to different implementations, possibly in different languages. Similarly, 

multiple machine representations may also exist, particularly in a heterogeneous 

environment where each different type of processor requires a different binary for-

mat. 
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In most current systems, users explicitly manipulate multiple object abstrac-

tions. For example, selecting the compiler to be used, passing it the class descrip-

tions ('source' code) to produce an executable representation that can be run. In 

some cases, more than one step may be required to translate from class descrip-

tions to executables, involving, for example, assemblers and linkers. All of these 

steps are reliant upon user intervention. 

Whilst encompassing this approach to object construction, the Object Refer-

ence Model includes provision for automatic generation of executable instances 

from class descriptions. The motivation for this is to allow users to work exclu-

sively with high-level object representations; all other representations, and the 

transformation mechanisms employed to create them, being controlled by the sys-

tem. This is similar to the approach taken by the non-distributed object oriented 

environment SmallTalk-80 [Goldb83]. 

2.4.4 Distributed Scheduling 

Location independent naming gives the Object Environment freedom to locate 

objects as it sees fit. Many systems therefore attempt to make assignments that 

optimise resource usage. The two principal components of distributed schedul-

ing are the assignment of object instances to processors and the assignment of 

invocation messages to object instances. 

Object Scheduling 

Object scheduling is the assignment of object instances to processors. Judicious 

placement of object instances can assist in optimising resource usage. When a new 

instance is to be scheduled, the scheduler observes the status of each processor and 

selects the 'best' one (according to some criteria) to host the object. This form of 
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object scheduling is known as Load Sharing, because the load generated by new 

object instances is shared between the processors. 

Some systems also support Load Balancing. Load balancing is a particular form 

of load sharing where the objective is to continually maintain an equal workload 

on each processor. This usually involves migrating previously scheduled objects 

in mid-execution to compensate for transient fluctuations in load distribution. 

When an object migrates, the system must ensure that subsequent invocations 

are automatically bound to the new location (see Invocation Scheduling below). 

Load balancing is more expensive than load sharing, both to implement and 

perform, because of the complexity introduced by the need to transfer an object's 

execution state. This complexity becomes even greater in a heterogeneous environ-

ment where the representations used by the originating and receiving processors 

may be different. The Object Reference Model must include provision for both 

load sharing and load balancing. 

Invocation Scheduling 

Invocation scheduling involves binding invocation messages to object instances. 

In a distributed environment an object name may bind to several different in-

stances, each one capable of servicing the invocation. Consequently, some form of 

scheduling mechanism must be employed to select the recipient object. In such 

cases, optimisation of resource usage can be assisted by directing invocations to 

the 'best' instance (according to some criteria). 

2.4.5 Security and Protection 

Security and protection issues are concerned with governing access to resources. 

In a system constructed entirely from objects this principally involves verification 

of access rights when objects are invoked. The need for access control arises from 
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the desire to share resources (see section 1.3.4). If users only had exclusive access 

to their own resources, isolated from all others, then access controls would be 

largely redundant. 

Protection is required against malicious attempts to use or abuse restricted 

resources; for example, by the impersonation of authorised users. Accidental mis-

use caused, for example, by the incorrect implementation of an invoking object 

instance must also be protected against. The security mechanisms employed in a 

distributed system must therefore enable the recipient of an invocation message 

to verify the identity of the message sender. The recipient must also be confident 

that the contents of the received message are exactly as the sender intended. ORM 

must model the many different security mechanisms employed in current systems. 

2.4.6 Reliability 

The service provided by an object instance is subject to the reliability of the 

processor on which it resides. Within a distributed environment, occasional fail-

ures can be masked by utilising redundant hardware, software and data. ORM 

must allow for the provision of reliability, as well as any other related aspects of 

fault-tolerance such as persistence and availability. 

2.4.7 Consistency 

In a distributed environment an object may be replicated many times. There are 

several reasons why this may be useful; for example, to improve reliability and 

availability, or simply to offer a 'larger' service than can be provided by a single 

instance. Uncoordinated invocations on individual instances of a replicated object, 

leads to inconsistencies between the instances' states. The result of an invocation 

becomes dependent upon the particular instance invoked. In some cases this may 

be perfectly acceptable. However, if the instances logically provide a single, global 
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service, then they should be synchronized to present a coherent global state. The 

Object Reference Model must include provision for consistency protocols. 

2.5 Virtual Properties 

Within ORM, reliability, persistence, consistency and access controls are collected 

together as examples of Virtual Properties. Typically, virtual properties either 

mask inherent limitations of the underlying system (e.g., equipment failure) or 

enhance an object's interface to match that expected by its invokers (e.g., access 

control mechanisms). Virtual properties are therefore characteristics possessed by 

objects that somehow 'improve' the service offered, but in a service independent 

manner. 

Section 2.7.5 identifies several virtual properties, using the example systems to 

illustrate details of their implementation. In current systems, virtual properties 

are usually coded explicitly within an object's implementation. Although ORM 

does not deny this mode of implementation, it models virtual properties at their 

logical level of abstraction, i.e., as being added 'on-top-of' existing services, rather 

than being 'built-in'. 

Having identified the design aspects to be incorporated in the Object Reference 

Model, the following section examines how such a model can be derived. 
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2.6 Layering 

ORM is a layered model. This section examines the principles behind layering, 

using the ISO Open Systems Interconnection model as an example. The ISO 

layering principles are applied to the design problems defined above to produce 

the Object Reference Model layers. 

According to the layering technique, each system is viewed as being logically 

composed of an ordered set of sub-systems represented as a vertical sequence of 

layers, each layer encapsulating a particular aspect of system design. Adjacent 

layers communicate through their common interface, each layer building upon 

and adding value to the services of layer below it. The topmost layer presents a 

service incorporating those provided by all lower layers. 

Modular and layered design is widely accepted as good software engineering 

practice. The following list identifies some of the reasons for this 

> The internal structures, mechanisms, encodings and algorithms used within 

a layer are not visible to other layers, i.e., each layer is encapsulated. 

Complex systems can be decomposed into more easily understood pieces. 

t' The implementation of a given layer can be changed without affecting the 

service offered, provided the layer interface remains the same. 

Alternate implementations for a layer can coexist. 

r A layer can be simplified or omitted when any of its services are not needed. 

Confidence in the correct operation of a layered system is more easily estab-

lished by testing and analysis of each layer in turn. 
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r' Precise specification of layer functions, services and interfaces encourages 

standardisation. 

These characteristics are very similar to those defined in chapter 1 for object ori-

entation. Layering is sometimes accused of yielding inefficient implementations. 

This criticism would apply to ORM if it were used as a literal template for im-

plementation. However, the ORM layers model the logical relationship between 

the various design aspects modelled. They are not intended to provide a literal 

template for an implementation, which, for efficiency, may combine the logical 

functions of multiple layers in a single 'program'. 

The design of a suitable model involves identifying layers that adequately de-

scribe the problem. This is a somewhat arbitrary choice, influenced by the mod-

eller's point of view. Many such layers could be envisaged and it is impossible to 

prove that any one design is best. It is only possible to state that one design is 

better than another when measured against some recognised criteria. 

The following sections describe the ISO Open Systems Interconnection model. 

This discussion serves several purposes. Primarily it introduces the layering design 

rules used to develop the OSI model. These rules form the basis upon which the 

ORM layers are defined. Second, it provides an example of a widely used layered 

model. Finally, it describes the type of communication facilities ORM assumes 

to be provided by the underlying network. ORM can in fact be thought of as 

extending the OSI model to incorporate object oriented distributed systems. 

2.6.1 The OSI Layering Principles 

The Open Systems Interconnection (OSI) initiative grew from the need to create 

internationally agreed, standardised communication protocols. In order to assist 

such a large undertaking the International Standards Organisation (ISO) defined 

a communications reference model. The function of this model was not to specify 
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any particular protocol, but to provide a framework within which new protocols 

could be developed. It further provided a means of categorising existing protocols. 

In order to assist the modelling process, and help justify the resultant design, 

a set of layering principles were devised [ISO 811 

Do not create so many layers as to make difficult the system engineering 

task of describing and integrating these layers. 

Create a boundary at a point where the description of services can be small 

and the number of interactions across the boundary are minimised. 

Create separate layers to handle functions that are manifestly different in 

the process performed or the technology involved. 

Collect similar functions in the same layer. 

Select boundaries at points that past experience has demonstrated to be 

successful. 

Create a layer of easily localised functions so that the layer could be totally 

redesigned, and its protocols changed in a major way to take advantage 

of new advances in architectural, hardware or software technology, without 

changing the services and interfaces with adjacent layers. 

Create a boundary where it may be useful at some point in time to have the 

corresponding interface standardised. 

Create a layer when there is a need for a different level of abstraction in the 

handling of data (e.g., morphology, syntax, semantics). 

Enable changes of functions or protocols within a layer, without affecting 

the other layers. 
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Processor A 	
Intermediate 	

Processor B 

Figure 2-2: OSI Reference Model Layers 

10. Create for each layer, interfaces with its adjacent layers only. 

These principles can be summarised as embodying the well established software 

engineering techniques of problem partitioning, information hiding and minimising 

interfaces. 

2.6.2 The OSI Layers 

The layers defined by the OSI model are shown in Figure 2-2. The arrows show 

peer-to-peer communication between layers. 

The Physical Layer is concerned with unstructured bit transmission between point- 

to-point links. Layer 1 protocols specify the mechanical and electrical properties 

of transmission media and their access protocols. 
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The Data Link Layer provides the functional and procedural means to activate, 

maintain and deactivate one or more physical links. Layer 2 protocols may allow 

reliable transfer of data across physical links. 

The Network Layer is responsible for transferring messages from source to des-

tination over an arbitrary succession of data links. It provides the upper layers 

with independence from the data transmission and switching technologies used to 

connect systems. 

The Transport Layer is concerned with end-to-end data transfer between session 

entities. Layer 4 protocols hide transmission methods from the upper layers. 

The Session Layer establishes, maintains and terminates connections between ap-

plications. 

The Presentation Layer provides a data translation facility to hide the syntax of 

transmitted data from applications. Layer 6 protocols specify data formats that 

enable cognizant exchange of information between dissimilar machines. 

The Application Layer provides application programs with access to the OSI envi-

ronment. 

It can be seen that each layer enhances the services of the layer below, and is a 

prerequisite for the layer above. The higher the layer the greater the level of ab-

straction. In principle, layer 7 provides an error free, end-to-end link between any 

two world-wide sites, independent of transmission media, switching technology, 

data speed, data representation, and so on. 

The ISO model of Open Systems Interconnection is not universally accepted 

as suitable for describing all communicating systems. OSI was originally designed 

with wide area networks in mind. As such, the layers are strongly influenced by 

the assumption of point-to-point communications - where a connection is opened, 
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with both sender and receiver establishing connection related status information; 

(large quantities of) data are passed across the opened connection; and the con-

nection is then closed - rather than the datagram, or broadcast, modes used 

in most local area networks - where each datum is a self contained 'package' 

that is sent independently of any others. Consequently, the OSI model is often 

overly elaborate for describing the communication facilities of distributed systems 

based on local area networks. These arguments do not really concern us here, 

as the main purpose of discussing the OSI model was to introduce the layering 

principles, which are largely uncontroversial. 

2.6.3 Applying the OSI Principles to ORM 

The OSI layering principles are not specific to communication models. They pro-

vide general guidelines for identifying layers and can therefore be used to assist 

the development of a layered model for any design problem. The design problems 

addressed by ORM were defined earlier in the chapter. Although subjective, they 

are based upon careful examination of many distributed system designs. The OSI 

layering principles (page 46) can be applied to these design problems to produce 

a layered model of object oriented distributed systems. 

The following paragraphs give a brief explanation of how the ORM layers were 

chosen. Principles 1, 2, 9 and 10 are general directives that apply to all layers. 

Although specific layering principles are mentioned below in relation to each layer, 

these are identified only as being more applicable than the others. More important 

than any one specific principle is the spirit they collectively convey. In general 

therefore, all 10 principles apply to all layers. 

The communication services specified by the OSI model, and those typically 

provided by local area networks, do not directly support object oriented interac-

tions. Application of principles 3, 5 and 8 therefore leads to the identification of a 
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Migration Layer as the lowest layer in the Object Reference Model. The Migration 

Layer builds upon the available network services to provide an object oriented 

communication service, migrating objects and invocation messages between loca-

tions in the distributed environment. 

The inherent heterogeneity within a distributed environment calls for some 

control over multiple object representations. Application of principles 3, 7 and 8 

yield the Construction Layer. The Construction Layer services provide transfor-

mation and translation facilities for constructing and manipulating the multiple 

object representations required in a heterogeneous environment. 

Scheduling mechanisms are required to control the assignment of object in-

stances to distributed locations. Application of principle 6 leads to the Loca-

tion Layer, whose services provide location-independent object scheduling. Ap-

plying principle 6 again yields the Invocation Layer, which embodies a location-

independent invocation service. 

The services represented by the lower four layers allow for the creation and 

invocation of object instances. Incorporating virtual properties, with the appli-

cation of principles 4, 6 and 7, leads to the Virtual Layer. The Virtual Layer 

services encapsulate techniques for manipulating object instances and invocations 

to provide virtual properties. 

Finally, the services offered by these layers must be made accessible to users. 

The User Layer, the uppermost ORM layer, presents these services in a form 

suitable for users and their applications. 

The ORM layers, which are examined in detail below, are shown in Figure 2-3. 

This particular diagram shows a configuration consisting of four processors. The 

lower three layers - Migration, Construction and Location - operate in location-

dependent address spaces, and therefore appear 'stacked' in the same manner 

as the OSI layers. However, the upper layers - Invocation, Virtual and User 
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- operate in location-free address spaces. They therefore appear as continuous 

bands, independent of any particular location. 

2.7 The ORM Layers 

This section examines the ORM layers in detail. For each layer, the naming and 

addressing issues are examined, followed by a description of the services offered. 

Examples, taken from the systems described in chapter 1, are used for further 

illustration. 

At the highest ORM layer, the User Layer, only virtual objects exist, with no 

concept of location or distribution. This address space, containing only location-

free, virtual objects, is created successively by each layer. Layer N operates within 

the address created for it by layer N - 1, refining it to present a more abstract 

address space to layer N +1. Hence, the address space provided by the underlying 

communication services is built upon to provide the location free address space 

seen by users. 

The services embodied by each layer are divided into operational and manage-

ment activities (Figure 2-4). The operational services of layer N are the standard 

services offered to layer N + 1. There are two main operational themes com-

mon to each layer : object-provision; and object-invocation. The object-provision 

services support the creation and deletion of object instances. The object invo-

cation services provide access to these objects. The management services of layer 

N also have two themes: internal-management; and external-management. The 

internal-management services give layer N the management information and con-

trols necessary to provide the layer N service. The external-management services 

are those offered to layer N + 1, enabling it to control the application of, and 

perhaps customise, the layer N operational services. 

r) 
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Figure 2-3: The Object Reference Model Layers 
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Figure 2-4: Layer N Operational and Management Services 

2.7.1 The Migration Layer 

The Migration Layer handles the communication of object representations be-

tween different locations in the system, building upon the facilities provided by 

the underlying network. 

Naming and Addressing 

Within the Migration Layer, location addresses correspond to those provided by 

the underlying Communication Address Space, i.e., the addresses of processors. 

Object names refer to specific object instances residing at specific locations, for 

example, Obj ectRepresentationProcessorAddress. 

The Migration Layer maps names and addresses from the Construction Address 

Space used by the Construction Layer onto the communication address space. 

Names in the construction address space do not refer to specific processors; rather, 

they identify 'hosts' at which objects can be placed. A host may in fact correspond 

to a particular processor or, alternatively, several 'logical' hosts may map to one 
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processor (chapter 3 provides a more detailed definition specific to the environment 

addressed by the remainder of the thesis). These relationships are hidden by the 

Migration Layer. Names and addresses in the construction address space therefore 

remain location dependent, but are no longer network dependent, for example, 

Obj ectRepresentation@Host. 

Operational Services 

The Migration Layer services provide the Construction Layer with object mi-

gration facilities in which the fundamental unit of communication is an object. 

It builds upon the facilities offered by the underlying communication service, to 

provide the object based migration facilities expected by the higher layers. An 

example migration layer service for object-provision is an operational service such 

as 

Move(ObjectRepresentation, FromHost, ToHost, Options) 

The purpose of the Options parameter(s) will vary from system to system. It 

provides any additional information required to perform the Move operation. For 

example, it may specify that encryption should be used, or that this is a high 

priority request and hence the fastest available transmission service should be 

used. System specific information such as 'hints' are also modelled by the options 

parameters. As an example, a system 'hint' might suggest how the service should 

be provided. For completeness and generality, a similar Options parameter is 

added to all example services throughout this section. 

As indicated earlier, the services provided by local area networks do not al-

ways conform to those identified in the OSI reference model. The 'size' of the 

Migration Layer will therefore vary between systems, depending upon the level of 

services offered by the underlying network. In systems built upon advanced com-

munication facilities, some of the migration services will map directly onto those 
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of the network. In systems where the network provides minimal functionality, the 

Migration Layer services must perform more work in order to create the required 

facilities. 

The Migration Layer services are responsible for performing any high level data 

transformations associated with transmission, such as mapping the data structures 

used to represent objects onto the data transmission primitives offered by the 

network. However, these services are not responsible for type matching executable 

representations with processors, which is a function of the Construction Layer 

services. 

The Migration Layer's contribution towards object-invocation is the migra 

tion of invocation messages between objects. This is essentially the same as the 

object-provision service, since invocation messages are themselves objects. Similar 

Options are therefore possible, for example, placing priorities on message delivery, 

or ensuring message integrity by encryption. 

Management Services 

External-management services are offered to the Construction Layer to assist in its 

use of the migration facilities. These services should provide information relating 

to the 'availability' of hosts within the construction address space, reflecting system 

failures such as network partitions and processor crashes. For example: 

IsAvailable? (ThisHost) 

might inform the Construction Layer whether a particular host is reachable. The 

internal-management services assist the Migration Layer in using the underlying 

communication facilities. For example, monitoring communication performance, 

maintaining configuration information, and adapting to new or changed facilities. 
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Examples 

In general, current systems perform object migration at the binary level, with no 

attempt made to recognise any higher level structures (structured object migra-

tion is examined later in chapter 5). This implies that object, migration can be 

implemented directly by the underlying data transmission facilities. The follow-

ing examples therefore concentrate on invocation services rather than migration 

services. 

In many distributed systems, object invocation is performed using Remote 

Procedure Calls (RPC). RPC extends the well understood procedure call mecha-

nism into a distributed environment [Birre84]. When a remote object is invoked, 

the calling environment is suspended. The invocation message is then constructed 

and passed across the network to the remote object, where the desired invocation 

routine is run (Figure 2-5). When the invocation routine is completed, the results 

are passed back to the calling environment, where execution resumes as if return-

ing from a simple, single-machine call. Both the invoking object and the invoked 

object, known as the Client and Server respectively, remain unaware of the RPC 

mechanism, each observing only a local invocation. 

In some systems the basic RPC facilities may be provided by the underlying 

communication facilities. Under these circumstances the Migration Layer services 

must map invocations onto the appropriate RPC routines. If no RPC facilities are 

available, then the Migration Layer services must build upon the communication 

facilities to provide a complete invocation mechanism. 

The SOS system provides an extensible invocation service constructed pro-

gressively upon the underlying communication service through the use of in-

heritance [Makpa88}. A basic host-to-host protocol, providing facilities com-

mon to all invocation protocols, is encapsulated within a EaseProtocol object. 

An invocation protocol is defined by two objects; the ProtocolObject and the 
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Figure 2-5: A simple Remote Procedure Call 

ProtocolManager object. The protocol object encapsulates the services specific 

to the protocol it implements, inheriting the common facilities from the basic 

protocol object. The protocol manager object has three functions 

t' Establishing connections. When asked, the protocol manager establishes a 

communication link between objects. 

r Managing protocol resources. Each connection has a descriptor in a con-

nection table identifying the caller, the ca.11ee and the address of the local 

protocol object for this connection. 

i' Dispatching invocation messages. It is the role of the protocol manager to 

forward invocation messages to the appropriate protocol object for trans-

mission. 

There is one protocol manager per protocol type, per processor. There are two 

protocol objects per connection, one at each end of the link. 

The object oriented design of SOS's communication facilities enables the pro- 

gressive development of invocation protocols. New protocols are built upon exist- 
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ing protocols utilising the object oriented inheritance mechanism, thereby encour-

aging extensive re-use of code and design. 

2.7.2 The Construction Layer 

The Construction Layer services provide transformation facilities for manipulat-

ing object representations. They encapsulate the inherent heterogeneity of the 

underlying environment, masking it from the higher layers. 

Naming and Addressing 

The Construction Layer operates within the construction address space defined 

earlier. It encapsulates the techniques used to manipulate individual object repre-

sentations at different levels of abstraction. The complexity of multiple representa-

tions is hidden from the Location Layer by creation of the Location Address Space. 

Within this address space the concept of location remains the same, i.e., a repos-

itory for objects. However, explicit references to different representations of the 

same object are replaced by a generic object name, for example, Obj ectNameHost. 

It is the Construction Layer's responsibility to map between the location address 

space and the construction address space. 

Operational Services 

The principal object-provision service embodied by the Construction Layer, is the 

generation of object representations for execution at specified locations within the 

location address space. In order to perform this task the Construction Layer ser-

vices must be aware of all object representations used within the system. They 

must also be aware of the translation tools available to manipulate these repre-

sentations. For example, a construction service must be able to associate a host 
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with a particular representation, and associate the representation with the trans-

formation tools used to generate it. Construction rules are required to control the 

application of the transformation tools to generate the desired representation. 

The Construction Layer therefore provides the Location Layer with operational 

services such as 

Makelnstance(Obj ectName, GHost, Options) 

The object name belongs to the location address space. The Construction Layer 

services must identify the host's type, mapping the object name onto the appropri-

ate (representation dependent) construction address space name before examining 

appropriate transformations. An example use of the options parameters may be 

to specify exactly how the instance should be produced, overriding any default or 

automatic mechanisms. 

An object-invocation service should also be provided for the forwarding of 

invocation messages. For example 

Invoke (Obj ectName, GHost, InvocationNessage, Options) 

If necessary, the invocation message and its parameters can be transformed into 

the representation expected by the recipient object. 

Management Services 

The external-management services offered to the Location Layer provide informa-

tion on possible transformations. For example, the boolean service: 

CanLocate? (Obj ectName, ThisHost) 

might indicate whether a suitable representation of Obj ectNaine can be created 

to execute at location ThisHost. Note that no information is returned as to how 
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the representation would be generated, it simply indicates the feasibility. Other 

possibilities include providing information on the cost of transformations. For 

example, the function: 

WhatCost?(ObjectNaxne, @ThisHost) 

could provide some measure of the resource costs involved in creating the appro-

priate representation, enabling different possibilities to be compared. 

The internal-management issues relate to the actual provision of a construction 

service. In many current systems, most representation manipulation is performed 

explicitly by users. In this case, the internal-management is trivial and amounts 

simply to providing users with access to the transformation tools (compilers, link-

ers and so forth). In a more sophisticated environment where the system takes 

over some, or all, of the transformation responsibilities, there will be a need to 

maintain a database of known transformation tools, along with rules for applying 

them. 

Examples 

Generally, in current systems, including those mentioned in chapter 1, users are 

entirely responsible for object construction. They are aware of and directly ma-

nipulate different object representations, for example, by invoking compilers and 

linkers. If representations are required for more than one processor type then users 

generate these explicitly. The systems therefore only 'understand' object repre-

sentations at the binary level. All higher level abstractions remain meaningless, 

requiring user intervention before they can be interpreted. 

An example of parameter transformation is provided by a printDocuinent in-

vocation routine for printer objects. The text of the document object to be printed 

(e.g., ASCII), which is passed as a parameter, may require translation into a form 
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accepted by the printer (e.g., PostScript). Many similar examples of parameter 

translation could be envisaged. 

2.7.3 The Location Layer 

The location address space in which the Location Layer operates contains only 

objects and object repositories. It is the function of this layer to control the 

assignment of objects to repositories. It encapsulates the location dependencies 

inherent in a distributed environment, hiding them from the higher layers. 

Naming and Addressing 

The Location Layer services hide location dependencies from the invocation layer 

by the presenting a location-free Invocation Address Space. Only objects exist 

in the invocation address space, with no concept of location. For example, the 

invocation address space name ThisObject may map to the location address space 

name Obj ectNameHost. 

Operational Services 

The basic object-provision services embodied by the Location Layer are the schedul-

ing and de-scheduling of object instances. For example: 

Schedule(ThisObject, Options) 

DeSchedule(ThisObject, Options) 

In order to schedule an object the scheduler uses the status information pro-

vided by its internal-management services (see below). This information is as-

sessed, perhaps in conjunction with the external-management information pro- 

vided by the Construction Layer, to decide which location should host the new 
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instance. The criteria against which this decision is made are defined by scheduling 

policy. Once a location has been selected, the decision is passed to the object-

provision services of the construction layer, which then creates the appropriate 

executable instance. In the case of a de-schedule operation, the Location Layer 

simply deletes the appropriate instance. 

The Location Layer plays no part in deciding which objects to schedule, or 

when to schedule them. These decisions belong with the higher layers. It simply 

provides a scheduling service to the higher layers, acting upon their instructions. 

An object-invocation service should also be provided to the Invocation Layer 

for the forwarding of invocation messages. For example 

Invoke (ThisObject, InvocationMessage, Options) 

This is simply a translation service between invocation address space names and 

location address space names. 

Management Services 

The external-management services offered to the Invocation Layer concern the 

operational status of the scheduled objects. They should provide information on 

whether a particular object is still available, or whether it has become unavailable, 

for example, due to the failure of its associated host. 

The internal-management services of the Location Layer handle the collection 

of host status information. Most scheduling policies require certain status infor-

mation relating to each location (host) in the location address space. This status 

defines a location's 'suitability' to act as an object repository. It usually relates 

to performance, but could include other factors such as reliability. 

Controlling object migration is also an internal-management activity of the 

Location Layer. Objects may migrate between locations in order to compensate 
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for changes in location status. Migration is a management function rather than an 

operational function because it is entirely hidden from the next layer up. It can 

be looked upon as a form of exception handling; the exception being a change in 

location status significant enough to cause the re-evaluation of earlier scheduling 

decisions. 

Examples 

The problem of scheduling distributed resources has been the focus of considerable 

research effort in recent years. There are almost as many policies as there are 

systems. Chapter 5 provides an overview of object scheduling, describing some of 

the more widely accepted techniques that belong in the Location Layer. In the 

example systems of chapter 1, object instances are placed at the location from 

which the instantiation request was generated. In most cases this corresponds to 

the user's workstation. 

The Amoeba system, in addition to user workstations, incorporates pool pro-

cessors that have no permanent owner. They are assigned dynamically to particu-

lar users when requested. The processor pool is managed by a process server that 

handles all requests for pool processor allocations. However, there is no defined 

scheduling policy concerning the allocation of objects between a user's workstation 

and pool processor(s). Tanenbaum and Renesse simply state that 

"The research has not yielded any definitive answers, although it seems 

intuitively clear that highly interactive [objects] such as screen editors 

should be local to the workstation, and batch-like [services] such as big 

compilations should be run [on the pool processor(s)]." [Tanen85] 
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2.7.4 The Invocation Layer 

The Invocation Layer services schedule invocation messages amongst object in-

stances in the location-independent invocation address space. They also provide 

services for creating and deleting instances. 

ORM's Invocation Layer is analogous to the OSI transport layer. The transport 

layer provides facilities to open a connection between any two arbitrary locations, 

pass data across the connection and then close the connection. This is a basic 

connection service, independent of the underlying network technology. It is the 

responsibility of the higher OSI layers to build higher level abstractions such as 

standard data representations and file transfer protocols. ORM's Invocation Layer 

services provide facilities to 'open' a service (i.e., create an object instance), pass 

requests to the service (using invocation messages) and then 'close' the service 

(i.e., remove the instance). This is a basic object support facility, independent 

of the underlying distributed environment. It is the responsibility of the higher 

ORM layers to build higher level abstractions such as virtual properties. 

Naming and Addressing 

Object names within the invocation address space are location independent. This 

is the first layer within ORM in which location plays no part. Multiple instances 

of the same object are still recognised, but they now have names such as Object 1 

and Object2, rather than Dbject@Locationl. and ObjectQLocation2 as in the 

location address space. 

The Invocation Layer creates a Virtual Address Space for the Virtual Layer, 

where only services exist. A service consists of the invocation routines provided 

by an object or group of (related) objects. Normally, a service will correspond to a 

single object. However, one-to-many and many-to-one mappings are also possible. 
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Service names are mapped by the Invocation Layer onto invocation address space 

names. 

Operational Services 

The Invocation Layer encapsulates service-provision facilities to create and remove 

services. For example: 

CreateService(ThisService, Options) 

RemoveService(ThisService, Options) 

The name ThisService belongs to the virtual address space. The Invocation 

Layer is responsible for mapping it onto the corresponding invocation address 

space name(s). The object creation facilities of the Location Layer are then called 

upon to schedule the appropriate object instances. 

The service-invocation facilities provided by the Invocation Layer assign invo-

cation messages to object instances. For example 

Invoke(ThisService, InvocationNessage, Options) 

If a service name maps to more than one object in the invocation address space, 

then the Invocation Layer services are responsible for selecting the instance to be 

invoked. 

Management Services 

The external-management facilities offered to the Virtual Layer should provide 

information on the operational status of scheduled services. For example, using 

these facilities the Virtual Layer might establish if a particular service is available. 
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As with object scheduling, invocation scheduling policies are usually based 

upon analysing status information. Collecting this information is an internal-

management function of the Invocation Layer. The status information describes 

the objects in the invocation address space, defining their ability to respond to in-

vocations, which usually relates to performance characteristics. Invocation sched-

ulers assess the status information to determine which instance should receive the 

invocation. The invocation scheduling policy defines the criteria against which 

this decision is made. 

Another internal-management activity associated with the Invocation Layer is 

the maintenance of an 'acceptable' level of service. Should the invocation rate 

exceed service capacity, then, where appropriate, additional object instances can 

be created to handle the 'overspill'. Control of the level of service by the Invocation 

Layer is analogous to the control of object migration by the Location Layer, i.e., 

they can both be viewed as exception handling. The exception in this case is an 

excessive workload for the current level of service provision. 

Examples 

In Cronus, each service type is supported by a corresponding service manager, sev-

eral instances of which may be distributed throughout the system [Schan87]. Each 

service manager is responsible for its own group of service instances. Whenever 

an invocation message is generated the system kernel determines the particular 

service required, passing the message to any one of the corresponding service man-

agers. The nominated service manager may then decide to pass the message to one 

of its own service instances or, based on status information exchanged regularly 

between managers, it may forward the message to a peer manager. 

In Amoeba, each location runs a resource manager that handles all invocation 

requests directed to it by the Amoeba kernel [Tanen85]. If the resource manager 

has two or more suitable objects available, then it selects one at random. 
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2.7.5 The Virtual Layer 

The Virtual Layer creates a service environment in which services possess virtual 

properties. Virtual properties customise a service to match the needs of its clients, 

for example, by making the service fault-tolerant or by presenting a security mech-

anism the client is familiar with. The Virtual Layer encapsulates the techniques 

used to create these properties. 

Naming and Addressing 

The virtual address space contains only services, i.e, not objects. The User Layer 

is presented with the User Address Space in which only virtual services exist, 

i.e., services that possess virtual properties. Multiple virtual services may be 

multiplexed onto one 'real' service, and similarly, one virtual service may be split 

between several 'real' services. The Virtual Layer is responsible for establishing 

and maintaining these mappings. 

Operational Services 

The User Layer should be presented with facilities for creating and removing 

virtual services. For example 

CreateService(VirtualServiceNaine, VirtualPropertyList, Options) 

RemoveService (VirtualServiceName, Options) 

The Virtual Layer services apply 'rules' for creating and removing these properties, 

mapping them onto the appropriate service creation and removal facilities of the 

Invocation Layer. 

The service-invocation facilities in the Virtual Layer, should map invocations 

upon virtual services onto the equivalent 'real' services. For example: 
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Invoke(VirtualServiceNarne, Invocationllessage, Options) 

For example, a fault-tolerant service can be provided by creating multiple service 

instances. Invocations upon the virtual service are mapped by the Virtual Layer 

onto multiple invocations on the 'real', non fault-tolerant instances. 

Management Services 

The external-management facilities offered to the User Layer should provide in- 

formation on the availability and applicability of virtual properties. For example: 

CanCreate? (VirtualServiceNaine, Resilient) 

might indicate whether the specified service can be created with the resilience 

virtual property. 

The internal-management services of the Virtual Layer should allow for the 

addition, removal and modification of the virtual properties made available to the 

User Layer. This may include maintaining a 'rule-base' for virtual properties, 

indicating how they are created. 

The following sections describe some of the virtual property mechanisms provided 

by the example distributed systems of chapter 1. 

Resilience 

To provide fault-tolerance, Amoeba uses a boot server that periodically polls reg-

istered services to determine if they are still 'alive' [Tanen85]. If a service fails to 

respond properly within a specified time, the boot service declares it unavailable 

and initiates creation of a new service on one of the pool processors. The principle 

underlying the boot server is that processor crashes are infrequent, and that most 
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users are unwilling to pay a heavy penalty in performance in order to mask all 

processor crashes. 

The Clouds fault-tolerance mechanism utilises primary and backup copies of 

each object. The backup, held at a different location to the primary, has the same 

capabilities as the primary but is dormant most of the time. Invocations upon 

the primary are also passed to the backup to maintain consistency. Periodically 

the backup probes the primary, expecting an 'I am OK' message in reply. If the 

status report is not received before a specified timeout, then the backup takes over 

as the primary, creating a new backup to monitor itself. 

Persistence 

In the Eden system, when an eject is created only its active form exists [Almes85]. 

It can therefore execute and engage in invocations, but has no state on permanent 

store. If it were to deactivate or crash, its current status is lost forever. Eden 

therefore provides a checkpoint primitive allowing active ejects to permanently 

record their current state. An eject's stored state, known as its passive form, 

makes the eject persistent. Invocations, subsequent to deactivation or failure of a 

persistent eject, cause the Eden kernel to reactivate the eject, i.e, to construct a 

new active form from the passive form. The reconstructed eject then receives the 

invocation. 

Security and Protection 

The Virtual Layer can manipulate the protection mechanism(s) used by services, 

to match those understood by clients, i.e., it can present the User Layer with 

the access controls expected by applications. The two principal mechanisms of 

capabilities and access control lists have already been introduced. The Virtual 
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Layer may perform conversions between the two, enabling for example, the same 

service to be invoked by both capability based and ACL based applications. 

The Virtual Layer can also provide enhanced security by incremental addi-

tion [Karge88]. Here, the underlying security system is built upon to provide 

the User Layer with a more stringent level of security, for example, providing ca-

pability based access where the underlying system has no access controls. This 

approach to security assumes that the Virtual Layer itself is secure, and cannot 

be bypassed. 

Proxies 

The example virtual properties and associated mechanisms described so far were 

developed to solve specific problems in specific environments. The SOS system 

provides a more general mechanism through the use of proxies [Shapi86]. 

A proxy is a representative for one or more distributed objects that collectively 

provide a single service. The object(s) represented by a proxy is (are) called its 

principal(s). The proxy and its principal(s) form a single, distributed object known 

as a group. The proxy is the only interface to the group and, to the outside world, 

is indistinguishable from the group. The proxy, which is always local to its client, 

provides a single entry point to a potentially distributed service; all invocations 

upon the service being made through the proxy. Invokers are unaware of the 

proxy's existence, believing they are invoking the service directly. 

Proxies belong in the Virtual Layer because they mediate access to groups of 

services, manipulating the facilities they offer to provide some 'bigger' or 'better' 

service; a description that fits exactly the role defined for Virtual Layer services. 

Some of the more interesting properties of proxies are [Shapi86] 

1. Encapsulation. The service is a black box, accessible only through the proxy. 

Its structure is not exposed. 
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Access protocol. The proxy enforces per-client ordering constraints on calls 

(e.g. enforce a request-acknowledgement-access-release ordering on the use 

of a resource). 

Capability. The proxy can implement access controls, test the validity of 

arguments, or the right to perform certain operations; it is totally pro-

grammable. 

Protocol encapsulation. The protocol between the client and the service is 

totally encapsulated within the distributed object formed by the proxy and 

its principal(s). 

The philosophy promoted by proxies, that of a general mechanism for coordinating 

and enhancing services, will be returned to later in the thesis. 

2.7.6 The User Layer 

As the highest layer in the Object Reference Model, the User Layer provides 

services to users and applications, rather than to another layer. It provides users 

with access to a 'world' of virtual objects, creating an environment within which 

users and applications can operate. 

Naming and Addressing 

The user address space seen by users is created, as described above, by the Virtual 

Layer. Only virtual services exist within this address space. From the users' point 

of view, there are no hosts, no distribution, no network and, upon application 

of the appropriate virtual properties, no failures, data inconsistencies or security 

problems. 
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The User Layer's role in naming and addressing is therefore not in providing the 

user address space, but in managing it. The nature of the systems under discussion 

mean they will have many (hundreds of) users, and consequently many (potentially 

millions of) objects. In general, an individual user will only be interested in a small 

proportion of these objects. The User Layer must therefore provide facilities for 

organising and accessing the many objects available. 

Operational and Management Services 

The User Layer creates the object environment observed by users and their appli-

cations, providing access to all available services. The nature of the User Layer 

makes it difficult to predict the operational and management services required. 

However, the following list provides a few general e'xamples: 

Service directory listing 

' Service creation and deletion 

> Service invocation 

User environment customization such as name aliases 

User environment defaults for virtual properties 

User requests for these services, coupled with the appropriate management in-

formation, must be converted, by the User Layer, into requests upon the service 

provision and management facilities of the Virtual Layer. 

Example 

The Amoeba architecture is based upon a series of layers, the highest two of which 

provide the type of services modelled by ORM's User Layer [Tane8lb]. 
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Amoeba's system call layer provides user programs with a traditional operating 

system interface. It supplies a number of routines that users invoke to provide the 

services offered by most timesharing systems. These routines operate by sending 

requests and getting replies from appropriate services in the network. In most 

Amoeba implementations this layer is a library package designed to emulate some 

particular set of operating system calls. Amoeba users' programs run in Amoeba's 

user layer, built on top of the system call layer. Most programs use the system 

call layer to provide a simple and familiar environment in which to run. 

2.8 Summary 

The Object Reference Model (ORM) provides a conceptual framework for describ-

ing object oriented distributed systems. As such it can be used to assist both in 

the development of new systems and in the analysis of current architectures. The 

latter role has already been demonstrated by the examples provided throughout 

this chapter. The former role is employed throughout the rest of this thesis. 

ORM was developed by applying the OSI layering principles to a list of key 

design problems identified after extensive analysis of many current systems. As a 

result, six layers were defined (Figure 2-3) 

The Migration Layer provides a network independent communication facility, 

creating the communication services required by the higher layers. Typical services 

include object migration, and invocation protocols based on remote procedure 

calls. The Migration Layer presents the Construction Layer with the construction 

address space, where objects reside at communication independent addresses. 

The Construction Layer provides a transformation facility for manipulating ob- 

ject representations. It encapsulates the inherent heterogeneity of the underlying 

environment, masking it from the higher layers. The Construction Layer presents 
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the Location Layer with the location address space in which objects are referred 

to by generic names, with no awareness of multiple representations. 

The Location Layer controls the assignment of object instances to location ad-

dress space locations. It encapsulates the location dependencies inherent in a 

distributed environment, masking them from the higher layers. The Location 

Layer presents the Invocation Layer with the invocation address space in which 

only service names exist, with no concept of location. 

The Invocation Layer builds upon the services of the lower layers to provide a 

basic object environment in which objects can be created, invoked and deleted. Its 

principlo, function is controlling the assignment of invocation messages to object 

instances. The Invocation Layer presents the Virtual Layer with the virtual address 

space in which only services exist. The mapping between services and object 

instances can be one-to-one, one-to-many or many-to-one. 

The Virtual Layer embodies the techniques used to create virtual properties. A 

virtual property is a characteristic, possessed by objects, that somehow 'improves' 

the service offered, but in a service independent manner. Typical examples are 

fault tolerance and persistence. The Virtual Layer presents the User Layer with 

the user address space in which only virtual services exist, i.e., services possessing 

virtual properties. 

The User Layer is the uppermost ORM layer. It creates the environment in 

which users and their applications operate, providing user access to all available 

services. 

Each layer builds upon and adds to the services of the layer below. The upper-

most layer provides users and applications with a location independent, homoge- 

neous environment in which services possess 'desirable' (i.e., virtual) properties. 
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The remainder of this thesis examines resource provision in object oriented 

distributed systems, based upon the framework defined by the Object Reference 

Model. 



Chapter 3 

The Target Environment 

Having described the general Object Reference Model, this chapter now 

defines the specific target environment addressed by the remainder of the 

thesis. Three categories of distributed hardware are identified - work-

stations, pool processors and specialist processors - although ultimately 

these are all seen simply as hosts for objects. The minimum required 

network capabilities are defined. An overview of the three leading local 

area network technologies is included; namely Ethernet, Token Bus and 

Token Ring. The limited role of wide area networks is also discussed. A 

system-wide Invocation service is assumed to be available, based upon re-

mote procedure call. Encapsulation is stated as being the minimum object 

oriented feature required of object implementation languages. Finally, as-

sumptions concerning the user population and envisaged applications are 

stated, concluding with a discussion on how these affect the system design. 

76 
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3.1 Introduction 

The purpose of this chapter is to define the distributed environment addressed 

by the remainder of the thesis. All assumptions concerning the general nature 

of the environment are stated. The flow of discussion is based upon the system 

components shown in Figure 2-1 (page 35). Familiarity with the Object Reference 

Model is assumed throughout. 

3.2 Distributed Processors 

From a resource provision point-of-view, all distributed processors are simply lo-

cations at which objects • can be hosted. However, the computing power of the 

target environment can be divided broadly into three categories; workstations, 

pool processors and specialist processors, each of which is discussed below. 

3.2.1 Workstations 

The distributed processors in the target environment are assumed to comprise 

mainly of general purpose 'personal' workstations. Workstations are only consid-

ered personal in the sense that only one user at a time may access the console. 

However, the computing resources offered by workstations are not considered per-

sonal, they simply form part of a resource pool' managed by the system. Hence, 

it is assumed the system is free to distribute objects at its own discretion, unre-

stricted by user 'ownership' of machine resources. No specific upper limit is placed 

on the number of workstations, but it is assumed to be several hundreds. This 

limit depends primarily on the ability of the underlying network to support the 
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communications traffic generated (see section 3.3 below). The workstations are 

not assumed to be homogeneous. 

Workstations generally exhibit the following characteristics 

'Powerful' processing capability 

'Large' memory 

r' Simultaneous support for multiple object instances (multi-tasking) 

c> High resolution displays 

Support for iconic, window and mouse based interface 

The first three items relate to system capacity, i.e., the quality of service the 

system is capable of providing. The last two items relate to the user interface. An 

iconic interface providing user access to the object environment is an example of 

an ORM User Layer service. 

3.2.2.. Specialist Processors 

Specialist processors provide specialist resources, usually implemented in hard-

ware, over and above those offered by workstations. Depending upon the nature 

of its specialisation, a specialist processor may simply be better than workstations 

at providing certain types of service. Alternatively, it may provide one particular 

service to the exclusion of all others; usually at a capacity considerably greater 

than achievable by general purpose workstations. 

Examples of specialist processors include peripherals such as file stores and 

laser printers, parallel machines such as array processors and pipelined processors, 

and processors with specialist architectures such as datafiow machines and systolic 
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arrays. All specialist processors must present an object oriented interface to the 

distributed environment. Section 2.2.1 discussed this requirement, concluding that 

it can always be met, either by supporting an object instance directly or by using 

a front-end. Using front-ends may incur additional resource costs, but this is 

assumed to be offset by the increased utility provided by access to the specialist 

services. 

Specialist processors therefore simply represent further (specialised) locations 

at which objects may reside. 

3.2.3 Pool Processors 

Within the target environment, pool processors are any non-specialist processors 

that do not offer support for a user interface. As stated earlier, the processing 

resources offered by workstations are not retained exclusively for use by the work-

station's owner. As such, workstations can be viewed simply as pool processors 

that have a screen, keyboard and mouse attached. Using the terminology intro-

duced above, the screen, keyboard and mouse are specialist processors front-ended 

by a window manager running on the associated workstation processor. 

Pool processors therefore simply provide additional locations at which object 

instances can be placed. As with workstations, there is no assumption that pool 

processors are homogeneous. 

3.2.4 Object Hosts 

Workstations, pool processors and (some) specialist processors represent locations 

at which objects can be run, i.e., they host objects. An Object Host is any object 

capable of interpreting object representations (at some level of abstraction) and 

performing the actions they describe. Note that hosts are themselves defined to be 
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objects. Therefore workstations, for example, appear as object instances support-

ing invocation routines such as Host (ThisObj ect) and UnHost (ThisObj ect). 

Usually, a host corresponds to an individual workstation, pool processor or spe-

cialist processor. However, many-to-one and one-to-many relationships are possi-

ble. For example, multiple hosts, potentially interpreting different representation 

abstractions (virtual processors), may be implemented on a single workstation. Al-

ternatively a single host may be implemented across multiple workstations. This 

latter configuration is in fact the goal of the Object Environment; to present users 

with a single, universal host implemented across all workstations, pool processors 

and specialist processors in the distributed environment. 

The recursive definition of hosts - hosts implemented as objects supported by 

hosts - terminates at the hardware level when, the host implementation becomes 

self-supporting. This can be considered as the 'base case' of the recursion, i.e., the 

'real' host upon which other, 'virtual', host abstractions are built. 

3.3 Network 

3.3.1 Technology 

It is assumed that a fast, reliable transmission facility is provided by the underlying 

network. The propagation delay between any two hosts is also assumed to be 

uniform across all hosts, i.e., no host is significantly 'further away' than any other. 

Local area networks meet these requirements significantly better than wide area 

networks. Even in LANs the propagation delays depend upon the sender's and 

recipient's relative positions. However, this variation is sufficiently small that the 

above assumption is still deemed to be satisfied. 



Chapter 3. The Target Environment 

Network 

Figure 3-1: Ethernet Simple Bus Topology 

The leading LAN technologies have been standardised by the Institute of Elec-

trical and Electronic Engineers' (IEEE) 802 committee. They have defined a 

family of standards incorporating the Contention Bus (IEEE 802.3), the Token 

Bus (IEEE 802.4) and the Token Ring (IEEE 802.5). All three provide a suitable 

basis for a distributed system. The following sections provide an overview of these 

networking technologies. Where there is no danger of ambiguity, the term Station 

will be used in the following discussion to collectively denote workstations, pool 

processors and specialist processors. 

Contention Bus 

The IEEE 802.3 contention bus standard is based upon Ethernet. Ethernet is 

a local area network developed initially at Xerox PARC as part of an extensive 

research programme on personal workstations and distributed systems. It offers 

a data rate of 10 million bits per second to up to 1024 stations, with a maximum 

station separation of 2.5 kilometers [DIX 80]. The Ethernet bus topology is shown 

in Figure 3-1. 

When a station wishes to communicate, it listens to the network to see if any 

other communication is currently in progress. If not, it attempts to transmit. In 

most cases the transmitted message will be delivered unhindered to the recipient 

station. There is however, a possibility of message collision caused by two stations 
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simultaneously observing a quiet network, and attempting to transmit at the same 

moment. Therefore, during transmission, the transmitting station continually 

monitors for collisions. Should a collision be detected then transmission ceases 

immediately. Retransmission is attempted only after a random timeout in order o 

avoid repeated collisions. This technique is known as carrier sensing multiple 

access with collision detection; generally abbreviated to CSMA/CD. 

Token Bus 

The IEEE 802.4 LAN standard defines a token-passing bus protocol. The network 

topology is the same as for Ethernet (Figure 3-1), but, the stations are ordered 

to form a logical ring, each station having a predecessor and a successor. A 

token is passed between the stations, following the sequence of the logical ring. 

The current token holder acts as a master station for the time it holds the token, 

giving it exclusive access to the bus, and enabling it to transmit. When the station 

has completed transmission, or when its time has expired, the token is passed on 

to the next station in the sequence. In this way, access to the bus is provided on 

a round-robin basis, with each station guaranteed a chance to transmit. 

The length of the ring, coupled with the timeout on token ownership, provides 

an upper limit to the time a station must wait before gaining access to the network. 

The token bus protocol therefore provides deterministic access times, making it 

suitable for real-time applications. This is at the expense, however, of complex 

token management that has to cope with: additions to the ring, with new stations 

periodically being given the opportunity to enter the logical ring; deletions from 

the ring, for stations wishing to 'opt-out'; removal of duplicate tokens, which 

otherwise lead to bus collisions; detection of failed successors, to ensure the ring 

remains unbroken; and ring initialisation, to start a token circulating either at 

network start-up, or after an error causing it to be lost. 
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Token Ring 

In ring topology networks the stations are physically connected in a ring (Figure 3-

2), with each station forwarding data from its input stream to its output stream. 

Data therefore travels around the ring in a specific direction. In a token ring 

network such as that specified in the IEEE 802.5 LAN standard, a single token 

circulates continuously around the ring, marked with one of the two possible states 

'free' or 'busy'. A station wishing to communicate must wait until the token 

reaches it in the free state. The token is marked as busy, the destination and 

source addresses are added, and the data to be transmitted are attached. Arbitrary 

length data packets are permitted, up to some pre-defined (installation dependent) 

maximum. The token continues around the ring until reaching the destination 

station, which then copies the contents of the message and flags the token as 

'received'. The token then continues around the ring, eventually returning to the 

sender. After checking the token's flags to ensure it was received successfully, the 

sender removes the message and inserts a new 'free' token into the ring. Thus, 

the next station in the ring has an opportunity to seize the token and transmit a 

message. 

The effect upon the target environment of using these network technologies will 

be assessed later. 

Wide Area Networks 

Wide area network links are generally slower and more error prone than local 

network communication. Such links are sometimes used to merge multiple LANs, 

creating the impression of one 'large' local network. For example. the Universe 

Network [Lesli84] connects ring networks at various sites in the U.K. by a 1 Mbit/s 

satellite broadcast channel. 
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Figure 3-2: Ring Topology 
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The target environment does not attempt to invisibly merge geographically 

dispersed local area networks. Wide area links are assumed only to be used in 

providing limited access to resources not available on some local networks. 

3.3.2 Protocols 

Broadcasts 

In aA bus topology network, all stations monitor all transmissions, looking for a 

destination address that matches their own. In a ring topology network, every 
Ck messages passes through every node, again with each node looking for2match 

between destination address and its own address. Having reached its destination, 

each message still continues around the ring until it returns to the sender, which 

removes it from the network. Hence, the three LAN technologies outlined above 

in fact, most LAN technologies - provide broadcast facilities whereby a single 

message can be communicated to all stations with little or no additional overhead 

compared to one-to-one communication. This facility, which can be useful for 

propagating status information and locating services with 'Wherels?' messages, 

is therefore assumed to exist within the target environment. 

A variant of broadcasting, known as multicast, provides a general one-to-many 

communication facility rather than simply one-to-all. Although useful, this is not 

universally available and is therefore not relied upon. 

Communication Services 

The IEEE 802 networking standards define protocols up to the level of the OSI 

Network Layer (Figure 3-3). The transport, presentation and application func-

tions are not included as part of the basic services offered by these networks. Ef-

fectively, these protocols provide a transmission service, but they do not provide 
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Figure 3-3: IEEE LAN standards and the OSI model 

the high level communication services required by the target environment. Higher 

level protocols are therefore also assumed to be provided by the underlying com-

munication system, implementing services such as standard data representations 

and remote procedure calls. 

Remote Procedure Calls 

Considerable research effort has been directed towards the communication services 

required for distributed environments, since these services are fundamental to 

building any form of advanced distributed system. In particular, experience with 

the use of remote procedure calls has led to the development of stubs and stub 

generators, making RPC easier both to implement and use. 
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Figure 3-4: Remote Procedure Call using Stubs 

Figure 3-4 demonstrates the interaction of RPC stubs for a simple call. The 

client makes a local invocation, which is intercepted by the client-stub. The client-

stub constructs the appropriate communication 'packets', marshalling the invoca-

tion message and its parameters into a form suitable for the underlying network. 

The invocation message is then passed to the RPC runtime system, which for-

wards it to the remote destination. The remote RPC runtime system receives the 

invocation message, passing it to the server-stub, which unmarshalls the parame-

ters and makes the appropriate (local) invocation upon the server object. Results 

are returned in the same manner. 

Several systems provide automatic generation of client and server stubs, pro-

ducing customised stub routines for each service. Three examples, discussed below, 

are the Mach System, the University of Washington's Heterogeneous Computer 

System (HCS), and SOS. These systems allow client and server objects to be im-

plemented as though for a non-distributed environment, i.e., without regard for 

the problems of remote addressing, parameter marshalling and network communi-

cation. These distribution aspects are handled jointly by the RPC runtime system 

and the object construction mechanisms. 

Mach's Matchmaker [Jones86] allows interfaces between cooperating objects to 
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be specified and maintained independent of specific languages or machine archi-

tectures. The Matchmaker code generated from interface specifications provides 

communication, type conversions, runtime support for type-checking, synchroniza-

tion and exception handling. It currently supports the languages Common Lisp, C, 

Ada and Pascal. Both clients and servers may be built in any of these languages. 

The HCS project provides a set of 'black box' RPC components offering 'mix 

'n' match' RPC protocols [Bersh87]. The set of protocols to be used is deter-

mined dynamically. Therefore, multiple instances of the same object may co-exist, 

each using different stubs and potentially different RPC runtime protocols. This 

approach retains compatibility with existing protocols without constraining new 

developments in RPC research. 

The SOS system provides a generic RPC proxy that simply reproduces locally 

the interface presented by a remote service, blindly forwarding all local invocations 

to the remote object [Shapi86]. 

In light of the widely reported success of using the remote procedure can 

paradigm in distributed environments, the communication services are assumed 

to include system-wide, uniform, RPC facilities. These services are assumed to 

provide the Migration Layer with the basic facilities necessary to create a uniform 

invocation mechanism. 
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3.4 The Object Environment 

The general flavour of facilities offered by the Object Environment were exten-

sively reviewed in chapter 2. This section identifies features specific to the target 

environment. 

3.4.1 Migration Layer Facilities 

The Migration Layer services are assumed to provide a system-wide, uniform in-

vocation mechanism based upon the remote procedure call facilities provided by 

the underlying communication service. At the client end, invocations destined for 

remote hosts must be mapped onto the appropriate RPC service(s). A remote call 

is then made to the server host by the communication services. At the server host 

the incoming RPC must be mapped to the appropriate (local) invocation. Each 

host must therefore provide facilities for mapping invocations both to and from 

the remote procedure call facilities. It is assumed that each invocation message is 

time-stamped by the recipient host upon arrival. It is further assumed that most 

invocations are synchronous, i.e., the client is suspended until the server returns 

its results. Asynchronous invocation, where the client continues to function while 

the invocation is serviced, introduces additional complexities in returning replies 

to clients that are now performing other activities. 

As well as providing an invocation service, the Migration Layer is responsible 

for object migration. Later chapters argue that object migration for the purpose 

of load balancing is not the most efficient technique, and that other mechanisms 

are more appropriate. The provision of highly efficient migration protocols for 

load balancing is therefore not considered important. However, object migration 

facilities are still required, for example, to implement the object invocation ser-

vice outlined above, and for passing object representations between distributed 
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hosts. These are essentially data transfer protocols and 	should therefore be 

straightforward to implement using the underlying network communication fa-

cilities. Hence, the target environment is assumed to have available an object 

migration service. 

3.4.2 Object Orientation 

The work described in the remainder of this thesis utilises object oriented fea-

tures to address resource provision problems. The features exploited most are 

encapsulation, and communication by invocation messages. On some occasions, 

inheritance is also suggested as a useful tool for solving certain problems. However, 

inheritance is not relied upon heavily and is therefore not a strong requirement. 

This implies that the target environment can incorporate encapsulated services 

implemented in non-object oriented languages [Methf87]. The invocation facil-

ities, and in particular RPC using stub generators, are assumed to provide an 

object oriented interface to non-object oriented languages such as C and Pascal. 

For example, to implement an object, the C programmer creates a library 

module with the services coded in C. The object construction, invocation and 

RPC support facilities 'dress' the C module to present the distributed environment 

with an object instance providing exactly the routines contained in the module. 

This is the same approach as described earlier in relation to the Mach system. 

Obviously, languages supporting object oriented features such as class definitions 

and inheritance also fit into this framework. 
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3.5 Applications and Users 

The nature of large scale computing resources makes it difficult, and perhaps even 

unwise, to predict the uses to which they will be put. No particular restrictions 

are placed on the target environment in terms of the number of users or kinds of 

applications. 

3.5.1 User Population 

The maximum size of a system's user population will, ultimately, be determined 

by the number of processors in the environment. The Ethernet is capable of 

supporting up to 1024 stations, while the ring networks, in theory, can be extended 

to incorporate an arbitrary number of stations. However, in practice, they are 

limited to the same order of magnitude as Ethernet. The processor population in 

any particular system therefore has an upper limit of around 1000. The maximum 

active user population is therefore also limited to same amount. However, users 

can gain access to the system only via workstations, and not all processors are 

workstations. This further limits the maximum number of users. Also, since one of 

the justifications for creating a distributed environment is to provide users access 

to more and varied resources than can be provided by a single workstation, the 

relationship between users and processors is not one-to-one. 

The maximum possible user population that could be encountered is therefore 

less than 1000. In practice, since not all distributed systems have available, or 

need, the largest permissible number of stations, the maximum user population is 

expected to be around 200 to 300 users. 
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3.5.2 Application Performance 

Although users justifiably expect 'good' performance from the system, absolute 

speed is not seen as the top priority. For example, squeezing the maximum par-

allelism from a particular problem is a specialised task not suited to the general 

facilities envisaged here. Applications requiring this sort of parallelism should be 

scheduled on the specialist parallel processors within the system. 

The management and exploitation of parallelism for performance is not an ex-

plicit goal of the target environment. Parallelism at the system level is provided 

'free', simply because of the multiple, distributed processors. Parallelism at the 

user level, i.e., with more than one processor working on an individual user's task, 

is dependent upon the distributed scheduling policy. The scheduler's main objec-

tive is simply to make efficient use of available resources. However, parallelism 

may result as a by-product of efficient distributed scheduling. 

3.5.3 System Optimisation 

The nature of possible applications for the target environment is wide-ranging. 

The SOS system, for example, is biased towards office automation, principally the 

handling of multi-media documents. The higher levels of the system can therefore 

be optimised to perform specific tasks well, namely the storage, retrieval and 

manipulation of documents. The Amoeba system, and others, are biased more 

towards scientific and engineering computing. With these applications there is 

less scope for specific optimisation as the system is used as a general purpose tool, 

handling a wider range of tasks. 

The target environment is assumed to provide a general computing facility, 

more akin to Amoeba than SOS. The expected applications are general purpose 

rather than being limited to a few specific tasks. This assumption limits the 

scope for application optimisations to the ORM User Layer, and possibly the 
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Virtual Layer. For example, every application could be presented with its own 

customized environment. More realistically perhaps, several different application 

environments may be provided, each optimised towards certain types of service. 

Optimisations to the lower ORM layer protocols cannot be guaranteed to be uni-

versally beneficial. 



Chapter 4 

Object Construction 

The problem of automatic object construction is addressed, leading to the 

development of a distributed construction algorithm. A data structure, 

known as a construction graph, is introduced to describe the relationship 

between different representations of an object. A construction path is 

a route through the construction graph defining the transformation nec-

essary for converting the 'source' object representation, into the required 

'destination' representation. A distributed search algorithm is presented for 

finding suitable construction paths and creating objects, operating without 

the need for user intervention. This algorithm provides a simple construc-

tion service for user applications, fulfilling the requirements of the ORM 

construction layer. 

94 
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4.1 Introduction 

The purpose of ORM construction layer services was defined in chapter 2 as 

Providing a transformation facility for manipulating object represen-

tations, thereby encapsulating the inherent heterogeneity of the under-

lying environment, masking it from the higher layers. 

This chapter examines the potential for providing an automatic object construction 

service, i.e., a construction service not dependent upon user intervention. The 

following section argues that automatic manipulation of object representations in 

a heterogeneous environment is both desirable, and necessary. 

4.2 Automatic Construction 

4.2.1 Natural Progression 

The earliest computers were programmed in binary or by placing wire jumpers in 

a patchboard. This form of 'programming' suited the machines, but was very in-

convenient for human users. Assembly languages and simple compilers were soon 

developed. These changed the method of program description to a form more 

suited to humans than machines, with conversion tools (the compilers) used to 

translate between the different representations. In current programming environ-

ments, programmers work almost exclusively with 'soft-machines', i.e., high-level, 

abstract programming languages far removed from the underlying hardware. The 

trend in language development has ahays been towards ever greater levels of 

abstraction. 
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Despite the advances in language design, users remain aware of machine re-

quirements because of the need to always compile programs before they can be 

run. The desire for automatic object construction therefore presents itself as a 

natural extension to the development of programming language design. If desired, 

programmers should be able to work with a high level abstract machine capable 

of directly interpreting their abstract programs. 

4.2.2 Proven Feasibility 

Smalltalk-80 is a single user, non-distributed, integrated programming language 

and programming environment developed by the Software Concepts Group at 

Xerox PARC [Goldb83]. Its designers expressed the sentiment that 

"People work with problem-domain concepts, while hardware works 

with different (operator/operand) concepts. Some of the conceptual 

burden in translating from problem-domain to computer-domain should 

be carried by the machine, by making the machine work in terms of 

concepts closer to the user's everyday world." [Cox 87] 

Smalltalk-80 provides an integrated environment in which the programming 

language, supporting tools (text editors, debuggers), and the operating system 

itself form a coherent, tightly coupled whole [Goldb84]. Smalltalk-80 methods 

(invocation routines) are implemented in the Smalltalk-80 programming language. 

The underlying hardware executes the Smalltalk-80 virtual machine, interpreting 

Smalltalk-80 bytecode instructions. The transformation between high level lan-

guage statements and their corresponding bytecodes is performed automatically. 

In the Smalltalk-80 environment, when a new method is created or an existing 

method is modified, the user must Accept it using a drop-down menu controlled 

by the system mouse. From a user point of view this is simply stating "I've 
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finished coding this method". At this point the system compiles the method and, 

providing there are no syntax errors, adds the compiled method to the associated 

class's method dictionary'. The compilation itself remains invisible to the user. In 

order to invoke a method, the user highlights the method name using the mouse, 

and selects the option Do it from a drop down menu. Arbitrary segments of 

Smalltalk-80 source code can also be executed in this manner. 

The Smalltalk-80 programming interface demonstrates that program compila-

tion can be successfully and usefully hidden from users, who remain unaware of 

any representation other than Smalltalk-80 expressions. 

4.2.3 Configuration Flexibility 

Ideally, the object scheduler should be free to schedule object instances on any 

host. To satisfy this in a heterogeneous environment requires many different object 

representations; potentially as many as there are different hosts. If control over 

the generation of object representations is left with users, the scheduler's options 

are restricted to the representations supplied. Hence, under these circumstances, 

user actions could become significant in influencing scheduler performance. Re-

strictions of this nature are considered undesirable. Automatic construction of 

executable object representations is therefore regarded as an important prerequi-

site to effective object scheduling. 

'Even within a single class, methods are created, edited and compiled individually. 
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4.3 Requirements 

The general requirements for an object construction service were outlined in chap-

ter 2 when describing the ORM Construction Layer. The principal service is 

the creation of object representations suitable for execution at specified locations 

within the construction address space. These locations correspond precisely to the 

object hosts of the target environment. The construction service is also responsi-

ble, where necessary, for transforming invocation parameters into a representation 

understood by the invoked object. These services require controlling the applica-

tion of transformation tools such as compilers, linkers, code generators and pro-

gram translators. The intention is to provide an integrated environment similar 

in spirit to that of Smailtalk, but for all languages within the system. The user 

environment should appear to interpret directly high level programs, removing the 

need for explicit, user initiated compilation. 

The external-management services identified in chapter 2 should also be pro-

vided. These supply management information on possible transformations, ideally 

including some measure of associated cost. The purpose of this management in-

formation is to assist in object scheduling decisions. This is the only role the 

construction facility has in connection with scheduling. The scheduling decisions 

themselves are made by ORM Location Layer services. 

This thesis does not propose a new approach to language design or compiler 

technology. Rather, it presents a distributed algorithm for automatically control-

ling the application of existing object construction tools. 
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4.4 Limitations and Assumptions 

4.4.1 Construction Limitations 

The proposed mechanism is intended only for constructing user application pro-

grams, i.e., programs existing within the user environment. It it is not intended to 

manage code implementing the system itself, which is considered to be a separate 

problem handled by the system implementors using traditional (manual) tech-

niques. The system code implementing the construction service, and in particular 

the transformation tools themselves, are therefore assumed to be pre-constructed; 

This removes the possibility of recursive invocations to 'construct the constructor', 

thereby allowing invocations upon transformation tools to be scheduled using the 

standard invocation scheduling mechanisms. 

4.4.2 Error Free Syntax 

Services in the ORM User Layer are assumed to handle the user oriented aspects 

of programming by providing a development, environment for each language, incor-

porating, for example, tools such as syntax directed editors and syntax checkers. 

As an example, one of the environments offered by the application layer might 

be a Smalltalk-80 emulation running on top of the target environment. Separat-

ing the user interface from the mechanics of object transformation, simplifies the 

transformation tools, allowing them to perform faster. 

The object construction service therefore deals exclusively with object trans-

formations. Issues such as creating source code and ensuring correct syntax are 

assumed to be handled by services at the User Layer level. The transformation 

tools therefore assume all object representations are syntactically 'correct', having 
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been previously vetted. For example, an object purporting to be a C++ imple-

mentation of some service is guaranteed to conform to C++ syntax. It is further 

assumed that all necessary parameters, such as the objects to be included in a link 

operation, are readily available. These can be obtained either from user supplied 

information (interrogation being performed by the User Layer environment), or 

by automatic deduction and dynamic searching (again, performed by User Layer 

services rather than the construction service). 

4.5 Object Transformations 

In current systems, an object implementation, or indeed an implementation in 

any programming paradigm, is transformed several times before a representation 

is derived suitable for execution on the system hardware. As an example, the 

simulation program introduced later in the thesis was implemented in Simula. The 

first step towards generating an executable representation of this program is the 

application of the Simula compiler. The compiler generates an assembly-language 

version of the program, which is then further transformed by an assembler. The 

final stage is performed using a linker to merge the output from the assembler 

with the necessary library and system code. The relationship between the different 

program representations is shown in Figure 4-1. 

The simulation was also run under a different operating system using the same 

source code, but with a different compiler and linker. These new representations 

can also be added to the relationship diagram, as shown in Figure 4-2. In this 

case the diagram indicates that no intermediate assembly language representation 

is produced. Many other executable representations could be produced from the 

same source code, each of which can be added to the relationship diagram in a 

similar manner. 
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Figure 4-1: A Simple Representation Relationship Diagram 
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Figure 4-2: An Extended Representation Relationship Diagram 
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Figure 4-3: A Hierarchy of Program Representations 

The transformations described above move from a higher to a lower level of 

abstraction. This is not always the case. For example, dis-assemblers perform 

the reverse function of assemblers, producing as their output a representation at 

a higher level of abstraction than their input. Another example is provided by 

program translators that transform one high level language implementation into 

another, e.g., C to Pascal, or Simula to C++. Figure 4-3 extends the relationship 

diagram to include a Simula to C++ translator and a dis-assembler. 

4.6 Construction Graphs 

Relationships of the type described by Figure 4-3 are based on representations 

rather than any object specific characteristics. Consequently, they are applicable 

to all objects. This graphical representation of object construction can be gener-

alised to include all possible representations within a system, identifying the re-

lationships between them. Graphs of this nature, known as Construction Graphs, 
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Figure 4-4: A General Construction Graph 

can be thought of as state transition diagrams, where the states correspond to 

object representations, and state changes are triggered by the application of a 

transformation tool. Figure 4-4 shows a general example of a construction graph 

with representations denoted A, B, C and so forth, rather than specific repre-

sentation names such as Simula, C++ and assembler. Note that the graph does 

not have to be totally connected. As in the example, no transformation tools are 

available to connect the sub-graph J-K-L, to the rest of the graph structure. 

Each node in the construction graph corresponds to a particular representation 

or Type, while the edges represent the possible transformations. The nodes are 

termed Transformation Nodes since each one encapsulates the system-wide knowl-

edge concerning transformations applicable to their corresponding types. Thus, 

the Simula transformation node 'knows all things that can be done with Simula 

objects'. Similarly the 'A' transformation node 'knows all things that can be done 

with object representations of type A', and so on. 

Every object transformation involves at least two representations, the Source 

Type and Destination Type, corresponding respectively to the pre- and post- 

transformation representations. When constructing an executable representation, 
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the destination-type will correspond to the Host Type, i.e., the representation 

expected by the specified host. 

A destination-type can only be derived from a specified source-type if there ex-

ists a Construction Path between their respective transformation nodes, i.e., a series 

of one or more transformations converting the source-type into the destination-

type. The problem of object construction can therefore be reduced to that of find-

ing construction paths through the construction graph. An object is constructed 

by Traversing its construction path, i.e., moving sequentially along each arc in 

the construction path, from the source node to the destination node, invoking the 

appropriate transformation tool at each step. 

4.7 Searching For Construction Paths 

Construction graphs describe the relationships between object representations, 

identifying the transformation tools used to convert between them. For any given 

source and destination-type a construction path must be found linking their re-

spective transformation nodes. This requires searching the construction graph. 

The envisaged client of the construction service is the object scheduler, which 

knows only about objects and object locations in the location address space. More 

specifically, the scheduler does not know about source and destination types. The 

object scheduler therefore expects a construction service interface such as 

Makelnstance(Obj ect, @Locat ion, Options) 

Hence, the construction service only knows the destination-type, which it derives 

from the specified location. The source-type is, initially, unknown. The starting 

point for a construction path search is therefore the transformation node of the 

destination-type. The search moves 'backwards' from the destination-type, looking 
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for one or more, source type representations of the specified object. Note that this 

is contrary to the normal, user driven method of object construction in which a 

source representation is known, provided by the user. 

A construction path is found by searching the construction graph for a source 

representation of the object. Using a breadth-first search, starting at the destina-

tion node, the 'closest' source will be encountered first, i.e., the source represen-

tation requiring the least number of transformation steps to create a destination-

type representation. For example, if an intermediate representation of the object 

already exists, then the search will find this and terminate, never reaching the 

original high level language representation. If a destination-type representation 

already exists, then the search terminates immediately. In this case the construc-

tion path is reduced to a single node, with no transformations required. 

The Options parameter included in the Makelnstance service may serve sev-

eral purposes. For example: it may specify a preferred construction path if more 

than one source is available; it may specify a particular path, overriding the con-

struction service's choice; when more than one transformation tool is available for 

a particular transformation, e.g., two C++ compilers, it may specify which one 

to use; finally, it may also specify 'flags' for the transformation tools, for example, 

setting a Debug flag. 
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4.8 Representation Cacheing 

As hinted by the previous section, and suggested by common sense, objects need 

not be reconstructed, from scratch every time they are required. When an ob-

ject transformation is performed, the resultant representation can be Cached, i.e., 

stored for future use. In subsequent requests to construct the same object, the 

cost of transformation is replaced by the (significantly smaller) cost of locating 

and retrieving the cached representation. 

The improved construction performance gained through cacheing must be 

traded against the cost of managing and storing the cached representations. Many 

different cacheing policies could be envisaged, ranging from none at all, to cacheing 

everything. A simplification of the cache-all scheme would be to cache only host-

type representations, i.e., the end result of a series of transformations, discarding 

any intermediate representations jroduced on the way. Another policy could use 

frequency of access, for example, only cacheing an object if it has already been 

constructed ii times within some time-period. Other policies could be based on 

privileges, such as only cacheing an object if it has 'cacheing privilege'. 

These example policies are by no means exhaustive. As with most forms of 

cacheing there is no 'best' policy, only compromise, dependent upon many environ-

ment specific factors. Policy recommendations for object cacheing are therefore 

beyond the scope of this discussion. Object cacheing is secondary to the main 

ideas under discussion, and will not be considered any further. 
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4.9 Management Services 

The external-management services provided by the construction facility should 

indicate, for any particular object, whether a specified destination-type can be 

generated. Also, there is a requirement to provide information on the 'cost' of a 

construction, thereby allowing the scheduler to compare different options. Com-

parisons are also required when more than one source-type is available for an 

object, resulting in multiple construction paths leading to the same destination. 

This situation can occur, for example, if the object has been implemented in more 

than one language. 

The feasibility of a particular construction can be answered simply by searching 

for a suitable construction path. If at least one path exists then the construction 

can be performed, otherwise it can not. Comparing different paths requires ad-

ditional information relating to construction 'costs'. In principle, each arc on the 

construction graph has an associated cost, as shown in Figure 4-5. The cost of 

a particular construction is given by the cumulative cost of the individual trans-

formations from which the construction path is composed. Finding the 'cheapest' 

path is then a special case of the shortest path problem for weighted graphs; a 

standard problem for which standard solutions exist. 

An intuitive cost function is the time taken to perform the transformations. 

The construction cost is then measured as the cumulative time taken to perform 

the series of transformations leading to the desired object representation; the path 

requiring the least time being the best. Unfortunately, the transformation time 

depends upon many factors, including the 'size' of the source representation to be 

transformed. Hence, the transformation time will be different for every object at 

every transformation step. 
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Figure 4-5: A Construction Graph with Cost Labels 

If a usable measure of the representation 'size', n, could be specified, then 

transformation tools could be tagged with their time complexity, for example, 

0(n), 0(n 2 ) etc., thus yielding an estimate of the transformation time. However, 

even if such measures were feasible, other 'difficult-to-measure' factors such as 

current system performance must also be taken into account. In reality, accu-

rately predicting transformation time is dependent upon too many unquantifiable 

variables. Hence, the conclusion is drawn that, although desirable, transformation 

time is not a practical measure of construction cost. 

Another approach is to try and examine the system resources used to perform 

transformations; the path using the 'least' resources being the best. Measuring 

resource usage is discussed extensively in chapter 5 in relation to scheduling. With-

out pre-empting that discussion, it is safe to state that measuring resource usage 

suffers from the same quantification difficulties as predicting transformation time, 

making it equally unusable. 

The problem of defining a suitable cost indicator is similar to that of defining 

'workload' in distributed scheduling (see chapter 5). An approach often adopted 

in scheduling is 'simple is best'. This is based on the experience that the benefits 
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of using very accurate, complicated metrics, are outweighed by the effort required 

to observe and update them. 

The proposed implementation described below includes the simple measure 

of path length, i.e., the number of transformations required between source and 

destination types. Path length has the advantage of being both easily calculated 

and interpreted, but suffers from the obvious disadvantage of being very coarse. 

Using this measure, the shortest path is considered best, regardless of the indi-

vidual transformations involved. The algorithm shown does not depend upon the 

use of a path length cost indicator, so other metrics could used within the same 

framework. 

4.10 A Proposed Implementation 

This section describes a design for a distributed object construction service based 

upon the construction graph concept described above. A distributed data struc-

ture is defined that embodies the construction graph for a complete distributed 

environment. Construction paths are then found by applying standard graph 

searching algorithms to this distributed graph structure. 

4.10.1 Type Representatives 

The design is based upon defining a Type Representative' object. Each trans-

formation node in the construction graph is realised as an instance of object 

TypeRepre sent ative. For example, the Simula representative embodies all knowl-

edge relating to transformations of Simula objects. Similarly there will be a C++ 

2 The term 'representative' is loosely derived from the phrase 'representation service'. 
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Transformation Tool Output 

Type Representative 

T '-+ U compiler U u_Rep 

T i-p v compiler V vRep 

T i- 	S translator S S...Rep 

T '- W compiler w w_Rep 

Figure 4-6: The T Representative Output Configuration Table 

Figure 4-7: The T Representative Output Graph Segment 

representative, an assembler representative and so forth. The representatives may 

be fully replicated to provide easy access, but each copy must maintain consis-

tency with the others; logically there is only one representative per representation 

type. As an example, every host might maintain a local copy of its corresponding 

representative (e.g., the SUN3-Unix representative). 

A representative defines a mapping between its input type and its output types. 

The outputs are determined by the transformation tools available for manipulating 

the input type. Each representative therefore keeps a table of applicable transfor-

mation tools and their output types. A specimen table for the T representative is 

shown in Figure 4-6. The corresponding segment of construction graph it defines 

is shown in Figure 4-7. Each of the associated output types s, U. V and W will 

also have representatives defining adjacent segments of the construction graph. 
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fl Input Representative U 
U_Rep 

P_Rep 

QRep 

RRep 

Figure 4-8: The T Representative Input Configuration Table 

Figure 4-9: The T Representative Input Graph Segment 

In order to implement a construction path search, each representative must 

also keep a list of those representatives capable of producing its input type. The T 

representative's input configuration table is shown in Figure 4-8, with the corre-

sponding graph segment shown in Figure 4-9. Hence, the segment ofconstruction 

graph known to the T representative is as depicted in Figure 4-10. 

The services offered by a type representative are outlined in the following list. 

Each service is subsequently discussed with respect to its role in providing an 

object construction facility. 
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Figure 4-10: Construction Graph Segment Known to the T Representative 

r. Maintain a configuration table of possible transformations relating to a spec-

ified type. 

Allow queries and updates on this table. 

Participate in searching for construction paths 

Participate in object construction 

' Manage cached representations 

4.10.2 Maintaining Configuration Tables 

Each type representative must maintain input and output configuration tables as 

defined above. As the distributed environment evolves, it will be necessary to 

modify these tables accordingly. For example, if a new T compiler becomes avail-

able, an extra entry must be added to the T representative's output configuration 

table. Similarly, if a new transformation service is added that generates type T as 

output, it must be added to the T representative's input configuration table. Re-

moval of transformation services must also be reflected by deleting the appropriate 
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table entries. These modifications to the construction graph are expected to be 

infrequent events, occurring over days or even weeks, rather than micro-seconds 

or seconds. 

The TypeRepresentative object must therefore provide invocation routines 

such as AddEntry, DeleteEntry and EditEntry. Responsibility for notifying rep-

resentatives of transformation tool additions and removals is assumed to lie with 

the (human) system administrator(s), although the representatives can handle the 

resultant ripple effects themselves. For example, in Figure 4-10, if the Ri-*T com-

piler is removed, the system administrators must inform the R representative using 

DeleteEntry. However, the R representative itself can invoke the T representative 

in order to be removed from T's input configuration table. 

4.10.3 Searching For Construction Paths 

The search for a construction path is initiated by the object scheduler, either 

through a Malcelnstance request, a CanLocate? query, or a WhatCost? query. 

In each case the destination location, and hence the destination-type, is spec-

ified. This information provides the starting point for the search, namely, the 

TypeRepre sent ative corresponding to the destination-type. 

The algorithm about to be described is a breadth-first graph search. Normally, 

graph searching algorithms are recursive. However, with the distributed graph 

structure defined above, each type representative is only aware of a small graph 

segment, i.e., the part it defines, and hence, is only able to search this small 

segment. A type representative therefore does not recursively call itself, but rather, 

calls its peers in adjacent graph segments. Hence, the 'recursion' in the algorithm 

is distributed between the type representatives. In principle therefore, the graph 

search can be performed in parallel. 
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Source 

Destination 

Figure 4-11: An Example Graph: To be Searched 

Each TypeRepresentative instance has two invocation routines used to per-

form graph searching 

Search (SearchlD, Obj ectName) 

SearchComplete(SearchlD, OutCome, PathLength) 

Two routines are required because the algorithm assumes asynchronous invocation. 

An algorithm based upon synchronous invocation would only require one routine, 

but would not be able to handle more than one search at a time or perform 

individual searches in parallel. The use of these routines will be explained with 

reference to the graph in Figure 4-11. The type representatives A to G are assumed 

to have correct input and output configuration tables to describe this graph. The 

required host-type is A, and the only available source is of type F. Note that, for 

the moment, the complications introduced by cyclic graphs are ignored. 

A mock implementation of Search() is shown in Figure 4-12. The SearchlD 

is a unique label identifying the current search, and Obj ectName is the name of the 
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Search(SearchlD 	Uniqueldentifier; 
ObjectName : AnyObject 	); 

BEGIN 
IF { cached representation available } 

THEN SearchComplete(SearchlD, Successful, PathLength = 0) 
ELSE BEGIN 

IF { input configuration table not empty } 
THEN BEGIN 

FOR { each peer representative in input table } 
DO BEGIN 
Representative.Search(SearchlD, ObjectName); 

{ Record search in progress by Representative } 

END of FOR; 
END of THEN 

ELSE SearchComplete(SearchlD, Failed); 
END of first ELSE; 

END of Search; 

Figure 4-12: A Distributed Search() Implementation 

object to be constructed. The name of the object invoking the search operation is 

also required, but this is assumed to be provided automatically by the invocation 

mechanism and is therefore not included as an explicit parameter. 

The representative at the root of the search (A in the example) checks to see if 

it already has a cached copy of the desired object. If no source representation is 

available (as in the example), then the search is propagated to each of the repre-

sentatives in the input configuration table (B, C and D) by 'recursively' invoking 

Search on each of them. As explained earlier, these are not recursive invocations 

upon (A) itself, but invocations upon its peer type-representatives (B, C and D) 

that may proceed in parallel. Each representative thus invoked becomes the root 

of a new sub-search. The originating representative (A) records the details of each 

sub-search initiated, for use later by the SearchComplete routine. 

In the example, the B, C and D representatives also fail to find a source rep- 
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resentation, and therefore propagate the search to E, F and G respectively. The 

E-representative and G-representative will both fail completely because they have 

neither a source representation,ror any input representatives to further propagate 

the search. They therefore invoke SearchComplete on B and D respectively, with 

the outcome Failed. The actions of SearchComplete will be examined shortly 

Finally, the F- representative does have access to an F-representation of the speci-

fied object and therefore reports SearchComplete, with outcome Success, to the 

C- representative. The path length, set to zero at this point by the F- representative, 

will be incremented by each representative as the path information travels back 

towards the original root. 

In the simple algorithm presented here, each sub-search is completed either by 

failing, or finding a source. No attempt is made to terminate ongoing (parallel) 

sub-searches once a source has been found. In general this is what is required, since 

there may be more than one source available and the first one found is not necessar-

ily the 'best'; this depends upon the nature of the cost indicator. With the simple 

path length indicator used here, the first source found will in fact also be the best. 

In this case a successful Search could broadcast a StopSearching(SearchlD) 

invocation in order to terminate any active (now redundant) sub-searches. 

The corresponding mock implementation of SearchComplete is shown in Fig-

ure 4-13. As with Search there is a further, implicit parameter included, i.e., the 

name of the representative reporting the search completion. This name, together 

with the SearchlD a used to note the OutCome of the sub-search against the 

information recorded when it was instigated. The representative then checks to 

see if all its sub-searches have concluded. if not, then no further action is taken. 

However, when the final sub-search is completed, the results are examined for a 

Successful outcome. If there are none, then a SearchComplete, with OutCome 

Failed, will be passed further down the line towards the root. For example, the 

B- representative will receive a Failed message from the E- representative. As this 
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SearchComplete(SearchlD 	Uniqueldentifier; 
OutCome 	: Successful or Failed; 
PathLength : Integer 	 ); 

BEGIN 
{ Record OutCome against the information } 

{ stored when Search() was invoked 	} 

IF { All searches complete } 
THEN IF { none successful } 

THEN SearchComplete (SearchlD, Failed) 
ELSE BEGIN 

{ select successful reply with shortest path } 

{ (throwing away all the others) 	 } 

{ increment PathLength by one } 

SearchComplete(SearchlD, Successful, NewPathLength); 

END of ELSE; 

END of SearchComplete; 

Figure 4-13: A Distributed SearchCompleteQ Implementation 
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was the only sub-search it instigated, the B-representative examines the result 

and reports the failure to the C- representative. The C-representative however, 

must wait for a result from the F- representative before passing on any further 

information. When this Successful result arrives, the c- representative will in-

voke SearchCompleted on the A- representative with outcome Successful and 

PathLength one. 

If more than one source is found, then one of them must be selected. For exam-

ple, if sources were available to both the E-representative and the F-representative, 

then the C- represent ative will receive two Successful results. One of these will 

have a PathLength of two, corresponding to the sub-path EBC, and the other will 

have a PathLength of one, corresponding to the path FC. The C- represent ati ve ig-

nores the longer path, reporting only the shorter of the two to the A- represent at ive. 

The same mechanism can be used if there are three or more Successful sub-

searches. In the case where more than one path corresponds to the shortest length, 

random selection can be used. The type representatives are expected to retain the 

information relating to successful searches, for use in subsequent construction re-

quests. 

When the graph search concludes, the initiating type-representative, A, has 

available the information required to satisfy the object scheduler's original request. 

The result of a CanLocate? query depends upon whether or not a path was found; 

in the example, the result is Yes. A WhatCost? query receives, in this case, the 

response PathLength 2. The path length metric can be replaced by other cost 

functions subject to a decision mechanism being available to select the 'best' path 

at each step. Finally, with regard to a Makelnstance request, each representative 

on the successful path (F, C and A) has retained the name of its 'supplier' for use 

with the construction algorithm described later. 

The search algorithm presented above describes a basic construction service, 

demonstrating the basic principles involved. There is considerable scope within a 
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real implementation for improving efficiency, such as using 'hints' that restrict sub-

searches to paths more likely to produce a successful result. Hints may be derived 

by the system through analysis of previous searches, or they may be provided as 

Options parameters to the Search routine; perhaps specifying precisely the path 

to be used. A historical record of successful paths could also be retained to avoid 

repeated searching. 

4.10.4 Performing Transformations 

Having found the best construction path for an object, the destination type-

representative may now initiate its creation. This can be performed using the 

Construct 0 routine shown in Figure 4-14. Each representative supervises the 

application of the transformation tool appropriate to its section of the construction 

path. If the input representation is not immediately available, then the SearchlD 

is used to index the information stored when the construction path was found. 

This provides the name of the next representative along the construction path, 

which is then instructed to create the appropriate input representation by a 're-

cursive' call on Construct(). Note that, as with the search algorithm, this is not 

a recursive call on itself, but a call to a peer routine further along the construction 

path. Hence, in the example, the A-representative calls upon the C-representative, 

which in turn calls upon the F-representative. The F-representative applies the 

FI-C transformer, passing the resultant C representation to the C-representative, 

which in turn applies the C--+A transformer, thereby producing the required rep-

resentation. 

4.10.5 Managing Cached Representations 

The mechanisms used to manage the storage of object representations are not 

addressed by this thesis. It envisaged that suitable facilities for representation 



Chapter 4. Object Construction 	 120 

FUNCTION Construct(SearchlD : Unique ldentifier) : ObjectReference; 

BEGIN 
IF { cached representation available } 

THEN Input := SourceObject 
ELSE Input := SourceRepresentative.Construct(SearchlD); 

{ apply transformation tool to Input, producing Output 
} 

Return(Output); 

END of Construct; 

Figure 4-14: A Recursive Construct() Implementation 

storage and retrieval could be provided using standard database technology, and 

hence are within the capabilities of the envisaged target environment. It is there-

fore assumed that each TypeRepre sent at i ve can, if it chooses, reliably store the 

output of any transformations it initiates. It is further assumed that the existence 

of a cached representation can be easily verified and, if required, easily retrieved. 

Responsibility for implementing the cacheing policy lies with the type representa-

tives. 

4.10.6 Searching Cyclic Graphs 

The construction graph shown in Figure 4-11 contains no closed loops, i.e., it is 

an acyclic graph. This section examines the algorithm's ability to search cyclic 

construction graphs, i.e., those containing inter-related representations. 

Figure 4-15 shows an example construction graph containing a cycle. It is 

identical to the example used earlier except for an additional arc between rep-

resentatives A and C, corresponding to an A'—*C transformation tool. Thus, it 

becomes possible to take an A-representation of an object, using it to produce 

a C;-representation, which in turn can be used to produce an A-representation. 
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Source 

Destination 

Figure 4-15: An Example Cyclic Construction Graph 

This is the simplest form of cyclic loop. Longer loops, containing three or more 

representation are also possible. The search algorithm described above will enter 

an infinite loop with such a graph, with the A- and c-representatives continually 

forwarding the search to each other. 

Infinite looping can be avoided by marking each node in the graph as it is 

visited. This is a standard technique employed in graph searching algorithms. 

If the search encounters a node it has already visited, then a cycle must exist. 

Having detected a cycle, appropriate action can be taken to avoid infinite looping. 

In the search algorithm described earlier, each type representative records all 

sub-searches it initiates. This effectively acts as a 'marker' indicating that the 

search has reached this representative. If a type representative observes a repeat 

search request, then (assuming no errors) this implies that the search has been 

propagated around a cyclic path and, furthermore, that no source was found along 

that path (otherwise the search would have terminated). Any type representative 

observing a repeated request should therefore invoke SearchComplete() with the 
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outcome Failed. This will propagate back around the loop until either it meets a 

Successful result, in which case it is rejected in favour of the successful path, or 

it reaches the original root of the search. In both cases an infinite loop is avoided. 

4.11 Summary 

It has been argued that the automatic manipulation of object representations is 

both desirable and necessary in a heterogeneous environment. A control mecha-

nism for applying transformation tools has been developed using a graph-based 

formulation of the problem. Standard graph searching techniques, in particular 

breadth-first searching, have been applied to the distributed graph structure in 

order to find a source representation for a specified object. The graph search also 

establishes the transformation steps necessary to create the desired representation. 

Having found this information, constructing the object becomes straight-forward. 

The search and construction algorithms presented provide the basis for a working 

implementation, suggesting that an automatic construction service is a feasible 

proposition. 



Chapter 5 

Distributed Scheduling 

This chapter provides an introduction to resource scheduling. The schedul-

ing problem is defined in general terms, followed by an overview of current, 

non-object scheduling techniques. The problems of performance measures 

and status update policies are also covered. Scheduling in object based 

systems is then examined, introducing an additional, fine grained level of 

scheduling; invocation scheduling. Several of the scheduling techniques 

identified earlier in the chapter are then re-examined with respect to invo-

cation scheduling. It is argued that object oriented performance metrics are 

more appropriate to an object based environment than the re-application 

of process based metrics. Several object oriented metrics are suggested as 

being suitable for performance measurement. 

123 
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5.1 Introduction 

Scheduling is the management of consumer access to resources. The Scheduling 

Policy defines the criteria against which this access is governed. There are many 

different formulations of this problem depending upon the definitions of consumers 

and resources. Within the target environment, all Resources are objects and, 

conversely, all objects are resources. No other form of resource exists. The resource 

Consumers are also objects, making invocation requests to satisfy user demands. 

The demands made upon a distributed system by consumers represent its 

Workload. In the target environment the workload corresponds to invocation re-

quests. Distributed Scheduling (scheduling 'in the large') is the global assignment 

of resources to workload, governed by the scheduling policy. Local Scheduling 

(scheduling 'in the small') is the assignment of local resources to individual tasks 

within the confines of a single object host. The problem of local scheduling in 

single-processor systems has been thoroughly researched, with standard techniques 

being presented in most basic operating system texts. Local scheduling is therefore 

not addressed here. 

5.2 Scheduling Policies 

Many different approaches to distributed scheduling have been suggested in the 

literature. The plethora of policies have prompted at least two attempts to create a 

Scheduling Taxonomy, i.e., a descriptive framework with which to classify different 

policies. One of these, by Wang and Morris, is based upon the level of informa-

tion required by the policy [Wang 85]. Seven levels of information dependency are 

identified, which are then used to classify the 10 'canonical' scheduling algorithms 

identified by their study. A more descriptive taxonomy is provided in [Casav88], 
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which defines a hierarchical classification scheme based on policy characteristics. 

In describing this taxonomy, Casavant and Kuhl present a comprehensive overview 

of distributed resource scheduling, including an extensive literature survey classi-

fying over fifty published algorithms. 

The following sections provide an overview of basic scheduling techniques and 

terminology'. The techniques identified are not entirely independent. Many 

scheduling mechanisms exhibit characteristics from more than one 'category'. The 

majority of distributed scheduling research relates to non-object environments. 

Schedulers in these systems deal exclusively with processes, i.e., executable or ex-

ecuting (binary) program representations, and processors, i.e., hardware capable 

of executing processes. The scheduling problem is therefore defined in terms of 

assigning processes to processors. This phraseology will be used for the moment. 

The effect of considering an object oriented environment will be examined later. 

Load Sharing and Load Balancing 

Load Sharing scheduling policies attempt to distribute the system workload be-

tween processors. Load Balancing is a specific case of load sharing in which the 

intention is to keep all processors equally utilised (in some sense), avoiding the 

situation where one processor is overloaded while, at the same time, another is 

underloaded. The motivation behind load balancing is the belief that by spreading 

the workload as evenly as possible, the average completion time per unit of work 

will be minimised. 

In order to maintain this equilibrium, load balancing policies migrate work 

away from 'overloaded' hosts towards 'underloaded' hosts, thereby correcting any 

'As in chapter 1 with the phrases 'distributed system' and 'object orientation', these 

terms are not universal. 
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imbalances that arise. A load imbalance may occur, for example, when previously 

scheduled work is completed, freeing the resources that were allocated to it. Load 

balancing relies on the ability to migrate processes in mid-execution, which is 

an 'expensive' operation because of the need to transfer the current execution 

state of the process. This can become even more expensive in an heterogeneous 

environment where the originating and destination processors may require different 

representations of this state. A survey of the process migration mechanisms 2  used 

in LOCUS, DEMOS/MP, XOS, V and MOS is presented in [Smith88]. 

Sender and Receiver Initiated 

In sender-initiated scheduling policies, congested processors search for processors 

with light load in order to transfer work. For example, if an overloaded processor 

is requested to execute an additional process, it may search for an underloaded 

processor more capable of satisfying the request. Conversely, receiver-initiated 

policies place the onus on underloaded processors to look for work by canvassing 

the overloaded processors. Receiver-initiated schemes suffer from the same mid-

execution migration expense as load balancing. This occurs because the offers of 

assistance arrive at the overloaded processors asynchronously with respect to the 

creation of new processes. Hence, in order to transfer some of the workload, an 

existing process must be migrated. With sender-initiated policies, the overloaded 

processor simply forwards the newly arrived request to start executing a process; 

there is no need to transfer any execution state. 

A detailed comparison of sender and receiver initiated schemes is presented 

in [Eager85]. It is shown that if the transfer costs in each case are the same, then 

sender-initiated performs better at low to middle loadings, while receiver-initiated 

'None of the systems surveyed in [Srnith88] are object based. 
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performs better at higher loads. This makes sense intuitively, since at higher 

workloads the burden of scheduling is removed from the overloaded processors, 

and placed with the underloaded processors, i.e., with those that have the spare 

processing capacity to cope with it. However, in most systems that implement 

dynamic migration, the transfer costs are significantly greater for receiver-initiated 

schemes due to the mid-execution migration expense they incur. Under these 

circumstances sender-initiated policies give better average performance across all 

loadings. 

Static and Dynamic 

The difference between static and dynamic scheduling relates to the time at which 

scheduling decisions are made. In Static Scheduling, the scheduling decision is 

made at construction time, i.e., when the executable representation is created. 

Once made, this assignment is never changed. Hence, every time the process is 

submitted for execution it is always assigned to the same processor. Static schedul-

ing policies assume a stable environment in which the system status observed at 

construction time, is the same as that observed each time the process is executed. 

Dynamic Scheduling policies remove the assumption of a stable, predictable en-

vironment and take the more realistic view that little a priori status information 

is available. The assignment of process to processor is delayed until immediately 

before the process is executed, incorporating the system's current status into the 

decision making. Each execution of a process may therefore take place on a dif-

ferent processor, reflecting changes in loading status. Hence, dynamic schedulers 

can potentially adapt to and exploit, changes in processor availability. 
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Adaptive Scheduling 

An Adaptive scheduler is one in which the algorithms and parameters used to 

implement the scheduling policy, change dynamically according to the previous 

and current behaviour of the system (which in turn was influenced by earlier policy 

decisions). Note that the algorithms and parameters themselves must change over 

time for a scheduler to be classed as adaptive. A scheduler in which only the 

values of observed parameters change is dynamic, as described above. 

One example of an adaptive policy is an algorithm that attaches weights to 

each of its observed parameters, with the weights being re-calculated in response 

to earlier scheduling decisions. Therefore, a parameter that was important in 

earlier decisions, i.e., one that had a large weighting, may become insignificant in 

future decisions due to its weighting being reduced. Schedulers based on stochastic 

learning automata, such as the one reported in [Mirch86], provide further examples 

of adaptive scheduling. 

Probabilistic 

Probabilistic scheduling policies are based on the long term probabilistic behaviour 

of a system. Assignments of processes to processors are performed randomly 

according to some distribution that describes this behaviour. One of the simplest 

policies is to assign uniformly at random, for example, in a system of n processors, 

each is selected with probability . In theory, the long term behaviour of such 

a policy will assign work evenly between all n processors. A more complicated 

algorithm might adjust the selection probabilities depending upon the observed 

'performance' of earlier assignments; a good performance leading to an increased 

probability of re-selection. 
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One-Time and Dynamic Assignment 

With One-Time Assignment, a process runs to completion on its selected processor 

regardless of subsequent changes in the load distribution. Schedulers employing 

Dynamic Assignment may re-evaluate earlier scheduling decisions in the light of 

new or more up-to-date information, possibly leading to the mid-execution migra-

tion of a process. For example, the essential difference between load sharing and 

load balancing described above is that load balancing uses dynamic assignment, 

whereas load sharing uses one-time assignment. Note that it is still possible to 

have a policy employing dynamic assignment whose goal is something other than 

load balancing, for example, re-assigning a process because of the imminent failure 

or close-down of its current processor. 

5.3 Scheduling Metrics 

All but the simplest scheduling policies rely upon monitoring certain system pa-

rameters, using the observed values to drive the scheduling algorithm. There are 

two aspects to this monitoring operation; deciding which system parameters pro-

vide useful scheduling information, and deciding how to propagate the observed 

values throughout the system. 

5.3.1 Performance Measures 

Many scheduling algorithms presented in the literature assume the parameter 

values they require are known in advance, i.e., before the process is scheduled. For 

example, some of the earliest work on load sharing [Stone77] assumed that process 

execution times and levels of inter-process communication were pre-determined. 

Some algorithms assume that very detailed scheduling information is available. 

For example, the algorithm presented in [Chou 821 uses 
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E(i, x): execution time of task i on processor x 

CO(i, x,j, y): communication time for the results of task i on processor x to 

task j on processor y 

F(i,x): probability task i fails on processor x 

CH(i, x): time to create a checkpoint for task i on processor x 

D RE(i, x): time to restart failed task i on processor x 

i> CI(a, x): time to initiate a set of concurrent tasks a by processor x 

> CC(a,j,x): communication time for the results of a set of concurrent tasks 

a to task j on processor x 

The algorithm presented in [Hsu 86] assumes, among other things, that the amount 

of unfinished work per host is known. The algorithm in [Varad88] includes pa-

rameters such as the fixed cost of migrating one unit of resource, and the average 

resource requirements for a job. 

Using this approach the scheduling problem is formulated as an equation, with 

a parameter included for every characteristic the scheduler's developers believe to 

be important. The equation is then solved algebraically, the result forming the 

basis of a scheduling algorithm. If an exact solution is found, then the resultant 

algorithm is optimal for the problem it describes. Simulations are often used to 

confirm this. In order to apply an algorithm to a specific system, the parameters 

are interpreted in units suitable to that system. However, in practice some of these 

parameters are somewhat difficult to quantify. For example, how is 'one unit of 

resource' actually defined? 

Without exception, all distributed schedulers implemented in working systems 

use much simpler measures. System developers have taken the pragmatic ap-

proach of using parameters that are available and easily measured. There are 
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principally two metrics in common use; processor Queue Length and percentage 

processor Utilisation. Queue length measures the number of processes currently 

active on a processor, thus providing a coarse approximation to the processor's 

load. Processor utilisation measures the percentage of time the processor is active 

(or equivalently the percentage idle time), thus yielding. a different approxima-

tion to processor load. Queue length is used, in conjunction with utilisation, by 

the LOCUS distributed file system [Haé 86]. Utilisation is used within the MOS 

distributed system [Barak85] and the V distributed system [Theim86}. 

Queue length does not provide the same level of accuracy as utilisation, since 

an interactive program such as a text editor, does not present the same processor 

load as a computationally intensive program, such as a simulation. Both programs, 

however, carry equal weight when measured as entries in the processor queue. 

Utilisation, although not as coarse, requires greater effort to determine, since it 

is usually calculated as an average over some specified time period in order to 

smooth temporary fluctuations. 

Simple scheduling mechanisms are employed principally to reduce implemen-

tation complexity. However, a study by Eager et al. has shown that 

"Extremely simple load sharing policies using small amounts of in-

formation perform quite well—dramatically better than when no load 

sharing is performed, and nearly as well as more complex policies that 

utilize more information." [Eager86] 

The study's conclusion is that the expense of propagating and maintaining com-

plex status information, is not justified by the marginal improvements gained in 

scheduling performance, i.e., "simple is best". 
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5.3.2 Status Update Policies 

Given a usable performance indicator for a processor, it becomes necessary to 

inform other processors of its current value, keeping them up-to-date with any 

changes. There are many possible update policies, the simplest of which is Periodic 

Broadcasts. Under this policy, each processor observes its own performance metric 

every T seconds, broadcasting the new value to all others. Hence, each processor 

has an estimate of the others' current performance, guaranteed to be no more than 

T seconds out of date. There is a tradeoff here between update overheads and 

accuracy, determined by the timeout value T. A small value for T generates more 

updates and therefore greater accuracy, but incurs greater maintenance overheads. 

Conversely, a large value of T reduces the overheads, but also reduces accuracy. 

A refinement to periodic broadcasting, attempting to reduce the number of 

update messages while still retaining accuracy, is suggested by Theimer who ob-

serves that, with a sender initiated policy, the only updates of interest are those 

from lightly loaded processors [Theim86]. He therefore suggests a scheme in which 

a cutoff level is defined, such that only processors whose load is below the cutoff 

level send updates, those above the cutoff level remaining silent. The cutoff level 

can be modified over time and re-broadcast to reflect changes in the overall system 

load. This mechanism has been implemented in the V system. 

Probing and bidding policies provide examples of update mechanisms that 

propagate status information only when it is requested, rather than supplying 

continuous, unsolicited updates. With Probing [Eager86], when an overloaded 

processor receives an 'execute new process' request, it randomly selects one of the 

other processors and 'probes' it, i.e., sends a status request message, to establish 

its current load. If adding the new process to the probed processor would not make 

it overloaded, then the 'execute' request is transferred. If the probed processor is 

already overloaded, or if adding the new process would make it overloaded, then 

a second processor is randomly selected and probed. This continues until either 
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a suitable processor is found, or the number of processor probed reaches a pre-

determined limit. In the latter case the originating processor must execute the 

process itself. With a Bidding algorithm, a processor wishing to offload an 'execute' 

request sends a broadcast message giving details of the process. Any processor 

that wishes may then respond with a 'tender' for the process. The responses are 

analysed, with the 'best' tender being awarded the new process. 

Another mechanism, reported in [Ni 85], attempts to reduce update traffic by 

only sending updates when-there is something worth reporting, i.e., when there 

has been a notable change in a processor's load. In order to define 'a notable 

change', three system-wide loading categories are used; high load, normal load 

and light load. Each processor is assumed able to classify its current load in terms 

of these categories. An update message is only broadcast when the processor's 

load crosses a category boundary. Unfortunately, this scheme suffers from what 

the authors call 'state-woggling', which occurs when a processor's load lies on a 

boundary, continually fluctuating between two categories and thus, continually 

generating updates. The idea of only reporting 'notable changes' will be returned 

to later in the thesis. 

5.4 Scheduling in Object-Based Systems 

The systems mentioned above in relation to process migration (Locus, DEMOS/M P, 

xos, V and Mos) are all process based, i.e., not object oriented. Most current 

object oriented systems providing object migration use exactly the same techniques 

as their process based counterparts. For example, the migration mechanisms of 

Amoeba and Eden treat migratory objects simply as executable process images. 

One notable exception is Emerald in which all objects can move regardless of 

size [Jul 88], including simple data objects. 
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The remainder of this chapter examines the effect upon scheduling of employing 

object oriented characteristics, rather than reducing everything to the level of 

binary processes. Several of the topics introduced earlier are re-examined in the 

light of this new perspective. 

Definitions 

In chapter 2, the Object Reference Model identified two tiers of scheduling in ob-

ject based systems; object scheduling and invocation scheduling. Object Schedul-

ing is the assignment of object instances to object hosts. This is comparable to 

the assignment of processes to processors in process based systems. Invocation 

Scheduling is the assignment.of invocation messages to object instances. There is 

no real parallel here with process based systems. The need for invocation schedul-

ing is the principal difference between objects and processes, a distinction that 

raises some interesting scheduling possibilities. 

The invocation scheduler has two types of objects to consider; those whose 

service is Immutable, and those whose service is Retentive. Invocations upon an 

immutable service are independent and can be passed to any instance offering the 

service. For example, the result of invoking routine Multiply will be the same 

regardless of the Calculator instance used. Invocations upon retentive services 

however, are related and must always be passed to the same instance. Retentive 

services result when an invocation causes the object to alter its internal state, 

thereby 'remembering' that the invocation occurred. This generally occurs with 

transaction based services that have an initialisation phase, followed by a period 

of service provision, followed by a closedown phase. As an example, invocations 

on EnQueue and DeQueue must be passed to the same Queue instance in order to 

have the desired effect. 
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Load Balancing 

In process based systems, load balancing is synonymous with process migration. 

This results from that fact that the smallest unit of workload is a complete pro-

cess. Migrating work to balance the load therefore implies migrating the process 

representing the load. In an object environment this equates to the migration of 

object instances between hosts; the principal load balancing technique employed 

by current object oriented systems. However, in object based systems the smallest 

unit of workload is represented not by objects, but by invocation messages. In-

deed, objects by themselves do not usually represent any load without invocation 

messages to request their services. The granularity of workload as measured by 

invocation messages, is therefore much finer than in process based systems; closer 

to the 'procedural' level than the process level. Since invocation messages can be 

migrated around the system with relative ease (minimal expense), object oriented 

systems offer an additional, finer grained level of load balancing by scheduling 

invocations between replicated servers. 

The simplest case is that of an immutable service. When the arrival rate 

of invocations exceeds an immutable object's servicing capacity, an additional 

instance can be created to handle the overspill. Hence, the load has been migrated 

without migrating objects. As long as there is spare capacity in the system to 

host additional instances, an immutable service can be 'expanded' in this manner 

to match the current demand. A corresponding 'garbage collection' mechanism 

should also be employed, removing redundant instances during periods of low 

invocation activity. 

Expansion of retentive services is not as straightforward because of the depen-

dencies between consecutive invocations. However, there are still benefits to be 

gained in taking this approach. A retentive service can be expanded subject to 

the restriction that the new instance only handles new transactions, i.e., those for 

which the original instance holds no status information. Hence, the additional 
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instance cannot alleviate the original's load, but it can prevent the load from in-

creasing further. An improvement upon this scheme would be to allow the transfer 

of some status information between instances, via 'transaction-transfer' invocation 

routines. This would allow the original instance to transfer enough of its current 

'transactions' to balance the load. This is not the same as transferring a process's 

context information, which is an 'all or nothing' machine - and implementation 

- dependent transfer of binary data. 'Transaction transfers' would enable an 

object to off-load as much, or as little of its workload as required. 

Service specific status information should be passed as implementation inde-

pendent, structured data types, rather than as binary images. The transfer could 

use the standard invocation mechanism to invoke routines in the recipient object 

specifically provided for this purpose. One immediate and very important con-

sequence of transferring status at the object level, rather than the process level, 

is that it transcends both host heterogeneity and implementation heterogeneity. 

The original and new instances can communicate service specific information, even 

though they may be heterogeneous implementations residing on heterogeneous 

hosts. The language CLU implements a value transmission method similar in 

spirit to that required here [Herli82}. 

The conclusion is that in object based systems, the fine-grained workload allows 

load balancing to be implemented without the overheads of object migration. If 

status information needs to be transferred with the migrated work, it should be 

passed via invocations as high level service specific data types in order to avoid 

problems with system heterogeneity. This philosophy is summarised by the phrase 

"Don't migrate, replicate!". 
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Performance Measures 

In -an object oriented environment, the analogous load measure to queue length is 

Object Count, i.e., the number of objects present on a host. Object count suffers 

from the same problem as queue length in that not all objects represent the same 

level of workload; an object never invoked generates little or no load. Further, 

object count gives no information regarding the load on each individual object, 

which is a necessary prerequisite for invocation scheduling. Using host utilisation 

as a load measure suffers from the same drawback, in that it provides no object 

related workload information. The standard workload measures used to implement 

scheduling in process based systems therefore do not transfer easily into an object 

oriented environment; something else is required. 

The following paragraphs discuss the monitoring of object performance for use 

in conjunction with invocation scheduling. Since hosts are themselves objects, 

it is possible to view object scheduling as a special case of invocation schedul-

ing. Therefore, the comments made below are generally also applicable to object 

scheduling. It has already been argued that, at least with respect to load bal-

ancing, considering object oriented characteristics yields an improvement over the 

process oriented approach. This approach will also be applied here to derive an 

object oriented performance metric. 

There are two basic methods of defining object oriented performance metrics. 

Either provide every object with its own specific metric, or define generic metrics 

applicable to all objects. The former offers potential for greater accuracy, while 

the latter (if possible) would be more easily interpreted, requiring no specific 

knowledge of the object under observation. These two approaches are discussed 

below. 

If object specific metrics are employed, they must be defined by the object's 

implementor as part of the implementation. The fact that they are object spe- 



Chapter 5. Distributed Scheduling 	 138 

cific implies the object must participate in the monitoring activity, for example 

by providing an additional invocation routine such as CurrentLoadO, which cal-

culates and returns the current load in units specific to the object. An invocation 

scheduler is therefore provided with the means to interrogate object instances, 

establishing their loads. The major problem with this approach is in interpreting 

the myriads of different metrics it generates. Different implementors will use dif-

ferent metrics, possibly even when implementing the same object, thus making it 

impossible to compare their relative performances. Although regulations could be 

devised to avoid such conflicts, this approach is not considered worthwhile. An-

other drawback is that it forces every object instance to participate in scheduling. 

This is not seen as desirable, since scheduling should be a function of the system, 

and not reliant upon the cooperation of the objects being scheduled or, perhaps 

more importantly, not reliant upon the object's implementor. 

A more manageable approach is to employ generic object attributes possessed 

by all object instances. There are many such attributes, some of which have 

potential for use as performance metrics. Examples include : the number of 

invocation routines; invocation rate (averaged over the previous T seconds); service 

rate per invocation routine (averaged over the previous n invocations); service rate 

per object; and many others derived from these, such as throughput (arrival rate 

divided by service rate). More concrete definitions for some of these metrics will 

be given in chapter 6. 

The fact that these attributes belong to every object means they they do 

not rely upon information specific to a particular object, or any other recondite 

knowledge. Some of them are Externally Observable, i.e., measurable by a third 

party (such as a scheduler) monitoring the interaction between client and server. 

If such metrics can be used for scheduling purposes, then this leads to the desirable 

property of Passive Participation, i.e., objects play no part in the monitoring of 

their own performance. 
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Chapter 6 now describes a scheduling mechanism based on these ideas, mon-

itoring invocation service times to provide an estimate of object performance. 

Chapter 7 presents art update algorithm, also based on service times, that elimi-

nates redundant updates, thereby reducing update overheads. 



Chapter 6 

Comparison Scheduling 

A novel approach to invocation scheduling is developed using statistical hy-

pothesis testing as the basis for a scheduling algorithm. The behaviour of 

two intuitive scheduling policies, random scheduling and greedy schedul-

ing, is examined, with simulated performance results presented. A new 

scheduling algorithm, known as comparison scheduling, is then developed, 

based upon hypothesis testing. The comparison scheduler only selects 

an object if it is significantly better than its peers; otherwise random se-

lection is used. A detailed statistical model is developed to rigorously 

define the phrase 'significantly better'. The simulated performance re-

sults for comparison scheduling are compared to those for random and 

greedy scheduling. These results show a marked improvement, indicating 

comparison scheduling's considerable potential for use in object oriented 

distributed systems. The application of a comparison scheduler to object 

scheduling is also considered. 

140 
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6.1 Model of Invocation 

Invocation scheduling is the assignment of invocation messages to object instances. 

The interesting case arises when there are two or more object instances capable of 

servicing an invocation. The scheduling problem addressed here is how to decide, 

on the basis of observing only service times, which object instance should receive 

each invocation. For simplicity, all objects are assumed to provide idempotent 

services. This means that every invocation can be scheduled individually. With 

retentive services, invocation scheduling is restricted to only the first invocation 

in a 'transaction', since all invocations in a 'transaction' must be presented to the 

same instance. (see chapter 5, page 135). 

The model of invocation assumed throughout this chapter is shown in Figure 6-

1. Each object S provides a service of r3  invocation routines R1 , R2 ,.. . , R, 3 , 

collectively denoted R3 . Invocations upon routines in S are placed at the tail of its 

request queue, which is serviced serially from the front, i.e., in a first-come first-

served ordering. Only one routine (the one specified in the invocation message 

currently being serviced) is active at any one time. Upon completion of each 

request the object is assumed to send a (potentially empty) reply. This enables 

an external observer to accurately determine the service time by comparing the 

arrival and reply times for each invocation request. The observed service time 

therefore includes the invocation message's queueing time. 

Each routine R1  has service rate p, where each p i  may be different. In order to 

demonstrate the comparison scheduling mechanism developed later, these service 

times are assumed to follow an exponential distribution. The use of exponential 

service times is discussed below. 
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Figure 6-1: Invocation Model 

6.2 The Control Scheduling Policies 

Before presenting comparison scheduling, two intuitive policies will be examined; 

random scheduling and greedy scheduling. They are introduced for use as controls 

with which to compare the new policy. 

6.2.1 Random Scheduling 

Uniform random scheduling is one of the simplest policies to implement as it 

requires no status information. Given n suitable object instances, invocations are 

assigned uniformly at random, each instance being selected with probability 1 . 

The long term behaviour of this policy assigns invocations evenly between the 

n objects. However, because it does not observe current performance, random 

scheduling makes no attempt to compensate for any load imbalances that may 

arise. 
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6.2.2 Greedy Scheduling 

Greedy scheduling uses the average service time of each instance to select the 

fastest one. The assumption is that recent history on service times provides a 

reasonable indication of current performance. The term 'greedy' is used because 

it always selects the 'best' i.e., fastest instance. The average service time of each 

instance is updated upon the completion of every invocation. This average, X,, is 

calculated over the previous h invocations on object S as 

j=1 

where T is the observed service time of the J Ih invocation. When invocation h + 1 

completes, the service time for invocation 1 is replaced by that for invocation h +1. 

Hence, the length of service history maintained remains constant. The simulation 

results described below compare several different values of h, namely 1, 6, 12, 25 

and 50 invocations. 
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6.3 Arrival Rates and Service Times 

The Poisson and Exponential distributions are widely used in simulation work to 

model arrival and service times respectively. Their principal virtue is the memo-

ryless property (see Poisson postulate three below), which is the key to obtaining 

analytic solutions to many queuing problems. In practice, rationalising the as-

sumption of Poisson arrivals (and consequently exponential servicing) rests on 

satisfying the Poisson postulates defined below. For a more detailed discussion on 

this topic see [MacDo87] (section 1.2) and [Mitra82] (section 4.4). 

6.3.1 The Poisson Distribution 

The Poisson distribution is commonly used to model the arrival of customers 

at a service facility, such as the arrival of invocation messages to an invocation 

scheduler. It is derived from the following postulates (where N(t) is the number 

of arrivals occurring in time interval t) 

In a 'small' time interval of length it, the probability of exactly one arrival 

is proportional to the size of the interval. 

Prob[N(t) = 1] = AAt 

In this interval At, the probability of more than one arrival is negligible. 

Prob[N(t) < 11 = o(Lt) 

The occurrence of an arrival in a small time interval is independent of other 

arrivals and also independent of the time since the last arrival. 

These postulates are assumed to hold in most queuing systems, including the 

model of invocation used throughout this chapter. 
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Using only these assumptions, the Poisson distribution function, P(t), can be 

derived, i.e., Prob[N(t) = n]. 

- 

P(t) - 
	n! 

For the mathematical details of this derivation see [Maeka87], or any text on 

queuing theory. 

Random variates drawn from the Poisson distribution are said to form a Poisson 

process or Poisson stream. They model the conditions described by the postulates, 

i.e., random arrivals with rate A. The Poisson distribution is used to generate the 

simulated workload for the scheduling simulation described in this chapter. 

6.3.2 The Exponential Distribution 

The inter-arrival time between two events in a Poisson stream is the waiting time 

for the second event. Suppose an arrival occurs at time 0. The time of the next 

arrival is less than or equal to t if and only if at least one arrival occurs in the 

interval (0, t). The probability distribution of inter-arrival times T is given by 

F(t) = Prob[T < t] = 
00 

00 

P(t) - P 0 (t) 

1 - e_t 

which is the exponential distribution function, with mean 1/A. 

Hence, the waiting times between events in a Poisson process are distributed 

exponentially. The exponential distribution is therefore often used to model service 

times, since a service time can be viewed as the waiting time between starting a 

service and service completion. The exponential distribution is used to generate 

invocation service times in the scheduling simulation. 
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6.4 Simulation Description 

A simulation program was implemented to test the performance of random and 

greedy scheduling. The same program is also used later to test the performance of 

comparison scheduling. The purpose of this simulation is to establish the feasibility 

(or otherwise) of a scheduler based purely on object oriented attributes. It is not 

intended to define the detailed performance characteristics of a working scheduler. 

All aspects of the simulation experiments have therefore been kept as simple as 

possible. In particular, the initial results are based on observing only three object 

instances. However, as will be demonstrated, the results from this simple config-

uration are sufficient to expose the deficiencies of random and greedy scheduling, 

and subsequently the improvements achieved by comparison scheduling. 

The three simulated object instances A, B and C, each provide the same idem-

potent service with five invocation routines, R 1 , R 2 ,... , R 5 . The choice of five is 

arbitrary, but not atypical, and was considered the smallest number sufficient to 

emulate an 'interesting' object. The performance of each scheduling policy (ran-

dom and greedy) is tested in two separate cases. First, when all three instances 

offer identical performance, referred to as the Uniform case, and second, when their 

relative performances are uneven or Non-Uniform. The purpose of this is to es-

tablish how well each scheduler adapts to changes in object performance. In each 

case the simulation is repeated with three different workload levels denoted low, 

medium and high. These workloads are defined in terms of the invocation rate 

upon the three instances. An invocation arrival rate less than the service rate of a 

single instance is defined as low load, i.e., all invocations are within the capacity 

of a single instance. Arrival rates exceeding the capacity of a single instance, but 

less than that of two instances are defined as medium load. Finally, high load is 

defined as any invocation rate exceeding the capacity of two instances. 



Chapter 6. Comparison Scheduling 
	 147 

Arrival rates exceeding the capacity of all three instances can not be sensibly 

handled by invocation scheduling alone. It is under these circumstances that ser-

vice expansion should be used to create an additional service instance. This raises 

the service capacity to match the workload, whereupon invocation scheduling can 

re-distribute the load accordingly. Chapter 7 (section 7.4) describes a mechanism 

for detecting such overload conditions. 

The simulated workload was generated independently of the simulator, to be 

read in during each simulation run. Three workload files were produced, one for 

each of the load categories low, medium and high. The same files were presented 

to each simulation experiment so that all scheduling results pertaining to, say, 

high load correspond to the same (high rate) series of invocations. This enables 

direct comparisons to be made between the performance results of the different 

scheduling policies. Each workload file contains a list of start times indicating 

the points at which each simulated invocation should be generated (Figure 6-2). 

These times were drawn from a Poisson distribution with arrival rates as defined 

below. Associated with each start time is a number in the range 1-5, drawn from 

a uniform distribution, indicating the routine to be invoked. The actual service 

time corresponding to each invocation is generated during the simulation; drawn 

from the exponential distribution with a rate dependent upon the routine invoked 

(see below). 

During each simulation run, simple statistics are collected on the scheduler's 

performance. These are summarised at the end of each run, indicating: the num-

ber of invocations simulated; the number assigned to each instance; the average 

service time of each instance; and the average service time across all instances. 

The standard deviation of service times, o, is also calculated for each object S as 

- 

cT 8 =I 
N 

where n3  is the total number of invocations upon object S throughout the simula- 
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Figure 6-2: A Sample of Simulated Workload 

tion run, and T1 <i < n8 , is the service time of each of invocation. o, is used to 

provide 95% confidence intervals for the average service times per instance. This 

interval is calculated as 

(. 

- 1.96a 	+ 1.96a3\ 

where X. is the average service time for instance S across all invocations. The 

accuracy of this interval relies on n3  being large enough to allow the use of the 

Central Limit Theorem, i.e., the interval is based on the Normal distribution rather 

than the exponential distribution, making it easier to calculate. These confidence 

intervals provide some idea of the range of service times observed throughout the 

simulation. They therefore indicate the performance consistency of an object; the 

smaller the range, the greater the consistency. 

The simulator configuration is shown in Figure 6-3. For the uniform case, 

i.e., when all three instances offer the same performance, the invocation service 

rates were fixed as follows : 	 = 2.O,p = 3.0,j 	.4.0,ii5  = 5.0. 
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Figure 6-3: Simulation Configuration 

Again, these figures (and their units') are arbitrary, however, applied consistently 

across all experiments they provide a basis with which to compare the relative 

performance of each scheduler. For the non-uniform case, i.e., when each instance 

offers a different performance, the service rates for instance A are reduced by 50%, 

the service rates for instance B remain the same, while the rates for instance C are 

increased by a factor of 50%. The combined service capacity of the three instances 

therefore remains the same as in the uniform case. 

The expected service time for each invocation routine Ri  is -, hence the ex-

pected service time, X, for each instance is 

Pt 

assuming invocations are generated uniformly for the five routines. From the 

service rates specified above for the uniform case, this yields an average service 

time per invocation per instance of 0.457. Hence, the effective service rate of each 

instance, is 2.19. Two identical instances therefore offer a theoretical service 

'The units are notionally seconds, although this is not important 
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rate of 4.38, with three instances operating at 6.57. Combining these figures with 

the above definitions for workload, the simulated arrival rates for low, medium and 

high load are fixed at 2.0, 4.0 and 6.0 respectively. In each case these are realised 

as the aggregation of five separate invocation streams operating at a fifth of this 

rate; one for each invocation routine. The same arrival rates (in fact the same 

workload file) are used in the non-uniform case, allowing the direct comparison of 

performance results from the uniform and non-uniform simulations. 

The workload files generated for each of the categories low, medium and high, 

simulate invocation arrivals for 3600 units of elapsed time (notionally one hour). 

Even in the low load case this represents approximately 7200 (3600 x 2.0) invoca-

tions, which is a sufficiently large sample to allow the Normal approximation to 

be used when calculating the confidence intervals. Each simulation run is in fact 

performed 10 times to gain a more representative view of each scheduler's charac-

teristics. The results presented in this chapter, except when stated otherwise, are 

therefore averaged over ten simulation runs. 

6.5 Simulation Results 

6.5.1 Random Scheduling 

The performance results for the random scheduler are shown in Tables 6-1 and 6-2. 

In the uniform case, random scheduling predictably performs extremely well. The 

workload is shared evenly between the three instances, with each receiving exactly 

one third of all invocations. The average service time per invocation increases as 

the load increases, but not disproportionately. The variation between instances 

remains very small under all loadings. 

In the non-uniform case, the servicing capacity is split 16%, 34%, 50% between 

A, B and C respectively. However, because random scheduling makes no attempt 
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Load Object Invocations Average 

Category Instance Received Service Time 

Low A 33% + 1% 0.8 ± 0.04 

B 33% ± 1% 0.8 ± 0.04 

C 33% + 1% 0.8 ± 0.04 

Overall 7344 Eil 
Medium A 33% + 1% 1.5 + 0.05 

• 	B 33% ± 1% 1.4 ± 0.05 

C 33% ± 1% 1.4 ± 0.05 

Overall 14358 

High A 33% ± 1% 6.1 ± 0.1 

B 33%+1% 6.5±0.1 

C 33%±1% 6.5±0.1 

Overall 21753 KI 

Table 6-1: Random Scheduling Under Uniform Performance 
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Load Object Invocations Average 

Category Instance Received Service Time 

Low A 33% ± 1% 3.2 ± 0.2 

B 33% ± 1% 0.7 ± 0.04 

C 33% ± 1% 0.4 ± 0.02 

Overall 7344 El 
Medium A 33% ± 1% 414.8 + 6.7 

B 33% ± 1% 1.3 ± 0.04 

C 33% ± 1% 0.7 ± 0.02 

Overall 14385 1139.11 

High A 33% ± 1% 1492.5 ± 17.9 

B 33%±1% 6.6±0.2 

C 33% ± 1% 1.0 + 0.03 

Overall 21753 1499.81 

Table 6-2: Random Scheduling Under Non-Uniform Performance 
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to observe this, the invocations are still apportioned evenly. Consequently, the 

slowest instance, A, is permanently overloaded, while the fastest instance, C, is 

under-utilised. This is reflected in the large service times for instance A, partic-

ularly at medium and high loads, caused by invocation requests spending a large 

amount of time in A's request queue waiting to be serviced. Consequently, the 

average response time across all three instances is very poor. Direct comparisons 

can be made with the uniform instance results since the invocation rates are the 

same in both cases, as is the combined processing capacity of the three instances. 

In conclusion, the simplicity of uniform random scheduling is only beneficial 

when all object instances offer very similar performance characteristics. When 

their servicing capacities differ, random scheduling still assigns invocations evenly, 

leading to a load imbalance and consequently poor average performance. 

6.5.2 Greedy scheduling 

Before examining greedy scheduling in detail it is necessary to establish the history 

length, h, to be used. The summarised performance results using different length 

histories are shown in Tables 6-3 and 6-4. Each entry is the result of only a 

single simulation run. The service times are considerably worse than random 

scheduling in almost all cases. Only with low load and non-uniform performance 

does greedy scheduling outperform random scheduling. This observation holds for 

all the history levels tested, with no particular history being appreciably better 

than the others. 

The history used in the more detailed analysis has been fixed at 12 invocations. 

This allows direct contrasts to be made later with comparison scheduling, which 

also uses a history of 12 invocations (the reason for this will be explained later). 

The more detailed greedy scheduling performance results, incorporating a history 
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Load 

Category 

Average Service Time at History Length 

1 6 12 25 50 

Low 3.5 4.5 4.3 4.7 4.2 

Medium 204.7 221.2 246.8 205.5 210.6 

High 795.6 696.7 756.7 778.7 628.7 

Table 6-3: Greedy Scheduling Under Uniform Performance 

Load 

Category 

Average Service Time at History Length 

1 6 12 1  25 50 

Low 1.0 1.1 1.2 1.1 1.1 

Medium 98.9 99.5 92.5 136.1 100.6 

High 605.8 508.2 535.7 542.5 505.4 

Table 6-4: Greedy Scheduling Under Non-Uniform Performance 
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Load Object Invocations Average 

Category Instance Received Service Time 

Low A 31% ± 23% 4.6 + 0.2 

B 30% ± 27% 4.9 + 0.2 

C 41% ± 26% 4.6 ± 0.2 

Overall 7344 Efl 
Medium A 33% ± 8% 195.9 ± 4.3 

B 35% ± 10% 226.3 + 4.8 

C 35% ± 8% 213.6 ± 4.7 

Overall 14385 1212.61 

High A 29% + 8% 609.7 + 10.9 

B 35% ± 14% 727.9 ± 11.2 

C 34% ± 20% 662.1 + 10.3 

Overall 21753 1668.31 

Table 6-5: Greedy Scheduling Under Uniform Performance 

of length 12 and averaged over ten simulation runs, are shown in tables 6-5 and 6— 

In the uniform case, greedy scheduling fails to find the optimal workload dis-

tribution of 33% per instance. The actual workload distributions observed varied 

considerably between simulation runs. This inconsistency is caused by a charac-

teristic of greedy scheduling known as swamping. 

Swamping occurs because the greedy scheduler always selects what it perceives 

to be the fastest instance, based on the average service time of recent invocations. 

When the arrival rate for the system exceeds the (observed) service rate of the 

fastest instance, more than one invocation may arrive between invocation comple- 

tions, i.e., between status updates. Consequently, the status information becomes 
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Load Object Invocations Average 

Category Instance Received Service Time 

Low A 1% ± 1% 7.0 ± 1.0 

B 4%±3% 3.1±0.3 

C 95% ± 3% 1.0 ± 0.03 

Overall 7344 El 
Medium A 9% ± 4% 272.5 ± 9.8 

B 19% ± 5% 126.5 ± 3.7 

C 70% ± 6% 84.6 ± 1.3 

Overall 14385 1109.11 

High A 19% ± 12% 1259.8 ± 20.4 

B 30% ± 11% 604.6 ± 10.4 

C 51% ± 15% 396.6 ± 5.4 

Overall 21753 1592.01 

Table 6-6: Greedy Scheduling Under Non-Uniform Performance 
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'stagnant' relative to invocation arrivals, with successive invocations being as-

signed to the same 'fastest' instance. The request queue of the fastest instance 

therefore fills up faster than the instance can service it. The observed service 

times gradually become worse, reflecting the time spent by each invocation in the 

request queue. Eventually, the average service time will increase until one of the 

other instances appears faster. At this point the faster instance is selected and is 

in turn swamped. 

The effect of swamping on the service times is clearly seen in Table 6-5. Once 

the system-wide arrival rate exceeds the capacity of a single object, i.e., at medium 

load, the average service time shoots up dramatically. This is a result of invocation 

requests spending most of their time in large request queues awaiting service. 

In the non-uniform case, at low load, nearly all invocations are assigned to 

the fastest instance, c. This returns reasonable performance since .(by design) 

this load is within C's capacity. However, at medium load swamping starts to 

occur, although the resultant performance is still marginally better than that for 

random scheduling. At high load the greedy scheduler apportions the invocations 

very close to the optimal 16%, 34%; 50% split, but the swamping effect yields a 

performance considerably worse than that of random scheduling. In particular, at 

high load and with uniform performance, the average service time per invocation 

for greedy scheduling is over 100 times that for random scheduling. This is because 

the apparently optimal invocation split is the net result of swamping each instance 

in turn, rather than continually rotating between them. 

In conclusion, greedy scheduling with a performance history of 12 invocations, 

performs worse than random scheduling under almost all circumstances, but par-

ticularly when the instances offer similar performance. The main reason for this 

is the swamping caused by always assigning to the perceived 'fastest' instance. 
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6.6 Comparison Scheduling 

Comparison scheduling is an enhanced form of greedy scheduling that attempts to 

remove the swamping effect. The basic idea is to select the fastest instance only 

if it is 'significantly' faster than the next one, otherwise selecting at random. 

In the general case there are assumed to be c instances (copies) of the same, 

idempotent service ranked in order by average (recent) performance. The fastest 

instance is denoted S1 , the second fastest 82 and so on down to the slowest, S. 

Comparison scheduling compares S 1  with 82.  If S is 'significantly' faster, then it 

is selected to receive the request (being 'significantly' faster than 52  implies S is 

also significantly faster than all the others). Otherwise, S 2  and S3  are compared. 

If S2  is 'significantly' faster, then one of S 1  or S2  is selected uniformly at random. 

Otherwise, S3  and S4  are compared. The algorithm proceeds in this way until a 

significant comparison is found. Should none of the tests prove significant, then 

the algorithm automatically defaults to uniform random scheduling. In general, 

if Si is 'significantly' faster than S (or if i = c, the number of instances), then 

one of the i instances S1  . . . Si is selected uniformly at random, i.e., each with 

probability . 

The main contribution of this chapter is to define rigorously the criterion 'sig-

nificantly faster', as well as providing a mechanism for performing the compar-

isons. The formulation of the problem presented below assumes exponential service 

times. This assumption is not critical to the comparison scheduling mechanism. 

However, it does simplify the mathematics involved, enabling the use of standard 

statistical tables. Other distributions could be used in systems where the exponen-

tial distribution is not a good model of service times. The statistical background 

required for developing the exponential example is provided by the following sec-

tion. 
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6.6.1 Statistical Background 

Distribution Relationships 

The following relationships between probability distributions are used in develop-

ing the exponential comparison scheduler. 

Relation 1 If 

X1,X2,. .. ,X 	exp(p) 

then 

>X'F(n,p) 

i.e., if X 1  up to X follow an exponential distribution with rate p,  then their sum 

is distributed according to a Gamma distribution, with parameters n and p. 

Relation 2 If 

Y 	1'(n, IL) 

then 

2pY 

i.e., if Y follows a Gamma distribution with parameters n and p, then 21LY follows 

a chi-squared distribution with 2n degrees of freedom. 

Relation 3 : If 

S 	and T -x,, 

then 
S/n 

"Fnm 
T/rn 

i.e., if S and T follow chi-squared distributions with degrees of freedom n and in 

respectively, then the ratio sIn  follows an F distribution with degrees of freedom 

M. 
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Hypothesis Testing 

A statistical hypothesis is an assertion or conjecture about the distribution of 

one or more random variables. To perform a hypothesis test, two contrasting 

hypotheses are formulated; the null hypothesis, H0 , and the alternative hypothesis, 

H1 . The Null Hypothesis is the main focus of attention. Generally this is a 

statement that a parameter has a specified value. Often the phrase 'there is no 

difference' is used in its interpretation, hence the name 'null' hypothesis. The 

Alternative Hypothesis is a statement about the same parameter, specifying a 

different value or range of values from those in the null hypothesis. Rejection of 

the null hypothesis implies acceptance of the alternative hypothesis. 

A hypothesis test examines the outcome of a statistical experiment for con-

sistency with the null hypothesis, yielding a statement of the form : 'Assuming 

H0  to be true, then the observed outcome has probability F. Should P be very 

small, i.e., the observed outcome is very unlikely given the assumption that H0  

holds, then this provides evidence that H0  is in fact false, and that H1  should be 

accepted instead. The smaller the value of P, the stronger the evidence to reject 

H0 . Typical values of P for rejecting H0  are 0.1, 0.05, 0.025 and 0.01. If the 

value of P lies in this range then the test is said to be Significant at the 10% level, 

5% level, 2.5% level or 1% level respectively, with 1% significance providing the 

strongest evidence for rejection. Larger values of P, i.e., greater than 0.1, imply 

that H0  should not be rejected. Note that this is not evidence for H0 , it is simply 

lack of evidence against H0 . 

In comparison scheduling, the null hypothesis is that the average service times 

of the two instances being compared are identical. The observed service times are 

examined for consistency with this assumption. The alternative hypothesis is that 

the average service times are (significantly) different. The precise formulation of 

H0  and H1 , along with the testing mechanism for generating the value of P, are 

described below. 
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6.6.2 A Statistical Model of Invocation 

The model of invocation used for comparison scheduling is the same as that de-

scribed earlier for Random and Greedy scheduling (Figure 6-1). However, in order 

to simplify the mathematics involved, each object instance, 8, is modelled as hav-

ing a single service rate p. This is an approximation to the model, since each 

instance is in fact composed of r 3  invocation routines, each with its own (different) 

service rate i 1 (1 <i < r,). As will be demonstrated later, this approximation does 

not impede invocation scheduling performance, because when comparing instances 

of the same object the 'error' is the similar for each of them. 

The following discussion illustrates the comparison mechanism for two object 

instances A and B, which are assumed to have exponentially distributed service 

times. Instance A has service rate /1a  (unknown), and a history of service times 

is available for the previous n invocations, denoted X 1 ,X2 ,. . . , X. Similarly, 

instance B has service rate /.Lb (unknown), and a history of service times for the 

previous m invocations, denoted Y1 , Y2 ,... Y,. In general, n m. 

By relation 1: 

1 X i  F(n,p) 

F(m,p) 

which, using relation 2, gives 

2/i a  >X1 ' 

2/ib}' 	X m  

and hence, applying relation 3 

(21L. _in Xj/2n _ F 

(214>i; 1')/2m 	2n,2m 
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This latter statement can be rearranged to give 

IL aX 
F2n ,2m 	 (6.1) 

Pb I 

where 	>I 	Xi is the observed mean service time for instance A, and 

similarly, Y = 	Y is the observed mean service time for instance B. 

The quantity 14 is known as the Test Statistic, and will be used to perform 

the hypothesis test. The probability of observing a particular value of the test 

statistic, i.e., P, can be found using standard statistical tables describing the F-

distribution. However, whilst the values X and Y can be calculated from the 

observed service times, the values of Pa  and Pb  are unknown. This problem is 

solved by the formulation of H0 , which states that A and B offer identical perfor-

mance, i.e., 

H0  : Pa = Pb 

against the alternative hypothesis that the service rates are different. 

H1  Pa 0 Pb 

Hence, under H0 , (6.1) becomes 

F2n ,2m 	 (6.2) 

6.6.3 - The Comparison Scheduler 

Under the null hypothesis of identical performance, (6.2) states that the ratio 

of the average service times of two object instances follows an F-distribution. 

This model can now be used as a basis for constructing a comparison scheduling 

algorithm. 

Given several instances of an idempotent object, the scheduling problem is to 

decide which one of these instances should receive a newly generated invocation 
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request. In order to solve this problem the comparison scheduler keeps a history 

of service times for the previous h invocations per instance, in the same manner 

as the greedy scheduler. During the first few invocations, an instance's history 

will contain less than h observations, but this is accounted for by the degrees of 

freedom when performing the test (determining the value of h will be examined 

shortly). Using these performance histories, the comparison scheduler can cal-

culate the current average service time for each instance, which are then ranked 

in order, fastest first. If not all instances have been invoked at least once, i.e., 

if the scheduler has no performance information for one or more instances, then 

random scheduling is used (alternatively, systematically use each instance once). 

The following description assumes that at least one observed invocation service 

time is available per instance. 

The ratio of the average service times for the first and second fastest instances 

is calculated. The probability P of observing the actual value calculated, assuming 

H0  is true, can be found using standard tables of the F-distribution. The degrees 

of freedom used to index these tables are 2n and 2m, where n is the length of 

performance history for the fastest object, and in is the length of performance 

history for the second object (n,m < h). If P is small, i.e., under H0  the observed 

ratio is very unlikely, then the null hypothesis is rejected. As indicated earlier, 

'small' usually means P < 0.1. For example, if 0.1 > P > 0.05, then the test is 

significant at the 10% level. If 0.05 > P > 0.025 then the test is significant at the 

5% level, and so on. Under these circumstances, the first object is deemed signif-

icantly faster than the second and is therefore selected to receive the invocation. 

Should the test not be significant, i.e., P > 0.1, then the first and second fastest 

instances are deemed to provide equal performance, and the algorithm moves on 

to compare the second and third instances. 

The scheduler moves down the sorted list of average service times, comparing 

2 with 3, 3 with 4 etc., until one of the tests is significant. At this point the 
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object instances can be partitioned into two groups; the 'fast' group - where all 

instances are deemed to provide equal performance— which is significantly faster 

than all members of the 'slow' group. One of the 'fast' group is then selected 

uniformly at random to receive the invocation. Should none of the tests prove 

significant, then all instances are deemed to provide identical performance and 

hence, the algorithm defaults to uniform random scheduling. 

As an example, consider an invocation request for which there are six possible 

instances to choose from. Performance histories are available for all six instances, 

from which the average service times have been calculated and the instances ranked 

accordingly. In this example, assume that the first significant test is that between 

the third and fourth instances in the ranked list. The algorithm in Figure 6-4 

proceeds as follows : A check is made to ensure that performance information 

is available on all contending instances. If not, then comparison testing cannot 

proceed, so random scheduling is used instead. In this example sufficient informa-

tion is assumed available, so the comparisons begin. The average service time and 

history length for the fastest instance are determined. Upon entering the while 

loop, the corresponding figures are determined for the second fastest instance. 

The test statistic is then calculated by taking the ratio of the averages, which is 

then compared to the appropriate F-tables. In this case the test is not significant 

so the variables are reset for the next iteration, which compares the second and 

third fastest instances. Again the test is not significant so the loop is entered once 

more to compare the third and fourth fastest instances. This test is significant 

and so the loop terminates with SplitPoint set to 3. The remainder of the algo-

rithm simply selects from the first, second and third fastest instances uniformly at 

random. Had no significant tests occurred, then the invocation would have been 

scheduled randomly between all six instances. 
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ComparisonSchedule(Thislnvocation InvocationRequest); 

BEGIN 
IF { Not all instances invoked at least once } 

THEN RandomSchedule(Thislnvocation) 
ELSE BEGIN 

TopAverage : { Average service time of fastest instance }; 
TopHistory : { No. observations used to calculate average }; 

SplitPoint := 1 
SignificantlyBetter := FALSE; 

WHILE (NOT SignificantlyBetter) and { haven't compared all } 
DO BEGIN 
1* search for a significant test *1 
NextAverage : { Average service time of next fastest }; 
NextHistory : { No. observations used to calculate average }; 

TestStatistic := NextAverage/TopAverage 

SignificantlyBetter := FSignificant(TestStatistic, 
2*NextHistory, 
2*TopHistory ); 

IF (NOT SignificantlyBetter) 
THEN BEGIN 
1* set up for next iteration of loop */ 
TopAverage 	NextAverage; 
TopHistory := NextHistory; 
SplitPoint 	SplitPoint + 1; 

{ Move pointer on to next instance in sorted list } 

END of IF; 
END of WHILE; 

IF SignificantlyBetter 
THEN BEGIN 
Chosenlnstance := RandomBetween(1, SplitPoint); 
Invoke(Chosenlnstance, Thislnvocation); 

END 
ELSE R.andoniSchedule(Thislnvocation); 

END of first ELSE; 
END of ComparisonSchedule; 

Figure 6-4: The Comparison Scheduling Algorithm 
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6.6.4 Scheduling Parameters 

Having described the comparison scheduling mechanism, it now only remains to 

define the significance level and history length to be used. Choosing the optimal 

significance level will be based on the simulation results described below. Several 

different levels - those normally used in hypothesis testing - are tested; specif-

ically 10%, 5%, 2.5%, 1%, 0.5% and 0.1%. Significance levels outside this range 

are not normally used, with a 0.1% test being considered very highly significant. 

A suitable value for the history length is suggested by the F-distribution itself. 

An F statistic has two degrees of freedom; v 1  and v2 . Therefore, finding the 

significant F-value for any given significance level involves looking up a table of 

values indexed by u1  and v2 ; a different table being used for each significance level. 

If the test statistic is greater than the tabulated value, then the test is significant. 

Beyond approximately 10 degrees of freedom the F-values become very similar. 

Consequently, standard F-distribution tables do not normally tabulate all possible 

combinations of u1  and u2 . Interpolation can be used, where necessary, to find 

untabulated values. The tables used by the simulation program tabulate F-values 

for vi  and v2  in the range 1-10, 12, 24 and oo. Although there is obviously a large 

range of values missing, these are not really required, since the F-distribution 

percentage points (F-values) for a test statistic with 24 degrees of freedom, are 

very similar to those for a test statistic with infinite degrees of freedom. A simple 

interpretation of this is that adding more degrees of freedom beyond 24 lends little 

or no additional accuracy to the hypothesis test. 

In comparison scheduling, ii1  and v2  correspond to twice the number of obser-

vations used when calculating the means of instances 1 and 2 respectively. The 

argument presented above suggests that a history of 12 observations per object 

provides sufficient information on which to base the comparisons. Consequently, 

the comparison scheduler only keeps information on the twelve previous invoca-

tions per object. 
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6.6.5 Simulation Results 

The simulation configuration used is identical to that described earlier for random 

and greedy scheduling. There are three object instances, each with five invocation 

routines and service rates as defined earlier. The same workload files are used and, 

as before, two different cases are simulated; uniform and non-uniform performance. 

The service history retained for each instance is restricted to its twelve most recent 

invocations (or less if the instance has not yet completed twelve invocations). 

All six combinations of low, medium and high workload with uniform and non-. 

uniform instances are repeated for each of the significance levels 10%, 5%, 2.5%, 

1%, 0.5% and 0.1%. The initial simulation results (only one simulation run each) 

are shown in Tables 6-7 and 6-8. Of the significance levels tested, 0.1% provides 

the best performance in all cases. The following analysis therefore focuses on this 

particular value. 

The detailed simulation results for comparison scheduling with 0.1% signifi-

cance, are shown in Tables 6-9 and 6-10. In all cases the average service times are 

considerably smaller than those for greedy scheduling. In particular, at medium 

and high loads, comparison scheduling yields performance an order of magnitude 

faster. Against the random scheduler's results, in the uniform case, comparison 

scheduling performs at least as well, whilst, in the non-uniform case, there is again 

an order of magnitude improvement. In all cases, the invocations are apportioned 

exactly according to each instance's servicing capabilities. There is no evidence in 

these service times of the swamping effect that afflicted greedy scheduling. 

The column headed 'Actively Scheduled' indicates, for the invocations received, 

how many were the result of genuine selection as opposed to the default of ran-

dom selection. In the uniform case (Table 6-9) at low load, all instances exhibit 

very similar performance, so the number of genuine selections is very low; ap- 

proximately 1 in 10. Hence, under these circumstances comparison scheduling has 
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Load 

Category 

Average Service Time at Significance Level 

10% 5% 2.5% 1% 0.5% 0.1% 

Low 1.6 1.2 0.9 0.8 0.8 0.8 

Medium 8.0 5.9 3.7 2.6 2.2 1.6 

High 130.6 22.7 11.7 8.9 8.0 5.4 

Table 6-7: Comparison Scheduling Under Uniform Performance 

Load 

Category 

Average Service Time at Significance Level 

10% 5% 2.5% 1% 0.5% 0.1% 

Low 0.9 1.0 0.9 0.9 0.9 0.9 

Medium 8.1 4.9 4.1 2.2 2.3 1.9 

High 133.7 50.1 17.5 16.0 8.5 7.5 

Table 6-8: Comparison Scheduling Under Non-Uniform Performance 
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Load Object Invocations Actively Average 

Category Instance Received Scheduled Service Time 

Low A 33% ± 2% 11% ± 5% 0.8 ± 0.04 

B 33% ± 2% 11% ± 5% 0.8 ± 0.04 

C 33% ± 2% 12% + 5% 0.8 ± 0.04 

Overall 7344 Efl 
Medium A 33% ± 1% 26% + 5% 1.6 ± 0.05 

B 33% ± 1% 25% ± 4% 1.7 ± 0.06 

C 33% ± 1% 26% ± 4% 1.7 ± 0.06 

Overall 14385 Efl 
High A 33% ± 1% 31% + 3% 5.9 ± 0.1 

B 33% ± 1% 31% ± 1% 5.7 ± 0.1 

C 33% + 1% 31% ± 4% 5.8 + 0.1 

Overall 21753  [I] 

Table 6-9: Comparison Scheduling (at 0.1%) Under Uniform Performance 
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Load Object Invocations Actively Average 

Category Instance Received Scheduled Service Time 

Low A 14% ± 5% 2% ± 2% 2.2 ± 0.2 

B 35% ± 2% 61% ± 17% 0.9 ± 0.04 

C 50% ± 4% 72% ± 14% 0.6 + 0.02 

Overall 7344 

Medium A 15% ± 2% 3% ± 3% 4.8 ± 0.2 

B 35% ± 1% 57% + 6% 1.9 ± 0.06 

C 50% ± 2% 70% ± 5% 1.3 ± 0.03 

Overall 14385 EO 
High A 16% ± 1% 9% ± 5% 16.8 ± 0.4 

B 34% ± 1% 57% ± 5% 6.7 ± 0.1 

C 50%'± 1% 70% ± 3% 3.9 ± 0.06 

Overall 21753 

Table 6-10: Comparison Scheduling (at 0.1%) Under Non-Uniform Performance 
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defaulted to uniform random behaviour. As the load increases and the request 

queues build up, the observed performances start to differ. This is reflected by 

an increase in the number of actively scheduled invocations to approximately 1 

in 3 at high load. In the non-uniform case (Table 6-10), even at high loads the 

slow instance, A, is very rarely selected. Approximately 90% of the invocations it 

receives are the result of uniform random scheduling, i.e., when the performance 

of B and C has degraded to the extent that A now offers a comparable service. In 

contrast, the fastest instance, C, is actively selected for approximately 70% of all 

invocations it receives. 

In conclusion, comparison scheduling, based on statistical hypothesis testing, 

adapts extremely well to the relative performance capabilities of multiple (three) 

object instances. In the uniform case, invocations are apportioned evenly between 

instances, emulating the actions of random scheduling. In the non-uniform case, 

comparison scheduling again apportions invocations exactly according to each in-

stances' servicing capabilities. Initial experimentation with five, object instances 

suggests these effects improve as the scale increases (or more accurately, random 

and greedy scheduling deteriorate, while comparison scheduling maintains perfor-

mance). The excellent performance results obtained from these simple simulations 

confirm that the basic idea of using hypothesis testing merits further investigation. 

6.7 Object Scheduling 

The performance resulting from comparison scheduling of invocation requests, 

makes it worthwhile investigating the possibility of applying the same techniques 

to object scheduling, i.e., the assignment of object instances to object hosts. A 

model similar to that for invocation can be used, with objects replaced by hosts 

and invocation routines replaced by objects. Scheduling a new object instance 

then requires comparing the 'performance' of each host, using a hypothesis test 
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in the same manner as described for objects. A host is only selected if its aver-

age performance is significantly better than that of its peers, otherwise random 

selection is used. 

One problem with this approach is in deciding how to measure host perfor-

mance. With invocation scheduling, the average service times are compared for 

multiple instances of the same object, i.e., it compares 'like-with-like'. Calculating 

an average service time across all objects on the host does not yield this property. 

For example, one host may contain 'simple' objects, whose service times are inher-

ently shorter than the services on a neighbouring host. This could lead to a bias 

towards the host with simple objects, even though its true performance may be 

no better than its peers. Further simulation work is required to establish whether 

anomalies such as this would have a detrimental effect upon object scheduling 

performance. 

Object scheduling is further complicated by the need to consider construction 

costs. An executable representation may not exist for the 'fastest' host. Under 

these circumstances, rules must be applied to balance the trade-off between im-

proved performance and cost of construction. For example, it may only be sensible 

to instigate construction of a new representation if the target host is significantly 

faster than all other hosts. Many other policies are possible. The detailed in-

vestigation of comparison scheduling of object instances is a topic for further 

investigation. 

6.8 Summary and Conclusions 

The novel approach of applying statistical hypothesis testing to scheduling, known 

as comparison scheduling, has been presented. For invocation scheduling, an in- 

stance is selected to receive an invocation only if it is significantly faster than 
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all other contenders. When no clear 'winner' can be found, then scheduling is 

performed at random. One particular formulation of this problem, based on ex-

ponential service times, was examined in detail. Many other formulations based 

on other distributions are possible. The exponential distribution was used primar-

ily because it is the standard statistical model of service times, but also because 

mathematically it is easy to handle. The possibility of applying the comparison 

technique to object scheduling was also examined. 

The simulation results clearly demonstrate the comparison mechanism's poten-

tial for use in scheduling algorithms. Performance improvements of up to an order 

of magnitude were observed when compared to the intuitive policies of random 

and greedy scheduling. The comparison scheduler adapted readily to changes in 

both workload and service capacity. For the exponential based comparison mech-

anism, the best performance was consistently achieved at a significance level of 

0.1%. 

The simplicity of the simulated environment limits the inferences that can be 

drawn from these results. However, they provide a strong indication that com-

parison scheduling offers a fruitful, new approach to scheduling in object oriented 

distributed systems. 



Chapter 7 

Status Updates 

The comparison scheduler described in the previous chapter relies upon 

a rolling history of service times for the previous twelve invocations per 

object instance. As presented so far, it is assumed this history is updated 

after every invocation. In a large system with many objects, this repre-

sents a substantial overhead in both communication and processing costs. 

This chapter examines the problem of update suppression, i.e., reducing 

the number of status updates. Arbitrarily omitting, for example, every 

other message could lead to reduced scheduler performance caused by in-

accurate or out-of-date information. What is required is a mechanism to 

suppress. redundant messages, i.e., those offering little new information 

over and above that contained in previous updates. An algorithm for elim-

inating redundant updates is developed based upon the hypothesis testing 

techniques used in comparison scheduling. 

174 
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7.1 Thresholding 

The thresholding mechanism defined here is developed from the drafting algorithm 

of Ni et al. ([Ni 85]), which was described earlier in section 5.3.2 (page 132). The 

principle underlying the drafting algorithm is to generate an update only when 

there has been a notable change in load. Figure 7-1 shows a thresholding mech-

anism that emulates the drafting algorithm's behaviour. An update is generated 

when a processor's load crosses a boundary between two loading categories. How-

ever, when a processor's load lies close to a boundary it can oscillate between cat-

egories, generating continuous updates. This problem of 'state woggling' results 

from using fixed boundaries. The thresholding algorithm developed here main-

tains the principle of only generating an update when there is a notable change, 

but the threshold points are defined relative to the load reported in the previous 

update, rather than by predetermined, fixed categories. 

Figure 7-2 demonstrates the general thresholding principle. It assumes an 

update was generated at time zero, reporting performance level o1d  At the same 

time as this update was generated, the two thresholds P and P1  were calculated as 

defined below. These thresholds divide the performance scale into three regions; 

a Silent Region and two Update Regions. The height of the silent region, known 

as the Silence Interval, is denoted by S. P  and P, are defined as functions of voId, 

with perhaps the simplest example being P, = voId + S12 and P1 = Pold - S12. In 

general, there is no requirement that the silent region be symmetric about Pold. 

No updates are generated while the current performance level lies within the 

silent region. However, when the performance reaches the level of one or other 

threshold (for example, at time t in Figure 7-2) an update is generated reporting 

the new current performance 	(P, in the example). Simultaneously, new 

thresholds P' and F,' are calculated, for example, as 	+ 512 and knew - S12 
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Chapter 7. Status Updates 	 177 

respectively. The system then continues as before, using the new thresholds. 

Hence, an update is generated every time a threshold is crossed, and the thresholds 

themselves are re-calculated after every update. In this manner it is hoped to avoid 

the 'woggling' effect caused by using fixed thresholds. 

Adjusting the height of the silent region, S, directly affects the rate at which 

updates are generated, thereby determining the accuracy, or granularity of the 

information they contain. A small value of S leads to a high update rate, while 

a large value of S generates fewer updates. In effect, S defines the term 'notable 

change', by placing a ceiling on the maximum change in performance that can go 

unreported. 

7.2 Object Thresholding 

The thresholding mechanism described above is completely general and could be 

applied not just to performance, but to any parameter that varies over time. In 

comparison scheduling, the parameter of interest is the average service time of an 

object instance. The following paragraphs define the silence interval S using the 

statistical hypothesis testing technique developed for comparison scheduling. The 

model of invocation assumed is identical to that used in the previous chapter. The 

example developed here therefore assumes exponentially distributed service times. 

However, as with comparison scheduling, this assumption is not fundamental to 

the technique; it simply serves to demonstrate the underlying mechanism, building 

upon the statistical model developed in chapter 6. The distribution relationships 

defined in that chapter will be used again here without being re-stated. 

X1 ,X2 ,. . . , X represent the previous n service times observed for object in-

stance A. The average service rate at the time of the previous update is denoted 

by j. This value is estimated as the reciprocal of the average service time re- 
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ported in the update. The instance's current service rate is denoted by jz. By 

relation 1 

EXj  F(njt) 

which, using relation 2, gives: 

2ii 	xi 
	 (7.1) 

The null hypothesis H0  is that the current service rate is the same as the service 

rate at the time of of the previous update, i.e., no change in performance has 

occurred 

H0  : lic = jLp 

against the alternative hypothesis that the rates are now different 

H1  : lic  54 fL, 

Under H0 , (7.1) becomes 

E X, 

This latter statement can be rearranged as 

	

2niX 
	

(7.2) 

Under the null hypothesis of no change in performance, (7.2) states that the 

test statistic 2n1iX follows a chi-squared distribution with 2n degrees of freedom, 

where u 7, is the estimated service rate at the time of the previous update and X 

is the current average service time calculated over the previous n invocations. As 

with the comparison scheduling example, standard statistical tables, in this case 

chi-squared tables, can be consulted to yield a probability P for any particular 

observed value of the test statistic. A significant test (at some specified significance 

level) indicates that y p  and p c  are significantly different and that a new update 

should be generated. At this point the current value of X and n are passed to all 
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interested parties - principally the comparison scheduler - while the value of 

p.,, is re-estimated as 11X. Should the hypothesis test not be significant, then no 

action is taken. 

An alternative formulation of the same test, fitting more closely with the orig-

inal description of thresholding, is to calculate a Confidence Interval around p.,,. A 

confidence interval is a range of values around a parameter estimate' indicating 

the 'accuracy' of the estimate. For example, a 95% confidence interval about P p  

defines a range of values within which the true service rate is predicted to lie with 

95% certainty, i.e., with probability 0.95. Equivalently, the true value lies outside 

the confidence interval with probability 0.05 (Figure 7-3). Defining, the threshold 

values Pu  and P1  to be the bounding values of the confidence interval makes the 

statement 'the test is significant at the 5% level' synonymous with the statement 

'the current performance lies outside the 95% confidence interval for p. ,,', which in 

turn can be interpreted as 'the current performance level has entered an update 

region'. Hence, the confidence level of the confidence interval defines the height, 

S, of the silent region; a higher level such as 99%, specifying a larger silent region 

than a lower level such as 90%. 

The update algorithm shown in Figure 7-4 uses the confidence interval ap-

proach. However, rather than calculating a confidence interval around p.,,, which 

follows a (relatively) complicated Gamma distribution, the test statistic 2npX is 

used. As shown in (7.2), this statistic follows a (simple) chi-squared distribution 

on 2n degrees of freedom, where n is the number of observations used to calcu-. 

late the current average. The value of n becomes constant once the number of 

observations has reached the history length. Hence, for a 'running' system, i.e., 

one with more than n observations per object, the confidence interval for a given 

confidence level is constant. Under these circumstances, the term 2np, which is 

= 1/9 is only an estimate of the true, unknown, service rate 



Chapter 7. Status Updates 
	 180 

957o 	 2.57o 

0.5% 
	

2.5% 

9070 

5% 
	

10% 

Figure 7-3: Confidence Intervals and Hypothesis Tests 

also constant (between updates), can be thought of as a 'scaling factor', mapping 

the current performance level onto the range of values covered by the chi-squared 

distribution. 

A range of confidence intervals about 2npX are tested, namely 99%, 95%, 

90%, 80%, 60%, 40% and 20%. Table 7-5 shows the upper and lower bounds for 

these intervals based on 24 degrees of freedom, i.e, using a service history of size 

twelve as required by the comparison scheduler. The 99% level defines a large 

confidence interval (silent region), and consequently a low level of updates. Con-

versely, the 20% level defines a smaller confidence interval which should produce 

a higher update rate. 

7.3 Simulation Description 

The simulator used to test this update mechanism is the same as that used to test 

comparison scheduling. The only additions are performance monitors (Figure 7-6), 

one per instance, that collect the service time data and perform the thresholding 

test described above. Update messages are passed from the monitors to the sched- 
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UpdateSuppress (CurrentAverage Real; 
HistoryLength : Integer); 

BEGIN 
TestStatistic := 2*HistoryLength*PreviousUpdate*CurrefltAVerage; 

{ 
calculate chi-squared confidence interval. Depends only on} 

{ 
the degrees of freedom, i.e., the number of observations } 

{ used to calculate CurrentAverage. 	 } 

SetConfidencelnterval(LowerBoUnd, UpperBound, 2*HistoryLength); 

IF (TestStatistic < LowerBound) OR (TestStatistic > UpperBound) 
THEN BEGIN 
Sendupdate(CurrentAverage, HistoryLength); 
PreviousUpdate := 1/CurrentAverage; 

END of IF; 
END of UpdateSuppress; 

Figure 7-4: The Update Suppression Algorithm 

10 
Chi-Squared Intervals on 24 Degrees of Freedom 

Figure 7-5: The Experimental Confidence Intervals 
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Figure 7-6: Simulator Configuration 

uler, which now only keeps service averages and their associated history lengths, 

rather than individual observations. All other aspects of the simulation are the 

same as described in chapter 6. 

7.3.1 Controlling Suppression 

The initial simulation experiments investigated the relationship between the signif -

icance level of the test and the level of update suppression. The random scheduler 

was employed in order to eliminate any (unpredictable) mutual dependencies or 

feedback between the update level and the scheduler's performance. The results 

of these experiments are shown in Tables 7-1 and 7-2. An update rate of 100% 

implies an update is generated on every invocation, which was the default assumed 

in the previous chapter. A rate of 50% implies only one update (on average) for 

every two invocations, a rate of 25% implies one update (on average) for every 4 

invocations and so forth. 
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Load Object  Updates with Interval Size: 

Category Instance 99% 90% 80% 60% 40% 20% 

Low A 5% 8% 10% 13% 21% 31% 53% 

B 5% 7% 10% 13% 22% 33% 52% 

C 5% 7% 10% 12% 21% 34% 53% 

Medium A 6% 9% 10% 15% 23% 35% 59% 

B 5% 8% 11% 15% 23% 36% 59% 

C 6% 9% 11% 14% 24% 34% 58% 

High A 3% 5% 5% 7% 12% 23% 32% 

B 3% 5% 6% 7% 15% 22% 38% 

C 3% 4% 7% 8% 13% 10% 32% 

Table 7-1: Update Suppression with Uniform Performance 

Load Object  Updates with Interval Size: 

99% 95% 90% 80% 60% 1 40% 20% Category Instance 

Low A 5% 9% 12% 14% 23% 36% 58% 

B 4% 7% 9% 12% 21% 33% 50% 

C 4% 7% 8% 12% 18% 30% 50% 

Medium A 0% 0% 0% 0% 1% 2% 3% 

B 6% 8% 11% 15% 21% 35% 59% 

C 5% 8% 10% 14% 22% 34% 55% 

High A 0% 0% 0% 0% 0% 1% 2% 

B 3% 6% 5% 8% 13% 19% 37% 

C 6% 8% 11% 14% 22% 35% 58% 

Table 7-2: Update Suppression with Non-Uniform Performance 
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These figures confirm that the suppression mechanism performs as expected. 

For any given instance there is a linear reduction in the number of updates gener-

ated as the confidence interval increases. There is also a relationship between the 

update rate and the workload, or more accurately, between the update rate and 

the average service time. This is particularly in evidence in the non-uniform case, 

where the slowest instance, A, produces very few updates at medium and high 

loads. This is a consequence of the very high average service times 2  resulting from 

the random scheduler continually overloading A. The 'scaling factor' 2nit, where 

AP  is the reciprocal of the previously reported (poor) performance, means that 

large average service times require a proportionally larger change in performance 

before a significant test is encountered. Hence the reduced number of updates 

for A, and likewise, the increase in updates for C (B remains the same as in the 

uniform case). 

7.3.2 Scheduler Performance 

Having established a qualitative link between the update rate and the threshold 

significance level, the next series of simulations examine the effect of reduced infor-

mation upon comparison scheduling performance. The simulation configuration is 

exactly as before, except that the random scheduler is replaced by the comparison 

scheduler with a comparison significance level of 0.1%, as determined in the pre-

vious chapter. The initial results (one run each) are given in Tables 7-3 to 7-8. 

The corresponding results for the full information cases, taken from Tables 6-9 

and 6-10, have been included for comparison. 

Concentrating on the maximum suppression case (99% confidence interval), 

the reduced update rate has very little impact upon the comparison scheduler's 

2 8ee Tables 6-1 and 6-2 for the service times associated with random scheduling. 
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Significance Object Update Invocations Average 
Level Instance Rate Received Response 

99% A 5% 32% 0.8 
B 5% 35% 0.8 
C 5% 33% 0.8 

Overall  7344 EiI1 
95% A 8% 33% 0.8 

B 8% 33% 0.8 
C 8% 34% 0.7 

Overall  7344 

90% A 10% 33% 0.8 
B 10% 33% 0.8 
C 10% 34% 0.7 

Overall  7344 

80% A 13% 34% 0.7 
B 14% 33% 0.8 
C 14% 33% 0.8 

Overall  7344 

60% A 21% 33% 0.8 
B 21% 33% 0.7 
C 22% 33% 0.8 

Overall  7344 E1I1 
40% A 35% 33% 0.9 

B 35% 33% 0.8 
C 34% 33% 0.8 

Overall  7344 EIIII 
20% A 53% 34% 0.7 

B 53% 33% 0.8 
C 55% 33% 0.8 

Overall  7344 

Full A 100% 33% 0.8 
Information B 100% 33% 0.8 

Case C 100% 33% 0.8 
Overall  7344 

Table 7-3: Update Suppression with Uniform Performance at Low Load 
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Significance Object Update Invocations Average 
Level Instance Rate Received Response 

99% A 6% 33% 1.7 
B 6% 34% 1.6 
C 6% 33% 1.6 

Overall  14385 

95% A 10% 33% 1.9 
B 10% 34% 1.7 
C 10% 34% 1.7 

Overall  14385 EIII 
90% A 12% 34% 1.8 

B 11% 32% 1.8 
C 13% 34% 1.8 

Overall  14385 

80% A 16% 34% 1.8 
B 16% 33% 1.9 
C 17% 33% 2.0 

Overall  14385 

60% A 25% 34% 1.6 
B 25% 33% 1.5 
C 24% 33% 1.6 

Overall  14385 EIII 
40% A 38% 33% 1.8 

B 39% 33% 1.7 
C 36% 34% 1.6 

Overall  14385 

20% A 60% 34% 1.6 
B 62% 33% 1.7 
C 61% 33% 1.6 

Overall  14385 

Full A 100% 33% 1.6 
Information B 100% 33% 1.7 

Case C 100% 33% 1.7 
Overall  14385 

Table 7-4: Update Suppression with Uniform Performance at Medium Load 
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Significance Object Update Invocations Average 
Level Instance Rate Received Response 

99% A 5% 33% 6.8 
B 5% 34% 6.5 
C 5% 33% 7.4 

Overall  21753 

95% A 7% 34% 5.7 
B 7% 32% 6.2 
C 7% 34% 5.6 

Overall  21753 

90% A 8% 33% 6.7 
B 8% 33% 5.9 
C 9% 34% 5.7 

Overall  21753 

80% A 10% 33% 7.2 
B 11% 34% 7.2 
C 10% 33% 7.1 

Overall  21753 

60% A 18% 34% 6.0 
B 18% 33% 6.4 
C 17% 33% 6.7 

Overall  21753 Ifl 
40% A 26% 34% 7.2 

B 25% 33% 7.4 
C 26% 34% 6.9 

Overall  21753 

20% A 49% 33% 5.3 
B 49% 34% 5.7 
C 50% 33% 5.8 

Overall  21753  
Full A 100% 33% 5.9 

Information B 100% 33% 5.7 
Case C 100% 33% 5.8 

Overall  21753 

Table 7-5: Update Suppression with Uniform Performance at High Load 
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Significance Object Update Invocations Average 
Level Instance Rate Received Service Time 

99% A 6% 13% 2.5 
B 6% 37% 0.9 
C 5% 50% 0.6 

Overall  7344 [J 
95% A 8% 13% 2.3 

B 9% 36% 0.9 
C 8% 51% 0.6 

Overall  7344 

90% A 11% 10% 2.5 
B 10% 38% 0.9 
C 11% 52% 0.5 

Overall  7344 [Qj 
80% A 15% 13% 2.3 

B 14% 36% 1.0 
C 13% 51% 0.5 

Overall  7344 [çJ 
60% A 24% 15% 2.0 

B 22% 35% 1.0 
C 23% 50% 0.6 

Overall  7344 

40% A 37% 12% 2.4 
B 37% 35% 1.0 
C 36% 53% 0.6 

Overall  7344 [pj 
20% A 59% 18% 2.0 

B 56% 35% 0.9 
C 54% 47% 0.6 

Overall  7344 
Full A 100% 14% 2.2 

Information B 100% 35% 0.9 
Case C 100% 50% 0.6 

Overall  7344 10.9 I 

Table 7-6: Update Suppression with Non-Uniform Performance at Low Load 
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Significance Object Update Invocations Average 
Level Instance Rate Received Service Time 

99% A 6% 10% 7.0 
B 7% 36% 2.3 
C 7% 53% 1.4 

Overall  14385 

95% A 10% 14% 5.1 
B 11% 34% 1.9 
C 11% 52% 1.3 

Overall  14385 

90% A 13% 14% 5.9 
B 13% 35% 2.3 
C 12% 51% 1.4 

Overall  14385 

80% A 17% 14% 5.1 
B 15% 34% 2.2 
C 17% 51% 1.4 

Overall  14385 EIiiI1 
60% A 24% 15% 4.6 

B 26% 34% 2.2 
C 25% 51% 1.2 

Overall  14385 E0 
40% A 39% 16% 4.5 

B 40% 35% 1.9 
C 39% 50% 1.3 

Overall  14385 

20% A 64% 11% 5.2 
B 61% 35% 2.0 
C 62% 54% 1.4 

Overall  14385 

Full A 100% 15% 4.8 
Information B 100% 35% 1.9 

Case C 100% 50% 1.3 
Overall  14385 

Table 7-7: Update Suppression with Non-Uniform Performance at Medium Load 
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Significance Object 	I  Update Invocations Average 
Level Instance Rate Received Service Time 

99% A 3% 17% 23.9 
B 5% 34% 9.7 
C 5% 49% 6.0 

Overall  21753 110.31 

95% A 6% 16% 16.4 
B 7% 33% 6.8 
C 8% 50% 3.9 

Overall  21753 

90% A 8% 15% 19.2 
B 9% 34% 8.1 
C 8% 51% 4.9 

Overall  21753 

80% A 10% 15% 21.4 
B 10% 33% 8.8 
C 10% 52% 4.9 

Overall  21753 

60% A 15% 17% 16.7 
B 17% 33% .7.0 
C 18% 50% 4.0 

Overall  21753 

40% A 23% 16% 19.3 
B 26% 34% 7.5 
C 27% 50% 4.5 

Overall  21753 ftII 
20% A 52% 16% 14.5 

B 51% 34% 5.9 
C 51% 50% 3.5 

Overall  21753 

Full A 100% 16% 16.8 
Information B 100% 34% 6.7 

Case C 100% 50% 3.9 
Overall  21753 

Table 7-8: Update Suppression with Non-Uniform Performance at High Load 
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performance. At low and medium workloads, despite a 95% reduction in update 

traffic, performance remains identical to that for the full information case. At high 

workload there is some degradation in performance; 6.9 as compared to 5.8 in the 

uniform case, and 10.3 as compared to 6.9 in the non-uniform case, but this must 

be traded against the reduction in update traffic of approximately 95% (almost 

21000 messages in the simulated example), representing a considerable saving in 

resource costs. 

Despite the reduction in performance at high loads caused by reduced informa-

tion, comparison scheduling with update suppression still yields performance an 

order of magnitude faster than both random and greedy scheduling, (see Tables 6-

2, 6-5 and 6-6, operating with full information). The detailed results, averaged 

over ten simulation runs, for comparison scheduling with a comparison significance 

level of 0.1%, and update suppression with a thresholding confidence interval of 

99%, are shown in Tables 7-9 and 7-10. These results suggest that there is a con-

siderable amount of redundant information obtained when observing the service 

times for all invocations, and that the thresholding mechanism developed in this 

chapter performs well at removing this redundancy. 

7.4 Service Expansion and Contraction 

Thresholding can also be used to control service expansion and contraction, as 

described in chapter 5. Upper and lower thresholds, defined by the confidence 

level, can be placed on 'acceptable' service times. Should a single instance become 

overloaded, so that its average service time exceeds the upper threshold, then the 

creation of an additional instance is triggered in order to handle some of the load. 

Conversely, when the workload subsequently falls, the multiple instances become 

under-utilised and their average service times fall. If the lower threshold is passed, 

then a 'garbage collector' can be triggered to remove redundant instances, with 
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Load Object Update Invocations Average 

Category Instance Rate Received Service Time 

Low A 5% ± 1% 33% ± 2% 0.8 ± 0.04 

B 5% ± 1% 33% ± 2% 0.8 ± 0.04 

C 5% ± 1% 33% ± 2% 0.8 ± 0.04 

Overall 7344  EiII 
Medium A 7% ± 1% 33% ± 1% 1.8 ± 0.06 

B 7% ± 1% 33% ± 2% 1.8 ± 0.06 

C 7% ± 1% 33% ± 1% 1.9 ± 0.06 

Overall 14385 

High A 5% ± 1% 33% ± 1% 7.4 ± 0.2 

B 5% ± 1% 33% ± 1% 7.0 ± 0.1 

C 5%±1% 33%±1% 6.8 ±0.1 

Overall 21753  

Table 7-9: Comparison Scheduling with Update Suppression (Uniform) 



Chapter 7. Status Updates 
	 193 

Load Object Update Invocations Average 

Category Instance Rate Received Service Time 

Low A 6% ± 1% 14% ± 3% 2.3 ± 0.2 

B 6% ± 1% 37% + 3% 0.9 ± 0.04 

C 6% + 1% 50% ± 3% 0.6 ± 0.02 

Overall 7344 

Medium A 7% + 1% 14% + 2% 5.7 ± 0.3 

B 7% ± 1% 35% ± 1% 2.2 + 0.07 

C 7% ± 1% 51% ± 2% 1.4 ± 0.04 

Overall 14385 Efl 
High A 4% ± 1% 16% ± 1% 22.4 ± 0.6 

B 4%+1% 33%±1% 9.1±0.2 

C 4% ± 1% 50% + 1% 5.6 ± 0.09 

Overall 21753 

Table 7-10: Comparison Scheduling with Update Suppression (Non-Uniform) 
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the future workload being shared among remaining instances. Using thresholding 

in this way controls the level of utilisation of object instances. 

7.5 Implementation Considerations 

This section considers how comparison scheduling and update thresholding might 

be implemented in a distributed environment. 

Every object host is capable of supporting at least one object (by definition), 

and every object may potentially generate invocations upon other objects. In 

general, therefore, each object host must be capable of supporting both status 

updates, for reporting the performance of the objects it supports, and comparison 

scheduling, for scheduling the invocations that its objects generate. Conceptually, 

both of these services must be replicated on a per object basis. However, in 

practice, they are more likely to be engineered as one replicate per host, with each 

replicate supporting all of one host's objects. Scheduling and update reporting 

are unlikely to be engineered in a centralized manner. 

Replicating the scheduling and update algorithms is relatively simple. They 

can be included as part of the support environment for a host. The problems arise 

when deciding how to replicate the performance data that drives the algorithm, 

i.e., how to direct status updates to those hosts that require them. 

For object scheduling, where the status information relates to host perfor-

mance, it may be possible to update all hosts, especially if the underlying com-

munication facilities support inexpensive broadcasts. The limiting factors to this 

approach are the number of hosts present in the system, and the frequency with 

which their status is updated. With the significantly reduced update rate resulting 

from use of the update mechanism developed in this chapter, total monitoring may 

be feasible for the size of systems defined in chapter 3. However, for larger systems 
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it may be necessary to partition hosts into 'schedule groups', where members of the 

same schedule group monitor each other, but not members of other groups. This 

approach, namely reducing a large, unmanageable system to multiple, smaller, 

self-contained systems, is examined further in chapter 9 when considering the 

configuration management of Environments. 

For invocation scheduling, the problem of distributing object performance data 

is potentially much greater, since there are assumed to be many more objects 

than hosts. However, for any particular invocation, the candidate objects are not 

those of the entire system, but rather, only those that support the specific service 

being invoked. Hence, for invocation scheduling, each host only actually needs to 

maintain status information relating to objects that support the services required 

by the objects it hosts. If it were possible to identify these supporting objects, then 

the amount of information that must be held by each host would be considerably 

reduced. 

It may be possible for a host to determine the services an object may (poten-

tially) invoke, by examining the object itself. For example, when a new object is 

constructed, this sort of information may be recorded by the transformation tools. 

Hence, the host can then join the collection of hosts receiving updates about these 

services. The host is then in a position to schedule any future invocations that 

may be generated. If, however, the supporting services required by a new object 

can not be determined in advance, then the host must register for performance 

updates dynamically, as each new service is invoked for the first time. 
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7.6 Conclusions 

The simulation results suggest that update suppression using the thresholding 

mechanism yields a considerable reduction in update traffic, while having little 

or no detrimental effect upon the comparison scheduler's performance. Assum-

ing exponentially distributed service times, a 0.1% comparison significance level, 

together with a thresholding confidence interval of 99%, provides excellent schedul-

ing performance across all configurations tested, combined with a 95% reduction 

in update traffic when compared to the 'complete information case'. 
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Virtual Objects 

This chapter identifies several example virtual properties that can be cre-

ated by suitable manipulation of service instances and the invocations upon 

them. Virtual templates are introduced as a general, re-usable mechanism 

for creating this type of virtual property. Mock template implementations 

are provided for Resilience, Persistence, Access Controls, Inter-Object De-

bugging and Performance Monitoring. The chapter concludes by examin-

ing some of the implementation issues associated with creating and ap-

plying templates. 

195 
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8.1 Virtual Properties 

As defined in chapter 2, virtual properties are characteristics possessed by objects, 

that somehow 'improve' the service offered, but in a service independent manner. 

Typically, virtual properties mask inherent limitations of the underlying system 

or enhance an object's interface to match that expected by its invokers. An ob-

ject displaying no virtual properties is known as a Base Object or Real Object. 

An object enhanced by the addition of one or more virtual properties is known 

as a Virtual Object. This chapter. examines a particular class of virtual properties 

that can be retrospectively added to an object, either by manipulating invocations 

upon instances of the object, or by manipulating the instances themselves; or pos-

sibly a combination of the two. The following sections identify several properties 

commonly found in distributed systems, that comply with this definition. 

8.1.1 Resilience 

A K-resilient object is one whose invocation routines are guaranteed to progress 

to completion, despite the 'failure' of up to K hosts in the system. The notion 

of host failure covers any error condition denying access to the host's services, for 

example, the failure of the host itself, or a network partition restricting remote 

access. 

Creating a K-resilient virtual object using replication requires at least K + 1 

independent instances of the object to exist within the system, where independence 

refers to their failure modes [Birma85]. Two objects are considered independent 

if the failure of one does not automatically imply the failure of the other. In 

practice this relates to failures of object hosts. Independence is therefore usually 

achieved by assigning each instance to a separate processor. Having created K + 

1 independent instances, each instance maintains its internal state in step with 
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the others by forwarding details of all invocations it receives. The uniform view 

of the service's state, as maintained by each instance, means that any one of 

the multiple instances is capable of responding to invocation requests for their 

particular service. 

In the event of a failure, the failed instance no longer provides a service. How-

ever, the surviving K instances continue to function as normal. Clients remain 

oblivious to any problems, perceiving only a continuous, uninterrupted service. 

Up to K successive failures can be tolerated in this manner before the service fails 

altogether. Hence, although the individual real objects are not resilient to fail-

ure, a service displaying the resilience property is abstracted from their combined 

behaviour. 

The key to realising K-resilience is the appropriate coordination of invocations 

upon the K + 1 base object instances. A service endowed with K-resilience is 

enhanced by its ability to continue service provision despite the presence of up to 

K failures in the system. 

8.1.2 Persistence 

A concise definition of persistence is provided by Low, who states that 

An object is persistent if it 'dies at the right time'; persistence is an 

observation about the lifetime of an object, namely that it exists for 

precisely as long as intended, and then it disappears. A programmer 

demands that an object disappears as an act of intention, not as a 

result of a processor crash or a bad block on a disc drive [or any other 

form of 'accidental' death]. [Low 881 

In the event of a host failure, the internal state of a persistent object is 'suspended' 

until the host recovers. At the point of recovery, the object and its internal state 
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are returned to their condition prior to the failure. Resilience and persistence 

are both related to reliability issues since resilience can be viewed as 'short term 

reliability', and persistence as 'long term reliability'. A persistent service may 

become temporarily unavailable during a partial system failure, whereas a resilient 

service continues to function. However, persistent objects can survive a total. 

failure of all hosts, whereas resilient objects do not. 

Persistent objects are realised by retaining an independent record of the ob-

ject's internal state on a reliable storage medium [Cocks84]. If a failure occurs, this 

record can be used to restore the object to its former state. In an object-oriented 

environment, storing a trace of all invocations made upon an object is sufficient 

to ensure it can be reinstated. Upon host recovery after a failure, a new object 

instance is created to which the invocation list is then replayed. Upon completion 

of this invocation replay, the new object's state should re-create that of its failed 

predecessor. 

Persistence can therefore be created through monitoring invocations upon an 

object, and copying them to stable storage for subsequent replay in the event of a 

failure. An object thus endowed with persistence is enhanced by the longevity of 

its internal status. 

8.1.3 Access Control 

Computer systems normally require some form of security mechanism to govern ac-

cess to services. In a system consisting entirely of objects, this principally involves 

the verification of access rights when objects are invoked. Two methods commonly 

used to implement this are access control lists (ACLs) and capabilities [Mizun871, 

which were described earlier in section 1.8 in relation to the Cronus and Amoeba 

distributed systems. 
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It is possible for access controls on invocations to be checked externally to the 

service object, using a security object interposed between the client and server. 

Clients invoke the security object rather than the base object, presenting the 

appropriate security information for validation. Approved requests are then for-

warded by the security object to the base object. Invocations failing the security 

validation are rejected. This approach to security, i.e., retrofitting to an existing 

system, known as Incremental Addition [Karge88], assumes clients cannot defeat 

the access controls by circumventing the security object and calling the base object 

directly. 

Subject to the restriction of non-circumvention, access control mechanisms can 

be added to existing object instances by manipulation of invocation requests; more 

specifically, by interposing a security object between the client and server. There 

are several advantages to this approach: the overhead of secure access is only borne 

by those services requiring it; by using different security objects, multiple instances 

of the same base object may operate with different access control mechanisms; 

and finally, attaching more than one security object to a base object allows it 

to be simultaneously invoked by clients using different security mechanisms. For 

example, a single instance can appear to support both ACL based access control 

and capability based access control. 

8.1.4 Debugging 

Debugging in a distributed environment is intrinsically more complicated than 

in a non-distributed, sequential environment. There are a number of reasons for 

this [Garci84], [Joyce87] 

Multiple foci of control 

i,  Determination of current (distributed) state 
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D Inherently non-deterministic 

r. Debugging alters behaviour 

Complex (parallel) interactions between components 

Traditional single user, sequential debuggers offer facilities such as single step-

ping, breakpoints and source code manipulation. These techniques, which can be 

thought of as Intra-Object Debugging aids, still apply when debugging individual 

objects. However, in a distributed environment, further facilities are required to 

debug erroneous interactions between objects, i.e., Inter-Object Debugging. This 

requires monitoring inter-object communications, i.e., invocation messages. 

In [Smith85], Smith describes a debugger operating on message based, commu-

nicating processes; a definition that encompasses the object oriented invocation 

paradigm. This debugger provides mechanisms for accessing and controlling the 

inter-process activities of the system. Messages can be intercepted, stored for 

replay, modified, or even destroyed. The debugger deliberately does not provide 

any facilities for examining or manipulating information at a finer grain, such as 

the code or data of individual object instances. The Amoeba system provides a 

debugger operating on similar principles [Elsho88], although in this case access is 

also provided to the internals of an object, requiring it to be re-compiled with a 

debug attribute. 

The debugging of object interaction, i.e., inter-object debugging, can therefore 

be provided through monitoring and manipulating the invocations made upon an 

object instance. Understanding program behaviour may be improved by observing 

the interactions and their associated parameters; errors can be reproduced by 

replaying previously stored invocation histories; while modifying parameters and 

results allows the programmer to experiment with the object's behaviour. All 

these facilities can be provided without any explicit cooperation from the objects 
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being debugged, and without the need to create special 'debuggable' instances 

(although this could be done at the same time as a separate operation). 

8.1.5 Performance Monitoring 

The performance information used to drive the update thresholding mechanism 

described in the previous chapter, is derived solely from observing invocation ar-

rival times and reply departure times. Based on this information, status updates 

are generated according to the thresholding principle. Performance monitoring or 

'monitorability' as defined in chapter 7 therefore complies with the definition of a 

virtual property. An object enhanced with monitorability enables any interested 

party to keep a record of the object's performance history. 

8.2 Virtual Mapping 

In each of the examples described above, the virtual property is created by ma-

nipulating base object instances and the invocations made upon them. This ma-

nipulation can be performed by interposing a virtual property object between the 

client and server objects, both of which remain unaware of the property object's 

existence. The property objects perform a mapping function, mapping from an 

'ideal' environment of virtual objects onto the underlying 'warts-and-all' real envi-

ronment. The base objects do not participate in creating virtual properties other 

than by providing their normal service interface. 

The Proxy Principle [Shapi86], described in section 2.7.5 (page 70), provides 

an example of a general mapping mechanism that could be used to implement 

virtual properties. Proxies provide a single entry point to a service which, in 

reality, may be constructed from multiple distributed objects. The complexity of 

managing and coordinating the objects is encapsulated within the proxy and is 
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Invocation 	 Reply 

Figure 8-1: The Encapsulator Paradigm 

thereby hidden from the service's clients. In general, a proxy is specific to the 

group it represents, i.e., each service has its own specially coded, unique proxy. 

Encapsulators [Pasco86], implemented within a Smalltalk-80 environment, also 

embody some of these ideas. When an invocation is made upon an encapsulated 

object, the encapsulator performs a pre-action before the object is invoked and 

a post-action before a result is returned (Figure 8-1). By suitably defining the 

pre- and post-actions, a range of properties can be realised. Two examples given 

in [Pasco86] are mutual exclusion and atomic updates. 

Realising mutual exclusion using an encapsulator is extremely simple. The pre-

action performs a semaphore wait, while the post-action performs a semaphore 

signal. This ensures that only one invocation can proceed at a time, thus providing 

exclusive access to the encapsulated object on a per-invocation basis. For atomic 

updates, the pre-action creates a copy of the encapsulated object and passes the 

invocation to the copy. Upon successful completion of the invocation, the post-

action uses Smailtalk's become: primitive to atomically replace the original object 

with the updated copy. 
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Pascoe suggests that the encapsulator paradigm has applications in distributed 

systems for implementing access to remote objects, or for implementing secu-

rity mechanisms. However, since these applications have little relevance to the 

Smalltalk-80 single user, single machine environment they were not explored fur-

ther. 

8.3 Virtual Templates 

Virtual templates combine the beneficial attributes of encapsulators (generality) 

and proxies (hiding distribution), to provide a general mechanism for mapping vir-

tual objects to real objects. A Virtual Template takes the role of the virtual prop-

erty object identified earlier - encapsulating, in a reusable form, the invocation 

and instance manipulations necessary to realise a particular property. The pur-

pose of each virtual template is to provide a single virtual property applicable, in 

theory, to any base object. Thus, it is envisaged there will be a resilience template, 

a persistence template, a capability template, an access-control-list template, and 

so on. Any service requiring, for example, capability based access controls, can 

be created by applying the capability template to the appropriate base object. 

The resultant virtual object is identical to the base object except for the need to 

present a valid capability with each invocation. Similarly, a resilient version of the 

service can be created by applying the resilience template to the base object. 

Using a paradigm such as virtual templates to encapsulate virtual properties 

in a reusable form, reduces the complexity associated with programming in a 

distributed environment. New objects can be coded without concern for issues 

such as reliability and access controls. When required, these properties can be 

added later by applying the appropriate virtual templates. 
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Figure 8-2: Interposing a Template Object between Client and Server 

8.4 Template Operation 

The following sections describe the template actions required to realise the ex-

ample virtual properties identified earlier. The mock implementations presented 

are pedagogical; the algorithms shown are simplified, concentrating on readabil-

ity rather than implementation details. For the same reason, the programming 

constructs used do not correspond to any particular language. 

For the moment it is assumed that when a template is applied, the name of 

(i.e., a pointer to) the base object upon which the template is to operate is passed 

as a parameter. The base object instance is assumed to exist already. Invoking 

Service Initialisation on the template then establishes the virtual property, 

in some cases creating additional base object instances. The template is considered 

to be an independent object, invisibly interposed between the client and base 

object(s) (Figure 8-2). All invocations directed at the base object are assumed 

to be (automatically) redirected to the template. Section 8.5 provides further 

details on implementing and applying templates (as opposed to implementing the 

algorithms they execute). 

8.4.1 Resilience 

Creating a K-resilient service through replication requires at least K + 1 coordi- 

nated copies of the base object. In order to present a consistent service, details 
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of invocations upon any one copy must be forwarded, in the correct order, to the 

other K copies. The function of the resilience template is therefore principally 

to maintain consistency. In order to do this, the template requires support for 

the correct ordering of invocations upon replicates. Possible approaches include 

building upon atomic transactions or using ordered broadcasts. As an aside, the 

template also controls creation and deletion of the multiple base object instances 

to respectively create and delete the virtual service. 

An example resilience template implementation is shown in Figure 8-3. The 

template adds five extra invocation routines to the interface presented by the base 

object : Service Initialisation, Set Cohorts, Service Provision, Service 

Update and Service Closedown. These additional routines are only used by 

the virtual property 'management' system (e.g., other resilience templates), and 

remain hidden from normal clients. 

Service Initialisation 

Procedure Service-Initialisation is called once in order to turn the original, 

non-resilient Base-Object + Template combination into a K resilient service. It 

does this by creating an additional K instances of the Base-Object, each with its 

own (identical) resilience template to cooperate in the coordination of service invo-

cations. The algorithm assumes this routine is not called automatically, otherwise 

each of the new templates would in turn create K new instances, ad infinitum. 

Find Independent Host() is assumed to be a facility provided by the system's 

scheduling mechanism, returning the name of a host that is independent of those 

supporting the cohorts established so far. The statement 

NEW Resilience_Template(NEW Base-Object) 0 Host 

creates a Base-Object + Template combination. The object scheduling mecha- 

nism is overridden with an explicit instruction on where to place each combination, 

thereby ensuring failure independence from the other K replicates. Although, in 
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CLASS Resilience_Template(Base_Object AnyObject); 

BEGIN 
VARIABLE Instance-List IS SET OF Object-Pointer; 
VARIABLE Instance IS Object—Pointer; 
VARIABLE Copy IS INTEGER; 
VARIABLE Result IS Parameter-List; 

	

PROCEDURE Service_ Initial i sat ion (Res j].jence_Léve]. 	INTEGER); 

BEGIN 
VARIABLE Host IS Host-Name; 

	

Instance-List 	[Base-Object]; 	/* initial 	instance */ 
/* already created *1 

FOR Copy := 1 to Resilience-Level 

	

/* create k additional object-template pairs, 	*1 
/* placing template 'names' in the list of replicates */ 

DO BEGIN 
Host 	Find_Independent_Host(Instance_List); 
Instance-List := Instance-List + 

[NEW Resilience_Template(NEW Base-Object) 0 Host]; 
END of FOR 

FOR EACH Instance IN Instance-List 
DO Instance.Set_Cohorts(Instance_List); 

END of Service-Initialisation; 

PROCEDURE Set_Cohorts(Cohort_List SET OF Object-Pointer); 

BEGIN 
Instance-List 	Cohort-List; 

END of Set-Cohorts; 

206 

Figure 8-3: (Part 1) An Example Resilience Template Implementation 
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FUNCTION Service-Provision( Service_Name 	: Logical_Name; 
Service-Parameters : Parameter-List ); 

BEGIN 
FOR EACH Instance IN Instance-List 

DO Result := INVOKE Instance.Service_Update(Service_Name, 
Service-Parameters); 

RETURN Result; 	1* could use majority voting here */ 

END of Service-Provision; 

FUNCTION Service_Update (Service_Name 	Logical-Name; 
Service-Parameters Parameter-List ); 

BEGIN 
Result 	INVOKE Base_Object.Service_Name WITH Service-Parameters; 

RETURN Result; 

END of Service-Update; 

PROCEDURE Service-Closedown; 

BEGIN 
FOR EACH Instance IN Instance-List EXCEPT Base-Object 

DO Instance. Service _Closedown; 

TERMINATE; 
END of Service-Closedown; 

END of CLASS Resilience_Template; 

Figure 8-3: (Part 2) An Example Resilience Template Implementation 
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principle, the template and base object do not have to be at the same location, in 

practice this configuration reduces communication overheads. The pointer to each 

NEW Resilience Template is noted for use later. Having established the multiple 

templates, Service Initialisation then informs each one, through an invoca-

tion on Set Cohorts, the names of its peers. Once each template has received the 

list of peers it is ready to participate in providing a resilient service. 

Service Provision 

The function Service-Provision receives all invocations intended for the base 

object. This is where the ability to substitute different object implementations 

becomes important. The template is seen as providing the service, and. in order 

to use the service, clients must make invocations upon the template. Only the 

templates are aware of the base objects' existence. 

When an instance is invoked, the service provision routine informs the other 

instances in its cohort list by invoking Instance.Service_Update. Each template 

thus informed invokes its associated base object, thereby keeping them (almost) 

consistent. In this simple example no attempt is made to ensure a strict cohort-

wide ordering on invocation updates. Suitable synchronisation protocols are avail-

able, for example, Herlihy's quorum-consensus replication method [Herli86], but 

the details of their implementation are beyond the scope of this example. It is 

also possible to perform error detection and correction at this point, for example, 

by placing a timeout on each reply message. In this mock implementation, the 

results generated by each instance are assumed identical. The cohort results are 

therefore not examined for consistency. If required, a suitable 'majority voting' 

protocol could be used to determine the collective response. Having received the 

cohort responses the template then returns the result to the client. 
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Service Closedown 

As with initialisation, service closedown is performed by invoking the template 

which then uses the system's (de)scheduling services to remove the multiple in-

stances. Service closedown may be initiated from several sources, for example, 

by the original service requester, by the system scheduling mechanism, or during 

garbage collection. The algorithm shown here is inefficient since every one of the 

K +1  copies generates K 'shutdown' messages. However, it suffices to demonstrate 

the principle of using the template to remove the virtual property. 

8.4.2 Persistence 

Figure 8-4 shows a mock implementation of a persistence template. The 

Service Initialisation routine requires some means of checking for an ex-

isting service history from a previous (failed) incarnation. This is represented in 

the example by the Recovery-Code variable, which uniquely identifies a persistent 

object's invocation log (held in stable store). Should such a log exist, then the 

initialisation routine replays its contents to the new instance, thereby making its 

state identical to that of its failed predecessor. Subsequent invocations will be ap-

pended to this existing log. If no service log exists, then this is a new incarnation 

and consequently a new log must be created. Responsibility for assigning recovery 

codes to services is assumed to lie outside the template, i.e., with the environment 

in which the template is operating (see chapter 9 for further discussion on object 

environments). 

During service provision the template copies the details of all invocations to 

the stable storage service log. Logging the invocation result, although not strictly 

necessary, allows the initialisation phase, in the event of a re-incarnation, to verify 

a correct replay sequence by comparing the new instance's responses with those of 
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CLASS Persistence_Teniplate (Base -Object : AnyObject); 

PROCEDURE Service_Initialisation(Recovery_Code : UniqueCode); 

BEGIN 
If {existing log attached to this recovery code 

} 

THEN {open log and replay invocation history} 
ELSE OPEN_NEW(Service_Log) WITH Recovery-Code; 

END of Service-Initialisation; 

FUNCTION Service-Provision( Service-Name 	Logical-Name; 
Service-Parameters : Parameter-List ); 

BEGIN 
VARIABLE Result IS Parameter-List; 

Result 	INVOKE Base_Object.Service_Name WITH Service-Parameters; 

LOG_TO(Service_Log, Service_Name, Service-Parameters, Result); 

RETURN Result; 

END of Service-Provision; 

PROCEDURE Service-Closedown; 

BEGIN 
DELETE(ServiceLog); 1* since no longer needed */ 

TERMINATE; 
END of Service-Closedown; 

END of CLASS Persistence-Template; 

Figure 8-4: An Example Persistence Template Implementation 
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its predecessor. During service closedown, i.e., when terminating the persistence 

property, the service log can be deleted as it is no longer required. 

8.4.3 Access Control 

Figure 8-5 shows a mock implementation of a general access control template. 

There are no obvious initialisation or closedown actions required in this general 

example, so the corresponding routines have been omitted. Upon each invocation, 

the security parameters supplied by the client are validated appropriately. For ex-

ample, a capability based template would receive capabilities, while an ACL based 

template would receive client names that it can check against an access control list 

(establishing the list members would be an initialisation task). Regardless of the 

security mechanism employed, if the security parameters are validated successfully 

then the base object is invoked (without security parameters). Invocations failing 

verification are rejected by the template. 

Non-circumvention of the template can be assured, in the simplest case, by hav-

ing only the template aware of the base object's existence. When this is infeasible 

or considered too insecure, more elaborate schemes can be employed involving the 

cooperation of (trusted) system software to ensure that only security templates 

may invoke secure services. If this is also infeasible or insecure, then access con-

trol using templates might be restricted to the role of converting between access 

methods. For example, if an object expects clients to present valid capabilities, 

then a template can be applied to allow ACL based clients to invoke this service. 

The template would validate the client against its authorisation list forwarding 

successful invocation to the base object with a valid capability substituted for the 

the ACL security information. Conversions between other security mechanisms 

could be performed in a similar manner. 
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CLASS Security_Template(Base_Object : AnyObject); 

FUNCTION Service-Provision( Service-Name 	: Logical-Name; 
Service-Parameters : Parameter-List; 
Security-Parameters : Security-Info ); 

BEGIN 
VARIABLE Result IS Parameter-List; 

IF VALID(Security_Parameters, Base-Object) 
THEN BEGIN 
Result := INVOKE Base_Object.Service_Name WITH Service-Parameters; 
RETURN Result; 

END of IF 
ELSE REJECT(Security_Parameters); 

END of Service-Provision; 

END of CLASS Security-Template; 

Figure 8-5: An Example Access Control Template Implementation 

Using security templates it becomes possible to create several instances of the 

same service, each one protected by a different security mechanism. Such an 

environment provides greater flexibility in matching its services to clients' require-

ments. 

8.4.4 Debugging 

The implementation details of aninter-object debugger are beyond the scope of the 

simple examples presented here. However, following the same format as the other 

examples, the Service-Provision routine, which observes all invocations and 

results, is able to provide the inter-object debugging facilities identified earlier 

recording and displaying invocation behaviour, parameters and results; storing 

invocation histories - perhaps in the same manner as a persistence template - 
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to be replayed later in order to reproduce error conditions; allowing modification 

of parameters and results. 

8.4.5 Performance Monitor 

An example implementation of a performance monitor template is shown in Fig-

ure 8-6. It is principally intended for the update thresholding mechanism de-

'eloped in chapter 7, although it also applies to any update mechanism based 

upon observing invocation service times. The template relies upon its host to 

time-stamp incoming invocation messages as they are placed in its request queue. 

The model of invocation remains the same as described in chapter 6 (section 6.1), 

except that message queueing now occurs within the template object rather than 

the base object. 

The template keeps a list of objects wishing to receive updates relating to 

the base object. Any object wishing to receive updates adds its name to the list 

by invoking Add-Monitor. In principle there is no upper limit on the number of 

monitors. 

Invocations upon the base object are time-stamped and placed in the tem-

plate's request queue to await servicing. It is assumed that the time-stamp in-

formation can be extracted by the template for use in calculating the invocation 

service time. The Service Provision routine services each request in turn, re-

moving it from the request queue and passing it to the base object. Upon com-

pletion of the invocation, the template obtains the current time from its host, i.e., 

the end-time for the complete invocation, and uses this to calculate the service-

time. This service-time includes the message queueing time within the template 

and the actual invocation service-time by the base object. Having updated its 

service history with this latest observation, the template then calls its update al-

gorithm (in this case the thresholding mechanism). If this algorithm decides that 
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CLASS Monitor_Template (Base_Object : AnyObject); 

BEGIN 
VARIABLE Monitor_List IS SET OF Object-Pointer; 

PROCEDURE Service -Initialization; 

BEGIN 
Monitor-List 	0; 

END of Service-Initialisation; 

PROCEDURE Add_Aonitor(Nev_Monitor : Object -Pointer); 

BEGIN 
Monitor_List := Monitor-List + [1ev_Monitor]; 

END of Add-Monitor; 

FUNCTION Service-Provision( Service-Name 	Logical-lame; 
Service-Parameters : Parameter_List ); 

BEGIN 
VARIABLE Start-Time IS Time-Details; 
VARIABLE End-Time IS Time-Details; 
VARIABLE Service_Time IS REAL; 
VARIABLE Result 	IS Parameter-List; 
VARIABLE Monitor 	IS Object-Pointer; 

EITR.ACT_TIME(Start_Time); 	I* from invocation message, as *1 
/5 recorded by template host */ 
/* upon messages  insertion into *1 
/* template's request queue 

Result := INVOKE Base_Object .Service_Name WITH Service-Parameters; 

GET_TIME ( End_Time); /* current time, from host's clock 5/ 

Service_Time := End_Time - Start-Time; 

(update rolling service history vith Service-Time) 

IF (update required according to thresholdi.ng algorithm} 
THEN FOR EACH Monitor IN Monitor-List 

DO Monitor.Update(Current_Average, Service-History-Length); 

RETURN Result; 

END of Service-Provision; 

END of CLASS Monitor-Template; 

Figure 8-6: An Example Performance Monitor Implementation 
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an update is required, then each object in the monitor list is invoked to receive 

the current performance information. If no updates are required then no action is 

taken. Finally, the invocation result is returned to the client. 

8.5 Implementation Issues 

Having illustrated the principle behind virtual templates, this section examines 

some problems associated with implementation. 

8.5.1 Template Performance 

The mock implementations described above assume that virtual templates are in-

dependent objects, separate from the base objects they support. Although this 

approach is feasible, it is potentially inefficient due to the additional invocations 

generated by the client invoking the template, which then invokes the base object 

(Figure 8-2). A similar overhead is incurred when returning results since the base 

object replies to the template, which then replies to the client. The benefit of 

adding a virtual property may compensate for a limited performance degradation; 

however, doubling the amount of inter-object communication may not be accept-

able. One possibility for reducing this overhead is to always place the template 

at the same location as the base object, since intra-location (intra-host) invoca-

tion is generally less expensive than inter-location invocation. Extending this idea 

further, a more efficient approach would be to incorporate the virtual template 

as part of the base object, thereby removing the additional invocation overhead. 

The object paradigm provides a possible solution to this integration through the 

use of inheritance. 

There are at least two approaches to incorporating virtual templates using 

inheritance; one of these implements templates as the generic concept described 
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here, while the other provides the programmer with a 'toolkit' for creating service-

specific virtual properties. Both these approaches are examined below. 

8.5.2 Inheriting From Base Objects 

By placing a template class description at the bottom of a class hierarchy (Fig-

ure 8-7), the template can inherit, using standard object oriented inheritance 

mechanisms, the interface and invocation routines of all its ancestors; in par-

ticular, it inherits the interface and invocation routines of the base object. In 

effect, the template extends the base object's interface to include routines such as 

Service Initialisation, Service Provision and Service Closedown. The 

main requirement for creating virtual properties in this way is for the Service 

Provision routine to intercept all invocations upon the base object's services, 

which requires the cooperation of the underlying invocation mechanism. 

Objects known to regularly require certain virtual properties can be con-

structed in this manner, with the appropriate templates included. Ideally, the 

construction service should append template classes automatically while construct-

ing the object. This hides the virtual property implementation entirely from the 

base object programmer, which is in keeping with the original template concept. 

It also allows different users to specify different properties throughout the base 

object's life-time. 

Implementing virtual properties using base object inheritance does not interfere 

with the original, separate template object approach; the two techniques may co-

exist. This maintains the flexibility provided by independent templates, whilst 

also offering 'good' performance by enabling objects to be created with 'built in' 

virtual properties. 
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Figure 8-7: Template Classes Inheriting from Base Object Classes 
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8.5.3 Inheriting From Templates 

If a template class is included near the root of the class hierarchy (Figure 8-8), 

then all user defined classes (which are now sub-classes of the template class), 

automatically inherit the virtual property invocation routines. Hence, any user 

defined object can be invoked with a request such as Resilience_Initialise(3), 

the code for which will be found in the object's class hierarchy using the standard 

inheritance mechanisms. 

The problem with this approach is in redirecting invocations via the Service 

Provision routine, since the base object is (notionally) unaware of its existence. 

Requiring the base object to invoke Service Provision explicitly upon each in-

vocation removes the 'hidden' element from the template concept. Although not 

strictly an implementation technique for templates, if this approach is taken, a 

service-specific virtual property mechanism can be introduced. 

The Arjuna system [Shriv88] uses object oriented inheritance to provide per-

sistence, recoverability' and concurrency control [Dixon88} [Parri88]. The root 

class Object provides the basic facilities allowing a type to be recoverable and 

persistent. Further sub-classes 2  of Object build upon these basic facilities to pro-

vide atomic actions and locking facilities for concurrency control, which are then 

automatically inherited by new classes. 

In general, the template classes defined near the root of the class hierarchy 

should provide only the low-level building blocks required to construct their re-

spective virtual properties. Further sub-classes inherit these facilities and may 

build upon them to create 'better' and 'larger' facilities. These facilities are then 

'Recoverability is the ability to 'undo' a series of invocations. 

2 A11 classes are, by definition, sub-classes of Object 
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Figure 8-8: Base Object Classes Inheriting from Template Classes 
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automatically inherited by 'application' objects, which can call upon them ex-

plicitly to realise a particular virtual property. However, object programmers also 

have the freedom to enhance or even re-define these facilities using standard object 

oriented programming techniques. Hence, the virtual property can, if necessary, 

be customised for the object in question while still re-using inherited code that 

the object's programmer need not reproduce, or indeed understand (beyond the 

interface level). 

8.6 Summary 

A particular group of virtual properties have been identified, each of which can 

be created by manipulating invocation messages and base object instances. It has 

been argued that the object and invocation manipulation required to create each 

of these properties can be encapsulated in a generic, re-usable form; namely virtual 

templates. Several example templates have been shown, covering Resilience, Per-

sistence, Access Controls, Debugging and Performance Monitoring. Conceptually, 

templates are independent objects interposed between client and server. However, 

performance issues make it desirable to incorporate the template within the ser-

vice object. Two possible approaches were identified using inheritance: template 

classes inheriting from base object classes to provide 'hidden' virtual property im-

plementation; and base object classes inheriting from template classes, enabling 

programmers to build upon and customize, service-specific virtual properties. 



Chapter 9 

Resource Provision 

This chapter examines how the various aspects of resource provision may 

be combined to provide a complete resource scheduling mechanism. The 

early part of the chapter speculates on how users might access the dis-

tributed system's resources using Environments, in which only virtual ob-

jects exist, with no notion of location or distribution. Based on this user 

oriented view, the resource provision requirements associated with various 

user actions are determined. In each case, a solution is offered utilising the 

techniques developed in this thesis. The chapter concludes by examining 

the limitations of these mechanisms, suggesting the circumstances under 

which resource provision techniques can be expected to operate effectively. 
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9.1 Environments 

Before examining resource provision in detail, this section speculates on how the 

resources of a distributed system might be presented to users. Within this frame-

work, several user actions are identified that have an effect upon resource provision. 

These actions are used later as a basis for describing how the resource provision 

requirements can be satisfied using the techniques developed in this thesis. 

In large multi-user, object oriented distributed systems, individual users are 

normally interested in only a relatively small subset of the many thousands of ob-

jects available. There is therefore a need to structure the user's view of the system 

in order to sensibly organise and find objects and services. This is not unlike the 

problem of structuring multi-user file services in non-object based systems. Each 

user wishes to see only a small subset of the entire system, containing only those 

objects of interest. 

An Environment is a restricted view of the virtual object world customised by 

user and by activity. Each environment contains only those objects of interest 

to a specific user when performing a particular 'flavour' of task. From the user's 

point of view, each environment is a self-contained world providing all the facilities 

required to perform a specific task. The user perceives only virtual objects in the 

environment, with no concept of location or distribution. Objects can be added to 

or removed from an environment at will, with all scheduling and resource provision 

being performed automatically and invisibly. 

In [Neuma89], Neuman describes a similar approach to user environments, 

known as the Virtual System Model, based upon the observation that large systems 

are difficult to manage and negotiate, and that users should be presented with a 

small subset of the system containing only those parts of interest. 
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"The Virtual System Model provides a framework within which users 

can build a view of a system in which the parts of interest are logically 

nearby." [Neuma89] 

The concept is illustrated using a virtual file system implementation in which the 

user defined directory hierarchy is independent of the underlying storage hierarchy. 

Files can appear many times within a directory hierarchy, as well as in multiple 

hierarchies. The directory hierarchy may also contain loops. Some (essential) files 

appear in all users' hierarchies, but in general each user has a customised view of 

the file system. 

9.1.1 Environment Examples 

While using a workstation, a user may have several (screen) windows open, each 

containing a different environment. Examples are numerous, but could include 

environments such as: SmailTalk, perhaps a distributed implementation; a docu-

mentation environment, complete with the user's favourite text processor, a dictio-

nary object, a thesaurus object, printer objects and the document objects them-

selves; programming language development environments for creating new object 

classes, including language manuals and programming tools (note that in a user 

environment, compilation will be performed automatically. The programmer is 

aware of only one representation of the object, which is the source code represen-

tation); operating system environments providing emulations of specific systems, 

perhaps non-object oriented and non-distributed; a system management environ-

ment providing system configuration tools and privileged access to system data. In 

a mature system there will be many other environments, created and customised 

by the users themselves. As an example, application programs may have exe-

cution environments created for them in which all the facilities required by the 

application are (logically) collected together. 
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9.1.2 Hierarchies 

In an object oriented system the environments will themselves be implemented as 

objects, and can therefore appear as members of other environments. Hence, a hi-

erarchy of environments can be established such as the example shown in figure 9-

1. The root of the environment hierarchy, SWP, is established automatically when 

user SWP accesses the system. As shown here, there are two 'sub-environments' 

in the SWP environment : SWP...Documents and SWP_Simula. The SWR..Docuinents 

environment contains several document objects created by user SWP, represented 

here by the objects Thesis and Paper. The document environment also contains 

the sub-environment Document-Tools, which contains objects such as a text edi-

tor, dictionary and thesaurus. This in turn has access to a Printers environment, 

which contains printer objects suitable for producing hard copies of documents. 

The SWP_Simula environment, which contains program objects, has a similar envi-

ronment hierarchy. The Simula_Tools environment has a language manual object, 

an editor object and access to a Printers environment, although this may not 

be the same as the documentation Printers environment since it may contain 

different printer objects. 

Each environment may provide its own aliases for the objects it contains. Ob-

jects in other environments can be accessed using an Environment: LocalNaine 

pair. Note that an object may be present in more than one environment and can 

therefore be referenced by more than one name. 

Note that all the objects mentioned here, and indeed the environments them-

selves, are virtual objects, operating at the level of abstraction defined by the 

uppermost layer of the Object Reference Model (see Chapter 2). 
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Figure 9-1: An Example Environment Hierarchy for User SWP 
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9.1.3 User Interface 

Although not directly relevant to the issues under discussion, a brief examination of 

how environments might be presented to users, and the actions users can perform 

within them, provides some insight into the resource provision issues that must 

be tackled. 

As stated in chapter 3, the system is assumed to provide high resolution icon, 

window and mouse based user interfaces. Objects and environments can therefore 

be presented as icons. Using the mouse pointer to select an object icon may per-

form one of several actions such as displaying user oriented information relating 

to the object's function, deleting the object, or listing the object's invocation rou-

tines. Selecting a routine name invokes the object. Selecting an environment icon 

'opens' the environment, creating a new window containing its associated object 

(and environment) icons. Objects could be copied between environments simply 

by 'dragging' their icons from a source environment window to the destination 

environment window. A separate mechanism must be provided to enable users to 

find, and hence access, unknown environments (cf. the directory command used 

in file systems). Users of 'programming' environments require a further interaction 

mechanism to enable new object classes to be incorporated into the system (the 

details of such a mechanism are discussed later). 

Hence, at the environment level, there are three main activities a user can 

perform that affect resource provision : object addition, object invocation and 

object removal. The following section examines the actions required of the re-

source provision mechanisms in each case. Initially, only simple environments are 

considered, with no sharing of objects. Sharing is examined later. 
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9.2 Resource Provision 

The descriptions of resource provision services given below are based upon the 

operational services described in chapter 2 for each of the ORM layers. The 

mechanisms identified for implementing these services are based upon the work 

presented throughout the thesis. The intention is to relate the various research 

aspects that have been developed, indicating how they might combine to provide 

a complete resource provision facility. In common with the rest of the thesis, the 

following discussion is not intended to provide an implementation description, but 

rather indicates the general techniques that could be used. 

9.2.1 Configuration Management 

Environments create small, self contained systems utilising a subset of the re-

sources provided by the larger, underlying distributed system. They provide 

structure to an otherwise flat virtual world. The grouping of services into environ-

ments can be configured at all levels of the resource provision hierarchy, assisted, 

for example, by using an option parameter to pass environment identifiers down 

through the resource provision hierarchy. Restrictions and controls can therefore 

be placed upon the resources available to individual environments. For example: 

at the Virtual Layer, restricting the availability of virtual properties; at the Invo-

cation Layer, restricting the level of service expansion and contraction permitted; 

at the Location Layer, limiting the number of candidate locations when scheduling 

new objects; at the Construction Layer, limiting the range of representation trans-

formations available; and finally, at the Migration Layer, limiting the processors 

to which access is permitted. 

The scale of resource scheduling can therefore be reduced from one large envi- 

ronment to many smaller environments. The controls and restrictions established 
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at each level of the resource provision hierarchy should be hidden from the other 

layers. They might be established and maintained by the (human) system ad-

ministrators using external-management (configuration) services provided for this 

purpose. Hence, at each level in the resource provision hierarchy it should be 

possible to configure resource provision to suit the users, their applications and 

the underlying system. 

9.2.2 Adding Objects to an Environment 

Adding an object to an environment initially only requires placing the name of 

the (virtual) object in the environment's list of known objects. At this point an 

icon can be added to the user's display, indicating that the object is available. 

No further resource provision activities are required until the user attempts to 

invoke the object. When this occurs, the actions of the resource provision services 

depend upon the nature of the added object; it may be new to the system, new 

to all currently 'active' environments, or simply new to this environment. 

If the (virtual) object is new to the entire system then it must be incorporated 

into the 'list' of known objects. Section 9.2.3 examines how this might be achieved. 

If no scheduled instance of the object currently exists, then a new instance must 

be created, possibly using the techniques described below in section 9.2.4. If the 

object exists in another environment, the 'new' virtual object may possibly be 

mapped onto this existing object. Alternatively, if the existing object is unable to 

support an additional client, a new instance must be scheduled. 

9.2.3 Adding New Objects to the System 

New object classes are added to the system by making them available to the ap-

propriate type representative. Classes under development should be identified as 

'text' objects rather than class descriptions, in order to avoid the construction 
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facility automatically picking up incomplete classes. Hence, they can be read, 

edited, printed and so on, in the same manner as other document objects. For 

example, in a C++ environment the C++ programmer would create a module con-

taining C++ code to perform the services required of the new object. For this 

part of the programming process the newly developed code should be treated ex-

actly as a document. Once completed, the programmer changes the object's type 

from Document to, say, C++Module. The environment must vet each new object 

for compliance with its language definition, i.e., type checking it for conformance 

with its purported type and registering it with the appropriate type representative. 

Once the environment has verified the type conversion, the object can no longer be 

read, edited or printed, as these are invocations made upon documents. Selecting 

the object now gives a different list of possible invocation routines, namely those 

defined by the programmer in the body of the C++ module. 

The verification aspects of object construction have not been tackled in this 

thesis. Type verification should sensibly be a function of the construction service, 

which encapsulates all knowledge of object representation. Programmers should 

remain unaware of verification activities except in the event of an incompatibil-

ity, such as a syntax error. Hence, programmers perceive only a new object in 

their 'programming' environment, which they are now free to invoke in the usual 

manner, possibly requesting the virtual property 'debuggability' (see Chapter 8) 

in order to test the object's behaviour. 

9.2.4 Scheduling New Objects 

When the very first invocation is made upon an object, the resource provision 

mechanisms are called upon to create an executable instance (Figure 9-2). In order 

to create a virtual object the environment calls the Virtual Layer CreateService 

facility, specifying the virtual properties required. This service, which can be 

embodied within a 'virtual world management' object (hidden from the environ- 
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ment's users) in turn calls the CreateService facility embodied by the Invocation 

Layer. The Invocation Layer services then call the Schedule facility offered by 

the Location Layer's object scheduler. It is here that the main scheduling activity 

takes place. 

The object scheduler, which continually monitors the performance of each ob 

ject host available to the originating environment, selects the 'best' host to receive 

the new instance. This decision is made in conjunction with the management 

information provided by the construction service, which defines the possible rep-

resentations available and their relative transformation costs. Chapter 6 (sec-

tion 6.7) discussed the use of comparison scheduling in selecting a suitable host. 

The update thresholding mechanism presented in chapter 7 can be used to reduce 

the update traffic describing each host's current performance. 

-Having established the target host, the object scheduler calls upon the object 

construction facility to Makelnstance, which can use the construction algorithm 

described in chapter 4 to create an appropriate object representation. Finally, 

the construction facility calls upon the migration service to install the object 

representation on the target host. As each scheduling stage completes, it reports 

back to the previous level. When the completion message reaches the virtual world 

manager, the management service invokes the appropriate initialisation routines 

for each of the virtual properties specified by the user. Object installation is now 

complete, and the invocation that triggered this process can proceed as normal (see 

below). Figure 9-3 shows the mapping that has been established; from the abstract 

environment object onto an executable representation resident on a processor. 

9.2.5 Invoking Objects 

Invocations upon the objects in an environment are mapped to the appropriate 

virtual object and passed to the virtual world 'manager' (see rightmost path in 
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Figure 9-2). The virtual manager applies its 'rules' for maintaining virtual prop-

erties, converting the virtual invocation into the appropriate real invocation(s). 

The use of virtual templates for performing this task was discussed in chapter 8. 

The real invocations are then passed to the invocation scheduler for assignment 

to real objects. 

As well as assigning invocations to objects, the invocation scheduler is also 

responsible for controlling service expansion (and contraction) to maintain a 'sat-

isfactory' level of service. The thresholding technique can be used to detect when 

an object's average service time falls below an 'acceptable' level (see section 7.4 

for more details). Under these circumstances, the object scheduler is triggered 

to create an additional object instance, using the same techniques as described 

above. New instances are added in this manner whenever the existing instances 

become overloaded. In the case of retentive services, the invocation scheduler is 
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further responsible for instigating the transfer of status information between the 

original and new service instances (see chapter 5). 

Note that service expansion is a function of the invocation scheduler, and re-

mains invisible to the virtual manager, which perceives only a single instance 

of each real object associated with the virtual object. If a service has been ex-

panded, i.e., with multiple real object instances providing identical services, then 

comparison scheduling, described in detail in chapter 6, can be used to balance 

the invocation load. 

Having made the invocation scheduling decision, the invocation message(s) 

must be forwarded to the appropriate object(s). Notionally, this does not involve 

the object scheduler, although some address space translation may be required for 

which the object scheduler must be consulted. In particular, the object scheduler 

may be performing object migration to compensate for coarse-grained load imbal-

ances between hosts. As with the service expansion provided by the invocation 

scheduler, object migration for load balancing is a 'hidden' function of the object 

scheduler. The invocation scheduler perceives only scheduled objects, with no 

attached notion of physical location. 

Finally, if necessary, the construction services may transform the message pa-

rameters into a representation accepted by the target object. The migration ser-

vice is then called upon to deliver the invocation message(s) to the object(s) 

specified by the invocation scheduler. 

9.2.6 Sharing Objects 

Object sharing may occur at several places in the resource provision hierarchy. 

Figure 9-4 illustrates several possibilities. The environments are responsible for 

establishing and maintaining the sharing of virtual objects. Some virtual objects, 

although apparently independent to users, may in fact share the same real object 
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instance(s). As an example, most environments will include some sort of name 

server or directory object to identify other objects and environments. Each en-

vironment may appear to have its own copy of this service, although in reality 

they could all map to a single 'real' service. The virtual manager is responsible 

for establishing this level of sharing. 

Multiple real objects may share a host object. This is one of the basic assump-

tions stated in chapter 3, that most hosts are capable of supporting more than one 

object instance. The object scheduler is responsible for assigning objects to hosts, 

attempting to share the workload evenly. Finally, object hosts may share proces-

sors. The mapping of hosts to processors is likely to be static, pre-determined by 

the (human) system administrators. 

Figure 9-5 combines some of these sharing modes to provide a more realistic 

mapping of environment objects onto physical nodes. The figure shows a portion of 

two environments; Environment 1 and Environment 2. Both environments have 

a Directory object enabling users to find, and hence use, objects in other envi-

ronments. Although seen as independent services by the environment users, both 
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Directory objects share the same virtual object. In the example, a persistence 

template has been applied, so the virtual directory object is realised using two real 

objects - the directory server object and a stable storage object - which reside 

on host A and host B respectively. As well as a Directory object, Environment 2 

contains a Document object which, like most document objects, must be persistent 

in order to retain the text of the document between work sessions. The virtual 

document object is therefore realised using the 'real' document object and a stable 

storage object, which in this example is the same stable storage object as used by 

the directory service. Finally, both the document object and the storage object 

share host B. 
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9.2.7 Object Deletion 

At the environment level, removing an object simply involves deleting the object's 

name from the environment's list of known objects, in conjunction with remov-

ing its associated icon. How far this deletion command is propagated down the 

resource provision hierarchy depends upon the scheduling policies being used and 

the sharing configuration. In each case, the decision to de-schedule, thereby free-

ing potentially valuable resources, must be weighed against the likelihood, and 

cost, of the object being reinstated in the near future. An object can only be 

de-scheduled if it is not being shared with any other service. 

The virtual world manager de-schedules a virtual object by requesting the invo-

cation scheduler to remove the components of the 'real' service. Hence, using the 

example in Figure 9-5, in order to remove the virtual document object the invoca-

tion scheduler would be requested to delete the stable storage object and the real 

document object. It does this by calling upon the object scheduler to DeSchedule 

the real objects. In this simple example there is a direct correspondence between 

the real objects known to the virtual world manager and those used to implement 

the service. In other cases the invocation scheduler may have expanded the ser-

vice by creating additional instances. Under these circumstances the invocation 

scheduler will instruct the object scheduler to delete all instances associated with 

the virtual service. Finally, the object scheduler informs the construction facility, 

which may then delete the object's executable representation. 

9.3 Limitations 

This section examines the effects upon the scheduling mechanisms of user be- 

haviour and system configuration. For each scheduling aspect, the extremes of 

operation are examined, with corresponding user actions or system configurations 
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identified that lead to these conditions. The resultant discussion defines the cir-

cumstances under which these resource scheduling mechanisms are expected to 

operate effectively. 

9.3.1 Virtual Properties 

The application of virtual templates to objects generally incurs some sort of over-

head, ranging from increased communication to the creation and maintenance of 

additional object instances. Under normal circumstances this cost is an acceptable 

consequence of the virtual objects' increased utility. However, users requesting 

multiple properties on every object may generate considerable overheads, result-

ing in reduced performance. Virtual properties should therefore only be applied to 

objects when necessary. In particular, properties that generate multiple instances, 

such as resilience, should not be applied indiscriminately. The system may have 

to impose limits on users of these properties, for example, placing a sensible max-

imum on the level of resilience permitted, to avoid requests for '1000-resilient' 

objects. Objects possessing no virtual properties' do not create any additional 

overheads. 

9.3.2 Invocation Rates 

Although not under direct user control, the invocation rate is influenced by user 

actions since user requests initiate invocation activity. During slow periods, a sin-

gle user may not generate sufficient work to justify exclusive access to a dedicated 

object. Under these circumstances the invocation scheduler's ability to share ob-

jects between users becomes important. Where possible, users should be grouped 

'Notionally, all objects possess at least a 'null' virtual property, since only virtual 

objects can inhabit environments 
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together to be collectively served by a single service instance. The mechanisms 

presented here do not tackle this problem. 

At high invocation rates, the invocation scheduler may expand overloaded ser-

vices by creating additional instances to share the load. These additional instances 

are removed when the invocation rate falls. However, bursty invocation activity, 

i.e., alternating periods of high and low invocation rates, may cause the continu-

ous expansion and contraction of services. It has not yet been established whether 

thresholding (see section 7.4) can successfully avoid this sort of 'service thrashing', 

but the experience with the thresholding of update messages suggests that it may 

be suitable. 

9.3.3 Object Scheduling 

The principal constraint on an object scheduler is the number and type of hosts 

available to it. The earlier discussion on configuration management suggested that 

each environment may be associated with an arbitrary group of hosts. Obviously, 

if the scheduler has no hosts then it cannot schedule any objects. If only one host 

is available then the scheduling problem is trivial, although this could be a typ-

ical configuration, with the only known host corresponding to the physical node 

owned by the user. Object scheduling becomes interesting when there are two or 

more hosts available. A greater number of hosts offers greater potential for useful 

load sharing, although this must be offset against the monitoring overhead. The 

'optimal' sized grouping of hosts will vary between systems, depending upon the 

type of hosts involved, their capacity to support monitoring status information, 

and the level of system activity. Grouping hosts on a per environment basis pro-

vides a potentially flexible configuration mechanism, allowing the scale of object 

scheduling to be customised to the system under consideration. 
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9.3.4 Construction Facility 

In a heterogeneous environment with many different host types, the construction 

facility will be called upon more heavily than in a largely homogeneous environ-

ment. For example, if every host is a different type, then an object has a high 

probability of being re-constructed every time it is scheduled. Conversely, if the 

majority of the host sites are homogeneous, then a representation created for one 

host can automatically be made available to the others through the type repre-

sentative. Hence, greater homogeneity implies less construction overheads. These 

trade-offs are fundamental to any heterogeneous distributed system, independent 

of the construction mechanisms employed. Therefore, in general, automatic con-

struction of objects is most suited to a heterogeneous environment in which each 

host type is replicated many times, or where one particular host type predomi-

nates. 

9.4 Summary 

This chapter has speculated on how distributed resources might be presented 

to system users. The concept of environments wQft5  introduced, where an envi-

ronment is a self contained 'world' populated exclusively by virtual objects with 

desirable properties. Each environment is customised by user and by activity, (log-

ically) collecting together the objects necessary for performing the activity. The 

resource provision aspects associated with realising these environments were ex-

plored. This discussion indicated how the resource provision techniques presented 

in this thesis can be utilised to provide a complete resource provision facility. 

Finally, some limitations of these techniques were identified. 
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Conclusions 

Using objects to structure distributed systems is becoming an increasingly 

popular paradigm. This thesis endorses the object approach. The reasons 

for this lie in the nature of the objects themselves; hidden 'black box' 

implementation (encapsulation), and communication by message passing. 

Other, non-object, paradigms also exhibit encapsulation and message pass-

ing, but they lack the other key object attribute of inheritance. This thesis 

has provided a study of resource provision in object oriented distributed 

systems. Several aspects of resource provision have been examined in 

detail, with object oriented solutions, mechanisms and recommendations 

being made as appropriate. It has been demonstrated that exploiting ob-

ject attributes is a useful approach to accomplishing resource provision. 

240 
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10.1 Thesis Summary 

This research has studied resource provision in object oriented distributed sys-

tems. The main emphasis has been on demonstrating the value of developing 

object based solutions, rather than applying existing process based solutions. The 

introductory and background material was covered in chapters 1, 3 and 5. Chap-

ter 1 introduced objects and distribution, including an overview of several example 

systems. Chapter 3 defined the target environment addressed by the thesis, while 

chapter 5 provided an overview of distributed scheduling. The key research con-

tributions documented by the remainder of this thesis are summarised below. 

10.1.1 The Object Reference Model 

Although developed primarily as a framework to describe the work in this thesis, 

the Object Reference Model (ORM) is a general model of object oriented dis-

tributed systems that can usefully be applied to other areas of object oriented 

systems research. ORM, which was described in Chapter 2, provides a logical 

framework, built up as a series of layers, incorporating the various aspects of dis-

tributed systems design. Inspired by the OSI layered model of Communicating 

Systems, ORM is intended to assist the design of new systems whilst also allowing 

existing designs to be compared and contrasted. 

10.1.2 Construction Graphs 

A construction graph is a data structure that embodies the transformations per-

formed upon a class definition in order to create an executable object instance. 

Construction graphs can be used to assist in the automatic construction and trans- 

formation of object representations in a heterogeneous environment. The concept 
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behind construction graphs was presented in chapter 4, along with the design of 

a distributed automatic-construction facility. 

10.1.3 Comparison Scheduling 

Comparison Scheduling applies statistical hypothesis testing techniques to the dis-

tributed scheduling of object invocations. When applied to invocation scheduling, 

an object instance is selected to receive an invocation only if it is 'significantly 

faster' than all other contenders; where 'significant' is defined in terms of the 

statistical significance of a hypothesis test. Chapter 6 described in detail one 

particular formulation of comparison scheduling, based upon the assumption of 

exponential service times. Simulated performance results compared favourably to 

those for random and greedy scheduling, with improvements of up to an order of 

magnitude observed. Based on these simulation results, a recommendation was 

made for level of statistical significance to be used when performing comparison 

scheduling. 

10.1.4 Update Suppression 

Chapter 7 presented an algorithm for eliminating redundant performance status 

update messages, based upon the same hypothesis testing techniques developed 

for comparison scheduling. The mechanism filters redundant messages, resulting 

in a 95% reduction in update communication with little or no corresponding reduc-

tion in scheduler performance. Used together, comparison scheduling and update 

thresholding offer considerable potential to improve scheduling performance in 

object oriented distributed systems. 
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10.1.5 Virtual Templates 

Virtual properties and virtual objects were defined by the Object Reference Model 

described in chapter 2. Virtual templates encapsulate virtual properties, such 

as fault tolerance and persistence, in a generic, reusable form. In theory, any 

object instance can be made to display a virtual property simply by applying the 

appropriate template. Chapter 8 identified several example properties, providing 

mock template implementations for each one. Some of the more general problems 

associated with implementing templates were also discussed. 

10.2 Future Work 

10.2.1 Implementation 

The various resource provision mechanisms presented in this thesis were developed 

without reference to any particular distributed system. This has the advantage 

of not restricting ideas to 'things that can be implemented with this particu-

lar box', thus encouraging solutions to fundamental, rather than system specific, 

problems. This approach, epitomised by the Object Reference Model, has been 

adopted throughout, with several different aspects of resource provision being ad-

dressed from a fundamental point of view. However, by using this approach, none 

of the ideas presented are proven by implementation. To do so would require an 

implementation effort beyond the scope of an individual Ph.D. project. There is 

therefore potential for further work in proving these ideas through implementa-

tion, either by incorporating them separately into suitable existing systems, or by 

designing and building a new system. 
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10.2.2 ORM 

The formulation of ORM given in chapter 2 is relatively stable and has served 

the purpose for which it was intended; namely, to provide a descriptive framework 

for the research presented in this thesis. ORM is potentially of benefit to other 

researchers in this area, for structuring discussion about distributed systems. To 

this end, ORM could be further promoted as a self-contained model of object 

oriented distributed systems. 

10.2.3 Comparison Scheduling and Status Updates 

The simulations described in chapters 6 and 7 demonstrate the potential for com-

parison scheduling and update suppression to out-perform current scheduling tech-

niques. However, further work should be performed to verify (or otherwise) that 

the assumption of exponential service times is reasonable across a wide range of ob-

ject environments. Should this assumption not hold, then the hypothesis tests can 

be re-formulated using more suitable distributions. In principle s  the re-formulated 

algorithms should perform exactly as the algorithm in chapter 6. The only draw -

back is that any non-exponential formulation will almost certainly lead to a more 

complicated test statistic, yielding a greater computation overhead. Further work 

could also be performed to establish the feasibility of using a comparison scheduler 

for assigning objects to hosts. 

10.3 In Conclusion 

This thesis has addressed some of the fundamental problems associated with re- 

source provision in object oriented systems, attempting to provide object oriented 

solutions rather than applying existing, process based solutions. As a result, the 
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comparison scheduler and status update algorithms successfully exploit both en-

capsulation and message passing, while virtual templates may employ inheritance 

in order to create generic properties. In each case, it has been shown that utilising 

object oriented attributes, as opposed to process based attributes, provides useful 

solutions to resource provision problems. The conclusion reached is that when 

objects appear in distributed systems, the object paradigm should be used at all 

levels, because treating objects as processes ignores useful attributes that could 

otherwise be employed in controlling resource provision activities. 
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