
Resource Provision in

Object Oriented

Distributed Systems

Stephen W. Proctor

Ph.D.

University of Edinburgh

RM

Abstract

Using objects to structure distributed systems is becoming an increasingly popular

paradigm. This thesis examines some of the fundamental problems associated with

resource provision in such systems. A conceptual framework for the work is created by

the development of a reference model for object oriented distributed systems. Within

this framework, several aspects of resource provision are examined in detail. In each

case, an object oriented solution is sought rather than applying existing, process based

solutions.

The problem of object construction in a heterogeneous environment is addressed,

leading to the development of a distributed transformation algorithm for the automatic

construction of object representations. A novel scheduling mechanism is developed

based upon statistical hypothesis testing. Two applications of this mechanism are

simulated in detail : the assignment of invocation messages to object instances, and the

suppression of redundant status update messages. The concept of 'virtual properties' is

introduced, leading to the development of virtual templates as a re-usable mechanism

for endowing objects with properties such as resilience and persistence. The separate

resource provision issues addressed are then drawn together to demonstrate how the

techniques developed can be used to satisfy users' resource requirements.

Acknowledgementsl

C4

Although only one name appears on the front page, completing a PhD lsAtask
that requires support from many people. First and foremost I would like to thank
Gordon Brebner for his excellent supervision. Gordon's thought provoking con-
versation and his (frustrating) ability to always provide a counter-example, have
been invaluable in developing the work presented here. Thanks also to Rob Pooley
for patiently answering my many questions on programming in Simula.

Many thanks to Alistair, Tom and Tim who, over the years, have shared an
office with me, helping to keep me sane. Thanks also to everyone at Crew House
for making my stay in Edinburgh such a pleasant one, especially to Roger for
keeping me fit; to David for the games of squash; to Michelle for the cups of tea;
and to Dave just for being Dave.

Finally, I would like to thank Russell for inspiring me to start this course; and
most of all, thankyou to my fianc6-Nico1a, for inspiring me to finish.

'This work was funded by the Science and Engineering Research Council. Thanks

are also due to my employer, British Telecom, for allowing me the time to perform these

studies.

Declaration

I declare that this thesis was composed by myself and that the work it describes
is my own, except where stated in the text.

II

To my first teachers, Sylvia and Arthur Proctor.

111

Table of Contents

Object Oriented Distributed Systems 	 1

	

1.1 	Distributed Systems2

	

1.2 	System Definition8

1.3 Benefits of Distribution8

1.4 Disadvantages of Distribution12

1.5 Distribution and Operating Systems13

1.6 Object Orientation15

1.7 Objects and Distributed Systems21

1.8 Example Object Oriented Distributed Systems22

1.9 Thesis29

The Object Reference Model
	

32

2.1 Introduction33

2.2 Background to the Model34

2.3 The Object Environment37

2.4 Model Requirements38

	

2.5 	Virtual Properties 43

iv

Table of Contents 	 V

	

2.6 	Layering44

	

2.7 	The ORM Layers51

	

2.8 	Summary73

The Target Environment 	 76

	

3.1 	Introduction77

	

3.2 	Distributed Processors77

	

3.3 	Network so

3.4 The Object Environment89

	

3.5 	Applications and Users91

Object Construction 	 94

4.1 Introduction 95

4.2 Automatic Construction 95

4.3 Requirements 98

4.4 Limitations and Assumptions99

4.5 	Object Transformations100

4.6 Construction Graphs 102

4.7 Searching For Construction Paths 104

4.8 Representation Cacheing 106

4.9 Management Services 107

4.10 A Proposed Implementation109

4.11 Summary122

Table of Contents 	 vi

5. Distributed Scheduling 123

5.1 	Introduction 124

5.2 	Scheduling Policies 124

5.3 	Scheduling Metrics 129

5.4 	Scheduling in Object-Based Systems 133

6. Comparison Scheduling 140

6.1 Model of Invocation 141

6.2 The Control Scheduling Policies 142

6.3 Arrival Rates and Service Times 144

6.4 Simulation Description 146

6.5 Simulation Results 150

6.6 Comparison Scheduling 158

6.7 Object Scheduling 171

6.8 Summary and Conclusions 172

7. Status Updates 174

7.1 	Thresholding 175

7.2 	Object Thresholding 177

7.3 	Simulation Description 180

7.4 	Service Expansion and Contraction 191

7.5 	Conclusions 194

Table of Contents 	 vii

Virtual Objects 	 195

8.1 	Virtual Properties 196

8.2 	Virtual Mapping201

8.3 	Virtual Templates 203

8.4 	Template Operation204

8.5 	Implementation Issues215

8.6 	Summary220

Resource Provision 	 221

9.1 	Environments222

9.2 	Resource Provision227

9.3 	Limitations236

9.4 	Summary239

Conclusions 	 240

10.1 Thesis Summary241

10.2 Future Work 243

10.3 In Conclusion244

Bibliography 	 246

List of Figures

1-1 Enslow's Distribution Classification Cube (modified) 	 . 	5

1-2 A typical Array Processor6

1-3 A Closely-Coupled Multiprocessor System7

1-4 A Loosely-Coupled Multiprocessor Distributed System8

1-5 A \Vide-Area System9

1-6 The Logical Structure of an Object16

1-7 A Thesis Object Instance17

1-8 An Example Invocation Message18

1-9 Invocation Message Handling19

2-1 General Structure of Object Oriented Distributed Systems35

2-2 OSI Reference Model Layers47

2-3 The Object Reference Model Layers52

2-4 Layer N Operational and Management Services53

2-5 A simple Remote Procedure Call 57

3-1 Ethernet Simple Bus Topology81

3-2 Ring Topology 84

viii

List of Figures 	 lx

3-3 IEEE LAN standards and the OSI model86

3-4 Remote Procedure Call using Stubs87

4-1 A Simple Representation Relationship Diagram101

4-2 An Extended Representation Relationship Diagram101

4-3 A Hierarchy of Program Representations102

4-4 A General Construction Graph103

4-5 A Construction Graph with Cost Labels108

4-6 The T Representative Output Configuration Table110

4-7 The T Representative Output Graph Segment110

4-8 The T Representative Input Configuration Table111

4-9 The T Representative Input Graph Segment111

4-10 Construction Graph Segment Known to the T Representative . . . 112

4-11 An Example Graph: To be Searched114

4-12 A Distributed Search() Implementation115

4-13 A Distributed SearchComplete() Implementation117

4-14 A Recursive Construct() Implementation120

4-15 An Example Cyclic Construction Graph121

6-1 Invocation Model142

6-2 A Sample of Simulated Workload148

6-3 Simulation Configuration149

6-4 The Comparison Scheduling Algorithm165

List of Figures 	 x

7-1 A Simple Thresholding Mechanism176

7-2 Thresholding Regions176

7-3 Confidence Intervals and Hypothesis Tests180

7-4 The Update Suppression Algorithm181

7-5 The Experimental Confidence Intervals181

7-6 Simulator Configuration182

8-1 The Encapsulator Paradigm 202

8-2 Interposing a Template Object between Client and Server 204

8-3 (Part 1) An Example Resilience Template Implementation 206

8-3 (Part 2) An Example Resilience Template Implementation 207

8-4 An Example Persistence Template Implementation 210

8-5 An Example Access Control Template Implementation 212

8-6 An Example Performance Monitor Implementation214

8-7 Template Classes Inheriting from Base Object Classes217

8-8 Base Object Classes Inheriting from Template Classes219

9-1 An Example Environment Hierarchy for User SWP225

9-2 The Resource Provision Hierarchy230

9-3 Mapping an Environment Object onto a Processor 232

9-4 Sharing Objects 234

9-5 An example Sharing Configuration235

List of Tables

6-1 Random Scheduling Under Uniform Performance151

6-2 Random Scheduling Under Non-Uniform Performance152

6-3 Greedy Scheduling Under Uniform Performance154

6-4 Greedy Scheduling Under Non-Uniform Performance154

6-5 Greedy Scheduling Under Uniform Performance155

6-6 Greedy Scheduling Under Non-Uniform Performance156

6-7 Comparison Scheduling Under Uniform Performance168

6-8 Comparison Scheduling Under Non-Uniform Performance168

6-9 Comparison Scheduling (at 0.1%) Under Uniform Performance . . 169

6-10 Comparison Scheduling (at 0.1%) Under Non-Uniform Performance 170

7-1 Update Suppression with Uniform Performance183

7-2 Update Suppression with Non-Uniform Performance183

7-3 Update Suppression with Uniform Performance at Low Load . . . 185

7-4 Update Suppression with Uniform Performance at Medium Load . 186

7-5 Update Suppression with Uniform Performance at High Load . . . 187

7-6 Update Suppression with Non-Uniform Performance at Low Load . 188

xl

List of Tables 	 xl'

7-7 Update Suppression with Non-Uniform Performance at Medium Load 189

7-8 Update Suppression with Non-Uniform Performance at High Load 190

7-9 Comparison Scheduling with Update Suppression (Uniform) . . . 192

7-10 Comparison Scheduling with Update Suppression (Non-Uniform) 193

Chapter 1

Object Oriented Distributed Systems

The phrase 'object oriented distributed system' is ambiguous as both 'ob-

ject orientation' and 'distribution' have many interpretations. This chapter

provides an introduction to both areas, establishing the interpretations as-

sumed throughout this thesis. The range of distribution for the three

fundamental components of hardware, data and control are examined.

Several typical configurations are identified, ranging from closely coupled

parallel architectures to wide area networks. The flavour of distribution

to be addressed is characterized by personal workstations connected via a

local area network. The key features of object orientation invocation, en-

capsulation, and inheritance are defined. An overview is then presented of

six example object oriented distributed systems. The chapter is completed

with a description of the research aims and an overview of the remaining

chapters.

1

Chapter 1. Object Oriented Distributed Systems 	 2

1.1 Distributed Systems

In computing literature the term Distributed is applied to a wide range of multi-

computer and multiprocessor systems. The lack of standard vocabulary to describe

the many flavours of distribution invariably results in ambiguity. Every author,

including this one, must re-define 'distributed' to suit the particular system under

discussion. This problem has long been recognised [Enslo78], [LeLan8l], but all

attempts to define a standard terminology have, inevitably, failed. In this opening

section various aspects of distribution are examined. From this discussion will

emerge the flavour of distributed system addressed throughout this thesis.

1.1.1 What is Distributed?

There are many aspects of computer systems that can be 'distributed'. The three

fundamental components are:

Hardware

Data

Control

The following discussion examines the range of distribution possible for each of

these components.

Distributed Hardware

The simplest example of hardware distribution is a Single Processor. The term

processor is used here to describe a self-contained, independent computer; for

Chapter 1. Object Oriented Distributed Systems 	 3

example a processing element (CPU) capable of executing instructions, memory

for storing data, and peripherals such as a keyboard and screen. The level of

distribution in a processor spans no further than a single circuit board or perhaps

a collection of circuit boards within a single cabinet. Within the context of this

thesis single processors are therefore considered non-distributed. Examples include

desktop personal computers through to large mainframes. Moving slightly into the

realms of distribution are Shared Memory Multiprocessors. In these systems, the

processing hardware is replicated to allow parallel processing, but the memory is

shared. Interprocessor communication is relatively easy in such systems, utilising

shared access to data held in common memory. This configuration is typical of

many modern parallel processors.

Multiple Processor systems are more distributed still. In these systems single

processors are interconnected by some form of communication channels. There

is no shared memory, interprocessor communication being performed by passing

messages along the communication channels. The processors may be distributed to

varying degrees, loosely measured by the channel 'length'. For example, messages

may pass between processors on the same circuit board, alternatively they may

travel up to a few thousand metres via a Local Area Network (LAN) or, ultimately,

they may travel thousands of miles through a Wide Area Network (WAN).

Distributed Data

Non-distributed data occurs when only a Single Copy of the data exists throughout

the whole system. Full Replication of data is the simplest level of distribution in

which multiple, complete copies of the data are made. With full replication,

modifications to any one copy of the data must also be applied to the others if

data consistency problems are to be avoided. A greater level of distribution is

provided by Simple Partitioning, where a single copy of the data is partitioned,

each partition being located with a different processor. Consistency problems are

Chapter 1. Object Oriented Distributed Systems 	 4

thus avoided since there is only one copy of each partition. Simple Partitioning

can be extended to Redundant Partitioning by distributing multiple copies of each

partition. Here again the multiple copies of each partition must be coordinated

with regard to modifications, in order to maintain consistency.

Distributed Control

In the case of a single processing element there can only be one point of control

and therefore the question of control distribution does not arise. Assuming more

than one processing element, there are several possible control configurations. The

simplest, i.e., non-distributed case is a strict master/slave relationship, where one

processor dictates the actions of all others on a step by step basis. Control is

therefore Centralised at the master processor.

Control becomes more distributed when each processor is allowed Complete

Autonomy to work on independent tasks. This allows parallel processing of inde-

pendent tasks, but there is no coordination between processors that would allow

cooperation on common tasks. Adding cooperative behaviour yields Multiple Co-

operating Control Points. Under this configuration processors work together, each

performing a sub-task that forms part of a larger, common task. Although control

over each sub-task is centralised at the processor performing the sub-task, the pro-

cessors amalgamate their individual contributions in order to solve the common

task. Hence, control of the common task is fully distributed.

Enslow proposed that the three components of hardware, data and control be

represented by three orthogonal axes [Enslo78). Each axis is labelled with discrete

categories, moving from completely centralised at the origin through several stages

to completely distributed. This gives a 'classification cube', an example of which is

shown in Figure 1-1. The cube's axes have been labelled to make them consistent

with the terminology introduced earlier. Distributed systems can be mapped into

Chapter 1. Object Oriented Distributed Systems 	 5

Maximum
Distribution

Multi-
T: Processors

•0
1.

.

Figure 1-1: Enslow's Distribution Classification Cube (modified)

a segment of the cube according to the extent of their hardware, data and control

distribution.

1.1.2 Examples

The classification cube provides a simple measure of the level of distribution within

0

a system. Although in principle all combinations of hardware, data and control

distribution are possible, in practice several particular combinations predominate.

Chapter 1. Object Oriented Distributed Systems

Memory I 	I Memory I 	I Memory I 	. 	I Memory

Processing 	Processing 	Processing 	. . . 	 Processing
Element 	I I 	Element 	I I 	Element 	I 	I 	Element

Program

Figure 1-2: A typical Array Processor

Array Processors

An array processor consists of many (possibly hundreds) of processing elements,

each with their own dedicated memory (Figure 1-2). Data is partially replicated,

with each memory unit typically containing an element from a large array. Every

processing element executes the same instruction at the same time, controlled by

a central program, i.e., there is no control distribution. Hence, array processors

perform operations on an entire array in a single step. A more detailed analysis

of array processing can be found in [Hwang85].

Closely-Coupled Systems

Closely-coupled, or tightly-coupled systems consist of multiple processing elements

accessing a common memory (Figure 1-3). This configuration supports single

copies of data items, i.e., no data distribution. Control distribution could be

completely autonomous, however, the shared memory facility provides a relatively

Chapter 1. Object Oriented Distributed Systems 	 7

Shared Memory

Program A 	 Program B
	

ProgramC

Processing Processing Processing
Element Element Element

Figure 1-3: A Closely-Coupled Multiprocessor System

inexpensive program interaction mechanism, encouraging fully cooperative con-

trol. [Hwang85] provides further details on closely-coupled systems.

Loosely-Coupled Systems

Loosely-coupled systems are characterized by self contained processors intercon-

nected by a local area network (Figure 1-4). Personal workstations connected

by Ethernet provide a typical example. The degree to which data and control

are distributed depends upon the nature of the operating system built upon this

hardware base. Network Operating Systems typically encourage fully replicated

data and complete autonomy. Distributed Operating Systems typically provide

partially replicated data and cooperative control. A more detailed examination of

these operating system types is presented in section 1.5

Wide-Area Systems

Wide area systems consist of geographically dispersed processors connected by

wide area networks (Figure 1-5). The distance between adjacent processors may

Chapter 1. Object Oriented Distributed Systems

Communication
- Channel

Memory
	

Memory
	

Memory

Program A
	

Program 7B 	Program C

Processing
Element

Processing
Element

Processing
Element

Figure 1-4: A Loosely-Coupled Multiprocessor Distributed System

span national and even international borders. Such systems exhibit autonomous

control and fully replicated data. Many examples are identified in [Quart86],

including ARPANET [Tane8la] and JANET [Patel88].

1.2 System Definition

This thesis concentrates on loosely-coupled distributed systems, as depicted in

Figure 1-4. A detailed definition of the environment addressed is presented in

chapter 3. For the moment it will be defined simply as consisting of processors

connected by a local area network. Henceforth the prefix 'loosely-coupled' will be

dropped, and the phrase 'distributed system' will be understood to imply 'loosely-

coupled distributed system'.

1.3 Benefits of Distribution

Distributed systems offer potential for many improvements upon non-distributed

systems. Some of these benefits are examined below.

Chapter 1. Object Oriented Distributed Systems

Country A 	 I
Country B

Memory 	I 	 Memory

Program A 	 I
Wide Area 	 Program B —]
Network I

I 	I 	I
Processing 	 I 	J Processing I
Element 	

J 	 Element

Wide Area
Network rk 	

Wide Area
Network

I Memory 	I

Program

Processing
Element

Country C

Figure 1-5: A Wide-Area System

Chapter 1. Object Oriented Distributed Systems 	 10

1.3.1 Improved Performance

The multiple processors of a distributed system allow multiple concurrent threads

of execution to exist, i.e. Parallel Processing. Autonomous control can be used to

perform independent tasks at different processors. This provides parallelism at the

system level, but not at the user level. In order to provide parallel processing of

individual users' work, multiple cooperative control is required, with each control

point operating on partially replicated data towards a coordinated common goal.

There is further scope for performance improvement by assigning tasks to

'suitable' processors. The principle of selectively matching tasks and processors

lies at the heart of Distributed Scheduling, a subject dealt with extensively later in

the thesis. At present it suffices to state the basic motivation behind distributed

scheduling, which is to make the most efficient use of available resources.

1.3.2 Configuration Flexibility

In principle, the resources provided by a distributed system can be increased

simply by adding further processors to the network, causing little or no disruption

to the existing system's operation. The ease with which a distributed system

can be extended (or reduced) is a direct result of its distributed nature. By

contrast, expanding the capabilities of a centralised processor implies replacing it

with something else.

The flexibility afforded by a distributed environment encourages the use of spe-

cialised processors for specialised tasks. Any task capable of utilising a specialised

processor should automatically be directed there by the system. This is just

one example of distributed scheduling as defined earlier. Specialised processors

introduce heterogeneity into the distributed environment. Systems in which the

processors are not all identical are generally termed Heterogeneous. Homogeneous

distributed systems, i.e., where all processors are identical, retain the physical ex-

Chapter 1. Object Oriented Distributed Systems 	 11

tensibility mentioned above, but can not exploit the functional flexibility created

by specialist hardware.

1.3.3 Reliability

By providing redundant hardware and data, distributed systems can mask occa-

sional processor failures. When a failure occurs, the failed processor's tasks can

be restarted on other, 'spare' processors. The system's users remain unaware of

the failure perceiving only, perhaps, a slightly longer execution time due to the

re-start.

Some systems provide a Checkpoint mechanism whereby a processor can peri-

odically save the current state of its executing tasks. Under these circumstances a

failure does not require a complete re-start. Each task can be re-started from its

latest checkpoint information, thereby avoiding the repetition of earlier processing.

This technique is known as Rollback Recovery.

1.3.4 Resource Sharing

Attaching all processors to a common network provides shared access to the sys-

tem's resources. For example, expensive specialised processors such as printers

and disc drives can be shared equally between many users.

On a more general level, users of a distributed system have access to the

entire collection of resources the system provides. Users can therefore be allocated

resources according to their needs. For example, given ten users and ten processors

the optimal allocation may not be one machine per user. If one user generates as.

many tasks as the other nine combined, then the optimal configuration may be

five processors for the large user and five processors shared between the remaining

nine users. This form of resource sharing, generally termed Load Balancing, is

another example of distributed scheduling.

Chapter 1. Object Oriented Distributed Systems 	 12

1.3.5 Reduced Cost

Historically, the price-performance ratio for computer hardware has favoured large,

stand-alone machines over multiple, smaller machines. This observation was en-

shrined in Grosch 's Law which stated that

"The processing capacity of a computer system is roughly proportional

to the square of its cost."

However, technological advances in computer hardware are continually improving

processor performance, while also reducing costs. This has invalidated Grosch's

law, changing the price-performance ratio to favour multiple, low-performance

processors. As a result, distributed systems have become economically viable

when compared to large mainframes.

1.4 Disadvantages of Distribution

The benefits noted above are not without cost. Distributed hardware, data and

control introduce significant problems for the system designer. In general, the cost

is one of greater complexity.

Improved performance, created by utilising multiple cooperative control points

to perform parallel processing, isgained at the expense of greater overheads in

coordinating the parallel activities. Configuration flexibility, which encourages

heterogeneity, requires multiple program representations, one for each heteroge

neous processor type. Reliability through replication consumes resources since the

redundancy created to increase reliability, ties up resources that could have been

used for other services. Finally, sharing of resources requires careful access man-

agement. Resource usage must be monitored, with scheduling employed to avoid

resource conflicts and ensure 'fairness'.

Chapter 1. Object Oriented Distributed Systems 	 13

1.5 Distribution and Operating Systems

The operating system's role is the same for both distributed and non-distributed

environments; namely, to manage the system's resources. There are two basic

approaches to operating system design in a distributed environment. Systems

in which the network is visible to users are termed Network Operating Systems.

Systems that hide the network., attempting to present distributed resources as one

large, uniform processor, are termed Distributed Operating Systems. These two

philosophies are examined below.

1.5.1 Network Operating Systems

Network operating systems are generally implemented as a collection of programs

that run on a processor's resident, non-distributed operating system. These pro-

grams allow users, for example, to log in to remote processors, run programs

on remote processors and copy data between processors. Utilising existing, non-

distributed operating systems in this way makes network operating systems rela-

tively easy to implement, but has been likened by Tanenbaum to

• tying together a collection of incompatible [processors] with bailing

wire and bubble gum." [Tane8la]

The major drawback to network operating systems is the need for users to be

aware of, and understand, the system's configuration. For example, to issue a

command such as

RUN COMMAND Y AT PROCESSOR X

the user must be aware both that processor X exists and that it is capable of

running command Y. The fact that these assignments are explicitly under user

Chapter 1. Object Oriented Distributed Systems 	 14

control denies the system the chance to optimise resource usage. For example,

processor X may be heavily overloaded whilst, unknown to the user, processor W

is sitting idle.

1.5.2 Distributed Operating Systems

Distributed operating systems attempt to present distributed resources as part of

a single, uniform processor. Items such as programs and data have logical names

that are location independent. The operating system automatically translates be-

tween the logical name and the actual, location dependent name. This decoupling

between user name space and system name space gives the distributed operating

system complete control over the placement of tasks and data. For example, users

can now issue commands such as

RUN COMMAND Y

It becomes the operating system's responsibility to find a suitable processor on

which to run the command. Users perceive all commands as being run locally and

remain unaware of processor boundaries. Tanenbaum summarised this concept

with the rule of thumb that

"If you can tell which [processor] you are using, you are not using a

distributed system." [Tanen85]

The expense associated with this improved environment is greater implemen-

tation complexity. The programming and design effort involved in creating a dis-

tributed operating system is considerably greater than that for a network operating

system. This is particularly true if the distributed operating system is developed

from scratch rather than building upon an existing system. For this reason, most

extant distributed operating systems use an existing, non-distributed operating

system as a foundation. UNIX is typically used to fulfil this role.

Chapter 1. Object Oriented Distributed Systems 	 15

1.6 Object Orientation

In con-rn-ion with the phrase 'distributed system', object orientation has many

interpretations [Strou88]. Rentsch predicted with reasonable accuracy that

"Object oriented programming will be in the 1980's what structured

programming was in the 1970's. Everyone will be in favour of it. Ev-

ery manufacturer will promote his products as supporting it. Every

manager will pay lip service to it. Every programmer will practice it

(differently). And no-one will know just what it is." [Rents82]

This section attempts to convey the general philosophy behind object orientation.

Details specific to the environment addressed by this thesis are given in chapter 3.

1.6.1 Objects

An object is a repository for Data supported by a collection of Procedures to ma-

nipulate this data. The data is private to the object and can only be accessed

indirectly by requesting the object to invoke one of its procedures. These pro-

cedures, known variously as Invocation Routines, Methods, Actors, Behaviours or

Operations, are the only externally visible attributes an object possesses (Fig-

ure 1-6).

Every object is defined by its Class, alternatively referred to as its Type. A

Class Definition (implementation) is a functional description of the object's pro-

cedures and the data they operate on. It represents the blueprint from which

Instances of the class are created. Programmers using object oriented languages

create classes, not objects. Once a class is defined it can be used to create an

arbitrary number of instances. Every instance of a class has identical structure,

Chapter 1. Object Oriented Distributed Systems 	 16

Figure 1-6: The Logical Structure of an Object

but the values assigned to the data they contain may be different. For example,

every instance of class Thesis has a title, an abstract, and pages of contents (Fig-

ure 1-7). However, once these data items have been suitably initialised (using the

appropriate procedures from the Thesis class definition) each instance of Thesis

will be unique. Subsequent requests to showAbstract or showPage (also in the

Thesis class definition) will yield different results depending upon which Thesis

instance the request is directed to.

1.6.2 Invocation

In traditional procedural programming languages, a call to a sub-routine or a

library function explicitly references the code to be executed. The calling program

therefore decides not only which service to call, but also nominates the code to

perform the service.

Chapter 1. Object Oriented Distributed Systems
	

17

showPage 	I 	setlitle

Title 	Abstract

setPage 	

U

Pages I) showTit!e

of 	I
Contents I

showAbstract I 	setAbstract

Figure 1-7: A Thesis Object Instance

Chapter 1. Object Oriented Distributed Systems 	 IR

sendlo: service: parameters: replylo: systemSpecific:

myThesis setPage pageNo userSWP I Access
Page [Rights

of
Text

Figure 1-8: An Example Invocation Message

In object oriented systems, requests to perform a service are passed to object

instances via Invocation Messages. An invocation message, generated by the ob-

ject requesting the service, contains the name of the object to be invoked and the

name of the service required. It also contains the parameters the service requires,

the name of the requesting object and, optionally, may include system specific

information such as the requester's access privileges. An example invocation mes-

sage is shown in Figure 1-8. The requesting object's name is used as the reply

address should the invocation generate a reply. Invocation and reply messages are

the only legal form of interaction in object oriented systems.

The service name specified in an invocation message is known as the Mes-

sage Selector. Each object contains a Message Handler that examines incoming

messages, assigning requests to the appropriate procedures (Figure 1-9). This

mechanism de-couples the what from the how. The invocation message specifies

what is required, but the invoked object decides how it should be done.

1.6.3 Specification and Implementation

An object was characterized in section 1.6.1 as consisting of data and procedures.

We can now improve this characterization by stating that an object's specification

is defined exclusively by the invocation messages it understands. An implementa-

Chapter 1. Object Oriented Distributed Systems 	 19

Figure 1-9: Invocation Message Handling

tion is said to satisfy a specification if it is capable of responding to all invocation

messages the specification defines. An object's specification and implementation

are known as its Abstract Type and Concrete Type respectively.

Note that a specification can be satisfied by many different implementations.

Multiple implementations of the same specification are said to be Functionally

Compatible or Type Compatible, because they share the same abstract type. Note

also that, by this definition, an implementation supporting a super-set of the

messages defined by an abstract type is also type compatible.

1.6.4 Encapsulation

Using message selectors, a requesting object specifies what service is required. The

invoked object, using its message handler, has full responsibility for deciding how

that service should be provided. This apparently trivial feature, i.e., adding a

level of indirection to the invocation mechanism, is the key to the power behind

object orientation because it encourages encapsulation.

Chapter 1. Object Oriented Distributed Systems 	 20

Encapsulation minimises the interdependencies among separately implemented

objects by defining strict external interfaces [Snyde86]. The initiator of an invo-

cation message requires no knowledge of how the object performs the service re-

quested. Indeed, if encapsulation is enforced rigorously then invokers are actively

forbidden such knowledge. Hence, an object's implementation and the arrange-

ment of its internal data are encapsulated in a procedural shell that mediates

all access to the object. Encapsulation therefore enforces well established soft-

ware engineering techniques such as problem partitioning, information hiding and

abstract data typing.

1.6.5 Inheritance

Inheritance has been claimed as the distinguishing feature between languages sup-

porting data abstraction, and languages supporting object orientation [Strou88}. It

provides a mechanism for organising, building and using reusable classes [Halbe87].

With inheritance, new classes are defined in terms of existing classes by stating

how the new class differs from the old. Inheritance therefore promotes develop-

ment by refinement.

If a class c directly inherits from a class p then p is a Parent of c and c is a Child

of p. The parent and child classes are sometimes referred to as the Super-Class and

Sub-Class respectively. Inheritance creates a Class Hierarchy or Type Hierarchy in

which the terms Ancestor and Descendant are applied in the usual sense.

A sub-class inherits the external interface and concrete type of its parent-class,

which in turn inherited from its parent-class, and so on. Hence, a sub-class auto-

matically satisfies the cumulative specification of all its ancestors. The new class

is distinguished by the addition of further procedures specific to itself. These new

procedures are automatically available to any future descendants of the new class.

By encouraging the reuse of existing code, inheritance considerably reduces the

Chapter 1. Object Oriented Distributed Systems 	 21

development effort required to create new classes. In a mature object oriented

environment there will be an existing class possessing many of the attributes re-

quired by the new class. The new class can simply be declared as a child of this

similar class, inheriting its implementation. The differences between the new class

and its parent are then defined. Some languages allow Multiple Inheritance so that

an object inherits the implementation of two or more parent classes. These are

merged together, with suitable additions, to define the new class.

1.7 Objects and Distributed Systems

Object instances are self contained units that can, in theory, be arbitrarily located

within a distributed environment. The hidden implementation of objects can

be used to mask heterogeneity; each different processor having its own concrete

type satisfying the object's abstract type. Invocation messages are self contained

requests for service that can be passed across a network just as easily as they can, be

passed between objects on the same processor. Hence, encapsulation, coupled with

invocation messages, makebject orientation an excellent paradigm for structuring

distributed software. In particular, object orientation is an excellent paradigm for

constructing distributed operating systems [Jones79J.

An Object Oriented Distributed System is a loosely coupled distributed envi-

ronment, supported by a distributed operating system whose design is based upon

the object paradigm.

Chapter 1. Object Oriented Distributed Systems 	 22

1.8 Example Object Oriented Distributed Systems

The following examples have been selected to collectively illustrate the major re-

search issues tackled by current designs. The intention is to introduce the design

problems faced when building such systems. Each example has its own special-

isation that will be used throughout the thesis to illustrate certain points. In

particular, chapter 2, which describes the Object Reference Model, will make

comparisons between these examples.

1.8.1 Amoeba

Amoeba is a research project on distributed operating systems being carried out

at the Vrije Universiteit in Amsterdam. Its goal is to investigate capability-based,

object-oriented systems, and to build a working prototype system to use and

evaluate [Tane8lb], [Tanen86]. Amoeba's designers claim it to be the "World's

Fastest Distributed Operating System" [Renes88].

The Amoeba architecture consists of four principal components.

Workstations, one per user. At present, SUN-3's are used.

. Pool processors, where most of the computing occurs. These are not assigned

permanently to any individual user, but are allocated and deallocated dy-

namically as required.

c. Specialised servers such as file servers, directory servers and data base servers.

r> Gateways used to link Amoeba systems at different sites.

Chapter 1. Object Oriented Distributed Systems 	 23

All Amoeba machines run the same kernel, which primarily provides message-

passing services. The gateways connect Amoeba systems at different sites, poten-

tially in different countries, into a single, uniform system.

Objects in Amoeba are named using capabilities. A capability is a'authorisa-

tion token' giving its holder authority to invoke a particular service. An appro-

priate capability must be included as part of every invocation message. Access

security is further supported by capability encryption and the use of sparse ad-

dress ports. The address port used to communicate invocations to an object is

chosen randomly from a very large address space. The design is such that the

probability of correctly guessing a valid port address is very small. Port numbers

do not imply a specific location. If an object migrates to another location it carries

its port with it. The invoker of an object must therefore possess the correct port

number and a valid capability in order to be successful.

As with most current systems there is a strong tie-in with UNIX. A UNIX

emulation environment has been created on top of Amoeba to allow the porting

of UNIX software such as shells, editors, compilers and standard utilities.

1.8.2 Eden

The Eden project [AImes85], [Lazow8l], [Almes87], is an experiment by the De-

partment of Computer. Science at the University of Washington, Seattle in design-

ing, building and using an "integrated distributed" computing system. It:

"Attempts to combine the benefits of integration and distribution by

supporting an object based style of programming on a collection of

node machines connected by a local network." [Almes85]

Eden objects, called Ejects, are programmed using the Eden programming

language (EPL), [Black85]. EPL supports concurrency within Ejects, presenting

Chapter 1. Object Oriented Distributed Systems 	 24

Eject programmers with the illusion of multiple threads of control. Eden supports

a checkpoint operation that when invoked by an Eject creates a passive represen-

tation of the Eject - a data structure designed to endure system crashes. The

data in a passive representation is sufficient to enable the Eject to reconstruct its

long term state in the event of a processor failure.

Eject naming and access control are performed using capabilities. Eject Ca-

pabilities contain a unique Eject identifier and a set of access rights granted to

the capability's holder. Invocations are made by presenting the system with an

Eject capability, the symbolic name of the operation to be performed and any

parameters required. Given an Eject capability, the Eden kernel is responsible for

locating the invoked object.

The Eden kernel operates on a collection of VAX/UNIX systems intercon-

nected by Ethernet [Almes85], and on a network of Ethernet connected Sun work-

stations [Almes87]. In both cases, Eden is built upon and co-exists with the host's

UNIX operating system.

1.8.3 Clouds

The Clouds project began in 1981 at Georgia Tech, Atlanta, to develop a fault

tolerant distributed operating system [Dasgu86]. Fault tolerance, also known as

resilience, is the ability to provide a reliable service based upon unreliable hard-

ware.

Objects in the Clouds system are persistent. A persistent object is one whose

internal state is non-volatile and once created remains in the system until explicitly

deleted. This gives object state information the same status as other, long-lived

data that is usually stored explicitly in files.

Fault tolerance is provided using a primary-backup technique. Each fault-

tolerant object has associated with it a backup object located on a different pro-

Chapter 1. Object Oriented Distributed Systems 	 25

cessor. The backup has the same facilities as the primary, but remains dormant

most of the time. Periodically the backup probes the primary to make sure it is

still active. If the backup detects that the primary has failed then it takes over as

the primary object.

Atomic Transactions are used to ensure that failures leave the system in a 'tidy'

state. A transaction is a series of invocations delimited by start-transaction and

end-transaction markers. The effects of a transaction are deemed atomic if they

appear as a single action. Thus, atomic transactions either successfully terminate,

causing a permanent update or, if aborted part-way, leave no trace at all. A more

detailed description of this scheme is given in [Dasgu86].

The first Clouds prototype, running on three bare VAX 11/750s, became op-

erational in 1986. User access is through either disciess SUNs or IBM PC-ATs,

all machines being connected via Ethernet. The lengthy five year development

period is attributed to Clouds not being built on UNIX or any other proprietary

OS. Rather, it has been.developed from scratch as a stand-alone operating system.

1.8.4 Cronus

The Cronus distributed operating system is under development at the BBN labo-

ratories, Cambridge, Massachusetts [Schan86], [Gurwi86], [Schan87].

The primary objective of Cronus is

"To establish a comprehensive distributed system architecture and de-

sign for integrating a collection of different computer systems into a

coherent, uniform computing facility that serves as a basis for devel-

oping distributed applications." [Schan861

Cronus has three different classes of objects:

Chapter 1. Object Oriented Distributed Systems 	 26

Primal objects, forever bound to the processor that created them.

r. Migratory objects that can move from processor to processor as situations

and configurations change.

> Replicated and structured objects that have more internal structure than a

single "atomic" object. An example is a reliable (replicated) file that has a

number of identical primal files as its constituent parts.

Invocations upon these objects are performed by name only, without reference to

an object's location.

Access control within Cronus is performed using Access Control Lists (ACLs).

The goals of the access control mechanisms are

"To prevent unauthorized use of Cronus and Cronus objects; to pre-

serve the integrity of the system; and to provide users with a uni-

form view of access control for all Cronus resources, services and ob-

jects." [Schan86]

An access control list is a list of permitted invokers for an object. Invokers

not present on an object's ACL will not be serviced. Cronus extends this basic

idea in two ways : by providing an ACL for each individual invocation routine;

and by creating grouped object entries in an ACL rather than naming individual

objects. Hence, an object belonging to an authorised group is permitted to make

invocations, even though the object's name does not specifically appear in the

control list.

The Cronus environment exists side by side with the original operating systems

resident on the distributed hardware. This was a deliberate policy to ease the

implementation effort, but also to allow users to gradually evolve to the new

environment. Cronus currently runs on 15 hosts, including DEC VAXes running

Chapter 1. Object Oriented Distributed Systems 	 27

VMS and UNIX, SUN workstations, BBNCC C70 UNIX systems, and several

single-function Motorola 68000 microprocessor systems acting, for example, as file

servers and authentication servers.

1.8.5 Emerald

Emerald is an object-based language and system designed at the University of

Washington for the construction of distributed programs [Black86], [Jul 87]. Each

Emerald object has four components

r' A name, which uniquely identifies the object within the network.

' A representation, which consists of the data stored in the object. The rep-

resentation of a programmer defined object is composed of a collection of

references to other objects.

r' A set of Operations, which define the functions and procedures the object

can execute. Some operations are exported and may be invoked by other

objects, while others may be private to the object.

D An optional process, which operates in parallel with invocations on the ob-

ject's operations. An object with a process has an active existence and

executes independently of other objects. An object without a process is a

passive data object and executes only as a result of invocations.

Emerald objects are fully mobile and can move from processor to processor

within the network; even during an invocation. To support object migration the

Emerald language includes a small number of location primitives. An object can:

D Locate another object, i.e., determine on which processor it resides.

Fix another object at a particular processor.

Chapter 1. Object Oriented Distributed Systems 	 28

Unfix an object, i.e., make it movable following a fix.

Move an object to another processor.

All object references are location independent. The system is responsible for

mapping between an object's name and its current location.

A prototype Emerald kernel, running on top of Berkeley Unix, is currently

operational. It runs on a small network of DEC MicroVAX II workstations con-

nected by a ten megabit/s Ethernet. A prototype compiler has been constructed,

capable of compiling simple Emerald objects into VAX machine code.

1.8.6 sos

SOS is a general purpose distributed operating system, strongly influenced by the

needs of office automation [Shap186], [Makpa88]. It is a subtask of Esprit Project

367 "Secure Open Multimedia Integrated Workstation" (SOMIW). The goal of

SOMIW is to construct an office workstation for manipulating, transporting and

using multimedia documents that contain, for example, text, graphics, voice and

moving images. The objective of the SOS (SOMIW Operating System) project is

to design and implement a novel operating system based on the object oriented

approach.

SOS is built around the Proxy Principle which states that

"In order to use some service, a potential client must first acquire a

proxy for this service; the proxy is the only visible interface to the

service." [Shapi86]

A proxy is a representative for one or more distributed objects that collectively

provide a single service. The proxy is the only interface to the service and, to the

Chapter 1. Object Oriented Distributed Systems 	 29

outside world, is indistinguishable from the service. Clients are unaware of the

proxy's existence, believing they are invoking the service directly. Proxies, one per

client, are always located at the same site as the clients they serve. This provides

clients with a simple, local interface to (potentially) remote or distributed services.

A prototype version of SOS, operating on a set of workstations interconnected

by a local area network, has been implemented on top of UNIX. The complete SOS

network environment will ultimately consist of many local area networks intercon-

nected by wide area networks. A bare-machine version is also in preparation.

1.9 Thesis

1.9.1 Background and Aims

The original aims of this research were to investigate the potential for distributed

scheduling in an object oriented distributed environment. The intention was to

identify attributes particular to object oriented systems that could be profitably

exploited to improve upon current distributed scheduling techniques. These aims

were later expanded to include wider resource provision issues, such as the auto-

matic creation' of new object instances from class descriptions, and the 'enhance-

ment' of existing objects to automatically endow them with properties such as

fault tolerance. For each of the problems addressed, an object oriented solution

was sought rather than applying existing, process based solutions. This thesis

aims to demonstrate the benefits of exploiting the object paradigm for resource

provision.

'for the moment read 'compilation'

Chapter 1. Object Oriented Distributed Systems 	 30

1.9.2 Overview

Chapter 2 defines the Object Reference Model, which was developed to place

the resource provision research into a well defined, conceptual framework. This

model of object-oriented distributed systems is analogous in both spirit and design

to the ISO seven layer model of communicating systems. It provides a logical

framework relating the various aspects of distributed systems design, allowing

different designs to be compared and contrasted. Chapter 3 describes the specific

target environment addressed by later chapters. It states the assumptions made

concerning distributed hardware, network capabilities, object invocation, object

implementation, user population and envisaged applications.

Chapter 4 examines the problems posed by the need for multiple object repre-

sentations in a heterogeneous environment. A distributed algorithm is developed

for controlling the translation between different object representations, the pri-

mary use of which is to automatically create executable object instances from

high level object descriptions.

An introduction to distributed scheduling is presented in chapter 5. In par-

ticular, the special requirements for scheduling in an object oriented environment

are discussed. Based on these requirements chapter 6 develops a scheduling mech-

anism, known as comparison scheduling, that operates by applying statistical hy-

pothesis testing techniques to object oriented performance metrics. Simulated re-

sults of the scheduler's performance are compared to intuitive 'control' schedulers.

Chapter 7 applies the statistical techniques employed in comparison scheduling

to the suppression of redundant status update messages. Simulation results are

presented, suggesting that considerable reductions in update traffic can be realised

without degrading the scheduler's performance.

Chapter 8 introduces the concept of virtual objects as a paradigm for structur-

ing distributed systems. Virtual templates are presented as a general mechanism

Chapter 1. Object Oriented Distributed Systems 	 31

for creating virtual objects, by encapsulating useful properties such as resilience

and persistence in a re-usable form.

The various aspects of resource provision are drawn together in chapter 9,

which speculates on how distributed resources might be provided to users. The

techniques developed in this thesis are then presented as a solution to users' re-

source provision needs. The effects upon resource provision of user actions and

system configurations are also discussed. Finally, chapter 10 provides a summary

of the thesis, examining the possibilities for future work and presenting the con-

clusions reached.

Chapter 2

The Object Reference Model

This chapter defines the Object Reference Model (ORM). The background

to the model is examined, indicating the assumptions made concerning

distributed hardware, network facilities, applications and users. A list of

design problems to be encapsulated by the model is then developed. The

ISO Open Systems Interconnection model is discussed, in particular, the

051 layering principles. These layering principles are applied to the design

problems identified earlier, to yield the ORM layers. Each layer's purpose

is then defined and examined in detail, with illustrative examples taken

from the systems introduced in chapter 1.

32

Chapter 2. The Object Reference Model 	 33

2.1 Introduction

The Object Reference Model (ORM) is a conceptual model providing a frame-

work for the development of object oriented distributed systems. In particular, it

provides a framework for describing the research in this thesis.

ORM identifies the generic design problems associated with distributed sys-

tems, modelling the interrelationships between them. It does not specify particular

services or protocols, rather, it identifies the general nature of the services and pro-

tocols required to construct an object oriented distributed system. The functional

breakdown it provides can also be used to guide the decomposition of existing

designs, thereby assisting in the analysis of current systems.

Producing an abstract model to aid understanding in a particular area of sys-

tems design has proved useful in the past. Perhaps the best known example is the

International Standards Organization (ISO) seven layer reference model of Open

Systems Interconnection (051) [ISO 81]. This model of computer communica-

tion systems, examined below in section 2.6.1, provided the original inspiration

for ORM's development. The International Standards Organization is currently

developing a model of Open Distributed Processing (ODP). The reference model

for ODP [ISO 89] is based upon the five Viewpoints (Enterprise, Information,

Computation, Engineering and Technology) developed by the ANSA (Advanced

Networked Systems Architecture) project [ANSA 89].

The purpose of the Enterprise Viewpoint of ANSA is to provide a framework for

explaining and justifying the role of an information processing system within an

organization. An enterprise model describes the overall objectives of a system in

terms of roles (for people), actions, goals and policies. It specifies the activities that

take place within the organization, the roles that people play in the organization,

and the interactions between them.

Chapter 2. The Object Reference Model
	

3&Ck

The Information Viewpoint provides a framework for describing the informa-

tion requirements of a system. An information description of a system is made up

of information elements, rules stating the relationships between information ele-

ments, and constraints on the information elements and rules. Information models

must also show both how information is partitioned across logical boundaries, and

the required quality attributes. Information models do not have to differenti-

ate between parts that are to be automated and parts that are to be performed

manually.

The Computation Viewpoint provides a framework for modelling the opera-

tions of information transfer, retrieval, transformation and management neces-

sary to automate information processing. The mechanisms required to support

a computation model are specified in the engineering viewpoint of the system.

A computation model of a system partitions the required transformations among

processing objects as necessary to achieve the complete set of transformations. The

partitioning thus defined is logical and not location-dependent. A computation

describes the structuring of applications independently of the computer systems

and networks on which they run.

The Engineering Viewpoint provides a framework for describing how to mech-

anize the concepts identified in the computation model. This will include a defi-

nition of the physical distribution (as required) to realize the partitioning defined

in the computation projection.

The Technology Viewpoint provides a framework for describing the technical

artifacts (realized components) from which the distributed system is built. It

shows how the hardware and software that comprise the local operating systems,

the input/output devices, storage, and points of access to communications, are

mapped onto the mechanisms identified in the engineering model.

The ODP reference model, based around these viewpoints, provides a frame-

work for describing different aspects of distributed systems. The work developed

Chapter 2. The Object Reference Model
	

336

later in this thesis lead to the development of ORM to reflect the computation

aspects of resource provision. Therefore, the Object Reference Model defined

in this chapter lies firmly within the computation viewpoint, and, using ANSA

terminology, is therefore a computation model. The examples of real systems

used throughout this chapter, and the resource provision mechanisms developed

throughout the remainder of this thesis, lie within the engineering viewpoint.

A model addressing similar issues to ORM is presented by Watson in [WatsoSi].

This model identifies the generic problems associated with distributed system

design, incorporating them into a series of hierarchical layers. Although Watson's

model uses the term 'object', it is not object-oriented in the sense defined by

Chapter 2. The Object Reference Model 	 34

chapter 1. It also concentrates heavily on the communication aspects of distributed

systems, an area that has subsequently received considerable attention.

ORM has been developed along the same lines as Watson's model. However,

ORM specifically addresses object oriented systems. Another major difference

is in its treatment of communication. ORM assumes a comprehensive underlying

communication facility is readily available, and therefore concentrates on the more

abstract problems posed by distributed systems.

2.2 Background to the Model

Before defining ORM it is necessary to establish which aspects of object oriented

distributed systems are to be modelled. Figure 2-1 shows the general structure

of object oriented distributed systems from an individual user's perspective. The

Object Reference Model is concerned only with the Object Environment component

of the figure. However, before examining the Object Environment component in

more detail, the following sections examine the components above and below,

stating any assumptions made by ORM.

2.2.1 Distributed Processors

ORM assumes the processors in a distributed environment are heterogeneous'.

The model does not restrict the size, type or number of processors. The only re-

quirement is that each processor is capable of supporting an object oriented inter-'

face, i.e., capable of receiving, interpreting and responding to invocation messages.

'A homogeneous system is a special (simple) case of heterogeneity.

Chapter 2. The Object Reference Model
	

35

Figure 2-1: General Structure of Object Oriented Distributed Systems

This requirement is readily met by general purpose processors such as work-

stations. The problem is simply one of creating a suitable software environment,

for example, an object oriented operating system. This is a task that, by their

very nature, general purpose processors are well suited to. Specialist processors

on the other hand are generally less adaptable, being designed exclusively to per-

form one task well. In cases such as this, a 'front-end' processor can be employed.

A front-end processor is a general purpose processor that nominates to provide

an object oriented interface on behalf of a specialist processor. Invocations are

directed towards the front-end, which mediates the non-object oriented access to

the specialist processor. Invokers, unaware of how the service is provided, perceive

a service accessed in the usual manner, i.e., via an object oriented interface.

Hence, either directly or by employing front-ends, all processors within a dis-

tributed environment can support an object oriented interface.

Chapter 2. The Object Reference Model
	

36

2.2.2 Network Protocols

The network protocols are assumed to provide transmission facilities for a set of

simple types such as integers, reals and characters, including any compound struc-

tures composed from these. The network is also expected to provide automatic

translation of these types, masking any differences in the representation used by

heterogeneous processors. It is further assumed that facilities exist to support

encryption of invocation messages during transmission.

As an example, the ISO standard Abstract Syntax Notation One [ASN.1] ad-

dresses some of these issues. It defines, at the bit level, the representation to be

used when transmitting a variety of simple data types such as booleans, integers

and character strings. Provision is also made for the encoding of sequences and

sets, allowing structures such as arrays and records to be transmitted as complete

units.

ORM assumes no particular network configuration. For example, both wide

area and local area networks are encompassed, subject to provision of the above

services by the protocols used. However, as indicated by those examined in chap-

ter 1, current systems exclusively employ local area networks as the primary trans-

mission medium. This preference is a result of the superior performance charac-

teristics of local area networks. LANs typically provide fast transmission over a

limited distance, with relatively few errors. In contrast, wide area networks typ-

ically transmit over unlimited distances, but with less speed and a greater error

rate. Wide Area Networks are therefore used, if at all, only to provide limited

inter-operability between geographically dispersed LANs.

2.2.3 Applications and Users

Applications use the facilities provided by the Object Environment to perform

tasks on behalf of users. ORM places no restrictions on the type or number of

Chapter 2. The Object Reference Model 	 37

applications, or on the number of users. In any particular system, constraints are

likely to be defined by the type and number of processors available, and by the

network capabilities.

2.3 The Object Environment

The Object Environment provides the link between the resource requests of ap-

plications and the resources provided by the distributed environment. It takes

a collection of heterogeneous processors, presenting them as a single, coherent

system that supports the object oriented paradigm. In general, the Object Envi-

ronment is responsible for extracting and controlling the benefits of distribution

and object orientation, presenting them in a uniform manner.

Uniformity can be created on several levels. First, uniformity of presentation.

All resources, regardless of their nature, are presented as objects. No other form

of resource exists. Second, uniformity of naming. Using location independent,

global naming schemes an object is referenced by the same name, regardless of

where it is located. Finally, uniformity of access. The only method of accessing a

resource is via an invocation message.

The Object Environment is responsible for providing and maintaining this uni-

formity. The following section examines in detail the design problems associated

with this.

Chapter 2. The Object Reference Model 	 38

2.4 Model Requirements

ORM models the distributed operating system architectures used to realise the

Object Environment component of Figure 2-1. This section defines the key design

issues to be included within ORM. Each was adopted after careful examination of

many current designs, including those described in section 1.8. Collectively these

issues summarise the broad spectrum of design problems faced by distributed

system designers

D Object naming and addressing

Object mobility

r> Object representation and construction

Object scheduling

Invocation scheduling

Security and protection

Reliability

> Consistency

2.4.1 Object Naming and Addressing

The Object Environment presents applications with a global address space, popu-

lated exclusively by objects. It must therefore mask location dependencies, build-

ing upon a distributed, network name-space containing processor names, to create

Chapter 2. The Object Reference Model 	 39

a unified object name-space containing only object names. The Object Envi-

ronment is therefore responsible for mapping between object names and network

addresses. The naming issues involved pervade all levels of system design.

2.4.2 Object Mobility

As indicated earlier, the Object Reference Model concentrates on the more ab-

stract features of distribution rather than on communication. The lowest level

of communication problem addressed by ORM is Object Mobility, i.e., migrating

object representations between processors. Although it is assumed the underlying

communication system provides a data transmission facility, the minimum com-

munication requirements stated in 2.2.2 are somewhat limited in scope. Many

systems may require more advanced facilities, for example, communicating ab-

stract data types as 'atomic' structures. Although some networks may provide

these advanced facilities, they are not univrsal. The Object Environment must

therefore incorporate a communications element to cover such cases.

2.4.3 Object Representation and Construction

Every object exists in at least two forms : its human readable representation

(usually textual); and its machine representation (usually binary). Several in-

termediate representations are normally required to transform between the two.

These can be thought of as functionally equivalent representations of the same ob-

ject, at different levels of abstraction. Multiple representations may also exist at

the 'same' level of abstraction. For example multiple human representations corre-

sponding to different implementations, possibly in different languages. Similarly,

multiple machine representations may also exist, particularly in a heterogeneous

environment where each different type of processor requires a different binary for-

mat.

Chapter 2. The Object Reference Model
	

40

In most current systems, users explicitly manipulate multiple object abstrac-

tions. For example, selecting the compiler to be used, passing it the class descrip-

tions ('source' code) to produce an executable representation that can be run. In

some cases, more than one step may be required to translate from class descrip-

tions to executables, involving, for example, assemblers and linkers. All of these

steps are reliant upon user intervention.

Whilst encompassing this approach to object construction, the Object Refer-

ence Model includes provision for automatic generation of executable instances

from class descriptions. The motivation for this is to allow users to work exclu-

sively with high-level object representations; all other representations, and the

transformation mechanisms employed to create them, being controlled by the sys-

tem. This is similar to the approach taken by the non-distributed object oriented

environment SmallTalk-80 [Goldb83].

2.4.4 Distributed Scheduling

Location independent naming gives the Object Environment freedom to locate

objects as it sees fit. Many systems therefore attempt to make assignments that

optimise resource usage. The two principal components of distributed schedul-

ing are the assignment of object instances to processors and the assignment of

invocation messages to object instances.

Object Scheduling

Object scheduling is the assignment of object instances to processors. Judicious

placement of object instances can assist in optimising resource usage. When a new

instance is to be scheduled, the scheduler observes the status of each processor and

selects the 'best' one (according to some criteria) to host the object. This form of

Chapter 2. The Object Reference Model 	 41

object scheduling is known as Load Sharing, because the load generated by new

object instances is shared between the processors.

Some systems also support Load Balancing. Load balancing is a particular form

of load sharing where the objective is to continually maintain an equal workload

on each processor. This usually involves migrating previously scheduled objects

in mid-execution to compensate for transient fluctuations in load distribution.

When an object migrates, the system must ensure that subsequent invocations

are automatically bound to the new location (see Invocation Scheduling below).

Load balancing is more expensive than load sharing, both to implement and

perform, because of the complexity introduced by the need to transfer an object's

execution state. This complexity becomes even greater in a heterogeneous environ-

ment where the representations used by the originating and receiving processors

may be different. The Object Reference Model must include provision for both

load sharing and load balancing.

Invocation Scheduling

Invocation scheduling involves binding invocation messages to object instances.

In a distributed environment an object name may bind to several different in-

stances, each one capable of servicing the invocation. Consequently, some form of

scheduling mechanism must be employed to select the recipient object. In such

cases, optimisation of resource usage can be assisted by directing invocations to

the 'best' instance (according to some criteria).

2.4.5 Security and Protection

Security and protection issues are concerned with governing access to resources.

In a system constructed entirely from objects this principally involves verification

of access rights when objects are invoked. The need for access control arises from

Chapter 2. The Object Reference Model 	 42

the desire to share resources (see section 1.3.4). If users only had exclusive access

to their own resources, isolated from all others, then access controls would be

largely redundant.

Protection is required against malicious attempts to use or abuse restricted

resources; for example, by the impersonation of authorised users. Accidental mis-

use caused, for example, by the incorrect implementation of an invoking object

instance must also be protected against. The security mechanisms employed in a

distributed system must therefore enable the recipient of an invocation message

to verify the identity of the message sender. The recipient must also be confident

that the contents of the received message are exactly as the sender intended. ORM

must model the many different security mechanisms employed in current systems.

2.4.6 Reliability

The service provided by an object instance is subject to the reliability of the

processor on which it resides. Within a distributed environment, occasional fail-

ures can be masked by utilising redundant hardware, software and data. ORM

must allow for the provision of reliability, as well as any other related aspects of

fault-tolerance such as persistence and availability.

2.4.7 Consistency

In a distributed environment an object may be replicated many times. There are

several reasons why this may be useful; for example, to improve reliability and

availability, or simply to offer a 'larger' service than can be provided by a single

instance. Uncoordinated invocations on individual instances of a replicated object,

leads to inconsistencies between the instances' states. The result of an invocation

becomes dependent upon the particular instance invoked. In some cases this may

be perfectly acceptable. However, if the instances logically provide a single, global

Chapter 2. The Object Reference Model 	 43

service, then they should be synchronized to present a coherent global state. The

Object Reference Model must include provision for consistency protocols.

2.5 Virtual Properties

Within ORM, reliability, persistence, consistency and access controls are collected

together as examples of Virtual Properties. Typically, virtual properties either

mask inherent limitations of the underlying system (e.g., equipment failure) or

enhance an object's interface to match that expected by its invokers (e.g., access

control mechanisms). Virtual properties are therefore characteristics possessed by

objects that somehow 'improve' the service offered, but in a service independent

manner.

Section 2.7.5 identifies several virtual properties, using the example systems to

illustrate details of their implementation. In current systems, virtual properties

are usually coded explicitly within an object's implementation. Although ORM

does not deny this mode of implementation, it models virtual properties at their

logical level of abstraction, i.e., as being added 'on-top-of' existing services, rather

than being 'built-in'.

Having identified the design aspects to be incorporated in the Object Reference

Model, the following section examines how such a model can be derived.

Chapter 2. The Object Reference Model 	 44

2.6 Layering

ORM is a layered model. This section examines the principles behind layering,

using the ISO Open Systems Interconnection model as an example. The ISO

layering principles are applied to the design problems defined above to produce

the Object Reference Model layers.

According to the layering technique, each system is viewed as being logically

composed of an ordered set of sub-systems represented as a vertical sequence of

layers, each layer encapsulating a particular aspect of system design. Adjacent

layers communicate through their common interface, each layer building upon

and adding value to the services of layer below it. The topmost layer presents a

service incorporating those provided by all lower layers.

Modular and layered design is widely accepted as good software engineering

practice. The following list identifies some of the reasons for this

> The internal structures, mechanisms, encodings and algorithms used within

a layer are not visible to other layers, i.e., each layer is encapsulated.

Complex systems can be decomposed into more easily understood pieces.

t' The implementation of a given layer can be changed without affecting the

service offered, provided the layer interface remains the same.

Alternate implementations for a layer can coexist.

r A layer can be simplified or omitted when any of its services are not needed.

Confidence in the correct operation of a layered system is more easily estab-

lished by testing and analysis of each layer in turn.

Chapter 2. The Object Reference Model
	

45

r' Precise specification of layer functions, services and interfaces encourages

standardisation.

These characteristics are very similar to those defined in chapter 1 for object ori-

entation. Layering is sometimes accused of yielding inefficient implementations.

This criticism would apply to ORM if it were used as a literal template for im-

plementation. However, the ORM layers model the logical relationship between

the various design aspects modelled. They are not intended to provide a literal

template for an implementation, which, for efficiency, may combine the logical

functions of multiple layers in a single 'program'.

The design of a suitable model involves identifying layers that adequately de-

scribe the problem. This is a somewhat arbitrary choice, influenced by the mod-

eller's point of view. Many such layers could be envisaged and it is impossible to

prove that any one design is best. It is only possible to state that one design is

better than another when measured against some recognised criteria.

The following sections describe the ISO Open Systems Interconnection model.

This discussion serves several purposes. Primarily it introduces the layering design

rules used to develop the OSI model. These rules form the basis upon which the

ORM layers are defined. Second, it provides an example of a widely used layered

model. Finally, it describes the type of communication facilities ORM assumes

to be provided by the underlying network. ORM can in fact be thought of as

extending the OSI model to incorporate object oriented distributed systems.

2.6.1 The OSI Layering Principles

The Open Systems Interconnection (OSI) initiative grew from the need to create

internationally agreed, standardised communication protocols. In order to assist

such a large undertaking the International Standards Organisation (ISO) defined

a communications reference model. The function of this model was not to specify

Chapter 2. The Object Reference Model
	

46

any particular protocol, but to provide a framework within which new protocols

could be developed. It further provided a means of categorising existing protocols.

In order to assist the modelling process, and help justify the resultant design,

a set of layering principles were devised [ISO 811

Do not create so many layers as to make difficult the system engineering

task of describing and integrating these layers.

Create a boundary at a point where the description of services can be small

and the number of interactions across the boundary are minimised.

Create separate layers to handle functions that are manifestly different in

the process performed or the technology involved.

Collect similar functions in the same layer.

Select boundaries at points that past experience has demonstrated to be

successful.

Create a layer of easily localised functions so that the layer could be totally

redesigned, and its protocols changed in a major way to take advantage

of new advances in architectural, hardware or software technology, without

changing the services and interfaces with adjacent layers.

Create a boundary where it may be useful at some point in time to have the

corresponding interface standardised.

Create a layer when there is a need for a different level of abstraction in the

handling of data (e.g., morphology, syntax, semantics).

Enable changes of functions or protocols within a layer, without affecting

the other layers.

Chapter 2. The Object Reference Model 	 47

Processor A 	
Intermediate 	

Processor B

Figure 2-2: OSI Reference Model Layers

10. Create for each layer, interfaces with its adjacent layers only.

These principles can be summarised as embodying the well established software

engineering techniques of problem partitioning, information hiding and minimising

interfaces.

2.6.2 The OSI Layers

The layers defined by the OSI model are shown in Figure 2-2. The arrows show

peer-to-peer communication between layers.

The Physical Layer is concerned with unstructured bit transmission between point-

to-point links. Layer 1 protocols specify the mechanical and electrical properties

of transmission media and their access protocols.

Chapter 2. The Object Reference Model 	 48

The Data Link Layer provides the functional and procedural means to activate,

maintain and deactivate one or more physical links. Layer 2 protocols may allow

reliable transfer of data across physical links.

The Network Layer is responsible for transferring messages from source to des-

tination over an arbitrary succession of data links. It provides the upper layers

with independence from the data transmission and switching technologies used to

connect systems.

The Transport Layer is concerned with end-to-end data transfer between session

entities. Layer 4 protocols hide transmission methods from the upper layers.

The Session Layer establishes, maintains and terminates connections between ap-

plications.

The Presentation Layer provides a data translation facility to hide the syntax of

transmitted data from applications. Layer 6 protocols specify data formats that

enable cognizant exchange of information between dissimilar machines.

The Application Layer provides application programs with access to the OSI envi-

ronment.

It can be seen that each layer enhances the services of the layer below, and is a

prerequisite for the layer above. The higher the layer the greater the level of ab-

straction. In principle, layer 7 provides an error free, end-to-end link between any

two world-wide sites, independent of transmission media, switching technology,

data speed, data representation, and so on.

The ISO model of Open Systems Interconnection is not universally accepted

as suitable for describing all communicating systems. OSI was originally designed

with wide area networks in mind. As such, the layers are strongly influenced by

the assumption of point-to-point communications - where a connection is opened,

Chapter 2. The Object Reference Model 	 49

with both sender and receiver establishing connection related status information;

(large quantities of) data are passed across the opened connection; and the con-

nection is then closed - rather than the datagram, or broadcast, modes used

in most local area networks - where each datum is a self contained 'package'

that is sent independently of any others. Consequently, the OSI model is often

overly elaborate for describing the communication facilities of distributed systems

based on local area networks. These arguments do not really concern us here,

as the main purpose of discussing the OSI model was to introduce the layering

principles, which are largely uncontroversial.

2.6.3 Applying the OSI Principles to ORM

The OSI layering principles are not specific to communication models. They pro-

vide general guidelines for identifying layers and can therefore be used to assist

the development of a layered model for any design problem. The design problems

addressed by ORM were defined earlier in the chapter. Although subjective, they

are based upon careful examination of many distributed system designs. The OSI

layering principles (page 46) can be applied to these design problems to produce

a layered model of object oriented distributed systems.

The following paragraphs give a brief explanation of how the ORM layers were

chosen. Principles 1, 2, 9 and 10 are general directives that apply to all layers.

Although specific layering principles are mentioned below in relation to each layer,

these are identified only as being more applicable than the others. More important

than any one specific principle is the spirit they collectively convey. In general

therefore, all 10 principles apply to all layers.

The communication services specified by the OSI model, and those typically

provided by local area networks, do not directly support object oriented interac-

tions. Application of principles 3, 5 and 8 therefore leads to the identification of a

Chapter 2. The Object Reference Model 	 50

Migration Layer as the lowest layer in the Object Reference Model. The Migration

Layer builds upon the available network services to provide an object oriented

communication service, migrating objects and invocation messages between loca-

tions in the distributed environment.

The inherent heterogeneity within a distributed environment calls for some

control over multiple object representations. Application of principles 3, 7 and 8

yield the Construction Layer. The Construction Layer services provide transfor-

mation and translation facilities for constructing and manipulating the multiple

object representations required in a heterogeneous environment.

Scheduling mechanisms are required to control the assignment of object in-

stances to distributed locations. Application of principle 6 leads to the Loca-

tion Layer, whose services provide location-independent object scheduling. Ap-

plying principle 6 again yields the Invocation Layer, which embodies a location-

independent invocation service.

The services represented by the lower four layers allow for the creation and

invocation of object instances. Incorporating virtual properties, with the appli-

cation of principles 4, 6 and 7, leads to the Virtual Layer. The Virtual Layer

services encapsulate techniques for manipulating object instances and invocations

to provide virtual properties.

Finally, the services offered by these layers must be made accessible to users.

The User Layer, the uppermost ORM layer, presents these services in a form

suitable for users and their applications.

The ORM layers, which are examined in detail below, are shown in Figure 2-3.

This particular diagram shows a configuration consisting of four processors. The

lower three layers - Migration, Construction and Location - operate in location-

dependent address spaces, and therefore appear 'stacked' in the same manner

as the OSI layers. However, the upper layers - Invocation, Virtual and User

Chapter 2. The Object Reference Model 	 51

- operate in location-free address spaces. They therefore appear as continuous

bands, independent of any particular location.

2.7 The ORM Layers

This section examines the ORM layers in detail. For each layer, the naming and

addressing issues are examined, followed by a description of the services offered.

Examples, taken from the systems described in chapter 1, are used for further

illustration.

At the highest ORM layer, the User Layer, only virtual objects exist, with no

concept of location or distribution. This address space, containing only location-

free, virtual objects, is created successively by each layer. Layer N operates within

the address created for it by layer N - 1, refining it to present a more abstract

address space to layer N +1. Hence, the address space provided by the underlying

communication services is built upon to provide the location free address space

seen by users.

The services embodied by each layer are divided into operational and manage-

ment activities (Figure 2-4). The operational services of layer N are the standard

services offered to layer N + 1. There are two main operational themes com-

mon to each layer : object-provision; and object-invocation. The object-provision

services support the creation and deletion of object instances. The object invo-

cation services provide access to these objects. The management services of layer

N also have two themes: internal-management; and external-management. The

internal-management services give layer N the management information and con-

trols necessary to provide the layer N service. The external-management services

are those offered to layer N + 1, enabling it to control the application of, and

perhaps customise, the layer N operational services.

r)

Chapter 2. The Object Reference Model 	 52

Figure 2-3: The Object Reference Model Layers

Chapter 2. The Object Reference Model
	

53

Service Requests From Layer N. I

Management Services

(interna')

C External

LM
	
Management

Operational Services

Object 	 Object
Invocation 	Creation

Service Requests To Layer N - i

Figure 2-4: Layer N Operational and Management Services

2.7.1 The Migration Layer

The Migration Layer handles the communication of object representations be-

tween different locations in the system, building upon the facilities provided by

the underlying network.

Naming and Addressing

Within the Migration Layer, location addresses correspond to those provided by

the underlying Communication Address Space, i.e., the addresses of processors.

Object names refer to specific object instances residing at specific locations, for

example, Obj ectRepresentationProcessorAddress.

The Migration Layer maps names and addresses from the Construction Address

Space used by the Construction Layer onto the communication address space.

Names in the construction address space do not refer to specific processors; rather,

they identify 'hosts' at which objects can be placed. A host may in fact correspond

to a particular processor or, alternatively, several 'logical' hosts may map to one

Chapter 2. The Object Reference Model 	 54

processor (chapter 3 provides a more detailed definition specific to the environment

addressed by the remainder of the thesis). These relationships are hidden by the

Migration Layer. Names and addresses in the construction address space therefore

remain location dependent, but are no longer network dependent, for example,

Obj ectRepresentation@Host.

Operational Services

The Migration Layer services provide the Construction Layer with object mi-

gration facilities in which the fundamental unit of communication is an object.

It builds upon the facilities offered by the underlying communication service, to

provide the object based migration facilities expected by the higher layers. An

example migration layer service for object-provision is an operational service such

as

Move(ObjectRepresentation, FromHost, ToHost, Options)

The purpose of the Options parameter(s) will vary from system to system. It

provides any additional information required to perform the Move operation. For

example, it may specify that encryption should be used, or that this is a high

priority request and hence the fastest available transmission service should be

used. System specific information such as 'hints' are also modelled by the options

parameters. As an example, a system 'hint' might suggest how the service should

be provided. For completeness and generality, a similar Options parameter is

added to all example services throughout this section.

As indicated earlier, the services provided by local area networks do not al-

ways conform to those identified in the OSI reference model. The 'size' of the

Migration Layer will therefore vary between systems, depending upon the level of

services offered by the underlying network. In systems built upon advanced com-

munication facilities, some of the migration services will map directly onto those

Chapter 2. The Object Reference Model 	 55

of the network. In systems where the network provides minimal functionality, the

Migration Layer services must perform more work in order to create the required

facilities.

The Migration Layer services are responsible for performing any high level data

transformations associated with transmission, such as mapping the data structures

used to represent objects onto the data transmission primitives offered by the

network. However, these services are not responsible for type matching executable

representations with processors, which is a function of the Construction Layer

services.

The Migration Layer's contribution towards object-invocation is the migra

tion of invocation messages between objects. This is essentially the same as the

object-provision service, since invocation messages are themselves objects. Similar

Options are therefore possible, for example, placing priorities on message delivery,

or ensuring message integrity by encryption.

Management Services

External-management services are offered to the Construction Layer to assist in its

use of the migration facilities. These services should provide information relating

to the 'availability' of hosts within the construction address space, reflecting system

failures such as network partitions and processor crashes. For example:

IsAvailable? (ThisHost)

might inform the Construction Layer whether a particular host is reachable. The

internal-management services assist the Migration Layer in using the underlying

communication facilities. For example, monitoring communication performance,

maintaining configuration information, and adapting to new or changed facilities.

Chapter 2. The Object Reference Model
	

56

Examples

In general, current systems perform object migration at the binary level, with no

attempt made to recognise any higher level structures (structured object migra-

tion is examined later in chapter 5). This implies that object, migration can be

implemented directly by the underlying data transmission facilities. The follow-

ing examples therefore concentrate on invocation services rather than migration

services.

In many distributed systems, object invocation is performed using Remote

Procedure Calls (RPC). RPC extends the well understood procedure call mecha-

nism into a distributed environment [Birre84]. When a remote object is invoked,

the calling environment is suspended. The invocation message is then constructed

and passed across the network to the remote object, where the desired invocation

routine is run (Figure 2-5). When the invocation routine is completed, the results

are passed back to the calling environment, where execution resumes as if return-

ing from a simple, single-machine call. Both the invoking object and the invoked

object, known as the Client and Server respectively, remain unaware of the RPC

mechanism, each observing only a local invocation.

In some systems the basic RPC facilities may be provided by the underlying

communication facilities. Under these circumstances the Migration Layer services

must map invocations onto the appropriate RPC routines. If no RPC facilities are

available, then the Migration Layer services must build upon the communication

facilities to provide a complete invocation mechanism.

The SOS system provides an extensible invocation service constructed pro-

gressively upon the underlying communication service through the use of in-

heritance [Makpa88}. A basic host-to-host protocol, providing facilities com-

mon to all invocation protocols, is encapsulated within a EaseProtocol object.

An invocation protocol is defined by two objects; the ProtocolObject and the

Chapter 2. The Object Reference Model

57

Underlying
Communication

Service r
Clients Environment

Local 	 Send
Invocation

Wait

Local 	1< Return 	 Receive

Client 	 Migration
Object 	 Layer

Servers Environment

ell-

Receive 	> 	Invoke

4
Work

Send 	< 	Result

Migration 	 Server
Layer 	 Object

Figure 2-5: A simple Remote Procedure Call

ProtocolManager object. The protocol object encapsulates the services specific

to the protocol it implements, inheriting the common facilities from the basic

protocol object. The protocol manager object has three functions

t' Establishing connections. When asked, the protocol manager establishes a

communication link between objects.

r Managing protocol resources. Each connection has a descriptor in a con-

nection table identifying the caller, the ca.11ee and the address of the local

protocol object for this connection.

i' Dispatching invocation messages. It is the role of the protocol manager to

forward invocation messages to the appropriate protocol object for trans-

mission.

There is one protocol manager per protocol type, per processor. There are two

protocol objects per connection, one at each end of the link.

The object oriented design of SOS's communication facilities enables the pro-

gressive development of invocation protocols. New protocols are built upon exist-

Chapter 2. The Object Reference Model 	 58

ing protocols utilising the object oriented inheritance mechanism, thereby encour-

aging extensive re-use of code and design.

2.7.2 The Construction Layer

The Construction Layer services provide transformation facilities for manipulat-

ing object representations. They encapsulate the inherent heterogeneity of the

underlying environment, masking it from the higher layers.

Naming and Addressing

The Construction Layer operates within the construction address space defined

earlier. It encapsulates the techniques used to manipulate individual object repre-

sentations at different levels of abstraction. The complexity of multiple representa-

tions is hidden from the Location Layer by creation of the Location Address Space.

Within this address space the concept of location remains the same, i.e., a repos-

itory for objects. However, explicit references to different representations of the

same object are replaced by a generic object name, for example, Obj ectNameHost.

It is the Construction Layer's responsibility to map between the location address

space and the construction address space.

Operational Services

The principal object-provision service embodied by the Construction Layer, is the

generation of object representations for execution at specified locations within the

location address space. In order to perform this task the Construction Layer ser-

vices must be aware of all object representations used within the system. They

must also be aware of the translation tools available to manipulate these repre-

sentations. For example, a construction service must be able to associate a host

Chapter 2. The Object Reference Model
	

59

with a particular representation, and associate the representation with the trans-

formation tools used to generate it. Construction rules are required to control the

application of the transformation tools to generate the desired representation.

The Construction Layer therefore provides the Location Layer with operational

services such as

Makelnstance(Obj ectName, GHost, Options)

The object name belongs to the location address space. The Construction Layer

services must identify the host's type, mapping the object name onto the appropri-

ate (representation dependent) construction address space name before examining

appropriate transformations. An example use of the options parameters may be

to specify exactly how the instance should be produced, overriding any default or

automatic mechanisms.

An object-invocation service should also be provided for the forwarding of

invocation messages. For example

Invoke (Obj ectName, GHost, InvocationNessage, Options)

If necessary, the invocation message and its parameters can be transformed into

the representation expected by the recipient object.

Management Services

The external-management services offered to the Location Layer provide informa-

tion on possible transformations. For example, the boolean service:

CanLocate? (Obj ectName, ThisHost)

might indicate whether a suitable representation of Obj ectNaine can be created

to execute at location ThisHost. Note that no information is returned as to how

Chapter 2. The Object Reference Model 	 60

the representation would be generated, it simply indicates the feasibility. Other

possibilities include providing information on the cost of transformations. For

example, the function:

WhatCost?(ObjectNaxne, @ThisHost)

could provide some measure of the resource costs involved in creating the appro-

priate representation, enabling different possibilities to be compared.

The internal-management issues relate to the actual provision of a construction

service. In many current systems, most representation manipulation is performed

explicitly by users. In this case, the internal-management is trivial and amounts

simply to providing users with access to the transformation tools (compilers, link-

ers and so forth). In a more sophisticated environment where the system takes

over some, or all, of the transformation responsibilities, there will be a need to

maintain a database of known transformation tools, along with rules for applying

them.

Examples

Generally, in current systems, including those mentioned in chapter 1, users are

entirely responsible for object construction. They are aware of and directly ma-

nipulate different object representations, for example, by invoking compilers and

linkers. If representations are required for more than one processor type then users

generate these explicitly. The systems therefore only 'understand' object repre-

sentations at the binary level. All higher level abstractions remain meaningless,

requiring user intervention before they can be interpreted.

An example of parameter transformation is provided by a printDocuinent in-

vocation routine for printer objects. The text of the document object to be printed

(e.g., ASCII), which is passed as a parameter, may require translation into a form

Chapter 2. The Object Reference Model 	 61

accepted by the printer (e.g., PostScript). Many similar examples of parameter

translation could be envisaged.

2.7.3 The Location Layer

The location address space in which the Location Layer operates contains only

objects and object repositories. It is the function of this layer to control the

assignment of objects to repositories. It encapsulates the location dependencies

inherent in a distributed environment, hiding them from the higher layers.

Naming and Addressing

The Location Layer services hide location dependencies from the invocation layer

by the presenting a location-free Invocation Address Space. Only objects exist

in the invocation address space, with no concept of location. For example, the

invocation address space name ThisObject may map to the location address space

name Obj ectNameHost.

Operational Services

The basic object-provision services embodied by the Location Layer are the schedul-

ing and de-scheduling of object instances. For example:

Schedule(ThisObject, Options)

DeSchedule(ThisObject, Options)

In order to schedule an object the scheduler uses the status information pro-

vided by its internal-management services (see below). This information is as-

sessed, perhaps in conjunction with the external-management information pro-

vided by the Construction Layer, to decide which location should host the new

Chapter 2. The Object Reference Model 	 62

instance. The criteria against which this decision is made are defined by scheduling

policy. Once a location has been selected, the decision is passed to the object-

provision services of the construction layer, which then creates the appropriate

executable instance. In the case of a de-schedule operation, the Location Layer

simply deletes the appropriate instance.

The Location Layer plays no part in deciding which objects to schedule, or

when to schedule them. These decisions belong with the higher layers. It simply

provides a scheduling service to the higher layers, acting upon their instructions.

An object-invocation service should also be provided to the Invocation Layer

for the forwarding of invocation messages. For example

Invoke (ThisObject, InvocationMessage, Options)

This is simply a translation service between invocation address space names and

location address space names.

Management Services

The external-management services offered to the Invocation Layer concern the

operational status of the scheduled objects. They should provide information on

whether a particular object is still available, or whether it has become unavailable,

for example, due to the failure of its associated host.

The internal-management services of the Location Layer handle the collection

of host status information. Most scheduling policies require certain status infor-

mation relating to each location (host) in the location address space. This status

defines a location's 'suitability' to act as an object repository. It usually relates

to performance, but could include other factors such as reliability.

Controlling object migration is also an internal-management activity of the

Location Layer. Objects may migrate between locations in order to compensate

Chapter 2. The Object Reference Model 	 63

for changes in location status. Migration is a management function rather than an

operational function because it is entirely hidden from the next layer up. It can

be looked upon as a form of exception handling; the exception being a change in

location status significant enough to cause the re-evaluation of earlier scheduling

decisions.

Examples

The problem of scheduling distributed resources has been the focus of considerable

research effort in recent years. There are almost as many policies as there are

systems. Chapter 5 provides an overview of object scheduling, describing some of

the more widely accepted techniques that belong in the Location Layer. In the

example systems of chapter 1, object instances are placed at the location from

which the instantiation request was generated. In most cases this corresponds to

the user's workstation.

The Amoeba system, in addition to user workstations, incorporates pool pro-

cessors that have no permanent owner. They are assigned dynamically to particu-

lar users when requested. The processor pool is managed by a process server that

handles all requests for pool processor allocations. However, there is no defined

scheduling policy concerning the allocation of objects between a user's workstation

and pool processor(s). Tanenbaum and Renesse simply state that

"The research has not yielded any definitive answers, although it seems

intuitively clear that highly interactive [objects] such as screen editors

should be local to the workstation, and batch-like [services] such as big

compilations should be run [on the pool processor(s)]." [Tanen85]

Chapter 2. The Object Reference Model
	

64

2.7.4 The Invocation Layer

The Invocation Layer services schedule invocation messages amongst object in-

stances in the location-independent invocation address space. They also provide

services for creating and deleting instances.

ORM's Invocation Layer is analogous to the OSI transport layer. The transport

layer provides facilities to open a connection between any two arbitrary locations,

pass data across the connection and then close the connection. This is a basic

connection service, independent of the underlying network technology. It is the

responsibility of the higher OSI layers to build higher level abstractions such as

standard data representations and file transfer protocols. ORM's Invocation Layer

services provide facilities to 'open' a service (i.e., create an object instance), pass

requests to the service (using invocation messages) and then 'close' the service

(i.e., remove the instance). This is a basic object support facility, independent

of the underlying distributed environment. It is the responsibility of the higher

ORM layers to build higher level abstractions such as virtual properties.

Naming and Addressing

Object names within the invocation address space are location independent. This

is the first layer within ORM in which location plays no part. Multiple instances

of the same object are still recognised, but they now have names such as Object 1

and Object2, rather than Dbject@Locationl. and ObjectQLocation2 as in the

location address space.

The Invocation Layer creates a Virtual Address Space for the Virtual Layer,

where only services exist. A service consists of the invocation routines provided

by an object or group of (related) objects. Normally, a service will correspond to a

single object. However, one-to-many and many-to-one mappings are also possible.

Chapter 2. The Object Reference Model
	

65

Service names are mapped by the Invocation Layer onto invocation address space

names.

Operational Services

The Invocation Layer encapsulates service-provision facilities to create and remove

services. For example:

CreateService(ThisService, Options)

RemoveService(ThisService, Options)

The name ThisService belongs to the virtual address space. The Invocation

Layer is responsible for mapping it onto the corresponding invocation address

space name(s). The object creation facilities of the Location Layer are then called

upon to schedule the appropriate object instances.

The service-invocation facilities provided by the Invocation Layer assign invo-

cation messages to object instances. For example

Invoke(ThisService, InvocationNessage, Options)

If a service name maps to more than one object in the invocation address space,

then the Invocation Layer services are responsible for selecting the instance to be

invoked.

Management Services

The external-management facilities offered to the Virtual Layer should provide

information on the operational status of scheduled services. For example, using

these facilities the Virtual Layer might establish if a particular service is available.

Chapter 2. The Object Reference Model

As with object scheduling, invocation scheduling policies are usually based

upon analysing status information. Collecting this information is an internal-

management function of the Invocation Layer. The status information describes

the objects in the invocation address space, defining their ability to respond to in-

vocations, which usually relates to performance characteristics. Invocation sched-

ulers assess the status information to determine which instance should receive the

invocation. The invocation scheduling policy defines the criteria against which

this decision is made.

Another internal-management activity associated with the Invocation Layer is

the maintenance of an 'acceptable' level of service. Should the invocation rate

exceed service capacity, then, where appropriate, additional object instances can

be created to handle the 'overspill'. Control of the level of service by the Invocation

Layer is analogous to the control of object migration by the Location Layer, i.e.,

they can both be viewed as exception handling. The exception in this case is an

excessive workload for the current level of service provision.

Examples

In Cronus, each service type is supported by a corresponding service manager, sev-

eral instances of which may be distributed throughout the system [Schan87]. Each

service manager is responsible for its own group of service instances. Whenever

an invocation message is generated the system kernel determines the particular

service required, passing the message to any one of the corresponding service man-

agers. The nominated service manager may then decide to pass the message to one

of its own service instances or, based on status information exchanged regularly

between managers, it may forward the message to a peer manager.

In Amoeba, each location runs a resource manager that handles all invocation

requests directed to it by the Amoeba kernel [Tanen85]. If the resource manager

has two or more suitable objects available, then it selects one at random.

Chapter 2. The Object Reference Model
	

67

2.7.5 The Virtual Layer

The Virtual Layer creates a service environment in which services possess virtual

properties. Virtual properties customise a service to match the needs of its clients,

for example, by making the service fault-tolerant or by presenting a security mech-

anism the client is familiar with. The Virtual Layer encapsulates the techniques

used to create these properties.

Naming and Addressing

The virtual address space contains only services, i.e, not objects. The User Layer

is presented with the User Address Space in which only virtual services exist,

i.e., services that possess virtual properties. Multiple virtual services may be

multiplexed onto one 'real' service, and similarly, one virtual service may be split

between several 'real' services. The Virtual Layer is responsible for establishing

and maintaining these mappings.

Operational Services

The User Layer should be presented with facilities for creating and removing

virtual services. For example

CreateService(VirtualServiceNaine, VirtualPropertyList, Options)

RemoveService (VirtualServiceName, Options)

The Virtual Layer services apply 'rules' for creating and removing these properties,

mapping them onto the appropriate service creation and removal facilities of the

Invocation Layer.

The service-invocation facilities in the Virtual Layer, should map invocations

upon virtual services onto the equivalent 'real' services. For example:

Chapter 2. The Object Reference Model 	 68

Invoke(VirtualServiceNarne, Invocationllessage, Options)

For example, a fault-tolerant service can be provided by creating multiple service

instances. Invocations upon the virtual service are mapped by the Virtual Layer

onto multiple invocations on the 'real', non fault-tolerant instances.

Management Services

The external-management facilities offered to the User Layer should provide in-

formation on the availability and applicability of virtual properties. For example:

CanCreate? (VirtualServiceNaine, Resilient)

might indicate whether the specified service can be created with the resilience

virtual property.

The internal-management services of the Virtual Layer should allow for the

addition, removal and modification of the virtual properties made available to the

User Layer. This may include maintaining a 'rule-base' for virtual properties,

indicating how they are created.

The following sections describe some of the virtual property mechanisms provided

by the example distributed systems of chapter 1.

Resilience

To provide fault-tolerance, Amoeba uses a boot server that periodically polls reg-

istered services to determine if they are still 'alive' [Tanen85]. If a service fails to

respond properly within a specified time, the boot service declares it unavailable

and initiates creation of a new service on one of the pool processors. The principle

underlying the boot server is that processor crashes are infrequent, and that most

Chapter 2. The Object Reference Model 	 69

users are unwilling to pay a heavy penalty in performance in order to mask all

processor crashes.

The Clouds fault-tolerance mechanism utilises primary and backup copies of

each object. The backup, held at a different location to the primary, has the same

capabilities as the primary but is dormant most of the time. Invocations upon

the primary are also passed to the backup to maintain consistency. Periodically

the backup probes the primary, expecting an 'I am OK' message in reply. If the

status report is not received before a specified timeout, then the backup takes over

as the primary, creating a new backup to monitor itself.

Persistence

In the Eden system, when an eject is created only its active form exists [Almes85].

It can therefore execute and engage in invocations, but has no state on permanent

store. If it were to deactivate or crash, its current status is lost forever. Eden

therefore provides a checkpoint primitive allowing active ejects to permanently

record their current state. An eject's stored state, known as its passive form,

makes the eject persistent. Invocations, subsequent to deactivation or failure of a

persistent eject, cause the Eden kernel to reactivate the eject, i.e, to construct a

new active form from the passive form. The reconstructed eject then receives the

invocation.

Security and Protection

The Virtual Layer can manipulate the protection mechanism(s) used by services,

to match those understood by clients, i.e., it can present the User Layer with

the access controls expected by applications. The two principal mechanisms of

capabilities and access control lists have already been introduced. The Virtual

Chapter 2. The Object Reference Model 	 70

Layer may perform conversions between the two, enabling for example, the same

service to be invoked by both capability based and ACL based applications.

The Virtual Layer can also provide enhanced security by incremental addi-

tion [Karge88]. Here, the underlying security system is built upon to provide

the User Layer with a more stringent level of security, for example, providing ca-

pability based access where the underlying system has no access controls. This

approach to security assumes that the Virtual Layer itself is secure, and cannot

be bypassed.

Proxies

The example virtual properties and associated mechanisms described so far were

developed to solve specific problems in specific environments. The SOS system

provides a more general mechanism through the use of proxies [Shapi86].

A proxy is a representative for one or more distributed objects that collectively

provide a single service. The object(s) represented by a proxy is (are) called its

principal(s). The proxy and its principal(s) form a single, distributed object known

as a group. The proxy is the only interface to the group and, to the outside world,

is indistinguishable from the group. The proxy, which is always local to its client,

provides a single entry point to a potentially distributed service; all invocations

upon the service being made through the proxy. Invokers are unaware of the

proxy's existence, believing they are invoking the service directly.

Proxies belong in the Virtual Layer because they mediate access to groups of

services, manipulating the facilities they offer to provide some 'bigger' or 'better'

service; a description that fits exactly the role defined for Virtual Layer services.

Some of the more interesting properties of proxies are [Shapi86]

1. Encapsulation. The service is a black box, accessible only through the proxy.

Its structure is not exposed.

Chapter 2. The Object Reference Model
	

71

Access protocol. The proxy enforces per-client ordering constraints on calls

(e.g. enforce a request-acknowledgement-access-release ordering on the use

of a resource).

Capability. The proxy can implement access controls, test the validity of

arguments, or the right to perform certain operations; it is totally pro-

grammable.

Protocol encapsulation. The protocol between the client and the service is

totally encapsulated within the distributed object formed by the proxy and

its principal(s).

The philosophy promoted by proxies, that of a general mechanism for coordinating

and enhancing services, will be returned to later in the thesis.

2.7.6 The User Layer

As the highest layer in the Object Reference Model, the User Layer provides

services to users and applications, rather than to another layer. It provides users

with access to a 'world' of virtual objects, creating an environment within which

users and applications can operate.

Naming and Addressing

The user address space seen by users is created, as described above, by the Virtual

Layer. Only virtual services exist within this address space. From the users' point

of view, there are no hosts, no distribution, no network and, upon application

of the appropriate virtual properties, no failures, data inconsistencies or security

problems.

Chapter 2. The Object Reference Model
	

72

The User Layer's role in naming and addressing is therefore not in providing the

user address space, but in managing it. The nature of the systems under discussion

mean they will have many (hundreds of) users, and consequently many (potentially

millions of) objects. In general, an individual user will only be interested in a small

proportion of these objects. The User Layer must therefore provide facilities for

organising and accessing the many objects available.

Operational and Management Services

The User Layer creates the object environment observed by users and their appli-

cations, providing access to all available services. The nature of the User Layer

makes it difficult to predict the operational and management services required.

However, the following list provides a few general e'xamples:

Service directory listing

' Service creation and deletion

> Service invocation

User environment customization such as name aliases

User environment defaults for virtual properties

User requests for these services, coupled with the appropriate management in-

formation, must be converted, by the User Layer, into requests upon the service

provision and management facilities of the Virtual Layer.

Example

The Amoeba architecture is based upon a series of layers, the highest two of which

provide the type of services modelled by ORM's User Layer [Tane8lb].

Chapter 2. The Object Reference Model
	

73

Amoeba's system call layer provides user programs with a traditional operating

system interface. It supplies a number of routines that users invoke to provide the

services offered by most timesharing systems. These routines operate by sending

requests and getting replies from appropriate services in the network. In most

Amoeba implementations this layer is a library package designed to emulate some

particular set of operating system calls. Amoeba users' programs run in Amoeba's

user layer, built on top of the system call layer. Most programs use the system

call layer to provide a simple and familiar environment in which to run.

2.8 Summary

The Object Reference Model (ORM) provides a conceptual framework for describ-

ing object oriented distributed systems. As such it can be used to assist both in

the development of new systems and in the analysis of current architectures. The

latter role has already been demonstrated by the examples provided throughout

this chapter. The former role is employed throughout the rest of this thesis.

ORM was developed by applying the OSI layering principles to a list of key

design problems identified after extensive analysis of many current systems. As a

result, six layers were defined (Figure 2-3)

The Migration Layer provides a network independent communication facility,

creating the communication services required by the higher layers. Typical services

include object migration, and invocation protocols based on remote procedure

calls. The Migration Layer presents the Construction Layer with the construction

address space, where objects reside at communication independent addresses.

The Construction Layer provides a transformation facility for manipulating ob-

ject representations. It encapsulates the inherent heterogeneity of the underlying

environment, masking it from the higher layers. The Construction Layer presents

Chapter 2. The Object Reference Model 	 74

the Location Layer with the location address space in which objects are referred

to by generic names, with no awareness of multiple representations.

The Location Layer controls the assignment of object instances to location ad-

dress space locations. It encapsulates the location dependencies inherent in a

distributed environment, masking them from the higher layers. The Location

Layer presents the Invocation Layer with the invocation address space in which

only service names exist, with no concept of location.

The Invocation Layer builds upon the services of the lower layers to provide a

basic object environment in which objects can be created, invoked and deleted. Its

principlo, function is controlling the assignment of invocation messages to object

instances. The Invocation Layer presents the Virtual Layer with the virtual address

space in which only services exist. The mapping between services and object

instances can be one-to-one, one-to-many or many-to-one.

The Virtual Layer embodies the techniques used to create virtual properties. A

virtual property is a characteristic, possessed by objects, that somehow 'improves'

the service offered, but in a service independent manner. Typical examples are

fault tolerance and persistence. The Virtual Layer presents the User Layer with

the user address space in which only virtual services exist, i.e., services possessing

virtual properties.

The User Layer is the uppermost ORM layer. It creates the environment in

which users and their applications operate, providing user access to all available

services.

Each layer builds upon and adds to the services of the layer below. The upper-

most layer provides users and applications with a location independent, homoge-

neous environment in which services possess 'desirable' (i.e., virtual) properties.

Chapter 2. The Object Reference Model
	

75

The remainder of this thesis examines resource provision in object oriented

distributed systems, based upon the framework defined by the Object Reference

Model.

Chapter 3

The Target Environment

Having described the general Object Reference Model, this chapter now

defines the specific target environment addressed by the remainder of the

thesis. Three categories of distributed hardware are identified - work-

stations, pool processors and specialist processors - although ultimately

these are all seen simply as hosts for objects. The minimum required

network capabilities are defined. An overview of the three leading local

area network technologies is included; namely Ethernet, Token Bus and

Token Ring. The limited role of wide area networks is also discussed. A

system-wide Invocation service is assumed to be available, based upon re-

mote procedure call. Encapsulation is stated as being the minimum object

oriented feature required of object implementation languages. Finally, as-

sumptions concerning the user population and envisaged applications are

stated, concluding with a discussion on how these affect the system design.

76

Chapter 3. The Target Environment 	 77

3.1 Introduction

The purpose of this chapter is to define the distributed environment addressed

by the remainder of the thesis. All assumptions concerning the general nature

of the environment are stated. The flow of discussion is based upon the system

components shown in Figure 2-1 (page 35). Familiarity with the Object Reference

Model is assumed throughout.

3.2 Distributed Processors

From a resource provision point-of-view, all distributed processors are simply lo-

cations at which objects • can be hosted. However, the computing power of the

target environment can be divided broadly into three categories; workstations,

pool processors and specialist processors, each of which is discussed below.

3.2.1 Workstations

The distributed processors in the target environment are assumed to comprise

mainly of general purpose 'personal' workstations. Workstations are only consid-

ered personal in the sense that only one user at a time may access the console.

However, the computing resources offered by workstations are not considered per-

sonal, they simply form part of a resource pool' managed by the system. Hence,

it is assumed the system is free to distribute objects at its own discretion, unre-

stricted by user 'ownership' of machine resources. No specific upper limit is placed

on the number of workstations, but it is assumed to be several hundreds. This

limit depends primarily on the ability of the underlying network to support the

Chapter 3. The Target Environment 	 IC!]
p.'

communications traffic generated (see section 3.3 below). The workstations are

not assumed to be homogeneous.

Workstations generally exhibit the following characteristics

'Powerful' processing capability

'Large' memory

r' Simultaneous support for multiple object instances (multi-tasking)

c> High resolution displays

Support for iconic, window and mouse based interface

The first three items relate to system capacity, i.e., the quality of service the

system is capable of providing. The last two items relate to the user interface. An

iconic interface providing user access to the object environment is an example of

an ORM User Layer service.

3.2.2.. Specialist Processors

Specialist processors provide specialist resources, usually implemented in hard-

ware, over and above those offered by workstations. Depending upon the nature

of its specialisation, a specialist processor may simply be better than workstations

at providing certain types of service. Alternatively, it may provide one particular

service to the exclusion of all others; usually at a capacity considerably greater

than achievable by general purpose workstations.

Examples of specialist processors include peripherals such as file stores and

laser printers, parallel machines such as array processors and pipelined processors,

and processors with specialist architectures such as datafiow machines and systolic

Chapter 3. The Target Environment 	 79

arrays. All specialist processors must present an object oriented interface to the

distributed environment. Section 2.2.1 discussed this requirement, concluding that

it can always be met, either by supporting an object instance directly or by using

a front-end. Using front-ends may incur additional resource costs, but this is

assumed to be offset by the increased utility provided by access to the specialist

services.

Specialist processors therefore simply represent further (specialised) locations

at which objects may reside.

3.2.3 Pool Processors

Within the target environment, pool processors are any non-specialist processors

that do not offer support for a user interface. As stated earlier, the processing

resources offered by workstations are not retained exclusively for use by the work-

station's owner. As such, workstations can be viewed simply as pool processors

that have a screen, keyboard and mouse attached. Using the terminology intro-

duced above, the screen, keyboard and mouse are specialist processors front-ended

by a window manager running on the associated workstation processor.

Pool processors therefore simply provide additional locations at which object

instances can be placed. As with workstations, there is no assumption that pool

processors are homogeneous.

3.2.4 Object Hosts

Workstations, pool processors and (some) specialist processors represent locations

at which objects can be run, i.e., they host objects. An Object Host is any object

capable of interpreting object representations (at some level of abstraction) and

performing the actions they describe. Note that hosts are themselves defined to be

Chapter 3. The Target Environment 	 80

objects. Therefore workstations, for example, appear as object instances support-

ing invocation routines such as Host (ThisObj ect) and UnHost (ThisObj ect).

Usually, a host corresponds to an individual workstation, pool processor or spe-

cialist processor. However, many-to-one and one-to-many relationships are possi-

ble. For example, multiple hosts, potentially interpreting different representation

abstractions (virtual processors), may be implemented on a single workstation. Al-

ternatively a single host may be implemented across multiple workstations. This

latter configuration is in fact the goal of the Object Environment; to present users

with a single, universal host implemented across all workstations, pool processors

and specialist processors in the distributed environment.

The recursive definition of hosts - hosts implemented as objects supported by

hosts - terminates at the hardware level when, the host implementation becomes

self-supporting. This can be considered as the 'base case' of the recursion, i.e., the

'real' host upon which other, 'virtual', host abstractions are built.

3.3 Network

3.3.1 Technology

It is assumed that a fast, reliable transmission facility is provided by the underlying

network. The propagation delay between any two hosts is also assumed to be

uniform across all hosts, i.e., no host is significantly 'further away' than any other.

Local area networks meet these requirements significantly better than wide area

networks. Even in LANs the propagation delays depend upon the sender's and

recipient's relative positions. However, this variation is sufficiently small that the

above assumption is still deemed to be satisfied.

Chapter 3. The Target Environment

Network

Figure 3-1: Ethernet Simple Bus Topology

The leading LAN technologies have been standardised by the Institute of Elec-

trical and Electronic Engineers' (IEEE) 802 committee. They have defined a

family of standards incorporating the Contention Bus (IEEE 802.3), the Token

Bus (IEEE 802.4) and the Token Ring (IEEE 802.5). All three provide a suitable

basis for a distributed system. The following sections provide an overview of these

networking technologies. Where there is no danger of ambiguity, the term Station

will be used in the following discussion to collectively denote workstations, pool

processors and specialist processors.

Contention Bus

The IEEE 802.3 contention bus standard is based upon Ethernet. Ethernet is

a local area network developed initially at Xerox PARC as part of an extensive

research programme on personal workstations and distributed systems. It offers

a data rate of 10 million bits per second to up to 1024 stations, with a maximum

station separation of 2.5 kilometers [DIX 80]. The Ethernet bus topology is shown

in Figure 3-1.

When a station wishes to communicate, it listens to the network to see if any

other communication is currently in progress. If not, it attempts to transmit. In

most cases the transmitted message will be delivered unhindered to the recipient

station. There is however, a possibility of message collision caused by two stations

Chapter 3. The Target Environment 	 82

simultaneously observing a quiet network, and attempting to transmit at the same

moment. Therefore, during transmission, the transmitting station continually

monitors for collisions. Should a collision be detected then transmission ceases

immediately. Retransmission is attempted only after a random timeout in order o

avoid repeated collisions. This technique is known as carrier sensing multiple

access with collision detection; generally abbreviated to CSMA/CD.

Token Bus

The IEEE 802.4 LAN standard defines a token-passing bus protocol. The network

topology is the same as for Ethernet (Figure 3-1), but, the stations are ordered

to form a logical ring, each station having a predecessor and a successor. A

token is passed between the stations, following the sequence of the logical ring.

The current token holder acts as a master station for the time it holds the token,

giving it exclusive access to the bus, and enabling it to transmit. When the station

has completed transmission, or when its time has expired, the token is passed on

to the next station in the sequence. In this way, access to the bus is provided on

a round-robin basis, with each station guaranteed a chance to transmit.

The length of the ring, coupled with the timeout on token ownership, provides

an upper limit to the time a station must wait before gaining access to the network.

The token bus protocol therefore provides deterministic access times, making it

suitable for real-time applications. This is at the expense, however, of complex

token management that has to cope with: additions to the ring, with new stations

periodically being given the opportunity to enter the logical ring; deletions from

the ring, for stations wishing to 'opt-out'; removal of duplicate tokens, which

otherwise lead to bus collisions; detection of failed successors, to ensure the ring

remains unbroken; and ring initialisation, to start a token circulating either at

network start-up, or after an error causing it to be lost.

Chapter 3. The Target Environment
	

FM

Token Ring

In ring topology networks the stations are physically connected in a ring (Figure 3-

2), with each station forwarding data from its input stream to its output stream.

Data therefore travels around the ring in a specific direction. In a token ring

network such as that specified in the IEEE 802.5 LAN standard, a single token

circulates continuously around the ring, marked with one of the two possible states

'free' or 'busy'. A station wishing to communicate must wait until the token

reaches it in the free state. The token is marked as busy, the destination and

source addresses are added, and the data to be transmitted are attached. Arbitrary

length data packets are permitted, up to some pre-defined (installation dependent)

maximum. The token continues around the ring until reaching the destination

station, which then copies the contents of the message and flags the token as

'received'. The token then continues around the ring, eventually returning to the

sender. After checking the token's flags to ensure it was received successfully, the

sender removes the message and inserts a new 'free' token into the ring. Thus,

the next station in the ring has an opportunity to seize the token and transmit a

message.

The effect upon the target environment of using these network technologies will

be assessed later.

Wide Area Networks

Wide area network links are generally slower and more error prone than local

network communication. Such links are sometimes used to merge multiple LANs,

creating the impression of one 'large' local network. For example. the Universe

Network [Lesli84] connects ring networks at various sites in the U.K. by a 1 Mbit/s

satellite broadcast channel.

Chapter 3. The Target Environment 	 84

Figure 3-2: Ring Topology

Chapter 3. The Target Environment

The target environment does not attempt to invisibly merge geographically

dispersed local area networks. Wide area links are assumed only to be used in

providing limited access to resources not available on some local networks.

3.3.2 Protocols

Broadcasts

In aA bus topology network, all stations monitor all transmissions, looking for a

destination address that matches their own. In a ring topology network, every
Ck messages passes through every node, again with each node looking for2match

between destination address and its own address. Having reached its destination,

each message still continues around the ring until it returns to the sender, which

removes it from the network. Hence, the three LAN technologies outlined above

in fact, most LAN technologies - provide broadcast facilities whereby a single

message can be communicated to all stations with little or no additional overhead

compared to one-to-one communication. This facility, which can be useful for

propagating status information and locating services with 'Wherels?' messages,

is therefore assumed to exist within the target environment.

A variant of broadcasting, known as multicast, provides a general one-to-many

communication facility rather than simply one-to-all. Although useful, this is not

universally available and is therefore not relied upon.

Communication Services

The IEEE 802 networking standards define protocols up to the level of the OSI

Network Layer (Figure 3-3). The transport, presentation and application func-

tions are not included as part of the basic services offered by these networks. Ef-

fectively, these protocols provide a transmission service, but they do not provide

	

Chapter 3. The Target Environment
	

M.

	

IEEE Layers 	 OSI Reference
Model

I 	 I

I 	 I

I 	 Transport Layer

802.3 = Carrier sense multiple access with collision detection
802.4 = Token passing bus
802.5 = Token passing ring

Figure 3-3: IEEE LAN standards and the OSI model

the high level communication services required by the target environment. Higher

level protocols are therefore also assumed to be provided by the underlying com-

munication system, implementing services such as standard data representations

and remote procedure calls.

Remote Procedure Calls

Considerable research effort has been directed towards the communication services

required for distributed environments, since these services are fundamental to

building any form of advanced distributed system. In particular, experience with

the use of remote procedure calls has led to the development of stubs and stub

generators, making RPC easier both to implement and use.

Chapter 3. The Target Environment

Underlying
Communication
-i Facilities r

Client Environment

Local 	
Pack Invocation 	

Arguments
Send

I

>

I 	 Server Environment

Receive 	*IUnpack 	*IInvoked
IArgumentsl 	I

Wait

[

Work 	I
i

Local 	Unpack Pack Return Return I Send gu men

Client ________ Client ________ RPC I RPC 	Server Server
Object Stub Runtime I I 	Runtime 	Stub Object

Figure 3-4: Remote Procedure Call using Stubs

Figure 3-4 demonstrates the interaction of RPC stubs for a simple call. The

client makes a local invocation, which is intercepted by the client-stub. The client-

stub constructs the appropriate communication 'packets', marshalling the invoca-

tion message and its parameters into a form suitable for the underlying network.

The invocation message is then passed to the RPC runtime system, which for-

wards it to the remote destination. The remote RPC runtime system receives the

invocation message, passing it to the server-stub, which unmarshalls the parame-

ters and makes the appropriate (local) invocation upon the server object. Results

are returned in the same manner.

Several systems provide automatic generation of client and server stubs, pro-

ducing customised stub routines for each service. Three examples, discussed below,

are the Mach System, the University of Washington's Heterogeneous Computer

System (HCS), and SOS. These systems allow client and server objects to be im-

plemented as though for a non-distributed environment, i.e., without regard for

the problems of remote addressing, parameter marshalling and network communi-

cation. These distribution aspects are handled jointly by the RPC runtime system

and the object construction mechanisms.

Mach's Matchmaker [Jones86] allows interfaces between cooperating objects to

Chapter 3. The Target Environment 	 88

be specified and maintained independent of specific languages or machine archi-

tectures. The Matchmaker code generated from interface specifications provides

communication, type conversions, runtime support for type-checking, synchroniza-

tion and exception handling. It currently supports the languages Common Lisp, C,

Ada and Pascal. Both clients and servers may be built in any of these languages.

The HCS project provides a set of 'black box' RPC components offering 'mix

'n' match' RPC protocols [Bersh87]. The set of protocols to be used is deter-

mined dynamically. Therefore, multiple instances of the same object may co-exist,

each using different stubs and potentially different RPC runtime protocols. This

approach retains compatibility with existing protocols without constraining new

developments in RPC research.

The SOS system provides a generic RPC proxy that simply reproduces locally

the interface presented by a remote service, blindly forwarding all local invocations

to the remote object [Shapi86].

In light of the widely reported success of using the remote procedure can

paradigm in distributed environments, the communication services are assumed

to include system-wide, uniform, RPC facilities. These services are assumed to

provide the Migration Layer with the basic facilities necessary to create a uniform

invocation mechanism.

Chapter 3. The Target Environment 	 89

3.4 The Object Environment

The general flavour of facilities offered by the Object Environment were exten-

sively reviewed in chapter 2. This section identifies features specific to the target

environment.

3.4.1 Migration Layer Facilities

The Migration Layer services are assumed to provide a system-wide, uniform in-

vocation mechanism based upon the remote procedure call facilities provided by

the underlying communication service. At the client end, invocations destined for

remote hosts must be mapped onto the appropriate RPC service(s). A remote call

is then made to the server host by the communication services. At the server host

the incoming RPC must be mapped to the appropriate (local) invocation. Each

host must therefore provide facilities for mapping invocations both to and from

the remote procedure call facilities. It is assumed that each invocation message is

time-stamped by the recipient host upon arrival. It is further assumed that most

invocations are synchronous, i.e., the client is suspended until the server returns

its results. Asynchronous invocation, where the client continues to function while

the invocation is serviced, introduces additional complexities in returning replies

to clients that are now performing other activities.

As well as providing an invocation service, the Migration Layer is responsible

for object migration. Later chapters argue that object migration for the purpose

of load balancing is not the most efficient technique, and that other mechanisms

are more appropriate. The provision of highly efficient migration protocols for

load balancing is therefore not considered important. However, object migration

facilities are still required, for example, to implement the object invocation ser-

vice outlined above, and for passing object representations between distributed

Chapter 3. The Target Environment 	 90

hosts. These are essentially data transfer protocols and 	should therefore be

straightforward to implement using the underlying network communication fa-

cilities. Hence, the target environment is assumed to have available an object

migration service.

3.4.2 Object Orientation

The work described in the remainder of this thesis utilises object oriented fea-

tures to address resource provision problems. The features exploited most are

encapsulation, and communication by invocation messages. On some occasions,

inheritance is also suggested as a useful tool for solving certain problems. However,

inheritance is not relied upon heavily and is therefore not a strong requirement.

This implies that the target environment can incorporate encapsulated services

implemented in non-object oriented languages [Methf87]. The invocation facil-

ities, and in particular RPC using stub generators, are assumed to provide an

object oriented interface to non-object oriented languages such as C and Pascal.

For example, to implement an object, the C programmer creates a library

module with the services coded in C. The object construction, invocation and

RPC support facilities 'dress' the C module to present the distributed environment

with an object instance providing exactly the routines contained in the module.

This is the same approach as described earlier in relation to the Mach system.

Obviously, languages supporting object oriented features such as class definitions

and inheritance also fit into this framework.

Chapter 3. The Target Environment
	

91

3.5 Applications and Users

The nature of large scale computing resources makes it difficult, and perhaps even

unwise, to predict the uses to which they will be put. No particular restrictions

are placed on the target environment in terms of the number of users or kinds of

applications.

3.5.1 User Population

The maximum size of a system's user population will, ultimately, be determined

by the number of processors in the environment. The Ethernet is capable of

supporting up to 1024 stations, while the ring networks, in theory, can be extended

to incorporate an arbitrary number of stations. However, in practice, they are

limited to the same order of magnitude as Ethernet. The processor population in

any particular system therefore has an upper limit of around 1000. The maximum

active user population is therefore also limited to same amount. However, users

can gain access to the system only via workstations, and not all processors are

workstations. This further limits the maximum number of users. Also, since one of

the justifications for creating a distributed environment is to provide users access

to more and varied resources than can be provided by a single workstation, the

relationship between users and processors is not one-to-one.

The maximum possible user population that could be encountered is therefore

less than 1000. In practice, since not all distributed systems have available, or

need, the largest permissible number of stations, the maximum user population is

expected to be around 200 to 300 users.

Chapter 3. The Target Environment
	

92

3.5.2 Application Performance

Although users justifiably expect 'good' performance from the system, absolute

speed is not seen as the top priority. For example, squeezing the maximum par-

allelism from a particular problem is a specialised task not suited to the general

facilities envisaged here. Applications requiring this sort of parallelism should be

scheduled on the specialist parallel processors within the system.

The management and exploitation of parallelism for performance is not an ex-

plicit goal of the target environment. Parallelism at the system level is provided

'free', simply because of the multiple, distributed processors. Parallelism at the

user level, i.e., with more than one processor working on an individual user's task,

is dependent upon the distributed scheduling policy. The scheduler's main objec-

tive is simply to make efficient use of available resources. However, parallelism

may result as a by-product of efficient distributed scheduling.

3.5.3 System Optimisation

The nature of possible applications for the target environment is wide-ranging.

The SOS system, for example, is biased towards office automation, principally the

handling of multi-media documents. The higher levels of the system can therefore

be optimised to perform specific tasks well, namely the storage, retrieval and

manipulation of documents. The Amoeba system, and others, are biased more

towards scientific and engineering computing. With these applications there is

less scope for specific optimisation as the system is used as a general purpose tool,

handling a wider range of tasks.

The target environment is assumed to provide a general computing facility,

more akin to Amoeba than SOS. The expected applications are general purpose

rather than being limited to a few specific tasks. This assumption limits the

scope for application optimisations to the ORM User Layer, and possibly the

Chapter 3. The Target Environment
	

93

Virtual Layer. For example, every application could be presented with its own

customized environment. More realistically perhaps, several different application

environments may be provided, each optimised towards certain types of service.

Optimisations to the lower ORM layer protocols cannot be guaranteed to be uni-

versally beneficial.

Chapter 4

Object Construction

The problem of automatic object construction is addressed, leading to the

development of a distributed construction algorithm. A data structure,

known as a construction graph, is introduced to describe the relationship

between different representations of an object. A construction path is

a route through the construction graph defining the transformation nec-

essary for converting the 'source' object representation, into the required

'destination' representation. A distributed search algorithm is presented for

finding suitable construction paths and creating objects, operating without

the need for user intervention. This algorithm provides a simple construc-

tion service for user applications, fulfilling the requirements of the ORM

construction layer.

94

Chapter 4. Object Construction
	

95

4.1 Introduction

The purpose of ORM construction layer services was defined in chapter 2 as

Providing a transformation facility for manipulating object represen-

tations, thereby encapsulating the inherent heterogeneity of the under-

lying environment, masking it from the higher layers.

This chapter examines the potential for providing an automatic object construction

service, i.e., a construction service not dependent upon user intervention. The

following section argues that automatic manipulation of object representations in

a heterogeneous environment is both desirable, and necessary.

4.2 Automatic Construction

4.2.1 Natural Progression

The earliest computers were programmed in binary or by placing wire jumpers in

a patchboard. This form of 'programming' suited the machines, but was very in-

convenient for human users. Assembly languages and simple compilers were soon

developed. These changed the method of program description to a form more

suited to humans than machines, with conversion tools (the compilers) used to

translate between the different representations. In current programming environ-

ments, programmers work almost exclusively with 'soft-machines', i.e., high-level,

abstract programming languages far removed from the underlying hardware. The

trend in language development has ahays been towards ever greater levels of

abstraction.

Chapter 4. Object Construction
	

Ull

Despite the advances in language design, users remain aware of machine re-

quirements because of the need to always compile programs before they can be

run. The desire for automatic object construction therefore presents itself as a

natural extension to the development of programming language design. If desired,

programmers should be able to work with a high level abstract machine capable

of directly interpreting their abstract programs.

4.2.2 Proven Feasibility

Smalltalk-80 is a single user, non-distributed, integrated programming language

and programming environment developed by the Software Concepts Group at

Xerox PARC [Goldb83]. Its designers expressed the sentiment that

"People work with problem-domain concepts, while hardware works

with different (operator/operand) concepts. Some of the conceptual

burden in translating from problem-domain to computer-domain should

be carried by the machine, by making the machine work in terms of

concepts closer to the user's everyday world." [Cox 87]

Smalltalk-80 provides an integrated environment in which the programming

language, supporting tools (text editors, debuggers), and the operating system

itself form a coherent, tightly coupled whole [Goldb84]. Smalltalk-80 methods

(invocation routines) are implemented in the Smalltalk-80 programming language.

The underlying hardware executes the Smalltalk-80 virtual machine, interpreting

Smalltalk-80 bytecode instructions. The transformation between high level lan-

guage statements and their corresponding bytecodes is performed automatically.

In the Smalltalk-80 environment, when a new method is created or an existing

method is modified, the user must Accept it using a drop-down menu controlled

by the system mouse. From a user point of view this is simply stating "I've

Chapter 4. Object Construction 	 97

finished coding this method". At this point the system compiles the method and,

providing there are no syntax errors, adds the compiled method to the associated

class's method dictionary'. The compilation itself remains invisible to the user. In

order to invoke a method, the user highlights the method name using the mouse,

and selects the option Do it from a drop down menu. Arbitrary segments of

Smalltalk-80 source code can also be executed in this manner.

The Smalltalk-80 programming interface demonstrates that program compila-

tion can be successfully and usefully hidden from users, who remain unaware of

any representation other than Smalltalk-80 expressions.

4.2.3 Configuration Flexibility

Ideally, the object scheduler should be free to schedule object instances on any

host. To satisfy this in a heterogeneous environment requires many different object

representations; potentially as many as there are different hosts. If control over

the generation of object representations is left with users, the scheduler's options

are restricted to the representations supplied. Hence, under these circumstances,

user actions could become significant in influencing scheduler performance. Re-

strictions of this nature are considered undesirable. Automatic construction of

executable object representations is therefore regarded as an important prerequi-

site to effective object scheduling.

'Even within a single class, methods are created, edited and compiled individually.

Chapter 4. Object Construction 	 98

4.3 Requirements

The general requirements for an object construction service were outlined in chap-

ter 2 when describing the ORM Construction Layer. The principal service is

the creation of object representations suitable for execution at specified locations

within the construction address space. These locations correspond precisely to the

object hosts of the target environment. The construction service is also responsi-

ble, where necessary, for transforming invocation parameters into a representation

understood by the invoked object. These services require controlling the applica-

tion of transformation tools such as compilers, linkers, code generators and pro-

gram translators. The intention is to provide an integrated environment similar

in spirit to that of Smailtalk, but for all languages within the system. The user

environment should appear to interpret directly high level programs, removing the

need for explicit, user initiated compilation.

The external-management services identified in chapter 2 should also be pro-

vided. These supply management information on possible transformations, ideally

including some measure of associated cost. The purpose of this management in-

formation is to assist in object scheduling decisions. This is the only role the

construction facility has in connection with scheduling. The scheduling decisions

themselves are made by ORM Location Layer services.

This thesis does not propose a new approach to language design or compiler

technology. Rather, it presents a distributed algorithm for automatically control-

ling the application of existing object construction tools.

Chapter 4. Object Construction 	 99

4.4 Limitations and Assumptions

4.4.1 Construction Limitations

The proposed mechanism is intended only for constructing user application pro-

grams, i.e., programs existing within the user environment. It it is not intended to

manage code implementing the system itself, which is considered to be a separate

problem handled by the system implementors using traditional (manual) tech-

niques. The system code implementing the construction service, and in particular

the transformation tools themselves, are therefore assumed to be pre-constructed;

This removes the possibility of recursive invocations to 'construct the constructor',

thereby allowing invocations upon transformation tools to be scheduled using the

standard invocation scheduling mechanisms.

4.4.2 Error Free Syntax

Services in the ORM User Layer are assumed to handle the user oriented aspects

of programming by providing a development, environment for each language, incor-

porating, for example, tools such as syntax directed editors and syntax checkers.

As an example, one of the environments offered by the application layer might

be a Smalltalk-80 emulation running on top of the target environment. Separat-

ing the user interface from the mechanics of object transformation, simplifies the

transformation tools, allowing them to perform faster.

The object construction service therefore deals exclusively with object trans-

formations. Issues such as creating source code and ensuring correct syntax are

assumed to be handled by services at the User Layer level. The transformation

tools therefore assume all object representations are syntactically 'correct', having

Chapter 4. Object Construction 	 100

been previously vetted. For example, an object purporting to be a C++ imple-

mentation of some service is guaranteed to conform to C++ syntax. It is further

assumed that all necessary parameters, such as the objects to be included in a link

operation, are readily available. These can be obtained either from user supplied

information (interrogation being performed by the User Layer environment), or

by automatic deduction and dynamic searching (again, performed by User Layer

services rather than the construction service).

4.5 Object Transformations

In current systems, an object implementation, or indeed an implementation in

any programming paradigm, is transformed several times before a representation

is derived suitable for execution on the system hardware. As an example, the

simulation program introduced later in the thesis was implemented in Simula. The

first step towards generating an executable representation of this program is the

application of the Simula compiler. The compiler generates an assembly-language

version of the program, which is then further transformed by an assembler. The

final stage is performed using a linker to merge the output from the assembler

with the necessary library and system code. The relationship between the different

program representations is shown in Figure 4-1.

The simulation was also run under a different operating system using the same

source code, but with a different compiler and linker. These new representations

can also be added to the relationship diagram, as shown in Figure 4-2. In this

case the diagram indicates that no intermediate assembly language representation

is produced. Many other executable representations could be produced from the

same source code, each of which can be added to the relationship diagram in a

similar manner.

Chapter 4. Object Construction
	

101

Simula Program

Unlinked 68000 Unix
Assembly Language

Unlinked 68000
Unix Binary

68000 Unix
Executable

Figure 4-1: A Simple Representation Relationship Diagram

Simula Program

Unlinked 68000 Unix
Assembly Language

Unlinked 68000
	

Unlinked VAX
Unix Binary 	 VMS Binary

68000 Unix
	 VAX VMS

Executable
	 Executable

Figure 4-2: An Extended Representation Relationship Diagram

Chapter 4. Object Construction
	 102

Translator
C++ Program
	

Simula Program

(Unlinked 68000 Unix

I Assembly Language
• 	A

Dis-assembler

Unlinked 68000
	

Unlinked VAX
Unix Binary 	 VMS Binary

68000 Unix
	 VAX VMS

Executable
	 Executable

Figure 4-3: A Hierarchy of Program Representations

The transformations described above move from a higher to a lower level of

abstraction. This is not always the case. For example, dis-assemblers perform

the reverse function of assemblers, producing as their output a representation at

a higher level of abstraction than their input. Another example is provided by

program translators that transform one high level language implementation into

another, e.g., C to Pascal, or Simula to C++. Figure 4-3 extends the relationship

diagram to include a Simula to C++ translator and a dis-assembler.

4.6 Construction Graphs

Relationships of the type described by Figure 4-3 are based on representations

rather than any object specific characteristics. Consequently, they are applicable

to all objects. This graphical representation of object construction can be gener-

alised to include all possible representations within a system, identifying the re-

lationships between them. Graphs of this nature, known as Construction Graphs,

Chapter 4. Object Construction
	 103

Figure 4-4: A General Construction Graph

can be thought of as state transition diagrams, where the states correspond to

object representations, and state changes are triggered by the application of a

transformation tool. Figure 4-4 shows a general example of a construction graph

with representations denoted A, B, C and so forth, rather than specific repre-

sentation names such as Simula, C++ and assembler. Note that the graph does

not have to be totally connected. As in the example, no transformation tools are

available to connect the sub-graph J-K-L, to the rest of the graph structure.

Each node in the construction graph corresponds to a particular representation

or Type, while the edges represent the possible transformations. The nodes are

termed Transformation Nodes since each one encapsulates the system-wide knowl-

edge concerning transformations applicable to their corresponding types. Thus,

the Simula transformation node 'knows all things that can be done with Simula

objects'. Similarly the 'A' transformation node 'knows all things that can be done

with object representations of type A', and so on.

Every object transformation involves at least two representations, the Source

Type and Destination Type, corresponding respectively to the pre- and post-

transformation representations. When constructing an executable representation,

Chapter 4. Object Construction 	 104

the destination-type will correspond to the Host Type, i.e., the representation

expected by the specified host.

A destination-type can only be derived from a specified source-type if there ex-

ists a Construction Path between their respective transformation nodes, i.e., a series

of one or more transformations converting the source-type into the destination-

type. The problem of object construction can therefore be reduced to that of find-

ing construction paths through the construction graph. An object is constructed

by Traversing its construction path, i.e., moving sequentially along each arc in

the construction path, from the source node to the destination node, invoking the

appropriate transformation tool at each step.

4.7 Searching For Construction Paths

Construction graphs describe the relationships between object representations,

identifying the transformation tools used to convert between them. For any given

source and destination-type a construction path must be found linking their re-

spective transformation nodes. This requires searching the construction graph.

The envisaged client of the construction service is the object scheduler, which

knows only about objects and object locations in the location address space. More

specifically, the scheduler does not know about source and destination types. The

object scheduler therefore expects a construction service interface such as

Makelnstance(Obj ect, @Locat ion, Options)

Hence, the construction service only knows the destination-type, which it derives

from the specified location. The source-type is, initially, unknown. The starting

point for a construction path search is therefore the transformation node of the

destination-type. The search moves 'backwards' from the destination-type, looking

Chapter 4. Object Construction 	 105

for one or more, source type representations of the specified object. Note that this

is contrary to the normal, user driven method of object construction in which a

source representation is known, provided by the user.

A construction path is found by searching the construction graph for a source

representation of the object. Using a breadth-first search, starting at the destina-

tion node, the 'closest' source will be encountered first, i.e., the source represen-

tation requiring the least number of transformation steps to create a destination-

type representation. For example, if an intermediate representation of the object

already exists, then the search will find this and terminate, never reaching the

original high level language representation. If a destination-type representation

already exists, then the search terminates immediately. In this case the construc-

tion path is reduced to a single node, with no transformations required.

The Options parameter included in the Makelnstance service may serve sev-

eral purposes. For example: it may specify a preferred construction path if more

than one source is available; it may specify a particular path, overriding the con-

struction service's choice; when more than one transformation tool is available for

a particular transformation, e.g., two C++ compilers, it may specify which one

to use; finally, it may also specify 'flags' for the transformation tools, for example,

setting a Debug flag.

Chapter 4. Object Construction 	 106

4.8 Representation Cacheing

As hinted by the previous section, and suggested by common sense, objects need

not be reconstructed, from scratch every time they are required. When an ob-

ject transformation is performed, the resultant representation can be Cached, i.e.,

stored for future use. In subsequent requests to construct the same object, the

cost of transformation is replaced by the (significantly smaller) cost of locating

and retrieving the cached representation.

The improved construction performance gained through cacheing must be

traded against the cost of managing and storing the cached representations. Many

different cacheing policies could be envisaged, ranging from none at all, to cacheing

everything. A simplification of the cache-all scheme would be to cache only host-

type representations, i.e., the end result of a series of transformations, discarding

any intermediate representations jroduced on the way. Another policy could use

frequency of access, for example, only cacheing an object if it has already been

constructed ii times within some time-period. Other policies could be based on

privileges, such as only cacheing an object if it has 'cacheing privilege'.

These example policies are by no means exhaustive. As with most forms of

cacheing there is no 'best' policy, only compromise, dependent upon many environ-

ment specific factors. Policy recommendations for object cacheing are therefore

beyond the scope of this discussion. Object cacheing is secondary to the main

ideas under discussion, and will not be considered any further.

Chapter 4. Object Construction 	 107

4.9 Management Services

The external-management services provided by the construction facility should

indicate, for any particular object, whether a specified destination-type can be

generated. Also, there is a requirement to provide information on the 'cost' of a

construction, thereby allowing the scheduler to compare different options. Com-

parisons are also required when more than one source-type is available for an

object, resulting in multiple construction paths leading to the same destination.

This situation can occur, for example, if the object has been implemented in more

than one language.

The feasibility of a particular construction can be answered simply by searching

for a suitable construction path. If at least one path exists then the construction

can be performed, otherwise it can not. Comparing different paths requires ad-

ditional information relating to construction 'costs'. In principle, each arc on the

construction graph has an associated cost, as shown in Figure 4-5. The cost of

a particular construction is given by the cumulative cost of the individual trans-

formations from which the construction path is composed. Finding the 'cheapest'

path is then a special case of the shortest path problem for weighted graphs; a

standard problem for which standard solutions exist.

An intuitive cost function is the time taken to perform the transformations.

The construction cost is then measured as the cumulative time taken to perform

the series of transformations leading to the desired object representation; the path

requiring the least time being the best. Unfortunately, the transformation time

depends upon many factors, including the 'size' of the source representation to be

transformed. Hence, the transformation time will be different for every object at

every transformation step.

Chapter 4. Object Construction 	 Im

C'
'I

rC 5

11 C

c li

C 1

Figure 4-5: A Construction Graph with Cost Labels

If a usable measure of the representation 'size', n, could be specified, then

transformation tools could be tagged with their time complexity, for example,

0(n), 0(n 2) etc., thus yielding an estimate of the transformation time. However,

even if such measures were feasible, other 'difficult-to-measure' factors such as

current system performance must also be taken into account. In reality, accu-

rately predicting transformation time is dependent upon too many unquantifiable

variables. Hence, the conclusion is drawn that, although desirable, transformation

time is not a practical measure of construction cost.

Another approach is to try and examine the system resources used to perform

transformations; the path using the 'least' resources being the best. Measuring

resource usage is discussed extensively in chapter 5 in relation to scheduling. With-

out pre-empting that discussion, it is safe to state that measuring resource usage

suffers from the same quantification difficulties as predicting transformation time,

making it equally unusable.

The problem of defining a suitable cost indicator is similar to that of defining

'workload' in distributed scheduling (see chapter 5). An approach often adopted

in scheduling is 'simple is best'. This is based on the experience that the benefits

Chapter 4. Object Construction 	 109

of using very accurate, complicated metrics, are outweighed by the effort required

to observe and update them.

The proposed implementation described below includes the simple measure

of path length, i.e., the number of transformations required between source and

destination types. Path length has the advantage of being both easily calculated

and interpreted, but suffers from the obvious disadvantage of being very coarse.

Using this measure, the shortest path is considered best, regardless of the indi-

vidual transformations involved. The algorithm shown does not depend upon the

use of a path length cost indicator, so other metrics could used within the same

framework.

4.10 A Proposed Implementation

This section describes a design for a distributed object construction service based

upon the construction graph concept described above. A distributed data struc-

ture is defined that embodies the construction graph for a complete distributed

environment. Construction paths are then found by applying standard graph

searching algorithms to this distributed graph structure.

4.10.1 Type Representatives

The design is based upon defining a Type Representative' object. Each trans-

formation node in the construction graph is realised as an instance of object

TypeRepre sent ative. For example, the Simula representative embodies all knowl-

edge relating to transformations of Simula objects. Similarly there will be a C++

2 The term 'representative' is loosely derived from the phrase 'representation service'.

Chapter 4. Object Construction
	

110

Transformation Tool Output

Type Representative

T '-+ U compiler U u_Rep

T i-p v compiler V vRep

T i- 	S translator S S...Rep

T '- W compiler w w_Rep

Figure 4-6: The T Representative Output Configuration Table

Figure 4-7: The T Representative Output Graph Segment

representative, an assembler representative and so forth. The representatives may

be fully replicated to provide easy access, but each copy must maintain consis-

tency with the others; logically there is only one representative per representation

type. As an example, every host might maintain a local copy of its corresponding

representative (e.g., the SUN3-Unix representative).

A representative defines a mapping between its input type and its output types.

The outputs are determined by the transformation tools available for manipulating

the input type. Each representative therefore keeps a table of applicable transfor-

mation tools and their output types. A specimen table for the T representative is

shown in Figure 4-6. The corresponding segment of construction graph it defines

is shown in Figure 4-7. Each of the associated output types s, U. V and W will

also have representatives defining adjacent segments of the construction graph.

Chapter 4. Object Construction 	 111

fl Input Representative U
U_Rep

P_Rep

QRep

RRep

Figure 4-8: The T Representative Input Configuration Table

Figure 4-9: The T Representative Input Graph Segment

In order to implement a construction path search, each representative must

also keep a list of those representatives capable of producing its input type. The T

representative's input configuration table is shown in Figure 4-8, with the corre-

sponding graph segment shown in Figure 4-9. Hence, the segment ofconstruction

graph known to the T representative is as depicted in Figure 4-10.

The services offered by a type representative are outlined in the following list.

Each service is subsequently discussed with respect to its role in providing an

object construction facility.

Chapter 4. Object Construction
	 112

Figure 4-10: Construction Graph Segment Known to the T Representative

r. Maintain a configuration table of possible transformations relating to a spec-

ified type.

Allow queries and updates on this table.

Participate in searching for construction paths

Participate in object construction

' Manage cached representations

4.10.2 Maintaining Configuration Tables

Each type representative must maintain input and output configuration tables as

defined above. As the distributed environment evolves, it will be necessary to

modify these tables accordingly. For example, if a new T compiler becomes avail-

able, an extra entry must be added to the T representative's output configuration

table. Similarly, if a new transformation service is added that generates type T as

output, it must be added to the T representative's input configuration table. Re-

moval of transformation services must also be reflected by deleting the appropriate

Chapter 4. Object Construction 	 113

table entries. These modifications to the construction graph are expected to be

infrequent events, occurring over days or even weeks, rather than micro-seconds

or seconds.

The TypeRepresentative object must therefore provide invocation routines

such as AddEntry, DeleteEntry and EditEntry. Responsibility for notifying rep-

resentatives of transformation tool additions and removals is assumed to lie with

the (human) system administrator(s), although the representatives can handle the

resultant ripple effects themselves. For example, in Figure 4-10, if the Ri-*T com-

piler is removed, the system administrators must inform the R representative using

DeleteEntry. However, the R representative itself can invoke the T representative

in order to be removed from T's input configuration table.

4.10.3 Searching For Construction Paths

The search for a construction path is initiated by the object scheduler, either

through a Malcelnstance request, a CanLocate? query, or a WhatCost? query.

In each case the destination location, and hence the destination-type, is spec-

ified. This information provides the starting point for the search, namely, the

TypeRepre sent ative corresponding to the destination-type.

The algorithm about to be described is a breadth-first graph search. Normally,

graph searching algorithms are recursive. However, with the distributed graph

structure defined above, each type representative is only aware of a small graph

segment, i.e., the part it defines, and hence, is only able to search this small

segment. A type representative therefore does not recursively call itself, but rather,

calls its peers in adjacent graph segments. Hence, the 'recursion' in the algorithm

is distributed between the type representatives. In principle therefore, the graph

search can be performed in parallel.

Chapter 4. Object Construction
	

114

Source

Destination

Figure 4-11: An Example Graph: To be Searched

Each TypeRepresentative instance has two invocation routines used to per-

form graph searching

Search (SearchlD, Obj ectName)

SearchComplete(SearchlD, OutCome, PathLength)

Two routines are required because the algorithm assumes asynchronous invocation.

An algorithm based upon synchronous invocation would only require one routine,

but would not be able to handle more than one search at a time or perform

individual searches in parallel. The use of these routines will be explained with

reference to the graph in Figure 4-11. The type representatives A to G are assumed

to have correct input and output configuration tables to describe this graph. The

required host-type is A, and the only available source is of type F. Note that, for

the moment, the complications introduced by cyclic graphs are ignored.

A mock implementation of Search() is shown in Figure 4-12. The SearchlD

is a unique label identifying the current search, and Obj ectName is the name of the

Chapter 4. Object Construction 	 115

Search(SearchlD 	Uniqueldentifier;
ObjectName : AnyObject);

BEGIN
IF { cached representation available }

THEN SearchComplete(SearchlD, Successful, PathLength = 0)
ELSE BEGIN

IF { input configuration table not empty }
THEN BEGIN

FOR { each peer representative in input table }
DO BEGIN
Representative.Search(SearchlD, ObjectName);

{ Record search in progress by Representative }

END of FOR;
END of THEN

ELSE SearchComplete(SearchlD, Failed);
END of first ELSE;

END of Search;

Figure 4-12: A Distributed Search() Implementation

object to be constructed. The name of the object invoking the search operation is

also required, but this is assumed to be provided automatically by the invocation

mechanism and is therefore not included as an explicit parameter.

The representative at the root of the search (A in the example) checks to see if

it already has a cached copy of the desired object. If no source representation is

available (as in the example), then the search is propagated to each of the repre-

sentatives in the input configuration table (B, C and D) by 'recursively' invoking

Search on each of them. As explained earlier, these are not recursive invocations

upon (A) itself, but invocations upon its peer type-representatives (B, C and D)

that may proceed in parallel. Each representative thus invoked becomes the root

of a new sub-search. The originating representative (A) records the details of each

sub-search initiated, for use later by the SearchComplete routine.

In the example, the B, C and D representatives also fail to find a source rep-

Chapter 4. Object Construction 	 116

resentation, and therefore propagate the search to E, F and G respectively. The

E-representative and G-representative will both fail completely because they have

neither a source representation,ror any input representatives to further propagate

the search. They therefore invoke SearchComplete on B and D respectively, with

the outcome Failed. The actions of SearchComplete will be examined shortly

Finally, the F- representative does have access to an F-representation of the speci-

fied object and therefore reports SearchComplete, with outcome Success, to the

C- representative. The path length, set to zero at this point by the F- representative,

will be incremented by each representative as the path information travels back

towards the original root.

In the simple algorithm presented here, each sub-search is completed either by

failing, or finding a source. No attempt is made to terminate ongoing (parallel)

sub-searches once a source has been found. In general this is what is required, since

there may be more than one source available and the first one found is not necessar-

ily the 'best'; this depends upon the nature of the cost indicator. With the simple

path length indicator used here, the first source found will in fact also be the best.

In this case a successful Search could broadcast a StopSearching(SearchlD)

invocation in order to terminate any active (now redundant) sub-searches.

The corresponding mock implementation of SearchComplete is shown in Fig-

ure 4-13. As with Search there is a further, implicit parameter included, i.e., the

name of the representative reporting the search completion. This name, together

with the SearchlD a used to note the OutCome of the sub-search against the

information recorded when it was instigated. The representative then checks to

see if all its sub-searches have concluded. if not, then no further action is taken.

However, when the final sub-search is completed, the results are examined for a

Successful outcome. If there are none, then a SearchComplete, with OutCome

Failed, will be passed further down the line towards the root. For example, the

B- representative will receive a Failed message from the E- representative. As this

Chapter 4. Object Construction 	 117

SearchComplete(SearchlD 	Uniqueldentifier;
OutCome 	: Successful or Failed;
PathLength : Integer);

BEGIN
{ Record OutCome against the information }

{ stored when Search() was invoked 	}

IF { All searches complete }
THEN IF { none successful }

THEN SearchComplete (SearchlD, Failed)
ELSE BEGIN

{ select successful reply with shortest path }

{ (throwing away all the others) 	 }

{ increment PathLength by one }

SearchComplete(SearchlD, Successful, NewPathLength);

END of ELSE;

END of SearchComplete;

Figure 4-13: A Distributed SearchCompleteQ Implementation

Chapter 4. Object Construction 	 118

was the only sub-search it instigated, the B-representative examines the result

and reports the failure to the C- representative. The C-representative however,

must wait for a result from the F- representative before passing on any further

information. When this Successful result arrives, the c- representative will in-

voke SearchCompleted on the A- representative with outcome Successful and

PathLength one.

If more than one source is found, then one of them must be selected. For exam-

ple, if sources were available to both the E-representative and the F-representative,

then the C- represent ative will receive two Successful results. One of these will

have a PathLength of two, corresponding to the sub-path EBC, and the other will

have a PathLength of one, corresponding to the path FC. The C- represent ati ve ig-

nores the longer path, reporting only the shorter of the two to the A- represent at ive.

The same mechanism can be used if there are three or more Successful sub-

searches. In the case where more than one path corresponds to the shortest length,

random selection can be used. The type representatives are expected to retain the

information relating to successful searches, for use in subsequent construction re-

quests.

When the graph search concludes, the initiating type-representative, A, has

available the information required to satisfy the object scheduler's original request.

The result of a CanLocate? query depends upon whether or not a path was found;

in the example, the result is Yes. A WhatCost? query receives, in this case, the

response PathLength 2. The path length metric can be replaced by other cost

functions subject to a decision mechanism being available to select the 'best' path

at each step. Finally, with regard to a Makelnstance request, each representative

on the successful path (F, C and A) has retained the name of its 'supplier' for use

with the construction algorithm described later.

The search algorithm presented above describes a basic construction service,

demonstrating the basic principles involved. There is considerable scope within a

Chapter 4. Object Construction 	 119

real implementation for improving efficiency, such as using 'hints' that restrict sub-

searches to paths more likely to produce a successful result. Hints may be derived

by the system through analysis of previous searches, or they may be provided as

Options parameters to the Search routine; perhaps specifying precisely the path

to be used. A historical record of successful paths could also be retained to avoid

repeated searching.

4.10.4 Performing Transformations

Having found the best construction path for an object, the destination type-

representative may now initiate its creation. This can be performed using the

Construct 0 routine shown in Figure 4-14. Each representative supervises the

application of the transformation tool appropriate to its section of the construction

path. If the input representation is not immediately available, then the SearchlD

is used to index the information stored when the construction path was found.

This provides the name of the next representative along the construction path,

which is then instructed to create the appropriate input representation by a 're-

cursive' call on Construct(). Note that, as with the search algorithm, this is not

a recursive call on itself, but a call to a peer routine further along the construction

path. Hence, in the example, the A-representative calls upon the C-representative,

which in turn calls upon the F-representative. The F-representative applies the

FI-C transformer, passing the resultant C representation to the C-representative,

which in turn applies the C--+A transformer, thereby producing the required rep-

resentation.

4.10.5 Managing Cached Representations

The mechanisms used to manage the storage of object representations are not

addressed by this thesis. It envisaged that suitable facilities for representation

Chapter 4. Object Construction 	 120

FUNCTION Construct(SearchlD : Unique ldentifier) : ObjectReference;

BEGIN
IF { cached representation available }

THEN Input := SourceObject
ELSE Input := SourceRepresentative.Construct(SearchlD);

{ apply transformation tool to Input, producing Output
}

Return(Output);

END of Construct;

Figure 4-14: A Recursive Construct() Implementation

storage and retrieval could be provided using standard database technology, and

hence are within the capabilities of the envisaged target environment. It is there-

fore assumed that each TypeRepre sent at i ve can, if it chooses, reliably store the

output of any transformations it initiates. It is further assumed that the existence

of a cached representation can be easily verified and, if required, easily retrieved.

Responsibility for implementing the cacheing policy lies with the type representa-

tives.

4.10.6 Searching Cyclic Graphs

The construction graph shown in Figure 4-11 contains no closed loops, i.e., it is

an acyclic graph. This section examines the algorithm's ability to search cyclic

construction graphs, i.e., those containing inter-related representations.

Figure 4-15 shows an example construction graph containing a cycle. It is

identical to the example used earlier except for an additional arc between rep-

resentatives A and C, corresponding to an A'—*C transformation tool. Thus, it

becomes possible to take an A-representation of an object, using it to produce

a C;-representation, which in turn can be used to produce an A-representation.

Chapter 4. Object Construction
	

121

Source

Destination

Figure 4-15: An Example Cyclic Construction Graph

This is the simplest form of cyclic loop. Longer loops, containing three or more

representation are also possible. The search algorithm described above will enter

an infinite loop with such a graph, with the A- and c-representatives continually

forwarding the search to each other.

Infinite looping can be avoided by marking each node in the graph as it is

visited. This is a standard technique employed in graph searching algorithms.

If the search encounters a node it has already visited, then a cycle must exist.

Having detected a cycle, appropriate action can be taken to avoid infinite looping.

In the search algorithm described earlier, each type representative records all

sub-searches it initiates. This effectively acts as a 'marker' indicating that the

search has reached this representative. If a type representative observes a repeat

search request, then (assuming no errors) this implies that the search has been

propagated around a cyclic path and, furthermore, that no source was found along

that path (otherwise the search would have terminated). Any type representative

observing a repeated request should therefore invoke SearchComplete() with the

Chapter 4. Object Construction 	 122

outcome Failed. This will propagate back around the loop until either it meets a

Successful result, in which case it is rejected in favour of the successful path, or

it reaches the original root of the search. In both cases an infinite loop is avoided.

4.11 Summary

It has been argued that the automatic manipulation of object representations is

both desirable and necessary in a heterogeneous environment. A control mecha-

nism for applying transformation tools has been developed using a graph-based

formulation of the problem. Standard graph searching techniques, in particular

breadth-first searching, have been applied to the distributed graph structure in

order to find a source representation for a specified object. The graph search also

establishes the transformation steps necessary to create the desired representation.

Having found this information, constructing the object becomes straight-forward.

The search and construction algorithms presented provide the basis for a working

implementation, suggesting that an automatic construction service is a feasible

proposition.

Chapter 5

Distributed Scheduling

This chapter provides an introduction to resource scheduling. The schedul-

ing problem is defined in general terms, followed by an overview of current,

non-object scheduling techniques. The problems of performance measures

and status update policies are also covered. Scheduling in object based

systems is then examined, introducing an additional, fine grained level of

scheduling; invocation scheduling. Several of the scheduling techniques

identified earlier in the chapter are then re-examined with respect to invo-

cation scheduling. It is argued that object oriented performance metrics are

more appropriate to an object based environment than the re-application

of process based metrics. Several object oriented metrics are suggested as

being suitable for performance measurement.

123

Chapter 5. Distributed Scheduling 	 124

5.1 Introduction

Scheduling is the management of consumer access to resources. The Scheduling

Policy defines the criteria against which this access is governed. There are many

different formulations of this problem depending upon the definitions of consumers

and resources. Within the target environment, all Resources are objects and,

conversely, all objects are resources. No other form of resource exists. The resource

Consumers are also objects, making invocation requests to satisfy user demands.

The demands made upon a distributed system by consumers represent its

Workload. In the target environment the workload corresponds to invocation re-

quests. Distributed Scheduling (scheduling 'in the large') is the global assignment

of resources to workload, governed by the scheduling policy. Local Scheduling

(scheduling 'in the small') is the assignment of local resources to individual tasks

within the confines of a single object host. The problem of local scheduling in

single-processor systems has been thoroughly researched, with standard techniques

being presented in most basic operating system texts. Local scheduling is therefore

not addressed here.

5.2 Scheduling Policies

Many different approaches to distributed scheduling have been suggested in the

literature. The plethora of policies have prompted at least two attempts to create a

Scheduling Taxonomy, i.e., a descriptive framework with which to classify different

policies. One of these, by Wang and Morris, is based upon the level of informa-

tion required by the policy [Wang 85]. Seven levels of information dependency are

identified, which are then used to classify the 10 'canonical' scheduling algorithms

identified by their study. A more descriptive taxonomy is provided in [Casav88],

Chapter 5. Distributed Scheduling 	 125

which defines a hierarchical classification scheme based on policy characteristics.

In describing this taxonomy, Casavant and Kuhl present a comprehensive overview

of distributed resource scheduling, including an extensive literature survey classi-

fying over fifty published algorithms.

The following sections provide an overview of basic scheduling techniques and

terminology'. The techniques identified are not entirely independent. Many

scheduling mechanisms exhibit characteristics from more than one 'category'. The

majority of distributed scheduling research relates to non-object environments.

Schedulers in these systems deal exclusively with processes, i.e., executable or ex-

ecuting (binary) program representations, and processors, i.e., hardware capable

of executing processes. The scheduling problem is therefore defined in terms of

assigning processes to processors. This phraseology will be used for the moment.

The effect of considering an object oriented environment will be examined later.

Load Sharing and Load Balancing

Load Sharing scheduling policies attempt to distribute the system workload be-

tween processors. Load Balancing is a specific case of load sharing in which the

intention is to keep all processors equally utilised (in some sense), avoiding the

situation where one processor is overloaded while, at the same time, another is

underloaded. The motivation behind load balancing is the belief that by spreading

the workload as evenly as possible, the average completion time per unit of work

will be minimised.

In order to maintain this equilibrium, load balancing policies migrate work

away from 'overloaded' hosts towards 'underloaded' hosts, thereby correcting any

'As in chapter 1 with the phrases 'distributed system' and 'object orientation', these

terms are not universal.

Chapter 5. Distributed Scheduling 	 126

imbalances that arise. A load imbalance may occur, for example, when previously

scheduled work is completed, freeing the resources that were allocated to it. Load

balancing relies on the ability to migrate processes in mid-execution, which is

an 'expensive' operation because of the need to transfer the current execution

state of the process. This can become even more expensive in an heterogeneous

environment where the originating and destination processors may require different

representations of this state. A survey of the process migration mechanisms 2 used

in LOCUS, DEMOS/MP, XOS, V and MOS is presented in [Smith88].

Sender and Receiver Initiated

In sender-initiated scheduling policies, congested processors search for processors

with light load in order to transfer work. For example, if an overloaded processor

is requested to execute an additional process, it may search for an underloaded

processor more capable of satisfying the request. Conversely, receiver-initiated

policies place the onus on underloaded processors to look for work by canvassing

the overloaded processors. Receiver-initiated schemes suffer from the same mid-

execution migration expense as load balancing. This occurs because the offers of

assistance arrive at the overloaded processors asynchronously with respect to the

creation of new processes. Hence, in order to transfer some of the workload, an

existing process must be migrated. With sender-initiated policies, the overloaded

processor simply forwards the newly arrived request to start executing a process;

there is no need to transfer any execution state.

A detailed comparison of sender and receiver initiated schemes is presented

in [Eager85]. It is shown that if the transfer costs in each case are the same, then

sender-initiated performs better at low to middle loadings, while receiver-initiated

'None of the systems surveyed in [Srnith88] are object based.

Chapter 5. Distributed Scheduling 	 127

performs better at higher loads. This makes sense intuitively, since at higher

workloads the burden of scheduling is removed from the overloaded processors,

and placed with the underloaded processors, i.e., with those that have the spare

processing capacity to cope with it. However, in most systems that implement

dynamic migration, the transfer costs are significantly greater for receiver-initiated

schemes due to the mid-execution migration expense they incur. Under these

circumstances sender-initiated policies give better average performance across all

loadings.

Static and Dynamic

The difference between static and dynamic scheduling relates to the time at which

scheduling decisions are made. In Static Scheduling, the scheduling decision is

made at construction time, i.e., when the executable representation is created.

Once made, this assignment is never changed. Hence, every time the process is

submitted for execution it is always assigned to the same processor. Static schedul-

ing policies assume a stable environment in which the system status observed at

construction time, is the same as that observed each time the process is executed.

Dynamic Scheduling policies remove the assumption of a stable, predictable en-

vironment and take the more realistic view that little a priori status information

is available. The assignment of process to processor is delayed until immediately

before the process is executed, incorporating the system's current status into the

decision making. Each execution of a process may therefore take place on a dif-

ferent processor, reflecting changes in loading status. Hence, dynamic schedulers

can potentially adapt to and exploit, changes in processor availability.

Chapter 5. Distributed Scheduling 	 128

Adaptive Scheduling

An Adaptive scheduler is one in which the algorithms and parameters used to

implement the scheduling policy, change dynamically according to the previous

and current behaviour of the system (which in turn was influenced by earlier policy

decisions). Note that the algorithms and parameters themselves must change over

time for a scheduler to be classed as adaptive. A scheduler in which only the

values of observed parameters change is dynamic, as described above.

One example of an adaptive policy is an algorithm that attaches weights to

each of its observed parameters, with the weights being re-calculated in response

to earlier scheduling decisions. Therefore, a parameter that was important in

earlier decisions, i.e., one that had a large weighting, may become insignificant in

future decisions due to its weighting being reduced. Schedulers based on stochastic

learning automata, such as the one reported in [Mirch86], provide further examples

of adaptive scheduling.

Probabilistic

Probabilistic scheduling policies are based on the long term probabilistic behaviour

of a system. Assignments of processes to processors are performed randomly

according to some distribution that describes this behaviour. One of the simplest

policies is to assign uniformly at random, for example, in a system of n processors,

each is selected with probability . In theory, the long term behaviour of such

a policy will assign work evenly between all n processors. A more complicated

algorithm might adjust the selection probabilities depending upon the observed

'performance' of earlier assignments; a good performance leading to an increased

probability of re-selection.

Chapter 5. Distributed Scheduling
	 129

One-Time and Dynamic Assignment

With One-Time Assignment, a process runs to completion on its selected processor

regardless of subsequent changes in the load distribution. Schedulers employing

Dynamic Assignment may re-evaluate earlier scheduling decisions in the light of

new or more up-to-date information, possibly leading to the mid-execution migra-

tion of a process. For example, the essential difference between load sharing and

load balancing described above is that load balancing uses dynamic assignment,

whereas load sharing uses one-time assignment. Note that it is still possible to

have a policy employing dynamic assignment whose goal is something other than

load balancing, for example, re-assigning a process because of the imminent failure

or close-down of its current processor.

5.3 Scheduling Metrics

All but the simplest scheduling policies rely upon monitoring certain system pa-

rameters, using the observed values to drive the scheduling algorithm. There are

two aspects to this monitoring operation; deciding which system parameters pro-

vide useful scheduling information, and deciding how to propagate the observed

values throughout the system.

5.3.1 Performance Measures

Many scheduling algorithms presented in the literature assume the parameter

values they require are known in advance, i.e., before the process is scheduled. For

example, some of the earliest work on load sharing [Stone77] assumed that process

execution times and levels of inter-process communication were pre-determined.

Some algorithms assume that very detailed scheduling information is available.

For example, the algorithm presented in [Chou 821 uses

Chapter 5. Distributed Scheduling 	 130

E(i, x): execution time of task i on processor x

CO(i, x,j, y): communication time for the results of task i on processor x to

task j on processor y

F(i,x): probability task i fails on processor x

CH(i, x): time to create a checkpoint for task i on processor x

D RE(i, x): time to restart failed task i on processor x

i> CI(a, x): time to initiate a set of concurrent tasks a by processor x

> CC(a,j,x): communication time for the results of a set of concurrent tasks

a to task j on processor x

The algorithm presented in [Hsu 86] assumes, among other things, that the amount

of unfinished work per host is known. The algorithm in [Varad88] includes pa-

rameters such as the fixed cost of migrating one unit of resource, and the average

resource requirements for a job.

Using this approach the scheduling problem is formulated as an equation, with

a parameter included for every characteristic the scheduler's developers believe to

be important. The equation is then solved algebraically, the result forming the

basis of a scheduling algorithm. If an exact solution is found, then the resultant

algorithm is optimal for the problem it describes. Simulations are often used to

confirm this. In order to apply an algorithm to a specific system, the parameters

are interpreted in units suitable to that system. However, in practice some of these

parameters are somewhat difficult to quantify. For example, how is 'one unit of

resource' actually defined?

Without exception, all distributed schedulers implemented in working systems

use much simpler measures. System developers have taken the pragmatic ap-

proach of using parameters that are available and easily measured. There are

Chapter 5. Distributed Scheduling 	 131

principally two metrics in common use; processor Queue Length and percentage

processor Utilisation. Queue length measures the number of processes currently

active on a processor, thus providing a coarse approximation to the processor's

load. Processor utilisation measures the percentage of time the processor is active

(or equivalently the percentage idle time), thus yielding. a different approxima-

tion to processor load. Queue length is used, in conjunction with utilisation, by

the LOCUS distributed file system [Haé 86]. Utilisation is used within the MOS

distributed system [Barak85] and the V distributed system [Theim86}.

Queue length does not provide the same level of accuracy as utilisation, since

an interactive program such as a text editor, does not present the same processor

load as a computationally intensive program, such as a simulation. Both programs,

however, carry equal weight when measured as entries in the processor queue.

Utilisation, although not as coarse, requires greater effort to determine, since it

is usually calculated as an average over some specified time period in order to

smooth temporary fluctuations.

Simple scheduling mechanisms are employed principally to reduce implemen-

tation complexity. However, a study by Eager et al. has shown that

"Extremely simple load sharing policies using small amounts of in-

formation perform quite well—dramatically better than when no load

sharing is performed, and nearly as well as more complex policies that

utilize more information." [Eager86]

The study's conclusion is that the expense of propagating and maintaining com-

plex status information, is not justified by the marginal improvements gained in

scheduling performance, i.e., "simple is best".

Chapter 5. Distributed Scheduling
	 132

5.3.2 Status Update Policies

Given a usable performance indicator for a processor, it becomes necessary to

inform other processors of its current value, keeping them up-to-date with any

changes. There are many possible update policies, the simplest of which is Periodic

Broadcasts. Under this policy, each processor observes its own performance metric

every T seconds, broadcasting the new value to all others. Hence, each processor

has an estimate of the others' current performance, guaranteed to be no more than

T seconds out of date. There is a tradeoff here between update overheads and

accuracy, determined by the timeout value T. A small value for T generates more

updates and therefore greater accuracy, but incurs greater maintenance overheads.

Conversely, a large value of T reduces the overheads, but also reduces accuracy.

A refinement to periodic broadcasting, attempting to reduce the number of

update messages while still retaining accuracy, is suggested by Theimer who ob-

serves that, with a sender initiated policy, the only updates of interest are those

from lightly loaded processors [Theim86]. He therefore suggests a scheme in which

a cutoff level is defined, such that only processors whose load is below the cutoff

level send updates, those above the cutoff level remaining silent. The cutoff level

can be modified over time and re-broadcast to reflect changes in the overall system

load. This mechanism has been implemented in the V system.

Probing and bidding policies provide examples of update mechanisms that

propagate status information only when it is requested, rather than supplying

continuous, unsolicited updates. With Probing [Eager86], when an overloaded

processor receives an 'execute new process' request, it randomly selects one of the

other processors and 'probes' it, i.e., sends a status request message, to establish

its current load. If adding the new process to the probed processor would not make

it overloaded, then the 'execute' request is transferred. If the probed processor is

already overloaded, or if adding the new process would make it overloaded, then

a second processor is randomly selected and probed. This continues until either

Chapter 5. Distributed Scheduling 	 133

a suitable processor is found, or the number of processor probed reaches a pre-

determined limit. In the latter case the originating processor must execute the

process itself. With a Bidding algorithm, a processor wishing to offload an 'execute'

request sends a broadcast message giving details of the process. Any processor

that wishes may then respond with a 'tender' for the process. The responses are

analysed, with the 'best' tender being awarded the new process.

Another mechanism, reported in [Ni 85], attempts to reduce update traffic by

only sending updates when-there is something worth reporting, i.e., when there

has been a notable change in a processor's load. In order to define 'a notable

change', three system-wide loading categories are used; high load, normal load

and light load. Each processor is assumed able to classify its current load in terms

of these categories. An update message is only broadcast when the processor's

load crosses a category boundary. Unfortunately, this scheme suffers from what

the authors call 'state-woggling', which occurs when a processor's load lies on a

boundary, continually fluctuating between two categories and thus, continually

generating updates. The idea of only reporting 'notable changes' will be returned

to later in the thesis.

5.4 Scheduling in Object-Based Systems

The systems mentioned above in relation to process migration (Locus, DEMOS/M P,

xos, V and Mos) are all process based, i.e., not object oriented. Most current

object oriented systems providing object migration use exactly the same techniques

as their process based counterparts. For example, the migration mechanisms of

Amoeba and Eden treat migratory objects simply as executable process images.

One notable exception is Emerald in which all objects can move regardless of

size [Jul 88], including simple data objects.

Chapter 5. Distributed Scheduling
	

134

The remainder of this chapter examines the effect upon scheduling of employing

object oriented characteristics, rather than reducing everything to the level of

binary processes. Several of the topics introduced earlier are re-examined in the

light of this new perspective.

Definitions

In chapter 2, the Object Reference Model identified two tiers of scheduling in ob-

ject based systems; object scheduling and invocation scheduling. Object Schedul-

ing is the assignment of object instances to object hosts. This is comparable to

the assignment of processes to processors in process based systems. Invocation

Scheduling is the assignment.of invocation messages to object instances. There is

no real parallel here with process based systems. The need for invocation schedul-

ing is the principal difference between objects and processes, a distinction that

raises some interesting scheduling possibilities.

The invocation scheduler has two types of objects to consider; those whose

service is Immutable, and those whose service is Retentive. Invocations upon an

immutable service are independent and can be passed to any instance offering the

service. For example, the result of invoking routine Multiply will be the same

regardless of the Calculator instance used. Invocations upon retentive services

however, are related and must always be passed to the same instance. Retentive

services result when an invocation causes the object to alter its internal state,

thereby 'remembering' that the invocation occurred. This generally occurs with

transaction based services that have an initialisation phase, followed by a period

of service provision, followed by a closedown phase. As an example, invocations

on EnQueue and DeQueue must be passed to the same Queue instance in order to

have the desired effect.

Chapter 5. Distributed Scheduling
	 135

Load Balancing

In process based systems, load balancing is synonymous with process migration.

This results from that fact that the smallest unit of workload is a complete pro-

cess. Migrating work to balance the load therefore implies migrating the process

representing the load. In an object environment this equates to the migration of

object instances between hosts; the principal load balancing technique employed

by current object oriented systems. However, in object based systems the smallest

unit of workload is represented not by objects, but by invocation messages. In-

deed, objects by themselves do not usually represent any load without invocation

messages to request their services. The granularity of workload as measured by

invocation messages, is therefore much finer than in process based systems; closer

to the 'procedural' level than the process level. Since invocation messages can be

migrated around the system with relative ease (minimal expense), object oriented

systems offer an additional, finer grained level of load balancing by scheduling

invocations between replicated servers.

The simplest case is that of an immutable service. When the arrival rate

of invocations exceeds an immutable object's servicing capacity, an additional

instance can be created to handle the overspill. Hence, the load has been migrated

without migrating objects. As long as there is spare capacity in the system to

host additional instances, an immutable service can be 'expanded' in this manner

to match the current demand. A corresponding 'garbage collection' mechanism

should also be employed, removing redundant instances during periods of low

invocation activity.

Expansion of retentive services is not as straightforward because of the depen-

dencies between consecutive invocations. However, there are still benefits to be

gained in taking this approach. A retentive service can be expanded subject to

the restriction that the new instance only handles new transactions, i.e., those for

which the original instance holds no status information. Hence, the additional

Chapter 5. Distributed Scheduling 	 136

instance cannot alleviate the original's load, but it can prevent the load from in-

creasing further. An improvement upon this scheme would be to allow the transfer

of some status information between instances, via 'transaction-transfer' invocation

routines. This would allow the original instance to transfer enough of its current

'transactions' to balance the load. This is not the same as transferring a process's

context information, which is an 'all or nothing' machine - and implementation

- dependent transfer of binary data. 'Transaction transfers' would enable an

object to off-load as much, or as little of its workload as required.

Service specific status information should be passed as implementation inde-

pendent, structured data types, rather than as binary images. The transfer could

use the standard invocation mechanism to invoke routines in the recipient object

specifically provided for this purpose. One immediate and very important con-

sequence of transferring status at the object level, rather than the process level,

is that it transcends both host heterogeneity and implementation heterogeneity.

The original and new instances can communicate service specific information, even

though they may be heterogeneous implementations residing on heterogeneous

hosts. The language CLU implements a value transmission method similar in

spirit to that required here [Herli82}.

The conclusion is that in object based systems, the fine-grained workload allows

load balancing to be implemented without the overheads of object migration. If

status information needs to be transferred with the migrated work, it should be

passed via invocations as high level service specific data types in order to avoid

problems with system heterogeneity. This philosophy is summarised by the phrase

"Don't migrate, replicate!".

Chapter 5. Distributed Scheduling
	

137

Performance Measures

In -an object oriented environment, the analogous load measure to queue length is

Object Count, i.e., the number of objects present on a host. Object count suffers

from the same problem as queue length in that not all objects represent the same

level of workload; an object never invoked generates little or no load. Further,

object count gives no information regarding the load on each individual object,

which is a necessary prerequisite for invocation scheduling. Using host utilisation

as a load measure suffers from the same drawback, in that it provides no object

related workload information. The standard workload measures used to implement

scheduling in process based systems therefore do not transfer easily into an object

oriented environment; something else is required.

The following paragraphs discuss the monitoring of object performance for use

in conjunction with invocation scheduling. Since hosts are themselves objects,

it is possible to view object scheduling as a special case of invocation schedul-

ing. Therefore, the comments made below are generally also applicable to object

scheduling. It has already been argued that, at least with respect to load bal-

ancing, considering object oriented characteristics yields an improvement over the

process oriented approach. This approach will also be applied here to derive an

object oriented performance metric.

There are two basic methods of defining object oriented performance metrics.

Either provide every object with its own specific metric, or define generic metrics

applicable to all objects. The former offers potential for greater accuracy, while

the latter (if possible) would be more easily interpreted, requiring no specific

knowledge of the object under observation. These two approaches are discussed

below.

If object specific metrics are employed, they must be defined by the object's

implementor as part of the implementation. The fact that they are object spe-

Chapter 5. Distributed Scheduling 	 138

cific implies the object must participate in the monitoring activity, for example

by providing an additional invocation routine such as CurrentLoadO, which cal-

culates and returns the current load in units specific to the object. An invocation

scheduler is therefore provided with the means to interrogate object instances,

establishing their loads. The major problem with this approach is in interpreting

the myriads of different metrics it generates. Different implementors will use dif-

ferent metrics, possibly even when implementing the same object, thus making it

impossible to compare their relative performances. Although regulations could be

devised to avoid such conflicts, this approach is not considered worthwhile. An-

other drawback is that it forces every object instance to participate in scheduling.

This is not seen as desirable, since scheduling should be a function of the system,

and not reliant upon the cooperation of the objects being scheduled or, perhaps

more importantly, not reliant upon the object's implementor.

A more manageable approach is to employ generic object attributes possessed

by all object instances. There are many such attributes, some of which have

potential for use as performance metrics. Examples include : the number of

invocation routines; invocation rate (averaged over the previous T seconds); service

rate per invocation routine (averaged over the previous n invocations); service rate

per object; and many others derived from these, such as throughput (arrival rate

divided by service rate). More concrete definitions for some of these metrics will

be given in chapter 6.

The fact that these attributes belong to every object means they they do

not rely upon information specific to a particular object, or any other recondite

knowledge. Some of them are Externally Observable, i.e., measurable by a third

party (such as a scheduler) monitoring the interaction between client and server.

If such metrics can be used for scheduling purposes, then this leads to the desirable

property of Passive Participation, i.e., objects play no part in the monitoring of

their own performance.

Chapter 5. Distributed Scheduling
	 139

Chapter 6 now describes a scheduling mechanism based on these ideas, mon-

itoring invocation service times to provide an estimate of object performance.

Chapter 7 presents art update algorithm, also based on service times, that elimi-

nates redundant updates, thereby reducing update overheads.

Chapter 6

Comparison Scheduling

A novel approach to invocation scheduling is developed using statistical hy-

pothesis testing as the basis for a scheduling algorithm. The behaviour of

two intuitive scheduling policies, random scheduling and greedy schedul-

ing, is examined, with simulated performance results presented. A new

scheduling algorithm, known as comparison scheduling, is then developed,

based upon hypothesis testing. The comparison scheduler only selects

an object if it is significantly better than its peers; otherwise random se-

lection is used. A detailed statistical model is developed to rigorously

define the phrase 'significantly better'. The simulated performance re-

sults for comparison scheduling are compared to those for random and

greedy scheduling. These results show a marked improvement, indicating

comparison scheduling's considerable potential for use in object oriented

distributed systems. The application of a comparison scheduler to object

scheduling is also considered.

140

Chapter 6. Comparison Scheduling 	 141

6.1 Model of Invocation

Invocation scheduling is the assignment of invocation messages to object instances.

The interesting case arises when there are two or more object instances capable of

servicing an invocation. The scheduling problem addressed here is how to decide,

on the basis of observing only service times, which object instance should receive

each invocation. For simplicity, all objects are assumed to provide idempotent

services. This means that every invocation can be scheduled individually. With

retentive services, invocation scheduling is restricted to only the first invocation

in a 'transaction', since all invocations in a 'transaction' must be presented to the

same instance. (see chapter 5, page 135).

The model of invocation assumed throughout this chapter is shown in Figure 6-

1. Each object S provides a service of r3 invocation routines R1 , R2 ,.. . , R, 3 ,

collectively denoted R3 . Invocations upon routines in S are placed at the tail of its

request queue, which is serviced serially from the front, i.e., in a first-come first-

served ordering. Only one routine (the one specified in the invocation message

currently being serviced) is active at any one time. Upon completion of each

request the object is assumed to send a (potentially empty) reply. This enables

an external observer to accurately determine the service time by comparing the

arrival and reply times for each invocation request. The observed service time

therefore includes the invocation message's queueing time.

Each routine R1 has service rate p, where each p i may be different. In order to

demonstrate the comparison scheduling mechanism developed later, these service

times are assumed to follow an exponential distribution. The use of exponential

service times is discussed below.

Chapter 6. Comparison Scheduling
	

142

Incoming 	 .. I

Requests 	 Request
Queue

Routine R 1

Routine R2

Routine Rr.

Reply

Reply

Reply

Figure 6-1: Invocation Model

6.2 The Control Scheduling Policies

Before presenting comparison scheduling, two intuitive policies will be examined;

random scheduling and greedy scheduling. They are introduced for use as controls

with which to compare the new policy.

6.2.1 Random Scheduling

Uniform random scheduling is one of the simplest policies to implement as it

requires no status information. Given n suitable object instances, invocations are

assigned uniformly at random, each instance being selected with probability 1 .

The long term behaviour of this policy assigns invocations evenly between the

n objects. However, because it does not observe current performance, random

scheduling makes no attempt to compensate for any load imbalances that may

arise.

Chapter 6. Comparison Scheduling
	

143

6.2.2 Greedy Scheduling

Greedy scheduling uses the average service time of each instance to select the

fastest one. The assumption is that recent history on service times provides a

reasonable indication of current performance. The term 'greedy' is used because

it always selects the 'best' i.e., fastest instance. The average service time of each

instance is updated upon the completion of every invocation. This average, X,, is

calculated over the previous h invocations on object S as

j=1

where T is the observed service time of the J Ih invocation. When invocation h + 1

completes, the service time for invocation 1 is replaced by that for invocation h +1.

Hence, the length of service history maintained remains constant. The simulation

results described below compare several different values of h, namely 1, 6, 12, 25

and 50 invocations.

C)

Chapter 6. Comparison Scheduling 	 144

6.3 Arrival Rates and Service Times

The Poisson and Exponential distributions are widely used in simulation work to

model arrival and service times respectively. Their principal virtue is the memo-

ryless property (see Poisson postulate three below), which is the key to obtaining

analytic solutions to many queuing problems. In practice, rationalising the as-

sumption of Poisson arrivals (and consequently exponential servicing) rests on

satisfying the Poisson postulates defined below. For a more detailed discussion on

this topic see [MacDo87] (section 1.2) and [Mitra82] (section 4.4).

6.3.1 The Poisson Distribution

The Poisson distribution is commonly used to model the arrival of customers

at a service facility, such as the arrival of invocation messages to an invocation

scheduler. It is derived from the following postulates (where N(t) is the number

of arrivals occurring in time interval t)

In a 'small' time interval of length it, the probability of exactly one arrival

is proportional to the size of the interval.

Prob[N(t) = 1] = AAt

In this interval At, the probability of more than one arrival is negligible.

Prob[N(t) < 11 = o(Lt)

The occurrence of an arrival in a small time interval is independent of other

arrivals and also independent of the time since the last arrival.

These postulates are assumed to hold in most queuing systems, including the

model of invocation used throughout this chapter.

Chapter 6. Comparison Scheduling
	 145

Using only these assumptions, the Poisson distribution function, P(t), can be

derived, i.e., Prob[N(t) = n].

-

P(t) -
	n!

For the mathematical details of this derivation see [Maeka87], or any text on

queuing theory.

Random variates drawn from the Poisson distribution are said to form a Poisson

process or Poisson stream. They model the conditions described by the postulates,

i.e., random arrivals with rate A. The Poisson distribution is used to generate the

simulated workload for the scheduling simulation described in this chapter.

6.3.2 The Exponential Distribution

The inter-arrival time between two events in a Poisson stream is the waiting time

for the second event. Suppose an arrival occurs at time 0. The time of the next

arrival is less than or equal to t if and only if at least one arrival occurs in the

interval (0, t). The probability distribution of inter-arrival times T is given by

F(t) = Prob[T < t] =
00

00

P(t) - P 0 (t)

1 - e_t

which is the exponential distribution function, with mean 1/A.

Hence, the waiting times between events in a Poisson process are distributed

exponentially. The exponential distribution is therefore often used to model service

times, since a service time can be viewed as the waiting time between starting a

service and service completion. The exponential distribution is used to generate

invocation service times in the scheduling simulation.

Chapter 6. Comparison Scheduling 	 146

6.4 Simulation Description

A simulation program was implemented to test the performance of random and

greedy scheduling. The same program is also used later to test the performance of

comparison scheduling. The purpose of this simulation is to establish the feasibility

(or otherwise) of a scheduler based purely on object oriented attributes. It is not

intended to define the detailed performance characteristics of a working scheduler.

All aspects of the simulation experiments have therefore been kept as simple as

possible. In particular, the initial results are based on observing only three object

instances. However, as will be demonstrated, the results from this simple config-

uration are sufficient to expose the deficiencies of random and greedy scheduling,

and subsequently the improvements achieved by comparison scheduling.

The three simulated object instances A, B and C, each provide the same idem-

potent service with five invocation routines, R 1 , R 2 ,... , R 5 . The choice of five is

arbitrary, but not atypical, and was considered the smallest number sufficient to

emulate an 'interesting' object. The performance of each scheduling policy (ran-

dom and greedy) is tested in two separate cases. First, when all three instances

offer identical performance, referred to as the Uniform case, and second, when their

relative performances are uneven or Non-Uniform. The purpose of this is to es-

tablish how well each scheduler adapts to changes in object performance. In each

case the simulation is repeated with three different workload levels denoted low,

medium and high. These workloads are defined in terms of the invocation rate

upon the three instances. An invocation arrival rate less than the service rate of a

single instance is defined as low load, i.e., all invocations are within the capacity

of a single instance. Arrival rates exceeding the capacity of a single instance, but

less than that of two instances are defined as medium load. Finally, high load is

defined as any invocation rate exceeding the capacity of two instances.

Chapter 6. Comparison Scheduling
	 147

Arrival rates exceeding the capacity of all three instances can not be sensibly

handled by invocation scheduling alone. It is under these circumstances that ser-

vice expansion should be used to create an additional service instance. This raises

the service capacity to match the workload, whereupon invocation scheduling can

re-distribute the load accordingly. Chapter 7 (section 7.4) describes a mechanism

for detecting such overload conditions.

The simulated workload was generated independently of the simulator, to be

read in during each simulation run. Three workload files were produced, one for

each of the load categories low, medium and high. The same files were presented

to each simulation experiment so that all scheduling results pertaining to, say,

high load correspond to the same (high rate) series of invocations. This enables

direct comparisons to be made between the performance results of the different

scheduling policies. Each workload file contains a list of start times indicating

the points at which each simulated invocation should be generated (Figure 6-2).

These times were drawn from a Poisson distribution with arrival rates as defined

below. Associated with each start time is a number in the range 1-5, drawn from

a uniform distribution, indicating the routine to be invoked. The actual service

time corresponding to each invocation is generated during the simulation; drawn

from the exponential distribution with a rate dependent upon the routine invoked

(see below).

During each simulation run, simple statistics are collected on the scheduler's

performance. These are summarised at the end of each run, indicating: the num-

ber of invocations simulated; the number assigned to each instance; the average

service time of each instance; and the average service time across all instances.

The standard deviation of service times, o, is also calculated for each object S as

-

cT 8 =I
N

where n3 is the total number of invocations upon object S throughout the simula-

Chapter 6. Comparison Scheduling
	

148

Start Time Routine

	

0.1774 	3

	

0.3332 	2

	

0.7900 	3

	

1.2251 	4

	

1.9574 	5

	

2.1056 	4

	

2.5177 	3

	

2.5796 	3

	

3.7144 	1

	

4.0948 	2

	

4.5913 	4

	

4.9182 	4

	

4.9876 	3

	

5.4306 	2

Figure 6-2: A Sample of Simulated Workload

tion run, and T1 <i < n8 , is the service time of each of invocation. o, is used to

provide 95% confidence intervals for the average service times per instance. This

interval is calculated as

(.

- 1.96a 	+ 1.96a3\

where X. is the average service time for instance S across all invocations. The

accuracy of this interval relies on n3 being large enough to allow the use of the

Central Limit Theorem, i.e., the interval is based on the Normal distribution rather

than the exponential distribution, making it easier to calculate. These confidence

intervals provide some idea of the range of service times observed throughout the

simulation. They therefore indicate the performance consistency of an object; the

smaller the range, the greater the consistency.

The simulator configuration is shown in Figure 6-3. For the uniform case,

i.e., when all three instances offer the same performance, the invocation service

rates were fixed as follows : 	 = 2.O,p = 3.0,j 	.4.0,ii5 = 5.0.

Chapter 6. Comparison Scheduling
	

149

Scheduler Simulation
Workload

Data I Scheduler ________
' Summary

Low 	-
'

Medium

-- 	

Random

or

or Greedy

High

[

Object 1 [IOb ject 	Object
Instance 	nstance 	Instance I

A 	 B 	 C 	I

Figure 6-3: Simulation Configuration

Again, these figures (and their units') are arbitrary, however, applied consistently

across all experiments they provide a basis with which to compare the relative

performance of each scheduler. For the non-uniform case, i.e., when each instance

offers a different performance, the service rates for instance A are reduced by 50%,

the service rates for instance B remain the same, while the rates for instance C are

increased by a factor of 50%. The combined service capacity of the three instances

therefore remains the same as in the uniform case.

The expected service time for each invocation routine Ri is -, hence the ex-

pected service time, X, for each instance is

Pt

assuming invocations are generated uniformly for the five routines. From the

service rates specified above for the uniform case, this yields an average service

time per invocation per instance of 0.457. Hence, the effective service rate of each

instance, is 2.19. Two identical instances therefore offer a theoretical service

'The units are notionally seconds, although this is not important

Chapter 6. Comparison Scheduling 	 150

rate of 4.38, with three instances operating at 6.57. Combining these figures with

the above definitions for workload, the simulated arrival rates for low, medium and

high load are fixed at 2.0, 4.0 and 6.0 respectively. In each case these are realised

as the aggregation of five separate invocation streams operating at a fifth of this

rate; one for each invocation routine. The same arrival rates (in fact the same

workload file) are used in the non-uniform case, allowing the direct comparison of

performance results from the uniform and non-uniform simulations.

The workload files generated for each of the categories low, medium and high,

simulate invocation arrivals for 3600 units of elapsed time (notionally one hour).

Even in the low load case this represents approximately 7200 (3600 x 2.0) invoca-

tions, which is a sufficiently large sample to allow the Normal approximation to

be used when calculating the confidence intervals. Each simulation run is in fact

performed 10 times to gain a more representative view of each scheduler's charac-

teristics. The results presented in this chapter, except when stated otherwise, are

therefore averaged over ten simulation runs.

6.5 Simulation Results

6.5.1 Random Scheduling

The performance results for the random scheduler are shown in Tables 6-1 and 6-2.

In the uniform case, random scheduling predictably performs extremely well. The

workload is shared evenly between the three instances, with each receiving exactly

one third of all invocations. The average service time per invocation increases as

the load increases, but not disproportionately. The variation between instances

remains very small under all loadings.

In the non-uniform case, the servicing capacity is split 16%, 34%, 50% between

A, B and C respectively. However, because random scheduling makes no attempt

Chapter 6. Comparison Scheduling
	 151

Load Object Invocations Average

Category Instance Received Service Time

Low A 33% + 1% 0.8 ± 0.04

B 33% ± 1% 0.8 ± 0.04

C 33% + 1% 0.8 ± 0.04

Overall 7344 Eil
Medium A 33% + 1% 1.5 + 0.05

• 	B 33% ± 1% 1.4 ± 0.05

C 33% ± 1% 1.4 ± 0.05

Overall 14358

High A 33% ± 1% 6.1 ± 0.1

B 33%+1% 6.5±0.1

C 33%±1% 6.5±0.1

Overall 21753 KI

Table 6-1: Random Scheduling Under Uniform Performance

Chapter 6. Comparison Scheduling 	 152

Load Object Invocations Average

Category Instance Received Service Time

Low A 33% ± 1% 3.2 ± 0.2

B 33% ± 1% 0.7 ± 0.04

C 33% ± 1% 0.4 ± 0.02

Overall 7344 El
Medium A 33% ± 1% 414.8 + 6.7

B 33% ± 1% 1.3 ± 0.04

C 33% ± 1% 0.7 ± 0.02

Overall 14385 1139.11

High A 33% ± 1% 1492.5 ± 17.9

B 33%±1% 6.6±0.2

C 33% ± 1% 1.0 + 0.03

Overall 21753 1499.81

Table 6-2: Random Scheduling Under Non-Uniform Performance

Chapter 6. Comparison Scheduling 	 153

to observe this, the invocations are still apportioned evenly. Consequently, the

slowest instance, A, is permanently overloaded, while the fastest instance, C, is

under-utilised. This is reflected in the large service times for instance A, partic-

ularly at medium and high loads, caused by invocation requests spending a large

amount of time in A's request queue waiting to be serviced. Consequently, the

average response time across all three instances is very poor. Direct comparisons

can be made with the uniform instance results since the invocation rates are the

same in both cases, as is the combined processing capacity of the three instances.

In conclusion, the simplicity of uniform random scheduling is only beneficial

when all object instances offer very similar performance characteristics. When

their servicing capacities differ, random scheduling still assigns invocations evenly,

leading to a load imbalance and consequently poor average performance.

6.5.2 Greedy scheduling

Before examining greedy scheduling in detail it is necessary to establish the history

length, h, to be used. The summarised performance results using different length

histories are shown in Tables 6-3 and 6-4. Each entry is the result of only a

single simulation run. The service times are considerably worse than random

scheduling in almost all cases. Only with low load and non-uniform performance

does greedy scheduling outperform random scheduling. This observation holds for

all the history levels tested, with no particular history being appreciably better

than the others.

The history used in the more detailed analysis has been fixed at 12 invocations.

This allows direct contrasts to be made later with comparison scheduling, which

also uses a history of 12 invocations (the reason for this will be explained later).

The more detailed greedy scheduling performance results, incorporating a history

Chapter 6. Comparison Scheduling 	 154

Load

Category

Average Service Time at History Length

1 6 12 25 50

Low 3.5 4.5 4.3 4.7 4.2

Medium 204.7 221.2 246.8 205.5 210.6

High 795.6 696.7 756.7 778.7 628.7

Table 6-3: Greedy Scheduling Under Uniform Performance

Load

Category

Average Service Time at History Length

1 6 12 1 25 50

Low 1.0 1.1 1.2 1.1 1.1

Medium 98.9 99.5 92.5 136.1 100.6

High 605.8 508.2 535.7 542.5 505.4

Table 6-4: Greedy Scheduling Under Non-Uniform Performance

Chapter 6. Comparison Scheduling
	

155

Load Object Invocations Average

Category Instance Received Service Time

Low A 31% ± 23% 4.6 + 0.2

B 30% ± 27% 4.9 + 0.2

C 41% ± 26% 4.6 ± 0.2

Overall 7344 Efl
Medium A 33% ± 8% 195.9 ± 4.3

B 35% ± 10% 226.3 + 4.8

C 35% ± 8% 213.6 ± 4.7

Overall 14385 1212.61

High A 29% + 8% 609.7 + 10.9

B 35% ± 14% 727.9 ± 11.2

C 34% ± 20% 662.1 + 10.3

Overall 21753 1668.31

Table 6-5: Greedy Scheduling Under Uniform Performance

of length 12 and averaged over ten simulation runs, are shown in tables 6-5 and 6—

In the uniform case, greedy scheduling fails to find the optimal workload dis-

tribution of 33% per instance. The actual workload distributions observed varied

considerably between simulation runs. This inconsistency is caused by a charac-

teristic of greedy scheduling known as swamping.

Swamping occurs because the greedy scheduler always selects what it perceives

to be the fastest instance, based on the average service time of recent invocations.

When the arrival rate for the system exceeds the (observed) service rate of the

fastest instance, more than one invocation may arrive between invocation comple-

tions, i.e., between status updates. Consequently, the status information becomes

Chapter 6. Comparison Scheduling
	 156

Load Object Invocations Average

Category Instance Received Service Time

Low A 1% ± 1% 7.0 ± 1.0

B 4%±3% 3.1±0.3

C 95% ± 3% 1.0 ± 0.03

Overall 7344 El
Medium A 9% ± 4% 272.5 ± 9.8

B 19% ± 5% 126.5 ± 3.7

C 70% ± 6% 84.6 ± 1.3

Overall 14385 1109.11

High A 19% ± 12% 1259.8 ± 20.4

B 30% ± 11% 604.6 ± 10.4

C 51% ± 15% 396.6 ± 5.4

Overall 21753 1592.01

Table 6-6: Greedy Scheduling Under Non-Uniform Performance

Chapter 6. Comparison Scheduling 	 157

'stagnant' relative to invocation arrivals, with successive invocations being as-

signed to the same 'fastest' instance. The request queue of the fastest instance

therefore fills up faster than the instance can service it. The observed service

times gradually become worse, reflecting the time spent by each invocation in the

request queue. Eventually, the average service time will increase until one of the

other instances appears faster. At this point the faster instance is selected and is

in turn swamped.

The effect of swamping on the service times is clearly seen in Table 6-5. Once

the system-wide arrival rate exceeds the capacity of a single object, i.e., at medium

load, the average service time shoots up dramatically. This is a result of invocation

requests spending most of their time in large request queues awaiting service.

In the non-uniform case, at low load, nearly all invocations are assigned to

the fastest instance, c. This returns reasonable performance since .(by design)

this load is within C's capacity. However, at medium load swamping starts to

occur, although the resultant performance is still marginally better than that for

random scheduling. At high load the greedy scheduler apportions the invocations

very close to the optimal 16%, 34%; 50% split, but the swamping effect yields a

performance considerably worse than that of random scheduling. In particular, at

high load and with uniform performance, the average service time per invocation

for greedy scheduling is over 100 times that for random scheduling. This is because

the apparently optimal invocation split is the net result of swamping each instance

in turn, rather than continually rotating between them.

In conclusion, greedy scheduling with a performance history of 12 invocations,

performs worse than random scheduling under almost all circumstances, but par-

ticularly when the instances offer similar performance. The main reason for this

is the swamping caused by always assigning to the perceived 'fastest' instance.

Chapter 6. Comparison Scheduling 	 158

6.6 Comparison Scheduling

Comparison scheduling is an enhanced form of greedy scheduling that attempts to

remove the swamping effect. The basic idea is to select the fastest instance only

if it is 'significantly' faster than the next one, otherwise selecting at random.

In the general case there are assumed to be c instances (copies) of the same,

idempotent service ranked in order by average (recent) performance. The fastest

instance is denoted S1 , the second fastest 82 and so on down to the slowest, S.

Comparison scheduling compares S 1 with 82. If S is 'significantly' faster, then it

is selected to receive the request (being 'significantly' faster than 52 implies S is

also significantly faster than all the others). Otherwise, S 2 and S3 are compared.

If S2 is 'significantly' faster, then one of S 1 or S2 is selected uniformly at random.

Otherwise, S3 and S4 are compared. The algorithm proceeds in this way until a

significant comparison is found. Should none of the tests prove significant, then

the algorithm automatically defaults to uniform random scheduling. In general,

if Si is 'significantly' faster than S (or if i = c, the number of instances), then

one of the i instances S1 . . . Si is selected uniformly at random, i.e., each with

probability .

The main contribution of this chapter is to define rigorously the criterion 'sig-

nificantly faster', as well as providing a mechanism for performing the compar-

isons. The formulation of the problem presented below assumes exponential service

times. This assumption is not critical to the comparison scheduling mechanism.

However, it does simplify the mathematics involved, enabling the use of standard

statistical tables. Other distributions could be used in systems where the exponen-

tial distribution is not a good model of service times. The statistical background

required for developing the exponential example is provided by the following sec-

tion.

Chapter 6. Comparison Scheduling 	 159

6.6.1 Statistical Background

Distribution Relationships

The following relationships between probability distributions are used in develop-

ing the exponential comparison scheduler.

Relation 1 If

X1,X2,. .. ,X 	exp(p)

then

>X'F(n,p)

i.e., if X 1 up to X follow an exponential distribution with rate p, then their sum

is distributed according to a Gamma distribution, with parameters n and p.

Relation 2 If

Y 	1'(n, IL)

then

2pY

i.e., if Y follows a Gamma distribution with parameters n and p, then 21LY follows

a chi-squared distribution with 2n degrees of freedom.

Relation 3 : If

S 	and T -x,,

then
S/n

"Fnm
T/rn

i.e., if S and T follow chi-squared distributions with degrees of freedom n and in

respectively, then the ratio sIn follows an F distribution with degrees of freedom

M.

Chapter 6. Comparison Scheduling
	 160

Hypothesis Testing

A statistical hypothesis is an assertion or conjecture about the distribution of

one or more random variables. To perform a hypothesis test, two contrasting

hypotheses are formulated; the null hypothesis, H0 , and the alternative hypothesis,

H1 . The Null Hypothesis is the main focus of attention. Generally this is a

statement that a parameter has a specified value. Often the phrase 'there is no

difference' is used in its interpretation, hence the name 'null' hypothesis. The

Alternative Hypothesis is a statement about the same parameter, specifying a

different value or range of values from those in the null hypothesis. Rejection of

the null hypothesis implies acceptance of the alternative hypothesis.

A hypothesis test examines the outcome of a statistical experiment for con-

sistency with the null hypothesis, yielding a statement of the form : 'Assuming

H0 to be true, then the observed outcome has probability F. Should P be very

small, i.e., the observed outcome is very unlikely given the assumption that H0

holds, then this provides evidence that H0 is in fact false, and that H1 should be

accepted instead. The smaller the value of P, the stronger the evidence to reject

H0 . Typical values of P for rejecting H0 are 0.1, 0.05, 0.025 and 0.01. If the

value of P lies in this range then the test is said to be Significant at the 10% level,

5% level, 2.5% level or 1% level respectively, with 1% significance providing the

strongest evidence for rejection. Larger values of P, i.e., greater than 0.1, imply

that H0 should not be rejected. Note that this is not evidence for H0 , it is simply

lack of evidence against H0 .

In comparison scheduling, the null hypothesis is that the average service times

of the two instances being compared are identical. The observed service times are

examined for consistency with this assumption. The alternative hypothesis is that

the average service times are (significantly) different. The precise formulation of

H0 and H1 , along with the testing mechanism for generating the value of P, are

described below.

Chapter 6. Comparison Scheduling 	 161

6.6.2 A Statistical Model of Invocation

The model of invocation used for comparison scheduling is the same as that de-

scribed earlier for Random and Greedy scheduling (Figure 6-1). However, in order

to simplify the mathematics involved, each object instance, 8, is modelled as hav-

ing a single service rate p. This is an approximation to the model, since each

instance is in fact composed of r 3 invocation routines, each with its own (different)

service rate i 1 (1 <i < r,). As will be demonstrated later, this approximation does

not impede invocation scheduling performance, because when comparing instances

of the same object the 'error' is the similar for each of them.

The following discussion illustrates the comparison mechanism for two object

instances A and B, which are assumed to have exponentially distributed service

times. Instance A has service rate /1a (unknown), and a history of service times

is available for the previous n invocations, denoted X 1 ,X2 ,. . . , X. Similarly,

instance B has service rate /.Lb (unknown), and a history of service times for the

previous m invocations, denoted Y1 , Y2 ,... Y,. In general, n m.

By relation 1:

1 X i F(n,p)

F(m,p)

which, using relation 2, gives

2/i a >X1 '

2/ib}' 	X m

and hence, applying relation 3

(21L. _in Xj/2n _ F

(214>i; 1')/2m 	2n,2m

Chapter 6. Comparison Scheduling 	 162

This latter statement can be rearranged to give

IL aX
F2n ,2m 	 (6.1)

Pb I

where 	>I 	Xi is the observed mean service time for instance A, and

similarly, Y = 	Y is the observed mean service time for instance B.

The quantity 14 is known as the Test Statistic, and will be used to perform

the hypothesis test. The probability of observing a particular value of the test

statistic, i.e., P, can be found using standard statistical tables describing the F-

distribution. However, whilst the values X and Y can be calculated from the

observed service times, the values of Pa and Pb are unknown. This problem is

solved by the formulation of H0 , which states that A and B offer identical perfor-

mance, i.e.,

H0 : Pa = Pb

against the alternative hypothesis that the service rates are different.

H1 Pa 0 Pb

Hence, under H0 , (6.1) becomes

F2n ,2m 	 (6.2)

6.6.3 - The Comparison Scheduler

Under the null hypothesis of identical performance, (6.2) states that the ratio

of the average service times of two object instances follows an F-distribution.

This model can now be used as a basis for constructing a comparison scheduling

algorithm.

Given several instances of an idempotent object, the scheduling problem is to

decide which one of these instances should receive a newly generated invocation

Chapter 6. Comparison Scheduling 	 163

request. In order to solve this problem the comparison scheduler keeps a history

of service times for the previous h invocations per instance, in the same manner

as the greedy scheduler. During the first few invocations, an instance's history

will contain less than h observations, but this is accounted for by the degrees of

freedom when performing the test (determining the value of h will be examined

shortly). Using these performance histories, the comparison scheduler can cal-

culate the current average service time for each instance, which are then ranked

in order, fastest first. If not all instances have been invoked at least once, i.e.,

if the scheduler has no performance information for one or more instances, then

random scheduling is used (alternatively, systematically use each instance once).

The following description assumes that at least one observed invocation service

time is available per instance.

The ratio of the average service times for the first and second fastest instances

is calculated. The probability P of observing the actual value calculated, assuming

H0 is true, can be found using standard tables of the F-distribution. The degrees

of freedom used to index these tables are 2n and 2m, where n is the length of

performance history for the fastest object, and in is the length of performance

history for the second object (n,m < h). If P is small, i.e., under H0 the observed

ratio is very unlikely, then the null hypothesis is rejected. As indicated earlier,

'small' usually means P < 0.1. For example, if 0.1 > P > 0.05, then the test is

significant at the 10% level. If 0.05 > P > 0.025 then the test is significant at the

5% level, and so on. Under these circumstances, the first object is deemed signif-

icantly faster than the second and is therefore selected to receive the invocation.

Should the test not be significant, i.e., P > 0.1, then the first and second fastest

instances are deemed to provide equal performance, and the algorithm moves on

to compare the second and third instances.

The scheduler moves down the sorted list of average service times, comparing

2 with 3, 3 with 4 etc., until one of the tests is significant. At this point the

Chapter 6. Comparison Scheduling 	 164

object instances can be partitioned into two groups; the 'fast' group - where all

instances are deemed to provide equal performance— which is significantly faster

than all members of the 'slow' group. One of the 'fast' group is then selected

uniformly at random to receive the invocation. Should none of the tests prove

significant, then all instances are deemed to provide identical performance and

hence, the algorithm defaults to uniform random scheduling.

As an example, consider an invocation request for which there are six possible

instances to choose from. Performance histories are available for all six instances,

from which the average service times have been calculated and the instances ranked

accordingly. In this example, assume that the first significant test is that between

the third and fourth instances in the ranked list. The algorithm in Figure 6-4

proceeds as follows : A check is made to ensure that performance information

is available on all contending instances. If not, then comparison testing cannot

proceed, so random scheduling is used instead. In this example sufficient informa-

tion is assumed available, so the comparisons begin. The average service time and

history length for the fastest instance are determined. Upon entering the while

loop, the corresponding figures are determined for the second fastest instance.

The test statistic is then calculated by taking the ratio of the averages, which is

then compared to the appropriate F-tables. In this case the test is not significant

so the variables are reset for the next iteration, which compares the second and

third fastest instances. Again the test is not significant so the loop is entered once

more to compare the third and fourth fastest instances. This test is significant

and so the loop terminates with SplitPoint set to 3. The remainder of the algo-

rithm simply selects from the first, second and third fastest instances uniformly at

random. Had no significant tests occurred, then the invocation would have been

scheduled randomly between all six instances.

Chapter 6. Comparison Scheduling 	 165

ComparisonSchedule(Thislnvocation InvocationRequest);

BEGIN
IF { Not all instances invoked at least once }

THEN RandomSchedule(Thislnvocation)
ELSE BEGIN

TopAverage : { Average service time of fastest instance };
TopHistory : { No. observations used to calculate average };

SplitPoint := 1
SignificantlyBetter := FALSE;

WHILE (NOT SignificantlyBetter) and { haven't compared all }
DO BEGIN
1* search for a significant test *1
NextAverage : { Average service time of next fastest };
NextHistory : { No. observations used to calculate average };

TestStatistic := NextAverage/TopAverage

SignificantlyBetter := FSignificant(TestStatistic,
2*NextHistory,
2*TopHistory);

IF (NOT SignificantlyBetter)
THEN BEGIN
1* set up for next iteration of loop */
TopAverage 	NextAverage;
TopHistory := NextHistory;
SplitPoint 	SplitPoint + 1;

{ Move pointer on to next instance in sorted list }

END of IF;
END of WHILE;

IF SignificantlyBetter
THEN BEGIN
Chosenlnstance := RandomBetween(1, SplitPoint);
Invoke(Chosenlnstance, Thislnvocation);

END
ELSE R.andoniSchedule(Thislnvocation);

END of first ELSE;
END of ComparisonSchedule;

Figure 6-4: The Comparison Scheduling Algorithm

Chapter 6. Comparison Scheduling
	 166

6.6.4 Scheduling Parameters

Having described the comparison scheduling mechanism, it now only remains to

define the significance level and history length to be used. Choosing the optimal

significance level will be based on the simulation results described below. Several

different levels - those normally used in hypothesis testing - are tested; specif-

ically 10%, 5%, 2.5%, 1%, 0.5% and 0.1%. Significance levels outside this range

are not normally used, with a 0.1% test being considered very highly significant.

A suitable value for the history length is suggested by the F-distribution itself.

An F statistic has two degrees of freedom; v 1 and v2 . Therefore, finding the

significant F-value for any given significance level involves looking up a table of

values indexed by u1 and v2 ; a different table being used for each significance level.

If the test statistic is greater than the tabulated value, then the test is significant.

Beyond approximately 10 degrees of freedom the F-values become very similar.

Consequently, standard F-distribution tables do not normally tabulate all possible

combinations of u1 and u2 . Interpolation can be used, where necessary, to find

untabulated values. The tables used by the simulation program tabulate F-values

for vi and v2 in the range 1-10, 12, 24 and oo. Although there is obviously a large

range of values missing, these are not really required, since the F-distribution

percentage points (F-values) for a test statistic with 24 degrees of freedom, are

very similar to those for a test statistic with infinite degrees of freedom. A simple

interpretation of this is that adding more degrees of freedom beyond 24 lends little

or no additional accuracy to the hypothesis test.

In comparison scheduling, ii1 and v2 correspond to twice the number of obser-

vations used when calculating the means of instances 1 and 2 respectively. The

argument presented above suggests that a history of 12 observations per object

provides sufficient information on which to base the comparisons. Consequently,

the comparison scheduler only keeps information on the twelve previous invoca-

tions per object.

Chapter 6. Comparison Scheduling
	 167

6.6.5 Simulation Results

The simulation configuration used is identical to that described earlier for random

and greedy scheduling. There are three object instances, each with five invocation

routines and service rates as defined earlier. The same workload files are used and,

as before, two different cases are simulated; uniform and non-uniform performance.

The service history retained for each instance is restricted to its twelve most recent

invocations (or less if the instance has not yet completed twelve invocations).

All six combinations of low, medium and high workload with uniform and non-.

uniform instances are repeated for each of the significance levels 10%, 5%, 2.5%,

1%, 0.5% and 0.1%. The initial simulation results (only one simulation run each)

are shown in Tables 6-7 and 6-8. Of the significance levels tested, 0.1% provides

the best performance in all cases. The following analysis therefore focuses on this

particular value.

The detailed simulation results for comparison scheduling with 0.1% signifi-

cance, are shown in Tables 6-9 and 6-10. In all cases the average service times are

considerably smaller than those for greedy scheduling. In particular, at medium

and high loads, comparison scheduling yields performance an order of magnitude

faster. Against the random scheduler's results, in the uniform case, comparison

scheduling performs at least as well, whilst, in the non-uniform case, there is again

an order of magnitude improvement. In all cases, the invocations are apportioned

exactly according to each instance's servicing capabilities. There is no evidence in

these service times of the swamping effect that afflicted greedy scheduling.

The column headed 'Actively Scheduled' indicates, for the invocations received,

how many were the result of genuine selection as opposed to the default of ran-

dom selection. In the uniform case (Table 6-9) at low load, all instances exhibit

very similar performance, so the number of genuine selections is very low; ap-

proximately 1 in 10. Hence, under these circumstances comparison scheduling has

Chapter 6. Comparison Scheduling

Load

Category

Average Service Time at Significance Level

10% 5% 2.5% 1% 0.5% 0.1%

Low 1.6 1.2 0.9 0.8 0.8 0.8

Medium 8.0 5.9 3.7 2.6 2.2 1.6

High 130.6 22.7 11.7 8.9 8.0 5.4

Table 6-7: Comparison Scheduling Under Uniform Performance

Load

Category

Average Service Time at Significance Level

10% 5% 2.5% 1% 0.5% 0.1%

Low 0.9 1.0 0.9 0.9 0.9 0.9

Medium 8.1 4.9 4.1 2.2 2.3 1.9

High 133.7 50.1 17.5 16.0 8.5 7.5

Table 6-8: Comparison Scheduling Under Non-Uniform Performance

Chapter 6. Comparison Scheduling 	 169

Load Object Invocations Actively Average

Category Instance Received Scheduled Service Time

Low A 33% ± 2% 11% ± 5% 0.8 ± 0.04

B 33% ± 2% 11% ± 5% 0.8 ± 0.04

C 33% ± 2% 12% + 5% 0.8 ± 0.04

Overall 7344 Efl
Medium A 33% ± 1% 26% + 5% 1.6 ± 0.05

B 33% ± 1% 25% ± 4% 1.7 ± 0.06

C 33% ± 1% 26% ± 4% 1.7 ± 0.06

Overall 14385 Efl
High A 33% ± 1% 31% + 3% 5.9 ± 0.1

B 33% ± 1% 31% ± 1% 5.7 ± 0.1

C 33% + 1% 31% ± 4% 5.8 + 0.1

Overall 21753 [I]

Table 6-9: Comparison Scheduling (at 0.1%) Under Uniform Performance

Chapter 6. Comparison Scheduling 	 170

Load Object Invocations Actively Average

Category Instance Received Scheduled Service Time

Low A 14% ± 5% 2% ± 2% 2.2 ± 0.2

B 35% ± 2% 61% ± 17% 0.9 ± 0.04

C 50% ± 4% 72% ± 14% 0.6 + 0.02

Overall 7344

Medium A 15% ± 2% 3% ± 3% 4.8 ± 0.2

B 35% ± 1% 57% + 6% 1.9 ± 0.06

C 50% ± 2% 70% ± 5% 1.3 ± 0.03

Overall 14385 EO
High A 16% ± 1% 9% ± 5% 16.8 ± 0.4

B 34% ± 1% 57% ± 5% 6.7 ± 0.1

C 50%'± 1% 70% ± 3% 3.9 ± 0.06

Overall 21753

Table 6-10: Comparison Scheduling (at 0.1%) Under Non-Uniform Performance

Chapter 6. Comparison Scheduling 	 171

defaulted to uniform random behaviour. As the load increases and the request

queues build up, the observed performances start to differ. This is reflected by

an increase in the number of actively scheduled invocations to approximately 1

in 3 at high load. In the non-uniform case (Table 6-10), even at high loads the

slow instance, A, is very rarely selected. Approximately 90% of the invocations it

receives are the result of uniform random scheduling, i.e., when the performance

of B and C has degraded to the extent that A now offers a comparable service. In

contrast, the fastest instance, C, is actively selected for approximately 70% of all

invocations it receives.

In conclusion, comparison scheduling, based on statistical hypothesis testing,

adapts extremely well to the relative performance capabilities of multiple (three)

object instances. In the uniform case, invocations are apportioned evenly between

instances, emulating the actions of random scheduling. In the non-uniform case,

comparison scheduling again apportions invocations exactly according to each in-

stances' servicing capabilities. Initial experimentation with five, object instances

suggests these effects improve as the scale increases (or more accurately, random

and greedy scheduling deteriorate, while comparison scheduling maintains perfor-

mance). The excellent performance results obtained from these simple simulations

confirm that the basic idea of using hypothesis testing merits further investigation.

6.7 Object Scheduling

The performance resulting from comparison scheduling of invocation requests,

makes it worthwhile investigating the possibility of applying the same techniques

to object scheduling, i.e., the assignment of object instances to object hosts. A

model similar to that for invocation can be used, with objects replaced by hosts

and invocation routines replaced by objects. Scheduling a new object instance

then requires comparing the 'performance' of each host, using a hypothesis test

Chapter 6. Comparison Scheduling 	 172

in the same manner as described for objects. A host is only selected if its aver-

age performance is significantly better than that of its peers, otherwise random

selection is used.

One problem with this approach is in deciding how to measure host perfor-

mance. With invocation scheduling, the average service times are compared for

multiple instances of the same object, i.e., it compares 'like-with-like'. Calculating

an average service time across all objects on the host does not yield this property.

For example, one host may contain 'simple' objects, whose service times are inher-

ently shorter than the services on a neighbouring host. This could lead to a bias

towards the host with simple objects, even though its true performance may be

no better than its peers. Further simulation work is required to establish whether

anomalies such as this would have a detrimental effect upon object scheduling

performance.

Object scheduling is further complicated by the need to consider construction

costs. An executable representation may not exist for the 'fastest' host. Under

these circumstances, rules must be applied to balance the trade-off between im-

proved performance and cost of construction. For example, it may only be sensible

to instigate construction of a new representation if the target host is significantly

faster than all other hosts. Many other policies are possible. The detailed in-

vestigation of comparison scheduling of object instances is a topic for further

investigation.

6.8 Summary and Conclusions

The novel approach of applying statistical hypothesis testing to scheduling, known

as comparison scheduling, has been presented. For invocation scheduling, an in-

stance is selected to receive an invocation only if it is significantly faster than

Chapter 6. Comparison Scheduling 	 173

all other contenders. When no clear 'winner' can be found, then scheduling is

performed at random. One particular formulation of this problem, based on ex-

ponential service times, was examined in detail. Many other formulations based

on other distributions are possible. The exponential distribution was used primar-

ily because it is the standard statistical model of service times, but also because

mathematically it is easy to handle. The possibility of applying the comparison

technique to object scheduling was also examined.

The simulation results clearly demonstrate the comparison mechanism's poten-

tial for use in scheduling algorithms. Performance improvements of up to an order

of magnitude were observed when compared to the intuitive policies of random

and greedy scheduling. The comparison scheduler adapted readily to changes in

both workload and service capacity. For the exponential based comparison mech-

anism, the best performance was consistently achieved at a significance level of

0.1%.

The simplicity of the simulated environment limits the inferences that can be

drawn from these results. However, they provide a strong indication that com-

parison scheduling offers a fruitful, new approach to scheduling in object oriented

distributed systems.

Chapter 7

Status Updates

The comparison scheduler described in the previous chapter relies upon

a rolling history of service times for the previous twelve invocations per

object instance. As presented so far, it is assumed this history is updated

after every invocation. In a large system with many objects, this repre-

sents a substantial overhead in both communication and processing costs.

This chapter examines the problem of update suppression, i.e., reducing

the number of status updates. Arbitrarily omitting, for example, every

other message could lead to reduced scheduler performance caused by in-

accurate or out-of-date information. What is required is a mechanism to

suppress. redundant messages, i.e., those offering little new information

over and above that contained in previous updates. An algorithm for elim-

inating redundant updates is developed based upon the hypothesis testing

techniques used in comparison scheduling.

174

Chapter 7. Status Updates
	 175

7.1 Thresholding

The thresholding mechanism defined here is developed from the drafting algorithm

of Ni et al. ([Ni 85]), which was described earlier in section 5.3.2 (page 132). The

principle underlying the drafting algorithm is to generate an update only when

there has been a notable change in load. Figure 7-1 shows a thresholding mech-

anism that emulates the drafting algorithm's behaviour. An update is generated

when a processor's load crosses a boundary between two loading categories. How-

ever, when a processor's load lies close to a boundary it can oscillate between cat-

egories, generating continuous updates. This problem of 'state woggling' results

from using fixed boundaries. The thresholding algorithm developed here main-

tains the principle of only generating an update when there is a notable change,

but the threshold points are defined relative to the load reported in the previous

update, rather than by predetermined, fixed categories.

Figure 7-2 demonstrates the general thresholding principle. It assumes an

update was generated at time zero, reporting performance level o1d At the same

time as this update was generated, the two thresholds P and P1 were calculated as

defined below. These thresholds divide the performance scale into three regions;

a Silent Region and two Update Regions. The height of the silent region, known

as the Silence Interval, is denoted by S. P and P, are defined as functions of voId,

with perhaps the simplest example being P, = voId + S12 and P1 = Pold - S12. In

general, there is no requirement that the silent region be symmetric about Pold.

No updates are generated while the current performance level lies within the

silent region. However, when the performance reaches the level of one or other

threshold (for example, at time t in Figure 7-2) an update is generated reporting

the new current performance 	(P, in the example). Simultaneously, new

thresholds P' and F,' are calculated, for example, as 	+ 512 and knew - S12

Chapter 7. Status Updates
	

176

Processor
Load

Upper
Threshold

Lower
Threshold

0 	 Time

Figure 7-1: A Simple Thresholding Mechanism

Processor
Load

I: j

P

U 	 I 	 Time t

Figure 7-2: Thresholding Regions

Chapter 7. Status Updates 	 177

respectively. The system then continues as before, using the new thresholds.

Hence, an update is generated every time a threshold is crossed, and the thresholds

themselves are re-calculated after every update. In this manner it is hoped to avoid

the 'woggling' effect caused by using fixed thresholds.

Adjusting the height of the silent region, S, directly affects the rate at which

updates are generated, thereby determining the accuracy, or granularity of the

information they contain. A small value of S leads to a high update rate, while

a large value of S generates fewer updates. In effect, S defines the term 'notable

change', by placing a ceiling on the maximum change in performance that can go

unreported.

7.2 Object Thresholding

The thresholding mechanism described above is completely general and could be

applied not just to performance, but to any parameter that varies over time. In

comparison scheduling, the parameter of interest is the average service time of an

object instance. The following paragraphs define the silence interval S using the

statistical hypothesis testing technique developed for comparison scheduling. The

model of invocation assumed is identical to that used in the previous chapter. The

example developed here therefore assumes exponentially distributed service times.

However, as with comparison scheduling, this assumption is not fundamental to

the technique; it simply serves to demonstrate the underlying mechanism, building

upon the statistical model developed in chapter 6. The distribution relationships

defined in that chapter will be used again here without being re-stated.

X1 ,X2 ,. . . , X represent the previous n service times observed for object in-

stance A. The average service rate at the time of the previous update is denoted

by j. This value is estimated as the reciprocal of the average service time re-

Chapter 7. Status Updates 	 178

ported in the update. The instance's current service rate is denoted by jz. By

relation 1

EXj F(njt)

which, using relation 2, gives:

2ii 	xi
	 (7.1)

The null hypothesis H0 is that the current service rate is the same as the service

rate at the time of of the previous update, i.e., no change in performance has

occurred

H0 : lic = jLp

against the alternative hypothesis that the rates are now different

H1 : lic 54 fL,

Under H0 , (7.1) becomes

E X,

This latter statement can be rearranged as

	

2niX
	

(7.2)

Under the null hypothesis of no change in performance, (7.2) states that the

test statistic 2n1iX follows a chi-squared distribution with 2n degrees of freedom,

where u 7, is the estimated service rate at the time of the previous update and X

is the current average service time calculated over the previous n invocations. As

with the comparison scheduling example, standard statistical tables, in this case

chi-squared tables, can be consulted to yield a probability P for any particular

observed value of the test statistic. A significant test (at some specified significance

level) indicates that y p and p c are significantly different and that a new update

should be generated. At this point the current value of X and n are passed to all

Chapter 7. Status Updates 	 179

interested parties - principally the comparison scheduler - while the value of

p.,, is re-estimated as 11X. Should the hypothesis test not be significant, then no

action is taken.

An alternative formulation of the same test, fitting more closely with the orig-

inal description of thresholding, is to calculate a Confidence Interval around p.,,. A

confidence interval is a range of values around a parameter estimate' indicating

the 'accuracy' of the estimate. For example, a 95% confidence interval about P p

defines a range of values within which the true service rate is predicted to lie with

95% certainty, i.e., with probability 0.95. Equivalently, the true value lies outside

the confidence interval with probability 0.05 (Figure 7-3). Defining, the threshold

values Pu and P1 to be the bounding values of the confidence interval makes the

statement 'the test is significant at the 5% level' synonymous with the statement

'the current performance lies outside the 95% confidence interval for p. ,,', which in

turn can be interpreted as 'the current performance level has entered an update

region'. Hence, the confidence level of the confidence interval defines the height,

S, of the silent region; a higher level such as 99%, specifying a larger silent region

than a lower level such as 90%.

The update algorithm shown in Figure 7-4 uses the confidence interval ap-

proach. However, rather than calculating a confidence interval around p.,,, which

follows a (relatively) complicated Gamma distribution, the test statistic 2npX is

used. As shown in (7.2), this statistic follows a (simple) chi-squared distribution

on 2n degrees of freedom, where n is the number of observations used to calcu-.

late the current average. The value of n becomes constant once the number of

observations has reached the history length. Hence, for a 'running' system, i.e.,

one with more than n observations per object, the confidence interval for a given

confidence level is constant. Under these circumstances, the term 2np, which is

= 1/9 is only an estimate of the true, unknown, service rate

Chapter 7. Status Updates
	 180

957o 	 2.57o

0.5%
	

2.5%

9070

5%
	

10%

Figure 7-3: Confidence Intervals and Hypothesis Tests

also constant (between updates), can be thought of as a 'scaling factor', mapping

the current performance level onto the range of values covered by the chi-squared

distribution.

A range of confidence intervals about 2npX are tested, namely 99%, 95%,

90%, 80%, 60%, 40% and 20%. Table 7-5 shows the upper and lower bounds for

these intervals based on 24 degrees of freedom, i.e, using a service history of size

twelve as required by the comparison scheduler. The 99% level defines a large

confidence interval (silent region), and consequently a low level of updates. Con-

versely, the 20% level defines a smaller confidence interval which should produce

a higher update rate.

7.3 Simulation Description

The simulator used to test this update mechanism is the same as that used to test

comparison scheduling. The only additions are performance monitors (Figure 7-6),

one per instance, that collect the service time data and perform the thresholding

test described above. Update messages are passed from the monitors to the sched-

Chapter 7. Status Updates
	 181

UpdateSuppress (CurrentAverage Real;
HistoryLength : Integer);

BEGIN
TestStatistic := 2*HistoryLength*PreviousUpdate*CurrefltAVerage;

{
calculate chi-squared confidence interval. Depends only on}

{
the degrees of freedom, i.e., the number of observations }

{ used to calculate CurrentAverage. 	 }

SetConfidencelnterval(LowerBoUnd, UpperBound, 2*HistoryLength);

IF (TestStatistic < LowerBound) OR (TestStatistic > UpperBound)
THEN BEGIN
Sendupdate(CurrentAverage, HistoryLength);
PreviousUpdate := 1/CurrentAverage;

END of IF;
END of UpdateSuppress;

Figure 7-4: The Update Suppression Algorithm

10
Chi-Squared Intervals on 24 Degrees of Freedom

Figure 7-5: The Experimental Confidence Intervals

Chapter 7. Status Updates
	

182

Scheduler Simulation
Workload

Data rl Scheduler I I Summary
Low

_____________ R Random Statistics -

Medium I 	or 	I
or Comparison

Updates
	
ales

Monitor H Monitor 11 Monitor

Invocations 	Invocations

Object) 	Object) I Object
Instance 	Instance 	Instance

A 	 B 	 C

Figure 7-6: Simulator Configuration

uler, which now only keeps service averages and their associated history lengths,

rather than individual observations. All other aspects of the simulation are the

same as described in chapter 6.

7.3.1 Controlling Suppression

The initial simulation experiments investigated the relationship between the signif -

icance level of the test and the level of update suppression. The random scheduler

was employed in order to eliminate any (unpredictable) mutual dependencies or

feedback between the update level and the scheduler's performance. The results

of these experiments are shown in Tables 7-1 and 7-2. An update rate of 100%

implies an update is generated on every invocation, which was the default assumed

in the previous chapter. A rate of 50% implies only one update (on average) for

every two invocations, a rate of 25% implies one update (on average) for every 4

invocations and so forth.

183 Chapter 7. Status Updates

Load Object Updates with Interval Size:

Category Instance 99% 90% 80% 60% 40% 20%

Low A 5% 8% 10% 13% 21% 31% 53%

B 5% 7% 10% 13% 22% 33% 52%

C 5% 7% 10% 12% 21% 34% 53%

Medium A 6% 9% 10% 15% 23% 35% 59%

B 5% 8% 11% 15% 23% 36% 59%

C 6% 9% 11% 14% 24% 34% 58%

High A 3% 5% 5% 7% 12% 23% 32%

B 3% 5% 6% 7% 15% 22% 38%

C 3% 4% 7% 8% 13% 10% 32%

Table 7-1: Update Suppression with Uniform Performance

Load Object Updates with Interval Size:

99% 95% 90% 80% 60% 1 40% 20% Category Instance

Low A 5% 9% 12% 14% 23% 36% 58%

B 4% 7% 9% 12% 21% 33% 50%

C 4% 7% 8% 12% 18% 30% 50%

Medium A 0% 0% 0% 0% 1% 2% 3%

B 6% 8% 11% 15% 21% 35% 59%

C 5% 8% 10% 14% 22% 34% 55%

High A 0% 0% 0% 0% 0% 1% 2%

B 3% 6% 5% 8% 13% 19% 37%

C 6% 8% 11% 14% 22% 35% 58%

Table 7-2: Update Suppression with Non-Uniform Performance

Chapter 7. Status Updates

These figures confirm that the suppression mechanism performs as expected.

For any given instance there is a linear reduction in the number of updates gener-

ated as the confidence interval increases. There is also a relationship between the

update rate and the workload, or more accurately, between the update rate and

the average service time. This is particularly in evidence in the non-uniform case,

where the slowest instance, A, produces very few updates at medium and high

loads. This is a consequence of the very high average service times 2 resulting from

the random scheduler continually overloading A. The 'scaling factor' 2nit, where

AP is the reciprocal of the previously reported (poor) performance, means that

large average service times require a proportionally larger change in performance

before a significant test is encountered. Hence the reduced number of updates

for A, and likewise, the increase in updates for C (B remains the same as in the

uniform case).

7.3.2 Scheduler Performance

Having established a qualitative link between the update rate and the threshold

significance level, the next series of simulations examine the effect of reduced infor-

mation upon comparison scheduling performance. The simulation configuration is

exactly as before, except that the random scheduler is replaced by the comparison

scheduler with a comparison significance level of 0.1%, as determined in the pre-

vious chapter. The initial results (one run each) are given in Tables 7-3 to 7-8.

The corresponding results for the full information cases, taken from Tables 6-9

and 6-10, have been included for comparison.

Concentrating on the maximum suppression case (99% confidence interval),

the reduced update rate has very little impact upon the comparison scheduler's

2 8ee Tables 6-1 and 6-2 for the service times associated with random scheduling.

185 Chapter 7. Status Updates

Significance Object Update Invocations Average
Level Instance Rate Received Response

99% A 5% 32% 0.8
B 5% 35% 0.8
C 5% 33% 0.8

Overall 7344 EiI1
95% A 8% 33% 0.8

B 8% 33% 0.8
C 8% 34% 0.7

Overall 7344

90% A 10% 33% 0.8
B 10% 33% 0.8
C 10% 34% 0.7

Overall 7344

80% A 13% 34% 0.7
B 14% 33% 0.8
C 14% 33% 0.8

Overall 7344

60% A 21% 33% 0.8
B 21% 33% 0.7
C 22% 33% 0.8

Overall 7344 E1I1
40% A 35% 33% 0.9

B 35% 33% 0.8
C 34% 33% 0.8

Overall 7344 EIIII
20% A 53% 34% 0.7

B 53% 33% 0.8
C 55% 33% 0.8

Overall 7344

Full A 100% 33% 0.8
Information B 100% 33% 0.8

Case C 100% 33% 0.8
Overall 7344

Table 7-3: Update Suppression with Uniform Performance at Low Load

186 Chapter 7. Status Updates

Significance Object Update Invocations Average
Level Instance Rate Received Response

99% A 6% 33% 1.7
B 6% 34% 1.6
C 6% 33% 1.6

Overall 14385

95% A 10% 33% 1.9
B 10% 34% 1.7
C 10% 34% 1.7

Overall 14385 EIII
90% A 12% 34% 1.8

B 11% 32% 1.8
C 13% 34% 1.8

Overall 14385

80% A 16% 34% 1.8
B 16% 33% 1.9
C 17% 33% 2.0

Overall 14385

60% A 25% 34% 1.6
B 25% 33% 1.5
C 24% 33% 1.6

Overall 14385 EIII
40% A 38% 33% 1.8

B 39% 33% 1.7
C 36% 34% 1.6

Overall 14385

20% A 60% 34% 1.6
B 62% 33% 1.7
C 61% 33% 1.6

Overall 14385

Full A 100% 33% 1.6
Information B 100% 33% 1.7

Case C 100% 33% 1.7
Overall 14385

Table 7-4: Update Suppression with Uniform Performance at Medium Load

Chapter 7. Status Updates 	 187

Significance Object Update Invocations Average
Level Instance Rate Received Response

99% A 5% 33% 6.8
B 5% 34% 6.5
C 5% 33% 7.4

Overall 21753

95% A 7% 34% 5.7
B 7% 32% 6.2
C 7% 34% 5.6

Overall 21753

90% A 8% 33% 6.7
B 8% 33% 5.9
C 9% 34% 5.7

Overall 21753

80% A 10% 33% 7.2
B 11% 34% 7.2
C 10% 33% 7.1

Overall 21753

60% A 18% 34% 6.0
B 18% 33% 6.4
C 17% 33% 6.7

Overall 21753 Ifl
40% A 26% 34% 7.2

B 25% 33% 7.4
C 26% 34% 6.9

Overall 21753

20% A 49% 33% 5.3
B 49% 34% 5.7
C 50% 33% 5.8

Overall 21753
Full A 100% 33% 5.9

Information B 100% 33% 5.7
Case C 100% 33% 5.8

Overall 21753

Table 7-5: Update Suppression with Uniform Performance at High Load

Chapter 7. Status Updates 	 188

Significance Object Update Invocations Average
Level Instance Rate Received Service Time

99% A 6% 13% 2.5
B 6% 37% 0.9
C 5% 50% 0.6

Overall 7344 [J
95% A 8% 13% 2.3

B 9% 36% 0.9
C 8% 51% 0.6

Overall 7344

90% A 11% 10% 2.5
B 10% 38% 0.9
C 11% 52% 0.5

Overall 7344 [Qj
80% A 15% 13% 2.3

B 14% 36% 1.0
C 13% 51% 0.5

Overall 7344 [çJ
60% A 24% 15% 2.0

B 22% 35% 1.0
C 23% 50% 0.6

Overall 7344

40% A 37% 12% 2.4
B 37% 35% 1.0
C 36% 53% 0.6

Overall 7344 [pj
20% A 59% 18% 2.0

B 56% 35% 0.9
C 54% 47% 0.6

Overall 7344
Full A 100% 14% 2.2

Information B 100% 35% 0.9
Case C 100% 50% 0.6

Overall 7344 10.9 I

Table 7-6: Update Suppression with Non-Uniform Performance at Low Load

189 Chapter 7. Status Updates

Significance Object Update Invocations Average
Level Instance Rate Received Service Time

99% A 6% 10% 7.0
B 7% 36% 2.3
C 7% 53% 1.4

Overall 14385

95% A 10% 14% 5.1
B 11% 34% 1.9
C 11% 52% 1.3

Overall 14385

90% A 13% 14% 5.9
B 13% 35% 2.3
C 12% 51% 1.4

Overall 14385

80% A 17% 14% 5.1
B 15% 34% 2.2
C 17% 51% 1.4

Overall 14385 EIiiI1
60% A 24% 15% 4.6

B 26% 34% 2.2
C 25% 51% 1.2

Overall 14385 E0
40% A 39% 16% 4.5

B 40% 35% 1.9
C 39% 50% 1.3

Overall 14385

20% A 64% 11% 5.2
B 61% 35% 2.0
C 62% 54% 1.4

Overall 14385

Full A 100% 15% 4.8
Information B 100% 35% 1.9

Case C 100% 50% 1.3
Overall 14385

Table 7-7: Update Suppression with Non-Uniform Performance at Medium Load

III] Chapter 7. Status Updates

Significance Object 	I Update Invocations Average
Level Instance Rate Received Service Time

99% A 3% 17% 23.9
B 5% 34% 9.7
C 5% 49% 6.0

Overall 21753 110.31

95% A 6% 16% 16.4
B 7% 33% 6.8
C 8% 50% 3.9

Overall 21753

90% A 8% 15% 19.2
B 9% 34% 8.1
C 8% 51% 4.9

Overall 21753

80% A 10% 15% 21.4
B 10% 33% 8.8
C 10% 52% 4.9

Overall 21753

60% A 15% 17% 16.7
B 17% 33% .7.0
C 18% 50% 4.0

Overall 21753

40% A 23% 16% 19.3
B 26% 34% 7.5
C 27% 50% 4.5

Overall 21753 ftII
20% A 52% 16% 14.5

B 51% 34% 5.9
C 51% 50% 3.5

Overall 21753

Full A 100% 16% 16.8
Information B 100% 34% 6.7

Case C 100% 50% 3.9
Overall 21753

Table 7-8: Update Suppression with Non-Uniform Performance at High Load

Chapter 7. Status Updates 	 191

performance. At low and medium workloads, despite a 95% reduction in update

traffic, performance remains identical to that for the full information case. At high

workload there is some degradation in performance; 6.9 as compared to 5.8 in the

uniform case, and 10.3 as compared to 6.9 in the non-uniform case, but this must

be traded against the reduction in update traffic of approximately 95% (almost

21000 messages in the simulated example), representing a considerable saving in

resource costs.

Despite the reduction in performance at high loads caused by reduced informa-

tion, comparison scheduling with update suppression still yields performance an

order of magnitude faster than both random and greedy scheduling, (see Tables 6-

2, 6-5 and 6-6, operating with full information). The detailed results, averaged

over ten simulation runs, for comparison scheduling with a comparison significance

level of 0.1%, and update suppression with a thresholding confidence interval of

99%, are shown in Tables 7-9 and 7-10. These results suggest that there is a con-

siderable amount of redundant information obtained when observing the service

times for all invocations, and that the thresholding mechanism developed in this

chapter performs well at removing this redundancy.

7.4 Service Expansion and Contraction

Thresholding can also be used to control service expansion and contraction, as

described in chapter 5. Upper and lower thresholds, defined by the confidence

level, can be placed on 'acceptable' service times. Should a single instance become

overloaded, so that its average service time exceeds the upper threshold, then the

creation of an additional instance is triggered in order to handle some of the load.

Conversely, when the workload subsequently falls, the multiple instances become

under-utilised and their average service times fall. If the lower threshold is passed,

then a 'garbage collector' can be triggered to remove redundant instances, with

Chapter 7. Status Updates 	 192

Load Object Update Invocations Average

Category Instance Rate Received Service Time

Low A 5% ± 1% 33% ± 2% 0.8 ± 0.04

B 5% ± 1% 33% ± 2% 0.8 ± 0.04

C 5% ± 1% 33% ± 2% 0.8 ± 0.04

Overall 7344 EiII
Medium A 7% ± 1% 33% ± 1% 1.8 ± 0.06

B 7% ± 1% 33% ± 2% 1.8 ± 0.06

C 7% ± 1% 33% ± 1% 1.9 ± 0.06

Overall 14385

High A 5% ± 1% 33% ± 1% 7.4 ± 0.2

B 5% ± 1% 33% ± 1% 7.0 ± 0.1

C 5%±1% 33%±1% 6.8 ±0.1

Overall 21753

Table 7-9: Comparison Scheduling with Update Suppression (Uniform)

Chapter 7. Status Updates
	 193

Load Object Update Invocations Average

Category Instance Rate Received Service Time

Low A 6% ± 1% 14% ± 3% 2.3 ± 0.2

B 6% ± 1% 37% + 3% 0.9 ± 0.04

C 6% + 1% 50% ± 3% 0.6 ± 0.02

Overall 7344

Medium A 7% + 1% 14% + 2% 5.7 ± 0.3

B 7% ± 1% 35% ± 1% 2.2 + 0.07

C 7% ± 1% 51% ± 2% 1.4 ± 0.04

Overall 14385 Efl
High A 4% ± 1% 16% ± 1% 22.4 ± 0.6

B 4%+1% 33%±1% 9.1±0.2

C 4% ± 1% 50% + 1% 5.6 ± 0.09

Overall 21753

Table 7-10: Comparison Scheduling with Update Suppression (Non-Uniform)

Chapter 7. Status Updates 	 194

the future workload being shared among remaining instances. Using thresholding

in this way controls the level of utilisation of object instances.

7.5 Implementation Considerations

This section considers how comparison scheduling and update thresholding might

be implemented in a distributed environment.

Every object host is capable of supporting at least one object (by definition),

and every object may potentially generate invocations upon other objects. In

general, therefore, each object host must be capable of supporting both status

updates, for reporting the performance of the objects it supports, and comparison

scheduling, for scheduling the invocations that its objects generate. Conceptually,

both of these services must be replicated on a per object basis. However, in

practice, they are more likely to be engineered as one replicate per host, with each

replicate supporting all of one host's objects. Scheduling and update reporting

are unlikely to be engineered in a centralized manner.

Replicating the scheduling and update algorithms is relatively simple. They

can be included as part of the support environment for a host. The problems arise

when deciding how to replicate the performance data that drives the algorithm,

i.e., how to direct status updates to those hosts that require them.

For object scheduling, where the status information relates to host perfor-

mance, it may be possible to update all hosts, especially if the underlying com-

munication facilities support inexpensive broadcasts. The limiting factors to this

approach are the number of hosts present in the system, and the frequency with

which their status is updated. With the significantly reduced update rate resulting

from use of the update mechanism developed in this chapter, total monitoring may

be feasible for the size of systems defined in chapter 3. However, for larger systems

Chapter 7. Status Updates
	

19

it may be necessary to partition hosts into 'schedule groups', where members of the

same schedule group monitor each other, but not members of other groups. This

approach, namely reducing a large, unmanageable system to multiple, smaller,

self-contained systems, is examined further in chapter 9 when considering the

configuration management of Environments.

For invocation scheduling, the problem of distributing object performance data

is potentially much greater, since there are assumed to be many more objects

than hosts. However, for any particular invocation, the candidate objects are not

those of the entire system, but rather, only those that support the specific service

being invoked. Hence, for invocation scheduling, each host only actually needs to

maintain status information relating to objects that support the services required

by the objects it hosts. If it were possible to identify these supporting objects, then

the amount of information that must be held by each host would be considerably

reduced.

It may be possible for a host to determine the services an object may (poten-

tially) invoke, by examining the object itself. For example, when a new object is

constructed, this sort of information may be recorded by the transformation tools.

Hence, the host can then join the collection of hosts receiving updates about these

services. The host is then in a position to schedule any future invocations that

may be generated. If, however, the supporting services required by a new object

can not be determined in advance, then the host must register for performance

updates dynamically, as each new service is invoked for the first time.

Chapter 7. Status Updates
	

l94-'b

7.6 Conclusions

The simulation results suggest that update suppression using the thresholding

mechanism yields a considerable reduction in update traffic, while having little

or no detrimental effect upon the comparison scheduler's performance. Assum-

ing exponentially distributed service times, a 0.1% comparison significance level,

together with a thresholding confidence interval of 99%, provides excellent schedul-

ing performance across all configurations tested, combined with a 95% reduction

in update traffic when compared to the 'complete information case'.

Chapter 8

Virtual Objects

This chapter identifies several example virtual properties that can be cre-

ated by suitable manipulation of service instances and the invocations upon

them. Virtual templates are introduced as a general, re-usable mechanism

for creating this type of virtual property. Mock template implementations

are provided for Resilience, Persistence, Access Controls, Inter-Object De-

bugging and Performance Monitoring. The chapter concludes by examin-

ing some of the implementation issues associated with creating and ap-

plying templates.

195

Chapter 8. Virtual Objects 	 196

8.1 Virtual Properties

As defined in chapter 2, virtual properties are characteristics possessed by objects,

that somehow 'improve' the service offered, but in a service independent manner.

Typically, virtual properties mask inherent limitations of the underlying system

or enhance an object's interface to match that expected by its invokers. An ob-

ject displaying no virtual properties is known as a Base Object or Real Object.

An object enhanced by the addition of one or more virtual properties is known

as a Virtual Object. This chapter. examines a particular class of virtual properties

that can be retrospectively added to an object, either by manipulating invocations

upon instances of the object, or by manipulating the instances themselves; or pos-

sibly a combination of the two. The following sections identify several properties

commonly found in distributed systems, that comply with this definition.

8.1.1 Resilience

A K-resilient object is one whose invocation routines are guaranteed to progress

to completion, despite the 'failure' of up to K hosts in the system. The notion

of host failure covers any error condition denying access to the host's services, for

example, the failure of the host itself, or a network partition restricting remote

access.

Creating a K-resilient virtual object using replication requires at least K + 1

independent instances of the object to exist within the system, where independence

refers to their failure modes [Birma85]. Two objects are considered independent

if the failure of one does not automatically imply the failure of the other. In

practice this relates to failures of object hosts. Independence is therefore usually

achieved by assigning each instance to a separate processor. Having created K +

1 independent instances, each instance maintains its internal state in step with

Chapter 8. Virtual Objects 	 197

the others by forwarding details of all invocations it receives. The uniform view

of the service's state, as maintained by each instance, means that any one of

the multiple instances is capable of responding to invocation requests for their

particular service.

In the event of a failure, the failed instance no longer provides a service. How-

ever, the surviving K instances continue to function as normal. Clients remain

oblivious to any problems, perceiving only a continuous, uninterrupted service.

Up to K successive failures can be tolerated in this manner before the service fails

altogether. Hence, although the individual real objects are not resilient to fail-

ure, a service displaying the resilience property is abstracted from their combined

behaviour.

The key to realising K-resilience is the appropriate coordination of invocations

upon the K + 1 base object instances. A service endowed with K-resilience is

enhanced by its ability to continue service provision despite the presence of up to

K failures in the system.

8.1.2 Persistence

A concise definition of persistence is provided by Low, who states that

An object is persistent if it 'dies at the right time'; persistence is an

observation about the lifetime of an object, namely that it exists for

precisely as long as intended, and then it disappears. A programmer

demands that an object disappears as an act of intention, not as a

result of a processor crash or a bad block on a disc drive [or any other

form of 'accidental' death]. [Low 881

In the event of a host failure, the internal state of a persistent object is 'suspended'

until the host recovers. At the point of recovery, the object and its internal state

Chapter 8. Virtual Objects 	 198

are returned to their condition prior to the failure. Resilience and persistence

are both related to reliability issues since resilience can be viewed as 'short term

reliability', and persistence as 'long term reliability'. A persistent service may

become temporarily unavailable during a partial system failure, whereas a resilient

service continues to function. However, persistent objects can survive a total.

failure of all hosts, whereas resilient objects do not.

Persistent objects are realised by retaining an independent record of the ob-

ject's internal state on a reliable storage medium [Cocks84]. If a failure occurs, this

record can be used to restore the object to its former state. In an object-oriented

environment, storing a trace of all invocations made upon an object is sufficient

to ensure it can be reinstated. Upon host recovery after a failure, a new object

instance is created to which the invocation list is then replayed. Upon completion

of this invocation replay, the new object's state should re-create that of its failed

predecessor.

Persistence can therefore be created through monitoring invocations upon an

object, and copying them to stable storage for subsequent replay in the event of a

failure. An object thus endowed with persistence is enhanced by the longevity of

its internal status.

8.1.3 Access Control

Computer systems normally require some form of security mechanism to govern ac-

cess to services. In a system consisting entirely of objects, this principally involves

the verification of access rights when objects are invoked. Two methods commonly

used to implement this are access control lists (ACLs) and capabilities [Mizun871,

which were described earlier in section 1.8 in relation to the Cronus and Amoeba

distributed systems.

Chapter 8. Virtual Objects 	 199

It is possible for access controls on invocations to be checked externally to the

service object, using a security object interposed between the client and server.

Clients invoke the security object rather than the base object, presenting the

appropriate security information for validation. Approved requests are then for-

warded by the security object to the base object. Invocations failing the security

validation are rejected. This approach to security, i.e., retrofitting to an existing

system, known as Incremental Addition [Karge88], assumes clients cannot defeat

the access controls by circumventing the security object and calling the base object

directly.

Subject to the restriction of non-circumvention, access control mechanisms can

be added to existing object instances by manipulation of invocation requests; more

specifically, by interposing a security object between the client and server. There

are several advantages to this approach: the overhead of secure access is only borne

by those services requiring it; by using different security objects, multiple instances

of the same base object may operate with different access control mechanisms;

and finally, attaching more than one security object to a base object allows it

to be simultaneously invoked by clients using different security mechanisms. For

example, a single instance can appear to support both ACL based access control

and capability based access control.

8.1.4 Debugging

Debugging in a distributed environment is intrinsically more complicated than

in a non-distributed, sequential environment. There are a number of reasons for

this [Garci84], [Joyce87]

Multiple foci of control

i, Determination of current (distributed) state

Chapter 8. Virtual Objects 	 200

D Inherently non-deterministic

r. Debugging alters behaviour

Complex (parallel) interactions between components

Traditional single user, sequential debuggers offer facilities such as single step-

ping, breakpoints and source code manipulation. These techniques, which can be

thought of as Intra-Object Debugging aids, still apply when debugging individual

objects. However, in a distributed environment, further facilities are required to

debug erroneous interactions between objects, i.e., Inter-Object Debugging. This

requires monitoring inter-object communications, i.e., invocation messages.

In [Smith85], Smith describes a debugger operating on message based, commu-

nicating processes; a definition that encompasses the object oriented invocation

paradigm. This debugger provides mechanisms for accessing and controlling the

inter-process activities of the system. Messages can be intercepted, stored for

replay, modified, or even destroyed. The debugger deliberately does not provide

any facilities for examining or manipulating information at a finer grain, such as

the code or data of individual object instances. The Amoeba system provides a

debugger operating on similar principles [Elsho88], although in this case access is

also provided to the internals of an object, requiring it to be re-compiled with a

debug attribute.

The debugging of object interaction, i.e., inter-object debugging, can therefore

be provided through monitoring and manipulating the invocations made upon an

object instance. Understanding program behaviour may be improved by observing

the interactions and their associated parameters; errors can be reproduced by

replaying previously stored invocation histories; while modifying parameters and

results allows the programmer to experiment with the object's behaviour. All

these facilities can be provided without any explicit cooperation from the objects

Chapter 8. Virtual Objects 	 201

being debugged, and without the need to create special 'debuggable' instances

(although this could be done at the same time as a separate operation).

8.1.5 Performance Monitoring

The performance information used to drive the update thresholding mechanism

described in the previous chapter, is derived solely from observing invocation ar-

rival times and reply departure times. Based on this information, status updates

are generated according to the thresholding principle. Performance monitoring or

'monitorability' as defined in chapter 7 therefore complies with the definition of a

virtual property. An object enhanced with monitorability enables any interested

party to keep a record of the object's performance history.

8.2 Virtual Mapping

In each of the examples described above, the virtual property is created by ma-

nipulating base object instances and the invocations made upon them. This ma-

nipulation can be performed by interposing a virtual property object between the

client and server objects, both of which remain unaware of the property object's

existence. The property objects perform a mapping function, mapping from an

'ideal' environment of virtual objects onto the underlying 'warts-and-all' real envi-

ronment. The base objects do not participate in creating virtual properties other

than by providing their normal service interface.

The Proxy Principle [Shapi86], described in section 2.7.5 (page 70), provides

an example of a general mapping mechanism that could be used to implement

virtual properties. Proxies provide a single entry point to a service which, in

reality, may be constructed from multiple distributed objects. The complexity of

managing and coordinating the objects is encapsulated within the proxy and is

Chapter 8. Virtual Objects 	 202

Invocation 	 Reply

Figure 8-1: The Encapsulator Paradigm

thereby hidden from the service's clients. In general, a proxy is specific to the

group it represents, i.e., each service has its own specially coded, unique proxy.

Encapsulators [Pasco86], implemented within a Smalltalk-80 environment, also

embody some of these ideas. When an invocation is made upon an encapsulated

object, the encapsulator performs a pre-action before the object is invoked and

a post-action before a result is returned (Figure 8-1). By suitably defining the

pre- and post-actions, a range of properties can be realised. Two examples given

in [Pasco86] are mutual exclusion and atomic updates.

Realising mutual exclusion using an encapsulator is extremely simple. The pre-

action performs a semaphore wait, while the post-action performs a semaphore

signal. This ensures that only one invocation can proceed at a time, thus providing

exclusive access to the encapsulated object on a per-invocation basis. For atomic

updates, the pre-action creates a copy of the encapsulated object and passes the

invocation to the copy. Upon successful completion of the invocation, the post-

action uses Smailtalk's become: primitive to atomically replace the original object

with the updated copy.

Chapter 8. Virtual Objects
	

203

Pascoe suggests that the encapsulator paradigm has applications in distributed

systems for implementing access to remote objects, or for implementing secu-

rity mechanisms. However, since these applications have little relevance to the

Smalltalk-80 single user, single machine environment they were not explored fur-

ther.

8.3 Virtual Templates

Virtual templates combine the beneficial attributes of encapsulators (generality)

and proxies (hiding distribution), to provide a general mechanism for mapping vir-

tual objects to real objects. A Virtual Template takes the role of the virtual prop-

erty object identified earlier - encapsulating, in a reusable form, the invocation

and instance manipulations necessary to realise a particular property. The pur-

pose of each virtual template is to provide a single virtual property applicable, in

theory, to any base object. Thus, it is envisaged there will be a resilience template,

a persistence template, a capability template, an access-control-list template, and

so on. Any service requiring, for example, capability based access controls, can

be created by applying the capability template to the appropriate base object.

The resultant virtual object is identical to the base object except for the need to

present a valid capability with each invocation. Similarly, a resilient version of the

service can be created by applying the resilience template to the base object.

Using a paradigm such as virtual templates to encapsulate virtual properties

in a reusable form, reduces the complexity associated with programming in a

distributed environment. New objects can be coded without concern for issues

such as reliability and access controls. When required, these properties can be

added later by applying the appropriate virtual templates.

Chapter 8. Virtual Objects
	

204

Figure 8-2: Interposing a Template Object between Client and Server

8.4 Template Operation

The following sections describe the template actions required to realise the ex-

ample virtual properties identified earlier. The mock implementations presented

are pedagogical; the algorithms shown are simplified, concentrating on readabil-

ity rather than implementation details. For the same reason, the programming

constructs used do not correspond to any particular language.

For the moment it is assumed that when a template is applied, the name of

(i.e., a pointer to) the base object upon which the template is to operate is passed

as a parameter. The base object instance is assumed to exist already. Invoking

Service Initialisation on the template then establishes the virtual property,

in some cases creating additional base object instances. The template is considered

to be an independent object, invisibly interposed between the client and base

object(s) (Figure 8-2). All invocations directed at the base object are assumed

to be (automatically) redirected to the template. Section 8.5 provides further

details on implementing and applying templates (as opposed to implementing the

algorithms they execute).

8.4.1 Resilience

Creating a K-resilient service through replication requires at least K + 1 coordi-

nated copies of the base object. In order to present a consistent service, details

Chapter 8. Virtual Objects 	 20

of invocations upon any one copy must be forwarded, in the correct order, to the

other K copies. The function of the resilience template is therefore principally

to maintain consistency. In order to do this, the template requires support for

the correct ordering of invocations upon replicates. Possible approaches include

building upon atomic transactions or using ordered broadcasts. As an aside, the

template also controls creation and deletion of the multiple base object instances

to respectively create and delete the virtual service.

An example resilience template implementation is shown in Figure 8-3. The

template adds five extra invocation routines to the interface presented by the base

object : Service Initialisation, Set Cohorts, Service Provision, Service

Update and Service Closedown. These additional routines are only used by

the virtual property 'management' system (e.g., other resilience templates), and

remain hidden from normal clients.

Service Initialisation

Procedure Service-Initialisation is called once in order to turn the original,

non-resilient Base-Object + Template combination into a K resilient service. It

does this by creating an additional K instances of the Base-Object, each with its

own (identical) resilience template to cooperate in the coordination of service invo-

cations. The algorithm assumes this routine is not called automatically, otherwise

each of the new templates would in turn create K new instances, ad infinitum.

Find Independent Host() is assumed to be a facility provided by the system's

scheduling mechanism, returning the name of a host that is independent of those

supporting the cohorts established so far. The statement

NEW Resilience_Template(NEW Base-Object) 0 Host

creates a Base-Object + Template combination. The object scheduling mecha-

nism is overridden with an explicit instruction on where to place each combination,

thereby ensuring failure independence from the other K replicates. Although, in

Chapter 8. Virtual Objects

CLASS Resilience_Template(Base_Object AnyObject);

BEGIN
VARIABLE Instance-List IS SET OF Object-Pointer;
VARIABLE Instance IS Object—Pointer;
VARIABLE Copy IS INTEGER;
VARIABLE Result IS Parameter-List;

	

PROCEDURE Service_ Initial i sat ion (Res j].jence_Léve]. 	INTEGER);

BEGIN
VARIABLE Host IS Host-Name;

	

Instance-List 	[Base-Object]; 	/* initial 	instance */
/* already created *1

FOR Copy := 1 to Resilience-Level

	

/* create k additional object-template pairs, 	*1
/* placing template 'names' in the list of replicates */

DO BEGIN
Host 	Find_Independent_Host(Instance_List);
Instance-List := Instance-List +

[NEW Resilience_Template(NEW Base-Object) 0 Host];
END of FOR

FOR EACH Instance IN Instance-List
DO Instance.Set_Cohorts(Instance_List);

END of Service-Initialisation;

PROCEDURE Set_Cohorts(Cohort_List SET OF Object-Pointer);

BEGIN
Instance-List 	Cohort-List;

END of Set-Cohorts;

206

Figure 8-3: (Part 1) An Example Resilience Template Implementation

Chapter 8. Virtual Objects 	 207

FUNCTION Service-Provision(Service_Name 	: Logical_Name;
Service-Parameters : Parameter-List);

BEGIN
FOR EACH Instance IN Instance-List

DO Result := INVOKE Instance.Service_Update(Service_Name,
Service-Parameters);

RETURN Result; 	1* could use majority voting here */

END of Service-Provision;

FUNCTION Service_Update (Service_Name 	Logical-Name;
Service-Parameters Parameter-List);

BEGIN
Result 	INVOKE Base_Object.Service_Name WITH Service-Parameters;

RETURN Result;

END of Service-Update;

PROCEDURE Service-Closedown;

BEGIN
FOR EACH Instance IN Instance-List EXCEPT Base-Object

DO Instance. Service _Closedown;

TERMINATE;
END of Service-Closedown;

END of CLASS Resilience_Template;

Figure 8-3: (Part 2) An Example Resilience Template Implementation

Chapter 8. Virtual Objects 	 208

principle, the template and base object do not have to be at the same location, in

practice this configuration reduces communication overheads. The pointer to each

NEW Resilience Template is noted for use later. Having established the multiple

templates, Service Initialisation then informs each one, through an invoca-

tion on Set Cohorts, the names of its peers. Once each template has received the

list of peers it is ready to participate in providing a resilient service.

Service Provision

The function Service-Provision receives all invocations intended for the base

object. This is where the ability to substitute different object implementations

becomes important. The template is seen as providing the service, and. in order

to use the service, clients must make invocations upon the template. Only the

templates are aware of the base objects' existence.

When an instance is invoked, the service provision routine informs the other

instances in its cohort list by invoking Instance.Service_Update. Each template

thus informed invokes its associated base object, thereby keeping them (almost)

consistent. In this simple example no attempt is made to ensure a strict cohort-

wide ordering on invocation updates. Suitable synchronisation protocols are avail-

able, for example, Herlihy's quorum-consensus replication method [Herli86], but

the details of their implementation are beyond the scope of this example. It is

also possible to perform error detection and correction at this point, for example,

by placing a timeout on each reply message. In this mock implementation, the

results generated by each instance are assumed identical. The cohort results are

therefore not examined for consistency. If required, a suitable 'majority voting'

protocol could be used to determine the collective response. Having received the

cohort responses the template then returns the result to the client.

Chapter 8. Virtual Objects 	 209

Service Closedown

As with initialisation, service closedown is performed by invoking the template

which then uses the system's (de)scheduling services to remove the multiple in-

stances. Service closedown may be initiated from several sources, for example,

by the original service requester, by the system scheduling mechanism, or during

garbage collection. The algorithm shown here is inefficient since every one of the

K +1 copies generates K 'shutdown' messages. However, it suffices to demonstrate

the principle of using the template to remove the virtual property.

8.4.2 Persistence

Figure 8-4 shows a mock implementation of a persistence template. The

Service Initialisation routine requires some means of checking for an ex-

isting service history from a previous (failed) incarnation. This is represented in

the example by the Recovery-Code variable, which uniquely identifies a persistent

object's invocation log (held in stable store). Should such a log exist, then the

initialisation routine replays its contents to the new instance, thereby making its

state identical to that of its failed predecessor. Subsequent invocations will be ap-

pended to this existing log. If no service log exists, then this is a new incarnation

and consequently a new log must be created. Responsibility for assigning recovery

codes to services is assumed to lie outside the template, i.e., with the environment

in which the template is operating (see chapter 9 for further discussion on object

environments).

During service provision the template copies the details of all invocations to

the stable storage service log. Logging the invocation result, although not strictly

necessary, allows the initialisation phase, in the event of a re-incarnation, to verify

a correct replay sequence by comparing the new instance's responses with those of

Chapter 8. Virtual Objects 	 210

CLASS Persistence_Teniplate (Base -Object : AnyObject);

PROCEDURE Service_Initialisation(Recovery_Code : UniqueCode);

BEGIN
If {existing log attached to this recovery code

}

THEN {open log and replay invocation history}
ELSE OPEN_NEW(Service_Log) WITH Recovery-Code;

END of Service-Initialisation;

FUNCTION Service-Provision(Service-Name 	Logical-Name;
Service-Parameters : Parameter-List);

BEGIN
VARIABLE Result IS Parameter-List;

Result 	INVOKE Base_Object.Service_Name WITH Service-Parameters;

LOG_TO(Service_Log, Service_Name, Service-Parameters, Result);

RETURN Result;

END of Service-Provision;

PROCEDURE Service-Closedown;

BEGIN
DELETE(ServiceLog); 1* since no longer needed */

TERMINATE;
END of Service-Closedown;

END of CLASS Persistence-Template;

Figure 8-4: An Example Persistence Template Implementation

Chapter 8. Virtual Objects 	 211

its predecessor. During service closedown, i.e., when terminating the persistence

property, the service log can be deleted as it is no longer required.

8.4.3 Access Control

Figure 8-5 shows a mock implementation of a general access control template.

There are no obvious initialisation or closedown actions required in this general

example, so the corresponding routines have been omitted. Upon each invocation,

the security parameters supplied by the client are validated appropriately. For ex-

ample, a capability based template would receive capabilities, while an ACL based

template would receive client names that it can check against an access control list

(establishing the list members would be an initialisation task). Regardless of the

security mechanism employed, if the security parameters are validated successfully

then the base object is invoked (without security parameters). Invocations failing

verification are rejected by the template.

Non-circumvention of the template can be assured, in the simplest case, by hav-

ing only the template aware of the base object's existence. When this is infeasible

or considered too insecure, more elaborate schemes can be employed involving the

cooperation of (trusted) system software to ensure that only security templates

may invoke secure services. If this is also infeasible or insecure, then access con-

trol using templates might be restricted to the role of converting between access

methods. For example, if an object expects clients to present valid capabilities,

then a template can be applied to allow ACL based clients to invoke this service.

The template would validate the client against its authorisation list forwarding

successful invocation to the base object with a valid capability substituted for the

the ACL security information. Conversions between other security mechanisms

could be performed in a similar manner.

Chapter 8. Virtual Objects
	

212

CLASS Security_Template(Base_Object : AnyObject);

FUNCTION Service-Provision(Service-Name 	: Logical-Name;
Service-Parameters : Parameter-List;
Security-Parameters : Security-Info);

BEGIN
VARIABLE Result IS Parameter-List;

IF VALID(Security_Parameters, Base-Object)
THEN BEGIN
Result := INVOKE Base_Object.Service_Name WITH Service-Parameters;
RETURN Result;

END of IF
ELSE REJECT(Security_Parameters);

END of Service-Provision;

END of CLASS Security-Template;

Figure 8-5: An Example Access Control Template Implementation

Using security templates it becomes possible to create several instances of the

same service, each one protected by a different security mechanism. Such an

environment provides greater flexibility in matching its services to clients' require-

ments.

8.4.4 Debugging

The implementation details of aninter-object debugger are beyond the scope of the

simple examples presented here. However, following the same format as the other

examples, the Service-Provision routine, which observes all invocations and

results, is able to provide the inter-object debugging facilities identified earlier

recording and displaying invocation behaviour, parameters and results; storing

invocation histories - perhaps in the same manner as a persistence template -

Chapter 8. Virtual Objects 	 213

to be replayed later in order to reproduce error conditions; allowing modification

of parameters and results.

8.4.5 Performance Monitor

An example implementation of a performance monitor template is shown in Fig-

ure 8-6. It is principally intended for the update thresholding mechanism de-

'eloped in chapter 7, although it also applies to any update mechanism based

upon observing invocation service times. The template relies upon its host to

time-stamp incoming invocation messages as they are placed in its request queue.

The model of invocation remains the same as described in chapter 6 (section 6.1),

except that message queueing now occurs within the template object rather than

the base object.

The template keeps a list of objects wishing to receive updates relating to

the base object. Any object wishing to receive updates adds its name to the list

by invoking Add-Monitor. In principle there is no upper limit on the number of

monitors.

Invocations upon the base object are time-stamped and placed in the tem-

plate's request queue to await servicing. It is assumed that the time-stamp in-

formation can be extracted by the template for use in calculating the invocation

service time. The Service Provision routine services each request in turn, re-

moving it from the request queue and passing it to the base object. Upon com-

pletion of the invocation, the template obtains the current time from its host, i.e.,

the end-time for the complete invocation, and uses this to calculate the service-

time. This service-time includes the message queueing time within the template

and the actual invocation service-time by the base object. Having updated its

service history with this latest observation, the template then calls its update al-

gorithm (in this case the thresholding mechanism). If this algorithm decides that

Chapter 8. Virtual Objects
	

214

CLASS Monitor_Template (Base_Object : AnyObject);

BEGIN
VARIABLE Monitor_List IS SET OF Object-Pointer;

PROCEDURE Service -Initialization;

BEGIN
Monitor-List 	0;

END of Service-Initialisation;

PROCEDURE Add_Aonitor(Nev_Monitor : Object -Pointer);

BEGIN
Monitor_List := Monitor-List + [1ev_Monitor];

END of Add-Monitor;

FUNCTION Service-Provision(Service-Name 	Logical-lame;
Service-Parameters : Parameter_List);

BEGIN
VARIABLE Start-Time IS Time-Details;
VARIABLE End-Time IS Time-Details;
VARIABLE Service_Time IS REAL;
VARIABLE Result 	IS Parameter-List;
VARIABLE Monitor 	IS Object-Pointer;

EITR.ACT_TIME(Start_Time); 	I* from invocation message, as *1
/5 recorded by template host */
/* upon messages insertion into *1
/* template's request queue

Result := INVOKE Base_Object .Service_Name WITH Service-Parameters;

GET_TIME (End_Time); /* current time, from host's clock 5/

Service_Time := End_Time - Start-Time;

(update rolling service history vith Service-Time)

IF (update required according to thresholdi.ng algorithm}
THEN FOR EACH Monitor IN Monitor-List

DO Monitor.Update(Current_Average, Service-History-Length);

RETURN Result;

END of Service-Provision;

END of CLASS Monitor-Template;

Figure 8-6: An Example Performance Monitor Implementation

Chapter 8. Virtual Objects 	 215

an update is required, then each object in the monitor list is invoked to receive

the current performance information. If no updates are required then no action is

taken. Finally, the invocation result is returned to the client.

8.5 Implementation Issues

Having illustrated the principle behind virtual templates, this section examines

some problems associated with implementation.

8.5.1 Template Performance

The mock implementations described above assume that virtual templates are in-

dependent objects, separate from the base objects they support. Although this

approach is feasible, it is potentially inefficient due to the additional invocations

generated by the client invoking the template, which then invokes the base object

(Figure 8-2). A similar overhead is incurred when returning results since the base

object replies to the template, which then replies to the client. The benefit of

adding a virtual property may compensate for a limited performance degradation;

however, doubling the amount of inter-object communication may not be accept-

able. One possibility for reducing this overhead is to always place the template

at the same location as the base object, since intra-location (intra-host) invoca-

tion is generally less expensive than inter-location invocation. Extending this idea

further, a more efficient approach would be to incorporate the virtual template

as part of the base object, thereby removing the additional invocation overhead.

The object paradigm provides a possible solution to this integration through the

use of inheritance.

There are at least two approaches to incorporating virtual templates using

inheritance; one of these implements templates as the generic concept described

Chapter 8. Virtual Objects 	 216

here, while the other provides the programmer with a 'toolkit' for creating service-

specific virtual properties. Both these approaches are examined below.

8.5.2 Inheriting From Base Objects

By placing a template class description at the bottom of a class hierarchy (Fig-

ure 8-7), the template can inherit, using standard object oriented inheritance

mechanisms, the interface and invocation routines of all its ancestors; in par-

ticular, it inherits the interface and invocation routines of the base object. In

effect, the template extends the base object's interface to include routines such as

Service Initialisation, Service Provision and Service Closedown. The

main requirement for creating virtual properties in this way is for the Service

Provision routine to intercept all invocations upon the base object's services,

which requires the cooperation of the underlying invocation mechanism.

Objects known to regularly require certain virtual properties can be con-

structed in this manner, with the appropriate templates included. Ideally, the

construction service should append template classes automatically while construct-

ing the object. This hides the virtual property implementation entirely from the

base object programmer, which is in keeping with the original template concept.

It also allows different users to specify different properties throughout the base

object's life-time.

Implementing virtual properties using base object inheritance does not interfere

with the original, separate template object approach; the two techniques may co-

exist. This maintains the flexibility provided by independent templates, whilst

also offering 'good' performance by enabling objects to be created with 'built in'

virtual properties.

Chapter 8. Virtual Objects

Root
Object
Class

Ancestor
Class

Ancestor
Class

Figure 8-7: Template Classes Inheriting from Base Object Classes

217

Chapter 8. Virtual Objects 	 218

8.5.3 Inheriting From Templates

If a template class is included near the root of the class hierarchy (Figure 8-8),

then all user defined classes (which are now sub-classes of the template class),

automatically inherit the virtual property invocation routines. Hence, any user

defined object can be invoked with a request such as Resilience_Initialise(3),

the code for which will be found in the object's class hierarchy using the standard

inheritance mechanisms.

The problem with this approach is in redirecting invocations via the Service

Provision routine, since the base object is (notionally) unaware of its existence.

Requiring the base object to invoke Service Provision explicitly upon each in-

vocation removes the 'hidden' element from the template concept. Although not

strictly an implementation technique for templates, if this approach is taken, a

service-specific virtual property mechanism can be introduced.

The Arjuna system [Shriv88] uses object oriented inheritance to provide per-

sistence, recoverability' and concurrency control [Dixon88} [Parri88]. The root

class Object provides the basic facilities allowing a type to be recoverable and

persistent. Further sub-classes 2 of Object build upon these basic facilities to pro-

vide atomic actions and locking facilities for concurrency control, which are then

automatically inherited by new classes.

In general, the template classes defined near the root of the class hierarchy

should provide only the low-level building blocks required to construct their re-

spective virtual properties. Further sub-classes inherit these facilities and may

build upon them to create 'better' and 'larger' facilities. These facilities are then

'Recoverability is the ability to 'undo' a series of invocations.

2 A11 classes are, by definition, sub-classes of Object

Chapter 8. Virtual Objects 	 219

Root
Object
Class

Ancestor
Class

Ancestor
Class

Figure 8-8: Base Object Classes Inheriting from Template Classes

Chapter 8. Virtual Objects 	 220

automatically inherited by 'application' objects, which can call upon them ex-

plicitly to realise a particular virtual property. However, object programmers also

have the freedom to enhance or even re-define these facilities using standard object

oriented programming techniques. Hence, the virtual property can, if necessary,

be customised for the object in question while still re-using inherited code that

the object's programmer need not reproduce, or indeed understand (beyond the

interface level).

8.6 Summary

A particular group of virtual properties have been identified, each of which can

be created by manipulating invocation messages and base object instances. It has

been argued that the object and invocation manipulation required to create each

of these properties can be encapsulated in a generic, re-usable form; namely virtual

templates. Several example templates have been shown, covering Resilience, Per-

sistence, Access Controls, Debugging and Performance Monitoring. Conceptually,

templates are independent objects interposed between client and server. However,

performance issues make it desirable to incorporate the template within the ser-

vice object. Two possible approaches were identified using inheritance: template

classes inheriting from base object classes to provide 'hidden' virtual property im-

plementation; and base object classes inheriting from template classes, enabling

programmers to build upon and customize, service-specific virtual properties.

Chapter 9

Resource Provision

This chapter examines how the various aspects of resource provision may

be combined to provide a complete resource scheduling mechanism. The

early part of the chapter speculates on how users might access the dis-

tributed system's resources using Environments, in which only virtual ob-

jects exist, with no notion of location or distribution. Based on this user

oriented view, the resource provision requirements associated with various

user actions are determined. In each case, a solution is offered utilising the

techniques developed in this thesis. The chapter concludes by examining

the limitations of these mechanisms, suggesting the circumstances under

which resource provision techniques can be expected to operate effectively.

221

Chapter 9. Resource Provision
	

222

9.1 Environments

Before examining resource provision in detail, this section speculates on how the

resources of a distributed system might be presented to users. Within this frame-

work, several user actions are identified that have an effect upon resource provision.

These actions are used later as a basis for describing how the resource provision

requirements can be satisfied using the techniques developed in this thesis.

In large multi-user, object oriented distributed systems, individual users are

normally interested in only a relatively small subset of the many thousands of ob-

jects available. There is therefore a need to structure the user's view of the system

in order to sensibly organise and find objects and services. This is not unlike the

problem of structuring multi-user file services in non-object based systems. Each

user wishes to see only a small subset of the entire system, containing only those

objects of interest.

An Environment is a restricted view of the virtual object world customised by

user and by activity. Each environment contains only those objects of interest

to a specific user when performing a particular 'flavour' of task. From the user's

point of view, each environment is a self-contained world providing all the facilities

required to perform a specific task. The user perceives only virtual objects in the

environment, with no concept of location or distribution. Objects can be added to

or removed from an environment at will, with all scheduling and resource provision

being performed automatically and invisibly.

In [Neuma89], Neuman describes a similar approach to user environments,

known as the Virtual System Model, based upon the observation that large systems

are difficult to manage and negotiate, and that users should be presented with a

small subset of the system containing only those parts of interest.

Chapter 9. Resource Provision 	 223

"The Virtual System Model provides a framework within which users

can build a view of a system in which the parts of interest are logically

nearby." [Neuma89]

The concept is illustrated using a virtual file system implementation in which the

user defined directory hierarchy is independent of the underlying storage hierarchy.

Files can appear many times within a directory hierarchy, as well as in multiple

hierarchies. The directory hierarchy may also contain loops. Some (essential) files

appear in all users' hierarchies, but in general each user has a customised view of

the file system.

9.1.1 Environment Examples

While using a workstation, a user may have several (screen) windows open, each

containing a different environment. Examples are numerous, but could include

environments such as: SmailTalk, perhaps a distributed implementation; a docu-

mentation environment, complete with the user's favourite text processor, a dictio-

nary object, a thesaurus object, printer objects and the document objects them-

selves; programming language development environments for creating new object

classes, including language manuals and programming tools (note that in a user

environment, compilation will be performed automatically. The programmer is

aware of only one representation of the object, which is the source code represen-

tation); operating system environments providing emulations of specific systems,

perhaps non-object oriented and non-distributed; a system management environ-

ment providing system configuration tools and privileged access to system data. In

a mature system there will be many other environments, created and customised

by the users themselves. As an example, application programs may have exe-

cution environments created for them in which all the facilities required by the

application are (logically) collected together.

Chapter 9. Resource Provision
	 224

9.1.2 Hierarchies

In an object oriented system the environments will themselves be implemented as

objects, and can therefore appear as members of other environments. Hence, a hi-

erarchy of environments can be established such as the example shown in figure 9-

1. The root of the environment hierarchy, SWP, is established automatically when

user SWP accesses the system. As shown here, there are two 'sub-environments'

in the SWP environment : SWP...Documents and SWP_Simula. The SWR..Docuinents

environment contains several document objects created by user SWP, represented

here by the objects Thesis and Paper. The document environment also contains

the sub-environment Document-Tools, which contains objects such as a text edi-

tor, dictionary and thesaurus. This in turn has access to a Printers environment,

which contains printer objects suitable for producing hard copies of documents.

The SWP_Simula environment, which contains program objects, has a similar envi-

ronment hierarchy. The Simula_Tools environment has a language manual object,

an editor object and access to a Printers environment, although this may not

be the same as the documentation Printers environment since it may contain

different printer objects.

Each environment may provide its own aliases for the objects it contains. Ob-

jects in other environments can be accessed using an Environment: LocalNaine

pair. Note that an object may be present in more than one environment and can

therefore be referenced by more than one name.

Note that all the objects mentioned here, and indeed the environments them-

selves, are virtual objects, operating at the level of abstraction defined by the

uppermost layer of the Object Reference Model (see Chapter 2).

Chapter 9. Resource Provision 	 225

Figure 9-1: An Example Environment Hierarchy for User SWP

Chapter 9. Resource Provision
	 226

9.1.3 User Interface

Although not directly relevant to the issues under discussion, a brief examination of

how environments might be presented to users, and the actions users can perform

within them, provides some insight into the resource provision issues that must

be tackled.

As stated in chapter 3, the system is assumed to provide high resolution icon,

window and mouse based user interfaces. Objects and environments can therefore

be presented as icons. Using the mouse pointer to select an object icon may per-

form one of several actions such as displaying user oriented information relating

to the object's function, deleting the object, or listing the object's invocation rou-

tines. Selecting a routine name invokes the object. Selecting an environment icon

'opens' the environment, creating a new window containing its associated object

(and environment) icons. Objects could be copied between environments simply

by 'dragging' their icons from a source environment window to the destination

environment window. A separate mechanism must be provided to enable users to

find, and hence access, unknown environments (cf. the directory command used

in file systems). Users of 'programming' environments require a further interaction

mechanism to enable new object classes to be incorporated into the system (the

details of such a mechanism are discussed later).

Hence, at the environment level, there are three main activities a user can

perform that affect resource provision : object addition, object invocation and

object removal. The following section examines the actions required of the re-

source provision mechanisms in each case. Initially, only simple environments are

considered, with no sharing of objects. Sharing is examined later.

Chapter 9. Resource Provision 	 227

9.2 Resource Provision

The descriptions of resource provision services given below are based upon the

operational services described in chapter 2 for each of the ORM layers. The

mechanisms identified for implementing these services are based upon the work

presented throughout the thesis. The intention is to relate the various research

aspects that have been developed, indicating how they might combine to provide

a complete resource provision facility. In common with the rest of the thesis, the

following discussion is not intended to provide an implementation description, but

rather indicates the general techniques that could be used.

9.2.1 Configuration Management

Environments create small, self contained systems utilising a subset of the re-

sources provided by the larger, underlying distributed system. They provide

structure to an otherwise flat virtual world. The grouping of services into environ-

ments can be configured at all levels of the resource provision hierarchy, assisted,

for example, by using an option parameter to pass environment identifiers down

through the resource provision hierarchy. Restrictions and controls can therefore

be placed upon the resources available to individual environments. For example:

at the Virtual Layer, restricting the availability of virtual properties; at the Invo-

cation Layer, restricting the level of service expansion and contraction permitted;

at the Location Layer, limiting the number of candidate locations when scheduling

new objects; at the Construction Layer, limiting the range of representation trans-

formations available; and finally, at the Migration Layer, limiting the processors

to which access is permitted.

The scale of resource scheduling can therefore be reduced from one large envi-

ronment to many smaller environments. The controls and restrictions established

Chapter 9. Resource Provision 	 228

at each level of the resource provision hierarchy should be hidden from the other

layers. They might be established and maintained by the (human) system ad-

ministrators using external-management (configuration) services provided for this

purpose. Hence, at each level in the resource provision hierarchy it should be

possible to configure resource provision to suit the users, their applications and

the underlying system.

9.2.2 Adding Objects to an Environment

Adding an object to an environment initially only requires placing the name of

the (virtual) object in the environment's list of known objects. At this point an

icon can be added to the user's display, indicating that the object is available.

No further resource provision activities are required until the user attempts to

invoke the object. When this occurs, the actions of the resource provision services

depend upon the nature of the added object; it may be new to the system, new

to all currently 'active' environments, or simply new to this environment.

If the (virtual) object is new to the entire system then it must be incorporated

into the 'list' of known objects. Section 9.2.3 examines how this might be achieved.

If no scheduled instance of the object currently exists, then a new instance must

be created, possibly using the techniques described below in section 9.2.4. If the

object exists in another environment, the 'new' virtual object may possibly be

mapped onto this existing object. Alternatively, if the existing object is unable to

support an additional client, a new instance must be scheduled.

9.2.3 Adding New Objects to the System

New object classes are added to the system by making them available to the ap-

propriate type representative. Classes under development should be identified as

'text' objects rather than class descriptions, in order to avoid the construction

Chapter 9. Resource Provision 	 229

facility automatically picking up incomplete classes. Hence, they can be read,

edited, printed and so on, in the same manner as other document objects. For

example, in a C++ environment the C++ programmer would create a module con-

taining C++ code to perform the services required of the new object. For this

part of the programming process the newly developed code should be treated ex-

actly as a document. Once completed, the programmer changes the object's type

from Document to, say, C++Module. The environment must vet each new object

for compliance with its language definition, i.e., type checking it for conformance

with its purported type and registering it with the appropriate type representative.

Once the environment has verified the type conversion, the object can no longer be

read, edited or printed, as these are invocations made upon documents. Selecting

the object now gives a different list of possible invocation routines, namely those

defined by the programmer in the body of the C++ module.

The verification aspects of object construction have not been tackled in this

thesis. Type verification should sensibly be a function of the construction service,

which encapsulates all knowledge of object representation. Programmers should

remain unaware of verification activities except in the event of an incompatibil-

ity, such as a syntax error. Hence, programmers perceive only a new object in

their 'programming' environment, which they are now free to invoke in the usual

manner, possibly requesting the virtual property 'debuggability' (see Chapter 8)

in order to test the object's behaviour.

9.2.4 Scheduling New Objects

When the very first invocation is made upon an object, the resource provision

mechanisms are called upon to create an executable instance (Figure 9-2). In order

to create a virtual object the environment calls the Virtual Layer CreateService

facility, specifying the virtual properties required. This service, which can be

embodied within a 'virtual world management' object (hidden from the environ-

Invocation
on new
object

I
call

Create-
Service

Call
Schedule-

Object

Select
Host

Call
Make-

Instance

4
Create

Instance

Call
Move

11
Copy

instance
to

specified
host

Report
completion

I
Report

completion

I
Report

completion

I
Report

completion *1

Apply
Template(s)

Make
Invocation

Apply
Property

Report
completion

Maps

4 Make
Inv ocation(s)

>4

Make
Invocation(s)

Transform
Parameters

I
Migrate

Invocation
Message(s)

Chapter 9. Resource Provision 	 230

List of
Environment 	 I Virtual I

L Objects J

Virtual 	 List of
World 	 Property

Manager 	 L Maps J

List of E

Objects

Invocation I 	Object Scheduler 	
ormancej

	

[Pe :
Host)
	Listof Object
	AlternativeScheduler

manc 	L Hosts

Construction Bragorm
	List of

Facility 	 ons 	Host
 J 	Types J

1 List of
Migration 	 I 	Host

Facility 	 (ocatjonsJ

Figure 9-2: The Resource Provision Hierarchy

Chapter 9. Resource Provision 	 231

ment's users) in turn calls the CreateService facility embodied by the Invocation

Layer. The Invocation Layer services then call the Schedule facility offered by

the Location Layer's object scheduler. It is here that the main scheduling activity

takes place.

The object scheduler, which continually monitors the performance of each ob

ject host available to the originating environment, selects the 'best' host to receive

the new instance. This decision is made in conjunction with the management

information provided by the construction service, which defines the possible rep-

resentations available and their relative transformation costs. Chapter 6 (sec-

tion 6.7) discussed the use of comparison scheduling in selecting a suitable host.

The update thresholding mechanism presented in chapter 7 can be used to reduce

the update traffic describing each host's current performance.

-Having established the target host, the object scheduler calls upon the object

construction facility to Makelnstance, which can use the construction algorithm

described in chapter 4 to create an appropriate object representation. Finally,

the construction facility calls upon the migration service to install the object

representation on the target host. As each scheduling stage completes, it reports

back to the previous level. When the completion message reaches the virtual world

manager, the management service invokes the appropriate initialisation routines

for each of the virtual properties specified by the user. Object installation is now

complete, and the invocation that triggered this process can proceed as normal (see

below). Figure 9-3 shows the mapping that has been established; from the abstract

environment object onto an executable representation resident on a processor.

9.2.5 Invoking Objects

Invocations upon the objects in an environment are mapped to the appropriate

virtual object and passed to the virtual world 'manager' (see rightmost path in

Chapter 9. Resource Provision 	 232

Environment
Object

Virtual
Object

Real
Object(s)

Host(s)

Processor(s)

Figure 9-3: Mapping an Environment Object onto a Processor

Figure 9-2). The virtual manager applies its 'rules' for maintaining virtual prop-

erties, converting the virtual invocation into the appropriate real invocation(s).

The use of virtual templates for performing this task was discussed in chapter 8.

The real invocations are then passed to the invocation scheduler for assignment

to real objects.

As well as assigning invocations to objects, the invocation scheduler is also

responsible for controlling service expansion (and contraction) to maintain a 'sat-

isfactory' level of service. The thresholding technique can be used to detect when

an object's average service time falls below an 'acceptable' level (see section 7.4

for more details). Under these circumstances, the object scheduler is triggered

to create an additional object instance, using the same techniques as described

above. New instances are added in this manner whenever the existing instances

become overloaded. In the case of retentive services, the invocation scheduler is

Chapter 9. Resource Provision 	 233

further responsible for instigating the transfer of status information between the

original and new service instances (see chapter 5).

Note that service expansion is a function of the invocation scheduler, and re-

mains invisible to the virtual manager, which perceives only a single instance

of each real object associated with the virtual object. If a service has been ex-

panded, i.e., with multiple real object instances providing identical services, then

comparison scheduling, described in detail in chapter 6, can be used to balance

the invocation load.

Having made the invocation scheduling decision, the invocation message(s)

must be forwarded to the appropriate object(s). Notionally, this does not involve

the object scheduler, although some address space translation may be required for

which the object scheduler must be consulted. In particular, the object scheduler

may be performing object migration to compensate for coarse-grained load imbal-

ances between hosts. As with the service expansion provided by the invocation

scheduler, object migration for load balancing is a 'hidden' function of the object

scheduler. The invocation scheduler perceives only scheduled objects, with no

attached notion of physical location.

Finally, if necessary, the construction services may transform the message pa-

rameters into a representation accepted by the target object. The migration ser-

vice is then called upon to deliver the invocation message(s) to the object(s)

specified by the invocation scheduler.

9.2.6 Sharing Objects

Object sharing may occur at several places in the resource provision hierarchy.

Figure 9-4 illustrates several possibilities. The environments are responsible for

establishing and maintaining the sharing of virtual objects. Some virtual objects,

although apparently independent to users, may in fact share the same real object

Chapter 9. Resource Provision 	 234

Environment
Objects L
=

Real

EnvirorEnvronnenl

Objects

Hosts
Object Object Object 	Object

Processors Pr 	u W_,

Sharing Sharing Sharing Sharing
Virtual Real Host Processors
Objects Objects Objects

Figure 9-4: Sharing Objects

instance(s). As an example, most environments will include some sort of name

server or directory object to identify other objects and environments. Each en-

vironment may appear to have its own copy of this service, although in reality

they could all map to a single 'real' service. The virtual manager is responsible

for establishing this level of sharing.

Multiple real objects may share a host object. This is one of the basic assump-

tions stated in chapter 3, that most hosts are capable of supporting more than one

object instance. The object scheduler is responsible for assigning objects to hosts,

attempting to share the workload evenly. Finally, object hosts may share proces-

sors. The mapping of hosts to processors is likely to be static, pre-determined by

the (human) system administrators.

Figure 9-5 combines some of these sharing modes to provide a more realistic

mapping of environment objects onto physical nodes. The figure shows a portion of

two environments; Environment 1 and Environment 2. Both environments have

a Directory object enabling users to find, and hence use, objects in other envi-

ronments. Although seen as independent services by the environment users, both

	

Chapter 9. Resource Provision 	 235

	

Environment 1
	

Environment 2

Directory 	 Directory I I Document

	

Virtual
	

Virtual
Directory 	 Document
Service

Real I I Stable
Directory I I Storage
Service 	J I Object

Real
Document

Host A) 	 (Host B

Figure 9-5: An example Sharing Configuration

Directory objects share the same virtual object. In the example, a persistence

template has been applied, so the virtual directory object is realised using two real

objects - the directory server object and a stable storage object - which reside

on host A and host B respectively. As well as a Directory object, Environment 2

contains a Document object which, like most document objects, must be persistent

in order to retain the text of the document between work sessions. The virtual

document object is therefore realised using the 'real' document object and a stable

storage object, which in this example is the same stable storage object as used by

the directory service. Finally, both the document object and the storage object

share host B.

Chapter 9. Resource Provision 	 MR

9.2.7 Object Deletion

At the environment level, removing an object simply involves deleting the object's

name from the environment's list of known objects, in conjunction with remov-

ing its associated icon. How far this deletion command is propagated down the

resource provision hierarchy depends upon the scheduling policies being used and

the sharing configuration. In each case, the decision to de-schedule, thereby free-

ing potentially valuable resources, must be weighed against the likelihood, and

cost, of the object being reinstated in the near future. An object can only be

de-scheduled if it is not being shared with any other service.

The virtual world manager de-schedules a virtual object by requesting the invo-

cation scheduler to remove the components of the 'real' service. Hence, using the

example in Figure 9-5, in order to remove the virtual document object the invoca-

tion scheduler would be requested to delete the stable storage object and the real

document object. It does this by calling upon the object scheduler to DeSchedule

the real objects. In this simple example there is a direct correspondence between

the real objects known to the virtual world manager and those used to implement

the service. In other cases the invocation scheduler may have expanded the ser-

vice by creating additional instances. Under these circumstances the invocation

scheduler will instruct the object scheduler to delete all instances associated with

the virtual service. Finally, the object scheduler informs the construction facility,

which may then delete the object's executable representation.

9.3 Limitations

This section examines the effects upon the scheduling mechanisms of user be-

haviour and system configuration. For each scheduling aspect, the extremes of

operation are examined, with corresponding user actions or system configurations

Chapter 9. Resource Provision 	 237

identified that lead to these conditions. The resultant discussion defines the cir-

cumstances under which these resource scheduling mechanisms are expected to

operate effectively.

9.3.1 Virtual Properties

The application of virtual templates to objects generally incurs some sort of over-

head, ranging from increased communication to the creation and maintenance of

additional object instances. Under normal circumstances this cost is an acceptable

consequence of the virtual objects' increased utility. However, users requesting

multiple properties on every object may generate considerable overheads, result-

ing in reduced performance. Virtual properties should therefore only be applied to

objects when necessary. In particular, properties that generate multiple instances,

such as resilience, should not be applied indiscriminately. The system may have

to impose limits on users of these properties, for example, placing a sensible max-

imum on the level of resilience permitted, to avoid requests for '1000-resilient'

objects. Objects possessing no virtual properties' do not create any additional

overheads.

9.3.2 Invocation Rates

Although not under direct user control, the invocation rate is influenced by user

actions since user requests initiate invocation activity. During slow periods, a sin-

gle user may not generate sufficient work to justify exclusive access to a dedicated

object. Under these circumstances the invocation scheduler's ability to share ob-

jects between users becomes important. Where possible, users should be grouped

'Notionally, all objects possess at least a 'null' virtual property, since only virtual

objects can inhabit environments

Chapter 9. Resource Provision 	 238

together to be collectively served by a single service instance. The mechanisms

presented here do not tackle this problem.

At high invocation rates, the invocation scheduler may expand overloaded ser-

vices by creating additional instances to share the load. These additional instances

are removed when the invocation rate falls. However, bursty invocation activity,

i.e., alternating periods of high and low invocation rates, may cause the continu-

ous expansion and contraction of services. It has not yet been established whether

thresholding (see section 7.4) can successfully avoid this sort of 'service thrashing',

but the experience with the thresholding of update messages suggests that it may

be suitable.

9.3.3 Object Scheduling

The principal constraint on an object scheduler is the number and type of hosts

available to it. The earlier discussion on configuration management suggested that

each environment may be associated with an arbitrary group of hosts. Obviously,

if the scheduler has no hosts then it cannot schedule any objects. If only one host

is available then the scheduling problem is trivial, although this could be a typ-

ical configuration, with the only known host corresponding to the physical node

owned by the user. Object scheduling becomes interesting when there are two or

more hosts available. A greater number of hosts offers greater potential for useful

load sharing, although this must be offset against the monitoring overhead. The

'optimal' sized grouping of hosts will vary between systems, depending upon the

type of hosts involved, their capacity to support monitoring status information,

and the level of system activity. Grouping hosts on a per environment basis pro-

vides a potentially flexible configuration mechanism, allowing the scale of object

scheduling to be customised to the system under consideration.

Chapter 9. Resource Provision 	 239

9.3.4 Construction Facility

In a heterogeneous environment with many different host types, the construction

facility will be called upon more heavily than in a largely homogeneous environ-

ment. For example, if every host is a different type, then an object has a high

probability of being re-constructed every time it is scheduled. Conversely, if the

majority of the host sites are homogeneous, then a representation created for one

host can automatically be made available to the others through the type repre-

sentative. Hence, greater homogeneity implies less construction overheads. These

trade-offs are fundamental to any heterogeneous distributed system, independent

of the construction mechanisms employed. Therefore, in general, automatic con-

struction of objects is most suited to a heterogeneous environment in which each

host type is replicated many times, or where one particular host type predomi-

nates.

9.4 Summary

This chapter has speculated on how distributed resources might be presented

to system users. The concept of environments wQft5 introduced, where an envi-

ronment is a self contained 'world' populated exclusively by virtual objects with

desirable properties. Each environment is customised by user and by activity, (log-

ically) collecting together the objects necessary for performing the activity. The

resource provision aspects associated with realising these environments were ex-

plored. This discussion indicated how the resource provision techniques presented

in this thesis can be utilised to provide a complete resource provision facility.

Finally, some limitations of these techniques were identified.

Chapter 10

Conclusions

Using objects to structure distributed systems is becoming an increasingly

popular paradigm. This thesis endorses the object approach. The reasons

for this lie in the nature of the objects themselves; hidden 'black box'

implementation (encapsulation), and communication by message passing.

Other, non-object, paradigms also exhibit encapsulation and message pass-

ing, but they lack the other key object attribute of inheritance. This thesis

has provided a study of resource provision in object oriented distributed

systems. Several aspects of resource provision have been examined in

detail, with object oriented solutions, mechanisms and recommendations

being made as appropriate. It has been demonstrated that exploiting ob-

ject attributes is a useful approach to accomplishing resource provision.

240

Chapter 10. Conclusions 	 241

10.1 Thesis Summary

This research has studied resource provision in object oriented distributed sys-

tems. The main emphasis has been on demonstrating the value of developing

object based solutions, rather than applying existing process based solutions. The

introductory and background material was covered in chapters 1, 3 and 5. Chap-

ter 1 introduced objects and distribution, including an overview of several example

systems. Chapter 3 defined the target environment addressed by the thesis, while

chapter 5 provided an overview of distributed scheduling. The key research con-

tributions documented by the remainder of this thesis are summarised below.

10.1.1 The Object Reference Model

Although developed primarily as a framework to describe the work in this thesis,

the Object Reference Model (ORM) is a general model of object oriented dis-

tributed systems that can usefully be applied to other areas of object oriented

systems research. ORM, which was described in Chapter 2, provides a logical

framework, built up as a series of layers, incorporating the various aspects of dis-

tributed systems design. Inspired by the OSI layered model of Communicating

Systems, ORM is intended to assist the design of new systems whilst also allowing

existing designs to be compared and contrasted.

10.1.2 Construction Graphs

A construction graph is a data structure that embodies the transformations per-

formed upon a class definition in order to create an executable object instance.

Construction graphs can be used to assist in the automatic construction and trans-

formation of object representations in a heterogeneous environment. The concept

Chapter 10. Conclusions 	 242

behind construction graphs was presented in chapter 4, along with the design of

a distributed automatic-construction facility.

10.1.3 Comparison Scheduling

Comparison Scheduling applies statistical hypothesis testing techniques to the dis-

tributed scheduling of object invocations. When applied to invocation scheduling,

an object instance is selected to receive an invocation only if it is 'significantly

faster' than all other contenders; where 'significant' is defined in terms of the

statistical significance of a hypothesis test. Chapter 6 described in detail one

particular formulation of comparison scheduling, based upon the assumption of

exponential service times. Simulated performance results compared favourably to

those for random and greedy scheduling, with improvements of up to an order of

magnitude observed. Based on these simulation results, a recommendation was

made for level of statistical significance to be used when performing comparison

scheduling.

10.1.4 Update Suppression

Chapter 7 presented an algorithm for eliminating redundant performance status

update messages, based upon the same hypothesis testing techniques developed

for comparison scheduling. The mechanism filters redundant messages, resulting

in a 95% reduction in update communication with little or no corresponding reduc-

tion in scheduler performance. Used together, comparison scheduling and update

thresholding offer considerable potential to improve scheduling performance in

object oriented distributed systems.

Chapter 10. Conclusions
	

243

10.1.5 Virtual Templates

Virtual properties and virtual objects were defined by the Object Reference Model

described in chapter 2. Virtual templates encapsulate virtual properties, such

as fault tolerance and persistence, in a generic, reusable form. In theory, any

object instance can be made to display a virtual property simply by applying the

appropriate template. Chapter 8 identified several example properties, providing

mock template implementations for each one. Some of the more general problems

associated with implementing templates were also discussed.

10.2 Future Work

10.2.1 Implementation

The various resource provision mechanisms presented in this thesis were developed

without reference to any particular distributed system. This has the advantage

of not restricting ideas to 'things that can be implemented with this particu-

lar box', thus encouraging solutions to fundamental, rather than system specific,

problems. This approach, epitomised by the Object Reference Model, has been

adopted throughout, with several different aspects of resource provision being ad-

dressed from a fundamental point of view. However, by using this approach, none

of the ideas presented are proven by implementation. To do so would require an

implementation effort beyond the scope of an individual Ph.D. project. There is

therefore potential for further work in proving these ideas through implementa-

tion, either by incorporating them separately into suitable existing systems, or by

designing and building a new system.

Chapter 10. Conclusions 	 244

10.2.2 ORM

The formulation of ORM given in chapter 2 is relatively stable and has served

the purpose for which it was intended; namely, to provide a descriptive framework

for the research presented in this thesis. ORM is potentially of benefit to other

researchers in this area, for structuring discussion about distributed systems. To

this end, ORM could be further promoted as a self-contained model of object

oriented distributed systems.

10.2.3 Comparison Scheduling and Status Updates

The simulations described in chapters 6 and 7 demonstrate the potential for com-

parison scheduling and update suppression to out-perform current scheduling tech-

niques. However, further work should be performed to verify (or otherwise) that

the assumption of exponential service times is reasonable across a wide range of ob-

ject environments. Should this assumption not hold, then the hypothesis tests can

be re-formulated using more suitable distributions. In principle s the re-formulated

algorithms should perform exactly as the algorithm in chapter 6. The only draw -

back is that any non-exponential formulation will almost certainly lead to a more

complicated test statistic, yielding a greater computation overhead. Further work

could also be performed to establish the feasibility of using a comparison scheduler

for assigning objects to hosts.

10.3 In Conclusion

This thesis has addressed some of the fundamental problems associated with re-

source provision in object oriented systems, attempting to provide object oriented

solutions rather than applying existing, process based solutions. As a result, the

Chapter 10. Conclusions 	 245

comparison scheduler and status update algorithms successfully exploit both en-

capsulation and message passing, while virtual templates may employ inheritance

in order to create generic properties. In each case, it has been shown that utilising

object oriented attributes, as opposed to process based attributes, provides useful

solutions to resource provision problems. The conclusion reached is that when

objects appear in distributed systems, the object paradigm should be used at all

levels, because treating objects as processes ignores useful attributes that could

otherwise be employed in controlling resource provision activities.

Bibliography

[Almes85] 	Guy T. Almes, Andrew P. Black, Edward D; Lazowska and Jerre D.

Noe. The Eden System: A Technical Review. IEEE Transac-

tions on Software Engineering, Vol SE-11, pp. 43-58, January 1985.

[Almes87] 	Guy T. Almes. Edmas: An Object-Oriented Locally Dis-

tributed Mail System. IEEE Transactions on Software Engi-

neering, Vol SE-13, No. 9, pp. 1001-1009, September 1987.

[ASN.1] 	Open Systems Interconnection: Specification of Basic En-

coding Rules for Abstract Syntax Notation One (ASN.1).

International Standards Organisation, ISO DIS 8825, 1985.

[Barak85] 	Amnon Barak and Amnon Shiloh. A Distributed Load Balanc-

ing Policy for a Multicomputer. Software—Practice and Expe-

rience, Vol 15, No. 9, pp. 901-913, September 1985.

[Bayer79] 	R. Bayer, R.M. Graham and G. SeegmIllier (editors). Operating

Systems - An Advanced Course. Springer-Verlag 1979.

[Bersh87I 	B.N. Bershad, D.T. Ching, E.D. Lazowska, J. Sanislo and M.

Schwartz. A Remote Procedure Call Facility for Intercon-

necting Heterogeneous Computer Systems. IEEE Transac-

tions on Software Engineering, Vol SE-13, No. 8, pp. 880-894, Au-

gust 1987.

246

[ANSA 89] ANSA An Engineer's Introduction to the Architecture.

Architecture Projects Management Limited, Release TR.03.02,

November 1989.

Bibliography 	 247

[Birma85] 	KY. Birman, T.A. Joseph, T. Raeuchle and A.E. Abbadi. Imple-

menting Fault-Tolerant Distributed Objects. IEEE Transac-

tions on Software Engineering Vol SE-11, pp. 502-508, June 1985.

[Birre84] 	Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote

Procedure Calls. ACM Transactions on Computer Systems, Vol

2, No. 1, pp. 39-59, February 1984.

[Black85] 	Andrew P. Black. The Eden Programming Language. Univer-

sity of Washington Department of Computer Science, Technical Re-

port 85-09-01, September 1985.

[Black86] 	Andrew Black, Norman Hutchinson, Eric Jul and Henry Levy. Ob-

ject Structure in the Emerald System. University of Washing-

ton Department of Computer Science, Technical Report 86-04-03,

June 1986.

[Casav88] 	Thomas L. Casavant and Jon G. Kuhl. A Taxonomy of Schedul-

ing in General Purpose Distributed Computing Systems.

IEEE Transactions on Software Engineering, Vol 14, No. 2, pp.

141-153, February 1988.

[Chou 82] 	T.C.K. Chou and J.A. Abraham. Load Balancing in Dis-

tributed Systems. IEEE Transactions on Software Engineering,

Vol SE-8, No. 4, pp. 401-412, July 1982.

[Cocks84] 	W.P. Cockshot, M.P. Atkinson, K.J. Chisholm, P.J. Bailey and R.

Morrison. Persistent Object Management System. Software—

Practice and Experience, Vol 14, pp. 49-71, 1984.

[Coulo88] 	George F. Coulouris and Jean Dollimore. Distributed systems:

Concepts and Designs. Addison-Wesley, 1988.

Bibliography 	 248

[Cox 87] 	Brad J. Cox. Object Oriented Programming An Evolution-

ary Approach. Addison-Wesley, 1987.

[Dasgu86] 	Partha Dasgupta. A Probe Based Monitoring Scheme for an

Object-Oriented Distributed Operating System. OOPSLA

86 Proceedings, ACM SIGPLAN Notices, Vol. 21, No. 11, PP. 57-

66, September 1986.

[DIX 80] 	Digital Equipment Corporation, Intel Corporation and Xerox Cor-

poration. The Ethernet Specification. September 1980. Repro-

duced in ACM SIGCOMM Computer Communications Review,

Vol. 11, No. 3, July 1981.

[Dixon88] 	G.N. Dixon. Object Management for Persistence and Recov-

erability. Ph)I Thesis University of Newcastle upon Tyne, Comput-

ing Laboratory, TR-276, December 1988.

[Eager85] 	D.L. Eager, E.D. Lazowska and J. Zahorjan. A Comparison

of Receiver-Initiated and Sender-Initiated Adaptive Load

Sharing. Performance Evaluation, Vol 6, pp. 53-68, 1986.

[Eager86] 	D.L. Eager, E.D. Lazowska and J. Zahorjan. Adaptive Load

Sharing in Homogeneous Distributed Systems. lEE Trans-

actions on Software Engineering., Vol SE-12, No. 5, pp. 662-675,

May 1986.

[Elsho88] 	I.J.P. Elshoff. A Distributed Debugger for Amoeba. Centre for

Mathematics and Computer Science (C WI), Amsterdam, Report

CS-R8828, July 1988.

[Enslo78] 	Philip H. Enslow, Jr. What is a "Distributed" Data Process-

ing System? Computer, pp. 13-21, January 1978.

Bibliography 	 249

[Garci84] 	H. Garcia-Molina, F. Germano Jr. and W.H. Kohler. Debugging

a Distributed Computing System. IEEE Transactions on Soft-

ware Engineering, Vol SE-b, No. 2, pp. 210-219, March 1984.

[Goldb83] 	A. Goldberg and D. Robson. Smalltalk-80: The Language and

its Implementation. Addison-Wesley, 1983.

[Goldb84] 	A. Goldberg. Smalltalk-80, The Interactive Programming

Environment. Addison-Wesley, 1984.

[Griet89] 	J.J. van Griethuysen. Open Distributed Processing (ODP). In-

vited paper at IFIP 6.1 Conference on Protocol Specification, Ver-

ification and Testing, June 1989.

[Gurwi86] 	Robert F. Gurwitz, Michael A. Dean and Richard E. Schantz. Pro-

gramming Support in the Cronus Distributed Operating

System. Proceedings IEEE 6th International Conference on Dis-

tributed Computing Systems, pp. 486-493, May 1986.

[Haé 86] 	Anna Ha6 and Theodore J. Johnson. A Study of Dynamic Load

Balancing in a Distributed System. Proceedings ACM SIG-

COMM '86 Symposium, pp. 348-356, August 1986.

[Halbe87] 	Daniel C. Halbert and Patrick D. O'Brien. Using Types and In-

heritance in Object-Oriented Languages. Proceedings of Euro-

pean Conference on Object Oriented Programming. pp. 20-31, June

1987.

[Herli82] 	M. Herlihy and B. Liskov. A Value Transmission Method for

Abstract Data Types. ACM Transactions on Programming Lan-

guages, Vol 4, No. 4, pp. 527-551, April 1982.

Bibliography 	 250

[Herli86] 	M. Herlihy. A Quorum-Consensus Replication Method for

Abstract Data Types. ACM Transactions on Computer Systems,

Vol 4, No. 1, pp. 32-53, February 1986.

[Hopp86a] 	Andrew Hopper, Steven Temple and Robin Williamson. Local

Area Network Design. Addison-Wesley, 1986.

[Hopp86b] 	Andy Hopper and Roger M. Needham. The Cambridge Fast

Ring Networking System (CFR). University of Cambridge

Computer Laboratory, Technical Report No. 90, June 1986.

[Hsu 86] 	Chi-Yin Huang Hsu and Jane W.-S. Liu. Dynamic Load Balanc-

ing Algorithms in Homogeneous Distributed Systems. Pro-

ceedings IEEE 611 Internantional Conference on Distributed Com-

puting Systems, pp. 216-223, May 1986.

[Hwang85] Kai Hwang and Faye A. Briggs. Computer Architecture and

Parallel Processing. McGraw-Hill, 1985.

[ISO 811 	Data Processing - Open Systems Interconnection - Ba-

sic Reference Model. ISO 7489, 1983. Reproduced in ACM SIC-

COMM Computer Communications Review, Vol 11, No. 2, pp. 15-

65, April 1981.

[ISO 881 	ISO/IEC JTC1/SC21/WG7 Modelling Techniques for the

Specification of the ODP Reference Model. Document N 022,

June 1988.

[Jones79] 	Anita K. Jones. The Object Model: A Conceptual Tool for

Structuring Software. In [Bayer79], pp. 8-16.

Bibliography
	

251

[Jones86] 	Michael B. Jones and Richard F. Rashid. Mach and Match-

maker: Kernel and Language Support for Object-Oriented

Distributed Systems. OOPSLA 86 Proceedings, ACM SIGPLAN

Notices, Vol 21, No. 11, pp. 67-77, September 1986.

[Joyce87] 	J. Joyce, G. Lomow, K. Slind and B. Unger. Monitoring Dis-

tributed Systems. ACM Transactions on Computer Systems, Vol

5, No. 2, pp. 121-150, May 1987.

[Jul 87] 	Eric Jul, Henry Levy, Norman Hutchinson and Andrew Black.

Fine-Grained Mobility in the Emerald System. University

of Washington Department of Computer Science, Technical Report

87-02-03, February 1987.

[Jul 88] 	Eric Jul. Object Mobility in a Distributed Object-Oriented

System. PhD. Thesis, University of Washington, TR 88-12-06, De-

cember 1988.

[Karge88] 	Paul Karger. Improving Security and Performance for Capa-

bility Systems. PID. Thesis, Unirersity of Cambridge, Computer

Laboratory, TR-149, October 1988.

[Lamps8l] 	B.W. Lampson, M. Paul and H.J. Siegert (editors). Distributed

Systems - Architecture and Implementation. Springer-

Verlag (Second Edition 1983).

[Lazow8l] 	Edward D. Lazowska, Henry M. Levy, Guy T. Almes, Michael J.

Fischer, Robert J. Fowler and Stephen C. Vestal. The Architec-

ture of the Eden System. ACM SIGOPS Conference Proceedings

1981, pp. 148-159.

a

Bibliography 	 252

[LeLan8l] 	Gerard LeLann. Motivations, objectives and characterization

of distributed systems. In [Lamps8l], pp. 1-9.

[Lesli84] 	I.M. Leslie, R.M. Needham, J.W. Burren and G.C. Adams. The

Architecture of the Universe Network. ACM SIGCOMM

Computer Communications Review, Vol 14, No. 2, pp. 2-9, June

1984.

[Low 88] 	Cohn Low. A Shared, Persistent Object Store. Queen Mary

College, Department of Computer Science, Technical Report 450,

February 1988.

[MacDo87] M.H. MacDougall. Simulating Computer Systems, Tech-

niques and Tools. The MIT Press, 1987.

[Maeka87] 	M. Maekawa, A. Oldehoeft and R. Oldehoeft. Operating Sys-

tems, Advanced Concepts. Benjarnin/Commings, 1987.

[Makpa88] 	Mesaac Makpangou and Marc Shapiro. The SOS Object-

Oriented Communication Service. INRIA Research Report,

No. 801, March 1988.

[Methf87] 	R. Methfessel. Implementing an Access and Object Oriented

Paradigm in a Language that Supports Neither. ACM SIC-

PLAN Notices, Vol. 22, No. 4, pp. 83-92, April 1987.

[Mitra82] 	I. Mitrani. Simulation Techniques for Discrete Event Sys-

tems. Cambridge University Press, 1982.

[Mirch86] 	Ravi Mirchandaney and John A. Stankovic. Using Stochastic

Learning Automata for Job Scheduling in Distributed Pro-

cessing Systems. Journal of Parallel and Distributed Computing,

Vol 3, pp. 527-552, 1986.

Bibliography 	 253

[Mizun87] 	Masaaki Mizuno and Arthur E. Oldehoft. An Access Con-

trol Language for Object-Oriented Programming Systems.

Kansas State University, Department of Computing and Informa-

tion Sciences, Technical Report CS-76-12, November 1987.

[Mu11e87] 	Sape J. Mullender. Process Management in a Distributed op-
erating System. Centre for Mathematics and Computer Science

(CWI), Amsterdam, Report CS-R8713, March 1987.

[Neuma89] B. Clifford Neuman. The Virtual System Model for Large Dis-

tributed Operating Systems. University of Washington, Tech-

nical Report 89-01-07, April 1989.

[Ni 85] 	Lionel M. Ni, Chong-Wei Xu and Thomas B. Gendreau. A Dis-

tributed Drafting Algorithm for Load Balancing. IEEE

Transactions on Software Engineering, Vol SE-11, No. 10, pp. 1153-

1161, October 1985.

[Parri88] 	C.D. Parrington. Management of Concurrency in a Reliable Object

Oriented Computing System. PhJi Thesis University of Newcastle

upon Tyne, Computing Laboratory, TR-277, December 1988.

[Pasco86] 	G. Pascoe. Encapsulators: A New Software Paradigm in

Smalltalk-80. OOPSLA '86 Proceedings, ACM SIGPLAN Notices,

Vol. 21, No. 11, pp. 341-346, September 1986.

[Patel881 	Manjula Pate!. The Joint Academic Network JANET. Uni-

versity of Manchester Department of Computer Science, Technical

Report UMCS-88-6-2, June 1988.

Bibliography 	 254

[Quart86] 	John S. Quarterman and Josiah C. Hoskins. Notable Computer

Networks. Communications of the ACM, Vol 29, No. 10, pp. 932-

971, October 1986.

[Renes881 	Robbert van Renesse, Hans van Staveren and Andrew S. Tanen-

baum. Performance of the World's Fastest Distributed op-
erating System. ACM SIGOPS Operating Systems Review, Vol

22, No. 4, pp. 25-34, October 1988.

[Rents82] 	Tim Rentsch. Object Oriented Programming. ACM SIGPLAN

Notices, Vol 17, No. 9, pp. 51-57, September 1982.

[Schan86] 	Richard E. Schantz, Robert H. Thomas and Girome Bono. The

Architecture of the Cronus Distributed Operating Sys-

tem. Proceedings IEEE 6th International Conference on Distributed

Computing Systems, pp. 250-259, May 1986.

[Schan87] 	Richard Schantz, Ken Schroder and Paul Neves. Resource Man-

agement in the Cronus Distributed Operating System (Ex-

tended Abstract). ACM SIGCOMM Computer Communications

Review, Vol 17, No. 5, pp. 243-244, August 1987.

[Shapi86] 	Marc Shapiro. Structure and Encapsulation in Distributed

Systems: The Proxy Principle. Proceedings IEEE 6th Interna-

tional Conference on Distributed Computing Systems, pp. 198-204,

May 1986.

[Shriv88] 	S.K. Shrivastava, G.D. Dixon, F. Hedayati, G.D. Parrington and

S.M. Wheater. A Technical Overview of Arjuna: A System

for Reliable Distributed Computing. University of Newcastle

upon Tyne, Computing Laboratory, TR-262, July 1988.

Bibliography 	 255

[Smith85] 	Edward T. Smith. A Debugger for Message-Based Processes.

Software—Practice and Experience, Vol 15, No. 11, pp. 1073-1086,

November 1985.

[Smith88] 	Jonathan M. Smith. A Survey of Process Migration Mecha-

nisms. ACM SICOPS Operating Systems Review, Vol 22, No. 3,

pp. 28-40, July 1988.

[Snyde86] 	Alan Snyder. Encapsulation and Inheritance in Object-

Oriented Programming Languages. ACM OOPSLA '86 Pro-

ceedings, pp. 38-45, September 1986.

[Stone77] 	Harold S. Stone. Multiprocessor Scheduling with the Aid of

Network Flow Algorithms. IEEE Transactions on Software En-

gineering, Vol SE-3, No. 1, pp. 85-93, January 1977.

[Strou88] 	Bjarne Stroustrup. What is "Object-Oriented Program-

ming"? IEEE Software, pp. 10-20, May 1988.

[Tane8la] 	Andrew S. Tanenbaum. Computer Networks. Prentice/Hall In-

ternational, 1981.

[Tane8lb] 	Andrew S. Tanenbaum and Sape J. Mullender. An Overview of

the Amoeba Distributed Operating System. ACM SICOPS

Operating Systems Review, Vol 15, No. 3, pp. 51-64, July 1981.

[Tanen85] 	Andrew S. Tanenbaum, Sape J. Mullender and Robbert van Re-

nesse. Distributed Operating Systems. Vrije Universiteit Am-

sterdam, Report IR-104, July 1985.

[Tanen86] 	Andrew S. Tanenbaum, Sape J. Mullender and Robbert van Re-

nesse. Using Sparse Capabilities in a Distributed Operating

Bibliography 	 256

System. Proceedings IEEE 6th International Conference on Dis-

tributed Computing Systems, pp. 558-563, May 1986.

[Theim86] 	Marvin M. Theimer. Preemptable Remote Execution Facili-

ties for Loosely-Coupled Distributed Systems. PhD. Thesis.

Stanford University Department of Computer Science, Technical

Report STAN-CS-86-1128 (also numbered CSL-86-302), June 1986.

[Varad88] 	R. Varadarajan and E. Ma. An Approximate Load Balancing

Model with Resource Migration in Distributed Systems.

Proceedings 1988 International Conference on Parallel Processing,

pp. 13-17, August 1988.

[Wang 85] 	Yung-Terng Wang and R.J.T. Morris. Load Sharing in Dis-

tributed Systems. IEEE Transactions on Computers, Vol C-34,

No. 3, pp. 204-217, March 1985.

[Watso8l] 	Richard W. Watson. Distributed, System Architecture

Model. In [Lamps8l], pp. 10-43.

