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Abstract 

The Escherichia coil ATP-dependent protease La was purified from an over-

expressing strain. The enzyme was judged to be 90% pure and to be free from 

contamination by non ATP-dependent proteases. The sequence of the first ten amino 

acids at the N terminus of protease La were in agreement with that predicted by the 

nucleotide sequence of the Ion gene. Optimum conditions were determined and used 

in experiments to investigate the selectivity of the enzyme. Protease La was found to 

be highly selective in vitro; three proteins which are extremely sensitive to proteolysis 

in vitro were not degraded, and only two out of fourteen native protein preparations 

were digested by the protease. Several peptide bonds of radiolabelled proteins were 

hydrolysed by protease La. Non-hydrolysable analogues of ATP did not support 

digestion of radiolabelled proteins by protease La. The effect of DNA on the ATPase 

and proteolytic activities of protease La was investigated. DNA was found to 

stimulate, inhibit or have no effect on proteolytic activity depending upon the protein 

substrate used in the assays. The effect of DNA on ATPase activity measured in the 

presence of a protein substrate appears to correlate with its effect on the digestion of 

that substrate. 
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CHAPTER 1 

11 BACKGROUND 

Life is a steady state. As proteins, nucleic acids and other cell components 

are synthesized and cells multiply, other molecules are degraded, and other cells die. 

This process of turnover goes on within healthy cells, and is selective and under 

stringent control. 

Bacteria have the capacity to hydrolyse the peptide bonds of intracellular 

proteins. It is important to differentiate between the hydrolysis of a limited number of 

peptide bonds (proteolytic modification) and the hydrolysis of all of the peptide bonds 

of a protein (protein degradation). These processes involving peptide bond cleavage 

have totally different functions: proteolytic modification alters the properties of a 

protein, whereas protein degradation results in the loss of a protein and the recycling 

of its constituents. 

1.2 INTRACELLULAR PROTEIN DEGRADATION IN BACTERIAL CELLS 

The appearance of Schoenheimer's "The Dynamic State of Body Constituents" 

(1942) confirmed the belief that there is a continuous turnover of the components that 

make up living organisms. It was therefore surprising that experiments designed to 

find out whether -galactosidase induction in E. co/i involves de nova synthesis or 

the activation of a precursor protein, suggested that proteins in bacteria are stable, or 

are degraded extremely slowly (Hogness et a/., 1955; Rotman and Spiegelman, 1954). 

However, conditions that allowed detection of protein degradation in E. coil were 

found a few years later. Mandelstam (1958) discovered that although protein 

degradation in growing cells of E. coil was difficult to detect (<1% labelled protein 

was degraded to amino acids per hour), starvation for nitrogen led to an easily 

measured degradation rate (about 5% h 1 ). Furthermore, a recent experiment revealed 

that in glucose-limited chemostat-grown E. coil (doubling time 14.5h), about 60% of 

label incorporated into proteins during a lh pulse was released as acid-soluble 

radioactivity during the subsequent growth through about five generations (St. John et 

al., 1979). For technical reasons, measurements had to stop after 72h but it appears 

that most, if not all, of the proteins in growing bacteria are subject to degradation, and 

an earlier estimate that only 30% of protein in bacteria is subject to degradation under 

any conditions (Pine, 1973) is probably incorrect. 

Estimates of the rate of protein degradation in growing bacterial cells depend 

upon how experimental measurements are made. By growing E. coil for several 

generations in medium containing a radioactive amino acid to enable a steady state of 
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labelling to be realized, Mandelstam (1958) and Willetts (1967b) reported a very low 

rate of protein degradation: about 1% labelled protein was degraded to amino acids 

per hour. In contrast, measuring the degradation of proteins labelled by a short pulse 

of radioactive amino acid gave a very much greater rate of degradation (Pine, 1970). 

At least 5% of the label incorporated in a 7 second pulse was released during a 45 

second chase period. Following this rapid degradation of pulse-labelled protein, the 

rate fell steadily with continued growth to give an average value of 2.5% pulse-

labelled protein degraded to amino acids per hour, which is in better agreement with 

the values reported by Mandelstam (1958) and Willetts (1967b). 

Discrepancies in the rate of protein degradation revealed by the different 

labelling protocols indicates that proteins in bacteria are digested at very different 

rates. Exposure of cells to radioactive amino acids for several generations 

preferentially labels proteins which are degraded slowly (the stable fraction), whereas 

exposure to a pulse of radioactive amino acids labels proteins which are rapidly 

digested (the labile fraction). Most of the proteins in a bacterial cell are thought to 

belong to the stable fraction, whilst only 2-7% of total cell protein may constitute the 

labile fraction (Nath and Koch, 1970). Thus it appears that growing cells of E. co/i 

have the ability to carry out selective protein degradation. Such an ability was clearly 

demonstrated by Pine (1967) who showed that E. co/i can selectively degrade 

structurally altered (abnormal) proteins during growth. Abnormal proteins shown to be 

rapidly degraded by E. co/i are of several types: 

Incomplete polypeptides resulting from nonsense mutations (Goldschmidt, 1970), 

deletion mutations (Platt et al., 1970), internal initiation of translation (Apte et a/., 

1975), or incorporation of puromycin (Goldberg, 1972; Pine, 1967). 

Full length polypeptides with structural defects resulting from missense 

mutations (Berquist and Truman, 1978; Zipser and Bhavsar, 1976), incorporation of 

amino acid analogues (Goldberg 1972; Pine, 1967), or mistranslation caused either 

by ram (ribosomal ambiguity) mutations or missense suppressors (Goldberg, 

1972). 

Full length polypeptides that fail to assemble into a multimeric structure 

(Hayward etal., 1974; Dennis, 1974). 

Products of eukaryotic genes expressed in E. coil (Young and Davis, 1983). 

Abnormal proteins accumulate preferentially within rapidly sedimenting cell 

fractions prior to hydrolysis (Prouty and Goldberg, 1972; Prouty et al., 1975). This has 

often facilitated the purification of foreign gene products expressed in E. coil (see 
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Marston, 1986). The structures sedimenting at 10-20,000g correspond to the dense, 

intracellular inclusions (granules) observed in electron micrographs of E. coil grown in 

medium containing amino acid analogues (Schachtele et al., 1968; Rabinovitz et al., 

1969). Further study of these granules revealed that they are not degradative 

organelles comparable to lysosomes since they are not membrane bound and they do 

not contain hydrolytic enzymes  (Prouty et al., 1975). Instead, they resemble 

amorphous precipitates of denatured protein (Prouty et al., 1975). Granule formation 

may involve the spontaneous aggregation of highly abnormal polypeptides and occurs 

in cells containing large amounts of these polypeptides (Prouty et al., 1975; Goldberg 

and St. John, 1976). 

The role of granule formation is not understood. Possibly the aggregation of 

abnormal polypeptides promotes their recognition by the cell's degradative machinery. 

However, formation of large granules is not an essential step in the degradative 

process since many aberrant polypeptides which do not accumulate in such structures 

are rapidly hydrolysed (Goldberg and St. John, 1976). Alternatively, granule formation 

may simply reflect that the amount of abnormal polypeptide within the bacterium is 

greater than the degradative capacity of the cell: when the proteolytic machinery 

becomes saturated the excess aggregates into granules (Goldberg and St. John, 1976). 

• 	Although labelling cells with radioactive amino acids for varying lengths of 

time revealed that the rates of degradation of proteins are dissimilar, this approach 

gave little information about the rate of degradation of individual protein species. 

Since only a few protein species comprise most of the soluble protein in E. coil (50 

proteins make up about 75% of cell protein; O'Farrell, 1975), a large proportion of the 

protein species could be rapidly digested without significantly affecting the overall rate 

of protein degradation. Consequently, Mosteller et al. (1980) measured the rate of 

degradation of individual protein species in growing cells of E. coil. Using two-

dimensional electrophoresis to resolve labelled proteins, 47 out of 184 proteins were 

found to be digested with estimated half-lives ranging between 2 and 23 hours. This 

study provided evidence that E. coil has the ability to carry out selective protein 

degradation. However, this experiment could not distinguish proteins which are 

degraded from those that are modified and therefore have altered positions on the 

two-dimensional gel. Surprisingly, in a similar experiment using a different labelling 

procedure only 3 out of about 250 proteins were found to be digested with estimated 

half-lives of 4.5 hours or less. This discrepancy is not understood at present. 

Unfortunately, the rates of degradation of only a few proteins of E. coil have been 

measured directly. Many of the proteins studied were found to be stable during the 
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period of measurement (-galactosidase, Goldschmidt, 1970; serine deaminase and 

alkaline phosphatase, Willetts, 1967a; acyl carrier protein, Powell et al., 1973, 

elongation factor C and initiation factor F 2, Krauss and Leder, 1975; 8 and B'- subunits 

of RNA polymerase, Kirschbaum et al., 1975; lac repressor, Platt at al., 1970). 

However, several A proteins (N, 0, xis and cii products, Gottesman at al., 1981 and ci 

product; Roberts and Roberts, 1975) and E. coil proteins (LexA, Little et al., 1980; SuIA, 

Mizusawa and Gottesman, 1983; UmuD and C, Marsh and Walker, 1985; HtpR, 

Grossman et al., 1985; RcsA, Torres-Cabassa and Gottesman, 1987) are rapidly 

degraded with estimated half lives ranging between 2 and 7 minutes. The ci and lexA 

products are rapidly digested only after U.V. irradiation. 

1.3 PHYSIOLOGICAL SIGNIFICANCE OF INTRACELLULAR PROTEIN DEGRADATION 

Early ideas regarded intracellular protein degradation in bacteria solely as an 

important response to starvation (Mandelstam, 1960; 1963). Increased protein 

degradation upon starvation provides a source of amino acids for the synthesis of 

proteins essential to survival under the prevailing conditions (Mandelstam, 1958). 

Further study suggested that the absolute rate of peptide bond hydrolysis does not 

increase upon starvation: proteins which are relatively resistant to digestion in growing 

cells become available for breakdown (Pine, 1966). The identities of these proteins are 

unknown. However, it is tempting to speculate that starving cells selectively degrade 

growth-related proteins such as enzymes for DNA or protein synthesis. These 

proteins may be unnecessary or even potentially harmful to non-growing cells. 

Currently, there is little evidence available to support such selectivity (Miller, 1987). 

Changes in the susceptibility of proteins to degradation, or alterations in the 

proteolytic machinery could be the cause of increased protein degradation during 

starvation (Goldberg and St. John, 1976; Miller, 1987). Binding to substrates has 

frequently been shown to protect enzymes from proteolysis in vitro; it is possible, 

therefore, that certain proteins become more susceptible to digestion during starvation 

because their substrates are present at reduced levels (Miller, 1987). However, the 

necessary selectivity inferred by this hypothesis has not been reported. Furthermore, 

the susceptibilities to degradation by several endopeptidases in vitro of bulk protein 

from growing, and from non-growing cells do not differ (Goldberg and St. John, 1976). 

The proposal that starvation leads to synthesis of additional proteases lacks 

experimental support (Miller, 1987); similarly, factors which modulate the pre-existing 

proteolytic machinery during starvation have not been discovered (Goldberg and St. 

John, 1976; Miller, 1987). A novel explanation for the increased degradation of 
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normally stable proteins during starvation was suggested by Miller (1987). Starvation 

leads to an interruption in the substantial flow of preferred substrates through the 

proteolytic machinery because the synthesis of these protein substrates has ceased. 

This enables the proteases to degrade a different group of proteins. At present, there 

is insufficient experimental evidence to substantiate any of these hypotheses. 

Increased knowledge from future investigations may provide such support or lead to 

alternative explanations. 

Extensive proteolysis of newly synthesized proteins has been shown to occur 

in growing cultures of E. co/i (Pine, 1970). Measurement of the digestion of protein 

labelled by a very short pulse of radioactive amino acid revealed that a substantial 

fraction (at least 5%) was rapidly degraded. A different estimate of the size of this 

rapidly digested fraction (at least 20%) was deduced from an experiment involving a 

peptidase deficient strain of Salmonella typhin7urium (Yen et al., 1980). These 

experiments suggest that many proteins are degraded before they have displayed 

activity. This phenomenon appears wasteful in terms of energy expenditure: both 

synthesis and hydrolysis of peptide bonds require metabolic energy. However, since 

the rapid degradation of newly synthesized polypeptides is such a major metabolic 

process (Pine, 1970; Yen et al., 1980) it must be physiologically significant. Continued 

investigation has begun to clarify the role of this process. 

Recently, some of the constituents. of the rapidly digested fraction have been 

identified. Signal peptides cleaved from exported proteins and attenuator peptides 

produced by translation of regulatory sequences are quickly hydrolysed (Hussain et al., 

1982; Miozzari and Yanofsky, 1978), possibly as an economy measure. Several 

regulatory proteins of E. coil (such as LexA, Little et al., 1980; SuIA, Mizusawa and 

Gottesman, 1983; UmuD and C, Marsh and Walker, 1985; HtpR, Grossman et al., 1985; 

and RcsA; Torres-Cabassa and Gottesman, 1987) are also highly sensitive to 

proteolysis; presumably to allow the cell to respond swiftly to changing conditions. 

Aberrant polypeptides (which have been shown to be rapidly digested in vivo) 

generated by various kinds of translational errors, such as out-of-phase initiation of 

translation, translational frameshifting, readthrough of termination signals, or premature 

termination of translation, may also contribute to the rapidly degraded fraction (Miller, 

1987). Aberrant polypeptides arising from the premature release of peptidyl tRNA 

during translation (Menninger, 1977) and from premature termination of translation 

(Manley, 1978) have been shown to occur. Kurland and Ehrenberg (1984) argue that 

selective forces have produced a translational apparatus with less than maximum 

accuracy. Thus it seems likely that a major role of the cell's proteolytic machinery is 
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to rapidly destroy aberrant polypeptides, so that the cell does not become corrupted 

by the build-up of defective proteins. In this respect, proteolysis may identify a proof -

reading function which is more rapid or less energy expensive than increased 

complexity of polypeptide synthesis. Such a function would reduce the apparent level 

of mistranslation. Edelmann and Gallant (1977) estimated a misreading probability per 

codon of in E. coil, but the relative contributions of accurate translation and 

proteolysis are as yet unknown. 

1.4 THE ENERGY REQUIREMENT FOR INTRACELLULAR PROTEIN DEGRADATION 

An important feature of intracellular protein degradation is that it requires 

metabolic energy. This was first demonstrated by the discovery that protein 

degradation in liver slices was reduced by anaerobiosis or by the addition of cyanide 

or dinitrophenol (Simpson, 1953). Subsequently, a similar requirement for metabolic 

energy in E. co/i (Mandelstam, 1958), chloroplasts (Liu and Jagendorf, 1984; Malek et 

al., 1984) and mitochondria (Desautels and Goldberg, 1982a; Wheeldon and Lehninger, 

1966) has been established. Moreover, in order to block proteolysis in E. coil the 

intracellular concentration of ATP must be severely reduced to 5-10% of that of 

growing cells (Olden and Goldberg, 1978). 

An energy requirement for intracellular proteolysis was not anticipated on 

thermodynamic grounds (the hydrolysis of peptide bonds is exergonic) or from the 

behaviour of well characterized extracellular proteases. Thus the energy requirement 

may reflect mechanisms that confer specificity to the process and not an unusual 

pathway of peptide bond hydrolysis. Significant progress was made in understanding 

the energy requirement by the development of soluble, cell free systems from: rabbit 

reticulocytes (Etlinger and Goldberg, 1977), E. coil (Murakami et al., 1979), and rat 

liver mitochondria (Desautels and Goldberg, 1982b). The properties of these systems 

are very similar: 

They are soluble. 

They have a neutral or slightly alkaline pH optimum, inactive below pH 5.0. 

They degrade proteins to free amino acids. 

They are not sensitive to inhibitors of lysosomal hydrolases (such as leupeptin or 

ch loroq u in e). 

They are sensitive to inhibitors of serine proteases and to chelating agents. 
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6. They require ATP and non-hydrolysable analogues of ATP do not support 

proteolysis. 

Fractionation of these systems revealed the nature of the ATP dependence. Firstly, 

ATP-dependent proteases were isolated from all three (Swamy and Goldberg, 1981; 

Katayama-Fujimura at al., 1987; Hwang et al., 1987; Desautels and Goldberg, 1982b; 

Hough at al., 1987; Waxman and Goldberg, 1987). In addition, a ubiquitin activating 

enzyme which is ATP-dependent was isolated from rabbit reticulocytes (Ciechanover et 

al., 1981). 

In the rabbit reticulocyte system ubiquitin, a 76 residue polypeptide 

(Schlesinger et al., 1975; Ciechanover at al., 1980; Wilkinson et al., 1980), is covalently 

linked in an ATP-dependent reaction to a variety of protein substrates. One or more 

ubiquitin polypeptides are conjugated through their C-terminal glycine residues to a 

substrate protein via isopeptide bonds involving c-amino groups of lysine residues 

(Hershko at al., 1980; Goldknopf and Busch, 1977; Hunt and Dayhoff, 1977). Formation 

of an ubiquitin-protein conjugate may be the initial event in the degradation of 

proteins; many conjugates are rapidly digested in an ATP-dependent reaction (Hershko 

et al., 1982; Chin at al., 1982; Ciechanover et al., 1984a). Hence in this system, 

modification by ubiquitination is thought to label a protein for degradation. However, 

this model will have to be reappraised in the light of the report that ubiquitin has 

intrinsic proteolytic activity (Fried at a/., 1987). 

Studies on E. coil have failed to detect ubiquitin or ubiquitin-activating 

enzyme (Ciechanover et al., 1984b) with one early exception (Goldstein et al., 1975). In 

addition, despite the remarkable conservation seen in eukaryotes (Ciechanover at al., 

1984b) there has been no report of possible ubiquitin coding sequences in E. coil. 

However, it is possible that a different labelling reaction could serve a similar function 

in bacteria. 

1.5 FACTORS CONFERRING SPECIFICITY TO INTRACELLULAR PROTEOLYSIS 

Intracellular protein degradation in bacterial cells is a highly specific process. 

Individual protein species are digested at vastly different rates with half lives ranging 

from minutes (abnormal proteins and some regulatory proteins) to many hours (most 

cellular proteins). The origin of the specificity is unknown but one can envisage three 

possible sources: 

Features of the proteins themselves may determine their rate of degradation. 

The protease(s) involved may confer specificity. 
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3. An intermediary labelling process (comparable to ubiquitination) could confer 

specificity to protein degradation. 

Although strong evidence to support any of these ideas is lacking, there is 

circumstantial evidence, drawn from many sources, which suggests that all three may 

be important in conferring specificity to the process. 

1.5.1 Features of Proteins That Confer Specificity to Protein Degradation 

Alterations in normal protein conformation, arising through mutation, 

incorporation of amino acid analogues, denaturation or premature chain termination, 

can markedly increase rates of degradation (see Goldberg and St. John, 1976), 

suggesting that features of proteins confer specificity to proteolysis. Furthermore, 

binding of substrates or co-factors to proteins has been found to influence rates of 

degradation (see Goldberg and Dice, 1974). Many studies, mainly carried out in 

eukaryotic systems, have revealed three categories of features which possibly 

determine rate of digestion: general properties, sequence-specific parameters and 

location (Rechsteiner et al., 1987; see Table 1.1). 

TABLE 1.1 Features of Proteins Proposed to Increase Rates of Degradation a 

GENERAL PROPERTY 	 SEQUENCE-SPECIFIC 	 LOCATION 
PARAMETERS 

Large size 

Negative charge 

Hydrophobicity 

Thermal instability 

High flexibility 

Proteolytic susceptibility 

PEST-sequence 

RNase pentapeptide 

s-amino terminus 

His/Cys/Met oxidation 

Asn deamidation 

Assembled/unassembled 

Bound/diffusible 

a. Taken from Rechsteiner et al. (1987). 

Early experiments using double isotope methods to measure relative rates of 

degradation of cellular proteins suggested that several general properties increased 

rates of degradation: large size (Dice et al., 1973), negative charge (Dice and Goldberg, 

1975a), and hydrophobicity (Segal et al., 1976). However, exceptions to these general 

trends have been reported (Dice and Goldberg, 1975a; 1975b). Using other techniques, 
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thermal instability (McLendon and Radany, 1978), high flexibility (Perry et al., 1979), and 

proteolytic susceptibility in vitro (Bond, 1971) have also been reported to increase 

rates of degradation. 

The development of large scale micro-injection procedures has permitted 

direct examination of the correlation between these general properties and increased 

rates of degradation. Neff et a/. (1981) injected a mixture of radiolabelled rat liver 

proteins into human fibroblasts and, in agreement with the proposed relationships, 

found that larger proteins were degraded faster than smaller ones, and negatively 

charged proteins were degraded faster than positively charged proteins. In contrast, 

Rogers and Rechsteiner (1985) using the same technique found that rates of 

degradation of 32 proteins of known primary and tertiary structure did not correlate 

with size, charge, content of hydrophobic residues, acylation of amino terminus, or the 

proportion of ct-helical or s-sheet conformation, when injected into HeLa cells. 

Calorimetric data available for 22 of the 35 injected proteins revealed that thermal 

stability also did not correlate with degradative rates. However, both these studies 

involved only a small selection of cellular proteins and clearly, further studies are 

needed to clarify whether these general properties of a protein affect its rate of 

degradation. 

Upon denaturation proteins become more susceptible to degradation by 

proteases in vitro (Linderstrom-Lang, 1952; Bennet, 1967; Rupley, 1967). This suggests 

that intracellular proteolytic pathways might preferentially digest proteins in transient, 

unfolded conformations. The correlation of thermal instability, high flexibility and 

proteolytic susceptibility of proteins with rapid degradation are possibly a reflection of 

higher rates of reversible unfolding (spontaneous denaturation) for some protein 

species. However, recent micro-injection studies have revealed that denaturation of a 

protein does not necessarily enhance its degradation in vivo. Katznelson and Kulka 

(1985) compared the degradation of native and denatured forms of serum albumin, 

8-lactoglobulin and cytochrome c in cultured rat hepatoma cells. Denatured 

-lactoglobulin was digested three times faster than native 8-lactoglobulin; the rate of 

degradation of cytochrome C did not alter following denaturation; and denatured 

serum albumin was degraded at a fifth of the rate of native form. Furthermore, Hough 

and Rechsteiner (1984) discovered that the Arrhenius activation energies for the 

degradation of various proteins micro-injected into HeLa cells were at least twice 

those of local protein unfolding, indicating that unfolding is not rate limiting in protein 

degradation in vivo. In another micro-injection study, Rote and Rechsteiner (1986) 

found that increased rates of hydrogen exchange, or breathing flexibility, which is 
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thought to reflect localized denaturation did not correlate with increased rates of 

protein degradation, although in vitro such a correlation held true with a range of 

proteases. In conclusion, it appears that unfolding of a protein does not necessarily 

increase its susceptibility to digestion in viva. 

Recently, several sequence-specific parameters of proteins have been 

proposed to correlate with increased rates of degradation: 

Rogers at al. (1986) observed that the most rapidly degraded eukaryotic proteins 

of known sequence (10 proteins with half-lives less than 2 hours) had a feature 

in common: they contained one or more regions rich in proline (P), glutamate (E), 

serine (S) and threonine (T). These PEST regions, which vary from 12 to 60 

residues in length, are generally flanked by clusters of positively charged amino 

acids. Inspection of 35 eukaryotic proteins which are slowly digested (half-lives 

between 20 and 220 hours) revealed that only 3 of them contained a PEST 

region. 	Further support for the hypothesis implicating PEST regions in 

susceptibility to proteolysis was given by subsequent surveys which showed that 

23 out of 24 rapidly degraded eukaryotic proteins contained PEST regions 

(Rechsteiner at al., 1987). However, the X N and cli products, and the E. co/i 

HtpR protein, which are rapidly digested in vivo, do not contain PEST regions 

(Rogers at al., 1986). 

Using a micro-injection procedure, Dice at al., (1986) identified a pentapeptide 

sequence (Lys-Phe-Glu-Arg-Gin) of ribonuclease A that is required for the 

enhanced degradation of this protein in cultured human fibroblasts during serum 

deprivation. When a peptide containing the pentapeptide sequence was 

covalently attached at unspecified locations to ribonuclease 5, lysozyme and 

insulin A chain, the conjugates were found to be degraded more rapidly under 

the same conditions (Backer and Dice, 1986). 

Two experiments have suggested the importance of the ct-amino terminus in 

determining rates of protein degradation. Firstly, Bachmair at al. (1986) reported 

that the specific amino acid at the a-amino terminus of a protein determines its 

rate of degradation (the "N-end" rule). Mutant $-galactosidases engineered to 

have different amino acids at their amino termini had different half-lives: Ser, Ala, 

Thr, Val and Gly conferred half-lives greater than 20 hours; Ile, Glu, Tyr and Gin, 

half-lives between 10 and 30 minutes; and Phe, Leu, Asp, Lys and Arg, half-lives 

less than 3 minutes. Wild type -galactosidase has methionine at the amino 

terminus and has a half-life greater than 20 hours. In a different experiment, the 

importance of an unblocked amino-terminus for ubiquitin-dependent degradation 
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was demonstrated using reagents that differentially block a- and c-amino 

groups (Hershko et al., 1984). 

Oxidation of histidine, cysteine and methionine in vivo may also be involved in 

protein degradation. Hershko et a/. (1986) found that possession of an oxidized 

methionine increased the susceptibility of some proteins to ubiquitin-dependent 

degradation. Stadtman (1986) has proposed that oxidation of proteins by mixed-

function oxidation systems leads to inactivation and also increases susceptibility 

to proteolysis. The identification of proteases in rat liver (Rivett, 1985) and 

E. coil (Roseman and Levine, 1987) which digest oxidized glutamine synthetase, 

but not the native enzyme, provide support for this proposal. Furthermore, prior 

to sporulation in B. subtiis, glutamine phosphoribosylpyrophosphate amido-

transferase is first inactivated by oxidation and then rapidly degraded (Wong et 

a/., 1978). 

Circumstantial evidence implicates deamidation of asparagine residues in 

controlling the rate of proteolysis. Robinson and Rudd (1974) demonstrated that 

in model peptides, rates of asparagine deamidation can be substantially affected 

by neighbouring residues. Changes in conformation following deamidation could 

determine the rates of degradation of proteins. Moreover, Clarke (1985) reported 

methylation of newly formed carboxyl groups at isoaspartate residues following 

asparagine deamidation, and this may label a protein for digestion. 

The location of a protein may determine its rate of degradation. Dehlinger and 

Schimke (1970) first suggested that dissociation of multimeric enzymes would produce 

rapidly digested subunits. Similarly, the degradation rate of a protein might depend 

upon its association with macroscopic cellular structures, such as membranes or 

cytoplasmic filaments (Siekevitz, 1972). These suggestions have received considerable 

support from studies which demonstrated that ribosomal proteins (Abovich et al., 

1985), mitochondrial proteins (Reid and Schatz, 1982), globin (Shaeffer, 1983) and 

spectrin (Woods and Lazarides, 1985) are rapidly degraded unless assembled, and from 

the finding that neuron-specific creatine kinase and enolase, which associate with 

structural proteins during axonal transport, are remarkably stable (Brady and Lasek, 

1981). 

1.5.2 Occurrence of Highly Specific Proteases 

Heterogeneity in the degradative rates of proteins in bacteria may reflect that 

a large number of highly specific proteases are involved in the process. However, this 

would seem to be an unsatisfactory method of conferring specificity because it is 
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metabolically expensive and requires a large coding capacity. Nevertheless, several 

highly specific proteases have been isolated, suggesting that they have an important 

role to play in conferring specificity. 

The first highly specific protease to be purified from E. coil was RecA (Roberts 

et a/., 1978). Upon damage to DNA, RecA is activated and becomes a highly specific 

protease which cleaves the Xci and lexA repressors (Roberts et al., 1978; Little et al., 

1980) at a single Ala-Gly bond (Pabo et 8/., 1979; Horn et al., 1981). Recently, Little 

(1984) reported autodigestion of the Xci and /exA repressors in vitro at the same 

Ala-Gly bond. This report and the failure to find other substrates question the 

possession of a highly specific proteolytic activity by RecA. 

Many other intracellular proteases, including two ATP-dependent proteases, 

have been isolated from E. coil using non-specific assays (Pacaud and Uriel, 1971; 

Pacaud and Richaud, 1975; Cheng and Zipser, 1979; Strongin et a/., 1979; Swamy and 

Goldberg, 1981; Goldberg et al., 1982; Pacaud, 1982; Katayama-Fujimura et al., 1987; 

Hwang et al., 1987). The properties of an ATP-dependent protease are described in 

Section 1.6. With one exception (protease Re, see below), little is known about the 

substrate specificity of these intracellular proteases in vivo. 

Roseman and Levine (1987) purified a highly specific protease which degrades 

oxidized glutamine synthetase but not native enzyme. Oxidized glutamine synthetase 

is cleaved at an Ala-Gly peptide bond giving polypeptide products of molecular 

weights 4,500 and 47,000 (Roseman and Levine, 1987). Digestion of radiolabelled 

casein and insulin, but not serum albumin or haemoglobin, to acid-soluble fragments 

was observed (Roseman and Levine, 1987). Recently, this protease was shown to have 

similar properties to protease Re (Park et al., 1988); an enzyme which had previously 

been identified by Goldberg et al. (1982). 

Highly specific proteases have also been isolated from organisms other than 

E. coil. Setlow (1976; 1978) has purified two proteases from B. megaterium spores 

which have similar substrate specificity. Both cleave the small, basic proteins found in 

spores at a glutamate residue in regions which have similar pentapeptide sequences. 

They fail to degrade other protein, peptide, amide or ester substrates. A group of 

cysteine endopeptidases that require Ca 2  ions for activity (also called: calpains; 

calcium dependent proteinases, CDPs or CAPs; calcium activated neutral proteinases; 

CANPs; or calcium activated factors, CAFs) have recently been isolated from 

mammalian tissues (see Pontremoli and Melloni, 1986). Calpains do not appear to 

have general proteolytic activity, but provide limited cleavage of substrates necessary 
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for specific physiological responses. For example, human erythrocyte calpain rapidly 

degrades globin chains at single peptide bonds; between Lys-Ala in a and Lys-Ser in 

chains, respectively (Melloni et a/., 1984). Many other extremely large, complex 

proteases (multicatalytic proteinases) have been isolated from mammalian tissues (see 

Bond and Butler, 1987). As yet, little is known about their substrate specificity in vivo. 

However, Rivett (1985) has described a protease which preferentially digests oxidized 

glutamine synthetase and ATP-dependent proteases which degrade ubiquitin-protein 

conjugates have been described (Hough et a/., 1987; Waxman et al., 1987; Fagan et 8/., 

1987). In addition, Katunuma et al. (1971a; 1971b) have identified proteases specific 

for pyridoxal or NAD requiring enzymes in several mammalian tissues. 

1.5.3 Post-Translational Modification Reactions Confer Specificity to Protein 

Degradation 

The idea that post-translational modification reactions (also called labelling or 

marking reactions) could confer specificity to protein degradation arises from the 

discovery that modified proteins are more susceptible to digestion than unmodified 

proteins. Four such modification reactions have been identified: 

The phosphorylation of serine or threonine residues (Toyo-Oka, 1982; Bergstrom 

et al., 1978; Hall et al., 1979; Parker et a/., 1984). 

The formation of mixed disulphide derivatives of cysteine residues (Offermann et 

al., 1984). 

The conjugation of ubiquitin with £-amino groups of lysine residues (Hershko et 

al., 1982). 

The oxidation of amino acid residues by mixed-function oxidation systems 

(Levine etal., 1981). 

Thus it seems that in some cases protein degradation may occur in a two step 

process: firstly, the protein is modified; secondly, the modified protein is digested. 

Possibly, the heterogeneity in rates of degradation reflects that enzymes with different 

substrate specificities are involved in the modification reaction. 

The most fully characterized modification reaction in bacteria is oxidation by 

mixed-function oxidation systems (Levine, 1983a; 1983b). The first step in the 

degradation of E. coil glutamine synthetase is oxidation of one of sixteen histidine 

residues (Levine, 1983a). This occurs under conditions in which glutamine synthetase 

is not required by the cell: substrates are not available, or glutamine is present (Levine, 

1983b). The modified enzyme, which is catalytically inactive, is susceptible to 
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proteolysis (Levine et al., 1981; Farber and Levine, 1982). Ten out of twenty-five 

metabolic enzymes are inactivated by mixed-function oxidation systems suggesting 

that oxidative modification may be generally involved in protein degradation (Fucci et 

al., 1983). If this is the case, then protein degradation will be influenced by factors 

which affect the activity of mixed-function oxidation systems, such as: the partial 

pressure of oxygen and the concentrations of iron and copper ions; the availability of 

alternative electron donors and acceptors of the flavin components of the mixed-

function oxidation system; cvtochrome P-450 and non-haem iron sulphur proteins; 

scavengers of activated oxygen species (vitamin E, ascorbate, superoxide dismutase, 

catalase, peroxidase, Mn 24); and the concentrations of physiological metal chelators 

(Stadtman, 1986). 

The most direct evidence that modification reactions could confer specificity 

to proteolysis comes from studies on the formation of ubiquitinated proteins in rabbit 

reticulocytes. Three enzymic activities are thought to be involved in this process: 

ubiquitin-activating enzyme, El (Ciechanover et al., 1981; Ciechanover at al., 1982); 

ubiquitin carrier protein, E2 (Hershko at al., 1983); and E3 (Hershko at al., 1983; 

Hershko et al., 1986). Five species of E2, which differ in their substrate specificities, 

have been identified (Pickart and Rose, 1984). Four E2s could catalyse the transfer of 

ubiquitin to small amines in the absence of E3 (Pickart and Rose, 1984). Two E2s 

could catalyse the transfer of ubiquitin to small basic proteins (histones and 

cytochrome c) in an E3-independent reaction (Pickart and Rose, 1984). Only a single 

E2 was found to function in E3-dependent ubiquitin conjugation with creatine 

phosphokinase, reduced/carboxy-methylated serum albumin and oxidized RNase, and in 

E3-dependent degradation of serum albumin (Pickart and Rose, 1984). Thus, regulation 

of protein degradation could occur via controls acting on specific E2s. 

15.4 Current Status 

The study of factors conferring specificity to intracellular protein degradation 

in prokaryotes and eukaryotes is at a stage where there is, at present, no accepted 

background of established facts. Different groups using separate approaches believe 

that they have identified important factors, but no synthesis has been made, and it is 

unlikely that all of the present theories can be reconciled. The number of publications 

in the field in the last few years has been large and it is difficult to know which 'facts' 

from each group have become obsolete and which are still believed to be true. 

Investigation into the properties of the proteases involved is a promising approach. A 

novel group of proteases which are dependent upon ATP have been identified. Their 



CHAPTER 1 
	

16 

role in conferring specificity to intracellular proteolysis in bacteria is currently 

undergoing examination. 

1.6 THE ROLE OF ATP-DEPENDENT PROTEASES IN INTRACELLULAR PROTEIN 
DEGRADATION IN E. coil 

Genetical and biochemical studies of protein degradation in E. coil have 

revealed the importance of the ATP-dependent protease La in conferring specificity to 

the process. The recent discovery of another ATP-dependent protease in E. coil 

(Katayama-Fujimura et al., 1987; Hwang et al., 1987) gives further support to the 

following model for protein degradation: 

The first step is limited cleavage by a highly specific ATP-dependent protease. 

The second step involves rapid digestion of the protein fragments by non-

specific proteases and peptidases to amino acids. 

In this model the specificity and ATP dependence of protein degradation arise from 

properties of the proteases involved in the step 1, which can be regarded as a form of 

proteolytic modification. Evidence for the model is described below. 

1.6.1 Genetical Studies on Protein Degradation in E. coil 

Bukhari and Zipser (1973) first isolated mutants of E. coil (deg) which had a 

defect in the degradation of truncated polypeptides of -galactosidase. They selected 

for these mutants by using strains which could not grow unless nonsense mutants of 

8-galactosidase were stabilized to allow interallelic complementation. These deg 

mutants were found to be indistinguishable by any of their phenotypes or mapping 

characteristics to previously described Ion mutants (Shineberg and Zipser, 1973; 

Gottesman and Zipser, 1978). Mutations in the Ion locus of E. coil result in many 

phenotypic changes: 

Over-production of capsular polysaccharide resulting in mucoid colonies 

(Markovitz, 1964). 

Transcription derepression of the gal operon (Hua and Markovitz, 1972; 1974; 

Mackie and Wilson, 1972). 

Enhanced sensitivity to U.V. light or radiomimetic agents, with concomitant 

filamentation (Howard-Flanders et al., 1964). 

Defective establishment and maintenance of certain plasmids (Takano, 1971; 

Falkinham, 1979). 
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Defective lysogeny of bacteriophage P1 (Takano, 1971) and bacteriophage A 

(Walker et al., 1973). 

Deficient degradation of abnormal polypeptides (Bukhari and Zipser, 1973; 

Gottesman and Zipser, 1978; Simon et al., 1979; Young and Davis, 1983), and 

several normal proteins (AN product, Gottesman at al., 1981; SulA, Mizusawa and 

Gottesman, 1983; RcsA, Torres-Cabassa and Gottesman, 1987); but no 

deficiencies in the degradation of normal, stable proteins elicited by starvation 

(Goldberg and St. John, 1976; Maurizi et al., 1985) or several short-lived, normal 

proteins (AO, xis, and cli products, Gottesman et al., 1981; UmuD and C, Marsh 

and Walker, 1985; HtpR, Grossman et 8/., 1985). 

Cloning of the Ion gene (Zehnbauer and Markovitz, 1980; Schoemaker and 

Markovitz, 1981) permitted the identification and purification of a polypeptide of 

molecular weight 94,000 as the gene product (Schoemaker and Markovitz, 1981; 

Zehnbauer et al., 1981), which has the following properties: 

A proteolytic activity which is coupled to a protein-stimulated ATPase activity 

(Charette et al., 1981). 

A non-specific nucleic acid binding activity (Zehnbauer at 8/., 1981). 

A DNA-stimulated ATPase activity (Charette et al., 1984). 

A tetrameric structure of molecular weight about 350,000 (Charette et al., 1982). 

Insertional mutagenesis revealed that the Ion gene is not essential for growth 

of E. coil (Maurizi et al., 1985). The Ion gene product has been shown to belong to a 

unique group of proteins that are heat-shock inducible (Goff at al., 1984; Phillips at al., 

1984). The nucleotide sequence of the Ion gene has revealed that the gene product 

has a lower predicted molecular weight than previous estimates (87,000 not 94,000; 

Chin et al., 1988). Computer-assisted comparisons revealed only that the Ion gene 

product contains a sequence similar to one found in nucleotide binding proteins (Chin 

etal., 1988). 

Chung and Goldberg (1981) demonstrated that the Ion gene product is 

identical to the ATP-dependent protease La. The discovery that Ion mutants are 

defective in the degradation of some proteins and not others, suggests that protease 

La is highly specific. 
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TABLE 1.2 Proteases of E. coil a 

ENZYME SUBSTRATES b.c Mr  (x 10) INHIBITORS C 

Soluble endoproteases 

Do globin, casein 540 D 

Re d globin, casein 82 D, E, 0, TPCK 

Mi globin, casein 110 D, E, 0 

Fa globin, casein 110 D, E, 0, TPCK 

So globin, casein 140 D, TPCK 

La (requires ATP) globin, casein 450 E, NEM 

Ci insulin 125 0 

Pi (Protease 111) insulin, auto-a e 110 E, 0, PHMB 

Protease I NAPNE - D 

Protease III BAEE - D, TLCK 

ISP-L-Eco Z-Ala-Ala-Leu PNA 55 D, E 

Membrane-associated endoproteases 

Protease IV 	 Z-Val ONP 	 34 	 D 

Protease V 	 Z-Phe ONP 	 - 	 D 

Taken from Miller (1987). 

Substrates used to assay each enzyme are given. 

Abbreviations: 0, diisopropylfluorophosphate; E. EDTA; 0, o-phenanthroline; TPCK, N-tosyl-
phenylalanine chloromethyl ketone; NEM. N-ethyl maleimide; PHMB, -hydroxymercuribenzoate; 
NAPNE, N-acetyl-phenylalanine 	-naphthyl ester; BAEE. N-benzoylarginine ethyl ester; TLCK. 
N-tosyllysine chloromethyl ketone; Z, benzyloxycarbonyl; PNA. 2-nitroanilide;  ONP. -nitrophenyl 
ester. 

Protease Re has also been isolated as an enzyme that selectively degrades oxidized glutamine 
synthetase (Park et al., 1988). 

Auto-(I is a small fragment of -galactosidase. 

1.6.2 Biochemical Studies on Protein Degradation in £ coil 

Murakami et al. (1979) first produced a soluble extract of E. coil which 

retained the important features of intracellular protein degradation: the extract 

selectively degraded abnormal polypeptides, and showed energy (ATP)-dependent 

proteolysis. Fractionation of such an extract led to the identification of eight soluble 

endoproteases, one of which (protease La) was ATP-dependent (Swamy and Goldberg, 

1981; Goldberg et al., 1982). The properties of these proteases and of other proteases 

independently purified from E. coil are shown in Table 1.2. Many peptidases (see 
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Miller, 1987) have also been isolated from E. coil. Originally, only one ATP-dependent 

protease (La) was isolated (Swamy and Goldberg, 1981), but recently another has been 

identified (Katayama-Fujimura at al., 1987; Hwang at al., 1987). Surprisingly, the genes 

encoding only two of the proteases described in Table 1.2 have been identified: the 

Ion gene encodes protease La (Charette at al., 1981; Chung and Goldberg, 1981); and 

the ptr gene encodes protease 111 (Cheng at al., 1979). 

The discovery that the degradation of both abnormal and normal proteins in 

E. coil is drastically reduced when the generation of ATP is prevented (see Goldberg 

and St. John, 1976) reveals the importance of ATP-dependent proteases. Furthermore, 

Ion mutants are defective in the same initial endoproteolytic cleavage of a truncated 

B-galactosidase polypeptide, as that blocked by ATP depletion (Kowit and Goldberg, 

1977). It appears, therefore, that ATP-dependent proteases may catalyse the initial 

steps in the degradation of proteins. 

Protease La was the first member of a novel group of ATP hydrolysis-

dependent proteases to be isolated. Other members of this group include the multi-

component, ATP-dependent protease recently isolated from E. coil (Katayama-Fujimura 

at al., 1987; Hwang at al., 1987), the ATP-dependent protease isolated from 

mitochondria (Desautels and Goldberg, 1982b), and the ATP/ubiquitin-dependent 

proteases isolated from several mammalian tissues (Hough at al., 1987; Waxman at al., 

1987; Fagan at al., 1987). In order to gain an understanding of the mechanism of 

peptide bond cleavage involving ATP hydrolysis, the properties of the ATP-dependent 

protease La have been studied and are listed below: 

Protease La degrades [ 14C]-globin and [ 3H]-casein to acid-soluble fragments in 

the presence of ATP, but not non-hydrolysable analogues of ATP (Larimore at al., 

1982; Charette at al., 1981). 

Protease La has a protein substrate-stimulated ATPase activity (Charette at al., 

1981; Waxman and Goldberg, 1982). 

DNA stimulates the ATP-dependent proteolytic activity of protease La (Chung and 

Goldberg, 1982). 

The proteolytic and ATPase activities of protease La are tightly coupled; about 

two ATP molecules are hydrolysed for each peptide bond cleaved (Waxman and 

Goldberg, 1982; Menon at al., 1987). 

5. Neither protease La nor its protein substrate is adenylated or phosphorylated 
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during ATP-dependent proteolysis (Larimore et al., 1982; Waxman and Goldberg, 

1985; Goldberg and Waxman, 1985). 

Non-hydrolysable analogues of ATP can support the cleavage of small 

fluorogenic peptides, but not proteins, by protease La (Goldberg and Waxman, 

1985). 

Protease La has two recognition sites for protein substrates: the active (catalytic) 

site and the regulatory (allosteric) site (Waxman and Goldberg, 1986). 

Occupancy of the regulatory site by a protein substrate stimulates the proteolytic 

and ATPase activities of protease La (Waxman and Goldberg, 1986). Stimulation 

of the proteolytic activity occurs by promoting the release of ADP and the 

binding of ATP (Menon and Goldberg, 1987b). 

Protease La has two high affinity sites for ATP, and two sites showing lower 

affinities (Menon and Goldberg, 1987a). 

Protease La has a higher affinity for ADP than ATP (Menon and Goldberg, 1987a) 

ADP is a potent inhibitor of the proteolytic activity of protease La (Waxman and 

Goldberg, 1982; 1985). 

The model shown in Figure 1.1 of the relationship between ATP binding and 

hydrolysis in the mechanism of action of protease La has been proposed by Menon 

and Goldberg (1987b). The sequence of events is: 

Interaction of a protein substrate with inactive protease La at the regulatory site 

leads to release of bound ADP molecules. Concomitantly, ATP-Mg species 

become associated with the enzyme and bring about conversion to its active 

form. 

Active protease La cleaves peptide bonds and in doing so two molecules of ATP 

are hydrolysed per bond cleaved. 

The phosphate groups and Mg 2+  ions are released, as are the ADP moieties, 

provided that the regulatory site remains occupied. 

Binding of ATP-Mg species allows the cycle to continue. 

Once the protein is completely hydrolysed, protease La returns to an inactive 

state in which ADP is tightly bound. It remains in this state until another protein 

substrate interacts with the enzyme, and so degradation of essential cell proteins 

is prevented. 
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FIGURE 1.1 Schematic Model of the Mechanism of Action of Protease La 

Taken from Menon and Goldberg (1987b). 

This model begins to explain how extensive proteolysis of essential proteins 

by protease La is prevented in vivo, but fails to provide insight into three important, 

related questions concerning the interaction of proteins with protease La: 

Do the regulatory and catalytic sites of protease La interact with the same 

protein molecule or with different protein molecules? 

Does the specificity shown by the enzyme reside in the regulatory site or the 

catalytic site, or both? 

What are the features of proteins that enable them to interact with protease La 

and hence lead to their cleavage? 

Until these questions are answered, one can envisage three possible models 

for the interaction of proteins with protease La (Figure 1.2). In model A, a protein 

interacts with the regulatory site (converting the enzyme to the active form) and 

simultaneously with the catalytic site. Features of the protein recognized by the 

regulatory site confer specificity in this model, and although the catalytic site shows 

no specificity the geometry of the interaction limits the number of peptide bonds 

which can be cleaved. Model B describes the hypothesis that features of the protein 

are recognized by both the regulatory and catalytic sites conferring a high degree of 

specificity. Model C is similar to model 8 except that two protein molecules must 
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FIGURE 1.2 Schematic Models of the Interaction of Proteins With Protease La 
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interact with protease 	La 	to allow peptide 	bond cleavage. 	Initially, 	one 	molecule 

interacts with the 	regulatory site converting the enzyme to the active form. 	The 

catalytic site of the active enzyme 	only interacts with 	substrates, which 	are then 

cleaved. 

In conclusion, since the identification of the ATP-dependent protease La much 

has been discovered about the regulation of its activity in vivo. However, a great deal 

remains to be learned about the features of proteins which determine their 

susceptibility to cleavage by protease La. 

1.7 Aim of This Project 

Intracellular protein degradation in bacterial cells is a highly specific process. 

At present, the features of this process which confer specificity are unknown. 

However, information from genetical and biochemical studies on E. coil suggests that 

ATP-dependent proteases play a key role in protein degradation. They appear to be 

highly selective endopeptidases which may be involved in the early steps of the 

digestion of a protein to amino acids. The aim of this project has been to investigate 

this possibility by studying protease La in vitro to address the following questions: 

Does protease La digest native proteins? 

How many peptide bonds in a substrate are cleaved by protease La? 

What degree of selectivity is shown by protease La? 

What are the features of substrates recognized by protease La? 

This type of study may clarify whether the ATP-dependent proteolytic activity 

of protease La has a significant role in conferring specificity to proteolysis in bacterial 

cells. Moreover, knowledge of the features of proteins that confer sensitivity to 

protease La may reveal the basis of the recognition process. Indeed, if similar studies 

are carried out on other ATP-dependent proteases it may eventually become possible 

to predict susceptibility to intracellular proteolysis. A better understanding of the 

fundamental process of intracellular proteolysis may contribute towards a clearer 

perception of other important biological processes such as gene regulation and 

senescence, and it may also have implications for the improvement of expression 

systems in biotechnology. Clearly, there is great incentive for investigation into the 

action of ATP-dependent proteases in bacteria. 
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2.1 PURIFICATION OF THE E. coil ATP-DEPENDENT PROTEASE La 

2.1.1 An Over-Expressing Strain for the Purification of Protease La 

The ATP-dependent protease La is encoded by the Ion gene (Chung and 

Goldberg, 1981). Using plasmids pSC101 and pHA105 as vectors, Zehnbauer and 

Markovitz (1980) cloned a 12.5kb fragment of DNA, containing the Ion gene, from a F' 

episome. During studies to identify the product of the Ion gene, Schoemaker and 

Markovitz (1981) subcloned the 12.5kb fragment of DNA encoding the Ion gene in the 

high copy number plasmid pBR322 to give plasmid pJMC40 (Figure 2.1). 

FIGURE 2.1 Restriction Map of pJMC40 

.4- 
- 

0. 

1.1 

Ecop: 1 0-7 kb 
13-9 kb 	0.psn 

2 kb 

4,  

DNA encoding Ion gene 

pBR322 
LI chromosomal DNA flanking Ion gene 

pHAIOS 

Taken from Schoemaker and Markovitz (1981). 

Dr. A Markovitz provided sufficient pJMC40 to transform E. coil, creating a 

Tc R strain which over-produces protease La (Chung and Goldberg, 1981). However, 
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FIGURE 2.2 Digestion of pJMC40 with BamHI 
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DNA fragments were separated by electrophoresis through a 07°4. agarose gel, and detected under 

U.V.light after staining with ethadium bromide 

Lane 1 Xc857 DNA digested with Hindill giving DNA fragments of 231. 94, 6.7. 44. 2.3. 2.0, and 

0 56kb. 
Lane 2 pJMC40 digested with BamH? giving DNA fragments of 7 9, 4.8. and 1 2kb 
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plasmids containing the Ion gene, within strains over-producing protease La, have 

been found to be unstable (Goff and Goldberg, 1987), probably because of deleterious 

effects of high levels of protease La. Consequently, to verify TcR  transformants 

contained pJMC40, plasmid was isolated and digested with BamHl (Figure 2.2). The 

sizes of the DNA fragments obtained (7.9kb, 4.8kb and 1.2kb) are in good agreement 

with those predicted from the restriction map of pJMC40 (Figure 2.1). E. coi/pJMC40 

was stored in glycerol at -20 °C but because pJMC40 may be unstable in transformed 

cells a large scale preparation of pJMC40 was also carried out. 

For purification of protease La, large quantities of E. coi/pJMC40 were grown 

and stored at -20 °C. To confirm the cells contained pJMC40 before use, plasmid was 

isolated and digested with BamHI giving DNA fragments of sizes characteristic of 

pJMC4O. 

2.1.2 Radiolabelling of Proteins In Vitro by Reductive Methylation 

A convenient assay used in the purification of proteases relies upon the 

digestion of protein substrates to peptides soluble in 10% TCA. The sensitivity of this 

assay can be greatly increased by using radiolabelled proteins, which has allowed the 

detection (Swamy and Goldberg, 1981) and partial purification of protease La (Larimore 

et. al., 1982). 

The method of Rice and Means (1971) was used to radiolabel casein: free 

amino groups are converted to [ 14C]-methyl and [ 14C]-dimethyl derivatives by reaction 

with [ 14C]-formaldehyde and the powerful reducing agent sodium borohydride. In 

comparison with Swamy and Goldberg (1981), a very low incorporation of label was 

achieved: about 0.5 to 1% of label was incorporated to give a specific activity of 5-9 x 

105 cpm  Mg-1  casein. Unfortunately, ATP-stimulated proteolytic activity was not 

detected in extracts of E. coi/pJMC40 with this low specific activity [methyl-

14C]-casein (for clarity [methyl- 14C] shall be referred to as [ 14C]). Consequently, an 

improved method of radiolabelling proteins was sought. 

Substitution of sodium borohydride by the weaker reducing agent sodium 

cvanoborohydride, which can reduce Schiff bases but not aldehydes and ketones at 

neutral pH, increases labelling efficiency two to four times and eliminates side 

reactions caused by sodium borohydride (Jentoft and Dearborn, 1979). Furthermore, 

the reaction conditions necessary for efficient labelling are not as stringent when 

using sodium cyanoborohydride compared to sodium borohydride (Jentoft and 

Dearborn, 1979). When a six-fold excess of formaldehyde to free amino groups is 
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used, about 90% of free amino groups are converted to dimethyl derivatives; whereas 

equimolar amounts of formaldehyde and free amino groups leads to about 70% of the 

formaldehyde being covalently bound (Jentoft and Dearborn, 1979). 

A difference in susceptibility of radiolabelled proteins to hydrolysis by protease 

La was reported by Chung and Goldberg (1981). Consequently, a range of proteins 

were radiolabelled to high specific activity (Table 2.1) by the method of Jentoft and 

Dearborn (1979) using a two-fold excess of [ 14C]-formaldehyde to free amino groups. 

The incorporation of radiolabel into proteins using this method (Table 2.1) was very 

much greater than the 0.5 to 1% incorporation achieved by the method of Rice and 

Means (1971). A possible explanation for the difference could be the inability of 

sodium cyanoborohydride to reduce [ 14C]-formaldehyde directly to [14C]_  methanol

under the conditions used. The reason for the variability of the amount of label 

incorporated into different proteins was not understood but was, perhaps, related to 

the accessibility of free amino groups. 

TABLE 2.1 Specific Activity of Proteins Radiolabelled by the Method of Jentoft and 

Dearborn (1979) 

PROTEIN 	 SPECIFIC ACTIVITY 	PERCENTAGE 
(cpm mg-) 	INCORPORATION 

-lactoglobulin 	1.4 x 107 	 38 

casein 	 1.3 x 10 7 	 50 

B-lactamase 	 7.4 x 106 	 13 

Using [
13C]-NMR spectroscopy of proteins labelled by reductive methylation 

under optimal conditions, Jentoft and Dearborn (1979) showed: the only groups 

labelled were the c-amino groups of lysine residues and the amino terminus; 

intermolecular and intramolecular cross-linking did not occur. The specificity of 

reductive methylation of proteins under the radiolabelling conditions employed was 

examined by amino acid analysis (Figure 2.3) and SOS-PAGE (Figure 2.4). After acid 

hydrolysis the products of the radiolabelling process resolved by HVPE at pH 6.5 were: 

a strongly basic species, probably [ 14C]-methyl-lysine, which was the major product; 

neutral species which could be derivatives of nucleophilic amino acids or, in the case 

of 8-lactoglobulin, [ 14C]-methyl-leucine since a leucine residue is N-terminal (the 
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FIGURE 2.3 Amino Acid Analysis of [
14C]-Proteins 

1 HVPE at pH 6.5 
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 of [ 4 C1 - protens (0.7-1.8 x 10 7 cpm mg 	were 

hydrolysed with acid and the products resolved by HVPE at pH 6.5. The paper was stained and also 

exposed to X-ray film to produce an autoradiograph. The positions of the amino acid standards are 

indicated. Ta: taurine. 

Lanes 1-3: B-lactamase. 

Lanes 4-6, 8 - lactogiobulin. 

Lanes 7-9: casein. 
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FIGURE 2.3 (continued) 
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autoradiograph. The positions of the amino acid standards separated under identical conditions are 
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A stained paper. B autoradiograph. 
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FIGURE 2.4 SDS-PAGE of [14C  ]-Proteins 
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produce an autoradiograph. The positions of molecular weight markers (BSA. 67.000; B-lactamase, 

28.000, 8-lactog1obuln, 18.000; cytochrome c. 12.000) are indicated 

Lane 1: 8-lactamase. 

Lane 2: 8-lactoglobulin. 

Lane 3: casein 
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N-terminal amino acid of -casein is arginine and of 8-lactamase, lysine); and an 

extremely basic species of unknown origin (Figure 2.3.1). To characterize these 

radiolabelled species further, a two-dimensional separation of an acid hydrolysate of 

[ 14C]- 8-lactoglobulin was performed (Figure 2.3.2). The major species detected was 

probably [ 14C]-methyl-lysine since it migrated to a position corresponding to basic 

amino acids. Several minor species were also detected but they could not be 

identified. Intermolecular cross-linking may have occurred to a limited extent since 

products corresponding to twice the molecular weight of the radiolabelled proteins 

were detected by SDS-PAGE (Figure 2.4). However these, and other radiolabelled 

products, may have been contaminants of the protein preparations (Figure 2.4). In 

conclusion, reductive methylation under these experimental conditions leads to 

modification of residues other than lysine. The nature of these modifications are not 

understood but they probably include intermolecular cross-linking. 

TABLE 2.2 ATP-Stimulated Proteolytic Activity in an Extract of E. co///pJMC40 

PERCENTAGE RADI OLABEL ACID-SOLUBLE a 

(' 4C]-PROTEIN 	 + CELL EXTRACT 
	 - CELL EXTRACT 

+ATP 	 -ATP 
	

+ATP 	 -ATP 

casein 	 10.9, 12.2 	8.98, 8.45 
	

2.16 	2.31 

8-lactoglobulin 	22.5, 23.1 	9.11, 8.10 
	

1.91 	 2.00 

8-lactamase 	 9.09, 8.63 	7.44, 7.58 
	

5.68 	 5.78 

a. Assays contained 25mM Tris/HCI pH 8.0. 15mM M9Cl 2, and 5-30ig [' 4C1-protein (1.2- 1.4 x 107cpm 

mg 1 ) in a final volume of 500pl. ATP (final concentration 3mM) and 200jl cell extract were added 
as indicated. After incubation at 37 °C for 80mm, acid-soluble radioactivity was determined. 

To determine if assays using radiolabelled proteins of high specific activity 

could detect ATP-stimulated proteolytic activity in E. coi/pJMC40, an extract was 

prepared, using the method of Swamy and Goldberg (1981), and assays carried out 

(Table 2.2). Although proteolytic activity was greater in the presence of 3mM ATP with 

all -  of the radiolabelled proteins, the greatest increase occurred when 

[ 4C]--lactoglobulin was used as a substrate. The variability of the increase in 

proteolytic activity upon addition of 3mM ATP with different radiolabelled proteins may 

reflect the specificity of protease La or other ATP-dependent proteases; or 
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alternatively, may reflect differences in solubility of the peptide products in 10% TCA 

(or a combination of these). Whatever the reason, [ 14C]--Iactoglobulin, labelled to 

high specific activity (1-2 x 10 7 cpm mg -1 ) by the method of Jentoft and Dearborn 

(1979), was used as a substrate in subsequent assays during the purification. 

2.1.3 Chromatography Used in Purification of Protease La 

An extract of E. coi/pJMC40, displaying proteolytic activity, was fractionated 

by phosphocellu lose (Figure 2.5) and DEAE-cellulose (Figure 2.6) chromatography as 

described by Zehnbauer at al. (1981). Further purification of protease La was achieved 

by gel filtration (Figure 2.7) as described by Goldberg et at (1982). The concentration 

and purity of active fractions after gel filtration was assessed by SDS-PAGE (Figure 

2.8). The most concentrated fractions were pooled and stored at -70 °C after addition 

of EDTA and OTT. Protease La was 90% pure as judged by densitometry (using a 

Shimadzu CS-930) of a Coomassie Blue stained polyacrylamide gel (Figure 2.9). 

2.1.4 Proteolytic Activity of the Protease La Preparation 

To determine if the protease La preparation was contaminated by proteases, it 

was assayed with a range of radiolabelled proteins, in the presence and absence of 

ATP (Table 2.3). With the exception of [14C]-B-lactamase,  which was degraded very 

poorly, insignificant amounts of the radiolabelled proteins were rendered acid-soluble 

when incubated with protease La in the absence of ATP; but in the presence of ATP, 

significant amounts were rendered acid-soluble. Increasing the amount of the 

protease La preparation used in assays led to greater recovery of acid-soluble material 

in the presence of ATP; whereas in the absence of ATP, even with the largest amount 

of the preparation, insignificant recovery of acid-soluble material was attained (Table 

2.3). Thus, at the detection limit of these assays, the protease La preparation was 

found to be free from contaminating proteases. However, these assays would have 

failed to detect contamination by highly specific proteases or by other ATP-dependent 

proteases. 

The specific activity of protease La was 1.3mg casein hydrolysed h 1  mg-1  

enzyme (Table 2.3). After storage at -70 °C for 15 months, the specific activity had 

decreased to 0.44mg casein hydrolysed h 1  mg -1  enzyme (Table 2.4). The variability of 

the assay of proteolytic activity was estimated to range between 5.21-8.88% (Table 

2.4). 
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FIGURE 2.5 Phosphocellulose Chromatography of an E. co/i/pJMC40 Cell-Free Extract 

LOAD WASH 01M 	 ELUTE 	 04M 
4 	p<0 4 
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Fractions of lOmi were collected and assayed in the presence and absence of ATP (final 
concentration 3mM). Assays contained 6)Jg ( 14CJ-- lactoglobulin (1.9 x 107cpm mg'). 25mM 

Tris/HCI pH 8.0. 15mM MgCl2, and 200l of each fraction. After incubation at 37 °C for 90mm, acid-

soluble radioactivity was determined. Degradation of ( 14C1--lactoglobulmn measured in the 

presence ( • . ) or absence ( x -x ) of ATP compared with A2W ( .----. ). For clarity, assays 

in which no stimulation by ATP was observed have been omitted. 
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FIGURE 2.6 DEAE-Cellulose Chromatography of Active Fractions From Phospho-

cellulose Column 
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Fractions of 5m1 were collected and assayed as described in the legend to Figure 2.5, except that 
lOOjjl of each fraction was used and incubation was for lh. Degradation of ( 14C)--lactoglobuIin 

measured in the presence ( . . ) 
or absence (X X) of ATP compared with A 0  ( .----. ). 

Fractions were assayed with different preparations of 1 14C1-- lactoglobulin (fractions 1 to 62 with 
one batch; 65 to 130 another) which differed in the amount of acid-soluble radioactivity present. 
For clarity, assays in which no stimulation by ATP was observed have been omitted. 
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FIGURE 2.7 Gel Filtration Chromatography of Active Fractions From DEAE-Cellulose 

Column 
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measured in the presence ( • 	• ) or absence (K 	-K) of ATP compared with A 0  ( .----. ). 
Fractions were assayed with different preparations of ( 14C1- B-
lactoglobulin (fraction 10 to 23 with one batch; 24 to 40 another) which differed in the amount of 
acid-soluble radioactivity present. For clarity, assays in which no stimulation by ATP was observed 
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FIGURE 2.8 Purity of Active Fractions After Gel Filtration Chromatography 
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Samples of active fractions eluted from the Sephacryl S-300 column were analysed by SDS-PAGE 
using a 10% gel, which was stained with Coomassie Blue. 

Lanes 1 & 14: 3pg each of phosphorylase b. 94.000; BSA, 67,000; 	-lactamase, 28,000; 
lactoglobulin. 18,000; cytochrome C, 12.000. 

Lanes 2 & 3: 1.5ig and 4pg.  fraction 14. 

Lanes 4 & 5: 2ig and 5jig, fraction 15. 

Lanes 6 & 7: 0.5g and 1.5pg. fraction 16. 

Lanes 8 & 9: 1.5.ig and 4)ig, fraction 17. 

Lanes 10 & 11: 0.7.ig and Zpg. fraction 18. 

Lanes 12 & 13: 0.7g and 2pg, fraction 19. 
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FIGURE 2.9 Purity of the Protease La Preparation 
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Samples of the protease La preparation were analysed by SOS-PAGE using a 10% gel, which was 
stained with Coomassie Blue. 

Lanes 1, 3, 4. & 5: 14ig, 7pg. 1.5ig. and 0.5ug protease La preparation, respectively. 

Lanes 2 & 6: Spg each of BSA. 67.000; egg albumin. 45.000; GAPOH. 36.000; carbonic anhydrase. 
29.000; trypsin inhibitor. 20.000; a-lactalbumin. 14.000. 
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TABLE 2.3 	Proteolytic Activity of Protease La Preparation 

PERCENTAGE RADIOLABEL ACID-SOLUBLE 

('4C1-PROTEIN + PROTEASE La - PROTEASE La 

+ATP -ATP 

EXPERIMENT 1 

-IactogIobuIin 16.2, 21.0 4.97, 5.30 3.71, 4.97 

casein 29.4, 29.3 8.90, 10.0 10.8, 8.53 

a-Iactalbumin 42.3, 39.8 8.66, 8.68 8.16, 8.50 

B- Iactamase 16.8, 17.4 17.0, 16.1 14.8, 16.2 

oxidized- 8- Iactoglobulin 19.8, 21.3, 20.8 9.49, 8.88, 9.38 9.79, 8.49, 8.39 

EXPERIMENT 2 b 

casein 33.1, 36.4, 30.3 12.5, 	11.6, 	13.1 12.5, 	12.2, 	12.5 

cx-Iactalbumin 22.2, 24.5, 25.3 8.42, 8.71, 8.77 8.14, 8.13, 8.18 

-Iactamase 14.2, 14.6, 14.0 12.0, 12.8, 12.8 12.5, 	13.4, 	12.8 

oxidized--IactogIobuIin 38.8, 39.0, 35.6 18.1, 	18.9, 	18.1 16.5, 	16.4, 	17.1 

PERCENTAGE RADIOLABEL ACID-SOLUBLE 

AMOUNT OF PROTEASE La 
PREPARATION (jig) + PROTEASE La - PROTEASE La 

+ATP -ATP 

EXPERIMENT 3 C  

2.5 57.4, 64.4 18.8, 17.6 18.5, 21.6 

0.6 63.1, 56.9 17.3, 18.3 21.6, 20.6 

0.15 37.2, 32.0 22.9, 22.2 21.1, 20.2 

Assays contained 25mM Tris/HCI pH 8.0, 25mM MgCl 2, and about 2ig ( 14cJ-protein (0.5-1.5 x 10 7 cpm 

mg 1
) in a final volume of 25pl (a & b) or 30)Jl (c, d, & e). Protease La (enzyme subunit:protein 

molar ratio of 1:80 (a & b) or 1:40 (c. d. & e)) and ATP (final concentration 3mM) were added as 
indicated. After incubation at 37 °C for 3h (a, b, & e), or 5h (c & d), acid-soluble radioactivity was 
determined. 

Assays contained 25mM Tris/HCI pH 8.0. 25mM MgCl 2, and about 2ug [' 4C]-protein (0.5 -2.0 x 10 7cpm 
mg') in a final volume of 30ul. Protease La (enzyme subunit:protein molar ratio of 1:40) and ATP 
(final concentration 3mM) were added as indicated. After incubation at 37 °C for 3h, acid-soluble 

radioactivity was determined. 

Assays contained 30mM Tris/HCI pH 8.0. 15mM MgCl2,  and about 2pg E 14CJ--lactalbumin (1.3 x 
101cpm mg -1 ) in a final volume of 30)11. Varying amounts of protease La (enzyme subunit: 
a-lactalbumin molar ratios of 1:5, 1:20. and 1:80) and ATP (final concentration 3mM) were added as 
indicated. After incubation at 37 °C for 100mm, acid-soluble radioactivity was determined. 
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TABLE 2.4 Variability of the Assay Procedure for Protease La Activity 

PERCENTAGE RADIOLABEL ACID-SOLUBLE 
ADDITIONS  

B-LACTOGLOBULIN a CASEIN b 

- protease La, - ATP 4.75 ±0.289 (6.08%) 4.13 ±0.256 	(6.20%) 

+ protease La, - ATP 4.64 ±0.412 (8.88%) 4.55 ±0.237 	(5.21%) 

- protease La, + ATP 4.61 ±0.269 (5.84%) 4.42 ±0.386 	(8.73%) 

+ protease La, + ATP 9.77 ±0.654 (6.69%) 14.1 	±0.920 	(6.52%) 

Assays contained 4ug L 14C1-- lactogIobulin (1.1 x 107cpm mg -1 ), 25mM Tris/HCI pH 8.0. and 25mM 

M90 2. in a final volume of 30uI. Protease La (0•42Mg,  enzyme subunit:protein molar ratio of 1:40) 
and ATP (final concentration 3mM) were added as indicated. After incubation at 37 °C for 2h, acid-
soluble radioactivity was determined. Values presented are means S.D. (n13). The variability of 
the assay is shown in parentheses. 

Assays were as above except that E 14C1-casein (6 x 106cpm mg -1 ) and 0.39pg protease La were used 

2.2 SPECIFICITY OF THE £ coil ATP-DEPENDENT PROTEASE La 

2.2.1 Determination of Optimum Conditions for the Activity of Protease La 

Conditions which gave the greatest recovery of acid-soluble radioactivity 

when [ 14C]-B-lactoglobulin was incubated with protease La were determined (Figure 

2.10). In agreement with the results of Larimore et at (1982), proteolysis occurred at 

a linear rate for up to 3h (Figure 2.101) and was proportional to enzyme concentration 

over a wide range (Figure 2.10.A). Increasing the concentration of 

[ 14C]- B- lactoglobulin (by reducing the assay volume) led to a greater rate of 

proteolysis until saturation was attained (Figure 2.10.H and inset). The apparent Km  of 

[ 14C]--lactoglobulin is about 2pM (Figure 2.10.H) which is in reasonable agreement 

with the apparent Km  of [3H]-casein (0.5-2.OpM) reported by Larimore et al. (1982). 

Protease La was found to have a low ionic strength requirement (Figure 2.10.C). The 

pH and concentrations of ATP and MgCl2 which gave the greatest rate of proteolysis 

(Figures 2.102, 2.101, and 2.10.G) were essentially the same as those reported when 

[ 3H]-casein was used as a substrate (Waxman and Goldberg, 1985; Larimore et al., 

1982). Addition of single-stranded DNA resulted in almost a two-fold decrease in the 

rate of proteolysis of [ 14C]--lactoglobuIin by protease La (Figure 2.10.D). Further 

experiments to investigate the effect of DNA on the activity of protease La are 

described in Section 2.3. 
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FIGURE 2.10 Effect of Varying Conditions on Protease La Activity 
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FIGURE 2.10 (continued) 

(E) 
	

(F) 

w12 
.0 

0 1 
V) 

Li 

E 6 
Li 

01 

2 

0 

0) 

.0 

d3 

E 
0 
L12 

0 
-2 -1 	0 	1 

log 10  EATP]ImM 

 

12345678 

time!h 

(G) 

10 a) 
.0 

08 

0 

LI 

E4 
0. 
LI 

0" 
2 

0 

(H) 

ulO 
.0 

0 

Li 

Li 2 

0 

UI 

8 

CS 

C 

I 	I 

4 	8 
[substrate] 11.iM 

100 	200 

assay votume/pt 

300 10 20 30 40 50 

[Mg 2"] 1mM 

 

Unless stated otherwise each assay was incubated at 37 °C for 3h and contained: Zig 1 4C1-0 
lactoglobulin (0.11nmol), 50mM Tris/HCI pH 8.0. 25mM MgCl 2, 3mM ATP, and 0.13.ug protease La 
(1.4pmol subunit) in a final volume of 30jil. Acid-soluble radioactivity was determined and the 
values shown are the mean of triplicate assays, corrected for acid-soluble radioactivity in the 

control (no enzyme). 

a Buffers used (50mM; pH values shown at 37°C): Piperazine pH 5.8; HEPES pH 7.0; Tris/HCI pH 7.7; 

BICINE pH 8.5; Borate pH 9.2; Na 2CO3 pH 10.7. 
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FIGURE 2.11 Digestion of [14C]_ Proteinsby Protease La 

For each [14C]_ protein, three reaction mixtures containing 50mM Tris/HCI pH 8.0, 

25mM MgCl 2  and about 60pg of the radiolabelled protein, in a final volume of 

150 j.tl, were prepared. Protease La (at an enzyme subunit:proteifl molar ratio of 
1:80) and ATP (final concentration 3mM) were added to one mixture; protease La 
was added to another; and to the remaining mixture, ATP was added. After 

incubation at 37 °C for 16h, 25p1 aliquots were removed and treated as described 

in the following sections. 

1 Degradation of [ 14C]-Proteins to Acid-Soluble Peptides 

PERCENTAGE RADIOLABEL ACID-SOLUBLE a 

[14CJ-PROTEIN 	SPECIFIC ACTIVITY 
(cpm mg') 

i -ATP 	 -ATP 

-lactogIobulin 	 1.3 x i0 7 	 31 	 3 

oxidized- -lactoglObUJifl 	1.7 x 10 7 	 33 	 2 

a-lactalbumin 	 1.3 x iü 	 26 	 -3 

a. BSA and TCA were added to the aliquots and the acid-soluble radioactivity was determined. Values 
shown are corrected for acid-soluble radioactivity present in the control (no enzyme). 
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FIGURE 211 (continued) 

2 Degradation of [
14C]-Proteins Revealed by SDS-PAGE 
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Sample buffer was added to the aliquots and they were analysed by SOS-PAGE using a 12% gel, 
which was stained by the method of Steck at al. (1980) and exposed to X-ray film to produce an 
autoradiograph. The positions of molecular weight markers and the dye front are indicated: BSA. 

67.000; B - lactamase. 28.000; B - lactoglobulin. 18.000; cytochrome c. 12.000. 

Lanes 1-3: L"Cl - B - lactoglobulin + ATP; + protease La + ATP; & + protease La. respectively. 

Lanes 4-6: [' 4C1oxidised-- iactoglobulin + ATP; + protease La + ATP; & + protease La. respectively. 

Lanes 7-9:  ("C1-clactalbumin + ATP, + protease La + ATP; & + protease La. respectively. 
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FIGURE 2.11 (continued) 

3 Degradation of [
14C]-Proteins Revealed by HVPE 
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The aliquots were dried, redissolved in GiN NH 40H and electrophoresed on Whatman 3MM paper at 

PH 6.5. Papers were stained and exposed to X-ray film to produce an autoradiograph. The 
positions of amino acid standards are indicated. Ta: taurine. 

Lanes 1-3: t 14C1--Iactoglobulin + ATP; + protease La + ATP. & + protease La. respectively. 

Lanes 4-6: ('4C1-oxidised-B-lactoglobulin + ATP; + protease La + ATP: & + protease La, respectively. 

Lanes 7-9: 0 4C1-a-lactalbumin + ATP; + protease La + Alp; & + protease La. respectively. 
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2.2.2 Degradation of [ 14C]-Proteins by Protease La 

Goldberg (1985) reported that protease La digests radiolabelled proteins to 

acid-soluble peptides with molecular weights greater than 1500. The number and 

nature of peptides produced when [14C]_  proteinswere degraded by protease La was 

investigated (Figure 2.11). After incubation with protease La, about one third of the 

radiolabel of each [ 14C]-protein was rendered acid-soluble in the presence of ATP, 

whereas only a small recovery was achieved in its absence (Figure 2.11.1). A decrease 

in the amount of radiolabelled protein was detected by SOS-PAGE only after 

incubation with protease La and ATP (Figure 2.11.2). Discrete degradation products of 

( 14C]--IactogIobulin and [ 14C]-oxidized--lactoglobulin were not detected, but a 

degradation product of [ 14C]-ct-lactalbumin was detected by SDS-PAGE (Figure 2.11.2). 

This polypeptide (molecular weight about 11,000) was found in all the reaction 

mixtures of [ 14C]-c-lactalbumin, although the amount present varied (Figure 2.11.2). 

The small amount of the polypeptide in the reaction mixture which lacked 

protease La may have been caused by the labelling procedure. Reductive methylation 

of proteins has been reported to cause peptide bond cleavage, although substitution of 

sodium borohydride by sodium cyanoborohydride should have prevented this (Jentoft 

and Dearborn, 1979). However, the presence of high molecular weight radiolabelled 

proteins in the preparations suggests that labelling conditions were not ideal (Figure 

2.11.2). Other possible explanations for the presence of the polypeptide are: 

contamination of ct-lactalbumin by a protease which has a similar specificity to 

protease La (or a protease contaminant of the protease La preparation); or 

contamination of the ct-lactalbumin by a protein of molecular weight about 11,000, 

which was radiolabelled. 

The greatest amount of the polypeptide was detected in the reaction mixture 

which contained protease La, but lacked ATP (Figure 2.11.2). Possible explanations for 

this unexpected finding are: 

The proteolytic activity of protease La is stimulated by and not dependent upon 

ATP. 

The protease La preparation is contaminated by a protease (which degrades 

[ 14C]-a-Iactalbumin to a polypeptide of molecular weight 11,000). If this is the 

case, then the polvpeptide must be a substrate of protease La since less was 

present in the reaction mixture which contained protease La and ATP. 

3. The [ 14C]-ct-Iactalbumin preparation contains a factor (possibly ATP) which 

supports limited digestion by protease La. 
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Smaller amounts of both the polypeptide and labelled -Iactalbumin were 

detected in the reaction mixture which contained protease La and ATP, compared with 

the reaction mixture which contained protease La but lacked ATP (Figure 2.11.2). This 

finding suggests that this polypeptide is not an end-product of the digestion of 

[ 14C]-ct-lactalbumin by protease La. Possibly, degradation of this polypeptide is the 

rate-limiting step. However, this hypothesis relies upon two assumptions: that the 

protease La preparation is free from contamination by proteases; and that the labelling 

procedure produced a homogeneous preparation of [14C]-a-Iactalbumin. 

After incubation peptides were detected by HVPE in all the reaction mixtures, 

for each of the [14C]_  proteins(Figure 2.11.3). Small amounts of peptides of similar 

mobilities were found in the controls; that is the reaction mixtures which did, and did 

not, contain protease La. In the cases of [ 14C]--IactoglobuIin and [ 14C]-oxidized- 

-Iactoglobulin these peptides were probably contaminants of the labelled 

preparations since the amounts of the peptides in the reaction mixtures were similar. 

However, in the reaction mixture of [ 14C]-ct-lactalbumin which contained protease La, 

greater amounts of peptides were detected than in the reaction mixture which lacked 

protease La. This correlates with the results obtained when reaction mixtures of 

[ 14C]-ct-lactalbumin were analysed by SOS-PAGE (Figure 2.11.2): with both techniques 

greater degradation was detected in the presence of protease La (but without ATP) 

than in its absence. Possible explanations for this unexpected finding were given 

above. However, if the protease La preparation is contaminated by a protease then it 

must be a highly specific protease because neither degradation of [ 14C]- B-

lactoglobulin nor [ 14C]-oxidized--Iactoglobulin in the presence of protease La 

(without ATP) was detected by either technique. 

Several additional peptides of widely different mobilities were detected by 

HVPE in the reaction mixtures which contained protease La and ATP, for each of the 

[14C]_ proteins(Figure 2.11.3). Incubation of 
[ 14C]--lactogIobuIin and of 

[14C]-oxidized--IactoglobuIin with protease La and ATP produced peptides of identical 

mobilities, suggesting that oxidation of -Iactoglobulin prior to radiolabelling did not 

influence which peptide bonds were hydrolysed by protease La. 

It was surprising that digestion of [ 14C]-ct-lactalbumin by protease La, in the 

absence of ATP, was not revealed by the recovery of acid-soluble radioactivity (Figure 

2.11.1). This can be explained partly by the discovery that the degradation product of 

molecular weight about 11,000 was insoluble in 10% TCA (Figure 2.12.1). However, 



Three reaction mixtures containing: 30mM Tris/HCI pH 8.0, 15mM MgCl 2, and about 20jg [ 14C]--
lactalbumin (1.3 x 10 7  cpm mg -1 ), in a final volume of 50p1, were prepared. ATP (final concentration 
3mM) was added to one reaction mixture; protease La (enzyme subunit:protein molar ratio of 1:80) 
was added to another; and protease La and ATP were added to the remaining mixture. After 
incubation at 37 °C for 14h, the reaction mixtures were divided into two. One aliquot was analysed 
directly by SOS-PAGE using a 15% gel (A). To the other aliquot, BSA (final concentration 2mg m1 1 ) 

and TCA (final concentration bob)  were added. After incubation on ice for 30min and centrifugation 
(11,6009 0  for 10mm), the acid-insoluble and acid-soluble material were neutralized and then 
analysed by SOS-PAGE using a 15% gel (B & C). The gels were stained by the method of Steck et 
al. (1980) and also exposed to X-ray film to produce an autoradiograph. The positions of molecular 
weight markers (BSA, 67,000; B- iactamase, 28.000; -lactoglobulin, 18,000; cytochrome c, 12,000) are 
indicated. 

Lane 1 (A. B. & C): reaction mixture + ATP only. 

Lane 2 (A, B, & C): reaction mixture + protease La + ATP. 

Lane 3 (A, B, & C): reaction mixture + protease La only. 

2 Three reaction mixtures containing: 50mM Tris/HCI pH 8.0, 25mM M9Cl 2, and about lOpg [ 14 C]- -
lactalbumin (1.3 x 10 7

cpm mg'), in a final volume of 25ul, were prepared. ATP (final concentration 
3mM) was added to one reaction mixture; protease La (enzyme subunit:protein molar ratio of 1:80) 
was added to another; and protease La and ATP were added to the remaining mixture. Following 
incubation at 37 °C for 16h, BSA (final concentration 2mg m1 1 ) and TCA (final concentration bob) 
were added to the reaction mixtures. After incubation on ice for 30 minutes and centrifugation 
(11,6009 0  for 10mm) the acid-soluble material was treated by the method of Harris and Hindley 
(1965) to remove the TCA prior to electrophoresis on Whatman 3MM paper at pH 6.5. The paper 
was stained and exposed to X-ray film to produce an autoradiograph. The positions of amino acid 
standards are indicated. Ta: taurine. 

Lane 1: reaction mixture + ATP only. 

Lane 2: reaction mixture + protease La + ATP. 

Lane 3: reaction mixture + protease La only. 
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FIGURE 2.12 Degradation of [ 14C]-ct-Lactalbumin by Protease La 
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TABLE 2.5 Acid-Soluble Radioactivity Present in Reaction Mixtures of 
[
14C]-ct -- 

REACTION MIXTURE a 

- protease La - ATP 

• protease La - ATP 

• protease La + ATP 

cpm O.4mF 1  

1573, 1572, 1581 

1628, 1683, 1696 

4288, 4732, 4885 

PERCENTAGE RADIOLABEL 
ACID-SOLUBLE 

8.14, 8.13, 8.18 

8.42, 8.71, 8.77 

22.2, 24.5, 25.3 

a. Reaction mixtures contained 50mM Tris/HCI pH 8.0. 25mM MgCl 2, and about 2pg ( 14C1-01-lactalbumin 
(1.5 x 107cpm Mg-) in a volume of 30pl. Protease La (enzyme subunit:protein molar ratio of 1:40) 
and ATP (final concentration 3mM) were added as indicated. Reaction mixtures were incubated at 

37°C for 3h and acid-soluble radioactivity determined. 

TABLE 2.6 Non-Hydrolysable Analogues of ATP and Protease La 

PERCENTAGE RADIOLABEL ACID-SOLUBLE 

RIBONUCLEOTIDE CONCENTRATION 
(MM) 

01-LACTALBUMIN 
	

OXIDIZED- 
	

CASEIN 

8-LACTOGLOBULIN 

ATP 	 3.0 
0.3 
0.03 

AMP-PCP 	3.0 
0.3 
0.03 

AMP-PNP 	3.0 
0.3 
0.03 

- Protease La  

18.8, 19.2, 20.0 
19.0, 19.6, 17.4 
10.8, 9.77, 9.49 

7.99, 7.18, 6.97 
7.45, 7.24, 7.51 

7.83, 8.05, 7.71 

7.79, 7.61, 8.74 

6.42, 8.20, 8.17 
6.87, 6.97, 7.85 

19.6, 20.0, 23.5 
22.2, 19.2, 19.6 
10.0, 8.46, 10.0 

8.81, 6.71, 7.95 
9.09, 7.14, 8.31 
8.55, 7.39, 7.65 

9.20, 9.09, 8.38 
8.68, 7.82, 8.08 
8.01, 7.83, 8.55 

22.8, 18.7, 17.9 
23.0, 22.3, 20.9 
13.7, 12.7, 13.5 

8.37, 7.55, 7.34 
7.12, 7.02, 6.91 
8.11, 8.28, 6.91 

8.20, 9.36, 8.69 
7.56, 7.23, 7.73 

8.46, 7.99, 8.15 

7.31, 6.69, 7.49 	7.30, 7.21, 7.28 	7.45, 8.07, 7.26 

a. Assays contained 25mM Tris/HCI pH 8.0, 25mM MgCl 2. about 2ug 
[14C  ]-protein 11-2 x 107cpm mg'), 

and protease La (enzyme subunit:protein molar ratio of 1:40) in a final volume of 30,uI. Varying 
concentrations of ATP. AMP-PCP. and AMP-PNP were added. After incubation at 37 °C for 3h, acid-

soluble radioactivity was determined. 
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smaller degradation products (sum of molecular weights about 3,000) should have 

been soluble in 10% TCA. Indeed, an acid-soluble peptide was detected by SOS-PAGE 

(Figure 2.12.1) although not by HVPE (Figure 2.12.2). However, when treating the 

samples to remove TCA prior to HyPE, acid-soluble peptides may have been lost. 

Evidence to support this suggestion is given by the finding that the amounts of 

peptides detected in reaction mixtures containing protease La and ATP are very 

different before and after treatment to remove TCA (Figures 2.11.3 and 2.12.2). 

Consequently, determination of the amount of acid-soluble radioactivity present in 

reaction mixtures of [ 14C]-ct-lactalbumin was repeated (Table 2.5). Digestion of 

[ 14C]-a-lactalbumin by protease La in the absence of ATP was detected, but the 

recovery of acid-soluble radioactivity was very low. Presumably, the sensitivity of the 

previous determination of acid-soluble radioactivity in the reaction mixtures was 

insufficient to detect such a low level of proteolytic activity (Figure 2.11.1). 

A range of [14C]_  proteinswere incubated with protease La in the presence of 

ATP, or non-hydrolysable analogues of ATP: compared to the release of acid-soluble 

radioactivity with ATP, negligible release occurred with the non-hydrolysable analogues 

(Table 2.6). Increasing the amount of protease La (from a molar ratio of 1:40 to 1:1) 

TABLE 2.7 Protease La and Non-Hydrolysable Analogues of ATP 

	

RATIO PROTEASE La: 	RIBONUCLEOTIDE 	PERCENTAGE RADIOLABEL 

	

(14C1-cL-LACTALBUMIN 	 ACID-SOLUBLE 

1:40 - 10.6, 	10.8, 11.0 

1:1 - 11.6, 	11.6, 	12.0 

1:40 ATP 23.7, 24.2, 25.9 

1:1 ATP 35.7, 40.7, 41.7 

1:40 AMP-PCP 10.2, 	11.8, 	11.6 

1:1 AMP-PCP 11.5, 	12.3, 	11.8 

1:40 AMP-PNP 11.3, 	11.9, 	11.8 

1:1 AMP-PNP 12.5, 13.3, 13.2 

- Protease La 9.66, 11.1, 10.9 

a. Assays contained 25mM Tris/HCI pH 8.0, 25mM MgCl 2. about 2ug 1 14C1-01-lactalbumin 11.5 x 10 7cpm 

m 1 ) in a final volume of 60,ul. Protease La was added at the molar ratios (enzyme subunit: 
('CI-a-Iactalbumin) indicated. Ribonucleotides were added to a final concentration of 3mM. After 

incubation at 37°C for 3h, acid-soluble radioactivity was determined. 
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FIGURE 2.13 Protease La and Non-Hydrotysable Analogues of ATP 

1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 12 

ft 

Reaction mixtures were incubated at 37 °C for 6h and contained 25mM Tris/HCI pH 8.0. 25mM MgCl2 

and about 2ig (' 4 C1-Q - lactalbumin (1 5 x cpm mg - 1 ). in a final volume of 60.si Protease La and 

L' 4C1-cZ-lactalbumi. were added in the molar ratios 1:1 or 1:40 (protease La subunit 1 14 c1-cz-
lactalbumini. Ribonucleotides (ATP. AMP-PCP. or AMP-PNP) were added to a final concentration of 
3mM Reaction mixtures were analysed by SDSPAGE using a 17.5% gel, and the gel was stained 

with Coomassie Blue. 

Lanes 1 and 12: BSA. 67.000; 8- lactamase. 28.000; -lactoglobulin. 18.000; cytochrome c, 12.000. 

Lanes 2 & 11: no addition. 

Lane 3; protease La (1:1). no ribonucteotide. 

Lane 4: protease La (1:1) and ATP. 

Lane 5; protease La (1:1) and AMP-PCP 

Lane 6; protease La 0:11 and AMP-PNP. 

Lane 7: protease La (1:40) and ATP. 

Lane 8: protease La (1 40) and AMP-PCP 

Lane 9: protease La (1:40) and AMP-PNP 

Lane 10: protease La (1:40). no ribonucteotide. 
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had little 'effect on the amount of acid-soluble radioactivity released with the non-

hydrolysable analogues of ATP (Table 2.7). When degradation of [ 14C]-ct-lactalbumin 

by protease La in the presence of ATP or non-hydrolysable analogues was monitored 

by SDS-PAGE, disappearance of the band corresponding to [ 14C]-ct-lactalbumin only 

occurred in reaction mixtures containing ATP, irrespective of the amount of protease 

La (Figure 2.13). Furthermore, bands corresponding to high molecular weight 

degradation products were not observed in any of the reaction mixtures (Figure 2.13). 

2.2.3 Degradation of Native Proteins by Protease La 

2.2.3.1 Purification of Wild-Type and Mutant Forms of S. aureus 8-Lactamase 

Ambler (1975) reported that S. aureus PCi 8 - lactamase was readily digested 

without prior denaturation by a wide range of proteases. The enzyme can be purified 

easily in large amount (Richmond, 1963) and the primary (Ambler and Meadway, 1969; 

Ambler, 1975) and tertiary (Herzberg and Moult, 1987) structures have been elucidated. 

Furthermore, two mutant forms of S. aureus B-lactamase, which differ from wild-type 

by a single amino acid substitution (P54 mutant: Asp 179  -* Asn and P2 mutant: Thr 71  -+ 

Ile, Ambler, 1979) and have about 5% of the specific activity of wild-type (Ambler, 

1979), are even more susceptible to proteolysis than wild-type enzyme (Ambler, pers. 

comm.). For these reasons it was considered that wild-type and mutant forms of 

S. aureus 8-lactamase would be an excellent choice of substrate to begin the 

investigation into the specificity of protease La. 

Different 8-lactamase producing strains of S. aureus release different 

proportions of their total enzyme into the medium (Novick and Richmond, 1965). Wild-

type enzyme was purified from the constitutive strain PCi, which produces the highest 

proportion of extracellular enzyme, by the method of Richmond (1963) as modified by 

Ambler and Meadway (1969) (Table 2.8). The purity of the enzyme preparation was 

assessed by SOS-PAGE: limited contamination by proteins of molecular weights 

greater than 12,000, but much contamination by peptides, was observed (Figure 2.14). 

Ambler (1975) reported that some preparations of S. aureus 8- lactamase contained 

unexpectedly high amounts of glycine after acid hydrolysis. Further investigation 

revealed that a peptide, of identical composition to the cell wall peptide (G1y 5, Ala 2, 

Glu, Lys), co-purified with S. aureus 8-lactamase through ion-exchange and gel 

filtration chromatography. An amino acid analysis of the S. aureus PCi 8-lactamase 

preparation was performed by Professor R.P. Ambler, which indicated that the enzyme 

preparation may have been contaminated by such a peptide, since it contained much 

more Gly than expected for the normal protein and slightly more Ala, Glu and Lys 
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(Table 2.9). Ambler (1975) found that the peptide could be removed by gel filtration in 

50% formic acid, suggesting that the peptide was not covalently linked to the enzyme. 

After this treatment, which was monitored by SOS-PAGE (Figure 2.15), the enzyme 

preparation had an amino acid composition similar to bona fide S. aureus PCi 

8-lactamase (Table 2.9). The specific activity of the enzyme was 16.4 ±0.8mol 

benzylpenicillin hydrolysed h 1  pg 1  at pH 7.0 (mean of triplicate determinations ±S.O.), 

slightly less than the value reported by Ambler (1975). Treatment to remove 

contaminating peptides led to a decrease in the specific activity of the enzyme to 8.2 

±0.8pmol benzylpenicillin hydrolysed h -  which was probably caused by mild, 

irreversible denaturation of the enzyme after gel filtration in 50% formic acid. 

TABLE 2.8 Purification of S. aureus PCi B-Lactamase 

PURIFICATION 
STEP 

Culture supernatant 

Adsorption to phosphocellulose 

Elution from phosphocellulose 

Gel filtration chromatography 

Dialysis 

Lyophilization 

PERCENTAGE RECOVERY 
TOTAL ACTIVITY  

RECOVERED a 
STEP 	OVERALL 

4.2 x 106  

3.8 x 10 6 	 90 	 90 

1.8 x 106 	 47 	 42 

1.1 x 106 	 61 	 26 

9.0 x 101 	 82 	 21 

6.0 x 	 67 	 14 

a. pmol benzylpenicillin hydrolysed h 1 . 

Using an identical protocol to the one employed for the PCi form of the 

enzyme, purification of B-lactamase from S. aureus strain P54 was attempted. 

Purification relied upon the P54 form of the enzyme (of low specific activity) behaving 

in an analogous manner to the PCi form, because the sensitivity of assays using 

benzylpenicillin was insufficient to detect activity in fractions eluted from columns 

(activity was barely discernible in highly concentrated fractions eluted from the 

phosphocellulose column). Material after lyophilization was analysed by SOS-PAGE 

which showed that the P54 form of the enzyme was purified successfully (Figure 2.16). 

The amino acid composition of the P54 enzyme preparation was similar to bona fide 

S. aureus PCi B-lactamase (Table 2.10) and the specific activity of P54 enzyme was 

1.21imol benzylpenicillin hydrolysed h -  about 7% of that of the PCi enzyme. 



CHAPTER 2 
	

54 

FIGURE 2.14 Purity of S. aureus PCi B-Lactamase Preparation 
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The enzyme was eluted from the phosphocellulose column in a large volume (about 200m1); and 
since the maximum volume that could be loaded onto the gel filtration column was only 40m1. five 
separate runs were required. After dialysis and lyophilizatiori, a sample from each run (about 7jg) 

was analysed by SOS-PAGE using a 5-20% gradient gel, which was stained with Coomassie Blue. 

Lane 1: about 30g Run I. 

Lanes 2 & 8: BSA. 67,000; 8 - lactamase, 28.000; Blactoglobulin. 18.000: cvtochrome c. 12,000 

Lanes 3-7 Runs 1-5. respectively. 



1 About 5mg S. aureus PCi 8 - lactamase in 50% formic acid was loaded onto a Sephadex G-25 

column (60cm x 1.5cm) and the A 260  of the eluent is indicated. 

2 Fractions were analysed by SDS-PAGE using a 15% gel, which was stained with Coomassie Blue. 

Lanes 1 & 14: BSA, 67,000; B - lactamase, 28,000; -lactoglobulin, 18,000; cytochrome c, 12,000. 

Lane 2: 100jl fraction 18. 	 Lane 8: iOO,ul pooled fractions 35-37. 

Lane 3: 15,ul fraction 19. 	 Lane 9: 100il pooled fractions 38-39. 

Lane 4: 15jl fraction 20. 	 Lane 10: 100,pl pooled fractions 40-43. 

Lane 5: 15ul fraction 21. 	 Lane ii: 100.il pooled fractions 44-47. 

Lane 6: 100l pooled fractions 23-26. 	 Lane 12: lOOpl pooled fractions 48-55. 

Lane 7: laOpl pooled fractions 27-30. 	 Lane 13: 20ig insulin. 
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FIGURE 2.15 Treatment to Remove Contaminating Peptides from S. aureus PCi B-

Lactarnase 
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TABLE 2.9 Amino Acid Composition of S. aureus PCi B-Lactamase 

AMOUNT RECOVERED (imol) a 	RESIDUES MOLECULE' b 

AMINO  
ACID 

BEFORE 	 AFTER 	BEFORE 	AFTER 	FROM 
SEQUENCE C 

Lys 0.26 0.11 73 45 43 

His 0.018 0.0049 5.1 2.0 2 

Arg 0.047 0.0081 13 3.3 4 

Cys 0.00 0.00 0.0 0.0 0 

Asp 0.14 0.093 39 38 39 

Thr 0.056 0.033 16 13 13 

Ser 0.082 0.046 23 19 19 

Glu 0.098 0.043 28 18 14 

Pro 0.040 0.018 11 7.3 9 

Gly 0.11 0.031 31 13 12 

Ala 0.096 0.045 27 18 18 

Val 0.057 0.038 16 15 16 

Met 0.0097 0.0055 2.7 2.2 3 

lie 0.059 0.040 17 16 19 

Leu 0.078 0.054 22 22 22 

Tyr 0.038 0.028 11 11 11 

Phe 0.024 0.014 6.8 5.7 7 

The amino acid composition of the enzyme preparation, before (0.23mg protein) and after (0.16mg 

protein) gel filtration chromatography in 50% formic acid, was determined. 

Residues molecule -1  were calculated relative to leucine, which was defined as 22. 

Ambler (1975) 
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FIGURE 2.16 Purity of S. aureus P54 B-Lactamase Preparation 
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After lyophilization the preparation was analysed by SDS-PAGE using a 10%  gel, which was stained 

with Coomassie Blue. 

Lanes 1 & 7: 5pg S. aureus PCi B-lactamase preparation. 

Lanes 2 & 6: 10ig S. aureus PCi B- Iactamase preparation. 

Lanes 3-5: lOjig, 3M9, and lpg S. aureus P54 B - lactamase preparation, respectively. 
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TABLE 2.10 Amino Acid Composition of S. aureus P54 B-Lactamase 

AMINO 
ACID RECOVERED 

(,jmol) a 

AMOUNT  
RESIDUES MOLECULE' b 

P54 	PCi (from 
sequence) C 

Lys 0.062 55 43 

His 0.0029 2.6 2 

Arg 0.058 5.1 4 

Cys 0.00 0.0 0 

Asp 0.040 35 39 

Thr 0.012 11 13 

Ser 0.020 18 19 

Glu 0.020 18 14 

Pro 0.0084 7.4 9 

Gly 0.018 16 12 

Ala 0.020 18 18 

Val 0.018 16 16 

Met 0.0028 2.5 3 

lie 0.018 16 19 

Leu 0.025 22 22 

Tyr 0.013 11 12 

Phe 0.0096 8.4 7 

About 0.07mg P54 was used for analysis. 

Residues molecule- I were calculated relative to leucine, which was defined as 22. 

Ambler (1975) 
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2.2.3.2 Wild-Type and Mutant Forms of S. aureus B-Lactamase Are Not Degraded by 
Protease La Under Conditions Favourable for the Degradation of Radiolabelted Proteins 

Mixtures containing wild-type S. aureus 	-lactamase with, and without, 

protease La were analysed by SDS-PAGE (Figure 2.17). Degradation of S. aureus PCi 

8-lactamase before, and after, treatment to remove contaminating (possibly cell wall) 

peptides was not detected: a difference in the intensity of the band corresponding to 

S. aureus PCi 8-lactamase in the mixtures with, and without, protease La was not 

observed; bands corresponding to degradation products were not seen in the mixture 

containing protease La. After prolonged incubation a difference in the intensity of the 

band corresponding to S. aureus PCi 8-lactamase in the mixtures with, and without, 

protease La was not apparent but, surprisingly, degradation products (molecular 

weights about 27,000 and 26,000) were seen in both mixtures (Figure 2.17). Digestion 

of S. aureus PCi 8-lactamase, in the absence of protease La, may have been caused 

by a protease in the B-lactamase preparation since several extracellular proteases 

have been purified from S. aureus (Arvidson, 1973; Arvidson et at., 1973). 

Consequently, the S. aureus PCi 8-lactamase preparation was purified further by FPLC. 

Because S. aureus PCi -lactamase is a very basic protein (43 Lys residues), ion-

exchange chromatography was performed using a cation-exchanger (Mono-S) at high 

pH (pH 8.7) (Figure 2.18). It was considered unlikely that a contaminating protease 

would adsorb to a cation-exchanger at such high pH since most proteins have 

isoelectric points less than 8.7. 

Prior to FPLC, the purity of the S. aureus PCi B- lactamase preparation had 

been assessed by SDS-PAGE, amino acid analysis and specific activity measurement, 

which had revealed negligible contamination by proteins but considerable 

contamination by peptides (Figure 2.14, Table 2.9 and Section 2.2.3.1). It was 

surprising, therefore, that when a sample of the S. aureus PCi 8- lactamase 

preparation was resolved by FPLC three large U.V. (280nm) absorbing peaks were 

detected, only one of which (peak Ill) hydrolysed nitrocefin (Figure 2.18). Peak III was 

comprised of S. aureus PCi B-Iactamase free from contamination by peptides (Figure 

2.19.1). The nature of the material found in peaks E and II was not investigated 

further. Possibly, peak LI consisted of degradation products of S. aureus PCi 

B-lactamase formed during storage, because it seems unlikely that other proteins 

would adsorb to the column at this pH. The largest peak (peak 1) probably contained 

the contaminating peptides (composed of Gly, Ala, Glu and basic amino acids, Table 

2.9) although other U.V. absorbing material must have been present. 
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FIGURE 2.17 Degradation of S. aureus PCi B-Lactamase by Protease La Was Not 
Observed 
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Reaction mixtures with and without protease La (enzyme subunit:protein molar ratio of 1 50). 

contained 30mM Tris/HCI pH 8.0. 15mM MgCl2  and 3mM ATP, in a final volume of 30jI. After 

incubation for 90mm (A & B) or 14h (C), the reaction mixtures were analysed by SDS-PAGE using a 
125% gel, which was stained with Coomassie Blue. A. reaction mixtures contained about 3ug 

S. aureus PCI 8 - lactamase before treatment to remove contaminating peptides, B & C mixtures 
contained the same amount of enzyme, after treatment. 

Lane 1 (A. B, & C); reaction mixtures - protease La. 

Lane 2 (A. B, & C): reaction mixtures + protease La. 

Lane 3 (A & B): phosphorylase b. 94,000; BSA. 67.000; B -lactamase, 28,000, B - lacto Ouli 18.0O, 

cytochrome E• 12,000 

Lane 3 (C): as above, but phosphorylase b omitted. 
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FIGURE 2.18 Purification Of S. aureus PCi B -Lactamase by FPLC 

Fraction number 

S. aureus PCi 8-lactamase (about lOOjig) was loaded onto a Mono-S column equilibrated with 
50mM BICINE pH 8.7 (Buffer A). The column was eluted with a salt gradient comprising Buffer A 
and Buffer B (50mM BONE pH 8.7. l.OM CaCl2).  The percentage of Buffer B in the gradient 
( ------ ). and the A 0  of the eluent ( ), are indicated. 



1 S. aureus PCi B- lactamase after purification by FPLC was analysed by SOS-PAGE using a 10% gel, 
which was stained with Coomassie Blue. 

Lane 1: phosphorylase b, 94,000; BSA, 67.000; B- iactamase, 28,000; 8-lactoglobulin, 18,000; 
cytochrome C, 12.000. 

Lane 2: about 5pg S. aureus PCi 8 - lactamase. 

2 For S. aureus P54 (lanes 1-4), P2 (lanes 5-8). and PCi (lanes 9-12) 	-lactamases, four reaction 
mixtures each were prepared containing: 50mM Tris/HCl p11 8.0, 25mM M9Cl 2, and about 8pg, 4ug, or 
2ig protein (P54, P2, & PCi, respectively), in a final volume of 30F1  ATP (final concentration 3mM) 
was added to two of the reaction mixtures, only one of which was incubated; ATP and protease La 

(0.3,ug) were added to another; and protease La alone was added to the remaining mix. After 
incubation at 37°C for 5h, the reaction mixtures were analysed by SOS-PAGE in a 15% gel, which 
was stained with Coomassie Blue. 

Lanes 1. 5, & 9: reaction mixtures + ATP, but not incubated. 

Lanes 2, 6. & 10: reaction mixtures + Alp. 

Lanes 3, 7, & ii: reaction mixtures + protease La & ATP. 

Lanes 4, 8, & 12: reaction mixtures + protease La. 
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FIGURE 2.19 Degradation of Wild-Type and Mutant Forms of S. aureus B-Lactamase 

by Protease La Was Not Observed 
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In accord with earlier findings, S. aureus PCi 8-lactamase purified by FPLC 

was not digested by protease La (Figure 2.19.2). However, degradation products were 

observed in the mixtures with, and without, protease La, despite purification by FPLC. 

These products may have been caused by auto-digestion (serine proteases and 

$-Iactamases have several features in common; Herzberg and Moult, 1987) or, rather 

more plausibly, by contamination of the mixtures by proteases. Thus it appears that 

S. aureus PCi 8-lactamase is extremely susceptible to degradation by proteases other 

than protease La. 

Mixtures containing the mutant forms of S. aureus -lactamase with, and 

without, protease La were also analysed by SOS-PAGE (Figure 2.19.2). The P2 and P54 

forms of the B-lactamase behaved in an analogous manner to the PCi form: digestion 

was not detected but bands corresponding to degradation products (of the same 

molecular weights as products of PCi B-lactamase) were observed in all the mixtures 

after prolonged incubation (Figure 2.19.2). Addition of single-stranded DNA to mixtures 

did not stimulate degradation of either wild-type or mutant forms of S. aureus 

-lactamase by protease La (Figure 2.20). The failure of protease La to digest the P2 

and P54 forms of S. aureus -lactamase was unexpected. Protease La is known to 

digest abnormal proteins in vivo, and these mutant forms had been found to be 

extremely sensitive to degradation by trypsin: one thousand times less trypsin was 

required to digest the P2 and P54 forms of the enzyme (Figure 2.22) compared with 

the PCi form (Figure 2.21). 

2.2.3.3 Evidence That Protease La is a (Highly) Selective Protease 

In order to find a substrate of protease La, fourteen readily available, well 

characterized protein preparations were incubated with the protease, and the mixtures 

were analysed by SDS-PAGE. Degradation of a protein would be revealed by the 

disappearance of the band corresponding to the protein on a polyacrytamide gel. By 

this method, complete digestion of only two of the protein preparations used (bovine 

a-lactatbumin and bovine casein) was detected; limited degradation of two protein 

preparations (horse heart cytochrome c and chick erythrocyte histone) was also 

detected (Figure 2.23). Heat denaturation did not increase the susceptibility of five 

protein preparations to degradation by protease La (Figure 2.24); although an increase 

was observed after more drastic denaturation of a -Iactoglobulin preparation by 

reductive methylation or by oxidation with performic acid (Figure 2.25). However, the 

extent of digestion of both the methyl- and oxidized -Iactoglobulin preparations was 

much less than that of the a-lactalbumin and casein preparations (Figure 2.23). These 
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FIGURE 2.20 Degradation of Wild-Type and Mutant Forms of S. aureus B-Lacta!! 

by Protease La in the Presenceof DNA Was Not Observed 
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For S aureus PCi llanes 1-4). P54 (lanes 5 -8) and P2 (lanes 9-12) B - lactamases, tour reaction 

mixtures containing 50mM Tris/HCI pH 8.0. 25mM M902. 3mM ATP. and about 5pg protein, in a final 
volume of 300. were prepared. No addition was made to one reaction mixture (lanes 1. 5, & 9); 

protease La (enzyme subunit:PrOteifl molar ratio of 1:40) was added to another (lanes 2, 6. & 10). 

protease La and ssDNA (final concentration 0.1 or lOug ml 
I) were added to the remaining mixes. 

After incubation at 37°C for 16h. the reaction mixtures were analysed by SDS-PAGE using a 15% gel. 

which was stained with Coomassie Blue. 

Lanes 1, 5, & 9: reaction mixtures, no addition. 

Lanes 2. 6. & 10: reaction mixtures + protease La 

Lanes 3. 7. & 11: reaction mixtures + protease La & ssDNA (0.ljjg ml'). 

Lanes 4. 8. & 12: reaction mixtures + protease La & ssDNA (10ig ml'). 
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FIGURE 2.21 Susceptibility of Wild-Type S. aureus B-Lactamase to Proteolysis 
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S aureus PCi 6 - lactamase before treatment to remove contaminating peptides (about 80ig) was 

incubated at 37CC with ROpg trypsin in buffer containing 20mM Iris/KG) pH 7.6. and 20mM NaCl. in a 

final volume of 80ul (Sigal at al., 1984)- At various times, lOul aliquots were removed and analysed 
by SOS-PAGE using a 10-15% gradient gel, which was stained with Coemassie Blue. Prior to 

loading the gel. BSA was added to the samples as an internal standard. 

	

Lanes 1 & 14: BSA. 67.000; B-tactamase. 28.000 	-lactoglobulin. 18.000; cytochrome C. 12,000. 

Lane 2: lOug S. aureus PCi B - lactamase. 

Lane 3: lOjig trypsin. 

Lanes 4-11: 05mm. 5mm, 10mm. 15mm, 20mm, 30mm. 60mm. & 120min incubations. respectively. 

Lane 12: lOug trypsin. incubated 120mm. 

Lane 13: lOug S aureus PCi B-lactamese. incubated 120mm. 



S. aureus P2 -Iactamase (about 100,ug) was incubated at 37 °C with either 100,ig (A) or lOOng (B) 
trypsin in buffer containing 20mM Tris/HCI pH 7.6, and 20mM NaCl, in a final volume of 10011. At 
various times, iQul aliquots were removed and analysed by SDS-PAGE using a 15% gel, which was 

stained with Coomassie Blue. Prior to loading the gel, BSA was added to the samples as an internal 
standard. For both A & B: 

Lanes 1 & 14: BSA, 67,000; carbonic anhydrase, 29,000; -lactoglobulin, 18,000; cytochrome c, 12,000. 

Lane 2: 10)Jg and lOng trypsin, respectively. 

Lane 3: 10)Jg S. aureus P2 -lactamase. 

Lanes 4-11: 0.5mm, 5mm, 10mm, 15mm, 20mm, 30mm, 60mm, & 120min incubations, respectively. 

Lane 12: iQug S. aureus P2 B- lactamase, incubated 120mm. 

Lane 13: lOpg and lOng trypsin, incubated 120mm, respectively. 
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FIGURE 2.22 Susceptibility of Mutant Forms of S. aureus 8 - Lactamase to 

1 P2 Form 
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2 S. aureus P54 -lactamase (about 80,g) was incubated at 37 °C with either 80j9 (A) or 80ng (B) 
trypsin in buffer containing 20mM Tris/HCI pH 7.6. and 20mM NaCl, in a final volume of 80 1ul. At 
various times, iQul aliquots were removed and analysed by SOS-PAGE using a 10-15% gradient gel, 
which was stained with Coomassie Blue. Prior to loading the gel, BSA was added to the samples as 
an internal standard. 

A Lanes 1 & 14: BSA 67,000; 8 - lactamase, 28,000; -lactogIobulin, 18,000; cytochrome c, 12,000. 

Lane 2: 20g trypsin. 

Lane 3: lOpg trypsin, incubated 120mm. 

Lanes 4-5, 7-9, & 11-13: 0.5mm, 5mm, 10mm, 15mm, 20mm, 30mm, 60mm, & 120min incubations, 
respectively. 

Lane 6: 10ug S. aureus P54 8 - lactamase. 

Lane 10: 10,ig S. aureus P54 -Iactamase. incubated 120mm. 

B Lanes 1 & 13: BSA, 67,000; 8 - lactamase, 28,000; -lactoglobulin, 18,000; cytochrome c, 12.000. 

Lane 2: 20,ug trypsin. 

Lane 3: 10,ug trypsin, incubated 120mm. 

Lanes 4-5, 7-9, & 11-12: 0.5mm, 5mm, 10mm, 15mm, 20mm, 30mm, & 60min incubations, 
respectively. 

Lane 6: lOpg S. aureus P54 B - Iactamase. 

Lane 10: iQug S. aureus P54 B - lactamase, incubated 120mm. 
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FIGURE 2.22 (continued) 
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For each protein, four reaction mixtures were prepared containing 50mM Tris/HCI pH 8.0, 25mM 

M9Cl 2, 3mM ATP, and about 5Mg protein, in a final volume of 30pl. In addition, the four reaction 

mixtures contained: 

Reaction 1: no further additions (lanes 1, 5, & 9). 

Reaction 2: protease La (enzyme subunit:protein molar ratio 1:40) (lanes 2, 6, & 10). 

Reaction 3: protease La & ssDNA (0.1pg ml') (lanes 3, 7, & 11). 

Reaction 4: protease La & ssDNA (10ug ml') (lanes 4, 8, & 12). 

After incubation at 37 °C for .15h, the reaction mixtures were analysed by SOS-PAGE using a 17.5% 

gel: 

A Lanes 1-4: bovine -lactalbumin. 

Lanes 5-8: horse heart cytochrome C. 

Lanes 9-12: chick erythrocyte histone. 

B Lanes 1-4: bovine pancreatic RNase. 

Lanes 5-8: hen egg white lysozyme. 

Lanes 9-12: bovine casein. 
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FIGURE 2.23 Degradation of Native Proteins by Protease La 
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FIGURE 2.23 (continued) 
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The experiment was performed as already described, except that the reaction mixtures were 

analysed using either a 15% gel (C) or a 12.5% gel (0): 

C Lanes 1-4: E. coli RTEM B - lactamase. 

Lanes 5-8: soybean trypsin inhibitor. 

D Lanes 14: rabbit -glycerophosphate dehydrogenase. 

Lanes 5-8: yeast enolase. 
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FIGURE 2.23 (continued) 
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The experiment was performed as already described. except that the reaction mixtures were 

analysed using 125% gels: 

E Lanes 1-4: bovine erythrocyte carbonic anhydrase 

Lanes 5-8: hen egg albumin. 

F Lanes 1-4: bovine serum albumin. 

Lanes 5-8 yeast 3-phosphoglycerate phosphokinase. 



Proteins (about 5pg) were incubated at 37 °C for 19h either with (lanes 1, 3, 5, 7, 9, & 11), or without 
(lanes 2, 4, 6, 8, 10, & 12), protease La (enzyme subunit:protein molar ratio of 1:80) in buffer 
containing 25mM Tris/HCI pH 8.0, 12mM MgCl 2, and 3mM ATP, in a final volume of 20,jl. After 
incubation, the reaction mixtures were analysed by SOS-PAGE using a 12.5% gel, which was stained 
with Coomassie Blue. The proteins used were either in the native state (A), or denatured by boiling 
for 2min and chilling in dry ice (B). The protein substrates used were (for both A & B): 

Lanes 1 & 2: bovine a-lactalbumin. 

Lanes 3 & 4: soybean trypsin inhibitor. 

Lanes 5 & 6: bovine erythrocyte carbonic anhydrase. 

Lanes 7 & 8: rabbit glyceraldehyde-3-phosphate dehydrogenase. 

Lanes 9 & 10: hen egg albumin. 

Lanes 11 & 12: bovine serum albumin. 
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FIGURE 224 Effect of Heat Denaturation on the Degradation of Proteins by Protease 

La 
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results indicate that protease La is (highly) selective in degrading native proteins, and 

that denaturation by heat, reductive methylation or oxidation is not sufficient to 

convert a protein into a good substrate. Interestingly, single-stranded DNA inhibited 

degradation of the ct-lactalbumin, histone and oxidized -IactoglobuIin preparations by 

protease La, especially at high concentrations, but had no discernible effect on the 

digestion of cytochrome c or methyl - B- lactoglobulin preparations (Figures 2.23 and 

2.25). Since casein was totally digested in the presence and absence of DNA, the 

effect of DNA could not be determined (Figure 2.23). 

In contrast to the ct-lactalbumin preparation, the preparation of casein was 

heterogeneous (Figure 2.23) and so further studies on protease La were carried out 

using ci-lactalbumin. A molar ratio of protease La subunit to c&-lactalbumin of more 

than 1:80 was required for complete digestion of ct-lactalbumin in 15h (Figure 2.26.1). 

A degradation product (molecular weight about 10,000) was observed in all the 

reaction mixtures which contained protease La, whether or not ATP was present 

(Figure 2.26.1). Similarly, a degradation product was detected when [ 14C]-ct -

lactalbumin was incubated with protease La (Figure 2.11.2). Degradation of ci-

lactalbumin by protease La, in the absence of ATP, may have been caused by a 

protease in the ct-Iactalbumin preparation, but this seems unlikely because degradation 

products were not observed when ct-lactalbumin was incubated without protease La. 

However, it is possible that a factor present in the protease La preparation stimulates 

a protease present in the ct-Iactalbumin preparation. Alternatively the protease La 

preparation may have been contaminated by a protease but, as discussed earlier 

(Section 2.2.2), there are other possible explanations: 

The proteolytic activity of protease La is stimulated by and not dependent upon 

ATP. 

The ct-lactalbumin preparation contains a factor (possibly ATP) which supports 

limited degradation by protease La. 

Evidence to support explanation 1 is given by the finding that ATP prevents heat 

inactivation of protease La (Larimore et al., 1982) together with the observation that 

the band on the polyacrylamide gel corresponding to protease La was more intense in 

reaction mixtures which contained ATP, than in those without ATP (Figure 2.26.1). 

These results suggest that ATP prevents protease La from undergoing ATP-

independent auto-digestion. Further evidence was provided when ci-lactalbumin was 

incubated with individual, active fractions from the final step in the purification of 

protease La (gel filtration using Sephacryl S-300): all the fractions degraded 
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FIGURE 2.25 Effect of Denaturation on the Degradation of B-Lactoglobuliri By 

Protease La 
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For both native and denatured bovine 8-lactoglobulin, four reaction mixtures were prepared 

containing 50mM Tris/HCI pH 80. 25mM MgCl 2. 3mM ATP, and about 5ug protein. in a final volume 

of 300. In addition, the four reaction mixtures contained: 

Reaction 1: no additions (lanes 1. 5. & 91. 

Reaction 2: + protease La (enzyme subunit:protein molar ratio 1:40) (lanes 2. 6. & 10). 

Reaction 3 	protease La & ssDNA (0 lug ml) (lanes 3. 7. & 11) 

Reaction 4: • protease La & ssDNA (lOug ml') (lanes 4. 8. & 12) 

After incubation at 37°C for 15h. the reaction mixtures were analysed by SOS-PAGE using a 15% 

gel: 

Lanes 1-4: native 8-lactoglobulin. 

Lanes 5 -8 methyl- B -lactoglobulin 

Lanes 9-12 -  oxidized 	-lactogIobu(in 



1 Reaction mixtures with, and without, ATP (final concentration 3mM) contained: 30mM Tris/HCI pH 
8.0, 15mM MgCl 2, about 5pg -lactalbumin, and varying amounts of protease La, in a final volume of 
30pl. After incubation at 37 °C for 15h, the mixtures were analysed by SOS-PAGE using a 17.5% gel, 
which was stained with Coomassie Blue: 

Lanes 1 & 16: BSA, 67,000; B- lactamase, 28,000; -lactoglobulin, 18,000; cytochrome c, 12,000. 

Lane 2: + ATP only. 

Lane 3: + protease La (enzyme subunit:-lactalbumin molar ratio of 1:40) & ATP. 

Lane 4: + protease La (molar ratio as in 3) only. 

Lanes 5, 7, 9, 11, & 13: + protease La (molar ratios of 1:20, 1:40, 1:80, 1:160, & 1:320, respectively) & 
ATP. 

Lanes 6, 8, 10, 12, & 14: + protease La (molar ratios as above), - ATP. 

Lane 15: - ATP. 

2 Reaction mixtures with, and without, ATP (final concentration 3mM) contained: 50mM Tris/HCI, pH 
8.0, 25mM MgCl 2, about 5j.ig -lactalbumin, and appropriate amounts of the fractions from the 
Sephacryl-S300 column containing protease La, in a final volume of 30,ul. After incubation at 37 °C 
for 14h, the mixtures were analysed by SOS-PAGE using a 15% gel, which was stained with 
Coomassie Blue: 

Lane 1: BSA, 67.000; B - lactamase, 28,000; 8-lactoglobulin, 18,000; cytochrome c, 12.000. 

Lane 2: + ATP.  

Lanes 3, 5, 7, 9, 11. & 13: + fractions 14, 15, 16, 17, 18, & 19, respectively, + ATP. 

Lanes 4, 6, 8, 10. 12. & 14: + fractions 14, 15, 16, 17, 18. & 19, respectively, - ATP. 

Lane 15: - ATP. 
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FIGURE 2.26 Degradation of c&-Lactalbumin By Protease La 
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-lactalbumin in the absence of ATP and, once again, a greater amount of protease La 

was detected in reaction mixtures that contained ATP, than in those without ATP 

(Figure 226.2). However, two points must be borne in mind: first, intracellular 

proteases are large proteins (Goldberg et al., 1982) which may have co-purified with 

protease La through ion-exchange chromatography and gel filtration and second, 

protease La incubated in the absence of ATP may become a substrate of a 

contaminating protease. Surprisingly, when a different preparation of ct-lactalbumin 

was incubated with protease La (no ATP), no degradation product was detected even 

though one had been observed with the original preparation under these conditions 

(Figure 2.27). Possibly, some preparations of cz-lactalbumin contain a factor (perhaps 

ATP) which supports limited digestion by protease La in the absence of exogenous 

ATP; or alternatively, perhaps some preparations are more susceptible to degradation 

by either a contaminating protease or the putative ATP-independent proteolytic activity 

of protease La. Another explanation could be that some preparations of ct-lactalbumin 

contain a protease which is stimulated by a factor in the protease La preparation. 

Degradation of c&-lactalbumin by protease La in the presence of ATP increased 

with length of incubation up to 8h, when digestion was complete (Figure 2.28.1). After 

brief incubation of -lactalbumin and protease La in the absence of ATP, neither 

degradation of ct-lactalbumin nor loss of protease La was detected, whereas after 

prolonged incubation digestion was detected (a faint band corresponding to a 

degradation product was observed) and so was loss of protease La (Figure 2.28.1). A 

high concentration of ATP (K m  27pM; Waxman and Goldberg, 1982) was required for 

digestion of a-lactalbumin by protease La; negligible degradation had occurred after 

incubation for 6h with 0.1mM ATP (Figure 2.28.2). A possible explanation for this 

finding is that the ATP was contaminated by ADP, AMP and phosphate which inhibit 

protease La (Larimore et al., 1982). Omission of Mg 2+  ions greatly decreased 

degradation of -lactalbumin by protease La and, as before, addition of single-

stranded DNA inhibited digestion of -lactalbumin by protease La (Figure 2.28.2). 
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FIGURE 2.27 Degradation of Different Preparations of ci-Lactalbumin By Prote sse  

1 	2 	3 	4 	5 	6 	7 	8 	9 10 	11 	12 13 14 

ftm OM 4M am - 

For each preparation of ci-lactalbumin. six reaction mixtures were prepared containing 30mM 

Tris/HCI pH 8.0. 15mM M90 2, and about 5ug ci-lactalbumin, in a final volume of 30u1. In addition, 

the six reaction mixtures contained: 

Reaction 1: + protease La (enzyme subunit: ci-lactalbumin molar ratio of 1:80) & ATP (final 

concentration 3mM) (lanes 2 & 8). 

Reaction 2: 	protease La (molar ratio of 1:80). - ATP (lanes 3 & 9). 

Reaction 3: + protease La (molar ratio of 1:160) & ATP (lanes 4 & 11). 

Reaction 4: + protease La (molar ratio of 1:160). - ATP (lanes 5 & 12). 

Reactions 5 & 6: + ATP, - protease La (lanes 6. 7. 10. & 13). 

After incubation at 37°C for 15h, the mixtures were analysed by SOS-PAGE using a 20% gel, which 

was stained with Coomassie Blue: 

Lanes 1 & 14: BSA, 67.000: B-lactamase. 28.000; -lactøglobulin, 18.000; cytochrome c, 12,000. 

Lanes 2-7: new ci-lactalbumin preparation. 

Lanes 813: original ci-lectalbumin preparation. 



1 Reaction mixtures with and without ATP (final concentration 3mM) were incubated at 37 °C and 
contained: 40mM Tris/HCI pH 8.0, 20mM MgCl 2, about 35pg -lactalbumin, and protease La (enzyme 
subunit:-lactalbumin molar ratio of 1:40), in a final volume of 200pl. At varying times during the 
incubation, 30pl aliquots were removed from the mixture, SOS added (final concentration 2%), and 
boiled for 2mm. The aliquots were then analysed by SDS-PAGE using a 17.5% gel, which was 
stained with Coomassie Blue: 

Lanes 1 & 16: BSA. 67,000; B - lactamase, 28,000; B-lactoglobulmn, 18,000; cytochrome c, 12,000. 

Lanes 2, 4, 6, 8, 10 & 12: incubated for 0.5h, lh, 2h, 3h. 4h, & 8h. respectively, + ATP. 

Lanes 3, 5, 7, 9, 11 & 13: incubated as above, - ATP. 

Lanes 14 & 15: 5pg a-lactalbumin incubated for 8h (+ATP & -ATP, respectively), - protease La. 

2 Reaction mixtures contained: 30mM Tris/HCI p11 8.0, and about 5ig -lactalbumin, in a final volume 
of 30ul. After incubation at 37 °C for 6h, the mixtures were analysed by SDS-PAGE using a 15% gel, 
which was stained with Coomassie Blue: 

Lanes 1 & 14: BSA, 67,000; B-lactamase, 28,000; -lactoglobulin, 18,000; cytochrome c, 12,000. 

Lane 2: no additions. 

Lane 3: + 25mM MgCl 2 . 

Lane 4: + 3mM ATP. 

Lane 5: + 25mM MgCl 2  & 3mM ATP. 

Lane 6: + protease La (enzyme subunit:-lactalbumin molar ratio of 1:40). 

Lane 7: + protease La & 3mM ATP. 

Lanes 8, 9, 10, 11, & 12: + protease La, 25mM M9Cl 2, & 3mM, 1mM, 0.3mM, 0.1mM, or 0.03mM ATP, 
respectively. 

Lane 13: + protease La, 25mM MgCl 2, 3mM ATP, & 5jg ml' ssDNA. 
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FIGURE 2.28 Studies on the Degradation of -LactaIbumin By Protease La 
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2.3 EFFECT OF DNA ON THE ATP-DEPENDENT PROTEOLYTIC AND ATPase ACTIVITIES 
OF E. coil PROTEASE LA 

Protease La possesses multiple activities: it is an ATP-dependent protease 

(Charette et 8/., 1981; Chung and Goldberg, 1981), a protein-stimulated ATPase 

(Charette et a/., 1981; Waxman and Goldberg, 1982) and it has a non-specific nucleic 

acid binding activity (Zehnbauer et al., 1981). The proteolytic and ATPase activities of 

the protease La preparation were measured in the presence and absence of DNA. 

The effect of DNA on the proteolytic activity of protease La was found to be 

dependent upon the protein substrate (Table 2.11): 

Single-stranded DNA inhibited the degradation of [ 14C]-- lactogIobulin and [ 14C]-

-lactalbumin. 

Single- and double-stranded DNA stimulated the digestion of [ 14C]--lactamase. 

Single- and double-stranded DNA had no effect on the degradation of 
[14C]_ 

casein. 

In a similar experiment, single-stranded DNA was found not to affect the activity of 

chymotrypsin and trypsin, indicating that the effect of DNA was specific to protease La 

(Table 2.12). Stimulation of proteolytic activity by single-stranded DNA was detected 

over a range of [ 3H]--Iactamase concentrations: conversely, in assays containing 

[ 14C]-c&-Iactalbumin, inhibition was detected over a range of substrate concentrations 

(Figure 2.29). Increasing the concentration of either single- or double-stranded DNA 

led to a greater effect on the proteolytic activity of protease La, whether stimulation 

(with [3 H]-  and [14C]- 8- lactamase) or inhibition (with [ 14C]-a-Iactalbumin) was 

examined (Figure 2.29). When [ 14C]-proteins were digested by protease La in the 

presence or absence of DNA, large degradation products were not detected by SOS-

PAGE (Figure 2.30). 

Protease La has an ATPase activity which is stimulated by a protein substrate 

(Table 2.13). DNA had been found to stimulate and to inhibit the proteolytic activity of 

protease La, depending upon the protein substrate (Table 2.11). Interestingly, the 

effect of DNA on ATPase activity, in the presence of protein substrates, was also found 

to depend upon the protein substrate (Table 2.14). When [ 14C]-ct-lactalbumin was 

used as a substrate, single-stranded DNA inhibited the protein-stimulated ATPase 

activity (DNA inhibited the degradation of [ 14C]-ct-lactalbumin by protease La; Table 

2.11). In contrast, when [ 14C]-oxidized8iactOglObUlifl and [14C]-B-lactamase were 

used as substrates, inhibition by single-stranded DNA of the protein-stimulated 

ATPase activity was not detected; but there was a suggestion of further stimulation by 
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single-stranded DNA with [14C]-8-lactamase  (DNA stimulated the digestion of [ 14C]- -

lactamase by protease La, but had no effect on the degradation of [ 14C]-oxidized-

-tactoglobulin; Table 2.11) 

TABLE 2.11 Effect of DNA on the Proteolytic Activity of Protease La 

( 14C1-PROTEIN 
AMOUNT 

ADDED 
(pg m1 1 ) 

OF DNA  
PERCENTAGE RADIOLABEL ACID-SOLUBLE a 

+ ssDNA 	 + dsDNA 

-lactoglobulin - 16.0, 14.8 16.0, 14.8 

20 14.3, 10.7 13.9, 16.8 

5 9.8, 12.8 16.7, 17.3 

1 14.2, 13.1 15.3, 16.8 

B-lactamase - 17.2, 17.4 17.2, 17.4 

20 21.9, 20.3 20.8, 18.3 

5 21.5, 20.1 22.8, 24.9 

1 20.1, 	17.1 23.8, 29.2 

casein - 24.2, 23.8 24.2, 23.8 

20 23.5, 26.9 25.8, 23.9 

5 23.7, 33.5 23.8, 25.6 

1 25.3, 26.4 27.8, 25.6 

a-lactalbumin - 23.1, 20.1 23.1, 20.1 

20 17.4, 18.4 21.1, 21.7 

5 19.8, 20.5 23.6, 24.2 

1 20.4, 23.5 22.3, 23.9 

PERCENTAGE RADIOLABEL 
[ 14C]-PROTEIN ACID-SOLUBLE a 

(- PROTEASE La) 

-lactoglobulin 	 8.59, 9.11 

B-lactamase 	 14.1, 12.9 

casein 	 14.1, 16.6 

a-lactalbumin 	 11.9, 12.1 

a. Assays contained 25mM Tris/HCI pH 8.0, 25mM MgCl 2. 3mM ATP, about 2pg I 14C1-protein (1 -2 x 
107cpm mg-1 ), and protease La (enzyme subunit:protein molar ratio of 1:40) in a final volume of 
30pl. Double-stranded DNA was pGC1; single-stranded DNA was sonicated calf thymus DNA boiled 
for 10mm, then placed on ice. After incubation at 37 °C for 3h, acid-soluble radioactivity was 

determined. 



9.4, 15.4, 16.1 
14.8, 15.3, 14.9 
16.4, 17.2, 16.5 

49.1, 52.6, 46.4 
56.7, 54.5, 57.8 
54.0, 52.2, 52.8 

31.7, 35.6, 35.4 
30.5, 28.9, 31.3 
32.7, 29.9, 31.0 

12.8, 12.3, 11.6 
11.9, 12.6, 13.3 

12.3, 12.5, 11.7 

34.3, 34.6, 34.2 
37.4, 36.7, 35.7 
31.3, 34.5, 36.2 

19.0, 19.2, 19.3 
19.7, 20.2, 22.0 
19.2, 18.6, 19.8 
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TABLE 2.12 Effect of DNA on the Activity of Protease La Compared With Two Other 

Proteases 

PERCENTAGE RADIOLABEL ACID-SOLUBLE a 

(' 4C]-PROTEIN 	ssDNA ______________________________________________________ 
(pg m1') 

PROTEASE La 	CHVMOTRVPSIN 	 TRYPSIN 

- 42.8, 47.5, 47.8 

10 25.0, 24.5, 24.1 

2 37.6, 39.8, 36.7 

- 28.7, 29.0, 28.6 

10 26.6, 26.3, 26.6 

2 28.4, 28.7, 25.8 

- 11.4, 11.2, 10.3 

10 13.6, 14.9, 16.2 

2 15.6, 15.5, 17.1 

ct-Iactalbumin 

oxidized- B- 
I a ctog I obu Ii n 

B-Iactamase 

PERCENTAGE RADIOLABEL 
[

14C]-PROTEIN 	 ACID-SOLUBLE a 
(- PROTEASE La) 

c*-Iactalbumin 
	

11.7, 12.5, 12.7 

oxidized- B- 
	 13.2, 14.3, 15.5 

lactoglobulin 

8-lactamase 
	

10.8, 10.3, 11.1 

a. Assays contained 25mM Tris/Hcl pH 8.0. 25mM MgCl 2 , 3mM ATP, and about 2pg [
14C]-protein (1 -2 x 

107cpm Mg-1)  in a final volume of 30pl. Protease La, chymotrypsin, and trypsin were added at a 
protease subunit:protein molar ratio of 1:40. Single-stranded DNA was sonicated calf thymus DNA, 
boiled for 10mm, then placed on ice. After incubation at 37 0c for 3h, acid-soluble radioactivity was 
determined. 
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FIGURE 2.29 Effect of DNA on the Proteolytic Activity of Protease La 
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FIGURE 2.29 (continued) 

( 14C1-a- lactalbumin 
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Each assay contained 25mM Tris/HCI pH 8.0. 25mM M9Cl 2, 3mM ATP, and protease La (enzyme 

subunit:protein molar ratio of 1:40, except in the case of A & B), in a final volume of 30jil. The 

different reactions were as follows: 

Reactions A & B: varying concentrations of 1 14C1-ct-Iactalbumin (1.5 x 10 1cpm mg') and 1 3 H1- B -
lactamase (2.4 x lO7cpm mg) were incubated with 0.7pg protease La, in the presence or 

absence of ssDNA (final concentration 5jig m1 1 ). 

Reactions C & 0: varying concentrations of ssDNA were incubated with about 2pg of either (' 4C1-ct-

lactalbumin (1.5 x 10 cpm mg') or 13 H1- 8-lactamase (2.4 x 107cpm Mg-1). 

Reactions E & F: varyin concentrations of dsDNA were incubated with about 2pg of either E' 4C1-ct-
lactalbumin (1.0 x 10 cpm mg) or ( 14C1- B-lactamase (0.8 x 106cpm mg). 

After incubation at 37°C for 3-4h, acid-soluble radioactivity was measured. Values shown are the 
mean of triplicate assays, corrected for acid-soluble radioactivity in the control (no enzyme). ssDNA 
was sonicated calf thymus DNA, boiled for 10mm, then placed on ice; dsDNA was pGC1. 

Ki 



Reaction mixtures contained: 25mM Tris/HCI pH 8.0, 25mM MgCl 2, 3mM ATP, about 5pq of either 
[ 14C]--lactalbumin 0.5 x 10 7cpm mg - ') (A), or [ 14 C]- 8 - lactamase (1.0 x 10 7cpm mg ) (B), and 
protease La (enzyme subunit:protein molar ratios of either 1:40 (A), or 1:13 (B)), in a final volume of 
30pl. In addition, some reaction mixtures contained varying amounts of either ssDNA (sonicated calf 

thymus DNA, boiled for 10mm, then placed on ice), or dsDNA (pGC1 DNA). After incubation at 37 °C 
for 3h, the mixtures were analysed by SDS-PAGE using either 15% (A), or 12.5% (B) gels, which 
were stained with Coomassie Blue. For both A and B, the gels contained: 

Lanes 1 & 14: BSA, 67,000; B - lactamase, 28,000; -lactoglobulin, 18,000; cytochrome C, 12,000. 
Lane 2: + 10,ug m1 1  ssDNA, - protease La. 

Lanes 3 & 12: - ATP. 

Lanes 4 & 11: no additions. 

Lanes 5-7: + ssDNA (0.1, 1.0, & lOpg ml 1 , respectively). 

Lanes 8-10: + dsDNA (0.1, 1.0, & 10ig ml', respectively). 

Lane 13: + 10jjg ml' dsDNA, - protease La. 
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FIGURE 2.30 Effect of DNA on the Degradation of (14C ]- ProteinsBy Protease La 
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TABLE 2.13 Effect of DNA on the ATPase Activity of Protease La 

[y-P] ATP H 'DROLYSED (nmol) a 

ssDNA 	ct-LACTALBUMIN 

+ PROTEASE La 	- PROTEASE La 

- 	 - 	 2.93, 2.90 
	

0.794, 0.731 

+ 	 - 	 2.30, 2.52 
	

0.747, 0.720 
- 	 + 	 5.43, 5.37 

	
0.794, 0.750 

+ 	 + 	 5.25, 5.15 
	

0.799, 0.812 

a. Reaction mixtures contained 50mM Tris/HCI pH 8.0. 25mM M9Cl 2, 0.1mM [Y - 32P]ATP (about 28cpm 

pmoi'), and 2.5pg protease La in a final volume of 50pl. Single-stranded DNA (sonicated calf 
thymus DNA, boiled for 10mm, then placed on ice) at a final concentration of lOpg ml', and l6pg 

-lactalbumin were added, as indicated. After incubation at 37 °C for lh, ATP hydrolysis was 

measured (Goldmark & Linn, 1972). 
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TABLE 2.14 Effect of DNA on the ATPase Activity of Protease La in the Presence of 

Protein Substrates 

[ 14C]-PROTEIN ssDNA  

[y_flp] ATP HYDROLYSED (nmol) a 

+ PROTEASE La 	- PROTEASE La 

EXPERIMENT 1 a 

- - 9.20, 9.28, 8.34 1.89, 1.85, 1.84 

+ 8.53, 8.50, 8.26 1.91, 	1.98, 	1.83 

ct-Iactalbumin - 10.7, 	11.6, 	11.4 - 

+ 10.1, 10.2, 10.2 - 

8-lactamase - 11.6, 10.7, 10.4 - 

+ 11.1, 	12.2, 	11.4 - 

oxidized-B- - 12.0, 12.0, 12.3 - 

lactoglobulin + 11.3, 	11.7, 	12.4 - 

EXPERIMENT 2 b 

- - 7.46, 7.81, 7.16 3.33, 3.07 

+ 7.46, 7.10, 6.28 2.79, 2.99 

ct-Iactalbumin - 14.9, 13.5, 15.2 3.69, 3.55 

+ 10.4, 	11.2, 	11.2 3.74, 3.78 

B-Iactamase - 9.57, 8.37, 7.77 3.22, 2.91 

+ 8.56, 8.40, 8.99 3.15, 3.02 

Reaction mixtures contained 25mM Tris/HCI pH 8.0. 25mM M9Cl 2 , 0.5mM [y- 32P1 ATP (about 25cpm 

pmoi 1 ), and 0.35pg protease La in a final volume of 30pl.  Single-stranded DNA (sonicated calf 
thymus DNA. boiled for 10min then placed on ice) was added to a final concentration of 2pg m1 1 . 

Protein substrates (1 -2 x i07  cpm mg') were added at a 40-fold molar excess relative to the 
amount of protease La subunit. After incubation at 37 °C for 3h, ATP hydrolysis was measured 

(Goldmark & Linn, 1972). 

Reaction mixtures were as above, except that 0.5mM Iy-32 P1 ATP (about 15cpm pmor 1 ) and a final 
concentration of 5?g ml ssDNA were used, and the assays incubated for 2h. 
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3.1 THE SPECIFICITY OF THE E. coil ATP-DEPENDENT PROTEASE La 

Protease La was purified from an over-expressing strain of E. coil using 

published procedures (Figures 2.5, 2.6, 2.7). A band of molecular weight 90,000, 

corresponding in size to one subunit of protease La (87,000; Chin et al., 1988), was the 

major species detected by SOS-PAGE (Figure 2.9). The estimated molecular weight 

and the ATP-dependent proteolytic activity demonstrated by this preparation (Table 

2.3) suggest that it is indeed protease La. Strong evidence in support of this came 

from N-terminal sequencing, which confirmed that the first ten residues of the 

preparation were identical to the predicted amino acid sequence of the Ion gene 

product (Chin et al., 1988). The preparation was assessed to be free from 

contamination by non-ATP-dependent proteases since in many assays proteolytic 

activity in the absence of ATP was not detected (Table 2.3). The very low level of 

activity observed in the absence of ATP in a few assays was thought to be 

insignificant because in subsequent assays containing much greater amounts of the 

preparation, this activity was not detected (Table 2.3). However, contamination by 

ATP-dependent proteases cannot be discounted. The specific activity of protease La 

was 1.3mg casein hydrolysed h 1  mg -1  enzyme (Table 2.3). This value compares 

favourably with the specific activity (0.7mg casein hydrolysed h 1  mg -1  enzyme) of the 

preparation of Chung and Goldberg (1981), but is less than that of other preparations 

(specific activities ranging from 2.0-2.6: Waxman and Goldberg, 1982; Chung and 

Goldberg, 1982; Charette et al., 1984). The turnover number for [ 14C]-casein could not 

be determined because the number of peptide bonds cleaved by protease La was not 

known. However, other assays have been used to calculate turnover numbers for 

several substrates (Maurizi, 1987; Menon et al., 1987). It will be interesting to compare 

turnover numbers of protease La with those of other intracellular proteases. 

Optimum conditions for protease La were determined by measuring the 

amount of [ 14C]--lactoglobulin rendered acid-soluble under varying conditions and 

were found to be (Figure 2.10): 

pH 9.0-9.5. 

Low ionic strength. 

Substrate concentration greater than 4pM (twice apparent K m ). 

1-3mM ATP. 

5-25mM Mg 2+  ion. 

In the absence of DNA. 
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These conditions for maximal activity are in good agreement with those determined in 

assays using [ 3H]-casein (Larimore et al., 1982; Waxman and Goldberg, 1985). 

Interestingly, at a high concentration of ATP (9mM) the activity of protease La was 

lower than at the optimum concentration. The reason for this effect is not 

understood, but it may have been caused by depletion of the Mg 
2+  ion pool by ATP. 

Similarly, at a high concentration of Mg 2+  ion (50mM) activity was lower than at the 

optimum concentration. The reason for this is not understood either, but it may have 

been a reflection of the low ionic strength requirement of protease La. The effect of 

DNA will be discussed later. 

During an investigation into the degree of specificity shown by protease La, 

proteins were incubated with the protease using the optimum conditions described 

above, except a pH (7.7 at 37 °C) closer to physiological pH was used to ensure that 

substrates retained a normal conformation. Initially degradation of radiolabelled 

proteins was monitored but this work was extended to include native proteins. 

Studies of intracellular proteolysis in E. coil suggest that protease La is highly 

specific. Since highly specific endopeptidases isolated from E. coil (RecA protein and 

signal peptidases I and II) hydrolyse only a single peptide bond of their substrates 

(Pabo et al., 1979; Horri et al., 1981; Zwizinski and Wickner, 1980; Tokunago et al., 

1982) it seemed likely that protease La would cleave only one, or a limited number of 

peptide bonds of radiolabelled proteins. The products of radiolabelled proteins 

digested by protease La were examined by SDS-PAGE and HyPE. Surprisingly, large 

degradation products were not detected by SOS-PAGE, despite using a staining 

procedure designed to prevent "washout", but many radiolabelled peptides were 

detected by HVPE (Figure 2.11). This finding indicates that several peptide bonds of 

each substrate had been hydrolysed by protease La and is in agreement with the 

results of Menon et at (1987) and Maurizi (1987). 

The digestion of ( 14C]-ct-lactalbumin in the absence of ATP (Figures 2.11, 2.12) 

was unexpected because protease La has been reported to be dependent upon ATP 

(Chung and Goldberg, 1981; Charette et al., 1981). The results of many assays of 

protease La reported in this thesis are in accord with this finding (Table 2.3). However, 

protease La has also been reported to possess an ATP-independent proteolytic activity 

(Waxman and Goldberg, 1985; 1986; Goldberg and Waxman, 1985). This activity may 

be an artefact induced by purification or storage at -70 °C (Waxman and Goldberg, 

1985). Protease La purified in the present investigation may also have lost its 

dependence upon ATP (to become an ATP-stimulated protease) on storage at 
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-70°C. This seems the most likely explanation for the degradation of 

[ 14C]-ct-lactalbumin by protease La in the absence of ATP, and other possible 

explanations given before are probably incorrect (Section 2.2.2). 

An intermediate in the degradative pathway of [ 14C]-ct-lactalbumin by protease 

La may have been identified. A polypeptide of molecular weight about 11,000 was 

detected in a reaction mixture containing [ 14C]-ct-lactalbumin, protease La and ATP, 

and in a similar mixture which lacked ATP (Figures 2.11, 2.12). A greater amount of the 

polypeptide and of [ 14C]-ct-lactalbumin were detected in the mixture lacking ATP than 

in the mixture containing ATP. Assuming that the preparation of protease La was not 

contaminated by proteases (discussed above), and that the preparation of 

[ 14C]-ct-lactalbumin was homogeneous, this finding indicates that the polypeptide was 

not an end-product of the degradative pathway. More work is needed to characterize 

this polypeptide and other products to allow elucidation of the degradative pathway of 

[ 14C]-ct-lactalbumin by protease La. 

Although non-hydrolysable analogues of ATP were found to be unable to 

support digestion of radiolabelled proteins by protease La (Charette et al., 1981; Chung 

and Goldberg, 1981), they can support peptide bond cleavage (Goldberg and Waxman, 

1985). To explain this paradox, Goldberg and Waxman (1985) proposed a cyclical 

mechanism for the degradation of a protein by protease La: binding of ATP 

allosterically activates the enzyme to a form capable of hydrolysing peptide bonds; 

peptide bond cleavage occurs generating large products; ATP is hydrolysed, which 

allows the release of products, returning the protease to the inactive form. To digest 

a protein to acid-soluble fragments many rounds of the cycle are required, although in 

a single round one peptide bond can be cleaved without ATP hydrolysis. Degradation 

of a protein by protease La in the presence of a non-hydrolysable analogue of ATP is 

blocked at the last step of the cycle, preventing the release of products. In support of 

this model, Goldberg (pers. comm.) reported that incubation of [ 3H]-casein, protease La 

and non-hydrolysable analogues of ATP led to the generation of high molecular weight 

degradation products, presumably the result of cleavage of a single peptide bond. 

However, in opposition to the model, Maurizi (1987) reported that in addition to ATP, 

non-hydrolysable analogues could support digestion of AN product by protease La 

giving identical products to those obtained with ATP. 

In view of the controversy, the degradation of radiolabelled proteins by 

protease La in the presence of non-hydrolysable analogues of ATP (AMP-PCP and 

AMP-PNP) was investigated during this project. Compared to the digestion of three 
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radiolabelled protein preparations in the presence of ATP, the degradation detected 

with AMP-PCP was insignificant, and only a very small amount of one of the 

preparations was digested with AMP-PNP (Table 2.6). In this experiment a molar ratio 

of enzyme subunit to substrate of 1:40 was used. Consequently, if the cyclical 

mechanism proposed by Goldberg and Waxman (1985) is correct, then only 1/40th of 

radiolabel could possibly have been rendered acid-soluble (assuming that a single 

peptide bond is cleaved per subunit of protease La, and that degradation products are 

acid-soluble). Such a low level of radiolabel could not be reliably detected over 

background levels so a much greater molar ratio of 1:1 was used in a subsequent 

experiment. Despite this, the digestion of [ 14C]-ct--lactalbumin detected in the 

presence of AMP-PCP was insignificant, and only minimal degradation with AMP-PNP 

was observed, compared to the level with ATP (Table 2.7). Because of the strong 

possibility that digestion of proteins by protease La in the presence of non-

hydrolysable analogues of ATP would generate acid-insoluble fragments, degradation 

was also monitored by SDS-PAGE. Digestion of [ 14C]-ct--lactalbumin was detected 

only in the presence of ATP and not with AMP-PCP and AMP-PNP no matter whether a 

molar ratio of 1:40 or 1:1 was used (Figure 2.13). Thus under these experimental 

conditions non-hydrolysable analogues did not support digestion of radiolabelled 

proteins by protease La, although ATP did. Clearly, more work needs to be carried out 

to determine why the peptide bonds of AN product and small peptides, but not those 

of radiolabelled proteins, are cleaved by protease La in the presence of non-

hydrolysable analogues of ATP (Maurizi, 1987; Goldberg and Waxman, 1985; Chung and 

Goldberg, 1981; Charette et al., 1981; this thesis). However, if it does become 

accepted that non-hydrolysable analogues of ATP can support protein degradation by 

protease La, then the cyclical mechanism proposed by Goldberg and Waxman (1985), 

and extended by Menon and Goldberg (1987b), will have to be amended. 

Protease La may possess a highly selective proteolytic activity in vivo 

(Section 1.6). When nineteen native protein preparations were incubated with protease 

La in vitro, only two (bovine -lactalbumin and casein) were completely digested and 

two others (chick erythrocyte histone and horse heart cytochrome c) were partially 

degraded (Figures 2.19, 2.23, 2.24, 2.25). Therefore, protease La has a highly selective 

proteolytic activity in vitro. This finding is in agreement with the results of Maurizi 

(1987). Large degradation products were not detected suggesting that several peptide 

bonds were hydrolysed in each substrate. This discovery is in accordance with the 

results obtained when the degradation of radiolabelled proteins was investigated and 

with published results (Menon et al., 1987; Maurizi, 1987). Interestingly, single-

stranded DNA inhibited the digestion of the preparations of a-lactalbumin and histone 
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(Figure 2.23). The effect of DNA will be discussed later 

Conditions for the degradation of the preparation of ct-lactalbumin by protease 

La were investigated: 

The preparation was cleaved by catalytic amounts of protease La (Figure 2.26.1). 

Digestion of the preparation increased with length of incubation (Figure 2.28.1). 

Digestion of a-lactalbumin by protease La in the absence of ATP was observed (Figure 

2.26). As discussed earlier, the most likely explanation for this finding is that the 

proteolytic activity of protease La purified during this project was stimulated by and 

not dependent upon ATP, and that this behaviour was only manifest after storage at 

-70°C for several weeks. A degradation product of molecular weight about 10,000 was 

detected in one preparation of ct-lactalbumin (Figure 2.26) but not in another (Figure 

2.27). The reason for this discrepancy is not understood. A greater amount of the 

polypeptide was detected when cz-lactalbumin was incubated with protease La in the 

absence of ATP than in its presence (Figures 2.26, 2.27). Since a precursor/product 

relationship does not hold for this polypeptide it is probably an intermediate in the 

degradative pathway of some preparations of a-lactalbumin by protease La. A similar 

product was observed when [ 14C]-ct-lactalbumin was digested by protease La, 

suggesting that native and [ 14C]-ct-lactalbumin share a common degradative pathway. 

A preliminary investigation into the features of proteins that confer sensitivity 

to protease La revealed that heat denaturation of five protein preparations was 

insufficient to convert them into substrates although more drastic denaturation of a 

-lactoglobulin preparation did (Figures 2.24, 2.25). However, the extent of degradation 

of drastically denatured -lactoglobulin was much less than that of preparations of 

native a-lactalbumin and casein (Figures 2.23, 2.25). These results are in accord with 

the findings of Maurizi (1987). Waxman and Goldberg (1986) reported that for some 

proteins, but not others, extensive denaturation rendered them susceptible to digestion 

by protease La. Clearly, denaturation does not necessarily confer on a protein features 

that are recognized by the protease. Approaches which have been followed to 

elucidate the nature of these features are discussed below. 

The selectivity shown by protease La may arise from its ability to recognize 

specific structural features or sequences present on the surface of only a few proteins. 

For some proteins these features can be exposed by denaturation. Using a series of 

fluorogeflic peptides Waxman and Goldberg (1985) reported that protease La 

preferentially cleaves naphthylamide bonds of tetrapeptides in which the naphthyl 
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group is attached to the carboxyl group of phenylalanine. Fluorogenic peptides 

containing this bond were also substrates of chymotrypsin. However, substrates of 

chymotrypsin were not all hydrolysed by protease La indicating that protease La has a 

more restricted specificity than chymotrypsin. Further study revealed that protease La 

preferentially cleaves peptides which: 

Contain at least four peptide bonds. 

Are hydrophobic in character. 

Have a negatively charged blocking group at the amino terminus. 

This study suggests that substrates of protease La possess primary sequences that are 

recognized by the active site of the protease. In another study the peptide bond 

specificity of protease La was investigated using two polypeptides, glucagon and 

oxidized insulin B chain, and a physiological substrate, AN product (Maurizi, 1987). 

The peptide bonds hydrolysed in these substrates are shown in Figure 3.1. In the 

majority of the bonds cleaved the carboxyl-donating amino acid has an aliphatic side 

chain (usually Leu or Ala). However, at three sites of cleavage the carboxyl-donating 

amino acid has a non-aliphatic side chain (Ser or CVs). Many peptide bonds within 

these substrates that are not hydrolysed have carboxyl-donating amino acids with 

these side chains. Comparison of the primary sequence flanking the susceptible bonds 

reveals no obvious similarity which could explain the selectivity shown by protease La. 

Therefore, additional features of these substrates must play important roles in 

determining susceptibility to degradation by protease La. 

Structural features of proteins may be important in determining sensitivity to 

protease La. No work has been reported concerning this topic. An approach which 

could be followed is to determine which peptide bonds are hydrolysed in several 

proteins of known tertiary structure: comparison of the sites of cleavage may reveal a 

structural motif in common. At present this approach is limited by the number of 

suitable proteins: the tertiary structures of substrates of protease La (AN product, 

bovine a-lactalbumin) have not been elucidated, and proteins of known structure may 

not be substrates (such as haemoglobin or cytochromes). 

Approaches which have been used to determine the features of proteins 

recognized by protease La have assumed that specificity resides in the active 

(catalytic) site of the protease. However, studies with model fluorogenic peptides 

suggest that substrates bind to protease La at two sites (regulatory and catalytic; 

Waxman and Goldberg, 1986). Currently it is uncertain whether the specificity shown 

by protease La resides in one, or other, or both of these sites. If proteolysis does 
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occur by a cyclical mechanism (Goldberg and Waxman, 1985; Menon and Goldberg, 

1987b) then the regulatory site must have a role in conferring specificity since 

substrates bind to this site leading to activation of the catalytic site. In addition, the 

finding that several peptide bonds of substrates are hydrolysed by protease La may be 

a reflection that specificity resides primarily in the regulatory site. Hence future work 

must embrace the possibility that both sites confer specificity to protease La. 

FIGURE 3.1 Peptide Bonds Cleaved by Protease La 

A Sites of Cleavage in Oxidized Insulin B Chain 
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Arrows indicate the bonds hydrolysed. Numbers above the arrows indicate the percentage of the 
original molecules digested at that bond. 

Taken from Maurizi (1987). 
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3.2 THE EFFECT OF DNA ON THE PROTEOLYTIC AND ATPase ACTIVITIES OF THE 
E coil ATP-DEPENDENT PROTEASE La 

Protease La possesses multiple activities in vitro: it is an ATP-dependent 

protease (Charette et al., 1981; Chung and Goldberg, 1981), a protein-stimulated 

ATPase (Charette et al., 1981; Waxman and Goldberg, 1982), and it has a non-specific 

nucleic acid binding activity (Zehnbauer et al., 1981). Three independent studies of 

protease La (Charette et al., 1984; Chung and Goldberg, 1982; this thesis) have 

reported the effect of DNA on these activities and conflicting results have been 

obtained. The areas of conflict and possible explanations are described below. 

A central feature of the results of Charette et at (1984) is their finding that 

DNA stimulates the ATPase activity of protease La in the absence of protein 

substrates. Based on this observation they proposed that protease La has two 

independent enzymic activities: a DNA-stimulated ATPase activity, and a proteolytic 

activity which is obligatorily coupled to a protein-stimulated ATPase. However, 

stimulation of ATPase activity by DNA was not reported by Chung and Goldberg (1982). 

They suggested that the preparation of protease La used by Charette et al. (1984) was 

contaminated by one of several DNA-associated ATPases found in E. coil. However, 

contamination by a DNA-associated ATPase does not explain the inhibition of the 

DNA-stimulated ATPase activity by CapR9 protein reported by Charette et at (1984). 

The Ion R9 allele in E. coil codes for an altered form of protease La, the CapR9 

protein, which has lost ATPase and proteolytic activities but retained non-specific 

nucleic acid binding activity (Charette et al., 1981; Zehnbauer et al., 1981). Mixing of 

mutant and wild-type proteins in vitro suggested that the CapR9 protein intercalates 

into the multimeric form of the wild-type protein and specifically inhibits ATPase and 

proteolytic activities in a pattern consistent with disruption of the multimer (Charette 

et al., 1982; Chung et al., 1983). Consequently, inhibition by CapR9 protein is strong 

evidence that protease La has a DNA-stimulated ATPase activity. 

The effect of DNA on the ATP-dependent proteotytic activity of protease La is 

also controversial. Charette et al. (1984) reported that at a low substrate 

concentration (O.lpM [ 3H]-casein) single- and double-stranded DNA inhibited 

proteolytic activity. However, the inhibition by DNA could be relieved by using a 

higher substrate concentration (2DM). This finding led them to suggest that there is 

competition between DNA and protein for binding to protease La giving support to 

their proposal that protease La has two independent enzymic activities 

(DNA-stimulated ATPase and an ATP hydrolysis-dependent proteolytic activity). In 

contrast to these results, Chung and Goldberg (1982) reported that single- and 
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double-stranded DNA stimulated proteolytic activity at substrate concentrations 

greater than 0.3jiM [ 3H]-casein. They also reported that single- and double-stranded 

DNA inhibited activity at low substrate concentrations (less than 0.34M). Depending 

upon the radiolabelled protein used in assays, single-stranded DNA is reported in this 

thesis to stimulate ([14C]-B-lactamase),  inhibit ([ 14C]-cz-lactalbumin and 

[ 14C]--lactoglobulin) or have no effect on ([14C]-casein)  the proteolytic activity of 

protease La (Table 2.11). Surprisingly, in the same experiment inhibition by double-

stranded DNA was not detected although it did stimulate proteolytic activity depending 

upon the substrate (Table 2.11). The reason for this finding is not understood. Further 

studies using [ 14C]-c*-lactalbumin revealed that single-stranded DNA inhibited 

proteolytic activity over a range of substrate concentrations (0.5-54M) with greatest 

inhibition occurring at 1-21.IM (Figure 2.29). Conversely, studies using 

[ 3H]--lactamase revealed that single-stranded DNA stimulated activity over a range 

of substrate concentrations (0.5-4pM) with the greatest stimulation occurring at 

1-2pM (Figure 2.29). It must be noted, however, that a DNA-induced modification of 

substrates, which alters their susceptibility to digestion by protease La, cannot be 

discounted by the results presented in this thesis (or by Chung and Goldberg, 1982). 

It is difficult to rationalize the conflicting reports concerning the effect of DNA 

on the proteolytic activity of protease La. Charette et al. (1984) suggested that the 

stimulation reported by Chung and Goldberg (1982) was in fact stabilization. However, 

stimulation by DNA is also reported in this thesis, despite adding protease La to 

assays last, so this explanation seems unlikely. A possible explanation for the failure 

of Charette et al. (1984) to detect stimulation by DNA follows from the results 

described in this thesis, which indicate that the effect of DNA depends upon the 

substrate used in assays. There is general agreement that DNA inhibits proteolytic 

activity at low substrate concentrations. Charette et al. (1984) suggested that 

inhibition by DNA at low substrate concentrations (O.lpM [ 3H]-casein) was caused by 

the competition between the substrates for binding to protease La. However, 

inhibition by DNA is also reported in this thesis at very much higher substrate 

concentrations (0.5-5i.tM [

14C]-cz-lactalbumin). Moreover, although increasing the 

concentration of single- and double-stranded DNA did lead to greater inhibition of the 

degradation of [ 14C]-cz-lactalbumin, it also led to greater stimulation of the digestion 

of [ 14C]-  and [ 3H]-B-lactamase by protease La (Figure 2.29). These results and another 

report of stimulation of activity by DNA (Chung and Goldberg, 1982) suggest that 

competition between substrates for binding to protease La is not the reason for 

inhibition by DNA. However, evidence to support this proposal is given by the finding 

that the rate of degradation of [

3H]-casein by protease La depends upon the 
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concentration of DNA in a complex fashion: from 0-2ig m1 1  proteolytic activity 

increased rapidly; from 40-200pg ml -1  activity remained constant; and from 40-200pg 

MI-1  activity decreased slowly to a level lower than without DNA (Chung and Goldberg, 

1982). The reason for this complex behaviour is not understood but the inhibition 

observed at high concentrations of DNA does suggest competition between DNA and 

[3H]-casein for binding to protease La. An alternative explanation for inhibition by DNA 

at low substrate concentrations was given by Chung and Goldberg (1982). They 

suggested that this effect was caused by a cooperative interaction between the 

subunits of protease La in the presence of DNA. This proposal explains their 

observation that DNA inhibits proteolytic activity at low substrate concentrations 

(<0.3jiM [3 H]-casein) but stimulates activity at higher substrate concentrations 

(>0.3pM). However, inhibition by DNA is not reported in this thesis in assays using 

[3H]- B- lactamase although stimulation was observed with this substrate (Figure 2.29). 

Possibly the substrate concentrations used (0.5-4i.IM) were too high to detect 

inhibition by DNA. The data of proteolytic activity at different concentrations of 

( 3H]-8-lactamase presented in this thesis does not allow conclusions concerning the 

nature of the dependency of proteolytic activity on substrate concentration in the 

presence of DNA to be reached. However, for [ 14C]-ct-lactalbumin the dependency of 

activity on substrate concentration is hyperbolic in the presence of DNA (Figure 2.29). 

Thus, the results reported in this thesis do not support the proposal that inhibition by 

DNA is caused by a cooperative interaction between the subunits of protease La in the 

presence of DNA. 

DNA is reported in this thesis to stimulate, inhibit or have no effect on the 

proteolytic activity of protease La measured at high substrate concentrations (Figure 

2.29, Table 2.11). A possible explanation for this finding is that binding of DNA alters 

the specificity of protease La. Evidence to support this proposal is lacking. When 

[ 14C]-ct--lactalbumin and 
[ 14C]- B- lactamase were incubated with protease La in the 

presence and absence of DNA, degradation products were not detected by SDS-PAGE 

(Figure 2.30). Similarly, when digestion of native proteins was monitored no products 

were observed (Figure 2.23). Unfortunately, Maurizi (1987) did not report the effect of 

DNA on the digestion of AN product by protease La. An alternative explanation for 

the effect of DNA reported in this thesis is that binding of DNA alters the rate of 

hydrolysis of the same peptide bonds within a substrate. Evidence to support this 

proposal is given by the finding that DNA stimulates the hydrolysis of a naphthylamide 

bond of a fluorogenic peptide (Waxman and Goldberg, 1985). However, there are no 

reports of DNA decreasing the rate of hydrolysis of a peptide (or naphthylamide) bond. 
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At present, it is not understood how DNA exerts its effect on protease La. In 

due course, characterization of the polypeptides generated when proteins are digested 

by protease La in the presence and absence of DNA will clarify the situation. To 

determine the physiological significance of protease La binding to DNA this problem 

must be solved. At present two roles can be envisaged. Firstly, protease La may 

possess two different highly specific proteolytic activities in vivo: one when bound to 

the chromosome, the other when free in the cytosol. Alternatively, the location of a 

substrate may determine its rate of degradation by protease La: some proteins may be 

rapidly digested only when they are bound to the chromosome, others may be rapidly 

degraded only when they are in the cytosol. 

There is conflict over the effect of DNA on the ATPase activity of protease La 

when this activity is measured in the presence of protein substrates. Chung and 

Goldberg (1982) reported that in the presence of E 31-11-casein (25iiM) ATPase activity 

was stimulated by DNA. Since DNA also stimulated the ATP-dependent degradation of 

this substrate they proposed that protease La has a single enzymic activity: a 

proteolytic activity, obligatorily coupled to a protein-stimulated ATPase, which is 

stimulated by DNA. Charette at at (1984) also reported that DNA stimulated the 

ATPase activity of protease La in the presence of [ 3H]-casein (0.2iiM). However, since 

DNA inhibited the ATP-dependent degradation of this substrate, this result is support 

for their proposal that protease La has two independent enzymic activities (a 

DNA-stimulated ATPase and a proteolytic activity obligatorily coupled to a protein-

stimulated ATPase) which function simultaneously. In contrast to this finding reported 

by Charette at at (1984), DNA is reported in this thesis to inhibit ATPase activity when 

the activity is measured in the presence of a substrate ([ 14C]-ct-lactalbumin, 5DM) 

whose ATP-dependent degradation by protease La was inhibited by DNA (Table 2.14). 

This result is in accordance with the failure to detect stimulation by DNA of ATRase 

activity (in the absence of a protein substrate), and it is consistent with the proposal 

of Chung and Goldberg (1982) that protease La has a single enzymic activity, although 

it now appears that DNA has a complex effect on this activity. Supporting evidence 

for this proposal is given by: 

The discovery that DNA had no effect on ATPase activity when this activity was 

measured in the presence of a substrate ([ 14C]-oxidized - $- lactoglobulin, 4 iiM) 

whose degradation by protease La was not affected by DNA (Table 2.14). 

The discovery that in two separate experiments ATPase activity was greater in 

the presence of DNA when this activity was measured in assays containing a 

substrate ([ 14C]- 8- lactamase, 21jM) whose digestion by protease La was 
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stimulated by DNA (Table 2.14). The stimulation of activity was small, and the 

statistical significance of it remains to be confirmed. 

It is difficult to explain why such conflicting results concerning the effect of 

DNA on the proteolytic and ATPase activities of protease La in vitro have been 

obtained. These results are summarized in Table 3.1. It is also difficult to explain why 

there are conflicting reports over another property of protease La: is binding of ATP 

sufficient to support proteolytic activity or is hydrolysis of ATP required? A possible 

explanation for the inconsistent behaviour of protease La in vitro is that its proteolytic 

activity is tightly regulated in vivo to prevent extensive degradation of cellular protein. 

Possibly, regulation is lost in vitro because the concentrations of effectors (protein, 

ATP, ADP and DNA) and experimental conditions are inappropriate, or a factor required 

for regulation but not activity of protease La is lacking, causing abnormal activities to 

be detected. At present, it is impossible to differentiate normal from abnormal 

activities. As more work is carried out (approaches using physiological substrates 

such as AN product seem very promising) the controversy over the activities of 

protease La in vitro may be solved. Until that time the physiological role of protease 

La cannot be ascertained. 

3.3 CONCLUSION 

During the course of this project protease La has been found in vitro to: 

Cleave radiolabelled proteins at several sites in an ATP hydrolysis-dependent 

reaction. 

Digest native proteins. 

Show a high degree of specificity of degradation. 

These findings, which have also been reported by others (Menon et al., 1987; Maurizi, 

1987), provide support for the proposal that protease La has a highly selective 

endopeptidase activity in vivo. This work and the recent discovery of another ATP-

dependent protease (Ti) from E. coil (Katayama-Fujimura et al., 1987; Hwang et al., 

1987), which has a different specificity to that of protease La (Hwang et al., 1988), 

support the idea that ATP-dependent proteases play a significant role in conferring 

specificity to intracellular proteolysis in bacterial cells. 

Unfortunately, the limited time available prevented the identification of the 

features of proteins that confer sensitivity to protease La, although it was possible to 
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TABLE 3.1 Effect of DNA on the Activities of Protease La 

ACTIVITY 

Chung & Goldberg (1982) 

EFFECTS OF DNA ON PROTEASE La 

Charette et al. (1984) 	 THIS THESIS 

Proteolytic DNA inhibits at low [3 1-1]-  DNA inhibits at low [ 3 1-1]-  DNA stimulates ([ 14C]--lactamase, 0.5-4j.iM), 

casein concentrations casein concentration inhibits ([ 14C]-ct-Iactalbumin, 0.5-5j.iM), or 
(<0.3)iM); stimulates at (O.lj.iM); no effect at 2pM. has no effect ([ 14C]-casein, 31W, and [14C]_ 

higherconcentrations. oxidized- 	-Iactoglobulin, 4pM). 

ATPase measured In DNA stimulates in the DNA stimulates in the DNA inhibits (in presence of t 14C]--lact- 

the presence of a presence of ( 3 H]-casein presence of [3 H]-casein albumin 5pM), has no effect ([ 14 C]-oxidized - 

protein substrate (25pM). (0.2pM). -lactoglobulin, 4j.iM), or stimulates 
([ 14C]--lactamase, 21M). 

CONCLUSION 	 Single enzymic activity 	Two independent enzymic 	Single enzymic activity which is affected by 
which is stimulated by 	activities. 	 DNA. 
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show that denaturation is not necessarily sufficient to convert a protein into a 

substrate for protease La. The approach that was originally intended to address this 

question was to characterize the degradation products of substrates of protease La 

(a-tactalbumin, casein, and histone preparations) in order to identify the sites of 

cleavage. This would have allowed comparison of the primary sequences flanking the 

peptide bonds cleaved. However, Maurizi (1987) adopted such an approach but found 

no obvious sequence similarities at the sites of cleavage of three substrates (oxidized 

insulin B chain, glucagon, and the AN protein). The discovery that protease La has 

two binding sites for proteins (regulatory and catalytic; Waxman and Goldberg, 1986) 

suggests that protease La recognizes features of substrates other than the primary 

sequence at the cleavage site. In view of these findings, an alternative approach must 

be devised to address the problem. One possibility would be to select for mutants of 

a substrate of protease La which are no longer sensitive to cleavage. Sequence 

analysis of the mutants may then reveal residues or sequences recognized by protease 

La. The rcsA product is a possible candidate for such an approach because this 

protein has an increased half-life on Ion mutants, and over-expression of the gene 

leads to a well defined phenotype (mucoidy; Torres-Cabassa and Gottesman, 1987). 

Current understanding of the properties of protease La has been gained from 

in vitro studies. Such experiments may be misleading because of the non-

physiological nature of conditions in vitro. The conflicting reports over the effect of 

DNA on the activities of protease La (Chung and Goldberg, 1982; Charette et al., 1984; 

this thesis) and whether ATP hydrolysis is required for proteolytic activity (Chung and 

Goldberg, 1981; Charette et al., 1981; Goldberg and Waxman, 1985; Maurizi, 1987; this 

thesis) may be a reflection of this. In particular, protease La may interact with other 

proteins in vivo (such as other heat shock proteins) which modulate the activities of 

the protease. It seems likely that until such complexity can be attained in vitro, or 

until detailed in vivo studies can supplement the current knowledge, a complete 

understanding of the role of protease La will not be realized. 
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4.1 MATERIALS 

4.1.1 Chemicals and Reagents 

Chromatographic materials used were DEAE-cellulose DE-52, phosphocellu lose P11 

(from Whatman Ltd., Maidstone, Kent, England), Sephacryl S-300, Sephadex G-25F and 

G-75 (from Pharmacia G.B. Ltd., Milton Keynes, Bucks, England). 

Paper for HVPE was.purchased from Whatman Ltd. 

[14C]- and [3H]-formaldehyde (10 and 72mCi mmoi 1 , respectively) were obtained from 

New England Nuclear, Du Pont U.K. Ltd., Wedgwood Way, Stevenage, Herts, England. 

[Y-32 PIATP (3000Ci mmoi 1 ) was purchased from Amersham International plc., 

Amersham, Bucks, England. 

Nitrocefin was a gift from Glaxo Group Research Ltd., Greenford, Middlesex, England. 

Ficoll 400 (a non-ionic synthetic polymer of sucrose) was bought from Sigma Chemical 

Company Ltd., Poole, Dorset, England. Orange G and methyl green were purchased 

from BDH Ltd., Broom Road, Poole, Dorset, England. 

4.1.2 Proteins 

The following proteins were purchased from Sigma Chemical Company Ltd.: bovine 

a-lactalbumin, casein, pancreatic RNase, erythrocyte carbonic anhydrase and serum 

albumin; horse heart cytochrome c; hen egg albumin and lysozyme; soybean trypsin 

inhibitor; rabbit ct-glycerophosphate dehydrogenase, phosphorylase b and 

glyceraldehyde-3-phosphate dehydrogenase; yeast enolase and 3-phosphoglycerate 

phos p hoki n ase. 

Other proteins used were: 

Bovine B-lactoglobulin (Pentex Incorporated, Kanakee, Illinois 60901). 

S. aureus P2 B-Iactamase (gift from A. Coulson). 

S. aureus PCi and P54 8 - lactamases (this thesis). 

E. coil RTEM 8-lactamase (gift from R.P. Ambler). 

Chick erythrocyte histones (gift from K Murray). 
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Bovine trypsin and chymotrypsin (Worthington Biochemical Corporation, Millipore 

U.K. Ltd., Harrow, Middlesex, England). 

Hindu! and BamHE (Boehringer Corporation Ltd., Boehringer Mannheim House, 

Lewes, Sussex, England). 

4.1.3 DNA 

Plasmids pGC1 and pJMC40 were gifts from C. Cowan and A. Markovitz, respectively. 

Sonicated calf thymus DNA and Xc1857 DNA were provided by D. Anderluzzi and 

J. Campbell, respectively. 

41.4 Stock Solutions 

Tris Buffers: Iris was adjusted to pH with HCI. Unless otherwise stated, the pH 

given is that at room temperature. 

Ammonium Acetate Buffers: Acetic acid was adjusted to pH with 2M NH 3 . 

BICINE Buffers: BICINE was adjusted to pH with NaOH. 

Borate Buffers: Boric acid was adjusted to pH with NaOH. 

Phosphate Buffers: KH 2PO4  and K2HPO4  of twice the desired molarity were mixed in 

the appropriate ratio to give the correct pH before diluting 2-fold. 

TE: 10mM Tris; 1mM EDTA, adjusted to pH 8.0 with HCI. 

4.1.5 Bacterial Strains 

The bacterial strains used are described in Table 4.1. 

4.1.6 Media 

Dried media were purchased from Difco Laboratories Ltd., P.O. Box 14B, Central 

Avenue, East Molesey, Surrey, England. The following quantities are per litre of 

solution: 

1-broth: lOg Difco Bacto-Tryptone; 5g Difco Bacto yeast extract; lOg NaCl; adjusted 

to pH 7.2 with NaOH. 

1-agar L-broth solidified with 15g Difco agar. 
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TABLE 4.1 Bacterial Strains 

SPECIES STRAIN SOURCE REFERENCE 

Escherichia coil NM522 C. Cowan Cough and Murray (1983) 

Staphylococcus PCi J. Fleming Ambler (1975) 
aureus (NCIB 11195) 

S. aureus P54 J. Fleming Ambler (1979) 

4.2 BACTERIAL TECHNIQUES 

4.2.1 Maintenance of Strains 

Short term storage of bacterial strains was achieved by streaking cultures on L-agar 

plates containing the appropriate antibiotic. The plates were incubated at 37 °C until 

single colonies were observed and then the plates were maintained at 4 °C. For long 

term storage at -20 °C, lml of cultures were harvested by centrifugation (11,6009 m  for 

5mm), resuspended in lml of 10mM MgSO 4, and 2ml of 80% (v:v) glycerol was added. 

4.2.2 Growth of Strains 

Liquid cultures were grown with aeration at 37 °C to stationary phase in L-broth 

containing the appropriate antibiotic in 5ml volumes in 10m1 bottles ("overnights") or in 

500m1 volumes in 21 Erlenmeyer flasks. Large scale cultures were grown in 501 Biotech 

fermenters at 37 °C by T. Bruce. The stirrer speed was maintained at 250-300rpm and 

micro-aerophilic conditions were achieved by aerating with 1.5-3.51 of air min - '. Cells 

were grown to late log phase and were harvested using an Alfa-Laval continuous flow 

centrifuge. Storage of cells was at -20 °C until required. 

4.2.3 Transformation of £ coil with pJMC40 

Cells (NM522) were made competent for the uptake of DNA using a modification of the 

procedure of Mandel and Higa (1970). 

A fresh overnight culture (5m1) was diluted 50-fold and grown, with aeration, at 37 °C 

to an A6 5 0 of 0.7. The cells were harvested by centrifugation (2,0009 for 5mm) at 4 °C 

and resuspended in half the original volume of ice-cold 100mM CaCl2. After 30min on 

ice the cell suspension was centrifuged (2,0009 m  for 5mm) at 4°C and the cell pellet 

resuspended in one tenth of the original volume of ice-cold 100mM CaCl2. The 
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competent cells were kept on ice for a minimum of lh before use. The plasmid 

(200ng pJMC40) was diluted in lOOpl SSC/CaC12 and was added to 200111 of competent 

cells. After 10-30min on ice the cells were "heat-shocked" at 37 °C for 5mm. The 

cells were incubated at 37 °C for lh in lml of L-broth to allow expression of 

tetracycline resistance. Samples of 10111 and 501i1 were spread on L-agar plates 

containing tetracycline (20i.ig ml - ')and the plates were incubated at 37 °C overnight. 

SSC/CaCl2: 6mM tn-sodium citrate; 60mM NaCI; 60mM CaCl2. 

4.3 DNA TECHNIQUES 

4.3.1 Ethanol Precipitation of DNA 

DNA was precipitated by the addition of 0.1 volumes of 3M sodium acetate and 2 

volumes of ethanol. After incubation at -20 °C for 30min the DNA was recovered by 

centrifugation at 8,000g m  for 10mm. The DNA pellet was washed with 70% (v:v) 

ethanol, centrifuged (8,000g m  for 10mm), and the resulting pellet was dried under 

vacuum. The DNA was dissolved in the appropriate volume of TE. 

4.31 Determination of DNA Concentration 

The absorbance at 260nm and 280nm of the DNA solution was measured. An A 260  of 

1 is equivalent to 50pg m1 1  DNA so the concentration of DNA in the sample (jig m1 1 ) 

is given by A260 x 50. The ratio of A 260 :A280 gives a measure of the purity of the DNA 

(Maniatis et al., 1982) and DNA with values between 1.8 and 2.0 was used. 

4.3.3 Small Scale Preparation of Plasmid DNA 

(lsh-Horowicz and Burke, 1981) 

The cells from 1.5ml of an overnight culture of NM522/pJMC40 were harvested by 

centrifugation at 11,6009 m  for 5mm, resuspended in lOOpI of solution E, and incubated 

for 5min at room temperature. After addition of 200pl of solution H and gentle mixing, 

the mixture was kept on ice for 5mm. Ice-cold solution III (150p1) was added, mixed 

gently, and the mixture was returned to ice for a further 5mm. The resulting 

precipitate was removed by centrifugation (11,6009,. for 5mm) and the DNA in the 

supernatant was precipitated by the addition of ethanol. The DNA pellet was dissolved 

in 50pl of TE, and aliquots of 15p1 were used for restriction enzyme digests. 

Solution 1: 25mM Tris/HCI, pH 8.0; 10mM EDTA; 50mM glucose. 

Solution II: 0.2M NaOH; 1% (w:v) SDS. 
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Solution III: 5M potassium acetate, pH 4.8. 

4.3.4 Large Scale Preparation of Plasmid DNA 

This method is based on that of Clewell and Helinski (1969). A fresh overnight culture 

of NM522/pJMC40 was diluted 100-fold in 150m1 of L-broth containing tetracycline 

(20pg m1 1 ) and grown overnight at 37 °C, with aeration. The cells were harvested 

(6,5009 m  for 10mm), resuspended in 7m1 of lysis solution, and left on ice for 5mm. 

Addition of 14ml of alkaline SDS was followed by a 10min incubation on ice. After 

addition of 10.5ml of 3M potassium acetate pH 4.8, and a further 5miri on ice, the 

precipitated protein, SOS, and chromosomal DNA were removed by centrifugation 

(6,500g m  for 10min at 4°C). To remove any remaining precipitate the supernatant was 

poured through glass wool. Plasmid DNA was precipitated by addition of 15m1 of 

isopropanol, and recovered by centrifugation at 6,5009 1, for 10mm. The pellet was 

washed with 70% (v:v) ethanol, centrifuged (6,5009 m  for 10mm), and the resulting pellet 

dried under vacuum for 30mm. The DNA was dissolved in TE (final volume 9.4ml), and 

CsCl (to 0.95g m1 1 ) and ethidium bromide (to 0.6mg m1 1 ) were added. The final 

density of the solution was 1.55g m1 1 . The solution was centrifuged at 90,0009,  for 

48-60h at 18°C in lOmI "quick-seal" polyallomer tubes. After centrifugation two bands 

were visible under U.V. light: an upper band consisting of nicked and linearized plasmid 

DNA and fragmented chromosomal DNA; and a lower band consisting of supercoiled 

plasmid DNA. The lower band was removed using a 21 gauge hypodermic needle 

inserted through the side of the tube. Ethidium bromide was removed by four 

extractions with isopropanol saturated with NaCI-saturated TE. Two volumes of 

distilled H 20 were added to the aqueous phase before the DNA was precipitated with 

ethanol (without addition of sodium acetate). The DNA was dissolved in 500111 TE, and 

any residual protein was extracted twice with phenol equilibrated with TE. The DNA in 

the aqueous phase was ethanol precipitated and redissolved in 500l of TE. The 

concentration of DNA was determined by measuring the absorbance at 260nm. 

Lysis Solution: 25mM Tris/HCI, pH 8.0; 10mM EDTA, pH 8.0; 1% (w:v) glucose. 

Alkaline SDS: 0.2M NaOH; 1% (w:v) SOS. 

4.3.5 Restriction Endonuclease Digestion of DNA 

Digestion of 0.5-1.Opg DNA was carried out in universal buffer (33mM Iris/acetate, pH 

7.9; 10mM magnesium acetate; 5mM DTT; 1mg m1 1  BSA) with 2 units of restriction 

enzyme in a final volume of 20pl. Reaction mixtures were incubated at 37 °C for 2h 

prior to analysis by agarose gel electrophoresis. 
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4.4 ELECTROPHORETIC TECHNIQUES 

4.4.1 Agarose Gel Electrophoresis of DNA 

Samples of DNA (0.2-0.5pg) were mixed with 5x Ficoll loading dye and loaded into 

wells of a 0.7% (w:v) agarose gel in lx TBE. Electrophoresis in non-submerged gels 

was carried out at 1.5V cm -1  overnight; whereas submerged minigéls were run at 1 1 

cm -1  for lh. 

5x Ficoll Loading Dye: 20% (w:v) Ficoll 400 in H 20, with bromophenol blue dye. 

lOx TBE: 890mM Tris; 890mM boric acid; 25mM EDTA. 

4.4.2 Detection of DNA Fragments in Agarose Gels 

The agarose gel was placed in a lig m1 1  solution of ethidium bromide for 20min and 

then washed for 20min in distilled H20. DNA bands in the agarose gel were visualized 

with a U.V. transilluminator and photographed using Ilford HP5 film. 

4.4.3 SDS Polyacrylamide Gel Electrophoresis of Proteins 

Two discontinuous buffer systems were used. Unless stated otherwise, SDS-PAGE 

was carried out with the buffer system of Laemmli (1970). 

a Laemmli (1970) 

Resolving gel mix (about 25m1) was poured between 20 x 16cm glass plates, separated 

by 1.5mm spacers. Distilled H20 was carefully layered on top of the gel mix. When the 

gel had set, the H 20 was poured off and replaced by stacking gel mix. A comb was 

inserted into the stacking gel mix and when the stacking gel had set, the comb was 

removed to form sample wells. The glass plates and electrophoresis tank were 

clamped together and the assembly was filled with reservoir buffer. Samples were 

boiled for about 2min with sample loading buffer, before loading into wells using a 

microsyringe. Electrophoresis was carried out at lOmA (constant current) overnight. 

Gradient resolving gels were prepared as above except that the concentrations of 

AMPS and TEMED were reduced 2-fold. Acrylamide mixes (15ml each) were prepared 

in a gradient former, and 15% (w:v) sucrose was added to the acrylamide mix 

containing the greater concentration of acrylamide. 

Acrylamide Stock Solution: 30g acrylamide; 0.8g N,N'-methylene-bis-acrylamide; 

distilled H20 to lOOml. Degassed and filtered through Whatman No. 1 paper, 

before storage in a dark bottle at 4°C. 
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Resolving Gel Buffer: 3.OM Tris/HCI, pH 8.8. 

Stacking Gel Buffer: 0.5M Tris/HCI, pH 6.8. 

Resolving Gel Mixes: See Table 4.2. 

Stacking Gel Mix: 1.25ml acrylamide stock; 2.5m1 stacking gel buffer; 0.1ml 10% (w:v) 

SDS; 0.5m1 1.5% (w:v) AMPS; 5.65ml distilled H20; iSMl TEMED. 

lOx Reservoir Buffer: 0.25M Tris; 1.92M glVcine; 1% (w:v) SOS. 

Sample Loading Buffer: 62.5mM Tris/HCI, pH 6.8; 2% (w:v) SDS; 5% (v:v) 

B-mercaptoethanol; 10% (w:v) sucrose; 0.1% (w:v) bromophenol blue. 

TABLE 4.2 Composition of Resolving Gel Mixes for Polyacrylamide Gel Electrophoresis 

COMPONENTS FINAL CONCENTRATION OF ACRYLAMIDE IN RESOLVING GEL (%) 

20 17.5 15 12.5 10 7.5 5 

Acrylamide stock (ml) 20.0 17.5 15.0 12.5 10.0 7.5 5.0 
Resolving Gel Buffer (ml) 3.75 3.75 3.75 3.75 3.75 3.75 3.75 

10% SOS (ml) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
1.5% AMPS (m!) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Distilled H 20 (ml) 4.45 6.95 9.45 11.95 14.45 16.95 19.45 
TEMED (VI) 15.0 15.0 15.0 15.0 15.0 15.0 15.0 

b Anderson etal. (1983) 

Gels were prepared as described in (a) except that the sample wells were washed out 

with distilled H 20 and then filled with sample loading buffer (without sucrose and 

bromophenol blue) before loading samples. Electrophoresis was carried out at a 

constant current of 35mA overnight. 

Upper Reservoir Buffer (Cathode): 74mM Tris/HCI, pH 7.8; 0.1% (w:v) SDS. 

Lower Reservoir Buffer (Anode): 200mM Tris/HCI, pH 7.8; 0.04% (w:v) SOS. 

Stacking Gel Buffer: 200mM Tris/H2SO4, pH 7.8; 0.04% (w:v) SOS. 

Resolving Gel Buffer: 200mM Tris/H2SO4, pH 7.8; 0.04% (w:v) SDS; 8M urea. 

Stacking Gel Mix 2.5g acrylamide; 0.639 N,N'-methylene-bis-acrylamide; stacking 

gel buffer to lOOmI; 50mg AMPS; 50pl TEMED. 
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Resolving Gel Mix: 7.6g acrylamide; 0.4g N,N'-methylene-bis-acrylamide; resolving 

gel buffer to lOOmI; 50mg AMPS; 50111 TEMED. 

Sample Loading Buffer: 139mM Tris/acetate, pH 7.8; 1% (w:v) SDS; 20% (w:v) 

sucrose; 100mM (v:v) -mercaptoethanol. 

4.4.4 Detection of Polypeptides in Polyacrylamide Gels 

Two methods of Coomassie Blue staining were used. 

a In Acetic Acid/Methanol Solution 

To fix the polypeptides and to remove the SDS (which can interfere with staining) the 

gel was immersed in fix for 30mm. After immersing the gel in stain for 30mm, the gel 

was placed in destain until the blue polypeptide bands were visible against a clear 

background (usually 16-20h). The destaining solution was changed when required. 

Gel Fix: 10% (v:v) acetic acid; 20% (v:v) methanol. 

Gel Stain: 7.5% (v:v) acetic acid; 50% (v:v) methanol; 0.25% (w:v) Coomassie Blue 

R250. 

Gel Destain: 7% (v:v) acetic acid; 10% (v:v) methanol. 

b In a Formaldehyde/Ethanol Solution (Steck et al., 1980) 

As an alternative to fixing by precipitation with a methanol/acetic acid solution, 

formaldehyde can be used to link the polypeptides to the gel matrix. Following 

immersion for lh each in stain I and then stain II, the gel was placed in gel destain 

until the blue polypeptide bands were visible against a clear background (usually 

16-20h). The gel destain was changed as required. 

Stain 1: 25% (v:v) ethanol; 14% (v:v) formaldehyde; 0.1% (w:v) Coomassie Blue R250. 

Stain II: 25% (v:v) ethanol; 1% (v:v) formaldehyde; 0.12% (w:v) Coomassie Blue R250. 

Gel Destain: 25% (v:v) ethanol; 1% (v:v) formaldehyde. 

4.4.5 Detection of Radiolabelled Polypeptides in Polyacrylamide Gels 

Gels containing radiolabelled polypeptides were stained with Coomassie Blue and then 

dried under vacuum at 80 °C. The dried gels were exposed to Cronex X-ray film to 

produce an autoradiograph. 
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4.4.6 High Voltage Paper Electrophoresis of Peptides and Amino Acids 

HVPE was carried out in Michl (1951) solvent-cooled tanks using the volatile pH 6.5 

and 2.0 buffer systems  described by Ambler (1963). Radioactive samples (dissolved in 

10111 0.1M NH 40H) were spotted onto Whatman 3MM paper (peptide separations) or 

Whatman No. 1 paper (amino acid analysis). After electrophoresis the papers were 

dried in a warm, ventilated oven prior to staining and autoradiography. 

a 	Electrophoresis at pH 6.5 

The solvent system used was pyridine/acetic acid/H 20 (25:1:225 by volume) pH 6.5, 

and toluene was used as the coolant. "Wondermix" (5l) was used as a marker 

(Milstein, 1966). Electrophoresis was performed at 3kV for about lh and was 

monitored by following the migration of orange G. 

b 	Electrophoresis at pH 2.0 

The solvent system used was formic acid/acetic acid/H 20 (1:4:45 by volume) pH 2.0, 

and white spirit was used as the coolant. Amino acid mixtures R and T (5p1 of each) 

were used as markers. Electrophoresis was performed at 3kV for about lh and was 

monitored by following the migration of methyl green. 

4.4.7 Two-Dimensional Separation of Amino Acids 

(Waley and Watson, 1953) 

A complex mixture of amino acids was resolved in the first dimension by HVPE at pH 

2.0 and in the second dimension by descending paper chromatography for 12h, using 

the solvent mixture butan-2-ol/acetic acid/pyridine/H20 (15:3:10:12 by volume). 

4.4.8 Detection of Peptides and Amino Acids on Paper 

(Toennies and Kolb, 1951) 

Papers were immersed in a mixture of 0.1% (w:v) ninhydrin in acetone and 1% (v:v) 

(peptide mapping) or 4% (v:v) (amino acid analysis) 2,4,6 collidine in acetic acid (1:2, 

v:v). Colours were developed by allowing the paper to dry and then heating at 105 °C 

for 30-120s. Free amino acids give a range of colours (Table 4.3) which fade to blue 

after 6-12h, whereas peptides generally develop as blue spots. 
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TABLE 4.3 Colours of Amino Acids Stained With a Ninhydrin/C011idifle Mixture 

AMINO ACID COLOUR 

Lys blue 
Arg blue 
His brown 
Gly red/brown 
Ala blue 
Val blue 
lie blue 
Leu blue 
Ser green 
Thr blue 
Pro yellow 
Glu blue 
Phe brown 
Tyr brown 
Asp turquoise 
Mes a blue 
Cya a blue 

a. Mes: methionine sulphone; Cya: cysteic acid 

4.4.9 Detection of Radiolabelled Peptides and Amino Acids on Paper 

Papers were stained with a ninhydrin/collidine mixture and were then exposed to 

Cronex X-ray film to produce an autoradiograph. 

4.5 PROTEIN TECHNIQUES 

4.5.1 Performic Acid Oxidation of -Lactoglobulin 

(Hirs, 1956) 

A sample of -lactoglobulin (20mg) was incubated at 4 °C for lh with 2m1 of freshly 

prepared performic acid (formic acid and 30% (v:v) hydrogen peroxide, 19:1 by volume, 

left for 2h at room temperature). The mixture was diluted 20-fold with distilled H20 

prior to lyophilization. 

4.5.2 Treatment to Remove TCA from Samples 

(Harris and Hindley, 1965) 

A dried sample was resuspended in lmI of acetone. The sample was centrifuged 

(1 1,6009 for 3mm) and the supernatant discarded. The precipitate was resuspended 
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in imI acetone, centrifuged (11,600g, for 3mm), and the supernatant discarded. This 

treatment was repeated with diethyl ether. After the final wash with diethyl ether, the 

sample was dissolved in 50p1 of distilled H 20 and dried under vacuum. 

4.5.3 Column Chromatography 

Columns were normally pumped with a LKB microperpex peristaltic pump at the flow 

rates shown in Table 4.4. If the buffer used during column chromatography contained 

glycerol then the flow rate was decreased by a factor of two. 

TABLE 4.4 Flow Rates Used During Column Chromatography 

FLOW RATE (cm h 1 ) 

CHROMATOGRAPHIC 
METHOD 

4°C 	 RIa 

Ion-exchange 	 15-20 	30-40 

Gel filtration: 

Sephadex G-25F & 0-75 	2-5 	 4-10 
Sephacryl S-300 	 10-15 	20-30 

a. RT: room temperature. 

4.5.4 Determination of Protein Concentration 

(Lowry et al., 1951) 

Reagent A (3ml) was added to each 0.5m1 sample. After 10mm, 0.3m1 reagent B was 

added, and the sample was mixed thoroughly. Samples were incubated at room 

temperature for 30min before measuring the absorbance at 750nm. The method was 

standardized against 25-400pg serum albumin. 

Reagent A lOOmI 2% (w:v) Na2CO3 in 0.11VI NaOH; 2ml 1% (w:v) NaK tartrate; 0.5ml 

2% (w:v) CuSO 4.5H 20. 

Reagent B: Folin-Ciocalteau reagent diluted 10-fold. 
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4.5.5 Determination of Acid-Soluble Radioactivity 

A modification of the method of Goldberg et al. (1982) was used. 

Ice-cold BSA (final concentration 2mg m1 1 ) and TCA (final concentration 10% w:v) 

were added to the sample. After incubation on ice for at least 30mm, the sample was 

centrifuged (11,600g m  for 10mm) at room temperature. A portion (normally 0.4ml) of 

the supernatant was pipetted into a 5m1 scintillation vial insert and 4ml of scintillation 

fluid (333ml Triton X-100; 667ml toluene; 4.Og PPO; 0.1g dimethyl POPOP) was added. 

The scintillation vial was shaken vigorously before counting in a Beckman LS7000 

liquid scintillation counter. 

4.5.6 Radiolabelling of Proteins by Reductive Methylation 

Two methods of labelling were used. 

a With Sodium Borohydride (Rice and Means, 1971) 

A sample of protein (0.1mg) was dissolved in 100il of 200mM sodium borate, pH 9.0. 

To the solution kept on ice, 10111 of [ 14C]-formaldehyde (lOmCi mmol 1 , 4011mol ml') 

were added. This was followed in 30s by four 2111  sequential additions of sodium 

borohydride (5mg ml'). To ensure complete reduction, an additional 101.11 of sodium 

borohydride was added after 1mm. Low molecular weight components of the reaction 

mixture were removed by exhaustive dialysis at 4 °C against 50mM Tris/HCI, pH 8.0. 

b With Sodium Cyanoborohydride (Jentoft and Dearborn, 1979) 

A sample of protein containing 1.51imol lysine residues was incubated with either 

3pmol [ 14C]-formaldehyde (lOmCi mmol') or 31imol [ 3H]-formaldehyde (72mCi 

mmol 1 ), and 30pmol sodium cyanoborohydride (immol ml') in 200mM sodium borate, 

pH 9.5. The reaction mixture (final volume lml) was incubated overnight at room 

temperature. Low molecular weight components of the reaction mixture were 

removed by exhaustive dialysis at 4 °C against 50mM Tris/HCI, pH 8.0. 

4.5.7 Acid Hydrolysis of Radiolabelled Proteins 

Samples of radiolabelled proteins (1-50g) were dried under vacuum, and lOOpl 6M 

HCI was added. After incubation at 105 °C overnight, the hydrolysate was dried in a 

vacuum desiccator over NaOH. 
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4.6 ENZYMIC ASSAYS 

4.6.1 Assay of ATP-Dependent Proteolytic Activity 

A modification of the method of Goldberg et al. (1982) was used. 

Routinely, samples were incubated in the presence and absence of ATP (final 

concentration 3mM), with 5-20.ig [ 14C]-methyl protein (0.5-2 x 10 7cpm mg -1 ) in assay 

buffer (50mM Tris/HCI, pH 8.0; 25mM MgCl2) in a final volume of 50041. After 

incubation at 37 °C for 1-3h, acid-soluble radioactivity was determined. 

4.6.2 Assay of ATPase Activity 

A modification of the method of Eskin and Linn (1972) was used. 

Routinely, assays contained 25mM Tris/HCI, pH 8.0; 25mM MgCl 2; 0.35j.tg  protease La 

and 0.5mM [y- 32P] ATP (10-25cpm pmoi 1 ) in a final volume of 3011!. The ATPase 

activity of protease La was also measured in the presence of varying concentrations of 

single- and double-stranded DNA (s5DNA was sonicated calf thymus DNA boiled for 

10min then placed in ice; dsDNA was pGC1) and varying concentrations of 

radiolabelled proteins. After incubation at 37 °C for 1-3h, the assays were diluted to 

0.3ml with distilled H 20 before addition of BSA to a final concentration of 25mg m1 1 . 

Following addition of 0.1ml each of 1M HCI, 1M potassium phosphate and 20% (w:v) 

acid washed activated charcoal, the suspension was mixed thoroughly and incubated 

on ice for 5 mm. The suspension was centrifuged (11,600g for 5 mm) and 500p1 of the 

supernatant was counted (Cerenkov) in a Beckman LS 7000 liquid scintillation counter. 

4.6.3 Assay of B-Lactamase Activity 

Two methods of assay were used. 

a 	Quantitative Assay Using Benzylpenicillin (Waley, 1974) 

Assays contained 3m1 of 100mM potassium phosphate buffer, pH 7.0; 5l of 35mg ml -1  

benzylpenicillin and a suitable volume of sample. The decrease in absorbance at 

232nm was followed after addition of sample. 8-lactamase activity was expressed as 

limol benzylpenicillmn hydrolysed h 1  using a molar extinction coefficient of 940. 

b Qualitative Assay Using Nitrocefin (O'Callaghan at al., 1972) 

Spot tests for B-lactamase activity were performed by mixing 10111 of sample with 

lOpi of nitrocefin solution in a well of a microtitre plate. B-lactamase activity was 

indicated by a colour change (from orange to purple). 
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Nitrocefin Solution: 5mg nitrocefin, dissolved in 0.5m1 dimethylsulphoxide, to which 

9.5ml 0.1M potassium phosphate buffer, pH 7.0 was added. The solution was 

stored in the dark at 4 °C for up to two weeks. 

4.7 PURIFICATION PROTOCOLS 

4.7.1 Preparation of an Extract of NM522/pJMC40 

Cells were resuspended in buffer A or B (volume equal to twice the wet weight of 

cells) and disrupted by sonication at 4 °C with a MSE 100W Ultrasonic Disintegrator at 

about 6iM peak to peak using 1min bursts, with a 1min interval between bursts, until 

the cells had lysed (normally for 50g of cells, 8 x 1min bursts were sufficient). The 

lysed cells were centrifuged (48,0009 m  for 45mm) at 4°C to remove the cell debris. If 

buffer A was used, the supernatant was dialysed exhaustively at 4 °C against buffer C. 

Buffer A: 50mM Tris/HCI, pH 7.8 at 4 °C; 200mM KCI; 10mM -mercaptoethanol; 20% 

(v:v) glycerol. 

Buffer B: 100mM KH 2PO4/K2HPO4, pH 6.5; 10mM -mercaptoethanol; 1mM EDTA; 

20% (v:v) glycerol. 

Buffer C: 10mM Tris/HCI, pH 7.8 at 4 °C; 5mM 8-mercaptoethanol; 20% (v:v) glycerol. 

4.7.2 Purification of the £ coil ATP-Dependent Protease La 

(Zehnbauer et al., 1981; as modified by Goldberg et al., 1982.) 

An extract of 50g NM522/pJMC40 was prepared as described in Section 4.7.1 using 

buffer B. The following operations were performed at 4 °C unless stated otherwise. 

The cell extract (20mg m1 1 ) was loaded onto a phosphoceltulose (P11) column (20 x 

2.8cm). The P11 column was washed with 2 column volumes of buffer B and eluted 

with a 100mM to 400mM linear phosphate gradient comprised of equal volumes of 

buffer B and buffer D. Active fractions were pooled and dialysed against buffer E and 

loaded onto a DEAE-cellulose (DE-52) column (10 x 2.5cm). The DE-52 column was 

washed with buffer E (until low A280) and eluted sequentially with buffer E containing 

100mM NaCl and buffer E containing 300mM NaCl. Active fractions were pooled, 

concentrated by ultracentrifugation (Amicon Centricon-30 system) at room temperature 

and loaded onto a Sephacryl S-300 column (60 x 1.6cm) equilibrated with buffer F. 

Active fractions were pooled and stored at -70 °C after addition of EDTA (final 

concentration 2mM) and OTT (final concentration 2mM). 
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Buffer B: 100mM KH 2PO4/K2HPO4, pH 6.5; 10mM -mercaptoethanol; 1mM EDTA; 

20% (v:v) glycerol. 

Buffer D: 400mM KH 2PO4/K2HPO4, pH 6.5; 10mM -mercaptoethanol; 1mM EDTA; 

20% (v:v) glycerol. 

Buffer E: 10mM Tris/HCI, pH 7.1; 10mM $-mercaptoethanol; 20mM NaCl; 20% (v:v) 

glycerol. 

Buffer F: 50mM Tris/HCI, pH 7.8; 5mM MgCl 2; 100mM NaCl; 20% (v:v) glycerol. 

4.73 Purification of S. aureus PCi B-Lactamase 

(Richmond, 1963; as modified by Ambler and Meadway 1969) 

The supernatant of a 501 culture of S. aureus PCi grown to late log phase was 

provided by T. Bruce. When sufficient phosphocellulose (P11, swollen and de-fined in 

distilled H 20) had been added to adsorb about 90% of the B- lactamase, the culture 

supernatant was decanted. After washing with about 51 of 10mM ammonium acetate, 

pH 7.0 (buffer A), the phosphocellulose was poured into a column (20 x 9cm) and 

allowed to pack under gravity. The column was washed exhaustively with buffer A 

until negligible amounts of protein were eluted (low A280). The -lactamase was 

eluted with a 75% saturated solution of ammonium sulphate in buffer A. Active 

fractions were pooled and 40m1 aliquots were loaded onto a Sephadex 0-75 column 

(80 x 5cm) equilibrated with 100mM ammonium acetate, pH 7.0 (buffer B). Fractions 

containing a-lactamase were pooled and dialysed exhaustively at 4 °C against distilled 

H 20 before lyophilization. 
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