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Abstract

In many audio applications, the signal of interest is corrupted by acoustic background noise,

interference, and reverberation. The presence of these contaminations can significantly degrade

the quality and intelligibility of the audio signal. This makes it important to develop signal

processing methods that can separate the competing sources and extract a source of interest.

The estimated signals may then be either directly listened to, transmitted, or further processed,

giving rise to a wide range of applications such as hearing aids, noise-cancelling headphones,

human-computer interaction, surveillance, and hands-free telephony.

Many of the existing approaches to speech separation/extraction relied on beamforming tech-

niques. These techniques approach the problem from a spatial point of view; a microphone

array is used to form a spatial filter which can extract a signal from a specific direction and

reduce the contamination of signals from other directions. However, when there are fewer

microphones than sources (the underdetermined case), perfect attenuation of all interferers be-

comes impossible and only partial interference attenuation is possible.

In this thesis, we present a framework which extends the use of beamforming techniques to

underdetermined speech mixtures. We describe frequency domain non-linear mixture of beam-

formers that can extract a speech source from a known direction. Our approach models the

data in each frequency bin via Gaussian mixture distributions, which can be learned using the

expectation maximization algorithm. The model learning is performed using the observed mix-

ture signals only, and no prior training is required. The signal estimator comprises of a set of

minimum mean square error (MMSE), minimum variance distortionless response (MVDR), or

minimum power distortionless response (MPDR) beamformers. In order to estimate the sig-

nal, all beamformers are concurrently applied to the observed signal, and the weighted sum of

the beamformers’ outputs is used as the signal estimator, where the weights are the estimated

posterior probabilities of the Gaussian mixture states. These weights are specific to each time-

frequency point. The resulting non-linear beamformers do not need to know or estimate the

number of sources, and can be applied to microphone arrays with two or more microphones

with arbitrary array configuration. We test and evaluate the described methods on underdeter-

mined speech mixtures. Experimental results for the non-linear beamformers in underdeter-

mined mixtures with room reverberation confirm their capability to successfully extract speech

sources.
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Chapter 1

Introduction

1.1 The Cocktail Party Problem

Most audio signals result from the mixing of several sound sources. In many applications, there

is a need to separate the multiple sources or extract a source of interest while reducing undesired

interfering signals and noise. The estimated signals may then be either directly listened to or

further processed, giving rise to a wide range of applications such as hearing aids, human-

computer interaction, surveillance, and hands-free telephony.

Source mixing can occur in a wide variety of situations under different environments. The

difficulty of source separation and extraction depends on the number of sources, the number

of microphones and their arrangements, the noise level, the way the source signals are mixed

within the environment, and on the prior information about the sources, microphones, and

mixing parameters. Blind methods do not rely on specific characteristics of the sources, micro-

phones, or mixing parameters. By contrast, informed methods exploit some prior information

about the sources and microphones (for example, the location of a desired source, the identity

of a musical instrument). In general, the problem is more difficult when the reverberation time

of the acoustic environment is large, and when the number of sources is larger than the number

of microphones.

The classical example of source separation and extraction is the “cocktail party problem”, where

different conversations occur simultaneously and independently of each other. The human au-

ditory system exhibits a remarkable ability to follow only one conversation in a highly noisy

environment, such as a cocktail party. This was first analysed and termed the cocktail party

problem by Colin Cherry [1]. In 1953, Cherry reported on experiments performed on the

recognition of speech received by one and two ears [1]. He proposed a few factors that can

be used by a machine to recognise what a person is saying when multiple speakers are talking

simultaneously: (a) Voices come from different directions. (b) Lip movements and gestures.

(c) Different speakers have different voices, pitches, and speeds. (d) Different speakers have

different accents. (e) Predicting word sequences.
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Today, many different methods exist in order to enhance speech. There has been a lot of re-

search on the speech enhancement problem, where the focus is on attenuating the background

noise. Speech denoising algorithms are well established and have been used for many years

[2, 3]. The extension of the speech enhancement problem to deal with mixtures of speech

sources is a topic of intense research [4, 5].

One approach to address the source separation problem is to study and finally replicate the

way humans perform audio source separation using a computer. Based on psychoacoustic ex-

periments, it is believed that the human auditory system decomposes the acoustic signal into

elements, where each element describes a significant acoustic event [6]. This decomposition is

followed by a grouping process which combines elements that are likely to have originated from

the same audio source [6]. This process is termed auditory scene analysis (ASA). Grouping pro-

cesses may be data-driven (primitive), or schema-driven (knowledge-based) [7]. Data-driven

grouping cues include energy appearing across different frequencies at the same time (common-

onset), energy ceasing across different frequencies at the same time (common-offset), harmon-

ics of the same fundamental frequency, similar inter-channel time and intensity differences

(spatial cues), smooth spectral envelope (continuity), and correlated amplitude and frequency

modulations. Schema-driven grouping rules implement knowledge acquired by learning, such

as the voice of a known speaker or the syntax of a particular language.

Computational auditory scene analysis (CASA) refers to the set of algorithms developed with

the aim of simulating auditory scene analysis processes [8–10]. The first stage of a CASA

system is usually a filter bank that replicates the time-frequency analysis of the human ear

[11, 12]. Most CASA systems further process the time-frequency representation in order to

facilitate the extraction of certain grouping features. Grouping rules are then applied to group

components that are likely to have originated from the same source. The desired source signal

is eventually extracted by applying a weight to each time-frequency point, such that points

believed to be dominated by the desired source receive a high weight [8]. Finally, the time-

frequency representation is inverted in order to recover a time-domain estimate of the separated

source. This allows the separated signals to be evaluated.

An alternative approach to speech source separation and extraction is to rely on adaptive beam-

forming techniques [13, 14]. These techniques approach the separation problem from a spatial

point of view; a microphone array is used to form a spatial filter which can extract a desired

signal from a specific direction and reduce interfering signals from other directions. This spa-
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tial filter can be expressed in terms of dependence upon angle and frequency. Beamforming

is accomplished by filtering the microphone signals and combining the outputs to extract (by

constructive combining) the desired signal and reject (by destructive combining) interfering

signals according to their spatial location. Beamforming can separate sources with overlapping

frequency content that originate at different spatial locations. The performance of beamform-

ing techniques is often very good when the number of microphones is large. However, when

the number of sources is larger than the number of microphones, perfect attenuation of all

interferers becomes impossible using time-invariant beamforming techniques and only partial

interference attenuation is possible. This is because in time-invariant beamforming, the number

of directions of arrival that can be perfectly cancelled is limited by the number of microphones

[13]. In general, beamforming techniques require information about the microphone array con-

figuration and the sources (for example, the direction of the desired source).

Sometimes, the knowledge of the microphone array configuration and the sources positions is

not available, and the only available data are the mixtures of the different sources recorded at

the microphones. Methods which can obtain estimates of the sources using only the mixture

signal, and with no information about the mixing process are termed blind source separation

(BSS) methods. One approach is to use statistical modeling of source signals. Independent

component analysis (ICA) is one of the major statistical tools used in BSS [15–18]. In ICA,

separation is performed on the assumption that the source signals are statistically independent,

and does not require information on microphone array configuration or the direction of arrival

(DOA) of the source signals to be available. To perform source separation, we process the

mixture channels by a set of linear time-invariant demixing filters. ICA implicitly estimates the

source directions by maximising the independence of the sources, and acts as an adaptive null

beamformer that reduces the undesired sources. However, some aspects limit the application of

ICA to real-world environments. Most ICA methods assume the number of sources is given a

priori. In general, classical ICA techniques cannot perform source separation when the number

of sources is larger than the number of microphones.

Source separation methods initially only considered the case when the number of sources is

equal to or less than the number of microphones. In this case, the problem is one of identifying

the mixing matrix and the source estimates are simply obtained by inverting the mixing matrix.

When the number of sources is larger than the number of microphones, linear source separation

using the inverse of the mixing matrix is not possible. However, under certain assumptions,
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it is possible to extract a larger number of sources by using non-linear filtering methods. The

assumption that the sources have a sparse representation under an appropriate transform is a

very popular assumption. Sparseness of a signal means that only a small number of the source

components differ significantly from zero. A sparse representation of a speech signal can be

achieved by a short-time Fourier transform (STFT). One popular approach to sparsity-based

separation is time-frequency masking [19–21]. This approach is a special case of non-linear

time-varying filtering that estimates the desired source from a mixture signal by applying a

time-frequency mask that attenuates time-frequency points associated with interfering signals

while preserving time-frequency points where the signal of interest is dominant. If more than

one mixture signal is available, the spatial information at each time-frequency point can some-

times be used to determine which time-frequency points belong to each source. A popular

method to estimate the time-frequency masks using only two microphones is the degenerate

unmixing estimation technique (DUET) [19, 20]. It is assumed that the time-frequency repre-

sentation of speech signals are approximately disjoint (i.e., sources do not overlap too much).

This assumption is not fully met in practice. In DUET, the sources are estimated by parti-

tioning the mixture STFT coefficients based on the inter-channel level/phase difference. In

general, time-frequency masking is capable of performing source separation when the number

of sources is larger than the number of microphones. However, this method suffers from so-

called musical noise or burbling artifacts due to masking of time-frequency points where the

sources overlap. These distortions are introduced by the separation mask, and arise from the

spectral components of the signal being turned on and off, which results in sinusoidal compo-

nents that come and go in each short-time frame. Furthermore, separation methods based on

time-frequency masking suffer from the fact that clustering becomes difficult in reverberation,

as the inter-channel level/phase difference resulting from each sound source then tend to spread

and overlap, and the disjoint assumption becomes less realistic.

When only one microphone is available, source separation/extraction becomes significantly

more challenging, as spatial cues are absent in this case. In this situation, the assumptions

of independence and time-frequency sparsity becomes insufficient, and more advanced source

models relying on spectro-temporal models are needed. These models have been extensively

studied and used in speech recognition. Different strategies have been employed using these

models [22–24]. However, they require prior training and some knowledge about the identity

of the speech or music sources in the mixture.
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1.2 Applications of Audio Source Separation

There are many applications where speech source separation may be useful. We briefly discuss

a selection of these applications:

Hearing Aids

The human auditory system exhibits an extraordinary ability to extract sounds of interest when

multiple speakers are talking simultaneously. However, hearing impaired people loose the

ability to extract desired sound sources and thus the ability to follow conversations. Hear-

ing aids with source separation and extraction capabilities can assist the hearing impaired to

select sounds and conversations in multi-talker scenarios. The hearing aid application presents

particular challenges due to the requirements of real-time processing, low power consumption,

small size and low weight.

Transmitter Noise Cancellation

A problem that occurs when we transmit audio signals via communication devices such as

mobile phones or teleconferencing equipments, is that many visual and auditory spatial cues

that are present on the transmitter side are not transmitted, making the extraction of the de-

sired source more difficult. Therefore, it is desirable to be able to clean the audio signal before

transmission. Traditional active noise cancellation methods work well for noises that are con-

tinuous, such as the noise generated by a car engine, but are less effective against non-stationary

interference such as speech or other rapidly changing signals. Source separation and extraction

methods can be used to suppress noise and interference before signal transmission.

Human-Computer Interaction

It is well known that automatic speech recognition accuracy can be severely degraded by back-

ground noise, reverberation and competing speakers. This problem is of particular concern if

the distance between the talker and the microphone(s) is large. Source separation and extraction

can be used as a pre-processing step for speech recognition in noisy and multi-talker environ-

ments. In this application, it would be advantageous to use video data captured by a camera to

estimate the location of the desired sources [25, 26].
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Surveillance

Source separation and extraction can be used in surveillance and forensic analysis of record-

ings that contain multiple simultaneous talkers to extract desired sources, carry out automatic

keyword detection, or detecting whether a targeted speaker is present in a conversation.

Smart Meeting Rooms

Close-talk microphones have been traditionally used in teleconferencing rooms, as they provide

a higher signal to noise ratio. However, they require each user to wear a microphone, or limit

the movement of the speakers. In conjunction with microphone arrays, source separation and

extraction can be used to meeting rooms to allow for hands free operation, automatic transcrip-

tion of speech, and selective transmission of multiple speech sounds in teleconferences.

1.3 Thesis Overview

This work focuses on the separation of audio signals, and more specifically of speech signals.

The main motivation of this work is to develop new solutions to the problem of source sep-

aration and extraction methods for mixtures where the number of sources is larger than the

number of microphones. These mixtures are termed underdetermined mixtures. The problem

is related to the problem of solving a system of linear equations when there are more unknowns

than equations. This underdetermined problem is a challenging problem and it does not have a

unique solution without additional constraints and prior information. As previously discussed

in this chapter, traditional source separation techniques such as ICA and linear beamforming

are not suited for underdetermined mixtures.

The main aim of this work is a framework which extends the use of beamforming techniques

to underdetermined speech mixtures. We describe frequency domain non-linear mixture of

beamformers that can extract a speech source from a known direction when there are fewer

microphones than sources, and do not require knowledge of the number of speakers. In this

framework, we introduce additional degrees of freedom to the beamformer by exploiting the

super-Gaussianity and the sparsity of the speech signals in the time-frequency domain1, and

1Due to the combination of the non-stationarity and harmonic content, speech signals have their energy concen-

trated in isolated regions in time and frequency, and most of the coefficients do not differ significantly from zero

(sparse). Therefore, speech signals exhibit a zero mean super-Gaussian probability distribution, which has a sharper
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dynamically finding suitable directivity patterns in order to reduce active interfering signals.

The work presented in this thesis is structured as follows:

Chapter 2 is an overview of source separation and extraction principles and methods. We

describe the different possibilities of source separation and extraction environments and the po-

tentially available prior knowledge of the sources, mixing process, and the microphones. We

then introduce some of the properties of speech signals which are important in understanding

why particular models and methods are used in speech separation and extraction. This is fol-

lowed by a description of room acoustics. The different scenarios where audio mixtures can be

obtained are discussed and we describe the instantaneous, anechoic, and echoic mixing mod-

els. We then discuss performance measures that can be used to evaluate source separation and

extraction methods. Finally, the main existing source separation and extraction methods are

discussed.

In Chapter 3, we exploit the speech’s sparsity in the time-frequency domain in order to extend

the use of beamforming techniques to underdetermined speech mixtures. We use Gaussian

mixture models (GMMs) to model the speech non-Gaussianity and the spatial distribution of

the sources. We present three frequency domain non-linear beamformers that can extract a

desired source from a known direction. The first two non-linear beamformers are based on

modeling the desired source signal and the interference separately. The desired source signal

is modeled using a 1-dimensional GMM, and the observed interference is modeled using an

N -dimensional GMM, where N is the number of microphones. The third non-linear beam-

former is based on modeling the observed mixture signal (the desired source and interference

together) using an N -dimensional GMM. In contrast to other speech enhancement and separa-

tion methods which use GMMs such as [24, 28, 29], our approach does not couple the Gaussian

states across frequency, and the covariance matrices of each Gaussian state represent a spatial

covariance matrix. To learn the GMMs parameters, we use the expectation maximisation algo-

rithm [30]. The model learning is performed using the observed mixture signals only, and no

prior training is required. Based on these models, we develop three non-linear beamformers.

The signal estimator in these beamformers comprises of a set of minimum mean square error

(MMSE), minimum variance distortionless response (MVDR), or minimum power distortion-

less response (MPDR) beamformers. In order to estimate the desired signal, all beamformers

are concurrently applied to the observed signal, and a weighted sum of the beamformers’ out-

peak and longer tails than the Gaussian probability distribution [27].
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puts is used as the signal estimator, where the weights are the posterior probabilities of the

GMM states. These weights are specific to each time frequency point, and have a non-linear

dependency on the observed data. The resulting non-linear beamformers combine the benefits

of non-linear time-varying separation in time-frequency masking with the benefits of spatial

filtering in the linear beamformers. We then present some simulation results that illustrate the

performance of the proposed methods. More experiments and comparisons of the proposed

methods with other source separation algorithms can be found in Chapter 5. The chapter is

followed by two appendices where the detailed derivations of the GMM learning rules using

the EM algorithm are presented.

In Chapter 4, we present a modification to the mixture of MPDR beamformers presented in

the previous chapter. The algorithm presented in this chapter combines time-frequency masking

techniques and mixture of beamformers. The proposed algorithm has two main stages. In the

first stage, the mixture time-frequency points are partitioned into a sufficient number of clusters

using time-frequency masking techniques. In the second stage, we use the clusters obtained

in the first stage to calculate covariance matrices, one for each cluster in each frequency bin.

These covariance matrices and the time-frequency masks are then used in a mixture of MPDR

beamformers. The resulting non-linear beamformer has low computational complexity and

removes the musical noise found in time-frequency masked outputs at the expense of lower

interference attenuation. The mixture of MPDR beamformers stage can be regarded as a post-

processing step for sources separated by time-frequency masking. Two variants of the proposed

method are described and compared. The first one uses binary time-frequency masks, and the

second one uses soft (real-valued) time-frequency masks. We then present some simulation

results that illustrate the performance of proposed methods. More experiments and comparisons

of the proposed methods with other source separation algorithms can be found in Chapter 5.

In Chapter 5, we investigate the effect of the mismatch between the assumed DOA of the

desired source and the true one. We incorporate different methods developed to enhance the

robustness of beamforming techniques against DOA mismatch in the mixture of beamformers

framework, and study their effect. Finally, we compare the proposed non-linear beamformers

with some other source separation and extraction methods in several reverberant rooms.

Finally, in Chapter 6, we summarise the results and contributions, and propose several direc-

tions for future work.
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• M.A. Dmour, M.E. Davies; “An approach to under-determined speech separation based

on a non-linear mixture of beamformers”, European Conference on Signal Processing

(EUSIPCO), 2009.

• M.A. Dmour, M.E. Davies; “Under-determined speech separation using GMM-based

non-linear beamforming”, European Conference on Signal Processing (EUSIPCO), 2008.

• M.E. Davies, M.A. Dmour; “A nonlinear frequency-domain beamformer for underde-

termined speech mixtures”, invited talk at Acoustics’08. The Journal of the Acoustical

Society of America, vol. 123, issue 5, p. 3586, 2008.
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Chapter 2
Audio Source Separation and

Extraction: Overview and Principles

2.1 Audio Source Separation and Extraction

Source mixing problems emerge in a wide variety of signal processing applications. Most

audio, radio, seismic, sonar, video, and biomedical signals are mixtures of several sources

that are simultaneously active. In general, observations are obtained at the output of a set of

sensors, each receiving different combinations of the source signals. In certain applications,

we aim to decompose the mixture signal into the original source signals (source separation). In

many practical applications, however, prior information about a desired source, such as source

location or identity, might be available and exploited to extract only one source of interest while

reducing undesired interfering signals and noise (source extraction).

In this research, we will concentrate on audio source separation and extraction for speech ap-

plications. There are many applications where speech source separation and extraction may

be useful; such as in hearing aids, noise-cancelling headphones, human-computer interaction,

teleconferencing, and surveillance.

Audio source mixing can occur in a wide variety of situations under different environments.

The difficulty of source separation and extraction depends on the way the source signals are

mixed within the environment and on the a priori knowledge of the sources, microphones, and

mixing parameters. The number and type of the assumptions used to perform source separation

and extraction varies depending on the model used. Blind methods do not use any training

data and do not assume a priori knowledge of sources, microphones, or mixing parameters. By

contrast, informed methods exploit some prior information about the sources and microphones

(for example, their location). Most existing source separation and extraction techniques require

prior information or assume probability models for the sources and/or the mixing process.

A very important factor affecting the separation difficulty is the length of the mixing channel

impulse response. The simplest case is instantaneous mixing, where each source signal appears
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at all the mixture channels at the same time with differing intensity. The anechoic or delayed

case is similar to the instantaneous case, but each source signal reach each microphone with a

different delay. When we have multiple paths between each source and each microphone, the

mixing is termed echoic or reverberant. Source separation and extraction is more difficult in

the echoic case as each source signal arrives at each microphone from multiple directions at

different times, and we need to remove multipath interference. Furthermore, source separation

and extraction is more difficult if the sources are moving as this will lead to the mixing channel

changing with time.

Another important factor influencing the complexity of source separation and extraction is the

ratio of the number of sources to the number of microphones. A mixture is termed a determined

mixture when the number of microphones is equal to the number of sources, overdetermined

when the number of microphones is larger than the number of sources, and underdetermined

when it is smaller. Source separation and extraction is more difficult when the number of

microphones is smaller than the number of sources, as in this case, even if the mixing channel

is identified, estimating the sources is not a trivial task and requires a priori knowledge on the

sources. When only one microphone is available, source separation and extraction becomes

much more challenging, as in this case spatial cues are absent. In this situation, more advanced

source models relying on spectro-temporal cues are needed to make any separation feasible.

The amount of a priori knowledge can also influence the complexity of the source separation

and extraction problem. Most methods assume the knowledge of certain information. Com-

monly assumed a priori knowledge include microphone geometry, source geometry, number of

sources, type of sources (speech, music,...etc) and channel parameters.

Table 2.1 summarises the different possibilities of source separation and extraction environ-

ments and a priori knowledge.

2.2 Speech Signals

Before starting to describe speech separation and extraction methods, it is vital that we become

familiarised with the speech production process and the speech signal. In this section, we

introduce some of the properties of speech signals which are important in understanding why

particular models and methods are used in speech separation.
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mixing channel

• instantaneous/anechoic/echoic

• known/unknown/partial knowledge

• static/changing

sources/microphones ratio

• overdetermined

• determined

• underdetermined

• single microphone

number of sources

• known/unknown

• variable

source location
• static/moving

• known/unknown

type of sources

• speech/music/other

• point/spatially-spread source

microphone array

geometry

• known/unknown

• linear/planar/volumetric

Table 2.1: Source separation and extraction categories.
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Speech is generated when the vocal tract is excited and is composed of two types: voiced and

unvoiced. Voiced sounds, which includes the vowels and some consonants such as B, D, L,

M, N, and R, are pronounced with an open vocal tract excited by a pulsating airflow resulting

from the vibration of the vocal cords (or vocal folds). This excitation have spectral peaks at

the harmonics of the speaker’s fundamental frequency or pitch frequency. Males typically have

a lower fundamental frequency than females because their vocal cords are longer and more

massive [31]. In unvoiced sounds, which includes consonants such as F, S, and SH, the vocal

cords do not produce a periodic output. Unvoiced sounds are pronounced when the air flow is

constricted by the tongue, lips, and/or teeth, resulting in air turbulence.

Both voiced and unvoiced sound sources are modified by the acoustic cavities of the vocal tract

formed from the tongue, lips, mouth, throat, and nose. The vocal tract acts as a resonant cavity,

and the resonances are known as formants. Different sounds are generated by altering the size

and shape of the vocal tract resulting in different formants.

2.2.1 Time-Frequency Representation

Time-frequency representation is an effective tool for processing speech signals whose fre-

quency content changes in time. Time-frequency representation provides the distribution of

signal energy versus time and frequency. There are many time-frequency representations avail-

able [32–34]. We discuss below some of the most popular ones in speech processing.

Short-Time Fourier Transform (STFT)

A popular method for time-frequency representation is the short-time Fourier transform (STFT).

In the STFT, the time domain signal s(t) sampled at frequency fs is sectioned into short, win-

dowed, and overlapping frames and the discrete Fourier transform is used to find the frequency

spectrum of each frame. The STFT of the signal s(t) in time frame n and at frequency f , with

an F -sample frame and H-sample shift (hop size) is given by:

s(n, f) =
∑

t

s(t)wina(t− nH)e−ι2πft (2.1)

where ι =
√
−1, f is one of F frequencies f = 0, (1/F )fs, ..., ((F − 1)/F )fs, and wina is the

analysis window that is non-zero only in an F sample interval [0, F − 1] and typically tapers
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smoothly to zero at each end of the interval.

To reconstruct the time domain signals s(t) from s(n, f), we use the inverse STFT (ISTFT):

s(t) =
∑

n

∑

f

wins(t− nH)s(n, f)eι2πft (2.2)

where wins is a synthesis window that satisfies the condition [18]:

∑

n

wina(t− nH)wins(t− nH) = 1, ∀t (2.3)

In the STFT (and any other time-frequency decomposition), there is a tradeoff between time

and frequency resolution. We can improve the frequency resolution by increasing the STFT

frame size, but this leads to a reduction in the temporal resolution.

Other Time-Frequency Representations

The STFT provides equal frequency resolution for all frequencies. However, speech signals

concentrate most of their energy at low frequencies and overlapping of source signals is more

probable to be present in this frequency region. The Constant-Q transform [35] imposes the

condition that all subbands must have the same quality factor, therefore it has more frequency

resolution in low frequencies, and less frequency resolution in the high frequencies than the

STFT. Time-frequency representations can also be defined to simulate the non-uniform fre-

quency resolution in the cochlea as in auditory filter banks [12, 36].

The Spectrogram

Figure 2.1 shows a speech waveform. A common way to display speech signals is the spectro-

gram, as in Figure 2.2. The time-frequency coefficients are stacked side-by-side, and converted

into an image providing a way of observing the variation of the frequency spectrum of speech

with time. In the image, the horizontal axis corresponds to time and the vertical axis to fre-

quency, with colour or intensity indicating the strength of each time-frequency point (squared

magnitude of the time-frequency coefficient).

15



Audio Source Separation and Extraction: Overview and Principles

0 1 2 3 4 5 6
−0.1

−0.05

0

0.05

0.1

0.15
Speech Waveform

M
ag

n
it

u
d
e

Time (s)

Figure 2.1: Typical speech waveform.

F
re

q
u

en
cy

 (
H

z)

Time (s)

Speech Spectrogram

0  1  2  3  4  5  6

6000 

 5000

 4000

 3000

 2000

 1000

 0   

Figure 2.2: Speech spectrogram calculated from the STFT coefficients.
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2.2.2 Speech Signal Characteristics and their Utilisation in Source Separation

and Extraction

Many source separation methods exploit properties of speech signals to enable separation. Reg-

ularities in the sources such as common onset characteristics, (i.e., energy appearing at different

frequencies at the same time), and harmonicity can be exploited in speech separation. Further-

more, statistical properties of speech such as non-gaussianity, non-stationarity, non-whiteness,

and sparseness are popularly exploited in speech separation methods:

Non-stationarity

Speech signals are non-stationary signals in that their power spectra change over time, and

amplitude modulations are largely responsible for the non-stationarity [31]. However, within

short periods of time (approximately 20 ms), its spectral characteristics are fairly stationary

[31, 37].

Non-Gaussianity

Speech signals typically exhibit a super-Gaussian probability distribution, which has a sharper

peak and longer tails than the Gaussian probability distribution, though this is mainly due to the

amplitude modulations of the signals. However, if we examine a speech signal over short term

instances (approximately 20 ms), its distribution can appear super-Gaussian or sub-Gaussian

[27, 38]. Speech signals are more super-Gaussian with an appropriate time-frequency represen-

tation even in short frames due to a combination of the non-stationarity and harmonic content

of speech.

Non-whiteness

Speech signals are typically temporally correlated. Samples of each speech signal are not inde-

pendent. However, samples from different talkers can be assumed to be statistically indepen-

dent.
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Sparseness

A signal is sparse when only a few instances have a value significantly different from zero.

Due to the combination of the non-stationarity and harmonic content, speech signals have their

energy concentrated in isolated regions in time and frequency, therefore, speech is sparse with

an appropriate time-frequency representation. Moreover, the non-stationarity characteristics of

individual talkers is not likely to be similar, which leads to the significant coefficients for one

source to be often localised in different time-frequency points than for other sources. This leads

to few overlaps of different sources in time and frequency.

2.3 Room Acoustics

This section introduces some basics of acoustic channels which are important for understanding

why particular models are used in the audio source separation literature.

Sound waves spread out of sound sources and propagate at a speed which depends upon the

pressure and density of the propagation medium. The speed of propagation in air is approxi-

mately c = 340 ms−1. The amplitude of the wave decreases with the distance travelled. Gen-

erally, the radiation of point sources is modeled by spherical waves if the source size is small

compared to the sound wavelength and if the positions of observation are close to the source.

The area close to the point source is termed near field and in this case, the wave front is curved

with respect to the distance between the positions of the observations. The sound waves may

be approximated as plane waves at a sufficient distance from the source due to the decreasing

curvature of the wave with respect to the distance between the positions of the observations.

This is termed far field approximation. A wave source may be considered to come from the far

field if [39, 40]:

r >
2D2

λ
(2.4)

where r is the distance to the source, λ is the wavelength, and D is the aperture width of the

array (the geometric extent of the array). When a source is close to the array, the differences in

distance to different parts of the array can be significant, which results in amplitude differences

across the array. This must be taken into account with array processing methods especially

methods that are sensitive to errors.

In real-life audio recordings, a recorded signal may contain multiple delayed and attenuated
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versions of the sources due to reflections of the sound waves by the room surfaces and other

objects present in the room. These reflections are known as reverberation. The length of the

room impulse response can be described by its reverberation time (RT). Reverberation time

is the time interval it takes for the reverberation level to decay by 60 dB. Room reverbera-

tions typically last longer at low frequencies than they do at high frequencies. In general, the

reverberation time is proportional to the room dimensions and inversely proportional to the ab-

sorption factor of the wall materials. The reverberation time is on the order of 150 to 500 ms in

office rooms, and 1 to 2 s in concert halls [41, 42].

Measuring the Reverberation Time

Reverberation time is a local property of a room. Different positions of the source/microphone

will give different reverberation times. Generally speaking, a reverberation time of a room is

usually done on many source/microphone positions.

The reverberation time can be determined experimentally. The first step is to measure the

impulse response a(t). Impulsive excitations are usually avoided because they can only be

approximations to true impulses and because it is difficult to attain a high signal to noise ra-

tio. Another way to measure the room impulse response is to run a logarithmic sweep with

instantaneous frequency varying exponentially with time through the loudspeaker, measure it

at the point of interest, and then convolve the acquired signal with a time-reversed version of

the excitation signal [43]. Logarithmic sweeps have a pink spectrum and have the property that

its spectral distribution is often quite well adapted to ambient noise, resulting in a good signal

to noise ratio at lower frequencies [44]. Figure 2.3 shows a room impulse response measured

using this method.

To determine the reverberation time from the impulse response, the Schroeder method can be

used [45]. First the squared impulse response is summed over time to generate the Schroeder

energy decay curve:

Edecay(t) =

∞∑

τ=t

a2(τ) (2.5)

The presence of noise causes a reduction in the slope of the late part of the Schroeder curve.

The slope change is due to noise being integrated along with reverberation. The standardised

methods [46] recommend extrapolating the segment between -5 dB and -35 dB of the measured

decay curve to 60 dB by linear least-squared regression. If this 30 dB linear decay cannot
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be measured, then a shorter range can be used. Figure 2.4 shows the result of applying the

Schroeder method to the impulse response of Figure 2.3.

2.4 Audio Mixtures

There are many scenarios where audio mixtures can be obtained. This results in different

characterstics of the sources and the mixing process that can be exploited by the separation

methods.

The observed spatial properties of audio signals depend on the spatial distribution of a sound

source, the sound scene acoustics, the distance between the source and the microphones, and the

directivity of the microphones. In general, speakers and small sound sources can be modeled

as point sources if the sound source has a “negligible” extent and can be considered to be

producing sound from a single point in space. Larger sound sources such as the piano or large

loudspeakers emit sound at different spatial positions at the same time and are called extended

sources. In many cases, the sources get filtered before being mixed. In natural recordings

in a reverberant environment, the filters correspond to the acoustic impulse response between

the source and the microphones. In hearing aid applications, the acoustic impulse response

includes the effects of filtering by the human head. Sound effects such as panning, artificial

reverberation, and equalising can also be introduced artificially using a mixing console (also

called sound board or audio mixer) or dedicated software. Artificial sound effects are popular

in music and movies applications.

In this research we focus on natural audio mixtures in which the mixing parameters are deter-

mined by the relative positions of sound sources and the microphones. Researchers who focus

on this problem can acquire audio mixtures for the purpose of developing and testing source

separation methods using a wide variety of methods.

A popular method to acquire audio mixtures for algorithm testing and development purposes

is to use synthetic mixing. Synthetic mixtures can be acquired by filtering audio sources by a

measured impulse response [47] or a synthetic impulse response obtained from room simula-

tion software. While synthetic impulse responses are not as realistic as those recorded in real

environments, they allow more control of the experiment parameters and conditions such as

reverberation time, location of sources, array geometry and noise level.

20



Audio Source Separation and Extraction: Overview and Principles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Impulse response

Time (s)

S
ig

n
al

 l
ev

el

Figure 2.3: Impulse response of a room.

0 100 200 300 400 500 600 700
−70

−60

−50

−40

−30

−20

−10

0
Energy Decay Curve

Time (ms)

E
n
er

g
y
 (

d
B

)

Figure 2.4: Energy decay curve of the room impulse response (solid line) and the extrapolation

of the linear segment of the measured decay curve (dashed line) yielding RT = 708

ms.

21



Audio Source Separation and Extraction: Overview and Principles

Simulated live recordings are another popular method to acquire audio mixtures for algorithm

testing and development purposes. In simulated live recordings, audio sources are played

through loudspeakers, recorded one at a time by a microphone array, and subsequently added

together. The sources are recorded one at a time in order to acquire the contribution of each

source to the mixture individually as this helps at the performance computation stage (see Sec-

tion 2.7). Compared to using synthetic impulse responses, live recordings include the effects

of non-ideal microphones and any properties of the acoustic environment that the software

did not simulate. Live recording can also be acquired using real human speakers. This ap-

proach includes effects such as of the speakers moving their head, but requires considerable

organisational effort. Results from the stereo audio source separation evaluation campaign [48]

suggested that the difficulty of separating live recordings and synthetic mixtures was similar,

provided they featured the same reverberation time.

2.5 Simulating Room Acoustics

As discussed in the previous section, using room simulation software allows us to quickly ex-

plore the behaviour of source separation methods in various scenarios. There are many different

methods for modeling room acoustics, but no single method can model the entire audible fre-

quency range [49]. At low frequencies, the wavelength of sound can be comparable to the

dimensions of the room, and acoustics of a room can be analysed using solutions of the wave

equation [42]. In a standard room, the dimensions of the room are large compared with the

wavelength of sound for a wide range of frequencies, and specular reflections and the sound

ray approach can be used model the room acoustics [42].

The image method is the most well known technique for simulating the impulse response of

a rectangular rooms [50]. Instead of tracing all reflections, mirror images of the source with

respect to the room surfaces are created.

When a sound wave strikes a wall, the reflection angle is equal to the incident angle. Therefore

the reflection of sound from the source can be replaced by placing an image source symmet-

rically on the other side of the wall. In the image method, the walls of the room are replaced

by point sources of varying strength and location. The image source will have less power to

account for the signal energy lost due to absorption by the walls and the decay with distance.

As the image source gets further from the microphone, its contribution gets weaker.
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Figure 2.5 shows the construction of an image source from the reflection of a wall.

This method can then be extended to include the reflections from all the room walls. The

process is then repeated as each image is itself imaged in order to simulate multiple reflections.

Figure 2.6 shows the construction of multiple images.

In [51], the image method was extended to arbitrary polyhedra rooms with any number of sides.

2.6 Mixing Models

Generally, the problem of source separation is stated to be the process of estimating the signals

from M unobserved sources,

S = [s(1), s(2), ..., s(T )] =




s1(1) s1(2) . . . s1(T )

s2(1) s2(2) · · · s2(T )
...

...
. . .

...

sM(1) sM (2) · · · sM (T )




(2.6)

given only a set of T samples from N microphones,

X = [x(1),x(2), ...,x(T )] =




x1(1) x1(2) . . . x1(T )

x2(1) x2(2) · · · x2(T )
...

...
. . .

...

xN (1) xN (2) · · · xN (T )




(2.7)

which arises when the signals from the M unobserved sources are linearly mixed together. The

signal recorded at the ith microphone at time t can be modeled as:

xi(t) =

M∑

j=1

P−1∑

p=0

αp
ijsj(t−∆p

ij) (2.8)

where P is the number of paths between each source-microphone pair, αp
ij represents the atten-

uation of the pth acoustic path from source j to microphone i, and ∆p
ij is the delay of the pth

path from source j to microphone i. This model assumes a fixed number of sources and a static

channel. The mixing process can be written in a vector form as follows:
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Figure 2.5: Creating the image source. The solid line represents the actual path, while the

dashed line represents the perceived path.

Figure 2.6: The original room and the images. The microphone is in black, the source is in

white, and the images are in grey. The actual image space is three dimensional.

24



Audio Source Separation and Extraction: Overview and Principles

x(t) = A(t) ⋆ s(t) (2.9)

where ⋆ denotes the convolution operator and A is a N ×M matrix of mixing filters:

A =




a11 a12 . . . a1M

a21 a22 · · · a2M

...
...

. . .
...

aN1 aN2 · · · aNM




(2.10)

with elements aij =
∑P

p=1α
p
ijδ(t−∆p

ij). For mathematical convenience, it is common to nor-

malise the magnitude and delay of each column in the mixing matrix (having a reference mi-

crophone with no attenuation and zero delay).

These equations can be mapped to the time-frequency domain using the STFT. Denoting the

STFT coefficients of xi(t) and sj(t) as xi(n, f) and sj(n, f), in the time frame n and frequency

bin f , and assuming that the STFT frame length is larger than the length (the largest delay) of

the mixing filters aij , and that the narrowband assumption holds, 1 we can approximate the

mixing filters by complex mixing scalars aij(f), and the convolution in the time domain can be

written in the frequency domain as separate multiplications for each frequency:

xi(n, f) ≈
M∑

j=1

aij(f)sj(n, f) (2.11)

This mixing process can be written in a vector form as follows::

x(n, f) = A(f)s(n, f) (2.12)

Assuming we are only interested in extracting source j′, j′ ∈ {1, 2, ...,M}, the mixing model

1We decompose the speech broadband signal into narrowband bandpass signals using the STFT. We assume that

the array size is small enough relative to the STFT frame length and the bandwidth of each bandpass signal such

that relative delay between the microphones can be expressed as a phase shift. This is known as the narrowband

assumption [13, 52]. This condition is easily met in non-echoic rooms with moderately sized STFT windows. For

example, the maximum delay in a 5 cm linear array is 0.05/340 = 0.15 ms, and a 1024 point window corresponds to

64 ms at 16 kHz sampling rate.
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in (2.11) can be reformulated as:

xi(n, f) = aij′(f)sj′(n, f) +
∑

j 6=j′

aij(f)sj(n, f)

= aij′(f)sj′(n, f) + vi(n, f) (2.13)

where vi represents the contribution of the interferers to the mixture signal xi. In vector form,

the mixing model can be written as:

x(n, f) = a(f)s(n, f) + v(n, f) (2.14)

where x(n, f) = [x1(n, f), ..., xN (n, f)]T is the observed multichannel mixture signal, a(f)

is the N × 1 array response vector in the direction of the desired source signal s (also called

the propagation vector or steering vector), and v(n, f) = [v1(n, f), ..., vN (n, f)]T is the N×1

vector of the contribution of the interferers and any possible noise to the mixture signal. In this

model, no assumptions are made about the interferers. The interferers can be be of any nature

such as point sources, spatially extended sources, diffuse sources, or a combination of them.

The array response vector a(f) is the representation of the delays and the attenuation in the

frequency domain, and depends on the array geometry and the location of the desired source

signal. If we consider near field conditions, we have:

a(f) = [α1e
−ι2πf∆1 , ..., αN e−ι2πf∆N ]T (2.15)

where ι =
√
−1, αi = ri

rI
is equal to the ratio of the distance from the source to the ith

microphone (ri) to the distance from the source to the reference microphone (rI ), and:

∆i = (ri − rI)/c (2.16)

When the source distance to the microphone array is much larger than the microphone spacing,

the value of αi is very close to 1, and we have:

a(f) ≈ [e−ι2πf∆1 , ..., e−ι2πf∆N ]T (2.17)

In the special case of uniform linear array, and far-field sources, we can approximate the delay

between the microphones as ∆i = (i − I)(d/c) sin φ, where d represents the microphone

spacing for the uniform linear array, c the sound velocity, and φ the DOA relative to broadside.
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In this case (far field), the delay between the microphones is independent of the source distance.

In general, the mixing process can be classified as either instantaneous, anechoic, and echoic.

We now describe these mixing processes in more detail.

2.6.1 Instantaneous Mixtures

In the case of instantaneous mixing, where the samples of each source arrive at the microphones

at the same time and with differing attenuations, each elements of the mixing matrix aij is a

scalar that represents the amplitude scaling between source j and microphone i. Instantaneous

mixing can be encountered in synthetic audio mixtures.

2.6.2 Anechoic Mixtures

The anechoic mixing model is an extension of the instantaneous mixing model where delays

between microphones are considered. In anechoic mixing, it is assumed that the samples of

each source signal can arrive at the microphones with different delays and aij takes the form

αijδ(t−∆ij). Anechoic mixtures can be encountered in reverberation free environments (such

as acoustic anechoic chambers), where the samples of each source signal can arrive at the

microphones only from the line of sight path, and the attenuation and delay of source j would

be determined by the physical position of the source relative to the microphones. Anechoic

mixtures can also be encountered in synthetic mixtures.

2.6.3 Echoic Mixtures

In echoic (also referred to as reverberant) mixing, there exist multiple paths between each

source-microphone pair, and aij takes the form
∑P

p=1α
p
ijδ(t −∆p

ij), where P is the number

of paths between each source-microphone pair. In this case, each microphone signal at time

t depends on source signals from not just the same instant of time, but also from previous

instants. The echoic mixing model is the most natural mixing model, and can be encountered

in live recordings or synthetic mixtures.
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2.7 Evaluation Measures

Many performance measures for source separation and extraction have been proposed. If the

goal of source separation is the creation of audio for a human listener, the opinion of human

listeners in subjective tests is the gold standard to evaluate the quality of the audio signal.

Subjective evaluation involves a group of listeners being asked to rate the quality of speech

along a predetermined scale. In order for the listening tests to be accurate, they are conducted

with a large number of listeners and are therefore expensive, slow to conduct, and require

considerable organisational effort. On the other hand, assuming the true sources are known, it

is feasible to compute numerical performance measures for the separation quality by measuring

the numerical “distance” between the true sources and their estimates . For an objective measure

to be valid, it needs to correlate well with subjective listening tests.

An obvious objective measure to evaluate the quality of the estimated sources is the signal to

distortion ratio (SDR). The SDR measures the ratio between the energy of the true source and

estimation error:

SDR = 10 log10

‖s‖2

‖ŝ− s‖2
(2.18)

This SDR is an overall measure of all distortions, including residual interference and any arti-

facts and changes to the desired signal introduced by the separation method.

However, depending on the application, different distortions can be allowed between a source

estimate and the true source [53]. In most cases, it is perfectly acceptable to recover the source

signals with an arbitrary gain factor, and in some cases, a linear filtering distortion can be

allowed. Moreover, it is useful to measure separately the amount of residual interference and

the amount of other artifacts, such as musical noise.

In [53], an evaluation method has been proposed that allows linear filtering distortions and

provides a separate measure for residual interference, termed the source to interference ratio

(SIR) and forbidden artifacts, termed the sources to artifacts ratio (SAR). The computation

of the evaluation measures involves two steps. In the first step, each estimated signal ŝj is

decomposed as:

ŝj = starget + einterf + eartif (2.19)
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where starget is a version of the desired source sj modified by an allowed distortion, and where

einterf and eartif are respectively the interferences and artifacts error terms. The decomposition is

based on orthogonal projections. In [53], it is shown how to decompose ŝ when the allowed dis-

tortions are: time-invariant gain, time-invariant filtering, time-varying gain, and time-varying

filtering.

In our work, we will allow for time-invariant filtering. This is achieved as follows. starget is

computed by projecting ŝj on the subspace spanned by delayed versions of sj [53]:

Psj
=
∏
{(sj(t− δ)0≤δ≤L−1} (2.20)

starget = Psj
ŝj (2.21)

where L−1 is the maximum delay allowed and
∏
{y1, ..., yk} denotes the orthogonal projector

onto the subspace spanned by the vectors y1, ..., yk . einterf is obtained via [53]:

Ps =
∏
{(sj′(t− δ)0≤j′≤M,0≤δ≤L−1} (2.22)

einterf = Psŝj − Psj
ŝj (2.23)

and finally eartif is obtained via:

eartif = ŝj − Psŝj (2.24)

The computation of the above projections are detailed in [53].

In a second step, energy ratios are computed to evaluate the relative amount of each of these

terms as follows:

SDR = 10 log10

∥∥starget

∥∥2

‖einterf + eartif‖2
(2.25)

SIR = 10 log10

∥∥starget

∥∥2

‖einterf‖2
(2.26)

SAR = 10 log10

∥∥starget + einterf

∥∥2

‖eartif‖2
(2.27)

These performance measures are implemented within a MATLAB toolbox named BSS_EVAL
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distributed online under the GNU public license [54]. These performance measures are the

most popular in the audio source separation community.

Perceptual measures have also been proposed to evaluate audio source separation algorithms

[55, 56]. However, most perceptual measures have been developed for audio codec evaluation,

and have been optimised for signals where the difference between the output and true signals

is caused by quantisation and compression. Therefore, it has been argued that they are not well

suited for source separation applications [57].

On a final note, when source separation is used as a pre-processing stage to some subsequent

application, the effectiveness of source separation can be judged by the performance of the fi-

nal application. Metrics can be devised to measure the effectiveness of the source separation

stage on the overall application. For example, the word error rate (WER) of a speech recog-

nition device [58] or the transcription accuracy of a music transcription system [59] have been

proposed.

2.8 Existing Techniques for Speech Source Separation and Extrac-

tion

2.8.1 Beamforming

Many approaches to speech source separation and extraction rely on beamforming techniques.

These techniques approach the separation problem from a spatial point of view; the micro-

phone array is used to form a spatial filter which can extract a signal from a specific direction

and reduce signals from other directions. This spatial filter can be expressed in terms of depen-

dence upon angle and frequency. Beamforming is accomplished by filtering the microphone

signals and combining the outputs to extract (by constructive combining) or reject (by destruc-

tive combining) signals according to their spatial location. Beamforming can separate signals

with overlapping frequency content that originate at different spatial locations [13, 14].

Beamforming for broadband signals like speech can, in general, be performed in the time do-

main or frequency domain. In time domain beamforming, a finite impulse response (FIR) filter

is applied to each microphone signal, and the filter outputs combined to form the beamformer

output. Beamforming can be performed by computing multichannel filters whose output is ŝ(t)
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an estimate of the desired source signal. The output can be expressed as:

ŝ(t) =

N∑

i=1

P−1∑

p=0

wi,pxi(t− p) (2.28)

where P−1 is the number of delays in each of the N filters. In frequency domain beamforming,

the microphone signal is separated into narrowband frequency bins (for example using a STFT),

and the data in each frequency bin is processed separately.

Beamformers can be classified as either deterministic (also termed data-independent) or statis-

tically optimum. The filters in a deterministic beamformer do not depend on the microphone

signals and are chosen to approximate a desired response. For example, we may wish to re-

ceive any signal arriving from a certain direction, in which case the desired response is unity

over at that direction. As another example, we may know that there is interference operating

at a certain frequency and arriving from a certain direction, in which case the desired response

at that frequency and direction is zero. The simplest deterministic beamforming technique is

delay-sum beamforming, where the signals at the microphones are delayed and then summed in

order to combine the signal arriving from the direction of the desired source coherently, expect-

ing that the interference components arriving from off the desired direction cancel to a certain

extent by destructive combining. Assuming that the broadband signal can be decomposed into

narrowband frequency bins, the delays can be approximated by phase shifts in each frequency

band.

In statistically optimum beamforming, the filters are designed based on the statistics of the ar-

riving data to optimise some function that makes the beamformer optimum in some sense. For

example, a beamformer can be designed to minimise the expectation of the squared difference

between the beamformer output and the desired source. This beamformer can be viewed as

a multichannel Wiener filter and is called the Minimum Mean Square Error (MMSE) Beam-

former. As in deterministic beamforming, constraints can be used to shape the directivity pat-

tern of the beamformer in order to emphasise or attenuate specific directions and frequencies.

For example, in minimum-variance distortionless response (MVDR) beamforming, the beam-

former response is constrained so that signals from the direction of interest are passed with no

distortion, while minimising the power of the beamformer’s output. This leads to a reduction

in noise and interference power while preserving the integrity of the desired source signal.

In practice, the statistics needed to design the optimum beamformers are usually not known
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and/or are changing, and we must estimate them from the incoming data and follow their

changes over time. The statistics can be estimated from a temporal block of data (block adap-

tation), or adjusted as the data arrives (continuous adaptation).

In [60, 61], beamforming weights were calculated using time-domain recursive algorithms. In

the Frost beamformer [60], beamforming weights are recursively adjusted using a constrained

least mean squares (LMS) algorithm to minimise the output power of the beamformer while

maintaining a constant response in the look-direction. In the generalised sidelobe canceller

[61], the constrained minimisation problem is converted to an unconstrained minimisation prob-

lem using a two path structure: a deterministic path and an adaptive path. The deterministic

path is a deterministic beamformer with constraints on the desired signal. The adaptive path

employs a spatial blocking structure that blocks the desired signal and adaptively minimise the

non-desired components using an unconstrained LMS.

Recently, it was shown in [62] that in the case of two microphones, a frequency-domain

minimum-variance (FMV) beamformer which performs sample matrix inversion using statis-

tics estimated from a short sample support (sliding block adaption) gives better performance

than time-domain recursive algorithms [60, 61] in multi-talker acoustic environments. In the

FMV algorithm [62], it is assumed that source activity patterns are constant over small time

intervals of speech signals in each frequency band, but could vary over longer time spans. In

the FMV algorithm, STFT values of the mixture signals are stored in a buffer, and a correlation

matrix is calculated for each frequency bin using the most recent 32 values. MVDR weights

are then calculated using the correlation matrix. Only statistics gathered over a very short pe-

riod of time are used in the calculation of weights. The quick adaptation of the beamformer

weights can substantially reduce a large number of nonstationary interferences while utilising

few microphones [62]. But the computational load is high due to recurrent matrix inversions

in each frequency band and the need to have a very small step size in the STFT. In practice,

however, source activity patterns can change abruptly between samples, and the FMV will per-

form spatial filtering based on the average power of the interfering sources active in the time

interval during which the beamformer weights are calculated. Thus the FMV beamformer is

forced to make a compromise between long intervals (good statistics) and short intervals (rapid

response).

In general, beamforming techniques require information about the microphone array configura-

tion and the sources (for example, the direction of the desired source). However, beamforming
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techniques can attenuate spatially spread and reverberant interferers, and there is no need to

determine the number of interferers. In general, linear adaptive beamforming can attain excel-

lent separation performance in determined or over-determined mixtures. However, in under-

determined mixtures, perfect attenuation of all interferers becomes impossible and only partial

interference attenuation is possible.

2.8.1.1 Statistically Optimum Beamformers

In this subsection, we discuss some of the statistically optimum beamformers that are relevant

to this thesis. We consider the mixing model in (2.14). Note that x, a, s, and v are complex

valued, and depend on frequency f , but for readability and simplicity, we will omit this variable

in the rest of this subsection. From now on, we implicitly work in a given frequency band under

the narrowband assumption.

We will begin our discussion by modeling the desired source signal as an unknown nonrandom

signal arriving at the array from a known direction and present a derivation for the optimum

filter that minimises the output power and passes any signal arriving to the array from the spec-

ified direction through the filter undistorted. For this reason, this filter is termed the minimum

variance distortionless response (MVDR) filter. We then present a derivation for the optimum

linear beamformer to estimate the signal waveform using a MMSE criterion. We demonstrate

that this linear MMSE estimator consists of an optimum distortionless beamformer followed

by a scalar filter. Finally, we consider a beamformer that assumes that we know or can mea-

sure Rx = E[xxH ], the correlation matrix of the observed mixture signal x, but do not know

Rv = E[vvH ], the correlation matrix of the interference component. We choose a look direc-

tion and find the optimum distortionless filter for that direction that minimises the mean square

output power. We refer to this filter as the minimum power distortionless response (MPDR)

beamformer. A more detailed derivation and discussion can be found in many array processing

books, such as [52].

Linear Minimum Variance Distortionless Response (MVDR) Beamformer

Consider the mixing model:

x = as + v (2.29)

33



Audio Source Separation and Extraction: Overview and Principles

We assume that the interference signal is a sample function of a random process with known

second order statistics, but the desired source signal is an unknown nonrandom signal arriving

at the array from a known direction. We process the observed mixture signal with a linear

vector filter w (row vector) to get an estimate of the desired source signal:

ŝ = wx = was + wv (2.30)

We require that in the absence of interference ŝ = s. This distortionless constraint implies that:

wa = 1 (2.31)

We wish to minimise the variance of ŝ in the presence of interference under the distortionless

constraint. This is equivalent to minimising the power of the interference at the output. The

power of the output interference can be written as:

E[|wv|2] = wRvw
H (2.32)

where Rv is the correlation matrix of observed interference. The minimisation of the output

interference power can be done by taking derivatives with respect to w and setting them to be

equal to zero, while also including a Lagrangian term to account for the constraint in (2.31).

This gives the minimum variance distortionless response beamformer [52, 63]:

wMVDR =
aHR−1

v

aHR−1
v a

(2.33)

It can be shown [52] that if the interference is modeled as a circular complex Gaussian random

vector, then the output of the MVDR filter is the maximum likelihood estimate of the signal s.

Linear MinimumMean Square Error (MMSE) Beamformer

We now consider the optimum linear filter whose output is the MMSE estimate of the desired

signal s. We assume that the desired source signal is a scalar zero mean random variable with

known variance σ2
s . We also assume that the interference v have a spatial covariance matrix

Rv. Additionally, it is assumed that the signal and interference snapshots are uncorrelated.
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Therefore the spatial covariance matrix of x is:

Rx = Rv + σ2
saa

H (2.34)

The linear MMSE estimator of the desired signal s minimises the mean-square error:

ζ = E
[∣∣s−wMMSEx

∣∣2
]

(2.35)

Taking the derivative with respect to wMMSE and setting the result to zero gives:

E
[
sxH

]
−wMMSEE

[
xxH

]
= 0 (2.36)

Thus:

wMMSE = RsxHR−1
x

= σ2
sa

HR−1
x (2.37)

R−1
x can be simplified using the matrix inversion lemma:

R−1
x = R−1

v − σ2
sR

−1
v a(σ−2

s + aHR−1
v a)−1aHR−1

v (2.38)

Therefore, the linear MMSE estimator can be expressed as:

wMMSE = σ2
sa

H(R−1
v − σ2

sR
−1
v a(σ−2

s + aHR−1
v a)−1aHR−1

v )

=
aHR−1

v

aHR−1
v a + σ−2

s

(2.39)

This can alternatively be expressed as [52]:

wMMSE =
aHR−1

v

aHR−1
v a

σ2
s

σ2
s +

(
aHR−1

v a
)−1 (2.40)

︸ ︷︷ ︸ ︸ ︷︷ ︸
MVDR post filter
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The first term is an MVDR spatial filter, which suppresses the interfering signals without dis-

torting the signal propagating along the desired source direction. The second term is a single

channel post-filter. We see that the linear MMSE estimator is just a shrinkage of the MVDR

beamformer.

In general, the MMSE estimator is not linear in the data. The MMSE estimator is linear if either

the estimator is constrained to be linear, or all the signals are Gaussian.

Linear Minimum Power Distortionless Response (MPDR) Beamformer

The MVDR and MMSE beamformers assume that Rv and a are known, and the MMSE beam-

former also assumes that σ2
s is known . We now assume that we know Rx, the correlation

matrix of the observed mixture signal x, but do not know Rv, σ2
s , or a. We will steer the dis-

tortionless constraint to the direction ã that we believe the signal is arriving from. We want to

minimise the mean square output power subject to a distortionless constraint in the direction of

the steering vector. This gives the so called minimum power distortionless response (MPDR)

beamformer [52]:

wMPDR =
ãHR−1

x

ãHR−1
x ã

(2.41)

It can be shown that when the steering vector is equal to the array response vector in the direc-

tion of the desired source signal, the MPDR and the MVDR beamformers are identical [52].

2.8.2 Independent Component Analysis

Another approach to source separation is to exploit statistical properties of source signals. One

popular assumption is that the different sources are statistically independent, and is termed

Independent Component Analysis (ICA) [15]. In ICA, separation is performed on the assump-

tion that the source signals are statistically independent, and does not require information on

microphone array configuration or the direction of arrival (DOA) of the source signals to be

available. In the high-SNR instantaneous and determined mixtures case, the source separation

problem can be performed by estimating the mixing matrix A, and this allows one to compute

a separating matrix W = A−1 whose output:
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ŝ(t) = A−1x(t) = Wx(t) (2.42)

is an estimate of the source signals. The mixing matrix or the separating matrix W is de-

termined so that the estimated source signals are as independent as possible. The separating

matrix acts as a linear spatial filter or beamformer that attenuates the interfering signals.

ICA can be approached with the assumption of non-Gaussianity of the sources, called indepen-

dent components, using many methods such as the infomax principle [64], maximum likelihood

estimation [65], minimising Kullback-Leibler (KL) divergence [66], or using kurtosis or negen-

tropy as non-Gaussianity measures [67, 68]. Other ICA approaches use the time structure of

the source signals, and assume source signals have different power spectra (i.e., different auto-

covariance functions) [69] or have non-stationary variances [70]. In the ICA model, we cannot

determine the variances of the independent components (scale ambiguity), and we cannot de-

termine their order (ordering ambiguity). The identifiability and separability of ICA models

was investigated in [71, 72]. For some excellent reviews of ICA, see [16, 73, 74].

2.8.3 Convolutive Independent Component Analysis

In real room recordings, the mixing of speech signals is convolutive. Estimating the unmixing

filters for long acoustic channels in the time domain is generally computationally expensive.

Therefore, researchers transformed the task into the frequency domain. Transformation into

the frequency domain is usually done via the STFT. If a sufficiently long frame for the STFT

is used, the convolutive mixture can be approximated with an instantaneous mixture in each

frequency bin. Another good side-effect of the STFT is that speech signals are much sparser

(and hence much more non-Gaussian) in the time-frequency domain. ICA algorithms display

improved performance when sources are sparse [16]. In [75], unmixing was performed in the

frequency domain. However, the sources were modeled in the time domain in order to estimate

the unmixing matrix W(f). This requires the algorithm to transform between the frequency

and time domains for every update, thereby resulting in an increase in computational complex-

ity. It was proposed in [76] to work solely in the frequency domain; the source probability

model was applied in the frequency domain in order to avoid the extra complexity of trans-

forming between the frequency and time domains for every update. In this case, however,

the update is performed independently for each frequency bin, and the estimated sources are

arbitrarily ordered in each frequency bin (permutation ambiguity). In order to synthesise the
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separated signals in the time domain, frequency domain separated signals originating from the

same source should be grouped together. Therefore, it was proposed in [76] that some fre-

quency coupling be applied between neighboring frequency bins. This in turn imposes some

smoothness constraints across frequencies. However, it had limited effect on solving the permu-

tation problem. In [38], a time-frequency probabilistic source model was proposed to solve the

permutation problem; it is used to couple the frequency bins by measuring the signal envelope

along the frequencies.

In [77], geometric constraints were used to resolve some of the permutation ambiguities by

performing careful initialisation of the filter parameters, and using spatial penalty terms. Beam-

forming methods were also combined with the frequency domain framework in order to resolve

the permutation problem; in [78–80], the sources are separated using frequency domain ICA,

following which the sources are sorted according to the estimated DOA. The DOA approach

can be used to effectively align permutations. But, at low frequencies, we cannot estimate

the DOA accurately enough, and we also have the spatial aliasing problem at high frequen-

cies when the distance between the microphones is smaller than half the wavelength at these

frequencies. In [81], inter-frequency correlation of the speech signal envelope at neighboring

frequencies was used to align permutations, after fixing permutations at frequency bins when

the confidence of the DOA approach is sufficiently high. In [82], the harmonic structure of

speech signals was exploited and used with the DOA and neighboring frequencies correlation

approaches to provide a robust permutation alignment method.

In general, convolutive ICA can attain good separation performance in determined or over-

determined time-invariant mixtures. However, some aspects limit the application of ICA to

real-world environments. Long demixing filters are required to handle long reverberation in

order to reduce the reverberant components of interferers. On the other hand, it is desired that

demixing filters can be estimated using short data in order to cope with changing channels

in real environments. Furthermore, the ability to measure independence might fail with too

few samples [83]. In general, most ICA methods assume the number of sources is given a

priori, and classical ICA techniques cannot perform source separation in the underdetermined

mixtures case. For some excellent reviews of convolutive ICA methods for speech separation,

see [17, 18].
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2.8.4 More Sources than Mixtures

Many source separation applications are limited by the number of available microphones. It is

not always guaranteed that the number of microphones is more than or equal to the number of

sources. Source separation techniques initially only dealt with determined or overdetermined

mixtures where the number of sources was equal to or less than the number microphones (M ≤
N ). In this case, the problem is one of identifying the mixing matrix A and the source estimates

are simply s(t) = A−1x(t). In the underdetermined mixing case (M > N ), linear source

separation using the inverse of the mixing matrix is not possible (see (2.42)) as, in this case,

A is not square. Therefore, in underdetermined mixtures, there are two interrelated problems:

(1) the estimation of the mixing matrix, and (2) the estimation of the sources. In general, linear

methods can not completely remove more than N − 1 sources from the mixture. However,

under certain assumptions, it is possible to extract a larger number of sources by using non-

linear methods. The assumption that the sources have a sparse representation in a given basis

is a very popular assumption in underdetermined mixtures. Sparseness of a signal means that

only a few instances have a value significantly different from zero.

The mixing matrix estimation may be performed using either clustering or Bayesian approaches.

In [84], it is assumed that only one source can be non-zero at each sample. In this case, the col-

lection of points representing the mixture signal vectors are more or less aligned along straight

lines passing through the origin and the direction of these lines is given by the columns of the

mixing matrix. This alignment can be observed on the scatter plot of mixture signal. Figure

2.7 shows an example of the scatter plot of a two channel instantaneous mixture of three super-

Gaussian distributed sources. The essence of the clustering approach is the identification of

line orientation vectors from the mixtures. In [85], it was proposed to use a linear sparse trans-

form to enhance the performance of clustering and source separation. In [86, 87], the mixing

matrix was learned by maximising the probability of the data given the model. The likelihood

computation requires performing marginalisation over all sources:

p(x | A) =

∫
p(x | A, s)p(s)ds (2.43)

This integral is intractable for under-determined mixing. In [86], it was proposed to fit a multi-

variate Gaussian around the posterior mode, and the mixing matrix was learned by performing

gradient ascent. In [88], it was proposed to learn the source densities p(sj) from the observed

39



Audio Source Separation and Extraction: Overview and Principles

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

scatter plot

Figure 2.7: Scatter plot of an instantaneous mixture of three super-Gaussian distributed

sources.
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data. The sources were modeled as independent random variables with mixture of Gaussians

(MoGs) distributions; a parametric model, but sufficiently general to model arbitrary source

densities. An expectation maximisation (EM) algorithm [30] was used to learn the parameters

of the model, namely the mixing matrix, noise covariance, and source density parameters. In

[89], approximations were used to overcome the problem that the number of mixtures in the

observation density in [88] grows exponentially with the number of sources. The observation

density is written as a summation of Gaussians with decaying weights, and then the number of

Gaussians is truncated in order to retain only those with reasonable sized weights.

Given the mixing matrix, the sources can be estimated from the mixture using the LMS or

maximum a posteriori (MAP) estimation [87, 88, 90]. Imposing a source model, and given the

mixing matrix, the sources can be estimated by a gradient-based algorithm. However, this ap-

proach is usually slow. In [86], linear programming was used to maximise the log posterior

likelihood under a Laplacian prior. The Laplacian prior reduces the problem to one of minimis-

ing the L1-norm of the estimated sources. In [91], an efficient implementation of the L1-norm

minimisation for the two mixture case was presented; where a reduced matrix includes only the

columns of A whose directions (on the scatter plot) are closest from below and from above to

the direction of the mixture vector is used.

Another very popular approach to underdetermined source separation is time-frequency mask-

ing [19–21, 92–95]. This approach estimates the time-frequency representation of the desired

source sj(n, f) from the time-frequency representation of the mixture signal xi(n, f) by:

ŝj(n, f) = Mj(n, f)xi(n, f) (2.44)

where Mj is a time-frequency mask containing positive gains which must be adapted to extract

source j from the observed mixture. If the sources do not overlap in the time-frequency domain

it is possible to separate them with a binary mask. A mask can be applied in the time-frequency

domain to attenuate interfering signals while preserving time-frequency points where the signal

of interest is dominant. Figures 2.9 and 2.8 show the application of time-frequency masking

to extract a source from a mixture of four sources (the mask is computed using the DUET

algorithm, described below).

If more than one mixture signal is available, the spatial information at each time-frequency

point can sometimes be used to determine which time-frequency points belong to each source.
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Figure 2.8: Time-frequency masking. Plot (a) shows the desired source signal. Plot (b) shows

the mixture signal. Plot (c) shows an estimate of the desired source extracted by

applying time-frequency binary masks to the mixture signal.
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Figure 2.9: Time-frequency masking. Plot (a) shows the spectrogram of the desired source.

The brighter the time-frequency point, the higher energy it has. Plot (b) shows the

spectrogram of the mixture signal. Plot (c) shows the time-frequency mask used to

extract the desired source. White parts of the mask indicate selected region. Plot

(d) shows the spectrogram of the desired source estimate.
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A popular method to estimate the time-frequency masks using only two microphones is the

degenerate unmixing estimation technique (DUET) [19, 20, 96]. It is assumed that the time-

frequency representation of speech signals are approximately disjoint (i.e., sources do not over-

lap too much):

si(n, f)sj(n, f) ≃ 0, ∀i 6= j, ∀f,∀n (2.45)

This assumption is not fully met in practice, but speech signals exhibit a level of approximate

windowed orthogonality [97]. If we consider the anechoic model, and assume that at any time-

frequency point only one source is active, we get:


 x1(n, f)

x2(n, f)


 =


 α1je

−j2πf∆1j

α2je
−j2πf∆2j


 sj, for active source j (2.46)

We can see that when only one source is active, the ratio of the STFT of the two mixtures at any

time-frequency point depends only on the spatial information embedded in the channel param-

eters associated with the source active at that time-frequency point. This spatial information is

given by the inter-channel level difference (ILD):

ILD(n, f) =

∣∣∣∣
x2(n, f)

x1(n, f)

∣∣∣∣ (2.47)

which is also termed inter-channel intensity difference (IID), and the inter-channel phase dif-

ference (IPD):

IPD(n, f) = ∠

(
x2(n, f)

x1(n, f)

)
(2.48)

where ∠(.) denotes the phase of a complex number in (−π, π]. There is a phase ambiguity in the

IPD that follows from the periodicity of the complex exponential. A given value of IPD(n, f)

leads to several possible values of relative delay between the two microphones ∆2j − ∆1j .

This ambiguity is a problem at frequencies above f = 1
2∆max

, where ∆max is the maximum pos-

sible delay between the two microphones. To avoid this ambiguity, the microphones should be

separated by less than c/(2fmax) where fmax is the maximum frequency present in the sources

and c is the speed of sound. For example, for a maximum frequency of 8 kHz the microphones

spacing must be no more than 2.1 cm. The ILD has the property 1 > ILD(n, f) > 0 if the

signal on microphone 1 is louder, and ∞ > ILD(n, f) > 1 if the signal on microphone 2 is

louder. Therefore, a symmetric attenuation estimate SA(n, f) is estimated from ILD(n, f) as
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follows [19]:

SA(n, f) = ILD(n, f)− ILD(n, f)−1 (2.49)

The symmetric attenuation has the property that if the microphone signals are swapped, the

attenuation is reflected symmetrically about a centre point (SA = 0).

The DUET algorithm calculates the relative attenuation and delay values between the two ob-

servations and constructs a two dimensional histogram (SA(n, f), IPD(n, f)/(2πf)). The his-

togram is weighted (by the power of each time-frequency point) and smoothed [19, 20]. In

DUET, each time-frequency point in proximity of a peak centre in the histogram is assigned

to the source corresponding to that peak, and a time-frequency binary mask is constructed to

perform separation of the corresponding source from the time-frequency representation of the

mixtures. The original method works only for closely arranged microphones in order to avoid

the phase ambiguity problem. Two extensions to DUET that allow for arbitrary microphone

spacing were presented in [20]. DUET is capable of performing separation of two or more

sources using just two channels, and without significant computational complexity. Despite its

simplicity, DUET remains one of the state of the art techniques for underdetermined speech

separation. However, this method suffers from so-called musical noise or burbling artifacts due

to binary masking of time-frequency points where the sources overlap. These distortions are

introduced by the separation mask, and arise from the spectral components of the signal being

turned on and off, which results in sinusoidal components that come and go in each short-time

frame.

In [21, 92–95], probabilistic models are used to model the IPD/ILD, and after estimating its

parameters with an EM algorithm [30], soft masks are derived. All of these methods require

the number of sources to be given a priori, and it is difficult to expand these methods to more

than two microphones. Furthermore, separation methods based on time-frequency masking

suffer from the fact that clustering becomes difficult in reverberation, as the ILD/IPD resulting

from each sound source then tend to spread and overlap, and the disjoint assumption becomes

less realistic.

In order to utilise the information provided by more than two microphones in designing the

time-frequency mask, the Multiple sENsor dUET (MENUET) method was proposed in [98, 99].

It was proposed to cluster the normalised observation vectors. The normalisation is performed
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by selecting a reference microphone I and evaluating for each channel

x̄i(n, f) = |xi(n, f)| exp

[
j
∠ (xi(n, f)/xI(n, f))

4fc−1dmax

]
(2.50)

where c is the speed of sound, and dmax is the maximum separation between the reference

microphone I and any other microphone. Then a unit-norm normalisation is applied to prevent

outliers in the level ratio affecting the clustering performance [99]:

x̄(n, f)← x̄(n, f)

‖x̄(n, f)‖ (2.51)

By this normalisation, the vectors x̄(n, f) are N -dimensional complex vectors and dependent

only on the source geometry. Clustering can then be performed in an N -dimensional complex

space with the k-means algorithm [100]. This method can be applied to non-linear microphone

arrangements with 2- or 3-dimensional arrays.

2.8.5 Computational Auditory Scene Analysis (CASA)

The previously presented techniques address the source separation problem from a purely math-

ematical point of view. Another possible approach to address the source separation problem is

to study and finally mimic the way humans perform audio source separation using a computer.

In fact, separation methods like time-frequency masking existed in the computational auditory

scene analysis (CASA) community for quite some time before it attracted attention in the signal

processing community.

The human auditory system has a remarkable ability to perform source separation in real-time

using only the sounds acquired from our ears. In the human auditory system, it is believed that

the basilar membrane in the cochlea performs a time-frequency analysis of the sound [12]. This

segmentation of an auditory signal into small components in time and frequency is followed by

a grouping where each component is assigned a certain auditory stream that combines segments

that are likely to have originated from the same audio source [6]. This process is termed au-

ditory scene analysis. The human auditory system is very good at paying attention to a single

auditory stream at a time. Psychological and psychoacoustic research uncovered a number of

cues or grouping rules which describe how to group different parts of an audio signal into a sin-

gle stream [6]. The following auditory cues are examples of these cues: i) spatial cues such as
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ITD and ILD ii) common onset characteristics, (i.e., energy appearing at different frequencies

at the same time), iii) amplitude or frequency modulations, iv) harmonicity or periodicity, v)

proximity in time and frequency, vi) continuity (i.e. temporal coherence). Humans also rely on

the knowledge of language to restore words or sentences interrupted by noise bursts.

CASA refers to the set of algorithms developed with the aim of simulating auditory scene anal-

ysis processes [9, 10]. CASA methods perform source separation in several stages. First, the

acoustic mixture is split into several subbands using a perceptually motivated filter bank that

simulates the basilar membrane, and the vibrating hair cells [11, 12]. The bandwidth of each

filter varies proportionately to its centre frequency. This results in a time-frequency represen-

tation called the cochleagram. Sometimes, an autocorrelation function of the absolute value of

each subband signal on short time frames is computed, resulting in a three-dimensional repre-

sentation known as the correlogram [33]. Time-frequency points are then grouped into small

clusters, each associated with one source, by applying ASA grouping rules. The following audi-

tory cues are examples of these grouping rules applied in CASA methods: common periodicity

(Pitch) [101], spectral proximity and common onsets and offsets [102], common modulations

[103], common spatial origin [104], and continuity [105]. Further processing may be imple-

mented using knowledge of language or speaker’s timbre. The source signals are eventually

extracted by binary time-frequency masks.

2.8.6 Single Microphone

When only one microphone is available, source separation becomes more challenging, as in

this case spatial cues are absent. In this situation, the assumptions of independence and time-

frequency sparsity becomes insufficient and more advanced source models relying on spectro-

temporal cues are needed. The models typically represent the magnitude of the source STFTs,

and the spectro-temporal cues considered may include structures such as phonemes and tempo-

ral continuity characteristics.

One popular approach to model speech and monophonic music signals is to assume that the

local power spectrum density (PSD) Vjn(f) of a source j at a given time frame n is one of

Q local PSD templates rjq(f) indexed by state q, which may represent a certain sound event.

The states underlying different sources in a mixture are generally modeled as independent.
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Denoting by cjq the prior probability of state q of source j, this yields the mixture model:

Vjn(f) = rjq(f), with probability cjq (2.52)

This model is called spectral Gaussian mixture model (GMM) when Vjn(f) is a parameter of a

Gaussian distribution [22]. If the each state of source depends on the previous state via a set of

transition probabilities, the model is called hidden Markov model (HMM) [106]. The Gaussian

scaled mixture model (GSMM) generalises the GMM model by multiplying each PSD template

by a time-varying scale factor to account for recurring PSD shapes but with variable intensities

[22].

GMMs, HMMs, and GSMM have been applied to the separation of single microphone mixtures

[22–24]. In general, they require prior training and some knowledge about the identity of the

speech or music sources in the mixture. In [106], an individual HMM is trained for each

source beforehand. Then the most probable mixture state sequence is inferred from the mixture

signal, and the spectrum of each source is derived from the source state sequence. Finally, the

corresponding signals are computed by attributing each time-frequency point in the mixture

to the loudest source. In [23, 24], the problem of singing voice extraction from mono audio

recordings was studied. The recording is segmented in a succession of vocal and non-vocal

parts. Then an adapted music GMM model is learned on the non-vocal parts. Finally, using

the adapted music model as a prior, an adapted voice GMM model is learned from the vocal

parts. Separation is then performed in the STFT domain with MMSE estimators (soft masks).

In [22], GMMs are learned for samples of each source separately (prior training). Then the

GSMM scale factors are estimated in a ML scheme under positivity constraints, and finally

MMSE estimates of the sources are derived given the observed audio mixture and the scale

factors.

2.8.7 Post-Processing

In order to improve the performance of source separation and extraction algorithms, it was

suggested to post-process their output. The application of a post-filter can improve the quality

of the output signal by suppression of residual interference and noise. However, in many cases,

the suppression of residual interference and noise can lead to musical noise.

In [107], it was proposed to compare the separated outputs at each time-frequency point. Based
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on the assumption of disjoint sources (see (2.45)), only one of the outputs should have a non-

zero value at any time-frequency point. Therefore, at each time-frequency point, only the output

with the greatest magnitude is retained, and the other outputs are set to zero. This method

has negligible computational complexity, and offers improvements in SIR at the expense of

artifacts. However, this method can only be applied in source separation algorithms where the

mixture signal is decomposed into the original source signals, and can not be applied when one

desired source is extracted.

In [108], it was proposed to perform post-processing based on an energy-normalised SIR (EN-

SIR). This ratio compares the energy of each extracted signal and the difference signal between

the observed mixture and the extracted source (an estimate of the interference). The extracted

source and the interference energies are then compared at each time-frequency point, and a

time-frequency point is nulled or attenuated if the ratio is lower than a certain threshold. The

choice of the threshold is a tradeoff between interference attenuation and artifacts. As the value

of the threshold increases, the number of nulled or attenuated time-frequency points increases.

This technique can be applied to sources which have been extracted using any source separation

or extraction algorithm.

2.9 Chapter Summary

This review was a non-exhaustive study of some of the main concepts and methods used for

audio source separation and extraction, particularly those which are relevant to this thesis. We

have described the different possibilities of source separation environments and prior knowl-

edge of the sources, mixing process, and the microphones. Properties of speech signals were

presented, followed by a description of room acoustics. We then described the instantaneous,

anechoic, and echoic models. In Section 2.7, we described source separation evaluation mea-

sures. This was followed by a study of the various methods used in source separation and

extraction.

In summary, spatial diversity is the main assumption used in determined and overdetermined

mixtures. Most classical beamforming techniques require knowledge of the array geometry

and the desired source location, but they do not make assumptions about the number of inter-

fering sources and their location. The separating filters can be adapted to minimise the output

power subject to a response constraint (such as unity gain in the look-direction). On the other
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hand, ICA methods use unsupervised adaptive filtering in order to blindly form an adaptive

null beamformer that reduces the undesired sources by forming a spatial null towards them.

ICA methods cannot perform separation of under-determined mixtures as there are not enough

degrees of freedom to null interferers. Both methods are multichannel linear filtering methods,

and the number of degrees of freedom is limited by the number of mixture channels. This

explains the poor performance of linear techniques in under-determined mixtures. In under-

determined mixtures, non-linear techniques which exploit the sparseness of speech sources and

time-frequency diversity play a vital role. However, these methods typically suffer from musical

noise. Furthermore, in reverberant environments, the approximation of time-frequency disjoint

sources does not hold at the microphone array, and the separation performance deteriorates.
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Chapter 3

Mixtures of Beamformers

3.1 Introduction

In this chapter, we present a framework which extends the use of beamforming techniques

to underdetermined speech mixtures. We describe frequency domain non-linear mixtures of

beamformers that can extract a speech source from a known direction when there are fewer

microphones than sources (the underdetermined case), and do not require knowledge of the

number of speakers. These beamformers utilise GMMs to model the data in each frequency

bin. This, in turn, can be learned using the EM algorithm. The model learning is performed

using the observed mixture signals only, and no prior training is required. The signal estimator

comprises of a set of MMSE, MVDR, or MPDR beamformers. In order to estimate the sig-

nal, all beamformers are concurrently applied to the observed signal, and the weighted sum of

the beamformers’ outputs is used as the signal estimator, where the weights are the posterior

probabilities of the GMM states. These weights are specific to each time-frequency point. This

approach results in a soft decision filter for the observed signal. The resulting non-linear beam-

former combines the benefits of non-linear time-varying separation in time-frequency masking

with the benefits of spatial filtering in the linear beamformers.

The remainder of this chapter is structured as follows. Section 3.2 presents the signal mixing

model used in this chapter. Section 3.3 reviews the MMSE estimator when the signals are as-

sumed to be Gaussian. Then, in Section 3.4, the proposed GMM-based non-linear beamformers

are described. We present some simulation results that illustrate the performance of proposed

methods in Section 3.5. More experiments and comparisons of the proposed methods with

other source separation algorithms can also be found in Chapter 5. In Section 3.6, we give the

conclusions.
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3.2 Mixing Model

In this chapter, we consider the convolutive mixing model in (2.14), repeated here for conve-

nience:

x(n, f) = a(f)s(n, f) + v(n, f) (3.1)

where x(n, f) = [x1(n, f), ..., xN (n, f)]T is the observed multichannel mixture signal, a(f)

is the N × 1 array response vector in the direction of the desired source signal s (also called

the propagation vector or steering vector), and v(n, f) = [v1(n, f), ..., vN (n, f)]T is the N×1

vector of the contribution of the interferers and any possible noise to the mixture signal. This

model is suitable when we are only interested in extracting one source of interest. In this model,

no assumptions are made about the interferers or their number. The interferers can be of any

nature such as point sources, spatially extended sources, diffuse sources, or a combination of

them.

Note that x, a, s, and v are complex valued, and depend on frequency f , but for readability

and simplicity, we will omit this variable in the rest of the chapter. From now on, we implicitly

work in a given frequency band, and we will use this notation:

x = as + v (3.2)

3.3 Optimum Beamformers

In the previous chapter (Section 2.8.1.1), we discussed some of the well known statistically

optimum beamformers. In particular, we presented a derivation of the MVDR beamformer by

modeling the desired source signal as an unknown nonrandom signal arriving to the array from

a known direction and designing the optimum filter that minimises the output power and passes

any signal arriving to the array from the specified direction through the filter undistorted. We

then presented a derivation for the optimum linear beamformer to estimate the signal waveform

using a MMSE criterion. And finally, we considered the beamformer MPDR beamformer,

which assumes that we know or can measure the statistics of the observed mixture signal x, but

do not know the statistics of the interference component.

In this section, we consider the case in which the desired source and interference processes are

Gaussian and design the MMSE estimate of the signal [52]. In contrast to the derivation of the
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linear MMSE estimator in the previous chapter, the MMSE estimator is not constrained to be

linear, however the signals are assumed to be Gaussian. This will serve as a good starting point

for our mixture of beamformers method.

3.3.1 Minimum Mean Square Error (MMSE) Beamformer

We consider the optimum filter whose output is the MMSE estimate of the desired signal s in

the presence of Gaussian interference, assuming a known desired signal direction. We assume

that the desired source signal is a sample function from a zero mean complex valued Gaussian

random process, s ∼ G(0, σ2
s ), where σ2

s is the known signal variance. We also assume a zero

mean complex valued Gaussian interference, v ∼ G(0,Rv), where Rv is the signal covariance

matrix. Additionally, it is assumed that the signal and interference snapshots are uncorrelated.

Hence, x ∼ G(0,Rv + σ2
saa

H), and x|s ∼ G(as,Rv), where (.)H denotes the Hermitian

transpose operator. The MMSE estimate of the desired signal s is the mean of the a posteriori

probability density of s given x:

ŝMMSE = E [s|x] =

∫
s p(s|x) ds (3.3)

This mean is referred to as the conditional mean. Using Bayes’ theorem, the a posteriori density

can be expressed as:

p(s|x) =
p(x|s).p(s)

p(x)

∝ p(x|s).p(s)

∝ exp
(
−(x− as)HR−1

v (x− as)− s∗σ−2
s s
)

(3.4)

We can see that p(s|x) is a Gaussian in the general form. The MMSE estimator is the expecta-

tion of p(s|x), which is the mean µs of the a posteriori density:

p(s|x) ∝ exp
(
−(s− µs)

∗σ̃−2(s− µs)
)

(3.5)

The variance σ̃2 of the a posteriori density can be found by equating the quadratic terms in (3.4)

and (3.5) together:

−s∗σ̃−2s = −s∗s
(
aHR−1

v a + σ−2
s

)
(3.6)
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σ̃2 =
(
aHR−1

v a + σ−2
s

)−1
(3.7)

The conditional mean µs can be found by equating the linear terms of (3.4) and (3.5) together:

σ̃−2µss
∗ + σ̃−2µ∗

ss = xHR−1
v as + aHR−1

v xs∗ (3.8)

Thus, the conditional mean is:

µs = σ̃2aHR−1
v x =

aHR−1
v x

aHR−1
v a + σ−2

s

(3.9)

The conditional mean can alternatively be expressed as [52]:

ŝMMSE =
aHR−1

v x

aHR−1
v a

σ2
s

σ2
s +

(
aHR−1

v a
)−1 (3.10)

︸ ︷︷ ︸ ︸ ︷︷ ︸
MVDR Wiener post filter

We can see that when Gaussian signals are assumed, the optimum MMSE processor will be the

linear processor derived in Section 2.8.1.1 (Equation (2.40)). The first term is an MVDR spatial

filter, which suppresses the interfering signals without distorting the signal propagating along

the desired source direction. The second term is a single channel Wiener post-filter.

In general, the conditional mean estimator is not linear. The MMSE estimator is linear if either

the estimator is constrained to be linear (as in Section 2.8.1.1), or all the signals are Gaussian.

However, speech sources are generally non-Gaussian. This suggests extending the optimum

beamformers to exploit the non-Gaussianity of speech signals.

3.4 Mixture of Beamformers

In the time-frequency domain, speech signals typically have a super-Gaussian (sparse) distribu-

tion, due to a combination of the non-stationarity and harmonic content of speech. Therefore,

even if sources might overlap at some time-frequency points, not all speech sources in a mixture

are equally active at the same time-frequency points. It is therefore advantageous to exploit the

sparsity property of speech signals in the time-frequency domain in order to perform separation

in underdetermined environments.
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In the previous section, we considered the MMSE estimator when the desired source and the

interference are Gaussian. The MMSE estimator in this case is linear. However, speech sources

are generally non-Gaussian. In this section we extend the MMSE estimator to deal with the

non-Gaussianity of speech signals. In this section, we use GMMs to model the speech non-

Gaussianity and the spatial distribution of the sources. GMMs are widely used to model com-

plex densities in terms of simpler Gaussian densities, and are used because they are sufficiently

general to model arbitrary distributions. Another advantage of GMMs is that they can be math-

ematically convenient because the individual Gaussian components can be easily studied.

Figure 3.1 shows the histogram of the real value of the STFT coefficients of a speech signal at

one frequency bin. It can be seen that only few time frames have a value significantly different

from zero (super-Gaussian probability distribution).

Figure 3.2 shows an example of a 2-dimensional GMM of four components fitted on the scatter

plot of a two channel instantaneous mixture of three super-Gaussian distributed sources. In

this Figure, three components (red, green, and blue) represents the three sources when they are

active, and one component (yellow) represents the case when the three sources are inactive.

In this section, we present three non-linear beamformers that can perform underdetermined

speech separation. The first two non-linear beamformers are based on modeling the desired

source signal s and the interference v separately. The desired source signal in each frequency

bin is modeled using a 1-dimensional GMM, and the observed interference in each frequency

bin is modeled using an N -dimensional GMM. The third non-linear beamformer is based on

modeling the observed mixture signal x in each frequency bin using an N -dimensional GMM.

3.4.1 Mixture of MMSE and MVDR Beamformers

We shall describe the density of the interference signal v in each frequency bin as a mixture of

kv zero mean, complex valued, N -dimensional Gaussians with indices qv = 1, ..., kv , covari-

ances Rv,qv , and mixing proportions cv,qv :

p(v|θv) =

kv∑

qv=1

cv,qv

1

πN detRv,qv

exp
(
−vHR−1

v,qv
v
)

(3.11)

where det denotes a matrix determinant, θv = {cv,qv ,Rv,qv : 1 ≤ qv ≤ kv}, and the mixing

proportions cv,qv = p(qv) (prior probabilities of the Gaussian states) are constrained to sum to
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Figure 3.1: (a) speech waveform. (b) speech spectrogram calculated from the STFT coeffi-

cients. (c) real value of the STFT coefficients at one frequency bin. (d) histogram

of the real value of the STFT coefficients at one frequency bin.
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Figure 3.2: Scatter plot of an instantaneous mixture of three super-Gaussian distributed

sources.
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one. In addition, we shall describe the density of the desired source signal s in each frequency

bin as a mixture of ks zero mean complex valued 1-dimensional Gaussians with indices qs =

1, ..., ks , variances σ2
s,qs

, and mixing proportions cs,qs :

p(s|θs) =

ks∑

qs=1

cs,qs

1

πσ2
s,qs

exp

(−|s|2
σ2

s,qs

)
(3.12)

where θs = {cs,qs , σ
2
s,qs

: 1 ≤ qs ≤ ks}, and the mixing proportions cs,qs = p(qs) (prior

probabilities of the Gaussian states) are constrained to sum to one. The number of components

ks and kv control the flexibility of the model. In our model, the Gaussian states are not coupled

across frequency, and the parameters {θs, θv} are frequency dependent.

The MMSE estimate of the desired signal s is the mean of the a posteriori probability density

of s given x:

ŝMMSE = E [s|x] =

∫
p(s|x) s ds

=

∫ ks∑

qs=1

kv∑

qv=1

p(s, qs, qv|x) s ds

=

∫ ks∑

qs=1

kv∑

qv=1

p(qs, qv|x) p(s|x, qs, qv) s ds

=

ks∑

qs=1

kv∑

qv=1

p(qs, qv|x)

∫
p(s|x, qs, qv) s ds

=

ks∑

qs=1

kv∑

qv=1

τqs,qvE [s|x, qs, qv] (3.13)

where

τqs,qv = p(qs, qv|x)

=
p(x|qs, qv) p(qs) p(qv)∑ks

q
′

s=1

∑kv

q
′

v=1
p(x|q′

s, q
′

v) p(q′

s) p(q′

v)
(3.14)

is the a posteriori probability that - the desired source GMM model being in state qs and the

interference GMM model being in state qv - when observing x, with
∑

qs

∑
qv

τqs,qv = 1. The

posteriori probability is specific to each time frequency point, and has a non-linear dependency

on the observed data.

We can see that the conditional mean E [s|x, qs, qv] is the linear MMSE beamformer estimator
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in (2.40), with Rv = Rv,qv and σ2
s = σ2

s,qs
. The desired signal estimator in (3.13) is a non-

linear weighted sum of linear MMSE beamformers over all the GMM components, and the

weighting coefficients are the a posteriori probabilities of the GMM components τqs,qv (specific

to each time-frequency point). This mixture of MMSE beamformers will be denoted by w1 and

is given by [109]:

w1 =

ks∑

qs=1

kv∑

qv=1

τqs,qv

σ2
s,qs

σ2
s,qs

+
(
aHR−1

v,qva
)−1

aHR−1
v,qv

aHR−1
v,qva

(3.15)

In comparison to independent factor analysis [88], where sources were also modeled with

GMMs, the mixture of MMSE beamformers models all the interfering sources using one N -

dimensional mixture of Gaussians in the observation (microphones) domain. Consequently,

the number of interferers in the mixture is not required to be known or have a unique mixing

structure. This also avoids the exponential growth of the number of Gaussian components in

the observation density with the number of sources.

If a distortionless response in the direction of the desired source is required, a distortionless

response mixture of MVDR beamformers can be used [109]:

w2 =

ks∑

qs=1

kv∑

qv=1

τqs,qv

aHR−1
v,qv

aHR−1
v,qva

(3.16)

This mixture of MVDR beamformers is a non-linear weighted sum of linear distortionless

MVDR beamformers, where the weights sum to unity. As a result, it is constrained to a dis-

tortionless response in the look-direction. By distortionless we mean it has a unity gain in

the look-direction at all time-frequency points. Therefore, the signal arriving from the look-

direction will pass through the filter without any distortion.

In practice, the computation of Rv,qv might give an ill-conditioned or singular matrix. A matrix

is ill-conditioned if the ratio of the largest to smallest singular value is too large, and singular

if it is infinite. Various regularisation techniques can be used to help avoid matrix singularity

and to improve robustness to steering vector offsets (such as errors in the assumed direction

of arrival of the desired source) [62, 110, 111]. In our algorithm implementations, we use the

multiplicative diagonal loading regularisation applied to the diagonal terms of the correlation

matrix as suggested in [62]. In this regularisation method, we multiply each diagonal element
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Algorithm 1 Separation procedure using w1 or w2

1. Compute the STFT of the mixture x.

2. Apply the EM algorithm (see Section 3.4.2) separately in each frequency bin to compute

{τqs,qv(n, f), σ2
s,qs

(f),Rv,qv (f) : 1 ≤ qs ≤ ks, 1 ≤ qv ≤ kv}.

3. For each time-frequency point (n, f), the output of the non-linear beamformer is given

by:

ŝ(n, f) =

ks∑

qs=1

kv∑

qv=1

τqs,qv(n, f)wqs,qv(f)x(n, f) (3.17)

where wqs,qv(f) can be either a linear MMSE or a linear MVDR beamformer:

wMVDR
qs,qv

(f) =
a(f)HR−1

v,qv
(f)

a(f)HR−1
v,qv (f)a(f)

(3.18)

wMMSE
qs,qv

(f) = HWiener
qs,qv

(f)wMVDR
qs,qv

(f) (3.19)

where the scalar, single channel Wiener post filter is given by:

HWiener
qs,qv

(f) =
σ2

s,qs
(f)

σ2
s,qs

(f) +
(
a(f)HR−1

v,qv(f)a(f)
)−1 (3.20)

4. The corresponding time domain signal ŝ is derived by an STFT inversion.

in the correlation matrix with 1 + β, where β is very small number (we use β = 1e − 3). The

effect of various values of β and other regularisation methods is studied in Section 5.2.6.

In Section 3.4.2, we develop an EM algorithm to learn the model density parameters θ =

{θs, θv} = {cs,qs , σ
2
s,qs

, cv,qv ,Rv,qv : 1 ≤ qs ≤ ks, 1 ≤ qv ≤ kv}.

We briefly summarise the main steps in the separation procedure using w1 or w2 in Algorithm

1. Note that the model learning step is applied separately in each frequency bin, and that the

Gaussian states’ posterior probabilities are specific to each time-frequency point (no coupling

across all frequencies).

3.4.2 Learning Interference and Desired Source Parameters

Using the EM algorithm, we can estimate the model density parameters from a set of obser-

vations D = {x(n) : 1 ≤ n ≤ η}, where η is the number of time frames in each frequency

bin (we remind the reader that we are working in each frequency bin independently). The EM

algorithm is used to find a maximum likelihood estimate of parameters in probabilistic models
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with latent variables (incomplete data problems). In our case, x is the observed (or incom-

plete) data, and the latent variables are the state sequence of the Gaussian mixtures that indicate

which Gaussian components are responsible for x(n). In EM terminology, the complete data

is composed of both the observed data and the latent variables. The EM algorithm is an itera-

tive algorithm, consisting of a linked pair of steps: (1) an expectation step (E-step), and (2) a

maximisation step (M-step). In the E-step, we calculate the conditional expectation of the com-

plete data log likelihood. The expectation is taken with respect to the conditional probability

of the hidden data, given the observed data and the parameter values obtained in the previous

iteration. In the M-step, the new estimates of the parameters are calculated to maximise the

conditional expectation of the complete data log likelihood. As shown in [30], each EM it-

eration increases the incomplete (observed) data log likelihood, unless a local maximum has

already been reached. Depending on initial parameter values, the EM algorithm may converge

to a local maximum of the incomplete data log likelihood.

In this section, the parameters θ = {θs, θv} = {cs,qs , σ
2
s,qs

, cv,qv ,Rv,qv : 1 ≤ qs ≤ ks, 1 ≤
qv ≤ kv} of the interference v and desired source s are estimated using the EM algorithm.

These parameters are required for the non-linear beamformers w1 and w2 of (3.15) and (3.16).

A more detailed derivation can be found in Appendix 3.A.

Let us define a complete data set Dc = {x, s, qs, qv} composed of both the observed and

the latent data. If we were to actually have such a complete data set, we could define its log

likelihood as:

lc(θ|Dc) = ln

η∏

n=1

p(x(n), s, qs, qv|θ) =

η∑

n=1

ln p(x(n), s, qs, qv|θ) (3.21)

Given an initial value θ0, the EM algorithm performs the following steps at each iteration l:

E-step: In the E-step, we compute the expectation of the complete data log likelihood:

Q(θ, θl−1) =

η∑

n=1

ks∑

qs=1

kv∑

qv=1

∫
ds p

(
s, qs, qv|x(n), θl−1

)
ln p(x(n), s, qs, qv|θ)

(3.22)

This reduces to computing the posterior probability of the GMM states p
(
qs, qv|x(n), θl−1

)
,
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and the conditional mean and variance of the desired source given both the observed mixture

and the GMM states.

The posterior probability of the GMM states can be evaluated as follows:

τ (l)
qs,qv

(n) = p
(
qs, qv|x(n), θ(l−1)

)

=
p
(
qs, qv|θ(l−1)

)
p
(
x(n)|qs, qv, θ

(l−1)
)

∑ks

q
′

s=1

∑kv

q
′

v=1
p
(
q′

s, q
′

v|θ(l−1)
)
p
(
x(n)|q′

s, q
′

v, θ
(l−1)

) (3.23)

where

p(x|qs, qv) = G
(
0,Rv,qv + σ2

s,qs
aaH

)
(3.24)

The conditional mean and variance of the desired source given both the observed mixture and

the GMM states, which are denoted by 〈s|x(n), qs, qv〉 and 〈ss∗|x(n), qs, qv〉 respectively, can

be evaluated from the following density function:

p(s|x, qs, qv) =
p(s|qs) p(x|s, qv) p(qs) p(qv)

p(x|qs, qv) p(qs) p(qv)

= G (αqs,qv , βqs,qv) (3.25)

where

αqs,qv =
(
σ−2

s,qs
+ aHR−1

v,qv
a
)−1

aHR−1
v,qv

x (3.26)

βqs,qv =
(
σ−2

s,qs
+ aHR−1

v,qv
a
)−1

(3.27)

M-step: In the M-step, we maximise the expected complete log likelihood with respect to the

parameters θ = {θs, θv} = {cs,qs , σ
2
s,qs

, cv,qv ,Rv,qv : 1 ≤ qs ≤ ks, 1 ≤ qv ≤ kv}. This can

be done by taking derivatives with respect to θ and setting them to be equal to zero (under the

constraints
∑ks

qs=1 cs,qs = 1 and
∑kv

qv=1 cv,qv = 1). This results in the following update rules:

c(l)
v,qv

=
1

η

η∑

n=1

ks∑

qs=1

τ (l)
qs,qv

(n) (3.28)
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c(l)
s,qs

=
1

η

η∑

n=1

kv∑

qv=1

τ (l)
qs,qv

(n) (3.29)

σ2(l)

s,qs
=

∑η
n=1

∑kv

qv=1 τ
(l)
qs,qv(n) 〈ss∗|x(n), qs, qv〉

∑η
n=1

∑kv

qv=1 τ
(l)
qs,qv(n)

(3.30)

R(l)
v,qv

=

∑η
n=1

∑ks

qs=1 τ
(l)
qs,qv(n)Λqs,qv(n)

∑η
n=1

∑ks

qs=1 τ
(l)
qs,qv(n)

(3.31)

where

Λqs,qv(n) = x(n)x(n)H − x(n) 〈s∗|x(n), qs, qv〉 aH

−a 〈s|x(n), qs, qv〉x(n)H

+a 〈ss∗|x(n), qs, qv〉aH (3.32)

In this model, there is an ambiguity in associating variance between the desired source and the

interference. It is possible to incorporate some of the source signal into the interference. To

deal with this, updating the desired source component variances is not performed in the first

few iterations. This prevents the source components shrinking to zero variance.

3.4.3 Mixture of MPDR Beamformers

The model learning for non-linear beamformers w1 and w2 is dependent on the location of

the desired source (look-direction). In some applications, scanning for the source direction is

needed, and in this case, a learning algorithm which is independent of the look-direction is

desired in order to reduce the computational complexity. By modeling the observed mixture

directly instead of the desired source and interference signal separately, the model learning will

be independent of the look-direction.

In this secion, we use a mixture of kx zero mean, complex valued, N -dimensional Gaussians

with indices qx = 1, ..., kx, covariances Rx,qx , and mixing proportions cx,qx to model the

observed mixture x (the desired source and interference together) in each frequency bin:
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p(x|θx) =
kx∑

qx=1

cx,qx

1

πN detRv,qv

exp
(
−xHR−1

x,qx
x
)

(3.33)

where θx = {cx,qx ,Rx,qx : 1 ≤ qx ≤ kx}, and the mixing proportions cx,qx = p(qx) (prior

probabilities of the Gaussian states) are constrained to sum to one. This leads to a simple

learning algorithm, and the learning of model parameters is independent on the desired source

direction. The desired signal can be estimated using this mixture of MPDR beamformers [112]:

w3 =
kx∑

qx=1

τqx

aHR−1
x,qx

aHR−1
x,qxa

(3.34)

where

τqx = p(qx|x)

=
p(x|qx) p(qx)

∑kx

q
′

x=1
p(x|q′

x) p(q′

x)
(3.35)

is the relative contribution for each linear MPDR beamformer, and is calculated as the posterior

probability (specific to each time-frequency point) of its corresponding Gaussian component.

The resulting beamformer has a unity gain in the look-direction at all time-frequency points.

In practice, the computation of Rx,qx might give an ill-conditioned or singular matrix. In our

algorithm implementations, we use the multiplicative diagonal loading regularisation applied

to the diagonal terms of the correlation matrix as suggested in [62].

In Section 3.4.4, we develop an EM algorithm to learn the observation model density parameters

θx = {cx,qx ,Rx,qx : 1 ≤ qx ≤ kx).

The main steps in the separation procedure using w3 are summarised in Algorithm 2.

3.4.4 Learning Observed Mixture Parameters

In this section, the parameters θx = {cx,qx ,Rx,qx : 1 ≤ qx ≤ kx) of the observed mixture

x are estimated using the EM algorithm. These parameters are required for the non-linear

beamformer w3 defined in (3.34). A more detailed derivation can be found in Appendix 3.B.
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Algorithm 2 Separation procedure using w3

1. Compute the STFT of the mixture x.

2. Apply the EM algorithm (see Section 3.4.4) separately in each frequency bin to compute

{τqx(n, f), Rx,qx(f) : 1 ≤ qx ≤ kx}.

3. For each time-frequency point (n, f), the output of the non-linear beamformer is given

by:

ŝ(n, f) =

kx∑

qx=1

τqx(n, f)wMPDR
qx

(f)x(n, f) (3.36)

where:

wMPDR
qx

(f) =
a(f)H R−1

x,qx
(f)

a(f)H R−1
x,qx(f)a(f)

(3.37)

4. The corresponding time domain signal ŝ is derived by an STFT inversion.

Let us define a complete data set Dc = {x, qx} composed of both the observed data D =

{x(n) : 1 ≤ n ≤ η} and the latent data. If we were to actually have such a complete data set,

we define its log likelihood as:

lc(θx|Dc) = ln

η∏

n=1

p(x(n), qx|θx) =

η∑

n=1

ln p(x(n), qx|θx) (3.38)

The EM algorithm may be executed as follows:

E-step: In the E-step, we compute the expectation of the complete data log likelihood:

Q(θx, θl−1
x ) =

η∑

n=1

kx∑

qx=1

p
(
qx|x(n), θl−1

x

)
ln p(x(n), qx|θx) (3.39)

This reduces to calculating p
(
qx|x(n), θl−1

x

)
, the posterior probability of the latent variables

given the observed data and the current estimates of the parameters:

τ (l)
qx

(n) = p
(
qx|x(n), θ(l−1)

x

)

=
c
(l−1)
x,qx G

(
0,R

(l−1)
x,qx

)

∑kx

q
′

x=1
c
(l−1)

x,q
′

x

G
(
0,R

(l−1)

x,q
′

x

) (3.40)
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M-step: In the M-step, we maximise the expected complete log likelihood with respect to the

parameters θx = {cx,qx ,Rx,qx : 1 ≤ qx ≤ kx). This can be done by taking derivatives with

respect to θx and setting them to be equal to zero, while also including a Lagrangian term to

account for the constraint that
∑kx

qx=1 cqx = 1. This results in the following update rules:

R(l)
x,qx

=

∑η
n=1 τ

(l)
qx (n)x(n)x(n)H

∑η
n=1 τ

(l)
qx (n)

(3.41)

c(l)
x,qx

=
1

η

η∑

n=1

τ (l)
qx

(n) (3.42)

3.5 Experimental Evaluation

3.5.1 Setup

In order to illustrate the performance of the non-linear beamformers, multichannel recordings

of several speech sources were simulated using impulse responses determined by the room

image method [50]. The positions of the microphones and the sources were as illustrated in

Figure 3.3. Two microphone arrays were used. The first has three microphones with a spacing

d = 2.5 cm, and the second has two microphones with a spacing d = 5 cm. Both microphone

arrays have a total length of D = 5 cm. We used speech files taken from the TIMIT speech

corpus [113] to create five mixtures of male sources, and five mixtures of female sources. The

speech signals were of a duration equal to 10 s, and were sampled at 16 kHz. The number of

the sources in each mixture was four. The sources were placed in a semicircle of radius 1 m

around the microphone arrays at angles φ = {−45, −15, 10, 50}◦.

3.5.2 Evaluation Measures

To measure the quality of the signal estimate ŝ with respect to the original signal s, we used

the source to distortion ratio (SDR), source to interference ratio (SIR) and the sources to arti-

facts ratio (SAR) calculated as defined in [53]. The computation of the evaluation measures is

described in Section 2.7.

In this chapter, the SDR, SIR and SAR values were averaged over all the sources and mixtures.

66



Mixtures of Beamformers

Figure 3.3: Layout of room used in simulations.
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w1 w2 w3

STFT frame 1024 1024 1024

STFT step 256 256 256

GMM components
(2 mics)

(3 mics)

ks = 2, kv = 15
ks = 2, kv = 5

ks = 2, kv = 15
ks = 2, kv = 5

kx = 15
kx = 5

EM Iterations
(2 mics)

(3 mics)

100

100

100

100

50

20

Learning block duration 10 s 10 s 10 s

Table 3.1: Algorithm parameters for w1,w2, and w3.

3.5.3 Algorithm Parameters

Unless mentioned otherwise, we use the values listed in Table 3.1 for the STFT frame size,

STFT step size, number of GMM components, number of iterations, and learning block dura-

tion. It will become clear later in this chapter why these values where chosen. In particular,

increasing the number of GMM components or the number of EM iterations, or reducing the

STFT step size beyond the values listed in the table requires more computational time with an

insignificant performance improvement.

3.5.4 Effect of Design Parameters

We first investigate the effect of various parameters on the performance of the non-linear beam-

formers. We study the effect of the number of Gaussian components in the GMM model, the

required number of EM iterations, and the effect of the learning block size. In these experi-

ments, we study the performance of the three non-linear beamformers when four sources are

operating in an anechoic environment (RT=0), and the microphone array used has two or three

microphones with a total array size D = 5 cm. We assume that the location of a desired source

is known.

3.5.4.1 Effect of the Number of Gaussian Components

Figure 3.4 shows the average performance at the output of the mixture of MPDR beamformers

w3 defined in (3.34) as a function of the number of Gaussian components kx in the GMM

model. The case of kx = 1 is equivalent to a time-invariant MPDR beamformer. The SIR

increases with kx, but the improvement is insignificant at kx > 10. The increase in the SIR

is more pronounced in the two microphone case, where the separation using a time-invariant
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Figure 3.4: Average performance of w3 in the anechoic case as a function of the number of

Gaussian components kx in the GMM model.
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Figure 3.5: Average performance of w2 in the anechoic case as a function of the number of

Gaussian components kv and ks in the GMM model.
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Figure 3.6: Average performance of w1 in the anechoic case as a function of the number of

Gaussian components kv and ks in the GMM model.
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beamformer kx = 1 gives bad results. Although there is a unity gain response in the direction of

the desired source signal, the SAR decreases with kx. The decrease in the SAR can be attributed

to the non-linear attenuation of the interfering sources. These artifacts therefore introduce

distortion only into the residual interfering signals, and are not as harmful as distortions in

the desired source signal. We stress that the mixture of MPDR beamformers is by definition

distortionless in the look direction, and this is reflected in the output audio signal. The non-

linear beamformer can attain a SIR of 10.7 dB in the two microphones case, and 11.1 dB using

three microphones. The number of components in the GMM model is not directly related to the

number of sources in the mixture and can be used to trade-off complexity with performance.

Figure 3.5 shows the average performance at the output of the mixture of MVDR beamformers

w2 defined in (3.16) as a function of the number of Gaussian components in the interference

model kv and the number of Gaussian components in the source model ks. We can see that

there is little to be gained in increasing the number of source Gaussian components ks to more

than two. In the two microphones case, The SIR increases with kv, but the improvement is

insignificant at kv > 10. In the three microphones case, the SIR peaks around kv = 7, and

then levels off at higher kv . The non-linear beamformer can attain a SIR of 11.5 dB in the two

microphones case, and 14 dB using three microphones.

Figure 3.6 shows the average performance at the output of the mixture of MMSE beamformers

w1 defined in (3.15) as a function of the number of Gaussian components in the interference

model kv and the number of Gaussian components in the source model ks. The non-linear

beamformer can attain a SIR of 14.3 dB in the two microphones case, and 16.8 dB using

three microphones. However, the SAR was reduced in comparison to Figure 3.5 because the

distortionless constraint is no longer held.

3.5.4.2 Effect of the Number of Iterations

Figures 3.7 and 3.8 show the average performance at the output of the non-linear beamformers

in the anechoic case as a function of the number of EM iterations. The non-linear beamformer

w3 defined in (3.34) require less than 20 iterations to converge, whereas the other two non-

linear beamformers require more iterations to converge (about 50 iterations).
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Figure 3.7: Separation using two microphones: average performance of w1, w2, and w3 in

the anechoic case as a function of the number of EM iterations. Used parameters:

ks = 2 and kv = 15 in w1 and w2, kx = 15 in w3.
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Figure 3.8: Separation using three microphones: average performance of w1, w2, and w3 in

the anechoic case as a function of the number of EM iterations. Used parameters:

ks = 2 and kv = 5 inw1 and w2, kx = 5 inw3.
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Figure 3.9: Separation using two microphones: Average performance of w1 in the anechoic

case vs learning block length in seconds. Used parameters: ks = 2 and kv = 15.
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Figure 3.10: Separation using two microphones: Average performance of w2 in the anechoic

case vs learning block length in seconds. Used parameters: ks = 2 and kv = 15.
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Figure 3.11: Separation using two microphones: Average performance of w3 in the anechoic
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3.5.4.3 Effect of the Learning Block Size

The EM algorithm used in our experiments is a batch learning algorithm. We studied the effect

of varying the size of learning data on the performance of the non-linear beamformers. Figures

3.9, 3.10, and 3.11 show the average performance at the output of the non-linear beamformers

in the anechoic case as a function of the EM learning block length. For the mixtures of MVDR

and MVDR beamformers (w2 and w3), the performance is fairly consistent even when using

short learning blocks of 0.5 seconds. However, the performance of w1 deteriorated when using

learning blocks of 1 seconds or less. Note that the FMV algorithm can be considered as a

special case of the non-linear beamformer w3, with kx = 1 and very short learning blocks

(≈ 100 ms). The batch mode with short blocks of data can be used in applications where

short delays are permissible, such as in human-computer interaction or surveillance. However,

it is not appropriate for real-time applications. In these applications, online model learning is

essential [114]. The online model learning should have a forgetting factor, and a mechanism

for adding, deleting, and reassigning Gaussians to handle changes in the environment [115].

3.5.5 Directivity Patterns

In this section, we plot the directivity patterns for the non-linear beamformer w3 defined in

(3.34) in the anechoic case. The microphone array used has two microphones with a 5 cm

microphone spacing. The directivity patterns are defined as the magnitude of the response of

the beamformer at frequency f for a far-field signal coming from direction Φ:

D(f,Φ) =

∣∣∣∣∣∣

N∑

j=1

wj(f).eι2πf(j−1)dc−1 sinΦ

∣∣∣∣∣∣
(3.43)

Figure 3.12 shows four examples of directivity patterns for the non-linear beamformer w3.

In this experiment, the desired source was at an angle of 10◦, and the interfering sources at

{−45, −15, 50}◦. The four examples are at four different time frames at the frequency of 453

Hz. In the first example (first row), the desired source and the interferer at angle −45◦ were

active. In the second example (second row), the interferer at angle −15◦ was active. In the

third example (third row), the desired source was active, and in the fourth example (fourth

row), the interferer at angle 50◦ was active. The non-linear beamformer effectively reduces the

contribution of the active interferer while having a distortionless response in the direction of
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time (s) parameters

w1 (2 mics) 498 10 s block, ks = 2, kv = 15, 100 iterations

w2 (2 mics) 498 10 s block, ks = 2, kv = 15, 100 iterations

w3 (2 mics) 87 10 s block, kx = 15, 50 iterations

w1 (3 mics) 193 10 s block, ks = 2, kv = 5, 100 iterations

w2 (3 mics) 193 10 s block, ks = 2, kv = 5, 100 iterations

w3 (3 mics) 14 10 s block, kx = 5, 20 iterations

w1 (2 mics) 67 0.5 s block, ks = 2, kv = 15, 20 iterations

w2 (2 mics) 67 0.5 s block, ks = 2, kv = 15, 20 iterations

w3 (2 mics) 3 0.5 s block, kx = 15, 3 iterations

w1 (3 mics) 17 0.5 s block, ks = 2, kv = 5, 20 iterations

w2 (3 mics) 17 0.5 s block, ks = 2, kv = 5, 20 iterations

w3 (3 mics) 1 0.5 s block, kx = 5, 3 iterations

Table 3.2: Computational time for w1,w2, and w3.

the desired source.

Figure 3.13 shows examples of directivity patterns for the non-linear beamformer w3 when the

active source is source 1. We show the directivity patterns which were designed to extract the

four sources. We can see that when the active source is not the desired source, the non-linear

beamformer attenuates the active source. Figures 3.14, 3.15, and 3.16 show more examples of

the directivity patterns when the active source is source 2, source 3, and source 4 respectively .

We can see that the non-linear beamformer attenuates the active source if it was not the desired

source while always having a unity gain in the direction of the desired source.

Figure 3.17 shows directivity patterns when sources 2 and 3 are active at the same time-

frequency point. We can see that when the desired source is either source 1 or source 4, the

non-linear beamformer attempts to attenuate the two active sources using the single degree of

freedom. when the desired source is source 2, the non-linear beamformer attempts to atten-

uate source 3, and similarly, when the desired source is source 3, the non-linear beamformer

attempts to attenuate source 2.

3.5.6 Computational Time

In this section, we report the time it took for our MATLAB implementation of the non-linear

beamformers to run on 2.5 GHz CPU. We report the time our implementation took for the

extraction of one 10 s speech source, and one 0.5 s speech source. Table 3.2 shows the results.
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Figure 3.12: Separation using two microphones: Examples of directivity patterns of w3 in

the anechoic case at 453 Hz. Used parameter: kx = 15. The desired source is
at angle 10◦, and the interfering sources are at {−45, −15, 50}◦. Left column:
directivity patterns. Right column: power of sources.
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Figure 3.13: Separation using two microphones: Examples of directivity patterns of w3 in the

anechoic case at 453 Hz. Used parameter: kx = 15. The active source is at angle
−45◦.
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Figure 3.14: Separation using two microphones: Examples of directivity patterns ofw3 in the

anechoic case at 453 Hz. Used parameter: kx = 15. The active source is at angle
−15◦.
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Figure 3.15: Separation using two microphones: Examples of directivity patterns of w3 in the

anechoic case at 453 Hz. Used parameter: kx = 15. The active source is at angle
10◦.
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Figure 3.16: Separation using two microphones: Examples of directivity patterns ofw3 in the

anechoic case at 453 Hz. Used parameter: kx = 15. The active source is at angle
50◦.
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Figure 3.17: Separation using two microphones: Examples of directivity patterns of w3 in the

anechoic case at 453 Hz. Used parameter: kx = 15. The sources at angles −15◦

and 10◦are active.
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Mixtures of Beamformers

We can see that the beamformer w3 took less time than the other two beamformers. Beamform-

ers w1 and w2 have similar computational time because they use the same learning algorithm

(Section 3.4.2). The computational time for the three microphones case is lower than that of the

two microphones case. This is because the performance of the beamformers using the three mi-

crophones array peak using a smaller number of Gaussian components than the two microphone

case, and require less number of iterations.

3.6 Chapter Summary

Frequency-domain non-linear mixture of beamformers were introduced and applied to the ex-

traction of a desired speech source from a known direction in underdetermined speech mix-

tures. The system model assumes an anechoic desired source signal, but no assumptions are

made about the interferers, which can be of any nature such as point sources, spatial extended

sources, diffuse sources, or a combination of them. The beamformers are derived assuming

non-Gaussian interference signals modeled using a mixture of Gaussians distribution. This

estimator introduces additional degrees of freedom to the beamformer by exploiting the super-

Gaussianity (sparsity) of the interferers and dynamically finds suitable directivity patterns in

order to reduce active interfering signals.

The non-linear beamformers require the location of the target speech source to be known or

estimated in advance, but they have the following advantages:

• No need to know - or estimate - the number of interfering sources.

• Can be applied to underdetermined speech mixtures.

• The number of components in the GMM model controls the flexibility of the model, and

can be used to trade-off complexity with performance, which can be good for hardware

implementations with fixed computational constraints. When using a larger number of

microphones, the performance peaks with a small number of GMM components.

• Can be applied to microphone arrays with two or more microphones.

The non-linear beamformers have been tested and evaluated on underdetermined speech mix-

tures. It was shown that the non-linear beamformer w1 defined in (3.15) gives better interfer-

ence rejection at the expense of higher artifacts. The non-linear beamformers w2 and w3 de-
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Mixtures of Beamformers

fined in (3.34) and (3.16) are distortionless beamformers (constant gain in the look-direction),

and have significantly lower artifacts.

In terms of computational complexity, non-linear beamformer w3 employs the simplest learn-

ing algorithm and requires fewer iterations than non-linear beamformers w1 and w2. Further-

more, the model learning for non-linear beamformer w3 is independent of the DOA of the

desired source, which makes this non-linear beamformer suitable in applications where scan-

ning for the source direction is needed.
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3.A Model Learning forw1 and w2

In this section, the parameters θ = {θs, θv} = {cs,qs , σ
2
s,qs

, cv,qv ,Rv,qv : 1 ≤ qs ≤ ks, 1 ≤
qv ≤ kv} of the interference v and desired source s are estimated using the EM algorithm [30].

These parameters are required for the non-linear beamformers w1 and w2 defined in (3.15) and

(3.16). Let us define a complete data set Dc = {x, s, qs, qv} composed of both the observed

data D = {x(n) : 1 ≤ n ≤ η} and the latent data. If we were to actually have such a complete

data set, we could define its log likelihood as:

lc(θ|Dc) = ln

η∏

n=1

p(x(n), s, qs, qv|θ) =

η∑

n=1

ln p(x(n), s, qs, qv|θ) (3.44)

Given an initial value θ0, the EM algorithm performs the following steps at each iteration l:

E-step: In the E-step, we compute the expectation of the complete data log likelihood:

Q(θ, θl−1) =

ks∑

qs=1

kv∑

qv=1

∫
ds p

(
s, qs, qv|x, θl−1

)
ln p(x, s, qs, qv|θ) (3.45)

The expectation is taken for each observed x with respect to the conditional probability of the

hidden data, given the observed data and the parameter values obtained in the previous iteration.

The result should then be averaged over all observed x.

M-step: In the M-step, we maximise the expected complete log likelihood with respect to the

parameters θ = {θs, θv} = {cs,qs, σ
2
s,qs

, cv,qv ,Rv,qv : 1 ≤ qs ≤ ks, 1 ≤ qv ≤ kv}.

Below we provide the derivation of the EM learning rules:

The Expectation Step:

To simplify Q(θ, θl−1), we first expand the probability of the joint event p(x, s, qs, qv). Ap-

plying the chain rule on p(x, s,v, qs, qv), and marginalising v, we can expand p(x, s, qs, qv) as
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follows:

p(x, s, qs, qv) =

∫
p(x, s,v, qs, qv)dv

=

∫
p(x|s,v).ps(s|qs).pv(v|qv).p(qs).p(qv)dv (3.46)

Given both s and v, x is deterministic (a is known). Therefore, p(x|s,v) = δ(x − (as + v)),

where δ is the Dirac’s delta function. So using the identity:
∫

f(τ)δ(t−T −τ)dτ = f(t−T )),

we get:

p(x, s, qs, qv) =

∫
δ(x− (as + v)).ps(s|qs).pv(v|qv).p(qs).p(qv)dv

= ps(s|qs).pv(x|s, qv).p(qs).p(qv) (3.47)

where pv(x|s, qv)=G (as,Rv,qv). Substituting (3.47) in (3.45), we get:

Q(θ, θl−1) =

ks∑

qs=1

kv∑

qv=1

∫
ds p

(
s, qs, qv|x, θl−1

)
ln
(

pv(x|s, qv,Rv).ps(s|qs,R
2
s).p(qv).p(qs)

)

= QA

(
Rv |θl−1

)
+ QB

(
σ2

s |θl−1
)

+ QC

(
cv|θl−1

)
+ QD

(
cs|θl−1

)

(3.48)

where σ2
s =

{
σ2

s,1, . . . , σ
2
s,ks

}
,Rv = {Rv,1, . . . ,Rv,kv

} , cv = {cv,1, . . . , cv,kv
} , cs = {cs,1,

. . . , cs,ks
} and:

QA

(
Rv |θl−1

)
=

ks∑

qs=1

kv∑

qv=1

∫
ds p

(
s, qs, qv|x, θl−1

)
ln pv(x|s, qv) (3.49)

QB

(
σ2

s |θl−1
)

=

ks∑

qs=1

kv∑

qv=1

∫
ds p

(
s, qs, qv|x, θl−1

)
ln ps(s|qs) (3.50)

QC

(
cv |θl−1

)
=

ks∑

qs=1

kv∑

qv=1

∫
ds p

(
s, qs, qv|x, θl−1

)
ln p(qv) (3.51)

QD

(
cs|θl−1

)
=

ks∑

qs=1

kv∑

qv=1

∫
ds p

(
s, qs, qv|x, θl−1

)
ln p(qs) (3.52)

Each of these terms involves only one of the parameters θ and may be maximised indepen-
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dently of each other. Next, we simplify the terms QA, QB, QC , and QD. Note that the terms

QA, QB , QC , and QD are evaluated for each observed x. The results should then be averaged

over all observed x

Evaluation of QA

QA =

ks∑

qs=1

kv∑

qv=1

∫
ds p (s, qs, qv|x) ln pv(x|s, qv)

=

ks∑

qs=1

kv∑

qv=1

∫
ds p (s|qs, qv,x) p (qs, qv|x) ln pv(x|s, qv)

=

ks∑

qs=1

kv∑

qv=1

p (qs, qv|x)

∫
ds p (s|qs, qv,x) ln pv(x|s, qv) (3.53)

Substitute pv(x|s, qv) = G (as,Rv,qv ) = 1
πN detRv,qv

exp
(
− (x− as)H R−1

v,qv
(x− as)

)
in

QA to get:

QA =

ks∑

qs=1

kv∑

qv=1

p (qs, qv|x)

∫
ds p (s|qs, qv,x)

(
− ln detRv,qv − ln πN − xHR−1

v,qv
x

+ s∗aHR−1
v,qv

x + sxHR−1
v,qv

a− s∗saHR−1
v,qv

a
)

(3.54)

Define

〈s|x, qs, qv〉 =

∫
ds p (s|qs, qv,x) s (3.55)

〈ss∗|x, qs, qv〉 =

∫
ds p (s|qs, qv,x) ss∗ (3.56)

Substituting (3.55) and (3.56) in (3.54), we get:
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QA =

ks∑

qs=1

kv∑

qv=1

p (qs, qv|x)
(
− ln detRv,qv − ln πN − xHR−1

v,qv
x

+ 〈s∗|x, qs, qv〉aHR−1
v,qv

x + 〈s|x, qs, qv〉xHR−1
v,qv

a

− 〈ss∗|x, qs, qv〉aHR−1
v,qv

a
)

(3.57)

Using the trace property [116]:

Tr[scalar]=scalar (3.58)

and the cyclic property of the trace [116]:

Tr[ABC]=Tr[CAB]=Tr[BCA] (3.59)

we can write QA as follows:

QA = −
ks∑

qs=1

kv∑

qv=1

p (qs, qv|x)
(
ln detRv,qv + ln πN + Tr

(
xHR−1

v,qv
x
)

−Tr
(
〈s∗|x, qs, qv〉 aHR−1

v,qv
x
)
− Tr

(
〈s|x, qs, qv〉xHR−1

v,qv
a
)

+ Tr
(
〈ss∗|x, qs, qv〉 aHR−1

v,qv
a
))

= −
ks∑

qs=1

kv∑

qv=1

p (qs, qv|x)
(
ln detRv,qv + ln πN + Tr

(
R−1

v,qv
xxH

)

−Tr
(
R−1

v,qv
x 〈s∗|x, qs, qv〉aH

)
-Tr
(
R−1

v,qv
a 〈s|x, qs, qv〉xH

)

+ Tr
(
R−1

v,qv
a 〈ss∗|x, qs, qv〉 aH

))
(3.60)

The posterior probability of the GMM states p (qs, qv|x) can be evaluated as follows for each

data vector x(n) given the current set of parameters θ(l−1):
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τ (l)
qs,qv

(n) = p
(
qs, qv|x(n), θ(l−1)

)

=
p
(
qs, qv,x(n)|θ(l−1)

)

p
(
x(n)|θ(l−1)

)

=
p
(
qs, qv|θ(l−1)

)
p
(
x(n)|qs, qv, θ

(l−1)
)

∑ks

q
′

s=1

∑kv

q
′

v=1
p
(
q′

s, q
′

v|θ(l−1)
)
p
(
x(n)|q′

s, q
′

v, θ
(l−1)

) (3.61)

In order to evaluate (3.61), we need to evaluate p(x|qs, qv). This can be evaluated as follows:

p(x|qs, qv) =

∫
p(x, s|qs, qv)ds

=

∫
p(x|s, qs, qv).p(s|qs, qv)ds

=

∫
p(x|s, qv).p(s|qs)ds

=

∫
G (as,Rv,qv) .G

(
0, σ2

s,qs

)
.ds

=

∫
1

πN det (Rv,qv )
.

1

πσ2
s,qs

. exp

(
− (x− as)H R−1

v,qv
(x− as)− s.s∗

σ2
s,qs

)
ds

=

∫
1

πN det (Rv,qv )
.

1

πσ2
s,qs

. exp

(
−xHR−1

v,qv
x + xHR−1

v,qv
as + s∗aHR−1

v,qv
x

− s∗saHR−1
v,qv

a− ss∗

σ2
s,qs

)
ds

=
1

πN det (Rv,qv )
.

1

πσ2
s,qs

. exp
(
−xHR−1

v,qv
x
)
.

∫
exp

(
2ℜ
(
xHR−1

v,qv
as
)

− s∗s

(
aHR−1

v,qv
a +

1

σ2
s,qs

)
ds

)
(3.62)

To evaluate the integral, we use this identity:

∫
exp (−y∗yb + 2ℜ (c∗y)) dy = b−1π exp

(
c∗
(
b−1
)∗

c
)

(3.63)

So we get:
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p(x|qs, qv) =
1

πN det (Rv,qv )
.

1

πσ2
s,qs

.
π(

aHR−1
v,qva + 1

σ2
s,qs

) exp

(
−xHR−1

v,qv
x

+ xHR−1
v,qv

a

(
aHR−1

v,qv
a +

1

σ2
s,qs

)−1

aHR−1
v,qv

x

)

=
1

πN det (Rv,qv )
(
σ2

s,qs
aHR−1

v,qva + 1
) exp

(
−xH

(
R−1

v,qv

−R−1
v,qv

a

(
aHR−1

v,qv
a +

1

σ2
s,qs

)−1

aHR−1
v,qv

)
x

)
(3.64)

Using det (X)
(
1 + bHX−1a

)
= det

(
X + abH

)
[117], we can simplify the term before the

exponential and get:

p(x|qs, qv) =
1

πN det
(
Rv,qv + aσ2

s,qs
aH
) exp

(

−xH

(
R−1

v,qv
−R−1

v,qv
a

(
aHR−1

v,qv
a +

1

σ2
s,qs

)−1

aHR−1
v,qv

)
x

)
(3.65)

Using the matrix inversion lemma [118],

B −BC
(
CHBC + D

)−1
CHB =

(
B−1 + CD−1CH

)−1
, (3.66)

we can simplify

R−1
v,qv
−R−1

v,qv
a

(
aHR−1

v,qv
a +

1

σ2
s,qs

)−1

aHR−1
v,qv

=
(
Rv,qv + aσ2

s,qs
aH
)−1

(3.67)

and get

p(x|qs, qv) =
1

πN det
(
Rv,qv + aσ2

s,qs
aH
) exp

(
−xH

(
Rv,qv + aσ2

s,qs
aH
)−1

x
)

= G
(
0 , Rv,qv + σ2

s,qs
aaH

)
(3.68)

To complete the evaluation of QA we must express the conditional averages in (3.55) and (3.56)
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in terms of the parameters θ(l−1). We first evaluate p(s|x, qs, qv):

p(s|x, qs, qv) =
p(x, s, qs, qv)

p(x, qs, qv)

=
ps(s|qs).pv(x|s, qv).p(qs).p(qv)

p(x|qs, qv).p(qs).p(qv)

=
G(0, σ2

s,qs
).G(as,Rv,qv )

G
(
0,Rv,qv + σ2

s,qs
aaH

)

=
det
(
Rv,qv + aσ2

s,qs
aH
)

πσ2
s,qs

detRv,qv

exp
(
−s∗sσ−2

s,qs
− xHR−1

v,qv
x

+ 2ℜ
(
s∗aHR−1

v,qv
x
)
− s∗saHR−1

v,qv
a + xH

(
Rv,qv + σ2

s,qs
aaH

)−1
x
)

(3.69)

Using det (X)
(
1 + bHX−1a

)
= det

(
X + abH

)
[117], we can simplify the term before the

exponential and get:

p(s|x, qs, qv) =
det (Rv,qv )

(
1 + aHR−1

v,qv
aσ2

s,qs

)

πσ2
s,qs

detRv,qv

exp
(
−s∗sσ−2

s,qs
− xHR−1

v,qv
x

+ 2ℜ
(
s∗aHR−1

v,qv
x
)
− s∗saHR−1

v,qv
a + xH

(
Rv,qv + σ2

s,qs
aaH

)−1
x
)

=
1

π
(
σ−2

s,qs + aHR−1
v,qva

)−1 exp
(
−s∗sσ−2

s,qs
− xHR−1

v,qv
x

+ 2ℜ
(
s∗aHR−1

v,qv
x
)
− s∗saHR−1

v,qv
a + xH

(
Rv,qv + σ2

s,qs
aaH

)−1
x
)

(3.70)

Rearranging the terms inside the exponential, we get:

p(s|x, qs, qv) =
1

π
(
σ−2

s,qs + aHR−1
v,qva

)−1 exp
(
−s∗s

(
σ−2

s,qs
+ aHR−1

v,qv
a
)

+ 2ℜ
(
s∗aHR−1

v,qv
x
)
− xH

(
R−1

v,qv
−
(
Rv,qv + σ2

s,qs
aaH

)−1
)

x
)

(3.71)
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If we expand
(
Rv,qv + σ2

s,qs
aaH

)−1
using the matrix inversion lemma, we get:

p(s|x, qs, qv) =
1

π
(
σ−2

s,qs + aHR−1
v,qva

)−1 exp
(
−s∗s

(
σ−2

s,qs
+ aHR−1

v,qv
a
)

+2ℜ
(
s∗aHR−1

v,qv
x
)

− xH
(
R−1

v,qv
−R−1

v,qv
+ R−1

v,qv
a
(
aHR−1

v,qv
a + σ−2

s,qs

)−1
aHR−1

v,qv

)
x
)

=
1

π
(
σ−2

s,qs + aHR−1
v,qva

)−1 exp
(
−s∗s

(
σ−2

s,qs
+ aHR−1

v,qv
a
)

+ 2ℜ
(
s∗aHR−1

v,qv
x
)
− xHR−1

v,qv
a
(
aHR−1

v,qv
a + σ−2

s,qs

)−1
aHR−1

v,qv
x
)

(3.72)

We can see that p(s|x, qs, qv) is Gaussian with the following parameters:

variance =
(
σ−2

s,qs
+ aHR−1

v,qv
a
)−1

(3.73)

mean =
(
σ−2

s,qs
+ aHR−1

v,qv
a
)−1

aHR−1
v,qv

x (3.74)

so

p(s|x, qs, qv) = G
((

σ−2
s,qs

+ aHR−1
v,qv

a
)−1

aHR−1
v,qv

x ,
(
σ−2

s,qs
+ aHR−1

v,qv
a
)−1
)

(3.75)

We can now evaluate the conditional moments 〈s|x(n), qs, qv〉 and 〈ss∗|x(n), qs, qv〉:

〈s|x, qs, qv〉 =
(
σ−2

s,qs
+ aHR−1

v,qv
a
)−1

aHR−1
v,qv

x (3.76)

〈ss∗|x, qs, qv〉 =
(
σ−2

s,qs
+ aHR−1

v,qv
a
)−1

+ 〈s|x, qs, qv〉 〈s∗|x, qs, qv〉 (3.77)
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Evaluation of QB

QB =

ks∑

qs=1

kv∑

qv=1

∫
ds p (s, qs, qv|x) ln ps(s|qs)

=

ks∑

qs=1

kv∑

qv=1

∫
ds p (s|qs, qv,x) p (qs, qv|x) ln ps(s|qs)

=

ks∑

qs=1

kv∑

qv=1

p (qs, qv|x)

∫
ds p (s|qs, qv,x) ln ps(s|qs) (3.78)

Substituting ps(s|qs) = G
(
0, σ2

s,qs

)
= 1

πσ2
s,qs

exp
(
−|s|2

σ2
s,qs

)
in QB , we get:

QB =

ks∑

qs=1

kv∑

qv=1

p (qs, qv|x)

∫
ds p (s|qs, qv,x)

(
− ln π − ln σ2

s,qs
− s∗s

σ2
s,qs

)

= −
ks∑

qs=1

kv∑

qv=1

p (qs, qv|x)

(
+ ln π + ln σ2

s,qs
+
〈ss∗|x, qs, qv〉

σ2
s,qs

)
(3.79)

Evaluation of QC

QC =

ks∑

qs=1

kv∑

qv=1

∫
ds p (s, qs, qv|x) ln p(qv)

=

ks∑

qs=1

kv∑

qv=1

p (qs, qv|x) ln p(qv) (3.80)

Substituting ps(qv) = cv,qv in QC , we get:

QC =

ks∑

qs=1

kv∑

qv=1

p (qs, qv|x) ln cv,qv (3.81)
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Evaluation of QD

If we follow the same steps as in the evaluation of QC , we get:

QD =
ks∑

qs=1

kv∑

qv=1

p (qs, qv|x) ln cs,qs (3.82)

Summary of the Expectation Step Learning Rules:

We can see that to evaluate Q(θ, θl−1), we have to compute the posterior probability of the

GMM states, and the first and second moments of the desired source given both the observed

mixture and the GMM states. The posterior probability of the GMM states can be evaluated as

follows:

τ (l)
qs,qv

(n) = p
(
qs, qv|x(n), θ(l−1)

)

=
p
(
qs, qv|θ(l−1)

)
p
(
x(n)|qs, qv, θ

(l−1)
)

∑ks

q
′

s=1

∑kv

q
′

v=1
p
(
q
′

s, q
′

v|θ(l−1)
)
p
(
x(n)|q′

s, q
′

v, θ
(l−1)

) (3.83)

where p(x|qs, qv) is equal to:

p(x|qs, qv) = G
(
0 , Rv,qv + σ2

s,qs
aaH

)
(3.84)

The first and second moments of the desired source given both the observed mixture and the

GMM states, which are denoted by 〈s|x(n), qs, qv〉 and 〈ss∗|x(n), qs, qv〉 respectively, can be

evaluated as follows:

〈s|x, qs, qv〉 =
(
σ−2

s,qs
+ aHR−1

v,qv
a
)−1

aHR−1
v,qv

x (3.85)

〈ss∗|x, qs, qv〉 =
(
σ−2

s,qs
+ aHR−1

v,qv
a
)−1

+ 〈s|x, qs, qv〉 〈s∗|x, qs, qv〉 (3.86)

The Maximisation Step:

In the M-step, we maximise the expected complete log likelihood with respect to the parameters

θ = {θs, θv} = {cs,qs , σ
2
s,qs

, cv,qv ,Rv,qv : 1 ≤ qs ≤ ks, 1 ≤ qv ≤ kv}. This can be done by

taking derivatives with respect to θ and setting them to be equal to zero (under the constraints
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∑ks

qs=1 cs,qs = 1 and
∑kv

qv=1 cv,qv = 1).

Maximisation of QA

The term QA is a function of the interference model covariances Rv,qv . Using the following

two identities [117, 119]:

∂ ln det (X)

∂X
=
(
X−1

)H
=
(
X−H

)−1
(3.87)

∂Tr
(
AX−1B

)

∂X
= −

(
X−1BAX−1

)H
= −X−HAHBHX−H (3.88)

Taking derivatives with respect to Rv,qv , we get:

∂QA

∂Rv,qv

= −
ks∑

qs=1

p (qs, qv|x)
(
R−1

v,qv
−R−1

v,qv

(
xxH − a 〈s|x, qs, qv〉xH

−x 〈s∗|x, qs, qv〉aH + a 〈ss∗|x, qs, qv〉 aH
)
R−1

v,qv

)
(3.89)

Equating the derivative to zero, we get:

ks∑

qs=1

p (qs, qv|x)R−1
v,qv

=

ks∑

qs=1

p (qs, qv|x)R−1
v,qv

(
xxH − a 〈s|x, qs, qv〉xH

−x 〈s∗|x, qs, qv〉aH + a 〈ss∗|x, qs, qv〉 aH
)
R−1

v,qv
(3.90)

R−1
v,qv

ks∑

qs=1

p (qs, qv|x) = R−1
v,qv

ks∑

qs=1

p (qs, qv|x)
(
xxH − a 〈s|x, qs, qv〉xH

−x 〈s∗|x, qs, qv〉aH + a 〈ss∗|x, qs, qv〉 aH
)
R−1

v,qv
(3.91)

Rv,qv =

∑ks

qs=1 p (qs, qv|x) (Λqs,qv(n))
∑ks

qs=1 p (qs, qv|x)
(3.92)
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where

Λqs,qv(n) = x(n)x(n)H − x(n) 〈s∗|x(n), qs, qv〉 aH

−a 〈s|x(n), qs, qv〉x(n)H

+a 〈ss∗|x(n), qs, qv〉 aH (3.93)

Averaging over the observed signal x:

Rv,qv =

1
η

∑η
n=1

∑ks

qs=1 p (qs, qv|x) (Λqs,qv(n))

1
η

∑η
n=1

∑ks

qs=1 p (qs, qv|x)
(3.94)

Maximisation of QB

The term QB is a function of the source model variances σ2
s,qs

. Taking derivatives with respect

to σ2
s,qs

, we get:

∂QB

∂σ2
s,qs

= −
kv∑

qv=1

p (qs, qv|x)

(
1

σ2
s,qs

− 〈ss
∗|x, qs, qv〉
σ4

s,qs

)
(3.95)

equating the derivative to zero, we get:

kv∑

qv=1

p (qs, qv|x) =

kv∑

qv=1

p (qs, qv|x)
〈ss∗|x, qs, qv〉

σ2
s,qs

(3.96)

σ2
s,qs

=

∑kv

qv=1 p (qs, qv|x) 〈ss∗|x, qs, qv〉
∑kv

qv=1 p (qs, qv|x)
(3.97)

Averaging over the observed signal x:

σ2
s,qs

=

1
η

∑η
n=1

∑kv

qv=1 p (qs, qv|x) 〈ss∗|x, qs, qv〉
1
η

∑η
n=1

∑kv

qv=1 p (qs, qv|x)
(3.98)

Maximisation of QC

The term QC is a function of the interference model mixing probabilities cv,qv . We should

ensure that the probabilities cv,qv satisfy the non-negativity cv,qv ≥ 0 and normalisation
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∑kv

qv=1 cv,qv = 1 constraints. Both constraints can be enforced automatically by working with

new parameters cv,qv , related to the mixing proportions through [88]:

cv,qv =
exp (cv,qv )

∑kv

q
′

v=1
exp (cv,qv )

(3.99)

The gradient is then taken with respect to the new parameters:

∂QC

∂cv,qv

=
∂

∂cv,qv




ks∑

qs=1

kv∑

qv=1

p (qs, qv|x) ln exp (cv,qv)

−
ks∑

qs=1

kv∑

qv=1

p (qs, qv|x) ln

kv∑

q
′

v=1

exp (cv,qv)




=
∂

∂cv,qv




ks∑

qs=1

kv∑

qv=1

p (qs, qv|x) (cv,qv)




− ∂

∂cv,qv


ln

kv∑

q
′

v=1

exp (cv,qv )

ks∑

qs=1

kv∑

qv=1

p (qs, qv|x)




=

ks∑

qs=1

p (qs, qv|x)− ∂

∂cv,qv


ln

kv∑

q
′

v=1

exp (cv,qv)


 (3.100)

Using the identity [117]:

∂ ln f (X)

∂X
=

∂f(X)
∂X

f (X)
(3.101)

we get:

∂QC

∂cv,qv

=

ks∑

qs=1

p (qs, qv|x)− exp (cv,qv)∑kv

q
′

v=1
exp (cv,qv)

=

ks∑

qs=1

p (qs, qv|x)− cv,qv (3.102)

Equate to zero:

cv,qv =

ks∑

qs=1

p (qs, qv|x) (3.103)
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Averaging over the observed signal x:

cv,qv =
1

η

η∑

n=1

ks∑

qs=1

p (qs, qv|x) (3.104)

Maximisation of QD

The term QD is a function of the source model mixing probabilities cs,qs if we follow the same

steps as in the maximisation of QC , we get:

cs,qs =
1

η

η∑

n=1

kv∑

qv=1

p (qs, qv|x) (3.105)

Summary of the Maximisation Step Learning Rules:

The maximisation of

Q(θ, θl−1) = QA

(
Rv|θl−1

)
+ QB

(
σ2

s |θl−1
)

+ QC

(
cv |θl−1

)
+ QD

(
cs|θl−1

)
(3.106)

results in the following update rules:

c(l)
v,qv

=
1

η

η∑

n=1

ks∑

qs=1

τ (l)
qs,qv

(n) (3.107)

c(l)
s,qs

=
1

η

η∑

n=1

kv∑

qv=1

τ (l)
qs,qv

(n) (3.108)

σ2(l)

s,qs
=

∑η
n=1

∑kv

qv=1 τ
(l)
qs,qv(n) 〈ss∗|x(n), qs, qv〉

∑η
n=1

∑kv

qv=1 τ
(l)
qs,qv(n)

(3.109)

R(l)
v,qv

=

∑η
n=1

∑ks

qs=1 τ
(l)
qs,qv(n)Λqs,qv(n)

∑η
n=1

∑ks

qs=1 τ
(l)
qs,qv(n)

(3.110)
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where

Λqs,qv(n) = x(n)x(n)H − x(n) 〈s∗|x(n), qs, qv〉 aH

−a 〈s|x(n), qs, qv〉x(n)H

+a 〈ss∗|x(n), qs, qv〉aH (3.111)

3.B Model Learning for w3

In this section, the parameters θx = {cx,qx,Rx,qx : 1 ≤ qx ≤ kx) of the observed mixture

x are estimated using the EM algorithm. These parameters are required for the non-linear

beamformer w3 defined in (3.34). Let us define a complete data set Dc = {x, qx} composed

of both the observed data D = {x(n) : 1 ≤ n ≤ η} and the latent data. If we were to actually

have such a complete data set, we define its log likelihood as:

lc(θx|Dc) = ln

η∏

n=1

p(x(n), qx|θx) =

η∑

n=1

ln p(x(n), qx|θx) (3.112)

The EM algorithm may be executed as follows:

E-step: In the E-step, we compute the expectation of the complete data log likelihood, where,

for each observed data vector, the expectation is taken over the latent data using the posterior

p
(
qx|x(n), θ

(l−1)
x

)
; θ

(l−1)
x are the parameters obtained in the previous iteration.

Q(θx, θ(l−1)
x ) = E

[
ln

η∏

n=1

p(x(n), qx|θx)|x(n)

]

= E

[
η∑

n=1

ln p(x(n), qx|θx)|x(n)

]

=

η∑

n=1

E [ln p(x(n), qx|θx)|x(n)]

=

η∑

n=1

kx∑

qx=1

p
(
qx|x(n), θ(l−1)

x

)
ln p (x(n), qx|θx) (3.113)
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This reduces to calculating p
(
qx|x(n), θ

(l−1)
x

)
, the posterior probability of the latent variables

given the observed data and the current estimates of the parameters.

τ (l)
qx

(n) = p
(
qx|x(n), θ(l−1)

x

)

=
p
(
qx,x(n)|θ(l−1)

x

)

p
(
x(n)|θ(l−1)

x

)

=
p
(
qx|θ(l−1)

x

)
p
(
x(n)|qx, θ

(l−1)
x

)

∑kx

q
′

x=1
p
(
q
′

x|θ
(l−1)
x

)
p
(
x(n)|q′

x, θ
(l−1)
x

)

=
c
(l−1)
x,qx G

(
0,R

(l−1)
x,qx

)

∑kx

q
′

x=1
c
(l−1)

x,q
′

x

G
(
0,R

(l−1)

x,q
′

x

) (3.114)

M-step: In the M-step, we maximise the expected complete log likelihood with respect to the

parameters θx = {cx,qx ,Rx,qx : 1 ≤ qx ≤ kx). This can be done by taking derivatives with

respect to θx and setting them to be equal to zero, while also including a Lagrangian term to

account for the constraint that
∑kx

qx=1 cx,qx = 1. First, we expand the probability of the joint

event in Q(θx, θl−1
x ):

Q(θx, θ(l−1)
x ) =

η∑

n=1

kx∑

qx=1

p
(
qx|x(n), θ(l−1)

x

)
ln p (x(n), qx|θx)

=

η∑

n=1

kx∑

qx=1

p
(
qx|x(n), θ(l−1)

x

)
ln (p (qx|θx) p (x(n)|qx, θx))

=

η∑

n=1

kx∑

qx=1

τ (l)
qx

(n) ln (cx,qxp (x(n)|qx, θx)) (3.115)

If we add a Lagrange multiplier, and expand the density, we get:

L(θx) =

η∑

n=1

kx∑

qx=1

τ (l)
qx

(n)

(
ln cx,qx −N ln π − ln detRx,qx − x(n)HR−1

x,qx
x(n)

)

−λ

( kx∑

qx=1

cx,qx − 1

)
(3.116)
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We find the new estimate θ
(l)
x = {c(l)

x,qx,R
(l)
x,qx : 1 ≤ qx ≤ kx) at a maximum where

δL(θx)
δθx

= 0.

A new estimate of the covariance matrix Rx,qx:

δL(θx)

δRx,qx

=

η∑

n=1

τ (l)
qx

(n)

(
− δ

δRx,qx

ln detRx,qx −
δ

δRx,qx

x(n)HR−1
x,qx

x(n)

)

=

η∑

n=1

τ (l)
qx

(n)
(
−R−H

x,qx
+ R−H

x,qx
x(n)x(n)HR−H

x,qx

)

= 0 (3.117)

So, we have:

η∑

n=1

τ (l)
qx

(n)R−1
x,qx

=

η∑

n=1

τ (l)
qx

(n)R−1
x,qx

x(n)x(n)HR−1
x,qx

η∑

n=1

τ (l)
qx

(n) =

η∑

n=1

τ (l)
qx

(n)R−1
x,qx

x(n)x(n)H

R(l)
x,qx

=

∑η
n=1 τ

(l)
qx (n)x(n)x(n)H

∑η
n=1 τ

(l)
qx (n)

(3.118)

A new estimate of the mixture components weights cx,qx = p (qx|θx):

δL(θx)

δcx,qx

=

( η∑

n=1

τ (l)
qx

(n)
δ ln cx,qx

δcx,qx

)
− λ

(
δcx,qx

δcx,qx

)

=

( η∑

n=1

τ (l)
qx

(n)
1

cx,qx

)
− λ (3.119)

So, we have:

cx,qx =
1

λ

η∑

n=1

τ (l)
qx

(n) (3.120)
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Substituting this into the constraint:

kx∑

qx=1

cx,qx =

kx∑

qx=1

1

λ

η∑

n=1

τ (l)
qx

(n) = 1 (3.121)

λ =

kx∑

qx=1

η∑

n=1

τ (l)
qx

(n) (3.122)

Inserting λ into our estimate:

c(l)
x,qx

=

∑η
n=1 τ

(l)
qx (n)

∑kx

qx=1

∑η
n=1 τ

(l)
qx (n)

=
1

η

η∑

n=1

τ (l)
qx

(n) (3.123)
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Chapter 4

Combining Time-Frequency Masking

and Mixtures of Beamformers

4.1 Introduction

In this chapter, we present a modification to the mixture of MPDR beamformers presented in

the previous chapter. In the previous chapter, we used the EM algorithm to learn a GMM in

each frequency band. The EM algorithm is computationally expensive, and the model learning

depends on the selection of appropriate initial values for the covariance matrices (local maxima

problems). In this chapter, we investigate the use of other clustering algorithms used in time-

frequency masking instead of the EM algorithm.

The algorithm presented in this chapter combines time-frequency masking techniques and mix-

ture of beamformers. The proposed algorithm has two main stages. In the first stage, the

mixture time-frequency points are partitioned into a sufficient number of clusters using one of

the time-frequency masking techniques described in Chapter 2. In the second stage, we will

use the clusters obtained in the first stage to calculate covariance matrices, one for each cluster

in each frequency bin. These covariance matrices and the time-frequency masks are then used

in the mixture of MPDR beamformers. The resulting non-linear beamformer has low compu-

tational complexity and removes the musical noise found in time-frequency masked outputs at

the expense of lower interference attenuation. The mixture of MPDR beamformers stage can

be regarded as a post-processing step for sources separated by time-frequency masking. Two

variants of the proposed method will be described and compared. The first one uses binary

time-frequency masks, and the second one uses soft time-frequency masks.

Most time-frequency masking approaches use all the time-frequency bins at the same time to

perform clustering [19, 98]. This is done to avoid the permutation ambiguity. If clustering

was performed in each frequency bin (or group of frequencies) independently, the permutation

problem has to be solved after clustering. However, our approach avoids the permutation am-

biguity problem. This is because our approach assumes the knowledge of the desired source
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location and extracts the signal arriving from that direction. This avoids the permutation ambi-

guity problem, and the clustering stage can be performed in each frequency bin independently,

in a group of frequencies, or using all the frequencies.

Clustering can be performed by using, for example, weighted k-means on the smoothed weighted

histogram of the IPD/ILD as in DUET [19, 20], probabilistic modelling of the IPD/ILD as in

[21, 94], or by clustering the normalised observation vector using a k-means algorithm as in

MENUET [98, 99]. These methods are discussed in more detail in Chapter 2 and in the refer-

ences therein. In this chapter, we will use the clustering method used in the MENUET speech

separation algorithm to perform the time-frequency masking stage. The clustering method

used in the MENUET algorithm has the advantage that it can utilise the information provided

by more than two microphones.

The remainder of this chapter is structured as follows. Section 4.2 presents the proposed

method. We present some simulation results that illustrate the performance of the proposed

methods in Section 4.3. In Section 4.4, we describe an existing method that resembles the

methods we proposed in this chapter, and we then compare it with our proposed mixture of

beamformers approach. More experiments and comparisons of the proposed methods with

other source separation algorithms can also be found in Chapter 5. In Section 4.5, we give the

conclusions and the chapter summary.

4.2 Algorithm Steps

In this section, we outline the steps of the proposed method. The STFT, normalisation, clus-

tering, and time-frequency mask design steps are common with the MENUET [98, 99] time-

frequency masking algorithm. In the final two steps we design the mixture of beamformers

based on the obtained time-frequency masks.

STFT

The time domain signals x(t) are converted into the time-frequency domain with a STFT to

give x(n, f).
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Normalisation

The normalisation is performed by selecting a reference microphone I and evaluating for each

channel:

x̄i(n, f) = |xi(n, f)| exp

[
j
∠ (xi(n, f)/xI(n, f))

4fc−1dmax

]
(4.1)

where c is the speed of sound, and dmax is the maximum separation between the reference

microphone I and any microphone i. This normalisation avoids the frequency dependence in

the phase difference and holds the time delay information in the exponent term [99]. Then a

unit-norm normalisation is applied to prevent outliers in the level ratio affecting the clustering

performance [99]:

x̄(n, f)← x̄(n, f)

‖x̄(n, f)‖ (4.2)

By this normalisation, x̄(n, f) is dependent only on the source geometry [98, 99]. In x̄(n, f)

the phase difference information is held in the argument term, and the level ratio is normalised

by the vector norm normalisation. x̄(n, f) are N -dimensional complex vectors, and therefore

clustering will be performed in an N -dimensional complex space.

Clustering

In this step, we partition the normalised observations x̄(n, f) into kx clusters C1, ..., Ckx
. We

use a clustering algorithm such as k-means to minimise the total sum of the squared distances

between cluster members x̄ ∈ Cqx and their centroid cqx :

J =

kx∑

qx=1

∑

x̄∈Cqx

||x̄− cqx ||2 (4.3)

The unit-norm normalisation makes the distance calculation in the clustering easier, because it

projects the vectors on a unit hyper sphere [99]. If x̄ and the cluster centroids are projected

on the unit hyper sphere, the square distance ||x̄− cqx ||2 = 2(1 − ℜ(cH
qx

x̄)). In this case, the

minimisation of the distance is equivalent to the maximisation of the real part of cH
qx

x̄, whose

calculation is less demanding in terms of computational complexity [99]. The centroid cqx of a

cluster Cqx is calculated by:

cqx =
∑

x̄∈Cqx

x̄

|Cqx|
, cqx =

cqx

‖cqx‖
(4.4)
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and where |Cqx| is the number of members in Cqx . As in the GMM case (Chapter 3), the number

of clusters does not need to be equal to the number of sources (which we assume unknown).

We investigate the effect of the number of clusters in the experimental evaluation section later

in this Chapter.

Most existing time-frequency masking methods use all the time-frequency bins at the same

time to perform clustering [19, 98]. This is done to avoid the permutation ambiguity. In our

method, the clustering stage can be performed in each frequency bin independently, in a group

of frequencies, or using all the frequencies. This can be done because our method, as will be

described in the next steps, extracts a desired source from a known location and therefore avoids

the permutation ambiguity problem.

Designing Time-frequency masks

In this step, we consider two types of time-frequency masks. We either design time-frequency

binary masks that selects the time-frequency points in one of the clusters:

Mqx(n, f) =





1 x̄ ∈ Cqx

0 otherwise
(4.5)

or soft masks that contain values between 0 and 1 that are computed based on the distance to

cluster centroids. There are many possible distance functions that can be used to compute the

soft masks. We use this heuristic function:

ρqx(n, f) =
1

||x̄(n, f)− cqx ||+ ǫ
(4.6)

where ǫ is a very small number that prevents division by zero. Soft masks are then computed

by normalising ρ as follows:

Mqx(n, f) =
ρqx(n, f)

∑kx

q
′

x=1
ρq

′

x
(n, f)

(4.7)

We then compute the vector signals representing each cluster:

yqx(n, f) = Mqx(n, f)x(n, f) (4.8)
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Correlation matrix Rqx(f) estimation

In this step, we calculate for each cluster the spatial covariance matrix in each frequency:

Rqx(f) =
∑

n

yqx(n, f)yqx(n, f)H (4.9)

there is no need to scale the matrix Rqx(f) with the number of samples as scaling has no effect

on the MPDR beamformer weights. In order to avoid ill-conditioned or singular matrices,

we regularise the correlation matrix by multiplying each diagonal element with 1 + β, where

β is very small number (we use β = 1e − 3). The effect of various values of β and other

regularisation methods is studied in Section 5.2.6.

Mixture of beamformers

For each time-frequency point (n, f), we calculate a weighted mixture of MPDR beamformers

in the direction of the desired source. The estimate of the desired source is:

ŝ(n, f) =

kx∑

qx=1

Mqx(n, f)wqx(f)x(n, f) (4.10)

where Mqx(n, f) can be binary or soft masks and:

wqx(f) =
a(f)H R−1

qx
(f)

a(f)H R−1
qx (f)a(f)

(4.11)

In the following, we shall use the notation w4 to represent the mixture of beamformers which

use binary masks, and w5 to represent the mixture of beamformers which use soft masks.

4.3 Experimental Evaluation

In this section we study the performance of the hard and soft versions of the non-linear beam-

former proposed in this chapter. We use the setup, speech data, and evaluation measures de-

scribed in Sections 3.5.1 and 3.5.2.
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w4 w5

STFT frame 1024 1024

STFT step 256 256

Clusters
(2 mics)

(3 mics)

kx = 15
kx = 5

kx = 15
kx = 5

Frequency block size 512 512

Learning block duration 10 s 10 s

Table 4.1: Algorithm parameters forw4 and w5.

4.3.1 Algorithm Parameters

Unless mentioned otherwise, we use the values listed in Table 4.1 for the STFT frame size,

STFT step size, number of clusters, frequency block size, and learning block duration. It will

become clear later in this chapter why these values where chosen. In particular, increasing

the number of clusters, or reducing the STFT step size or the frequency block size beyond the

values listed in the table requires more computational time with an insignificant performance

improvement.

4.3.2 Effect of Design Parameters

We investigate the effect of various parameters on the performance of the non-linear beam-

formers. We study the effect of the number of clusters, the size of groups of frequencies we

perform the clustering at, and the duration of blocks we work on. In this experiment, we study

the performance of the non-linear beamformer when four sources are operating in an anechoic

environment, and the microphone array used has two or three microphones with a total array

size D = 5 cm. We assume that the location of a desired source is known.

4.3.2.1 Effect of the Number of Clusters

Figure 4.1 shows the average performance at the output of the mixture of beamformers w4 as

a function of the number of clusters kx. The SIR increases with kx, but the improvement is

insignificant at kx > 10.

Figure 4.2 shows the average performance at the output of the mixture of MVDR beamformers

w5 as a function of the number of clusters kx. We can see that using the soft masks instead of

binary masks causes an increase in the SAR at the expense of a decrease of the SIR.
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Figure 4.1: Average performance of w4 in the anechoic case as a function of the number of

clusters kx.
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Figure 4.2: Average performance of w5 in the anechoic case as a function of the number of

clusters kx.
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time (s) parameters

w4 (2 mics) 9.7 10 s block, kx = 15

w5 (2 mics) 10.8 10 s block, kx = 15

w4 (3 mics) 5.2 10 s block, kx = 5

w5 (3 mics) 5.6 10 s block, kx = 5

w4 (2 mics) 1.3 0.5 s block, kx = 15

w5 (2 mics) 1.9 0.5 s block, kx = 15

w4 (3 mics) 0.6 0.5 s block, kx = 5

w5 (3 mics) 0.83 0.5 s block, kx = 5

Table 4.2: Computational time for w4 and w5.

4.3.2.2 Effect of the Frequency Block Size

We study the effect of varying the number of frequency bins used to calculate the masks on the

performance of the non-linear beamformers. Figures 4.3 and 4.4 show the average performance

at the output of the non-linear beamformers in the anechoic case as a function of the number of

frequency bins used to calculate the masks. The performance is fairly constant.

4.3.2.3 Effect of the Learning Block Duration

In this section, we study the effect of varying the duration of learning data on the performance

of the non-linear beamformers w4 and w5. Figures 4.5 and 4.6 show the average performance

at the output of the non-linear beamformers in the anechoic case as a function of the learning

block length. We can see that when using short learning blocks, the SIR increases, the SAR

decreases (this had no audible artifacts), and the SDR remains fairly constant. The batch mode

with short blocks of data can be used in applications where short delays are permissible, such

as in human-computer interaction or surveillance.

4.3.3 Computational Time

In this section, we report the time it took for our MATLAB implementation of the non-linear

beamformers to run on a 2.5 GHz CPU. The time reported is for the extraction of one 10 s

speech source. We report the time our implementation took for the extraction of one 10 s

speech source, and one 0.5 s speech source. Table 4.2 shows the results.
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Figure 4.3: Separation using two microphones: Average performance of w4 and w5 in the

anechoic case vs number of frequency bins used to calculate the masks. Used

parameter: kx = 15 in w4 and w5.
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Figure 4.4: Separation using three microphones: Average performance of w4 and w5 in the

anechoic case vs number of frequency bins used to calculate the masks. Used

parameter: kx = 5 in w4 and w5.
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Figure 4.5: Separation using two microphones: Average performance of w4 in the anechoic

case vs learning block length in seconds. Used parameter: kx = 15.
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Figure 4.6: Separation using two microphones: Average performance of w5 in the anechoic

case vs learning block length in seconds. Used parameter: kx = 15.
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4.4 Comparison with an Existing Method

During this research, we noticed that the method proposed in this chapter resembles an existing

method proposed by Cermak et al. in [120]. The method described in [120] combines time-

frequency binary masking and a set of beamformers, termed a beamformer array by the authors.

In this section, we describe this existing method, and then compare it with our proposed mixture

of beamformers approach.

4.4.1 Time-Frequency Masking and Beamformer Array

We start our comparison by highlighting the assumptions used in our method and the method

used in [120]. Our method assumes that the direction of the desired source is known or es-

timated a priori, and there is no need to know or estimate the number of interferers. The

interferers can be point sources, extended sources, or any form of noise. The goal of our pro-

posed method is to extract a desired point source from a known location (source extraction).

The method proposed in [120] assumes that the number of sources is known, but does not

assume that their location is known. The goal in [120] is to estimate all the sources (source

separation). To achieve source separation in [120], time-frequency masking is first employed,

followed by the estimation of the mixing vector (steering vector) for each source. A beam-

former array is then designed using the estimated mixing vector and the time-frequency masks.

The method proposed in [120] has similar steps to the method we proposed in Section 4.2,

with the difference being in the design of the beamformers. In [120], the authors estimate bi-

nary time-frequency masks Mj , j = 1, ...,M (M is the known number of sources), and then

estimate the mixing vector âj(f) for source j using a least square estimate:

âj(f) =
E [x(n, f)Mj(n, f)x∗

I(n, f)]

E
[
|Mj(n, f)xI(n, f)|2

] (4.12)

where xI is the Ith channel of the observed mixture, I is a reference channel, and (.)∗ denotes

the complex conjugate. A beamformer array is then designed using the estimated mixing vector

and the time-frequency masks.

Let us now focus on separating one source (with index d). The main idea behind the beam-

former array is to compose B different mixtures (B is defined shortly) from the pre-separated
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signals:

yqx(n, f) = Mqx(n, f)x(n, f) : 1 ≤ qx ≤M (4.13)

provided by time-frequency masking, which are then filtered by B MVDR beamformers. The

input to each one of B beamformers is a mixture which includes the pre-separated target signal

(yd) and different pre-separated interferers (a selection of yqx, qx 6= d). All interferes are used

at least once in these mixtures. Each one of the B beamformers point to the direction of the

target signal, and attenuate the selected pre-separated interferers. Finally, we add together all

the outputs of the beamformers.

The number of beamformers B depends on Z ∈ {1, ...,N − 1}, the number of interferers

selected in each mixture (N is the number of channels). For obvious reasons, the value of Z

should not be higher than the number of degrees of freedom in MVDR beamformers (N − 1).

Once a value for Z is selected, B can be estimated by:

B =
(M − 1)!

Z!(M − 1− Z)!
(4.14)

We compose B mixtures. Each mixture ud,b includes the pre-separated target signal and a

selection of the pre-separated interferers:

ud,b(n, f) = yd +
∑

g∈zb

yg (4.15)

where zb represents the Z interferers selected for mixture ud,b. We design B beamformers,

each given by:

w
d̂,b

(f) =
âd(f)H R−1

b (f)

âd(f)H R−1
b (f) âd(f)

(4.16)

where the beamformer w
d̂,b

1 is designed to filter ud,b, and the correlation matrix Rb(f) is

given by:

Rb(f) =
∑

n

(
∑

g∈zb

yg(n, f)

)(
∑

g∈zb

yg(n, f)

)H

(4.17)

Finally, we add together all the outputs of the beamformers.

1We use the notation d̂ in wd̂,b to remind the reader that an estimate of the mixing vector âd is used.

121



Combining Time-Frequency Masking and Mixtures of Beamformers

4.4.2 Comparison between the Mixture of Beamformers and the Beamformer

Array

The comparison between the two approaches can be easily understood by an example. Let

us take an example where the number of sources M = 4 and the number of microphones

N = 2. In this section, we compare the equations involved in the extraction of one source

with index d using the beamformer array method, and our proposed mixture of beamformers

method. To facilitate the comparison, we assume that the mixture of beamformers will cluster

kx = 4 components. Therefore, for both methods, the time-frequency masking stage will

produce four signals corresponding to the original sources (up to an arbitrary ordering). Binary

time-frequency masks will be used in this comparison. We choose the desired source to be

source number 4 (This particular index d = 4 reduces the confusion between a source index

and a beamformer index b).

4.4.2.1 Beamformer Array Approach

In the two microphone case, there is only one permissible value for Z , and we have Z = 1,

B = 3. We first estimate the mixing vector for the desired source at each frequency:

â4(f) =
E [x(n, f)M4(n, f)x∗

1(n, f)][
|M4(n, f)x1(n, f)|2

] (4.18)

where we used the first channel as the reference channel I . The input signals of the beamform-

ers are:

u4,1(n, f) = M4(n, f)x(n, f) + M1(n, f)x(n, f) (4.19)

u4,2(n, f) = M4(n, f)x(n, f) + M2(n, f)x(n, f) (4.20)

u4,3(n, f) = M4(n, f)x(n, f) + M3(n, f)x(n, f) (4.21)

122



Combining Time-Frequency Masking and Mixtures of Beamformers

The beamformer array consists of the following beamformers:

w4̂,1(f) =
â4(f)H R−1

1 (f)

â4(f)H R−1
1 (f) â4(f)

(4.22)

w4̂,2(f) =
â4(f)H R−1

2 (f)

â4(f)H R−1
2 (f) â4(f)

(4.23)

w4̂,3(f) =
â4(f)H R−1

3 (f)

â4(f)H R−1
3 (f) â4(f)

(4.24)

where

R1(f) =
∑

n

(M1(n, f)x(n, f)) (M1(n, f)x(n, f))H
(4.25)

R2(f) =
∑

n

(M2(n, f)x(n, f)) (M2(n, f)x(n, f))H
(4.26)

R3(f) =
∑

n

(M3(n, f)x(n, f)) (M3(n, f)x(n, f))H (4.27)

The estimate of source four is:

ŝBA
4 (n, f) = w4̂,1(f)u4,1(n, f) + w

4̂,2
(f)u4,2(n, f) + w

4̂,3
(f)u4,3(n, f) (4.28)

4.4.2.2 Mixture of Beamformers Approach

Our proposed method uses a mixture of beamformers in the (known) direction of the desired

source a4(f):

ŝMOB
4 (n, f) =

4∑

qx=1

Mqx(n, f)w4,qx(f)x(n, f) (4.29)

where:

w4,qx(f) =
a4(f)H R−1

qx
(f)

a4(f)H R−1
qx (f)a4(f)

(4.30)

123



Combining Time-Frequency Masking and Mixtures of Beamformers

and where:

R1(f) =
∑

n

(M1(n, f)x(n, f)) (M1(n, f)x(n, f))H (4.31)

R2(f) =
∑

n

(M2(n, f)x(n, f)) (M2(n, f)x(n, f))H (4.32)

R3(f) =
∑

n

(M3(n, f)x(n, f)) (M3(n, f)x(n, f))H (4.33)

R4(f) =
∑

n

(M4(n, f)x(n, f)) (M4(n, f)x(n, f))H (4.34)

Note that R1(f), R2(f), R3(f) are similar to what we calculate in the beamformer array

approach (Equations (4.25)-(4.27)).

4.4.2.3 Comparison

Let us compare our proposed mixture of beamformers approach with the beamformer array

approach of [120]. We can write (4.28) as follows:

ŝBA
4 (n, f) = w4̂,1(f) (M4(n, f)x(n, f) + M1(n, f)x(n, f)) +

w4̂,2(f) (M4(n, f)x(n, f) + M2(n, f)x(n, f)) +

w4̂,3(f) (M4(n, f)x(n, f) + M3(n, f)x(n, f)) (4.35)

which can be further simplified to:

ŝBA
4 (n, f) = M1(n, f)w4̂,1(f)x(n, f) +

M2(n, f)w4̂,2(f)x(n, f) +

M3(n, f)w4̂,3(f)x(n, f) +

M4(n, f)
(
w4̂,1(f) + w4̂,2(f) + w4̂,3(f)

)
x(n, f) (4.36)

We remind the reader that one and only one of the binary masks M1(n, f), M2(n, f), M3(n, f),

and M4(n, f) can have a non-zero value at any time-frequency point.
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The mixture of beamformers estimate can be written as:

ŝMOB
4 (n, f) = M1(n, f)w4,1(f)x(n, f) +

M2(n, f)w4,2(f)x(n, f) +

M3(n, f)w4,3(f)x(n, f) +

M4(n, f)w4,4(f)x(n, f) (4.37)

We can see that main two differences between (4.36) and (4.37) are the use of the known or esti-

mated mixing vectors, and the beamformer used when the target component mask (M4(n, f) in

our case) is equal to one. The mixture of beamformers approach use w4,4(f), while the beam-

former array approach use
(
w4̂,1(f) + w4̂,2(f) + w4̂,3(f)

)
. Contrary to what was claimed

in [120], we can see that the beamformer array is not distortionless. When the target compo-

nent mask M4(n, f) is equal to one, the beamformer output is equal to (w4̂,1(f)+ w4̂,2(f) +

w4̂,3(f))x(n, f), which has a gain of three for a signal arriving from the target estimated direc-

tion. This scaling can be seen as a form of post-processing the output to increase the interfer-

ence rejection while introducing artifacts.

We now compare the performance of the beamformer array approach with the mixture of beam-

formers approach (w4). We use similar setup and performance measures to the experiments

described in Section 4.3. We use two microphones with a spacing d = 5 cm, a STFT frame

of 1024 samples, a STFT step size of 256 samples, a learning block duration of 10 s, and a

frequency block size of 512 bins (all frequency bins). We report the performance of w4 when

using kx = 4, and kx = 15 (more results can be found in Section 4.3). We also compare the

performance of the two approaches before and after a post-processing step as proposed in [108]

(method described in Section 2.8.7). In the post-processing stage, we use an ENSIR threshold

of 3 dB (i.e. we null a time-frequency point if the ENSIR is less than 3 dB).

The performance results are summarised in Table 4.3. The beamformer array approach can

achieve a SDR of 7.3 dB, a SIR of 13.5 dB, and a SAR of 9.0 dB. In comparison, the mixture

of beamformers w4 with kx = 4 can achieve a SDR of 6.0 dB, a SIR of 10.1 dB, and a SAR

of 8.9 dB. The mixture of beamformers w4 with kx = 15 can achieve a SDR of 6.1 dB, a SIR

of 12.0 dB, and a SAR of 7.9 dB. When an estimated mixing vector is used in the mixture of

beamformers (kx = 4), we get a SDR of 5.7 dB, a SIR of 9.6 dB, and a SAR of 8.7 dB. We can

see that the beamformer array approach outperforms the mixture of beamformers approach, and
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SDR SIR SAR

beamformer array, kx = 4 7.3 13.5 9.0

mixture of beamformers w4, kx = 4 6.0 10.1 8.9

mixture of beamformers w4, kx = 4, estimated a 5.7 9.6 8.7

mixture of beamformers w4, kx = 15 6.1 12.0 7.9

beamformer array, kx = 4, with post-processing 6.5 17.3 7.2

mixture of beamformers w4, kx = 4, with post-processing 6.5 16.9 7.3

mixture of beamformers w4, kx = 15, with post-processing 6.0 17.3 6.7

Table 4.3: Performance comparison between the beamformer array and the mixture of beam-

formers approaches.

that using an estimated mixing vector in the mixture of beamformers reduced its performance

slightly. When we add a post-processing stage, the beamformer array approach can achieve

a SDR of 6.5 dB, a SIR of 17.3 dB, and a SAR of 7.2 dB. In comparison, the mixture of

beamformers w4 with kx = 4 can achieve a SDR of 6.5 dB, a SIR of 16.9 dB, and a SAR of

7.3 dB. The mixture of beamformers w4 with kx = 15 can achieve a SDR of 6.0 dB, a SIR

of 17.3 dB, and a SAR of 6.7 dB. We can see that with a post-processing step the beamformer

array approach and the mixture of beamformers approach have a comparable performance.

4.5 Chapter Summary

We presented a modification to the mixture of MPDR beamformers presented in the previous

chapter. The presented methods combine clustering algorithms used in time-frequency mask-

ing with the mixture of beamformers. This results in a significant reduction in computational

complexity.

The non-linear beamformers have been tested and evaluated on underdetermined speech mix-

tures. It was shown that the non-linear beamformer w4 gives better interference rejection,

while the non-linear beamformer w5 gives better SAR. In terms of computational complexity,

both non-linear beamformers w4 and w5 have similar computational complexity, and require

significantly less time than non-linear beamformers w1, w2 and w3 (Section 3.5.6). We then

compared the mixture of beamformers approach with an existing method proposed by Cermak

et al. in [120]. The method proposed by Cermak et al. use a time-frequency binary masking

stage followed by beamforming stage. We showed that the proposed method gives a compara-

ble performance to the method in [120] when we use a post-processing step. More experiments

and comparisons of the proposed methods with other source separation algorithms can be found
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in Chapter 5.
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Chapter 5

Further Results and Comparisons

5.1 Introduction

In Chapters 3 and 4, we proposed different non-linear beamformers that can extract a desired

source from a known location. In particular, we proposed three non-linear beamformers in

Chapter 3 where the signal estimator is a mixture of MMSE beamformers (denoted as w1),

a mixture of MVDR beamformers (denoted as w2), and a mixture of MPDR beamformers

(denoted as w3). Then in Chapter 4, we presented a modification to the mixture of MPDR

beamformers w3 where we employed clustering algorithms used in time-frequency masking

instead of the EM algorithm. Two variants of the proposed method were described. The first

one uses binary time-frequency masks (denoted as w4), and the second one uses soft time-

frequency masks (denoted as w5). In Sections 3.5 and 4.3, we presented some experimental

results that illustrate the performance of the proposed methods and we studied the effect of

design parameters on the extraction performance.

In this chapter, we report more experimental results and compare the proposed non-linear beam-

formers with some other source separation methods. The chapter is structured as follows. In

Section 5.2.1, we describe the rooms used in the experimental evaluation. The speech data

used in the experiments is described in Section 5.2.2. In Section 5.2.4, we describe the eval-

uation metrics. In Section 5.2.5, the algorithm parameters we use unless mentioned otherwise

are presented. In Section 5.2.6, we investigate the effect of DOA offset and regularisation. In

Sections 5.2.7 and 5.2.8, we study the performance of the proposed non-linear beamformers

in room reverberation and compare their performance with the MENUET and the FMV algo-

rithms. Then, in Section 5.2.9, we report the performance of the non-linear beamformers in real

life recordings and compare their performance with the MENUET and the FMV algorithms.

Samples of the speech files used in the experiments can be found in a CD attached to the thesis.
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5.2 Experimental Evaluation

5.2.1 Setup

Our experiments were made in three rooms with different characteristics and arrangements

of the sources and the microphones. In all rooms, the number of the sources was four. In

the first two rooms, multichannel recordings of several speech sources were simulated using

impulse responses determined by the room image method [50]. The reverberation time was

varied in order to study the effect of reverberation time on the performance. In the third room,

multichannel recordings of several speech sources were recorded in a physical room with a

reverberation time of 810 ms.

Figures 5.1 shows the first room. Two microphone arrays were used. The first has three micro-

phones with a spacing d = 2.5 cm, and the second has two microphones with a spacing d = 5

cm. Both microphone arrays have a total length of D = 5 cm. The sources were placed in a

semi-circle of radius 1 m around the microphone arrays at angles φ = {−45, −15, 10, 50}◦.

This room is used in all the experiments in this chapter except for the experiments in Sections

5.2.8 and 5.2.9.

In Section 5.2.8, simulated recordings in the room illustrated in Figure 5.2 were used. The

room is similar to room 1, but the arrangements of the sources is different. The desired

source was placed 10 cm away from the microphone array at angle φ = 10◦, while the in-

terferers were placed in a semi-circle of radius 1 m around the microphone arrays at angles

φ = {−45, −15, 50}◦. Although the desired source was in close proximity to the micro-

phones, we scaled the power of the sources so that the received power of all the sources at the

microphones are equal. In this setup, the desired source is closer to the microphones than the

interfering sources, and therefore suffers from less reverberation. This arrangement of sources

was considered because it represents many practical scenarios where the desired source is in

close proximity to the microphones.

In Section 5.2.9, live recordings in the room illustrated in Figure 5.3 were used. In this room,

the microphone array has two microphones with spacing d = 7 cm. The desired source was

placed 30 cm away from the microphone array at φ = 0◦, while the interferers were placed in a

semi-circle of radius 1.5 m around the microphone arrays at angles φ = {−60, −30, 50}◦. The

power of the sources was scaled so that the received power of all the sources at the microphones

are equal. In this setup, the desired source is closer to the microphones than the interfering
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w1 w2 w3

STFT frame 1024 1024 1024

STFT step 256 256 256

GMM components
(2 mics)

(3 mics)

ks = 2, kv = 15
ks = 2, kv = 5

ks = 2, kv = 15
ks = 2, kv = 5

kx = 15
kx = 5

EM Iterations
(2 mics)

(3 mics)

100

100

100

100

50

20

Learning block duration 10 s 10 s 10 s

Table 5.1: Algorithm parameters for w1, w2, and w3.

sources, and therefore suffers from less reverberation.

5.2.2 Speech Data

We used speech files taken from the TIMIT speech corpus [113] to create five mixtures of male

sources, and five mixtures of female sources. The speech signals were of a duration equal to 10

s, and were sampled at 16 kHz. The number of the sources in each mixture was four.

5.2.3 Demonstration CD

Attached to this thesis is a CD with samples of the speech signals used in the experiments and

the outputs of the non-linear beamformers (w1, w2, w3, w4, and w5), the MENUET algorithm,

and the FMV algorithm in the three rooms.

5.2.4 Evaluation Measures

To measure the quality of the signal estimate ŝ with respect to the original signal s, we used

the SDR, SIR and the SAR calculated as defined in [53]. The computation of the evaluation

measures is detailed in Section 2.7.

Unless mentioned otherwise, the SDR, SIR and SAR values in our results were averaged over

all the sources and mixtures.
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Figure 5.1: Layout of room 1.

Figure 5.2: Layout of room 2.
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w4 w5

STFT frame 1024 1024

STFT step 256 256

Clusters
(2 mics)

(3 mics)

kx = 15
kx = 5

kx = 15
kx = 5

Frequencies
(2 mics)

(3 mics)

512

512

512

512

Learning block duration 10 s 10 s

Table 5.2: Algorithm parameters for w4 and w5.

Figure 5.3: Layout of room 3.
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5.2.5 Algorithm Parameters

Unless mentioned otherwise, we use the values listed in Table 5.1 for the STFT frame size,

STFT step size, number of GMM components, and number of iterations for the non-linear

beamformers w1, w2, and w3. Additionally, we use the values listed in Table 5.2 for the

STFT frame size, STFT step size, number of clusters, and number of frequencies used in each

learning block for the non-linear beamformers w4 and w5. Increasing the number of GMM

components/clusters or the number of EM iterations, or reducing the STFT step size or the

frequency block size beyond the values listed in the table requires more computational time

with an insignificant performance improvement.

5.2.6 Effect of DOA Offset and Regularisation

In some applications, the DOA of the desired source is scanned across a region of interest in

space or estimated from the observed data. However, the desired signal can arrive from a differ-

ent direction than that assumed. In this section, we test the effect of the mismatch between the

assumed DOA of the desired source and the true one. There are many methods that have been

developed to enhance the robustness of beamforming techniques against DOA mismatch, and

other mismatches in the model, such as microphone gain and phase or location of microphones.

Incorporating them in the mixture of beamformers framework should be straightforward. In all

our results in this thesis we used multiplicative diagonal loading as suggested in [62]. In this

section, we study and compare three regularisation methods: multiplicative diagonal loading

[62], (additive) diagonal loading [52], and eigenvalue thresholding [110]. Another method for

adding mismatch robustness to beamformers is incorporate additional linear constraints to the

MVDR or the MPDR beamformers. The beamformers in which additional linear constraints are

imposed are referred to as linear constrained minimum variance (LCMV) beamformers [52].

In LCMV beamformers, robustness against DOA offsets can be enhanced by forcing a flatter

directivity patterns near the signal direction. This can be done using additional directional or

derivative constraints [52]. Each constraint removes one of the remaining degrees of freedom

available to attenuate interferers. We are not going to study LCMV methods in this thesis.

We first use multiplicative regularisation applied to the diagonal terms of the correlation matrix

as suggested in [62]. In this regularisation method, we multiply each diagonal element in the

correlation matrix with 1 + β, where β is very small number. We first use β = 1e− 3. Figures

5.4, 5.5, 5.6, and 5.7 show the average performance at the output of the non-linear beamformers
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in the anechoic case as a function of the DOA offset. The non-linear beamformers appear to be

robust against small DOA offsets.

We now study the effect of different regularisation methods and regularisation parameters on the

performance of non-linear beamformers. We only show results for the non-linear beamformer

w3, as results for other non-linear beamformers are similar.

Figure 5.8 show the effect additive diagonal loading on the average performance of the non-

linear beamformer w3 in the anechoic case as a function of the DOA offset. In this regulari-

sation method, we add a small value ǫ to each diagonal element in the correlation matrix [52].

This method penalises large values of beamformer weights and has the general effect of de-

signing a beamformer for a higher white noise level than is actually present [52]. We can see

that increasing the value of ǫ reduces the value of SIR significantly without any real benefits on

the SDR or robustness against DOA offsets. We believe that the reason behind this is that there

is wide range of values for the diagonal terms of the correlation matrices, and therefore it is

impossible to pick a single value of ǫ for all Gaussian components or clusters at all frequencies.

To avoid this problem, the value added to each diagonal term should be proportional to their

values.

Figure 5.9 show the effect multiplicative diagonal loading on the average performance of the

non-linear beamformer w3 in the anechoic case as a function of the DOA offset. In this reg-

ularisation method, we multiply each diagonal element in the correlation matrix with 1 + β,

where β is a small number [62]. This method is equivalent to additive diagonal loading , albeit

the value added to each diagonal term is proportional to its value. We can see that increasing

the value of β gives more robustness against DOA offsets, however very large values such as

β = 5e−3 can reduce the SIR significantly. In comparison with additive diagonal loading, this

method gives better performance and robustness against DOA offsets.

Figure 5.10 show the effect eigenvalue thresholding on the average performance of the non-

linear beamformer w3 in the anechoic case as a function of the DOA offset. In this regulari-

sation method, we modify the matrix to ensure no eigenvalue is less than a factor γ times the

largest, where 0 < γ < 1 [110]. Specifically, let QDQ−1 denote the eigenvalue decomposition
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Figure 5.4: Separation using two microphones: average performance ofw1,w2, andw3 in the

anechoic case as a function of DOA offset. Used parameters: ks = 2 and kv = 15
in w1 and w2, kx = 15 inw3.
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Figure 5.5: Separation using three microphones: average performance of w1, w2, and w3 in

the anechoic case as a function of DOA offset. Used parameters: ks = 2 and
kv = 5 in w1 and w2, kx = 5 inw3.
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Figure 5.6: Separation using two microphones: average performance of w4 and w5 in the

anechoic case as a function of DOA offset. Used parameter: kx = 15 in w4 and

w5.
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Figure 5.7: Separation using three microphones: average performance of w4 and w5 in the

anechoic case as a function of DOA offset. Used parameter: kx = 5 in w4 and

w5.
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of R, where D is a diagonal matrix with the matrix eigenvalues on the diagonal:

D =




λ1

. . .

λN


 (5.1)

We modify the matrix D to ensure no eigenvalue is less than γλmax, where λmax is the largest

eigenvalue in matrix D. The modified matrix D is computed as follows:

D̆ =




max{λ1, γλmax}
. . .

max{λN , γλmax}


 (5.2)

The modified correlation matrix is computed according to:

R̆ = QD̆Q−1 (5.3)

We can see from Figure 5.10 that increasing the value of γ gives more robustness against DOA

offsets, however very large values such as γ = 5e− 3 can reduce the SIR significantly. In com-

parison with additive and multiplicative diagonal loading, this method gives better performance

and robustness against DOA offsets.

In summary, multiplicative diagonal loading and eigenvalue thresholding methods gives ro-

bustness against DOA offsets. However, it is important not to pick too large values for the

regularisation parameters in order to avoid a reduction in performance.

5.2.7 Effect of Reverberation

Figure 5.11 shows the average performance of the non-linear beamformers w1, w2, and w3 as

a function of the room reverberation time when four sources are operating, and the microphone

array used has two microphones with a 5 cm microphone spacing. kx = 15 was used in w3,

and ks = 2, kv = 15 was used in the two other beamformers. We compared the performance of

the three non-linear beamformers with the performance of the MENUET and FMV algorithms.
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Figure 5.8: Separation using two microphones: average performance of w3 in the anechoic

case as a function of DOA offset when using additive diagonal loading. Used

parameter: kx = 15.
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In the FMV algorithm, a small step size of 16 samples is essential to obtain good separation

performance, while a step size of 256 samples is sufficient in the non-linear beamformers.

The MENUET algorithm and the mixture of MMSE beamformers (w1) gives a high SIR, but

suffers from a very low SAR at higher reverberation times. The non-linear beamformers w2

and w3 defined in (3.16) and (3.34) respectively have significantly lower artifacts at higher

reverberation times.

Figure 5.12 shows the average performance of the non-linear beamformers w1, w2, and w3

as a function of the room reverberation time when four sources are operating, and the micro-

phone array used has three microphones with a 2.5 cm microphone spacing. We compared the

performance of the three non-linear beamformers with the performance of the MENUET and

FMV algorithms. kx = 5 was used in w3, and ks = 2, kv = 5 was used in the two other

beamformers. Unsurprisingly, the performance of non-linear beamformers improved with the

addition of the third microphone.

Figures 5.13 and 5.14 show the average performance of the non-linear beamformers w4 and

w5 as a function of the room reverberation time. The non-linear beamformers w4 and w5 offer

a better SAR compared to MENUET at the expense of a lower SIR.

5.2.8 Desired Source in Close Proximity to Array

In many applications, such as in human-computer interaction, the desired source is closer to the

microphones than the interfering sources, and therefore suffers from less reverberation. In such

a situation, the mixing model used in the development of the proposed non-linear beamformers

(equation 3.1) is more accurate, as in this mixing model, the desired source signal is assumed

to be anechoic, but no assumptions are made about the interferers, which can be reverberant.

In order to illustrate the performance of the non-linear beamformers in such situations, multi-

channel recordings of several speech sources were simulated in the room illustrated in Figure

5.2. The microphone array has two microphones with spacing d = 5 cm. We use the same

speech files used in the simulations (five mixtures of male sources, and five mixtures of female

sources). The number of the sources in each mixture was four. The desired source was placed

10 cm away from the microphone array at angle φ = 10◦, while the interferers were placed

in a semi-circle of radius 1 m around the microphone arrays at angles φ = {−45, −15, 50}◦.
Although the desired source was in close proximity to the microphones, we scaled the power
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Figure 5.11: Separation using two microphones: average performance of w1, w2, w3, FMV,

and MENUET as a function of reverberation time. Used parameters: ks = 2 and
kv = 15 in w1 and w2, kx = 15 inw3.
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Figure 5.12: Separation using three microphones: average performance of w1, w2,w3, FMV,

and MENUET as a function of reverberation time. Used parameters: ks = 2 and
kv = 5 in w1 and w2, kx = 5 inw3.
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Figure 5.13: Separation using two microphones: average performance of w4, w5, and

MENUET as a function of reverberation time. Used parameter: kx = 15 in
w4 and w5.
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Figure 5.14: Separation using three microphones: average performance of w4, w5, and

MENUET as a function of reverberation time. Used parameter: kx = 5 in w4

and w5.
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of the sources so that the received power of all the sources at the microphones are equal. The

performance values were averaged over all the ten mixtures. Figures 5.15 and 5.16 show the

results. As predicted, the performance of the non-linear beamformers in reverberation when the

desired source is in close proximity to the array is better than when the desired source is further

away (Figures 5.11 and 5.13). The mixture of MMSE beamformers (w1) gives the highest SIR

and SDR, and it did not suffer from a low SAR at higher reverberation times.

5.2.9 Live Recordings

In order to illustrate the performance of the non-linear beamformers in real life recordings,

multichannel recordings of several speech sources were recorded in a room with a reverbera-

tion time of 810 ms. The dimensions of the room and the positions of the microphones and

the sources are illustrated in Figure 5.3. The microphone array has two microphones with

spacing d = 7 cm. We use the speech files described in Section 5.2.2 (five mixtures of male

sources, and five mixtures of female sources). The number of the sources in each mixture was

four. The desired source was placed 30 cm away from the microphone array, while the in-

terferers were placed in a semi-circle of radius 1.5 m around the microphone arrays at angles

φ = {−60, −30, 50}◦. We compared the three non-linear beamformers with the FMV and

MENUET algorithms. The SDR, SIR and SAR values were averaged over all the mixtures.

Table 5.3 shows the results. Due to the high reverberation times, all of the methods suffer from

low SIR values, but they all afford SIR improvements over the input mixture (the mixture SIR is

–4.7 dB). The non-linear beamformer w1 has the highest SIR and SDR performance, and also

achieves better SAR than MENUET which had the second best SIR. However, when listening

to the outputs, it is clear that both MENUET and w1 suffer from artifacts and musical noise.

The distortionless response beamformers w2, w3, w4, and w5 have no artifacts in the desired

source, but the residual interference signal can be heard.

5.2.10 Time-Frequency Masks

To understand how the various beamformers are achieving their signal enhancement, we can

look at equivalent time-frequency masks for each algorithm. Figure 5.17 compares the equiva-

lent mask of the three non-linear beamformers w1, w2, and w3 with the time-frequency mask of

MENUET on an example mixture. The equivalent mask was computed at each time-frequency

point as the ratio of the energy of the desired signal estimate to the energy of the observed mix-
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Figure 5.15: Separation using two microphones: average performance of w1, w2, w3, FMV,

and MENUET as a function of reverberation time when the desired source is in

close proximity to the microphone array. Used parameters: ks = 2 and kv = 15
inw1 and w2, kx = 15 in w3.
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MENUET as a function of reverberation time when the desired source is in close
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SDR SIR SAR SIR gain

w1 0.3 3.8 4.5 8.5

w2 -1.7 -0.5 7.9 4.2

w3 -1.8 -0.3 7.0 4.4

w4 -0.8 1.6 5.3 6.3

w5 -1.9 -1.2 9.8 3.5

FMV -2.1 -0.3 5.7 4.4

MENUET -0.4 3.3 3.6 8

Table 5.3: Average performance using real life recordings in a room with 810 ms reverberation

time. Used parameters: ks = 2 and kv = 15 in w1 and w2, kx = 15 in w3, w4,

and w5. Best Performance values is in bold font.
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ture. The non-linear beamformer’s approach results in a soft decision mask for the observed

signal.

5.3 Discussion

In this chapter, we first evaluated the performance of the non-linear beamformers when the di-

rection of the arrival of the desired source is different from the presumed one. Regularisation

methods used in beamforming techniques can be easily incorporated in the mixture of beam-

formers framework. It was shown that multiplicative diagonal loading and eigenvalue thresh-

olding methods gives robustness against small DOA offsets. However, it is important not to

pick large values for the regularisation parameters in order to avoid a reduction in performance.

In the second test, the non-linear beamformers were evaluated on underdetermined speech mix-

tures with room reverberation. It was shown that the mixture of MMSE beamformers w1 gives

better interference rejection at the expense of higher artifacts. The non-linear beamformers

w2, w3, w4, and w5 are distortionless beamformers (constant gain in the look-direction), and

have significantly lower artifacts at higher reverberation times. When the desired source is in

close proximity the microphone array, the non-linear beamformer w1 did not suffer from higher

artifacts at high reverberation time (as shown in Section 5.2.8). In real life recordings with a re-

verberation time of 810 ms and the desired source in close proximity to the array, the non-linear

beamformer w1 has the highest SIR and SDR performance at the expense of audible artifacts.

The distortionless response beamformers w2, w3, w4, and w5 have no artifacts in the desired

source, but the residual interference signal can be heard.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

The goal of this thesis was the investigation and development of new methods for the separation

and extraction of audio signals, and more specifically of speech signals. Our proposed meth-

ods focused on the extraction of a desired source with known location from underdetermined

mixtures, where the number of sources is larger than the number of microphones.

In this thesis, we first discussed the different possibilities of source separation and extraction

environments and prior knowledge of the sources, mixing process, and the microphones. In

general, source separation and extraction is more difficult when the room impulse response of

the room is long, when the sources are moving, or when the number of sources is larger than

the number of microphones. Some source separation and extraction methods requires some

a priori information such as the microphone geometry, source geometry, number of sources,

type of sources (speech, music...etc) and channel parameters. The availability of this a priori

information depends on the application.

We then reviewed some basic properties of speech signals, and discussed their relevance to the

speech separation and extraction problem. Regularities in the speech signals such as common

onsets, common offsets, harmonicity, and temporal coherence are exploited by many methods,

especially methods that emulate the way the human auditory system perform speech separation

and extraction (CASA methods). Statistical properties of speech such as non-gaussianity, non-

stationarity, non-whiteness, and sparseness are also exploited in many speech separation and

extraction methods. Furthermore, the use of microphone arrays gives one the opportunity to

exploit the fact that the sources originate at different points in space.

We then discussed performance measures that can be used to evaluate source separation and

extraction methods. Many performance measures have been proposed. A very important factor

to take into account when choosing a suitable performance evaluation measure is whether the

output of the source separation/extraction method is a signal that is intended to be listened to
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or not. In many applications, the extracted sources are meant to be listened to straight after

separation. In these applications, we require high quality source estimates. In other applica-

tions, the extracted sources are processed to obtain information, such as recognising the words

pronounced by a speaker using a computer, or identifying the identity of a speaker or a musical

instrument. In such applications, the effectiveness of source separation and extraction can be

judged by the performance of the final application.

We then reviewed current solutions to the speech separation and extraction problem. Source

separation methods initially only considered the case when the number of sources is equal to or

less than the number of microphones (determined and overdetermined mixtures). ICA is one of

the major methods used in this case. ICA is a blind method; it does not need additional a priori

information, such as the array geometry or the positions of the desired and interfering sources.

However, ICA methods require that the number of sources to be known a priori. In ICA, the

mixing filters (or the separating filters) are determined so that the estimated source signals are

as independent as possible. The separating filters act as null beamformers that attenuate the

interfering signals. For this reason, standard ICA cannot deal with underdetermined mixtures.

Adaptive beamforming techniques have also been used successfully in source separation and

extraction for determined and overdetermined mixtures. Unlike ICA, beamforming techniques

require information about the microphone array configuration and the sources (for example,

the direction of the desired source). However, beamforming techniques can attenuate spatially

spread and reverberant interferers, and there is no need to determine their number.

In underdetermined mixtures, the assumption that the sources have a sparse representation un-

der an appropriate transform is a very popular assumption. One popular approach to sparsity-

based separation is time-frequency masking, where we process the mixture signal a time-

frequency mask that attenuate interfering signals while preserving time-frequency points where

the signal of interest is dominant. If more than one mixture signal is available, the spatial infor-

mation at each time-frequency point can sometimes be used to determine which time-frequency

points belong to each source. To estimate the masks, many methods assume that the speech

source do not overlap in the time-frequency domain, and partition the mixture time-frequency

coefficients based on the inter-channel level/phase difference. In practice, this disjointness

assumption is not fully met and becomes less realistic in reverberation. Furthermore, time-

frequency masking suffers from musical noise due to masking of time-frequency points where

the sources overlap.
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In order to combine the benefits of non-linear time-varying separation in time-frequency mask-

ing with the benefits of spatial filtering in the linear beamformers, we proposed to exploit the

speech’s sparsity in the time-frequency domain in order to extend the use of beamforming tech-

niques to underdetermined speech mixtures. In Chapter 3, we used GMMs to model the speech

non-Gaussianity and the spatial distribution of the sources. We presented three frequency do-

main non-linear beamformers that can extract a desired source from a known-direction. The

first two non-linear beamformers are based on modeling the desired source signal and the in-

terference separately. The desired source signal is modeled using a 1-dimensional GMM, and

the observed interference is modeled using an N -dimensional GMM, where N is the number

of microphones. The covariance matrices of each Gaussian state represent a spatial covariance

matrix. The signal estimator in these beamformers comprises of a set of MMSE beamform-

ers (termed w1) or MVDR beamformers (termed w2). The third non-linear beamformer is

based on modeling the observed mixture signal (the desired source and interference together)

using an N -dimensional GMM. In this case, the signal estimator comprises a set of MPDR

beamformers (termed w3). The model learning is performed with an EM algorithm using the

observed mixture signals only, and no prior training is required. In order to estimate the sig-

nal, all beamformers are concurrently applied to the observed signal, and the weighted sum

of the beamformers’ outputs is used as the signal estimator, where the weights are the poste-

rior probabilities of the GMM states. These weights are specific to each time-frequency point.

This results in the non-linear beamformer dynamically finding suitable directivity patterns in

order to reduce active interfering signals. This allows the non-linear beamformer to deal with

underdetermined mixtures.

An important feature of the proposed extraction system is that no assumptions on the number,

location or size of the interferers were taken, and the interferers can be of any nature such

as point sources, spatial extended sources, diffuse sources, or a combination of them. The

proposed methods can be applied to microphone arrays with two or more microphones.

The non-linear beamformers have been tested and evaluated on underdetermined speech mix-

tures. It was shown that the non-linear beamformer w1 gives better interference rejection at

the expense of higher artifacts, especially at higher reverberation times. The non-linear beam-

formers w2 and w3 are distortionless beamformers (constant gain in the look-direction), and

have significantly lower artifacts at higher reverberation times. When the desired source is in

close proximity the microphone array, the non-linear beamformer w1 did not suffer from higher
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artifacts at high reverberation times.

In terms of computational complexity, non-linear beamformer w3 employs the simplest learn-

ing algorithm and requires fewer iterations than non-linear beamformers w1 and w2. Further-

more, the model learning for non-linear beamformer w3 is independent of the DOA of the de-

sired source, which makes this non-linear beamformer suitable in applications where scanning

for the source direction is needed. However, it is clear that the three non-linear beamformers

are computationally expensive and are not suitable for many real-time applications.

In Chapter 4, we presented a modification to the mixture of MPDR beamformers (w3). We

suggested using simple clustering algorithms used in many popular time-frequency masking

algorithms instead of the GMM model and the EM algorithm. The proposed algorithm has two

main stages. In the first stage, the mixture time-frequency points are partitioned into a suffi-

cient number of clusters using time-frequency masking techniques. In the second stage, we use

the clusters obtained in the first stage to calculate covariance matrices, one for each cluster in

each frequency bin. These covariance matrices and the time-frequency masks are then used in

the mixture of MPDR beamformers. The resulting non-linear beamformer has low computa-

tional complexity and removes the musical noise found in time-frequency masked outputs at

the expense of lower interference attenuation. The mixture of MPDR beamformers stage can

be regarded as a post-processing step for sources separated by time-frequency masking. Two

variants of the proposed method were described and compared. The first one uses binary time-

frequency masks, and in this case the mixture of beamformers is termed w4. The second variant

uses soft (real-valued) time-frequency masks, and in this case the mixture of beamformers is

termed w5.

The non-linear beamformers w4 and w5 have been tested and evaluated on underdetermined

speech mixtures. It was shown that the non-linear beamformer w4 gives better interference

rejection, while the non-linear beamformer w5 gives better SAR. In terms of computational

complexity, both non-linear beamformers w4 and w5 have similar computational complexity,

and require significantly less computational time than non-linear beamformers w1, w2 and w3.

6.2 Suggestions for Future Work

There is still a large room for extensions to the algorithms presented. Research in these exten-

sions might enhance the performance of the proposed methods, and increase their usefulness in
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practical applications.

Online Model Learning

In our current implementation, the EM algorithm used in w1, w2 and w3, and the k-means

clustering algorithm used in w4 and w5 are in a batch learning mode. In sections 3.5.4.3 and

4.3.2.3, we studied the effect of using short blocks of data. The batch mode with short blocks

of data can be used in applications where short delays are permissible, such as in human-

computer interaction or surveillance. However, it is not appropriate for real-time applications.

In these applications, online model learning is useful [114, 121]. The online model learning

should have a forgetting factor, and a mechanism for adding, deleting, and reassigning clusters

to handle changes in the environment, such as the number of active sources and their location

[115].

Subband Filtering

In order to perform complete source separation in reverberant rooms, it is necessary to remove

cross-frame interference, which arises from the use of time-frequency representations that use

an analysis window length (frame length) shorter than the reverberation time. In order to re-

move the cross-frame interference, we can use unmixing filters in each subband instead of

instantaneous separation (multipliers). The length of the subband filters should be chosen care-

fully; a short filter will fail to completely remove the cross-frame interference, while a filter

that is too long degrades separation performance because the number of data samples per filter

coefficient decreases, which results in inaccuracies in filter coefficient estimation. Furthermore,

room reverberations typically last longer at low frequencies than they do at high frequencies.

Therefore, it should be advantageous to use longer separating filters in the low frequency bands

[122].

Auditory Filterbanks

Most speech source separation and extraction algorithms rely on the transformation of time-

domain mixture signals received at the microphone array into the time-frequency domain to

improve the disjointness of received signals. Most researchers transform the mixture signals

using the STFT for computational efficiency. The STFT provides an equal frequency resolution
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for all frequencies. However, speech signals concentrate most of their energy at low frequencies

and overlapping of source signals is more probable to be present in this frequency region. We

can improve the frequency resolution by increasing the STFT window size, but this leads to a

reduction in the temporal resolution and thus more overlap. Auditory filter banks provide a high

frequency resolution for low frequencies. It was shown in [123] that the use of modulated Hann

windows with centre frequencies spaced in the equivalent rectangular bandwidth (ERB) [124]

and the Bark [125] auditory scales improve the disjointness of speech mixtures. Therefore,

it is worth investigating the use of auditory representations in the mixture of beamformers

framework instead of the STFT.

Additional Response Constraints

The MVDR and MPDR beamformers are designed by linearly constraining the beamformer

weights to have a constant gain in the look-direction. It is possible to develop beamformers in

which additional linear constraints are imposed. These beamformers are referred to as linear

constrained minimum variance (LCMV) beamformers [52]. It would be worth investigating

the use of multiple linear constraints in the mixture of beamformers framework for added ro-

bustness control over the directivity patterns. For example, robustness to DOA offsets can be

enhanced by forcing a flatter directivity patterns near the signal direction. This can be done

using additional directional or derivative constraints [52]. If the desired source is in close prox-

imity to the microphone array, near field regional constraints can be incorporated to provide

distance discrimination [126].

Video Assisted Source Tracking

In many applications such as human-computer interaction and smart meeting rooms, it would

be advantageous to use video data captured by a camera to estimate the location of the desired

sources[25, 26].
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using mixture of beamformers”, to appear in IEEE Transactions on Audio, Speech and

Language Processing.

Conferences:

• M.A. Dmour, M.E. Davies; “An approach to under-determined speech separation based

on a non-linear mixture of beamformers”, European Conference on Signal Processing

(EUSIPCO), 2009.

• M.A. Dmour, M.E. Davies; “Under-determined speech separation using GMM-based

non-linear beamforming”, European Conference on Signal Processing (EUSIPCO), 2008.
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ABSTRACT

This paper introduces a frequency-domain non-linear beamformer
that can perform speech source separation of under-determined
mixtures, is reasonably artifact-free and does not require prior
knowledge of the number of speakers. This beamformer utilises a
Gaussian mixture distribution to model the observation probability
density in each frequency bin, which can be learnt using the expec-
tation maximisation (EM) algorithm. A linear minimum-variance
distortionless response (MVDR) beamformer is determined for
each of the Gaussian components. The proposed non-linear beam-
former is then a weighted sum of these linear MVDR beamformers
and is therefore also distortionless. The relative contribution for
each linear MVDR beamformer is calculated as the posterior prob-
ability (specific to each time-frequency point) of its corresponding
Gaussian component. Simulation results of the non-linear beam-
former in under-determined mixtures with room reverberation con-
firm its ability to successfully separate speech sources with virtually
no artifacts.

1. INTRODUCTION

Speech separation is the problem of extracting a target speech sig-
nal from observations corrupted by interfering signals such as other
speech signals and background noise. Speech separation is used in
a wide range of applications, such as hearing aids, human-computer
interaction, surveillance, and hands-free telephony. In general, ob-
servations are obtained at the output of a set of microphones, each
receiving different combinations of the source signals. The use of
microphone arrays gives one the opportunity to exploit the fact that
the desired source and the interfering sources originate at different
points in space. The difficulty of the speech separation task depends
on the way in which the signals are mixed within the acoustic envi-
ronment. Speech separation is more difficult when the reverberation
time of the acoustic environment is large, and when there are fewer
microphones than sources.

Suppose that M source signals are mixed and observed at N
microphones. The signal at microphone j can be modeled as:

x j(t) =
M

∑
i=1

P−1

∑
p=0

a ji(p)si(t− p) (1)

where a ji represents the impulse response from source i to micro-
phone j, and P is the length of the impulse response between each
source-microphone pair. A mixture is termed a determined mixture
when the number of microphones is equal to the number of sources,
over-determined when the number of microphones is larger than the
number of sources, and under-determined when it is smaller.

One approach to speech separation is to use statistical modeling
of source signals. Independent component analysis (ICA) is one of
the major statistical tools for solving the problem of speech sepa-
ration. In ICA, separation is performed using the assumption that
the source signals are statistically independent with no information
on the direction of arrival of source signals, or microphone array
configuration. To perform source separation, we process the mix-
ture channels by a set of time-invariant demixing filters and sum

the filtered channels together. ICA implicitly estimates the source
directions by maximising the independence of the sources, and acts
as an adaptive null beamformer that reduces the undesired sources.

However, some aspects limit the application of ICA in real-
world environments. Most ICA methods assume the number of
sources is given a priori. In general, classical ICA techniques can-
not perform source separation when spatially spread sources are in-
volved, or in the under-determined mixtures case.

Another approach to speech separation is to use adaptive beam-
forming techniques. In adaptive beamforming, the microphone ar-
ray is used to form a spatial filter which can extract a signal from
a specific direction and reduce signals from other directions. For
example, in minimum-variance distortionless response (MVDR)
beamforming, the beamformer response is constrained so that sig-
nals from the direction of interest are passed with no distortion,
while it suppresses noise and interference at the output of an array of
microphones. In [2, 3], beamforming weights were calculated using
time-domain recursive algorithms. It was shown recently in [4] that
a frequency-domain MVDR (FMV) beamformer which performs
sample matrix inversion using statistics estimated from a short sam-
ple support gives better performance than time-domain recursive
algorithms in non-stationary acoustic environments. Compared to
ICA, adaptive beamforming can utilise the available information
about source signals and the microphone array configuration. In
addition, there is no need to model the source signals or determine
their number. Adaptive beamforming can attain excellent separa-
tion performance in determined or over-determined time-invariant
mixtures involving point sources. However, when spatially spread
sources are involved, or in under-determined mixtures, perfect at-
tenuation of all interferers becomes impossible and only partial in-
terference attenuation is possible. This, in turn, leads to perfor-
mance degradation.

In the under-determined mixing case, the assumption of spatial
diversity is insufficient to perform source separation, thereby neces-
sitating additional assumptions. One increasingly popular and very
useful assumption is that the sources have a sparse representation
in a given basis. The advantage of sparse signal representation is
that the probability of more than one active source is low. A sparse
representation of a speech signal can be achieved by a short term
Fourier transform (STFT). One popular approach to perform under-
determined speech separation is time-frequency (t-f) masking. This
approach is a special case of non-linear time-varying filtering that
estimates the desired source signal by:

ŝ(n, f ) =M(n, f )x j(n, f ) (2)

where M(n, f ) is a t-f mask containing positive gains which must
be adapted to extract the desired source from the observed mix-
tures. A popular method used to perform speech separation of
under-determined mixtures using only two microphones is the de-
generate unmixing estimation technique (DUET) [8, 5]. In DUET,
binary masks are determined from the spatial location information
contained in the STFT coefficients of the mixture channels. DUET
is capable of performing separation of two or more sources using
just two channels, and without significant computational complex-
ity. However, this method suffers from the so-called musical noise
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or burbling artifacts due to binary masking of t-f points where the
sources overlap.

In this paper, we introduce a frequency-domain non-linear
beamformer that can perform speech separation of under-
determined mixtures and is distortionless. This beamformer utilises
Gaussian mixture models (GMMs) to model the observation proba-
bility density in each frequency bin. This in turn can be learnt using
the expectation maximisation (EM) algorithm. The signal estimator
comprises of a set of MVDR beamformers, one for each component
of the GMM. In order to estimate the signal, all beamformers are
concurrently applied to the observed signal, and the weighted sum
of the beamformers’ outputs is used as the signal estimator, where
the weights are the posterior probabilities of the GMM components.
This approach results in a “soft decision” filter for the observed sig-
nal. The resulting non-linear beamformer has low computational
costs, and does not need to know or estimate the number of sources.
It combines the benefits of non-linear time-varying separation in t-f
masking with the benefits of spatial filtering and distortionless re-
sponse in the linear MVDR beamformer.

The organisation of this paper is as follows. Section 2 reviews
the linear minimum mean square error (MMSE) beamformer, and
then introduces the GMM-based non-linear beamformer. In Sec-
tion 3, the EM algorithm is used to learn the GMM parameters.
The experimental conditions and simulation results are presented in
Section 4, followed by a discussion in Section 5.

2. OPTIMUM BEAMFORMERS

Consider a narrow band array signal x = [x1, ...,xN ]T that consists
of the desired signal arriving at the array from a known direction,
and an interference-plus-noise signal. That is,

x = se+v (3)

where e is the known N × 1 array response vector in the direction
of the desired source signal (the array manifold), and v is the N×1
complex vector of interference-plus-noise snapshots. We assume
that the signal and interference-plus-noise snapshots are uncorre-
lated. The interference has spatial correlation according to the an-
gles of the contributing interferers. The ultimate goal is to combine
the received signals in such as way that the interference-plus-noise
signal is reduced while the desired signal is preserved.

2.1 Linear MMSE beamformer

We first consider the optimum estimator whose output is the MMSE
estimate of the desired signal s in the presence of Gaussian interfer-
ence and noise, assuming known desired signal direction. We as-
sume that the desired source signal is a sample function from a zero-

mean complex-valued Gaussian random process, s∼ N(0,σ2
s ). We

also assume a zero-mean complex-valued Gaussian interference-
plus-noise, v ∼ N(0,Rv). Additionally, it is assumed that the sig-
nal and interference-plus-noise snapshots are uncorrelated. Hence,

x ∼ N(0,Rv + σ2
s ee

H), and x|s ∼ N(se,Rv), where (.)H denotes
the Hermitian transpose operator. The MMSE estimate of the de-
sired signal s is the mean of the a posteriori probability density of s
given x:

ŝMMSE = E [s|x] =
∫
p(s|x).sds (4)

This mean is referred to as the conditional mean. It can be shown
that the conditional mean can be expressed as [6]:

E [s|x] =
e
HR−1
v x

e
HR−1
v e

.
σ2
s

σ2
s +

(
e
HR−1
v e

)−1
(5)

The first term is an MVDR spatial filter, which suppresses the in-
terfering signals and noise without distorting the signal propagating
along the desired source direction. The second term is a single-
channel Wiener post-filter. We see that the MMSE estimator is just

a shrinkage of the MVDR beamformer. Unfortunately, the MMSE

beamformer depends explicitly on σ2
s which is typically unknown.

Therefore, we cannot implement the MMSE beamformer in prac-
tice. However, we can obtain a beamformer that does not depend

on σ2
s by assuming a distortionless response in the specified direc-

tion. The result is the MVDR beamformer. However, since we
have a distortionless response, we cannot exploit the sparsity of the
desired source signal. The MVDR beamforming process can be
written as:

ŝ = w
H
x

=
e
HR−1
v

e
HR−1
v e

x (6)

In practice, the desired signal may either be present all the time,
or it is difficult to estimate its activity periods. As a result of this, the
estimation of the signal-free interference-plus-noise covariance ma-
trix Rv is not possible. It can be shown, however, that if there is no
mismatch between the vector e used in the MVDR beamformer and
the true array manifold, then the estimator which uses the observed
signal covariance matrix Rx is identical to the estimator which uses
the signal-free interference-plus-noise covariance matrix Rv [6].

In general, the conditional mean estimator is not linear. The
MMSE estimator is linear if either the estimator is constrained to
be linear or the signals are Gaussian. Speech sources are gen-
erally non-stationary and non-Gaussian. This suggests extending
the optimum beamformers to exploit the non-stationarity and non-
Gaussianity of speech signals.

2.2 Frequency-domain MVDR (FMV) beamformer

Speech is a non-stationary process, but over short durations speech
signals can be considered stationary. In the FMV algorithm [4], it
is assumed that source activity patterns are constant over small time
intervals of speech signals in each frequency band, but could change
over longer time spans. In the FMV algorithm [4], frequency-
domain signals are stored in a buffer, and a correlation matrix is
calculated for each frequency bin using the 32 most recent STFT
values . MVDR weights are then calculated using the correlation
matrix. Therefore, in the FMV algorithm, new beamformer weights
are calculated every small time interval in order to reduce the con-
tribution to the extracted signal of interfering sources active during
that time interval, while having a distortionless response in the de-
sired source DOA. Only statistics gathered over a very short period
of time are used in the calculation of weights.

The quick adaptation of the beamformer weights can substan-
tially reduce a large number of non-stationary interferences while
utilising few microphones [4]. But the computational load is high
due to recurrent matrix inversions in each frequency band and the
need to have a very small step size in the STFT. In practice, how-
ever, source activity patterns can change abruptly between samples,
and the FMV will perform spatial filtering based on the average
power of the interfering sources active in the time interval during
which the beamformer weights are calculated. On the other hand,
the spatial distribution of the sources does not change very quickly,
and we can gather statistics for the desired signal estimator over
a longer time span. Thus the FMV beamformer is forced to com-
promise between long intervals (good statistics) and short interval
(rapid response).

2.3 GMM-based non-linear beamformer

In the frequency-domain, speech signals have a super-Gaussian
(sparse) distribution, due to a combination of the non-stationarity
and harmonic content of speech. Therefore, even if sources might
overlap at some t-f points, not all speech sources in a mixture are
active at the same t-f points. It is therefore advantageous to exploit
the sparsity property of speech signals in the frequency-domain in
order to perform separation in under-determined environments. In
order to model the speech non-Gaussianity, we propose to apply
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GMMs, which are widely used for modeling highly complex prob-
ability densities.

In this section, we use a Gaussian mixture interference-plus-
noise model and find the optimum estimator whose output is the
MMSE estimate of the desired signal s assuming a known desired
signal direction. We shall describe the density of the interference-
plus-noise signal v as a mixture of k zero-mean Gaussians q =
1, ...,k with covariances Rv,q and mixing proportions cq:

p(v|θ ) =
k

∑
q=1

cq
1

πN
∣∣Rv,q

∣∣ exp{−v
HR−1
v,qv} (7)

where θ = (c1, ...,ck,Rv,1, ...,Rv,k), and the mixing proportions cq
are constrained to sum to one. The number of components k
controls the flexibility of the GMM. When dealing with mixture
models, it is useful to consider that there exists a hidden random
variable z, taking its values in a set Z = [1, ...,k] with probability
P(z= q) = cq, 1≤ q ≤ k. Therefore we have v|z= q ∼ N(0,Rv,q).
The MMSE estimate of the desired signal s is the mean of the a
posteriori probability density of s given x:

ŝMMSE = E [s|x]

=

∫
p(s|x).sds

=
∫

∑
q

p(s,z= q|x).sds

=

∫
∑
q

p(s|z= q,x).p(z= q|x).sds

= ∑
q

p(z= q|x)
∫
p(s|z= q,x).sds

= ∑
q

τq

∫
p(s|z= q,x).sds

= ∑
q

τqE [s|x,q] (8)

where τq = p(z = q|x) is the a posteriori probability that the com-
ponent q is active in the Gaussian mixture, when observing x.

We can see that the conditional mean E [s|x,q] is the MMSE
beamformer estimator derived in the previous section, with Rv =
Rv,q. In practice, modelling the signal-free interference-plus-noise
signal v is not possible, and therefore we model the observed signal
x instead. The desired signal estimator in equation (8) is a weighted
sum of linear beamformers wq over all the GMM components, and
the weighted coefficients are the a posteriori probabilities of the
GMM components τq. The mixture of beamformers (MOB) is given
by:

w =
k

∑
q=1

p(z= q|x)wq (9)

The resulting MOB is a weighted sum of distortionless MVDR
beamformers, where the weights sum to unity, therefore it is distor-
tionless in the look-direction.

3. MODEL LEARNING

Using the EM algorithm, we can estimate the observation model
density parameters θ = (c1, ...,ck,R1, ...,Rk) from a set of obser-
vations D = {x(n) : n = 1, ...,η}. The EM algorithm is used to
find a ML estimate of parameters in probabilistic models with la-
tent variables. The EM algorithm is an iterative algorithm with two
steps: (1) an expectation step (E-step), and (2) a maximisation step
(M-step). In the E-step, we calculate the probability of the latent
variables, given the observed variables and the current estimates of

Figure 1: Layout of room used in simulations.

the parameters. In the M-step, the new estimates of the parame-
ters are calculated to maximise the conditional expectation of the

complete data likelihood p(x,z|θ l) given the observed data under
the previous parameter value. For the estimation of the parameters
of the observation model, the EM algorithm may be performed as
follows: At each iteration l:

In the E-step, compute:

τ
(l)
q (n) =

c
(l)
q N

(
x(n)|R(l)

q

)

∑kj=1 c
(l)
j N

(
x(n)|R(l)

j

) (10)

where N is the complex Gaussian distribution.
In the M-step, compute:

R
(l+1)
q =

∑
η
n=1 τ

(l)
q (n)x(n)x(n)H

∑
η
n=1 τ

(l)
q (n)

(11)

c
(l+1)
q =

1

η

η

∑
n=1

τ
(l)
q (n) (12)

In order to perform frequency-domain beamforming, the sig-
nal received by each microphone is separated into narrow-band fre-
quency bins using the STFT. The EM algorithm is then applied sep-
arately in each frequency bin. For each t-f point (n, f ), the output
of the non-linear beamformer is given by:

ŝ(n, f ) =
k

∑
q=1

τq, fw
H
q, fx(n, f ) (13)

where:

w
H
q, f =

e
HR−1
q, f

e
HR−1
q, fe

(14)

4. EXPERIMENTAL EVALUATION

In order to illustrate the performance of the non-linear beamformer,
multichannel recordings of several speech sources were simulated
using impulse responses determined by the room image method [1]

using the rir.m1 function. The positions of the microphones and

1http://2pi.us/code/rir.m
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Figure 2: Average performance as a function of the number of Gaus-
sian components k in the GMM model.

the sources are illustrated in Figure 1. Two microphone arrays
were used. The first has three microphones with a 10 cm spac-
ing, and the second has two microphones with a 2 cm spacing.
The number of the sources was four. The sources were placed in
a semi-circle of radius 1 m around the microphone arrays at angles
φ = {45, 75, 100, 140}◦. We use the speech files used in the devel-
opment data in [7], where eight speech files were grouped into two
mixtures. The speech signals were of a duration equal to 10 s, and
were sampled at 16 kHz.

To measure the quality of the signal estimate ŝ with respect to
the original signal s, we use the signal to distortion ratio (SDR),
source to interference ratio (SIR) and the sources to artifacts ratio
(SAR) calculated as defined in [7]. Though we note that the SAR
measure does not fully capture the nature of the distortion in the
output and recommend that the reader also listens to the output sig-
nals. The speech files used in the simulations and the outputs can be

found online 2.In our results, the SDR, SIR and SAR values were
averaged over all the sources and mixtures.

Figure 2 shows the average performance at the output of the
non-linear beamformer in the anechoic case as a function of the
number of Gaussian components k in the GMM model. In this ex-
periment, four sources were operating in an anechoic environment.
The case of k = 1 is equivalent to a time-invariant MVDR beam-
former. The SIR increases with k, and then stays constant when
k≥ 7. The increase in the SIR is more pronounced in the two micro-
phone case, where the separation using a time-invariant beamformer
(k= 1) gives bad results. Although there is a unity-gain response in
the direction of the desired source signal, the SAR decreases with k.
The decrease in the SAR can be attributed to the non-linear attenu-
ation of the interfering sources. These artifacts therefore introduce
distortion only into the residual interfering signals. We stress that
the MOB is by definition distortionless in the look-direction.

Figure 3 shows the average performance as a function of the
room reverberation time when four sources are operating, and the
microphone array used has three microphones with a 10 cm micro-
phone spacing. We compare the performance of a mixture of beam-
formers with the performance of the FMV algorithm. A STFT of
frame size 1024 samples is used. In the FMV algorithm, the STFT
step size is 16 samples, while a step size of 256 samples is used in
the MOB algorithm. The MOB (k = 7) can attain an SIR of 7.5 dB
in anechoic rooms.

2http://www.see.ed.ac.uk/~s0565920/EUSIPCO08/
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Figure 3: Separation using three microphones: average perfor-
mance as a function of reverberation time.

Figure 4 shows the average performance as a function of the
room reverberation time when four sources are operating, and the
microphone array used has two microphones with a 2 cm micro-
phone spacing. We compare the performance of a mixture of beam-
formers with the performance of the DUET and FMV algorithms.
The DUET algorithm gives a high SIR, but suffers from a low SAR.
The low SAR can be attributed to the binary masking of t-f points
where the sources overlap. In contrast to the MOB, this distorts the
desired signal itself. In DUET, when the desired source is domi-
nant, we attribute all the received signal to the source, and when it
is not dominant, we null the output. This generates musical noise
due to spectro-temporal discontinuities in the source estimates.

Figures 5 and 6 show the average performance as a function of
the room reverberation time when 20 dB i.i.d. additive Gaussian
noise is added at the microphones. Both the MOB and FMV were
robust to the additive noise and achieved good separation perfor-
mance.

5. CONCLUSION

A frequency-domain non-linear beamformer was introduced and
applied to source separation for under-determined speech mixtures.
The beamformer is derived assuming non-Gaussian interference-
plus-noise signals modelled using a mixture of Gaussians distribu-
tion. This estimator introduces additional degrees of freedom to the
beamformer by exploiting the super-Gaussianity (sparsity) of the
interferers.

The non-linear beamformer has low computational costs, and
does not need to know or estimate the number of interfering sources.
The number of components in the mixture of Gaussians distribu-
tion controls the flexibility of the model and can be used to trade-
off complexity with performance. The non-linear beamformer can
be applied to microphone arrays with two or more microphones.
The unity gain constraint on the direction of arrival of the desired
source signal results in a clear desired signal output, and avoids any
permutation ambiguities. Simulation results in under-determined
mixtures with room reverberation confirmed the non-linear beam-
former’s ability to successfully separate speech sources.

In the future, we plan to investigate the use of an on-line EM
algorithm - instead of the batch EM algorithm used herein - that
allows for the observation model parameters to be updated in real-
time. Furthermore, we would like to compare the MOB against
other speech separation techniques.
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as a function of reverberation time.
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ABSTRACT

This paper describes frequency-domain non-linear beamformers
that can extract a target speech source from among multiple in-
terfering speech sources when there are fewer microphones than
sources (the under-determined case). Our approach models the data
in each frequency bin via Gaussian mixture distributions, which can
be learnt using the expectation maximisation (EM) algorithm. A
non-linear beamformer is then developed, based on this model. The
proposed non-linear beamformer is a non-linear weighted sum of
linear minimum mean square error (MMSE) or minimum variance
distortionless response (MVDR) beamformers. The resulting beam-
former requires the direction of arrival of the target speech source to
be known in advance, but the number of interferers does not need to
be known or estimated. Simulations of the non-linear beamformers
in under-determined mixtures with room reverberation confirm its
capability to successfully separate speech sources.

1. INTRODUCTION

Speech separation is the process of extracting a target speech
source from observations corrupted by interfering sources and
noise. Speech separation is used in a wide range of applications,
such as hearing aids, human-computer interaction, surveillance, and
hands-free telephony. The difficulty of the speech separation task
depends on the way in which the signals are mixed within the acous-
tic environment. Speech separation is more difficult when the rever-
beration time of the acoustic environment is large, and when there
are fewer microphones than sources (the under-determined case).

Various methods have been proposed for solving the speech
separation problem. Linear multichannel filtering techniques such
as independent component analysis (ICA) can attain excellent sepa-
ration performance in determined mixtures. In under-determined
mixtures, non-linear techniques which exploit the sparseness of
speech sources and time-frequency (t-f) diversity play a vital role.
One popular approach to perform under-determined speech sepa-
ration is t-f masking. In the degenerate unmixing estimation tech-
nique (DUET) [9], binary masks are determined from the spatial
location information contained in the short time Fourier transform
(STFT) coefficients of a stereo mixture. DUET is capable of per-
forming separation of two or more sources using just two channels,
and without significant computational complexity. However, this
method suffers from the so-called musical noise or burbling arti-
facts due to binary masking of t-f points where the sources overlap.

In independent factor analysis [2], it was proposed to learn the
source densities from the observed data. The sources were mod-
eled as independent random variables with Gaussian mixture mod-
els (GMMs). An expectation maximisation (EM) algorithm [4] was
used to learn the parameters of the model, namely the mixing ma-
trix, noise covariance, and source density parameters. In [3], ap-
proximations were used to overcome the problem that the number of
mixtures in the observation density in [2] grows exponentially with
the number of sources. The observation density is written as a sum-
mation of Gaussians with decaying weights, and then the number of
Gaussians is truncated in order to retain only those with reasonable
size weights.

In this paper, we describe frequency-domain non-linear beam-
formers that can perform speech separation of under-determined
mixtures, and do not require knowledge of the number of speak-
ers. This beamformer utilises GMMs to model the data in each
frequency bin. This in turn can be learnt using the EM algorithm.
The signal estimator comprises of a set of minimum mean square er-
ror (MMSE) or minimum variance distortionless response (MVDR)
beamformers. In order to estimate the signal, all beamformers are
concurrently applied to the observed signal, and the weighted sum
of the beamformers’ outputs is used as the signal estimator, where
the weights are the posterior probabilities of the GMM states. This
approach results in a “soft decision” filter for the observed signal.
The resulting non-linear beamformer combines the benefits of non-
linear time-varying separation in t-f masking with the benefits of
spatial filtering in the linear beamformers.

The organisation of this paper is as follows. Section 2 reviews
the linear MMSE beamformer, and then introduces the GMM-based
non-linear beamformers. In Section 3, the EM algorithm is used to
learn the GMM parameters. The experimental conditions and simu-
lation results are presented in Section 4, followed by the conclusions
in Section 5.

2. OPTIMUM BEAMFORMERS

Consider a narrow band array signal x = [x1, ...,xN ]T that consists
of the desired signal arriving at the array from a known direction,
and an interference signal. That is,

x = se+v (1)

where e is the known N× 1 array response vector in the direction
of the desired source signal (the array manifold), and v is the N×1
complex vector of interference snapshots. We assume that the de-
sired source and the interference are uncorrelated. The interference
has spatial correlation according to the angles of the contributing
interferers.

2.1 Linear MMSE beamformer

We first consider the optimum estimator whose output is the MMSE
estimate of the desired signal s in the presence of Gaussian in-
terference, assuming known desired signal direction. We assume
that the desired source signal is a sample function from a zero-

mean complex-valued Gaussian random process, s∼ N(0,σ2
s ). We

also assume a zero-mean complex-valued Gaussian interference,
v∼N(0,Rv). Additionally, it is assumed that the desired source and

the interference are uncorrelated. Hence, x ∼ N(0,Rv+ σ2
s ee

H),
and x|s ∼ N(se,Rv), where (.)H denotes the Hermitian transpose
operator. The MMSE estimate of the desired signal s is the mean of
the a posteriori probability density of s given x:

ŝMMSE = E [s|x] =

∫
p(s|x).sds (2)
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This mean is referred to as the conditional mean. It can be shown
that the conditional mean can be expressed as [7]:

E [s|x] =
e
HR−1
v x

e
HR−1
v e

.
σ2
s

σ2
s +

(
e
HR−1
v e

)−1
(3)

The first term is an MVDR spatial filter, which suppresses the in-
terfering signals and noise without distorting the signal propagating
along the desired source direction. The second term is a single-
channel Wiener post-filter. We see that the linear MMSE estimator
is just a shrinkage of the MVDR beamformer.

In general, the conditional mean estimator is not linear. The
MMSE estimator is linear if either the estimator is constrained to
be linear or the signals are Gaussian. Speech sources are gen-
erally non-stationary and non-Gaussian. This suggests extending
the optimum beamformers to exploit the non-stationarity and non-
Gaussianity of speech signals.

2.2 Frequency-domain MVDR (FMV) beamformer

Speech is a non-stationary process, but over short durations speech
signals can be considered stationary. In the FMV algorithm [6], it
is assumed that source activity patterns are constant over small time
intervals of speech signals in each frequency band, but could change
over longer time spans. In the FMV algorithm [6], frequency-
domain signals are stored in a buffer, and a correlation matrix is
calculated for each frequency bin using the 32 most recent STFT
values. MVDR weights are then calculated using the correlation
matrix. Therefore, in the FMV algorithm, new beamformer weights
are calculated every small time interval in order to reduce the con-
tribution to the extracted signal of interfering sources active during
that time interval, while having a distortionless response in the de-
sired source DOA. Only statistics gathered over a very short period
of time are used in the calculation of weights.

The quick adaptation of the beamformer weights can substan-
tially reduce a large number of non-stationary interferences while
utilising few microphones [6]. But the computational load is high
due to recurrent matrix inversions in each frequency band and the
need to have a very small step size in the STFT. In practice, how-
ever, source activity patterns can change abruptly between samples,
and the FMV will perform spatial filtering based on the average
power of the interfering sources active in the time interval during
which the beamformer weights are calculated. On the other hand,
the spatial distribution of the sources does not change very quickly,
and we can gather statistics for the desired signal estimator over
a longer time span. Thus the FMV beamformer is forced to com-
promise between long intervals (good statistics) and short intervals
(rapid response).

2.3 GMM-based non-linear beamformers

In the frequency-domain, speech signals have a super-Gaussian
(sparse) distribution, due to a combination of the non-stationarity
and harmonic content of speech. Therefore, even if sources might
overlap at some t-f points, not all speech sources in a mixture are
active at the same t-f points. It is therefore advantageous to exploit
the sparsity property of speech signals in the frequency-domain in
order to perform separation in under-determined environments. In
order to model the speech non-Gaussianity, we propose to apply
GMMs, which are widely used for modeling highly complex prob-
ability densities.

In a previous paper [5], a non-linear beamformer was developed
assuming a distortionless response in the direction of the desired
source, and a mixture of k zero-mean Gaussians q = 1, ...,k with
covariances Rx,q and mixing proportions cq were used to model the
observed mixture x (the desired source and interference together).
This leads to a simple learning algorithm and the desired signal can
be estimated using this mixture of MVDR beamformers:

w
H
1 =

k

∑
q=1

τq
e
HR−1
x,q

e
HR−1
x,qe

(4)

where τq is the relative contribution for each linear MVDR beam-
former, and is calculated as the posterior probability (specific to
each time-frequency point) of its corresponding Gaussian compo-
nent. This beamformer is a non-linear weighted sum of distortion-
less MVDR beamformers, where the weights sum to unity, therefore
it is distortionless in the look-direction. However, since we have a
distortionless constraint, we cannot exploit the sparsity of the de-
sired source signal.

In this section, we shall describe the density of the desired
source signal s as a mixture of ks zero-mean complex-valued 1-

dimensional Gaussians qs= 1, ...,ks with variances σ2
s,qs and mixing

proportions cs,qs :

p(s|θs) =
ks

∑
qs=1

cs,qs
1

πσ2
s,qs

exp

(
−|s|2
σ2
s,qs

)
(5)

where θs = (cs,1, ...,cs,ks ,σ
2
s,1, ...,σ

2
s,ks

), and the mixing proportions

cs,qs = p(qs) are constrained to sum to one. In addition, we shall
describe the density of the interference signal v as a mixture of kv
zero-mean complex-valued N-dimensional Gaussians qv = 1, ...,kv
with covariances Rv,qv and mixing proportions cv,qv :

p(v|θv) =
kv

∑
qv=1

cv,qv
1

πN
∣∣Rv,qv

∣∣ exp
(
−v
HR−1
v,qvv

)
(6)

where θv = (cv,1, ...,cv,kv ,Rv,1, ...,Rv,kv), and the mixing proportions

cv,qv = p(qv) are constrained to sum to one. The number of compo-
nents ks and kv controls the flexibility of the model.

The MMSE estimate of the desired signal s is the mean of the a
posteriori probability density of s given x:

ŝMMSE = E [s|x] =

∫
p(s|x).sds

=

∫ ks

∑
qs=1

kv

∑
qv=1

p(s,qs,qv|x).sds

=

∫ ks

∑
qs=1

kv

∑
qv=1

p(qs,qv|x).p(s|x,qs,qv).sds

=
ks

∑
qs=1

kv

∑
qv=1

τqs,qv

∫
p(s|x,qs,qv).sds

=
ks

∑
qs=1

kv

∑
qv=1

τqs,qvE [s|x,qs,qv] (7)

where

τqs,qv = p(qs,qv|x)

=
p(x|qs,qv).p(qs).p(qv)

∑
ks
q
′
s=1

∑
kv
q
′
v=1
p(x|q′s,q

′
v).p(q

′
s).p(q

′
v)

(8)

is the a posteriori probability that the components qs and qv
are active in each respective GMM when observing x, with

∑qs ∑qv τqs,qv = 1.

We can see that the conditional mean E [s|x,qs,qv] is the lin-
ear MMSE beamformer estimator in equation (3), with Rv = Rv,qv
and σ2

s = σ2
s,qs . The desired signal estimator in equation (7) is a

non-linear weighted sum of linear MMSE beamformers over all the
GMM components, and the weighting coefficients are the a poste-
riori probabilities of the GMM components τqs,qv . The mixture of
MMSE beamformers is given by:

w
H
2 =

ks

∑
qs=1

kv

∑
qv=1

τqs,qv
σ2
s,qs

σ2
s,qs +

(
e
HR−1
v,qve

)−1
.
e
HR−1
v,qv

e
HR−1
v,qve

(9)

168



Publications

In comparison to independent factor analysis [2], where all
sources were modeled with a mixture of Gaussians, the mixture
of MMSE beamformers models all the interfering sources using
one mixture of Gaussians in the observation (microphones) domain.
Consequently, the number of sources in the mixture is not required.
This also avoids the exponential growth of the number of Gaussian
components in the observation density with the number of sources.

In Section 4, we compare the performance of these two beam-
formers. Also, we use the interference Gaussian mixture model to
implement a distortionless response mixture of beamformers, which
uses the interference model covariances Rv,qv instead of Rx,q:

w
H
3 =

ks

∑
qs=1

kv

∑
qv=1

τqs,qv
e
HR−1
v,qv

e
HR−1
v,qve

(10)

3. MODEL LEARNING

Using the EM algorithm, we can estimate
the model density parameters θ = (θs,θv) =
(cs,1, ...,cs,ks ,σ

2
s,1, ...,σ

2
s,ks

,cv,1, ...,cv,kv ,Rv,1, ...,Rv,kv) from a

set of observations D = {x(n) : n = 1, ...,η}. The EM algorithm
is an iterative algorithm with two steps: (1) an expectation step
(E-step), and (2) a maximisation step (M-step).

In the E-step, evaluate for qv = 1, ...,kv, qs = 1, ...,ks and every
received vector x(n):

p(qs,qv|x(n)) = τqs,qv(n) =
cs,qscv,qv p(x(n)|qs,qv)

∑
ks
q
′
s=1

∑
kv
q
′
v=1
c
s,q′s
c
v,q′v
p
(
x(n)|q′s,q

′
v

)

(11)
where

p(x|qs,qv) =
∫
p(x,s|qs,qv)ds

=

∫
p(x|s,qv).p(s|qs)ds

=
∫

N
(
x−es,Rv,qv

)
.N
(
s,σ2
s,qs

)
ds

= N

(
x,Rv,qv +σ2

s,qsee
H
)

(12)

and evaluate the conditional mean and variance of the desired
source given both the observed mixture and the hidden states, which
are denoted by 〈s|x(n),qs,qv〉 and 〈ss∗|x(n),qs,qv〉 respectively.
Given the hidden states and the mixture, the likelihood of s is Gaus-
sian:

p(s|x,qs,qv) =
p(x,s,qs,qv)

p(x,qs,qv)

=
p(s|qs).p(x|s,qv).p(qs).p(qv)
p(x|qs,qv).p(qs).p(qv)

=
N(s,σ2

s,qs).N(x−es,Rv,qv)

N
(
x,Rv,qv +σ2

s,qsee
H
)

= N
(
s−αqs ,qv ,βqs,qv

)
(13)

where

βqs,qv =
(

σ−2
s,qs +e

HR−1
v,qve

)−1
(14)

αqs,qv =
(

σ−2
s,qs +e

HR−1
v,qve

)−1
e
HR−1
v,qvx (15)

In the M-step, evaluate for qv = 1, ...,kv and qs = 1, ...,ks :

cv,qv =
1

η

η

∑
n=1

ks

∑
qs=1

p(qs,qv|x(n)) (16)

Figure 1: Layout of room used in simulations.

cs,qs =
1

η

η

∑
n=1

kv

∑
qv=1

p(qs,qv|x(n)) (17)

σ2
s,qs =

∑
η
n=1 ∑

kv
qv=1 p(qs,qv|x(n))〈ss∗|x(n),qs,qv〉
∑

η
n=1 ∑

kv
qv=1 p(qs,qv|x(n))

(18)

Rv,qv =
∑

η
n=1 ∑

ks
qs=1 p(qs,qv|x(n))Λqs,qv(n)

∑
η
n=1 ∑

ks
qs=1 p(qs,qv|x(n))

(19)

where

Λqs,qv(n) = x(n)x(n)H −x(n)〈s∗|x(n),qs,qv〉eH

−e〈s|x(n),qs,qv〉x(n)H

+e〈ss∗|x(n),qs,qv〉eH (20)

In this model, there is an ambiguity in associating variance be-
tween the desired source and the interference. It is possible to in-
corporate some of the source signal in the interference. To avoid
this, updating the desired source component variances is not per-
formed in the first few iterations. This prevents the source compo-
nents shrinking to zero variance.

In order to perform frequency-domain beamforming, the sig-
nal received by each microphone is separated into narrow-band fre-
quency bins using the STFT. The EM algorithm is then applied sep-
arately in each frequency bin. For each t-f point (n, f ), the output
of the non-linear beamformer is given by:

ŝ f (n) = w
H
f (n)x f (n) (21)

4. EXPERIMENTAL EVALUATION

In order to illustrate the performance of the non-linear beamformer,
multichannel recordings of several speech sources were simulated
using impulse responses determined by the room image method [1].
The positions of the microphones and the sources are illustrated in
Figure 1. Two microphone arrays were used. The first has three
microphones with a 10 cm spacing, and the second has two micro-
phones with a 2 cm spacing. . We use speech files taken from the
TIMIT speech corpus to create five mixtures of male sources, and
five mixtures of female sources. The speech signals were of a du-
ration equal to 10 s, and were sampled at 16 kHz. The number of
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Figure 2: Average performance of the non-linear beamformer w
1

in
equation (4) as a function of the number of Gaussian components k
in the GMM model.
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Figure 3: Average performance of the non-linear beamformer w
3

in
equation (10) as a function of the number of Gaussian components
kv and ks in the GMM model.

the sources in each mixture was four. The sources were placed in
a semi-circle of radius 1 m around the microphone arrays at angles
φ = {45, 75, 100, 140}◦ .

To measure the quality of the signal estimate ŝ with respect to
the original signal s, we use the source to interference ratio (SIR)
and the sources to artifacts ratio (SAR) calculated as defined in [8].
In our results, the SIR and SAR values were averaged over all the
sources and mixtures.

Figure 2 shows the average performance at the output of the
non-linear beamformer of equation (4) in the anechoic case as a
function of the number of Gaussian components k in the GMM
model. In this experiment, four sources were operating in an ane-
choic environment. The case of k = 1 is equivalent to a time-
invariant MVDR beamformer. The SIR increases with k, but the
improvement is insignificant at k > 10. The increase in the SIR is
more pronounced in the two microphone case, where the separa-
tion using a time-invariant beamformer (k = 1) gives bad results.
Although there is a unity-gain response in the direction of the de-
sired source signal, the SAR decreases with k. The decrease in the
SAR can be attributed to the non-linear attenuation of the interfering
sources. These artifacts therefore introduce distortion only into the
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Figure 5: Separation using three microphones: average perfor-
mance as a function of reverberation time.

residual interfering signals. We stress that the mixture of MVDR
beamformers is by definition distortionless in the look-direction.

Figure 3 shows the average performance at the output of the
non-linear beamformer of equation (10) in the anechoic case as a
function of the number of Gaussian components in the interference
model kv and the number of Gaussian components in the source
model ks. We can see that there is little gain for increasing the num-
ber of source Gaussian components ks to more than two. In the two
microphones case, The SIR increases with kv, but the improvement
is insignificant at kv > 10. In the three microphones case, The SIR
peaks around kv = 7, and then levels off at higher kv. The non-linear
beamformer can attain a SIR of 10 dB in the two microphones case,
and 15 dB using three microphones.

Figure 4 shows the average performance at the output of the
mixture of MMSE beamformers of equation (9) in the anechoic
case as a function of the number of Gaussian components in the
interference model kv and the number of Gaussian components in
the source model ks. The non-linear beamformer can attain a SIR of
13 dB in the two microphones case, and 18 dB using three micro-
phones. However, the SAR was decreased in comparison to Figure
3 because the distortionless constraint is no longer held.

Figure 5 shows the average performance as a function of the
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as a function of reverberation time.
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room reverberation time when four sources are operating, and the
microphone array used has three microphones with a 10 cm micro-
phone spacing. We compare the performance of the three non-linear
beamformers (equations (4), (10), and (9)) with the performance of
the FMV algorithm. k= 15 was used in the beamformer of equation
(4), and ks = 2,kv = 5 was used in the two other beamformers. A
STFT of frame size 1024 samples is used. In the FMV algorithm,
a small step size of 16 samples is required, while a step size of 256
samples is sufficient in the non-linear beamformers.

Figure 6 shows the average performance as a function of the
room reverberation time when four sources are operating, and the
microphone array used has two microphones with a 2 cm micro-
phone spacing. k = 15 was used in the beamformer of equation (4),
and ks = 2,kv = 12 was used in the two other beamformers. We
compare the performance of the three non-linear beamformers with
the performance of the DUET and FMV algorithms. The DUET al-
gorithm and the mixture of MMSE beamformers (w

2
) gives a high

SIR, but suffers from a very low SAR at higher reverberation times.
The non-linear beamformers of equations (4) and (10) have signifi-
cantly lower artifacts in higher reverberation times.

Figure 7 compares the equivalent mask of the non-linear beam-

former w
3

with the t-f mask of DUET. The equivalent mask is com-
puted at each t-f point as the ratio of the energy of the desired sig-
nal estimate to the energy of the observed mixture. The non-linear
beamformers approach results in a “soft decision” mask for the ob-
served signal.

5. CONCLUSION

A frequency-domain non-linear beamformer was introduced and
applied to source separation for under-determined speech mixtures.
The beamformer is derived assuming non-Gaussian interference
signals modelled using a mixture of Gaussians distribution. This es-
timator introduces additional degrees of freedom to the beamformer
by exploiting the super-Gaussianity (sparsity) of the interferers.

The non-linear beamformer does not need to know or estimate
the number of interfering sources. The number of components in
the mixture of Gaussians distributions controls the flexibility of
the model and can be used to trade-off complexity with perfor-
mance. The non-linear beamformer can be applied to microphone
arrays with two or more microphones. Simulation results in under-
determined mixtures with room reverberation confirmed the non-
linear beamformer’s ability to successfully separate speech sources.

In the future, we would like to investigate the use of other linear
constrained minimum variance (LCMV) beamformers and the use
of auditory filter banks instead of the STFT. Through this, we aim
to improve the performance of the beamformers in higher reverber-
ation times.
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Mohammad A. Dmour *, Student Member, IEEE, and Mike Davies, Member, IEEE

Abstract—This paper describes frequency-domain non-linear
mixture of beamformers that can extract a speech source from a
known direction when there are fewer microphones than sources
(the underdetermined case). Our approach models the data in
each frequency bin via Gaussian mixture distributions, which can
be learned using the expectation maximization algorithm. The
model learning is performed using the observed mixture signals
only, and no prior training is required. Non-linear beamformers
are then developed based on this model. The proposed estimators
are a non-linear weighted sum of linear minimum mean square
error or minimum variance distortionless response beamformers.
The resulting non-linear beamformers do not need to know
or estimate the number of sources, and can be applied to
microphone arrays with two or more microphones. We test
and evaluate the described methods on underdetermined speech
mixtures.

I. INTRODUCTION

MOST audio signals result from the mixing of several

sound sources. In many applications, there is a need

to separate the multiple sources or extract a source of interest

while reducing undesired interfering signals and noise. The

estimated signals may then be either directly listened to or fur-

ther processed, giving rise to a wide range of applications such

as hearing aids, human-computer interaction, surveillance, and

hands-free telephony.

There has been a lot of research on the speech enhancement

problem, where the focus is on attenuating the background

noise. Speech denoising algorithms are well established and

have been used for many years [1], [2]. The extension of the

speech enhancement problem to deal with mixtures of speech

sources is a topic of intense research. Source mixing can occur

in a wide variety of situations under different environments.

The difficulty of source extraction depends on the way the

source signals are mixed within the environment and on the

a priori knowledge of the sources, microphones, and mixing

parameters. Blind methods do not assume a priori knowledge

of sources, microphones, or mixing parameters. By contrast,

informed methods exploit some a priori information about

the sources and microphones (for example, the location of

a desired source). In general, the problem is more difficult
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when the reverberation time (RT) of the acoustic environment

is large, and in the underdetermined case (fewer microphones

than sources).

In general, observations are obtained at the output of a set

of microphones, each receiving different combinations of the

source signals. The use of microphone arrays gives one the

opportunity to exploit the fact that the desired source and

the interfering sources originate at different points in space.

Suppose that M simultaneously active source signals are

mixed and observed at N microphones. The signal recorded

at the jth microphone at time t can be modeled as:

xj(t) =

M∑

i=1

P−1∑

p=0

aji(p)si(t− p) (1)

where aji represents the impulse response of the acoustic

path from source i to microphone j and P is the length

of the impulse response between each source-microphone

pair. A mixture is termed a determined mixture when the

number of microphones is equal to the number of sources,

overdetermined when the number of microphones is larger

than the number of sources, and underdetermined when it

is smaller. In certain applications, source separation methods

are used to estimate separated signals ŝ1, ..., ŝM , which cor-

respond to each of the original source signals s1, ..., sM . In

many practical applications, however, prior information about

a desired source, such as source location or identity, might be

available and exploited to extract only one source of interest.

Various methods have been proposed for solving the speech

separation problem. One approach is to use statistical modeling

of source signals. Independent component analysis (ICA) is

one of the major statistical tools used. In ICA, separation

is performed on the assumption that the source signals are

statistically independent, and does not require information

on microphone array configuration or the direction of arrival

(DOA) of the source signals to be available. To perform

source separation, we process the mixture channels by a set of

linear time-invariant demixing filters. ICA implicitly estimates

the source directions by maximizing the independence of

the sources, and acts as an adaptive null beamformer that

reduces the undesired sources. However, some aspects limit

the application of ICA to real-world environments. Most ICA

methods assume the number of sources is given a priori.

In general, classical ICA techniques cannot perform source

separation in the underdetermined mixtures case. For some

excellent reviews of convolutive ICA methods for speech

separation, see [3], [4]. Another strategy suited to speech

mixtures is to incorporate speaker-independent models that

can be learned from large speech datasets. For example, in
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[5], [6], Gaussian mixture models (GMMs) are used to model

the sources, and the parameters of the mixing channel and

noise were inferred using variational expectation maximization

(EM) techniques [7]. The sources are then estimated using

a minimum mean square error (MMSE) estimator. However,

this method requires the number of sources to be known, and

it cannot perform source separation in the underdetermined

mixtures case.

A popular approach to speech extraction is to use adaptive

beamforming techniques. With adaptive beamforming, the

microphone array is also used to form a spatial filter which can

extract a signal from a specific direction and reduce signals

from other directions. For example, in minimum-variance dis-

tortionless response (MVDR) beamforming, the beamformer

response is constrained so that signals from the direction of

interest are passed with no distortion, while it suppresses

noise and interference. In [8], [9], beamforming weights were

calculated using time-domain recursive algorithms. It was

shown recently in [10] that a frequency-domain MVDR (FMV)

beamformer which performs sample matrix inversion using

statistics estimated from a short sample support gives better

performance than time-domain recursive algorithms in non-

stationary acoustic environments. Unlike the ICA approach,

adaptive beamforming requires information about the micro-

phone array configuration and the sources (for example, the

direction of the desired source). However, adaptive beamform-

ing techniques can attenuate spatially spread and reverberant

interferers, and there is no need to determine their number. In

general, linear adaptive beamforming can attain excellent sep-

aration performance in determined or over-determined time-

invariant mixtures. However, in underdetermined mixtures,

perfect attenuation of all interferers becomes impossible and

only partial interference attenuation is possible. This, in turn,

leads to performance degradation.

In the underdetermined mixtures case, the assumption of

spatial diversity alone is insufficient to perform source separa-

tion/extraction, thereby necessitating additional assumptions.

The assumption that the sources have a sparse representation

in a given basis is an increasingly popular addition. Sparseness

of a signal means that only a few instances have a value

significantly different from zero. A sparse representation of

a speech signal can be achieved by a short term Fourier

transform (STFT). One popular approach to sparsity-based

separation is time-frequency masking [11]–[17]. This approach

is a special case of non-linear time-varying filtering that

estimates the desired source si from a mixture signal xj by:

ŝi(n, f) = Mi(n, f)xj(n, f) (2)

where si(n, f) and xj(n, f) are the STFT coefficients of si(t)
and xj(t) respectively in the time frame n and frequency

bin f , and Mi is a time-frequency mask containing positive

gains which must be adapted to extract the desired source

si from the observed mixture. A popular method to estimate

the time-frequency masks using only two microphones is the

degenerate unmixing estimation technique (DUET) [11], [12].

It is assumed that the time-frequency representation of speech

signals are approximately disjoint (i.e., sources do not overlap

too much):

si(n, f)sj(n, f) ≃ 0, ∀i 6= j, ∀f (3)

This assumption is not fully met in practice. In DUET, the

source directions and the active source indices are alternately

optimized by partitioning the mixture STFT coefficients based

on the inter-channel level/phase difference (ILD/IPD). DUET

is capable of performing separation of two or more sources

using just two channels, and without significant computational

complexity. However, this method suffers from so-called mu-

sical noise or burbling artifacts due to binary masking of

time-frequency points where the sources overlap. An extension

to the DUET algorithm for more than two microphones in

was proposed in in [18], [19]. This method, Multiple sENsor

dUET (MENUET), can be applied to non-linear microphone

arrangements with 2- or 3-dimensional arrays. In [13]–[17],

probabilistic models are used to model the IPD/ILD, and after

estimating its parameters with an EM algorithm [20], soft

masks can be derived. All of these methods require the number

of sources to be given a priori, and it is difficult to expand

these methods to more than two microphones. Furthermore,

separation methods based on time-frequency masking suffer

from the fact that clustering becomes difficult in reverberation,

as ILD/IPD resulting from each sound source then tend to

spread and overlap.

When only one microphone is available, source separa-

tion/extraction becomes significantly more challenging, as

spatial cues are absent in this case. In this situation, the

assumptions of independence and time-frequency sparsity be-

comes insufficient, and more advanced source models relying

on spectro-temporal models are needed. Different strategies

have been employed using these models [21]–[23]. However,

they require prior training and some knowledge about the

identity of the speech or music sources in the mixture.

In this paper, we deal with the problem of extracting a

speech source of interest from a known direction. we present a

framework which extends the use of beamforming techniques

to underdetermined speech mixtures. We describe frequency-

domain non-linear mixture of beamformers that can extract a

desired speech source from a known direction when there are

fewer microphones than sources, and do not require knowledge

of the number of speakers. These beamformers utilize Gaus-

sian mixture models (GMMs) to model the observation data in

each frequency bin. In contrast to other speech enhancement

and separation methods which use GMMs such as [6], [23],

[24], our approach do not couple the Gaussian states across

frequency, and the covariance matrices of each Gaussian state

represent a spatial covariance matrix. The model learning is

performed using the observed mixture signals only, and no

prior training is required. The signal estimator comprises of

a set of MMSE or MVDR beamformers. In order to estimate

the signal, all beamformers are concurrently applied to the

observed signal, and the weighted sum of the beamformers’

outputs is used as the signal estimator, where the weights are

the posterior probabilities of the GMM states. These weights

are specific to each time-frequency point. This approach results

in a soft decision filter for the observed signal. The resulting

non-linear beamformer combines the benefits of non-linear
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time-varying separation in time-frequency masking with the

benefits of spatial filtering in the linear beamformers.

The remainder of the paper is structured as follows. Section

II presents the signal mixing model. Section III reviews the

linear MMSE, MVDR, and FMV beamformers. Then, in

Section IV, the proposed GMM-based non-linear beamformers

are described. The experimental conditions and simulation

results are presented in Section V, followed by the conclusions

in Section VI.

II. MIXING MODEL

Consider the convolved mixing model in (1). The time-

domain observed signals xj(t) may be mapped to the time-

frequency domain using the STFT. Denoting the STFT coeffi-

cients of xj(t) and si(t) as xj(n, f) and si(n, f), in the time

frame n and frequency bin f , and approximating the mixing

filters by complex mixing scalars aji(f), we get:

xj(n, f) =

M∑

i=1

aji(f)si(n, f) (4)

Assuming we are only interested in extracting source i′, i′ ∈
{1, 2, ..., M}, the mixing model in (4) can be reformulated as:

xj(n, f) = aji′ (f)si′(n, f) +
M∑

i = 1
i 6= i′

aji(f)si(n, f)

= aji′ (f)si′(n, f) + vj(n, f) (5)

where vj represents the contribution of the interferers to the

mixture signal xj . In vector form, the mixing model can be

written as:

x(n, f) = a(f)s(n, f) + v(n, f) (6)

where x(n, f) = [x1(n, f), ..., xN (n, f)]T is the observed

multichannel mixture signal, a(f) is the N × 1 array re-

sponse vector in the direction of the desired source signal

s (also called the propagation vector or steering vector), and

v(n, f) = [v1(n, f), ..., vN (n, f)]T is the N × 1 vector of

the interferers’ contribution to the mixture signal. We assume

that the direction of the desired source signal is known. In

this model, no assumptions are made about the interferers.

The interferers are not restricted to point sources in low

reverberation conditions, but can also be of any nature such as

spatial extended sources, diffuse sources, or a combination of

them. The array response vector a(f) is the representation of

the delays and the attenuation in the frequency domain, and

depends on the array geometry and the direction of the desired

source signal. If d were to represent the microphone spacing,

c the sound velocity, φ the DOA relative to broadside, and

assuming far-field conditions, we have for a uniform linear

array:

a(f) = [e−ι2πf∆1 , ..., e−ι2πf∆N ]T (7)

where ι =
√
−1, and ∆j = (j − 1)(d/c) sinφ. Note that

x, a, s, and v are complex valued, and depend on frequency

f , but for readability and simplicity, we will omit this variable

in the rest of paper. From now on, we implicitly work in a

given frequency band.

III. OPTIMUM BEAMFORMERS

A. Linear MMSE Beamformer

We first consider the optimum estimator whose output is

the MMSE estimate of the desired signal s in the presence

of Gaussian interference, assuming a known desired signal

direction. We assume that the desired source signal is a

sample function from a zero-mean complex-valued Gaussian

random process, s ∼ N(0, σ2
s). We also assume a zero-

mean complex-valued Gaussian interference, v ∼ N(0,Rv).
Additionally, it is assumed that the signal and interference

snapshots are uncorrelated. Hence, x ∼ N(0,Rv + σ2
saa

H),
and x|s ∼ N(as,Rv), where (.)H denotes the Hermitian

transpose operator. The MMSE estimate of the desired signal

s is the mean of the a posteriori probability density of s given

x:

ŝMMSE = E [s|x] =

∫
s p(s|x) ds (8)

This mean is referred to as the conditional mean. It can be

shown that the conditional mean can be expressed as [25]:

ŝMMSE =
a

H
R

−1
v x

aHR
−1
v a

σ2
s

σ2
s +

(
aHR

−1
v a

)−1 (9)

︸ ︷︷ ︸ ︸ ︷︷ ︸
MVDR Wiener post filter

The first term is an MVDR spatial filter, which suppresses

the interfering signals and noise without distorting the signal

propagating along the desired source direction. The second

term is a single-channel Wiener post-filter. We see that the

MMSE estimator is just a shrinkage of the MVDR beam-

former. Unfortunately, the MMSE beamformer depends ex-

plicitly on σ2
s which is typically unknown. However, we can

obtain a beamformer that does not depend on σ2
s by imposing

a distortionless response in the specified direction. The result

is the MVDR beamformer, and the estimate of the desired

source signal can be written as:

ŝMVDR =
a

H
R

−1
v

aHR
−1
v a

x (10)

In general, the conditional mean estimator is not linear. The

MMSE estimator is linear if either the estimator is constrained

to be linear, or all the signals are Gaussian. However, speech

sources are generally non-stationary and non-Gaussian. This

suggests extending the optimum beamformers to exploit the

non-stationarity and non-Gaussianity of speech signals.

B. Frequency-Domain MVDR (FMV) Beamformer

Speech is a non-stationary process, but over short durations

speech signals can be considered stationary. In the FMV

algorithm [10], it is assumed that source activity patterns

are constant over small time intervals of speech signals in

each frequency band, but could vary over longer time spans.

In the FMV algorithm, time-frequency representations of the

mixture signals are stored in a buffer, and a correlation

matrix is calculated for each frequency bin using the 32
most recent mixture signal STFT values. MVDR weights are

then calculated using the correlation matrix. Therefore, in the
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FMV algorithm, new beamformer weights are calculated for

every small time interval, in order to reduce the contribution

of interfering sources active during that time interval to the

extracted signal while maintaining a distortionless response in

the desired source DOA. Only statistics gathered over a very

short period of time are used in the calculation of weights.

The quick adaptation of the beamformer weights can sub-

stantially reduce a large number of non-stationary interferences

while utilizing few microphones [10]. But the computational

load is high due to recurrent matrix inversions in each fre-

quency band and the need to have a very small step size in

the STFT. In practice, however, source activity patterns can

change abruptly between samples, and the FMV will perform

spatial filtering based on the average power of the interfering

sources active in the time interval during which the beam-

former weights are calculated. On the other hand, the spatial

distribution of the sources does not change very quickly, and

we can gather statistics for the desired signal estimator over

a longer time span. Thus the FMV beamformer is forced to

compromise between long intervals (good statistics) and short

intervals (rapid response).

IV. PROPOSED METHOD: MIXTURE OF BEAMFORMERS

In the time-frequency domain, speech signals typically have

a super-Gaussian (sparse) distribution, due to a combination

of the non-stationarity and harmonic content of speech. There-

fore, even if sources might overlap at some time-frequency

points, not all speech sources in a mixture are active at the

same time-frequency points. It is therefore advantageous to

exploit the sparsity property of speech signals in the time-

frequency domain in order to perform separation in underde-

termined environments. In this paper, we use GMMs to model

the speech non-Gaussianity and the spatial distribution of the

sources.

In this section, we present three non-linear beamformers

that can perform underdetermined speech separation. The first

two non-linear beamformers are based on modeling the desired

source signal s and the interference v separately. The desired

source signal is modeled using a 1-dimensional GMM, and

the observed interference is modeled using an N -dimensional

GMM, where N is the number of mixture channels. The third

non-linear beamformer is based on modeling the observed

mixture signal x (the desired source and interference together)

using an N -dimensional GMM.

We describe the density of the interference signal v in

each frequency bin as a mixture of kv zero-mean, complex-

valued, N -dimensional Gaussians with indices qv = 1, ..., kv,

covariances Rv,qv
and mixing proportions cv,qv

:

p(v|θv) =

kv∑

qv=1

cv,qv

1

πN |Rv,qv
| exp

(
−v

H
R

−1
v,qv

v
)

(11)

where θv = {cv,qv
,Rv,qv

: 1 ≤ qv ≤ kv}, and the mixing

proportions cv,qv
= p(qv) (prior probabilities of the Gaussian

states) are constrained to sum to one. In addition, we shall

describe the density of the desired source signal s in each

frequency bin as a mixture of ks zero-mean complex-valued

1-dimensional Gaussians with indices qs = 1, ..., ks , variances

σ2
s,qs

and mixing proportions cs,qs
:

p(s|θs) =

ks∑

qs=1

cs,qs

1

πσ2
s,qs

exp

(−|s|2
σ2

s,qs

)
(12)

where θs = {cs,qs
, σ2

s,qs
: 1 ≤ qs ≤ ks}, and the mixing

proportions cs,qs
= p(qs) (prior probabilities of the Gaussian

states) are constrained to sum to one. The number of compo-

nents ks and kv control the flexibility of the model. In our

model, the Gaussian states are not coupled across frequency,

and the parameters {θs, θv} are frequency dependent.

The MMSE estimate of the desired signal s is the mean of

the a posteriori probability density of s given x:

ŝMMSE = E [s|x] =

∫
p(s|x) s ds

=

∫ ks∑

qs=1

kv∑

qv=1

p(s, qs, qv|x) s ds

=

∫ ks∑

qs=1

kv∑

qv=1

p(qs, qv|x) p(s|x, qs, qv) s ds

=

ks∑

qs=1

kv∑

qv=1

p(qs, qv|x)

∫
p(s|x, qs, qv) s ds

=

ks∑

qs=1

kv∑

qv=1

τqs,qv
E [s|x, qs, qv] (13)

where

τqs,qv
= p(qs, qv|x)

=
p(x|qs, qv) p(qs) p(qv)

∑ks

q
′

s
=1

∑kv

q
′

v
=1

p(x|q′

s, q
′

v) p(q′

s) p(q′

v)
(14)

is the a posteriori probability that the components qs and qv

are active in their respective GMMs when observing x, with∑
qs

∑
qv

τqs,qv
= 1. The posteriori probability is specific to

each time frequency point, and has a non-linear dependency

on the observed data.

We can see that the conditional mean E [s|x, qs, qv] is the

linear MMSE beamformer estimator in (9), with Rv = Rv,qv

and σ2
s = σ2

s,qs
. The desired signal estimator in (13) is a

non-linear weighted sum of linear MMSE beamformers over

all the GMM components, and the weighting coefficients

are the a posteriori probabilities of the GMM components

τqs,qv
(specific to each time-frequency point). This mixture

of MMSE beamformers will be denoted by w1 and is given

by [26]:

w1 =

ks∑

qs=1

kv∑

qv=1

τqs,qv

σ2
s,qs

σ2
s,qs

+
(
aHR

−1
v,qv

a
)−1

a
H

R
−1
v,qv

aHR
−1
v,qv

a

(15)

In comparison to independent factor analysis [27], where

sources were also modeled with GMMs, the mixture of MMSE

beamformers models all the interfering sources using one N -

dimensional mixture of Gaussians in the observation (micro-

phones) domain. Consequently, the number of interferers in
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Algorithm 1 Separation procedure using w1 or w2

1: Compute the STFT of the mixture x.

2: Apply the EM algorithm (see Appendix A) separately in

each frequency bin to compute {τqs,qv
(n, f),

σ2
s,qs

(f),Rv,qv
(f) : 1 ≤ qs ≤ ks, 1 ≤ qv ≤ kv}.

3: For each time-frequency point (n, f), the output of the

non-linear beamformer is given by:

ŝ(n, f) =

ks∑

qs=1

kv∑

qv=1

τqs,qv
(n, f)wqs,qv

(f)x(n, f) (17)

where wqs,qv
(f) can be either a linear MMSE or a linear

MVDR beamformer:

w
MVDR
qs,qv

(f) =
a(f)H

R
−1
v,qv

(f)

a(f)HR
−1
v,qv

(f)a(f)
(18)

w
MMSE
qs,qv

(f) = HWiener
qs,qv

(f)wMVDR
qs,qv

(f) (19)

where the scalar, single channel Wiener post filter is given

by:

HWiener
qs,qv

(f) =
σ2

s,qs
(f)

σ2
s,qs

(f) +
(
a(f)HR

−1
v,qv

(f)a(f)
)−1

(20)

4: The corresponding time-domain signal ŝ is derived by an

STFT inversion.

the mixture is not required to be known or have a unique

mixing structure. This also avoids the exponential growth of

the number of Gaussian components in the observation density

with the number of sources.

If a distortionless response in the direction of the desired

source is required, a distortionless response mixture of MVDR

beamformers can be used [26]:

w2 =

ks∑

qs=1

kv∑

qv=1

τqs,qv

a
H
R

−1
v,qv

aHR
−1
v,qv

a
(16)

This mixture of MVDR beamformers is a non-linear

weighted sum of linear distortionless MVDR beamformers,

where the weights sum to unity. As a result, it is constrained

to a distortionless response in the look-direction. By distor-

tionless we mean it has a unity gain in the look-direction at

all time-frequency points.

In Appendix A, we develop an EM algorithm to

learn the model density parameters θ = {θs, θv} =
{cs,qs

, σ2
s,qs

, cv,qv
,Rv,qv

: 1 ≤ qs ≤ ks, 1 ≤ qv ≤ kv}. The

model learning is applied separately in each frequency bin.

We briefly summarize the main steps in the separation

procedure using w1 or w2 in Algorithm 1. Note that the model

learning step is applied separately in each frequency bin, and

that the Gaussian states’ posterior probabilities are specific to

each time-frequency point (no coupling across all frequencies).

In a previous paper [28], a non-linear beamformer was

developed assuming a distortionless response in the direction

of the desired source. A mixture of kx zero-mean, complex-

valued, N -dimensional Gaussians with indices qx = 1, ..., kx,

covariances Rx,qx
and mixing proportions cx,qx

was used

Algorithm 2 Separation procedure using w3

1: Compute the STFT of the mixture x.

2: Apply the EM algorithm (see Appendix B) separately in

each frequency bin to compute {τqx
(n, f),

Rx,qx
(f) : 1 ≤ qx ≤ kx}.

3: For each time-frequency point (n, f), the output of the

non-linear beamformer is given by:

ŝ(n, f) =

kx∑

qx=1

τqx
(n, f)wqx

(f)x(n, f) (23)

where:

wqx
(f) =

a(f)H
R

−1
x,qx

(f)

a(f)H R
−1
x,qx

(f)a(f)
(24)

4: The corresponding time-domain signal ŝ is derived by an

STFT inversion.

to model the observed mixture x (the desired source and

interference together) in each frequency bin:

p(x|θx) =

kx∑

qx=1

cx,qx

1

πN |Rv,qv
| exp

(
−x

H
R

−1
x,qx

x
)

(21)

where θx = {cx,qx
,Rx,qx

: 1 ≤ qx ≤ kx}, and the mixing

proportions cx,qx
= p(qx) (prior probabilities of the Gaussian

states) are constrained to sum to one. This leads to a simple

learning algorithm, and the learning of model parameters is

independent on the desired source direction. The desired signal

can be estimated using this mixture of MVDR beamformers

[28]:

w3 =

kx∑

qx=1

τqx

a
H

R
−1
x,q

aHR
−1
x,qa

(22)

where τqx
= p(qx|x) is the relative contribution for each

linear MVDR beamformer, and is calculated as the posterior

probability (specific to each time-frequency point) of its corre-

sponding Gaussian component. The resulting beamformer has

a unity gain in the look-direction at all time-frequency points.

In Appendix B, we develop an EM algorithm to learn the

observation model density parameters θx = {cx,qx
,Rx,qx

:
1 ≤ qx ≤ kx). The model learning is applied separately in

each frequency bin.

The main steps in the separation procedure using w3 are

summarized in Algorithm 2.

V. EXPERIMENTAL EVALUATION

A. Setup

In order to illustrate the performance of the non-linear

beamformers, multichannel recordings of several speech

sources were simulated using impulse responses determined by

the room image method [29]. The positions of the microphones

and the sources were as illustrated in Fig. 1. Two microphone

arrays were used. The first has three microphones with a

spacing d = 2.5 cm, and the second has two microphones
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Fig. 2. Layout of room used in recordings.

Fig. 1. Layout of room used in simulations.

with a spacing d = 5 cm. In section V-H, live recordings in

the room illustrated in Fig. 2 were used.

We used speech files taken from the TIMIT speech corpus

[30] to create five mixtures of male sources, and five mixtures

of female sources. The speech signals were of a duration equal

to 10 s, and were sampled at 16 kHz. The number of the

sources in each mixture was four. The sources were placed in

a semi-circle of radius 1 m around the microphone arrays at

angles φ = {−45, −15, 10, 50}◦.

B. Evaluation Measures

To measure the quality of the signal estimate ŝ with respect

to the original signal s, we used the source to distortion ratio

(SDR), source to interference ratio (SIR) and the sources

to artifacts ratio (SAR) calculated as defined in [31]. The

computation of the evaluation measures involves two steps.

First, the estimated signal ŝ is decomposed as

ŝ = starget + einterf + eartif (25)

where starget is a version of the desired source s modified by an

allowed distortion, and where einterf and eartif are respectively

the interferences and artifacts error terms. In a second step,

we compute energy ratios to evaluate the relative amount of

each of these terms as follows:

SDR = 10 log10

‖starget‖2

‖einterf + eartif‖2
(26)

SIR = 10 log10

‖starget‖2

‖einterf‖2
(27)

SAR = 10 log10

‖starget + einterf‖2

‖eartif‖2
(28)

In our results, the SDR, SIR and SAR values were averaged

over all the sources and mixtures.

C. Algorithm Parameters

Unless mentioned otherwise, we use the values listed in

Table I for the STFT frame size, STFT step size, number of

GMM components, and number of iterations.

D. Effect Of Design Parameters

We first investigate the effect of various parameters on the

performance of the non-linear beamformers. We study the

effect of the number of Gaussian components in the GMM

model, the required number of EM iterations, and the effect

of the learning block size.
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TABLE I
ALGORITHM PARAMETERS.

w1 w2 w3

STFT frame 1024 1024 1024

STFT step 256 256 256

GMM components
(2 mics)
(3 mics)

ks = 2, kv = 15
ks = 2, kv = 5

ks = 2, kv = 15
ks = 2, kv = 5

kx = 15
kx = 5

EM Iterations
(2 mics)
(3 mics)

100
100

100
100

50
20
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Fig. 3. Average performance of the non-linear beamformer w3 in equation
(22) as a function of the number of Gaussian components kx in the GMM
model.

2 4 6 8 10 12 14
−5

0

5

10

15

20

Performance vs number of GMM components in the interference model (k
v
), RT = 0, mics = 2

S
D

R
 (

d
B

)

 

 
k

s
=1

k
s
=2

k
s
=3

2 4 6 8 10 12 14
−5

0

5

10

15

20

S
IR

 (
d
B

)

 

 
k

s
=1

k
s
=2

k
s
=3

2 4 6 8 10 12 14
−5

0

5

10

15

20

number of GMM components in the interference model (k
v
)

S
A

R
 (

d
B

)

 

 
k

s
=1

k
s
=2

k
s
=3

Fig. 4. Average performance of the non-linear beamformer w2 in equation
(16) as a function of the number of Gaussian components kv and ks in the
GMM model.

1) Effect of the Number of Gaussian Components: In

this experiment, four sources were operating in an anechoic

environment (RT = 0), and the microphone array used has

two microphones with a 5 cm microphone spacing. Fig. 3

shows the average performance at the output of the non-linear

beamformer w3 defined in (22) as a function of the number

of Gaussian components kx in the GMM model. The case of
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Fig. 5. Average performance of the non-linear beamformer w1 in equation
(15) as a function of the number of Gaussian components kv and ks in the
GMM model.

kx = 1 is equivalent to a time-invariant MVDR beamformer.

The SIR increases with kx, but the improvement is insignifi-

cant at kx > 10. Although there is a unity-gain response in the

direction of the desired source signal, the SAR decreases with

kx. The decrease in the SAR can be attributed to the non-

linear attenuation of the interfering sources. These artifacts

therefore introduce distortion only into the residual interfering

signals. We stress that the mixture of MVDR beamformers is

by definition distortionless in the look-direction.

Fig. 4 shows the average performance at the output of the

non-linear beamformer w2 defined in (16) as a function of the

number of Gaussian components in the interference model kv

and the number of Gaussian components in the source model

ks. We can see that there is little to be gained in increasing

the number of source Gaussian components ks to more than

two. The SIR increases with kv, but the improvement again

is insignificant for kv > 10. The non-linear beamformer can

attain a SIR of 10 dB in the two microphones case.

Fig. 5 shows the average performance at the output of

the mixture of MMSE beamformers w1 defined in (15) as

a function of the number of Gaussian components in the

interference model kv and the number of Gaussian components

in the source model ks. The non-linear beamformer can

attain an SIR of 13 dB. However, the SAR was reduced in

comparison to Fig. 4 because the distortionless constraint is

no longer held.

2) Effect of the Number of Iterations: Fig. 6 shows the

average performance at the output of the non-linear beamform-
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Fig. 6. Separation using two microphones: average performance as a function
of the number of EM iterations.
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ers in the anechoic case as a function of the number of EM

iterations. The microphone array used has two microphones

with a 5 cm microphone spacing. The non-linear beamformer

w3 defined in (22) require less than 20 iterations to converge,

whereas the other two non-linear beamformers require more

iterations to converge (about 100 iterations).

3) Effect of the Learning Block Size: The EM algorithm

used in our experiments is a batch learning algorithm. We

studied the effect of varying the size of learning data on the

performance of the non-linear beamformers. Fig. 7 shows the

average performance at the output of the non-linear beam-

former w3 defined in (22) in the anechoic case as a function

of the EM learning block length. The performance is fairly

consistent even when using shorter learning blocks. Note that

the FMV algorithm can be considered as a special case of

the non-linear beamformer w3, with kx = 1 and very short

learning blocks (≈ 100 ms).
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Fig. 8. Examples of directivity patterns at 453 Hz, when the desired source
is at angle 10◦ , and the interfering sources are at {−45, −15, 50}◦. Left
column: directivity patterns. Right column: power of sources.

E. Directivity Patterns

Fig. 8 shows four examples of directivity patterns for the

non-linear beamformer w3 of equation (22) in the anechoic

case. The directivity patterns are defined as the magnitude of

the response of the beamformer at frequency f for a far-field

signal coming from direction Φ:

D(f, Φ) =

∣∣∣∣∣∣

N∑

j=1

wj(f).eι2πf(j−1)dc−1 sin Φ

∣∣∣∣∣∣
(29)

In this experiment, the desired source was at an angle of

10◦, and the interfering sources at {−45, −15, 50}◦. The

microphone array used has two microphones with a 5 cm

microphone spacing. The four examples are at four different

time frames at the frequency of 453 Hz. In the first example

(first row), the desired source and the interferer at angle −45◦

were active. In the second example (second row), the interferer

at angle −15◦ was active. In the third example (third row), the

desired source was active, and in the fourth example (fourth

row), the interferer at angle 50◦ was active. The non-linear

beamformer effectively nullifies the active interferer while

having a distortionless response in the direction of the desired

source.

F. Effect Of DOA Offset

In a typical application, the DOA of the desired source is

scanned across a region of interest in space. The desired signal

can arrive from a different direction than that assumed. We

tested the effect of the mismatch between the assumed DOA

of the desired source and the true one. Fig. 9 shows the average

performance at the output of the non-linear beamformers in the

anechoic case as a function of the DOA offset. The non-linear

beamformers appear to be robust to small DOA offsets.

G. Effect Of Reverberation

Fig. 10 shows the average performance as a function of

the room reverberation time when four sources are operating,
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Fig. 9. Separation using two microphones: average performance as a function
of DOA offset.
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and the microphone array used has two microphones with a 5

cm microphone spacing. kx = 15 was used in the beamformer

defined in (22), and ks = 2, kv = 15 was used in the two other

beamformers. We compared the performance of the three non-

linear beamformers with the performance of the MENUET

and FMV algorithms. A STFT of frame size 1024 samples is

used. In the FMV algorithm, a small step size of 16 samples

is required, while a step size of 256 samples is sufficient in

the non-linear beamformers. The MENUET algorithm and the

mixture of MMSE beamformers (w1) gives a high SIR, but

suffers from a very low SAR at higher reverberation times.

The non-linear beamformers w2 and w3 of equations (16) and

(22) respectively have significantly lower artifacts at higher

reverberation times.

Fig. 11 shows the average performance as a function of

the room reverberation time when four sources are operating,

and the microphone array used has three microphones with a

2.5 cm microphone spacing. We compared the performance

of the three non-linear beamformers with the performance of
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Fig. 11. Separation using three microphones: average performance as a
function of reverberation time.

TABLE II
AVERAGE PERFORMANCE USING REAL LIFE RECORDINGS IN A ROOM

WITH 810 MS REVERBERATION TIME.

SDR SIR SAR

w1 0.3 3.8 4.5

w2 -1.7 -0.5 7.9

w3 -1.8 -0.3 7.0

FMV -2.1 -0.3 5.7

MENUET -0.4 3.3 3.6

the MENUET and FMV algorithms. kx = 5 was used in

the beamformer of equation (22), and ks = 2, kv = 5 was

used in the two other beamformers. The performance of non-

linear beamformers improved with the addition of the third

microphone.

H. Live Recordings

In order to illustrate the performance of the non-linear

beamformers in real life recordings, multichannel recordings

of several speech sources were recorded in a room with a

reverberation time of 810 ms. The dimensions of the room and

the positions of the microphones and the sources are illustrated

in Figure 2. The microphone array has two microphones with

spacing d = 7 cm. We use the same speech files used in the

simulations (five mixtures of male sources, and five mixtures

of female sources). The number of the sources in each mixture

was four. The desired source was placed 30 cm away from

the microphone array, while the interferers were placed in a

semi-circle of radius 1.5 m around the microphone arrays at

angles φ = {−60, −30, 50}◦. We compared the three non-

linear beamformers with the FMV and MENUET algorithms.

The SIR and SAR values were averaged over all the mixtures.

Table II shows the results.

Due to the high reverberation times, all of the methods suf-

fer from low SIR values, but they all afford SIR improvements

over the input mixture (the mixture SIR is –4.7 dB). The non-

linear beamformer w2 shows the highest SAR. The non-linear

beamformer w1 has the highest SIR and SDR performance,

and also achieves better SAR than MENUET which had the
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Fig. 12. (a) Spectrogram of a desired signal. (b) Spectrogram of a mixture
of 4 sources. (c-f) t-f masks.

TABLE III
COMPUTATIONAL TIME FOR THE PROPOSED METHODS.

time (s) parameters

w1 (2 mics) 498 ks = 2, kv = 15, 100 iterations

w2 (2 mics) 498 ks = 2, kv = 15, 100 iterations

w3 (2 mics) 87 kx = 15, 50 iterations

w1 (3 mics) 193 ks = 2, kv = 5, 100 iterations

w2 (3 mics) 193 ks = 2, kv = 5, 100 iterations

w3 (3 mics) 14 kx = 5, 20 iterations

second best SIR.

I. Time-Frequency Masks

To understand how the various beamformers are achieving

their signal enhancement, we can look at equivalent time-

frequency masks for each algorithm. Fig. 12 compares the

equivalent mask of the three non-linear beamformers with the

time-frequency mask of DUET on an example mixture. The

equivalent mask was computed at each time-frequency point

as the ratio of the energy of the desired signal estimate to the

energy of the observed mixture. The non-linear beamformer’s

approach results in a soft decision mask for the observed

signal.

J. Computational Time

In this subsection, we report the time it took for our Matlab

implementation of the non-linear beamformers to run on 2.5

GHz CPU. The time reported is for the extraction of one 10

s speech source. We used the same design parameters used in

subsection V-G. Table III shows the results.

We can see that the beamformer w3 took less time than

the other two beamformers. Beamformers w1 and w2 have

similar computational time because they use the same learning

algorithm (Appendix A). The computational time for the three

microphones case is lower than that of the two microphones

case. This is because the performance of the beamformers

using the three microphones array peak using fewer Gaussian

components than the two microphone case.

VI. CONCLUSION

Frequency-domain non-linear mixture of beamformers were

introduced and applied to the extraction of a desired speech

source from a known direction in underdetermined speech

mixtures. The system model assumes an anechoic desired

source signal, but no assumptions are made about the in-

terferers, which can be of any nature such as point sources,

spatial extended sources, diffuse sources, or a combination of

them. The beamformers are derived assuming non-Gaussian

interference signals modeled using a mixture of Gaussians dis-

tribution. This estimator introduces additional degrees of free-

dom to the beamformer by exploiting the super-Gaussianity

(sparsity) of the interferers and dynamically finds suitable

directivity patterns in order to reduce active interfering signals.

The non-linear beamformers require the location of the

target speech source to be known or estimated in advance,

but they have the following advantages:

• No need to know - or estimate - the number of interfering

sources.

• Can be applied to underdetermined speech mixtures.

• The number of components in the GMM model controls

the flexibility of the model. We did not incur overfit-

ting in our experiments, therefore the number of GMM

components can be used to trade-off complexity with per-

formance. When using a larger number of microphones,

the performance peaks with a small number of GMM

components.

• Can be applied to microphone arrays with two or more

microphones.

• Robust to small errors in the desired source DOA.

While one could impose models that are coupled across

frequency to represent spectral patterns, we want to avoid

that to keep the model as general as possible. This allows

a close match to the actual properties of the observed signals

and avoids the effect of microphone and channel variability

which can cause a mismatch with the prior training conditions

[23]. With our GMM model, we are aiming to impose as little

structure on the source and interference models as possible.

However, in future work, we would like to investigate the

effect of source specific models.

The non-linear beamformers have been tested and evaluated

on underdetermined speech mixtures. It was shown that the

non-linear beamformer w1 defined in (15) gives better inter-

ference rejection at the expense of higher artifacts, especially

at higher reverberation times. The non-linear beamformers w2

and w3 defined in (22) and (16) are distortionless beamformers

(constant gain in the look-direction), and have significantly

lower artifacts at higher reverberation times.

In terms of computational complexity, non-linear beam-

former w3 employs a simpler learning algorithm and requires

fewer iterations than non-linear beamformers w1 and w2.

Furthermore, the model learning for non-linear beamformer

w3 is independent of the location of the desired source, which

makes this non-linear beamformer suitable in applications

where scanning for the source direction is needed.

In our current implementation, the EM algorithm used is

in a batch learning mode. In section V.D.3, we studied the
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effect of using short blocks of data. The batch mode with

short blocks of data can be used in applications where short

delays are permissible, such as in human-computer interaction

or surveillance. However, it is not appropriate for real-time

applications. In these applications, online model learning is

essential [32]. The online model learning should have a

forgetting factor, and a mechanism for adding, deleting, and

reassigning Gaussians to handle changes in the environment

[33].

In the future, we would like to investigate the use of other

linearly constrained minimum variance (LCMV) beamformers

and Bayesian beamformers that are robust to DOA uncertainty

[34] in the mixture of beamformers framework. We would

also like to investigate the use of other filter banks instead of

the STFT, such as auditory or constant-Q filter banks [35].

Through this, we aim to improve the performance of the

beamformers at higher reverberation times.

APPENDIX

DERIVATION OF THE EM ALGORITHM

Using the EM algorithm, we can estimate the model density

parameters from a set of observations D = {x(n) : 1 ≤
n ≤ η}. The EM algorithm is used to find a maximum

likelihood estimate of parameters in probabilistic models with

latent variables (incomplete data problems). In our case, x

is the observed (or incomplete) data, and the latent variables

are the state sequence of the Gaussian mixtures that indicate

which Gaussian components are responsible for x(n). In

EM terminology, the complete data is composed of both the

observed data and the latent variables. The EM algorithm is an

iterative algorithm with two steps: (1) an expectation step (E-

step), and (2) a maximization step (M-step). In the E-step, we

calculate the conditional expectation of the complete data log

likelihood. The expectation is taken with respect to the condi-

tional probability of the hidden states, given the observed data

and the parameter values obtained in the previous iteration. In

the M-step, the new estimates of the parameters are calculated

to maximize the conditional expectation of the complete data

log likelihood.

A. Learning Interference And Desired Source Parameters

In this section, the parameters θ = {θs, θv} =
{cs,qs

, σ2
s,qs

, cv,qv
,Rv,qv

: 1 ≤ qs ≤ ks, 1 ≤ qv ≤ kv} of

the interference v and desired source s are estimated using

the EM algorithm. These parameters are required for the

non-linear beamformers w1 and w2 of equations (15) and

(16). Let us define a complete data set Dc = {x, s, qs, qv}
composed of both the observed and the latent data. If we were

to actually have such a complete data set, we could define its

log likelihood as:

lc(θ|Dc) = ln

η∏

n=1

p(x(n), s(n), qs(n), qv(n)|θ)

=

η∑

n=1

ln p(x(n), s(n), qs(n), qv(n)|θ) (30)

Given an initial value θ0, the EM algorithm performs the

following steps at each iteration l:

E-step:: In the E-step, we compute the expectation of the

complete data log likelihood:

Q(θ, θl−1) =

ks∑

qs=1

kv∑

qv=1

∫
ds p

(
s, qs, qv|x, θl−1

)
.

ln p(x, s, qs, qv|θ) (31)

In the Gaussian mixture problem, this simply reduces to

calculating p
(
qs, qv|x, θl−1

)
, the posterior probability of the

latent variables, given the observed data and the parameters

obtained in the previous iteration:

τ (l)
qs,qv

= p
(
qs, qv|x, θ(l−1)

)

=
p
(
qs, qv,x|θ(l−1)

)

p
(
x|θ(l−1)

)

=
c
(l−1)
s,qs

c
(l−1)
v,qv

p
(
x|qs, qv, θ

(l−1)
)

∑ks

q
′

s
=1

∑kv

q
′

v
=1

c
(l−1)

s,q
′

s

c
(l−1)

v,q
′

v

p
(
x|q′

s, q
′

v, θ(l−1)
)

(32)

where

p(x|qs, qv) =

∫
p(x, s|qs, qv) ds

=

∫
p(x|s, qv) p(s|qs) ds

=

∫ N (x− as,Rv,qv
) N (s, σ2

s,qs

)
ds

= N (x,Rv,qv
+ σ2

s,qs
aa

H
)

(33)

Moreover, we evaluate the conditional mean and variance

of the desired source given both the observed mixture and

the hidden states, which are denoted by 〈s|x(n), qs, qv〉 and

〈ss∗|x(n), qs, qv〉 respectively. Given the hidden states and the

mixture, the conditional probability of s is Gaussian:

p(s|x, qs, qv) =
p(x, s, qs, qv)

p(x, qs, qv)

=
p(s|qs) p(x|s, qv) p(qs) p(qv)

p(x|qs, qv) p(qs) p(qv)

=
N(s, σ2

s,qs
) N(x− as,Rv,qv

)N (x,Rv,qv
+ σ2

s,qs
aaH

)

= N (s− αqs,qv
, βqs,qv

) (34)

where

αqs,qv
=

(
σ−2

s,qs
+ a

H
R

−1
v,qv

a
)−1

a
H
R

−1
v,qv

x (35)

βqs,qv
=

(
σ−2

s,qs
+ a

H
R

−1
v,qv

a
)−1

(36)

M-step:: In the M-step, we maximize the expected

complete log likelihood with respect to the parameters θ =
{θs, θv} = {cs,qs

, σ2
s,qs

, cv,qv
,Rv,qv

: 1 ≤ qs ≤ ks, 1 ≤ qv ≤
kv}. This can be done by taking derivatives with respect to

θ and setting them to be equal to zero (under the constraints∑ks

qs=1 cs,qs
= 1 and

∑kv

qv=1 cv,qv
= 1). This results in the

following update rules:

c(l)
v,qv

=
1

η

η∑

n=1

ks∑

qs=1

τ (l)
qs,qv

(n) (37)
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c(l)
s,qs

=
1

η

η∑

n=1

kv∑

qv=1

τ (l)
qs,qv

(n) (38)

σ2(l)

s,qs
=

∑η
n=1

∑kv

qv=1 τ
(l)
qs,qv

(n) 〈ss∗|x(n), qs, qv〉
∑η

n=1

∑kv

qv=1 τ
(l)
qs,qv

(n)
(39)

R
(l)
v,qv

=

∑η

n=1

∑ks

qs=1 τ
(l)
qs,qv

(n) Λqs,qv
(n)

∑η
n=1

∑ks

qs=1 τ
(l)
qs,qv

(n)
(40)

where

Λqs,qv
(n) = x(n)x(n)H − x(n) 〈s∗|x(n), qs, qv〉aH

−a 〈s|x(n), qs, qv〉x(n)H

+a 〈ss∗|x(n), qs, qv〉aH (41)

In this model, there is an ambiguity in associating variance

between the desired source and the interference. It is possible

to incorporate some of the source signal into the interference.

To avoid this, updating the desired source component variances

is not performed in the first few iterations. This prevents the

source components shrinking to zero variance.

B. Learning Observed Mixture Parameters

In this section, the parameters θx = {cx,qx
,Rx,qx

: 1 ≤
qx ≤ kx) of the observed mixture x are estimated using

the EM algorithm. These parameters are required for the

non-linear beamformer w3 of equation (22). Let us define

a complete data set Dc = {x, qx} composed of both the

observed and the latent data. If we were to actually have such

a complete data set, we define its log likelihood as:

lc(θx|Dc) = ln

η∏

n=1

p(x(n), qx(n)|θx)

=

η∑

n=1

ln p(x(n), qx(n)|θx) (42)

The EM algorithm may be executed as follows:

E-step:: In the E-step, we compute the expectation of the

complete data log likelihood:

Q(θx, θl−1
x ) =

kx∑

qx=1

p
(
qx|x, θl−1

x

)
ln p(x, qx|θx)

(43)

This reduces to calculating p
(
qx|x, θl−1

x

)
, the posterior

probability of the latent variables given the observed data and

the current estimates of the parameters.

τ (l)
qx

= p
(
qx|x, θ(l−1)

x

)

=
p
(
qx,x|θ(l−1)

x

)

p
(
x|θ(l−1)

x

)

=
p
(
qx|θ(l−1)

x

)
p
(
x|qx, θ

(l−1)
x

)

∑kx

q
′

x
=1

p
(
q′

x|θ
(l−1)
x

)
p
(
x|q′

x, θ
(l−1)
x

)

=
c
(l−1)
qx

N(x|R(l−1)
x,qx

)

∑kx

q
′

x
=1

c
(l−1)

q
′

x

N(x|R(l−1)

x,q
′

x

) (44)

M-step:: In the M-step, we maximize the expected com-

plete log likelihood with respect to the parameters θx =
{cx,qx

,Rx,qx
: 1 ≤ qx ≤ kx). This can be done by taking

derivatives with respect to θx and setting them to be equal to

zero, while also including a Lagrangian term to account for the

constraint that
∑kx

qx=1 cqx
= 1. This results in the following

update rules:

R
(l)
x,qx

=

∑η

n=1 τ
(l)
qx

(n)x(n)x(n)H

∑η

n=1 τ
(l)
qx

(n)
(45)

c(l)
x,qx

=
1

η

η∑

n=1

τ (l)
qx

(n) (46)
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